
Spring Cloud Data Flow Reference Guide

1.0.0.M3

Copyright © 2013-2016Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow ii

Table of Contents

I. Preface ... 1
1. About the documentation .. 2
2. Getting help .. 3

II. Spring Cloud Data Flow Overview ... 4
3. Introducing Spring Cloud Data Flow .. 5

3.1. Features .. 5
4. Spring Cloud Data Flow Architecture ... 6

4.1. Components .. 6
5. System Requirements ... 7
6. Deploying Spring Cloud Data Flow .. 8

6.1. Deploying 'local' ... 8
III. Streams ... 10

7. Introduction ... 11
8. Creating a Simple Stream ... 12
9. Deleting a Stream ... 13
10. Deploying and Undeploying Streams .. 14
11. Other Source and Sink Types ... 15
12. Simple Stream Processing .. 16
13. DSL Syntax .. 17

13.1. Register a Stream App ... 17
14. Advanced Features ... 18
15. Module Labels .. 19
16. Tap DSL ... 20
17. Connecting to explicit destination names at the broker .. 21

IV. Tasks .. 22
18. Introducing Spring Cloud Task ... 23
19. The Lifecycle of a task .. 24

19.1. Register a Task App .. 24
19.2. Create a Task Definition ... 25
19.3. Launch an ad-hoc Task .. 25
19.4. Task Execution .. 25
19.5. Destroy a Task Definition ... 25

20. Task Repository .. 27
20.1. Configuring the Task Execution Repository .. 27

Local .. 27
20.2. Datasource .. 27

V. Dashboard ... 29
21. Introduction ... 30
22. Apps ... 31
23. Runtime .. 32
24. Streams .. 33
25. Tasks ... 34

25.1. Modules ... 34
Create a Task Definition from a selected Job Module ... 34
View Task Module Details ... 34

25.2. Definitions .. 35
Launching Tasks ... 35

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow iii

25.3. Executions ... 35
26. Jobs ... 36

26.1. List job executions ... 36
Job execution details .. 37
Step execution details ... 37
Step Execution Progress ... 37

27. Analytics ... 39
VI. Appendices ... 40

A. Building .. 41
A.1. Documentation ... 41
A.2. Working with the code ... 41

Importing into eclipse with m2eclipse ... 41
Importing into eclipse without m2eclipse .. 42

B. Contributing .. 43
B.1. Sign the Contributor License Agreement ... 43
B.2. Code Conventions and Housekeeping .. 43

Part I. Preface

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 2

1. About the documentation

The Spring Cloud Data Flow reference guide is available as html, pdf and epub documents. The latest
copy is available at docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.M3/reference/html
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.M3/reference/pdf/spring-cloud-dataflow-reference.pdf
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.M3/reference/epub/spring-cloud-dataflow-reference.epub
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 3

2. Getting help

Having trouble with Spring Cloud Data Flow, We’d like to help!

• Ask a question - we monitor stackoverflow.com for questions tagged with spring-cloud.

• Report bugs with Spring Cloud Data Flow at github.com/spring-cloud/spring-cloud-dataflow/issues.

Note

All of Spring Cloud Data Flow is open source, including the documentation! If you find problems
with the docs; or if you just want to improve them, please get involved.

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud
https://github.com/spring-cloud/spring-cloud-dataflow/issues
http://github.com/spring-projects/spring-cloud-dataflow

Part II. Spring Cloud
Data Flow Overview

This section provides a brief overview of the Spring Cloud Data Flow reference documentation. Think
of it as map for the rest of the document. You can read this reference guide in a linear fashion, or you
can skip sections if something doesn’t interest you.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 5

3. Introducing Spring Cloud Data Flow

A cloud native programming and operating model for composable data microservices on a structured
platform. With Spring Cloud Data Flow, developers can create, orchestrate and refactor data pipelines
through single programming model for common use cases such as data ingest, real-time analytics, and
data import/export.

Spring Cloud Data Flow is the cloud native redesign of Spring XD – a project that aimed to simplify
development of Big Data applications. The integration and batch modules from Spring XD are refactored
into Spring Boot data microservices applications that are now autonomous deployment units – thus
enabling them to take full advantage of platform capabilities "natively", and they can independently
evolve in isolation.

Spring Cloud Data Flow defines best practices for distributed stream and batch microservice design
patterns.

3.1 Features

• Orchestrate applications across a variety of distributed runtime platforms including: Cloud Foundry,
Apache YARN, Apache Mesos, and Kubernetes

• Separate runtime dependencies backed by ‘spring profiles’

• Consume stream and batch data-microservices as maven dependency

• Develop using: DSL, Shell, REST-APIs, Admin-UI, and Flo

• Take advantage of metrics, health checks and remote management of data-microservices

• Scale stream and batch pipelines without interrupting data flows

http://projects.spring.io/spring-xd/
http://cloud.spring.io/spring-cloud-stream-modules/

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 6

4. Spring Cloud Data Flow Architecture

The architecture for Spring Cloud Data Flow is separated into a number of distinct components.

4.1 Components

The Core domain model includes the concept of a stream that is a composition of spring-cloud-stream
apps in a linear pipeline from a source to a sink, optionally including processor apps in between. The
domain also includes the concept of a task, which may be any process that does not run indefinitely,
including Spring Batch jobs.

The App Registry maintains the set of available apps, and their mappings to a URI. For
example, if relying on Maven coordinates, the URI would be of the format: maven://

<groupId>:<artifactId>:<version>

The Data Flow Server Core provides the REST API and UI to be used in combination with an
implementation of the Deployer SPI when creating a Data Flow Server for a given deployment
environment.

The Shell connects to the Data Flow Server’s REST API and supports a DSL that simplifies the process
of defining a stream and managing its lifecycle.

Several Data Flow Server implementations exist, covering a range of runtime environments:

• Local (intended for development only)

• Cloud Foundry

• Apache Yarn

• Apache Mesos

• Kubernetes

As mentioned above, the Spring Cloud Data Flow Server implementations all rely upon corresponding
implementations of the Spring Cloud Deployer SPI, which provides the abstraction layer for deploying
the apps of a given stream or task. The following are links to the deployer SPI projects that correspond
to the Data Flow Servers listed above:

• Local

• Cloud Foundry

• Apache Yarn

• Apache Mesos

• Kubernetes = Getting started

https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-core
https://github.com/spring-projects/spring-batch
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-registry
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-server-core
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-shell
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-server-local
https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry
https://github.com/spring-cloud/spring-cloud-dataflow-server-yarn
https://github.com/spring-cloud/spring-cloud-dataflow-server-mesos
https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud/spring-cloud-deployer/tree/master/spring-cloud-deployer-local
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry
https://github.com/spring-cloud/spring-cloud-deployer-yarn
https://github.com/spring-cloud/spring-cloud-deployer-mesos
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 7

5. System Requirements

You need Java installed (Java 7 or better, we recommend Java 8), and to build, you need to have Maven
installed as well.

You also need to have Redis installed and running if you plan on running a local system, or to run the
included tests.

http://redis.io/

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 8

6. Deploying Spring Cloud Data Flow

6.1 Deploying 'local'

1. Download the Spring Cloud Data Flow Server and Shell apps:

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-server-

local/1.0.0.M3/spring-cloud-dataflow-server-local-1.0.0.M3.jar

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.0.0.M3/

spring-cloud-dataflow-shell-1.0.0.M3.jar

2. Launch the Data Flow Server

a. Since the Data Flow Server is a Spring Boot application, you can run it just by using java -jar.

$ java -jar spring-cloud-dataflow-server-local-1.0.0.M3.jar

b. Running with Custom Maven Settings and/or Behind a Proxy If you want to override specific maven
configuration properties (remote repositories, etc.) and/or run the Data Flow Server behind a proxy,
you need to specify those properties as command line arguments when starting the Data Flow
Server. For example:

$ java -jar spring-cloud-dataflow-server-local-1.0.0.M3.jar --maven.localRepository=mylocal --

maven.remoteRepositories=repo1,repo2 --maven.offline=true

--maven.proxy.protocol=https --maven.proxy.host=host1 --maven.proxy.port=8090 --

maven.proxy.non_proxy_hosts='host2|host3' --maven.proxy.auth.username=user1 --

maven.proxy.auth.password=passwd

By default, the protocol is set to http. You can omit the auth properties if the proxy doesn’t need
a username and password.

By default, the maven localRepository is set to ${user.home}/.m2/repository/, and
repo.spring.io/libs-snapshot will be the only remote repository.

You can also use environment variables to specify the maven/proxy properties:

export MAVEN_LOCAL_REPOSITORY=mylocalMavenRepo

export MAVEN_REMOTE_REPOSITORIES=repo1,repo2

export MAVEN_OFFLINE=true

export MAVEN_PROXY_PROTOCOL=https

export MAVEN_PROXY_HOST=host1

export MAVEN_PROXY_PORT=8090

export MAVEN_PROXY_NON_PROXY_HOSTS='host2|host3'

export MAVEN_PROXY_AUTH_USERNAME=user1

export MAVEN_PROXY_AUTH_PASSWORD=passwd

3. Launch the shell:

$ java -jar spring-cloud-dataflow-shell-1.0.0.M3.jar

If the Data Flow Server and shell are not running on the same host, point the shell to the Data Flow
server:

server-unknown:>dataflow config server http://dataflow-server.cfapps.io

Successfully targeted http://dataflow-server.cfapps.io

dataflow:>

https://repo.spring.io/libs-snapshot

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 9

4. You can now use the shell commands to list available applications (source/processors/sink) and
create streams. For example:

dataflow:>stream create --name httptest --definition "http --server.port=9000 | log" --deploy

Note

You will need to wait a little while until the apps are actually deployed successfully before
posting data. Look in the log file of the Data Flow server for the location of the log files for
the http and log applications. Tail the log file for each application to verify the application
has started.

Now post some data

dataflow:> http post --target http://localhost:9000 --data "hello world"

Look to see if hello world ended up in log files for the log application.

Part III. Streams
In this section you will learn all about Streams and how to use them with Spring Cloud Data Flow.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 11

7. Introduction

In Spring Cloud Data Flow, a basic stream defines the ingestion of event driven data from a source to
a sink that passes through any number of processors. Streams are composed of spring-cloud-stream
modules and the deployment of stream definitions is done via the Data Flow Server (REST API). The
Getting Started section shows you how to start these servers and how to start and use the Spring Cloud
Data Flow shell.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

http | file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overridden using -- options, such as

http --port=8091 | file --dir=/tmp/httpdata/

To create these stream definitions you make an HTTP POST request to the Spring Cloud Data Flow
Server. More details can be found in the sections below.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 12

8. Creating a Simple Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let’s walk through what happens if we execute the following shell command:

dataflow:> stream create --definition "time | log" --name ticktock

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the --deploy
flag when creating the stream so that this step is not needed):

dataflow:> stream deploy --name ticktock

The Admin Server resolves time and log to maven coordinates and uses those to launch the time
and log applications of the stream. In this simple example, the time source simply sends the current
time as a message each second, and the log sink outputs it using the logging framework.

2016-01-13 10:41:15.398 INFO 65275 --- [nio-9393-exec-1] o.s.c.d.a.s.l.OutOfProcessModuleDeployer :

 deploying module org.springframework.cloud.stream.module:log-sink:jar:exec:1.0.0.BUILD-SNAPSHOT

 instance 0

 Logs will be in /var/folders/hs/h87zy7z17qs6mcnl4hj8_dp00000gp/T/spring-cloud-data-

flow-3652850284472151116/ticktock.log

2016-01-13 10:41:15.433 INFO 65275 --- [nio-9393-exec-1] o.s.c.d.a.s.l.OutOfProcessModuleDeployer :

 deploying module org.springframework.cloud.stream.module:time-source:jar:exec:1.0.0.BUILD-SNAPSHOT

 instance 0

 Logs will be in /var/folders/hs/h87zy7z17qs6mcnl4hj8_dp00000gp/T/spring-cloud-data-

flow-3652850284472151116/ticktock.time

If you would like to have multiple instances of a module in the stream, you can include a property with
the deploy command:

dataflow:> stream deploy --name ticktock --properties "module.time.count=3"

Important

See Chapter 15, Module Labels.

Getting-Started.xml#getting-started

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 13

9. Deleting a Stream

You can delete a stream by issuing the stream destroy command from the shell:

dataflow:> stream destroy --name ticktock

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 14

10. Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undeploy the stream by name and issue the deploy command at a later time to restart it.

dataflow:> stream undeploy --name ticktock

dataflow:> stream deploy --name ticktock

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 15

11. Other Source and Sink Types

Let’s try something a bit more complicated and swap out the time source for something else. Another
supported source type is http, which accepts data for ingestion over HTTP POSTs. Note that the http
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an http source, but still using the same log sink, we would change the
original command above to

dataflow:> stream create --definition "http | log" --name myhttpstream --deploy

which will produce the following output from the server

2016-01-13 18:42:19.162 INFO 19463 --- [nio-9393-exec-7] o.s.c.d.a.s.l.OutOfProcessModuleDeployer :

 deploying module org.springframework.cloud.stream.module:log-sink:jar:exec:1.0.0.BUILD-SNAPSHOT

 instance 0

 Logs will be in /var/folders/hs/h87zy7z17qs6mcnl4hj8_dp00000gp/T/spring-cloud-data-

flow-2185888994718649403/myhttpstream.log

2016-01-13 18:42:19.180 INFO 19463 --- [nio-9393-exec-7] o.s.c.d.a.s.l.OutOfProcessModuleDeployer :

 deploying module org.springframework.cloud.stream.module:http-source:jar:exec:1.0.0.BUILD-SNAPSHOT

 instance 0

 Logs will be in /var/folders/hs/h87zy7z17qs6mcnl4hj8_dp00000gp/T/spring-cloud-data-

flow-2185888994718649403/myhttpstream.http

Note that we don’t see anydefin other output this time until we actually post some data (using shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

dataflow:> runtime modules

You should see that the corresponding http source has a url property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

dataflow:> http post --target http://localhost:1234 --data "hello"

dataflow:> http post --target http://localhost:1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016-01-13 21:15:34.825 INFO 54348 --- [hannel-adapter1] log.sink :

 hello

2016-01-13 21:17:36.544 INFO 54348 --- [hannel-adapter1] log.sink :

 goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (file),
to hadoop (hdfs) or to any of the other sink modules which are provided. You can also define your
own modules.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 16

12. Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

http | transform --expression=payload.toUpperCase() | log

To create this stream enter the following command in the shell

dataflow:> stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 mystream --deploy

Posting some data (using shell command)

dataflow:> http post --target http://localhost:1234 --data "hello"

Will result in an uppercased 'hello' in the log

15:18:21,345 WARN ThreadPoolTaskScheduler-1 logger.myprocstream:141 - HELLO

See the Processors section for more information.

processors.xml#spring-cloud-stream-modules-processors

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 17

13. DSL Syntax
In the examples above, we connected a source to a sink using the pipe symbol |. You can also pass
parameters to the source and sink configurations. The parameter names will depend on the individual
module implementations, but as an example, the http source module exposes a server.port setting
which allows you to change the data ingestion port from the default value. To create the stream using
port 8000, we would use

dataflow:> stream create --definition "http --server.port=8000 | log" --name myhttpstream

The shell provides tab completion for module parameters and also the shell command module
info provides some additional documentation. For more comprehensive documentation on module
parameters, please see the Modules chapter.

13.1 Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell module
register command. You must provide a unique name and a URI that can be resolved to the app
artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dataflow:>module register --name mysource --type source --uri maven://com.example:mysource:0.0.1-

SNAPSHOT

dataflow:>module register --name myprocessor --type processor --uri file:///Users/example/

myprocessor-1.2.3.jar

dataflow:>module register --name mysink --type sink --uri http://example.com/mysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <type>.<name> and the values are the URIs. For example, this would be
a valid properties file:

source.foo=file:///tmp/foo.jar

sink.bar=file:///tmp/bar.jar

Then use the module import command and provide the location of the properties file via --uri:

module import --uri file:///tmp/stream-apps.properties

You can also pass the --local option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

When using either module register or module import, if a stream app is already registered with
the provided name and type, it will not be overridden by default. If you would like to override the pre-
existing stream app, then include the --force option.

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

modules.xml#modules

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 18

14. Advanced Features

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant. First, named destinations may be used as a way to combine the output from multiple streams
or for multiple consumers to share the output from a single stream. This can be done using the DSL
syntax http > mydestination or mydestination > log. To learn more, refer to then section
on Named Destinations. Second, you may need to determine the output channel of a stream based on
some information that is only known at runtime. To learn about such content-based routing, refer to the
Dynamic Router section.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 19

15. Module Labels

When a stream is comprised of multiple modules with the same name, they must be qualified with labels:

stream create --definition "http | firstLabel: transform --expression=payload.toUpperCase() |

 secondLabel: transform --expression=payload+'!' | log" --name myStreamWithLabels --deploy

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 20

16. Tap DSL

Taps can be created at various producer endpoints in a stream. For a stream like this:

stream create --definition "http | step1: transform --expression=payload.toUpperCase() | step2:

 transform --expression=payload+'!' | log" --name mainstream --deploy

taps can be created at the output of http, step1 and step2.

To create a stream that acts as a 'tap' on another stream requires to specify the source destination
name for the tap stream. The syntax for source destination name is:

`<stream-name>.<label/app-name>`

To create a tap at the output of http in the stream above, the source destination name is
mainstream.http To create a tap at the output of the first transform app in the stream above, the
source destination name is mainstream.step1

The tap stream DSL looks like this:

stream create --definition ":mainstream.http > counter" --name tap_at_http --deploy

stream create --definition ":mainstream.step1 > jdbc" --name tap_at_step1_transformer --deploy

Note the colon (:) prefix before the destination names. The colon lets the parser parse this as the
destination name instead of app name.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 21

17. Connecting to explicit destination names at the
broker

One can connect to a specific destination name located in the broker (Rabbit, Kafka etc.,) either at the
source or at the sink position.

The following stream has the destination name at the source position:

stream create --definition ":myDestination > log" --name ingest_from_broker --deploy

This stream receives messages from the destination myDestination located at the broker and
connects it to the log app.

The following stream has the destination name at the sink position:

stream create --definition "http > :myDestination" --name ingest_to_broker --deploy

This stream sends the messages from http app to the destination myDestination located at the
broker.

From the above streams, notice that the http and log apps are interacting with each other via broker
(through the destination myDestination) rather than having a pipe directly between http and log
within a single stream.

It is also possible to connect two different destinations (source and sink positions) at the broker in
a stream.

stream create --definition ":destination1 > :destination2" --name bridge_destinations --deploy

In the above stream, both the destinations (destination1 and destination2) are located in the
broker. The messages flow from the source destination to the sink destination via a bridge app that
connects them.

Part IV. Tasks
This section goes into more detail about how you can work with Spring Cloud Tasks. It covers topics
such as creating and running task modules.

If you’re just starting out with Spring Cloud Dataflow, you should probably read the Getting Started guide
before diving into this section.

http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 23

18. Introducing Spring Cloud Task

A task executes a process on demand. In this case a task is a Spring Boot application that is annotated
with @EnableTask. Hence a user launches a task that performs a certain process, and once complete
the task ends. An example of a task would be a boot application that exports data from a JDBC repository
to an HDFS instance. Tasks record the start time and the end time as well as the boot exit code in a
relational database. The task implementation is based on the Spring Cloud Task project.

http://projects.spring.io/spring-boot/
http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 24

19. The Lifecycle of a task

Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for
tasks in the context of Spring Cloud Data Flow:

1. Register a Task App

2. Create a Task Definition

3. Launch a Task

4. Task Execution

5. Destroy a Task Definition

19.1 Register a Task App

Register a Task App with the App Registry using the Spring Cloud Data Flow Shell module register
command. You must provide a unique name and a URI that can be resolved to the app artifact. For the
type, specify "task". Here are a few examples:

dataflow:>module register --name task1 --type task --uri maven://com.example:mytask:1.0.2

dataflow:>module register --name task2 --type task --uri file:///Users/example/mytask-1.0.2.jar

dataflow:>module register --name task3 --type task --uri http://example.com/mytask-1.0.2.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <type>.<name> and the values are the URIs. For example, this would be
a valid properties file:

task.foo=file:///tmp/foo.jar

task.bar=file:///tmp/bar.jar

Then use the module import command and provide the location of the properties file via --uri:

module import --uri file:///tmp/task-apps.properties

You can also pass the --local option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

When using either module register or module import, if a task app is already registered with the
provided name, it will not be overridden by default. If you would like to override the pre-existing task
app, then include the --force option.

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 25

19.2 Create a Task Definition

Create a Task Definition from a Task Module by providing a definition name as well as properties that
apply to the task execution. Creating a task definition can be done via the restful API or the shell. To
create a task definition using the shell, use the task create command to create the task definition.
For example:

dataflow:>task create mytask --definition "timestamp --format=\"yyyy\""

 Created new task 'mytask'

A listing of the current task definitions can be obtained via the restful API or the shell. To get the task
definition list using the shell, use the task list command.

19.3 Launch an ad-hoc Task

An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc task via the
shell use the task launch command. For Example:

dataflow:>task launch mytask

 Launched task 'mytask'

19.4 Task Execution

Once the task is launched the state of the task is stored in a relational DB. The state includes:

• Task Name

• Start Time

• End Time

• Exit Code

• Exit Message

• Last Updated Time

• Parameters

A user can check the status of their task executions via the restful API or by the shell. To view the latest
task executions via the shell use the task execution list command.

To get a list of task executions for just one task definition, add --name and the task definition name, for
example task execution list --name foo. To retrieve full details for a task execution use the
task view command with the id of the task execution , for example task view --id 549.

19.5 Destroy a Task Definition

Destroying a Task Definition will remove the definition from the definition repository. This can be done
via the restful API or via the shell. To destroy a task via the shell use the task destroy command.
For Example:

dataflow:>task destroy mytask

 Destroyed task 'mytask'

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 26

The task execution information for previously launched tasks for the definition will remain in the task
repository.

Note: This will not stop any currently executing tasks for this definition, this just removes the definition.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 27

20. Task Repository

Out of the box Spring Cloud Dataflow offers an embedded instance of the H2 database. The H2 is good
for development purposes but is not recommended for production use.

20.1 Configuring the Task Execution Repository

To add a driver for the database that will store the Task Execution information, a dependency for the
driver will need to be added to a maven pom file and the Spring Cloud Dataflow will need to be rebuilt.
Since Spring Cloud Dataflow is comprised of an SPI for each environment it supports, please review
the SPI’s documentation on which POM should be updated to add the dependency and how to build.
This document will cover how to setup the dependency for local SPI.

Local

1. Open the spring-cloud-dataflow-server-local/pom.xml in your IDE.

2. In the dependencies section add the dependency for the database driver required. In the sample
below postgresql has been chosen.

<dependencies>

...

 <dependency>

 <groupId>org.postgresql</groupId>

 <artifactId>postgresql</artifactId>

 </dependency>

...

</dependencies>

3. Save the changed pom.xml

4. Build the application as described here: Building Spring Cloud Dataflow

20.2 Datasource

To configure the datasource Add the following properties to the dataflow-server.yml or via environment
variables:

a. spring.datasource.url

b. spring.datasource.username

c. spring.datasource.password

d. spring.datasource.driver-class-name

For example adding postgres would look something like this:

• Environment variables:

export spring_datasource_url=jdbc:postgresql://localhost:5432/mydb

export spring_datasource_username=myuser

export spring_datasource_password=mypass

export spring_datasource_driver-class-name="org.postgresql.Driver"

• dataflow-server.yml

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 28

spring:

 datasource:

 url: jdbc:postgresql://localhost:5432/mydb

 username: myuser

 password: mypass

 driver-class-name:org.postgresql.Driver

Part V. Dashboard
This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 30

21. Introduction

Spring Cloud Data Flow provides a browser-based GUI which currently has 6 sections:

• Apps Lists all available applications and provides the control to register/unregister them

• Runtime Provides the Dataflow cluster view with the list of all running applications

• Streams Deploy/undeploy Stream Definitions

• Tasks List, create, launch and destroy Task Definitions

• Jobs Perform Batch Job related functions

• Analytics Create data visualizations for the various analytics modules

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

http://<adminHost>:<adminPort>/admin-ui

For example: http://localhost:9393/admin-ui

If you have enabled https, then it will be located at https://localhost:9393/admin-ui. If you
have enabled security, a login form is available at http://localhost:9393/admin-ui/#/login.

Note: The default Dashboard server port is 9393

Figure 21.1. The Spring Cloud Data Flow Dashboard

http://localhost:9393/admin-ui

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 31

22. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). By clicking on the magnifying glass, you will get a listing of available
definition properties.

Figure 22.1. List of Available Applications

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 32

23. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime module the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
module id.

Figure 23.1. List of Running Applications

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 33

24. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally you
can remove the definition by clicking on destroy.

Figure 24.1. List of Stream Definitions

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 34

25. Tasks

The Tasks section of the Dashboard currently has three tabs:

• Modules

• Definitions

• Executions

25.1 Modules

Modules encapsulate a unit of work into a reusable component. Within the Dataflow runtime environment
Modules allow users to create definitions for Streams as well as Tasks. Consequently, the Modules tab
within the Tasks section allows users to create Task definitions.

Note: You will also use this tab to create Batch Jobs.

Figure 25.1. List of Task Modules

On this screen you can perform the following actions:

• View details such as the task module options.

• Create a Task Definition from the respective Module.

Create a Task Definition from a selected Job Module

On this screen you can create a new Task Definition. As a minimum you must provide a name for the
new definition. You will also have the option to specify various parameters that are used during the
deployment of the definition.

Note: Each parameter is only included if the Include checkbox is selected.

View Task Module Details

On this page you can view the details of a selected task module. The pages lists the available options
(properties) of the modules.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 35

25.2 Definitions

This page lists the Dataflow Task definitions and provides actions to launch or destroy those tasks.

Figure 25.2. List of Task Definitions

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:

• Parameter Key

• Parameter Value

Task parameters are not typed.

25.3 Executions

Figure 25.3. List of Task Executions

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 36

26. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

Figure 26.1. List of Job Executions

26.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 37

Job execution details

Figure 26.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

Important

In case of exceptions, the Exit Description field will contain additional error information. Please be
aware, though, that this field can only have a maximum of 2500 characters. Therefore, in case
of long exception stacktraces, trimming of error messages may occur. In that case, please refer
to the server log files for further details.

Step Execution Progress

On this screen, you can see a progress bar indicator in regards to the execution of the current step.
Under the Step Execution History, you can also view various metrics associated with the selected
step such as *duration, read counts, write counts etc.

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 38

Figure 26.3. Step Execution History

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 39

27. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
modules available in Spring Cloud Data Flow:

• Counters

• Field-Value Counters

For example, if you have created the springtweets stream and the corresponding counter in the
Counter chapter, you can now easily create the corresponding graph from within the Dashboard tab:

1. Under Metric Type, select Counters from the select box

2. Under Stream, select tweetcount

3. Under Visualization, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

Part VI. Appendices

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 41

Appendix A. Building
To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We
try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed,
please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw clean package -DskipTests -P full -pl spring-cloud-dataflow-docs -am

A.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 42

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Reference Guide

1.0.0.M3 Spring Cloud Data Flow 43

Appendix B. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

B.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

B.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Reference Guide
	Table of Contents
	Part I. Preface
	1. About the documentation
	2. Getting help

	Part II. Spring Cloud Data Flow Overview
	3. Introducing Spring Cloud Data Flow
	3.1 Features

	4. Spring Cloud Data Flow Architecture
	4.1 Components

	5. System Requirements
	6. Deploying Spring Cloud Data Flow
	6.1 Deploying 'local'

	Part III. Streams
	7. Introduction
	8. Creating a Simple Stream
	9. Deleting a Stream
	10. Deploying and Undeploying Streams
	11. Other Source and Sink Types
	12. Simple Stream Processing
	13. DSL Syntax
	13.1 Register a Stream App

	14. Advanced Features
	15. Module Labels
	16. Tap DSL
	17. Connecting to explicit destination names at the broker

	Part IV. Tasks
	18. Introducing Spring Cloud Task
	19. The Lifecycle of a task
	19.1 Register a Task App
	19.2 Create a Task Definition
	19.3 Launch an ad-hoc Task
	19.4 Task Execution
	19.5 Destroy a Task Definition

	20. Task Repository
	20.1 Configuring the Task Execution Repository
	Local

	20.2 Datasource

	Part V. Dashboard
	21. Introduction
	22. Apps
	23. Runtime
	24. Streams
	25. Tasks
	25.1 Modules
	Create a Task Definition from a selected Job Module
	View Task Module Details

	25.2 Definitions
	Launching Tasks

	25.3 Executions

	26. Jobs
	26.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	27. Analytics

	Part VI. Appendices
	Appendix A. Building
	A.1 Documentation
	A.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix B. Contributing
	B.1 Sign the Contributor License Agreement
	B.2 Code Conventions and Housekeeping

