Spring Data JPA - Reference Documentation


Oliver Gierke, Thomas Darimont


Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Table of Contents

1. Project metadata
I. Reference Documentation
1. Working with Spring Data Repositories
1.1. Core concepts
1.2. Query methods
1.2.1. Defining repository interfaces
Fine-tuning repository definition
1.2.2. Defining query methods
Query lookup strategies
Query creation
Property expressions
Special parameter handling
1.2.3. Creating repository instances
XML configuration
Standalone usage
1.3. Custom implementations for Spring Data repositories
1.3.1. Adding custom behavior to single repositories
1.3.2. Adding custom behavior to all repositories
1.4. Spring Data extensions
1.4.1. Web support
Basic web support
Hypermedia support for Pageables
1.4.2. Repository populators
1.4.3. Legacy web support
Domain class web binding for Spring MVC
Web pagination
2. JPA Repositories
2.1. Introduction
2.1.1. Spring namespace
2.1.2. Annotation based configuration
2.2. Persisting entities
2.2.1. Saving entities
2.3. Query methods
2.3.1. Query lookup strategies
2.3.2. Query creation
2.3.3. Using JPA NamedQueries
2.3.4. Using @Query
2.3.5. Using named parameters
2.3.6. Using SpEL expressions
2.3.7. Modifying queries
2.3.8. Applying query hints
2.4. Specifications
2.5. Transactionality
2.5.1. Transactional query methods
2.6. Locking
2.7. Auditing
2.7.1. Basics
Annotation based auditing metadata
Interface-based auditing metadata
2.7.2. General auditing configuration
2.8. Miscellaneous
2.8.1. Merging persistence units
2.8.2. Classpath scanning for @Entity classes and JPA mapping files
2.8.3. CDI integration
II. Appendix
A. Namespace reference
A.1. The <repositories /> element
B. Repository query keywords
B.1. Supported query keywords
C. Frequently asked questions


Part I. Reference Documentation

1. Working with Spring Data Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code required to implement data access layers for various persistence stores.


Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The information in this chapter is pulled from the Spring Data Commons module. It uses the configuration and code samples for the Java Persistence API (JPA) module. Adapt the XML namespace declaration and the types to be extended to the equivalents of the particular module that you are using. Appendix A, Namespace reference covers XML configuration which is supported across all Spring Data modules supporting the repository API, Appendix B, Repository query keywords covers the query method method keywords supported by the repository abstraction in general. For detailed information on the specific features of your module, consult the chapter on that module of this document.

1.1 Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a surprise). It takes the the domain class to manage as well as the id type of the domain class as type arguments. This interface acts primarily as a marker interface to capture the types to work with and to help you to discover interfaces that extend this one. The CrudRepository provides sophisticated CRUD functionality for the entity class that is being managed.

Example 1.1. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
    extends Repository<T, ID> {
    <S extends T> S save(S entity);
    T findOne(ID primaryKey);
    Iterable<T> findAll();

    Long count();
    void delete(T entity);
    boolean exists(ID primaryKey);
    // … more functionality omitted.


Saves the given entity.


Returns the entity identified by the given id.


Returns all entities.


Returns the number of entities.


Deletes the given entity.


Indicates whether an entity with the given id exists.

Usually we will have persistence technology specific sub-interfaces to include additional technology specific methods. We will now ship implementations for a variety of Spring Data modules that implement CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional methods to ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable> 
  extends CrudRepository<T, ID> {

  Iterable<T> findAll(Sort sort);

  Page<T> findAll(Pageable pageable);

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

1.2 Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring Data, declaring those queries becomes a four-step process:

  1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain class that it will handle.

    public interface PersonRepository extends Repository<User, Long> { … }
  2. Declare query methods on the interface.

    List<Person> findByLastname(String lastname);
  3. Set up Spring to create proxy instances for those interfaces.

    <?xml version="1.0" encoding="UTF-8"?>
    <beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
      <repositories base-package="com.acme.repositories" />

    The JPA namespace is used in this example. If you are using the repository abstraction for any other store, you need to change this to the appropriate namespace declaration of your store module which should be exchanging jpa in favor of, for example, mongodb.

  4. Get the repository instance injected and use it.

    public class SomeClient {
      private PersonRepository repository;
      public void doSomething() {
        List<Person> persons = repository.findByLastname("Matthews");

The sections that follow explain each step.

1.2.1 Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend CrudRepository instead of Repository.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository exposes a complete set of methods to manipulate your entities. If you prefer to be selective about the methods being exposed, simply copy the ones you want to expose from CrudRepository into your domain repository.

Example 1.3. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
  T findOne(ID id);
  T save(T entity);

interface UserRepository extends MyBaseRepository<User, Long> {

  User findByEmailAddress(EmailAddress emailAddress);

In this first step you defined a common base interface for all your domain repositories and exposed findOne(…) as well as save(…).These methods will be routed into the base repository implementation of the store of your choice provided by Spring Data because they are matching the method signatures in CrudRepository. So the UserRepository will now be able to save users, and find single ones by id, as well as triggering a query to find Users by their email address.

1.2.2 Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive the query from the method name directly, or by using an additionally created query. Available options depend on the actual store. However, there's got to be an strategy that decides what actual query is created. Let's have a look at the available options.

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can configure the strategy at the namespace through the query-lookup-strategy attribute. Some strategies may not be supported for particular datastores.


CREATE attempts to construct a store-specific query from the query method name. The general approach is to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read more about query construction in the section called “Query creation”.


USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can't find one. The query can be defined by an annotation somewhere or declared by other means. Consult the documentation of the specific store to find available options for that store. If the repository infrastructure does not find a declared query for the method at bootstrap time, it fails.


CREATE_IF_NOT_FOUND combines CREATE and USE_DECLARED_QUERY. It looks up a declared query first, and if no declared query is found, it creates a custom method name-based query. This is the default lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query definition by method names but also custom-tuning of these queries by introducing declared queries as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building constraining queries over entities of the repository. The mechanism strips the prefixes find…By, read…By, query…By, and get…By from the method and starts parsing the rest of it. The introducing clause can contain further expressions such as a Distinct to set a distinct flag on the query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define conditions on entity properties and concatenate them with And and Or .

Example 1.4. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

  List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

  // Enables the distinct flag for the query
  List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);
  List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

  // Enabling ignoring case for an individual property
  List<Person> findByLastnameIgnoreCase(String lastname);
  // Enabling ignoring case for all suitable properties
  List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

  // Enabling static ORDER BY for a query
  List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
  List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

The actual result of parsing the method depends on the persistence store for which you create the query. However, there are some general things to notice.

  • The expressions are usually property traversals combined with operators that can be concatenated. You can combine property expressions with AND and OR. You also get support for operators such as Between, LessThan, GreaterThan, Like for the property expressions. The supported operators can vary by datastore, so consult the appropriate part of your reference documentation.

  • The method parser supports setting an IgnoreCase flag for individual properties, for example,findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case (usually Strings, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether ignoring cases is supported may vary by store, so consult the relevant sections in the reference documentation for the store-specific query method.

  • You can apply static ordering by appending an OrderBy clause to the query method that references a property and by providing a sorting direction (Asc or Desc). To create a query method that supports dynamic sorting, see the section called “Special parameter handling”.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding example. At query creation time you already make sure that the parsed property is a property of the managed domain class. However, you can also define constraints by traversing nested properties. Assume Persons have Addresses with ZipCodes. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the entire part (AddressZipCode) as the property and checks the domain class for a property with that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source at the camel case parts from the right side into a head and a tail and tries to find the corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with that head it takes the tail and continue building the tree down from there, splitting the tail up in the way just described. If the first split does not match, the algorithm move the split point to the left (Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property. Suppose the Person class has an addressZip property as well. The algorithm would match in the first split round already and essentially choose the wrong property and finally fail (as the type of addressZip probably has no code property). To resolve this ambiguity you can use _ inside your method name to manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

Special parameter handling

To handle parameters to your query you simply define method parameters as already seen in the examples above. Besides that the infrastructure will recognize certain specific types like Pageable and Sort to apply pagination and sorting to your queries dynamically.

Example 1.5. Using Pageable and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the query method to dynamically add paging to your statically defined query. Sorting options are handled through the Pageable instance too. If you only need sorting, simply add an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply returning a List is possible as well. In this case the additional metadata required to build the actual Page instance will not be created (which in turn means that the additional count query that would have been necessary not being issued) but rather simply restricts the query to look up only the given range of entities.


To find out how many pages you get for a query entirely you have to trigger an additional count query. By default this query will be derived from the query you actually trigger.

1.2.3 Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that supports the repository mechanism.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base package that Spring scans for you.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"

  <repositories base-package="com.acme.repositories" />


In the preceding example, Spring is instructed to scan com.acme.repositories and all its subpackages for interfaces extending Repository or one of its subinterfaces. For each interface found, the infrastructure registers the persistence technology-specific FactoryBean to create the appropriate proxies that handle invocations of the query methods. Each bean is registered under a bean name that is derived from the interface name, so an interface of UserRepository would be registered under userRepository. The base-package attribute allows wildcards, so that you can have a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific Repository subinterface located under the configured base package and creates a bean instance for it. However, you might want more fine-grained control over which interfaces bean instances get created for. To do this you use <include-filter /> and <exclude-filter /> elements inside <repositories />. The semantics are exactly equivalent to the elements in Spring's context namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.6. Using exclude-filter element

<repositories base-package="com.acme.repositories">
  <context:exclude-filter type="regex" expression=".*SomeRepository" />

This example excludes all interfaces ending in SomeRepository from being instantiated.


The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring container, see the reference documentation.[1]

A sample configuration to enable Spring Data repositories looks something like this.

Example 1.7. Sample annotation based repository configuration

class ApplicationConfiguration {

  public EntityManagerFactory entityManagerFactory() {
    // …


The sample uses the JPA-specific annotation, which you would change according to the store module you actually use. The same applies to the definition of the EntityManagerFactory bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container. You still need some Spring libraries in your classpath, but generally you can set up repositories programmatically as well. The Spring Data modules that provide repository support ship a persistence technology-specific RepositoryFactory that you can use as follows.

Example 1.8. Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

1.3 Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction and query method functionality.

1.3.1 Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for the custom functionality. Use the repository interface you provided to extend the custom interface.

Example 1.9. Interface for custom repository functionality

interface UserRepositoryCustom {

  public void someCustomMethod(User user);

Example 1.10. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

  public void someCustomMethod(User user) {
    // Your custom implementation

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you can use standard dependency injection behavior to inject references to other beans, take part in aspects, and so on.

Example 1.11. Changes to the your basic repository interface

public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

  // Declare query methods here

Let your standard repository interface extend the custom one. Doing so makes CRUD and custom functionality available to clients.


If you use namespace configuration, the repository infrastructure tries to autodetect custom implementations by scanning for classes below the package we found a repository in. These classes need to follow the naming convention of appending the namespace element's attribute repository-impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 1.12. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl to act as custom repository implementation, where the second example will try to lookup com.acme.repository.UserRepositoryFooBar.

Manual wiring

The preceding approach works well if your custom implementation uses annotation-based configuration and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean needs special wiring, you simply declare the bean and name it after the conventions just described. The infrastructure will then refer to the manually defined bean definition by name instead of creating one itself.

Example 1.13. Manual wiring of custom implementations (I)

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
  <!-- further configuration -->

1.3.2 Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository interfaces.

  1. To add custom behavior to all repositories, you first add an intermediate interface to declare the shared behavior.

    Example 1.14. An interface declaring custom shared behavior

    public interface MyRepository<T, ID extends Serializable>
      extends JpaRepository<T, ID> {
      void sharedCustomMethod(ID id);

    Now your individual repository interfaces will extend this intermediate interface instead of the Repository interface to include the functionality declared.

  2. Next, create an implementation of the intermediate interface that extends the persistence technology-specific repository base class. This class will then act as a custom base class for the repository proxies.

    Example 1.15. Custom repository base class

    public class MyRepositoryImpl<T, ID extends Serializable>
      extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {
      private EntityManager entityManager;
      // There are two constructors to choose from, either can be used.
      public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) {
        super(domainClass, entityManager);
        // This is the recommended method for accessing inherited class dependencies.
        this.entityManager = entityManager;
      public void sharedCustomMethod(ID id) {
        // implementation goes here

    The default behavior of the Spring <repositories /> namespace is to provide an implementation for all interfaces that fall under the base-package. This means that if left in its current state, an implementation instance of MyRepository will be created by Spring. This is of course not desired as it is just supposed to act as an intermediary between Repository and the actual repository interfaces you want to define for each entity. To exclude an interface that extends Repository from being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean or move it outside of the configured base-package.

  3. Then create a custom repository factory to replace the default RepositoryFactoryBean that will in turn produce a custom RepositoryFactory. The new repository factory will then provide your MyRepositoryImpl as the implementation of any interfaces that extend the Repository interface, replacing the SimpleJpaRepository implementation you just extended.

    Example 1.16. Custom repository factory bean

    public class MyRepositoryFactoryBean<R extends JpaRepository<T, I>, T, I extends Serializable>
      extends JpaRepositoryFactoryBean<R, T, I> {
      protected RepositoryFactorySupport createRepositoryFactory(EntityManager entityManager) {
        return new MyRepositoryFactory(entityManager);
      private static class MyRepositoryFactory<T, I extends Serializable> extends JpaRepositoryFactory {
        private EntityManager entityManager;
        public MyRepositoryFactory(EntityManager entityManager) {
          this.entityManager = entityManager;
        protected Object getTargetRepository(RepositoryMetadata metadata) {
          return new MyRepositoryImpl<T, I>((Class<T>) metadata.getDomainClass(), entityManager);
        protected Class<?> getRepositoryBaseClass(RepositoryMetadata metadata) {
          // The RepositoryMetadata can be safely ignored, it is used by the JpaRepositoryFactory
          //to check for QueryDslJpaRepository's which is out of scope.
          return MyRepository.class;

  4. Finally, either declare beans of the custom factory directly or use the factory-class attribute of the Spring namespace to tell the repository infrastructure to use your custom factory implementation.

    Example 1.17. Using the custom factory with the namespace

    <repositories base-package="com.acme.repository"
      factory-class="com.acme.MyRepositoryFactoryBean" />

1.4 Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts. Currently most of the integration is targeted towards Spring MVC.

1.4.1 Web support


This section contains the documentation for the Spring Data web support as it is implemented as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite a lot of things we kept the documentation of the former behavior in Section 1.4.3, “Legacy web support”.

Also note that the JavaConfig support introduced in Spring Data Commons 1.6 requires Spring 3.2 due to some issues with JavaConfig and overridden methods in Spring 3.1.

Spring Data modules ships with a variety of web support if the module supports the repository programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them even provide integration with Spring HATEOAS.

[2]In general, the integration support is enabled by using the @EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Example 1.18. Enabling Spring Data web support

class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It will also detect Spring HATEOAS on the classpath and register integration components for it as well if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or HateoasAwareSpringDataWebSupport as Spring beans:

Example 1.19. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former -->
<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

  • A DomainClassConverter to enable Spring MVC to resolve instances of repository managed domain classes from request parameters or path variables.

  • HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort instances from request parameters.


The DomainClassConverter allows you to use domain types in your Spring MVC controller method signatures directly, so that you don't have to manually lookup the instances via the repository:

Example 1.20. A Spring MVC controller using domain types in method signatures

public class UserController {

  public String showUserForm(@PathVariable("id") User user, Model model) {

    model.addAttribute("user", user);
    return "userForm";

As you can see the method receives a User instance directly and no further lookup is necessary. The instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain class first and eventually access the instance through calling findOne(…) on the repository instance registered for the domain type.


Currently the repository has to implement CrudRepository to be eligible to be discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being valid controller method arguments

Example 1.21. Using Pageable as controller method argument

public class UserController {

  @Autowired UserRepository repository;

  public String showUsers(Model model, Pageable pageable) {

    model.addAttribute("users", repository.findAll(pageable));
    return "users";

This method signature will cause Spring MVC try to derive a Pageable instance from the request parameters using the following default configuration:

Table 1.1. Request parameters evaluated for Pageable instances

pagePage you want to retrieve.
sizeSize of the page you want to retrieve.
sortProperties that should be sorted by in the format property,property(,ASC|DESC). Default sort direction is ascending. Use multiple sort parameters if you want to switch directions, e.g. ?sort=firstname&sort=lastname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled equivalent and override the pageableResolver() or sortResolver() methods and import your customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageables or Sorts to be resolved from the request (for multiple tables, for example) you can use Spring's @Qualifier annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model, 
      @Qualifier("foo") Pageable first,
      @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(0, 20) but can be customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enrichting the content of a Page instance with the necessary Page metadata as well as links to let the clients easily navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

Example 1.22. Using a PagedResourcesAssembler as controller method argument

class PersonController { 

  @Autowired PersonRepository repository; 

  @RequestMapping(value = "/persons", method = RequestMethod.GET) 
  HttpEntity<PagedResources<Person>> persons(Pageable pageable, 
    PagedResourcesAssembler assembler) { 

    Page<Person> persons = repository.findAll(pageable); 
    return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as controller method argument. Calling toResources(…) on it will cause the following:

  • The content of the Page will become the content of the PagedResources instance.

  • The PagedResources will get a PageMetadata instance attached populated with information form the Page and the underlying PageRequest.

  • The PagedResources gets prev and next links attached depending on the page's state. The links will point to the URI the method invoked is mapped to. The pagination parameters added to the method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET http://localhost:8080/persons and you'll see something similar to this:

{ "links" : [ { "rel" : "next", 
                "href" : "http://localhost:8080/persons?page=1&size=20 } 
  "content" : [ 
     … // 20 Person instances rendered here
  "pageMetadata" : { 
    "size" : 20, 
    "totalElements" : 30, 
    "totalPages" : 2, 
    "number" : 0

You see that the assembler produced the correct URI and also picks up the default configuration present to resolve the parameters into a Pageable for an upcoming request. This means, if you change that configuration, the links will automatically adhere to the change. By default the assembler points to the controller method it was invoked in but that can be customized by handing in a custom Link to be used as base to build the pagination links to overloads of the PagedResourcesAssembler.toResource(…) method.

1.4.2 Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it does not use SQL as the data definition language because it must be store-independent. Thus the populators support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data with which to populate the repositories.

Assume you have a file data.json with the following content:

Example 1.23. Data defined in JSON

[ { "_class" : "com.acme.Person",
 "firstname" : "Dave",
  "lastname" : "Matthews" },
  { "_class" : "com.acme.Person",
 "firstname" : "Carter",
  "lastname" : "Beauford" } ]

You can easily populate your repositories by using the populator elements of the repository namespace provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the following:

Example 1.24. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

  <repository:jackson-populator location="classpath:data.json" />


This declaration causes the data.json file being read, deserialized by a Jackson ObjectMapper. The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class attribute of the JSON document. The infrastructure will eventually select the appropriate repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring OXM provides you with. See the Spring reference documentation for details.

Example 1.25. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

  <repository:unmarshaller-populator location="classpath:data.json" unmarshaller-ref="unmarshaller" />

  <oxm:jaxb2-marshaller contextPath="com.acme" />


1.4.3 Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class ids from URLs. By default your task is to transform that request parameter or URL part into the domain class to hand it to layers below then or execute business logic on the entities directly. This would look something like this:

public class UserController {

  private final UserRepository userRepository;

  public UserController(UserRepository userRepository) {
    Assert.notNull(repository, "Repository must not be null!");
    userRepository = userRepository;

  public String showUserForm(@PathVariable("id") Long id, Model model) {
    // Do null check for id
    User user = userRepository.findOne(id);
    // Do null check for user

    model.addAttribute("user", user);
    return "user";

First you declare a repository dependency for each controller to look up the entity managed by the controller or repository respectively. Looking up the entity is boilerplate as well, as it's always a findOne(…) call. Fortunately Spring provides means to register custom components that allow conversion between a String value to an arbitrary type.


For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that, Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data repositories registered in the ApplicationContext and registers a custom PropertyEditor for the managed domain class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
  <property name="webBindingInitializer">
    <bean class="….web.bind.support.ConfigurableWebBindingInitializer">
      <property name="propertyEditorRegistrars">
        <bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />

If you have configured Spring MVC as in the preceding example, you can configure your controller as follows, which reduces a lot of the clutter and boilerplate.

public class UserController {

  public String showUserForm(@PathVariable("id") User user, Model model) {

    model.addAttribute("user", user);
    return "userForm";

In Spring 3.0 and later the PropertyEditor support is superseded by a new conversion infrastructure that eliminates the drawbacks of PropertyEditors and uses a stateless X to Y conversion approach. Spring Data now ships with a DomainClassConverter that mimics the behavior of DomainClassPropertyEditorRegistrar. To configure, simply declare a bean instance and pipe the ConversionService being used into its constructor:

<mvc:annotation-driven conversion-service="conversionService" />

<bean class="org.springframework.data.repository.support.DomainClassConverter">
  <constructor-arg ref="conversionService" />

If you are using JavaConfig, you can simply extend Spring MVC's WebMvcConfigurationSupport and hand the FormatingConversionService that the configuration superclass provides into the DomainClassConverter instance you create.

class WebConfiguration extends WebMvcConfigurationSupport {

  // Other configuration omitted

  public DomainClassConverter<?> domainClassConverter() {
    return new DomainClassConverter<FormattingConversionService>(mvcConversionService());

Web pagination

When working with pagination in the web layer you usually have to write a lot of boilerplate code yourself to extract the necessary metadata from the request. The less desirable approach shown in the example below requires the method to contain an HttpServletRequest parameter that has to be parsed manually. This example also omits appropriate failure handling, which would make the code even more verbose.

public class UserController {

  // DI code omitted

  public String showUsers(Model model, HttpServletRequest request) {

    int page = Integer.parseInt(request.getParameter("page"));
    int pageSize = Integer.parseInt(request.getParameter("pageSize"));

    Pageable pageable = new PageRequest(page, pageSize);

    model.addAttribute("users", userService.getUsers(pageable));
    return "users";

The bottom line is that the controller should not have to handle the functionality of extracting pagination information from the request. So Spring Data ships with a PageableHandlerArgumentResolver that will do the work for you. The Spring MVC JavaConfig support exposes a WebMvcConfigurationSupport helper class to customize the configuration as follows:

public class WebConfig extends WebMvcConfigurationSupport {

  public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {
    converters.add(new PageableHandlerArgumentResolver());

If you're stuck with XML configuration you can register the resolver as follows:

<bean class="….web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">
  <property name="customArgumentResolvers">
      <bean class="org.springframework.data.web.PageableHandlerArgumentResolver" />

When using Spring 3.0.x versions use the PageableArgumentResolver instead. Once you've configured the resolver with Spring MVC it allows you to simplify controllers down to something like this:

public class UserController {

  public String showUsers(Model model, Pageable pageable) {

    model.addAttribute("users", userRepository.findAll(pageable));
    return "users";

The PageableArgumentResolver automatically resolves request parameters to build a PageRequest instance. By default it expects the following structure for the request parameters.

Table 1.2. Request parameters evaluated by PageableArgumentResolver

pagePage you want to retrieve.
page.sizeSize of the page you want to retrieve.
page.sortProperty that should be sorted by.
page.sort.dirDirection that should be used for sorting.

In case you need multiple Pageables to be resolved from the request (for multiple tables, for example) you can use Spring's @Qualifier annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model, 
      @Qualifier("foo") Pageable first,
      @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page and the related subproperties.

Configuring a global default on bean declaration

The PageableArgumentResolver will use a PageRequest with the first page and a page size of 10 by default. It will use that value if it cannot resolve a PageRequest from the request (because of missing parameters, for example). You can configure a global default on the bean declaration directly. If you might need controller method specific defaults for the Pageable, annotate the method parameter with @PageableDefaults and specify page (through pageNumber), page size (through value), sort (list of properties to sort by), and sortDir (the direction to sort by) as annotation attributes:

public String showUsers(Model model, 
  @PageableDefaults(pageNumber = 0, value = 30) Pageable pageable) { … }

2. JPA Repositories


This chapter includes details of the JPA repository implementation.

2.1 Introduction

2.1.1 Spring namespace

The JPA module of Spring Data contains a custom namespace that allows defining repository beans. It also contains certain features and element attributes that are special to JPA. Generally the JPA repositories can be set up using the repositories element:

Example 2.1. Setting up JPA repositories using the namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

  <jpa:repositories base-package="com.acme.repositories" />


Using this element looks up Spring Data repositories as described in Section 1.2.3, “Creating repository instances”. Beyond that it activates persistence exception translation for all beans annotated with @Repository to let exceptions being thrown by the JPA presistence providers be converted into Spring's DataAccessException hierarchy.

Custom namespace attributes

Beyond the default attributes of the repositories element the JPA namespace offers additional attributes to gain more detailled control over the setup of the repositories:

Table 2.1. Custom JPA-specific attributes of the repositories element

entity-manager-factory-refExplicitly wire the EntityManagerFactory to be used with the repositories being detected by the repositories element. Usually used if multiple EntityManagerFactory beans are used within the application. If not configured we will automatically lookup the single EntityManagerFactory configured in the ApplicationContext.
transaction-manager-refExplicitly wire the PlatformTransactionManager to be used with the repositories being detected by the repositories element. Usually only necessary if multiple transaction managers and/or EntityManagerFactory beans have been configured. Default to a single defined PlatformTransactionManager inside the current ApplicationContext.

Note that we require a PlatformTransactionManager bean named transactionManager to be present if no explicit transaction-manager-ref is defined.

2.1.2 Annotation based configuration

The Spring Data JPA repositories support cannot only be activated through an XML namespace but also using an annotation through JavaConfig.

Example 2.2. Spring Data JPA repositories using JavaConfig

class ApplicationConfig {

  public DataSource dataSource() {

    EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();
    return builder.setType(EmbeddedDatabaseType.HSQL).build();

  public EntityManagerFactory entityManagerFactory() {

    HibernateJpaVendorAdapter vendorAdapter = new HibernateJpaVendorAdapter();

    LocalContainerEntityManagerFactoryBean factory = new LocalContainerEntityManagerFactoryBean();

    return factory.getObject();

  public PlatformTransactionManager transactionManager() {

    JpaTransactionManager txManager = new JpaTransactionManager();
    return txManager;

The just shown configuration class sets up an embedded HSQL database using the EmbeddedDatabaseBuilder API of spring-jdbc. We then set up a EntityManagerFactory and use Hibernate as sample persistence provider. The last infrastructure component declared here is the JpaTransactionManager. We eventually activate Spring Data JPA repositories using the @EnableJpaRepositories annotation which essentially carries the same attributes as the XML namespace does. If no base package is configured it will use the one the configuration class resides in.

2.2 Persisting entities

2.2.1 Saving entities

Saving an entity can be performed via the CrudRepository.save(…)-Method. It will persist or merge the given entity using the underlying JPA EntityManager. If the entity has not been persisted yet Spring Data JPA will save the entity via a call to the entityManager.persist(…)-Method, otherwise the entityManager.merge(…)-Method will be called.

Entity state detection strategies

Spring Data JPA offers the following strategies to detect whether an entity is new or not:

Table 2.2. Options for detection whether an entity is new in Spring Data JPA

Id-Property inspection (default)By default Spring Data JPA inspects the Id-Property of the given Entity. If the Id-Property is null, then the entity will be assumed as new, otherwise as not new.
Implementing PersistableIf an entity implements the Persistable interface, Spring Data JPA will delegate the new-detection to the isNew - Method of the Entity. See the JavaDoc for details.
Implementing EntityInformationOne can customize the EntityInformation abstraction used in the SimpleJpaRepository implementation by creating a subclass of JpaRepositoryFactory and overriding the getEntityInformation-Method accordingly. One then has to register the custom implementation of JpaRepositoryFactory as a Spring bean. Note that this should be rarely necessary. See the JavaDoc for details.

2.3 Query methods

2.3.1 Query lookup strategies

The JPA module supports defining a query manually as String or have it being derived from the method name.

Declared queries

Although getting a query derived from the method name is quite convenient, one might face the situation in which either the method name parser does not support the keyword one wants to use or the method name would get unnecessarily ugly. So you can either use JPA named queries through a naming convention (see Section 2.3.3, “Using JPA NamedQueries” for more information) or rather annotate your query method with @Query (see Section 2.3.4, “Using @Query” for details).

2.3.2 Query creation

Generally the query creation mechanism for JPA works as described in Section 1.2, “Query methods”. Here's a short example of what a JPA query method translates into:

Example 2.3. Query creation from method names

public interface UserRepository extends Repository<User, Long> {

  List<User> findByEmailAddressAndLastname(String emailAddress, String lastname);

We will create a query using the JPA criteria API from this but essentially this translates into the following query:

select u from User u where u.emailAddress = ?1 and u.lastname = ?2

Spring Data JPA will do a property check and traverse nested properties as described in ???. Here's an overview of the keywords supported for JPA and what a method containing that keyword essentially translates to.

Table 2.3. Supported keywords inside method names

KeywordSampleJPQL snippet
AndfindByLastnameAndFirstname… where x.lastname = ?1 and x.firstname = ?2
OrfindByLastnameOrFirstname… where x.lastname = ?1 or x.firstname = ?2
BetweenfindByStartDateBetween… where x.startDate between 1? and ?2
LessThanfindByAgeLessThan… where x.age < ?1
GreaterThanfindByAgeGreaterThan… where x.age > ?1
AfterfindByStartDateAfter… where x.startDate > ?1
BeforefindByStartDateBefore… where x.startDate < ?1
IsNullfindByAgeIsNull… where x.age is null
IsNotNull,NotNullfindByAge(Is)NotNull… where x.age not null
LikefindByFirstnameLike… where x.firstname like ?1
NotLikefindByFirstnameNotLike… where x.firstname not like ?1
StartingWithfindByFirstnameStartingWith… where x.firstname like ?1 (parameter bound with appended %)
EndingWithfindByFirstnameEndingWith… where x.firstname like ?1 (parameter bound with prepended %)
ContainingfindByFirstnameContaining… where x.firstname like ?1 (parameter bound wrapped in %)
OrderByfindByAgeOrderByLastnameDesc… where x.age = ?1 order by x.lastname desc
NotfindByLastnameNot… where x.lastname <> ?1
InfindByAgeIn(Collection<Age> ages)… where x.age in ?1
NotInfindByAgeNotIn(Collection<Age> age)… where x.age not in ?1
TruefindByActiveTrue()… where x.active = true
FalsefindByActiveFalse()… where x.active = false


In and NotIn also take any subclass of Collection as parameter as well as arrays or varargs. For other syntactical versions of the very same logical operator check Appendix B, Repository query keywords.

2.3.3 Using JPA NamedQueries


The examples use simple <named-query /> element and @NamedQuery annotation. The queries for these configuration elements have to be defined in JPA query language. Of course you can use <named-native-query /> or @NamedNativeQuery too. These elements allow you to define the query in native SQL by losing the database platform independence.

XML named query definition

To use XML configuration simply add the necessary <named-query /> element to the orm.xml JPA configuration file located in META-INF folder of your classpath. Automatic invocation of named queries is enabled by using some defined naming convention. For more details see below.

Example 2.4. XML named query configuration

<named-query name="User.findByLastname">
  <query>select u from User u where u.lastname = ?1</query>

As you can see the query has a special name which will be used to resolve it at runtime.

Annotation configuration

Annotation configuration has the advantage of not needing another configuration file to be edited, probably lowering maintenance costs. You pay for that benefit by the need to recompile your domain class for every new query declaration.

Example 2.5. Annotation based named query configuration

@NamedQuery(name = "User.findByEmailAddress",
  query = "select u from User u where u.emailAddress = ?1")
public class User {


Declaring interfaces

To allow execution of these named queries all you need to do is to specify the UserRepository as follows:

Example 2.6. Query method declaration in UserRepository

public interface UserRepository extends JpaRepository<User, Long> {

  List<User> findByLastname(String lastname);

  User findByEmailAddress(String emailAddress);

Spring Data will try to resolve a call to these methods to a named query, starting with the simple name of the configured domain class, followed by the method name separated by a dot. So the example here would use the named queries defined above instead of trying to create a query from the method name.

2.3.4 Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small number of queries. As the queries themselves are tied to the Java method that executes them you actually can bind them directly using the Spring Data JPA @Query annotation rather than annotating them to the domain class. This will free the domain class from persistence specific information and co-locate the query to the repository interface.

Queries annotated to the query method will take precedence over queries defined using @NamedQuery or named queries declared in orm.xml.

Example 2.7. Declare query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

  @Query("select u from User u where u.emailAddress = ?1")
  User findByEmailAddress(String emailAddress);

Using advanced LIKE expressions

The query execution mechanism for manually defined queries using @Query allow the definition of advanced LIKE expressions inside the query definition.

Example 2.8. Advanced LIKE expressions in @Query

public interface UserRepository extends JpaRepository<User, Long> {

  @Query("select u from User u where u.firstname like %?1")
  List<User> findByFirstnameEndsWith(String firstname);

In the just shown sample LIKE delimiter character % is recognized and the query transformed into a valid JPQL query (removing the %). Upon query execution the parameter handed into the method call gets augmented with the previously recognized LIKE pattern.

Native queries

The @Query annotation allows to execute native queries by setting the nativeQuery flag to true. Note, that we currently don't support execution of pagination or dynamic sorting for native queries as we'd have to manipulate the actual query declared and we cannot do this reliably for native SQL.

Example 2.9. Declare a native query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

  @Query(value = "SELECT * FROM USERS WHERE EMAIL_ADDRESS = ?0", nativeQuery = true)
  User findByEmailAddress(String emailAddress);

2.3.5 Using named parameters

By default Spring Data JPA will use position based parameter binding as described in all the samples above. This makes query methods a little error prone to refactoring regarding the parameter position. To solve this issue you can use @Param annotation to give a method parameter a concrete name and bind the name in the query:

Example 2.10. Using named parameters

public interface UserRepository extends JpaRepository<User, Long> {

  @Query("select u from User u where u.firstname = :firstname or u.lastname = :lastname")
  User findByLastnameOrFirstname(@Param("lastname") String lastname,
                                 @Param("firstname") String firstname);

Note that the method parameters are switched according to the occurrence in the query defined.

2.3.6 Using SpEL expressions

As of Spring Data JPA Release 1.4 we support the usage of restricted SpEL template expressions in manually defined queries via @Query. Upon query execution these expressions are evaluated against a predefined set of variables. We support the following list of variables to be used in a manual query.

Table 2.4. Supported variables inside SpEL based query templates

entityNameselect x from #{#entityName} xInserts the entityName of the domain type associated with the given Repository. The entityName is resolved as follows: If the domain type has set the name property on the @Entity annotation then it will be used. Otherwise the simple class-name of the domain type will be used.

The following example demonstrates one use case for the #{#entityName} expression in a query string where you want to define a repository interface with a query method with a manually defined query. In order not to have to state the actual entity name in the query string of a @Query annotation one can use the #{#entityName} Variable.

Example 2.11. Using SpEL expressions in Repository query methods - entityName

public class User {

  @Id @GeneratedValue Long id; 
  String lastname;

public interface UserRepository extends JpaRepository<User,Long> {

  @Query("select u from #{#entityName} u where u.lastname = ?1")
  List<User> findByLastname(String lastname);

Of course you could have just used User in the query declaration directly but that would require you to change the query as well. The reference to #entityName will pick up potential future remappings of the User class to a different entity name (e.g. by using @Entity(name = "MyUser").

Another use case for the #{#entityName} expression in a query string is if you want to define a generic repository interface with specialized repository interfaces for a concrete domain type. In order not to have to repeat the definition of custom query methods on the concrete interfaces you can use the entity name expression in the query string of the @Query annotation in the generic repository interface.

Example 2.12. Using SpEL expressions in Repository query methods - entityName with inheritance

public abstract class AbstractMappedType {
  String attribute

public class ConcreteType extends AbstractMappedType { … }

public interface MappedTypeRepository<T extends AbstractMappedType>
  extends Repository<T, Long> {

  @Query("select t from #{#entityName} t where t.attribute = ?1")
  List<T> findAllByAttribute(String attribute);

public interface ConcreteRepository
  extends MappedTypeRepository<ConcreteType> { … }

In the example the interface MappedTypeRepository is the common parent interface for a few domain types extending AbstractMappedType. It also defines the generic method findAllByAttribute(…) which can be used on instances of the specialized repository interfaces. If you now invoke findByAllAttribute(…) on ConcreteRepository the query being executed will be select t from ConcreteType t where t.attribute = ?1.

2.3.7 Modifying queries

All the sections above describe how to declare queries to access a given entity or collection of entities. Of course you can add custom modifying behaviour by using facilities described in Section 1.3, “Custom implementations for Spring Data repositories”. As this approach is feasible for comprehensive custom functionality, you can achieve the execution of modifying queries that actually only need parameter binding by annotating the query method with @Modifying:

Example 2.13. Declaring manipulating queries

@Query("update User u set u.firstname = ?1 where u.lastname = ?2")
int setFixedFirstnameFor(String firstname, String lastname);

This will trigger the query annotated to the method as updating query instead of a selecting one. As the EntityManager might contain outdated entities after the execution of the modifying query, we do not automatically clear it (see JavaDoc of EntityManager.clear() for details) since this will effectively drop all non-flushed changes still pending in the EntityManager. If you wish the EntityManager to be cleared automatically you can set @Modifying annotation's clearAutomatically attribute to true;

2.3.8 Applying query hints

To apply JPA QueryHints to the queries declared in your repository interface you can use the QueryHints annotation. It takes an array of JPA QueryHint annotations plus a boolean flag to potentially disable the hints applied to the addtional count query triggered when applying pagination.

Example 2.14. Using QueryHints with a repository method

public interface UserRepository extends Repository<User, Long> {

  @QueryHints(value = { @QueryHint(name = "name", value = "value")}, 
              forCounting = false)
  Page<User> findByLastname(String lastname, Pageable pageable);

The just shown declaration would apply the configured QueryHint for that actually query but omit applying it to the count query triggered to calculate the total number of pages.

2.4 Specifications

JPA 2 introduces a criteria API that can be used to build queries programmatically. Writing a criteria you actually define the where-clause of a query for a domain class. Taking another step back these criteria can be regarded as predicate over the entity that is described by the JPA criteria API constraints.

Spring Data JPA takes the concept of a specification from Eric Evans' book "Domain Driven Design", following the same semantics and providing an API to define such Specifications using the JPA criteria API. To support specifications you can extend your repository interface with the JpaSpecificationExecutor interface:

public interface CustomerRepository extends CrudRepository<Customer, Long>, JpaSpecificationExecutor {

The additional interface carries methods that allow you to execute Specifications in a variety of ways.

For example, the findAll method will return all entities that match the specification:

List<T> findAll(Specification<T> spec);

The Specification interface is as follows:

public interface Specification<T> {
  Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
            CriteriaBuilder builder);

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set of predicates on top of an entity that then can be combined and used with JpaRepository without the need to declare a query (method) for every needed combination. Here's an example:

Example 2.15. Specifications for a Customer

public class CustomerSpecs {

  public static Specification<Customer> isLongTermCustomer() {
    return new Specification<Customer>() {
      public Predicate toPredicate(Root<Customer> root, CriteriaQuery<?> query,
            CriteriaBuilder builder) {

         LocalDate date = new LocalDate().minusYears(2);
         return builder.lessThan(root.get(Customer_.createdAt), date);

  public static Specification<Customer> hasSalesOfMoreThan(MontaryAmount value) {
    return new Specification<Customer>() {
      public Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
            CriteriaBuilder builder) {

         // build query here

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by Java 8 closures) but the client side becomes much nicer as you will see below. The Customer_ type is a metamodel type generated using the JPA Metamodel generator (see the Hibernate implementation's documentation for example). So the expression Customer_.createdAt is asuming the Customer having a createdAt attribute of type Date. Besides that we have expressed some criteria on a business requirement abstraction level and created executable Specifications. So a client might use a Specification as follows:

Example 2.16. Using a simple Specification

List<Customer> customers = customerRepository.findAll(isLongTermCustomer());

Okay, why not simply create a query for this kind of data access? You're right. Using a single Specification does not gain a lot of benefit over a plain query declaration. The power of Specifications really shines when you combine them to create new Specification objects. You can achieve this through the Specifications helper class we provide to build expressions like this:

Example 2.17. Combined Specifications

MonetaryAmount amount = new MonetaryAmount(200.0, Currencies.DOLLAR);
List<Customer> customers = customerRepository.findAll(

As you can see, Specifications offers some glue-code methods to chain and combine Specifications. Thus extending your data access layer is just a matter of creating new Specification implementations and combining them with ones already existing.

2.5 Transactionality

CRUD methods on repository instances are transactional by default. For reading operations the transaction configuration readOnly flag is set to true, all others are configured with a plain @Transactional so that default transaction configuration applies. For details see JavaDoc of Repository. If you need to tweak transaction configuration for one of the methods declared in Repository simply redeclare the method in your repository interface as follows:

Example 2.18. Custom transaction configuration for CRUD

public interface UserRepository extends JpaRepository<User, Long> {

  @Transactional(timeout = 10)
  public List<User> findAll();

  // Further query method declarations

This will cause the findAll() method to be executed with a timeout of 10 seconds and without the readOnly flag.

Another possibility to alter transactional behaviour is using a facade or service implementation that typically covers more than one repository. Its purpose is to define transactional boundaries for non-CRUD operations:

Example 2.19. Using a facade to define transactions for multiple repository calls

class UserManagementImpl implements UserManagement {

  private final UserRepository userRepository;
  private final RoleRepository roleRepository;

  public UserManagementImpl(UserRepository userRepository,
    RoleRepository roleRepository) {
    this.userRepository = userRepository;
    this.roleRepository = roleRepository;

  public void addRoleToAllUsers(String roleName) {

    Role role = roleRepository.findByName(roleName);

    for (User user : userRepository.findAll()) {

This will cause call to addRoleToAllUsers(…) to run inside a transaction (participating in an existing one or create a new one if none already running). The transaction configuration at the repositories will be neglected then as the outer transaction configuration determines the actual one used. Note that you will have to activate <tx:annotation-driven /> explicitly to get annotation based configuration at facades working. The example above assumes you are using component scanning.

2.5.1 Transactional query methods

To allow your query methods to be transactional simply use @Transactional at the repository interface you define.

Example 2.20. Using @Transactional at query methods

@Transactional(readOnly = true)
public interface UserRepository extends JpaRepository<User, Long> {

  List<User> findByLastname(String lastname);

  @Query("delete from User u where u.active = false")
  void deleteInactiveUsers();

Typically you will want the readOnly flag set to true as most of the query methods will only read data. In contrast to that deleteInactiveUsers() makes use of the @Modifying annotation and overrides the transaction configuration. Thus the method will be executed with readOnly flag set to false.


It's definitely reasonable to use transactions for read only queries and we can mark them as such by setting the readOnly flag. This will not, however, act as check that you do not trigger a manipulating query (although some databases reject INSERT and UPDATE statements inside a read only transaction). The readOnly flag instead is propagated as hint to the underlying JDBC driver for performance optimizations. Furthermore, Spring will perform some optimizations on the underlying JPA provider. E.g. when used with Hibernate the flush mode is set to NEVER when you configure a transaction as readOnly which causes Hibernate to skip dirty checks (a noticeable improvement on large object trees).

2.6 Locking

To specify the lock mode to be used the @Lock annotation can be used on query methods:

Example 2.21. Defining lock metadata on query methods

interface UserRepository extends Repository<User, Long> {

  // Plain query method
  List<User> findByLastname(String lastname);

This method declaration will cause the query being triggered to be equipped with the LockModeType READ. You can also define locking for CRUD methods by redeclaring them in your repository interface and adding the @Lock annotation:

Example 2.22. Defining lock metadata on CRUD methods

interface UserRepository extends Repository<User, Long> {

  // Redeclaration of a CRUD method
  List<User> findAll();

2.7 Auditing

2.7.1 Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed an entity and the point in time this happened. To benefit from that functionality you have to equip your entity classes with auditing metadata that can be defined either using annotations or by implementing an interface.

Annotation based auditing metadata

We provide @CreatedBy, @LastModifiedBy to capture the user who created or modified the entity as well as @CreatedDate and @LastModifiedDate to capture the point in time this happened.

Example 2.23. An audited entity

class Customer {

  private User user;
  private DateTime createdDate;

  // … further properties omitted

As you can see, the annotations can be applied selectively, depending on which information you'd like to capture. For the annotations capturing the points in time can be used on properties of type org.joda.time.DateTime, java.util.Date as well as long/Long.

Interface-based auditing metadata

In case you don't want to use annotations to define auditing metadata you can let your domain class implement the Auditable interface. It exposes setter methods for all of the auditing properties.

There's also a convenience base class AbstractAuditable which you can extend to avoid the need to manually implement the interface methods. Be aware that this increases the coupling of your domain classes to Spring Data which might be something you want to avoid. Usually the annotation based way of defining auditing metadata is preferred as it is less invasive and more flexible.


In case you use either @CreatedBy or @LastModifiedBy, the auditing infrastructure somehow needs to become aware of the current principal. To do so, we provide an AuditorAware<T> SPI interface that you have to implement to tell the infrastructure who the current user or system interacting with the application is. The generic type T defines of what type the properties annotated with @CreatedBy or @LastModifiedBy have to be.

Here's an example implementation of the interface using Spring Security's Authentication object:

Example 2.24. Implementation of AuditorAware based on Spring Security

class SpringSecurityAuditorAware implements AuditorAware<User> {

  public User getCurrentAuditor() {
    Authentication authentication = SecurityContextHolder.getContext().getAuthentication();

    if (authentication == null || !authentication.isAuthenticated()) {
      return null;

    return ((MyUserDetails) authentication.getPrincipal()).getUser();

The implementation is accessing the Authentication object provided by Spring Security and looks up the custom UserDetails instance from it that you have created in your UserDetailsService implementation. We're assuming here that you are exposing the domain user through that UserDetails implementation but you could also look it up from anywhere based on the Authentication found.

2.7.2 General auditing configuration

Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information. So first you have to register the AuditingEntityListener inside your orm.xml to be used for all entities in your persistence contexts:

Note that the auditing feature requires spring-aspects.jar to be on the classpath.

Example 2.25. Auditing configuration orm.xml

      <entity-listener class="….data.jpa.domain.support.AuditingEntityListener" />

Now activating auditing functionality is just a matter of adding the Spring Data JPA auditing namespace element to your configuration:

Example 2.26. Activating auditing using XML configuration

<jpa:auditing auditor-aware-ref="yourAuditorAwareBean" />

As of Spring Data JPA 1.5, auditing can be enabled by annotating a configuration class with the @EnableJpaAuditing annotation.

Example 2.27. Activating auditing via Java configuration

class Config {

  public AuditorAware<AuditableUser> auditorProvider() {
    return new AuditorAwareImpl();

If you expose a bean of type AuditorAware to the ApplicationContext, the auditing infrastructure will pick it up automatically and use it to determine the current user to be set on domain types. If you have multiple implementations registered in the ApplicationContext, you can select the one to be used by explicitly setting the auditorAwareRef attribute of @EnableJpaAuditing.

2.8 Miscellaneous

2.8.1 Merging persistence units

Spring supports having multiple persistence units out of the box. Sometimes, however, you might want to modularize your application but still make sure that all these modules run inside a single persistence unit at runtime. To do so Spring Data JPA offers a PersistenceUnitManager implementation that automatically merges persistence units based on their name.

Example 2.28. Using MergingPersistenceUnitmanager

<bean class="….LocalContainerEntityManagerFactoryBean">
  <property name="persistenceUnitManager">
    <bean class="….MergingPersistenceUnitManager" />

2.8.2 Classpath scanning for @Entity classes and JPA mapping files

A plain JPA setup requires all annotation mapped entity classes listed in orm.xml. Same applies to XML mapping files. Spring Data JPA provides a ClasspathScanningPersistenceUnitPostProcessor that gets a base package configured and optionally takes a mapping filename pattern. It will then scan the given package for classes annotated with @Entity or @MappedSuperclass and also loads the configuration files matching the filename pattern and hands them to the JPA configuration. The PostProcessor has to be configured like this

Example 2.29. Using ClasspathScanningPersistenceUnitPostProcessor

<bean class="….LocalContainerEntityManagerFactoryBean">
  <property name="persistenceUnitPostProcessors">
      <bean class="org.springframework.data.jpa.support.ClasspathScanningPersistenceUnitPostProcessor">
        <constructor-arg value="com.acme.domain" />
        <property name="mappingFileNamePattern" value="**/*Mapping.xml" />


As of Spring 3.1 a package to scan can be configured on the LocalContainerEntityManagerFactoryBean directly to enable classpath scanning for entity classes. See the JavaDoc for details.

2.8.3 CDI integration

Instances of the repository interfaces are usually created by a container, which Spring is the most natural choice when working with Spring Data. There's sophisticated support to easily set up Spring to create bean instances documented in Section 1.2.3, “Creating repository instances”. As of version 1.1.0 Spring Data JPA ships with a custom CDI extension that allows using the repository abstraction in CDI environments. The extension is part of the JAR so all you need to do to activate it is dropping the Spring Data JPA JAR into your classpath.

You can now set up the infrastructure by implementing a CDI Producer for the EntityManagerFactory:

class EntityManagerFactoryProducer {

  public EntityManagerFactory createEntityManagerFactory() {
    return Persistence.createEntityManagerFactory("my-presistence-unit");

  public void close(@Disposes EntityManagerFactory entityManagerFactory) {

The Spring Data JPA CDI extension will pick up all EntityManagers availables as CDI beans and create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @Injected property:

class RepositoryClient {

  PersonRepository repository;

  public void businessMethod() {

    List<Person> people = repository.findAll();

Part II. Appendix

Appendix A. Namespace reference

A.1 The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package which defines the package to scan for Spring Data repository interfaces.[3]

Table A.1. Attributes

base-packageDefines the package to be used to be scanned for repository interfaces extending *Repository (actual interface is determined by specific Spring Data module) in auto detection mode. All packages below the configured package will be scanned, too. Wildcards are allowed.
repository-impl-postfixDefines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix will be considered as candidates. Defaults to Impl.
query-lookup-strategyDetermines the strategy to be used to create finder queries. See the section called “Query lookup strategies” for details. Defaults to create-if-not-found.

Appendix B. Repository query keywords

B.1 Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some listed here might not be supported in a particular store.

Table B.1. Query keywords

Logical keywordKeyword expressions
AFTERAfter, IsAfter
BEFOREBefore, IsBefore
CONTAININGContaining, IsContaining, Contains
BETWEENBetween, IsBetween
ENDING_WITHEndingWith, IsEndingWith, EndsWith
FALSEFalse, IsFalse
GREATER_THANGreaterThan, IsGreaterThan
GREATER_THAN_EQUALSGreaterThanEqual, IsGreaterThanEqual
INIn, IsIn
ISIs, Equals, (or no keyword)
IS_NOT_NULLNotNull, IsNotNull
IS_NULLNull, IsNull
LESS_THANLessThan, IsLessThan
LESS_THAN_EQUALLessThanEqual, IsLessThanEqual
LIKELike, IsLike
NEARNear, IsNear
NOTNot, IsNot
NOT_INNotIn, IsNotIn
NOT_LIKENotLike, IsNotLike
REGEXRegex, MatchesRegex, Matches
STARTING_WITHStartingWith, IsStartingWith, StartsWith
TRUETrue, IsTrue
WITHINWithin, IsWithin

Appendix C. Frequently asked questions

C.1. Common


I'd like to get more detailed logging information on what methods are called inside JpaRepository, e.g. How can I gain them?

You can make use of CustomizableTraceInterceptor provided by Spring:

<bean id="customizableTraceInterceptor" class="
  <property name="enterMessage" value="Entering $[methodName]($[arguments])"/>
  <property name="exitMessage" value="Leaving $[methodName](): $[returnValue]"/>

  <aop:advisor advice-ref="customizableTraceInterceptor"
    pointcut="execution(public * org.springframework.data.jpa.repository.JpaRepository+.*(..))"/>

C.2. Infrastructure


Currently I have implemented a repository layer based on HibernateDaoSupport. I create a SessionFactory by using Spring's AnnotationSessionFactoryBean. How do I get Spring Data repositories working in this environment?

You have to replace AnnotationSessionFactoryBean with the LocalContainerEntityManagerFactoryBean. Supposed you have registered it under entityManagerFactory you can reference it in you repositories based on HibernateDaoSupport as follows:

Example C.1. Looking up a SessionFactory from an HibernateEntityManagerFactory

<bean class="com.acme.YourDaoBasedOnHibernateDaoSupport">
  <property name="sessionFactory">
    <bean factory-bean="entityManagerFactory" factory-method="getSessionFactory" />

C.3. Auditing


I want to use Spring Data JPA auditing capabilities but have my database already set up to set modification and creation date on entities. How to prevent Spring Data from setting the date programmatically.

Just use the set-dates attribute of the auditing namespace element to false.




Aspect oriented programming


Commons DBCP

Commons DataBase Connection Pools - Library of the Apache foundation offering pooling implementations of the DataSource interface.


Create, Read, Update, Delete - Basic persistence operations



Data Access Object - Pattern to separate persisting logic from the object to be persisted

Dependency Injection

Pattern to hand a component's dependency to the component from outside, freeing the component to lookup the dependant itself. For more information see http://en.wikipedia.org/wiki/Dependency_Injection.



Object relational mapper implementing JPA - http://www.eclipselink.org



Object relational mapper implementing JPA - http://www.hibernate.org



Java Persistence Api



Java application framework - http://www.springframework.org