© 2008-2015 The original authors.
Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically. |
- Preface
- Reference Documentation
- Appendix
Preface
1. Project metadata
-
Version control - http://github.com/spring-projects/spring-data-jpa
-
Bugtracker - https://jira.spring.io/browse/DATAJPA
-
Release repository - https://repo.spring.io/libs-release
-
Milestone repository - https://repo.spring.io/libs-milestone
-
Snapshot repository - https://repo.spring.io/libs-snapshot
2. Dependencies
Due to different inception dates of individual Spring Data modules, most of them carry different major and minor version numbers. The easiest way to find compatible ones is by relying on the Spring Data Release Train BOM we ship with the compatible versions defined. In a Maven project you’d declare this dependency in the <dependencyManagement />
section of your POM:
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-releasetrain</artifactId>
<version>${release-train}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>
The current release train version is Gosling-SR6
. The train names are ascending alphabetically and currently available ones are listed here. The version name follows the following pattern: ${name}-${release}
where release can be one of the following:
-
BUILD-SNAPSHOT
- current snapshots -
M1
,M2
etc. - milestones -
RC1
,RC2
etc. - release candidates -
RELEASE
- GA release -
SR1
,SR2
etc. - service releases
A working example of using the BOMs can be found in our Spring Data examples repository. If that’s in place declare the Spring Data modules you’d like to use without a version in the <dependencies />
block.
<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactId>
</dependency>
<dependencies>
2.1. Dependency management with Spring Boot
Spring Boot already selects a very recent version of Spring Data modules for you. In case you want to upgrade to a newer version nonetheless, simply configure the property spring-data-releasetrain.version
to the train name and iteration you’d like to use.
3. Working with Spring Data Repositories
The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code required to implement data access layers for various persistence stores.
Spring Data repository documentation and your module This chapter explains the core concepts and interfaces of Spring Data repositories. The information in this chapter is pulled from the Spring Data Commons module. It uses the configuration and code samples for the Java Persistence API (JPA) module. Adapt the XML namespace declaration and the types to be extended to the equivalents of the particular module that you are using. Namespace reference covers XML configuration which is supported across all Spring Data modules supporting the repository API, Repository query keywords covers the query method keywords supported by the repository abstraction in general. For detailed information on the specific features of your module, consult the chapter on that module of this document. |
3.1. Core concepts
The central interface in Spring Data repository abstraction is Repository
(probably not that much of a surprise). It takes the domain class to manage as well as the id type of the domain class as type arguments. This interface acts primarily as a marker interface to capture the types to work with and to help you to discover interfaces that extend this one. The CrudRepository
provides sophisticated CRUD functionality for the entity class that is being managed.
public interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {
<S extends T> S save(S entity); (1)
T findOne(ID primaryKey); (2)
Iterable<T> findAll(); (3)
Long count(); (4)
void delete(T entity); (5)
boolean exists(ID primaryKey); (6)
// … more functionality omitted.
}
1 | Saves the given entity. |
2 | Returns the entity identified by the given id. |
3 | Returns all entities. |
4 | Returns the number of entities. |
5 | Deletes the given entity. |
6 | Indicates whether an entity with the given id exists. |
We also provide persistence technology-specific abstractions like e.g. JpaRepository or MongoRepository . Those interfaces extend CrudRepository and expose the capabilities of the underlying persistence technology in addition to the rather generic persistence technology-agnostic interfaces like e.g. CrudRepository.
|
On top of the CrudRepository
there is a PagingAndSortingRepository
abstraction that adds additional methods to ease paginated access to entities:
public interface PagingAndSortingRepository<T, ID extends Serializable>
extends CrudRepository<T, ID> {
Iterable<T> findAll(Sort sort);
Page<T> findAll(Pageable pageable);
}
Accessing the second page of User
by a page size of 20 you could simply do something like this:
PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));
In addition to query methods, query derivation for both count and delete queries, is available.
public interface UserRepository extends CrudRepository<User, Long> {
Long countByLastname(String lastname);
}
public interface UserRepository extends CrudRepository<User, Long> {
Long deleteByLastname(String lastname);
List<User> removeByLastname(String lastname);
}
3.2. Query methods
Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring Data, declaring those queries becomes a four-step process:
-
Declare an interface extending Repository or one of its subinterfaces and type it to the domain class and ID type that it will handle.
interface PersonRepository extends Repository<Person, Long> { … }
-
Declare query methods on the interface.
interface PersonRepository extends Repository<Person, Long> { List<Person> findByLastname(String lastname); }
-
Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:
import org.springframework.data.jpa.repository.config.EnableJpaRepositories; @EnableJpaRepositories class Config {}
or via XML configuration:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jpa="http://www.springframework.org/schema/data/jpa" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/data/jpa http://www.springframework.org/schema/data/jpa/spring-jpa.xsd"> <jpa:repositories base-package="com.acme.repositories"/> </beans>
The JPA namespace is used in this example. If you are using the repository abstraction for any other store, you need to change this to the appropriate namespace declaration of your store module which should be exchanging
jpa
in favor of, for example,mongodb
.Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the annotated class is used by default. To customize the package to scan use one of the
basePackage…
attribute of the data-store specific repository@Enable…
-annotation. -
Get the repository instance injected and use it.
public class SomeClient { @Autowired private PersonRepository repository; public void doSomething() { List<Person> persons = repository.findByLastname("Matthews"); } }
The sections that follow explain each step in detail.
3.3. Defining repository interfaces
As a first step you define a domain class-specific repository interface. The interface must extend Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend CrudRepository
instead of Repository
.
3.3.1. Fine-tuning repository definition
Typically, your repository interface will extend Repository
, CrudRepository
or PagingAndSortingRepository
. Alternatively, if you do not want to extend Spring Data interfaces, you can also annotate your repository interface with @RepositoryDefinition
. Extending CrudRepository
exposes a complete set of methods to manipulate your entities. If you prefer to be selective about the methods being exposed, simply copy the ones you want to expose from CrudRepository
into your domain repository.
This allows you to define your own abstractions on top of the provided Spring Data Repositories functionality. |
@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);
T save(T entity);
}
interface UserRepository extends MyBaseRepository<User, Long> {
User findByEmailAddress(EmailAddress emailAddress);
}
In this first step you defined a common base interface for all your domain repositories and exposed findOne(…)
as well as save(…)
.These methods will be routed into the base repository implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA SimpleJpaRepository
, because they are matching the method signatures in CrudRepository
. So the UserRepository
will now be able to save users, and find single ones by id, as well as triggering a query to find Users
by their email address.
Note, that the intermediate repository interface is annotated with @NoRepositoryBean . Make sure you add that annotation to all repository interfaces that Spring Data should not create instances for at runtime.
|
3.4. Defining query methods
The repository proxy has two ways to derive a store-specific query from the method name. It can derive the query from the method name directly, or by using a manually defined query. Available options depend on the actual store. However, there’s got to be a strategy that decides what actual query is created. Let’s have a look at the available options.
3.4.1. Query lookup strategies
The following strategies are available for the repository infrastructure to resolve the query. You can configure the strategy at the namespace through the query-lookup-strategy
attribute in case of XML configuration or via the queryLookupStrategy
attribute of the Enable${store}Repositories annotation in case of Java config. Some strategies may not be supported for particular datastores.
-
CREATE
attempts to construct a store-specific query from the query method name. The general approach is to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read more about query construction in Query creation. -
USE_DECLARED_QUERY
tries to find a declared query and will throw an exception in case it can’t find one. The query can be defined by an annotation somewhere or declared by other means. Consult the documentation of the specific store to find available options for that store. If the repository infrastructure does not find a declared query for the method at bootstrap time, it fails. -
CREATE_IF_NOT_FOUND
(default) combinesCREATE
andUSE_DECLARED_QUERY
. It looks up a declared query first, and if no declared query is found, it creates a custom method name-based query. This is the default lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query definition by method names but also custom-tuning of these queries by introducing declared queries as needed.
3.4.2. Query creation
The query builder mechanism built into Spring Data repository infrastructure is useful for building constraining queries over entities of the repository. The mechanism strips the prefixes find…By
, read…By
, query…By
, count…By
, and get…By
from the method and starts parsing the rest of it. The introducing clause can contain further expressions such as a Distinct
to set a distinct flag on the query to be created. However, the first By
acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define conditions on entity properties and concatenate them with And
and Or
.
public interface PersonRepository extends Repository<User, Long> {
List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);
// Enables the distinct flag for the query
List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);
List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);
// Enabling ignoring case for an individual property
List<Person> findByLastnameIgnoreCase(String lastname);
// Enabling ignoring case for all suitable properties
List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);
// Enabling static ORDER BY for a query
List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}
The actual result of parsing the method depends on the persistence store for which you create the query. However, there are some general things to notice.
-
The expressions are usually property traversals combined with operators that can be concatenated. You can combine property expressions with
AND
andOR
. You also get support for operators such asBetween
,LessThan
,GreaterThan
,Like
for the property expressions. The supported operators can vary by datastore, so consult the appropriate part of your reference documentation. -
The method parser supports setting an
IgnoreCase
flag for individual properties (for example,findByLastnameIgnoreCase(…)
) or for all properties of a type that support ignoring case (usuallyString
instances, for example,findByLastnameAndFirstnameAllIgnoreCase(…)
). Whether ignoring cases is supported may vary by store, so consult the relevant sections in the reference documentation for the store-specific query method. -
You can apply static ordering by appending an
OrderBy
clause to the query method that references a property and by providing a sorting direction (Asc
orDesc
). To create a query method that supports dynamic sorting, see Special parameter handling.
3.4.3. Property expressions
Property expressions can refer only to a direct property of the managed entity, as shown in the preceding example. At query creation time you already make sure that the parsed property is a property of the managed domain class. However, you can also define constraints by traversing nested properties. Assume a Person
has an Address
with a ZipCode
. In that case a method name of
List<Person> findByAddressZipCode(ZipCode zipCode);
creates the property traversal x.address.zipCode
. The resolution algorithm starts with interpreting the entire part (AddressZipCode
) as the property and checks the domain class for a property with that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source at the camel case parts from the right side into a head and a tail and tries to find the corresponding property, in our example, AddressZip
and Code
. If the algorithm finds a property with that head it takes the tail and continue building the tree down from there, splitting the tail up in the way just described. If the first split does not match, the algorithm move the split point to the left (Address
, ZipCode
) and continues.
Although this should work for most cases, it is possible for the algorithm to select the wrong property. Suppose the Person
class has an addressZip
property as well. The algorithm would match in the first split round already and essentially choose the wrong property and finally fail (as the type of addressZip
probably has no code
property).
To resolve this ambiguity you can use _
inside your method name to manually define traversal points. So our method name would end up like so:
List<Person> findByAddress_ZipCode(ZipCode zipCode);
As we treat underscore as a reserved character we strongly advise to follow standard Java naming conventions (i.e. not using underscores in property names but camel case instead).
3.4.4. Special parameter handling
To handle parameters in your query you simply define method parameters as already seen in the examples above. Besides that the infrastructure will recognize certain specific types like Pageable
and Sort
to apply pagination and sorting to your queries dynamically.
Page<User> findByLastname(String lastname, Pageable pageable);
Slice<User> findByLastname(String lastname, Pageable pageable);
List<User> findByLastname(String lastname, Sort sort);
List<User> findByLastname(String lastname, Pageable pageable);
The first method allows you to pass an org.springframework.data.domain.Pageable
instance to the query method to dynamically add paging to your statically defined query. A Page
knows about the total number of elements and pages available. It does so by the infrastructure triggering a count query to calculate the overall number. As this might be expensive depending on the store used, Slice
can be used as return instead. A Slice
only knows about whether there’s a next Slice
available which might be just sufficient when walking thought a larger result set.
Sorting options are handled through the Pageable
instance too. If you only need sorting, simply add an org.springframework.data.domain.Sort
parameter to your method. As you also can see, simply returning a List
is possible as well. In this case the additional metadata required to build the actual Page
instance will not be created (which in turn means that the additional count query that would have been necessary not being issued) but rather simply restricts the query to look up only the given range of entities.
To find out how many pages you get for a query entirely you have to trigger an additional count query. By default this query will be derived from the query you actually trigger. |
3.4.5. Limiting query results
The results of query methods can be limited via the keywords first
or top
, which can be used interchangeably. An optional numeric value can be appended to top/first to specify the maximum result size to be returned.
If the number is left out, a result size of 1 is assumed.
Top
and First
User findFirstByOrderByLastnameAsc();
User findTopByOrderByAgeDesc();
Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);
Slice<User> findTop3ByLastname(String lastname, Pageable pageable);
List<User> findFirst10ByLastname(String lastname, Sort sort);
List<User> findTop10ByLastname(String lastname, Pageable pageable);
The limiting expressions also support the Distinct
keyword. Also, for the queries limiting the result set to one instance, wrapping the result into an Optional
is supported.
If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of pages available) then it is applied within the limited result.
Note that limiting the results in combination with dynamic sorting via a Sort parameter allows to express query methods for the 'K' smallest as well as for the 'K' biggest elements.
|
3.4.6. Streaming query results
The results of query methods can be processed incrementally by using a Java 8 Stream<T>
as return type. Instead of simply wrapping the query results in a Stream
data store specific methods are used to perform the streaming.
Stream<T>
@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();
Stream<User> readAllByFirstnameNotNull();
@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);
A Stream potentially wraps underlying data store specific resources and must therefore be closed after usage. You can either manually close the Stream using the close() method or by using a Java 7 try-with-resources block.
|
Stream<T>
result in a try-with-resources blocktry (Stream<User> stream = repository.findAllByCustomQueryAndStream()) {
stream.forEach(…);
}
Not all Spring Data modules currently support Stream<T> as a return type.
|
3.4.7. Async query results
Repository queries can be executed asynchronously using Spring’s asynchronous method execution capability. This means the method will return immediately upon invocation and the actual query execution will occur in a task that has been submitted to a Spring TaskExecutor.
@Async
Future<User> findByFirstname(String firstname); (1)
@Async
CompletableFuture<User> findOneByFirstname(String firstname); (2)
@Async
ListenableFuture<User> findOneByLastname(String lastname); (3)
1 | Use java.util.concurrent.Future as return type. |
2 | Use a Java 8 java.util.concurrent.CompletableFuture as return type. |
3 | Use a org.springframework.util.concurrent.ListenableFuture as return type. |
3.5. Creating repository instances
In this section you create instances and bean definitions for the repository interfaces defined. One way to do so is using the Spring namespace that is shipped with each Spring Data module that supports the repository mechanism although we generally recommend to use the Java-Config style configuration.
3.5.1. XML configuration
Each Spring Data module includes a repositories element that allows you to simply define a base package that Spring scans for you.
<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">
<repositories base-package="com.acme.repositories" />
</beans:beans>
In the preceding example, Spring is instructed to scan com.acme.repositories
and all its sub-packages for interfaces extending Repository
or one of its sub-interfaces. For each interface found, the infrastructure registers the persistence technology-specific FactoryBean
to create the appropriate proxies that handle invocations of the query methods. Each bean is registered under a bean name that is derived from the interface name, so an interface of UserRepository
would be registered under userRepository
. The base-package
attribute allows wildcards, so that you can define a pattern of scanned packages.
Using filters
By default the infrastructure picks up every interface extending the persistence technology-specific Repository
sub-interface located under the configured base package and creates a bean instance for it. However, you might want more fine-grained control over which interfaces bean instances get created for. To do this you use <include-filter />
and <exclude-filter />
elements inside <repositories />
. The semantics are exactly equivalent to the elements in Spring’s context namespace. For details, see Spring reference documentation on these elements.
For example, to exclude certain interfaces from instantiation as repository, you could use the following configuration:
<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>
This example excludes all interfaces ending in SomeRepository
from being instantiated.
3.5.2. JavaConfig
The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories
annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring container, see the reference documentation.[1]
A sample configuration to enable Spring Data repositories looks something like this.
@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {
@Bean
public EntityManagerFactory entityManagerFactory() {
// …
}
}
The sample uses the JPA-specific annotation, which you would change according to the store module you actually use. The same applies to the definition of the EntityManagerFactory bean. Consult the sections covering the store-specific configuration.
|
3.5.3. Standalone usage
You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments. You still need some Spring libraries in your classpath, but generally you can set up repositories programmatically as well. The Spring Data modules that provide repository support ship a persistence technology-specific RepositoryFactory that you can use as follows.
RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);
3.6. Custom implementations for Spring Data repositories
Often it is necessary to provide a custom implementation for a few repository methods. Spring Data repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction and query method functionality.
3.6.1. Adding custom behavior to single repositories
To enrich a repository with custom functionality you first define an interface and an implementation for the custom functionality. Use the repository interface you provided to extend the custom interface.
interface UserRepositoryCustom {
public void someCustomMethod(User user);
}
class UserRepositoryImpl implements UserRepositoryCustom {
public void someCustomMethod(User user) {
// Your custom implementation
}
}
The most important bit for the class to be found is the Impl postfix of the name on it compared to the core repository interface (see below).
|
The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you can use standard dependency injection behavior to inject references to other beans like a JdbcTemplate
, take part in aspects, and so on.
interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {
// Declare query methods here
}
Let your standard repository interface extend the custom one. Doing so combines the CRUD and custom functionality and makes it available to clients.
Configuration
If you use namespace configuration, the repository infrastructure tries to autodetect custom implementations by scanning for classes below the package we found a repository in. These classes need to follow the naming convention of appending the namespace element’s attribute repository-impl-postfix
to the found repository interface name. This postfix defaults to Impl
.
<repositories base-package="com.acme.repository" />
<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />
The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl
to act as custom repository implementation, whereas the second example will try to lookup com.acme.repository.UserRepositoryFooBar
.
Manual wiring
The approach just shown works well if your custom implementation uses annotation-based configuration and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean needs special wiring, you simply declare the bean and name it after the conventions just described. The infrastructure will then refer to the manually defined bean definition by name instead of creating one itself.
<repositories base-package="com.acme.repository" />
<beans:bean id="userRepositoryImpl" class="…">
<!-- further configuration -->
</beans:bean>
3.6.2. Adding custom behavior to all repositories
The preceding approach is not feasible when you want to add a single method to all your repository interfaces. To add custom behavior to all repositories, you first add an intermediate interface to declare the shared behavior.
@NoRepositoryBean
public interface MyRepository<T, ID extends Serializable>
extends PagingAndSortingRepository<T, ID> {
void sharedCustomMethod(ID id);
}
Now your individual repository interfaces will extend this intermediate interface instead of the Repository
interface to include the functionality declared. Next, create an implementation of the intermediate interface that extends the persistence technology-specific repository base class. This class will then act as a custom base class for the repository proxies.
public class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {
private final EntityManager entityManager;
public MyRepositoryImpl(JpaEntityInformation entityInformation,
EntityManager entityManager) {
super(entityInformation, entityManager);
// Keep the EntityManager around to used from the newly introduced methods.
this.entityManager = entityManager;
}
public void sharedCustomMethod(ID id) {
// implementation goes here
}
}
The class needs to have a constructor of the super class which the store-specific repository factory implementation is using. In case the repository base class has multiple constructors, override the one taking an EntityInformation plus a store specific infrastructure object (e.g. an EntityManager or a template class).
|
The default behavior of the Spring <repositories />
namespace is to provide an implementation for all interfaces that fall under the base-package
. This means that if left in its current state, an implementation instance of MyRepository
will be created by Spring. This is of course not desired as it is just supposed to act as an intermediary between Repository
and the actual repository interfaces you want to define for each entity. To exclude an interface that extends Repository
from being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean
(as seen above) or move it outside of the configured base-package
.
The final step is to make the Spring Data infrastructure aware of the customized repository base class. In JavaConfig this is achieved by using the repositoryBaseClass
attribute of the @Enable…Repositories
annotation:
@Configuration
@EnableJpaRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { … }
A corresponding attribute is available in the XML namespace.
<repositories base-package="com.acme.repository"
base-class="….MyRepositoryImpl" />
3.7. Spring Data extensions
This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts. Currently most of the integration is targeted towards Spring MVC.
3.7.1. Web support
This section contains the documentation for the Spring Data web support as it is implemented as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite a lot of things we kept the documentation of the former behavior in Legacy web support. |
Spring Data modules ships with a variety of web support if the module supports the repository programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them even provide integration with Spring HATEOAS [2]. In general, the integration support is enabled by using the @EnableSpringDataWebSupport
annotation in your JavaConfig configuration class.
@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }
The @EnableSpringDataWebSupport
annotation registers a few components we will discuss in a bit. It will also detect Spring HATEOAS on the classpath and register integration components for it as well if present.
Alternatively, if you are using XML configuration, register either SpringDataWebSupport
or HateoasAwareSpringDataWebSupport
as Spring beans:
<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />
<!-- If you're using Spring HATEOAS as well register this one *instead* of the former -->
<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />
Basic web support
The configuration setup shown above will register a few basic components:
-
A
DomainClassConverter
to enable Spring MVC to resolve instances of repository managed domain classes from request parameters or path variables. -
HandlerMethodArgumentResolver
implementations to let Spring MVC resolve Pageable and Sort instances from request parameters.
DomainClassConverter
The DomainClassConverter
allows you to use domain types in your Spring MVC controller method signatures directly, so that you don’t have to manually lookup the instances via the repository:
@Controller
@RequestMapping("/users")
public class UserController {
@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {
model.addAttribute("user", user);
return "userForm";
}
}
As you can see the method receives a User instance directly and no further lookup is necessary. The instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain class first and eventually access the instance through calling findOne(…)
on the repository instance registered for the domain type.
Currently the repository has to implement CrudRepository to be eligible to be discovered for conversion.
|
HandlerMethodArgumentResolvers for Pageable and Sort
The configuration snippet above also registers a PageableHandlerMethodArgumentResolver
as well as an instance of SortHandlerMethodArgumentResolver
. The registration enables Pageable
and Sort
being valid controller method arguments
@Controller
@RequestMapping("/users")
public class UserController {
@Autowired UserRepository repository;
@RequestMapping
public String showUsers(Model model, Pageable pageable) {
model.addAttribute("users", repository.findAll(pageable));
return "users";
}
}
This method signature will cause Spring MVC try to derive a Pageable instance from the request parameters using the following default configuration:
|
Page you want to retrieve, 0 indexed and defaults to 0. |
|
Size of the page you want to retrieve, defaults to 20. |
|
Properties that should be sorted by in the format |
To customize this behavior extend either SpringDataWebConfiguration
or the HATEOAS-enabled equivalent and override the pageableResolver()
or sortResolver()
methods and import your customized configuration file instead of using the @Enable
-annotation.
In case you need multiple Pageable
or Sort
instances to be resolved from the request (for multiple tables, for example) you can use Spring’s @Qualifier
annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_
. So for a method signature like this:
public String showUsers(Model model,
@Qualifier("foo") Pageable first,
@Qualifier("bar") Pageable second) { … }
you have to populate foo_page
and bar_page
etc.
The default Pageable
handed into the method is equivalent to a new PageRequest(0, 20)
but can be customized using the @PageableDefaults
annotation on the Pageable
parameter.
Hypermedia support for Pageables
Spring HATEOAS ships with a representation model class PagedResources
that allows enriching the content of a Page
instance with the necessary Page
metadata as well as links to let the clients easily navigate the pages. The conversion of a Page to a PagedResources
is done by an implementation of the Spring HATEOAS ResourceAssembler
interface, the PagedResourcesAssembler
.
@Controller
class PersonController {
@Autowired PersonRepository repository;
@RequestMapping(value = "/persons", method = RequestMethod.GET)
HttpEntity<PagedResources<Person>> persons(Pageable pageable,
PagedResourcesAssembler assembler) {
Page<Person> persons = repository.findAll(pageable);
return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);
}
}
Enabling the configuration as shown above allows the PagedResourcesAssembler
to be used as controller method argument. Calling toResources(…)
on it will cause the following:
-
The content of the
Page
will become the content of thePagedResources
instance. -
The
PagedResources
will get aPageMetadata
instance attached populated with information form thePage
and the underlyingPageRequest
. -
The
PagedResources
getsprev
andnext
links attached depending on the page’s state. The links will point to the URI the method invoked is mapped to. The pagination parameters added to the method will match the setup of thePageableHandlerMethodArgumentResolver
to make sure the links can be resolved later on.
Assume we have 30 Person instances in the database. You can now trigger a request GET http://localhost:8080/persons
and you’ll see something similar to this:
{ "links" : [ { "rel" : "next",
"href" : "http://localhost:8080/persons?page=1&size=20 }
],
"content" : [
… // 20 Person instances rendered here
],
"pageMetadata" : {
"size" : 20,
"totalElements" : 30,
"totalPages" : 2,
"number" : 0
}
}
You see that the assembler produced the correct URI and also picks up the default configuration present to resolve the parameters into a Pageable
for an upcoming request. This means, if you change that configuration, the links will automatically adhere to the change. By default the assembler points to the controller method it was invoked in but that can be customized by handing in a custom Link
to be used as base to build the pagination links to overloads of the PagedResourcesAssembler.toResource(…)
method.
QueryDSL web support
For those stores having QueryDSL integration it is possible to derive queries from the attributes contained in a Request
query string.
This means that given the User
object from previous samples a query string
?firstname=Dave&lastname=Matthews
can be resolved to
QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))
using the QuerydslPredicateArgumentResolver
.
The feature will be automatically enabled along @EnableSpringDataWebSupport when Querydsl is found on the classpath.
|
Adding a @QuerydslPredicate
to the method signature will provide a ready to use Predicate
which can be executed via the QueryDslPredicateExecutor
.
Type information is typically resolved from the methods return type. Since those information does not necessarily match the domain type it might be a good idea to use the root attribute of QuerydslPredicate .
|
@Controller
class UserController {
@Autowired UserRepository repository;
@RequestMapping(value = "/", method = RequestMethod.GET)
String index(Model model, @QuerydslPredicate(root = User.class) Predicate predicate, (1)
Pageable pageable, @RequestParam MultiValueMap<String, String> parameters) {
model.addAttribute("users", repository.findAll(predicate, pageable));
return "index";
}
}
1 | Resolve query string arguments to matching Predicate for User . |
The default binding is as follows:
-
Object
on simple properties aseq
. -
Object
on collection like properties ascontains
. -
Collection
on simple properties asin
.
Those bindings can be customized via the bindings
attribute of @QuerydslPredicate
or by making use of Java 8 default methods
adding the QuerydslBinderCustomizer
to the repository interface.
interface UserRepository extends CrudRepository<User, String>,
QueryDslPredicateExecutor<User>, (1)
QuerydslBinderCustomizer<QUser> { (2)
@Override
default public void customize(QuerydslBindings bindings, QUser user) {
bindings.bind(user.username).first((path, value) -> path.contains(value)) (3)
bindings.bind(String.class)
.first((StringPath path, String value) -> path.containsIgnoreCase(value)); (4)
bindings.excluding(user.password); (5)
}
}
1 | QueryDslPredicateExecutor provides access to specific finder methods for Predicate . |
2 | QuerydslBinderCustomizer defined on the repository interface will be automatically picked up and shortcuts @QuerydslPredicate(bindings=…) . |
3 | Define the binding for the username property to be a simple contains binding. |
4 | Define the default binding for String properties to be a case insensitive contains match. |
5 | Exclude the password property from Predicate resolution. |
3.7.2. Repository populators
If you work with the Spring JDBC module, you probably are familiar with the support to populate a DataSource
using SQL scripts. A similar abstraction is available on the repositories level, although it does not use SQL as the data definition language because it must be store-independent. Thus the populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define data with which to populate the repositories.
Assume you have a file data.json
with the following content:
[ { "_class" : "com.acme.Person",
"firstname" : "Dave",
"lastname" : "Matthews" },
{ "_class" : "com.acme.Person",
"firstname" : "Carter",
"lastname" : "Beauford" } ]
You can easily populate your repositories by using the populator elements of the repository namespace provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the following:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">
<repository:jackson2-populator locations="classpath:data.json" />
</beans>
This declaration causes the data.json
file to
be read and deserialized via a Jackson ObjectMapper
.
The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to handle the object just deserialized.
To rather use XML to define the data the repositories shall be populated with, you can use the unmarshaller-populator
element. You configure it to use one of the XML marshaller options Spring OXM provides you with. See the Spring reference documentation for details.
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">
<repository:unmarshaller-populator locations="classpath:data.json"
unmarshaller-ref="unmarshaller" />
<oxm:jaxb2-marshaller contextPath="com.acme" />
</beans>
3.7.3. Legacy web support
Domain class web binding for Spring MVC
Given you are developing a Spring MVC web application you typically have to resolve domain class ids from URLs. By default your task is to transform that request parameter or URL part into the domain class to hand it to layers below then or execute business logic on the entities directly. This would look something like this:
@Controller
@RequestMapping("/users")
public class UserController {
private final UserRepository userRepository;
@Autowired
public UserController(UserRepository userRepository) {
Assert.notNull(repository, "Repository must not be null!");
this.userRepository = userRepository;
}
@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") Long id, Model model) {
// Do null check for id
User user = userRepository.findOne(id);
// Do null check for user
model.addAttribute("user", user);
return "user";
}
}
First you declare a repository dependency for each controller to look up the entity managed by the controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a findOne(…)
call. Fortunately Spring provides means to register custom components that allow conversion between a String
value to an arbitrary type.
PropertyEditors
For Spring versions before 3.0 simple Java PropertyEditors
had to be used. To integrate with that, Spring Data offers a DomainClassPropertyEditorRegistrar
, which looks up all Spring Data repositories registered in the ApplicationContext
and registers a custom PropertyEditor
for the managed domain class.
<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class="….web.bind.support.ConfigurableWebBindingInitializer">
<property name="propertyEditorRegistrars">
<bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>
</bean>
</property>
</bean>
If you have configured Spring MVC as in the preceding example, you can configure your controller as follows, which reduces a lot of the clutter and boilerplate.
@Controller
@RequestMapping("/users")
public class UserController {
@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {
model.addAttribute("user", user);
return "userForm";
}
}
Reference Documentation
4. JPA Repositories
This chapter will point out the specialties for repository support for JPA. This builds on the core repository support explained in Working with Spring Data Repositories. So make sure you’ve got a sound understanding of the basic concepts explained there.
4.1. Introduction
4.1.1. Spring namespace
The JPA module of Spring Data contains a custom namespace that allows defining repository beans. It also contains certain features and element attributes that are special to JPA. Generally the JPA repositories can be set up using the repositories
element:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">
<jpa:repositories base-package="com.acme.repositories" />
</beans>
Using this element looks up Spring Data repositories as described in Creating repository instances. Beyond that it activates persistence exception translation for all beans annotated with @Repository
to let exceptions being thrown by the JPA persistence providers be converted into Spring’s DataAccessException
hierarchy.
Custom namespace attributes
Beyond the default attributes of the repositories
element the JPA namespace offers additional attributes to gain more detailed control over the setup of the repositories:
|
Explicitly wire the |
|
Explicitly wire the |
Note that we require a PlatformTransactionManager
bean named transactionManager
to be present if no explicit transaction-manager-ref
is defined.
4.1.2. Annotation based configuration
The Spring Data JPA repositories support cannot only be activated through an XML namespace but also using an annotation through JavaConfig.
@Configuration
@EnableJpaRepositories
@EnableTransactionManagement
class ApplicationConfig {
@Bean
public DataSource dataSource() {
EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();
return builder.setType(EmbeddedDatabaseType.HSQL).build();
}
@Bean
public EntityManagerFactory entityManagerFactory() {
HibernateJpaVendorAdapter vendorAdapter = new HibernateJpaVendorAdapter();
vendorAdapter.setGenerateDdl(true);
LocalContainerEntityManagerFactoryBean factory = new LocalContainerEntityManagerFactoryBean();
factory.setJpaVendorAdapter(vendorAdapter);
factory.setPackagesToScan("com.acme.domain");
factory.setDataSource(dataSource());
factory.afterPropertiesSet();
return factory.getObject();
}
@Bean
public PlatformTransactionManager transactionManager() {
JpaTransactionManager txManager = new JpaTransactionManager();
txManager.setEntityManagerFactory(entityManagerFactory());
return txManager;
}
}
The just shown configuration class sets up an embedded HSQL database using the EmbeddedDatabaseBuilder
API of spring-jdbc. We then set up a EntityManagerFactory
and use Hibernate as sample persistence provider. The last infrastructure component declared here is the JpaTransactionManager
. We finally activate Spring Data JPA repositories using the @EnableJpaRepositories
annotation which essentially carries the same attributes as the XML namespace does. If no base package is configured it will use the one the configuration class resides in.
4.2. Persisting entities
4.2.1. Saving entities
Saving an entity can be performed via the CrudRepository.save(…)
-Method. It will persist or merge the given entity using the underlying JPA EntityManager
. If the entity has not been persisted yet Spring Data JPA will save the entity via a call to the entityManager.persist(…)
method, otherwise the entityManager.merge(…)
method will be called.
Entity state detection strategies
Spring Data JPA offers the following strategies to detect whether an entity is new or not:
Id-Property inspection (default) |
By default Spring Data JPA inspects the identifier property of the given entity. If the identifier property is |
Implementing |
If an entity implements |
Implementing |
You can customize the |
4.3. Query methods
4.3.1. Query lookup strategies
The JPA module supports defining a query manually as String or have it being derived from the method name.
Declared queries
Although getting a query derived from the method name is quite convenient, one might face the situation in which either the method name parser does not support the keyword one wants to use or the method name would get unnecessarily ugly. So you can either use JPA named queries through a naming convention (see Using JPA NamedQueries for more information) or rather annotate your query method with @Query
(see Using @Query for details).
4.3.2. Query creation
Generally the query creation mechanism for JPA works as described in Query methods. Here’s a short example of what a JPA query method translates into:
public interface UserRepository extends Repository<User, Long> { List<User> findByEmailAddressAndLastname(String emailAddress, String lastname); }
We will create a query using the JPA criteria API from this but essentially this translates into the following query: select u from User u where u.emailAddress = ?1 and u.lastname = ?2
. Spring Data JPA will do a property check and traverse nested properties as described in Property expressions. Here’s an overview of the keywords supported for JPA and what a method containing that keyword essentially translates to.
Keyword | Sample | JPQL snippet |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.3.3. Using JPA NamedQueries
The examples use simple |
XML named query definition
To use XML configuration simply add the necessary <named-query />
element to the orm.xml
JPA configuration file located in META-INF
folder of your classpath. Automatic invocation of named queries is enabled by using some defined naming convention. For more details see below.
<named-query name="User.findByLastname">
<query>select u from User u where u.lastname = ?1</query>
</named-query>
As you can see the query has a special name which will be used to resolve it at runtime.
Annotation configuration
Annotation configuration has the advantage of not needing another configuration file to be edited, probably lowering maintenance costs. You pay for that benefit by the need to recompile your domain class for every new query declaration.
@Entity
@NamedQuery(name = "User.findByEmailAddress",
query = "select u from User u where u.emailAddress = ?1")
public class User {
}
Declaring interfaces
To allow execution of these named queries all you need to do is to specify the UserRepository
as follows:
public interface UserRepository extends JpaRepository<User, Long> {
List<User> findByLastname(String lastname);
User findByEmailAddress(String emailAddress);
}
Spring Data will try to resolve a call to these methods to a named query, starting with the simple name of the configured domain class, followed by the method name separated by a dot. So the example here would use the named queries defined above instead of trying to create a query from the method name.
4.3.4. Using @Query
Using named queries to declare queries for entities is a valid approach and works fine for a small number of queries. As the queries themselves are tied to the Java method that executes them you actually can bind them directly using the Spring Data JPA @Query
annotation rather than annotating them to the domain class. This will free the domain class from persistence specific information and co-locate the query to the repository interface.
Queries annotated to the query method will take precedence over queries defined using @NamedQuery
or named queries declared in orm.xml
.
public interface UserRepository extends JpaRepository<User, Long> {
@Query("select u from User u where u.emailAddress = ?1")
User findByEmailAddress(String emailAddress);
}
Using advanced LIKE
expressions
The query execution mechanism for manually defined queries using @Query allows the definition of advanced LIKE
expressions inside the query definition.
public interface UserRepository extends JpaRepository<User, Long> {
@Query("select u from User u where u.firstname like %?1")
List<User> findByFirstnameEndsWith(String firstname);
}
In the just shown sample LIKE
delimiter character %
is recognized and the query transformed into a valid JPQL query (removing the %
). Upon query execution the parameter handed into the method call gets augmented with the previously recognized LIKE
pattern.
Native queries
The @Query
annotation allows to execute native queries by setting the nativeQuery
flag to true.
public interface UserRepository extends JpaRepository<User, Long> {
@Query(value = "SELECT * FROM USERS WHERE EMAIL_ADDRESS = ?1", nativeQuery = true)
User findByEmailAddress(String emailAddress);
}
Note, that we currently don’t support execution of dynamic sorting for native queries as we’d have to manipulate the actual query declared and we cannot do this reliably for native SQL. You can however use native queries for pagination by specifying the count query yourself:
public interface UserRepository extends JpaRepository<User, Long> {
@Query(value = "SELECT * FROM USERS WHERE LASTNAME = ?1",
countQuery = "SELECT count(*) FROM USERS WHERE LASTNAME = ?1",
nativeQuery = true)
Page<User> findByLastname(String lastname, Pageable pageable);
}
This also works with named native queries by adding the suffix .count
to a copy of your query. Be aware that you probably must register a result set mapping for your count query, though.
4.3.5. Using Sort
Sorting can be done be either providing a PageRequest
or using Sort
directly. The properties actually used within the Order
instances of Sort
need to match to your domain model, which means they need to resolve to either a property or an alias used within the query. The JPQL defines this as a state_field_path_expression.
Using any non referenceable path expression leads to an Exception. |
Using Sort
together with @Query however allows you to sneak in non path checked Order
instances containing functions within the ORDER BY
clause. This is possible because the Order
is just appended to the given query string. By default we will reject any Order
instance containing function calls, but you can use JpaSort.unsafe
to add potentially unsafe ordering.
public interface UserRepository extends JpaRepository<User, Long> {
@Query("select u from User u where u.lastname like ?1%")
List<User> findByAndSort(String lastname, Sort sort);
@Query("select u.id, LENGTH(u.firstname) as fn_len from User u where u.lastname like ?1%")
List<Object[]> findByAsArrayAndSort(String lastname, Sort sort);
}
repo.findByAndSort("lannister", new Sort("firstname")); (1)
repo.findByAndSort("stark", new Sort("LENGTH(firstname)")); (2)
repo.findByAndSort("targaryen", JpaSort.unsafe("LENGTH(firstname)")); (3)
repo.findByAsArrayAndSort("bolton", new Sort("fn_len")); (4)
1 | Valid Sort expression pointing to property in domain model. |
2 | Invalid Sort containing function call. Thows Exception. |
3 | Valid Sort containing explicitly unsafe Order . |
4 | Valid Sort expression pointing to aliased function. |
4.3.6. Using named parameters
By default Spring Data JPA will use position based parameter binding as described in all the samples above. This makes query methods a little error prone to refactoring regarding the parameter position. To solve this issue you can use @Param
annotation to give a method parameter a concrete name and bind the name in the query.
public interface UserRepository extends JpaRepository<User, Long> {
@Query("select u from User u where u.firstname = :firstname or u.lastname = :lastname")
User findByLastnameOrFirstname(@Param("lastname") String lastname,
@Param("firstname") String firstname);
}
Note that the method parameters are switched according to the occurrence in the query defined.
Spring 4 fully supports Java 8’s parameter name discovery based on the |
4.3.7. Using SpEL expressions
As of Spring Data JPA release 1.4 we support the usage of restricted SpEL template expressions in manually defined queries via @Query
. Upon query execution these expressions are evaluated against a predefined set of variables. We support the following list of variables to be used in a manual query.
Variable | Usage | Description |
---|---|---|
|
|
Inserts the |
The following example demonstrates one use case for the #{#entityName}
expression in a query string where you want to define a repository interface with a query method with a manually defined query. In order not to have to state the actual entity name in the query string of a @Query
annotation one can use the #{#entityName}
Variable.
The |
@Entity
public class User {
@Id
@GeneratedValue
Long id;
String lastname;
}
public interface UserRepository extends JpaRepository<User,Long> {
@Query("select u from #{#entityName} u where u.lastname = ?1")
List<User> findByLastname(String lastname);
}
Of course you could have just used User in the query declaration directly but that would require you to change the query as well. The reference to #entityName
will pick up potential future remappings of the User class to a different entity name (e.g. by using @Entity(name = "MyUser")
.
Another use case for the #{#entityName}
expression in a query string is if you want to define a generic repository interface with specialized repository interfaces for a concrete domain type. In order not to have to repeat the definition of custom query methods on the concrete interfaces you can use the entity name expression in the query string of the @Query
annotation in the generic repository interface.
@MappedSuperclass
public abstract class AbstractMappedType {
…
String attribute
}
@Entity
public class ConcreteType extends AbstractMappedType { … }
@NoRepositoryBean
public interface MappedTypeRepository<T extends AbstractMappedType>
extends Repository<T, Long> {
@Query("select t from #{#entityName} t where t.attribute = ?1")
List<T> findAllByAttribute(String attribute);
}
public interface ConcreteRepository
extends MappedTypeRepository<ConcreteType> { … }
In the example the interface MappedTypeRepository
is the common parent interface for a few domain types extending AbstractMappedType
. It also defines the generic method findAllByAttribute(…)
which can be used on instances of the specialized repository interfaces. If you now invoke findByAllAttribute(…)
on ConcreteRepository
the query being executed will be select t from ConcreteType t where t.attribute = ?1
.
4.3.8. Modifying queries
All the sections above describe how to declare queries to access a given entity or collection of entities. Of course you can add custom modifying behaviour by using facilities described in Custom implementations for Spring Data repositories. As this approach is feasible for comprehensive custom functionality, you can achieve the execution of modifying queries that actually only need parameter binding by annotating the query method with @Modifying
:
@Modifying
@Query("update User u set u.firstname = ?1 where u.lastname = ?2")
int setFixedFirstnameFor(String firstname, String lastname);
This will trigger the query annotated to the method as updating query instead of a selecting one. As the EntityManager
might contain outdated entities after the execution of the modifying query, we do not automatically clear it (see JavaDoc of EntityManager.clear()
for details) since this will effectively drop all non-flushed changes still pending in the EntityManager
. If you wish the EntityManager
to be cleared automatically you can set @Modifying
annotation’s clearAutomatically
attribute to true
.
4.3.9. Applying query hints
To apply JPA query hints to the queries declared in your repository interface you can use the @QueryHints
annotation. It takes an array of JPA @QueryHint
annotations plus a boolean flag to potentially disable the hints applied to the addtional count query triggered when applying pagination.
public interface UserRepository extends Repository<User, Long> {
@QueryHints(value = { @QueryHint(name = "name", value = "value")},
forCounting = false)
Page<User> findByLastname(String lastname, Pageable pageable);
}
The just shown declaration would apply the configured @QueryHint
for that actually query but omit applying it to the count query triggered to calculate the total number of pages.
4.3.10. Configuring Fetch- and LoadGraphs
The JPA 2.1 specification introduced support for specifiying Fetch- and LoadGraphs that we also support via the @EntityGraph
annotation which allows to reference a @NamedEntityGraph
definition, that can be annotated on an entity, to be used to configure the fetch plan of the resulting query. The type (Fetch / Load) of the fetching can be configured via the type
attribute on the @EntityGraph
annotation. Please have a look at the JPA 2.1 Spec 3.7.4 for further reference.
@Entity
@NamedEntityGraph(name = "GroupInfo.detail",
attributeNodes = @NamedAttributeNode("members"))
public class GroupInfo {
// default fetch mode is lazy.
@ManyToMany
List<GroupMember> members = new ArrayList<GroupMember>();
…
}
@Repository
public interface GroupRepository extends CrudRepository<GroupInfo, String> {
@EntityGraph(value = "GroupInfo.detail", type = EntityGraphType.LOAD)
GroupInfo getByGroupName(String name);
}
4.4. Stored procedures
The JPA 2.1 specification introduced support for calling stored procedures via the JPA criteria query API. We Introduced the @Procedure
annotation for declaring stored procedure metadata on a repository method.
/;
DROP procedure IF EXISTS plus1inout
/;
CREATE procedure plus1inout (IN arg int, OUT res int)
BEGIN ATOMIC
set res = arg ` 1;
END
/;
Metadata for stored procedures can be configured via the NamedStoredProcedureQuery
annotation on an entity type.
@Entity
@NamedStoredProcedureQuery(name = "User.plus1", procedureName = "plus1inout", parameters = {
@StoredProcedureParameter(mode = ParameterMode.IN, name = "arg", type = Integer.class),
@StoredProcedureParameter(mode = ParameterMode.OUT, name = "res", type = Integer.class) })
public class User {}
Stored procedures can be referenced from a repository method in multiple ways. The stored procedure to be called can either be defined directly via the value
or procedureName
attribute of the @Procedure
annotation or indirectly via the name
attribute. If no name is configured the name of the repository method is used as a fallback.
@Procedure("plus1inout")
Integer explicitlyNamedPlus1inout(Integer arg);
procedureName
alias.@Procedure(procedureName = "plus1inout")
Integer plus1inout(Integer arg);
@Procedure(name = "User.plus1IO")
Integer entityAnnotatedCustomNamedProcedurePlus1IO(@Param("arg") Integer arg);
@Procedure
Integer plus1(@Param("arg") Integer arg);
4.5. Specifications
JPA 2 introduces a criteria API that can be used to build queries programmatically. Writing a criteria
you actually define the where-clause of a query for a domain class. Taking another step back these criteria can be regarded as predicate over the entity that is described by the JPA criteria API constraints.
Spring Data JPA takes the concept of a specification from Eric Evans' book "Domain Driven Design", following the same semantics and providing an API to define such specifications using the JPA criteria API. To support specifications you can extend your repository interface with the JpaSpecificationExecutor
interface:
public interface CustomerRepository extends CrudRepository<Customer, Long>, JpaSpecificationExecutor {
…
}
The additional interface carries methods that allow you to execute specifications in a variety of ways. For example, the findAll
method will return all entities that match the specification:
List<T> findAll(Specification<T> spec);
The Specification
interface is defined as follows:
public interface Specification<T> {
Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
CriteriaBuilder builder);
}
Okay, so what is the typical use case? Specifications can easily be used to build an extensible set of predicates on top of an entity that then can be combined and used with JpaRepository
without the need to declare a query (method) for every needed combination. Here’s an example:
public class CustomerSpecs {
public static Specification<Customer> isLongTermCustomer() {
return new Specification<Customer>() {
public Predicate toPredicate(Root<Customer> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {
LocalDate date = new LocalDate().minusYears(2);
return builder.lessThan(root.get(_Customer.createdAt), date);
}
};
}
public static Specification<Customer> hasSalesOfMoreThan(MontaryAmount value) {
return new Specification<Customer>() {
public Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {
// build query here
}
};
}
}
Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by Java 8 closures) but the client side becomes much nicer as you will see below. The _Customer
type is a metamodel type generated using the JPA Metamodel generator (see the Hibernate implementation’s documentation for example). So the expression _Customer.createdAt
is asuming the Customer
having a createdAt
attribute of type Date
. Besides that we have expressed some criteria on a business requirement abstraction level and created executable Specifications
. So a client might use a Specification
as follows:
List<Customer> customers = customerRepository.findAll(isLongTermCustomer());
Okay, why not simply create a query for this kind of data access? You’re right. Using a single Specification
does not gain a lot of benefit over a plain query declaration. The power of specifications really shines when you combine them to create new Specification
objects. You can achieve this through the Specifications
helper class we provide to build expressions like this:
MonetaryAmount amount = new MonetaryAmount(200.0, Currencies.DOLLAR);
List<Customer> customers = customerRepository.findAll(
where(isLongTermCustomer()).or(hasSalesOfMoreThan(amount)));
As you can see, Specifications
offers some glue-code methods to chain and combine Specification
instances. Thus extending your data access layer is just a matter of creating new Specification
implementations and combining them with ones already existing.
4.6. Transactionality
CRUD methods on repository instances are transactional by default. For reading operations the transaction configuration readOnly
flag is set to true, all others are configured with a plain @Transactional
so that default transaction configuration applies. For details see JavaDoc of CrudRepository
. If you need to tweak transaction configuration for one of the methods declared in a repository simply redeclare the method in your repository interface as follows:
public interface UserRepository extends CrudRepository<User, Long> {
@Override
@Transactional(timeout = 10)
public List<User> findAll();
// Further query method declarations
}
This will cause the findAll()
method to be executed with a timeout of 10 seconds and without the readOnly
flag.
Another possibility to alter transactional behaviour is using a facade or service implementation that typically covers more than one repository. Its purpose is to define transactional boundaries for non-CRUD operations:
@Service
class UserManagementImpl implements UserManagement {
private final UserRepository userRepository;
private final RoleRepository roleRepository;
@Autowired
public UserManagementImpl(UserRepository userRepository,
RoleRepository roleRepository) {
this.userRepository = userRepository;
this.roleRepository = roleRepository;
}
@Transactional
public void addRoleToAllUsers(String roleName) {
Role role = roleRepository.findByName(roleName);
for (User user : userRepository.findAll()) {
user.addRole(role);
userRepository.save(user);
}
}
This will cause call to addRoleToAllUsers(…)
to run inside a transaction (participating in an existing one or create a new one if none already running). The transaction configuration at the repositories will be neglected then as the outer transaction configuration determines the actual one used. Note that you will have to activate <tx:annotation-driven />
or use @EnableTransactionManagement
explicitly to get annotation based configuration at facades working. The example above assumes you are using component scanning.
4.6.1. Transactional query methods
To allow your query methods to be transactional simply use @Transactional
at the repository interface you define.
@Transactional(readOnly = true)
public interface UserRepository extends JpaRepository<User, Long> {
List<User> findByLastname(String lastname);
@Modifying
@Transactional
@Query("delete from User u where u.active = false")
void deleteInactiveUsers();
}
Typically you will want the readOnly flag set to true as most of the query methods will only read data. In contrast to that deleteInactiveUsers()
makes use of the @Modifying
annotation and overrides the transaction configuration. Thus the method will be executed with readOnly
flag set to false
.
It’s definitely reasonable to use transactions for read only queries and we can mark them as such by setting the |
4.7. Locking
To specify the lock mode to be used the @Lock
annotation can be used on query methods:
interface UserRepository extends Repository<User, Long> {
// Plain query method
@Lock(LockModeType.READ)
List<User> findByLastname(String lastname);
}
This method declaration will cause the query being triggered to be equipped with the LockModeType
READ
. You can also define locking for CRUD methods by redeclaring them in your repository interface and adding the @Lock
annotation:
interface UserRepository extends Repository<User, Long> {
// Redeclaration of a CRUD method
@Lock(LockModeType.READ);
List<User> findAll();
}
4.8. Auditing
4.8.1. Basics
Spring Data provides sophisticated support to transparently keep track of who created or changed an entity and the point in time this happened. To benefit from that functionality you have to equip your entity classes with auditing metadata that can be defined either using annotations or by implementing an interface.
Annotation based auditing metadata
We provide @CreatedBy
, @LastModifiedBy
to capture the user who created or modified the entity as well as @CreatedDate
and @LastModifiedDate
to capture the point in time this happened.
class Customer {
@CreatedBy
private User user;
@CreatedDate
private DateTime createdDate;
// … further properties omitted
}
As you can see, the annotations can be applied selectively, depending on which information you’d like to capture. For the annotations capturing the points in time can be used on properties of type JodaTimes DateTime
, legacy Java Date
and Calendar
, JDK8 date/time types as well as long
/Long
.
Interface-based auditing metadata
In case you don’t want to use annotations to define auditing metadata you can let your domain class implement the Auditable
interface. It exposes setter methods for all of the auditing properties.
There’s also a convenience base class AbstractAuditable
which you can extend to avoid the need to manually implement the interface methods. Be aware that this increases the coupling of your domain classes to Spring Data which might be something you want to avoid. Usually the annotation based way of defining auditing metadata is preferred as it is less invasive and more flexible.
AuditorAware
In case you use either @CreatedBy
or @LastModifiedBy
, the auditing infrastructure somehow needs to become aware of the current principal. To do so, we provide an AuditorAware<T>
SPI interface that you have to implement to tell the infrastructure who the current user or system interacting with the application is. The generic type T
defines of what type the properties annotated with @CreatedBy
or @LastModifiedBy
have to be.
Here’s an example implementation of the interface using Spring Security’s Authentication
object:
class SpringSecurityAuditorAware implements AuditorAware<User> {
public User getCurrentAuditor() {
Authentication authentication = SecurityContextHolder.getContext().getAuthentication();
if (authentication == null || !authentication.isAuthenticated()) {
return null;
}
return ((MyUserDetails) authentication.getPrincipal()).getUser();
}
}
The implementation is accessing the Authentication
object provided by Spring Security and looks up the custom UserDetails
instance from it that you have created in your UserDetailsService
implementation. We’re assuming here that you are exposing the domain user through that UserDetails
implementation but you could also look it up from anywhere based on the Authentication
found.
4.9. JPA Auditing
4.9.1. General auditing configuration
Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information. So first you have to register the AuditingEntityListener
inside your orm.xml
to be used for all entities in your persistence contexts:
<persistence-unit-metadata>
<persistence-unit-defaults>
<entity-listeners>
<entity-listener class="….data.jpa.domain.support.AuditingEntityListener" />
</entity-listeners>
</persistence-unit-defaults>
</persistence-unit-metadata>
You can also enable the AuditingEntityListener
per entity using the @EntityListeners
annotation:
@Entity
@EntityListeners(AuditingEntityListener.class)
public class MyEntity {
}
Note that the auditing feature requires spring-aspects.jar
to be on the classpath.
With that in place, activating auditing functionality is just a matter of adding the Spring Data JPA auditing
namespace element to your configuration:
<jpa:auditing auditor-aware-ref="yourAuditorAwareBean" />
As of Spring Data JPA 1.5, auditing can be enabled by annotating a configuration class with the @EnableJpaAuditing annotation.
@Configuration
@EnableJpaAuditing
class Config {
@Bean
public AuditorAware<AuditableUser> auditorProvider() {
return new AuditorAwareImpl();
}
}
If you expose a bean of type AuditorAware
to the ApplicationContext
, the auditing infrastructure will pick it up automatically and use it to determine the current user to be set on domain types. If you have multiple implementations registered in the ApplicationContext
, you can select the one to be used by explicitly setting the auditorAwareRef
attribute of @EnableJpaAuditing
.
5. Miscellaneous
5.1. Using JpaContext in custom implementations
When working with multiple EntityManager
instances and custom repository implementations you’ll need to make sure you wire the correct EntityManager
into the repository implementation class. This could be solved by explicitly naming the EntityManager
in the @PersistenceContext
annotation or using @Qualifier
in case the EntityManager
is injected via @Autowired
.
As of Spring Data JPA 1.9, we ship a class JpaContext
that allows to obtain the EntityManager
by managed domain class assuming it’s only managed by one of the EntityManager
instances in the application.
class UserRepositoryImpl implements UserRepositoryCustom {
private final EntityManager em;
@Autowired
public UserRepositoryImpl(JpaContext context) {
this.em = context.getEntityManagerByManagedType(User.class);
}
…
}
This approach has the advantage that the repository does not have to be touched to alter the reference to the persistence unit in case the domain type gets assigned to a different persistence unit.
5.2. Merging persistence units
Spring supports having multiple persistence units out of the box. Sometimes, however, you might want to modularize your application but still make sure that all these modules run inside a single persistence unit at runtime. To do so Spring Data JPA offers a PersistenceUnitManager
implementation that automatically merges persistence units based on their name.
<bean class="….LocalContainerEntityManagerFactoryBean">
<property name="persistenceUnitManager">
<bean class="….MergingPersistenceUnitManager" />
</property>
</bean>
5.2.1. Classpath scanning for @Entity classes and JPA mapping files
A plain JPA setup requires all annotation mapped entity classes listed in orm.xml
. Same applies to XML mapping files. Spring Data JPA provides a ClasspathScanningPersistenceUnitPostProcessor that gets a base package configured and optionally takes a mapping filename pattern. It will then scan the given package for classes annotated with @Entity or @MappedSuperclass and also loads the configuration files matching the filename pattern and hands them to the JPA configuration. The PostProcessor has to be configured like this:
<bean class="….LocalContainerEntityManagerFactoryBean">
<property name="persistenceUnitPostProcessors">
<list>
<bean class="org.springframework.data.jpa.support.ClasspathScanningPersistenceUnitPostProcessor">
<constructor-arg value="com.acme.domain" />
<property name="mappingFileNamePattern" value="**/*Mapping.xml" />
</bean>
</list>
</property>
</bean>
As of Spring 3.1 a package to scan can be configured on the LocalContainerEntityManagerFactoryBean directly to enable classpath scanning for entity classes. See the JavaDoc for details. |
5.3. CDI integration
Instances of the repository interfaces are usually created by a container, which Spring is the most natural choice when working with Spring Data. There’s sophisticated support to easily set up Spring to create bean instances documented in Creating repository instances. As of version 1.1.0 Spring Data JPA ships with a custom CDI extension that allows using the repository abstraction in CDI environments. The extension is part of the JAR so all you need to do to activate it is dropping the Spring Data JPA JAR into your classpath.
You can now set up the infrastructure by implementing a CDI Producer for the EntityManagerFactory
and EntityManager
:
class EntityManagerFactoryProducer {
@Produces
@ApplicationScoped
public EntityManagerFactory createEntityManagerFactory() {
return Persistence.createEntityManagerFactory("my-presistence-unit");
}
public void close(@Disposes EntityManagerFactory entityManagerFactory) {
entityManagerFactory.close();
}
@Produces
@RequestScoped
public EntityManager createEntityManager(EntityManagerFactory entityManagerFactory) {
return entityManagerFactory.createEntityManager();
}
public void close(@Disposes EntityManager entityManager) {
entityManager.close();
}
}
The necessary setup can vary depending on the JavaEE environment you run in. It might also just be enough to redeclare a EntityManager
as CDI bean as follows:
class CdiConfig {
@Produces
@RequestScoped
@PersistenceContext
public EntityManager entityManager;
}
In this example, the container has to be capable of creating JPA EntityManagers
itself. All the configuration does is re-exporting the JPA EntityManager
as CDI bean.
The Spring Data JPA CDI extension will pick up all EntityManagers availables as CDI beans and create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @Injected
property:
class RepositoryClient {
@Inject
PersonRepository repository;
public void businessMethod() {
List<Person> people = repository.findAll();
}
}
Appendix
Appendix A: Namespace reference
The <repositories /> element
The <repositories />
element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package
which defines the package to scan for Spring Data repository interfaces.[3]
Name | Description |
---|---|
|
Defines the package to be used to be scanned for repository interfaces extending *Repository (actual interface is determined by specific Spring Data module) in auto detection mode. All packages below the configured package will be scanned, too. Wildcards are allowed. |
|
Defines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix will be considered as candidates. Defaults to |
|
Determines the strategy to be used to create finder queries. See Query lookup strategies for details. Defaults to |
|
Defines the location to look for a Properties file containing externally defined queries. |
|
Controls whether nested repository interface definitions should be considered. Defaults to |
Appendix B: Populators namespace reference
The <populator /> element
The <populator />
element allows to populate the a data store via the Spring Data repository infrastructure.[4]
Name | Description |
---|---|
|
Where to find the files to read the objects from the repository shall be populated with. |
Appendix C: Repository query keywords
Supported query keywords
The following table lists the keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some listed here might not be supported in a particular store.
Logical keyword | Keyword expressions |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Appendix D: Repository query return types
Supported query return types
The following table lists the return types generally supported by Spring Data repositories. However, consult the store-specific documentation for the exact list of supported return types, because some listed here might not be supported in a particular store.
Geospatial types like (GeoResult , GeoResults , GeoPage ) are only available for data stores that support geospatial queries.
|
Return type | Description |
---|---|
|
Denotes no return value. |
Primitives |
Java primitives. |
Wrapper types |
Java wrapper types. |
|
An unique entity. Expects the query method to return one result at most. In case no result is found |
|
An |
|
A |
|
A |
|
A Java 8 or Guava |
|
A Java 8 |
|
A |
|
A Java 8 |
|
A |
|
A sized chunk of data with information whether there is more data available. Requires a |
|
A |
|
A result entry with additional information, e.g. distance to a reference location. |
|
A list of |
|
A |
Appendix E: Frequently asked questions
Common
-
I’d like to get more detailed logging information on what methods are called inside
JpaRepository
, e.g. How can I gain them?You can make use of
CustomizableTraceInterceptor
provided by Spring:<bean id="customizableTraceInterceptor" class=" org.springframework.aop.interceptor.CustomizableTraceInterceptor"> <property name="enterMessage" value="Entering $[methodName]($[arguments])"/> <property name="exitMessage" value="Leaving $[methodName](): $[returnValue]"/> </bean> <aop:config> <aop:advisor advice-ref="customizableTraceInterceptor" pointcut="execution(public * org.springframework.data.jpa.repository.JpaRepository+.*(..))"/> </aop:config>
Infrastructure
-
Currently I have implemented a repository layer based on
HibernateDaoSupport
. I create aSessionFactory
by using Spring’sAnnotationSessionFactoryBean
. How do I get Spring Data repositories working in this environment?You have to replace
AnnotationSessionFactoryBean
with theHibernateJpaSessionFactoryBean
as follows:Example 74. Looking up a SessionFactory from a HibernateEntityManagerFactory<bean id="sessionFactory" class="org.springframework.orm.jpa.vendor.HibernateJpaSessionFactoryBean"> <property name="entityManagerFactory" ref="entityManagerFactory"/> </bean>
Appendix F: Glossary
- AOP
-
Aspect oriented programming
- Commons DBCP
-
Commons DataBase Connection Pools - Library of the Apache foundation offering pooling implementations of the DataSource interface.
- CRUD
-
Create, Read, Update, Delete - Basic persistence operations
- DAO
-
Data Access Object - Pattern to separate persisting logic from the object to be persisted
- Dependency Injection
-
Pattern to hand a component’s dependency to the component from outside, freeing the component to lookup the dependant itself. For more information see http://en.wikipedia.org/wiki/Dependency_Injection.
- EclipseLink
-
Object relational mapper implementing JPA - http://www.eclipselink.org
- Hibernate
-
Object relational mapper implementing JPA - http://www.hibernate.org
- JPA
-
Java Persistence API
- Spring
-
Java application framework - http://projects.spring.io/spring-framework