© 2011-2014 The original authors.
Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically. |
- Preface
- Introduction
- 1. Introduction
- 2. Requirements
- 3. New Features
- 4. Reference Guide
- 4.1. Document Structure
- 4.2. Bootstrapping GemFire through the Spring Container
- 4.2.1. Advantages of using Spring over GemFire
cache.xml
- 4.2.2. Using the Core Spring Data GemFire Namespace
- 4.2.3. Configuring the GemFire Cache
- 4.2.4. Using the GemFire Data Access Namespace
- 4.2.5. Configuring a GemFire Region
- 4.2.6. Creating an Index
- 4.2.7. Configuring a Disk Store
- 4.2.8. Configuring GemFire’s Function Service
- 4.2.9. Configuring WAN Gateways
- 4.2.1. Advantages of using Spring over GemFire
- 4.3. Working with the GemFire APIs
- 4.4. Working with GemFire Serialization
- 4.5. POJO mapping
- 4.6. GemFire Repositories
- 4.7. Annotation Support for Function Execution
- 4.8. Bootstrapping a Spring ApplicationContext in GemFire
- 4.9. Sample Applications
- 5. Other Resources
- 6. Appendices
Preface
Spring Data GemFire focuses on integrating the Spring Framework’s powerful, non-invasive programming model and concepts with Pivotal GemFire, simplifying configuration, development and providing high-level abstractions. This document assumes the reader already has a basic familiarity with the Spring Framework and Pivotal GemFire concepts and APIs.
While every effort has been made to ensure this documentation is comprehensive and there are no errors, some topics might require more explanation and some typos might have crept in. If you do spot any mistakes or even more serious errors and you can spare a few cycles, please do bring the errors to the attention of the Spring Data GemFire team by raising an issue. Thank you.
Introduction
1. Introduction
This reference guide for Spring Data GemFire explains how to use the Spring Framework to configure and develop applications with Pivotal GemFire. It presents the basic concepts, semantics and provides numerous examples to help you get started.
Spring Data GemFire started as a top-level Spring project called Spring GemFire (SGF) and since then has been moved under the Spring Data umbrella project and renamed accordingly. |
2. Requirements
Spring Data GemFire requires JDK 6.0 or above, Spring Framework 3 and Pivotal GemFire 6.6 or above (version 7 or above is recommended).
3. New Features
As of the 1.2.0 release, this project, formerly known as Spring GemFire, has been renamed to Spring Data GemFire to reflect that it is now a component of the Spring Data project. |
3.1. New in the 1.2 Release
-
Full support for GemFire configuration via the SDG gfe namespace. Now GemFire components may be configured completely without requiring a native cache.xml file.
-
WAN Gateway support for GemFire 6.6.x. See Configuring WAN Gateways.
-
Spring Data Repository support using a dedicated SDG namespace, gfe-data. See GemFire Repositories
-
Namespace support for registering GemFire Functions. See Configuring GemFire’s Function Service
-
A top-level
<disk-store>
element has been added to the SDG gfe namespace to allow sharing of persist stores among Regions, and other components that support persistent backup or overflow. See Configuring a Disk StoreThe <*-region>
elements no longer allow a nested<disk-store>
element. -
GemFire Sub-Regions are supported via nested
<*-region>
elements. -
A
<local-region>
element has been added to configure a Local Region. -
Support for the re-designed WAN Gateway in GemFire 7.0.
3.2. New in the 1.3 Release
-
Annotation support for GemFire Functions. It is now possible to declare and register Functions written as POJOs using annotations. In addition, Function executions are defined as annotated interfaces, similar to the way Spring Data Repositories work. See Annotation Support for Function Execution.
-
Added a
<datasource>
element to the SDG gfe-data namespace to simplify establishing a basic client connection to a GemFire data grid. -
Added a
<json-region-autoproxy>
element to the SDG gfe-data namespace to support JSON features introduced in GemFire 7.0, enabling Spring AOP to perform the necessary conversions automatically on Region operations. -
Upgraded to GemFire 7.0.1 and added namespace support for new AsyncEventQueue attributes.
-
Added support for setting subscription interest policy on Regions.
-
Support for void returns on Function executions. See Annotation Support for Function Execution for complete details.
-
Support for persisting Local Regions. See Local Region and Common Region Attributes.
-
Support for entry time-to-live and entry idle-time on a GemFire Client Cache. See Configuring a GemFire Client Cache.
-
Support for multiple Spring Data GemFire web-based applications using a single GemFire cluster, operating concurrently inside tc Server.
-
Support for concurrency-checks-enabled on all GemFire Cache Region definitions using the SDG gfe namespace. See Common Region Attributes.
-
Support for Cache Loaders and Cache Writers on Client, Local Regions. See Cache Loaders and Cache Writers.
-
Support for registering CacheListeners, AsyncEventQueues and Gateway Senders on GemFire Cache Sub-Regions.
-
Support for PDX persistent keys in GemFire Regions.
-
Support for correct Partition Region bean creation in a Spring context when collocation is specified with the colocated-with attribute.
-
Full support for GemFire Cache Sub-Regions using proper, nested
<*-region>
element syntax in the SDG gfe namespace. -
Upgraded Spring Data GemFire to Spring Framework 3.2.8.
-
Upgraded Spring Data GemFire to Spring Data Commons 1.7.1.
3.3. New in the 1.4 Release
-
Upgrades Spring Data GemFire to GemFire 7.0.2.
-
Upgrades Spring Data GemFire to Spring Data Commons 1.8.0.
-
Upgrades Spring Data GemFire to Spring Framework 3.2.9.
-
Integrates Spring Data GemFire with Spring Boot, which includes both a spring-boot-starter-data-gemfire POM along with a Spring Boot sample application demonstrating GemFire Cache Transactions configured with SDG and bootstrapped with Spring Boot.
-
Support for bootstrapping a Spring Context in a GemFire Server when started from Gfsh. See Bootstrapping a Spring ApplicationContext in GemFire for more details.
-
Support for persisting application domain object/entities to multiple GemFire Cache Regions. See Entity Mapping for more details.
-
Support for persisting application domain object/entities to GemFire Cache Sub-Regions, avoiding collisions when Sub-Regions are uniquely identifiable, but identically named. See Entity Mapping for more details.
-
Adds strict XSD type rules to, and full support for, Data Policies and Region Shortcuts on all GemFire Cache Region types.
-
Changed the default behavior of SDG
<*-region>
elements from lookup to always create a new Region along with an option to restore old behavior using the ignore-if-exists attribute. See Common Region Attributes and A Word of Caution on Regions, Subregions and Lookups for more details. -
Enables Spring Data GemFire to be fully built and ran on JDK 7 and JDK 8 (Note, however, GemFire has not yet been fully tested and supported on JDK 8; See GemFire User Guide for additional details.
3.4. New in the 1.5 Release
-
Upgrades Spring Data GemFire to Spring Data Commons 1.9.0
-
Upgrades Spring Data GemFire to Spring Framework 4.0.7
-
Reference Guide migrated to Asciidoc
-
Renewed support for deploying Spring Data GemFire in an OSGi container.
-
Removed all default values in the Spring Data GemFire XML namespace Region-type elements, relying on GemFire defaults instead.
-
Added convenience to automatically create Disk Store directory locations without the need to create them manually, as required by GemFire.
-
SDG annotated Functions can now be executed from Gfsh.
-
Enable GemFire GatewayReceivers to be started manually.
-
Support for Auto Region Lookups. See Auto Region Lookup for further details.
-
Support for Region Templates See Region Templates for further details.
3.5. New in the 1.6 Release
-
Upgrades Spring Data GemFire to GemFire 8.0.
-
Adds support for GemFire 8’s new Cluster-based Configuration.
-
Enables 'auto-reconnect' functionality to be employed in Spring-configured GemFire Servers.
-
Allows the creation of concurrent and parallel Async Event Queues and Gateway Senders.
-
Adds support for GemFire 8’s Region data compression.
-
Adds attributes to set both critical and warning percentages on Disk Store usage.
-
Supports the capability to add the new EventSubstitutionFilters to GatewaySenders. :leveloffset: -1
4. Reference Guide
4.1. Document Structure
The following chapters explain the core functionality offered by Spring Data GemFire.
Bootstrapping GemFire through the Spring Container describes the configuration support provided for bootstrapping, configuring, initializing and accessing GemFire Caches, Cache Servers, Regions, and related Distributed System components.
Working with the GemFire APIs explains the integration between the GemFire APIs and the various data access features available in Spring, such as transaction management and exception translation.
Working with GemFire Serialization describes the enhancements for GemFire (de)serialization and management of associated objects.
POJO mapping describes persistence mapping for POJOs stored in GemFire using Spring Data.
GemFire Repositories describes how to create and use GemFire Repositories using Spring Data.
Annotation Support for Function Execution describes how to create and use GemFire Functions using annotations.
Bootstrapping a Spring ApplicationContext in GemFire describes how to bootstrap a Spring ApplicationContext running in a GemFire Server using Gfsh.
Sample Applications describes the samples provided with the distribution to illustrate the various features available in Spring Data GemFire.
4.2. Bootstrapping GemFire through the Spring Container
Spring Data GemFire provides full configuration and initialization of the GemFire data grid through Spring’s IoC container and provides several classes that simplify the configuration of GemFire components including Caches, Regions, WAN Gateways, Persistence Backup, and other Distributed System components to support a variety of scenarios with minimal effort.
This section assumes basic familiarity with GemFire. For more information see the product documentation. |
4.2.1. Advantages of using Spring over GemFire cache.xml
As of release 1.2.0, Spring Data GemFire’s XML namespace supports full configuration of the GemFire in-memory data grid.
In fact, Spring Data GemFire’s XML namespace is considered to be the preferred way to configure GemFire.
GemFire will continue to support native cache.xml
for legacy reasons, but GemFire application developers can now do
everything in Spring XML and take advantage of the many wonderful things Spring has to offer such as
modular XML configuration, property placeholders and overrides, SpEL, and environment profiles. Behind the
XML namespace, Spring Data GemFire makes extensive use of Spring’s FactoryBean
pattern to simplify the creation,
configuration and initialization of GemFire components.
For example, GemFire provides several callback interfaces, such as CacheListener
, CacheWriter
, and CacheLoader
,
that allow developers to add custom event handlers. Using Spring’s IoC container, these callbacks may be configured
as normal Spring beans and injected into GemFire components. This is a significant improvement over native cache.xml
,
which provides relatively limited configuration options and requires callbacks to implement GemFire’s Declarable
interface
(see Wiring Declarable
components to see how you can still use Declarables
within Spring’s IoC/DI container).
In addition, IDEs such as the Spring Tool Suite (STS) provide excellent support for Spring XML namespaces, such as code completion, pop-up annotations, and real time validation, making them easy to use.
4.2.2. Using the Core Spring Data GemFire Namespace
To simplify configuration, Spring Data GemFire provides a dedicated XML namespace for configuring core GemFire components. It is also possible to configure beans directly using Spring’s standard <bean> definition. However, as of Spring Data GemFire 1.2.0, all bean properties are exposed via the XML namespace so there is little benefit to using raw bean definitions. For more information about XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference documentation.
Spring Data Repository support uses a separate XML namespace. See GemFire Repositories for more information on how to configure Spring Data GemFire Repositories. |
To use the Spring Data GemFire XML namespace, simply declare it in your Spring XML configuration meta-data:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:gfe="http://www.springframework.org/schema/gemfire"(1)(2)
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd"> (3)
<bean id ... >
<gfe:cache ...> (4)
</beans>
1 | Spring GemFire namespace prefix. Any name will do but through out the reference documentation, gfe will be used. |
2 | The namespace URI. |
3 | The namespace URI location. Note that even though the location points to an external address (which exists and is valid), Spring will resolve the schema locally as it is included in the Spring Data GemFire library. |
4 | Declaration example for the GemFire namespace. Notice the prefix usage. |
It is possible to change the default namespace, for example from
|
4.2.3. Configuring the GemFire Cache
In order to use GemFire, a developer needs to either create a new Cache
or connect to an existing one.
In the current version of GemFire, there can be only one opened Cache per VM (or per ClassLoader
to be
technically correct). In most cases the Cache is only created once.
This section describes the creation and configuration of a full Cache member, appropriate for peer-to-peer
cache topologies and cache servers. A full cache is also commonly used for standalone applications, integration tests
and proofs of concept. In a typical production system, most application processes will act as cache clients
and will create a ClientCache instance instead. This is described in the sections Configuring a GemFire Client Cache
and Client Region
|
A cache with default configuration can be created with a very simple declaration:
<gfe:cache/>
Upon initialization, a Spring application context containing this cache definition will register a CacheFactoryBean
to create a Spring bean named gemfireCache
referencing a GemFire Cache
instance. This will either be an
existing cache, or if one does not exist, a newly created one. Since no additional properties were specified, a
newly created cache will apply the default cache configuration.
All Spring Data GemFire components that depend on the cache respect this naming convention so that there is no need
to explicitly declare the cache dependency. If you prefer, you can make the dependence explicit via the cache-ref
attribute provided by various namespace elements. Also, you can easily override the cache’s bean name:
<gfe:cache id="my-cache"/>
Starting with Spring Data GemFire 1.2.0, the GemFire Cache
may be fully configured using Spring. However, GemFire’s
native XML configuration file, cache.xml
, is also supported. For scenarios in which the GemFire cache needs to be
configured natively, simply provide a reference to the GemFire configuration file using the cache-xml-location
attribute:
<gfe:cache id="cache-using-native-xml" cache-xml-location="classpath:cache.xml"/>
In this example, if the cache needs to be created, it will use the file named cache.xml
located in the classpath root.
Note that the configuration makes use of Spring’s Resource
abstraction to locate the file. This allows various search patterns to be used, depending on the runtime environment
or the prefix specified (if any) in the resource location.
|
In addition to referencing an external configuration file one can specify GemFire properties
using any of Spring’s common properties support features. For example, one can use the properties
element
defined in the util
namespace to define properties directly or load properties from a properties files. The latter is
recommended for externalizing environment specific settings outside the application configuration:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
xmlns:util="http://www.springframework.org/schema/util"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd">
<util:properties id="gemfireProperties" location="file:/pivotal/gemfire/gemfire.properties"/>
<gfe:cache properties-ref="gemfireProperties"/>
</beans>
The cache settings apply only if a new cache needs to be created. If an open cache already exists in the VM, these settings will be ignored. |
Advanced Cache Configuration
For advanced cache configuration, the cache
element provides a number of configuration options exposed as attributes
or child elements:
(1)
<gfe:cache
close="false"
copy-on-read="true"
critical-heap-percentage="70"
eviction-heap-percentage="60"
enable-auto-reconnect="false" (2)
lock-lease="120"
lock-timeout="60"
message-sync-interval="1"
pdx-serializer-ref="myPdxSerializer"
pdx-persistent="true"
pdx-disk-store="diskStore"
pdx-read-serialized="false"
pdx-ignore-unread-fields="true"
search-timeout="300"
use-cluster-configuration="false" (3)
lazy-init="true">
<gfe:transaction-listener ref="myTransactionListener"/> (4)
<gfe:transaction-writer> (5)
<bean class="org.springframework.data.gemfire.example.TransactionListener"/>
</gfe:transaction-writer>
<gfe:gateway-conflict-resolver ref="myGatewayConflictResolver"/> (6)
<gfe:dynamic-region-factory/> (7)
<gfe:jndi-binding jndi-name="myDataSource" type="ManagedDataSource"/> (8)
</gfe:cache>
1 | Various cache options are supported by attributes. For further information regarding anything shown in this example, please consult the GemFire product documentation.
The close attribute determines if the cache should be closed when the Spring application context is closed. The default is true however for cases in which multiple application contexts use the cache (common in web applications), set this value to false .
The lazy-init attribute determines if the cache should be initialized before another bean references it. The default is true however in some cases it may be convenient to set this value to false . |
2 | Setting the enable-auto-reconnect attribute to true (default is false), allows a disconnected GemFire member to automatically reconnect and rejoin a GemFire cluster.
See the GemFire product documentation for more details. |
3 | Setting the use-cluster-configuration attribute to true (default is false) to enable a GemFire member to retrieve the common, shared Cluster-based configuration from a Locator.
See the GemFire product documentation for more details. |
4 | An example of a TransactionListener callback declaration using a bean reference. The referenced bean must implement
TransactionListener.
TransactionListener(s) can be implemented to handle transaction related events. |
5 | An example of a TransactionWriter callback declaration using an inner bean declaration this time. The bean must implement
TransactionWriter.
TransactionWriter is a callback that is allowed to veto a transaction. |
6 | An example of a GatewayConflictResolver declaration using a bean reference. The referenced bean must implement
GatewayConflictResolver.
GatewayConflictResolver is a Cache-level plugin that is called upon to decide what to do with events that originate in other systems and arrive through the WAN Gateway. |
7 | Enable GemFire’s DynamicRegionFactory, which provides a distributed region creation service. |
8 | Declares a JNDI binding to enlist an external DataSource in a GemFire transaction. |
The use-bean-factory-locator attribute (not shown) deserves a mention. The factory bean responsible for
creating the cache uses an internal Spring type called a BeanFactoryLocator to enable user classes declared in
GemFire’s native cache.xml to be registered as Spring beans. The BeanFactoryLocator implementation also permits
only one bean definition for a cache with a given id. In certain situations, such as running JUnit integration tests
from within Eclipse, it is necessary to disable the BeanFactoryLocator by setting this value to false to prevent
an exception. This exception may also arise during JUnit tests running from a build script. In this case the test runner
should be configured to fork a new JVM for each test (in maven, set <forkmode>always</forkmode> ) . Generally, there is
no harm in setting this value to false.
|
Enabling PDX Serialization
The example above includes a number of attributes related to GemFire’s enhanced serialization framework, PDX.
While a complete discussion of PDX is beyond the scope of this reference guide, it is important to note that PDX
is enabled by registering a PDX serializer which is done via the pdx-serializer
attribute. GemFire provides
an implementation class com.gemstone.gemfire.pdx.ReflectionBasedAutoSerializer
, however it is common for developers
to provide their own implementation. The value of the attribute is simply a reference to a Spring bean that implements
the required interface. More information on serialization support can be found in Working with GemFire Serialization
Enabling auto-reconnect
Setting the <gfe:cache enable-auto-reconnect="[true|false*]>
attribute to true should be done with care.
Generally, enabling 'auto-reconnect' should only be done in cases where Spring Data GemFire’s XML namespace is used to configure and bootstrap a new GemFire Server data node to add to the cluster. In other words, 'auto-reconnect' should not be used when Spring Data GemFire is used to develop and build an GemFire application that also happens to be a peer cache member of the GemFire cluster.
The main reason is most GemFire applications use references to the GemFire cache or regions in order to perform data access operations. The references are "injected" by the Spring container into application components (e.g. DAOs or Repositories) for use by the application. When a member (such as the application) is forcefully disconnected from the rest of the cluster, presumably because the member (the application) has become unresponsive for a period of time, or network partition separates one or more members (along with the application peer cache member) into a group that is too small to act as the distributed system, the member will shutdown and all GemFire component references (e.g. Cache, Regions, etc) become invalid.
Essentially, the current forced-disconnect processing in each member dismantles the system from the ground up. It shuts down the JGroups stack, puts the Distributed System in a shut-down state and then closes the Cache. This effectively loses all in-memory information.
After being disconnected from a distributed system and successfully shutting down, the GemFire member then restarts in a "reconnecting" state, while periodically attempting to rejoin the distributed system. If the member succeeds in reconnecting, the member rebuilds its "view" of the distributed system from existing members and receives a new distributed system ID.
This means the cache, regions and other GemFire components are reconstructed and all old references that may have been injected into application are now stale and no longer valid.
GemFire makes no guarantee, even when using the GemFire public Java API, that application cache, region or other component references will be automatically refreshed by the reconnect operation. As such, applications must take care to refresh their own references.
Unfortunately there is no way to be "notified" of a disconnect and subsequently a reconnect event. If so, the application developer would then have a clean way to know when to call ConfigurableApplicationContext.refresh(), if even applicable for an application to do so, which is why this "feature" of GemFire 8 is not recommended for peer cache GemFire applications.
For more information about 'auto-reconnect', see GemFire’s product documentation.
Using Cluster-based Configuration
GemFire 8’s new Cluster-based Configuration Service is a convenient way for a member joining the cluster to get a "consistent view" of the cluster, by using the shared, persistent configuration maintained by a Locator, ensuring the member’s configuration will be compatible with the GemFire distributed system when the member joins.
This feature of Spring Data GemFire (setting the use-cluster-configuration
attribute to true) works in the same way
as the cache-xml-location
attribute, except the source of the GemFire configuration meta-data comes from a network
Locator as opposed to a native cache.xml
file.
All GemFire native configuration meta-data, whether from cache.xml
or from the Cluster Configuration Service,
gets applied before any Spring XML configuration meta-data. As such, Spring’s config serves to "augment" the
native GemFire configuration meta-data, which would most likely be specific to the application.
Again, to enable this feature, just specify the following in the Spring XML config:
<gfe:cache use-cluster-configuration="true"/>
While certain GemFire tools, like Gfsh, have their actions "recorded" when any schema-like change is made
(e.g. gfsh>create region --name=Example --type=PARTITION ) to the cluster, Spring Data GemFire’s configuration meta-data
specified with the XML namespace is not recorded. The same is true when using GemFire’s public Java API directly;
it too is not recorded.
|
For more information on GemFire’s Cluster Configuration Service, see the product documentation.
Configuring a GemFire Cache Server
In Spring Data GemFire 1.1 dedicated support for configuring a CacheServer was added, allowing complete configuration through the Spring container:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd">
<gfe:cache />
<!-- Advanced example depicting various cache server configuration options -->
<gfe:cache-server id="advanced-config" auto-startup="true"
bind-address="localhost" port="${gfe.port.6}" host-name-for-clients="localhost"
load-poll-interval="2000" max-connections="22" max-threads="16"
max-message-count="1000" max-time-between-pings="30000"
groups="test-server">
<gfe:subscription-config eviction-type="ENTRY" capacity="1000" disk-store="file://${java.io.tmpdir}"/>
</gfe:cache-server>
<context:property-placeholder location="classpath:cache-server.properties"/>
</beans>
The configuration above illustrates the cache-server
element and the many options available.
Rather than hard-coding the port, this configuration uses Spring’s context namespace to declare a property-placeholder . property placeholder reads one or more properties file and then replaces property placeholders with values at runtime. This allows administrators to change such values without having to touch the main application configuration. Spring also provides SpEL and the environment abstraction one to support externalization of environment specific properties from the main code base, easing the deployment across multiple machines.
|
To avoid initialization problems, the `CacheServer`s started by Spring Data GemFire will start after the container has been fully initialized. This allows potential regions, listeners, writers or instantiators defined declaratively to be fully initialized and registered before the server starts accepting connections. Keep this in mind when programmatically configuring these items as the server might start after your components and thus not be seen by the clients connecting right away. |
Configuring a GemFire Client Cache
Another configuration addition in Spring Data GemFire 1.1 is the dedicated support for configuring ClientCache. This is similar to a cache in both usage and definition and supported by org.springframework.data.gemfire.clientClientCacheFactoryBean
.
<beans>
<gfe:client-cache />
</beans>
client-cache
supports much of the same options as the cache element. However as opposed to a full cache, a client cache connects to a remote cache server through a pool. By default a pool is created to connect to a server on localhost
port 40404
. The the default pool is used by all client regions unless the region is configured to use a different pool.
Pools can be defined through the pool
element; The client side pool
can be used to configure connectivity to the server for individual entities or for the entire cache. For example, to customize the default pool used by client-cache
, one needs to define a pool and wire it to cache definition:
<beans>
<gfe:client-cache id="simple" pool-name="my-pool"/>
<gfe:pool id="my-pool" subscription-enabled="true">
<gfe:locator host="${locatorHost}" port="${locatorPort}"/>
</gfe:pool>
</beans>
The <client-cache> tag also includes a ready-for-events
attribute. If set to true
, the client cache initialization will include ClientCache.readyForEvents().
Client side configuration is covered in more detail in Client Region.
4.2.4. Using the GemFire Data Access Namespace
In addition to the core gfe
namespace, Spring Data GemFire provides a gfe-data
namespace intended primarily to simplify the development of GemFire client applications. This namespace currently supports for GemFire repositories and function execution and a <datasource>
tag that offers a convenient way to connect to the data grid.
An Easy Way to Connect to GemFire
For many applications, A basic connection to a GemFire grid, using default values is sufficient. Spring Data GemFire’s <datasource>
tag provides a simple way to access data. The data source creates a client cache and connection pool. In addition, it will query the member servers for all existing root regions and create a proxy (empty) client region for each one.
<gfe-data:datasource>
<locator host="somehost" port="1234"/>
</gfe-data:datasource>
The datasource tag is syntactically similar to <gfe:pool>
. It may be configured with one or more locator or server tags to connect to an existing data grid. Additionally, all attributes available to configure a pool are supported. This configuration will automatically create ClientRegion beans for each region defined on members connected to the locator, so they may be seamlessly referenced by Spring Data mapping annotations, GemfireTemplate, and wired into application classes.
Of course, you can explicitly configure client regions. For example, if you want to cache data in local memory:
<gfe-data:datasource>
<locator host="somehost" port="1234"/>
</gfe-data:datasource>
<gfe:client-region id="Customer" shortcut="CACHING_PROXY"/>
4.2.5. Configuring a GemFire Region
A region is required to store and retrieve data from the cache. Region
is an interface extending java.util.Map
and enables basic data access using familiar key-value semantics. The Region
interface is wired into classes that require it so the actual region type is decoupled from the programming model . Typically each region is associated with one domain object, similar to a table in a relational database.
GemFire implements the following types of regions:
-
Replicated - Data is replicated across all cache members that define the region. This provides very high read performance but writes take longer to perform the replication.
-
Partioned - Data is partitioned into buckets among cache members that define the region. This provides high read and write performance and is suitable for very large data sets that are too big for a single node.
-
Local - Data only exists on the local node.
-
Client - Technically a client region is a local region that acts as a proxy to a replicated or partitioned region hosted on cache servers. It may hold data created or fetched locally. Alternately, it can be empty. Local updates are synchronized to the cache server. Also, a client region may subscribe to events in order to stay synchronized with changes originating from remote processes that access the same region.
For more information about the various region types and their capabilities as well as configuration options, please refer to the GemFire Developer’s Guide and community site.
Using an externally configured Region
For referencing Regions already configured through GemFire cache.xml
file, use the lookup-region
element. Simply declare the target Region name with the`name` attribute;
for example, to declare a bean definition named region-bean
for an existing region named Orders
one can use the following bean definition:
<gfe:lookup-region id="region-bean" name="Orders"/>
If the name
is not specified, the bean’s id
will be used. The example above becomes:
<!-- lookup for a region called 'Orders' -->
<gfe:lookup-region id="Orders"/>
If the Region does not exist, an initialization exception will be thrown. For configuring new GemFire Regions, proceed to the appropriate sections below. |
Note, in the previous examples, since no cache name was defined, the default naming convention (gemfireCache
) was used. Alternately, one can reference the cache bean through the cache-ref
attribute:
<gfe:cache id="cache"/>
<gfe:lookup-region id="region-bean" name="Orders" cache-ref="cache"/>
lookup-region
provides a simple way of retrieving existing, pre-configured Regions without exposing the Region semantics or setup infrastructure.
Auto Region Lookup
New, as of Spring Date GemFire 1.5, is the ability to "auto-lookup" all Regions defined in GemFire’s native cache.xml file, and imported into Spring config
using the`cache-xml-location` attribute on the <gfe:cache>
element in the GFE XML namespace.
For instance, given a GemFire cache.xml
file of…
<?xml version="1.0"?>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching 7.0//EN"
"http://www.gemstone.com/dtd/cache7_0.dtd">
<cache>
<region name="Parent" refid="REPLICATE">
<region name="Child" refid="REPLICATE"/>
</region>
</cache>
A user may import the cache.xml
file as follows…
<gfe:cache cache-xml-location="cache.xml"/>
A user can then use the <gfe:lookup-region>
element (e.g. <gfe:lookup-region id="Parent"/>
) to reference specific
GemFire Regions as bean in the Spring context, or the user may choose to import all GemFire Regions defined
in cache.xml
with the new…
<gfe:auto-region-lookup/>
Spring Data GemFire will automatically create Spring beans referencing all GemFire Regions defined in cache.xml
that have not been explicitly added to the Spring context with <gfe:lookup-region>
bean declarations.
It is important to realize that Spring Data GemFire uses a Spring BeanPostProcessor to post process the Cache after it is both created and initialized to determine the Regions defined in GemFire to add as beans in the Spring context.
You may inject these "auto-looked-up" Regions like any other bean defined in the Spring context with 1 exception; you
may need to define a depends-on
association with the ‘gemfireCache’ bean as follows…
package example;
import ...
@Repository("appDao")
@DependsOn("gemfireCache")
public class ApplicationDao extends DaoSupport {
@Resource(name = "Parent")
private Region<?, ?> parent;
@Resource(name = "/Parent/Child")
private Region<?, ?> child;
...
}
The above Java example is applicable when using the Spring context’s component-scan
functionality.
If you are declaring your components using Spring XML, then you would…
<bean class="example.ApplicationDao" depends-on="gemfireCache"/>
This ensures the GemFire Cache and all the Regions defined in cache.xml
get created before any components
with auto-wire references when using the new <gfe:auto-region-lookup>
element.
Configuring Regions
Spring Data GemFire provides comprehensive support for configuring any type of GemFire Region via the following elements:
-
Local Region
<local-region>
-
Replicated Region
<replicated-region>
-
Partitioned Region
<partitioned-region>
-
Client Region
<client-region>
For a comprehensive description of Region types please consult the GemFire product documentation.
Common Region Attributes
The following table(s) list attributes available for various region types:
Name | Values | Description |
---|---|---|
cache-ref |
GemFire Cache bean name |
The name of the bean defining the GemFire Cache (by default 'gemfireCache'). |
close |
boolean, default:false (Note: The default was true prior to 1.3.0) |
Indicates whether the Region should be closed at shutdown. |
cloning-enabled |
boolean, default:false |
When true, the updates are applied to a clone of the value and then the clone is saved to the cache. When false, the value is modified in place in the cache. |
concurrency-checks-enabled |
boolean, default:true |
Determines whether members perform checks to provide consistent handling for concurrent or out-of-order updates to distributed Regions. |
data-policy |
See GemFire’s Data Policy |
The Region’s Data Policy. Note, not all Data Policies are supported for every Region type. |
destroy |
boolean, default:false |
Indicates whether the Region should be destroyed at shutdown. |
disk-store-ref |
The name of a configured Disk Store. |
A reference to a bean created via the |
disk-synchronous |
boolean, default:true |
Indicates whether Disk Store writes are synchronous. |
enable-gateway |
boolean, default:false |
Indicates whether the Region will synchronize entries over a WAN Gateway. |
hub-id |
The name of the Gateway Hub. |
This will automatically set enable-gateway to true. If enable-gateway is explicitly set to false, an exception will be thrown. |
id |
Any valid bean name. |
Will also be the Region name by default. |
ignore-if-exists |
boolean, default:false |
Ignores this bean definition configuration if the Region already exists in the GemFire Cache, resulting in a lookup instead. |
ignore-jta |
boolean, default:false |
Indicates whether the Region participates in JTA transactions. |
index-update-type |
synchronous or asynchronous, default:synchronous |
Indicates whether indices will be updated synchronously or asynchronously on entry creation. |
initial-capacity |
integer, default:16 |
The initial memory allocation for number of Region entries. |
key-constraint |
Any valid, fully-qualified Java class name. |
The expected key type. |
load-factor |
float, default:.75 |
Sets the initial parameters on the underlying java.util.ConcurrentHashMap used for storing Region entries. |
name |
Any valid Region name. |
The name of the Region definition. If not specified, it will assume the value of the id attribute (the bean name). |
persistent |
boolean, default:false |
Indicates whether the Region persists entries to a Disk Store (disk). |
shorcut |
*See http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html |
The RegionShortcut for this Region. Allows easy initialization of the region based on pre-defined defaults. |
statistics |
boolean, default:false |
Indicates whether the Region reports statistics. |
template |
The name of a Region Template. |
A reference to a bean created via one of the |
value-constraint |
Any valid, fully-qualified Java class name. |
The expected value type. |
Cache Listeners
Cache Listeners are registered with a region to handle region events such as entries being created, updated, destroyed, etc. A Cache Listener can be any bean that implements the CacheListener
interface. A region may have multiple listeners, declared using the cache-listener
element enclosed in a *-region
element. In the example below, there are two `CacheListener`s declared. The first references a top-level named Spring bean; the second is an anonymous inner bean definition.
<gfe:replicated-region id="region-with-listeners">
<gfe:cache-listener>
<!-- nested cache listener reference -->
<ref bean="c-listener"/>
<!-- nested cache listener declaration -->
<bean class="some.pkg.AnotherSimpleCacheListener"/>
</gfe:cache-listener>
<bean id="c-listener" class="some.pkg.SimpleCacheListener"/>
</gfe:replicated-region>
The following example uses an alternate form of the cache-listener
element with a ref
attribute. This allows for more concise configuration for a single cache listener. Note that the namespace only allows a single cache-listener
element so either the style above or below must be used.
Using ref and a nested declaration in a cache-listener , or similar element, is illegal. The two options are mutually exclusive and using both on the same element will result in an exception.
|
<beans>
<gfe:replicated-region id="region-with-one listener">
<gfe:cache-listener ref="c-listener"/>
</gfe:replicated-region>
<bean id="c-listener" class="some.pkg.SimpleCacheListener"/>
</beans>
Bean Reference Conventions
The |
Cache Loaders and Cache Writers
Similar to cache-listener
, the namespace provides cache-loader
and cache-writer
elements to register these respective components for a region. A CacheLoader
is invoked on a cache miss to allow an entry to be loaded from an external data source, a database for example. A CacheWriter
is invoked after an entry is created or updated, intended for synchronizing to an external data source. The difference is GemFire only supports at most a single instance of each for each region. However, either declaration style may be used. See CacheLoader
and CacheWriter
for more details.
Subregions
In Release 1.2.0, Spring Data GemFire added support for subregions, allowing regions to be arranged in a hierarchical relationship. For example, GemFire allows for a /Customer/Address region and a different /Employee/Address region. Additionally, a subregion may have it’s own subregions and its own configuration. A subregion does not inherit attributes from the parent region. Regions types may be mixed and matched subject to GemFire constraints. A subregion is naturally declared as a child element of a region. The subregion’s name attribute is the simple name. The above example might be configured as: [source,nonxml]
<beans> <gfe:replicated-region name="Customer"> <gfe:replicated-region name="Address"/> </gfe:replicated-region> <gfe:replicated-region name="Employee"> <gfe:replicated-region name="Address"/> </gfe:replicated-region> </beans>
Note that the Monospaced ([id])
attribute is not permitted for a subregion. The subregions will be created with bean names /Customer/Address and /Employee/Address, respectively. So they may be injected using the full path name into other beans that use them, such as GemfireTemplate
. The full path should also be used in OQL query strings.
Region Templates
Also new as of Spring Data GemFire 1.5 is Region Templates. This feature allows developers to define common Region configuration settings and attributes once and reuse the configuration among many Region bean definitions declared in the Spring context.
Spring Data GemFire introduces 5 new tags to the SDG XML namespace (XSD):
Tag Name | Description |
---|---|
|
Defines common, generic Region attributes; extends |
|
Defines common, 'Local' Region attributes; extends |
|
Defines common, 'PARTITION' Region attributes; extends |
|
Defines common, 'REPLICATE' Region attributes; extends |
|
Defines common, 'Client' Region attributes; extends |
In addition to the new tags, <gfe:*-region>
elements along with the <gfe:*-region-template>
elements have
a template
attribute used to define the Region Template from which to inherit the Region configuration. Even
Region templates may inherit from other Region Templates.
Here is an example of 1 possible configuration…
<gfe:async-event-queue id="AEQ" persistent="false" parallel="false" dispatcher-threads="4">
<gfe:async-event-listener>
<bean class="example.AeqListener"/>
</gfe:async-event-listener>
</gfe:async-event-queue>
<gfe:region-template id="BaseRegionTemplate" cloning-enabled="true"
concurrency-checks-enabled="false" disk-synchronous="false"
ignore-jta="true" initial-capacity="51" key-constraint="java.lang.Long"
load-factor="0.85" persistent="false" statistics="true"
value-constraint="java.lang.String">
<gfe:cache-listener>
<bean class="example.CacheListenerOne"/>
<bean class="example.CacheListenerTwo"/>
</gfe:cache-listener>
<gfe:entry-ttl timeout="300" action="INVALIDATE"/>
<gfe:entry-tti timeout="600" action="DESTROY"/>
</gfe:region-template>
<gfe:region-template id="ExtendedRegionTemplate" template="BaseRegionTemplate"
index-update-type="asynchronous" cloning-enabled="false"
concurrency-checks-enabled="true" key-constraint="java.lang.Integer"
load-factor="0.55">
<gfe:cache-loader>
<bean class="example.CacheLoader"/>
</gfe:cache-loader>
<gfe:cache-writer>
<bean class="example.CacheWriter"/>
</gfe:cache-writer>
<gfe:membership-attributes required-roles="readWriteNode" loss-action="limited-access" resumption-action="none"/>
<gfe:async-event-queue-ref bean="AEQ"/>
</gfe:region-template>
<gfe:partitioned-region-template id="PartitionRegionTemplate" template="ExtendedRegionTemplate"
copies="1" local-max-memory="1024" total-max-memory="16384" recovery-delay="60000"
startup-recovery-delay="15000" enable-async-conflation="false"
enable-subscription-conflation="true" load-factor="0.70"
value-constraint="java.lang.Object">
<gfe:partition-resolver>
<bean class="example.PartitionResolver"/>
</gfe:partition-resolver>
<gfe:eviction type="ENTRY_COUNT" threshold="8192000" action="OVERFLOW_TO_DISK"/>
</gfe:partitioned-region-template>
<gfe:partitioned-region id="TemplateBasedPartitionRegion" template="PartitionRegionTemplate"
copies="2" local-max-memory="8192" total-buckets="91" disk-synchronous="true"
enable-async-conflation="true" ignore-jta="false" key-constraint="java.util.Date"
persistent="true">
<gfe:cache-writer>
<bean class="example.CacheWriter"/>
</gfe:cache-writer>
<gfe:membership-attributes required-roles="admin,root" loss-action="no-access" resumption-action="reinitialize"/>
<gfe:partition-listener>
<bean class="example.PartitionListener"/>
</gfe:partition-listener>
<gfe:subscription type="ALL"/>
</gfe:partitioned-region>
Region Templates will even work for Subregions. Notice that 'TemplateBasedPartitionRegion' extends 'PartitionRegionTemplate' which extends 'ExtendedRegionTemplate' which extends 'BaseRegionTemplate'. Attributes and sub-elements defined in subsequent, inherited Region bean definitions override what is in the parent.
Under the hood…
Spring Data GemFire applies Region Templates when the Spring application context configuration meta-data is parsed, and therefore, must be declared in the order of inheritance, in other words, parent templates before children. This ensure the proper configuration is applied, especially when element attributes or sub-elements are "overridden".
It is equally important to remember the Region types must only inherit from other similar typed Region.
For instance, it is not possible for a <gfe:replicated-region> to inherit from a <gfe:partitioned-region-template> .
|
Region Templates are single-inheritance. |
A Word of Caution on Regions, Subregions and Lookups
Prior to Spring Data GemFire 1.4, one of the underlying properties of the high-level replicated-region
,
partitioned-region
, local-region
and client-region
elements in Spring Data GemFire’s XML namespace,
which correspond to GemFire’s Region types based on Data Policy, is that these elements perform a lookup first
before attempting to create the region. This is done in case the region already exists, which might be the case
if the region was defined in GemFire’s native configuration, e.g. cache.xml
, thereby avoiding any errors.
This was by design, though subject to change.
The Spring team highly recommends that the replicated-region , partitioned-region , local-region
and client-region elements be strictly used only for defining new regions. One of the problems with these elements
doing a lookup first is, if the developer assumed that defining a bean definition for a REPLICATE region would create
a new region, however, consequently a region with the same name already exists having different semantics for
eviction, expiration, subscription and/or other attributes, this could adversely affect application logic
and/or expectations thereby violating application requirements.
|
Recommended Practice - Only use the replicated-region , partitioned-region , local-region
and client-region XML namespace elements for defining new regions.
|
However, because the high-level region elements perform a lookup first, this can cause problems for dependency injected region resources to application code, like DAOs or Repositories.
Take for instance the following native GemFire configuration file (e.g. cachel.xml
)…
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching 7.0//EN"
"http://www.gemstone.com/dtd/cache7_0.dtd">
<cache>
<region name="Customers" refid="REPLICATE">
<region name="Accounts" refid="REPLICATE">
<region name="Orders" refid="REPLICATE">
<region name="Items" refid="REPLICATE"/>
</region>
</region>
</region>
</cache>
Also, consider that you might have defined a DAO as follows…
public class CustomerAccountDao extends GemDaoSupport {
@Resource(name = "Customers/Accounts")
private Region customersAccounts;
...
}
Here, we are injecting a reference to the Customers/Accounts
GemFire Region in our DAO. As such, it is not uncommon for a developer to define beans for all or some of these regions in Spring XML configuration meta-data as follows…
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">
<gfe:cache cache-xml-location="classpath:cache.xml"/>
<gfe:lookup-region name="Customers/Accounts"/>
<gfe:lookup-region name="Customers/Accounts/Orders"/>
</beans>
Here the Customers/Accounts
and Customers/Accounts/Orders
GemFire Regions are referenced as beans in the Spring context as "Customers/Accounts" and "Customers/Accounts/Orders", respectively. The nice thing about using the lookup-region
element and the corresponding syntax above is that it allows a developer to reference a subregion directly without unnecessarily defining a bean for the parent region (e.g. Customers
).
However, if now the developer changes his/her configuration meta-data syntax to using the nested format, like so…
<gfe:lookup-region name="Customers">
<gfe:lookup-region name="Accounts">
<gfe:lookup-region name="Orders"/>
</gfe:lookup-region>
</gfe:lookup-region>
Or, perhaps the developer erroneously chooses to use the high-level replicated-region
element, which will do a lookup first, as in…
<gfe:replicated-region name="Customers" persistent="true">
<gfe:replicated-region name="Accounts" persistent="true">
<gfe:replicated-region name="Orders" persistent="true"/>
</gfe:replicated-region>
</gfe:replicated-region>
Then the region beans defined in the Spring context will consist of the following: { "Customers", "/Customers/Accounts", "/Customers/Accounts/Orders" }.
This means the dependency injected reference (i.e. @Resource(name = "Customers/Accounts"))
is now broken since no bean with name "Customers/Accounts" is defined.
GemFire is flexible in referencing both parent regions and subregions. The parent can be referenced as "/Customers" or "Customers" and the child as "/Customers/Accounts" or just "Customers/Accounts". However, Spring Data GemFire is very specific when it comes to naming beans after regions, typically always using the forward slash (/) to represents subregions (e.g. "/Customers/Accounts").
Therefore, it is recommended that users use either the nested lookup-region
syntax as illustrated above, or define direct references with a leading forward slash (/) like so…
<gfe:lookup-region name="/Customers/Accounts"/>
<gfe:lookup-region name="/Customers/Accounts/Orders"/>
The example above where the nested replicated-region
elements were used to reference the subregions serves to illustrate the problem stated earlier. Are the Customers, Accounts and Orders Regions/Subregions persistent or not? Not, since the regions were defined in native GemFire configuration (i.e. cache.xml
) and will exist by the time the cache is initialized, or once the <gfe:cache>
bean is created. Since the high-level region XML namespace abstractions, like replicated-region
, perform the lookup first, it uses the regions as defined in the cache.xml
configuration file.
Data Persistence
Regions can be made persistent. GemFire ensures that all the data you put into a region that is configured for persistence will be written to disk in a way that it can be recovered the next time you create the region. This allows data to be recovered after a machine or process failure or after an orderly shutdown and restart of GemFire.
To enable persistence with Spring Data GemFire, simply set the persistent
attribute to true:
<gfe:partitioned-region id="persitent-partition" persistent="true"/>
Persistence for partitioned regions is supported from GemFire 6.5 onwards - configuring this option on a previous release will trigger an initialization exception. |
Persistence may also be configured using the data-policy
attribute, set to one of GemFire’s data policy settings. For instance…
<gfe:partitioned-region id="persitent-partition" data-policy="PERSISTENT_PARTITION"/>
The data policy must match the region type and must also agree with the persistent
attribute if explicitly set. An initialization exception will be thrown if, for instance, the persistent
attribute is set to false, yet a persistent data policy was specified.
When persisting regions, it is recommended to configure the storage through the disk-store
element for maximum efficiency. The diskstore is referenced using the disk-store-ref attribute. Additionally, the region may perform disk writes synchronously or asynchronously:
<gfe:partitioned-region id="persitent-partition" persistent="true" disk-store-ref="myDiskStore" disk-synchronous="true"/>
This is discussed further in Configuring a Disk Store
Subscription Interest Policy
GemFire allows configuration of subscriptions to control peer to peer event handling. Spring Data GemFire provides a <gfe:subscription/>
to set the interest policy on replicated and partitioned regions to either ALL
or CACHE_CONTENT
.
<gfe:partitioned-region id="subscription-partition">
<gfe:subscription type="CACHE_CONTENT"/>
</gfe:partitioned-region>
Data Eviction and Overflowing
Based on various constraints, each region can have an eviction policy in place for evicting data from memory. Currently, in GemFire, eviction applies to the least recently used entry (also known as LRU). Evicted entries are either destroyed or paged to disk (also known as overflow).
Spring Data GemFire supports all eviction policies (entry count, memory and heap usage) for both partitioned-region
and replicated-region
as well as client-region
, through the nested eviction
element. For example, to configure a partition to overflow to disk if its size is more then 512 MB, one could use the following configuration:
<gfe:partitioned-region id="overflow-partition">
<gfe:eviction type="MEMORY_SIZE" threshold="512" action="OVERFLOW_TO_DISK"/>
</gfe:partitioned-region>
Replicas cannot use a local destroy eviction since that would invalidate them. See the GemFire docs for more information.
|
When configuring regions for overflow, it is recommended to configure the storage through the disk-store
element for maximum efficiency.
For a detailed description of eviction policies, see the GemFire documentation (such as this page).
Data Expiration
GemFire allows you to control how long entries exist in the cache. Eviction is driven by elapsed time, as opposed to eviction which is driven by memory usage. Once an entry expires it may no longer be accessed from the cache. GemFire supports the following expiration types:
-
Time to live (TTL) - The amount of time, in seconds, the object may remain in the cache after the last creation or update. For entries, the counter is set to zero for create and put operations. Region counters are reset when the region is created and when an entry has its counter reset.
-
Idle timeout - The amount of time, in seconds, the object may remain in the cache after the last access. The idle timeout counter for an object is reset any time its TTL counter is reset. In addition, an entry’s idle timeout counter is reset any time the entry is accessed through a get operation or a netSearch . The idle timeout counter for a region is reset whenever the idle timeout is reset for one of its entries.
Each of these may be applied to the region itself or entries in the region. Spring Data GemFire provides <region-ttl>
, <region-tti>
, <entry-ttl>
and <entry-tti>
region child elements to specify timeout values and expiration actions.
Local Region
Spring Data GemFire offers a dedicated local-region
element for creating local regions. Local regions, as the name implies, are standalone meaning they do not share data with any other distributed system member. Other than that, all common region configuration options are supported. A minimal declaration looks as follows (again, the example relies on the Spring Data GemFire namespace naming conventions to wire the cache):
<gfe:local-region id="myLocalRegion" />
Here, a local region is created (if one doesn’t exist already). The name of the region is the same as the bean id (myLocalRegion) and the bean assumes the existence of a GemFire cache named gemfireCache
.
Replicated Region
One of the common region types is a replicated region or replica. In short, when a region is configured to be a replicated region, every member that hosts that region stores a copy of the region’s entries locally. Any update to a replicated region is distributed to all copies of the region. When a replica is created, it goes through an initialization stage in which it discovers other replicas and automatically copies all the entries. While one replica is initializing you can still continue to use the other rep
Spring Data GemFire offers a replicated-region
element. A minimal declaration looks as follows. All common configuration options are available for replicated regions.
<gfe:replicated-region id="simpleReplica" />
Partitioned Region
Another region type supported out of the box by the Spring Data GemFire namespace is the partitioned region. To quote the GemFire docs:
"A partitioned region is a region where data is divided between peer servers hosting the region so that each peer stores a subset of the data. When using a partitioned region, applications are presented with a logical view of the region that looks like a single map containing all of the data in the region. Reads or writes to this map are transparently routed to the peer that hosts the entry that is the target of the operation. […] GemFire divides the domain of hashcodes into buckets. Each bucket is assigned to a specific peer, but may be relocated at any time to another peer in order to improve the utilization of resources across the cluster."
A partition is created using the partitioned-region
element. Its configuration options are similar to that of the replicated-region
plus the partion specific features such as the number of redundant copies, total maximum memory, number of buckets, partition resolver and so on. Below is a quick example on setting up a partition region with 2 redundant copies:
<!-- bean definition named 'distributed-partition' backed by a region named 'redundant' with 2 copies
and a nested resolver declaration -->
<gfe:partitioned-region id="distributed-partition" copies="2" total-buckets="4" name="redundant">
<gfe:partition-resolver>
<bean class="some.pkg.SimplePartitionResolver"/>
</gfe:partition-resolver>
</gfe:partitioned-region>
partitioned-region
Options
The following table offers a quick overview of configuration options specific to partitioned regions. These are in addition to the common region configuration options described above.
Name | Values | Description |
---|---|---|
partition-resolver |
bean name |
The name of the partitioned resolver used by this region, for custom partitioning. |
partition-listener |
bean name |
The name of the partitioned listener used by this region, for handling partition events. |
copies |
0..4 |
The number of copies for each partition for high-availability. By default, no copies are created meaning there is no redundancy. Each copy provides extra backup at the expense of extra storage. |
colocated-with |
valid region name |
The name of the partitioned region with which this newly created partitioned region is colocated. |
local-max-memory |
positive integer |
The maximum amount of memory, in megabytes, to be used by the region in this process. |
total-max-memory |
any integer value |
The maximum amount of memory, in megabytes, to be used by the region in all processes. |
recovery-delay |
any long value |
The delay in milliseconds that existing members will wait before satisfying redundancy after another member crashes. -1 (the default) indicates that redundancy will not be recovered after a failure. |
startup-recovery-delay |
any long value |
The delay in milliseconds that new members will wait before satisfying redundancy. -1 indicates that adding new members will not trigger redundancy recovery. The default is to recover redundancy immediately when a new member is added. |
Client Region
GemFire supports various deployment topologies for managing and distributing data. The topic is outside the scope of this documentation however to quickly recap, they can be classified in short in: peer-to-peer (p2p), client-server, and wide area cache network (or WAN). In the last two scenarios, it is common to declare client regions which connect to a cache server. Spring Data GemFire offers dedicated support for such configuration through Configuring a GemFire Client Cache, client-region
and pool
elements. As the names imply, the former defines a client region while the latter defines connection pools to be used/shared by the various client regions.
Below is a typical client region configuration:
<!-- client region using the default client-cache pool -->
<gfe:client-region id="simple">
<gfe:cache-listener ref="c-listener"/>
</gfe:client-region>
<!-- region using its own dedicated pool -->
<gfe:client-region id="complex" pool-name="gemfire-pool">
<gfe:cache-listener ref="c-listener"/>
</gfe:client-region>
<bean id="c-listener" class="some.pkg.SimpleCacheListener"/>
<!-- pool declaration -->
<gfe:pool id="gemfire-pool" subscription-enabled="true">
<gfe:locator host="someHost" port="40403"/>
</gfe:pool>
As with the other region types, client-region
supports CacheListener``s
as well as a single CacheLoader
or CacheWriter
. It also requires a connection pool
for connecting to a server. Each client can have its own pool or they can share the same one.
In the above example, the pool is configured with a locator . The locator is a separate process used to discover cache servers in the distributed system and are recommended for production systems. It is also possible to configure the pool to connect directly to one or more cache servers using the server element.
|
For a full list of options to set on the client and especially on the pool, please refer to the Spring Data GemFire schema (Spring Data GemFire Schema) and the GemFire documentation.
Client Interests
To minimize network traffic, each client can define its own 'interest', pointing out to GemFire, the data it actually needs. In Spring Data GemFire, interests can be defined for each client, both key-based and regular-expression-based types being supported; for example:
<gfe:client-region id="complex" pool-name="gemfire-pool">
<gfe:key-interest durable="true" result-policy="KEYS">
<bean id="key" class="java.lang.String">
<constructor-arg value="someKey" />
</bean>
</gfe:key-interest>
<gfe:regex-interest pattern=".*" receive-values="false"/>
</gfe:client-region>
A special key ALL_KEYS
means interest is registered for all keys (identical to a regex interest of .*
). The receive-values
attribute indicates whether or not the values are received for create and update events. If true, values are received; if false, only invalidation events are received - refer to the GemFire documentation for more details.
JSON Support
Gemfire 7.0 introduced support for caching JSON documents with OQL query support. These are stored internally as PdxInstance types using the JSONFormatter to perform conversion to and from JSON strings. Spring Data GemFire provides a <gfe-data:json-region-autoproxy/>
tag to enable a AOP with Spring component to advise appropriate region operations, effectively encapsulating the JSONFormatter, allowing your application to work directly with JSON strings. In addition, Java objects written to JSON configured regions will be automatically converted to JSON using the Jackson ObjectMapper. Reading these values will return a JSON string.
By default, <gfe-data:json-region-autoproxy/>
will perform the conversion on all regions. To apply this feature to selected regions, provide a comma delimited list of their ids via the region-refs
attribute. Other attributes include a pretty-print
flag (false by default) and convert-returned-collections
. By default the results of region operations getAll() and values() will be converted for configured regions. This is done by creating a parallel structure in local memory. This can incur significant overhead for large collections. Set this flag to false to disable automatic conversion for these operation. NOTE: Certain region operations, specifically those that use GemFire’s proprietary Region.Entry such as entries(boolean), entrySet(boolean) and getEntry() type are not targeted for AOP advice. In addition, the entrySet() method which returns a Set<java.util.Map.Entry<?,?>> is not affected.
<gfe-data:json-region-autoproxy pretty-print="true" region-refs="myJsonRegion" convert-returned-collections="true"/>
This feature also works with seamlessly with GemfireTemplate operations, provided that the template is declared as a Spring bean. Currently native QueryService operations are not supported.
4.2.6. Creating an Index
GemFire allows the creation of indexes (or indices) to improve the performance of (common) queries.
Spring Data GemFire allows indices to be declared through the index
element:
<gfe:index id="myIndex" expression="someField" from="/someRegion"/>
Before creating an index, Spring Data GemFire will verify whether one with the same name already exists. If it does,
it will compare the properties and if they don’t match, will remove the old one to create a new one.
If the properties match, Spring Data GemFire will simply return the index (in case it does not exist it will simply
create one). To prevent the update of the index, even if the properties do not match, set the property override
to false.
Note that index declarations are not bound to a Region but rather are top-level elements (just like gfe:cache
).
This allows one to declare any number of indices on any Region whether they are just created or already exist
- an improvement over GemFire’s native cache.xml
. By default, the index relies on the default cache declaration
but one can customize it accordingly or use a pool (if need be) - see the namespace schema for the full set of options.
4.2.7. Configuring a Disk Store
As of Release 1.2.0, Spring Data GemFire supports disk store configuration via a top level disk-store
element.
Prior to Release 1.2.0, disk-store was a child element of *-region . If you have regions configured with disk storage using a prior release of Spring Data GemFire and want to upgrade to the latest release, move the disk-store element to the top level, assign an id and use the region’s disk-store-ref attribute. Also, disk-synchronous is now a region level attribute.
|
<gfe:disk-store id="diskStore1" queue-size="50" auto-compact="true"
max-oplog-size="10" time-interval="9999">
<gfe:disk-dir location="/gemfire/store1/" max-size="20"/>
<gfe:disk-dir location="/gemfire/store2/" max-size="20"/>
</gfe:disk-store>
Disk stores are used by regions for file system persistent backup or overflow storage of evicted entries, and persistent backup of WAN gateways. Note that multiple components may share the same disk store. Also multiple directories may be defined for a single disk store. Please refer to the GemFire documentation for an explanation of the configuration options.
4.2.8. Configuring GemFire’s Function Service
As of Release 1.3.0, Spring Data GemFire provides annotation support for implementing and registering functions. Spring Data GemFire also provides namespace support for registering GemFire Functions for remote function execution. Please refer to the GemFire documentation for more information on the function execution framework. Functions are declared as Spring beans and must implement the com.gemstone.gemfire.cache.execute.Function
interface or extend com.gemstone.gemfire.cache.execute.FunctionAdapter
. The namespace uses a familiar pattern to declare functions:
<gfe:function-service>
<gfe:function>
<bean class="com.company.example.Function1"/>
<ref bean="function2"/>
</gfe:function>
</gfe:function-service>
<bean id="function2" class="com.company.example.Function2"/>
4.2.9. Configuring WAN Gateways
WAN gateways provide a way to synchronize GemFire distributed systems across geographic distributed areas. As of Release 1.2.0, Spring Data GemFire provides namespace support for configuring WAN gateways as illustrated in the following examples:
WAN Configuration in GemFire 7.0
GemFire 7.0 introduces new APIs for WAN configuration. While the original APIs provided in GemFire 6 are still supported, it is recommended that you use the new APIs if you are using GemFire 7.0. The Spring Data GemFire namespace supports either. In the example below, GatewaySender`s are configured for a partitioned region by adding child elements to the region (`gateway-sender
and gateway-sender-ref
). The GatewaySender
may register EventFilter`s and `TransportFilters
. Also shown below is an example configuration of an AsyncEventQueue
which must also be wired into a region (not shown).
<gfe:partitioned-region id="region-inner-gateway-sender" >
<gfe:gateway-sender
remote-distributed-system-id="1">
<gfe:event-filter>
<bean class="org.springframework.data.gemfire.example.SomeEventFilter"/>
</gfe:event-filter>
<gfe:transport-filter>
<bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
</gfe:transport-filter>
</gfe:gateway-sender>
<gfe:gateway-sender-ref bean="gateway-sender"/>
</gfe:partitioned-region>
<gfe:async-event-queue id="async-event-queue" batch-size="10" persistent="true" disk-store-ref="diskstore"
maximum-queue-memory="50">
<gfe:async-event-listener>
<bean class="org.springframework.data.gemfire.example.SomeAsyncEventListener"/>
</gfe:async-event-listener>
</gfe:async-event-queue>
<gfe:gateway-sender id="gateway-sender" remote-distributed-system-id="2">
<gfe:event-filter>
<ref bean="event-filter"/>
<bean class="org.springframework.data.gemfire.example.SomeEventFilter"/>
</gfe:event-filter>
<gfe:transport-filter>
<ref bean="transport-filter"/>
<bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
</gfe:transport-filter>
</gfe:gateway-sender>
<bean id="event-filter" class="org.springframework.data.gemfire.example.AnotherEventFilter"/>
<bean id="transport-filter" class="org.springframework.data.gemfire.example.AnotherTransportFilter"/>
On the other end of a GatewaySender
is a corresponding GatewayReceiver
to receive gateway events. The GatewayReceiver
may also be configured with `EventFilter`s and `TransportFilter`s.
<gfe:gateway-receiver id="gateway-receiver"
start-port="12345" end-port="23456" bind-address="192.168.0.1">
<gfe:transport-filter>
<bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
</gfe:transport-filter>
</gfe:gateway-receiver>
Please refer to the GemFire product document for a detailed explanation of all the configuration options.
WAN Configuration in GemFire 6.6
<gfe:cache/>
<gfe:replicated-region id="region-with-gateway" enable-gateway="true" hub-id="gateway-hub"/>
<gfe:gateway-hub id="gateway-hub" manual-start="true">
<gfe:gateway gateway-id="gateway">
<gfe:gateway-listener>
<bean class="com.company.example.MyGatewayListener"/>
</gfe:gateway-listener>
<gfe:gateway-queue maximum-queue-memory="5" batch-size="3"
batch-time-interval="10" />
</gfe:gateway>
<gfe:gateway gateway-id="gateway2">
<gfe:gateway-endpoint port="1234" host="host1" endpoint-id="endpoint1"/>
<gfe:gateway-endpoint port="2345" host="host2" endpoint-id="endpoint2"/>
</gfe:gateway>
</gfe:gateway-hub>
A region may synchronize all or part of its contents to a gateway hub used to access one or more remote systems. The region must set enable-gateway
to true
and specify the hub-id
.
If just a hub-id is specified, Spring Data GemFire automatically assumes that the gateway should be enabled. |
Please refer to the GemFire product document for a detailed explanation of all the configuration options.
4.3. Working with the GemFire APIs
Once the GemFire Cache and Regions have been configured they can be injected and used inside application objects. This chapter describes the integration with Spring’s Transaction Management functionality and DaoException
hierarchy. It also covers support for dependency injection of GemFire managed objects.
4.3.1. Exception Translation
Using a new data access technology requires not only accommodating a new API but also handling exceptions specific to that technology. To accommodate this case, Spring Framework provides a technology agnostic, consistent exception hierarchy that abstracts the application from proprietary (and usually checked) exceptions to a set of focused runtime exceptions. As mentioned in the Spring Framework documentation, exception translation can be applied transparently to your data access objects through the use of the @Repository
annotation and AOP by defining a PersistenceExceptionTranslationPostProcessor
bean. The same exception translation functionality is enabled when using GemFire as long as at least a CacheFactoryBean
is declared, e.g. using a <gfe:cache/>
declaration, as it acts as an exception translator which is automatically detected by the Spring infrastructure and used accordingly.
4.3.2. GemfireTemplate
As with many other high-level abstractions provided by the Spring projects, Spring Data GemFire provides a template that simplifies GemFire data access. The class provides several one-line methods, for common region operations but also the ability to execute code against the native GemFire API without having to deal with GemFire checked exceptions for example through the GemfireCallback
.
The template class requires a GemFire Region
instance and once configured is thread-safe and should be reused across multiple classes:
<bean id="gemfireTemplate" class="org.springframework.data.gemfire.GemfireTemplate" p:region-ref="someRegion"/>
Once the template is configured, one can use it alongside GemfireCallback
to work directly with the GemFire Region
, without having to deal with checked exceptions, threading or resource management concerns:
template.execute(new GemfireCallback<Iterable<String>>() {
public Iterable<String> doInGemfire(Region reg) throws GemFireCheckedException, GemFireException {
// working against a Region of String
Region<String, String> region = reg;
region.put("1", "one");
region.put("3", "three");
return region.query("length < 5");
}
});
For accessing the full power of the GemFire query language, one can use the find
and findUnique
which, as opposed to the query
method, can execute queries across multiple regions, execute projections, and the like. The find
method should be used when the query selects multiple items (through`SelectResults`) and the latter, findUnique
, as the name suggests, when only one object is returned.
4.3.3. Support for Spring Cache Abstraction
Since 1.1, Spring Data GemFire provides an implementation of the Spring 3.1 cache abstraction. To use GemFire as a backing implementation, simply add GemfireCacheManager
to your configuration:
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:cache="http://www.springframework.org/schema/cache"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
http://www.springframework.org/schema/cache http://www.springframework.org/schema/cache/spring-cache.xsd">
<!-- turn on declarative caching -->
<cache:annotation-driven/>
<gfe:cache id="gemfire-cache"/>
<!-- declare GemFire Cache Manager -->
<bean id="cacheManager" class="org.springframework.data.gemfire.support.GemfireCacheManager" p:cache-ref="gemfire-cache">
</beans>
4.3.4. Transaction Management
One of the most popular features of Spring Framework is transaction management. If you are not familiar with it, we strongly recommend reading about it as it offers a consistent programming model that works transparently across multiple APIs and can be configured either programmatically or declaratively (the most popular choice).
For GemFire, Spring Data GemFire provides a dedicated, per-cache, transaction manager that, once declared, allows Region operations to be executed atomically through Spring:
<gfe:transaction-manager id="tx-manager" cache-ref="cache"/>
The example above can be simplified even more by eliminating the cache-ref attribute if the GemFire Cache is defined under the default name`gemfireCache`. As with the other Spring Data GemFire namespace elements, if the Cache bean name is not configured, the aforementioned naming convention will used. Additionally, the transaction manager name is`gemfireTransactionManager` if not explicitly specified.
|
Currently, GemFire supports optimistic transactions with read committed isolation. Furthermore, to guarantee this isolation, developers should avoid making in-place changes that manually modify values present in the Cache. To prevent this from happening, the transaction manager configures the Cache to use copy on read semantics, meaning a clone of the actual value is created, each time a read is performed. This behavior can be disabled if needed through the copyOnRead
property. For more information on the semantics of the underlying GemFire transaction manager, see the GemFire documentation.
4.3.5. GemFire Continuous Query Container
A powerful functionality offered by GemFire is continuous querying (or CQ). In short, CQ allows one to create a query and automatically be notified when new data that gets added to GemFire matches the query. Spring GemFire provides dedicated support for CQs through the org.springframework.data.gemfire.listener
package and its listener container; very similar in functionality and naming to the JMS integration in Spring Framework; in fact, users familiar with the JMS support in Spring, should feel right at home. Basically Spring Data GemFire allows methods on POJOs to become end-points for CQ - simply define the query and indicate the method that should be notified when there is a match - Spring Data GemFire takes care of the rest. This is similar Java EE’s message-driven bean style, but without any requirement for base class or interface implementations, based on GemFire.
Currently, continuous queries are supported by GemFire only in client/server topologies. Additionally the pool used is required to have the subscription property enabled. Please refer to the documentation for more information.
|
Continuous Query Listener Container
Spring Data GemFire simplifies the creation, registration, life-cycle and dispatch of CQs by taking care of the infrastructure around them through ContinuousQueryListenerContainer
which does all the heavy lifting on behalf of the user - users familiar with EJB and JMS should find the concepts familiar as it is designed as close as possible to the support in Spring Framework and its message-driven POJOs (MDPs)
ContinuousQueryListenerContainer
acts as an event (or message) listener container; it is used to receive the events from the registered CQs and drive the POJOs that are injected into it. The listener container is responsible for all threading of message reception and dispatches into the listener for processing. It acts as the intermediary between an EDP (Event Driven POJO) and the event provider and takes care of creation and registration of CQs (to receive events), resource acquisition and release, exception conversion and the like. This allows you as an application developer to write the (possibly complex) business logic associated with receiving an event (and reacting to it), and delegates boilerplate GemFire infrastructure concerns to the framework.
The container is fully customizable - one can chose either to use the CQ thread to perform the dispatch (synchronous delivery) or a new thread (from an existing pool for examples) for an asynchronous approach by defining the suitable java.util.concurrent.Executor
(or Spring’s TaskExecutor
). Depending on the load, the number of listeners or the runtime environment, one should change or tweak the executor to better serve her needs - in particular in managed environments (such as app servers), it is highly recommended to pick a a proper TaskExecutor
to take advantage of its runtime.
The ContinuousQueryListenerAdapter
and ContinuousQueryListener
The ContinuousQueryListenerAdapter
class is the final component in Spring Data GemFire CQ support: in a nutshell, it allows you to expose almost any class as a EDP (there are of course some constraints) - it implements ContinuousQueryListener
, a simpler listener interface similar to GemFire CqListener.
Consider the following interface definition. Notice the various event handling methods and their parameters:
public interface EventDelegate {
void handleEvent(CqEvent event);
void handleEvent(Operation baseOp);
void handleEvent(Object key);
void handleEvent(Object key, Object newValue);
void handleEvent(Throwable th);
void handleQuery(CqQuery cq);
void handleEvent(CqEvent event, Operation baseOp, byte[] deltaValue);
void handleEvent(CqEvent event, Operation baseOp, Operation queryOp, Object key, Object newValue);
}
public class DefaultEventDelegate implements EventDelegate {
// implementation elided for clarity...
}
In particular, note how the above implementation of the EventDelegate
interface (the above DefaultEventDelegate
class) has no GemFire dependencies at all. It truly is a POJO that we will make into an EDP via the following configuration (note that the class doesn’t have to implement an interface, one is present only to better show case the decoupling between contract and implementation).
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">
<gfe:client-cache pool-name="client"/>
<gfe:pool id="client" subscription-enabled="true">
<gfe:server host="localhost" port="40404"/>
</gfe:pool>
<gfe:cq-listener-container>
<!-- default handle method -->
<gfe:listener ref="listener" query="SELECT * from /region"/ >
<gfe:listener ref="another-listener" query="SELECT * from /another-region" name="my-query" method="handleQuery"/>
</gfe:cq-listener-container>
<bean id="listener" class="gemfireexample.DefaultMessageDelegate"/>
<bean id="another-listener" class="gemfireexample.DefaultMessageDelegate"/>
...
<beans>
The example above shows some of the various forms that a listener can have; at its minimum the listener reference and the actual query definition are required. It’s possible however to specify a name for the resulting continuous query (useful for monitoring) but also the name of the method (the default is handleEvent ). The specified method can have various argument types, the EventDelegate interface lists the allowed types.
|
The example above uses the Spring Data GemFire namespace to declare the event listener container and automatically register the listeners. The full blown, beans definition is displayed below:
<!-- this is the Event Driven POJO (MDP) -->
<bean id="eventListener" class="org.springframework.data.gemfire.listener.adapter.ContinuousQueryListenerAdapter">
<constructor-arg>
<bean class="gemfireexample.DefaultEventDelegate"/>
</constructor-arg>
</bean>
<!-- and this is the event listener container... -->
<bean id="gemfireListenerContainer" class="org.springframework.data.gemfire.listener.ContinuousQueryListenerContainer">
<property name="cache" ref="gemfireCache"/>
<property name="queryListeners">
<!-- set of listeners -->
<set>
<bean class="org.springframework.data.gemfire.listener.ContinuousQueryDefinition" >
<constructor-arg value="SELECT * from /region" />
<constructor-arg ref="eventListener" />
</bean>
</set>
</property>
</bean>
Each time an event is received, the adapter automatically performs type translation between the GemFire event and the required method argument(s) transparently. Any exception caused by the method invocation is caught and handled by the container (by default, being logged).
4.3.6. Wiring Declarable
components
GemFire XML configuration (usually named cache.xml
allows user objects to be declared as part of the configuration. Usually these objects are CacheLoader`s or other pluggable callback components supported by GemFire. Using native GemFire configuration, each user type declared through XML must implement the `Declarable
interface which allows arbitrary parameters to be passed to the declared class through a Properties
instance.
In this section we describe how you can configure these pluggable components defined in cache.xml
using Spring while keeping your Cache/Region configuration defined in cache.xml
This allows your pluggable components to focus on the application logic and not the location or creation of DataSources or other collaboration objects.
However, if you are starting a green field project, it is recommended that you configure Cache, Region, and other pluggable components directly in Spring. This avoids inheriting from the Declarable
interface or the base class presented in this section. See the following sidebar for more information on this approach.
As an example of configuring a Declarable
component using Spring, consider the following declaration (taken from the Declarable
javadoc):
<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<parameter name="URL">
<string>jdbc://12.34.56.78/mydb</string>
</parameter>
</cache-loader>
To simplify the task of parsing, converting the parameters and initializing the object, Spring Data GemFire offers a base class (WiringDeclarableSupport
) that allows GemFire user objects to be wired through a template bean definition or, in case that is missing, perform autowiring through the Spring container. To take advantage of this feature, the user objects need to extend WiringDeclarableSupport
which automatically locates the declaring BeanFactory
and performs wiring as part of the initialization process.
Configuration using template definitions
When used, WiringDeclarableSupport
tries to first locate an existing bean definition and use that as wiring template. Unless specified, the component class name will be used as an implicit bean definition name. Let’s see how our DBLoader
declaration would look in that case:
public class DBLoader extends WiringDeclarableSupport implements CacheLoader {
private DataSource dataSource;
public void setDataSource(DataSource ds){
this.dataSource = ds;
}
public Object load(LoaderHelper helper) { ... }
}
<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<!-- no parameter is passed (use the bean implicit name
that is the class name) -->
</cache-loader>
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<bean id="dataSource" ... />
<!-- template bean definition -->
<bean id="com.company.app.DBLoader" abstract="true" p:dataSource-ref="dataSource"/>
</beans>
In the scenario above, as no parameter was specified, a bean with the id/name com.company.app.DBLoader
was used as a template for wiring the instance created by GemFire. For cases where the bean name uses a different convention, one can pass in the bean-name
parameter in the GemFire configuration:
<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<!-- pass the bean definition template name
as parameter -->
<parameter name="bean-name">
<string>template-bean</string>
</parameter>
</cache-loader>
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<bean id="dataSource" ... />
<!-- template bean definition -->
<bean id="template-bean" abstract="true" p:dataSource-ref="dataSource"/>
</beans>
The template bean definitions do not have to be declared in XML - any format is allowed (Groovy, annotations, etc..). |
Configuration using auto-wiring and annotations
If no bean definition is found, by default, WiringDeclarableSupport
will autowire the declaring instance. This means that unless any dependency injection metadata is offered by the instance, the container will find the object setters and try to automatically satisfy these dependencies. However, one can also use JDK 5 annotations to provide additional information to the auto-wiring process. We strongly recommend reading the dedicated chapter in the Spring documentation for more information on the supported annotations and enabling factors.
For example, the hypothetical DBLoader
declaration above can be injected with a Spring-configured DataSource
in the following way:
public class DBLoader extends WiringDeclarableSupport implements CacheLoader {
// use annotations to 'mark' the needed dependencies
@javax.inject.Inject
private DataSource dataSource;
public Object load(LoaderHelper helper) { ... }
}
<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<!-- no need to declare any parameters anymore
since the class is auto-wired -->
</cache-loader>
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">
<!-- enable annotation processing -->
<context:annotation-config/>
</beans>
By using the JSR-330 annotations, the cache loader code has been simplified since the location and creation of the DataSource has been externalized and the user code is concerned only with the loading process. The DataSource
might be transactional, created lazily, shared between multiple objects or retrieved from JNDI - these aspects can be easily configured and changed through the Spring container without touching the DBLoader
code.
4.4. Working with GemFire Serialization
To improve overall performance of the data grid, GemFire supports a dedicated serialization protocol (PDX) that is both faster and offers more compact results over the standard Java serialization and works transparently across various language platforms (such as Java, .NET and C++). This chapter discusses the various ways in which Spring Data GemFire simplifies and improves GemFire custom serialization in Java.
4.4.1. Wiring deserialized instances
It is fairly common for serialized objects to have transient data. Transient data is often dependent on the node or environment where it lives at a certain point in time, for example a DataSource. Serializing such information is useless (and potentially even dangerous) since it is local to a certain VM/machine. For such cases, Spring Data GemFire offers a special Instantiator
that performs wiring for each new instance created by GemFire during deserialization.
Through such a mechanism, one can rely on the Spring container to inject (and manage) certain dependencies making it easy to split transient from persistent data and have rich domain objects in a transparent manner (Spring users might find this approach similar to that of @Configurable
). The WiringInstantiator
works just like WiringDeclarableSupport
, trying to first locate a bean definition as a wiring template and following to autowiring otherwise. Please refer to the previous section (Wiring Declarable
components) for more details on wiring functionality.
To use this Instantiator
, simply declare it as a usual bean:
<bean id="instantiator" class="org.springframework.data.gemfire.serialization.WiringInstantiator">
<!-- DataSerializable type -->
<constructor-arg>org.pkg.SomeDataSerializableClass</constructor-arg>
<!-- type id -->
<constructor-arg>95</constructor-arg>
</bean>
During the container startup, once it is being initialized, the instantiator
will, by default, register itself with the GemFire system and perform wiring on all instances of SomeDataSerializableClass
created by GemFire during deserialization.
4.4.2. Auto-generating custom `Instantiator`s
For data intensive applications, a large number of instances might be created on each machine as data flows in. Out of the box, GemFire uses reflection to create new types but for some scenarios, this might prove to be expensive. As always, it is good to perform profiling to quantify whether this is the case or not. For such cases, Spring Data GemFire allows the automatic generation of Instatiator
classes which instantiate a new type (using the default constructor) without the use of reflection:
<bean id="instantiator-factory" class="org.springframework.data.gemfire.serialization.InstantiatorFactoryBean">
<property name="customTypes">
<map>
<entry key="org.pkg.CustomTypeA" value="1025"/>
<entry key="org.pkg.CustomTypeB" value="1026"/>
</map>
</property>
</bean>
The definition above, automatically generated two Instantiator`s for two classes, namely `CustomTypeA
and CustomTypeB
and registers them with GemFire, under user id 1025
and 1026
. The two instantiators avoid the use of reflection and create the instances directly through Java code.
4.5. POJO mapping
4.5.1. Entity Mapping
Spring Data GemFire provides support to map entities that will be stored in a GemFire data grid. The mapping metadata is defined using annotations at the domain classes just like this:
@Region("People")
public class Person {
@Id Long id;
String firstname;
String lastname;
@PersistenceConstructor
public Person(String firstname, String lastname) {
// …
}
…
}
The first thing you see here is the @Region
annotation that can be used to customize the Region in which the Person
class is stored in. The @Id
annotation can be used to annotate the property that shall be used as the Cache key. The @PersistenceConstructor
annotation actually helps disambiguating multiple potentially available constructors taking parameters and explicitly marking the one annotated as the one to be used to create entities. With none or only a single constructor you can omit the annotation.
In addition to storing entities in top-level Regions, entities can be stored in GemFire Sub-Regions, as so:
@Region("/Users/Admin")
public class Admin extends User {
…
}
@Region("/Users/Guest")
public class Guest extends User {
…
}
Be sure to use the full-path of the GemFire Region, as defined in Spring Data GemFire XML namespace configuration meta-data, as specified in the id
or name
attributes of the <*-region>
bean definition.
As alternative to specifying the Region in which the entity will be stored using the @Region
annotation on the entity class, you can also specify the @Region
annotation on the entity’s Repository
abstraction. See GemFire Repositories for more details.
However, let’s say you want to store a Person in multiple GemFire Regions (e.g. People
and Customers
), then you can define your corresponding Repository
interface abstractions like so:
@Region("People")
public interface PersonRepository extends GemfireRepository<Person, String> {
…
}
@Region("Customers")
public interface CustomerRepository extends GemfireRepository<Person, String> {
...
}
4.5.2. Mapping PDX Serializer
Spring Data GemFire provides a custom PDXSerializer
implementation that uses the mapping information to customize entity serialization. Beyond that it allows customizing the entity instantiation by using the Spring Data EntityInstantiator
abstraction. By default the serializer uses a ReflectionEntityInstantiator
that will use the persistence constructor of the mapped entity (either the single declared one or explicitly annoted with @PersistenceConstructor
). To provide values for constructor parameters it will read fields with name of the constructor parameters from the PDXReader
supplied.
public class Person {
public Person(@Value("#root.foo") String firstname, @Value("bean") String lastname) {
// …
}
}
The entity annotated as such will get the field foo
read from the PDXReader
and handed as constructor parameter value for firstname
. The value for lastname
will be the Spring bean with name bean
.
4.6. GemFire Repositories
4.6.1. Introduction
Spring Data GemFire provides support to use the Spring Data repository abstraction to easily persist entities into GemFire and execute queries. A general introduction into the repository programming model is been provided here.
4.6.2. Spring configuration
To bootstrap Spring Data repositories you use the <repositories />
element from the GemFire namespace:
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:gfe-data="http://www.springframework.org/schema/data/gemfire"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/gemfire
http://www.springframework.org/schema/data/gemfire/spring-data-gemfire.xsd>
<gfe-data:repositories base-package="com.acme.repository" />
</beans>
This configuration snippet will look for interfaces below the configured base package and create repository instances for those interfaces backed by a SimpleGemFireRepository
. Note that you have to have your domain classes correctly mapped to configured regions as the bottstrap process will fail otherwise.
4.6.3. Executing OQL queries
The GemFire repositories allow the definition of query methods to easily execute OQL queries against the Region the managed entity is mapped to.
@Region("myRegion")
public class Person { … }
public interface PersonRepository extends CrudRepository<Person, Long> {
Person findByEmailAddress(String emailAddress);
Collection<Person> findByFirstname(String firstname);
@Query("SELECT * FROM /Person p WHERE p.firstname = $1")
Collection<Person> findByFirstnameAnnotated(String firstname);
@Query("SELECT * FROM /Person p WHERE p.firstname IN SET $1")
Collection<Person> findByFirstnamesAnnotated(Collection<String> firstnames);
}
The first method listed here will cause the following query to be derived: SELECT x FROM /myRegion x WHERE x.emailAddress = $1
. The second method works the same way except it’s returning all entities found whereas the first one expects a single result value. In case the supported keywords are not sufficient to declare your query or the method name gets to verbose you can annotate the query methods with @Query
as seen for methods 3 and 4.
Keyword | Sample | Logical result |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(No keyword) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.7. Annotation Support for Function Execution
4.7.1. Introduction
Spring Data GemFire 1.3.0 introduces annotation support to simplify working with GemFire Function Execution. The GemFire API provides classes to implement and register Functions deployed to Cache servers that may be invoked remotely by member applications, typically cache clients. Functions may execute in parallel, distributed among multiple servers, combining results in a map-reduce pattern, or may be targeted at a single server. A Function execution may be also be targeted to a specific Region.
GemFire also provides APIs to support remote execution of Functions targeted to various defined scopes (Region, member groups, servers, etc.) and the ability to aggregate results. The API also provides certain runtime options. The implementation and execution of remote Functions, as with any RPC protocol, requires some boilerplate code. Spring Data GemFire, true to Spring’s core value proposition, aims to hide the mechanics of remote Function execution and allow developers to focus on POJO programming and business logic. To this end, Spring Data GemFire introduces annotations to declaratively register public methods as GemFire Functions, and the ability to invoke registered Functions remotely via annotated interfaces.
4.7.2. Implementation vs Execution
There are two separate concerns to address. First is the Function implementation (server) which must interact with the FunctionContext to obtain the invocation arguments, the ResultsSender and other execution context information. The Function implementation typically accesses the Cache and or Region and is typically registered with the FunctionService under a unique Id. The application invoking a Function (the client) does not depend on the implementation. To invoke a Function remotely, the application instantiates an Execution providing the Function ID, invocation arguments, the Function target or scope (Region, server, servers, member, members). If the Function produces a result, the invoker uses a ResultCollector to aggregate and acquire the execution results. In certain scenarios, a custom ResultCollector implementation is required and may be registered with the Execution.
'Client' and 'Server' are used here in the context of Function execution which may have a different meaning than client and server in a client-server Cache topology. While it is common for a member with a Client Cache to invoke a Function on one or more Cache Server members it is also possible to execute Functions in a peer-to-peer (P2P) configuration |
4.7.3. Implementing a Function
Using GemFire APIs, the FunctionContext provides a runtime invocation context including the client’s calling arguments and a ResultSender interface to send results back to the client. Additionally, if the Function is executed on a Region, the FunctionContext is an instance of RegionFunctionContext which provides additional context such as the target Region and any Filter (set of specific keys) associated with the Execution. If the Region is a PARTITION Region, the Function should use the PartitionRegionHelper to extract only the local data.
Using Spring, a developer can write a simple POJO and enable the Spring container to bind one or more of it’s public methods to a Function. The signature for a POJO method intended to be used as a Function must generally conform to the the client’s execution arguments. However, in the case of a Region execution, the Region data must also be provided (presumably the data held in the local partition if the Region is a PARTITION Region). Additionally the Function may require the Filter that was applied, if any. This suggests that the client and server may share a contract for the calling arguments but that the method signature may include additional parameters to pass values provided by the FunctionContext. One possibility is that the client and server share a common interface, but this is not required. The only constraint is that the method signature includes the same sequence of calling arguments with which the Function was invoked after the additional parameters are resolved.
For example, suppose the client provides a String and int as the calling arguments. These are provided by the FunctionContext as an array:
Object[] args = new Object[]{"hello", 123}
Then the Spring container should be able to bind to any method signature similar to the following. Let’s ignore the return type for the moment:
public Object method1(String s1, int i2) {...}
public Object method2(Map<?,?> data, String s1, int i2) {...}
public Object method3(String s1, Map<?,?>data, int i2) {...}
public Object method4(String s1, Map<?,?> data, Set<?> filter, int i2) {...}
public void method4(String s1, Set<?> filter, int i2, Region<?,?> data) {...}
public void method5(String s1, ResultSender rs, int i2);
public void method6(FunctionContest fc);
The general rule is that once any additional arguments, i.e. Region data and Filter, are resolved, the remaining arguments must correspond exactly, in order and type, to the expected calling parameters. The method’s return type must be void or a type that may be serialized (either java.io.Serializable, DataSerializable, or PDX serializable). The latter is also a requirement for the calling arguments. The Region data should normally be defined as a Map, to facilitate unit testing, but may also be of type Region if necessary. As shown in the example above, it is also valid to pass the FunctionContext itself, or the ResultSender, if you need to control how the results are returned to the client.
Annotations for Function Implementation
The following example illustrates how annotations are used to expose a POJO as a GemFire Function:
@Component
public class ApplicationFunctions {
@GemfireFunction
public String function1(String value, @RegionData Map<?,?> data, int i2) { ... }
@GemfireFunction("myFunction", HA=true, optimizedForWrite=true, batchSize=100)
public List<String> function2(String value, @RegionData Map<?,?> data, int i2, @Filter Set<?> keys) { ... }
@GemfireFunction(hasResult=true)
public void functionWithContext(FunctionContext functionContext) { ... }
}
Note that the class itself must be registered as a Spring bean. Here the @Component
annotation is used, but you may
register the bean by any method provided by Spring (e.g. XML configuration or Java configuration class). This allows
the Spring container to create an instance of this class and wrap it in a
PojoFunctionWrapper (PFW).
Spring creates one PFW instance for each method annotated with @GemfireFunction
. Each will all share the same
target object instance to invoke the corresponding method.
The fact that the Function class is a Spring bean may offer other benefits since it shares the ApplicationContext with GemFire components such as a Cache and Regions. These may be injected into the class if necessary. |
Spring creates the wrapper class and registers the Function with GemFire’s Function Service. The Function id used
to register the Functions must be unique. By convention it defaults to the simple (unqualified) method name. Note that
this annotation also provides configuration attributes, HA
and optimizedForWrite
which correspond to properties
defined by GemFire’s Function interface. If the method’s return type is void, then the hasResult
property
is automatically set to false
; otherwise it is set to true
.
For void
return types, the annotation provides a hasResult
attribute that can be set to true to override
this convention, as shown in the functionWithContext
method above. Presumably, the intention is to use the
ResultSender directly to send results to the caller.
The PFW implements GemFire’s Function interface, binds the method parameters, and invokes the target method in
its execute()
method. It also sends the method’s return value using the ResultSender.
Batching Results
If the return type is a Collection or Array, then some consideration must be given to how the results are returned.
By default, the PFW returns the entire Collection at once. If the number of items is large, this may incur
a performance penalty. To divide the payload into small sections (sometimes called chunking), you can set
the batchSize
attribute, as illustrated in function2
, above.
If you need more control of the ResultSender, especially if the method itself would use too much memory to create the Collection, you can pass the ResultSender, or access it via the FunctionContext, to use it directly within the method. |
4.7.4. Executing a Function
A process invoking a remote Function needs to provide calling arguments, a Function id, the execution target (onRegion, onServers, onServer, onMember, onMembers) and optionally a Filter set. All a developer need do is define an interface supported by annotations. Spring will create a dynamic proxy for the interface which will use the FunctionService to create an Execution, invoke the Execution and coerce the results to a defined return type, if necessary. This technique is very similar to the way Spring Data Repositories work, thus some of the configuration and concepts should be familiar. Generally a single interface definition maps to multiple Function executions, one corresponding to each method defined in the interface.
Annotations for Function Execution
To support client-side Function execution, the following annotations are provided: @OnRegion
, @OnServer
,
@OnServers
, @OnMember
, @OnMembers
. These correspond to the Execution implementations GemFire’s FunctionService
provides. Each annotation exposes the appropriate attributes. These annotations also provide an optional
resultCollector
attribute whose value is the name of a Spring bean implementing
ResultCollector
to use for the execution.
The proxy interface binds all declared methods to the same execution configuration. Although it is expected that single method interfaces will be common, all methods in the interface are backed by the same proxy instance and therefore all share the same configuration. |
Here are some examples:
@OnRegion(region="someRegion", resultCollector="myCollector")
public interface FunctionExecution {
@FunctionId("function1")
String doIt(String s1, int i2);
String getString(Object arg1, @Filter Set<Object> keys) ;
}
By default, the Function id is the simple (unqualified) method name. @FunctionId
is used to bind this invocation
to a different Function id.
Enabling Annotation Processing
The client-side uses Spring’s component scanning capability to discover annotated interfaces. To enable Function execution annotation processing, you can use XML:
<gfe-data:function-executions base-package="org.example.myapp.functions"/>
Note that the function-executions
element is provided in the gfe-data
namespace. The base-package
attribute
is required to avoid scanning the entire classpath. Additional filters are provided as described in the Spring
reference.
Optionally, a developer can annotate her Java configuration class:
@EnableGemfireFunctionExecutions(basePackages = "org.example.myapp.functions")
4.7.5. Programmatic Function Execution
Using the annotated interface as described in the previous section, simply wire your interface into a bean that will invoke the Function:
@Component
public class MyApp {
@Autowired FunctionExecution functionExecution;
public void doSomething() {
functionExecution.doIt("hello", 123);
}
}
Alternately, you can use a Function Execution template directly. For example GemfireOnRegionFunctionTemplate
creates
an onRegion
Function execution. For example:
Set<?,?> myFilter = getFilter();
Region<?,?> myRegion = getRegion();
GemfireOnRegionOperations template = new GemfireOnRegionFunctionTemplate(myRegion);
String result = template.executeAndExtract("someFunction",myFilter,"hello","world",1234);
Internally, Function executions always return a List. executeAndExtract
assumes a singleton List containing the result
and will attempt to coerce that value into the requested type. There is also an execute
method that returns the List
itself. The first parameter is the Function id. The Filter argument is optional. The following arguments are a
variable argument List.
4.7.6. Function Execution with PDX
When using Spring Data GemFire’s Function annotation support combined with GemFire’s PDX serialization, there are a few logistical things to keep in mind.
As explained above, and by way of example, typically developers will define GemFire Functions using POJO classes annotated with Spring Data GemFire Function annotations as so…
public class OrderFunctions {
@GemfireFunction(...)
Order process(@RegionData data, Order order, OrderSource orderSourceEnum, Integer count);
}
the Integer count parameter is an arbitrary argument as is the separation of the Order and OrderSource Enum, which might be logical to combine. However, the arguments were setup this way to demonstrate the problem with Function executions in the context of PDX. |
Your Order and OrderSource enum might be as follows…
public class Order ... {
private Long orderNumber;
private Calendar orderDateTime;
private Customer customer;
private List<Item> items
...
}
public enum OrderSource {
ONLINE,
PHONE,
POINT_OF_SALE
...
}
Of course, a developer may define a Function Execution interface to call the 'process' GemFire Server Function…
@OnServer
public interface OrderProcessingFunctions {
Order process(Order order, OrderSource orderSourceEnum, Integer count);
}
Clearly, this process(..)
Order Function is being called from a client-side, client Cache (<gfe:client-cache/>
)
member-based application. This means that the Function arguments must be serializable. The same is true when
invoking peer-to-peer member Functions (@OnMember(s)) between peers in the cluster. Any form of `distribution
requires the data transmitted between client and server, or peers to be serializable.
Now, if the developer has configured GemFire to use PDX for serialization (instead of Java serialization, for instance)
it is common for developers to set the read-serialized
attribute to true on the GemFire server(s)…
<gfe:cache … pdx-read-serialized="true"/>
This causes all values read from the Cache (i.e. Regions) as well as information passed between client and servers, or peers to remain in serialized form, include, but not limited to Function arguments.
GemFire will only serialize application domain object types that you have specifically configured (registered), either using GemFire’s ReflectionBasedAutoSerializer, or specifically (and recommended) using a "custom" GemFire PdxSerializer for your application domain types.
What is less than apparent, is that GemFire automatically handles Java Enum types regardless of whether they are
explicitly configured (registered with a ReflectionBasedAutoSerializer
regex pattern to the classes
parameter,
or handled by a "custom" GemFire PdxSerializer
) or not, and despite the fact that Java Enums implement
java.io.Serializable
.
So, when a developer has pdx-read-serialized
set to true on the GemFire Servers on which the GemFire Functions
(including Spring Data GemFire registered, Function annotated POJO classes), then the developer may encounter surprising
behavior when invoking the Function Execution.
What the developer may pass as arguments when invoking the Function is…
orderProcessingFunctions.process(new Order(123, customer, Calendar.getInstance(), items), OrderSource.ONLINE, 400);
But, in actuality, what GemFire executes the Function on the Server is…
process(regionData, order:PdxInstance, :PdxInstanceEnum, 400);
Notice that the Order
and OrderSource
have passed to the Function as PDX instances.
Again, this is all because read-serialized
is set to true on the GemFire Server, which may be necessary in cases
where the GemFire Servers are interacting with multiple different client types (e.g. native clients).
This flies in the face of Spring Data GemFire’s, "strongly-typed", Function annotated POJO class method signatures, as the developer is expecting application domain object types (not PDX serialized objects).
So, as of Spring Data GemFire (SDG) 1.6, SDG introduces enhanced Function support to automatically convert method arguments that are of type PDX to the desired application domain object types when the developer of the Function expects his Function arguments to be "strongly-typed".
However, this also requires the developer to explicitly register a GemFire PdxSerializer
on the GemFire Servers
where the SDG annotated POJO Function is registered and used, e.g. …
<bean id="customPdxSerializer" class="x.y.z.serialization.pdx.MyCustomPdxSerializer"/>
<gfe:cache ... pdx-serializer-ref="customPdxSerializeer" pdx-read-serialized="true"/>
Alternatively, a developer my use GemFire’s ReflectionBasedAutoSerializer.
Of course, it is recommend to use a "custom" PdxSerializer
where possible given the performance implications of using
Java’s Reflection functionality.
Finally, Spring Data GemFire is careful not to convert your Function arguments if you really want to treat your Function arguments generically, or as one of GemFire’s PDX types…
@GemfireFunction
public Object genericFunction(String value, Object domainObject, PdxInstanceEnum enum) {
...
}
Spring Data GemFire will only convert PDX type data to corresponding application domain object types if and only if the corresponding application domain object types are on the classpath the the Function annotated POJO method expects it.
For a good example of "custom", "composed" application-specific GemFire PdxSerializers
as well as appropriate
POJO Function parameter type handling based on the method signature, see Spring Data GemFire’s
ClientCacheFunctionExecutionWithPdxIntegrationTest class.
4.8. Bootstrapping a Spring ApplicationContext in GemFire
4.8.1. Introduction
Normally, a Spring-based application will bootstrap GemFire using Spring Data GemFire’s XML namespace. Just by specifying a <gfe:cache/>
element in Spring Data GemFire configuration meta-data, a single, peer GemFire Cache instance will be created and initialized with default settings in the same JVM process as your application.
However, sometimes it is a requirement, perhaps imposed by your IT operations team, that GemFire must be fully managed and operated using the provided GemFire tool suite, such as with Gfsh. Using Gfsh, even though the application and GemFire will share the same JVM process, GemFire will bootstrap your Spring application context rather than the other way around. So, using this approach GemFire, instead of an application server, or a Java main class using Spring Boot, will bootstrap and host your application.
Keep in mind, however, that GemFire is not an application server. In addition, there are limitations to using this approach where GemFire Cache configuration is concerned.
4.8.2. Using GemFire to Bootstrap a Spring Context Started with Gfsh
In order to bootstrap a Spring application context in GemFire when starting a GemFire Server process using Gfsh, a user must make use of GemFire’s Initalizer functionality. An Initializer can be used to specify a callback application that is launched after the Cache is initialized by GemFire.
An Initializer is specified within an initializer element using a minimal snippet of GemFire’s native configuration meta-data inside a cache.xml
file. The cache.xml
file is required in order to bootstrap the Spring application context, much like a minimal snippet of Spring XML config is needed to bootstrap a Spring application context configured with component scanning (e.g. <context:component-scan base-packages="…"/>
)
As of Spring Data GemFire 1.4, such an Initializer is already conveniently provided by the framework, the org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer
. The typical, yet minimal configuration for this class inside GemFire’s cache.xml
file will look like the following:
<?xml version="1.0"?>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching 7.0//EN"
"http://www.gemstone.com/dtd/cache7_0.dtd">
<cache>
<initializer>
<class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</class-name>
<parameter name="contextConfigLocations">
<string>classpath:application-context.xml</string>
</parameter>
</initializer>
</cache>
The SpringContextBootstrappingInitializer
class follows similar conventions as Spring’s ContextLoaderListener class for bootstrapping a Spring context inside a Web Application, where application context configuration files are specified with the contextConfigLocations
Servlet Context Parameter. In addition, the SpringContextBootstrappingInitializer
class can also be used with a basePackages
parameter to specify a comma-separated list of base package containing the appropriately annotated application components that the Spring container will search using component scanning and create Spring beans for:
<?xml version="1.0"?>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching 7.0//EN"
"http://www.gemstone.com/dtd/cache7_0.dtd">
<cache>
<initializer>
<class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</class-name>
<parameter name="basePackages">
<string>org.mycompany.myapp.services,org.mycompany.myapp.dao,...</string>
</parameter>
</initializer>
</cache>
Then, with a properly configured and constructed CLASSPATH
along with the cache.xml
file shown above specified as a command-line option when starting a GemFire Server in Gfsh, the command-line would be:
gfsh>start server --name=Server1 --log-level=config ...
--classpath="/path/to/spring-data-gemfire-1.4.0.jar:/path/to/application/classes.jar"
--cache-xml-file="/path/to/gemfire/cache.xml"
The application-context.xml
can be any valid Spring context configuration meta-data including all the SDG namespace elements. The only limitation with this approach is that the GemFire Cache cannot be configured using the Spring Data GemFire namespace. In other words, none of the <gfe:cache/>
element attributes, such as cache-xml-location
, properties-ref
, critical-heap-percentage
, pdx-serializer-ref
, lock-lease
, etc can be specified. If used, these attributes will be ignored. The main reason for this is that GemFire itself has already created an initialized the Cache before the Initializer gets invoked. As such, the Cache will already exist and since it is a "Singleton", it cannot be re-initialized or have any of it’s configuration augmented.
4.8.3. Lazy-Wiring GemFire Components
Spring Data GemFire already provides existing support for wiring GemFire components (such as CacheListeners, CacheLoaders or CacheWriters) that are declared and created by GemFire in cache.xml
using the WiringDeclarableSupport
class as described in Configuration using auto-wiring and annotations. However, this only works when Spring does the bootstrapping (i.e. bootstraps GemFire). When your Spring application context is the one bootstrapped by GemFire, then these GemFire components go unnoticed since the Spring application context does not even exist yet! The Spring application context will not get created until GemFire calls the Initializer, which occurs after all the other GemFire components and configuration have already been created and initialized.
So, in order to solve this problem, a new LazyWiringDeclarableSupport
class was introduced, that is, in a sense, Spring application context aware. The intention of this abstract base class is that any implementing class will register itself to be configured by the Spring application context created by GemFire after the Initializer is called. In essence, this give your GemFire managed component a chance to be configured and auto-wired with Spring beans defined in the Spring application context.
In order for your GemFire application component to be auto-wired by the Spring container, create a application class that extends the LazyWiringDeclarableSupport
and annotate any class member that needs to be provided as a Spring bean dependency, similar to:
public static final class UserDataSourceCacheLoader extends LazyWiringDeclarableSupport implements CacheLoader<String, User> {
@Autowired
private DataSource userDataSource;
...
}
As implied by the CacheLoader example above, you might necessarily (although, rare) have defined both a Region and CacheListener component in GemFire cache.xml
. The CacheLoader may need access to an application DAO, or perhaps Spring application context defined JDBC Data Source for loading "Users" into a GemFire Cache REPLICATE
Region on start. Of course, one should be careful in mixing the different life-cycles of GemFire and the Spring Container together in this manner as not all use cases and scenarios are supported. The GemFire cache.xml
configuration would be similar to the following (which comes from SDG’s test suite):
<?xml version="1.0"?>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching 7.0//EN"
"http://www.gemstone.com/dtd/cache7_0.dtd">
<cache>
<region name="Users" refid="REPLICATE">
<region-attributes initial-capacity="101" load-factor="0.85">
<key-constraint>java.lang.String</key-constraint>
<value-constraint>org.springframework.data.gemfire.repository.sample.User</value-constraint>
<cache-loader>
<class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializerIntegrationTest$UserDataStoreCacheLoader</class-name>
</cache-loader>
</region-attributes>
</region>
<initializer>
<class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</class-name>
<parameter name="basePackages">
<string>org.springframework.data.gemfire.support.sample</string>
</parameter>
</initializer>
</cache>
4.9. Sample Applications
Sample applications are now maintained in the Spring Data GemFire Examples repository. |
The Spring Data GemFire project also includes one sample application. Named "Hello World", the sample demonstrates how to configure and use GemFire inside a Spring application. At runtime, the sample offers a shell to the user allowing him to run various commands against the grid. It provides an excellent starting point for users unfamiliar with the essential components or the Spring and GemFire concepts.
The sample is bundled with the distribution and is Maven-based. One can easily import them into any Maven-aware IDE (such as Spring Tool Suite) or run them from the command-line.
4.9.1. Hello World
The Hello World sample demonstrates the core functionality of the Spring GemFire project. It bootstraps GemFire, configures it, executes arbitrary commands against it and shuts it down when the application exits. Multiple instances can be started at the same time as they will work with each other sharing data without any user intervention.
Running under Linux
If you experience networking problems when starting GemFire or the samples, try adding the following system property java.net.preferIPv4Stack=true to the command line (insert -Djava.net.preferIPv4Stack=true ). For an alternative (global) fix especially on Ubuntu see this link
|
Starting and stopping the sample
Hello World is designed as a stand-alone java application. It features a Main
class which can be started either from your IDE of choice (in Eclipse/STS through Run As/Java Application
) or from the command line through Maven using mvn exec:java
. One can also use java
directly on the resulting artifact if the classpath is properly set.
To stop the sample, simply type exit
at the command line or press Ctrl+C
to stop the VM and shutdown the Spring container.
Using the sample
Once started, the sample will create a shared data grid and allow the user to issue commands against it. The output will likely look as follows:
INFO: Created GemFire Cache [Spring GemFire World] v. X.Y.Z
INFO: Created new cache region [myWorld]
INFO: Member xxxxxx:50694/51611 connecting to region [myWorld]
Hello World!
Want to interact with the world ? ...
Supported commands are:
get <key> - retrieves an entry (by key) from the grid
put <key> <value> - puts a new entry into the grid
remove <key> - removes an entry (by key) from the grid
...
For example to add new items to the grid one can use:
-> Bold Section qName:emphasis level:5, chunks:[put 1 unu] attrs:[role:bold]
INFO: Added [1=unu] to the cache
null
-> Bold Section qName:emphasis level:5, chunks:[put 1 one] attrs:[role:bold]
INFO: Updated [1] from [unu] to [one]
unu
-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
1
-> Bold Section qName:emphasis level:5, chunks:[put 2 two] attrs:[role:bold]
INFO: Added [2=two] to the cache
null
-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
2
Multiple instances can be created at the same time. Once started, the new VMs automatically see the existing region and its information:
INFO: Connected to Distributed System ['Spring GemFire World'=xxxx:56218/49320@yyyyy]
Hello World!
...
-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
2
-> Bold Section qName:emphasis level:5, chunks:[map] attrs:[role:bold]
[2=two] [1=one]
-> Bold Section qName:emphasis level:5, chunks:[query length = 3] attrs:[role:bold]
[one, two]
Experiment with the example, start (and stop) as many instances as you want, run various commands in one instance and see how the others react. To preserve data, at least one instance needs to be alive all times - if all instances are shutdown, the grid data is completely destroyed (in this example - to preserve data between runs, see the GemFire documentations).
Hello World Sample Explained
Hello World uses both Spring XML and annotations for its configuration. The initial boostrapping configuration is app-context.xml
which includes the cache configuration, defined under cache-context.xml
file and performs classpath scanning for Spring components. The cache configuration defines the GemFire cache, region and for illustrative purposes a simple cache listener that acts as a logger.
The main beans are HelloWorld
and CommandProcessor
which rely on the GemfireTemplate
to interact with the distributed fabric. Both classes use annotations to define their dependency and life-cycle callbacks.
5. Other Resources
6. Appendices
Appendix A: Spring Data GemFire Schema
Spring Data GemFire Core Schema (gfe)
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://www.springframework.org/schema/gemfire"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:tool="http://www.springframework.org/schema/tool" xmlns:context="http://www.springframework.org/schema/context"
xmlns:repository="http://www.springframework.org/schema/data/repository"
targetNamespace="http://www.springframework.org/schema/gemfire"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.3">
<xsd:import namespace="http://www.springframework.org/schema/beans" />
<xsd:import namespace="http://www.springframework.org/schema/tool" />
<xsd:import namespace="http://www.springframework.org/schema/context" />
<!-- -->
<xsd:annotation>
<xsd:documentation><![CDATA[
Namespace support for the Spring GemFire project.
]]></xsd:documentation>
</xsd:annotation>
<!-- -->
<xsd:complexType name="cacheBaseType">
<xsd:sequence>
<xsd:element name="transaction-listener" type="beanDeclarationType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Registers a bean as a TransactionListener with the CacheTransactionManager. The bean must implement com.gemstone.gemfire.cache.TransactionListener
and may be nested or referenced.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="transaction-writer" type="beanDeclarationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Registers a bean as a TransactionWriter with the CacheTransactionManager. The bean must implement com.gemstone.gemfire.cache.TransactionWriter
and may be nested or referenced.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="gateway-conflict-resolver" minOccurs="0"
maxOccurs="1">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.util.GatewayConflictResolver"><![CDATA[
A gateway conflict resolver for this cache. A gateway conflict resolver handles conflicts in the case of concurrent updates using a WAN gateway. The bean
must implement com.gemstone.gemfire.cache.util.GatewayConflictResolver. Requires Gemfire version 7.0 or higher.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports
type="com.gemstone.gemfire.cache.util.GatewayConflictResolver" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Inner bean definition of the gateway conflict resolver.
]]></xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="ref" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the gateway conflict resolver bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:element name="dynamic-region-factory" minOccurs="0"
maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Enables Dynamic Regions and specifies their configuration.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="disk-dir" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the directory path for disk persistence for dynamic regions.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="persistent" type="xsd:string"
default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[
Enables persistence for dynamic regions.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="register-interest" type="xsd:string"
default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies whether dynamic regions register interest in all keys in a corresponding server region.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:element name="jndi-binding" type="jndiBindingType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Configures a data source to be bound to a JNDI context for use with Gemfire transactions
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="copy-on-read" type="xsd:string"
use="optional" default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Controls whether entry value retrieval methods return direct references to the entry value objects in the cache (false)
or copies of the objects (true).
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="id" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the cache definition (by default "gemfireCache").]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache-xml-location" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation source="org.springframework.core.io.Resource"><![CDATA[
The location of the GemFire cache xml file, as a Spring resource location: a URL, a "classpath:" pseudo URL,
or a relative file path.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="properties-ref" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation source="java.util.Properties"><![CDATA[
The bean name of a Java Properties object that will be used for property substitution. For loading properties
consider using a dedicated utility such as the <util:*/> namespace and its 'properties' element.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="use-bean-factory-locator" type="xsd:string"
use="optional" default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether a bean factory locator is enabled (default) for this cache definition or not. The locator stores
the enclosing bean factory reference to allow auto-wiring of Spring beans into GemFire managed classes. Usually disabled
when the same cache is used in multiple application context/bean factories inside the same VM.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="pdx-serializer-ref" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Sets the PDX serializer for the cache. If this serializer is set, it will be consulted to see if it can serialize any
domain classes which are added to the cache in portable data exchange (PDX) format.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="pdx-disk-store" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Sets the name of the disk store to use for PDX meta data. When serializing objects in the PDX format,
the type definitions are persisted to disk. This setting controls which disk store is used for that persistence.
If not set, the metadata will go in the default disk store.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="pdx-persistent" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Control whether the type metadata for PDX objects is persisted to disk.
Set to true if you are using persistent regions, WAN gateways or GemFire's JSON support.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="pdx-read-serialized" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Sets the object preference to PdxInstance type. When a cached object that was serialized as a PDX is read from the cache
a PdxInstance will be returned instead of the actual domain class. The PdxInstance is an interface that provides run time
access to the fields of a PDX without deserializing the entire PDX. The PdxInstance implementation is a light weight wrapper
that simply refers to the raw bytes of the PDX that are kept in the cache. Using this method applications can choose to
access PdxInstance instead of Java object.
Note that a PdxInstance is only returned if a serialized PDX is found in the cache. If the cache contains a deserialized PDX,
then a domain class instance is returned instead of a PdxInstance.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="pdx-ignore-unread-fields" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Controls whether pdx ignores fields that were unread during deserialization. The default is to preserve unread fields be
including their data during serialization. But if you configure the cache to ignore unread fields then their data will be
lost during serialization.
You should only set this attribute to true if you know this member will only be reading cache data. In this use case you
do not need to pay the cost of preserving the unread fields since you will never be reserializing pdx data.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="critical-heap-percentage">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.control.ResourceManager"><![CDATA[
Set the percentage of heap at or above which the cache is considered in danger of becoming inoperable
due to garbage collection pauses or out of memory exceptions. Changing this value can cause a LowMemoryException to
be thrown during certain cache operation. This feature requires additional VM flags to perform properly (see the
JavaDocs for com.gemstone.gemfire.cache.control.ResourceManager for more information).
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="eviction-heap-percentage">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.control.ResourceManager"><![CDATA[
Set the percentage of heap at or above which the eviction should begin on Regions configured for HeapLRU eviction.
This feature requires additional VM flags to perform properly (see the
JavaDocs for com.gemstone.gemfire.cache.control.ResourceManager for more information).
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="close" default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[
Determines if the cache should be closed when the application context is closed. This value is
true by default but should be set to false if deploying multiple applications in a jvm that share the
same cache instance.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="lazy-init" default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[
Determines if the cache should be initialized automatically. Normally the cache will be lazily initialized, i.e., during creation of another bean references it.
For cases in which there are no declared dependencies on the cache, set this attribute to false.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:element name="cache">
<xsd:annotation>
<xsd:documentation
source="org.springframework.data.gemfire.CacheFactoryBean"><![CDATA[
Defines a GemFire Cache instance used for creating or retrieving 'regions'.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.Cache" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="cacheBaseType">
<xsd:attribute name="lock-timeout" type="xsd:string"
use="optional" default="60">
<xsd:annotation>
<xsd:documentation><![CDATA[
The timeout, in seconds, for implicit object lock requests. This setting affects automatic locking only,
and does not apply to manual locking. If a lock request does not return before the specified timeout period,
it is cancelled and returns with a failure.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="lock-lease" type="xsd:string"
use="optional" default="120">
<xsd:annotation>
<xsd:documentation><![CDATA[
The timeout, in seconds, for implicit and explicit object lock leases. This affects both automatic locking and manual locking.
Once a lock is obtained, it can remain in force for the lock lease time period before being automatically cleared by the system
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="message-sync-interval" type="xsd:string"
use="optional" default="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Used for client subscription queue synchronization when this member acts as a server to clients and server redundancy is used.
Sets the frequency (in seconds) at which the primary server sends messages to its secondary servers to remove queued events
that have already been processed by the clients.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="search-timeout" type="xsd:string"
use="optional" default="300">
<xsd:annotation>
<xsd:documentation><![CDATA[
How many seconds a netSearch operation can wait for data before timing out.
You may want to change this based on your knowledge of the network load or other factors.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:element name="client-cache">
<xsd:annotation>
<xsd:documentation
source="org.springframework.data.gemfire.client.ClientCacheFactoryBean"><![CDATA[
Defines a GemFire Client Cache instance used for creating or retrieving 'regions'.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.client.ClientCache" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="cacheBaseType">
<xsd:attribute name="pool-name" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the pool used by this client.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="ready-for-events" type="xsd:string"
use="optional" default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Notifies the server that this durable client is ready to receive updates.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:element name="transaction-manager">
<xsd:annotation>
<xsd:documentation
source="org.springframework.data.gemfire.GemfireTransactionManager"><![CDATA[
Defines a GemFire Transaction Manager instance for a single GemFire cache.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="id" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the transaction manager definition (by default "gemfireTransactionManager").]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache-ref" type="xsd:string" use="optional"
default="gemfireCache">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfireCache').
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="copy-on-read" type="xsd:string"
use="optional" default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether the cache returns direct references or copies of the objects (default) it manages.
While copies imply additional work for every fetch operation, direct references can cause dirty reads
across concurrent threads in the same VM, whether or not transactions are used.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<!-- nested bean definition -->
<xsd:complexType name="beanDeclarationType">
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Inner bean definition. The nested declaration serves as an alternative to bean references (using
both in the same definition) is illegal.
]]></xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="ref" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the bean referred by this declaration. If no reference exists, use an inner bean declaration.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:complexType name="baseLookupRegionType">
<xsd:annotation>
<xsd:documentation><![CDATA[
Defines a lookup Subregion
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.Region" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="basicRegionType">
<xsd:group ref="subRegionGroup" minOccurs="0" maxOccurs="unbounded" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="basicSubRegionType">
<xsd:complexContent>
<xsd:extension base="baseLookupRegionType">
<xsd:attribute name="name" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the region definition.]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="basicRegionType">
<xsd:annotation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.Region" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:complexType>
<!-- -->
<xsd:complexType name="baseReadOnlyRegionType" abstract="true">
<xsd:complexContent>
<xsd:extension base="basicRegionType">
<xsd:sequence>
<xsd:element name="cache-listener" minOccurs="0"
maxOccurs="1">
<xsd:annotation>
<xsd:documentation source="com.gemstone.gemfire.cache.CacheListener"><![CDATA[
A cache listener definition for this region. A cache listener handles region or entry related events (that occur after
various operations on the region). Multiple listeners can be declared in a nested manner.
Note: Avoid the risk of deadlock. Since the listener is invoked while holding a lock on the entry generating the event,
it is easy to generate a deadlock by interacting with the region. For this reason, it is highly recommended to use some
other thread for accessing the region and not waiting for it to complete its task.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.CacheListener" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Inner bean definition of the cache listener.
]]></xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="ref" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the cache listener bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:element name="region-ttl" type="expirationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[[
Time to live configuration for the region itself. Default: no expiration.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="region-tti" type="expirationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[[
Time to idle (or idle timeout) configuration for the region itself. Default: no expiration.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:choice>
<xsd:element name="entry-ttl" type="expirationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[[
Time to live configuration for the region entries. Default: no expiration.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="custom-entry-ttl" type="customExpirationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.CustomExpiry" />
</tool:annotation>
</xsd:appinfo>
<xsd:documentation><![CDATA[[
CustomExpiry time to live configuration for the region entries. Default: no expiration.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:choice>
<xsd:choice>
<xsd:element name="entry-tti" type="expirationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[[
Time to idle (or idle timeout) configuration for the region entries. Default: no expiration.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="custom-entry-tti" type="customExpirationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.CustomExpiry" />
</tool:annotation>
</xsd:appinfo>
<xsd:documentation><![CDATA[[
CustomExpiry Time to idle (or idle timeout) configuration for the region entries. Default: no expiration.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="persistent" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether the defined region is persistent. GemFire ensures that all the data you put into a region that
is configured for persistence will be written to disk in a way that it can be recovered the next time you create the
region. This allows data to be recovered after a machine or process failure or after an orderly shutdown and restart
of GemFire.
Default is false, meaning the regions are not persisted.
Note: Persistence for partitioned regions is supported only from GemFire 6.5 onwards.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="disk-synchronous" type="xsd:string"
default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether the writing to the disk is synchronous or not. Default is false, meaning asynchronous writing.
Note this attribute only applies if a disk store is configured for this region.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="disk-store-ref" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates the id of the disk store to use for persistence or overflow.
Note this attribute only applies if a disk store is configured for this region.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="load-factor" type="xsd:string"
default="0.75">
<xsd:annotation>
<xsd:documentation><![CDATA[[
Together with the initial-capacity region attribute, sets the initial parameters on the underlying java.util.ConcurrentHashMap
used for storing region entries. This must be a floating point number between 0 and 1, inclusive.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cloning-enabled" type="xsd:string"
default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[[
Determines how fromDelta applies deltas to the local cache for delta propagation. When true, the updates are applied to a
clone of the value and then the clone is saved to the cache. When false, the value is modified in place in the cache.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="concurrency-checks-enabled" type="xsd:string"
default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[[
Indicates whether concurrency checks (versioning) are enabled for the region
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="destroy" type="xsd:string"
default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether the defined region should be destroyed or not at shutdown. Destroy cascades to all entries and subregions.
After the destroy, this region object can not be used any more and any attempt to use this region object will get
RegionDestroyedException.
Default is false, meaning that regions are not destroyed.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="close" type="xsd:string" default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether the defined region should be closed or not at shutdown. Close performs a local destroy but leaves behind the region
disk files. Additionally it notifies the listeners and callbacks.
Default is false
Note: Regions are automatically closed when cache closes.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="statistics" type="xsd:string"
default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether statistics are enabled or disabled for this region and its entries.
Default is false, meaning statistics are disabled.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="key-constraint" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The fully qualified class name of the expected key type
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="value-constraint" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The fully qualified class name of the expected value type
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="ignore-jta" type="xsd:string"
use="optional" default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether operations on this region participates in active JTA transactions or ignores them and operates outside of transactions.
This is primarily used in cache loaders, writers, and listeners that need to perform non-transactional operations on a region,
such as caching a result set.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="initial-capacity" type="xsd:string"
use="optional" default="16">
<xsd:annotation>
<xsd:documentation><![CDATA[
Sets the initial capacity (number of entries) for the region
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="readOnlyRegionType">
<xsd:complexContent>
<xsd:extension base="baseReadOnlyRegionType">
<xsd:attributeGroup ref="topLevelRegionAttributes" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="readOnlySubRegionType">
<xsd:complexContent>
<xsd:extension base="baseReadOnlyRegionType">
<xsd:attribute name="name" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the region definition.]]>
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="baseRegionType">
<xsd:complexContent>
<xsd:extension base="baseReadOnlyRegionType">
<xsd:sequence minOccurs="0" maxOccurs="1">
<xsd:element name="cache-loader" type="beanDeclarationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation source="com.gemstone.gemfire.cache.CacheLoader"><![CDATA[
The cache loader definition for this region. A cache loader allows data to be placed into a region.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.CacheLoader" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
<xsd:element name="cache-writer" type="beanDeclarationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation source="com.gemstone.gemfire.cache.CacheWriter"><![CDATA[
The cache writer definition for this region. A cache writer acts as a dedicated synchronous listener that is notified
before a region or an entry is modified. A typical example would be a writer that updates the database.
Note: Only one CacheWriter is invoked. GemFire will always prefer the local one (if it exists) otherwise it will
arbitrarily pick one.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.CacheWriter" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
<xsd:element name="membership-attributes" minOccurs="0"
maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Configures a Region to require one or more membership roles to be present in the system for reliable access to the Region
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="required-roles" type="xsd:string"
use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
A comma delimited list of required role names
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="loss-action" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the behavior when one or more required roles are missing:
(full-access, limited-access, no-access, or reconnect)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="resumption-action" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies how the region is affected by resumption of reliability
when one or more missing required roles is restored to the distributed membership (none or reinitialize)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="gateway-sender" type="baseGatewaySenderType" />
<xsd:element name="gateway-sender-ref">
<xsd:complexType>
<xsd:attribute name="bean" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the gateway sender bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:choice>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="async-event-queue" type="baseAsyncEventQueueType" />
<xsd:element name="async-event-queue-ref">
<xsd:complexType>
<xsd:attribute name="bean" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the gateway sender bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="index-update-type" use="optional"
default="synchronous">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies whether region indexes are maintained synchronously with region modifications, or asynchronously in a background thread.
]]></xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="asynchronous" />
<xsd:enumeration value="synchronous" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="enable-gateway" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies if WAN gateway communications are enabled for this region (true or false) (Deprecated since Gemfire v 7.0)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="hub-id" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies if WAN gateway hub id if enable-gateway is true. (Deprecated since Gemfire v 7.0)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="regionType">
<xsd:complexContent>
<xsd:extension base="baseRegionType">
<xsd:attributeGroup ref="topLevelRegionAttributes" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="subRegionType">
<xsd:complexContent>
<xsd:extension base="baseRegionType">
<xsd:attribute name="name" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the region definition.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="lookupRegionType">
<xsd:complexContent>
<xsd:extension base="baseLookupRegionType">
<xsd:attributeGroup ref="topLevelRegionAttributes" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="lookupSubRegionType">
<xsd:complexContent>
<xsd:extension base="baseLookupRegionType">
<xsd:attribute name="name" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the region definition.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:group name="subRegionGroup">
<xsd:choice>
<xsd:element name="lookup-region" type="lookupSubRegionType" />
<xsd:element name="replicated-region" type="replicatedSubRegionType" />
<xsd:element name="partitioned-region" type="partitionedSubRegionType" />
<xsd:element name="local-region" type="localSubRegionType" />
</xsd:choice>
</xsd:group>
<!-- -->
<xsd:attributeGroup name="topLevelRegionAttributes">
<xsd:attribute name="id" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of the region bean definition.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache-ref" type="xsd:string" use="optional"
default="gemfireCache">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfireCache').
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="name" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the region definition. If no specified, it will have the value of the id attribute (that is, the bean name).
Required for subregions.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:attributeGroup>
<!-- -->
<xsd:attributeGroup name="distributedRegionAttributes">
<xsd:attribute name="enable-subscription-conflation"
type="xsd:string" default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether the region can conflate its messages to the client.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="enable-async-conflation" type="xsd:string"
default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
For TCP/IP distributions between peers, specifies whether to allow aggregation of asynchronous messages sent by the producer member for the region.
This is a special-purpose boolean attribute that applies only when asynchronous queues are used for slow consumers
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="multicast-enabled" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
Boolean that indicates whether distributed operations on a region should use multicasting. To enable this, multicast must be enabled for the
distributed system with the mcast-port gemfire.properties setting.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:attributeGroup>
<!-- -->
<xsd:element name="lookup-region" type="lookupRegionType" />
<!-- -->
<xsd:complexType name="baseReplicatedRegionType">
<xsd:annotation>
<xsd:documentation
source="org.springframework.data.gemfire.RegionFactoryBean"><![CDATA[
Defines a GemFire replicated region instance. Each replicated region contains a complete copy of the data.
As well as high availability, replication provides excellent performance as each region contains a complete,
up to date copy of the data.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.Region" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="baseRegionType">
<xsd:sequence>
<xsd:element name="subscription" minOccurs="0"
maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Subscription policy for the replicated region.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="type" type="subscriptionPolicyType" />
</xsd:complexType>
</xsd:element>
<xsd:element name="eviction" minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Eviction policy for the replicated region.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="evictionType">
<xsd:attribute name="action" type="evictionActionType"
fixed="OVERFLOW_TO_DISK">
<xsd:annotation>
<xsd:documentation><![CDATA[
The action to take when performing eviction.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:group ref="subRegionGroup" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attributeGroup ref="distributedRegionAttributes" />
<xsd:attribute name="concurrency-level">
<xsd:annotation>
<xsd:documentation><![CDATA[
Provides an estimate of the maximum number of application threads that will concurrently access a region entry at one time.
This attribute does not apply to partitioned regions. This attribute helps GemFire optimize the use of system resources and
reduce thread contention. This sets an initial parameter on the underlying java.util.ConcurrentHashMap used for storing region entries.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="scope" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the scope for this region: distributed-ack,distributed-no-ack, global
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="data-policy" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the data policy for this region
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="is-lock-grantor" type="xsd:string"
use="optional" default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether the region is a lock grantor.This attribute is only relevant for regions with global scope, as only they allow locking.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="replicatedRegionType">
<xsd:complexContent>
<xsd:extension base="baseReplicatedRegionType">
<xsd:attributeGroup ref="topLevelRegionAttributes" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="replicatedSubRegionType">
<xsd:complexContent>
<xsd:extension base="baseReplicatedRegionType">
<xsd:attribute name="name" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the region definition.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:element name="replicated-region" type="replicatedRegionType" />
<!-- -->
<xsd:complexType name="baseLocalRegionType">
<xsd:annotation>
<xsd:documentation
source="org.springframework.data.gemfire.ReplicatedRegionFactoryBean"><![CDATA[
Defines a GemFire local region instance. Each local region is scoped only to the local JVM.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.Region" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="baseRegionType">
<xsd:sequence minOccurs="1" maxOccurs="1">
<xsd:element name="eviction" minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Eviction policy for the replicated region.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="evictionType">
<xsd:attribute name="action" type="evictionActionType"
fixed="OVERFLOW_TO_DISK">
<xsd:annotation>
<xsd:documentation><![CDATA[
The action to take when performing eviction.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:group ref="subRegionGroup" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="data-policy" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates the DataPolicy to use for this region (NORMAL or PRELOADED)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="concurrency-level">
<xsd:annotation>
<xsd:documentation><![CDATA[
Provides an estimate of the maximum number of application threads that will concurrently access a region entry at one time.
This attribute does not apply to partitioned regions. This attribute helps GemFire optimize the use of system resources and
reduce thread contention. This sets an initial parameter on the underlying java.util.ConcurrentHashMap used for storing region entries.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="localRegionType">
<xsd:complexContent>
<xsd:extension base="baseLocalRegionType">
<xsd:attributeGroup ref="topLevelRegionAttributes" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="localSubRegionType">
<xsd:complexContent>
<xsd:extension base="baseLocalRegionType">
<xsd:attribute name="name" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the region definition.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:element name="local-region" type="localRegionType" />
<!-- -->
<xsd:complexType name="basePartitionedRegionType">
<xsd:annotation>
<xsd:documentation
source="org.springframework.data.gemfire.RegionFactoryBean"><![CDATA[
Defines a GemFire partitioned region instance. Through partitioning, the data is split across regions.
Partitioning is useful when the amount of data to store is too large for one member to hold and work
with as if it were a single entity. One can configure the partitioned region to store redundant copies
in different members, for high availability in case of an application failure.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.Region" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="baseRegionType">
<xsd:sequence>
<xsd:element name="partition-resolver" type="beanDeclarationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation source="com.gemstone.gemfire.cache.PartitionResolver"><![CDATA[
The partition resolver definition for this region, allowing for custom partitioning. GemFire uses the resolver to
colocate data based on custom criterias (such as colocating trades by month and year).
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.PartitionResolver" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
<xsd:element name="partition-listener" type="beanDeclarationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.partition.PartitionListener"><![CDATA[
The partition listener definition for this region. Defines a callback for partitioned regions, invoked when a partition region
is created or any bucket in a partitioned region becomes primary
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports
type="com.gemstone.gemfire.cache.partition.PartitionListener" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
<xsd:element name="fixed-partition" minOccurs="0"
maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.partition.FixedPartitionAttributes"><![CDATA[
Create a fixed partition with the given attributes. Required for a FixedPartitionResolver.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="partition-name" type="xsd:string"
use="required">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.partition.FixedPartitionAttributes"><![CDATA[
Specifies the fixed partition name
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="primary" use="optional"
default="true">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.partition.FixedPartitionAttributes"><![CDATA[
Specifies if this member is primary for this partition
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="num-buckets" use="optional">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.partition.FixedPartitionAttributes"><![CDATA[
Specifies the number of buckets to allocate to the fixed partition
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:element name="subscription" minOccurs="0"
maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Subscription policy for the partitioned region.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="type" type="subscriptionPolicyType" />
</xsd:complexType>
</xsd:element>
<xsd:element name="eviction" minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Eviction policy for the partitioned region.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="evictionType">
<xsd:attribute name="action" type="evictionActionType"
default="LOCAL_DESTROY">
<xsd:annotation>
<xsd:documentation><![CDATA[
The action to take when performing eviction.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attributeGroup ref="distributedRegionAttributes" />
<xsd:attribute name="copies" use="optional" default="0" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
The number of copies (0-3) for each partition for high-availability. By default, no copies are created meaning there is no
redundancy. Each copy provides extra backup at the expense of extra storages.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="colocated-with" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the partitioned region with which this newly created partitioned region is colocated.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="local-max-memory" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The maximum amount of memory, in megabytes, to be used by the region in this process. If not set, a default of 90%
of available heap is used.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="total-max-memory" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The maximum amount of memory, in megabytes, to be used by the region in all process.
Note: This setting must be the same in all processes using the region.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="total-buckets" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The total number of hash buckets to be used by the region in all processes.
A bucket is the smallest unit of data management in a partitioned region. Entries are stored in buckets and buckets may
move from one VM to another. Buckets may also have copies, depending on redundancy to provide high availability in the
face of VM failure.
The number of buckets should be prime and as a rough guide at the least four times the number of partition VMs. However
, there is significant overhead to managing a bucket, particularly for higher values of redundancy.
Note: This setting must be the same in all processes using the region.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="recovery-delay" type="xsd:string"
use="optional" default="-1">
<xsd:annotation>
<xsd:documentation><![CDATA[
The delay in milliseconds that existing members will wait before satisfying redundancy after another member crashes.
-1 (the default) indicates that redundancy will not be recovered after a failure.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="startup-recovery-delay" type="xsd:string"
use="optional" default="-1">
<xsd:annotation>
<xsd:documentation><![CDATA[
The delay in milliseconds that new members will wait before satisfying redundancy. -1 indicates that adding new members
will not trigger redundancy recovery. The default is to recover redundancy immediately when a new member is added.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="partitionedRegionType">
<xsd:complexContent>
<xsd:extension base="basePartitionedRegionType">
<xsd:attributeGroup ref="topLevelRegionAttributes" />
</xsd:extension>
<!-- subRegions not supported -->
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:complexType name="partitionedSubRegionType">
<xsd:complexContent>
<xsd:extension base="basePartitionedRegionType">
<xsd:attribute name="name" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the region definition.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
<!-- subRegions not supported -->
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:element name="partitioned-region" type="partitionedRegionType" />
<!-- -->
<xsd:complexType name="expirationType">
<xsd:attribute name="timeout" type="xsd:string" default="0">
<xsd:annotation>
<xsd:documentation><![CDATA[
The amount of time before the expiration action takes place. Defaults to zero (which means never timeout).
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="action" default="INVALIDATE">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="INVALIDATE">
<xsd:annotation>
<xsd:documentation><![CDATA[
When the region or cached object expires, it is invalidated.
]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="DESTROY">
<xsd:annotation>
<xsd:documentation><![CDATA[
When the region or cached object expires, it is destroyed.
]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="LOCAL_INVALIDATE">
<xsd:annotation>
<xsd:documentation><![CDATA[
When the region or cached object expires, it is invalidated locally only. Not supported on partitioned regions.
]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="LOCAL_DESTROY">
<xsd:annotation>
<xsd:documentation><![CDATA[
When the region or cached object expires, it is destroyed locally only. Not supported on partitioned regions.
]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:complexType name="customExpirationType">
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Inner bean definition of the CustomExpiry.
]]></xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="ref" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the CustomExpiry bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:complexType name="evictionType">
<xsd:sequence minOccurs="0" maxOccurs="1">
<xsd:element name="object-sizer" type="beanDeclarationType">
<xsd:annotation>
<xsd:documentation><![CDATA[
Entity computing sizes for objects stored into the grid.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.util.ObjectSizer" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="type" default="ENTRY_COUNT">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="ENTRY_COUNT">
<xsd:annotation>
<xsd:documentation><![CDATA[
Considers the number of entries in the region before performing an eviction.
]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="MEMORY_SIZE">
<xsd:annotation>
<xsd:documentation><![CDATA[
Considers the amount of memory consumed by the region before performing an eviction.
]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="HEAP_PERCENTAGE">
<xsd:annotation>
<xsd:documentation><![CDATA[
Considers the amount of heap used (through the GemFire resource manager) before performing an eviction.
]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="threshold" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
The threshold (or limit) against which the eviction algorithm runs. Once the threashold is reached, eviction is
performed.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:simpleType name="evictionActionType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="LOCAL_DESTROY">
<xsd:annotation>
<xsd:documentation><![CDATA[
The LRU (least-recently-used) region entries is locally destroyed.
Note: this option is not compatible with replicated regions (as it render the replica region incomplete).
]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="OVERFLOW_TO_DISK">
<xsd:annotation>
<xsd:documentation><![CDATA[
The LRU (least-recently-used) region entry values are written to disk and nulled-out in the member to
reclaim memory.
]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="subscriptionPolicyType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="ALL">
<xsd:annotation>
<xsd:documentation><![CDATA[
This subscriber is interested in all data. More specifically operations done in this cache and distributed operations done in remote caches.
When combined with DataPolicy.EMPTY this region will receive events for every distributed operation but will not store the data.
When combined with DataPolicy.NORMAL or DataPolicy.PRELOADED this region will accept Region.create(Object, Object) operations done remotely. Without the ALL interest policy, NORMAL and PRELOADED ignore creates that the region does not have an existing entry for.
When combined with the replication policies this interest has no effect.
When combined with DataPolicy.PARTITION this interest policy causes cache listeners to be notified of changes regardless of the physical location of the data affected. That is, a listener in a VM using this policy will receive notification of all changes to the partitioned region.
]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
<xsd:enumeration value="CACHE_CONTENT">
<xsd:annotation>
<xsd:documentation><![CDATA[
This subscriber is interested in data that is already in its cache. More specifically operations done in this cache and distributed operations done in remote caches.
When combined with DataPolicy.EMPTY this region will never receive events for distributed operations since its content is always empty. It will continue to get events for operations done locally.
When combined with DataPolicy.NORMAL or DataPolicy.PRELOADED this region will accept remote operations done to entries it already has in its cache.
When combined with the replication policies * this interest has no effect.
When combined with DataPolicy.PARTITION this interest policy causes cache listeners to be notified in the VM holding the affected data. That is, listeners are only notified if the affected* key-value pair is in the same process as the listener. ]]></xsd:documentation>
</xsd:annotation>
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
<!-- -->
<xsd:complexType name="baseDiskStoreType">
<xsd:sequence>
<xsd:element name="disk-dir" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="location" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
Directory on the file system for storing data.
Note: the directory must already exist.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.DiskStore" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="max-size" type="xsd:string"
default="2147483647">
<xsd:annotation>
<xsd:documentation><![CDATA[
The maximum size (in megabytes) of data stored in each directory. Default value is 2,147,483,647 which is two petabytes.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="auto-compact" type="xsd:string" default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether or not the operation logs are automatically compacted or not. Default is true.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="max-oplog-size" type="xsd:string" default="1024">
<xsd:annotation>
<xsd:documentation><![CDATA[
Sets the maximum size in megabytes a single oplog (operation log) is allowed to be. When an oplog is created this
amount of file space will be immediately reserved.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="time-interval" type="xsd:string" default="1000">
<xsd:annotation>
<xsd:documentation><![CDATA[
Sets the number of milliseconds that can elapse before unwritten data is written to disk.
It is considered only for asynchronous writing.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="queue-size" type="xsd:string" default="0">
<xsd:annotation>
<xsd:documentation><![CDATA[
The maximum number of operations that can be asynchronously queued. Once this many pending async operations have been
queued async ops will begin blocking until some of the queued ops have been flushed to disk.
Considered only for asynchronous writing.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="compaction-threshold" type="xsd:string" default="50">
<xsd:annotation>
<xsd:documentation><![CDATA[
Sets the threshold at which an oplog will become compactable. Until it reaches this threshold the oplog will not be compacted.
The threshold is a percentage in the range 0..100. When the amount of garbage in an oplog exceeds this percentage then when a
compaction is done and this garbage will be cleaned up freeing up disk space. Garbage is created by entry destroys,
entry updates, and region destroys.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="allow-force-compaction" type="xsd:string" default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether forced compaction is allowed for regions using this disk store
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="write-buffer-size" type="xsd:string" default="32768">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates the write buffer size in bytes
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:complexType name="diskStoreType">
<xsd:complexContent>
<xsd:extension base="baseDiskStoreType">
<xsd:attribute name="id" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the disk store bean definition. This is also used as the disk store name]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache-ref" type="xsd:string" use="optional" default="gemfireCache">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfireCache').
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<!-- -->
<xsd:element name="disk-store" type="diskStoreType" />
<!-- -->
<xsd:element name="client-region">
<xsd:annotation>
<xsd:documentation
source="org.springframework.data.gemfire.client.ClientRegionFactoryBean"><![CDATA[
Defines a GemFire client region instance. A client region is connected to a (long-lived) farm of GemFire servers from
which it receives its data. The client can hold some data locally or forward all requests to the server.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.Region" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="readOnlyRegionType">
<xsd:sequence>
<xsd:element name="cache-loader" type="beanDeclarationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation source="com.gemstone.gemfire.cache.CacheLoader"><![CDATA[
The cache loader definition for this region. A cache loader allows data to be placed into a region.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.CacheLoader" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
<xsd:element name="cache-writer" type="beanDeclarationType"
minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation source="com.gemstone.gemfire.cache.CacheWriter"><![CDATA[
The cache writer definition for this region. A cache writer acts as a dedicated synchronous listener that is notified
before a region or an entry is modified. A typical example would be a writer that updates the database.
Note: Only one CacheWriter is invoked. GemFire will always prefer the local one (if it exists) otherwise it will
arbitrarily pick one.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.CacheWriter" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="key-interest">
<xsd:annotation>
<xsd:documentation><![CDATA[
Key based interest. If the key is a List, then all the keys in the List will be registered. The key can also be the
special token 'ALL_KEYS', which will register interest in all keys in the region. In effect, this will cause an update
to any key in this region in the CacheServer to be pushed to the client.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="interestType">
<xsd:sequence minOccurs="0" maxOccurs="1">
<xsd:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Inner bean definition of the client key interest.
]]></xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="key-ref" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the client key interest bean referred by this declaration. Used as a convenience method. If no reference exists,
use the inner bean declaration.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="regex-interest">
<xsd:annotation>
<xsd:documentation><![CDATA[
Regular expression based interest. If the pattern is '.*' then all keys of any type will be pushed to the client.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="interestType">
<xsd:attribute name="pattern" type="xsd:string" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:choice>
<xsd:element name="eviction" minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
Eviction policy for the partitioned region.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="evictionType">
<xsd:attribute name="action" type="evictionActionType"
default="LOCAL_DESTROY">
<xsd:annotation>
<xsd:documentation><![CDATA[
The action to take when performing eviction.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="data-policy" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The data policy for this client. Can be either 'EMPTY' or 'NORMAL' (the default). In case persistence or overflow are
configured for this region, this parameter will be ignored.
EMPTY - causes data to never be stored in local memory. The region will always appear empty. It can be used to for zero
footprint producers that only want to distribute their data to others and for zero footprint consumers that only want
to see events.
NORMAL - causes data that this region is interested in to be stored in local memory. It allows the contents in this
cache to differ from other caches.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="pool-name" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the pool used by this client. If not set, a default pool (initialized when using client-cache) will be used.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="shortcut" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The ClientRegionShortcut for this region. Allows easy initialization of the region based on defaults.
]]></xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="PROXY" />
<xsd:enumeration value="CACHING_PROXY" />
<xsd:enumeration value="CACHING_PROXY_HEAP_LRU" />
<xsd:enumeration value="CACHING_PROXY_OVERFLOW" />
<xsd:enumeration value="LOCAL" />
<xsd:enumeration value="LOCAL_PERSISTENT" />
<xsd:enumeration value="LOCAL_HEAP_LRU" />
<xsd:enumeration value="LOCAL_OVERFLOW" />
<xsd:enumeration value="LOCAL_PERSISTENT_OVERFLOW" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:complexType name="connectionType">
<xsd:attribute name="host" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
The host name or ip address of the connection.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="port">
<xsd:annotation>
<xsd:documentation><![CDATA[
The port number of the connection (between 1 and 65535 inclusive).
]]></xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string" />
</xsd:simpleType>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:complexType name="interestType" abstract="true">
<xsd:attribute name="durable" type="xsd:string" use="optional"
default="false">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether or not the registered interest is durable or not. Default is false.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="result-policy" use="optional"
default="KEYS_VALUES">
<xsd:annotation>
<xsd:documentation><![CDATA[
The result policy for this interest. Can be one of 'KEYS' or 'KEYS_VALUES' (the default) or 'NONE'.
KEYS - Initializes the local cache with the keys satisfying the request.
KEYS-VALUES - initializes the local cache with the keys and current values satisfying the request.
NONE - Does not initialize the local cache.
]]></xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="KEYS" />
<xsd:enumeration value="KEYS_VALUES" />
<xsd:enumeration value="NONE" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="receive-values" type="xsd:string"
use="optional" default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether values are received with create and update events on keys of interest (true)
or only invalidations are received and the value will be received on the next get instead (false).
Default is true.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:element name="pool">
<xsd:annotation>
<xsd:documentation
source="org.springframework.data.gemfire.client.PoolFactoryBean"><![CDATA[
Defines a pool for connections from a client to a set of GemFire Cache Servers.
Note that in order to instantiate a pool, a GemFire cache needs to be already started.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.client.Pool" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:choice minOccurs="1" maxOccurs="1">
<xsd:element name="locator" type="connectionType"
minOccurs="1" maxOccurs="unbounded" />
<xsd:element name="server" type="connectionType"
minOccurs="1" maxOccurs="unbounded" />
</xsd:choice>
<xsd:attribute name="id" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the pool definition (by default "gemfirePool").]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="free-connection-timeout" type="xsd:string"
use="optional" />
<xsd:attribute name="idle-timeout" type="xsd:string"
use="optional" />
<xsd:attribute name="load-conditioning-interval" type="xsd:string"
use="optional" />
<xsd:attribute name="keep-alive" type="xsd:string" use="optional" />
<xsd:attribute name="max-connections" type="xsd:string"
use="optional" />
<xsd:attribute name="min-connections" type="xsd:string"
use="optional" />
<xsd:attribute name="multi-user-authentication" type="xsd:string"
use="optional" />
<xsd:attribute name="ping-interval" type="xsd:string"
use="optional" />
<xsd:attribute name="pr-single-hop-enabled" type="xsd:string"
use="optional" />
<xsd:attribute name="read-timeout" type="xsd:string"
use="optional" />
<xsd:attribute name="retry-attempts" type="xsd:string"
use="optional" />
<xsd:attribute name="server-group" type="xsd:string"
use="optional" />
<xsd:attribute name="socket-buffer-size" type="xsd:string"
use="optional" />
<xsd:attribute name="statistic-interval" type="xsd:string"
use="optional" />
<xsd:attribute name="subscription-ack-interval" type="xsd:string"
use="optional" />
<xsd:attribute name="subscription-enabled" type="xsd:string"
use="optional" />
<xsd:attribute name="subscription-message-tracking-timeout"
type="xsd:string" use="optional" />
<xsd:attribute name="subscription-redundancy" type="xsd:string"
use="optional" />
<xsd:attribute name="thread-local-connections" type="xsd:string"
use="optional" />
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:element name="cache-server">
<xsd:annotation>
<xsd:documentation
source="org.springframework.data.gemfire.server.CacheServerFactoryBean"><![CDATA[
Defines a Cache Server for feeding data to remote gemfire clients to a server GemFire Cache Servers.
Note: In order to instantiate a cacheserver, a GemFire cache needs to be avaialble in the VM.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.server.CacheServer" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence minOccurs="0" maxOccurs="1">
<xsd:element name="subscription-config" minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation><![CDATA[
The client subscription configuration that is used to control a clients use of server resources towards notification queues.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="eviction-type" use="optional"
default="NONE">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="NONE" />
<xsd:enumeration value="MEM" />
<xsd:enumeration value="ENTRY" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="capacity" type="xsd:string"
use="optional" default="1" />
<xsd:attribute name="disk-store" type="xsd:string" use="optional"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the cache server definition (by default "gemfireServer").
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="auto-startup" type="xsd:string"
use="optional" default="true" />
<xsd:attribute name="bind-address" type="xsd:string"
use="optional" />
<xsd:attribute name="port" type="xsd:string" use="optional"
default="40404">
<xsd:annotation>
<xsd:documentation><![CDATA[
The port number of the server.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="host-name-for-clients" type="xsd:string"
use="optional" />
<xsd:attribute name="load-poll-interval" type="xsd:string"
use="optional" default="5000" />
<xsd:attribute name="max-connections" type="xsd:string"
use="optional" default="800" />
<xsd:attribute name="max-threads" type="xsd:string"
use="optional" default="0" />
<xsd:attribute name="max-message-count" type="xsd:string"
use="optional" default="230000" />
<xsd:attribute name="max-time-between-pings" type="xsd:string"
use="optional" default="60000" />
<xsd:attribute name="message-time-to-live" type="xsd:string"
use="optional" default="180" />
<xsd:attribute name="socket-buffer-size" type="xsd:string"
use="optional" default="32768" />
<xsd:attribute name="notify-by-subscription" type="xsd:string"
use="optional" default="true" />
<xsd:attribute name="groups" type="xsd:string" use="optional"
default="">
<xsd:annotation>
<xsd:documentation><![CDATA[
The server groups that this server will be a member of given as a comma separated values list.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="load-probe-ref" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the bean defining the CacheServer Load Probe.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache-ref" type="xsd:string" use="optional"
default="gemfireCache">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfireCache').
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:element name="cq-listener-container">
<xsd:annotation>
<xsd:documentation><![CDATA[
Container for continuous query listeners. All listeners will be hosted by the same container.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports
type="org.springframework.data.gemfire.listener.ContinuousQueryListenerContainer" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="listener" type="listenerType"
minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of the listener (optional)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache" type="xsd:string" default="gemfireCache">
<xsd:annotation>
<xsd:documentation><![CDATA[
A reference (by name) to the GemFire cache bean. Default is "gemfireCache".
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation kind="ref">
<tool:expected-type type="com.gemstone.gemfire.cache.RegionService" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="task-executor" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for executing
GemFire listener invokers. Default is a SimpleAsyncTaskExecutor.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation kind="ref">
<tool:expected-type type="java.util.concurrent.Executor" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="phase" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
The lifecycle phase within which this container should start and stop. The lower
the value the earlier this container will start and the later it will stop. The
default is Integer.MAX_VALUE meaning the container will start as late as possible
and stop as soon as possible.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="pool-name" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the pool used by the container.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:complexType name="listenerType">
<xsd:attribute name="ref" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The bean name of the listener object, implementing the ContinuousQueryListener interface or defining the specified listener method.
Required.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation kind="ref" />
</xsd:appinfo>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="query" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The query for the GemFire continuous query.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="method" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the listener method to invoke. If not specified, the target bean is supposed to implement the ContinuousQueryListener
interface or provide a method named 'handleEvent'.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="name" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the resulting GemFire continuous query. Useful for monitoring and statistics querying.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="durable" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Whether the resulting GemFire continuous query is durable or not.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:element name="index">
<xsd:annotation>
<xsd:documentation
source="org.springframework.data.gemfire.IndexFactoryBean"><![CDATA[
Defines a GemFire index.
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.query.Index" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="id" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the index bean definition. If property 'name' is not set, it will be used as the index name as well.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="type" use="optional">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="HASH" />
<xsd:enumeration value="PRIMARY_KEY" />
<xsd:enumeration value="FUNCTIONAL" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="name" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the index.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="expression" type="xsd:string" use="required" />
<xsd:attribute name="from" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
Corresponds to the regionPath parameter in createIndex methods.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="imports" type="xsd:string" use="optional" />
<xsd:attribute name="override" type="xsd:string" use="optional"
default="true">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates whether the index is created even if there is an index with the same name (default) or not.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache-ref" type="xsd:string" use="optional"
default="gemfireCache">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfireCache').
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="pool-name" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the pool used by the index. Used usually in client scenarios.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:complexType name="jndiBindingType">
<xsd:sequence>
<xsd:element name="jndi-prop" type="configPropertyType"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies a vendor-specific property
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="jndi-name" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The JNDI name for this datasource. Will be prefixed with "java:/"
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="type" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the datasource implementation: ManagedDataSource,SimpleDataSource,PooledDataSource,XaPooledDataSource
]]></xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="ManagedDataSource" />
<xsd:enumeration value="SimpleDataSource" />
<xsd:enumeration value="PooledDataSource" />
<xsd:enumeration value="XaPooledDataSource" />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="blocking-timeout-seconds" type="xsd:string"
use="optional" />
<xsd:attribute name="conn-pooled-datasource-class" type="xsd:string"
use="optional" />
<xsd:attribute name="connection-url" type="xsd:string"
use="optional" />
<xsd:attribute name="idle-timeout-seconds" type="xsd:string"
use="optional" />
<xsd:attribute name="init-pool-size" type="xsd:string"
use="optional" />
<xsd:attribute name="jdbc-driver-class" type="xsd:string"
use="optional" />
<xsd:attribute name="login-timeout-seconds" type="xsd:string"
use="optional" />
<xsd:attribute name="managed-connection-factory-class"
type="xsd:string" use="optional" />
<xsd:attribute name="max-pool-size" type="xsd:string"
use="optional" />
<xsd:attribute name="password" type="xsd:string" use="optional" />
<xsd:attribute name="user-name" type="xsd:string" use="optional" />
<xsd:attribute name="xa-datasource-class" type="xsd:string"
use="optional" />
<xsd:attribute name="transaction-type" type="xsd:string"
use="optional" />
</xsd:complexType>
<!-- -->
<xsd:complexType name="configPropertyType" mixed="true">
<xsd:attribute name="key" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies The property key
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="type" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies a data type if other than java.lang.String
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:complexType name="baseGatewaySenderType">
<xsd:annotation>
<xsd:documentation source="com.gemstone.gemfire.cache.wan.GatewaySender"><![CDATA[
A gateway sender gateway definition (requires Gemfire 7.0 or later)
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.wan.GatewaySender" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="event-filter" minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.wan.GatewayEventFilter"><![CDATA[
A gateway event filter for this gateway sender
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.wan.GatewayEventFilter" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Inner bean definition of the event filter
]]></xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="transport-filter" type="gatewayTransportFilterType"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attributeGroup ref="commonWANQueueAttributes" />
<xsd:attribute name="name" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Optionally specifies the GemFire gateway sender id. By default this value is the bean id or a generated value if an inner bean.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="remote-distributed-system-id" type="xsd:string"
use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the remote distributed system id, an integer value representing the remote distributed system
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="manual-start" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies if the gateway sender is manually (true) or automatically(false) started
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="socket-buffer-size" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the socket buffer size in bytes
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="socket-read-timeout" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the socket read timeout in milliseconds
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="enable-batch-conflation" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies whether batch conflation is enabled (true or false)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="batch-time-interval" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The maximum time interval that can elapse before a partial batch is sent from a GatewaySender to its corresponding GatewayReceiver.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="alert-threshold" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the alert threshold in miliseconds, indicating the maximum time elapsed from when the gateway sent the message
to when the acknowldgement was received from the gateway receiver.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="dispatcher-threads" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the number of dispatcher threads to allocate to the gateway sender
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="order-policy" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the order policy - This only applies if parallel is enabled:
KEY: Indicates that events will be parallelized based on the event's key,
PARTITION:Indicates that events will be parallelized based on the event's: partition (using the PartitionResolver)
THREAD:Indicates that events will be parallelized based on the event's originating member and thread
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:attributeGroup name="commonWANQueueAttributes">
<xsd:attribute name="batch-size" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the batch size
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="persistent" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies whether persistence is enabled: true or false(default)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="disk-store-ref" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates the id of disk store to use for persistence
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="maximum-queue-memory" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the maximum memory in MB to allocate for the queue
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="parallel" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
A value of "false" or "true" that specifies the type of queue GemFire creates, serial or parallel.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:attributeGroup>
<!-- -->
<xsd:complexType name="gatewayReceiverType">
<xsd:annotation>
<xsd:documentation source="com.gemstone.gemfire.cache.wan.GatewayReceiver"><![CDATA[
A gateway receiver definition (requires Gemfire 7.0 or later)
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.wan.GatewayReceiver" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="transport-filter" type="gatewayTransportFilterType"
minOccurs="0" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="start-port" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the lower end of a port range to use for the gateway receiver
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="end-port" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the upper end of a port range to use for the gateway receiver
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="bind-address" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the bind address (IP address or host name) for the gateway receiver
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="maximum-time-between-pings" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the maximum time between pings in milliseconds
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="socket-buffer-size" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the socket buffer size in bytes
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="id" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of this bean definition
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache-ref" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of the cache - default is gemfireCache
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:complexType name="baseAsyncEventQueueType">
<xsd:annotation>
<xsd:documentation source="com.gemstone.gemfire.cache.wan.AsyncEventQueue"><![CDATA[
An async event queue definition (requires Gemfire 7.0 or later)
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.wan.AsyncEventQueue" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="async-event-listener" minOccurs="1"
maxOccurs="1">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.wan.AsyncEventListener"><![CDATA[
An async event listener definition for this distributed system. (requires Gemfire 7.0)
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.wan.AsyncEventListener" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Inner bean definition of the async event listener
]]></xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="ref" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the async event listener bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Optionally specifies the GemFire async event queue id. By default this value is the bean id or a generated value if an inner bean.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="batch-conflation-enabled" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Optionally specifies whether to conflate queued events (true or false)
(only available in Gemfire 7.0.1 + )
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="batch-time-interval" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the maximum time interval that can elapse before a partial batch is sent from a the AsyncEventQueue
(only available in Gemfire 7.0.1 + )
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="disk-synchronous" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies if disk writes should be synchronous (true or false) (only available in Gemfire 7.0.1 + )
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="dispatcher-threads" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the number of dispatcher threads to use (only available in Gemfire 7.0.1 + )
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="order-policy" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
(Only available in GemFire 7.0.1 + )
Specifies the order policy - This only applies if parallel is enabled:
KEY: Indicates that events will be parallelized based on the event's key,
PARTITION:Indicates that events will be parallelized based on the event's: partition (using the PartitionResolver)
THREAD:Indicates that events will be parallelized based on the event's originating member and thread
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attributeGroup ref="commonWANQueueAttributes" />
</xsd:complexType>
<!-- -->
<xsd:element name="gateway-sender">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="baseGatewaySenderType">
<xsd:attribute name="id" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of this bean definition.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache-ref" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of the cache - default is gemfireCache
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:element name="async-event-queue">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="baseAsyncEventQueueType">
<xsd:attribute name="id" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of this bean definition.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache-ref" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of the cache - default is gemfireCache
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="gateway-receiver" type="gatewayReceiverType" />
<!-- -->
<xsd:element name="function-service">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="function" minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation source="com.gemstone.gemfire.cache.execute.Function"><![CDATA[
Declares one or more remote functions for this cache and register's with them the FunctionService. each bean
must implement com.gemstone.gemfire.cache.execute.Function
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports type="com.gemstone.gemfire.cache.execute.Function" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Inner bean definition of the remote function.
]]></xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="ref" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the remote function bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of the function service (optional)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:simpleType name="scopeType">
<xsd:annotation>
<xsd:documentation><![CDATA[
Determines how updates to region entries are distributed to the other caches in the distributed system where the region and entry are defined.
Scope also determines whether to allow remote invocation of some of the region’s event handlers
]]></xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="distributed-ack" />
<xsd:enumeration value="distributed-no-ack" />
<xsd:enumeration value="global" />
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="gatewayTransportFilterType">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.wan.GatewayTransportFilter"><![CDATA[
A transport filter for this gateway component
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports
type="com.gemstone.gemfire.cache.wan.GatewayTransportFilter" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Inner bean definition of the transport filter.
]]></xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="ref" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the transport filter bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- Gemfire 6 WAN Gateway schema -->
<xsd:complexType name="gatewayHubType">
<xsd:annotation>
<xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="gateway" type="gatewayType" minOccurs="0"
maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of this hub
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="port" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The port for this hub (integer value, if not specified, Gemfire will select an open port)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="cache-ref" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The id of the cache - default is gemfireCache
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="bind-address" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the bind address (IP address or host name) for the gateway hub
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="socket-buffer-size" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the socket buffer size in bytes
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="manual-start" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies if the gateway hub is manually (true) or automatically(false) started
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="startup-policy" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the startup policy (primary,secondary, none) for the gateway hub
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:complexType name="gatewayEndpointType">
<xsd:annotation>
<xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
</xsd:annotation>
<xsd:attribute name="host" type="xsd:string" use="required">
</xsd:attribute>
<xsd:attribute name="port" type="xsd:string" use="required">
</xsd:attribute>
<xsd:attribute name="endpoint-id" type="xsd:string" use="required">
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:complexType name="gatewayQueueType">
<xsd:annotation>
<xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
</xsd:annotation>
<xsd:attribute name="enable-batch-conflation" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies whether batch conflation is enabled (true or false)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="batch-time-interval" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The maximum time interval that can elapse before a partial batch is sent from a GatewaySender to its corresponding GatewayReceiver.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="alert-threshold" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the alert threshold in miliseconds, indicating the maximum time elapsed from when the gateway sent the message
to when the acknowldgement was received from the gateway receiver.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="batch-size" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the batch size
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="persistent" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies whether persistence is enabled: true or false(default)
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="disk-store-ref" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Indicates the id of disk store to use for persistence
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="maximum-queue-memory" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the maximum memory in MB to allocate for the queue
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:complexType name="gatewayType">
<xsd:annotation>
<xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:choice>
<xsd:element name="gateway-endpoint" minOccurs="1"
maxOccurs="unbounded" type="gatewayEndpointType" />
<xsd:element name="gateway-listener" minOccurs="1"
maxOccurs="1">
<xsd:annotation>
<xsd:documentation
source="com.gemstone.gemfire.cache.util.GatewayEventListener"><![CDATA[
An gateway event listener definition for the gateway
]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation>
<tool:exports
type="com.gemstone.gemfire.cache.util.GatewayEventListener" />
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:any namespace="##other" processContents="skip"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Inner bean definition of the gateway event listener
]]></xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>
<xsd:attribute name="ref" type="xsd:string" use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
The name of the gateway event listener bean referred by this declaration. Used as a convenience method. If no reference exists,
use inner bean declarations.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:choice>
<xsd:element name="gateway-queue" minOccurs="0"
maxOccurs="1" type="gatewayQueueType" />
</xsd:sequence>
<xsd:attribute name="gateway-id" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the id for this gateway
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="socket-buffer-size" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the socket buffer size in bytes
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="socket-read-timeout" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the socket read timeout in milliseconds
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="order-policy" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the order policy - This only applies if parallel is enabled:
KEY: Indicates that events will be parallelized based on the event's key,
PARTITION:Indicates that events will be parallelized based on the event's: partition (using the PartitionResolver)
THREAD:Indicates that events will be parallelized based on the event's originating member and thread
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="concurrency-level" type="xsd:string"
use="optional">
<xsd:annotation>
<xsd:documentation><![CDATA[
Specifies the number of parallel threads
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
<!-- -->
<xsd:element name="gateway-hub" type="gatewayHubType">
<xsd:annotation>
<xsd:documentation><![CDATA[
Deprecated as of Gemfire 7
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
<!-- End Gemfire 6 WAN Gateway schema -->
<!-- Function Annotation Support -->
<xsd:element name="annotation-driven">
<xsd:annotation>
<xsd:documentation><![CDATA[
Enables gemfire annotations.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:schema>
Spring Data GemFire Data Access Schema (gfe-data)
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://www.springframework.org/schema/data/gemfire" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:tool="http://www.springframework.org/schema/tool"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
targetNamespace="http://www.springframework.org/schema/data/gemfire" elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.3">
<xsd:import namespace="http://www.springframework.org/schema/beans"/>
<xsd:import namespace="http://www.springframework.org/schema/tool"/>
<xsd:import namespace="http://www.springframework.org/schema/data/repository"
schemaLocation="http://www.springframework.org/schema/data/repository/spring-repository.xsd"/>
<xsd:import namespace="http://www.springframework.org/schema/gemfire"
schemaLocation="http://www.springframework.org/schema/gemfire/spring-gemfire.xsd"/>
<xsd:import namespace="http://www.springframework.org/schema/context"
schemaLocation="http://www.springframework.org/schema/context/spring-context.xsd" />
<!-- -->
<xsd:annotation>
<xsd:documentation><![CDATA[
Namespace support for the Spring Data GemFire Client side data access.
]]></xsd:documentation>
</xsd:annotation>
<!-- -->
<!-- Repositories -->
<xsd:element name="repositories">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="repository:repositories">
<xsd:attributeGroup ref="gemfire-repository-attributes"/>
<xsd:attributeGroup ref="repository:repository-attributes"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:element name="function-executions">
<xsd:annotation>
<xsd:documentation><![CDATA[
Enables component scanning for annotated function execution interfaces.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="include-filter" type="context:filterType" minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Controls which eligible types to include for component scanning.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="exclude-filter" type="context:filterType" minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation><![CDATA[
Controls which eligible types to exclude for component scanning.
]]></xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="base-package" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation><![CDATA[
Defines the base package where function execution interfaces will be tried to be detected.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
<!-- -->
<xsd:attributeGroup name="gemfire-repository-attributes">
<xsd:attribute name="mapping-context-ref" type="mappingContextRef">
<xsd:annotation>
<xsd:documentation>
The reference to a MappingContext. If not set a default one will be created.
</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:attributeGroup>
<!-- -->
<xsd:simpleType name="mappingContextRef">
<xsd:annotation>
<xsd:appinfo>
<tool:annotation kind="ref">
<tool:assignable-to type="org.springframework.data.gemfire.GemfireMappingContext"/>
</tool:annotation>
</xsd:appinfo>
</xsd:annotation>
<xsd:union memberTypes="xsd:string"/>
</xsd:simpleType>
<!-- DataSource -->
<xsd:element name="datasource">
<xsd:annotation>
<xsd:documentation><![CDATA[
Defines a connection from a Cache client to a set of GemFire Cache Servers.
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:choice minOccurs="1" maxOccurs="1">
<xsd:element name="locator" type="gfe:connectionType"
minOccurs="1" maxOccurs="unbounded" />
<xsd:element name="server" type="gfe:connectionType"
minOccurs="1" maxOccurs="unbounded" />
</xsd:choice>
<xsd:attribute name="free-connection-timeout"
type="xsd:string" use="optional" />
<xsd:attribute name="idle-timeout" type="xsd:string"
use="optional" />
<xsd:attribute name="load-conditioning-interval"
type="xsd:string" use="optional" />
<xsd:attribute name="max-connections" type="xsd:string"
use="optional" />
<xsd:attribute name="min-connections" type="xsd:string"
use="optional" />
<xsd:attribute name="multi-user-authentication"
type="xsd:string" use="optional" />
<xsd:attribute name="ping-interval" type="xsd:string"
use="optional" />
<xsd:attribute name="pr-single-hop-enabled"
type="xsd:string" use="optional" />
<xsd:attribute name="read-timeout" type="xsd:string"
use="optional" />
<xsd:attribute name="retry-attempts" type="xsd:string"
use="optional" />
<xsd:attribute name="server-group" type="xsd:string"
use="optional" />
<xsd:attribute name="socket-buffer-size" type="xsd:string"
use="optional" />
<xsd:attribute name="statistic-interval" type="xsd:string"
use="optional" />
<xsd:attribute name="subscription-ack-interval"
type="xsd:string" use="optional" />
<xsd:attribute name="subscription-enabled"
type="xsd:string" use="optional" />
<xsd:attribute name="subscription-message-tracking-timeout"
type="xsd:string" use="optional" />
<xsd:attribute name="subscription-redundancy"
type="xsd:string" use="optional" />
<xsd:attribute name="thread-local-connections"
type="xsd:string" use="optional" />
</xsd:complexType>
</xsd:element>
<xsd:element name="json-region-autoproxy">
<xsd:annotation>
<xsd:documentation><![CDATA[
Enables A Spring AOP proxy to perform automatic conversion to and from JSON for appropriate region operations
]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="region-refs" use="optional" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
A comma delimited string of region names to include for JSON conversion. By default all regions are included.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="pretty-print" use="optional" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
A boolean value to specify whether returned JSON strings are pretty printed, false by default.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="convert-returned-collections" use="optional" type="xsd:string">
<xsd:annotation>
<xsd:documentation><![CDATA[
A boolean value to specify whether Collections returned by Region.getAll(), Region.values() should be converted from the
native GemFire PdxInstance type. True, by default but will incur significant overhead for large collections.
]]></xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:schema>