Spring Cloud Data Flow Reference Guide

1.1.0.M2

Sabby Anandan, Marius Bogoevici, Eric Bottard, Mark Fisher, llayaperumal Gopinathan, Gunnar Hillert,
Mark Pollack, Patrick Peralta, Glenn Renfro, Thomas Risberg, Dave Syer, David Turanski, Janne Valkealahti

Copyright © 2013-2016 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Reference Guide

Table of Contents

I o 1= = Lo = PP 1
1. About the dOCUMENTALIONccueiiii e et e e e et e e e e en s 2
22 €1~ 111 To T 1Yo 3

[I. Spring Cloud Data FIOW OVEIVIEWccuuiiiiiiiii ettt et e e e e et e et eeanaeeees 4
3. Introducing Spring Cloud Data FIOWoiiiiiiiiiiii e 5

3L FRAIUIES ettt et 5

1LY ol o1 (=Tt (U T PP UPTUPTT 6
[e Yo [o 1o T o P 7
5. Microservice ArchiteCtural StYIEoiiiniiiiii e e e 9

5.1. Comparison to other Platform architeCturesccooiiiiiiiiiiii e 9
6. Streaming APPLICALIONSiiiiii e 11
6.1. Imperative Programming MOGEIccuiiiiiiiiiiieii e e e e 11
6.2. Functional Programming Model ... 11
S =T 1 01 PP 12
7485 T 1o o To [T | = 12
A ©o] (010 ¢ (=T o (o3 TSP PP 12
7.3, PArTIIONING ..oeeetiieeiii e ettt et e et e eae 12
7.4. Message DeliVery GUAraNtEESovveuuiiiiieiiieeeie e e e e e e e e e e et e e e eanaeees 13
TN ¢ F= 1|V (o PP UPPT PPN 15
9. TaSK APPICALIONS ...ttt e et e e 16
10. DAA FIOW SEIVET ..ottt et e e e et et et e e e et e e eaanns 17
O I = o To [0 To][| £ S PP PTRPT 17
10.2. CUSIOMIZATION ...vueeiee et e e e e e e e et e e e e et a e e e e eanaeeeen 17
0T TR 1= U1 18
R U 11 101U UPTPPT 19
O - T | i I =T = U o 19
11.2. ReSOUIrce ManagemMENTcuueee i it et e e e e e e e et e et et e e an e e e e e eaneeaneeneens 19
11.3. Scaling At FUNLIMEeiei e e et e e et e e e e ean s 19
11.4. ApPPlIcation VEISIONING . .ccouuuieiiiti ettt ettt e e 19

LY 1= 1] o =] = Ut (=T o 20
12. SYStEM REQUIFEIMENTSceiiii ittt ettt e et e et et et e e et e e et e e et e eanaaes 21
13. Controlling features with Data FIOW SEIVETcoiiiiiiiiiiiiiiiee e 22
14. Deploying Spring Cloud Data FIOWccouuiiiiiiiiii e e 23

14.1. Deploying MOCAI" ... 23

15. RDBMS CONFIQUIALIONiiiitieeiiii et ettt e e et e e e e n e e e enan e eees 25
TS Y=Y ol U)/ 26
16.1. ENabliNg HTTPS oot e e e e 26
Using Self-Signed CertifiCatescouuuiiiiiiiiii e 26

16.2. BasiC AUtheNtiCAtIONcouuiiiiiii e 27

File based authentiCation 28

[N 011 g 1= o= Ui {o) o 28

16.3. OQAULN 2.0 oo 30
Authentication using the Spring Cloud Data Flow Shellcc.oooiiiiinn. 30

OAuUth2 Authentication EXamPIESuuiiiiiiiiiiiiiiii e 31

LOCAl OAULNZ SEIVEL ...ttt et eaa e e 31

Authentication using GitHUD ... 31

16.4. Securing the Spring Boot Management Endpointscccovvvviiiiiieiiiiiieeiiiineeeens 32

1.1.0.M2 Spring Cloud Data Flow iii

Spring Cloud Data Flow Reference Guide

VS (=710 £ S PP 34
A o1 1o o 0T 1T 35
18, SIEAM DSL ..oiiiiiiiiiii e 36
19. REQISIEr @ SIMEAM AP ..uiiiitii ettt ettt e et ettt e et e et e e e e 37

19.1. Whitelisting application Propertiescoouuuiiiiiiini e 38

4O R O (=T i] o =TS 1 (=T 1o T 40
20.1. APPlICAtiON PrOPEITIESuciiiii ettt ettt et et e e e e enaans 40
Passing application properties when creating a streamcccovvveveviineennen. 40

4O I D=1 o) [0)Y 40 1T a1 0 (0] o 1T =T 42
Passing instance count as deployment Propertyo.oeveveeviieiiiiiieeeiiineeeeninne 42

Inline vs file reference Properties ... 42

Passing application properties when deploying a streamcccccceveiiiineinnenn, 42

Passing Spring Cloud Stream properties for the applicationcc..ccooveviiiiin. 43

Passing per-binding producer consumer pPropertiescoevvveeveveneeeieeeinnernnnenns 43

Passing stream partition properties during stream deploymentccc..couunee. 44

Passing application content type Propertiescceeuuieeiiiiiieeiiiiiie e 45
Overriding application properties during stream deploymentcccovvvvnerennn. 45

20.3. DeploymMENL PrOPEILIES .. covuiiiiiiii et e e e e e et e et e e e e eaas 45
Passing instance count as deployment Propertyc.cevvveeviieiiiiineeeiiineeeeninnne 46

Inline vs file reference Properties ... 46

21. DESIIOYING @ SITEAIM ...uuiiiiiiiiieiii et e e e e e e e e e e e e e et e e et e e et e e st e e et e eaneeeen 47
22. Deploying and UNndeploying SIrEAMISc.uuuiiiiiiiieiiiiii et 48
23. Other Source and Sink Application TYPES ...coovuiiiiiiiiee e 49
24, SIMPIE Stream PrOCESSING ...uciitieii e et e e e e e e e e e e e e e et e et e e et eeanans 50
25. Stateful Stream PrOCESSINGccoutuieiiiiiie ittt 51
26. TAP 8 SIMBAIM ..ottt et ettt et 52
27. Using Labels iN @ Streamoiiiiiiii e e 53
28. Explicit Broker Destinations iN @ StrEAIMoviiiiiiieiiii e 54
29. Directed Graphs iN @ SIIEAIMuuiiiiii e et e e e eees 55
29.1. Common application ProPEItIESviiiuiiiiiieiiii e e e e 55

30. Stream applications with multiple binder configurationscccoeeviiiiinn i, 56

T TR 1= 11 1 57
31. Introducing SPring CloUd TaASKccouuiiiiiiiiii e e e e e e e eees 58
32. The LIfecyCle Of @ tasKcoouuiiiiii e 59

32.1. Registering a Task ApPlCAtioNccooeuiiiiiii e 59
32.2. Creating @ TasK ... 60
32.3. LAUNCHING @ TASK ...uiiiiiiiiiiii et 60
32.4. Reviewing Task EXECULIONSiiiiiiiieiiiiii et e et e eeai e 60
32.5. DESIIOYING @ TASK ..civuuiiiiiiiii e aanes 61

33. TASK REPOSIIOIY ...ttt ettt et e et e e s 62
33.1. Configuring the Task Execution REPOSItOrYc..uiviiiiiiiniiiiiieeeiieeeci e 62
LOCAD ettt e 62

Task Application REPOSIIONYcccuuuiiiiiiiie et eeees 62

G FZ A D = 1 = 1= o U o= 62

34. Subscribing to Task/BatCh EVENLScccouiiiiii i 64
35. Launching Tasks from @ SIrEAMccouiuiiiiiiii e 65
LT I I o o =T I T PSPPSR 65
35,2, TFANSIALOL ...ttt 65

RV =T 1 o To =T o PSPPI 66
1T C 0 1 To 11 o3 1T o I 67

1.1.0.M2 Spring Cloud Data Flow iv

Spring Cloud Data Flow Reference Guide

Y] S PP 68
37.1. Bulk Import of APPlICALIONS ...ccovunieiiiii e 68

38, RUNTIMIE .ottt e et e e e et e e et e e e e e et e e s bbb n e e e e e e e eenbbb s e e eeeeeene 70
1S TS 1T .01 PP TUPRN 71
TR O == 1S 1= 1 o 73
T I T TSP 74
Y o] 1 S PP 74
Create a Task Definition from a selected Task APpP ...vovveviiiiiiiiiieiee e, 74

View Task APP DELallSooiiiiiiiii e e 75

A0.2. DEfiNItIONS ..ouiieiieei ettt a e 75
Creating Task Definitions using the bulk define interfaceccoovvviiiiiinnnnnnnn. 75
LauNChiNg TasKS ...ccuuiiiiiii e e e 76

G T (=T o U 1o o < P 76

2 T o1 77
42.1. List JOD @XECULIONSuiiiiiiiii e e e e 77

JOb eXeCUution dEetaAllScoeuniiiiii e 78

Step eXecution detailScooeueiiiiiii e 78

Step EXECULION PrOGIESS ..vuuiiiiiiii ittt e e e e e e e eeas 78

A3, ANAIYTICS .. eeiteeeett e et e e e et e e 80
V4 = o) {0 o U T [S UPPPTTUPPPNS 81
44, Configure MaveNn PrOPEITIEScc.uiiii it e e e e e e e e et e e e e aaeeaens 82
T W To o o o [P P T PPP PP PUPPTT 84
N I B T=T o] o) 4o 1=T o | A I Yo L PP 84
LSRN AN o] o] [Tor=Y o] o 1 o T 1< 84

IX. REST AP GUITE ..ottt ettt ettt et e et et e e e ena e e ennens 86
T O 1Y = V= 87
46.1. HTTP VEIDS oo et e e e e eennees 87
46.2. HTTP StAtUS COUBS ...iiniiiiiieii ettt et e et e et e e e e et e e eanaaee 87
0 T o =T Vo [T 88
AB.4. EITOIS oottt e 88
4B8.5. HYPEIMEAIA ...coiiiiieiiit ettt 88

A S Lo TN (o =L S PP TPUTTPRIN 89
O T [0 To [PP PP UPP PP 89
ACCESSING the INAEX ... e 89

REQUESTE SITUCTUIE ...t e e nns 89

EXAMPIE FEOUEST . .ovviii e 89

RESPONSE SIIUCTUIE ...ieiiiiiieii e 89

EXAMPIE FESPONSE ...vuiiiiiiii et 89

LINKS ettt 91

47.2. Listing APPHCALIONSoiiiieiiii et 92
REQUESTE SITUCTUIEeeieee et e e e e eenns 92

REQUEST PAramMEBLEIS ...ttt e 92

EXAMPIE TEQUEST «..eeieiiii et 92

RESPONSE SITUCTUIEeeieiiiee e e e e 92

X. Data FIOW TEMPIALEcoeeniiiiiii e e e e e e e e e e e e et e e et e e raaaeeees 94
G T O V=T oY= PP 95
49. Using the Data FIOW TeMPIAEoiiiiiiieiii e e 96
DB Y o] o 1= o T =Y PN 97
A. Migrating from Spring XD to Spring Cloud Data FIOWcoooiiiiiiiiiiiiiiiecceieeees 98
AL Terminology ChanQESo.uuiiiiiiii et e e e e e eees 98

1.1.0.M2 Spring Cloud Data Flow \

Spring Cloud Data Flow Reference Guide

A.2. Modules t0 APPIICALIONScooviieiiiiie et 98
CUSIOM APPLICALIONS ...eeiieiii e e e e e 98
Application REGISITAtiONccuiiiiiiiiii e e e e 98
APPIICALION PrOPEITIES ...ceviieiiiii ettt e 99

A.3. Message BUS 10 BINUEISciieiiiiiiiiii ettt e 99
MESSAGE BUS vttt 99
2] o = SRR 99
N F= T 1= o B O o =T o 1= 100
D1 = Tox (=To €] = 1] 1= 100

A4 BatCh 10 TASKS ..uiiieiiii e 100

A.5. Shell/DSL COMMANGSuiiieiiiiiiei et e e e e e e e e e e et e e e e ean s 101

ALB. REST AP ittt 101

AT UL T IO et e ettt e e e e e e bbb aaaaeeae 101

A.8. Architecture COMPONENTSiiiiiiieiiii et 102
pAo o] (C=T=T 01T PP PPN 102
RDBIMS .ttt a e e e a b 102
=0 1 102
(O[3 (=] S o] 0 To] [0 o 2P 102

A.9. Central ConfiQUIAtiONiiiiiiieiii e 102

N 0 TR 1= 100 1o o 102

A.11. Hadoop Distribution Compatibilityccoiiiiiiiiiiii e 103

A.12. YARN DEPIOYMENT ...eeiiiiiii ettt ettt e e 103

A.13. USE CaSE COMPAIISON ...vuuiiiitiieieiii e et e et e e et e e et e et e e e et eeeeaa e as 103
USE CaSE HL ooiiiiiiiiii i 103
USE CaS 2 ittt 104
L LT = 1S < = 104

L = Y01 o [T Vo P 106

0 I B To Tor 0 o T=T o 2= 4 [o I PP 106

B.2. Working With the COOEuiiiiii e 106
Importing into eclipse With M2ECIPSEooviiiiiii e 106
Importing into eclipse without M2ecClipSecoouiiiiiiiiiii e 107

O OLo] o1 1] o1V 1]l PPN 108

C.1. Sign the Contributor LiCENSE AQrEEMENTccvvniiiiiieiii e 108

C.2. Code Conventions and HOUSEKEEPINGooeviiiiiiiiiiiiicii e 108

1.1.0.mM2

Spring Cloud Data Flow Vi

Part |. Preface

Spring Cloud Data Flow Reference Guide

1. About the documentation

The Spring Cloud Data Flow reference guide is available as html, pdf and epub documents. The latest
copy is available at docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

1.1.0.M2 Spring Cloud Data Flow

http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.M2/reference/html
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.M2/reference/pdf/spring-cloud-dataflow-reference.pdf
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.M2/reference/epub/spring-cloud-dataflow-reference.epub
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/

Spring Cloud Data Flow Reference Guide

2. Getting help

Having trouble with Spring Cloud Data Flow, We'd like to help!

e Ask a question - we monitor stackoverflow.com for questions tagged with spri ng-cl oud-
dat af | ow.

» Report bugs with Spring Cloud Data Flow at github.com/spring-cloud/spring-cloud-dataflow/issues.

@ Note

All of Spring Cloud Data Flow is open source, including the documentation! If you find problems
with the docs; or if you just want to improve them, please get involved.

1.1.0.M2 Spring Cloud Data Flow

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud-dataflow
http://stackoverflow.com/tags/spring-cloud-dataflow
https://github.com/spring-cloud/spring-cloud-dataflow/issues
http://github.com/spring-cloud/spring-cloud-dataflow

Part Il. Spring Cloud
Data Flow Overview

This section provides a brief overview of the Spring Cloud Data Flow reference documentation. Think
of it as map for the rest of the document. You can read this reference guide in a linear fashion, or you
can skip sections if something doesn't interest you.

Spring Cloud Data Flow Reference Guide

3. Introducing Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud-native orchestration service for composable microservice applications
on modern runtimes. With Spring Cloud Data Flow, developers can create and orchestrate data pipelines
for common use cases such as data ingest, real-time analytics, and data import/export.

Spring Cloud Data Flow is the cloud native redesign of Spring XD — a project that aimed to simplify
development of Big Data applications. The stream and batch modules from Spring XD are refactored
as Spring Boot based stream and task/batch microservice applications respectively. These applications
are now autonomous deployment units and they can "natively" run in modern runtimes such as Cloud
Foundry, Apache YARN, Apache Mesos, and Kubernetes.

Spring Cloud Data Flow offers a collection of patterns and best practices for microservices-based
distributed streaming and task/batch data pipelines.

3.1 Features

» Develop using DSL, REST-APIs, Dashboard, and the drag-and-drop GUI - Flo

» Create, unit-test, troubleshoot and manage microservice applications in isolation
 Build data pipelines rapidly using the out-of-the-box stream and task/batch applications
» Consume microservice applications as maven or docker artifacts

» Scale data pipelines without interrupting data flows

» Orchestrate data-centric applications on a variety of modern runtime platforms including Cloud
Foundry, Apache YARN, Apache Mesos, and Kubernetes

e Take advantage of metrics, health checks, and the remote management of each microservice
application

1.1.0.M2 Spring Cloud Data Flow 5

http://projects.spring.io/spring-xd/
http://cloud.spring.io/spring-cloud-stream-app-starters/
http://cloud.spring.io/spring-cloud-task-app-starters/

Part Ill. Architecture

Spring Cloud Data Flow Reference Guide

4. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications come in two flavors

» Long lived Stream applications where an unbounded amount of data is consumed or produced via
messaging middleware.

» Short lived Task applications that process a finite set of data and then terminate.
Depending on the runtime, applications can be packaged in two ways

» Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

* Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are

* Cloud Foundry

Apache YARN

* Kubernetes

» Apache Mesos

* Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Hashicorp’s Nomad or Docker Swarm. Contributions are
welcome!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for interpreting

» A stream DSL that describes the logical flow of data through multiple applications.

* A deployment manifest that describes the mapping of applications onto the runtime. For example, to
set the initial number of instances, memory requirements, and data partitioning.

As an example, the DSL to describe the flow of data from an http source to an Apache Cassandra sink
would be written as “http | cassandra”. These names in the DSL are registered with the Data Flow Server
and map onto application artifacts that can be hosted in Maven or Docker repositories. Many source,
processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router) are provided by
the Spring Cloud Data Flow team. The pipe symbol represents the communication between the two
applications via messaging middleware. The two messaging middleware brokers that are supported are

1.1.0.M2 Spring Cloud Data Flow 7

Spring Cloud Data Flow Reference Guide

» Apache Kafka
* RabbitMQ

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

| Stream DSL | Data Flow
| http | cassandra I——)

Server

l

Target Runtime

Spring Boot

cassandra

Applications \ /

Figure 4.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the mapping
of DSL application names to Maven and Docker artifacts, the http source and cassandra sink application
are deployed on the target runtime.

1.1.0.M2 Spring Cloud Data Flow 8

Spring Cloud Data Flow Reference Guide

5. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming and Task based microservice applications build upon Spring Boot as the foundational
library. This gives all microservice applications functionality such as health checks, security, configurable
logging, monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar'’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the Ul to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream and Task based microservices is also a useful educational exercise that will help
you better understand some of the automatic applications configuration and platform targeting steps
that the Data Flow Server provides.

5.1 Comparison to other Platform architectures

Spring Cloud Data Flow's architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’'s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

1.1.0.M2 Spring Cloud Data Flow 9

Spring Cloud Data Flow Reference Guide

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there’s multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

1.1.0.M2 Spring Cloud Data Flow 10

Spring Cloud Data Flow Reference Guide

6. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

6.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@nabl eBi ndi ng(Si nk. cl ass)
public class Loggi ngSi nk {

@5t r eanli st ener (Si nk. | NPUT)
public void log(String nessage) {
System out. printl n(nessage);

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @nabl eBi ndi ng annotation is what is used to tie together the input channel to the external
middleware.

6.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. There is initial support for
functional style programming via RxJava Observable APIs and upcoming versions will support callback
methods with Project Reactor’s Flux API and Apache Kafka's KStream API.

1.1.0.M2 Spring Cloud Data Flow 11

http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_rxjava_support

Spring Cloud Data Flow Reference Guide

/. Streams

7.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transfornmer | cassandra, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

7.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting that
controls the size of a thread pool used for dispatching incoming messages. See the Consumer properties
documentation for more information.

7.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

HTTP (" Average |
-) | Average

m " Processor ‘

3 - ‘... d - " D

HTTP -

Do - A (Average]

HTTP -

Topic
Figure 7.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a partiti onKeyExpr essi on producer property when deploying
the stream. The parti ti onKeyExpr essi on identifies what part of the message will be used as the
key to partition data in the underlying middleware. An i ngest stream can be defined as http |

aver agepr ocessor | cassandr a (Note that the Cassandra sink isn’t shown in the diagram above).
Suppose the payload being sent to the http source was in JSON format and had a field called sensor | d.

1.1.0.M2 Spring Cloud Data Flow 12

http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_consumer_properties

Spring Cloud Data Flow Reference Guide

Deploying the stream with the shell command stream deploy ingest --propertiesFile
i ngest Stream properti es where the contents of the file i ngest Stream properti es are

app. http. count =3
app. aver agepr ocessor . count =2
app. htt p. producer. partiti onKeyExpr essi on=payl oad. sensor | d

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payl oad. sensorld %
partiti onCount where the partiti onCount isthe application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to the section called “Passing stream partition properties during stream deployment” for
additional strategies to partition streams during deployment and how they map onto the underlying
Spring Cloud Stream Patrtitioning properties.

Also note, that you can't currently scale partitioned streams. Read the section Section 11.3, “Scaling
at runtime” for more information.

7.4 Message Delivery Guarantees

Streams are composed of applications that use the Spring Cloud Stream library as the basis for
communicating with the underlying messaging middlware product. Spring Cloud Stream also provides
an opinionated configuration of middleware from several vendors, in particular providing persistent
publish-subscribe semantics.

The Binder abstraction in Spring Cloud Stream is what connects the application to the middleware. There
are several configuration properties of the binder that are portable across all binder implementations
and some that are specific to the middleware.

For consumer applications there is a retry policy for exceptions generated during message
handling. The retry policy is configured using the common consumer properties maxAtt enpt s,
backOfInitiallnterval, backOff Maxl nterval, and backO f Mul tiplier. The default
values of these properties will retry the callback method invocation 3 times and wait one second for the
first retry. A backoff multiplier of 2 is used for the second and third attempts.

When the number of number of retry attempts has exceeded the maxAt t enpt s value, the exception
and the failed message will become the payload of a message and be sent to the application’s error
channel. By default, the default message handler for this error channel logs the message. You can
change the default behavior in your application by creating your own message handler that subscribes
to the error channel.

Spring Cloud Stream also supports a configuration option for both Kafka and RabbitMQ binder
implementations that will send the failed message and stack trace to a dead letter queue. The dead letter
gueue is a destination and its nature depends on the messaging middleware (e.g in the case of Kafka it
is a dedicated topic). To enable this for RabbitMQ set the consumer properties r epubl i sht oDl g and
aut oBi ndDl q and the producer property aut oBi ndDl g to true when deploying the stream. To always
apply these producer and consumer properties when deploying streams, configure them as common
application properties when starting the Data Flow server.

Additional messaging delivery guarantees are those provided by the underlying messaging middleware
that is chosen for the application for both producing and consuming applications. Refer to the Kafka

1.1.0.M2 Spring Cloud Data Flow 13

http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_partitioning
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_binders
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Reference Guide

Consumer and Producer and Rabbit Consumer and Producer documentation for more details. You will
find extensive declarative support for all the native QOS options.

1.1.0.M2 Spring Cloud Data Flow 14

http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_kafka_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_kafka_producer_properties
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Reference Guide

8. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

» Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

 Field Value Counter - Counts occurrences of unique values for a named field in a message payload

» Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

1.1.0.M2 Spring Cloud Data Flow 15

https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow Reference Guide

9. Task Applications

The Spring Cloud Task programming model provides:

» Persistence of the Task’s lifecycle events and exit code status.

« Lifecycle hooks to execute code before or after a task execution.

» Emit task events to a stream (as a source) during the task lifecycle.

« Integration with Spring Batch Jobs.

1.1.0.M2 Spring Cloud Data Flow

16

Spring Cloud Data Flow Reference Guide

10. Data Flow Server

10.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Dataflow REST-API
Server Deployer SPI

Admin / Flo Ul

AN Nos

CURL nof@EV
Cloud @undry @ X

Figure 10.1. The Spring Cloud Data Flow Server

10.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let's you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

1.1.0.M2 Spring Cloud Data Flow 17

https://github.com/SpringSource/spring-hateoas

Spring Cloud Data Flow Reference Guide

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

10.3 Security

The Data Flow Server executable jars support basic http and OAuth 2.0 authentication to access its
endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

1.1.0.M2 Spring Cloud Data Flow 18

Spring Cloud Data Flow Reference Guide

11. Runtime

11.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

11.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

11.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, Uls, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

11.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

1.1.0.M2 Spring Cloud Data Flow 19

Part IV. Getting started

If you're just getting started with Spring Cloud Data Flow, this is the section for you! Here we answer
the basic “what?”, “how?” and “why?” questions. You'll find a gentle introduction to Spring Cloud Data
Flow along with installation instructions. We'll then build our first Spring Cloud Data Flow application,
discussing some core principles as we go.

Spring Cloud Data Flow Reference Guide

12. System Requirements

You need Java installed (Java 7 or better, we recommend Java 8), and to build, you need to have Maven
installed as well.

You need to have an RDBMS for storing stream, task and app states in the database. The | ocal Data
Flow server by default uses embedded H2 database for this.

You also need to have Redis running if you are running any streams that involve analytics applications.
Redis may also be required run the unit/integration tests.

For the deployed streams and tasks to communicate, either RabbitMQ or Kafka needs to be installed.
The local server registers sources, sink, processors and tasks the are published from the Spring Cloud
Stream App Starters and Spring Cloud Task App Starters repository. By default the server registers
these applications that use Kafka, but setting the property bi ndi ng to r abbi t will register a list of
applications that use RabbitMQ as the message broker.

1.1.0.M2 Spring Cloud Data Flow 21

http://redis.io
http://rabbitmq.com
http://kafka.apache.org
https://github.com/spring-cloud/spring-cloud-stream-app-starters
https://github.com/spring-cloud/spring-cloud-stream-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters

Spring Cloud Data Flow Reference Guide

13. Controlling features with Data Flow server

Data Flow server offers specific set of features that can be enabled/disabled when launching. These
features include all the lifecycle operations, REST endpoints (server, client implementations including
Shell and the UlI) for:

1. Streams
2. Tasks
3. Analytics

One can enable, disable these features by setting the following boolean properties when launching the
Data Flow server:

e spring. cloud. dat af | ow. f eat ures. streans- enabl ed
e spring. cloud. dat af | ow. f eat ur es. t asks- enabl ed
e spring. cloud. dat af | ow. f eat ur es. anal yti cs-enabl ed

By default, all the features are enabled. Note: Since analytics feature is enabled by default, the Data
Flow server is expected to have a valid Redis store available as analytic repository. This also means that
the Data Flow server's heal t h depends on the redis store availability as well. Hence it is recommended
to disable the analytics feature (using the property mentioned above) if redis store is not available.

The REST endpoint / f eat ur es provides information on the features enabled/disabled.

1.1.0.M2 Spring Cloud Data Flow 22

Spring Cloud Data Flow Reference Guide

14. Deploying Spring Cloud Data Flow

14.1 Deploying 'local’

1. Download the Spring Cloud Data Flow Server and Shell apps:

wget http://repo.spring.io/ mlestone/org/springfranmework/cl oud/ spring-cl oud- dat af | ow server -
| ocal /1.1.0. M/ spring-cl oud- dat af | ow server-1local -1.1.0. M. jar

wget http://repo.spring.io/ mlestone/org/springframework/cloud/spring-cloud-dataflowshell/1.1.0. M/
spring- cl oud- dat af | ow-shel I -1.1.0. M. j ar

2. Launch the Data Flow Server

a. Since the Data Flow Server is a Spring Boot application, you can run it just by using j ava -j ar.

$ java -jar spring-cloud-dataflowserver-local-1.1.0.M.jar

b. Running with Custom Maven Settings and/or Behind a Proxy If you want to override specific maven
configuration properties (remote repositories, etc.) and/or run the Data Flow Server behind a proxy,
you need to specify those properties as command line arguments when starting the Data Flow
Server. For example:

$ java -jar spring-cloud-dataflowserver-local-1.1.0.M.jar --maven.|ocal Repository=nyl ocal
--maven. renote-repositories.repol.url =https://repol

--maven. renot e-reposi tori es. repol. aut h. user nanme=user 1

--maven. renot e-repositories. repol. aut h. passwor d=passl

--maven. renote-repositories.repo2.url =https://repo2 --maven. proxy. host =proxyl

--maven. proxy. port =9010 -- nmaven. proxy. aut h. user name=pr oxyuser 1

--maven. pr oxy. aut h. passwor d=pr oxypass1

By default, the protocol is set to ht t p. You can omit the auth properties if the proxy doesn't need
a username and password.

By default, the maven | ocal Reposi tory is set to ${ user. honme}/. n2/ reposi tory/, and
repo.spring.iol/libs-snapshot wil be the only remote repository. Like in the above
example, the remote repositories can be specified along with their authentication (if needed). If the
remote repositories are behind a proxy, then the proxy properties can be specified as above.

If you want to pass these properties as environment properties, then you need to use
SPRI NG_APPLI CATI ON_JSON to set these properties and pass SPRI NG_APPLI CATI ON_JSON
as environment variable as below:

$ SPRI NG_APPLI CATI ON_JSON="{ "maven": { "local -repository": null,

"renote-repositories": { "repol": { "url": "https://repol", "auth": { "usernanme": "repoluser",
"password": "repolpass" } }, "repo2": { "url": "https://repo2" } },
"proxy": { "host": "proxyhost", "port": 9018, "auth": { "usernane": "proxyuser", "password":

"proxypass" } } } }' java -jar spring-cloud-datafl owserver-1|ocal-{project-version}.jar

3. Launch the shell:

‘$ java -jar spring-cloud-dataflowshell-1.1.0. M. jar

If the Data Flow Server and shell are not running on the same host, point the shell to the Data Flow
server:

server - unknown: >dat af | ow confi g server http://datafl ow server.cfapps.io
Successfully targeted http://datafl owserver.cfapps.io

1.1.0.M2 Spring Cloud Data Flow 23

https://repo.spring.io/libs-snapshot

Spring Cloud Data Flow Reference Guide

‘dataflow>

By default, the application registry will be empty. If you would like to register all out-of-the-box stream
applications built with the Kafka binder in bulk, you can with the following command. For more details,
review how to register applications.

‘SB dat af | ow. >app inport --uri http://bit.ly/1-0-4-GA-stream applicati ons-kaf ka- maven

4. You can now use the shell commands to list available applications (source/processors/sink) and
create streams. For example:

dat af | ow. > stream create --nanme httptest --definition "http --server.port=9000 | |og" --deploy

o

Note

You will need to wait a little while until the apps are actually deployed successfully before
posting data. Look in the log file of the Data Flow server for the location of the log files for
the htt p and | og applications. Tail the log file for each application to verify the application
has started.

Now post some data

datafl ow. > http post --target http://local host:9000 --data "hello world"

Look to see if hel | o wor | d ended up in log files for the | og application.

o

o

Note

When deploying locally, each app (and each app instance, in case of count >1) gets a
dynamically assigned ser ver . por t unless you explicitly assign one with - - ser ver . port =x.
In both cases, this setting is propagated as a configuration property that will override any lower-
level setting that you may have used (e.g. in appl i cati on. ym files).

Tip

In case you encounter unexpected errors when executing shell commands, you can retrieve
more detailed error information by setting the exception logging level to WARNI NG in
| ogback. xm :

<l ogger name="org. spri ngfranmework. shel | . core. JLi neShel | Conponent . excepti ons" | evel ="WARNI NG'/ >

1.1.0.mM2

Spring Cloud Data Flow 24

Spring Cloud Data Flow Reference Guide

15. RDBMS configuration

The JDBC drivers for MySQL (via MariaDB driver), HSQLDB, PostgreSQL along with embedded H2
are available out of the box. If you are using any other RDBMS, then the corresponding JDBC driver
jar needs to be on the classpath of the server.

The RDBMS properties can be passed as command-line arguments to the Data Flow Server.

For instance, If you are using MySQL.:

java -jar spring-cloud-datafl owserver-1|ocal/target/spring-cloud-datafl owserver-1|ocal -1.0.0. BU LD
SNAPSHOT. j ar \

--spring. datasource. url =j dbc: nysql : <db-i nf o> \

--spring. dat asour ce. user nane=<user > \

--spring. dat asour ce. passwor d=<passwor d> \

--spring.datasource.driver-class-nanme=org. mari adb. jdbc. Driver &

For PostgreSQL.:

java -jar spring-cloud-datafl owserver-|ocal/target/spring-cloud-datafl owserver-1|ocal -1.0.0.BU LD
SNAPSHOT. j ar \

--spring. datasource. url =j dbc: post gresql : <db-i nfo> \

--spring. dat asour ce. user nane=<user > \

--spring. dat asour ce. passwor d=<passwor d> \

--spring. datasource. driver-cl ass- nanme=or g. post gresql . Dri ver &

For HSQLDB:

java -jar spring-cloud-dataflow server-|ocal/target/spring-cloud-dataflow server-I|ocal-1.0.0.BU LD
SNAPSHOT. j ar \

--spring. datasource. url =j dbc: hsql db: <db-i nf o> \

--spring. dat asour ce. user nane=SA \

--spring. dat asource. dri ver-cl ass- nane=or g. hsql db. j dbc. JDBCDri ver &

@ Note

There is a schema update to the Spring Cloud Dataflow datastore when upgrading from version
1. 0.x to 1. 1. x. Migration scripts for specific database types can be found here.

1.1.0.M2 Spring Cloud Data Flow 25

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration

Spring Cloud Data Flow Reference Guide

16. Security

By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can
secure your REST endpoints, as well as the Data Flow Dashboard by enabling HTTPS and requiring
clients to authenticate using either:

e OAuth 2.0
» Basic Authentication

NOTE: By default, the REST endpoints (administration, management and health), as well as the
Dashboard Ul do not require authenticated access.

16.1 Enabling HTTPS

By default, the dashboard, management, and health endpoints use HTTP as a transport. You can switch
to HTTPS easily, by adding a certificate to your configuration in appl i cati on. ym .

server:

port: 8443 O
ssl:

key-alias: yourKeyAlias

key-store: path/to/keystore

key- st or e- passwor d: your KeySt or ePasswor d

key- password: your KeyPasswor d

trust-store: path/to/trust-store

trust-store-password: your Trust St or ePasswor d

Oo0Oooogo

0 As the default port is 9393, you may choose to change the port to a more common HTTPs-typical
port.

0 The alias (or name) under which the key is stored in the keystore.

0 The path to the keystore file. Classpath resources may also be specified, by using the classpath
prefix: cl asspat h: pat h/ t o/ keystore

0 The password of the keystore.

O The password of the key.

0 The path to the truststore file. Classpath resources may also be specified, by using the classpath
prefix: cl asspat h: path/to/trust-store

O The password of the trust store.

@ Note

If HTTPS is enabled, it will completely replace HTTP as the protocol over which the REST
endpoints and the Data Flow Dashboard interact. Plain HTTP requests will fail - therefore, make
sure that you configure your Shell accordingly.

Using Self-Signed Certificates

For testing purposes or during development it might be convenient to create self-signed certificates. To
get started, execute the following command to create a certificate:

$ keytool -genkey -alias datafl ow -keyal g RSA -keystore datafl ow keystore \
-validity 3650 -storetype JKS \
-dnarme "CN=l ocal host, OU=Spring, O=Pivotal, L=Kailua-Kona, ST=H, C=US' [
- keypass dat afl ow - storepass datafl ow

1.1.0.M2 Spring Cloud Data Flow 26

http://oauth.net/2/

Spring Cloud Data Flow Reference Guide

O CNis the only important parameter here. It should match the domain you are trying to access,
e.g. | ocal host .

Then add the following to your appl i cati on. ym file:

server:

port: 8443

ssl:
enabl ed: true
key-al i as: datafl ow
key-store: "/your/path/to/datafl ow keyst ore"
key-store-type: jks
key- st or e- password: dat afl ow
key- password: datafl ow

This is all that's needed for the Data Flow Server. Once you start the server, you should be able to
access it via https://localhost:8443/. As this is a self-signed certificate, you will hit a warning in your
browser, that you need to ignore.

This issue also is relevant for the Data Flow Shell. Therefore additional steps are necessary to make
the Shell work with self-signed certificates. First, we need to export the previously created certificate
from the keystore:

$ keytool -export -alias dataflow -keystore datafl ow keystore -file dataflow cert -storepass dataflow

Next, we need to create a truststore which the Shell will use:

$ keytool -inportcert -keystore dataflow truststore -alias dataflow -storepass dataflow -file
dat af | ow_cert -nopronpt

Now, you are ready to launch the Data Flow Shell using the following JVM arguments:

$ java - D avax. net.ssl.trust StorePasswor d=dat af | ow \
-Dj avax. net.ssl.trustStore=/path/to/datafl ow truststore \
- D avax. net. ssl.trust StoreType=j ks \
-jar spring-cloud-dataflowshell-1.1.0.M.jar

C) Tip
In case you run into trouble establishing a connection via SSL, you can enable additional logging
by using and setting the j avax. net . debug JVM argument to ssl .

Don't forget to target the Data Flow Server with:

‘ dat af | ow. > dat af | ow config server https://|ocal host: 8443/

16.2 Basic Authentication

Basic Authentication can be enabled by adding the following to appl i cati on. ym or via environment
variables:

security:

basi c:
enabl ed: true O
realm Spring Coud Data Fl ow]

0 Enables basic authentication. Must be set to true for security to be enabled.
O (Optional) The realm for Basic authentication. Will default to Spring if not explicitly set.

1.1.0.M2 Spring Cloud Data Flow 27

https://localhost:8443/
https://en.wikipedia.org/wiki/Basic_access_authentication

Spring Cloud Data Flow Reference Guide

@ Note

Current versions of Chrome do not display the realm. Please see the following Chromium issue
ticket for more information.

In this use-case, the underlying Spring Boot will auto-create a user called user with an auto-generated
password which will be printed out to the console upon startup.

2016-08-23 15:49:26.266 INFO 25861 --- [ost-startStop-1] o.s.b.c.embedded.FilterRegistrationBean : Mapping filter: "applicationC
2016-08-23 15:49:26.267 INFO 25861 --- [ost-startStop-1] o.s.b.c.e.ServlietRegistrationBean : Mapping servlet: 'dispatcherS
2016-08-23 15:49:27.663 INFO 25861 --- [ost-startStop-1] b.a.s.AuthenticationManagerConfiguration

Using default security password: BcheSBS—31ca—4548—9&32—eda?885daﬂ3a

2016-08-23 15:49:28 008 INFO 25861 --- [ost-startStop-1] o.s.s.web.DefaultSecurityFilterChain : Creating filter chain: OrRequ
2016-08-23 15:49:28.415 INFO 25861 --- [ost-startStop-1] o.s.s.web.DefaultSecurityFilterChain : Creating filter chain: Ant [p
2016-08-23 15:49:28.525 INFO 25861 --- [main] erverConfiguration$H2ServerConfiguration : Starting H2 Server with URL:

Figure 16.1. Default Spring Boot user credentials

@ Note

Please be aware of inherent issues of Basic Authentication and logging out, since the credentials
are cached by the browser and simply browsing back to application pages will log you back in.

If you need to define more than one file-based user account, please take a look at File based
authentication.

File based authentication

By default Spring Boot allows you to only specify one single user. Spring Cloud Data Flow also supports
the listing of more than one user in a configuration file, as described below. Each user must be assigned
a password and one or more roles:

security:
basi c:
enabl ed: true
realm Spring Coud Data Fl ow

dat af | ow
security:
aut henti cati on:
file:
enabl ed: true |
users: O
bob: bobspassword, ROLE_ADM N O

alice: alicepwd, ROLE_VIEW ROLE_CREATE

0 Enables file based authentication
O Thisis a yaml map of username to password
0 Each map val ue is made of a corresponding password and role(s), comma separated

@ Important

As of Spring Cloud Data Flow 1.1, roles are not supported, yet (specified roles are ignored).
Due to an issue in Spring Security, though, at least one role must be provided.

LDAP Authentication

Spring Cloud Data Flow also supports authentication against an LDAP server (Lightweight Directory
Access Protocol), providing support for the following 2 modes:

» Direct bind

1.1.0.M2 Spring Cloud Data Flow 28

https://bugs.chromium.org/p/chromium/issues/detail?id=544244
https://bugs.chromium.org/p/chromium/issues/detail?id=544244
https://github.com/spring-projects/spring-security/issues/3403

Spring Cloud Data Flow Reference Guide

» Search and bind
When the LDAP authentication option is activated, the default single user mode is turned off.

In direct bind mode, a pattern is defined for the user’s distinguished name (DN), using a placeholder for
the username. The authentication process derives the distinguished name of the user by replacing the
placeholder and use it to authenticate a user against the LDAP server, along with the supplied password.
You can set up LDAP direct bind as follows:

security:
basi c:
enabl ed: true
realm Spring Cl oud Data Fl ow

dat af | ow.
security:
aut henti cati on:
| dap:
enabl ed: true O
url: 1dap://I|dap. exanpl e. com 3309 O
user DnPat t ern: ui d={ 0}, ou=peopl e, dc=exanpl e, dc=com O

0 Enables LDAP authentication
0 The URL for the LDAP server
O The distinguished name (DN) pattern for authenticating against the server

The search and bind mode involves connecting to an LDAP server, either anonymously or with a fixed
account, and searching for the distinguished name of the authenticating user based on its username,
and then using the resulting value and the supplied password for binding to the LDAP server. This option
is configured as follows:

security:
basi c:
enabl ed: true
realm Spring Coud Data Fl ow
dat af | ow:
security:
aut henti cati on:
| dap:
enabl ed: true
url: Idap://1ocal host: 10389
manager Dn: ui d=adm n, ou=syst em
manager Passwor d: secr et
user Sear chBase: ou=ot her peopl e, dc=exanpl e, dc=com
user Sear chFi |l ter: uid={0}

O 0Oo0ooogg

00 Enables LDAP integration

The URL of the LDAP server

O A DN for to authenticate to the LDAP server, if anonymous searches are not supported (optional,
required together with next option)

0 Apasswordto authenticate to the LDAP server, if anonymous searches are not supported (optional,
required together with previous option)

O The base for searching the DN of the authenticating user (serves to restrict the scope of the search)

O The search filter for the DN of the authenticating user

€) Tip
For more information, please also see the chapter LDAP Authentication of the Spring Security
reference guide.

O

1.1.0.M2 Spring Cloud Data Flow 29

http://docs.spring.io/spring-security/site/docs/current/reference/html/ldap.html

Spring Cloud Data Flow Reference Guide

16.3 OAuth 2.0

OAuth 2.0 allows you to integrate Spring Cloud Data Flow into Single Sign On (SSO) environments.
The following 2 OAuth2 Grant Types will be used:

 Authorization Code - Used for the GUI (Browser) integration. You will be redirected to your OAuth
Service for authentication

» Password - Used by the shell (And the REST integration), so you can login using username and
password

The REST endpoints are secured via Basic Authentication but will use the Password Grand Type under
the covers to authenticate with your OAuth2 service.

@ Note

When authentication is set up, it is strongly recommended to enable HTTPS as well, especially
in production environments.

You can turn on OAuth2 authentication by adding the following to application.ym or via
environment variables:

security:
basi c:
enabl ed: true O
realm Spring O oud Data Fl ow]
oaut h2: O
client:

client-id: myclient

client-secret: mnysecret

access-token-uri: http://127.0.0.1: 9999/ oaut h/ t oken

user - aut hori zation-uri: http://127.0.0.1: 9999/ oaut h/ aut hori ze
resource:

user-info-uri: http://127.0.0.1:9999/ ne

O Mustbe settot rue for security to be enabled.

The realm for Basic authentication

0 OAuth Configuration Section, if you leave off the OAuth2 section, Basic Authentication will be
enabled instead.

@ Note

As of version 1.0 Spring Cloud Data Flow does not provide finer-grained authorization. Thus,
once you are logged in, you have full access to all functionality.

O

You can verify that basic authentication is working properly using curl:

$ curl -u nyusernare: nypassword http://1ocal host: 9393/

As a result you should see a list of available REST endpoints.

Authentication using the Spring Cloud Data Flow Shell

If your OAuth2 provider supports the Password Grant Type you can start the Data Flow Shell with:

‘$ java -jar spring-cloud-dataflowshell-1.1.0. M. jar \

1.1.0.M2 Spring Cloud Data Flow 30

http://oauth.net/2/

Spring Cloud Data Flow Reference Guide

--dataflow uri=http://|ocal host: 9393 \
- -dat af | ow. user name=ny_user nane --dat af | ow. passwor d=ny_passwor d

@ Note

Keep in mind that when authentication for Spring Cloud Data Flow is enabled, the underlying
OAuth2 provider must support the Password OAuth2 Grant Type, if you want to use the Shell.

From within the Data Flow Shell you can also provide credentials using:

dat af | ow config server --uri http://|ocal host: 9393 --usernanme ny_usernane --password nmy_password

Once successfully targeted, you should see the following output:

dat af | ow. >dat af | ow config info
dat afl ow config info

#Credent i al s#[user name=' nmy_user nane, password=****']#

#Resul t # #
#Tar get #http://1 ocal host: 9393 #

OAuth2 Authentication Examples
Local OAuth2 Server

With Spring Security OAuth you can easily create your own OAuth2 Server with the following 2 simple
annotations:

* @EnableResourceServer
* @EnableAuthorizationServer
A working example application can be found at:

https://github.com/ghillert/oauth-test-server/

Simply clone the project, built and start it. Furthermore configure Spring Cloud Data Flow with the
respective Client Id and Client Secret.

Authentication using GitHub

If you rather like to use an existing OAuth2 provider, here is an example for GitHub. First you need to
Register a new application under your GitHub account at:

https://github.com/settings/developers

When running a default version of Spring Cloud Data Flow locally, your GitHub configuration should
look like the following:

1.1.0.M2 Spring Cloud Data Flow 31

http://projects.spring.io/spring-security-oauth/
https://github.com/ghillert/oauth-test-server/
https://github.com/settings/developers

Spring Cloud Data Flow Reference Guide

Application name

Spring Cloud Data Flow
Something users will recognize and trust
Homepage URL

http:Mocalhost:8393/
The full URL to your application homepage
Application description

Spring Cloud Data Flow

#
This is displayed to all potential users of your application

Authorization callback URL

http:/Mocalhest:3393/ogin

Your application's callback URL. Read our OAuth documentation for more information.

Delete application

Figure 16.2. Register an OAuth Application for GitHub

@ Note

For the Authorization callback URL you will enter Spring Cloud Data Flow's Login URL, e.g.
| ocal host: 9393/ 1 ogi n.

Configure Spring Cloud Data Flow with the GitHub relevant Client Id and Secret:

security:
basi c:
enabl ed: true
oaut h2:
client:
client-id: your-github-client-id
client-secret: your-github-client-secret
access-token-uri: https://github.conllogin/oauth/access_token
user-aut hori zation-uri: https://github.conllogin/oauth/authorize
resource:
user-info-uri: https://api.github.conf user

@ Important

GitHub does not support the OAuth2 password grant type. As such you cannot use the Spring
Cloud Data Flow Shell in conjunction with GitHub.

16.4 Securing the Spring Boot Management Endpoints

When enabling security, please also make sure that the Spring Boot HTTP Management Endpoints are
secured as well. You can enabled security for the management endpoints by adding the following to
application.ym :

1.1.0.M2 Spring Cloud Data Flow 32

http://localhost:9393/login
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-monitoring.html

Spring Cloud Data Flow Reference Guide

managenent :
cont ext Pat h: / managenent
security:
enabl ed: true

@ Important

If you don't explicitly enable security for the management endpoints, you may end up having
unsecured REST endpoints, despite securi ty. basi c. enabl ed being settotrue.

1.1.0.M2 Spring Cloud Data Flow 33

Part V. Streams

In this section you will learn all about Streams and how to use them with Spring Cloud Data Flow.

Spring Cloud Data Flow Reference Guide

17. Introduction

In Spring Cloud Data Flow, a basic stream defines the ingestion of event driven data from a source to
a sink that passes through any number of processors. Streams are composed of spring-cloud-stream
applications and the deployment of stream definitions is done via the Data Flow Server (REST API).
The Getting Started section shows you how to start these servers and how to start and use the Spring
Cloud Data Flow shell.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

‘http | file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overridden using - - options, such as

‘http --server.port=8091 | file --directory=/tnp/httpdata/

To create these stream definitions you use the shell or make an HTTP POST request to the Spring
Cloud Data Flow Server. More details can be found in the sections below.

1.1.0.M2 Spring Cloud Data Flow 35

Spring Cloud Data Flow Reference Guide

18. Stream DSL

In the examples above, we connected a source to a sink using the pipe symbol | . You can also pass
properties to the source and sink configurations. The property names will depend on the individual app
implementations, but as an example, the htt p source app exposes a server. port setting which
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

datafl ow. > stream create --definition "http --server.port=8000 | |0g" --nanme nyhttpstream

The shell provides tab completion for application properties and also the shell command app i nfo
provides some additional documentation.

1.1.0.M2 Spring Cloud Data Flow 36

Spring Cloud Data Flow Reference Guide

19. Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name, application type, and a URI that can be resolved to the
app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dat af | ow. >app regi ster --name nysource --type source --uri maven://com exanpl e: nysource: 0. 0. 1- SNAPSHOT

dat af | ow. >app regi ster --name nyprocessor --type processor --uri file:///Users/exanplel
nyprocessor-1.2.3.jar

dat af | ow. >app regi ster --nanme nysink --type sink --uri http://exanple.com nysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven: // <groupl d>: <artifactl d>[: <extensi on>[: <cl assifier>]]:<version>

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could do the following:

dat af | ow. >app register --nanme http --type source --uri maven://

or g. spri ngf ramewor k. cl oud. stream app: htt p-source-rabbit: 1. 0. 0. BU LD- SNAPSHOT

dat af | ow. >app register --nanme log --type sink --uri maven://org.springframework. cl oud. stream app: | 0og-
si nk-rabbit:1.0.0. BU LD- SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <t ype>. <nane> and the values are the URIs.

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

sour ce. htt p=maven: // or g. spri ngf ramewor k. cl oud. st ream app: htt p-source-rabbit: 1. 0. 0. BUl LD- SNAPSHOT
si nk. | og=maven: // org. springframework. cl oud. stream app: | 0og- si nk-rabbi t: 1. 0. 0. BU LD- SNAPSHOT

Then to import the apps in bulk, use the app i nmport command and provide the location of the
properties file via - - uri :

dat af | ow. >app inport --uri file:///<YOUR_FILE LOCATI ON>/ stream apps. properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box stream and task/batch app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available Stream Application Starters:

Artifact Type Stable Release SNAPSHOT Release

RabbitMQ + Maven

http://bit.ly/1-0-4-GA-stream-

http://bit.ly/1-1-0-SNAPSHOT-

applications-rabbit-maven

stream-applications-rabbit-
maven

RabbitMQ + Docker

http://bit.ly/1-0-4-GA-stream-

http://bit.ly/1-1-0-SNAPSHOT-

applications-rabbit-docker

stream-applications-rabbit-
docker

1.1.0.mM2

Spring Cloud Data Flow

37

http://bit.ly/1-0-4-GA-stream-applications-rabbit-maven
http://bit.ly/1-0-4-GA-stream-applications-rabbit-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/1-0-4-GA-stream-applications-rabbit-docker
http://bit.ly/1-0-4-GA-stream-applications-rabbit-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-rabbit-docker

Spring Cloud Data Flow Reference Guide

Artifact Type

Kafka + Maven

Kafka + Docker

Stable Release

http://bit.ly/1-0-4-GA-stream-

SNAPSHOT Release

http://bit.ly/1-1-0-SNAPSHOT-

applications-kafka-maven

http://bit.ly/1-0-4-GA-stream-

stream-applications-kafka-
maven

http://bit.ly/1-1-0-SNAPSHOT-

applications-kafka-docker

stream-applications-kafka-
docker

List of available Task Applicaiton Starters:

Artifact Type

Stable Release

SNAPSHOT Release

Maven

Docker

http://bit.ly/1-0-1-GA-task-
applications-maven

http://bit.ly/1-0-1-GA-task-
applications-docker

http://bit.ly/1-0-2-SNAPSHOT-
task-applications-maven

http://bit.ly/1-0-2-SNAPSHOT-
task-applications-docker

For example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ
binder in bulk, you can with the following command.

dat af | ow. >app inport --uri http://bit.ly/1-0-4-GA-stream applications-rabbit-maven

You can also pass the - - | ocal option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

When using either app regi ster or app inport, if a stream app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the pre-existing
stream app, then include the - - f or ce option.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

19.1 Whitelisting application properties

Stream applications are Spring Boot applications which are aware of many Section 29.1, “Common
application properties”, e.g. server . port but also families of properties such as those with the prefix
spring.jm and | oggi ng. When creating your own application it is desirable to whitelist properties
so that the shell and the Ul can display them first as primary properties when presenting options via
TAB completion or in drop-down boxes.

To whitelist application properties create a file named spri ng-confi gurati on-net adat a-
whitelist.properties inthe META- | NF resource directory. There are two property keys that can
be used inside this file. The first key is named confi gur ati on- properti es. cl asses. The value
is a comma separated list of fully qualified @Conf i gur at i onPr operty class names. The second key
isconfiguration-properties. nanmes whose value is a comma separated list of property names.
This can contain the full name of property, such as server. port or a partial name to whitelist a
category of property names, e.g. spri ng. j nx.

1.1.0.M2 Spring Cloud Data Flow 38

http://bit.ly/1-0-4-GA-stream-applications-kafka-maven
http://bit.ly/1-0-4-GA-stream-applications-kafka-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-maven
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-maven
http://bit.ly/1-0-4-GA-stream-applications-kafka-docker
http://bit.ly/1-0-4-GA-stream-applications-kafka-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-docker
http://bit.ly/1-1-0-SNAPSHOT-stream-applications-kafka-docker
http://bit.ly/1-0-1-GA-task-applications-maven
http://bit.ly/1-0-1-GA-task-applications-maven
http://bit.ly/1-0-2-SNAPSHOT-task-applications-maven
http://bit.ly/1-0-2-SNAPSHOT-task-applications-maven
http://bit.ly/1-0-1-GA-task-applications-docker
http://bit.ly/1-0-1-GA-task-applications-docker
http://bit.ly/1-0-2-SNAPSHOT-task-applications-docker
http://bit.ly/1-0-2-SNAPSHOT-task-applications-docker

Spring Cloud Data Flow Reference Guide

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is
a simple example of the file sink’s spri ng- confi gur ati on- met adat a-whitel i st. properties
file

configuration-properties.classes=org. springframework. cl oud. stream app.file.sink.FileSinkProperties

If we also wanted to add ser ver. port to be white listed, then it would look like this:

configuration-properties.classes=org. springframework. cl oud. stream app. file.sink.FileSinkProperties
configuration-properties. nanes=server. port

@ Important

Make sure to add 'spring-boot-configuration-processor' as an optional dependency to generate
configuration metadata file for the properties.

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-configuration-processor</artifactld>
<opti onal >true</ optional >

</ dependency>

1.1.0.M2 Spring Cloud Data Flow 39

https://github.com/spring-cloud/spring-cloud-stream-app-starters

Spring Cloud Data Flow Reference Guide

20. Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let’'s walk through what happens if we execute the following shell command:

datafl ow. > stream create --definition "time | log" --name ticktock

This defines a stream named t i ckt ock based off the DSL expressiontine | | og. The DSL uses
the "pipe" symbol | , to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the - - depl oy
flag when creating the stream so that this step is not needed):

dat af | ow. > stream depl oy --nane ticktock

The Data Flow Server resolves t i me and | og to maven coordinates and uses those to launch theti ne
and | og applications of the stream.

2016- 06- 01 09: 41:21.728 |NFO 79016 --- [ni0-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.log instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ ti ckt ock- 1464788481708/ ti ckt ock. | og
2016- 06-01 09:41:21.914 | NFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.time instance 0
Logs will be in /var/folders/wn/8jxmtbdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow- 912434582726479179/ ti ckt ock- 1464788481910/ ti cktock. tine

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the st dout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxmtbdlvj28c8vj37n900nmD000gn/ T/ spri ng- cl oud- dat af | ow 912434582726479179/
ticktock-1464788481708/ti cktock. | og/ stdout_0O. | og

2016- 06-01 09:45:11.250 |INFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:11
2016- 06- 01 09:45:12.250 |NFO 79194 --- [kafka-bi nder-] | og. sink : 06/01/16 09:45:12
2016- 06-01 09:45:13.251 |INFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:13

20.1 Application properties

Application properties are the properties associated with each application in the stream. When the
application is deployed, the application properties are applied to the application via command line
arguments or environment variables based on the underlying deployment implementation.

Passing application properties when creating a stream

The following stream

datafl ow. > stream create --definition "tinme | log" --name ticktock

can have application properties defined at the time of stream creation.

1.1.0.M2 Spring Cloud Data Flow 40

Getting-Started.xml#getting-started

Spring Cloud Data Flow Reference Guide

The shell command app i nf o displays the white-listed application properties for the application. For
more info on the property white listing refer to Section 19.1, “Whitelisting application properties”

Below are the white listed properties for the app t i ne:

dat af | ow. > app info source:tinme
Option Nane # Descri ption # Def aul t
Type #
#trigger.tine-unit #The TineUnit to apply to del ay#<none>
#j ava. util.concurrent. Ti neUnit #
#val ues. #
#
#trigger.fixed-del ay #Fi xed delay for periodic #1
#] ava. | ang. | nt eger #
#triggers. #
#
#trigger.cron #Cron expression value for the #<none>
#j ava. |l ang. String #
#Cron Trigger. #
#
#trigger.initial-delay #lnitial delay for periodic #0
#] ava. | ang. | nt eger #
#triggers. #
#
#trigger. max- nessages #Maxi mum nessages per poll, -1 #1
#j ava. | ang. Long #
#means infinity. #
#
#trigger. date-fornmat #Format for the date val ue. #<none>
#j ava. |l ang. String #

Below are the white listed properties for the app | og:

dat af | ow. > app info sink:log

Opti on Nane # Description # Def aul t
Type #
#l og. nane #The nane of the |ogger to use.#<none>
#j ava.lang. String #
#l 0g. | evel #The | evel at which to |og #<none>
#or g. spri ngframework. i ntegrati o#
#messages.
#n. handl er. Loggi ngHandl er $Level #
#l 0g. expr essi on #A SpEL expression (against the#payl oad
#j ava.lang. String #
#i ncom ng nessage) to evaluate #
#
#as the | ogged nessage. #

The application properties for the t i me and | og apps can be specified at the time of st r eamcreation
as follows:

datafl ow. > stream create --definition "tinme --fixed-delay=5 | log --level =WARN"' --nanme ticktock

Note that the properties fi xed- del ay and | evel defined above for the appsti ne and | og are the
'short-form' property names provided by the shell completion. These 'short-form' property names are
applicable only for the white-listed properties and in all other cases, only fully qualified property names
should be used.

1.1.0.M2 Spring Cloud Data Flow 41

Spring Cloud Data Flow Reference Guide

20.2 Deployment properties

When deploying the stream, properties that control the deployment of the apps into the target platform
are known as depl oynment properties. For instance, one can specify how many instances need to be
deployed for the specific application defined in the stream using the deployment property called count .

Passing instance count as deployment property

If you would like to have multiple instances of an application in the stream, you can include a property
with the deploy command:

dat af | ow. > stream depl oy --nane ticktock --properties "app.tine.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property hamed count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app. f oo. bar. count) during stream deployment or it can be specified using 'short-form" or fully
qualified form during the stream creation where it will be considered as an app property.

@ Important

See Chapter 27, Using Labels in a Stream.

Inline vs file reference properties

When using the Spring Cloud Dataflow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the - - properti es shell option and list properties as a comma separated list of key=value
pairs, like so:

stream depl oy foo
--properties "app.transform count=2, app.transform producer. partiti onKeyExpressi on=payl oad"

Using a file reference
use the - - properti esFi | e option and point it to a local Java . pr operti es file (i.e. that lives in
the filesystem of the machine running the shell). Being read as a . pr operti es file, normal rules
apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend using = as
a key-value pair delimiter for consistency:

stream depl oy foo --propertiesFile nmyprops. properties

where nypr ops. properti es contains:

app. transf orm count =2
app. transform producer. partiti onKeyExpressi on=payl oad

Both the above properties will be passed as deployment properties for the stream f 0o above.
Passing application properties when deploying a stream

The application properties can also be specified when deploying a stream. When specified during
deployment, these application properties can either be specified as 'short-form' property names

1.1.0.M2 Spring Cloud Data Flow 42

Spring Cloud Data Flow Reference Guide

(applicable for white-listed properties) or fully qualified property names. The application properties
should have the prefix "app.<appName/label>".

For example, the stream

dat af | ow. > stream create --definition "tinme | |og" --nane ticktock

can be deployed with application properties using the 'short-form' property names:

dat af | ow. >stream depl oy ticktock --properties "app.tine.fixed-del ay=5, app.| og.| evel =ERROR'

When using the app label,

streamcreate ticktock --definition "a: time | b: |og"

the application properties can be defined as:

stream depl oy ticktock --properties "app.a.fixed-del ay=4, app. b. | evel =ERROR"

Passing Spring Cloud Stream properties for the application

Spring Cloud Data Flow sets the required Spring Cloud Stream properties for the
applications inside the stream. Most importantly, the spri ng. cl oud. st r eam bi ndi ngs. <i nput/
out put >. dest i nat i on is set internally for the apps to bind.

If someone wants to override any of the Spring Cloud Stream properties, they can be set via deployment
properties.

For example, for the below stream

datafl ow. > stream create --definition "http | transform --
expr essi on=payl oad. get Val ue(' hel |l 0').toUpperCase() | |og" --nane ticktock

if there are multiple binders available in the classpath for each of the applications and the binder is
chosen for each deployment then the stream can be deployed with the specific Spring Cloud Stream
properties as:

dat af | ow: >stream depl oy ticktock --
properties "app.tine.spring.cloud. stream bi ndi ngs. out put. bi nder =kaf ka, app. transf orm spri ng. cl oud. st ream bi ndi ngs. i nput . bi nd

@ Note

Overriding the destination names is not recommended as Spring Cloud Data Flow takes care
of setting this internally.

Passing per-binding producer consumer properties

A Spring Cloud Stream application can have producer and consumer properties set per - bi ndi ng
basis. While Spring Cloud Data Flow supports specifying short-hand notation for per binding producer
properties such as partiti onKeyExpression, partiti onKeyExtractorC ass as described in
the section called “Passing stream partition properties during stream deployment”, all the supported
Spring Cloud Stream producer/consumer properties can be set as Spring Cloud Stream properties for
the app directly as well.

The consumer properties can be set for the i nbound channel name with the prefix app.
[app/ | abel nane]. spring. cl oud. stream bi ndi ngs. <channel Nanme>. consurer. and the

1.1.0.M2 Spring Cloud Data Flow 43

Spring Cloud Data Flow Reference Guide

producer properties can be set for the out bound channel name with the prefix app. [app/
| abel nane]. spring.cloud. stream bi ndi ngs. <channel Nanme>. pr oducer .. For example,
the stream

datafl ow. > stream create --definition "tinme | |log" --name ticktock

can be deployed with producer/consumer properties as:

dat af | ow. >stream depl oy ticktock --
properties "app.tinme.spring.cloud.stream bi ndi ngs. out put. producer. requi redG oups=nyG oup, app. ti me. spri ng. cl oud. stream bi ndi

The bi nder specific producer/consumer properties can also be specified in a similar way.

For instance

dat af | ow: >stream depl oy ticktock --
properties "app.time.spring.cloud.stream rabbit.bindings.output.producer. aut oBi ndDl g=true, app. | og. spri ng. cl oud. stream rabbi

Passing stream partition properties during stream deployment

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming app and using content-based routing so that messages with
a given key (as determined at runtime) are always routed to the same app instance. You can pass the
partition properties during stream deployment to declaratively configure a partitioning strategy to route
each message to a specific consumer instance.

See below for examples of deploying partitioned streams:

app.[app/label name].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default nul 1)

app.[app/label name].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partitionKeyExtractord ass is null. If both are null, the app is not partitioned (default nul)

app.[app/label name].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default nul 1)

app.[app/label name].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to which
the message will be routed. The final partition index will be the return value (an integer) modulo
[next Modul €] . count . If both the class and expression are null, the underlying binder’s default
PartitionSelectorStrategy will be applied to the key (default nul I ')

In summary, an app is partitioned if its count is > 1 and the previous app has a
partiti onKeyExtractorCl ass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by invoking
the partitionSel ectorC ass, if present, or the partitionSel ectorExpression %
partitionCount, where partitionCount is application count in the case of RabbitMQ, and the
underlying partition count of the topic in the case of Kafka.

If neither a partitionSel ectorCl ass nor a partitionSel ector Expressi on is present the
result is key. hashCode() % partitionCount.

1.1.0.M2 Spring Cloud Data Flow 44

Spring Cloud Data Flow Reference Guide

Passing application content type properties

In a stream definition you can specify that the input or the output of an application need to be converted
to a different type. You can use the i nput Type and out put Type properties to specify the content
type for the incoming data and outgoing data, respectively.

For example, consider the following stream:

dat af | ow: >stream create tuple --definition "http | filter --inputType=application/x-spring-tuple
- - expr essi on=payl oad. hasFi el dName(' hello') | transform --

expr essi on=payl oad. get Val ue(' hell 0").t oUpper Case()
| log" --deploy

The ht t p app is expected to send the data in JSON and the fi | t er app receives the JSON data and
processes it as a Spring Tuple. In order to do so, we use the i nput Type property on the filter app
to convert the data into the expected Spring Tuple format. The t r ansf or mapplication processes the
Tuple data and sends the processed data to the downstream | og application.

When sending some data to the ht t p application:

dat af | ow. >http post --data {"hello":"world","foo":"bar"} --contentType application/json --target http://
| ocal host : <htt p-port>

At the log application you see the content as follows:

‘INFO 18745 --- [transformtuple-1] |o0g. sink : WORLD

Depending on how applications are chained, the content type conversion can be specified either as
via the - - out put Type in the upstream app or as an --i nput Type in the downstream app. For
instance, in the above stream, instead of specifying the - - i nput Type on the 'transform' application to
convert, the option - - out put Type=appl i cati on/ x-spri ng-tupl e can also be specified on the
'http' application.

For the complete list of message conversion and message converters, please refer Spring Cloud Stream
documentation.

Overriding application properties during stream deployment

Application properties that are defined during deployment override the same properties defined during
the stream creation.

For example, the following stream has application properties defined during stream creation:

datafl ow. > streamcreate --definition "tinme --fixed-delay=5 | log --level =WARN' --nane ticktock

To override these application properties, one can specify the new property values during deployment:

dat af | ow. >stream depl oy ticktock --properties "app.tine.fixed-del ay=4, app.| og.| evel =ERROR'

20.3 Deployment properties

When deploying the stream, properties that control the deployment of the apps into the target platform
are known as depl oynent properties. For instance, one can specify how many instances need to be
deployed for the specific application defined in the stream using the deployment property called count .

1.1.0.M2 Spring Cloud Data Flow 45

Spring Cloud Data Flow Reference Guide

Passing instance count as deployment property

If you would like to have multiple instances of an application in the stream, you can include a property
with the deploy command:

dat af | ow. > stream depl oy --nane ticktock --properties "app.tine.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property hamed count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app. f oo. bar. count) during stream deployment or it can be specified using 'short-form' or fully
qualified form during the stream creation where it will be considered as an app property.

@ Important

See Chapter 27, Using Labels in a Stream.

Inline vs file reference properties

When using the Spring Cloud Dataflow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the - - properti es shell option and list properties as a comma separated list of key=value
pairs, like so:

stream depl oy foo
--properties "app.transform count=2, app.transform producer. partiti onKeyExpressi on=payl oad"

Using a file reference
use the - - properti esFi | e option and point it to a local . properties,.yam or.yml file (i.e.
that lives in the filesystem of the machine running the shell). Being read as a . properti es file,
normal rules apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend
using = as a key-value pair delimiter for consistency:

stream depl oy foo --propertiesFile nmyprops. properties

where nypr ops. properti es contains:

app. t ransf orm count =2
app. transform producer. partiti onKeyExpr essi on=payl oad

Both the above properties will be passed as deployment properties for the stream f 0o above.

In case of using YAML as the format for the deployment properties, use the . yam or. ynl file extention
when deploying the stream,

stream depl oy foo --propertiesFile nyprops.yan

where nypr ops. yam contains:

app:
transform
count: 2
producer:

partitionKeyExpression: payl oad

1.1.0.M2 Spring Cloud Data Flow 46

Spring Cloud Data Flow Reference Guide

21. Destroying a Stream

You can delete a stream by issuing the st r eam dest r oy command from the shell:

dat af | ow. > stream destroy --name ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

1.1.0.M2 Spring Cloud Data Flow

a7

Spring Cloud Data Flow Reference Guide

22. Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undepl oy the stream by hame and issue the depl oy command at a later time to restart it.

dat af | ow: > stream undepl oy --nane ticktock
dat af | ow. > stream depl oy --nane ticktock

1.1.0.M2 Spring Cloud Data Flow 48

Spring Cloud Data Flow Reference Guide

23. Other Source and Sink Application Types

Let’s try something a bit more complicated and swap out the t i e source for something else. Another
supported source type is ht t p, which accepts data for ingestion over HTTP POSTSs. Note thatthe ht t p
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an htt p source, but still using the same | og sink, we would change the
original command above to

datafl ow. > streamcreate --definition "http | 10g" --nanme nyhttpstream --depl oy

which will produce the following output from the server

2016- 06- 01 09: 47:58.920 |NFO 79016 --- [i0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstream | og instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788878747/ nyhtt pstream | og
2016- 06-01 09:48:06.396 | NFO 79016 --- [io0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstreamhttp i nstance 0
Logs will be in /var/folders/wn/8jxmtbdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788886383/ nyhtt pstream http

Note that we don't see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

‘dataflow> runti me apps

You should see that the corresponding http source has a ur| property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

datafl ow. > http post --target http://local host: 1234 --data "hello"
datafl ow. > http post --target http://local host: 1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016- 06-01 09: 50: 22. 121 |INFO 79654 --- [kafka-binder-] |og.sink : hello
2016-06-01 09:50: 26. 810 | NFO 79654 --- [kafka-binder-] |og.sink . goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (fi |), to
hadoop (hdf s) or to any of the other sink apps which are available. You can also define your own apps.

1.1.0.M2 Spring Cloud Data Flow 49

Spring Cloud Data Flow Reference Guide

24. Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

‘ http | transform --expressi on=payl oad. t oUpper Case() | |og

To create this stream enter the following command in the shell

datafl ow. > stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | |0g" --nane
nmyst ream - - depl oy

Posting some data (using a shell command)

‘dataflow> http post --target http://local host: 1234 --data "hell 0"

Will result in an uppercased 'HELLO' in the log

‘ 2016- 06- 01 09: 54: 37. 749 | NFO 80083 --- [kafka-binder-] |og.sink : HELLO

1.1.0.M2 Spring Cloud Data Flow 50

Spring Cloud Data Flow Reference Guide

25. Stateful Stream Processing

To demonstrate the data partitioning functionality, let's deploy the following stream with Kafka as the
binder.

dat af | ow. >stream create --name words --definition "http --server.port=9900 | splitter --
expressi on=payl oad.split(' ') | |og"
Created new stream ' words

dat af | ow: >stream depl oy words --properties
"app. splitter.producer. partitionKeyExpressi on=payl oad, app. | og. count =2"
Depl oyed stream ' words

dat af | ow. >http post --target http://local host: 9900 --data "How nuch wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood"

> POST (text/plain;Charset=UTF-8) http://|ocal host: 9900 How much wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood

> 202 ACCEPTED

You'll see the following in the server logs.

2016- 06- 05 18: 33:24.982 | NFO 58039 --- [nio0-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og instance 0

Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow- 694182453710731989/ wor ds- 1465176804970/ wor ds. | og
2016- 06- 05 18:33:24.988 | NFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og instance 1

Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow 694182453710731989/ wor ds- 1465176804970/ wor ds. | og

Review the wor ds. | og i nstance O logs:

2016- 06- 05 18: 35:47.047 |NFO 58638 --- [kafka-binder-] |og.sink : How
2016- 06- 05 18: 35:47.066 |NFO 58638 --- [kafka-binder-] |og.sink

chuck

2016- 06- 05 18:35:47.066 | NFO 58638 --- [kafka-binder-] |og.sink

chuck

Review the wor ds. | og i nstance 1 logs:

2016- 06- 05 18:35:47.047 |NFO 58639 --- [kafka-binder-] |og.sink

much

2016- 06- 05 18: 35:47.066 |NFO 58639 --- [kafka-binder-] |og.sink

wood

2016- 06-05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink

woul d

2016- 06- 05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18: 35:47.066 |NFO 58639 --- [kafka-binder-] |og.sink

woodchuck

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink if
2016- 06- 05 18:35:47.067 | NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18:35:47.067 | NFO 58639 --- [kafka-binder-] |og.sink

woodchuck

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink

coul d

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink

wood

This shows that payload splits that contain the same word are routed to the same application instance.

1.1.0.M2 Spring Cloud Data Flow 51

Spring Cloud Data Flow Reference Guide

26. Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

streamcreate --definition "http | stepl: transform --expressi on=payl oad.toUpper Case() | step2:
transform --expressi on=payl oad+'!" | |og" --nane mainstream --depl oy

taps can be created at the output of ht t p, st epl and st ep2.

To create a stream that acts as a 'tap' on another stream requires to specify the sour ce desti nati on
nane for the tap stream. The syntax for source destination name is:

* i <stream nane>. <l abel / app- name>"

To create a tap at the output of http in the stream above, the source destination name is
mai nst ream htt p To create a tap at the output of the first transform app in the stream above, the
source destination name is nai nst r eam st epl

The tap stream DSL looks like this:

streamcreate --definition ":mainstreamhttp > counter” --name tap_at_http --depl oy

streamcreate --definition ":mainstreamstepl > jdbc" --nanme tap_at_stepl_transfornmer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

1.1.0.M2 Spring Cloud Data Flow 52

Spring Cloud Data Flow Reference Guide

27. Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

streamcreate --definition "http | firstLabel: transform --expressi on=payl oad.toUpper Case() |
secondLabel : transform --expressi on=payl oad+'!"' | log" --name nyStreamWthLabel s --depl oy

1.1.0.M2 Spring Cloud Data Flow 53

Spring Cloud Data Flow Reference Guide

28. Explicit Broker Destinations in a Stream

One can connect to a specific destination name located in the broker (Rabbit, Kafka etc.,) either at the
sour ce or at the si nk position.

The following stream has the destination name at the sour ce position:

streamcreate --definition ":nyDestination > 10g" --nanme ingest_frombroker --deploy

This stream receives messages from the destination nyDesti nati on located at the broker and
connects it to the | og app.

The following stream has the destination name at the si nk position:

streamcreate --definition "http > :nyDestination" --nane ingest_to_broker --deploy

This stream sends the messages from the htt p app to the destination myDest i nat i on located at
the broker.

From the above streams, notice that the htt p and | og apps are interacting with each other via the
broker (through the destination myDest i nat i on) rather than having a pipe directly between ht t p and
| og within a single stream.

It is also possible to connect two different destinations (sour ce and si nk positions) at the broker in
a stream.

streamcreate --definition ":destinationl > :destination2" --nane bridge_destinations --depl oy

In the above stream, both the destinations (desti nati onl and desti nati on2) are located in the
broker. The messages flow from the source destination to the sink destination via a br i dge app that
connects them.

1.1.0.M2 Spring Cloud Data Flow 54

Spring Cloud Data Flow Reference Guide

29. Directed Graphs in a Stream

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant.

First, named destinations may be used as a way to combine the output from multiple streams or for
multiple consumers to share the output from a single stream. This can be done using the DSL syntax
http > :nydestinationor:nydestination > |og.

Second, you may need to determine the output channel of a stream based on some information that is
only known at runtime. In that case, a router may be used in the sink position of a stream definition. For
more information, refer to the Router Sink starter's README.

29.1 Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spring. cl oud. dat af | ow. appl i cati onProperti es. stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the configuration server with the following options:

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. br oker s=192. 168. 1. 100: 9092

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. zkNodes=192. 168. 1. 100: 2181

This will cause the properties spring.cloud. stream kaf ka. bi nder. brokers and
spring. cl oud. st ream kaf ka. bi nder . zkNodes to be passed to all the launched applications.

@ Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app. http. spring. cl oud. st r eam kaf ka. bi nder. br oker s will
override the common property).

1.1.0.M2 Spring Cloud Data Flow 55

https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/router/spring-cloud-starter-stream-sink-router

Spring Cloud Data Flow Reference Guide

30. Stream applications with multiple binder
configurations

In sone cases, a stream can have its applications bound to nultiple spring cloud stream bi nders when
they are required to connect to different nessaging

mi ddl eware configurations. In those cases, it is inportant to nake sure the applications are configured
appropriately with their binder

configurations. For exanple, let's consider the follow ng stream

http | transform --expressi on=payl oad. t oUpper Case() | |og

and in this stream, each application connects to messaging middleware in the following way:

Http source sends events to RabbitMQ (rabbit1l)

Transf orm processor receives events from RabbitMQ (rabbitl) and sends the processed events into Kafka
(kaf kal)

Log sink receives events from Kaf ka (kaf kal)

Here, rabbit1l and kaf kal are the binder names given in the spring cloud stream application
properties. Based on this setup, the applications will have the following binder(s) in their classpath with
the appropriate configuration:

Http - Rabbit binder
Transform - Both Kafka and Rabbit binders
Log - Kafka binder

The spring-cloud-stream bi nder configuration properties can be set within the applications themselves.
If not, they can be passed via depl oynent properties when the stream is deployed.

For example,

dat af | ow. >stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | |og" --nane
nystream

dat af | ow. >stream depl oy nmystream --properties
"app. http. spring. cl oud. stream bi ndi ngs. out put . bi nder =r abbi t 1, app. t ransf orm spri ng. cl oud. st ream bi ndi ngs. i nput . bi nder =r abbi
app. transform spring. cl oud. stream bi ndi ngs. out put. bi nder =kaf kal, app. | 0g. spri ng. cl oud. st ream bi ndi ngs. i nput. bi nder =kaf kal"

One can override any of the binder configuration properties by specifying them via deployment
properties.

1.1.0.M2 Spring Cloud Data Flow 56

Part VI. Tasks

This section goes into more detail about how you can work with Spring Cloud Tasks. It covers topics
such as creating and running task applications.

If you're just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Reference Guide

31. Introducing Spring Cloud Task

A task executes a process on demand. In this case a task is a Spring Boot application that is annotated
with @nabl eTask. Hence a user launches a task that performs a certain process, and once complete
the task ends. An example of a task would be a boot application that exports data from a JDBC repository
to an HDFS instance. Tasks record the start time and the end time as well as the boot exit code in a
relational database. The task implementation is based on the Spring Cloud Task project.

1.1.0.M2 Spring Cloud Data Flow 58

http://projects.spring.io/spring-boot/
http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Reference Guide

32. The Lifecycle of atask

Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for
tasks in the context of Spring Cloud Data Flow:

1. Register a Task App

2. Create a Task Definition
3. Launch a Task

4. Task Execution

5. Destroy a Task Definition

32.1 Registering a Task Application

Register a Task App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name and a URI that can be resolved to the app artifact. For the
type, specify "task". Here are a few examples:

dat af | ow. >app regi ster --nanme taskl --type task --uri maven://com exanpl e: nytask: 1. 0. 2
dat af | ow: >app regi ster --nane task2 --type task --uri file:///Users/exanple/nmytask-1.0.2.jar

dat af | ow. >app regi ster --nanme task3 --type task --uri http://exanple.conl nytask-1.0.2.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven: // <groupl d>: <artifact!| d>[: <extensi on>[:<cl assifier>]]:<version>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <t ype>. <nanme> and the values are the URIs. For example, this would be
a valid properties file:

task. foo=file:///tnp/foo.jar
task. bar=file:///tnp/bar.jar

Then use the app i nport command and provide the location of the properties file via - - uri :

app inmport --uri file:///tnp/task-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Task app-starters. You can point to this file and import all the application-URIs
in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have your
own custom property file with only the required application-URIs in it. It is recommended, however, to
have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

» Maven based Task Applications: bit.ly/task-applications-maven

» Docker based Task Applications: bit.ly/task-applications-docker

For example, if you would like to register all out-of-the-box task applications in bulk, you can with the
following command.

1.1.0.M2 Spring Cloud Data Flow 59

http://bit.ly/task-applications-maven
http://bit.ly/task-applications-docker

Spring Cloud Data Flow Reference Guide

dat af | ow: >app inport --uri http://bit.ly/task-applications-maven

You can also pass the - - | ocal option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

When using either app regi ster orapp i nport, ifatask app is already registered with the provided
name, it will not be overridden by default. If you would like to override the pre-existing task app, then
include the - - f or ce option.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

32.2 Creating a Task

Create a Task Definition from a Task App by providing a definition name as well as properties that
apply to the task execution. Creating a task definition can be done via the restful API or the shell. To
create a task definition using the shell, use the t ask cr eat e command to create the task definition.
For example:

dat af | ow. >t ask create nytask --definition "timestanp --format=\"yyyy\""
Created new task 'mytask’

A listing of the current task definitions can be obtained via the restful API or the shell. To get the task
definition list using the shell, use the t ask |i st command.

32.3 Launching a Task

An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc task via the
shell use the t ask | aunch command. For Example:

dat af | ow: >t ask | aunch mytask
Launched task 'mytask'

When a task is launched, any properties that need to be passed as the command line arguments to the
task application can be set when launching the task as follows:

dat af | ow: >t ask | aunch mytask --arguments "--server. port=8080, - -foo=bar"

32.4 Reviewing Task Executions

Once the task is launched the state of the task is stored in a relational DB. The state includes:
» Task Name

» Start Time

* End Time

» Exit Code

» Exit Message

1.1.0.M2 Spring Cloud Data Flow 60

Spring Cloud Data Flow Reference Guide

» Last Updated Time
» Parameters

A user can check the status of their task executions via the restful API or by the shell. To display the
latest task executions via the shell use the t ask execution |i st command.

To get a list of task executions for just one task definition, add - - nane and the task definition name, for
example t ask execution list --nane foo. To retrieve full details for a task execution use the
task di spl ay command with the id of the task execution , for example t ask di splay --id 549.

32.5 Destroying a Task

Destroying a Task Definition will remove the definition from the definition repository. This can be done
via the restful API or via the shell. To destroy a task via the shell use the t ask destr oy command.
For Example:

dat af | ow: >t ask destroy nytask
Destroyed task 'nytask’

The task execution information for previously launched tasks for the definition will remain in the task
repository.

Note: This will not stop any currently executing tasks for this definition, this just removes the definition.

1.1.0.M2 Spring Cloud Data Flow 61

Spring Cloud Data Flow Reference Guide

33. Task Repository

Out of the box Spring Cloud Data Flow offers an embedded instance of the H2 database. The H2 is
good for development purposes but is not recommended for production use.

33.1 Configuring the Task Execution Repository

To add a driver for the database that will store the Task Execution information, a dependency for the
driver will need to be added to a maven pom file and the Spring Cloud Data Flow will need to be rebuilt.
Since Spring Cloud Data Flow is comprised of an SPI for each environment it supports, please review
the SPI's documentation on which POM should be updated to add the dependency and how to build.
This document will cover how to setup the dependency for local SPI.

Local

1. Open the spring-cloud-dataflow-server-local/pom.xml in your IDE.

2. In the dependenci es section add the dependency for the database driver required. In the sample
below postgresql has been chosen.

<dependenci es>

<dependency>
<groupl d>or g. post gresql </ gr oupl d>
<artifactld>postgresql </artifactld>
</ dependency>

</ dependenci es>

3. Save the changed pom.xml

4. Build the application as described here: Building Spring Cloud Data Flow

Task Application Repository

When launching a task application be sure that the database driver that is being used by Spring Cloud
Data Flow is also a dependency on the task application. For example if your Spring Cloud Dataflow is
set to use Postgresql be sure that the task application also has Postgresql as a dependency.

@ Note

When executing tasks externally (i.e. command line) and you wish for Spring Cloud Data Flow
to show the TaskExecutions in its Ul, be sure that common datasource settings are shared
among the both. By default Spring Cloud Task will use a local H2 instance and the execution
will not be recorded to the database used by Spring Cloud Data Flow.

33.2 Datasource

To configure the datasource Add the following properties to the dataflow-server.yml or via environment
variables:

a. spring.datasource.url

b. spring.datasource.username

1.1.0.M2 Spring Cloud Data Flow 62

Spring Cloud Data Flow Reference Guide

. spring.datasource.password

d. spring.datasource.driver-class-name

For example adding postgres would look something like this:

* Environment variables:

export
export
export
export

spring_dat asource_url =j dbc: postgresql : / /1 ocal host: 5432/ nydb
spri ng_dat asour ce_user nanme=myuser
spri ng_dat asour ce_passwor d=nypass
spring_dat asource_dri ver-cl ass- nane="org. postgresql . Driver"

spring:

dataflow-server.yml

dat asour ce
url: jdbc: postgresql://1ocal host: 5432/ nmydb
user nane: myuser
password: nypass
driver-cl ass-nane: org. postgresql . Driver

1.1.0.mM2

Spring Cloud Data Flow

63

Spring Cloud Data Flow Reference Guide

34. Subscribing to Task/Batch Events

You can also tap into various task/batch events when the task is launched. If the task is enabled to
generate task and/or batch events (with the additional dependencies spri ng- cl oud-t ask- stream
and spri ng- cl oud- st ream bi nder - kaf ka, in the case of Kafka as the binder), those events are
published during the task lifecycle. By default, the destination names for those published events on
the broker (rabbit, kafka etc.,) are the event names themselves (for instance: t ask- events, j ob-

executi on-events etc.,).

dat af | ow: >t ask create myTask --definition “nyBatchJob”
dat af | ow: >t ask | aunch nyTask
dat af | ow. >stream create task-event-subscriberl --definition ":task-events > |og" --deploy

You can control the destination name for those events by specifying explicit names when launching the
task such as:

dat af | ow: >t ask | aunch nmyTask --properties "spring.cloud. stream bi ndi ngs. t ask-
event s. desti nati on=nyTaskEvent s"
dat af | ow. >stream create task-event-subscriber2 --definition ":nmyTaskEvents > | 0g" --depl oy

The default Task/Batch event and destination names on the broker are enumerated below:

Table 34.1. Task/Batch Event Destinations

Event Destination

Task events task-events

Job Execution events j ob- executi on-events
Step Execution events st ep- executi on-events
Item Read events itemread-events

Item Process events item process-events
Item Write events itemwite-events

Skip events ski p-events

1.1.0.M2 Spring Cloud Data Flow 64

Spring Cloud Data Flow Reference Guide

35. Launching Tasks from a Stream

You can launch a task from a stream by using one of the available t ask- | auncher sinks. Currently
the only available t ask-1 auncher sink is the t ask- 1 auncher -1 ocal which will launch a task on
your local machine.

@ Note

t ask- | auncher - | ocal is meant for development purposes only.

A task-| auncher sink expects a message containing a TaskLaunchRequest object in its payload.
From the TaskLaunchRequest object the task-launcher will obtain the URI of the artifact to be launched
as well as the properties and command line arguments to be used by the task.

The task- | auncher -1 ocal can be added to the available sinks by executing the app register
command as follows:

app register --name task-launcher-local --type sink --uri maven://
org. springfranmewor k. cl oud. stream app: t ask- | auncher - | ocal - si nk- kaf ka: jar: 1. 0. 0. BUl LD- SNAPSHOT

35.1 TriggerTask

One way to launch a task using the t ask-1 auncher is to use the tri ggertask source. The
tri ggertask source will emit a message with a TaskLaunchRequest object containing the required
launch information. An example of this would be to launch the timestamp task once every 5 seconds,
the stream to implement this would look like:

streamcreate foo --definition "triggertask --triggertask.uri=nmaven://
org. springfranmework. cl oud. t ask. app: ti mest anp-task:jar:1.0.0. BU LD- SNAPSHOT --trigger.fixed-delay=5 |
t ask- 1 auncher-1local " --depl oy

35.2 Translator

Another option to start a task using the t ask- | auncher would be to create a stream using a your own
translator (as a processor) to translate a message payload to a TaskLaunchRequest. For example:

http --server.port=9000 | ny-task-processor | task-Iauncher-|ocal

1.1.0.M2 Spring Cloud Data Flow 65

Part VII. Dashboard

This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Reference Guide

36. Introduction

Spring Cloud Data Flow provides a browser-based GUI which currently has 6 sections:

» Apps Lists all available applications and provides the control to register/unregister them
* Runtime Provides the Data Flow cluster view with the list of all running applications

» Streams Deploy/undeploy Stream Definitions

e Tasks List, create, launch and destroy Task Definitions

» Jobs Perform Batch Job related functions

» Analytics Create data visualizations for the various analytics applications

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

htt p: // <host >: <port >/ dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at htt ps:// | ocal host : 9393/ dashboar d. If you
have enabled security, a login form is available atht t p: / / | ocal host : 9393/ dashboar d/ #/ | ogi n.

Note: The default Dashboard server port is 9393

‘ :’,I spr'ng RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

About

Spring Cloud Data Flow is a unified, distributed, and extensible system for data ingestion, real time analytics, batch processing, and data expert. The
project’s goal is to simplify the development of big data applications.

Dataflow Server Implementation

Name spring-cloud-dataflow-server-local
Version 1.0.0.BUILD-SNAPSHOT (7188a68)
Description Local Data Flow Server

Need Help or Found an Issue?

Project Page http:/fcloud.spring.io/spring-cloud-datafiow/

Sources https://github.com/spring-cloud/spring-cloud-dataflow

Documentation http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/htmi/
APl Docs http://docs spring.io/spring-cloud-dataflow/docs/current/api/

Support Forum http://stackoverflow.com/questions/tagged/spring-cloud

Issue Tracker https://github.com/spring-cloud/spring-cloud-dataflow/issues

Figure 36.1. The Spring Cloud Data Flow Dashboard

1.1.0.M2 Spring Cloud Data Flow 67

http://localhost:9393/dashboard

Spring Cloud Data Flow Reference Guide

37. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). It is possible to import a number of applications at once using the Bulk
Import Applications action.

‘ ;) spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Apps

This section lists all the available applications and provides the control to register/unregister them (if applicable).

All Applications

+ Register Application(s) 1l Unregister Application(s) A Bulk Import Applications _

Type URI Actions
O file source maven://org.springframework.cloud.stream.app:file-source-rabbit:1.0.2.RELEASE n
o ftp source maven://org.springframework.cloud.stream.app:ftp-source-rabbit:1.0.2.RELEASE n
O gemfire source maven://org.springframework.cloud.stream.app:gemfire-source-rabbit:1.0.2. RELEASE n
O gemfire-cq source maven://org.springframework.cloud.stream.app:gemfire-cq-source-rabbit:1.0.2.RELEASE n
O http source maven://org.springframework.cloud.stream.app:http-source-rabbit:1.0.2. RELEASE n
O jdbc source maven://org.springframework.cloud.stream.app:jdbc-source-rabbit:1.0.2. RELEASE n
O jms source maven://org.springframework.cloud.stream.app:jms-source-rabbit:1.0.2. RELEASE n

Figure 37.1. List of Available Applications

37.1 Bulk Import of Applications

The bulk import applications page provides numerous options for defining and importing a set of
applications in one go. For bulk import the application definitions are expected to be expressed in a
properties style:

<type>. <name> = <coor di nat es>
For example:

task. ti mestanp=maven://org. springframework. cl oud. t ask. app: ti nest anmp-
task: 1. 0. 0. BU LD- SNAPSHOT

processor. transformemaven: // or g. spri ngfranework. cl oud. stream app: transform
processor-rabbit: 1. 0. 3. BU LD SNAPSHOT

At the top of the bulk import page a Uri can be specified that points to a properties file stored elsewhere,
it should contain properties formatted as above. Alternatively, using the textbox labelled Apps as
Properties it is possible to directly list each property string. Finally, if the properties are stored in a local
file the Select Properties File option will open a local file browser to select the file. After setting your
definitions via one of these routes, click Import.

1.1.0.M2 Spring Cloud Data Flow 68

Spring Cloud Data Flow Reference Guide

At the bottom of the page there are quick links to the property files for common groups of stream apps
and task apps. If those meet your needs, simply select your appropriate variant (rabbit, kafka, docker,
etc) and click the Import action on those lines to immediately import all those applications.

APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Bulk Import Applications

Import and register applications in bulk. Simply provide a URI that points to the location of the properties file where the keys are formatted as type.name and the values are
the URIs of the apps. For convenience, a list of out-of-the-box Stream and Task app starters is provided below, as well.

OR

Enter the list of properties into the text area field below. Alternatively, you can alsoc
select a file in your local file system, which is used to populate the text area field.

Apps as Properties

Select Properties File [choose File | No file chosen

[Force @

Out-of-the-box Stream app-starters

Name Force

Maven based Stream Applications with RabbitMQ Binder 0

Docker based Stream Applications with RabbitMQ Binder [m]

Action
Maven based Stream Applications with Kafka Binder (] H

Docker based Stream Applications with Kafka Binder @]

Out-of-the-box Task app-starters

Name Force

Action
Maven based Task Applications (] H

Docker based Task Applications 0

Figure 37.2. Bulk Import Applications

1.1.0.M2 Spring Cloud Data Flow 69

Spring Cloud Data Flow Reference Guide

38. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

A -
‘ ;J Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Cluster view

This section shows the Spring Cloud Data Flow cluster view with the list of all running apps.

Runtime Apps

foo.log deployed 1

foo.time deployed 1

Figure 38.1. List of Running Applications

1.1.0.M2 Spring Cloud Data Flow 70

Spring Cloud Data Flow Reference Guide

39. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally
you can remove the definition by clicking on destroy. Each row includes an arrow on the left which
can be clicked to see a visual representation of the definition. Hovering over the boxes in the visual
representation will show more details about the apps including any options passed to them. In this
screenshot the timer stream has been expanded to show the visual representation:

‘ : I Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Streams

This section lists all the stream definitions and provides the ability to deploy/undeploy or destroy streams.

Definitions Create Stream

Name Definition Actions

» minutes :timer.time > transform --expression=payload.substring(2,4) | log deployed B Undeploy » Deploy
p seconds timer.time > transform --expression=payload.substring(4) | log deployed B Undeploy » Deploy
v tmer time --date-format=hhmmss | log deployed B Undeploy » Deploy

‘ B time I%—«%I:) log ’

Figure 39.1. List of Stream Definitions

If the details button is clicked the view will change to show a visual representation of that stream and
also any related streams. In the above example, if clicking details for the timer stream, the view will
change to the one shown below which clearly shows the relationship between the three streams (two
of them are tapping into the timer stream).

1.1.0.M2 Spring Cloud Data Flow 71

Spring Cloud Data Flow Reference Guide

&) spring

timer

APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

‘ B time

194 = ———

A\ transform

A\ transform

k> log

Figure 39.2. Stream Details Page

1.1.0.mM2

Spring Cloud Data Flow

72

Spring Cloud Data Flow Reference Guide

40. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:
» Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both
» Write pipelines via DSL with content-assist and auto-complete

» Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

< ;) Spflng APPS RUNTIME | STREAMS TASKS JOBS ANALYTICS ABOUT

Streams

Create a stream using text based input or the visual editor.

Create Stream

Create Stream Clear Layout Zoom: 161 % e e— W Auto Link W Grid

1 STREAM l=time | scriptable-transform --script="return ""#{payload.tr('"A-Za-z0-9', '')}""" --language=ruby | log
tSTREAM_l.time > scriptable-transform --script="function double(p) ‘n{\n return p + '==' % p;\n}\ndouble(payload);” ==
language=javascript log
:STREAM l.time > scriptable-transform --script="return payload + '::' + payload” --language=groovy | log

v source

- :

= file

‘ B time %:-—'{J}\scriptable-t.“

'%]}\Stzriptable-t... 0

'_[[l)\scriptable—t... =

[= load-gener. £

Figure 40.1. Flo for Spring Cloud Data Flow

1.1.0.M2 Spring Cloud Data Flow 73

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Reference Guide

41. Tasks

The Tasks section of the Dashboard currently has three tabs:
* Apps
* Definitions

» Executions

41.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within
the Tasks section allows users to create Task definitions.

Note: You will also use this tab to create Batch Jobs.

‘ ; II' Sprlng APPS RUNTIME STREAMS TASKS JoBS ANALYTICS ABOUT

Tasks

This section lists all available task apps. You have the ability to view app details and to create task definitions.

Apps Definitions Executions

Coordinates

spark-client E n
spark-cluster n n
spark-yarn H n
sqoop-job H n
sqoop-tool E n
timestamp ﬂ n

Figure 41.1. List of Task Apps

On this screen you can perform the following actions:
» View details such as the task app options.

» Create a Task Definition from the respective App.

Create a Task Definition from a selected Task App

On this screen you can create a new Task Definition. As a minimum you must provide a name for
the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

Note: Each parameter is only included if the Include checkbox is selected.

1.1.0.M2 Spring Cloud Data Flow 74

Spring Cloud Data Flow Reference Guide

View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

41.2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
It also provides a shortcut operation to define one or more tasks using simple textual input, indicated
by the bulk define tasks button.

‘ ;) Spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Tasks

This section lists all the task definitions and allows you to create, launch and destroy them.

Apps Definitions Executions

2 Bulk Define Tasks

Name Definition Actions

demo-timestamp timestamp unknown X Destroy

Figure 41.2. List of Task Definitions

Creating Task Definitions using the bulk define interface

After pressing bulk define tasks, the following screen will be shown.

‘ ;) Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Bulk Define Tasks

Define tasks in bulk. Type in tasks definitions in the text box or simply browse to a local task definitions file

1 Please enter one or more definitions in the format: mytask=taskapp --optionl=valuel --option2=value2

B Import File v Verify Apps

Figure 41.3. Bulk Define Tasks

1.1.0.M2 Spring Cloud Data Flow 75

Spring Cloud Data Flow Reference Guide

It includes a textbox where one or more definitions can be entered and then various actions performed
on those definitions. The required input text format for task definitions is very basic, each line should
be of the form:

<t ask-definiti on-name> = <task-application> <options>
For example:
deno-tinestanp = timestanp --format=hhmss

After entering any data a validator will run asynchronously to verify both the syntax and that the
application name entered is a valid application and it supports the options specified. If validation fails
the editor will show the errors with more information via tooltips.

If the validator should not verify the applications or the options (for example if specifying non-whitelisted
options to the applications) then turn off that part of validation by toggling the checkbox off on the Verify
Apps button - the validator will then only perform syntax checking. When correctly validated, the create
button will be clickable and on pressing it the Ul will proceed to create each task definition. If there are
any errors during creation then after creation finishes the editor will show any lines of input which could
not be used as task definitions. These can then be fixed up and creation repeated. There is an import
file button to open a file browser on the local file system if the definitions are in a file and it is easier
to import than copy/paste.

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:
« Parameter Key
» Parameter Value

Task parameters are not typed.

41.3 Executions

Tasks

Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

This section lists all the available task executions.

Apps Definitions Executions

End Time

3 demo-timestamp 2016-06-11 14:28:10,900 2016-06-11 14:28:10,931 o}
2 demo-timestamp 2016-06-11 14:28:09,216 2016-06-11 14:28:09,257 o
1 demo-timestamp 2016-06-11 14:27:13,113 2016-06-11 14:27:13,145 0

Figure 41.4. List of Task Executions

1.1.0.M2 Spring Cloud Data Flow 76

Spring Cloud Data Flow Reference Guide

42. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

‘ :) Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Batch Jobs

This section lists all the available batch job executions and provides the control to restart the job execution (if restartable).

Executions

Name Task Id Instance Id Execution|d Job Start Time Step Executions Count Status Actlons

job2 1 2 2 2016-06-13 13:57:58,294 1 COMPLETED n n
job1 1 1 1 2016-06-13 13:57:58,241 1 COMPLETED n n

Figure 42.1. List of Job Executions

42.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

1.1.0.M2 Spring Cloud Data Flow 77

Spring Cloud Data Flow Reference Guide

Job execution details

' :) Sprlng APPS RUNTIME STREAMS TASKS JoBs ANALYTICS ABOUT

Job Execution Details - Execution ID: 2

Property Value

a
]

Job Name job2
Job Instance 2
Task Execution Id 1l
Composed Job x
Job Parameters
Start Time 2016-06-13 13:57:58,294
End Time 2016-06-13 13:57:58,317
Duration 23 ms
Status COMPLETED
Exit Code COMPLETED
Exit Message N/A
Step Execution Count 1
Steps
Step ld Step Name Reads Writes Commits Rollbacks Duration Status Details
2 job2stepl 0 0 1 [+] 8ms COMPLETED “

Figure 42.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

@ Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Step Execution Progress
On this screen, you can see a progress bar indicator in regards to the execution of the current step.

Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

1.1.0.M2 Spring Cloud Data Flow 78

Spring Cloud Data Flow Reference Guide

‘ ;f spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Step Execution Details - Step Execution ID: 2

Step Execution Progress

Percentage Complete n

Step Execution Id 2

Job Execution Id 2

Step Name job2stepl
Step Type io.spring.configuration.JobConfiguration$2
Status COMPLETED
Commits 1

Duration 8ms

Filter Count o]

Process Skips o]

Reads [¢]

Read Skips 0

Rollbacks 0

Skips [¢]

Writes)

Write Skips 0

Exit Description

N/A

Step Execution Context

Key Value
batch.taskletType ie.spring.configuration.JebConfiguration$2
batch.stepType org.springframework.batch.core.step.tasklet.TaskletStep

Figure 42.3. Step Execution History

1.1.0.M2 Spring Cloud Data Flow 79

Spring Cloud Data Flow Reference Guide

43. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

e Counters
» Field-Value Counters

For example, if you have created the spri ngt weet s stream and the corresponding counter in the
Counter chapter, you can now easily create the corresponding graph from within the Dashboard tab:

1. Under Metri c Type, select Count er s from the select box
2. Under St r eam select t weet count
3. Under Vi sual i zat i on, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

1.1.0.M2 Spring Cloud Data Flow 80

Part VIII. ‘How-to’ guides

This section provides answers to some common ‘how do | do that...” type of questions that often arise
when using Spring Cloud Data Flow.

If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer; this is also a great place to ask
new questions (please use the spri ng- cl oud- dat af | owtag).

We’'re also more than happy to extend this section; If you want to add a ‘how-to’ you can send us a
pull request.

http://stackoverflow.com/tags/spring-cloud-dataflow
http://github.com/spring-cloud/spring-cloud-dataflow

Spring Cloud Data Flow Reference

Guide

44, Configure Maven Properties

You can set the maven properties such as local maven repository location, remote maven repositories
and their authentication credentials including the proxy server properties via commandline properties
when starting the Dataflow server or using the SPRI NG_APPLI CATI ON_JSON environment property for

the Dataflow server.

The remote maven repositories need to be configured explicitly if the apps are resolved using maven
repository as except| ocal Data Flow server, other Data Flow server implementations (that use maven
resources for app artifacts resolution) have no default value for remote repositories. The | ocal server
hasrepo. spring.io/libs-snapshot as the default remote repository.

To pass the properties as commandline options:

$ java -jar <datafl owserver>.jar
--maven. renote-repositories.repol
--maven. renot e-reposi tori es. repol
--maven. renote-repositories.repol.
--maven. renot e-reposi tories. repo2

--maven. | ocal Reposi t ory=nyl oca
url =https://repol

aut h. user narme=r epoluser

aut h. passwor d=r epolpass

url =https://repo2 --maven. proxy

--maven. proxy. port =9018 - - maven. pr oxy. aut h. user name=pr oxyuser
- -maven. proxy. aut h. passwor d=pr oxypass

export SPRI NG APPLI CATI ON_JSON="{ "maven": { "l ocal -repository"

{ "repol": { "url": "https://repol", "auth": { "username": "repo
"repo2": { "url": "https://repo2" } }, "proxy": { "host": "proxyh
9018, "auth": { "username": "proxyuser", "password": "proxypass"

. host =pr oxyhost

or, using the SPRI NG_APPLI CATI ON_J SON environment property:

"local","renote-repositories"”
luser", "password": "repolpass" } }
ost", "port":

P ¥

Formatted JSON:

SPRI NG_APPLI CATI ON_JSON=' {
"maven": {
"l ocal -repository": "local"
"renote-repositories": {
"repol": {
"url": "https://repol"
"auth": {

}
ba
"repo2": {
“url": "https://repo2"
}
B
"proxy": {
"host": "proxyhost"
"port": 9018
"auth": {
"usernane": "proxyuser",
"password": "proxypass"
}
}

Note

o

Depending on Spring Cloud Data Flow
to pass the environment properties using

"usernane": "repoluser"
"password": "repolpass"”

server

implementation,

you may have
the platform specific environment-setting

1.1.0.mM2

Spring Cloud Data Flow

82

https://repo.spring.io/libs-snapshot

Spring Cloud Data Flow Reference Guide

capabilities. For instance, in Cloud Foundry, you'd be passing them as cf
SPRI NG_APPLI CATI ON_JSON.

set -env

1.1.0.mM2

Spring Cloud Data Flow

83

Spring Cloud Data Flow Reference Guide

45. Logging

Spring Cloud Data Flow is built upon several Spring projects, but ultimately the dataflow-server is a
Spring Boot app, so the logging techniques that apply to any Spring Boot application are applicable
here as well.

While troubleshooting, following are the two primary areas where enabling the DEBUG logs could be
useful.

45.1 Deployment Logs

Spring Cloud Data Flow builds upon Spring Cloud Deployer SPI and the platform specific dataflow-
server uses the respective SPI implementations. Specifically, if we were to troubleshoot deployment
specific issues; such as the network errors, it'd be useful to enable the DEBUG logs at the underlying
deployer and the libraries used by it.

1. For instance, if you'd like to enable DEBUG logs for the local-deployer, you'd be starting the server
with following.

$ java -jar <datafl owserver>.jar --1o0gging.!|evel.org.springfranmework.cloud. depl oyer. spi .| ocal =DEBUG

(where, org. springframework. cl oud. depl oyer. spi .l ocal is the global package for
everything local-deployer related)

2. For instance, if you'd like to enable DEBUG logs for the cloudfoundry-deployer, you'd be setting the
following environment variable and upon restaging the dataflow-server, we will see more logs around
request, response and the elaborate stack traces (upon failures). The cloudfoundry-deployer uses
cf-java-client, so we will have to enable DEBUG logs for this library.

$ cf set-env datafl owserver JAVA OPTS '-Dl ogging. | evel . cl oudf oundry-client =DEBUG
$ cf restage datafl ow server

(where, cl oudf oundry-cl i ent is the global package for everything cf - j ava- cl i ent related)

3. If there’s a need to review Reactor logs, which is used by the cf - j ava- cl i ent, then the following
would be helpful.

$ cf set-env datafl owserver JAVA OPTS ' - Dl ogging. | evel . cl oudf oundry-cl i ent =DEBUG -
Dl oggi ng. | evel . reactor. i pc. nett y=DEBUG
$ cf restage datafl ow server

(where, react or. i pc. netty is the global package for everything r eact or - net t y related)

@ Note

Similartothe | ocal - depl oyer and cl oudf oundr y- depl oyer options as discussed above,
there are equivalent settings available for Apache YARN, Apache Mesos and Kubernetes
variants, too. Check out the respective SPI implementations to find out more details about the
packages to configure for logging.

45.2 Application Logs

The streaming applications in Spring Cloud Data Flow are Spring Boot applications and they can be
independently setup with logging configurations.

1.1.0.M2 Spring Cloud Data Flow 84

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html#howto-logging
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud?utf8=%E2%9C%93&query=deployer
https://github.com/spring-cloud/spring-cloud-deployer/tree/master/spring-cloud-deployer-local
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry
https://github.com/cloudfoundry/cf-java-client
https://github.com/spring-cloud?utf8=%E2%9C%93&query=deployer

Spring Cloud Data Flow Reference Guide

For instance, if you'd have to troubleshoot the header and payl oad specifics that are being passed
around source, processor and sink channels, you'd be deploying the stream with the following options.

dat af | ow: >stream create foo --definition "http --10gging.level.org.springframework.integrati on=DEBUG
| transform--1o0gging.level.org.springfranework.integrati on=DEBUG | |og --
| oggi ng. | evel . org. spri ngfranmework. i ntegrati on=DEBUG' - -depl oy

(where, org.springframework.integration is the global package for everything Spring
Integration related, which is responsible for messaging channels)

These properties can also be specified via depl oynent properties when deploying the stream.

dat af | ow: >stream depl oy foo --properties "app.*.logging.|evel.org.springfranmework.integrati on=DEBUG'

1.1.0.M2 Spring Cloud Data Flow 85

Part IX. REST API Guide

In this section you will learn all about the Spring Cloud Data Flow REST API.

Spring Cloud Data Flow Reference Guide

46. Overview

Spring Cloud Data Flow provides a REST API allowing you to access all aspects of the server. In fact
the Spring Cloud Data Flow Shell is a first-class consumer of that API.

() Tip
If you plan on using the REST API using Java, please also consider using the provided Java
client (DataflowTemplate) that uses the REST API internally.

46.1 HTTP verbs

Spring Cloud Data Flow tries to adhere as closely as possible to standard HTTP and REST conventions
in its use of HTTP verbs.

Verb Usage

CGET Used to retrieve a resource

POST Used to create a new resource

PUT Used to update an existing resource, including

partial updates. Also used for resources that
imply the concept of r est art s such as Tasks.

DELETE Used to delete an existing resource

46.2 HTTP status codes

RESTful notes tries to adhere as closely as possible to standard HTTP and REST conventions in its
use of HTTP status codes.

Status code Usage
200 K The request completed successfully
201 Created A new resource has been created successfully.

The resource’s URI is available from the
response’s Locat i on header

204 No Cont ent An update to an existing resource has been
applied successfully

400 Bad Request The request was malformed. The response body
will include an error providing further information

404 Not Found The requested resource did not exist

409 Conflict The requested resource already exists, e.g. the
task already exists or the stream was already
being deployed

422 Unprocessable Entity Returned in cases the Job Execution cannot be
stopped or restarted

1.1.0.M2 Spring Cloud Data Flow 87

Spring Cloud Data Flow Reference Guide

46.3 Headers

Every response has the following header(s):

Name Description

Cont ent - Type The Content-Type of the payload, e.g.
appl i cati on/ hal +j son

46.4 Errors
Path Type Description
error String The HTTP error that occurred,
e.g. Bad Request
nmessage String A description of the cause of
the error
pat h String The path to which the request
was made
st at us Nunber The HTTP status code, e.g.
400
ti mestanp String The time, in milliseconds, at
which the error occurred

46.5 Hypermedia

Spring Cloud Data Flow uses hypermedia and resources include links to other resources in their
responses. Responses are in Hypertext Application from resource to resource Language (HAL) format.
Links can be found beneath the _| i nks key. Users of the API should not create URIs themselves,
instead they should use the above-described links to navigate.

1.1.0.M2 Spring Cloud Data Flow 88

http://stateless.co/hal_specification.html

Spring Cloud Data Flow Reference Guide

47. Resources

47.1 Index

The index provides the entry point into Spring Cloud Data Flow’s REST API.
Accessing the index
A GET request is used to access the index

Request structure

GET / HITP/1.1
Host: | ocal host: 8080

Example request

‘$ curl "http://1ocal host:8080/" -i
Response structure

Path Type Description

_links hj ect Links to other resources

Example response

HTTP/ 1.1 200 OK
Cont ent - Type: appl i cation/ hal +j son; char set =UTF- 8
Cont ent - Lengt h: 3698
{
"_links" : {
"dashboard" : {
“"href" : "/dashboard"
b
"streans/definitions" : {
"href" : "http://Ilocal host: 8080/ streans/definitions"
bo
"streanms/definitions/definition" : {
"href" : "http://1ocal host: 8080/ streans/ definitions/{nanme}",
"tenpl ated" : true
B
"streans/depl oynents" : {
"href" : "http://1ocal host: 8080/ streans/ depl oynent s"
Bo
"streans/ depl oynent s/ depl oynment" : {
“href" : "http://1ocal host: 8080/ streans/ depl oynent s/ { nane}",
"tenpl ated" : true
Bo
"runtinme/apps" : {
"href" : "http://1ocal host: 8080/ runti me/ apps"
}.
"runtime/ apps/ app" : {
“href" : "http://1ocal host: 8080/ runtine/apps/{appld}",
"tenpl ated" : true
bo
"runtime/apps/instances" : {
“href" : "http://1ocal host: 8080/ runtine/apps/{appld}/instances",
"tenpl ated" : true
B
"tasks/definitions" : {
"href" : "http://1ocal host:8080/tasks/definitions"
bo

1.1.0.M2 Spring Cloud Data Flow

89

Spring Cloud Data Flow Reference Guide

"tasks/definitions/definition" : {
"href" : "http://1ocal host:8080/tasks/definitions/{name}",
"tenpl ated" : true

Bo

"tasks/ depl oynents" : {
“href" : "http://1ocal host: 8080/t asks/depl oynent s"

bo

"t asks/ depl oynent s/ depl oynent" : {
"href" : "http://1ocal host: 8080/t asks/ depl oynent s/ {nane}",
"tenpl ated" : true

}.

"tasks/ executions" : {
“href" : "http://1ocal host: 8080/t asks/executions"

Bo

"t asks/ executions/ nane" : {
"href" : "http://1ocal host: 8080/t asks/ executions{?nanme}",
"tenpl ated" : true

b

"t asks/ executions/ execution" : {
"href" : "http://1ocal host:8080/tasks/executions/{id}",
"tenplated" : true

Bo

"j obs/ executions" : {
“href" : "http://1ocal host: 8080/ obs/executions"

bo

"j obs/ executions/ name" : {
"href" : "http://1ocal host: 8080/j obs/ executi ons{?nane}",
"tenpl ated" : true

}.

"] obs/ executions/execution" : {
“href" : "http://|ocal host: 8080/ obs/executions/{id}",
"tenpl ated" : true

bo

"] obs/ executions/ execution/steps" : {
"href" : "http://]ocal host: 8080/] obs/ executi ons/{j obExecuti onl d}/steps",
"tenpl ated" : true

bo

"j obs/ executions/ execution/ steps/step" : {
"href" : "http://1ocal host: 8080/j obs/ executions/{j obExecutionld}/steps/{stepld}",
"tenpl ated" : true

}.

"] obs/ executions/ execution/steps/step/progress” : {
"href" : "http://local host: 8080/ obs/executions/{jobExecutionld}/steps/{stepld}/progress",
"tenpl ated" : true

bo

"j obs/instances/name" : {
"href" : "http://]ocal host: 8080/j obs/instances{?nane}",
"tenpl ated" : true

bo

"jobs/instances/instance" : {
"href" : "http://1ocal host:8080/jobs/instances/{id}",
"tenpl ated" : true

}.

"counters" : {
“href" : "http://1ocal host: 8080/ netrics/counters"

Bo

"counters/counter" : {
"href" : "http://1ocal host: 8080/ netrics/counters/{nanme}",
"tenpl ated" : true

b

"field-value-counters" : {
"href" : "http://Ilocal host: 8080/ netrics/field-val ue-counters"”

bo

"field-val ue-counters/counter” : {
"href" : "http://1ocal host: 8080/ nmetrics/field-val ue-counters/{nanme}",
"tenpl ated" : true

bo

"aggregat e-counters" : {
"href" : "http://1ocal host: 8080/ netrics/ aggregat e-count ers"

Bo

"aggregat e-counters/counter" : {

1.1.0.M2 Spring Cloud Data Flow

Spring Cloud Data Flow Reference Guide

"href" :

"tenpl ated" : true
bo
"apps” |

"href" : "http://1 ocal host: 8080/ apps"

b

"conpl etions/streant : {
"href" :
"tenpl ated" :
}

}

true

}

Links

"http://1ocal host: 8080/ netrics/aggregate-counters/{name}",

"http://1ocal host: 8080/ conpl eti ons/strean{?start, detail Level }",

The main element of the index are the links as they allow you to traverse the APl and execute the

desired functionality:

Relation Description
dashboard Access the dashboard Ul
apps Handle registered applications

conpl eti ons/ stream

Exposes the DSL completion features

j obs/ executi ons

j obs/ executi ons/ execution

j obs/ executi ons/ executi on/ st eps

j obs/ executi ons/ execution/ steps/step

j obs/ executi ons/ execution/ st eps/
st ep/ progress

Provides the JobExecution resource
Provides details for a specific JobExecution
Provides the steps for a JobExecution
Returns the details for a specific step

Provides progress information for a specific step

j obs/ executi ons/ nane

Retrieve Job Executions by Job name

j obs/instances/instance

j obs/i nst ances/ nane

Provides the job instance resource for a specific
job instance

Provides the Job instance resource for a specific
job name

runti ne/ apps

Provides the runtime application resource

runti ne/ apps/ app

Exposes the runtime status for a specific app

runti ne/ apps/instances

Provides the status for app instances

t asks/ definitions

Provides the task definition resource

tasks/ definitions/definition
t asks/ depl oynent s
t asks/ depl oynent s/ depl oynent

t asks/ executi ons

Provides details for a specific task definition
Provides the resource for deployment operations
Launch a task

Returns Task executions

1.1.0.M2

Spring Cloud Data Flow

91

Spring Cloud Data Flow Reference Guide

Relation

t asks/ executi ons/ nane

Description

Returns all task executions for a given Task
name

t asks/ executi ons/ executi on

Provides details for a specific task execution

streans/ definitions

Exposes the Streams resource

streans/definitions/definition
st reans/ depl oynent s

st reans/ depl oynent s/ depl oynent

counters

Handle a specific Stream definition
Provides Stream deployment operations

Request (un-)deployment of an existing stream
definition

Exposes the resource for dealing with Counters

count er s/ count er

Handle a specific counter

aggr egat e-counter s

aggr egat e- count er s/ count er

field-val ue-counters

Provides the resource for dealing with aggregate
counters

Handle a specific aggregate counter

Provides the resource for dealing with field-
value-counters

fiel d-val ue-count ers/counter

Handle a specific field-value-counter

47.2 Listing Applications

A GET request will list all applications known to Spring Cloud Data Flow.

Request structure

GET / apps?type=source HITP/ 1.1
Accept: application/json
Host: | ocal host: 8080

Request parameters

Parameter

Description

type

Restrict the returned apps to the type of the app.

Example request

$ curl "http://local host: 8080/ apps?type=source' -i

Response structure

-H ' Accept: application/json'

HTTP/ 1.1 200 K

Cont ent - Type: application/json; charset =UTF-8

Cont ent - Lengt h: 185

{
"_links" : {

1.1.0.mM2

Spring Cloud Data Flow 92

Spring Cloud Data Flow Reference Guide

"sel f" {
"href" "http://1ocal host: 8080/ apps"

}

Bo

"page" : {
"size" 0,
"total El enents" : O,
"total Pages" : 1,
"nunber" 0

}

}
1.1.0.M2 Spring Cloud Data Flow 93

Part X. Data Flow Template

As described in the previous chapter, Spring Data Flow’s functionality is completely exposed via REST
endpoints. While you can use those endpoints directly, Spring Cloud Data Flow also provides a Java-
based API, which makes using those REST endpoints even easier.

Spring Cloud Data Flow Reference Guide

48. Overview

The central entrypoint is the Dat aFl owTenpl at e class in package
org. spri ngframework. cl oud. dat af | ow. rest. client.

This class implements the interface Dat aFl owOper ati ons and delegates to sub-templates that
provide the specific functionality for each feature-set:

Interface Description

StreamOperations REST client for stream operations
CounterOperations REST client for counter operations
FieldValueCounterOperations REST client for field value counter operations
AggregateCounterOperations REST client for aggregate counter operations
TaskOperations REST client for task operations
JobOperations REST client for job operations
AppRegistryOperations REST client for app registry operations
CompletionOperations REST client for completion operations
RuntimeOperations REST Client for runtime operations

When the Dat aFl owTenpl at e is being initialized, the sub-templates will be discovered via the REST
relations, which are provided by HATEOAS.!

@ Important

If a resource cannot be resolved, the respective sub-template will result in being NULL. A
common cause is that Spring Cloud Data Flow offers for specific sets of features to be enabled/
disabled when launching. For more information see Chapter 13, Controlling features with Data
Flow server.

'HATEOAS stands for Hypermedia as the Engine of Application State

1.1.0.M2 Spring Cloud Data Flow 95

Spring Cloud Data Flow Reference Guide

49. Using the Data Flow Template

When using the Data Flow Template the only needed Data Flow dependency is the Spring Cloud Data
Flow Rest Client:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-datafl owrest-client</artifactld>
<versi on>1. 1. 0. M</ ver si on>

</ dependency>

With that dependency you will get the Dat aFl owTenpl at e class as well as all needed dependencies
to make calls to a Spring Cloud Data Flow server.

When instantiating the Dat aFI owTenpl at e, you will also pass in a Rest Tenpl at e. Please be aware
that the needed Rest Tenpl at e requires some additional configuration to be valid in the context of
the Dat aFl owTenpl at e. When declaring a Rest Tenpl at e as a bean, the following configuration will
suffice:

@Bean
public static RestTenplate restTenplate() {
Rest Tenpl ate rest Tenpl ate = new Rest Tenpl ate();
rest Tenpl at e. set Error Handl er (new VndErr or ResponseErr or Handl er (r est Tenpl at e. get MessageConverters()));
for(Htt pMessageConverter<?> converter : restTenpl ate. get MessageConverters()) {
if (converter instanceof MappingJackson2HttpMessageConverter) {
final Mappi ngJackson2Htt pMessageConverter jacksonConverter =
(Mappi ngJackson2Ht t pMessageConverter) converter;
j acksonConvert er. get Obj ect Mapper ()
. regi sterMdul e(new Jackson2Hal Modul e())
.addM xI n(JobExecuti on. cl ass, JobExecuti onJacksonM xI n. cl ass)
.addM xI n(JobPar anet ers. cl ass, JobPar anet er sJacksonM xI n. cl ass)
.addM x| n(JobPar anet er . cl ass, JobPar anet er JacksonM xI n. cl ass)
.addM x| n(Jobl nst ance. cl ass, Jobl nst anceJacksonM xI n. cl ass)
.addM xI n(Exi t Status. cl ass, ExitStatusJacksonM x| n. cl ass)
.addM x| n(St epExecuti on. cl ass, StepExecutionJacksonM x| n. cl ass)
.addM x| n(Execut i onCont ext . cl ass, ExecutionCont ext JacksonM x| n. cl ass)
.addM xI n(St epExecut i onH story. cl ass, StepExecutionHi storyJacksonM xIn. cl ass);
}
}

return restTenpl ate;

}

Now you can instantiate the Dat aFl owTenpl at e with:

Dat aFl owTenpl at e dat aFl owTenpl ate = new Dat aFl owTenpl at e(
new URI ("http://|ocal host:9393/"), restTenplate); O

O The URI points to the ROOT of your Spring Cloud Data Flow Server.

Depending on your requirements, you can nhow make calls to the server. For instance, if you like to get
a list of currently available applications you can execute:

PagedResour ces<AppRegi strati onResour ce> apps = dat aFl owTenpl at e. appRegi stryOperations().list();

Systemout.println(String.format("Retrieved % application(s)",
apps. get Cont ent (). si ze()));

for (AppRegistrationResource app : apps.getContent()) {
Systemout.println(String.format("App Nanme: %, App Type: %, App URI: %",
app. get Nare() ,
app. get Type() ,
app.getUri()));

1.1.0.M2 Spring Cloud Data Flow 96

Part XI. Appendices

Spring Cloud Data Flow Reference Guide

Appendix A. Migrating from Spring
XD to Spring Cloud Data Flow
A.1 Terminology Changes

XD-Admin Server (implementations: local, cloud foundry,
apache yarn, kubernetes, and apache mesos)

XD-Container N/A
Modules Applications
Admin Ul Dashboard
Message Bus Binders
Batch / Job Task

A.2 Modules to Applications

If you have custom Spring XD modules, you'd have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot

"applications".

Custom Applications

» Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud

Task application-starters, respectively. These applications can be used as the reference while

refactoring Spring XD modules

» There are also some samples for Stream and Task applications for reference

 If you'd like to create a brand new custom application, use the getting started guide for Stream and

Task applications and as well as review the development guide

 Alternatively, if you'd like to patch any of the out-of-the-box stream applications, you can follow the

procedure here

Application Registration

» Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts fromhtt p,fil e, oras hdf s
coordinates

Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you're expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

1.1.0.M2 Spring Cloud Data Flow 98

https://github.com/spring-cloud/spring-cloud-stream-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#getting-started
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-docs/src/main/asciidoc/getting-started.adoc#developing-your-first-spring-cloud-task-application
https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#creating-your-own-applications
https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#patching-pre-built-applications
http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/html/_dsl_syntax.html#_register_a_stream_app

Spring Cloud Data Flow Reference Guide

» By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

» Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties
» counter-sink:

e The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the count er -
si nk, thenr edi s becomes required, and you're expected to have your own running r edi s cluster

« field-value-counter-sink:

e The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the fi el d-
val ue- count er - si nk, then r edi s becomes required, and you're expected to have your own
running r edi s cluster

* aggregate-counter-sink:

e The peripheral redi s is not required in Spring Cloud Data Flow. If you intend to use the
aggr egat e- count er - si nk, then r edi s becomes required, and you're expected to have your
own running r edi s cluster

A.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases. We also have an experimental version of the Gemfire binder.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you're to
choose Kafka as the binder, you'd register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you'd add the following dependency
in the classpath.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-stream bi nder-kaf ka</artifact|d>
<ver si on>1. 0. 2. RELEASE</ ver si on>

</ dependency>

e Spring Cloud Stream supports Apache Kafka, RabbitMQ and an experimental Gemfire binder
implementation. All binder implementations are maintained and managed in their individual
repositories

1.1.0.M2 Spring Cloud Data Flow 99

https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-gemfire
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-gemfire

Spring Cloud Data Flow Reference Guide

» Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use
as maven artifacts [stream / task] or docker images [stream / task] Changing the binder requires
selecting the right binder dependency. Alternatively, you can download the pre-built application from
this version of Spring Initializr with the desired “binder-starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by t opi ¢cs or t opi c- exchange and there’s no representation
of queues in the new architecture.

* ${xd. nodul e. i ndex} is not supported anymore; instead, you can directly interact with named
destinations

e stream i ndex changes to: <str eam nane>. <l abel / app- nane>
« forinstance: ti ckt ock. 0 changesto:ticktock.tine

 “topic/queue” prefixes are not required to interact with named-channels
« for instance: t opi c: f oo changesto: f oo

« forinstance: stream create streaml --definition ":foo > | og"
Directed Graphs

If you're building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

streamcreate f --definition "queue:foo > transform --expressi on=payl oad+' -foo' | |og" --deploy

streamcreate b --definition "queue:bar > transform --expressi on=payl oad+' -bar' | |o0g" --deploy

streamcreate r --definition "http | router --expression=payload.contains('a')? queue:foo':"'queue:bar"'"
- -depl oy

for instance, in Spring Cloud Data Flow:

streamcreate f --definition ":foo > transform --expressi on=payl oad+' -foo' | |og" --deploy
streamcreate b --definition ":bar > transform --expressi on=payl oad+' -bar' | |0g" --deploy
streamcreate r --definition "http | router --expression=payload.contains('a)? :foo' :':bar'" --deploy

A.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

» Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a link: Spring
Cloud Task applications

» Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

1.1.0.M2 Spring Cloud Data Flow 100

http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs%2Fsrc%2Fmain%2Fasciidoc%2Fspring-cloud-stream-overview.adoc#binder-selection
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud/spring-cloud-task-app-starters

Spring Cloud Data Flow Reference Guide

A.5 Shell/DSL Commands

Old Command

New Command

module upload

app register / app import

module list

app list

module info

app info

admin config server

dataflow config server

job create

job launch

job list

job status

job display

job destroy

job execution list

runtime modules

task create

task launch

task list

task status

task display

task destroy

task execution list

runtime apps

A.6 REST-API
Old API New API
/modules lapps

/runtime/modules

/runtime/apps

/runtime/modules/(moduleld}

/runtime/apps/{appld}

/jobs/definitions

/task/definitions

/jobs/deployments

A.7Ul/Flo

The Admin-Ul is now renamed as Dashboard. The URI for accessing the Dashboard is changed from

/task/deployments

localhost:9393/admin-ui to localhost:9393/dashboard

» (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also

register/unregister applications from this view

« Runtime: Container changes to Runtime. The notion of xd- cont ai ner is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the

application such as where it is running with, and what resources etc.

1.1.0.mM2

Spring Cloud Data Flow

http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow Reference Guide

» Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

* (New) Tasks:
¢ The sub-tab “Modules” is renamed to “Apps”

e The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

« The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

A.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper
ZooKeeper is not used in the new architecture.
RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, SqglServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported. To use
Oracle and SqlServer you will need to create your own Data Flow Server using Spring Initializr and add
the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the count er -
si nk, fi el d-val ue-count er - si nk, or aggr egat e- count er - si nk applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd- adnmi n and xd- cont ai ner server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

A.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

A.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

1.1.0.M2 Spring Cloud Data Flow 102

https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-dataflow-global-properties
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-dataflow-global-properties

Spring Cloud Data Flow Reference Guide

apache yarn, kubernetes, or apache mesos). For example, if you're running Spring Cloud Data Flow
on Cloud Foundry, you'd download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

A.11 Hadoop Distribution Compatibility

The hdf s- si nk application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

» Cloudera - cdh5

Pivotal Hadoop - phd30
» Hortonworks Hadoop - hdp24

» Hortonworks Hadoop - hdp23

Vanilla Hadoop - hadoop26

Vanilla Hadoop - 2.7.x (default)

A.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.
* Deploy the server directly in a YARN cluster

» Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

A.13 Use Case Comparison

Let's review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ti ckt ock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd- si ngl enode server from CLI Start a binder of your choice

xd- si ngl enode Start | ocal - server implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1|ocal -1.0. 0. BU LD
SNAPSHOT. j ar

Start xd- shel | server from the CLI Start dat af | ow shel | server from the CLI

xd-shel |

1.1.0.M2 Spring Cloud Data Flow 103

http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#_deploying_on_yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#_deploying_on_ambari

Spring Cloud Data Flow Reference Guide

Spring XD

Create t i ckt ock stream

xd: >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results in the xd-
si ngl enode server console

Spring Cloud Data Flow

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Create t i ckt ock stream

dat af | ow. >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results by tailing the
ticktock. | og/ stdout | og application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD

Spring Cloud Data Flow

Start xd- si ngl enode server from CLI

xd- si ngl enode

Start xd- shel | server from the CLI

xd-shel |

Register custom “processor” module to transform
payload to a desired format

xd: >nodul e upl oad --nane
toupper --type processor --file
<CUSTOM JAR FI LE_LOCATI ON>

Create a stream with custom module

xd: >stream create testupper --
definition “http | toupper | |og
depl oy

Review results in the xd- si ngl enode server
console

Start a binder of your choice

Start | ocal - ser ver implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1ocal -1.0.0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Register custom “processor” application to
transform payload to a desired format

dat af | ow. >app regi ster --nane
t oupper --type processor --uri
<MAVEN_URI _ COCORDI NATES>

Create a stream with custom application

dat af | ow. >stream create testupper --
definition “http | toupper | log" --
depl oy

Review results by tailing the t est upper. | og/
st dout _I| og application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

1.1.0.mM2

Spring Cloud Data Flow

104

Spring Cloud Data Flow Reference Guide

Spring XD
Start xd- si ngl enode server from CLI

xd- si ngl enode

Start xd- shel | server from the CLI

xd-shel |

Spring Cloud Data Flow

Start | ocal - ser ver implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1|ocal -1. 0. 0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. | ar

Register custom “batch-job” module

xd: >nodul e upl oad --nane
simpl e-batch --type job --file
<CUSTOM JAR_FI LE_LOCATI ON>

Register custom “batch-job” as task application

dat af | ow. >app regi ster --nane
simpl e-batch --type task --uri
<MAVEN_URI _COORDI NATES>

Create a job with custom batch-job module

xd: >j ob create batchtest --
definition “sinple-batch”

Deploy job
xd: >j ob depl oy bat cht est
Launch job
xd: >j ob | aunch bat cht est

Review results in the xd- si ngl enode server
console as well as Jobs tab in Ul (executions
sub-tab should include all step details)

Create a task with custom batch-job application

dat af | ow. >t ask create batchtest --
definition “sinple-batch”

NA

Launch task

dat af | ow. >t ask | aunch bat cht est

Review results by tailing the bat cht est /

st dout _| og application logs as well as Task
tab in Ul (executions sub-tab should include all
step details)

1.1.0.mM2

Spring Cloud Data Flow

105

Spring Cloud Data Flow Reference Guide

Appendix B. Building

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don't have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

‘$./ mvnw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

@ Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of . / mvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

@ Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer nSi ze=128m
We try to cover this in the . mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ynl , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

B.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./ mvnw cl ean package - Dski pTests -P full -pl spring-cloud-datafl owdocs -am

B.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don't already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xm file for the projects. If you do not do this
you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,

1.1.0.M2 Spring Cloud Data Flow 106

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Reference Guide

expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

@ Note

Alternatively you can copy the repository settings from. set ti ngs. xm into your own ~/ . n2/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting projects from the
fil e menu.

1.1.0.M2 Spring Cloud Data Flow 107

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Reference Guide

Appendix C. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

C.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor's agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

C.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the ecl i pse- code-formatter. xm file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

» Make sure all new . j ava files to have a simple Javadoc class comment with at least an @ut hor
tag identifying you, and preferably at least a paragraph on what the class is for.

» Add the ASF license header comment to all new . j ava files (copy from existing files in the project)

» Add yourself as an @ut hor to the .java files that you modify substantially (more than cosmetic
changes).

» Add some Javadocs and, if you change the namespace, some XSD doc elements.
« A few unit tests would help a lot as well— someone has to do it.

« If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

» When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fi xes gh- XXXX at the end of the commit message (where XXXX is the issue number).

1.1.0.M2 Spring Cloud Data Flow 108

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/spring-cloud-build/blob/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Reference Guide
	Table of Contents
	Part I. Preface
	1. About the documentation
	2. Getting help

	Part II. Spring Cloud Data Flow Overview
	3. Introducing Spring Cloud Data Flow
	3.1 Features

	Part III. Architecture
	4. Introduction
	5. Microservice Architectural Style
	5.1 Comparison to other Platform architectures

	6. Streaming Applications
	6.1 Imperative Programming Model
	6.2 Functional Programming Model

	7. Streams
	7.1 Topologies
	7.2 Concurrency
	7.3 Partitioning
	7.4 Message Delivery Guarantees

	8. Analytics
	9. Task Applications
	10. Data Flow Server
	10.1 Endpoints
	10.2 Customization
	10.3 Security

	11. Runtime
	11.1 Fault Tolerance
	11.2 Resource Management
	11.3 Scaling at runtime
	11.4 Application Versioning

	Part IV. Getting started
	12. System Requirements
	13. Controlling features with Data Flow server
	14. Deploying Spring Cloud Data Flow
	14.1 Deploying 'local'

	15. RDBMS configuration
	16. Security
	16.1 Enabling HTTPS
	Using Self-Signed Certificates

	16.2 Basic Authentication
	File based authentication
	LDAP Authentication

	16.3 OAuth 2.0
	Authentication using the Spring Cloud Data Flow Shell
	OAuth2 Authentication Examples
	Local OAuth2 Server
	Authentication using GitHub

	16.4 Securing the Spring Boot Management Endpoints

	Part V. Streams
	17. Introduction
	18. Stream DSL
	19. Register a Stream App
	19.1 Whitelisting application properties

	20. Creating a Stream
	20.1 Application properties
	Passing application properties when creating a stream

	20.2 Deployment properties
	Passing instance count as deployment property
	Inline vs file reference properties
	Passing application properties when deploying a stream
	Passing Spring Cloud Stream properties for the application
	Passing per-binding producer consumer properties
	Passing stream partition properties during stream deployment
	Passing application content type properties
	Overriding application properties during stream deployment

	20.3 Deployment properties
	Passing instance count as deployment property
	Inline vs file reference properties

	21. Destroying a Stream
	22. Deploying and Undeploying Streams
	23. Other Source and Sink Application Types
	24. Simple Stream Processing
	25. Stateful Stream Processing
	26. Tap a Stream
	27. Using Labels in a Stream
	28. Explicit Broker Destinations in a Stream
	29. Directed Graphs in a Stream
	29.1 Common application properties

	30. Stream applications with multiple binder configurations

	Part VI. Tasks
	31. Introducing Spring Cloud Task
	32. The Lifecycle of a task
	32.1 Registering a Task Application
	32.2 Creating a Task
	32.3 Launching a Task
	32.4 Reviewing Task Executions
	32.5 Destroying a Task

	33. Task Repository
	33.1 Configuring the Task Execution Repository
	Local
	Task Application Repository

	33.2 Datasource

	34. Subscribing to Task/Batch Events
	35. Launching Tasks from a Stream
	35.1 TriggerTask
	35.2 Translator

	Part VII. Dashboard
	36. Introduction
	37. Apps
	37.1 Bulk Import of Applications

	38. Runtime
	39. Streams
	40. Create Stream
	41. Tasks
	41.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	41.2 Definitions
	Creating Task Definitions using the bulk define interface
	Launching Tasks

	41.3 Executions

	42. Jobs
	42.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	43. Analytics

	Part VIII. ‘How-to’ guides
	44. Configure Maven Properties
	45. Logging
	45.1 Deployment Logs
	45.2 Application Logs

	Part IX. REST API Guide
	46. Overview
	46.1 HTTP verbs
	46.2 HTTP status codes
	46.3 Headers
	46.4 Errors
	46.5 Hypermedia

	47. Resources
	47.1 Index
	Accessing the index
	Request structure
	Example request
	Response structure
	Example response
	Links

	47.2 Listing Applications
	Request structure
	Request parameters
	Example request
	Response structure

	Part X. Data Flow Template
	48. Overview
	49. Using the Data Flow Template

	Part XI. Appendices
	Appendix A. Migrating from Spring XD to Spring Cloud Data Flow
	A.1 Terminology Changes
	A.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	A.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	A.4 Batch to Tasks
	A.5 Shell/DSL Commands
	A.6 REST-API
	A.7 UI / Flo
	A.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	A.9 Central Configuration
	A.10 Distribution
	A.11 Hadoop Distribution Compatibility
	A.12 YARN Deployment
	A.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3

	Appendix B. Building
	B.1 Documentation
	B.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix C. Contributing
	C.1 Sign the Contributor License Agreement
	C.2 Code Conventions and Housekeeping

