Spring Data Elasticsearch

Authors

BioMed Central Development Team

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.


Table of Contents

Preface
1. Project Metadata
2. Requirements
I. Reference Documentation
1. Working with Spring Data Repositories
1.1. Core concepts
1.2. Query methods
1.2.1. Defining repository interfaces
Fine-tuning repository definition
1.2.2. Defining query methods
Query lookup strategies
Query creation
Property expressions
Special parameter handling
1.2.3. Creating repository instances
XML configuration
JavaConfig
Standalone usage
1.3. Custom implementations for Spring Data repositories
1.3.1. Adding custom behavior to single repositories
1.3.2. Adding custom behavior to all repositories
1.4. Spring Data extensions
1.4.1. Web support
Basic web support
Hypermedia support for Pageables
1.4.2. Repository populators
1.4.3. Legacy web support
Domain class web binding for Spring MVC
Web pagination
2. Elasticsearch Repositories
2.1. Introduction
2.1.1. Spring Namespace
2.1.2. Annotation based configuration
2.1.3. Elasticsearch Repositores using CDI
2.2. Query methods
2.2.1. Query lookup strategies
2.2.2. Query creation
2.2.3. Using @Query Annotation
3. Miscellaneous Elasticsearch Operation Support
3.1. Filter Builder
3.2. Using Scan And Scroll For Big Result Set
II. Appendix
A. Namespace reference
A.1. The <repositories /> element
B. Repository query keywords
B.1. Supported query keywords

Preface

The Spring Data Elasticsearch project applies core Spring concepts to the development of solutions using the Elasticsearch Search Engine. We have povided a "template" as a high-level abstraction for storing,querying,sorting and faceting documents. You will notice similarities to the Spring data solr and mongodb support in the Spring Framework.

2 Requirements

Requires Elasticsearch 0.20.2 and above or optional dependency or not even that if you are using Embedded Node Client

Part I. Reference Documentation

1. Working with Spring Data Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code required to implement data access layers for various persistence stores.

[Important]Important

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The information in this chapter is pulled from the Spring Data Commons module. It uses the configuration and code samples for the Java Persistence API (JPA) module. Adapt the XML namespace declaration and the types to be extended to the equivalents of the particular module that you are using. Appendix A, Namespace reference covers XML configuration which is supported across all Spring Data modules supporting the repository API, Appendix B, Repository query keywords covers the query method keywords supported by the repository abstraction in general. For detailed information on the specific features of your module, consult the chapter on that module of this document.

1.1 Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a surprise). It takes the domain class to manage as well as the id type of the domain class as type arguments. This interface acts primarily as a marker interface to capture the types to work with and to help you to discover interfaces that extend this one. The CrudRepository provides sophisticated CRUD functionality for the entity class that is being managed.

Example 1.1. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
    extends Repository<T, ID> {
                                                                                                                       (1)
    <S extends T> S save(S entity);
                                                                                                                       (2)
    T findOne(ID primaryKey);
                                                                                                                       (3)
    Iterable<T> findAll();

    Long count();
                                                                                                                       (4)
    void delete(T entity);
                                                                                                                       (5)
    boolean exists(ID primaryKey);
                                                                                                                       (6)
    // … more functionality omitted.
}

1

Saves the given entity.

2

Returns the entity identified by the given id.

3

Returns all entities.

4

Returns the number of entities.

5

Deletes the given entity.

6

Indicates whether an entity with the given id exists.


[Note]Note

We also provide persistence technology-specific abstractions like e.g. JpaRepository or MongoRepository. Those interfaces extend CrudRepository and expose the capabilities of the underlying persistence technology in addition to the rather generic persistence technology-agnostic interfaces like e.g. CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional methods to ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable> 
  extends CrudRepository<T, ID> {

  Iterable<T> findAll(Sort sort);

  Page<T> findAll(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to finder methods, query derivation for both count and delete queries, is available.

Example 1.3. Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

  Long countByLastname(String lastname);

}

Example 1.4. Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {

  Long deleteByLastname(String lastname);
  
  List<User> removeByLastname(String lastname);

}

1.2 Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring Data, declaring those queries becomes a four-step process:

  1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain class and ID type that it will handle.

    public interface PersonRepository extends Repository<User, Long> { … }
  2. Declare query methods on the interface.

    List<Person> findByLastname(String lastname);
  3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

    import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
    
    @EnableJpaRepositories
    class Config {}

    or via XML configuration:

    <?xml version="1.0" encoding="UTF-8"?>
    <beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:jpa="http://www.springframework.org/schema/data/jpa"
       xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
          http://www.springframework.org/schema/data/jpa http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">
    
       <jpa:repositories base-package="com.acme.repositories"/>
    
    </beans>

    The JPA namespace is used in this example. If you are using the repository abstraction for any other store, you need to change this to the appropriate namespace declaration of your store module which should be exchanging jpa in favor of, for example, mongodb. Also, note that the JavaConfig variant doesn't configure a package explictly as the package of the annotated class is used by default. To customize the package to scan

  4. Get the repository instance injected and use it.

    public class SomeClient {
    
      @Autowired
      private PersonRepository repository;
    
      public void doSomething() {
        List<Person> persons = repository.findByLastname("Matthews");
      }
    }

The sections that follow explain each step.

1.2.1 Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend CrudRepository instead of Repository.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository exposes a complete set of methods to manipulate your entities. If you prefer to be selective about the methods being exposed, simply copy the ones you want to expose from CrudRepository into your domain repository.

[Note]Note

This allows you to define your own abstractions on top of the provided Spring Data Repositories functionality.

Example 1.5. Selectively exposing CRUD methods

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

  T findOne(ID id);

  T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {

  User findByEmailAddress(EmailAddress emailAddress);
}

In this first step you defined a common base interface for all your domain repositories and exposed findOne(…) as well as save(…).These methods will be routed into the base repository implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the UserRepository will now be able to save users, and find single ones by id, as well as triggering a query to find Users by their email address.

[Note]Note

Note, that the intermediate repository interface is annotated with @NoRepositoryBean. Make sure you add that annotation to all repository interfaces that Spring Data should not create instances for at runtime.

1.2.2 Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive the query from the method name directly, or by using an manually defined query. Available options depend on the actual store. However, there's got to be an strategy that decides what actual query is created. Let's have a look at the available options.

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML configuration or via the queryLookupStrategy attribute of the Enable${store}Repositories annotation in case of Java config. Some strategies may not be supported for particular datastores.

CREATE

CREATE attempts to construct a store-specific query from the query method name. The general approach is to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read more about query construction in the section called “Query creation”.

USE_DECLARED_QUERY

USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can't find one. The query can be defined by an annotation somewhere or declared by other means. Consult the documentation of the specific store to find available options for that store. If the repository infrastructure does not find a declared query for the method at bootstrap time, it fails.

CREATE_IF_NOT_FOUND (default)

CREATE_IF_NOT_FOUND combines CREATE and USE_DECLARED_QUERY. It looks up a declared query first, and if no declared query is found, it creates a custom method name-based query. This is the default lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query definition by method names but also custom-tuning of these queries by introducing declared queries as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building constraining queries over entities of the repository. The mechanism strips the prefixes find…By, read…By, query…By, count…By, and get…By from the method and starts parsing the rest of it. The introducing clause can contain further expressions such as a Distinct to set a distinct flag on the query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define conditions on entity properties and concatenate them with And and Or.

Example 1.6. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

  List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

  // Enables the distinct flag for the query
  List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);
  List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

  // Enabling ignoring case for an individual property
  List<Person> findByLastnameIgnoreCase(String lastname);
  // Enabling ignoring case for all suitable properties
  List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

  // Enabling static ORDER BY for a query
  List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
  List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}

The actual result of parsing the method depends on the persistence store for which you create the query. However, there are some general things to notice.

  • The expressions are usually property traversals combined with operators that can be concatenated. You can combine property expressions with AND and OR. You also get support for operators such as Between, LessThan, GreaterThan, Like for the property expressions. The supported operators can vary by datastore, so consult the appropriate part of your reference documentation.

  • The method parser supports setting an IgnoreCase flag for individual properties, for example,findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case (usually Strings, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether ignoring cases is supported may vary by store, so consult the relevant sections in the reference documentation for the store-specific query method.

  • You can apply static ordering by appending an OrderBy clause to the query method that references a property and by providing a sorting direction (Asc or Desc). To create a query method that supports dynamic sorting, see the section called “Special parameter handling”.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding example. At query creation time you already make sure that the parsed property is a property of the managed domain class. However, you can also define constraints by traversing nested properties. Assume Persons have Addresses with ZipCodes. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the entire part (AddressZipCode) as the property and checks the domain class for a property with that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source at the camel case parts from the right side into a head and a tail and tries to find the corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with that head it takes the tail and continue building the tree down from there, splitting the tail up in the way just described. If the first split does not match, the algorithm move the split point to the left (Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property. Suppose the Person class has an addressZip property as well. The algorithm would match in the first split round already and essentially choose the wrong property and finally fail (as the type of addressZip probably has no code property). To resolve this ambiguity you can use _ inside your method name to manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

If your property names contain underscores (e.g. first_name) you can escape the underscore in the method name with a second underscore. For a first_name property the query method would have to be named findByFirst__name(…).

Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the examples above. Besides that the infrastructure will recognize certain specific types like Pageable and Sort to apply pagination and sorting to your queries dynamically.

Example 1.7. Using Pageable and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the query method to dynamically add paging to your statically defined query. Sorting options are handled through the Pageable instance too. If you only need sorting, simply add an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply returning a List is possible as well. In this case the additional metadata required to build the actual Page instance will not be created (which in turn means that the additional count query that would have been necessary not being issued) but rather simply restricts the query to look up only the given range of entities.

[Note]Note

To find out how many pages you get for a query entirely you have to trigger an additional count query. By default this query will be derived from the query you actually trigger.

1.2.3 Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way to do so is using the Spring namespace that is shipped with each Spring Data module that supports the repository mechanism although we generally recommend to use the Java-Config style configuration.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base package that Spring scans for you.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns="http://www.springframework.org/schema/data/jpa"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/data/jpa
    http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

  <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its subpackages for interfaces extending Repository or one of its subinterfaces. For each interface found, the infrastructure registers the persistence technology-specific FactoryBean to create the appropriate proxies that handle invocations of the query methods. Each bean is registered under a bean name that is derived from the interface name, so an interface of UserRepository would be registered under userRepository. The base-package attribute allows wildcards, so that you can define a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific Repository subinterface located under the configured base package and creates a bean instance for it. However, you might want more fine-grained control over which interfaces bean instances get created for. To do this you use <include-filter /> and <exclude-filter /> elements inside <repositories />. The semantics are exactly equivalent to the elements in Spring's context namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.8. Using exclude-filter element

<repositories base-package="com.acme.repositories">
  <context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.


JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring container, see the reference documentation.[1]

A sample configuration to enable Spring Data repositories looks something like this.

Example 1.9. Sample annotation based repository configuration

@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

  @Bean
  public EntityManagerFactory entityManagerFactory() {
    // …
  }
}

[Note]Note

The sample uses the JPA-specific annotation, which you would change according to the store module you actually use. The same applies to the definition of the EntityManagerFactory bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments. You still need some Spring libraries in your classpath, but generally you can set up repositories programmatically as well. The Spring Data modules that provide repository support ship a persistence technology-specific RepositoryFactory that you can use as follows.

Example 1.10. Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

1.3 Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction and query method functionality.

1.3.1 Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for the custom functionality. Use the repository interface you provided to extend the custom interface.

Example 1.11. Interface for custom repository functionality

interface UserRepositoryCustom {

  public void someCustomMethod(User user);
}

Example 1.12. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

  public void someCustomMethod(User user) {
    // Your custom implementation
  }
}
[Note]Note

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you can use standard dependency injection behavior to inject references to other beans like a JdbTemplate, take part in aspects, and so on.


Example 1.13. Changes to the your basic repository interface

public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

  // Declare query methods here
}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and custom functionality and makes it available to clients.


Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom implementations by scanning for classes below the package we found a repository in. These classes need to follow the naming convention of appending the namespace element's attribute repository-impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 1.14. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl to act as custom repository implementation, whereas the second example will try to lookup com.acme.repository.UserRepositoryFooBar.

Manual wiring

The preceding approach works well if your custom implementation uses annotation-based configuration and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean needs special wiring, you simply declare the bean and name it after the conventions just described. The infrastructure will then refer to the manually defined bean definition by name instead of creating one itself.

Example 1.15. Manual wiring of custom implementations (I)

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
  <!-- further configuration -->
</beans:bean>

1.3.2 Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository interfaces.

  1. To add custom behavior to all repositories, you first add an intermediate interface to declare the shared behavior.

    Example 1.16. An interface declaring custom shared behavior

    public interface MyRepository<T, ID extends Serializable>
      extends JpaRepository<T, ID> {
    
      void sharedCustomMethod(ID id);
    }

    Now your individual repository interfaces will extend this intermediate interface instead of the Repository interface to include the functionality declared.

  2. Next, create an implementation of the intermediate interface that extends the persistence technology-specific repository base class. This class will then act as a custom base class for the repository proxies.

    Example 1.17. Custom repository base class

    public class MyRepositoryImpl<T, ID extends Serializable>
      extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {
    
      private EntityManager entityManager;
    
      // There are two constructors to choose from, either can be used.
      public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) {
        super(domainClass, entityManager);
    
        // This is the recommended method for accessing inherited class dependencies.
        this.entityManager = entityManager;
      }
    
      public void sharedCustomMethod(ID id) {
        // implementation goes here
      }
    }

    The default behavior of the Spring <repositories /> namespace is to provide an implementation for all interfaces that fall under the base-package. This means that if left in its current state, an implementation instance of MyRepository will be created by Spring. This is of course not desired as it is just supposed to act as an intermediary between Repository and the actual repository interfaces you want to define for each entity. To exclude an interface that extends Repository from being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean or move it outside of the configured base-package.

  3. Then create a custom repository factory to replace the default RepositoryFactoryBean that will in turn produce a custom RepositoryFactory. The new repository factory will then provide your MyRepositoryImpl as the implementation of any interfaces that extend the Repository interface, replacing the SimpleJpaRepository implementation you just extended.

    Example 1.18. Custom repository factory bean

    public class MyRepositoryFactoryBean<R extends JpaRepository<T, I>, T, I extends Serializable>
      extends JpaRepositoryFactoryBean<R, T, I> {
    
      protected RepositoryFactorySupport createRepositoryFactory(EntityManager entityManager) {
    
        return new MyRepositoryFactory(entityManager);
      }
    
      private static class MyRepositoryFactory<T, I extends Serializable> extends JpaRepositoryFactory {
    
        private EntityManager entityManager;
    
        public MyRepositoryFactory(EntityManager entityManager) {
          super(entityManager);
    
          this.entityManager = entityManager;
        }
    
        protected Object getTargetRepository(RepositoryMetadata metadata) {
    
          return new MyRepositoryImpl<T, I>((Class<T>) metadata.getDomainClass(), entityManager);
        }
    
        protected Class<?> getRepositoryBaseClass(RepositoryMetadata metadata) {
    
          // The RepositoryMetadata can be safely ignored, it is used by the JpaRepositoryFactory
          //to check for QueryDslJpaRepository's which is out of scope.
          return MyRepository.class;
        }
      }
    }

  4. Finally, either declare beans of the custom factory directly or use the factory-class attribute of the Spring namespace to tell the repository infrastructure to use your custom factory implementation.

    Example 1.19. Using the custom factory with the namespace

    <repositories base-package="com.acme.repository"
      factory-class="com.acme.MyRepositoryFactoryBean" />

1.4 Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts. Currently most of the integration is targeted towards Spring MVC.

1.4.1 Web support

[Note]Note

This section contains the documentation for the Spring Data web support as it is implemented as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite a lot of things we kept the documentation of the former behavior in Section 1.4.3, “Legacy web support”.

Also note that the JavaConfig support introduced in Spring Data Commons 1.6 requires Spring 3.2 due to some issues with JavaConfig and overridden methods in Spring 3.1.

Spring Data modules ships with a variety of web support if the module supports the repository programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them even provide integration with Spring HATEOAS.

[2]In general, the integration support is enabled by using the @EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Example 1.20. Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It will also detect Spring HATEOAS on the classpath and register integration components for it as well if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or HateoasAwareSpringDataWebSupport as Spring beans:

Example 1.21. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former -->
<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

  • A DomainClassConverter to enable Spring MVC to resolve instances of repository managed domain classes from request parameters or path variables.

  • HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method signatures directly, so that you don't have to manually lookup the instances via the repository:

Example 1.22. A Spring MVC controller using domain types in method signatures

@Controller
@RequestMapping("/users")
public class UserController {

  @RequestMapping("/{id}")
  public String showUserForm(@PathVariable("id") User user, Model model) {

    model.addAttribute("user", user);
    return "userForm";
  }
}

As you can see the method receives a User instance directly and no further lookup is necessary. The instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain class first and eventually access the instance through calling findOne(…) on the repository instance registered for the domain type.

[Note]Note

Currently the repository has to implement CrudRepository to be eligible to be discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being valid controller method arguments

Example 1.23. Using Pageable as controller method argument

@Controller
@RequestMapping("/users")
public class UserController {

  @Autowired UserRepository repository;

  @RequestMapping
  public String showUsers(Model model, Pageable pageable) {

    model.addAttribute("users", repository.findAll(pageable));
    return "users";
  }
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request parameters using the following default configuration:

Table 1.1. Request parameters evaluated for Pageable instances

pagePage you want to retrieve.
sizeSize of the page you want to retrieve.
sortProperties that should be sorted by in the format property,property(,ASC|DESC). Default sort direction is ascending. Use multiple sort parameters if you want to switch directions, e.g. ?sort=firstname&sort=lastname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled equivalent and override the pageableResolver() or sortResolver() methods and import your customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageables or Sorts to be resolved from the request (for multiple tables, for example) you can use Spring's @Qualifier annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model, 
      @Qualifier("foo") Pageable first,
      @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(0, 20) but can be customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enrichting the content of a Page instance with the necessary Page metadata as well as links to let the clients easily navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

Example 1.24. Using a PagedResourcesAssembler as controller method argument

@Controller 
class PersonController { 

  @Autowired PersonRepository repository; 

  @RequestMapping(value = "/persons", method = RequestMethod.GET) 
  HttpEntity<PagedResources<Person>> persons(Pageable pageable, 
    PagedResourcesAssembler assembler) { 

    Page<Person> persons = repository.findAll(pageable); 
    return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);
  }
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as controller method argument. Calling toResources(…) on it will cause the following:

  • The content of the Page will become the content of the PagedResources instance.

  • The PagedResources will get a PageMetadata instance attached populated with information form the Page and the underlying PageRequest.

  • The PagedResources gets prev and next links attached depending on the page's state. The links will point to the URI the method invoked is mapped to. The pagination parameters added to the method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET http://localhost:8080/persons and you'll see something similar to this:

{ "links" : [ { "rel" : "next", 
                "href" : "http://localhost:8080/persons?page=1&size=20 } 
  ], 
  "content" : [ 
     … // 20 Person instances rendered here
  ], 
  "pageMetadata" : { 
    "size" : 20, 
    "totalElements" : 30, 
    "totalPages" : 2, 
    "number" : 0
  } 
}

You see that the assembler produced the correct URI and also picks up the default configuration present to resolve the parameters into a Pageable for an upcoming request. This means, if you change that configuration, the links will automatically adhere to the change. By default the assembler points to the controller method it was invoked in but that can be customized by handing in a custom Link to be used as base to build the pagination links to overloads of the PagedResourcesAssembler.toResource(…) method.

1.4.2 Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it does not use SQL as the data definition language because it must be store-independent. Thus the populators support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data with which to populate the repositories.

Assume you have a file data.json with the following content:

Example 1.25. Data defined in JSON

[ { "_class" : "com.acme.Person",
 "firstname" : "Dave",
  "lastname" : "Matthews" },
  { "_class" : "com.acme.Person",
 "firstname" : "Carter",
  "lastname" : "Beauford" } ]

You can easily populate your repositories by using the populator elements of the repository namespace provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the following:

Example 1.26. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:repository="http://www.springframework.org/schema/data/repository"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/data/repository
    http://www.springframework.org/schema/data/repository/spring-repository.xsd">

  <repository:jackson-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to be read and deserialized via a Jackson ObjectMapper. The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class attribute of the JSON document. The infrastructure will eventually select the appropriate repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring OXM provides you with. See the Spring reference documentation for details.

Example 1.27. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:repository="http://www.springframework.org/schema/data/repository"
  xmlns:oxm="http://www.springframework.org/schema/oxm"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/data/repository
    http://www.springframework.org/schema/data/repository/spring-repository.xsd
    http://www.springframework.org/schema/oxm
    http://www.springframework.org/schema/oxm/spring-oxm.xsd">

  <repository:unmarshaller-populator locations="classpath:data.json" unmarshaller-ref="unmarshaller" />

  <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

1.4.3 Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class ids from URLs. By default your task is to transform that request parameter or URL part into the domain class to hand it to layers below then or execute business logic on the entities directly. This would look something like this:

@Controller
@RequestMapping("/users")
public class UserController {

  private final UserRepository userRepository;

  @Autowired
  public UserController(UserRepository userRepository) {
    Assert.notNull(repository, "Repository must not be null!");
    userRepository = userRepository;
  }

  @RequestMapping("/{id}")
  public String showUserForm(@PathVariable("id") Long id, Model model) {
    
    // Do null check for id
    User user = userRepository.findOne(id);
    // Do null check for user

    model.addAttribute("user", user);
    return "user";
  }
}

First you declare a repository dependency for each controller to look up the entity managed by the controller or repository respectively. Looking up the entity is boilerplate as well, as it's always a findOne(…) call. Fortunately Spring provides means to register custom components that allow conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that, Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data repositories registered in the ApplicationContext and registers a custom PropertyEditor for the managed domain class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
  <property name="webBindingInitializer">
    <bean class="….web.bind.support.ConfigurableWebBindingInitializer">
      <property name="propertyEditorRegistrars">
        <bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
      </property>
    </bean>
  </property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

  @RequestMapping("/{id}")
  public String showUserForm(@PathVariable("id") User user, Model model) {

    model.addAttribute("user", user);
    return "userForm";
  }
}
ConversionService

In Spring 3.0 and later the PropertyEditor support is superseded by a new conversion infrastructure that eliminates the drawbacks of PropertyEditors and uses a stateless X to Y conversion approach. Spring Data now ships with a DomainClassConverter that mimics the behavior of DomainClassPropertyEditorRegistrar. To configure, simply declare a bean instance and pipe the ConversionService being used into its constructor:

<mvc:annotation-driven conversion-service="conversionService" />

<bean class="org.springframework.data.repository.support.DomainClassConverter">
  <constructor-arg ref="conversionService" />
</bean>

If you are using JavaConfig, you can simply extend Spring MVC's WebMvcConfigurationSupport and hand the FormatingConversionService that the configuration superclass provides into the DomainClassConverter instance you create.

class WebConfiguration extends WebMvcConfigurationSupport {

  // Other configuration omitted

  @Bean
  public DomainClassConverter<?> domainClassConverter() {
    return new DomainClassConverter<FormattingConversionService>(mvcConversionService());
  }
}

Web pagination

When working with pagination in the web layer you usually have to write a lot of boilerplate code yourself to extract the necessary metadata from the request. The less desirable approach shown in the example below requires the method to contain an HttpServletRequest parameter that has to be parsed manually. This example also omits appropriate failure handling, which would make the code even more verbose.

@Controller
@RequestMapping("/users")
public class UserController {

  // DI code omitted

  @RequestMapping
  public String showUsers(Model model, HttpServletRequest request) {

    int page = Integer.parseInt(request.getParameter("page"));
    int pageSize = Integer.parseInt(request.getParameter("pageSize"));

    Pageable pageable = new PageRequest(page, pageSize);

    model.addAttribute("users", userService.getUsers(pageable));
    return "users";
  }
}

The bottom line is that the controller should not have to handle the functionality of extracting pagination information from the request. So Spring Data ships with a PageableHandlerArgumentResolver that will do the work for you. The Spring MVC JavaConfig support exposes a WebMvcConfigurationSupport helper class to customize the configuration as follows:

@Configuration
public class WebConfig extends WebMvcConfigurationSupport {

  @Override
  public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {
    converters.add(new PageableHandlerArgumentResolver());
  }
}

If you're stuck with XML configuration you can register the resolver as follows:

<bean class="….web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">
  <property name="customArgumentResolvers">
    <list>
      <bean class="org.springframework.data.web.PageableHandlerArgumentResolver" />
    </list>
  </property>
</bean>

When using Spring 3.0.x versions use the PageableArgumentResolver instead. Once you've configured the resolver with Spring MVC it allows you to simplify controllers down to something like this:

@Controller
@RequestMapping("/users")
public class UserController {

  @RequestMapping
  public String showUsers(Model model, Pageable pageable) {

    model.addAttribute("users", userRepository.findAll(pageable));
    return "users";
  }
}

The PageableArgumentResolver automatically resolves request parameters to build a PageRequest instance. By default it expects the following structure for the request parameters.

Table 1.2. Request parameters evaluated by PageableArgumentResolver

pagePage you want to retrieve.
page.sizeSize of the page you want to retrieve.
page.sortProperty that should be sorted by.
page.sort.dirDirection that should be used for sorting.

In case you need multiple Pageables to be resolved from the request (for multiple tables, for example) you can use Spring's @Qualifier annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model, 
      @Qualifier("foo") Pageable first,
      @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page and the related subproperties.

Configuring a global default on bean declaration

The PageableArgumentResolver will use a PageRequest with the first page and a page size of 10 by default. It will use that value if it cannot resolve a PageRequest from the request (because of missing parameters, for example). You can configure a global default on the bean declaration directly. If you might need controller method specific defaults for the Pageable, annotate the method parameter with @PageableDefaults and specify page (through pageNumber), page size (through value), sort (list of properties to sort by), and sortDir (the direction to sort by) as annotation attributes:

public String showUsers(Model model, 
  @PageableDefaults(pageNumber = 0, value = 30) Pageable pageable) { … }

2. Elasticsearch Repositories

Abstract

This chapter includes details of the Elasticsearch repository implementation.

2.1 Introduction

2.1.1 Spring Namespace

The Spring Data Elasticsearch module contains a custom namespace allowing definition of repository beans as well as elements for instantiating a ElasticsearchServer .

Using the repositories element looks up Spring Data repositories as described in Section 1.2.3, “Creating repository instances” .

Example 2.1. Setting up Elasticsearch repositories using Namespace

<?xml version="1.0" encoding="UTF-8"?>
                    <beans xmlns="http://www.springframework.org/schema/beans"
                    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                    xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
                    xsi:schemaLocation="http://www.springframework.org/schema/beans
                    http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
                    http://www.springframework.org/schema/data/elasticsearch
                    http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-1.0.xsd">

                    <elasticsearch:repositories base-package="com.acme.repositories" />
                    </beans>

Using the Transport Client or Node Client element registers an instance of Elasticsearch Server in the context.

Example 2.2. Transport Client using Namespace

<?xml version="1.0" encoding="UTF-8"?>
                        <beans xmlns="http://www.springframework.org/schema/beans"
                        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                        xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
                        xsi:schemaLocation="http://www.springframework.org/schema/beans
                        http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
                        http://www.springframework.org/schema/data/elasticsearch
                        http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-1.0.xsd">

                        <elasticsearch:transport-client id="client" cluster-nodes="localhost:9300,someip:9300" />
                        </beans> 


Example 2.3. Node Client using Namespace

<?xml version="1.0" encoding="UTF-8"?>
                        <beans xmlns="http://www.springframework.org/schema/beans"
                        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                        xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
                        xsi:schemaLocation="http://www.springframework.org/schema/beans
                        http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
                        http://www.springframework.org/schema/data/elasticsearch
                        http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-1.0.xsd">

                        <elasticsearch:node-client id="client" local="true"" />
                        </beans> 


2.1.2 Annotation based configuration

The Spring Data Elasticsearch repositories support cannot only be activated through an XML namespace but also using an annotation through JavaConfig.

Example 2.4. Spring Data Elasticsearch repositories using JavaConfig

                    @Configuration
                    @EnableElasticsearchRepositories(basePackages =
                    "org/springframework/data/elasticsearch/repositories")
                    static class Config {

                    @Bean
                    public ElasticsearchOperations elasticsearchTemplate() {
                    return new ElasticsearchTemplate(nodeBuilder().local(true).node().client());
                    }
                    }
                

The configuration above sets up an Embedded Elasticsearch Server which is used by the ElasticsearchTemplate . Spring Data Elasticsearch Repositories are activated using the @EnableElasticsearchRepositories annotation, which essentially carries the same attributes as the XML namespace does. If no base package is configured, it will use the one the configuration class resides in.


2.1.3 Elasticsearch Repositores using CDI

The Spring Data Elasticsearch repositories can also be set up using CDI functionality.

Example 2.5. Spring Data Elasticsearch repositories using JavaConfig

class ElasticsearchTemplateProducer {

                    @Produces
                    @ApplicationScoped
                    public ElasticsearchOperations createElasticsearchTemplate() {
                    return new ElasticsearchTemplate(nodeBuilder().local(true).node().client());
                    }
                    }

                    class ProductService {

                    private ProductRepository repository;

                    public Page<Product> findAvailableBookByName(String name, Pageable pageable) {
                    return repository.findByAvailableTrueAndNameStartingWith(name, pageable);
                    }

                    @Inject
                    public void setRepository(ProductRepository repository) {
                    this.repository = repository;
                    }
                    }
                

2.2 Query methods

2.2.1 Query lookup strategies

The Elasticsearch module supports all basic query building feature as String,Abstract,Criteria or have it being derived from the method name.

Declared queries

Deriving the query from the method name is not always sufficient and/or may result in unreadable method names. In this case one might make either use of @Query annotation (see Section 2.2.3, “Using @Query Annotation” ).

2.2.2 Query creation

Generally the query creation mechanism for Elasticsearch works as described in Section 1.2, “Query methods” . Here's a short example of what a Elasticsearch query method translates into:

Example 2.6. Query creation from method names

public interface BookRepository extends Repository<Book, String>
                        {
                        List<Book> findByNameAndPrice(String name, Integer price);
                        }
                    

The method name above will be translated into the following Elasticsearch json query

                        { "bool" :
                        { "must" :
                        [
                        { "field" : {"name" : "?"} },
                        { "field" : {"price" : "?"} }
                        ] } }
                    


A list of supported keywords for Elasticsearch is shown below.

Table 2.1. Supported keywords inside method names

KeywordSampleElasticsearch Query String
And findByNameAndPrice {"bool" : {"must" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}}
Or findByNameOrPrice {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}}
Is findByName {"bool" : {"must" : {"field" : {"name" : "?"}}}}
Not findByNameNot {"bool" : {"must_not" : {"field" : {"name" : "?"}}}}
Between findByPriceBetween {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
LessThanEqual findByPriceLessThan {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
GreaterThanEqual findByPriceGreaterThan {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}}
Before findByPriceBefore {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}
After findByPriceAfter {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}}
Like findByNameLike {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}}
StartingWith findByNameStartingWith {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}}
EndingWith findByNameEndingWith {"bool" : {"must" : {"field" : {"name" : {"query" : "*?","analyze_wildcard" : true}}}}}
Contains/Containing findByNameContaining {"bool" : {"must" : {"field" : {"name" : {"query" : "*?*","analyze_wildcard" : true}}}}}
In findByNameIn(Collection<String>names) {"bool" : {"must" : {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"name" : "?"}} ]}}}}
NotIn findByNameNotIn(Collection<String>names) {"bool" : {"must_not" : {"bool" : {"should" : {"field" : {"name" : "?"}}}}}}
Near findByStoreNear Not Supported Yet !
True findByAvailableTrue {"bool" : {"must" : {"field" : {"available" : true}}}}
False findByAvailableFalse {"bool" : {"must" : {"field" : {"available" : false}}}}
OrderBy findByAvailableTrueOrderByNameDesc {"sort" : [{ "name" : {"order" : "desc"} }],"bool" : {"must" : {"field" : {"available" : true}}}}


2.2.3 Using @Query Annotation

Example 2.7.  Declare query at the method using the @Query annotation.

public interface BookRepository extends ElasticsearchRepository<Book,
                    String> {
                    @Query("{"bool" : {"must" : {"field" : {"name" : "?0"}}}}")
                    Page<Book> findByName(String name,Pageable pageable);
                    }
                

3. Miscellaneous Elasticsearch Operation Support

Abstract

This chapter covers additional support for Elasticsearch operations that cannot be directly accessed via the repository interface. It is recommended to add those operations as custom implementation as described in Section 1.3, “Custom implementations for Spring Data repositories” .

3.1 Filter Builder

Filter Builder improves query speed.

Example 3.1. 

                private ElasticsearchTemplate elasticsearchTemplate;
                SearchQuery searchQuery = new NativeSearchQueryBuilder()
                .withQuery(matchAllQuery())
                .withFilter(boolFilter().must(termFilter("id", documentId)))
                .build();
                Page<SampleEntity> sampleEntities =
                elasticsearchTemplate.queryForPage(searchQuery,SampleEntity.class);
            

3.2 Using Scan And Scroll For Big Result Set

Elasticsearch has scan and scroll feature for getting big result set in chunks. ElasticsearchTemplate has scan and scroll methods that can be used as below.

Example 3.2.  Using Scan and Scroll

                SearchQuery searchQuery = new NativeSearchQueryBuilder()
                .withQuery(matchAllQuery())
                .withIndices("test-index")
                .withTypes("test-type")
                .withPageable(new PageRequest(0,1))
                .build();
                String scrollId = elasticsearchTemplate.scan(searchQuery,1000,false);
                List<SampleEntity> sampleEntities = new ArrayList<SampleEntity>();
                boolean hasRecords = true;
                while (hasRecords){
                Page<SampleEntity> page = elasticsearchTemplate.scroll(scrollId, 5000L , new ResultsMapper<SampleEntity>()
                {
                @Override
                public Page<SampleEntity> mapResults(SearchResponse response) {
                List<SampleEntity> chunk = new ArrayList<SampleEntity>();
                for(SearchHit searchHit : response.getHits()){
                if(response.getHits().getHits().length <= 0) {
                return null;
                }
                SampleEntity user = new SampleEntity();
                user.setId(searchHit.getId());
                user.setMessage((String)searchHit.getSource().get("message"));
                chunk.add(user);
                }
                return new PageImpl<SampleEntity>(chunk);
                }
                });
                if(page != null) {
                sampleEntities.addAll(page.getContent());
                hasRecords = page.hasNextPage();
                }
                else{
                hasRecords = false;
                }
                }
                }
            

Part II. Appendix

Appendix A. Namespace reference

A.1 The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package which defines the package to scan for Spring Data repository interfaces.[3]

Table A.1. Attributes

NameDescription
base-packageDefines the package to be used to be scanned for repository interfaces extending *Repository (actual interface is determined by specific Spring Data module) in auto detection mode. All packages below the configured package will be scanned, too. Wildcards are allowed.
repository-impl-postfixDefines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix will be considered as candidates. Defaults to Impl.
query-lookup-strategyDetermines the strategy to be used to create finder queries. See the section called “Query lookup strategies” for details. Defaults to create-if-not-found.
named-queries-locationDefines the location to look for a Properties file containing externally defined queries.
consider-nested-repositoriesControls whether nested repository interface definitions should be considered. Defaults to false.

Appendix B. Repository query keywords

B.1 Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some listed here might not be supported in a particular store.

Table B.1. Query keywords

Logical keywordKeyword expressions
ANDAnd
OROr
AFTERAfter, IsAfter
BEFOREBefore, IsBefore
CONTAININGContaining, IsContaining, Contains
BETWEENBetween, IsBetween
ENDING_WITHEndingWith, IsEndingWith, EndsWith
EXISTSExists
FALSEFalse, IsFalse
GREATER_THANGreaterThan, IsGreaterThan
GREATER_THAN_EQUALSGreaterThanEqual, IsGreaterThanEqual
INIn, IsIn
ISIs, Equals, (or no keyword)
IS_NOT_NULLNotNull, IsNotNull
IS_NULLNull, IsNull
LESS_THANLessThan, IsLessThan
LESS_THAN_EQUALLessThanEqual, IsLessThanEqual
LIKELike, IsLike
NEARNear, IsNear
NOTNot, IsNot
NOT_INNotIn, IsNotIn
NOT_LIKENotLike, IsNotLike
REGEXRegex, MatchesRegex, Matches
STARTING_WITHStartingWith, IsStartingWith, StartsWith
TRUETrue, IsTrue
WITHINWithin, IsWithin