© 2008-2018 The original authors.
Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically. |
- Preface
- 1. Learning Spring
- 2. Learning NoSQL and Document databases
- 3. Requirements
- 4. Additional Help Resources
- 5. Following Development
- 6. New & Noteworthy
- 7. Dependencies
- 8. Working with Spring Data Repositories
- Reference Documentation
- 9. Introduction
- 10. MongoDB support
- 10.1. Getting Started
- 10.2. Examples Repository
- 10.3. Connecting to MongoDB with Spring
- 10.3.1. Registering a Mongo Instance by using Java-based Metadata
- 10.3.2. Registering a Mongo Instance by Using XML-based Metadata
- 10.3.3. The MongoDbFactory Interface
- 10.3.4. Registering a
MongoDbFactory
Instance by Using Java-based Metadata - 10.3.5. Registering a
MongoDbFactory
Instance by Using XML-based Metadata
- 10.4. Introduction to
MongoTemplate
- 10.5. Saving, Updating, and Removing Documents
- 10.5.1. How the
_id
Field is Handled in the Mapping Layer - 10.5.2. Type Mapping
- 10.5.3. Methods for Saving and Inserting Documents
- 10.5.4. Updating Documents in a Collection
- 10.5.5. “Upserting” Documents in a Collection
- 10.5.6. Finding and Upserting Documents in a Collection
- 10.5.7. Methods for Removing Documents
- 10.5.8. Optimistic Locking
- 10.5.1. How the
- 10.6. Querying Documents
- 10.7. Query by Example
- 10.8. Map-Reduce Operations
- 10.9. Script Operations
- 10.10. Group Operations
- 10.11. Aggregation Framework Support
- 10.12. Overriding Default Mapping with Custom Converters
- 10.13. Index and Collection Management
- 10.14. Executing Commands
- 10.15. Lifecycle Events
- 10.16. Exception Translation
- 10.17. Execution Callbacks
- 10.18. GridFS Support
- 11. MongoDB Repositories
- 12. Auditing
- 13. Mapping
- 14. Cross Store Support
- 15. Logging support
- 16. JMX support
- 17. MongoDB 3.0 Support
- Appendix
Preface
The Spring Data MongoDB project applies core Spring concepts to the development of solutions that use the MongoDB document style data store. We provide a “template” as a high-level abstraction for storing and querying documents. You may notice similarities to the JDBC support provided by the Spring Framework.
This document is the reference guide for Spring Data - MongoDB Support. It explains MongoDB module concepts and semantics and syntax for various store namespaces.
This section provides some basic introduction to Spring and Document databases. The rest of the document refers only to Spring Data MongoDB features and assumes the user is familiar with MongoDB and Spring concepts.
1. Learning Spring
Spring Data uses Spring framework’s core functionality, including:
While you need not know the Spring APIs, understanding the concepts behind them is important. At a minimum, the idea behind Inversion of Control (IoC) should be familiar, and you should be familiar with whatever IoC container you choose to use.
The core functionality of the MongoDB support can be used directly, with no need to invoke the IoC services of the Spring Container. This is much like JdbcTemplate
, which can be used "'standalone'" without any other services of the Spring container. To leverage all the features of Spring Data MongoDB, such as the repository support, you need to configure some parts of the library to use Spring.
To learn more about Spring, you can refer to the comprehensive documentation that explains the Spring Framework in detail. There are a lot of articles, blog entries, and books on the subject. See the Spring framework home page for more information.
2. Learning NoSQL and Document databases
NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions, terms, and patterns (to make things worse, even the term itself has multiple meanings). While some of the principles are common, you must be familiar with MongoDB to some degree. The best way to get acquainted is to read the documentation and follow the examples. It usually does not take more then 5-10 minutes to go through them and, especially if you are coming from an RDMBS-only background, these exercises can be an eye opener.
The starting point for learning about MongoDB is www.mongodb.org. Here is a list of other useful resources:
-
The manual introduces MongoDB and contains links to getting started guides, reference documentation, and tutorials.
-
The online shell provides a convenient way to interact with a MongoDB instance in combination with the online tutorial.
-
MongoDB Java Language Center.
-
Several books you can purchase.
-
Karl Seguin’s online book: The Little MongoDB Book.
3. Requirements
The Spring Data MongoDB 2.x binaries require JDK level 8.0 and above and Spring Framework 4.3.21.RELEASE and above.
In terms of document stores, you need at least version 2.6 of MongoDB.
4. Additional Help Resources
Learning a new framework is not always straightforward. In this section, we try to provide what we think is an easy-to-follow guide for starting with the Spring Data MongoDB module. However, if you encounter issues or you need advice, feel free to use one of the following links:
- Community Forum
-
Spring Data on Stack Overflow is a tag for all Spring Data (not just Document) users to share information and help each other. Note that registration is needed only for posting.
- Professional Support
-
Professional, from-the-source support, with guaranteed response time, is available from Pivotal Sofware, Inc., the company behind Spring Data and Spring.
5. Following Development
For information on the Spring Data Mongo source code repository, nightly builds, and snapshot artifacts, see the Spring Data Mongo homepage. You can help make Spring Data best serve the needs of the Spring community by interacting with developers through the Community on Stack Overflow. To follow developer activity, look for the mailing list information on the Spring Data Mongo homepage. If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data issue tracker. To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the Spring Community Portal. You can also follow the Spring blog or the project team on Twitter (SpringData).
6. New & Noteworthy
6.1. What’s New in Spring Data MongoDB 1.10
-
Compatible with MongoDB Server 3.4 and the MongoDB Java Driver 3.4.
-
New annotations for
@CountQuery
,@DeleteQuery
, and@ExistsQuery
. -
Extended support for MongoDB 3.2 and MongoDB 3.4 aggregation operators (see Supported Aggregation Operations).
-
Support for partial filter expression when creating indexes.
-
Publishing lifecycle events when loading or converting
DBRef
instances. -
Added any-match mode for Query By Example.
-
Support for
$caseSensitive
and$diacriticSensitive
text search. -
Support for GeoJSON Polygon with hole.
-
Performance improvements by bulk-fetching
DBRef
instances. -
Multi-faceted aggregations using
$facet
,$bucket
, and$bucketAuto
withAggregation
.
6.2. What’s New in Spring Data MongoDB 1.9
-
The following annotations have been enabled to build your own composed annotations:
@Document
,@Id
,@Field
,@Indexed
,@CompoundIndex
,@GeoSpatialIndexed
,@TextIndexed
,@Query
, and@Meta
. -
Support for Projections in repository query methods.
-
Support for Query by Example.
-
Out-of-the-box support for
java.util.Currency
in object mapping. -
Support for the bulk operations introduced in MongoDB 2.6.
-
Upgrade to Querydsl 4.
-
Assert compatibility with MongoDB 3.0 and MongoDB Java Driver 3.2 (see: MongoDB 3.0 Support).
6.3. What’s New in Spring Data MongoDB 1.8
-
Criteria
offers support for creating$geoIntersects
. -
Support for SpEL expressions in
@Query
. -
MongoMappingEvents
expose the collection name for which they are issued. -
Improved support for
<mongo:mongo-client credentials="…" />
. -
Improved index creation failure error message.
6.4. What’s New in Spring Data MongoDB 1.7
-
Assert compatibility with MongoDB 3.0 and MongoDB Java Driver 3-beta3 (see: MongoDB 3.0 Support).
-
Support JSR-310 and ThreeTen back-port date/time types.
-
Allow
Stream
as a query method return type (see: Query Methods). -
GeoJSON support in both domain types and queries (see: GeoJSON Support).
-
QueryDslPredicateExcecutor
now supportsfindAll(OrderSpecifier<?>… orders)
. -
Support calling JavaScript functions with Script Operations.
-
Improve support for
CONTAINS
keyword on collection-like properties. -
Support for
$bit
,$mul
, and$position
operators toUpdate
.
7. Dependencies
Due to the different inception dates of individual Spring Data modules, most of them carry different major and minor version numbers. The easiest way to find compatible ones is to rely on the Spring Data Release Train BOM that we ship with the compatible versions defined. In a Maven project, you would declare this dependency in the <dependencyManagement />
section of your POM, as follows:
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-releasetrain</artifactId>
<version>Ingalls-SR17</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>
The current release train version is Ingalls-SR17
. The train names ascend alphabetically and the currently available trains are listed here. The version name follows the following pattern: ${name}-${release}
, where release can be one of the following:
-
BUILD-SNAPSHOT
: Current snapshots -
M1
,M2
, and so on: Milestones -
RC1
,RC2
, and so on: Release candidates -
RELEASE
: GA release -
SR1
,SR2
, and so on: Service releases
A working example of using the BOMs can be found in our Spring Data examples repository. With that in place, you can declare the Spring Data modules you would like to use without a version in the <dependencies />
block, as follows:
<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactId>
</dependency>
<dependencies>
7.1. Dependency Management with Spring Boot
Spring Boot selects a recent version of Spring Data modules for you. If you still want to upgrade to a newer version, configure the property spring-data-releasetrain.version
to the train name and iteration you would like to use.
8. Working with Spring Data Repositories
The goal of the Spring Data repository abstraction is to significantly reduce the amount of boilerplate code required to implement data access layers for various persistence stores.
Spring Data repository documentation and your module This chapter explains the core concepts and interfaces of Spring Data repositories. The information in this chapter is pulled from the Spring Data Commons module. It uses the configuration and code samples for the Java Persistence API (JPA) module. You should adapt the XML namespace declaration and the types to be extended to the equivalents of the particular module that you use. “Namespace reference” covers XML configuration, which is supported across all Spring Data modules supporting the repository API. “Repository query keywords” covers the query method keywords supported by the repository abstraction in general. For detailed information on the specific features of your module, see the chapter on that module of this document. |
8.1. Core concepts
The central interface in the Spring Data repository abstraction is Repository
. It takes the domain class to manage as well as the ID type of the domain class as type arguments. This interface acts primarily as a marker interface to capture the types to work with and to help you to discover interfaces that extend this one. The CrudRepository
provides sophisticated CRUD functionality for the entity class that is being managed.
CrudRepository
interfacepublic interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {
<S extends T> S save(S entity); (1)
T findOne(ID primaryKey); (2)
Iterable<T> findAll(); (3)
Long count(); (4)
void delete(T entity); (5)
boolean exists(ID primaryKey); (6)
// … more functionality omitted.
}
1 | Saves the given entity. |
2 | Returns the entity identified by the given ID. |
3 | Returns all entities. |
4 | Returns the number of entities. |
5 | Deletes the given entity. |
6 | Indicates whether an entity with the given ID exists. |
We also provide persistence technology-specific abstractions, such as JpaRepository or MongoRepository . Those interfaces extend CrudRepository and expose the capabilities of the underlying persistence technology in addition to the rather generic persistence technology-agnostic interfaces such as CrudRepository .
|
On top of the CrudRepository
, there is a PagingAndSortingRepository
abstraction that adds additional methods to ease paginated access to entities:
PagingAndSortingRepository
interfacepublic interface PagingAndSortingRepository<T, ID extends Serializable>
extends CrudRepository<T, ID> {
Iterable<T> findAll(Sort sort);
Page<T> findAll(Pageable pageable);
}
To access the second page of User
by a page size of 20, you could do something like the following:
PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));
In addition to query methods, query derivation for both count and delete queries is available. The following list shows the interface definition for a derived count query:
public interface UserRepository extends CrudRepository<User, Long> {
Long countByLastname(String lastname);
}
The following list shows the interface definition for a derived delete query:
public interface UserRepository extends CrudRepository<User, Long> {
Long deleteByLastname(String lastname);
List<User> removeByLastname(String lastname);
}
8.2. Query methods
Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring Data, declaring those queries becomes a four-step process:
-
Declare an interface extending Repository or one of its subinterfaces and type it to the domain class and ID type that it should handle, as shown in the following example:
interface PersonRepository extends Repository<Person, Long> { … }
-
Declare query methods on the interface.
interface PersonRepository extends Repository<Person, Long> { List<Person> findByLastname(String lastname); }
-
Set up Spring to create proxy instances for those interfaces, either with JavaConfig or with XML configuration.
-
To use Java configuration, create a class similar to the following:
import org.springframework.data.jpa.repository.config.EnableJpaRepositories; @EnableJpaRepositories class Config {}
-
To use XML configuration, define a bean similar to the following:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jpa="http://www.springframework.org/schema/data/jpa" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/data/jpa http://www.springframework.org/schema/data/jpa/spring-jpa.xsd"> <jpa:repositories base-package="com.acme.repositories"/> </beans>
The JPA namespace is used in this example. If you use the repository abstraction for any other store, you need to change this to the appropriate namespace declaration of your store module. In other words, you should exchange
jpa
in favor of, for example,mongodb
.+ Also, note that the JavaConfig variant does not configure a package explicitly, because the package of the annotated class is used by default. To customize the package to scan, use one of the
basePackage…
attributes of the data-store-specific repository’s@Enable${store}Repositories
-annotation. -
-
Inject the repository instance and use it, as shown in the following example:
public class SomeClient { @Autowired private PersonRepository repository; public void doSomething() { List<Person> persons = repository.findByLastname("Matthews"); } }
The sections that follow explain each step in detail:
8.3. Defining Repository Interfaces
First, define a domain class-specific repository interface. The interface must extend Repository
and be typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend CrudRepository
instead of Repository
.
8.3.1. Fine-tuning Repository Definition
Typically, your repository interface extends Repository
, CrudRepository
, or PagingAndSortingRepository
. Alternatively, if you do not want to extend Spring Data interfaces, you can also annotate your repository interface with @RepositoryDefinition
. Extending CrudRepository
exposes a complete set of methods to manipulate your entities. If you prefer to be selective about the methods being exposed, copy the methods you want to expose from CrudRepository
into your domain repository.
Doing so lets you define your own abstractions on top of the provided Spring Data Repositories functionality. |
The following example shows how to selectively expose CRUD methods (findById
and save
, in this case):
@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);
T save(T entity);
}
interface UserRepository extends MyBaseRepository<User, Long> {
User findByEmailAddress(EmailAddress emailAddress);
}
In the prior example, you defined a common base interface for all your domain repositories and exposed findOne(…)
as well as save(…)
.These methods are routed into the base repository implementation of the store of your choice provided by Spring Data (for example, if you use JPA, the implementation is SimpleJpaRepository
), because they match the method signatures in CrudRepository
. So the UserRepository
can now save users, find individual users by ID, and trigger a query to find Users
by email address.
The intermediate repository interface is annotated with @NoRepositoryBean . Make sure you add that annotation to all repository interfaces for which Spring Data should not create instances at runtime.
|
8.3.2. Using Repositories with Multiple Spring Data Modules
Using a unique Spring Data module in your application makes things simple, because all repository interfaces in the defined scope are bound to the Spring Data module. Sometimes, applications require using more than one Spring Data module. In such cases, a repository definition must distinguish between persistence technologies. When it detects multiple repository factories on the class path, Spring Data enters strict repository configuration mode. Strict configuration uses details on the repository or the domain class to decide about Spring Data module binding for a repository definition:
-
If the repository definition extends the module-specific repository, then it is a valid candidate for the particular Spring Data module.
-
If the domain class is annotated with the module-specific type annotation, then it is a valid candidate for the particular Spring Data module. Spring Data modules accept either third-party annotations (such as JPA’s
@Entity
) or provide their own annotations (such as@Document
for Spring Data MongoDB and Spring Data Elasticsearch).
The following example shows a repository that uses module-specific interfaces (JPA in this case):
interface MyRepository extends JpaRepository<User, Long> { }
@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends JpaRepository<T, ID> {
…
}
interface UserRepository extends MyBaseRepository<User, Long> {
…
}
MyRepository
and UserRepository
extend JpaRepository
in their type hierarchy. They are valid candidates for the Spring Data JPA module.
The following example shows a repository that uses generic interfaces:
interface AmbiguousRepository extends Repository<User, Long> {
…
}
@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends CrudRepository<T, ID> {
…
}
interface AmbiguousUserRepository extends MyBaseRepository<User, Long> {
…
}
AmbiguousRepository
and AmbiguousUserRepository
extend only Repository
and CrudRepository
in their type hierarchy. While this is perfectly fine when using a unique Spring Data module, multiple modules cannot distinguish to which particular Spring Data these repositories should be bound.
The following example shows a repository that uses domain classes with annotations:
interface PersonRepository extends Repository<Person, Long> {
…
}
@Entity
public class Person {
…
}
interface UserRepository extends Repository<User, Long> {
…
}
@Document
public class User {
…
}
PersonRepository
references Person
, which is annotated with the JPA @Entity
annotation, so this repository clearly belongs to Spring Data JPA. UserRepository
references User
, which is annotated with Spring Data MongoDB’s @Document
annotation.
The following bad example shows a repository that uses domain classes with mixed annotations:
interface JpaPersonRepository extends Repository<Person, Long> {
…
}
interface MongoDBPersonRepository extends Repository<Person, Long> {
…
}
@Entity
@Document
public class Person {
…
}
This example shows a domain class using both JPA and Spring Data MongoDB annotations. It defines two repositories, JpaPersonRepository
and MongoDBPersonRepository
. One is intended for JPA and the other for MongoDB usage. Spring Data is no longer able to tell the repositories apart, which leads to undefined behavior.
Repository type details and distinguishing domain class annotations are used for strict repository configuration to identify repository candidates for a particular Spring Data module. Using multiple persistence technology-specific annotations on the same domain type is possible and enables reuse of domain types across multiple persistence technologies. However, Spring Data can then no longer determine a unique module with which to bind the repository.
The last way to distinguish repositories is by scoping repository base packages. Base packages define the starting points for scanning for repository interface definitions, which implies having repository definitions located in the appropriate packages. By default, annotation-driven configuration uses the package of the configuration class. The base package in XML-based configuration is mandatory.
The following example shows annotation-driven configuration of base packages:
@EnableJpaRepositories(basePackages = "com.acme.repositories.jpa")
@EnableMongoRepositories(basePackages = "com.acme.repositories.mongo")
interface Configuration { }
8.4. Defining Query Methods
The repository proxy has two ways to derive a store-specific query from the method name:
-
By deriving the query from the method name directly.
-
By using a manually defined query.
Available options depend on the actual store. However, there must be a strategy that decides what actual query is created. The next section describes the available options.
8.4.1. Query Lookup Strategies
The following strategies are available for the repository infrastructure to resolve the query. With XML configuration, you can configure the strategy at the namespace through the query-lookup-strategy
attribute. For Java configuration, you can use the queryLookupStrategy
attribute of the Enable${store}Repositories
annotation. Some strategies may not be supported for particular datastores.
-
CREATE
attempts to construct a store-specific query from the query method name. The general approach is to remove a given set of well known prefixes from the method name and parse the rest of the method. You can read more about query construction in “Query Creation”. -
USE_DECLARED_QUERY
tries to find a declared query and throws an exception if cannot find one. The query can be defined by an annotation somewhere or declared by other means. Consult the documentation of the specific store to find available options for that store. If the repository infrastructure does not find a declared query for the method at bootstrap time, it fails. -
CREATE_IF_NOT_FOUND
(default) combinesCREATE
andUSE_DECLARED_QUERY
. It looks up a declared query first, and, if no declared query is found, it creates a custom method name-based query. This is the default lookup strategy and, thus, is used if you do not configure anything explicitly. It allows quick query definition by method names but also custom-tuning of these queries by introducing declared queries as needed.
8.4.2. Query Creation
The query builder mechanism built into Spring Data repository infrastructure is useful for building constraining queries over entities of the repository. The mechanism strips the prefixes find…By
, read…By
, query…By
, count…By
, and get…By
from the method and starts parsing the rest of it. The introducing clause can contain further expressions, such as a Distinct
to set a distinct flag on the query to be created. However, the first By
acts as delimiter to indicate the start of the actual criteria. At a very basic level, you can define conditions on entity properties and concatenate them with And
and Or
. The following example shows how to create a number of queries:
public interface PersonRepository extends Repository<User, Long> {
List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);
// Enables the distinct flag for the query
List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);
List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);
// Enabling ignoring case for an individual property
List<Person> findByLastnameIgnoreCase(String lastname);
// Enabling ignoring case for all suitable properties
List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);
// Enabling static ORDER BY for a query
List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}
The actual result of parsing the method depends on the persistence store for which you create the query. However, there are some general things to notice:
-
The expressions are usually property traversals combined with operators that can be concatenated. You can combine property expressions with
AND
andOR
. You also get support for operators such asBetween
,LessThan
,GreaterThan
, andLike
for the property expressions. The supported operators can vary by datastore, so consult the appropriate part of your reference documentation. -
The method parser supports setting an
IgnoreCase
flag for individual properties (for example,findByLastnameIgnoreCase(…)
) or for all properties of a type that supports ignoring case (usuallyString
instances — for example,findByLastnameAndFirstnameAllIgnoreCase(…)
). Whether ignoring cases is supported may vary by store, so consult the relevant sections in the reference documentation for the store-specific query method. -
You can apply static ordering by appending an
OrderBy
clause to the query method that references a property and by providing a sorting direction (Asc
orDesc
). To create a query method that supports dynamic sorting, see “Special parameter handling”.
8.4.3. Property Expressions
Property expressions can refer only to a direct property of the managed entity, as shown in the preceding example. At query creation time, you already make sure that the parsed property is a property of the managed domain class. However, you can also define constraints by traversing nested properties. Consider the following method signature:
List<Person> findByAddressZipCode(ZipCode zipCode);
Assume a Person
has an Address
with a ZipCode
. In that case, the method creates the property traversal x.address.zipCode
. The resolution algorithm starts by interpreting the entire part (AddressZipCode
) as the property and checks the domain class for a property with that name (uncapitalized). If the algorithm succeeds, it uses that property. If not, the algorithm splits up the source at the camel case parts from the right side into a head and a tail and tries to find the corresponding property — in our example, AddressZip
and Code
. If the algorithm finds a property with that head, it takes the tail and continues building the tree down from there, splitting the tail up in the way just described. If the first split does not match, the algorithm moves the split point to the left (Address
, ZipCode
) and continues.
Although this should work for most cases, it is possible for the algorithm to select the wrong property. Suppose the Person
class has an addressZip
property as well. The algorithm would match in the first split round already, choose the wrong property, and fail (as the type of addressZip
probably has no code
property).
To resolve this ambiguity you can use _
inside your method name to manually define traversal points. So our method name would be as follows:
List<Person> findByAddress_ZipCode(ZipCode zipCode);
Because we treat the underscore character as a reserved character, we strongly advise following standard Java naming conventions (that is, not using underscores in property names but using camel case instead).
8.4.4. Special parameter handling
To handle parameters in your query, define method parameters as already seen in the preceding examples. Besides that, the infrastructure recognizes certain specific types like Pageable
and Sort
, to apply pagination and sorting to your queries dynamically. The following example demonstrates these features:
Pageable
, Slice
, and Sort
in query methodsPage<User> findByLastname(String lastname, Pageable pageable);
Slice<User> findByLastname(String lastname, Pageable pageable);
List<User> findByLastname(String lastname, Sort sort);
List<User> findByLastname(String lastname, Pageable pageable);
The first method lets you pass an org.springframework.data.domain.Pageable
instance to the query method to dynamically add paging to your statically defined query. A Page
knows about the total number of elements and pages available. It does so by the infrastructure triggering a count query to calculate the overall number. As this might be expensive (depending on the store used), you can instead return a Slice
. A Slice
only knows about whether a next Slice
is available, which might be sufficient when walking through a larger result set.
Sorting options are handled through the Pageable
instance, too. If you only need sorting, add an org.springframework.data.domain.Sort
parameter to your method. As you can see, returning a List
is also possible. In this case, the additional metadata required to build the actual Page
instance is not created (which, in turn, means that the additional count query that would have been necessary is not issued). Rather, it restricts the query to look up only the given range of entities.
To find out how many pages you get for an entire query, you have to trigger an additional count query. By default, this query is derived from the query you actually trigger. |
8.4.5. Limiting Query Results
The results of query methods can be limited by using the first
or top
keywords, which can be used interchangeably. An optional numeric value can be appended to top
or first
to specify the maximum result size to be returned.
If the number is left out, a result size of 1 is assumed. The following example shows how to limit the query size:
Top
and First
User findFirstByOrderByLastnameAsc();
User findTopByOrderByAgeDesc();
Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);
Slice<User> findTop3ByLastname(String lastname, Pageable pageable);
List<User> findFirst10ByLastname(String lastname, Sort sort);
List<User> findTop10ByLastname(String lastname, Pageable pageable);
The limiting expressions also support the Distinct
keyword. Also, for the queries limiting the result set to one instance, wrapping the result into with the Optional
keyword is supported.
If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of pages available), it is applied within the limited result.
Limiting the results in combination with dynamic sorting by using a Sort parameter lets you express query methods for the 'K' smallest as well as for the 'K' biggest elements.
|
8.4.6. Streaming query results
The results of query methods can be processed incrementally by using a Java 8 Stream<T>
as return type. Instead of wrapping the query results in a Stream
data store-specific methods are used to perform the streaming, as shown in the following example:
Stream<T>
@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();
Stream<User> readAllByFirstnameNotNull();
@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);
A Stream potentially wraps underlying data store-specific resources and must, therefore, be closed after usage. You can either manually close the Stream by using the close() method or by using a Java 7 try-with-resources block, as shown in the following example:
|
Stream<T>
result in a try-with-resources blocktry (Stream<User> stream = repository.findAllByCustomQueryAndStream()) {
stream.forEach(…);
}
Not all Spring Data modules currently support Stream<T> as a return type.
|
8.4.7. Async query results
Repository queries can be run asynchronously by using Spring’s asynchronous method execution capability. This means the method returns immediately upon invocation while the actual query execution occurs in a task that has been submitted to a Spring TaskExecutor
. Asynchronous query execution is different from reactive query execution and should not be mixed. Refer to store-specific documentation for more details on reactive support. The following example shows a number of asynchronous queries:
@Async
Future<User> findByFirstname(String firstname); (1)
@Async
CompletableFuture<User> findOneByFirstname(String firstname); (2)
@Async
ListenableFuture<User> findOneByLastname(String lastname); (3)
1 | Use java.util.concurrent.Future as the return type. |
2 | Use a Java 8 java.util.concurrent.CompletableFuture as the return type. |
3 | Use a org.springframework.util.concurrent.ListenableFuture as the return type. |
8.5. Creating Repository Instances
In this section, you create instances and bean definitions for the defined repository interfaces. One way to do so is by using the Spring namespace that is shipped with each Spring Data module that supports the repository mechanism, although we generally recommend using Java configuration.
8.5.1. XML configuration
Each Spring Data module includes a repositories
element that lets you define a base package that Spring scans for you, as shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">
<repositories base-package="com.acme.repositories" />
</beans:beans>
In the preceding example, Spring is instructed to scan com.acme.repositories
and all its sub-packages for interfaces extending Repository
or one of its sub-interfaces. For each interface found, the infrastructure registers the persistence technology-specific FactoryBean
to create the appropriate proxies that handle invocations of the query methods. Each bean is registered under a bean name that is derived from the interface name, so an interface of UserRepository
would be registered under userRepository
. The base-package
attribute allows wildcards so that you can define a pattern of scanned packages.
Using filters
By default, the infrastructure picks up every interface extending the persistence technology-specific Repository
sub-interface located under the configured base package and creates a bean instance for it. However, you might want more fine-grained control over which interfaces have bean instances created for them. To do so, use <include-filter />
and <exclude-filter />
elements inside the <repositories />
element. The semantics are exactly equivalent to the elements in Spring’s context namespace. For details, see the Spring reference documentation for these elements.
For example, to exclude certain interfaces from instantiation as repository beans, you could use the following configuration:
<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>
The preceding example excludes all interfaces ending in SomeRepository
from being instantiated.
8.5.2. JavaConfig
The repository infrastructure can also be triggered by using a store-specific @Enable${store}Repositories
annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring container, see JavaConfig in the Spring reference documentation.
A sample configuration to enable Spring Data repositories resembles the following:
@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {
@Bean
public EntityManagerFactory entityManagerFactory() {
// …
}
}
The preceding example uses the JPA-specific annotation, which you would change according to the store module you actually use. The same applies to the definition of the EntityManagerFactory bean. See the sections covering the store-specific configuration.
|
8.5.3. Standalone usage
You can also use the repository infrastructure outside of a Spring container — for example, in CDI environments. You still need some Spring libraries in your classpath, but, generally, you can set up repositories programmatically as well. The Spring Data modules that provide repository support ship a persistence technology-specific RepositoryFactory
that you can use as follows:
RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);
8.6. Custom implementations for Spring Data repositories
Often it is necessary to provide a custom implementation for a few repository methods. Spring Data repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction and query method functionality.
8.6.1. Adding custom behavior to single repositories
To enrich a repository with custom functionality you first define an interface and an implementation for the custom functionality. Use the repository interface you provided to extend the custom interface.
interface UserRepositoryCustom {
public void someCustomMethod(User user);
}
Then you can let your repository interface additionally extend from the fragment interface, as shown in the following example:
class UserRepositoryImpl implements UserRepositoryCustom {
public void someCustomMethod(User user) {
// Your custom implementation
}
}
The most important bit for the class to be found is the Impl postfix of the name on it compared to the core repository interface (see below).
|
The implementation itself does not depend on Spring Data and can be a regular Spring bean. Consequently, you can use standard dependency injection behavior to inject references to other beans (such as a JdbcTemplate
), take part in aspects, and so on.
You can let your repository interface extend the fragment interface, as shown in the following example:
interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {
// Declare query methods here
}
Let your standard repository interface extend the custom one. Doing so combines the CRUD and custom functionality and makes it available to clients.
Configuration
If you use namespace configuration, the repository infrastructure tries to autodetect custom implementations by scanning for classes below the package we found a repository in. These classes need to follow the naming convention of appending the namespace element’s attribute repository-impl-postfix
to the found repository interface name. This postfix defaults to Impl
.
<repositories base-package="com.acme.repository" />
<repositories base-package="com.acme.repository" repository-impl-postfix="MyPostfix" />
The first configuration example tries to look up a class com.acme.repository.UserRepositoryImpl
to act as custom repository implementation, whereas the second example will try to lookup com.acme.repository.UserRepositoryFooBar
.
Manual Wiring
If your custom implementation uses annotation-based configuration and autowiring only, the preceding approach shown works well, because it is treated as any other Spring bean. If your custom implementation bean needs special wiring, you can declare the bean and name it according to the conventions described in the preceding section. The infrastructure then refers to the manually defined bean definition by name instead of creating one itself. The following example shows how to manually wire a custom implementation:
<repositories base-package="com.acme.repository" />
<beans:bean id="userRepositoryImpl" class="…">
<!-- further configuration -->
</beans:bean>
8.6.2. Adding custom behavior to all repositories
The preceding approach is not feasible when you want to add a single method to all your repository interfaces. To add custom behavior to all repositories, you first add an intermediate interface to declare the shared behavior.
@NoRepositoryBean
public interface MyRepository<T, ID extends Serializable>
extends PagingAndSortingRepository<T, ID> {
void sharedCustomMethod(ID id);
}
Now your individual repository interfaces will extend this intermediate interface instead of the Repository
interface to include the functionality declared. Next, create an implementation of the intermediate interface that extends the persistence technology-specific repository base class. This class will then act as a custom base class for the repository proxies.
public class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {
private final EntityManager entityManager;
public MyRepositoryImpl(JpaEntityInformation entityInformation,
EntityManager entityManager) {
super(entityInformation, entityManager);
// Keep the EntityManager around to used from the newly introduced methods.
this.entityManager = entityManager;
}
public void sharedCustomMethod(ID id) {
// implementation goes here
}
}
The class needs to have a constructor of the super class which the store-specific repository factory implementation uses. If the repository base class has multiple constructors, override the one taking an EntityInformation plus a store specific infrastructure object (such as an EntityManager or a template class).
|
The default behavior of the Spring <repositories />
namespace is to provide an implementation for all interfaces that fall under the base-package
. This means that if left in its current state, an implementation instance of MyRepository
will be created by Spring. This is of course not desired as it is just supposed to act as an intermediary between Repository
and the actual repository interfaces you want to define for each entity. To exclude an interface that extends Repository
from being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean
(as seen above) or move it outside of the configured base-package
.
The final step is to make the Spring Data infrastructure aware of the customized repository base class. In Java configuration, you can do so by using the repositoryBaseClass
attribute of the @Enable${store}Repositories
annotation, as shown in the following example:
@Configuration
@EnableJpaRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { … }
A corresponding attribute is available in the XML namespace, as shown in the following example:
<repositories base-package="com.acme.repository"
base-class="….MyRepositoryImpl" />
8.7. Publishing Events from Aggregate Roots
Entities managed by repositories are aggregate roots.
In a Domain-Driven Design application, these aggregate roots usually publish domain events.
Spring Data provides an annotation called @DomainEvents
that you can use on a method of your aggregate root to make that publication as easy as possible, as shown in the following example:
class AnAggregateRoot {
@DomainEvents (1)
Collection<Object> domainEvents() {
// … return events you want to get published here
}
@AfterDomainEventsPublication (2)
void callbackMethod() {
// … potentially clean up domain events list
}
}
1 | The method using @DomainEvents can return either a single event instance or a collection of events. It must not take any arguments. |
2 | After all events have been published, we have a method annotated with @AfterDomainEventsPublication . It can be used to potentially clean the list of events to be published (among other uses). |
The methods are called every time one of a Spring Data repository’s save(…)
methods is called.
8.8. Spring Data Extensions
This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts. Currently, most of the integration is targeted towards Spring MVC.
8.8.1. Querydsl Extension
Querydsl is a framework that enables the construction of statically typed SQL-like queries through its fluent API.
Several Spring Data modules offer integration with Querydsl through QueryDslPredicateExecutor
, as shown in the following example:
public interface QueryDslPredicateExecutor<T> {
T findOne(Predicate predicate); (1)
Iterable<T> findAll(Predicate predicate); (2)
long count(Predicate predicate); (3)
boolean exists(Predicate predicate); (4)
// … more functionality omitted.
}
1 | Finds and returns a single entity matching the Predicate . |
2 | Finds and returns all entities matching the Predicate . |
3 | Returns the number of entities matching the Predicate . |
4 | Returns whether an entity that matches the Predicate exists. |
To make use of Querydsl support, extend QueryDslPredicateExecutor
on your repository interface, as shown in the following example
interface UserRepository extends CrudRepository<User, Long>, QueryDslPredicateExecutor<User> {
}
The preceding example lets you write typesafe queries using Querydsl Predicate
instances, as shown in the following example:
Predicate predicate = user.firstname.equalsIgnoreCase("dave")
.and(user.lastname.startsWithIgnoreCase("mathews"));
userRepository.findAll(predicate);
8.8.2. Web support
This section contains the documentation for the Spring Data web support as it is implemented in the current (and later) versions of Spring Data Commons. As the newly introduced support changes many things, we kept the documentation of the former behavior in Legacy web support. |
Spring Data modules that support the repository programming model ship with a variety of web support. The web related components require Spring MVC JARs to be on the classpath. Some of them even provide integration with Spring HATEOAS. In general, the integration support is enabled by using the @EnableSpringDataWebSupport
annotation in your JavaConfig configuration class, as shown in the following example:
@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }
The @EnableSpringDataWebSupport
annotation registers a few components we will discuss in a bit. It will also detect Spring HATEOAS on the classpath and register integration components for it as well if present.
Alternatively, if you use XML configuration, register either SpringDataWebConfiguration
or HateoasAwareSpringDataWebConfiguration
as Spring beans, as shown in the following example (for SpringDataWebConfiguration
):
<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />
<!-- If you use Spring HATEOAS, register this one *instead* of the former -->
<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />
Basic Web Support
The configuration shown in the previous section registers a few basic components:
-
A
DomainClassConverter
to let Spring MVC resolve instances of repository-managed domain classes from request parameters or path variables. -
HandlerMethodArgumentResolver
implementations to let Spring MVC resolvePageable
andSort
instances from request parameters.
DomainClassConverter
The DomainClassConverter
lets you use domain types in your Spring MVC controller method signatures directly, so that you need not manually lookup the instances through the repository, as shown in the following example:
@Controller
@RequestMapping("/users")
public class UserController {
@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {
model.addAttribute("user", user);
return "userForm";
}
}
As you can see, the method receives a User
instance directly, and no further lookup is necessary. The instance can be resolved by letting Spring MVC convert the path variable into the id
type of the domain class first and eventually access the instance through calling findOne(…)
on the repository instance registered for the domain type.
Currently, the repository has to implement CrudRepository to be eligible to be discovered for conversion.
|
HandlerMethodArgumentResolvers for Pageable and Sort
The configuration snippet shown in the previous section also registers a PageableHandlerMethodArgumentResolver
as well as an instance of SortHandlerMethodArgumentResolver
. The registration enables Pageable
and Sort
as valid controller method arguments, as shown in the following example:
@Controller
@RequestMapping("/users")
public class UserController {
@Autowired UserRepository repository;
@RequestMapping
public String showUsers(Model model, Pageable pageable) {
model.addAttribute("users", repository.findAll(pageable));
return "users";
}
}
The preceding method signature causes Spring MVC try to derive a Pageable
instance from the request parameters by using the following default configuration:
|
Page you want to retrieve. 0-indexed and defaults to 0. |
|
Size of the page you want to retrieve. Defaults to 20. |
|
Properties that should be sorted by in the format |
To customize this behavior extend either SpringDataWebConfiguration
or the HATEOAS-enabled equivalent and override the pageableResolver()
or sortResolver()
methods and import your customized configuration file instead of using the @Enable
-annotation.
If you need multiple Pageable
or Sort
instances to be resolved from the request (for multiple tables, for example), you can use Spring’s @Qualifier
annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_
. The followig example shows the resulting method signature:
public String showUsers(Model model,
@Qualifier("thing1") Pageable first,
@Qualifier("thing2") Pageable second) { … }
you have to populate thing1_page
and thing2_page
and so on.
The default Pageable
passed into the method is equivalent to a new PageRequest(0, 20)
but can be customized by using the @PageableDefault
annotation on the Pageable
parameter.
Hypermedia Support for Pageables
Spring HATEOAS ships with a representation model class (PagedResources
) that allows enriching the content of a Page
instance with the necessary Page
metadata as well as links to let the clients easily navigate the pages. The conversion of a Page to a PagedResources
is done by an implementation of the Spring HATEOAS ResourceAssembler
interface, called the PagedResourcesAssembler
. The following example shows how to use a PagedResourcesAssembler
as a controller method argument:
@Controller
class PersonController {
@Autowired PersonRepository repository;
@RequestMapping(value = "/persons", method = RequestMethod.GET)
HttpEntity<PagedResources<Person>> persons(Pageable pageable,
PagedResourcesAssembler assembler) {
Page<Person> persons = repository.findAll(pageable);
return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);
}
}
Enabling the configuration as shown in the preceding example lets the PagedResourcesAssembler
be used as a controller method argument. Calling toResources(…)
on it has the following effects:
-
The content of the
Page
becomes the content of thePagedResources
instance. -
The
PagedResources
object gets aPageMetadata
instance attached, and it is populated with information from thePage
and the underlyingPageRequest
. -
The
PagedResources
may getprev
andnext
links attached, depending on the page’s state. The links point to the URI to which the method maps. The pagination parameters added to the method match the setup of thePageableHandlerMethodArgumentResolver
to make sure the links can be resolved later.
Assume we have 30 Person instances in the database. You can now trigger a request (GET http://localhost:8080/persons
) and see output similar to the following:
{ "links" : [ { "rel" : "next",
"href" : "http://localhost:8080/persons?page=1&size=20 }
],
"content" : [
… // 20 Person instances rendered here
],
"pageMetadata" : {
"size" : 20,
"totalElements" : 30,
"totalPages" : 2,
"number" : 0
}
}
You see that the assembler produced the correct URI and also picked up the default configuration to resolve the parameters into a Pageable
for an upcoming request. This means that, if you change that configuration, the links automatically adhere to the change. By default, the assembler points to the controller method it was invoked in, but that can be customized by handing in a custom Link
to be used as base to build the pagination links, which overloads the PagedResourcesAssembler.toResource(…)
method.
Web Databinding Support
Spring Data projections (described in Projections) can be used to bind incoming request payloads by either using JSONPath expressions (requires Jayway JsonPath or XPath expressions (requires XmlBeam), as shown in the following example:
@ProjectedPayload
public interface UserPayload {
@XBRead("//firstname")
@JsonPath("$..firstname")
String getFirstname();
@XBRead("/lastname")
@JsonPath({ "$.lastname", "$.user.lastname" })
String getLastname();
}
The type shown in the preceding example can be used as a Spring MVC handler method argument or by using ParameterizedTypeReference
on one of RestTemplate
's methods.
The preceding method declarations would try to find firstname
anywhere in the given document.
The lastname
XML lookup is performed on the top-level of the incoming document.
The JSON variant of that tries a top-level lastname
first but also tries lastname
nested in a user
sub-document if the former does not return a value.
That way, changes in the structure of the source document can be mitigated easily without having clients calling the exposed methods (usually a drawback of class-based payload binding).
Nested projections are supported as described in Projections.
If the method returns a complex, non-interface type, a Jackson ObjectMapper
is used to map the final value.
For Spring MVC, the necessary converters are registered automatically as soon as @EnableSpringDataWebSupport
is active and the required dependencies are available on the classpath.
For usage with RestTemplate
, register a ProjectingJackson2HttpMessageConverter
(JSON) or XmlBeamHttpMessageConverter
manually.
For more information, see the web projection example in the canonical Spring Data Examples repository.
Querydsl Web Support
For those stores having QueryDSL integration, it is possible to derive queries from the attributes contained in a Request
query string.
Consider the following query string:
?firstname=Dave&lastname=Matthews
Given the User
object from previous examples, a query string can be resolved to the following value by using the QuerydslPredicateArgumentResolver
.
QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))
The feature is automatically enabled, along with @EnableSpringDataWebSupport , when Querydsl is found on the classpath.
|
Adding a @QuerydslPredicate
to the method signature provides a ready-to-use Predicate
, which can be run by using the QuerydslPredicateExecutor
.
Type information is typically resolved from the method’s return type. Since that information does not necessarily match the domain type, it might be a good idea to use the root attribute of QuerydslPredicate .
|
The following exampe shows how to use @QuerydslPredicate
in a method signature:
@Controller
class UserController {
@Autowired UserRepository repository;
@RequestMapping(value = "/", method = RequestMethod.GET)
String index(Model model, @QuerydslPredicate(root = User.class) Predicate predicate, (1)
Pageable pageable, @RequestParam MultiValueMap<String, String> parameters) {
model.addAttribute("users", repository.findAll(predicate, pageable));
return "index";
}
}
1 | Resolve query string arguments to matching Predicate for User . |
The default binding is as follows:
-
Object
on simple properties aseq
. -
Object
on collection like properties ascontains
. -
Collection
on simple properties asin
.
Those bindings can be customized through the bindings
attribute of @QuerydslPredicate
or by making use of Java 8 default methods
and adding the QuerydslBinderCustomizer
method to the repository interface.
interface UserRepository extends CrudRepository<User, String>,
QueryDslPredicateExecutor<User>, (1)
QuerydslBinderCustomizer<QUser> { (2)
@Override
default public void customize(QuerydslBindings bindings, QUser user) {
bindings.bind(user.username).first((path, value) -> path.contains(value)) (3)
bindings.bind(String.class)
.first((StringPath path, String value) -> path.containsIgnoreCase(value)); (4)
bindings.excluding(user.password); (5)
}
}
1 | QueryDslPredicateExecutor provides access to specific finder methods for Predicate . |
2 | QuerydslBinderCustomizer defined on the repository interface is automatically picked up and shortcuts @QuerydslPredicate(bindings=…) . |
3 | Define the binding for the username property to be a simple contains binding. |
4 | Define the default binding for String properties to be a case-insensitive contains match. |
5 | Exclude the password property from Predicate resolution. |
8.8.3. Repository Populators
If you work with the Spring JDBC module, you are probably familiar with the support to populate a DataSource
with SQL scripts. A similar abstraction is available on the repositories level, although it does not use SQL as the data definition language because it must be store-independent. Thus, the populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define data with which to populate the repositories.
Assume you have a file data.json
with the following content:
[ { "_class" : "com.acme.Person",
"firstname" : "Dave",
"lastname" : "Matthews" },
{ "_class" : "com.acme.Person",
"firstname" : "Carter",
"lastname" : "Beauford" } ]
You can populate your repositories by using the populator elements of the repository namespace provided in Spring Data Commons. To populate the preceding data to your PersonRepository, declare a populator similar to the following:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">
<repository:jackson2-populator locations="classpath:data.json" />
</beans>
The preceding declaration causes the data.json
file to
be read and deserialized by a Jackson ObjectMapper
.
The type to which the JSON object is unmarshalled is determined by inspecting the _class
attribute of the JSON document. The infrastructure eventually selects the appropriate repository to handle the object that was deserialized.
To instead use XML to define the data the repositories should be populated with, you can use the unmarshaller-populator
element. You configure it to use one of the XML marshaller options available in Spring OXM. See the Spring reference documentation for details. The following example shows how to unmarshal a repository populator with JAXB:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">
<repository:unmarshaller-populator locations="classpath:data.json"
unmarshaller-ref="unmarshaller" />
<oxm:jaxb2-marshaller contextPath="com.acme" />
</beans>
8.8.4. Legacy web support
Domain class web binding for Spring MVC
Given you are developing a Spring MVC web application you typically have to resolve domain class ids from URLs. By default your task is to transform that request parameter or URL part into the domain class to hand it to layers below then or execute business logic on the entities directly. This would look something like this:
@Controller
@RequestMapping("/users")
public class UserController {
private final UserRepository userRepository;
@Autowired
public UserController(UserRepository userRepository) {
Assert.notNull(repository, "Repository must not be null!");
this.userRepository = userRepository;
}
@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") Long id, Model model) {
// Do null check for id
User user = userRepository.findOne(id);
// Do null check for user
model.addAttribute("user", user);
return "user";
}
}
First you declare a repository dependency for each controller to look up the entity managed by the controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a findOne(…)
call. Fortunately Spring provides means to register custom components that allow conversion between a String
value to an arbitrary type.
PropertyEditors
For Spring versions before 3.0 simple Java PropertyEditors
had to be used. To integrate with that, Spring Data offers a DomainClassPropertyEditorRegistrar
, which looks up all Spring Data repositories registered in the ApplicationContext
and registers a custom PropertyEditor
for the managed domain class.
<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class="….web.bind.support.ConfigurableWebBindingInitializer">
<property name="propertyEditorRegistrars">
<bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>
</bean>
</property>
</bean>
If you have configured Spring MVC as in the preceding example, you can configure your controller as follows, which reduces a lot of the clutter and boilerplate.
@Controller
@RequestMapping("/users")
public class UserController {
@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {
model.addAttribute("user", user);
return "userForm";
}
}
Reference Documentation
9. Introduction
9.1. Document Structure
This part of the reference documentation explains the core functionality offered by Spring Data MongoDB.
“MongoDB support” introduces the MongoDB module feature set.
“MongoDB Repositories” introduces the repository support for MongoDB.
10. MongoDB support
The MongoDB support contains a wide range of features:
-
Spring configuration support with Java-based
@Configuration
classes or an XML namespace for a Mongo driver instance and replica sets. -
MongoTemplate
helper class that increases productivity when performing common Mongo operations. Includes integrated object mapping between documents and POJOs. -
Exception translation into Spring’s portable Data Access Exception hierarchy.
-
Feature-rich Object Mapping integrated with Spring’s Conversion Service.
-
Annotation-based mapping metadata that is extensible to support other metadata formats.
-
Persistence and mapping lifecycle events.
-
Java-based Query, Criteria, and Update DSLs.
-
Automatic implementation of Repository interfaces, including support for custom finder methods.
-
QueryDSL integration to support type-safe queries.
-
Cross-store persistence - support for JPA Entities with fields transparently persisted/retrieved using MongoDB.
-
Log4j log appender.
-
GeoSpatial integration.
For most tasks, you should use MongoTemplate
or the Repository support, which both leverage the rich mapping functionality. MongoTemplate
is the place to look for accessing functionality such as incrementing counters or ad-hoc CRUD operations. MongoTemplate
also provides callback methods so that it is easy for you to get the low-level API artifacts, such as com.mongo.DB
, to communicate directly with MongoDB. The goal with naming conventions on various API artifacts is to copy those in the base MongoDB Java driver so you can easily map your existing knowledge onto the Spring APIs.
10.1. Getting Started
Spring MongoDB support requires MongoDB 2.6 or higher and Java SE 6 or higher. An easy way to bootstrap setting up a working environment is to create a Spring-based project in STS.
First, you need to set up a running MongoDB server. Refer to the MongoDB Quick Start guide for an explanation on how to startup a MongoDB instance. Once installed, starting MongoDB is typically a matter of running the following command: ${MONGO_HOME}/bin/mongod
To create a Spring project in STS:
-
Go to File → New → Spring Template Project → Simple Spring Utility Project, and press Yes when prompted. Then enter a project and a package name, such as
org.spring.mongodb.example
. .Add the following to the pom.xml filesdependencies
element:<dependencies> <!-- other dependency elements omitted --> <dependency> <groupId>org.springframework.data</groupId> <artifactId>spring-data-mongodb</artifactId> <version>1.10.17.RELEASE</version> </dependency> </dependencies>
-
Change the version of Spring in the pom.xml to be
<spring.framework.version>4.3.21.RELEASE</spring.framework.version>
-
Add the following location of the Spring Milestone repository for Maven to your
pom.xml
such that it is at the same level of your<dependencies/>
element:<repositories> <repository> <id>spring-milestone</id> <name>Spring Maven MILESTONE Repository</name> <url>http://repo.spring.io/libs-milestone</url> </repository> </repositories>
The repository is also browseable here.
You may also want to set the logging level to DEBUG
to see some additional information. To do so, edit the log4j.properties
file to have the following content:
log4j.category.org.springframework.data.mongodb=DEBUG
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %40.40c:%4L - %m%n
Then you can create a Person
class to persist:
package org.spring.mongodb.example;
public class Person {
private String id;
private String name;
private int age;
public Person(String name, int age) {
this.name = name;
this.age = age;
}
public String getId() {
return id;
}
public String getName() {
return name;
}
public int getAge() {
return age;
}
@Override
public String toString() {
return "Person [id=" + id + ", name=" + name + ", age=" + age + "]";
}
}
You also need a main application to run:
package org.spring.mongodb.example;
import static org.springframework.data.mongodb.core.query.Criteria.where;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.query.Query;
import com.mongodb.Mongo;
public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {
MongoOperations mongoOps = new MongoTemplate(new Mongo(), "database");
mongoOps.insert(new Person("Joe", 34));
log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));
mongoOps.dropCollection("person");
}
}
When you run the main program, the preceding examples produce the following output:
10:01:32,062 DEBUG apping.MongoPersistentEntityIndexCreator: 80 - Analyzing class class org.spring.example.Person for index information.
10:01:32,265 DEBUG ramework.data.mongodb.core.MongoTemplate: 631 - insert DBObject containing fields: [_class, age, name] in collection: Person
10:01:32,765 DEBUG ramework.data.mongodb.core.MongoTemplate:1243 - findOne using query: { "name" : "Joe"} in db.collection: database.Person
10:01:32,953 INFO org.spring.mongodb.example.MongoApp: 25 - Person [id=4ddbba3c0be56b7e1b210166, name=Joe, age=34]
10:01:32,984 DEBUG ramework.data.mongodb.core.MongoTemplate: 375 - Dropped collection [database.person]
Even in this simple example, there are few things to notice:
-
You can instantiate the central helper class of Spring Mongo,
MongoTemplate
, by using the standardcom.mongodb.Mongo
object and the name of the database to use. -
The mapper works against standard POJO objects without the need for any additional metadata (though you can optionally provide that information. See here.).
-
Conventions are used for handling the
id
field, converting it to be anObjectId
when stored in the database. -
Mapping conventions can use field access. Notice that the
Person
class has only getters. -
If the constructor argument names match the field names of the stored document, they are used to instantiate the object
10.2. Examples Repository
There is a GitHub repository with several examples that you can download and play around with to get a feel for how the library works.
10.3. Connecting to MongoDB with Spring
One of the first tasks when using MongoDB and Spring is to create a com.mongodb.Mongo
object using the IoC container. There are two main ways to do this, either by using Java-based bean metadata or by using XML-based bean metadata. Both are discussed in the following sections.
For those not familiar with how to configure the Spring container using Java-based bean metadata instead of XML-based metadata, see the high-level introduction in the reference docs here as well as the detailed documentation here. |
10.3.1. Registering a Mongo Instance by using Java-based Metadata
The following example shows an example of using Java-based bean metadata to register an instance of a com.mongodb.Mongo
:
com.mongodb.Mongo
object using Java based bean metadata@Configuration
public class AppConfig {
/*
* Use the standard Mongo driver API to create a com.mongodb.Mongo instance.
*/
public @Bean Mongo mongo() throws UnknownHostException {
return new Mongo("localhost");
}
}
This approach lets you use the standard com.mongodb.Mongo
API that you may already be used to using but also pollutes the code with the UnknownHostException checked exception. The use of the checked exception is not desirable as Java based bean metadata uses methods as a means to set object dependencies, making the calling code cluttered.
An alternative is to register an instance of com.mongodb.Mongo
instance, with the container using Spring’s MongoClientFactoryBean
. As compared to instantiating a com.mongodb.Mongo
instance directly, the FactoryBean approach does not throw a checked exception and has the added advantage of also providing the container with an ExceptionTranslator
implementation that translates MongoDB exceptions to exceptions in Spring’s portable DataAccessException
hierarchy for data access classes annotated with the @Repository
annotation. This hierarchy and the use of @Repository
is described in Spring’s DAO support features.
The following example shows an example of a Java-based bean metadata that supports exception translation on @Repository
annotated classes:
com.mongodb.Mongo
object using Spring’s MongoClientFactoryBean and enabling Spring’s exception translation support@Configuration
public class AppConfig {
/*
* Factory bean that creates the com.mongodb.Mongo instance
*/
public @Bean MongoClientFactoryBean mongo() {
MongoClientFactoryBean mongo = new MongoClientFactoryBean();
mongo.setHost("localhost");
return mongo;
}
}
To access the com.mongodb.Mongo
object created by the MongoClientFactoryBean
in other @Configuration
classes or your own classes, use a private @Autowired Mongo mongo;
field.
10.3.2. Registering a Mongo Instance by Using XML-based Metadata
While you can use Spring’s traditional <beans/>
XML namespace to register an instance of com.mongodb.Mongo
with the container, the XML can be quite verbose, as it is general-purpose. XML namespaces are a better alternative to configuring commonly used objects, such as the Mongo instance. The mongo namespace lets you create a Mongo instance server location, replica-sets, and options.
To use the Mongo namespace elements, you need to reference the Mongo schema, as follows:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation=
"http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/data/mongo http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<!-- Default bean name is 'mongo' -->
<mongo:mongo host="localhost" port="27017"/>
</beans>
The following example shows a more advanced configuration with MongoOptions
(note that these are not recommended values):
<beans>
<mongo:mongo host="localhost" port="27017">
<mongo:options connections-per-host="8"
threads-allowed-to-block-for-connection-multiplier="4"
connect-timeout="1000"
max-wait-time="1500}"
auto-connect-retry="true"
socket-keep-alive="true"
socket-timeout="1500"
slave-ok="true"
write-number="1"
write-timeout="0"
write-fsync="true"/>
</mongo:mongo/>
</beans>
The following example shows a configuration using replica sets:
com.mongodb.Mongo
object with Replica Sets<mongo:mongo id="replicaSetMongo" replica-set="127.0.0.1:27017,localhost:27018"/>
10.3.3. The MongoDbFactory Interface
While com.mongodb.Mongo
is the entry point to the MongoDB driver API, connecting to a specific MongoDB database instance requires additional information, such as the database name and an optional username and password. With that information, you can obtain a com.mongodb.DB
object and access all the functionality of a specific MongoDB database instance. Spring provides the org.springframework.data.mongodb.core.MongoDbFactory
interface, shown in the following listing, to bootstrap connectivity to the database:
public interface MongoDbFactory {
DB getDb() throws DataAccessException;
DB getDb(String dbName) throws DataAccessException;
}
The following sections show how you can use the container with either Java-based or XML-based metadata to configure an instance of the MongoDbFactory
interface. In turn, you can use the MongoDbFactory
instance to configure MongoTemplate
.
The class org.springframework.data.mongodb.core.SimpleMongoDbFactory
provides implements the MongoDbFactory
interface and is created with a standard com.mongodb.Mongo
instance, the database name and an optional org.springframework.data.authentication.UserCredentials
constructor argument.
Instead of using the IoC container to create an instance of MongoTemplate, you can use them in standard Java code, as follows:
public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {
MongoOperations mongoOps = new MongoTemplate(new SimpleMongoDbFactory(new Mongo(), "database"));
mongoOps.insert(new Person("Joe", 34));
log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));
mongoOps.dropCollection("person");
}
}
The code in bold highlights the use of SimpleMongoDbFactory
and is the only difference between the listing shown in the getting started section.
10.3.4. Registering a MongoDbFactory
Instance by Using Java-based Metadata
To register a MongoDbFactory
instance with the container, you write code much like what was highlighted in the previous code listing. The following listing shows a simple example:
@Configuration
public class MongoConfiguration {
public @Bean MongoDbFactory mongoDbFactory() throws Exception {
return new SimpleMongoDbFactory(new Mongo(), "database");
}
}
To define the username and password create an instance of org.springframework.data.authentication.UserCredentials
and pass it into the constructor as shown below. This listing also shows using MongoDbFactory
register an instance of MongoTemplate with the container.
@Configuration
public class MongoConfiguration {
public @Bean MongoDbFactory mongoDbFactory() throws Exception {
UserCredentials userCredentials = new UserCredentials("joe", "secret");
return new SimpleMongoDbFactory(new Mongo(), "database", userCredentials);
}
public @Bean MongoTemplate mongoTemplate() throws Exception {
return new MongoTemplate(mongoDbFactory());
}
}
10.3.5. Registering a MongoDbFactory
Instance by Using XML-based Metadata
The mongo
namespace provides a convenient way to create a SimpleMongoDbFactory
, as compared to using the <beans/>
namespace, as shown in the following example:
<mongo:db-factory dbname="database">
In the above example a com.mongodb.Mongo
instance is created using the default host and port number. The SimpleMongoDbFactory
registered with the container is identified by the id 'mongoDbFactory' unless a value for the id attribute is specified.
You can also provide the host and port for the underlying com.mongodb.Mongo
instance as shown below, in addition to username and password for the database.
<mongo:db-factory id="anotherMongoDbFactory"
host="localhost"
port="27017"
dbname="database"
username="joe"
password="secret"/>
If your MongoDB authentication database differs from the target database, use the authentication-dbname
attribute, as shown below.
<mongo:db-factory id="anotherMongoDbFactory"
host="localhost"
port="27017"
dbname="database"
username="joe"
password="secret"
authentication-dbname="admin"
/>
If you need to configure additional options on the com.mongodb.Mongo
instance that is used to create a SimpleMongoDbFactory
, you can refer to an existing bean by using the mongo-ref
attribute as shown in the following example. To show another common usage pattern, the following listing shows the use of a property placeholder, which lets you parametrize the configuration and the creation of a MongoTemplate
:
<context:property-placeholder location="classpath:/com/myapp/mongodb/config/mongo.properties"/>
<mongo:mongo host="${mongo.host}" port="${mongo.port}">
<mongo:options
connections-per-host="${mongo.connectionsPerHost}"
threads-allowed-to-block-for-connection-multiplier="${mongo.threadsAllowedToBlockForConnectionMultiplier}"
connect-timeout="${mongo.connectTimeout}"
max-wait-time="${mongo.maxWaitTime}"
auto-connect-retry="${mongo.autoConnectRetry}"
socket-keep-alive="${mongo.socketKeepAlive}"
socket-timeout="${mongo.socketTimeout}"
slave-ok="${mongo.slaveOk}"
write-number="1"
write-timeout="0"
write-fsync="true"/>
</mongo:mongo>
<mongo:db-factory dbname="database" mongo-ref="mongo"/>
<bean id="anotherMongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
</bean>
10.4. Introduction to MongoTemplate
The MongoTemplate
class, located in the org.springframework.data.mongodb.core
package, is the central class of Spring’s MongoDB support and provides a rich feature set for interacting with the database. The template offers convenience operations to create, update, delete, and query MongoDB documents and provides a mapping between your domain objects and MongoDB documents.
Once configured, MongoTemplate is thread-safe and can be reused across multiple instances.
|
The mapping between MongoDB documents and domain classes is done by delegating to an implementation of the interface MongoConverter
. Spring provides two implementations, SimpleMappingConverter
and MappingMongoConverter
, but you can also write your own converter. Please refer to the section on MongoConverters for more detailed information.
The MongoTemplate
class implements the interface MongoOperations
. In as much as possible, the methods on MongoOperations
are named after methods available on the MongoDB driver Collection
object, to make the API familiar to existing MongoDB developers who are used to the driver API. For example, you can find methods such as find
, findAndModify
, findOne
, insert
, remove
, save
, update
, and updateMulti
. The design goal was to make it as easy as possible to transition between the use of the base MongoDB driver and MongoOperations
. A major difference between the two APIs is that MongoOperations
can be passed domain objects instead of DBObject
. Also, MongoOperations
has fluent APIs for Query
, Criteria
, and Update
operations instead of populating a DBObject
to specify the parameters for those operations.
The preferred way to reference the operations on MongoTemplate instance is through its interface, MongoOperations .
|
The default converter implementation used by MongoTemplate
is MappingMongoConverter
. While the MappingMongoConverter
can use additional metadata to specify the mapping of objects to documents, it can also convert objects that contain no additional metadata by using some conventions for the mapping of IDs and collection names. These conventions, as well as the use of mapping annotations, are explained in the “Mapping” chapter.
In the M2 release SimpleMappingConverter , was the default and this class is now deprecated as its functionality has been subsumed by the MappingMongoConverter .
|
Another central feature of MongoTemplate
is translation of exceptions thrown by the MongoDB Java driver into Spring’s portable Data Access Exception hierarchy. See “Exception Translation” for more information.
MongoTemplate
offers many convenience methods to help you easily perform common tasks. However, if you need to directly access the MongoDB driver API, you can use one of several Execute
callback methods. The execute callbacks gives you a reference to either a com.mongodb.DBCollection
or a com.mongodb.DB
object. See the “Execution Callbacks” section for more information.
The next section contains an example of how to work with the MongoTemplate
in the context of the Spring container.
10.4.1. Instantiating MongoTemplate
You can use Java to create and register an instance of MongoTemplate
, as the following example shows:
com.mongodb.Mongo
object and enabling Spring’s exception translation support@Configuration
public class AppConfig {
public @Bean Mongo mongo() throws Exception {
return new Mongo("localhost");
}
public @Bean MongoTemplate mongoTemplate() throws Exception {
return new MongoTemplate(mongo(), "mydatabase");
}
}
There are several overloaded constructors of MongoTemplate
:
-
MongoTemplate(Mongo mongo, String databaseName)
: Takes thecom.mongodb.Mongo
object and the default database name to operate against. -
MongoTemplate(Mongo mongo, String databaseName, UserCredentials userCredentials)
- adds the username and password for authenticating with the database. -
MongoTemplate(MongoDbFactory mongoDbFactory)
: Takes a MongoDbFactory object that encapsulated thecom.mongodb.Mongo
object, database name, and username and password. -
MongoTemplate(MongoDbFactory mongoDbFactory, MongoConverter mongoConverter)
: Adds aMongoConverter
to use for mapping.
You can also configure a MongoTemplate by using Spring’s XML <beans/> schema, as the following example shows:
<mongo:mongo host="localhost" port="27017"/>
<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg ref="mongo"/>
<constructor-arg name="databaseName" value="geospatial"/>
</bean>
Other optional properties that you might like to set when creating a MongoTemplate
are the default WriteResultCheckingPolicy
, WriteConcern
, and ReadPreference
properties.
The preferred way to reference the operations on MongoTemplate instance is through its interface, MongoOperations .
|
10.4.2. WriteResultChecking
Policy
When in development it is very handy to either log or throw an exception if the com.mongodb.WriteResult
returned from any MongoDB operation contains an error. It is quite common to forget to do this during development and then end up with an application that looks like it runs successfully but in fact the database was not modified according to your expectations. Set MongoTemplate’s property to an enum with the following values, LOG
, EXCEPTION
, or NONE
to either log the error, throw and exception or do nothing. The default is to use a WriteResultChecking
value of NONE
.
10.4.3. WriteConcern
If it has not yet been specified through the driver at a higher level (such as com.mongodb.Mongo
), you can set the com.mongodb.WriteConcern
property that the MongoTemplate
uses for write operations. If the WriteConcern
property is not set, it defaults to the one set in the MongoDB driver’s DB or Collection setting.
10.4.4. WriteConcernResolver
For more advanced cases where you want to set different WriteConcern
values on a per-operation basis (for remove, update, insert, and save operations), a strategy interface called WriteConcernResolver
can be configured on MongoTemplate
. Since MongoTemplate
is used to persist POJOs, the WriteConcernResolver
lets you create a policy that can map a specific POJO class to a WriteConcern
value. The following listing shows the WriteConcernResolver
interface:
public interface WriteConcernResolver {
WriteConcern resolve(MongoAction action);
}
You can use the MongoAction
argument to determine the WriteConcern
value or use the value of the Template itself as a default. MongoAction
contains the collection name being written to, the java.lang.Class
of the POJO, the converted DBObject
, the operation (REMOVE
, UPDATE
, INSERT
, INSERT_LIST
, or SAVE
), and a few other pieces of contextual information. The following example shows two sets of classes getting different WriteConcern
settings:
private class MyAppWriteConcernResolver implements WriteConcernResolver {
public WriteConcern resolve(MongoAction action) {
if (action.getEntityClass().getSimpleName().contains("Audit")) {
return WriteConcern.NONE;
} else if (action.getEntityClass().getSimpleName().contains("Metadata")) {
return WriteConcern.JOURNAL_SAFE;
}
return action.getDefaultWriteConcern();
}
}
10.5. Saving, Updating, and Removing Documents
MongoTemplate
lets you save, update, and delete your domain objects and map those objects to documents stored in MongoDB.
Consider the following class:
public class Person {
private String id;
private String name;
private int age;
public Person(String name, int age) {
this.name = name;
this.age = age;
}
public String getId() {
return id;
}
public String getName() {
return name;
}
public int getAge() {
return age;
}
@Override
public String toString() {
return "Person [id=" + id + ", name=" + name + ", age=" + age + "]";
}
}
Given the Person
class in the preceding example, you can save, update and delete the object, as the following example shows:
MongoOperations is the interface that MongoTemplate implements.
|
package org.spring.example;
import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Update.update;
import static org.springframework.data.mongodb.core.query.Query.query;
import java.util.List;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.SimpleMongoDbFactory;
import com.mongodb.Mongo;
public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {
MongoOperations mongoOps = new MongoTemplate(new SimpleMongoDbFactory(new Mongo(), "database"));
Person p = new Person("Joe", 34);
// Insert is used to initially store the object into the database.
mongoOps.insert(p);
log.info("Insert: " + p);
// Find
p = mongoOps.findById(p.getId(), Person.class);
log.info("Found: " + p);
// Update
mongoOps.updateFirst(query(where("name").is("Joe")), update("age", 35), Person.class);
p = mongoOps.findOne(query(where("name").is("Joe")), Person.class);
log.info("Updated: " + p);
// Delete
mongoOps.remove(p);
// Check that deletion worked
List<Person> people = mongoOps.findAll(Person.class);
log.info("Number of people = : " + people.size());
mongoOps.dropCollection(Person.class);
}
}
The preceding example would produce the following log output (including debug messages from MongoTemplate
):
DEBUG apping.MongoPersistentEntityIndexCreator: 80 - Analyzing class class org.spring.example.Person for index information.
DEBUG work.data.mongodb.core.MongoTemplate: 632 - insert DBObject containing fields: [_class, age, name] in collection: person
INFO org.spring.example.MongoApp: 30 - Insert: Person [id=4ddc6e784ce5b1eba3ceaf5c, name=Joe, age=34]
DEBUG work.data.mongodb.core.MongoTemplate:1246 - findOne using query: { "_id" : { "$oid" : "4ddc6e784ce5b1eba3ceaf5c"}} in db.collection: database.person
INFO org.spring.example.MongoApp: 34 - Found: Person [id=4ddc6e784ce5b1eba3ceaf5c, name=Joe, age=34]
DEBUG work.data.mongodb.core.MongoTemplate: 778 - calling update using query: { "name" : "Joe"} and update: { "$set" : { "age" : 35}} in collection: person
DEBUG work.data.mongodb.core.MongoTemplate:1246 - findOne using query: { "name" : "Joe"} in db.collection: database.person
INFO org.spring.example.MongoApp: 39 - Updated: Person [id=4ddc6e784ce5b1eba3ceaf5c, name=Joe, age=35]
DEBUG work.data.mongodb.core.MongoTemplate: 823 - remove using query: { "id" : "4ddc6e784ce5b1eba3ceaf5c"} in collection: person
INFO org.spring.example.MongoApp: 46 - Number of people = : 0
DEBUG work.data.mongodb.core.MongoTemplate: 376 - Dropped collection [database.person]
MongoConverter
caused implicit conversion between a String
and an ObjectId
stored in the database by recognizing (through convention) the Id
property name.
The preceding example is meant to show the use of save, update, and remove operations on MongoTemplate and not to show complex mapping functionality.
|
The query syntax used in the preceding example is explained in more detail in the section “Querying Documents”.
10.5.1. How the _id
Field is Handled in the Mapping Layer
MongoDB requires that you have an _id
field for all documents. If you do not provide one, the driver assigns an ObjectId
with a generated value. When you use the MappingMongoConverter
, certain rules govern how properties from the Java class are mapped to this _id
field:
-
A property or field annotated with
@Id
(org.springframework.data.annotation.Id
) maps to the_id
field. -
A property or field without an annotation but named
id
maps to the_id
field.
The following outlines what type conversion, if any, is done on the property mapped to the _id
document field when using the MappingMongoConverter
(the default for MongoTemplate
).
-
If possible, an
id
property or field declared as aString
in the Java class is converted to and stored as anObjectId
by using a SpringConverter<String, ObjectId>
. Valid conversion rules are delegated to the MongoDB Java driver. If it cannot be converted to anObjectId
, then the value is stored as a string in the database. -
An
id
property or field declared asBigInteger
in the Java class is converted to and stored as anObjectId
by using a SpringConverter<BigInteger, ObjectId>
.
If no field or property specified in the previous sets of rules is present in the Java class, an implicit _id
file is generated by the driver but not mapped to a property or field of the Java class.
When querying and updating, MongoTemplate
uses the converter that corresponds to the preceding rules for saving documents so that field names and types used in your queries can match what is in your domain classes.
10.5.2. Type Mapping
MongoDB collections can contain documents that represent instances of a variety of types. This feature can be useful if you store a hierarchy of classes or have a class with a property of type Object
. In the latter case, the values held inside that property have to be read in correctly when retrieving the object. Thus, we need a mechanism to store type information alongside the actual document.
To achieve that, the MappingMongoConverter
uses a MongoTypeMapper
abstraction with DefaultMongoTypeMapper
as its main implementation. Its default behavior to store the fully qualified classname under _class
inside the document for thetop-level document as well as for every value (if itis a complex type and a subtype of the declaredproperty type ). The following example (with a JSON representation at the end) shows how the mapping works:
public class Sample {
Contact value;
}
public abstract class Contact { … }
public class Person extends Contact { … }
Sample sample = new Sample();
sample.value = new Person();
mongoTemplate.save(sample);
{ "_class" : "com.acme.Sample",
"value" : { "_class" : "com.acme.Person" }
}
As you can see we store the type information for the actual root class persistent as well as for the nested type as it is complex and a subtype of Contact
. So if you’re now using mongoTemplate.findAll(Object.class, "sample")
we are able to find out that the document stored shall be a Sample
instance. We are also able to find out that the value property shall be a Person
actually.
Customizing Type Mapping
If you want to avoid writing the entire Java class name as type information but would rather like to use a key, you can use the @TypeAlias
annotation on the entity class. If you need to customize the mapping even more, have a look at the TypeInformationMapper
interface. An instance of that interface can be configured at the DefaultMongoTypeMapper
, which can, in turn, be configured on MappingMongoConverter
. The following example shows how to define a type alias for an entity:
@TypeAlias("pers")
class Person {
}
Note that the resulting document contains pers
as the value in the _class
Field.
Configuring Custom Type Mapping
The following example shows how to configure a custom MongoTypeMapper
in MappingMongoConverter
:
MongoTypeMapper
with Spring Java Configclass CustomMongoTypeMapper extends DefaultMongoTypeMapper {
//implement custom type mapping here
}
@Configuration
class SampleMongoConfiguration extends AbstractMongoConfiguration {
@Override
protected String getDatabaseName() {
return "database";
}
@Override
public Mongo mongo() throws Exception {
return new Mongo();
}
@Bean
@Override
public MappingMongoConverter mappingMongoConverter() throws Exception {
MappingMongoConverter mmc = super.mappingMongoConverter();
mmc.setTypeMapper(customTypeMapper());
return mmc;
}
@Bean
public MongoTypeMapper customTypeMapper() {
return new CustomMongoTypeMapper();
}
}
Note that the preceding example extends the AbstractMongoConfiguration
class and overrides the bean definition of the MappingMongoConverter
where we configured our custom MongoTypeMapper
.
The following example shows how to use XML to configure a custom MongoTypeMapper
:
MongoTypeMapper
with XML<mongo:mapping-converter type-mapper-ref="customMongoTypeMapper"/>
<bean name="customMongoTypeMapper" class="com.bubu.mongo.CustomMongoTypeMapper"/>
10.5.3. Methods for Saving and Inserting Documents
There are several convenient methods on MongoTemplate
for saving and inserting your objects. To have more fine-grained control over the conversion process, you can register Spring converters with the MappingMongoConverter
— for example Converter<Person, DBObject>
and Converter<DBObject, Person>
.
The difference between insert and save operations is that a save operation performs an insert if the object is not already present. |
The simple case of using the save operation is to save a POJO. In this case, the collection name is determined by name (not fully qualified) of the class. You may also call the save operation with a specific collection name. You can use mapping metadata to override the collection in which to store the object.
When inserting or saving, if the Id
property is not set, the assumption is that its value will be auto-generated by the database. Consequently, for auto-generation of an ObjectId
to succeed, the type of the Id
property or field in your class must be a String
, an ObjectId
, or a BigInteger
.
The following example shows how to save a document and retrieving its contents:
import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Criteria.query;
…
Person p = new Person("Bob", 33);
mongoTemplate.insert(p);
Person qp = mongoTemplate.findOne(query(where("age").is(33)), Person.class);
The following insert and save operations are available:
-
void
save(Object objectToSave)
: Save the object to the default collection. -
void
save(Object objectToSave, String collectionName)
: Save the object to the specified collection.
A similar set of insert operations is also available:
-
void
insert(Object objectToSave)
: Insert the object to the default collection. -
void
insert(Object objectToSave, String collectionName)
: Insert the object to the specified collection.
Into Which Collection Are My Documents Saved?
There are two ways to manage the collection name that is used for the documents. The default collection name that is used is the class name changed to start with a lower-case letter. So a com.test.Person
class is stored in the person
collection. You can customize this by providing a different collection name with the @Document
annotation. You can also override the collection name by providing your own collection name as the last parameter for the selected MongoTemplate
method calls.
Inserting or Saving Individual Objects
The MongoDB driver supports inserting a collection of documents in a single operation. The following methods in the MongoOperations
interface support this functionality:
-
insert: Inserts an object. If there is an existing document with the same
id
, an error is generated. -
insertAll: Takes a
Collection
of objects as the first parameter. This method inspects each object and inserts it into the appropriate collection, based on the rules specified earlier. -
save: Saves the object, overwriting any object that might have the same
id
.
Inserting Several Objects in a Batch
The MongoDB driver supports inserting a collection of documents in one operation. The following methods in the MongoOperations
interface support this functionality:
-
insert methods: Take a
Collection
as the first argument. They insert a list of objects in a single batch write to the database.
10.5.4. Updating Documents in a Collection
For updates, you can update the first document found by using MongoOperation.updateFirst
or you can update all documents that were found to match the query by using the MongoOperation.updateMulti
method. The following example shows an update of all SAVINGS
accounts where we are adding a one-time $50.00 bonus to the balance by using the $inc
operator:
MongoTemplate
import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Query;
import static org.springframework.data.mongodb.core.query.Update;
...
WriteResult wr = mongoTemplate.updateMulti(new Query(where("accounts.accountType").is(Account.Type.SAVINGS)),
new Update().inc("accounts.$.balance", 50.00), Account.class);
In addition to the Query
discussed earlier, we provide the update definition by using an Update
object. The Update
class has methods that match the update modifiers available for MongoDB.
Most methods return the Update
object to provide a fluent style for the API.
Methods for Executing Updates for Documents
-
updateFirst: Updates the first document that matches the query document criteria with the updated document.
-
updateMulti: Updates all objects that match the query document criteria with the updated document.
Methods in the Update
Class
You can use a little "'syntax sugar'" with the Update
class, as its methods are meant to be chained together. Also, you can kick-start the creation of a new Update
instance by using public static Update update(String key, Object value)
and using static imports.
The Update
class contains the following methods:
-
Update
addToSet(String key, Object value)
Update using the$addToSet
update modifier -
Update
currentDate(String key)
Update using the$currentDate
update modifier -
Update
currentTimestamp(String key)
Update using the$currentDate
update modifier with$type
timestamp
-
Update
inc(String key, Number inc)
Update using the$inc
update modifier -
Update
max(String key, Object max)
Update using the$max
update modifier -
Update
min(String key, Object min)
Update using the$min
update modifier -
Update
multiply(String key, Number multiplier)
Update using the$mul
update modifier -
Update
pop(String key, Update.Position pos)
Update using the$pop
update modifier -
Update
pull(String key, Object value)
Update using the$pull
update modifier -
Update
pullAll(String key, Object[] values)
Update using the$pullAll
update modifier -
Update
push(String key, Object value)
Update using the$push
update modifier -
Update
pushAll(String key, Object[] values)
Update using the$pushAll
update modifier -
Update
rename(String oldName, String newName)
Update using the$rename
update modifier -
Update
set(String key, Object value)
Update using the$set
update modifier -
Update
setOnInsert(String key, Object value)
Update using the$setOnInsert
update modifier -
Update
unset(String key)
Update using the$unset
update modifier
Some update modifiers, such as $push
and $addToSet
, allow nesting of additional operators.
// { $push : { "category" : { "$each" : [ "spring" , "data" ] } } }
new Update().push("category").each("spring", "data")
// { $push : { "key" : { "$position" : 0 , "$each" : [ "Arya" , "Arry" , "Weasel" ] } } }
new Update().push("key").atPosition(Position.FIRST).each(Arrays.asList("Arya", "Arry", "Weasel"));
// { $push : { "key" : { "$slice" : 5 , "$each" : [ "Arya" , "Arry" , "Weasel" ] } } }
new Update().push("key").slice(5).each(Arrays.asList("Arya", "Arry", "Weasel"));
// { $addToSet : { "values" : { "$each" : [ "spring" , "data" , "mongodb" ] } } }
new Update().addToSet("values").each("spring", "data", "mongodb");
10.5.5. “Upserting” Documents in a Collection
Related to performing an updateFirst
operation, you can also perform an “upsert” operation, which will perform an insert if no document is found that matches the query. The document that is inserted is a combination of the query document and the update document. The following example shows how to use the upsert
method:
template.upsert(query(where("ssn").is(1111).and("firstName").is("Joe").and("Fraizer").is("Update")), update("address", addr), Person.class);
10.5.6. Finding and Upserting Documents in a Collection
The findAndModify(…)
method on DBCollection
can update a document and return either the old or newly updated document in a single operation. MongoTemplate
provides four findAndModify
overloaded methods that take Query
and Update
classes and converts from DBObject
to your POJOs:
<T> T findAndModify(Query query, Update update, Class<T> entityClass);
<T> T findAndModify(Query query, Update update, Class<T> entityClass, String collectionName);
<T> T findAndModify(Query query, Update update, FindAndModifyOptions options, Class<T> entityClass);
<T> T findAndModify(Query query, Update update, FindAndModifyOptions options, Class<T> entityClass, String collectionName);
The following example inserts a few Person
objects into the container and performs a findAndUpdate
operation:
mongoTemplate.insert(new Person("Tom", 21));
mongoTemplate.insert(new Person("Dick", 22));
mongoTemplate.insert(new Person("Harry", 23));
Query query = new Query(Criteria.where("firstName").is("Harry"));
Update update = new Update().inc("age", 1);
Person p = mongoTemplate.findAndModify(query, update, Person.class); // return's old person object
assertThat(p.getFirstName(), is("Harry"));
assertThat(p.getAge(), is(23));
p = mongoTemplate.findOne(query, Person.class);
assertThat(p.getAge(), is(24));
// Now return the newly updated document when updating
p = template.findAndModify(query, update, new FindAndModifyOptions().returnNew(true), Person.class);
assertThat(p.getAge(), is(25));
The FindAndModifyOptions
method lets you set the options of returnNew
, upsert
, and remove
. An example extending from the previous code snippet follows:
Query query2 = new Query(Criteria.where("firstName").is("Mary"));
p = mongoTemplate.findAndModify(query2, update, new FindAndModifyOptions().returnNew(true).upsert(true), Person.class);
assertThat(p.getFirstName(), is("Mary"));
assertThat(p.getAge(), is(1));
10.5.7. Methods for Removing Documents
You can use one of five overloaded methods to remove an object from the database:
template.remove(tywin, "GOT"); (1)
template.remove(query(where("lastname").is("lannister")), "GOT"); (2)
template.remove(new Query().limit(3), "GOT"); (3)
template.findAllAndRemove(query(where("lastname").is("lannister"), "GOT"); (4)
template.findAllAndRemove(new Query().limit(3), "GOT"); (5)
1 | Remove a single entity specified by its _id from the associated collection. |
2 | Remove all documents that match the criteria of the query from the GOT collection. |
3 | Remove the first three documents in the GOT collection. Unlike <2>, the documents to remove are identified by their _id , executing the given query, applying sort , limit , and skip options first, and then removing all at once in a separate step. |
4 | Remove all documents matching the criteria of the query from the GOT collection. Unlike <3>, documents do not get deleted in a batch but one by one. |
5 | Remove the first three documents in the GOT collection. Unlike <3>, documents do not get deleted in a batch but one by one. |
10.5.8. Optimistic Locking
The @Version
annotation provides syntax similar to that of JPA in the context of MongoDB and makes sure updates are only applied to documents with a matching version. Therefore, the actual value of the version property is added to the update query in such a way that the update does not have any effect if another operation altered the document in the meantime. In that case, an OptimisticLockingFailureException
is thrown. The following example shows these features:
@Document
class Person {
@Id String id;
String firstname;
String lastname;
@Version Long version;
}
Person daenerys = template.insert(new Person("Daenerys")); (1)
Person tmp = template.findOne(query(where("id").is(daenerys.getId())), Person.class); (2)
daenerys.setLastname("Targaryen");
template.save(daenerys); (3)
template.save(tmp); // throws OptimisticLockingFailureException (4)
1 | Intially insert document. version is set to 0 . |
2 | Load the just inserted document. version is still 0 . |
3 | Update the document with version = 0 . Set the lastname and bump version to 1 . |
4 | Try to update the previously loaded document that still has version = 0 . The operation fails with an OptimisticLockingFailureException , as the current version is 1 . |
Optimistic Locking requires to set the WriteConcern to ACKNOWLEDGED . Otherwise OptimisticLockingFailureException can be silently swallowed.
|
10.6. Querying Documents
You can use the Query
and Criteria
classes to express your queries. They have method names that mirror the native MongoDB operator names, such as lt
, lte
, is
, and others. The Query
and Criteria
classes follow a fluent API style so that you can chain together multiple method criteria and queries while having easy-to-understand code. To improve readability, static imports let you avoid using the 'new' keyword for creating Query
and Criteria
instances. You can also use BasicQuery
to create Query
instances from plain JSON Strings, as shown in the following example:
BasicQuery query = new BasicQuery("{ age : { $lt : 50 }, accounts.balance : { $gt : 1000.00 }}");
List<Person> result = mongoTemplate.find(query, Person.class);
Spring MongoDB also supports GeoSpatial queries (see the GeoSpatial Queries section) and Map-Reduce operations (see the Map-Reduce section.).
10.6.1. Querying Documents in a Collection
Earlier, we saw how to retrieve a single document by using the findOne
and findById
methods on MongoTemplate
. These methods return a single domain object. We can also query for a collection of documents to be returned as a list of domain objects. Assuming that we have a number of Person
objects with name and age stored as documents in a collection and that each person has an embedded account document with a balance, we can now run a query using the following code:
import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Query.query;
…
List<Person> result = mongoTemplate.find(query(where("age").lt(50)
.and("accounts.balance").gt(1000.00d)), Person.class);
All find methods take a Query
object as a parameter. This object defines the criteria and options used to perform the query. The criteria are specified by using a Criteria
object that has a static factory method named where
to instantiate a new Criteria
object. We recommend using static imports for org.springframework.data.mongodb.core.query.Criteria.where
and Query.query
to make the query more readable.
The query should return a list of Person
objects that meet the specified criteria. The rest of this section lists the methods of the Criteria
and Query
classes that correspond to the operators provided in MongoDB. Most methods return the Criteria
object, to provide a fluent style for the API.
Methods for the Criteria Class
The Criteria
class provides the following methods, all of which correspond to operators in MongoDB:
-
Criteria
all(Object o)
Creates a criterion using the$all
operator -
Criteria
and(String key)
Adds a chainedCriteria
with the specifiedkey
to the currentCriteria
and returns the newly created one -
Criteria
andOperator(Criteria… criteria)
Creates an and query using the$and
operator for all of the provided criteria (requires MongoDB 2.0 or later) -
Criteria
elemMatch(Criteria c)
Creates a criterion using the$elemMatch
operator -
Criteria
exists(boolean b)
Creates a criterion using the$exists
operator -
Criteria
gt(Object o)
Creates a criterion using the$gt
operator -
Criteria
gte(Object o)
Creates a criterion using the$gte
operator -
Criteria
in(Object… o)
Creates a criterion using the$in
operator for a varargs argument. -
Criteria
in(Collection<?> collection)
Creates a criterion using the$in
operator using a collection -
Criteria
is(Object o)
Creates a criterion using the$is
operator -
Criteria
lt(Object o)
Creates a criterion using the$lt
operator -
Criteria
lte(Object o)
Creates a criterion using the$lte
operator -
Criteria
mod(Number value, Number remainder)
Creates a criterion using the$mod
operator -
Criteria
ne(Object o)
Creates a criterion using the$ne
operator -
Criteria
nin(Object… o)
Creates a criterion using the$nin
operator -
Criteria
norOperator(Criteria… criteria)
Creates an nor query using the$nor
operator for all of the provided criteria -
Criteria
not()
Creates a criterion using the$not
meta operator which affects the clause directly following -
Criteria
orOperator(Criteria… criteria)
Creates an or query using the$or
operator for all of the provided criteria -
Criteria
regex(String re)
Creates a criterion using a$regex
-
Criteria
size(int s)
Creates a criterion using the$size
operator -
Criteria
type(int t)
Creates a criterion using the$type
operator
The Criteria class also provides the following methods for geospatial queries (see the GeoSpatial Queries section to see them in action):
-
Criteria
within(Circle circle)
Creates a geospatial criterion using$geoWithin $center
operators. -
Criteria
within(Box box)
Creates a geospatial criterion using a$geoWithin $box
operation. -
Criteria
withinSphere(Circle circle)
Creates a geospatial criterion using$geoWithin $center
operators. -
Criteria
near(Point point)
Creates a geospatial criterion using a$near
operation -
Criteria
nearSphere(Point point)
Creates a geospatial criterion using$nearSphere$center
operations. This is only available for MongoDB 1.7 and higher. -
Criteria
minDistance(double minDistance)
Creates a geospatial criterion using the$minDistance
operation, for use with $near. -
Criteria
maxDistance(double maxDistance)
Creates a geospatial criterion using the$maxDistance
operation, for use with $near.
Methods for the Query class
The Query
class has some additional methods that provide options for the query:
-
Query
addCriteria(Criteria criteria)
used to add additional criteria to the query -
Field
fields()
used to define fields to be included in the query results -
Query
limit(int limit)
used to limit the size of the returned results to the provided limit (used for paging) -
Query
skip(int skip)
used to skip the provided number of documents in the results (used for paging) -
Query
with(Sort sort)
used to provide sort definition for the results
10.6.2. Methods for Querying for Documents
The query methods need to specify the target type T
that is returned, and they are overloaded with an explicit collection name for queries that should operate on a collection other than the one indicated by the return type. The following query methods let you find one or more documents:
-
findAll: Query for a list of objects of type
T
from the collection. -
findOne: Map the results of an ad-hoc query on the collection to a single instance of an object of the specified type.
-
findById: Return an object of the given ID and target class.
-
find: Map the results of an ad-hoc query on the collection to a
List
of the specified type. -
findAndRemove: Map the results of an ad-hoc query on the collection to a single instance of an object of the specified type. The first document that matches the query is returned and removed from the collection in the database.
10.6.3. GeoSpatial Queries
MongoDB supports GeoSpatial queries through the use of operators such as $near
, $within
, geoWithin
, and $nearSphere
. Methods specific to geospatial queries are available on the Criteria
class. There are also a few shape classes (Box
, Circle
, and Point
) that are used in conjunction with geospatial related Criteria
methods.
To understand how to perform GeoSpatial queries, consider the following Venue
class (taken from the integration tests and relying on the rich MappingMongoConverter
):
@Document(collection="newyork")
public class Venue {
@Id
private String id;
private String name;
private double[] location;
@PersistenceConstructor
Venue(String name, double[] location) {
super();
this.name = name;
this.location = location;
}
public Venue(String name, double x, double y) {
super();
this.name = name;
this.location = new double[] { x, y };
}
public String getName() {
return name;
}
public double[] getLocation() {
return location;
}
@Override
public String toString() {
return "Venue [id=" + id + ", name=" + name + ", location="
+ Arrays.toString(location) + "]";
}
}
To find locations within a Circle
, you can use the following query:
Circle circle = new Circle(-73.99171, 40.738868, 0.01);
List<Venue> venues =
template.find(new Query(Criteria.where("location").within(circle)), Venue.class);
To find venues within a Circle
using spherical coordinates, you can use the following query:
Circle circle = new Circle(-73.99171, 40.738868, 0.003712240453784);
List<Venue> venues =
template.find(new Query(Criteria.where("location").withinSphere(circle)), Venue.class);
To find venues within a Box
, you can use the following query:
//lower-left then upper-right
Box box = new Box(new Point(-73.99756, 40.73083), new Point(-73.988135, 40.741404));
List<Venue> venues =
template.find(new Query(Criteria.where("location").within(box)), Venue.class);
To find venues near a Point
, you can use the following queries:
Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =
template.find(new Query(Criteria.where("location").near(point).maxDistance(0.01)), Venue.class);
Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =
template.find(new Query(Criteria.where("location").near(point).minDistance(0.01).maxDistance(100)), Venue.class);
To find venues near a Point
using spherical coordinates, you can use the following query:
Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =
template.find(new Query(
Criteria.where("location").nearSphere(point).maxDistance(0.003712240453784)),
Venue.class);
Geo-near Queries
MongoDB supports querying the database for geo locations and calculating the distance from a given origin at the same time. With geo-near queries, you can express queries such as "find all restaurants in the surrounding 10 miles". To let you do so, MongoOperations
provides geoNear(…)
methods that take a NearQuery
as an argument (as well as the already familiar entity type and collection), as shown in the following example:
Point location = new Point(-73.99171, 40.738868);
NearQuery query = NearQuery.near(location).maxDistance(new Distance(10, Metrics.MILES));
GeoResults<Restaurant> = operations.geoNear(query, Restaurant.class);
We use the NearQuery
builder API to set up a query to return all Restaurant
instances surrounding the given Point
out to 10 miles. The Metrics
enum used here actually implements an interface so that other metrics could be plugged into a distance as well. A Metric
is backed by a multiplier to transform the distance value of the given metric into native distances. The sample shown here would consider the 10 to be miles. Using one of the built-in metrics (miles and kilometers) automatically triggers the spherical flag to be set on the query. If you want to avoid that, pass plain double
values into maxDistance(…)
. For more information, see the JavaDoc of NearQuery
and Distance
.
The geo-near operations return a GeoResults
wrapper object that encapsulates GeoResult
instances. Wrapping GeoResults
allows accessing the average distance of all results. A single GeoResult
object carries the entity found plus its distance from the origin.
10.6.4. GeoJSON Support
MongoDB supports GeoJSON and simple (legacy) coordinate pairs for geospatial data. Those formats can both be used for storing as well as querying data. See the MongoDB manual on GeoJSON support to learn about requirements and restrictions.
GeoJSON Types in Domain Classes
Usage of GeoJSON types in domain classes is straightforward. The org.springframework.data.mongodb.core.geo
package contains types such as GeoJsonPoint
, GeoJsonPolygon
, and others. These types are extend the existing org.springframework.data.geo
types. The following example uses a GeoJsonPoint
:
public class Store {
String id;
/**
* location is stored in GeoJSON format.
* {
* "type" : "Point",
* "coordinates" : [ x, y ]
* }
*/
GeoJsonPoint location;
}
GeoJSON Types in Repository Query Methods
Using GeoJSON types as repository query parameters forces usage of the $geometry
operator when creating the query, as the following example shows:
public interface StoreRepository extends CrudRepository<Store, String> {
List<Store> findByLocationWithin(Polygon polygon); (1)
}
/*
* {
* "location": {
* "$geoWithin": {
* "$geometry": {
* "type": "Polygon",
* "coordinates": [
* [
* [-73.992514,40.758934],
* [-73.961138,40.760348],
* [-73.991658,40.730006],
* [-73.992514,40.758934]
* ]
* ]
* }
* }
* }
* }
*/
repo.findByLocationWithin( (2)
new GeoJsonPolygon(
new Point(-73.992514, 40.758934),
new Point(-73.961138, 40.760348),
new Point(-73.991658, 40.730006),
new Point(-73.992514, 40.758934))); (3)
/*
* {
* "location" : {
* "$geoWithin" : {
* "$polygon" : [ [-73.992514,40.758934] , [-73.961138,40.760348] , [-73.991658,40.730006] ]
* }
* }
* }
*/
repo.findByLocationWithin( (4)
new Polygon(
new Point(-73.992514, 40.758934),
new Point(-73.961138, 40.760348),
new Point(-73.991658, 40.730006));
1 | Repository method definition using the commons type allows calling it with both the GeoJSON and the legacy format. |
2 | Use GeoJSON type to make use of $geometry operator. |
3 | Note that GeoJSON polygons need to define a closed ring. |
4 | Use the legacy format $polygon operator. |
10.6.5. Full-text Queries
Since version 2.6 of MongoDB, you can run full-text queries by using the $text
operator. Methods and operations specific to full-text queries are available in TextQuery
and TextCriteria
. When doing full text search, see the MongoDB reference for its behavior and limitations.
Full-text Search
Before you can actually use full-text search, you must set up the search index correctly. See Text Index for more detail on how to create index structures. The following example shows how to set up a full-text search:
db.foo.createIndex(
{
title : "text",
content : "text"
},
{
weights : {
title : 3
}
}
)
A query searching for coffee cake
, sorted by relevance according to the weights
, can be defined and executed as follows:
Query query = TextQuery.searching(new TextCriteria().matchingAny("coffee", "cake")).sortByScore();
List<Document> page = template.find(query, Document.class);
You can exclude search terms by prefixing the term with -
or by using notMatching
, as shown in the following example (note that the two lines have the same effect and are thus redundant):
// search for 'coffee' and not 'cake'
TextQuery.searching(new TextCriteria().matching("coffee").matching("-cake"));
TextQuery.searching(new TextCriteria().matching("coffee").notMatching("cake"));
TextCriteria.matching
takes the provided term as is. Therefore, you can define phrases by putting them between double quotation marks (for example, \"coffee cake\")
or using by TextCriteria.phrase.
The following example shows both ways of defining a phrase:
// search for phrase 'coffee cake'
TextQuery.searching(new TextCriteria().matching("\"coffee cake\""));
TextQuery.searching(new TextCriteria().phrase("coffee cake"));
You can set flags for $caseSensitive
and $diacriticSensitive
by using the corresponding methods on TextCriteria
. Note that these two optional flags have been introduced in MongoDB 3.2 and are not included in the query unless explicitly set.
10.7. Query by Example
10.7.1. Introduction
This chapter provides an introduction to Query by Example and explains how to use it.
Query by Example (QBE) is a user-friendly querying technique with a simple interface. It allows dynamic query creation and does not require you to write queries that contain field names. In fact, Query by Example does not require you to write queries by using store-specific query languages at all.
10.7.2. Usage
The Query by Example API consists of three parts:
-
Probe: The actual example of a domain object with populated fields.
-
ExampleMatcher
: TheExampleMatcher
carries details on how to match particular fields. It can be reused across multiple Examples. -
Example
: AnExample
consists of the probe and theExampleMatcher
. It is used to create the query.
Query by Example is well suited for several use cases:
-
Querying your data store with a set of static or dynamic constraints.
-
Frequent refactoring of the domain objects without worrying about breaking existing queries.
-
Working independently from the underlying data store API.
Query by Example also has several limitations:
-
No support for nested or grouped property constraints, such as
firstname = ?0 or (firstname = ?1 and lastname = ?2)
. -
Only supports starts/contains/ends/regex matching for strings and exact matching for other property types.
Before getting started with Query by Example, you need to have a domain object. To get started, create an interface for your repository, as shown in the following example:
public class Person {
@Id
private String id;
private String firstname;
private String lastname;
private Address address;
// … getters and setters omitted
}
The preceding example shows a simple domain object. You can use it to create an Example
. By default, fields having null
values are ignored, and strings are matched by using the store specific defaults. Examples can be built by either using the of
factory method or by using ExampleMatcher
. Example
is immutable. The following listing shows a simple Example:
Person person = new Person(); (1)
person.setFirstname("Dave"); (2)
Example<Person> example = Example.of(person); (3)
1 | Create a new instance of the domain object. |
2 | Set the properties to query. |
3 | Create the Example . |
Examples are ideally be executed with repositories. To do so, let your repository interface extend QueryByExampleExecutor<T>
. The following listing shows an excerpt from the QueryByExampleExecutor
interface:
QueryByExampleExecutor
public interface QueryByExampleExecutor<T> {
<S extends T> S findOne(Example<S> example);
<S extends T> Iterable<S> findAll(Example<S> example);
// … more functionality omitted.
}
You can read more about Query by Example Execution below.
10.7.3. Example Matchers
Examples are not limited to default settings. You can specify your own defaults for string matching, null handling, and property-specific settings by using the ExampleMatcher
, as shown in the following example:
Person person = new Person(); (1)
person.setFirstname("Dave"); (2)
ExampleMatcher matcher = ExampleMatcher.matching() (3)
.withIgnorePaths("lastname") (4)
.withIncludeNullValues() (5)
.withStringMatcherEnding(); (6)
Example<Person> example = Example.of(person, matcher); (7)
1 | Create a new instance of the domain object. |
2 | Set properties. |
3 | Create an ExampleMatcher to expect all values to match. It is usable at this stage even without further configuration. |
4 | Construct a new ExampleMatcher to ignore the lastname property path. |
5 | Construct a new ExampleMatcher to ignore the lastname property path and to include null values. |
6 | Construct a new ExampleMatcher to ignore the lastname property path, to include null values, and to perform suffix string matching. |
7 | Create a new Example based on the domain object and the configured ExampleMatcher . |
By default, the ExampleMatcher
expects all values set on the probe to match. If you want to get results matching any of the predicates defined implicitly, use ExampleMatcher.matchingAny()
.
You can specify behavior for individual properties (such as "firstname" and "lastname" or, for nested properties, "address.city"). You can tune it with matching options and case sensitivity, as shown in the following example:
ExampleMatcher matcher = ExampleMatcher.matching()
.withMatcher("firstname", endsWith())
.withMatcher("lastname", startsWith().ignoreCase());
}
Another way to configure matcher options is to use lambdas (introduced in Java 8). This approach creates a callback that asks the implementor to modify the matcher. You need not return the matcher, because configuration options are held within the matcher instance. The following example shows a matcher that uses lambdas:
ExampleMatcher matcher = ExampleMatcher.matching()
.withMatcher("firstname", match -> match.endsWith())
.withMatcher("firstname", match -> match.startsWith());
}
Queries created by Example
use a merged view of the configuration. Default matching settings can be set at the ExampleMatcher
level, while individual settings can be applied to particular property paths. Settings that are set on ExampleMatcher
are inherited by property path settings unless they are defined explicitly. Settings on a property patch have higher precedence than default settings. The following table describes the scope of the various ExampleMatcher
settings:
Setting | Scope |
---|---|
Null-handling |
|
String matching |
|
Ignoring properties |
Property path |
Case sensitivity |
|
Value transformation |
Property path |
10.7.4. Running an Example
The following example shows how to query by example when using a repository (of Person
objects, in this case):
public interface PersonRepository extends QueryByExampleExecutor<Person> {
}
public class PersonService {
@Autowired PersonRepository personRepository;
public List<Person> findPeople(Person probe) {
return personRepository.findAll(Example.of(probe));
}
}
An Example
containing an untyped ExampleSpec
uses the Repository type and its collection name. Typed ExampleSpec
instances use their type as the result type and the collection name from the Repository
instance.
When including null values in the ExampleSpec , Spring Data Mongo uses embedded document matching instead of dot notation property matching. Doing so forces exact document matching for all property values and the property order in the embedded document.
|
Spring Data MongoDB provides support for the following matching options:
Matching | Logical result |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10.8. Map-Reduce Operations
You can query MongoDB by using Map-Reduce, which is useful for batch processing, for data aggregation, and for when the query language does not fulfill your needs.
Spring provides integration with MongoDB’s Map-Reduce by providing methods on MongoOperations
to simplify the creation and execution of Map-Reduce operations. It can convert the results of a Map-Reduce operation to a POJO and integrates with Spring’s Resource abstraction. This lets you place your JavaScript files on the file system, classpath, HTTP server, or any other Spring Resource implementation and then reference the JavaScript resources through an easy URI style syntax — for example, classpath:reduce.js;
. Externalizing JavaScript code in files is often preferable to embedding them as Java strings in your code. Note that you can still pass JavaScript code as Java strings if you prefer.
10.8.1. Example Usage
To understand how to perform Map-Reduce operations, we use an example from the book, MongoDB - The Definitive Guide [1]. In this example, we create three documents that have the values [a,b], [b,c], and [c,d], respectively. The values in each document are associated with the key, 'x', as the following example shows (assume these documents are in a collection named jmr1
):
{ "_id" : ObjectId("4e5ff893c0277826074ec533"), "x" : [ "a", "b" ] }
{ "_id" : ObjectId("4e5ff893c0277826074ec534"), "x" : [ "b", "c" ] }
{ "_id" : ObjectId("4e5ff893c0277826074ec535"), "x" : [ "c", "d" ] }
The following map function counts the occurrence of each letter in the array for each document:
function () {
for (var i = 0; i < this.x.length; i++) {
emit(this.x[i], 1);
}
}
The follwing reduce function sums up the occurrence of each letter across all the documents:
function (key, values) {
var sum = 0;
for (var i = 0; i < values.length; i++)
sum += values[i];
return sum;
}
Running the preceding functions result in the following collection:
{ "_id" : "a", "value" : 1 }
{ "_id" : "b", "value" : 2 }
{ "_id" : "c", "value" : 2 }
{ "_id" : "d", "value" : 1 }
Assuming that the map and reduce functions are located in map.js
and reduce.js
and bundled in your jar so they are available on the classpath, you can run a Map-Reduce operation as follows:
MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1", "classpath:map.js", "classpath:reduce.js", ValueObject.class);
for (ValueObject valueObject : results) {
System.out.println(valueObject);
}
The preceding exmaple produces the following output:
ValueObject [id=a, value=1.0]
ValueObject [id=b, value=2.0]
ValueObject [id=c, value=2.0]
ValueObject [id=d, value=1.0]
The MapReduceResults
class implements Iterable
and provides access to the raw output and timing and count statistics. The following listing shows the ValueObject
class:
public class ValueObject {
private String id;
private float value;
public String getId() {
return id;
}
public float getValue() {
return value;
}
public void setValue(float value) {
this.value = value;
}
@Override
public String toString() {
return "ValueObject [id=" + id + ", value=" + value + "]";
}
}
By default, the output type of INLINE
is used so that you need not specify an output collection. To specify additional Map-Reduce options, use an overloaded method that takes an additional MapReduceOptions
argument. The class MapReduceOptions
has a fluent API, so adding additional options can be done in a compact syntax. The following example sets the output collection to jmr1_out
(note that setting only the output collection assumes a default output type of REPLACE
):
MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1", "classpath:map.js", "classpath:reduce.js",
new MapReduceOptions().outputCollection("jmr1_out"), ValueObject.class);
There is also a static import (import static org.springframework.data.mongodb.core.mapreduce.MapReduceOptions.options;
) that can be used to make the syntax slightly more compact, as the following example shows:
MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1", "classpath:map.js", "classpath:reduce.js",
options().outputCollection("jmr1_out"), ValueObject.class);
You can also specify a query to reduce the set of data that is fed into the Map-Reduce operation. The following example removes the document that contains [a,b] from consideration for Map-Reduce operations:
Query query = new Query(where("x").ne(new String[] { "a", "b" }));
MapReduceResults<ValueObject> results = mongoOperations.mapReduce(query, "jmr1", "classpath:map.js", "classpath:reduce.js",
options().outputCollection("jmr1_out"), ValueObject.class);
Note that you can specify additional limit and sort values on the query, but you cannot skip values.
10.9. Script Operations
MongoDB allows executing JavaScript functions on the server by either directly sending the script or calling a stored one. ScriptOperations
can be accessed through MongoTemplate
and provides basic abstraction for JavaScript
usage. The following example shows how to us the ScriptOperations
class:
ScriptOperations scriptOps = template.scriptOps();
ExecutableMongoScript echoScript = new ExecutableMongoScript("function(x) { return x; }");
scriptOps.execute(echoScript, "directly execute script"); (1)
scriptOps.register(new NamedMongoScript("echo", echoScript)); (2)
scriptOps.call("echo", "execute script via name"); (3)
1 | Execute the script directly without storing the function on server side. |
2 | Store the script using 'echo' as its name. The given name identifies the script and allows calling it later. |
3 | Execute the script with name 'echo' using the provided parameters. |
10.10. Group Operations
As an alternative to using Map-Reduce to perform data aggregation, you can use the group
operation which feels similar to using SQL’s group by query style, so it may feel more approachable vs. using Map-Reduce. Using the group operations does have some limitations, for example it is not supported in a shared environment and it returns the full result set in a single BSON object, so the result should be small, less than 10,000 keys.
Spring provides integration with MongoDB’s group operation by providing methods on MongoOperations to simplify the creation and execution of group operations. It can convert the results of the group operation to a POJO and also integrates with Spring’s Resource abstraction abstraction. This will let you place your JavaScript files on the file system, classpath, http server or any other Spring Resource implementation and then reference the JavaScript resources via an easy URI style syntax, e.g. 'classpath:reduce.js;. Externalizing JavaScript code in files if often preferable to embedding them as Java strings in your code. Note that you can still pass JavaScript code as Java strings if you prefer.
10.10.1. Example Usage
In order to understand how group operations work the following example is used, which is somewhat artificial. For a more realistic example consult the book 'MongoDB - The definitive guide'. A collection named group_test_collection
created with the following rows.
{ "_id" : ObjectId("4ec1d25d41421e2015da64f1"), "x" : 1 }
{ "_id" : ObjectId("4ec1d25d41421e2015da64f2"), "x" : 1 }
{ "_id" : ObjectId("4ec1d25d41421e2015da64f3"), "x" : 2 }
{ "_id" : ObjectId("4ec1d25d41421e2015da64f4"), "x" : 3 }
{ "_id" : ObjectId("4ec1d25d41421e2015da64f5"), "x" : 3 }
{ "_id" : ObjectId("4ec1d25d41421e2015da64f6"), "x" : 3 }
We would like to group by the only field in each row, the x
field and aggregate the number of times each specific value of x
occurs. To do this we need to create an initial document that contains our count variable and also a reduce function which will increment it each time it is encountered. The Java code to execute the group operation is shown below
GroupByResults<XObject> results = mongoTemplate.group("group_test_collection",
GroupBy.key("x").initialDocument("{ count: 0 }").reduceFunction("function(doc, prev) { prev.count += 1 }"),
XObject.class);
The first argument is the name of the collection to run the group operation over, the second is a fluent API that specifies properties of the group operation via a GroupBy
class. In this example we are using just the intialDocument
and reduceFunction
methods. You can also specify a key-function, as well as a finalizer as part of the fluent API. If you have multiple keys to group by, you can pass in a comma separated list of keys.
The raw results of the group operation is a JSON document that looks like this
{
"retval" : [ { "x" : 1.0 , "count" : 2.0} ,
{ "x" : 2.0 , "count" : 1.0} ,
{ "x" : 3.0 , "count" : 3.0} ] ,
"count" : 6.0 ,
"keys" : 3 ,
"ok" : 1.0
}
The document under the "retval" field is mapped onto the third argument in the group method, in this case XObject which is shown below.
public class XObject {
private float x;
private float count;
public float getX() {
return x;
}
public void setX(float x) {
this.x = x;
}
public float getCount() {
return count;
}
public void setCount(float count) {
this.count = count;
}
@Override
public String toString() {
return "XObject [x=" + x + " count = " + count + "]";
}
}
You can also obtain the raw result as a DbObject
by calling the method getRawResults
on the GroupByResults
class.
There is an additional method overload of the group method on MongoOperations
which lets you specify a Criteria
object for selecting a subset of the rows. An example which uses a Criteria
object, with some syntax sugar using static imports, as well as referencing a key-function and reduce function javascript files via a Spring Resource string is shown below.
import static org.springframework.data.mongodb.core.mapreduce.GroupBy.keyFunction;
import static org.springframework.data.mongodb.core.query.Criteria.where;
GroupByResults<XObject> results = mongoTemplate.group(where("x").gt(0),
"group_test_collection",
keyFunction("classpath:keyFunction.js").initialDocument("{ count: 0 }").reduceFunction("classpath:groupReduce.js"), XObject.class);
10.11. Aggregation Framework Support
Spring Data MongoDB provides support for the Aggregation Framework introduced to MongoDB in version 2.2.
For further information, see the full reference documentation of the aggregation framework and other data aggregation tools for MongoDB.
10.11.1. Basic Concepts
The Aggregation Framework support in Spring Data MongoDB is based on the following key abstractions: Aggregation
, AggregationOperation
, and AggregationResults
.
-
Aggregation
An
Aggregation
represents a MongoDBaggregate
operation and holds the description of the aggregation pipeline instructions. Aggregations are created by invoking the appropriatenewAggregation(…)
static factory method of theAggregation
class, which takes a list ofAggregateOperation
and an optional input class.The actual aggregate operation is executed by the
aggregate
method of theMongoTemplate
, which takes the desired output class as a parameter. -
AggregationOperation
An
AggregationOperation
represents a MongoDB aggregation pipeline operation and describes the processing that should be performed in this aggregation step. Although you could manually create anAggregationOperation
, we recommend using the static factory methods provided by theAggregate
class to construct anAggregateOperation
. -
AggregationResults
AggregationResults
is the container for the result of an aggregate operation. It provides access to the raw aggregation result, in the form of aDBObject
to the mapped objects and other information about the aggregation.The following listing shows the canonical example for using the Spring Data MongoDB support for the MongoDB Aggregation Framework:
import static org.springframework.data.mongodb.core.aggregation.Aggregation.*; Aggregation agg = newAggregation( pipelineOP1(), pipelineOP2(), pipelineOPn() ); AggregationResults<OutputType> results = mongoTemplate.aggregate(agg, "INPUT_COLLECTION_NAME", OutputType.class); List<OutputType> mappedResult = results.getMappedResults();
Note that, if you provide an input class as the first parameter to the newAggregation
method, the MongoTemplate
derives the name of the input collection from this class. Otherwise, if you do not not specify an input class, you must provide the name of the input collection explicitly. If both an input class and an input collection are provided, the latter takes precedence.
10.11.2. Supported Aggregation Operations
The MongoDB Aggregation Framework provides the following types of aggregation operations:
-
Pipeline Aggregation Operators
-
Group Aggregation Operators
-
Boolean Aggregation Operators
-
Comparison Aggregation Operators
-
Arithmetic Aggregation Operators
-
String Aggregation Operators
-
Date Aggregation Operators
-
Array Aggregation Operators
-
Conditional Aggregation Operators
-
Lookup Aggregation Operators
-
Convert Aggregation Operators
At the time of this writing, we provide support for the following Aggregation Operations in Spring Data MongoDB:
Pipeline Aggregation Operators |
|
Set Aggregation Operators |
|
Group Aggregation Operators |
|
Arithmetic Aggregation Operators |
|
String Aggregation Operators |
|
Comparison Aggregation Operators |
|
Array Aggregation Operators |
|
Literal Operators |
|
Date Aggregation Operators |
|
Variable Operators |
|
Conditional Aggregation Operators |
|
Type Aggregation Operators |
|
Convert Aggregation Operators |
|
-
The operation is mapped or added by Spring Data MongoDB.
Note that the aggregation operations not listed here are currently not supported by Spring Data MongoDB. Comparison aggregation operators are expressed as Criteria
expressions.
10.11.3. Projection Expressions
Projection expressions are used to define the fields that are the outcome of a particular aggregation step. Projection expressions can be defined through the project
method of the Aggregation
class, either by passing a list of String
objects or an aggregation framework Fields
object. The projection can be extended with additional fields through a fluent API by using the and(String)
method and aliased by using the as(String)
method.
Note that you can also define fields with aliases by using the Fields.field
static factory method of the aggregation framework, which you can then use to construct a new Fields
instance. References to projected fields in later aggregation stages are valid only for the field names of included fields or their aliases (including newly defined fields and their aliases). Fields not included in the projection cannot be referenced in later aggregation stages. The following listings show examples of projection expression:
// generates {$project: {name: 1, netPrice: 1}}
project("name", "netPrice")
// generates {$project: {thing1: $thing2}}
project().and("thing1").as("thing2")
// generates {$project: {a: 1, b: 1, thing2: $thing1}}
project("a","b").and("thing1").as("thing2")
// generates {$project: {name: 1, netPrice: 1}}, {$sort: {name: 1}}
project("name", "netPrice"), sort(ASC, "name")
// generates {$project: {name: $firstname}}, {$sort: {name: 1}}
project().and("firstname").as("name"), sort(ASC, "name")
// does not work
project().and("firstname").as("name"), sort(ASC, "firstname")
More examples for project operations can be found in the AggregationTests
class. Note that further details regarding the projection expressions can be found in the corresponding section of the MongoDB Aggregation Framework reference documentation.
10.11.4. Faceted Classification
As of Version 3.4, MongoDB supports faceted classification by using the Aggregation Framework. A faceted classification uses semantic categories (either general or subject-specific) that are combined to create the full classification entry. Documents flowing through the aggregation pipeline are classified into buckets. A multi-faceted classification enables various aggregations on the same set of input documents, without needing to retrieve the input documents multiple times.
Buckets
Bucket operations categorize incoming documents into groups, called buckets, based on a specified expression and bucket boundaries. Bucket operations require a grouping field or a grouping expression. You can define them by using the bucket()
and bucketAuto()
methods of the Aggregate
class. BucketOperation
and BucketAutoOperation
can expose accumulations based on aggregation expressions for input documents. You can extend the bucket operation with additional parameters through a fluent API by using the with…()
methods and the andOutput(String)
method. You can alias the operation by using the as(String)
method. Each bucket is represented as a document in the output.
BucketOperation
takes a defined set of boundaries to group incoming documents into these categories. Boundaries are required to be sorted. The following listing shows some examples of bucket operations:
// generates {$bucket: {groupBy: $price, boundaries: [0, 100, 400]}}
bucket("price").withBoundaries(0, 100, 400);
// generates {$bucket: {groupBy: $price, default: "Other" boundaries: [0, 100]}}
bucket("price").withBoundaries(0, 100).withDefault("Other");
// generates {$bucket: {groupBy: $price, boundaries: [0, 100], output: { count: { $sum: 1}}}}
bucket("price").withBoundaries(0, 100).andOutputCount().as("count");
// generates {$bucket: {groupBy: $price, boundaries: [0, 100], 5, output: { titles: { $push: "$title"}}}
bucket("price").withBoundaries(0, 100).andOutput("title").push().as("titles");
BucketAutoOperation
determines boundaries in an attempt to evenly distribute documents into a specified number of buckets. BucketAutoOperation
optionally takes a granularity value that specifies the preferred number series to use to ensure that the calculated boundary edges end on preferred round numbers or on powers of 10. The following listing shows examples of bucket operations:
// generates {$bucketAuto: {groupBy: $price, buckets: 5}}
bucketAuto("price", 5)
// generates {$bucketAuto: {groupBy: $price, buckets: 5, granularity: "E24"}}
bucketAuto("price", 5).withGranularity(Granularities.E24).withDefault("Other");
// generates {$bucketAuto: {groupBy: $price, buckets: 5, output: { titles: { $push: "$title"}}}
bucketAuto("price", 5).andOutput("title").push().as("titles");
To create output fields in buckets, bucket operations can use AggregationExpression
through andOutput()
and SpEL expressions through andOutputExpression()
.
Note that further details regarding bucket expressions can be found in the $bucket
section and
$bucketAuto
section of the MongoDB Aggregation Framework reference documentation.
Multi-faceted Aggregation
Multiple aggregation pipelines can be used to create multi-faceted aggregations that characterize data across multiple dimensions (or facets) within a single aggregation stage. Multi-faceted aggregations provide multiple filters and categorizations to guide data browsing and analysis. A common implementation of faceting is how many online retailers provide ways to narrow down search results by applying filters on product price, manufacturer, size, and other factors.
You can define a FacetOperation
by using the facet()
method of the Aggregation
class. You can customize it with multiple aggregation pipelines by using the and()
method. Each sub-pipeline has its own field in the output document where its results are stored as an array of documents.
Sub-pipelines can project and filter input documents prior to grouping. Common use cases include extraction of date parts or calculations before categorization. The following listing shows facet operation examples:
// generates {$facet: {categorizedByPrice: [ { $match: { price: {$exists : true}}}, { $bucketAuto: {groupBy: $price, buckets: 5}}]}}
facet(match(Criteria.where("price").exists(true)), bucketAuto("price", 5)).as("categorizedByPrice"))
// generates {$facet: {categorizedByCountry: [ { $match: { country: {$exists : true}}}, { $sortByCount: "$country"}]}}
facet(match(Criteria.where("country").exists(true)), sortByCount("country")).as("categorizedByCountry"))
// generates {$facet: {categorizedByYear: [
// { $project: { title: 1, publicationYear: { $year: "publicationDate"}}},
// { $bucketAuto: {groupBy: $price, buckets: 5, output: { titles: {$push:"$title"}}}
// ]}}
facet(project("title").and("publicationDate").extractYear().as("publicationYear"),
bucketAuto("publicationYear", 5).andOutput("title").push().as("titles"))
.as("categorizedByYear"))
Note that further details regarding facet operation can be found in the $facet
section of the MongoDB Aggregation Framework reference documentation.
Spring Expression Support in Projection Expressions
We support the use of SpEL expressions in projection expressions through the andExpression
method of the ProjectionOperation
and BucketOperation
classes. This feature lets you define the desired expression as a SpEL expression. On query execution, the SpEL expression is translated into a corresponding MongoDB projection expression part. This arrangement makes it much easier to express complex calculations.
Complex Calculations with SpEL expressions
Consider the following SpEL expression:
1 + (q + 1) / (q - 1)
The preceding expression is translated into the following projection expression part:
{ "$add" : [ 1, {
"$divide" : [ {
"$add":["$q", 1]}, {
"$subtract":[ "$q", 1]}
]
}]}
You can see examples in more context in Aggregation Framework Example 5 and Aggregation Framework Example 6. You can find more usage examples for supported SpEL expression constructs in SpelExpressionTransformerUnitTests
. The following table shows the SpEL transformations supported by Spring Data MongoDB:
SpEL Expression | Mongo Expression Part |
---|---|
a == b |
{ $eq : [$a, $b] } |
a != b |
{ $ne : [$a , $b] } |
a > b |
{ $gt : [$a, $b] } |
a >= b |
{ $gte : [$a, $b] } |
a < b |
{ $lt : [$a, $b] } |
a ⇐ b |
{ $lte : [$a, $b] } |
a + b |
{ $add : [$a, $b] } |
a - b |
{ $subtract : [$a, $b] } |
a * b |
{ $multiply : [$a, $b] } |
a / b |
{ $divide : [$a, $b] } |
a^b |
{ $pow : [$a, $b] } |
a % b |
{ $mod : [$a, $b] } |
a && b |
{ $and : [$a, $b] } |
a || b |
{ $or : [$a, $b] } |
!a |
{ $not : [$a] } |
In addition to the transformations shown in the preceding table, you can use standard SpEL operations such as new
to (for example) create arrays and reference expressions through their names (followed by the arguments to use in brackets). The following example shows how to create an array in this fashion:
// { $setEquals : [$a, [5, 8, 13] ] }
.andExpression("setEquals(a, new int[]{5, 8, 13})");
Aggregation Framework Examples
The examples in this section demonstrate the usage patterns for the MongoDB Aggregation Framework with Spring Data MongoDB.
Aggregation Framework Example 1
In this introductory example, we want to aggregate a list of tags to get the occurrence count of a particular tag from a MongoDB collection (called tags
) sorted by the occurrence count in descending order. This example demonstrates the usage of grouping, sorting, projections (selection), and unwinding (result splitting).
class TagCount {
String tag;
int n;
}
import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;
Aggregation agg = newAggregation(
project("tags"),
unwind("tags"),
group("tags").count().as("n"),
project("n").and("tag").previousOperation(),
sort(DESC, "n")
);
AggregationResults<TagCount> results = mongoTemplate.aggregate(agg, "tags", TagCount.class);
List<TagCount> tagCount = results.getMappedResults();
The preceding listing uses the following algorithm:
-
Create a new aggregation by using the
newAggregation
static factory method, to which we pass a list of aggregation operations. These aggregate operations define the aggregation pipeline of ourAggregation
. -
Use the
project
operation to select thetags
field (which is an array of strings) from the input collection. -
Use the
unwind
operation to generate a new document for each tag within thetags
array. -
Use the
group
operation to define a group for eachtags
value for which we aggregate the occurrence count (by using thecount
aggregation operator and collecting the result in a new field calledn
). -
Select the
n
field and create an alias for the ID field generated from the previous group operation (hence the call topreviousOperation()
) with a name oftag
. -
Use the
sort
operation to sort the resulting list of tags by their occurrence count in descending order. -
Call the
aggregate
method onMongoTemplate
to let MongoDB perform the actual aggregation operation, with the createdAggregation
as an argument.
Note that the input collection is explicitly specified as the tags
parameter to the aggregate
Method. If the name of the input collection is not specified explicitly, it is derived from the input class passed as the first parameter to the newAggreation
method.
Aggregation Framework Example 2
This example is based on the Largest and Smallest Cities by State example from the MongoDB Aggregation Framework documentation. We added additional sorting to produce stable results with different MongoDB versions. Here we want to return the smallest and largest cities by population for each state by using the aggregation framework. This example demonstrates grouping, sorting, and projections (selection).
class ZipInfo {
String id;
String city;
String state;
@Field("pop") int population;
@Field("loc") double[] location;
}
class City {
String name;
int population;
}
class ZipInfoStats {
String id;
String state;
City biggestCity;
City smallestCity;
}
import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;
TypedAggregation<ZipInfo> aggregation = newAggregation(ZipInfo.class,
group("state", "city")
.sum("population").as("pop"),
sort(ASC, "pop", "state", "city"),
group("state")
.last("city").as("biggestCity")
.last("pop").as("biggestPop")
.first("city").as("smallestCity")
.first("pop").as("smallestPop"),
project()
.and("state").previousOperation()
.and("biggestCity")
.nested(bind("name", "biggestCity").and("population", "biggestPop"))
.and("smallestCity")
.nested(bind("name", "smallestCity").and("population", "smallestPop")),
sort(ASC, "state")
);
AggregationResults<ZipInfoStats> result = mongoTemplate.aggregate(aggregation, ZipInfoStats.class);
ZipInfoStats firstZipInfoStats = result.getMappedResults().get(0);
Note that the ZipInfo
class maps the structure of the given input-collection. The ZipInfoStats
class defines the structure in the desired output format.
The preceding listings use the following algorithm:
-
Use the
group
operation to define a group from the input-collection. The grouping criteria is the combination of thestate
andcity
fields, which forms the ID structure of the group. We aggregate the value of thepopulation
property from the grouped elements by using thesum
operator and save the result in thepop
field. -
Use the
sort
operation to sort the intermediate-result by thepop
,state
andcity
fields, in ascending order, such that the smallest city is at the top and the biggest city is at the bottom of the result. Note that the sorting onstate
andcity
is implicitly performed against the group ID fields (which Spring Data MongoDB handled). -
Use a
group
operation again to group the intermediate result bystate
. Note thatstate
again implicitly references a group ID field. We select the name and the population count of the biggest and smallest city with calls to thelast(…)
andfirst(…)
operators, respectively, in theproject
operation. -
Select the
state
field from the previousgroup
operation. Note thatstate
again implicitly references a group ID field. Because we do not want an implicitly generated ID to appear, we exclude the ID from the previous operation by usingand(previousOperation()).exclude()
. Because we want to populate the nestedCity
structures in our output class, we have to emit appropriate sub-documents by using the nested method. -
Sort the resulting list of
StateStats
by their state name in ascending order in thesort
operation.
Note that we derive the name of the input collection from the ZipInfo
class passed as the first parameter to the newAggregation
method.
Aggregation Framework Example 3
This example is based on the States with Populations Over 10 Million example from the MongoDB Aggregation Framework documentation. We added additional sorting to produce stable results with different MongoDB versions. Here we want to return all states with a population greater than 10 million, using the aggregation framework. This example demonstrates grouping, sorting, and matching (filtering).
class StateStats {
@Id String id;
String state;
@Field("totalPop") int totalPopulation;
}
import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;
TypedAggregation<ZipInfo> agg = newAggregation(ZipInfo.class,
group("state").sum("population").as("totalPop"),
sort(ASC, previousOperation(), "totalPop"),
match(where("totalPop").gte(10 * 1000 * 1000))
);
AggregationResults<StateStats> result = mongoTemplate.aggregate(agg, StateStats.class);
List<StateStats> stateStatsList = result.getMappedResults();
The preceding listings use the following algorithm:
-
Group the input collection by the
state
field and calculate the sum of thepopulation
field and store the result in the new field"totalPop"
. -
Sort the intermediate result by the id-reference of the previous group operation in addition to the
"totalPop"
field in ascending order. -
Filter the intermediate result by using a
match
operation which accepts aCriteria
query as an argument.
Note that we derive the name of the input collection from the ZipInfo
class passed as first parameter to the newAggregation
method.
Aggregation Framework Example 4
This example demonstrates the use of simple arithmetic operations in the projection operation.
class Product {
String id;
String name;
double netPrice;
int spaceUnits;
}
import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;
TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")
.and("netPrice").plus(1).as("netPricePlus1")
.and("netPrice").minus(1).as("netPriceMinus1")
.and("netPrice").multiply(1.19).as("grossPrice")
.and("netPrice").divide(2).as("netPriceDiv2")
.and("spaceUnits").mod(2).as("spaceUnitsMod2")
);
AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);
List<DBObject> resultList = result.getMappedResults();
Note that we derive the name of the input collection from the Product
class passed as first parameter to the newAggregation
method.
Aggregation Framework Example 5
This example demonstrates the use of simple arithmetic operations derived from SpEL Expressions in the projection operation.
class Product {
String id;
String name;
double netPrice;
int spaceUnits;
}
import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;
TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")
.andExpression("netPrice + 1").as("netPricePlus1")
.andExpression("netPrice - 1").as("netPriceMinus1")
.andExpression("netPrice / 2").as("netPriceDiv2")
.andExpression("netPrice * 1.19").as("grossPrice")
.andExpression("spaceUnits % 2").as("spaceUnitsMod2")
.andExpression("(netPrice * 0.8 + 1.2) * 1.19").as("grossPriceIncludingDiscountAndCharge")
);
AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);
List<DBObject> resultList = result.getMappedResults();
Aggregation Framework Example 6
This example demonstrates the use of complex arithmetic operations derived from SpEL Expressions in the projection operation.
Note: The additional parameters passed to the addExpression
method can be referenced with indexer expressions according to their position. In this example, we reference the first parameter of the parameters array with [0]
. When the SpEL expression is transformed into a MongoDB aggregation framework expression, external parameter expressions are replaced with their respective values.
class Product {
String id;
String name;
double netPrice;
int spaceUnits;
}
import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;
double shippingCosts = 1.2;
TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")
.andExpression("(netPrice * (1-discountRate) + [0]) * (1+taxRate)", shippingCosts).as("salesPrice")
);
AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);
List<DBObject> resultList = result.getMappedResults();
Note that we can also refer to other fields of the document within the SpEL expression.
Aggregation Framework Example 7
This example uses conditional projection. It is derived from the $cond reference documentation.
public class InventoryItem {
@Id int id;
String item;
String description;
int qty;
}
public class InventoryItemProjection {
@Id int id;
String item;
String description;
int qty;
int discount
}
import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;
TypedAggregation<InventoryItem> agg = newAggregation(InventoryItem.class,
project("item").and("discount")
.applyCondition(ConditionalOperator.newBuilder().when(Criteria.where("qty").gte(250))
.then(30)
.otherwise(20))
.and(ifNull("description", "Unspecified")).as("description")
);
AggregationResults<InventoryItemProjection> result = mongoTemplate.aggregate(agg, "inventory", InventoryItemProjection.class);
List<InventoryItemProjection> stateStatsList = result.getMappedResults();
This one-step aggregation uses a projection operation with the inventory
collection. We project the discount
field by using a conditional operation for all inventory items that have a qty
greater than or equal to 250
. A second conditional projection is performed for the description
field. We apply the Unspecified
description to all items that either do not have a description
field or items that have a null
description.
10.12. Overriding Default Mapping with Custom Converters
To have more fine-grained control over the mapping process, you can register Spring converters with the MongoConverter
implementations, such as the MappingMongoConverter
.
The MappingMongoConverter
checks to see if any Spring converters can handle a specific class before attempting to map the object itself. To 'hijack' the normal mapping strategies of the MappingMongoConverter
, perhaps for increased performance or other custom mapping needs, you first need to create an implementation of the Spring Converter
interface and then register it with the MappingConverter
.
For more information on the Spring type conversion service, see the reference docs here. |
10.12.1. Saving by Using a Registered Spring Converter
The following example shows an implementation of the Converter
that converts from a Person
object to a com.mongodb.DBObject
:
import org.springframework.core.convert.converter.Converter;
import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;
public class PersonWriteConverter implements Converter<Person, DBObject> {
public DBObject convert(Person source) {
DBObject dbo = new BasicDBObject();
dbo.put("_id", source.getId());
dbo.put("name", source.getFirstName());
dbo.put("age", source.getAge());
return dbo;
}
}
10.12.2. Reading by Using a Spring Converter
The following example shows an implementation of a Converter
that converts from a DBObject
to a Person
object:
public class PersonReadConverter implements Converter<DBObject, Person> {
public Person convert(DBObject source) {
Person p = new Person((ObjectId) source.get("_id"), (String) source.get("name"));
p.setAge((Integer) source.get("age"));
return p;
}
}
10.12.3. Registering Spring Converters with the MongoConverter
The Mongo Spring namespace provides a convenient way to register Spring Converter
instances with the MappingMongoConverter
. The following configuration snippet shows how to manually register converter beans as well as configure the wrapping MappingMongoConverter
into a MongoTemplate
:
<mongo:db-factory dbname="database"/>
<mongo:mapping-converter>
<mongo:custom-converters>
<mongo:converter ref="readConverter"/>
<mongo:converter>
<bean class="org.springframework.data.mongodb.test.PersonWriteConverter"/>
</mongo:converter>
</mongo:custom-converters>
</mongo:mapping-converter>
<bean id="readConverter" class="org.springframework.data.mongodb.test.PersonReadConverter"/>
<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
<constructor-arg name="mongoConverter" ref="mappingConverter"/>
</bean>
You can also use the base-package
attribute of the custom-converters
element to enable classpath scanning for all Converter
and GenericConverter
implementations below the given package, as the following example shows:
<mongo:mapping-converter>
<mongo:custom-converters base-package="com.acme.**.converters" />
</mongo:mapping-converter>
10.12.4. Converter Disambiguation
Generally, we inspect the Converter
implementations for the source and target types they convert from and to. Depending on whether one of those is a type MongoDB can handle natively, we register the converter instance as a reading or a writing converter. The following examples show a writer converter and a read converter (note the difference is in the order of the qualifiers on Converter
):
// Write converter as only the target type is one Mongo can handle natively
class MyConverter implements Converter<Person, String> { … }
// Read converter as only the source type is one Mongo can handle natively
class MyConverter implements Converter<String, Person> { … }
If you write a Converter
whose source and target type are native Mongo types, we cannot determine whether we should consider it as a reading or a writing converter. Registering the converter instance as both might lead to unwanted results. For example, a Converter<String, Long>
is ambiguous, although it probably does not make sense to try to convert all String
instances into Long
instances when writing. To let you force the infrastructure to register a converter for only one way, we provide @ReadingConverter
and @WritingConverter
annotations to be used in the converter implementation.
10.13. Index and Collection Management
MongoTemplate
provides a few methods for managing indexes and collections. These methods are collected into a helper interface called IndexOperations
. You can access these operations by calling the indexOps
method and passing in either the collection name or the java.lang.Class
of your entity (the collection name is derived from the .class
, either by name or from annotation metadata).
The following listing shows the IndexOperations
interface:
public interface IndexOperations {
void ensureIndex(IndexDefinition indexDefinition);
void dropIndex(String name);
void dropAllIndexes();
void resetIndexCache();
List<IndexInfo> getIndexInfo();
}
10.13.1. Methods for Creating an Index
You can create an index on a collection to improve query performance by using the MongoTemplate class, as the following example shows:
mongoTemplate.indexOps(Person.class).ensureIndex(new Index().on("name",Order.ASCENDING));
ensureIndex
makes sure that an index for the provided IndexDefinition exists for the collection.
You can create standard, geospatial, and text indexes by using the IndexDefinition
, GeoSpatialIndex
and TextIndexDefinition
classes. For example, given the Venue
class defined in a previous section, you could declare a geospatial query, as the following example shows:
mongoTemplate.indexOps(Venue.class).ensureIndex(new GeospatialIndex("location"));
10.13.2. Accessing Index Information
The IndexOperations
interface has the getIndexInfo
method that returns a list of IndexInfo
objects. This list contains all the indexes defined on the collection. The following example defines an index on the Person
class that has an age
property:
template.indexOps(Person.class).ensureIndex(new Index().on("age", Order.DESCENDING).unique(Duplicates.DROP));
List<IndexInfo> indexInfoList = template.indexOps(Person.class).getIndexInfo();
// Contains
// [IndexInfo [fieldSpec={_id=ASCENDING}, name=_id_, unique=false, dropDuplicates=false, sparse=false],
// IndexInfo [fieldSpec={age=DESCENDING}, name=age_-1, unique=true, dropDuplicates=true, sparse=false]]
10.13.3. Methods for Working with a Collection
The following example shows how to create a collection:
MongoTemplate
DBCollection collection = null;
if (!mongoTemplate.getCollectionNames().contains("MyNewCollection")) {
collection = mongoTemplate.createCollection("MyNewCollection");
}
mongoTemplate.dropCollection("MyNewCollection");
-
getCollectionNames: Returns a set of collection names.
-
collectionExists: Checks to see if a collection with a given name exists.
-
createCollection: Creates an uncapped collection.
-
dropCollection: Drops the collection.
-
getCollection: Gets a collection by name, creating it if it does not exist.
10.14. Executing Commands
You can get at the MongoDB driver’s DB.command( )
method by using the executeCommand(…)
methods on MongoTemplate
. These methods also perform exception translation into Spring’s DataAccessException
hierarchy.
10.15. Lifecycle Events
The MongoDB mapping framework includes several org.springframework.context.ApplicationEvent
events that your application can respond to by registering special beans in the ApplicationContext
. Being based on Spring’s ApplicationContext
event infrastructure enables other products, such as Spring Integration, to easily receive these events, as they are a well known eventing mechanism in Spring-based applications.
To intercept an object before it goes through the conversion process (which turns your domain object into a com.mongodb.DBObject
), you can register a subclass of AbstractMongoEventListener
that overrides the onBeforeConvert
method. When the event is dispatched, your listener is called and passed the domain object before it goes into the converter. The following example shows how to do so:
public class BeforeConvertListener extends AbstractMongoEventListener<Person> {
@Override
public void onBeforeConvert(BeforeConvertEvent<Person> event) {
... does some auditing manipulation, set timestamps, whatever ...
}
}
To intercept an object before it goes into the database, you can register a subclass of org.springframework.data.mongodb.core.mapping.event.AbstractMongoEventListener
that overrides the onBeforeSave
method. When the event is dispatched, your listener is called and passed the domain object and the converted com.mongodb.DBObject
. The following example shows how to do so:
public class BeforeSaveListener extends AbstractMongoEventListener<Person> {
@Override
public void onBeforeSave(BeforeSaveEvent<Person> event) {
… change values, delete them, whatever …
}
}
Declaring these beans in your Spring ApplicationContext causes them to be invoked whenever the event is dispatched.
The following callback methods are present in AbstractMappingEventListener
:
-
onBeforeConvert
: Called inMongoTemplate
insert
,insertList
, andsave
operations before the object is converted to aDBObject
by aMongoConverter
. -
onBeforeSave
: Called inMongoTemplate
insert
,insertList
, andsave
operations before inserting or saving theDBObject
in the database. -
onAfterSave
: Called inMongoTemplate
insert
,insertList
, andsave
operations after inserting or saving theDBObject
in the database. -
onAfterLoad
: Called inMongoTemplate
find
,findAndRemove
,findOne
, andgetCollection
methods after theDBObject
has been retrieved from the database. -
onAfterConvert
: Called inMongoTemplate
find
,findAndRemove
,findOne
, andgetCollection
methods after theDBObject
has been retrieved from the database was converted to a POJO.
Lifecycle events are only emitted for root level types. Complex types used as properties within a document root are not subject to event publication unless they are document references annotated with @DBRef .
|
10.16. Exception Translation
The Spring framework provides exception translation for a wide variety of database and mapping technologies. This has traditionally been for JDBC and JPA. The Spring support for MongoDB extends this feature to the MongoDB Database by providing an implementation of the org.springframework.dao.support.PersistenceExceptionTranslator
interface.
The motivation behind mapping to Spring’s consistent data access exception hierarchy is that you are then able to write portable and descriptive exception handling code without resorting to coding against MongoDB error codes. All of Spring’s data access exceptions are inherited from the root DataAccessException
class so that you can be sure to catch all database related exception within a single try-catch block. Note that not all exceptions thrown by the MongoDB driver inherit from the MongoException
class. The inner exception and message are preserved so that no information is lost.
Some of the mappings performed by the MongoExceptionTranslator
are com.mongodb.Network to DataAccessResourceFailureException
and MongoException
error codes 1003, 12001, 12010, 12011, and 12012 to InvalidDataAccessApiUsageException
. Look into the implementation for more details on the mapping.
10.17. Execution Callbacks
One common design feature of all Spring template classes is that all functionality is routed into one of the template’s execute callback methods. Doing so helps to ensure that exceptions and any resource management that may be required are performed consistently. While JDBC and JMS need this feature much more than MongoDB does, it still offers a single spot for exception translation and logging to occur. Consequently, using these execute callbacks is the preferred way to access the MongoDB driver’s DB
and DBCollection
objects to perform uncommon operations that were not exposed as methods on MongoTemplate
.
The following list describes the execute callback methods.
-
<T> T
execute(Class<?> entityClass, CollectionCallback<T> action)
: Executes the givenCollectionCallback
for the entity collection of the specified class. -
<T> T
execute(String collectionName, CollectionCallback<T> action)
: Executes the givenCollectionCallback
on the collection of the given name. -
<T> T
execute(DbCallback<T> action)
: Executes a DbCallback translating any exceptions as necessary. Spring Data MongoDB provides support for the Aggregation Framework introduced to MongoDB in version 2.2. -
<T> T
execute(String collectionName, DbCallback<T> action)
: Executes aDbCallback
on the collection of the given name translating any exceptions as necessary. -
<T> T
executeInSession(DbCallback<T> action)
: Executes the givenDbCallback
within the same connection to the database so as to ensure consistency in a write-heavy environment where you may read the data that you wrote.
The following example uses the CollectionCallback
to return information about an index:
boolean hasIndex = template.execute("geolocation", new CollectionCallbackBoolean>() {
public Boolean doInCollection(Venue.class, DBCollection collection) throws MongoException, DataAccessException {
List<DBObject> indexes = collection.getIndexInfo();
for (DBObject dbo : indexes) {
if ("location_2d".equals(dbo.get("name"))) {
return true;
}
}
return false;
}
});
10.18. GridFS Support
MongoDB supports storing binary files inside its filesystem, GridFS. Spring Data MongoDB provides a GridFsOperations
interface as well as the corresponding implementation, GridFsTemplate
, to let you interact with the filesystem. You can set up a GridFsTemplate
instance by handing it a MongoDbFactory
as well as a MongoConverter
, as the following example shows:
class GridFsConfiguration extends AbstractMongoConfiguration {
// … further configuration omitted
@Bean
public GridFsTemplate gridFsTemplate() {
return new GridFsTemplate(mongoDbFactory(), mappingMongoConverter());
}
}
The corresponding XML configuration follows:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<mongo:db-factory id="mongoDbFactory" dbname="database" />
<mongo:mapping-converter id="converter" />
<bean class="org.springframework.data.mongodb.gridfs.GridFsTemplate">
<constructor-arg ref="mongoDbFactory" />
<constructor-arg ref="converter" />
</bean>
</beans>
The template can now be injected and used to perform storage and retrieval operations, as the following example shows:
class GridFsClient {
@Autowired
GridFsOperations operations;
@Test
public void storeFileToGridFs {
FileMetadata metadata = new FileMetadata();
// populate metadata
Resource file = … // lookup File or Resource
operations.store(file.getInputStream(), "filename.txt", metadata);
}
}
The store(…)
operations take an InputStream
, a filename, and (optionally) metadata information about the file to store. The metadata can be an arbitrary object, which will be marshaled by the MongoConverter
configured with the GridFsTemplate
. Alternatively, you can also provide a DBObject
.
You can read files from the filesystem through either the find(…)
or the getResources(…)
methods. Let’s have a look at the find(…)
methods first. You can either find a single file or multiple files that match a Query
. You can use the GridFsCriteria
helper class to define queries. It provides static factory methods to encapsulate default metadata fields (such as whereFilename()
and whereContentType()
) or a custom one through whereMetaData()
. The following example shows how to use GridFsTemplate
to query for files:
class GridFsClient {
@Autowired
GridFsOperations operations;
@Test
public void findFilesInGridFs {
List<GridFSDBFile> result = operations.find(query(whereFilename().is("filename.txt")))
}
}
Currently, MongoDB does not support defining sort criteria when retrieving files from GridFS. For this reason, any sort criteria defined on the Query instance handed into the find(…) method are disregarded.
|
The other option to read files from the GridFs is to use the methods introduced by the ResourcePatternResolver
interface. They allow handing an Ant path into the method and can thus retrieve files matching the given pattern. The following example shows how to use GridFsTemplate
to read files:
class GridFsClient {
@Autowired
GridFsOperations operations;
@Test
public void readFilesFromGridFs {
GridFsResources[] txtFiles = operations.getResources("*.txt");
}
}
GridFsOperations
extends ResourcePatternResolver
and lets the GridFsTemplate
(for example) to be plugged into an ApplicationContext
to read Spring Config files from MongoDB database.
11. MongoDB Repositories
11.1. Introduction
This chapter points out the specialties for repository support for MongoDB. This chapter builds on the core repository support explained in Working with Spring Data Repositories. You should have a sound understanding of the basic concepts explained there.
11.2. Usage
To access domain entities stored in a MongoDB, you can use our sophisticated repository support that eases implementation quite significantly. To do so, create an interface for your repository, as the following example shows:
public class Person {
@Id
private String id;
private String firstname;
private String lastname;
private Address address;
// … getters and setters omitted
}
Note that the domain type shown in the preceding example has a property named id
of type ObjectId
. The default serialization mechanism used in MongoTemplate
(which backs the repository support) regards properties named id
as the document ID. Currently, we support String
, ObjectId
, and BigInteger
as ID types. Now that we have a domain object, we can define an interface that uses it, as follows:
public interface PersonRepository extends PagingAndSortingRepository<Person, String> {
// additional custom query methods go here
}
Right now this interface serves only to provide type information, but we can add additional methods to it later. To do so, in your Spring configuration, add the following content:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd">
<mongo:mongo id="mongo" />
<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg ref="mongo" />
<constructor-arg value="databaseName" />
</bean>
<mongo:repositories base-package="com.acme.*.repositories" />
</beans>
This namespace element causes the base packages to be scanned for interfaces that extend MongoRepository
and create Spring beans for each one found. By default, the repositories get a MongoTemplate
Spring bean wired that is called mongoTemplate
, so you only need to configure mongo-template-ref
explicitly if you deviate from this convention.
If you would rather go with Java-based configuration, use the @EnableMongoRepositories
annotation. That annotation carries the same attributes as the namespace element. If no base package is configured, the infrastructure scans the package of the annotated configuration class. The following example shows how to use Java configuration for a repository:
@Configuration
@EnableMongoRepositories
class ApplicationConfig extends AbstractMongoConfiguration {
@Override
protected String getDatabaseName() {
return "e-store";
}
@Override
public Mongo mongo() throws Exception {
return new Mongo();
}
@Override
protected String getMappingBasePackage() {
return "com.oreilly.springdata.mongodb"
}
}
Because our domain repository extends PagingAndSortingRepository
, it provides you with CRUD operations as well as methods for paginated and sorted access to the entities. Working with the repository instance is just a matter of dependency injecting it into a client. Consequently, accessing the second page of Person
objects at a page size of 10 would resemble the following code:
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class PersonRepositoryTests {
@Autowired PersonRepository repository;
@Test
public void readsFirstPageCorrectly() {
Page<Person> persons = repository.findAll(new PageRequest(0, 10));
assertThat(persons.isFirstPage(), is(true));
}
}
The preceding example creates an application context with Spring’s unit test support, which performs annotation-based dependency injection into test cases. Inside the test method, we use the repository to query the datastore. We hand the repository a PageRequest
instance that requests the first page of Person
objects at a page size of 10.
11.3. Query Methods
Most of the data access operations you usually trigger on a repository result in a query being executed against the MongoDB databases. Defining such a query is a matter of declaring a method on the repository interface, as the following example shows:
public interface PersonRepository extends PagingAndSortingRepository<Person, String> {
List<Person> findByLastname(String lastname); (1)
Page<Person> findByFirstname(String firstname, Pageable pageable); (2)
Person findByShippingAddresses(Address address); (3)
Stream<Person> findAllBy(); (4)
}
1 | The findByLastname method shows a query for all people with the given last name. The query is derived by parsing the method name for constraints that can be concatenated with And and Or . Thus, the method name results in a query expression of {"lastname" : lastname} . |
2 | Applies pagination to a query. You can equip your method signature with a Pageable parameter and let the method return a Page instance and Spring Data automatically pages the query accordingly. |
3 | Shows that you can query based on properties that are not primitive types. Throws IncorrectResultSizeDataAccessException if more than one match is found. |
4 | Uses the First keyword to restrict the query to only the first result. Unlike <3>, this method does not throw an exception if more than one match is found. |
5 | Uses a Java 8 Stream that reads and converts individual elements while iterating the stream. |
We do not support referring to parameters that are mapped as DBRef in the domain class.
|
The following table shows the keywords that are supported for query methods:
Keyword | Sample | Logical result |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11.3.1. Repository Delete Queries
The keywords in the preceding table can be used in conjunction with delete…By
or remove…By
to create queries that delete matching documents.
Delete…By
Querypublic interface PersonRepository extends MongoRepository<Person, String> {
List <Person> deleteByLastname(String lastname);
Long deletePersonByLastname(String lastname);
}
Using a return type of List
retrieves and returns all matching documents before actually deleting them. A numeric return type directly removes the matching documents, returning the total number of documents removed.
11.3.2. Geo-spatial Repository Queries
As you saw in the preceding table of keywords, a few keywords trigger geo-spatial operations within a MongoDB query. The Near
keyword allows some further modification, as the next few examples show.
The following example shows how to define a near
query that finds all persons with a given distance of a given point:
Near
queriespublic interface PersonRepository extends MongoRepository<Person, String>
// { 'location' : { '$near' : [point.x, point.y], '$maxDistance' : distance}}
List<Person> findByLocationNear(Point location, Distance distance);
}
Adding a Distance
parameter to the query method allows restricting results to those within the given distance. If the Distance
was set up containing a Metric
, we transparently use $nearSphere
instead of $code
, as the following example shows:
Distance
with Metrics
Point point = new Point(43.7, 48.8);
Distance distance = new Distance(200, Metrics.KILOMETERS);
… = repository.findByLocationNear(point, distance);
// {'location' : {'$nearSphere' : [43.7, 48.8], '$maxDistance' : 0.03135711885774796}}
Using a Distance
with a Metric
causes a $nearSphere
(instead of a plain $near
) clause to be added. Beyond that, the actual distance gets calculated according to the Metrics
used.
(Note that Metric
does not refer to metric units of measure. It could be miles rather than kilometers. Rather, metric
refers to the concept of a system of measurement, regardless of which system you use.)
Using @GeoSpatialIndexed(type = GeoSpatialIndexType.GEO_2DSPHERE) on the target property forces usage of the $nearSphere operator.
|
Geo-near Queries
Spring Data MongoDb supports geo-near queries, as the following example shows:
public interface PersonRepository extends MongoRepository<Person, String>
// {'geoNear' : 'location', 'near' : [x, y] }
GeoResults<Person> findByLocationNear(Point location);
// No metric: {'geoNear' : 'person', 'near' : [x, y], maxDistance : distance }
// Metric: {'geoNear' : 'person', 'near' : [x, y], 'maxDistance' : distance,
// 'distanceMultiplier' : metric.multiplier, 'spherical' : true }
GeoResults<Person> findByLocationNear(Point location, Distance distance);
// Metric: {'geoNear' : 'person', 'near' : [x, y], 'minDistance' : min,
// 'maxDistance' : max, 'distanceMultiplier' : metric.multiplier,
// 'spherical' : true }
GeoResults<Person> findByLocationNear(Point location, Distance min, Distance max);
// {'geoNear' : 'location', 'near' : [x, y] }
GeoResults<Person> findByLocationNear(Point location);
}
11.3.3. MongoDB JSON-based Query Methods and Field Restriction
By adding the org.springframework.data.mongodb.repository.Query
annotation to your repository query methods, you can specify a MongoDB JSON query string to use instead of having the query be derived from the method name, as the following example shows:
public interface PersonRepository extends MongoRepository<Person, String>
@Query("{ 'firstname' : ?0 }")
List<Person> findByThePersonsFirstname(String firstname);
}
The ?0
placeholder lets you substitute the value from the method arguments into the JSON query string.
String parameter values are escaped during the binding process, which means that it is not possible to add MongoDB specific operators through the argument.
|
You can also use the filter property to restrict the set of properties that is mapped into the Java object, as the following example shows:
public interface PersonRepository extends MongoRepository<Person, String>
@Query(value="{ 'firstname' : ?0 }", fields="{ 'firstname' : 1, 'lastname' : 1}")
List<Person> findByThePersonsFirstname(String firstname);
}
The query in the preceding example returns only the firstname
, lastname
and Id
properties of the Person
objects. The age
property, a java.lang.Integer
, is not set and its value is therefore null.
11.3.4. JSON-based Queries with SpEL Expressions
Query strings and field definitions can be used together with SpEL expressions to create dynamic queries at runtime. SpEL expressions can provide predicate values and can be used to extend predicates with subdocuments.
Expressions expose method arguments through an array that contains all the arguments. The following query uses [0]
to declare the predicate value for lastname
(which is equivalent to the ?0
parameter binding):
public interface PersonRepository extends MongoRepository<Person, String>
@Query("{'lastname': ?#{[0]} }")
List<Person> findByQueryWithExpression(String param0);
}
Expressions can be used to invoke functions, evaluate conditionals, and construct values. SpEL expressions used in conjunction with JSON reveal a side-effect, because Map-like declarations inside of SpEL read like JSON, as the following example shows:
public interface PersonRepository extends MongoRepository<Person, String>
@Query("{'id': ?#{ [0] ? {$exists :true} : [1] }}")
List<Person> findByQueryWithExpressionAndNestedObject(boolean param0, String param1);
}
SpEL in query strings can be a powerful way to enhance queries. However, they can also accept a broad range of unwanted arguments. You should make sure to sanitize strings before passing them to the query to avoid unwanted changes to your query.
Expression support is extensible through the Query SPI: org.springframework.data.repository.query.spi.EvaluationContextExtension
.
The Query SPI can contribute properties and functions and can customize the root object. Extensions are retrieved from the application context
at the time of SpEL evaluation when the query is built. The following example shows how to use EvaluationContextExtension
:
public class SampleEvaluationContextExtension extends EvaluationContextExtensionSupport {
@Override
public String getExtensionId() {
return "security";
}
@Override
public Map<String, Object> getProperties() {
return Collections.singletonMap("principal", SecurityContextHolder.getCurrent().getPrincipal());
}
}
Bootstrapping MongoRepositoryFactory yourself is not application context-aware and requires further configuration
to pick up Query SPI extensions.
|
11.3.5. Type-safe Query Methods
MongoDB repository support integrates with the Querydsl project, which provides a way to perform type-safe queries. To quote from the project description, "Instead of writing queries as inline strings or externalizing them into XML files they are constructed via a fluent API." It provides the following features:
-
Code completion in the IDE (all properties, methods, and operations can be expanded in your favorite Java IDE).
-
Almost no syntactically invalid queries allowed (type-safe on all levels).
-
Domain types and properties can be referenced safely — no strings involved!
-
Adapts better to refactoring changes in domain types.
-
Incremental query definition is easier.
See the QueryDSL documentation for how to bootstrap your environment for APT-based code generation using Maven or Ant.
QueryDSL lets you write queries such as the following:
QPerson person = new QPerson("person");
List<Person> result = repository.findAll(person.address.zipCode.eq("C0123"));
Page<Person> page = repository.findAll(person.lastname.contains("a"),
new PageRequest(0, 2, Direction.ASC, "lastname"));
QPerson
is a class that is generated by the Java annotation post-processing tool. It is a Predicate
that lets you write type-safe queries. Notice that there are no strings in the query other than the C0123
value.
You can use the generated Predicate
class by using the QuerydslPredicateExecutor
interface, which the following listing shows:
public interface QuerydslPredicateExecutor<T> {
T findOne(Predicate predicate);
List<T> findAll(Predicate predicate);
List<T> findAll(Predicate predicate, OrderSpecifier<?>... orders);
Page<T> findAll(Predicate predicate, Pageable pageable);
Long count(Predicate predicate);
}
To use this in your repository implementation, add it to the list of repository interfaces from which your interface inherits, as the following example shows:
public interface PersonRepository extends MongoRepository<Person, String>, QuerydslPredicateExecutor<Person> {
// additional query methods go here
}
11.3.6. Full-text Search Queries
MongoDB’s full-text search feature is store-specific and, therefore, can be found on MongoRepository
rather than on the more general CrudRepository
. We need a document with a full-text index (see “Text Indexes” to learn how to create a full-text index).
Additional methods on MongoRepository
take TextCriteria
as an input parameter. In addition to those explicit methods, it is also possible to add a TextCriteria
-derived repository method. The criteria are added as an additional AND
criteria. Once the entity contains a @TextScore
-annotated property, the document’s full-text score can be retrieved. Furthermore, the @TextScore
annotated also makes it possible to sort by the document’s score, as the following example shows:
@Document
class FullTextDocument {
@Id String id;
@TextIndexed String title;
@TextIndexed String content;
@TextScore Float score;
}
interface FullTextRepository extends Repository<FullTextDocument, String> {
// Execute a full-text search and define sorting dynamically
List<FullTextDocument> findAllBy(TextCriteria criteria, Sort sort);
// Paginate over a full-text search result
Page<FullTextDocument> findAllBy(TextCriteria criteria, Pageable pageable);
// Combine a derived query with a full-text search
List<FullTextDocument> findByTitleOrderByScoreDesc(String title, TextCriteria criteria);
}
Sort sort = new Sort("score");
TextCriteria criteria = TextCriteria.forDefaultLanguage().matchingAny("spring", "data");
List<FullTextDocument> result = repository.findAllBy(criteria, sort);
criteria = TextCriteria.forDefaultLanguage().matching("film");
Page<FullTextDocument> page = repository.findAllBy(criteria, new PageRequest(1, 1, sort));
List<FullTextDocument> result = repository.findByTitleOrderByScoreDesc("mongodb", criteria);
11.3.7. Projections
Spring Data query methods usually return one or multiple instances of the aggregate root managed by the repository. However, it might sometimes be desirable to create projections based on certain attributes of those types. Spring Data allows modeling dedicated return types, to more selectively retrieve partial views of the managed aggregates.
Imagine a repository and aggregate root type such as the following example:
class Person {
@Id UUID id;
String firstname, lastname;
Address address;
static class Address {
String zipCode, city, street;
}
}
interface PersonRepository extends Repository<Person, UUID> {
Collection<Person> findByLastname(String lastname);
}
Now imagine that we want to retrieve the person’s name attributes only. What means does Spring Data offer to achieve this? The rest of this chapter answers that question.
Interface-based Projections
The easiest way to limit the result of the queries to only the name attributes is by declaring an interface that exposes accessor methods for the properties to be read, as shown in the following example:
interface NamesOnly {
String getFirstname();
String getLastname();
}
The important bit here is that the properties defined here exactly match properties in the aggregate root. Doing so lets a query method be added as follows:
interface PersonRepository extends Repository<Person, UUID> {
Collection<NamesOnly> findByLastname(String lastname);
}
The query execution engine creates proxy instances of that interface at runtime for each element returned and forwards calls to the exposed methods to the target object.
Projections can be used recursively. If you want to include some of the Address
information as well, create a projection interface for that and return that interface from the declaration of getAddress()
, as shown in the following example:
interface PersonSummary {
String getFirstname();
String getLastname();
AddressSummary getAddress();
interface AddressSummary {
String getCity();
}
}
On method invocation, the address
property of the target instance is obtained and wrapped into a projecting proxy in turn.
Closed Projections
A projection interface whose accessor methods all match properties of the target aggregate is considered to be a closed projection. The following example (which we used earlier in this chapter, too) is a closed projection:
interface NamesOnly {
String getFirstname();
String getLastname();
}
If you use a closed projection, Spring Data can optimize the query execution, because we know about all the attributes that are needed to back the projection proxy. For more details on that, see the module-specific part of the reference documentation.
Open Projections
Accessor methods in projection interfaces can also be used to compute new values by using the @Value
annotation, as shown in the following example:
interface NamesOnly {
@Value("#{target.firstname + ' ' + target.lastname}")
String getFullName();
…
}
The aggregate root backing the projection is available in the target
variable.
A projection interface using @Value
is an open projection.
Spring Data cannot apply query execution optimizations in this case, because the SpEL expression could use any attribute of the aggregate root.
The expressions used in @Value
should not be too complex — you want to avoid programming in String
variables.
For very simple expressions, one option might be to resort to default methods (introduced in Java 8), as shown in the following example:
interface NamesOnly {
String getFirstname();
String getLastname();
default String getFullName() {
return getFirstname.concat(" ").concat(getLastname());
}
}
This approach requires you to be able to implement logic purely based on the other accessor methods exposed on the projection interface. A second, more flexible, option is to implement the custom logic in a Spring bean and then invoke that from the SpEL expression, as shown in the following example:
@Component
class MyBean {
String getFullName(Person person) {
…
}
}
interface NamesOnly {
@Value("#{@myBean.getFullName(target)}")
String getFullName();
…
}
Notice how the SpEL expression refers to myBean
and invokes the getFullName(…)
method and forwards the projection target as a method parameter.
Methods backed by SpEL expression evaluation can also use method parameters, which can then be referred to from the expression.
The method parameters are available through an Object
array named args
. The following example shows how to get a method parameter from the args
array:
interface NamesOnly {
@Value("#{args[0] + ' ' + target.firstname + '!'}")
String getSalutation(String prefix);
}
Again, for more complex expressions, you should use a Spring bean and let the expression invoke a method, as described earlier.
Class-based Projections (DTOs)
Another way of defining projections is by using value type DTOs (Data Transfer Objects) that hold properties for the fields that are supposed to be retrieved. These DTO types can be used in exactly the same way projection interfaces are used, except that no proxying happens and no nested projections can be applied.
If the store optimizes the query execution by limiting the fields to be loaded, the fields to be loaded are determined from the parameter names of the constructor that is exposed.
The following example shows a projecting DTO:
class NamesOnly {
private final String firstname, lastname;
NamesOnly(String firstname, String lastname) {
this.firstname = firstname;
this.lastname = lastname;
}
String getFirstname() {
return this.firstname;
}
String getLastname() {
return this.lastname;
}
// equals(…) and hashCode() implementations
}
Avoid boilerplate code for projection DTOs
You can dramatically simplify the code for a DTO by using Project Lombok, which provides an
Fields are |
Dynamic Projections
So far, we have used the projection type as the return type or element type of a collection. However, you might want to select the type to be used at invocation time (which makes it dynamic). To apply dynamic projections, use a query method such as the one shown in the following example:
interface PersonRepository extends Repository<Person, UUID> {
<T> Collection<T> findByLastname(String lastname, Class<T> type);
}
This way, the method can be used to obtain the aggregates as is or with a projection applied, as shown in the following example:
void someMethod(PersonRepository people) {
Collection<Person> aggregates =
people.findByLastname("Matthews", Person.class);
Collection<NamesOnly> aggregates =
people.findByLastname("Matthews", NamesOnly.class);
}
11.4. CDI Integration
Instances of the repository interfaces are usually created by a container, and Spring is the most natural choice when working with Spring Data. As of version 1.3.0, Spring Data MongoDB ships with a custom CDI extension that lets you use the repository abstraction in CDI environments. The extension is part of the JAR. To activate it, drop the Spring Data MongoDB JAR into your classpath. You can now set up the infrastructure by implementing a CDI Producer for the MongoTemplate
, as the following example shows:
class MongoTemplateProducer {
@Produces
@ApplicationScoped
public MongoOperations createMongoTemplate() throws UnknownHostException, MongoException {
MongoDbFactory factory = new SimpleMongoDbFactory(new Mongo(), "database");
return new MongoTemplate(factory);
}
}
The Spring Data MongoDB CDI extension picks up the MongoTemplate
available as a CDI bean and creates a proxy for a Spring Data repository whenever a bean of a repository type is requested by the container. Thus, obtaining an instance of a Spring Data repository is a matter of declaring an @Inject
-ed property, as the following example shows:
class RepositoryClient {
@Inject
PersonRepository repository;
public void businessMethod() {
List<Person> people = repository.findAll();
}
}
12. Auditing
12.1. Basics
Spring Data provides sophisticated support to transparently keep track of who created or changed an entity and when the change happened. To benefit from that functionality, you have to equip your entity classes with auditing metadata that can be defined either using annotations or by implementing an interface.
12.1.1. Annotation-based Auditing Metadata
We provide @CreatedBy
and @LastModifiedBy
to capture the user who created or modified the entity as well as @CreatedDate
and @LastModifiedDate
to capture when the change happened.
class Customer {
@CreatedBy
private User user;
@CreatedDate
private DateTime createdDate;
// … further properties omitted
}
As you can see, the annotations can be applied selectively, depending on which information you want to capture. The annotations capturing when changes were made can be used on properties of type Joda-Time, DateTime
, legacy Java Date
and Calendar
, JDK8 date and time types, and long
or Long
.
12.1.2. Interface-based Auditing Metadata
In case you do not want to use annotations to define auditing metadata, you can let your domain class implement the Auditable
interface. It exposes setter methods for all of the auditing properties.
There is also a convenience base class, AbstractAuditable
, which you can extend to avoid the need to manually implement the interface methods. Doing so increases the coupling of your domain classes to Spring Data, which might be something you want to avoid. Usually, the annotation-based way of defining auditing metadata is preferred as it is less invasive and more flexible.
12.1.3. AuditorAware
In case you use either @CreatedBy
or @LastModifiedBy
, the auditing infrastructure somehow needs to become aware of the current principal. To do so, we provide an AuditorAware<T>
SPI interface that you have to implement to tell the infrastructure who the current user or system interacting with the application is. The generic type T
defines what type the properties annotated with @CreatedBy
or @LastModifiedBy
have to be.
The following example shows an implementation of the interface that uses Spring Security’s Authentication
object:
class SpringSecurityAuditorAware implements AuditorAware<User> {
public User getCurrentAuditor() {
Authentication authentication = SecurityContextHolder.getContext().getAuthentication();
if (authentication == null || !authentication.isAuthenticated()) {
return null;
}
return ((MyUserDetails) authentication.getPrincipal()).getUser();
}
}
The implementation accesses the Authentication
object provided by Spring Security and looks up the custom UserDetails
instance that you have created in your UserDetailsService
implementation. We assume here that you are exposing the domain user through the UserDetails
implementation but that, based on the Authentication
found, you could also look it up from anywhere.
12.2. General Auditing Configuration for MongoDB
To activate auditing functionality, add the Spring Data Mongo auditing
namespace element to your configuration, as the following example shows:
<mongo:auditing mapping-context-ref="customMappingContext" auditor-aware-ref="yourAuditorAwareImpl"/>
Since Spring Data MongoDB 1.4, auditing can be enabled by annotating a configuration class with the @EnableMongoAuditing
annotation, as the followign example shows:
@Configuration
@EnableMongoAuditing
class Config {
@Bean
public AuditorAware<AuditableUser> myAuditorProvider() {
return new AuditorAwareImpl();
}
}
If you expose a bean of type AuditorAware
to the ApplicationContext
, the auditing infrastructure picks it up automatically and uses it to determine the current user to be set on domain types. If you have multiple implementations registered in the ApplicationContext
, you can select the one to be used by explicitly setting the auditorAwareRef
attribute of @EnableMongoAuditing
.
13. Mapping
Rich mapping support is provided by the MappingMongoConverter
. MappingMongoConverter
has a rich metadata model that provides a full feature set to map domain objects to MongoDB documents. The mapping metadata model is populated by using annotations on your domain objects. However, the infrastructure is not limited to using annotations as the only source of metadata information. The MappingMongoConverter
also lets you map objects to documents without providing any additional metadata, by following a set of conventions.
This section describes the features of the MappingMongoConverter
, including how to use conventions for mapping objects to documents and how to override those conventions with annotation-based mapping metadata.
SimpleMongoConverter has been deprecated in Spring Data MongoDB M3 as all of its functionality has been subsumed into MappingMongoConverter .
|
13.1. Convention-based Mapping
MappingMongoConverter
has a few conventions for mapping objects to documents when no additional mapping metadata is provided. The conventions are:
-
The short Java class name is mapped to the collection name in the following manner. The class
com.bigbank.SavingsAccount
maps to thesavingsAccount
collection name. -
All nested objects are stored as nested objects in the document and not as DBRefs.
-
The converter uses any Spring Converters registered with it to override the default mapping of object properties to document fields and values.
-
The fields of an object are used to convert to and from fields in the document. Public
JavaBean
properties are not used. -
If you have a single non-zero-argument constructor whose constructor argument names match top-level field names of document, that constructor is used. Otherwise, the zero-argument constructor is used. If there is more than one non-zero-argument constructor, an exception will be thrown.
13.1.1. How the _id
field is handled in the mapping layer.
MongoDB requires that you have an _id
field for all documents. If you don’t provide one the driver will assign a ObjectId with a generated value. The "_id" field can be of any type the, other than arrays, so long as it is unique. The driver naturally supports all primitive types and Dates. When using the MappingMongoConverter
there are certain rules that govern how properties from the Java class is mapped to this _id
field.
The following outlines what field will be mapped to the _id
document field:
-
A field annotated with
@Id
(org.springframework.data.annotation.Id
) will be mapped to the_id
field. -
A field without an annotation but named
id
will be mapped to the_id
field. -
The default field name for identifiers is
_id
and can be customized via the@Field
annotation.
Field definition | Resulting Id-Fieldname in MongoDB |
---|---|
|
|
|
|
|
|
|
|
|
|
The following outlines what type conversion, if any, will be done on the property mapped to the _id document field.
-
If a field named
id
is declared as a String or BigInteger in the Java class it will be converted to and stored as an ObjectId if possible. ObjectId as a field type is also valid. If you specify a value forid
in your application, the conversion to an ObjectId is detected to the MongoDBdriver. If the specifiedid
value cannot be converted to an ObjectId, then the value will be stored as is in the document’s _id field. -
If a field named
id
id field is not declared as a String, BigInteger, or ObjectID in the Java class then you should assign it a value in your application so it can be stored 'as-is' in the document’s _id field. -
If no field named
id
is present in the Java class then an implicit_id
file will be generated by the driver but not mapped to a property or field of the Java class.
When querying and updating MongoTemplate
will use the converter to handle conversions of the Query
and Update
objects that correspond to the above rules for saving documents so field names and types used in your queries will be able to match what is in your domain classes.
13.2. Data Mapping and Type Conversion
This section explains how types are mapped to and from a MongoDB representation. Spring Data MongoDB supports all types that can be represented as BSON, MongoDB’s internal document format. In addition to these types, Spring Data MongoDB provides a set of built-in converters to map additional types. You can provide your own converters to adjust type conversion. See Overriding Mapping with Explicit Converters for further details.
The following provides samples of each available type conversion:
Type | Type conversion | Sample |
---|---|---|
|
native |
|
|
native |
|
|
native |
|
|
native |
|
|
native |
|
|
native |
|
|
native |
|
|
native |
|
|
native |
|
Array, |
native |
|
|
native |
|
|
native |
|
|
native |
|
|
native |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
|
converter |
|
13.3. Mapping Configuration
Unless explicitly configured, an instance of MappingMongoConverter
is created by default when you create a MongoTemplate
. You can create your own instance of the MappingMongoConverter
. Doing so lets you dictate where in the classpath your domain classes can be found, so that Spring Data MongoDB can extract metadata and construct indexes. Also, by creating your own instance, you can register Spring converters to map specific classes to and from the database.
You can configure the MappingMongoConverter
as well as com.mongodb.Mongo
and MongoTemplate by using either Java-based or XML-based metadata. The following example uses Spring’s Java-based configuration:
@Configuration
public class GeoSpatialAppConfig extends AbstractMongoConfiguration {
@Bean
public Mongo mongo() throws Exception {
return new Mongo("localhost");
}
@Override
public String getDatabaseName() {
return "database";
}
@Override
public String getMappingBasePackage() {
return "com.bigbank.domain";
}
// the following are optional
@Bean
@Override
public CustomConversions customConversions() throws Exception {
List<Converter<?, ?>> converterList = new ArrayList<Converter<?, ?>>();
converterList.add(new org.springframework.data.mongodb.test.PersonReadConverter());
converterList.add(new org.springframework.data.mongodb.test.PersonWriteConverter());
return new CustomConversions(converterList);
}
@Bean
public LoggingEventListener<MongoMappingEvent> mappingEventsListener() {
return new LoggingEventListener<MongoMappingEvent>();
}
}
AbstractMongoConfiguration
requires you to implement methods that define a com.mongodb.Mongo
as well as provide a database name. AbstractMongoConfiguration
also has a method named getMappingBasePackage(…)
that you can override to tell the converter where to scan for classes annotated with the @Document
annotation.
You can add additional converters to the converter by overriding the customConversions
method. Also shown in the preceding example is a LoggingEventListener
, which logs MongoMappingEvent
instances that are posted onto Spring’s ApplicationContextEvent
infrastructure.
AbstractMongoConfiguration creates a MongoTemplate instance and registers it with the container under the name mongoTemplate .
|
Spring’s MongoDB namespace lets you enable mapping functionality in XML, as the following example shows:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation="http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/data/mongo http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
<!-- Default bean name is 'mongo' -->
<mongo:mongo host="localhost" port="27017"/>
<mongo:db-factory dbname="database" mongo-ref="mongo"/>
<!-- by default look for a Mongo object named 'mongo' - default name used for the converter is 'mappingConverter' -->
<mongo:mapping-converter base-package="com.bigbank.domain">
<mongo:custom-converters>
<mongo:converter ref="readConverter"/>
<mongo:converter>
<bean class="org.springframework.data.mongodb.test.PersonWriteConverter"/>
</mongo:converter>
</mongo:custom-converters>
</mongo:mapping-converter>
<bean id="readConverter" class="org.springframework.data.mongodb.test.PersonReadConverter"/>
<!-- set the mapping converter to be used by the MongoTemplate -->
<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
<constructor-arg name="mongoConverter" ref="mappingConverter"/>
</bean>
<bean class="org.springframework.data.mongodb.core.mapping.event.LoggingEventListener"/>
</beans>
The base-package
property tells it where to scan for classes annotated with the @org.springframework.data.mongodb.core.mapping.Document
annotation.
13.4. Metadata-based Mapping
To take full advantage of the object mapping functionality inside the Spring Data MongoDB support, you should annotate your mapped objects with the @Document
annotation. Although it is not necessary for the mapping framework to have this annotation (your POJOs are mapped correctly, even without any annotations), it lets the classpath scanner find and pre-process your domain objects to extract the necessary metadata. If you do not use this annotation, your application takes a slight performance hit the first time you store a domain object, because the mapping framework needs to build up its internal metadata model so that it knows about the properties of your domain object and how to persist them. The following example shows a domain object:
package com.mycompany.domain;
@Document
public class Person {
@Id
private ObjectId id;
@Indexed
private Integer ssn;
private String firstName;
@Indexed
private String lastName;
}
The @Id annotation tells the mapper which property you want to use for the MongoDB _id property, and the @Indexed annotation tells the mapping framework to call createIndex(…) on that property of your document, making searches faster.
|
Automatic index creation is only done for types annotated with @Document .
|
13.4.1. Mapping Annotation Overview
The MappingMongoConverter can use metadata to drive the mapping of objects to documents. The following annotations are available:
-
@Id
: Applied at the field level to mark the field used for identity purpose. -
@Document
: Applied at the class level to indicate this class is a candidate for mapping to the database. You can specify the name of the collection where the database will be stored. -
@DBRef
: Applied at the field to indicate it is to be stored using a com.mongodb.DBRef. -
@Indexed
: Applied at the field level to describe how to index the field. -
@CompoundIndex
: Applied at the type level to declare Compound Indexes -
@GeoSpatialIndexed
: Applied at the field level to describe how to geoindex the field. -
@TextIndexed
: Applied at the field level to mark the field to be included in the text index. -
@Language
: Applied at the field level to set the language override property for text index. -
@Transient
: By default all private fields are mapped to the document, this annotation excludes the field where it is applied from being stored in the database -
@PersistenceConstructor
: Marks a given constructor - even a package protected one - to use when instantiating the object from the database. Constructor arguments are mapped by name to the key values in the retrieved DBObject. -
@Value
: This annotation is part of the Spring Framework . Within the mapping framework it can be applied to constructor arguments. This lets you use a Spring Expression Language statement to transform a key’s value retrieved in the database before it is used to construct a domain object. In order to reference a property of a given document one has to use expressions like:@Value("#root.myProperty")
whereroot
refers to the root of the given document. -
@Field
: Applied at the field level and described the name of the field as it will be represented in the MongoDB BSON document thus allowing the name to be different than the fieldname of the class. -
@Version
: Applied at field level is used for optimistic locking and checked for modification on save operations. The initial value iszero
which is bumped automatically on every update.
The mapping metadata infrastructure is defined in a separate spring-data-commons project that is technology agnostic. Specific subclasses are using in the MongoDB support to support annotation based metadata. Other strategies are also possible to put in place if there is demand.
Here is an example of a more complex mapping.
@Document
@CompoundIndexes({
@CompoundIndex(name = "age_idx", def = "{'lastName': 1, 'age': -1}")
})
public class Person<T extends Address> {
@Id
private String id;
@Indexed(unique = true)
private Integer ssn;
@Field("fName")
private String firstName;
@Indexed
private String lastName;
private Integer age;
@Transient
private Integer accountTotal;
@DBRef
private List<Account> accounts;
private T address;
public Person(Integer ssn) {
this.ssn = ssn;
}
@PersistenceConstructor
public Person(Integer ssn, String firstName, String lastName, Integer age, T address) {
this.ssn = ssn;
this.firstName = firstName;
this.lastName = lastName;
this.age = age;
this.address = address;
}
public String getId() {
return id;
}
// no setter for Id. (getter is only exposed for some unit testing)
public Integer getSsn() {
return ssn;
}
// other getters/setters omitted
13.4.2. Customized Object Construction
The mapping subsystem allows the customization of the object construction by annotating a constructor with the @PersistenceConstructor
annotation. The values to be used for the constructor parameters are resolved in the following way:
-
If a parameter is annotated with the
@Value
annotation, the given expression is evaluated and the result is used as the parameter value. -
If the Java type has a property whose name matches the given field of the input document, then it’s property information is used to select the appropriate constructor parameter to pass the input field value to. This works only if the parameter name information is present in the java
.class
files which can be achieved by compiling the source with debug information or using the new-parameters
command-line switch for javac in Java 8. -
Otherwise a
MappingException
will be thrown indicating that the given constructor parameter could not be bound.
class OrderItem {
private @Id String id;
private int quantity;
private double unitPrice;
OrderItem(String id, @Value("#root.qty ?: 0") int quantity, double unitPrice) {
this.id = id;
this.quantity = quantity;
this.unitPrice = unitPrice;
}
// getters/setters ommitted
}
DBObject input = new BasicDBObject("id", "4711");
input.put("unitPrice", 2.5);
input.put("qty",5);
OrderItem item = converter.read(OrderItem.class, input);
The SpEL expression in the @Value annotation of the quantity parameter falls back to the value 0 if the given property path cannot be resolved.
|
Additional examples for using the @PersistenceConstructor
annotation can be found in the MappingMongoConverterUnitTests test suite.
13.4.3. Compound Indexes
Compound indexes are also supported. They are defined at the class level, rather than on individual properties.
Compound indexes are very important to improve the performance of queries that involve criteria on multiple fields |
Here’s an example that creates a compound index of lastName
in ascending order and age
in descending order:
package com.mycompany.domain;
@Document
@CompoundIndexes({
@CompoundIndex(name = "age_idx", def = "{'lastName': 1, 'age': -1}")
})
public class Person {
@Id
private ObjectId id;
private Integer age;
private String firstName;
private String lastName;
}
13.4.4. Text Indexes
The text index feature is disabled by default for mongodb v.2.4. |
Creating a text index allows accumulating several fields into a searchable full-text index. It is only possible to have one text index per collection, so all fields marked with @TextIndexed
are combined into this index. Properties can be weighted to influence the document score for ranking results. The default language for the text index is English. To change the default language, set the language
attribute to whichever language you want (for example,@Document(language="spanish")
). Using a property called language
or @Language
lets you define a language override on a per document base. The following example shows how to created a text index and set the language to Spanish:
@Document(language = "spanish")
class SomeEntity {
@TextIndexed String foo;
@Language String lang;
Nested nested;
}
class Nested {
@TextIndexed(weight=5) String bar;
String roo;
}
13.4.5. Using DBRefs
The mapping framework does not have to store child objects embedded within the document. You can also store them separately and use a DBRef to refer to that document. When the object is loaded from MongoDB, those references are eagerly resolved so that you get back a mapped object that looks the same as if it had been stored embedded within your master document.
The following example uses a DBRef to refer to a specific document that exists independently of the object in which it is referenced (both classes are shown in-line for brevity’s sake):
@Document
public class Account {
@Id
private ObjectId id;
private Float total;
}
@Document
public class Person {
@Id
private ObjectId id;
@Indexed
private Integer ssn;
@DBRef
private List<Account> accounts;
}
You need not use @OneToMany
or similar mechanisms because the List of objects tells the mapping framework that you want a one-to-many relationship. When the object is stored in MongoDB, there is a list of DBRefs rather than the Account
objects themselves.
The mapping framework does not handle cascading saves. If you change an Account object that is referenced by a Person object, you must save the Account object separately. Calling save on the Person object does not automatically save the Account objects in the accounts property.
|
13.4.6. Mapping Framework Events
Events are fired throughout the lifecycle of the mapping process. This is described in the Lifecycle Events section.
Declaring these beans in your Spring ApplicationContext causes them to be invoked whenever the event is dispatched.
13.4.7. Overriding Mapping with Explicit Converters
When storing and querying your objects it is convenient to have a MongoConverter
instance handle the mapping of all Java types to DBObjects. However, sometimes you may want the MongoConverter
s do most of the work but allow you to selectively handle the conversion for a particular type or to optimize performance.
To selectively handle the conversion yourself, register one or more one or more org.springframework.core.convert.converter.Converter
instances with the MongoConverter
.
Spring 3.0 introduced a core.convert package that provides a general type conversion system. This is described in detail in the Spring reference documentation section entitled “Spring Type Conversion”. |
You can use the customConversions
method in AbstractMongoConfiguration
to configure converters. The examples at the beginning of this chapter show how to perform the configuration using Java and XML.
Below is an example of a Spring Converter implementation that converts from a DBObject to a Person POJO.
@ReadingConverter
public class PersonReadConverter implements Converter<DBObject, Person> {
public Person convert(DBObject source) {
Person p = new Person((ObjectId) source.get("_id"), (String) source.get("name"));
p.setAge((Integer) source.get("age"));
return p;
}
}
Here is an example that converts from a Person to a DBObject.
@WritingConverter
public class PersonWriteConverter implements Converter<Person, DBObject> {
public DBObject convert(Person source) {
DBObject dbo = new BasicDBObject();
dbo.put("_id", source.getId());
dbo.put("name", source.getFirstName());
dbo.put("age", source.getAge());
return dbo;
}
}
14. Cross Store Support
Sometimes you need to store data in multiple data stores and these data stores can be of different types. One might be relational while the other a document store. For this use case we have created a separate module in the MongoDB support that handles what we call cross-store support. The current implementation is based on JPA as the driver for the relational database and we allow select fields in the Entities to be stored in a Mongo database. In addition to allowing you to store your data in two stores we also coordinate persistence operations for the non-transactional MongoDB store with the transaction life-cycle for the relational database.
14.1. Cross Store Configuration
Assuming that you have a working JPA application and would like to add some cross-store persistence for MongoDB, what do you have to add to your configuration?
First, you need to add a dependency on the cross-store module. If you use Maven, you can add the following dependency to your pom:
spring-data-mongodb-cross-store
dependency<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
...
<!-- Spring Data -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb-cross-store</artifactId>
<version>${spring.data.mongo.version}</version>
</dependency>
...
</project>
Once you have added the dependency, you need to enable AspectJ for the project. The cross-store support is implemented with AspectJ aspects so, if you enable compile-time AspectJ support, the cross-store features become available to your project. In Maven, you would add an additional plugin to the <build>
section of the pom, as follows:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
...
<build>
<plugins>
…
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>aspectj-maven-plugin</artifactId>
<version>1.0</version>
<dependencies>
<!-- NB: You must use Maven 2.0.9 or above or these are ignored (see MNG-2972) -->
<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjrt</artifactId>
<version>${aspectj.version}</version>
</dependency>
<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjtools</artifactId>
<version>${aspectj.version}</version>
</dependency>
</dependencies>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>test-compile</goal>
</goals>
</execution>
</executions>
<configuration>
<outxml>true</outxml>
<aspectLibraries>
<aspectLibrary>
<groupId>org.springframework</groupId>
<artifactId>spring-aspects</artifactId>
</aspectLibrary>
<aspectLibrary>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb-cross-store</artifactId>
</aspectLibrary>
</aspectLibraries>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>
...
</plugins>
</build>
...
</project>
Finally, you need to configure your project to use MongoDB and also configure which aspects are used. You should add the following XML snippet to your application context:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa-1.0.xsd">
...
<!-- Mongo config -->
<mongo:mongo host="localhost" port="27017"/>
<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongo" ref="mongo"/>
<constructor-arg name="databaseName" value="test"/>
<constructor-arg name="defaultCollectionName" value="cross-store"/>
</bean>
<bean class="org.springframework.data.mongodb.core.MongoExceptionTranslator"/>
<!-- Mongo cross-store aspect config -->
<bean class="org.springframework.data.persistence.document.mongo.MongoDocumentBacking"
factory-method="aspectOf">
<property name="changeSetPersister" ref="mongoChangeSetPersister"/>
</bean>
<bean id="mongoChangeSetPersister"
class="org.springframework.data.persistence.document.mongo.MongoChangeSetPersister">
<property name="mongoTemplate" ref="mongoTemplate"/>
<property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>
...
</beans>
14.2. Writing the Cross Store Application
We assume that you have a working JPA application, so we cover only the additional steps needed to persist part of your entity in your Mongo database. To do so, you need to identify the field you want to persist. It should be a domain class and follow the general rules for the Mongo mapping support covered in previous chapters. The field you want to persist in MongoDB should be annotated with the @RelatedDocument
annotation. That is really all you need to do. The cross-store aspects take care of the rest, including:
-
Marking the field with
@Transient
so that it will not be persisted by JPA -
Keeping track of any changes made to the field value and writing them to the database on successful transaction completion
-
Loading the document from MongoDB the first time the value is used in your application.
The following example shows an entity that has a field annotated with @RelatedDocument
:
@Entity
public class Customer {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String firstName;
private String lastName;
@RelatedDocument
private SurveyInfo surveyInfo;
// getters and setters omitted
}
The following example shows a domain class that is to be stored as a Document
:
public class SurveyInfo {
private Map<String, String> questionsAndAnswers;
public SurveyInfo() {
this.questionsAndAnswers = new HashMap<String, String>();
}
public SurveyInfo(Map<String, String> questionsAndAnswers) {
this.questionsAndAnswers = questionsAndAnswers;
}
public Map<String, String> getQuestionsAndAnswers() {
return questionsAndAnswers;
}
public void setQuestionsAndAnswers(Map<String, String> questionsAndAnswers) {
this.questionsAndAnswers = questionsAndAnswers;
}
public SurveyInfo addQuestionAndAnswer(String question, String answer) {
this.questionsAndAnswers.put(question, answer);
return this;
}
}
In the preceding example, once the SurveyInfo
has been set on the Customer
object, the MongoTemplate
that was configured previously is used to save the SurveyInfo
(along with some metadata about the JPA Entity) in a MongoDB collection named after the fully qualified name of the JPA Entity class. The following code shows how to configure a JPA entity for cross-store persistence with MongoDB:
Customer customer = new Customer();
customer.setFirstName("Sven");
customer.setLastName("Olafsen");
SurveyInfo surveyInfo = new SurveyInfo()
.addQuestionAndAnswer("age", "22")
.addQuestionAndAnswer("married", "Yes")
.addQuestionAndAnswer("citizenship", "Norwegian");
customer.setSurveyInfo(surveyInfo);
customerRepository.save(customer);
Running the preceding above results in the following JSON document being stored in MongoDB:
{ "_id" : ObjectId( "4d9e8b6e3c55287f87d4b79e" ),
"_entity_id" : 1,
"_entity_class" : "org.springframework.data.mongodb.examples.custsvc.domain.Customer",
"_entity_field_name" : "surveyInfo",
"questionsAndAnswers" : { "married" : "Yes",
"age" : "22",
"citizenship" : "Norwegian" },
"_entity_field_class" : "org.springframework.data.mongodb.examples.custsvc.domain.SurveyInfo" }
15. Logging support
An appender for Log4j is provided in the maven module "spring-data-mongodb-log4j". Note, there is no dependency on other Spring Mongo modules, only the MongoDB driver.
15.1. MongoDB Log4j Configuration
Here is an example configuration
log4j.rootCategory=INFO, mongo
log4j.appender.mongo=org.springframework.data.document.mongodb.log4j.MongoLog4jAppender
log4j.appender.mongo.layout=org.apache.log4j.PatternLayout
log4j.appender.mongo.layout.ConversionPattern=%d %p [%c] - <%m>%n
log4j.appender.mongo.host = localhost
log4j.appender.mongo.port = 27017
log4j.appender.mongo.database = logs
log4j.appender.mongo.collectionPattern = %X{year}%X{month}
log4j.appender.mongo.applicationId = my.application
log4j.appender.mongo.warnOrHigherWriteConcern = FSYNC_SAFE
log4j.category.org.apache.activemq=ERROR
log4j.category.org.springframework.batch=DEBUG
log4j.category.org.springframework.data.document.mongodb=DEBUG
log4j.category.org.springframework.transaction=INFO
The important configuration to look at aside from host and port is the database and collectionPattern
. The variables year
, month
, day
and hour
are available for you to use in forming a collection name. This is to support the common convention of grouping log information in a collection that corresponds to a specific time period, for example a collection per day.
There is also an applicationId
which is put into the stored message. The document stored from logging as the following keys: level
, name
, applicationId
, timestamp
, properties
, traceback
, and message
.
15.1.1. Using authentication
The MongoDB Log4j appender can be configured to use username/password authentication.
Authentication is performed using the specified database. A different authenticationDatabase
can be specified to override the default behavior.
# ...
log4j.appender.mongo.username = admin
log4j.appender.mongo.password = test
log4j.appender.mongo.authenticationDatabase = logs
# ...
Authentication failures lead to exceptions during logging and are propagated to the caller of the logging method. |
16. JMX support
The JMX support for MongoDB exposes the results of executing the 'serverStatus' command on the admin database for a single MongoDB server instance. It also exposes an administrative MBean, MongoAdmin
, that lets you perform administrative operations, such as dropping or creating a database. The JMX features build upon the JMX feature set available in the Spring Framework. See here for more details.
16.1. MongoDB JMX Configuration
Spring’s Mongo namespace lets you enable JMX functionality, as the following example shows:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation="
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
<!-- Default bean name is 'mongo' -->
<mongo:mongo host="localhost" port="27017"/>
<!-- by default look for a Mongo object named 'mongo' -->
<mongo:jmx/>
<context:mbean-export/>
<!-- To translate any MongoExceptions thrown in @Repository annotated classes -->
<context:annotation-config/>
<bean id="registry" class="org.springframework.remoting.rmi.RmiRegistryFactoryBean" p:port="1099" />
<!-- Expose JMX over RMI -->
<bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactoryBean"
depends-on="registry"
p:objectName="connector:name=rmi"
p:serviceUrl="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/myconnector" />
</beans>
The preceding code exposes several MBeans:
-
AssertMetrics
-
BackgroundFlushingMetrics
-
BtreeIndexCounters
-
ConnectionMetrics
-
GlobalLockMetrics
-
MemoryMetrics
-
OperationCounters
-
ServerInfo
-
MongoAdmin
The following screenshot from JConsole shows the resulting configuration:
17. MongoDB 3.0 Support
Spring Data MongoDB requires MongoDB Java driver generations 3 when connecting to a MongoDB 2.6/3.0 server running MMap.v1 or a MongoDB server 3.0 using MMap.v1 or the WiredTiger storage engine.
See the driver- and database-specific documentation for major differences between those engines. |
Operations that are no longer valid when using a 3.x MongoDB Java driver have been deprecated within Spring Data and will be removed in a subsequent release. |
17.1. Using Spring Data MongoDB with MongoDB 3.0
The rest of this section describes how to use Spring Data MongoDB with MongoDB 3.0.
17.1.1. Configuration Options
Some of the configuration options have been changed or removed for the mongo-java-driver
. The following options are ignored when using the generation 3 driver:
-
autoConnectRetry
-
maxAutoConnectRetryTime
-
slaveOk
Generally, you should use the <mongo:mongo-client … />
and <mongo:client-options … />
elements instead of <mongo:mongo … />
when doing XML based configuration, since those elements provide you with attributes that are only valid for the third generation Java driver. The follwoing example shows how to configure a Mongo client connection:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation="http://www.springframework.org/schema/data/mongo http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">
<mongo:mongo-client host="127.0.0.1" port="27017">
<mongo:client-options write-concern="NORMAL" />
</mongo:mongo-client>
</beans>
17.1.2. WriteConcern
and WriteConcernChecking
WriteConcern.NONE
, which had been used as the default by Spring Data MongoDB, was removed in 3.0. Therefore, in a MongoDB 3 environment, the WriteConcern
defaults to WriteConcern.UNACKNOWLEGED
. If WriteResultChecking.EXCEPTION
is enabled, the WriteConcern
is altered to WriteConcern.ACKNOWLEDGED
for write operations. Otherwise, errors during execution would not be thrown correctly, since they are not raised by the driver.
17.1.3. Authentication
MongoDB Server generation 3 changed the authentication model when connecting to the DB. Therefore, some of the configuration options available for authentication are no longer valid. You should use the MongoClient
-specific options when setting credentials with MongoCredential
to provide authentication data, as the following example shows:
@Configuration
public class ApplicationContextEventTestsAppConfig extends AbstractMongoConfiguration {
@Override
public String getDatabaseName() {
return "database";
}
@Override
@Bean
public Mongo mongo() throws Exception {
return new MongoClient(singletonList(new ServerAddress("127.0.0.1", 27017)),
singletonList(MongoCredential.createCredential("name", "db", "pwd".toCharArray())));
}
}
In order to use authentication with XML configuration, you can use the credentials
attribute on <mongo-client>
, as the following example shows:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemaLocation="http://www.springframework.org/schema/data/mongo http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">
<mongo:mongo-client credentials="user:password@database" />
</beans>
17.1.4. Miscellaneous Details
This section covers briefly lists additional things to keep in mind when using the 3.0 driver:
-
IndexOperations.resetIndexCache()
is no longer supported. -
Any
MapReduceOptions.extraOption
is silently ignored. -
WriteResult
no longer holds error information but, instead, throws anException
. -
MongoOperations.executeInSession(…)
no longer callsrequestStart
andrequestDone
. -
Index name generation has become a driver-internal operation. Spring Data MongoDB still uses the 2.x schema to generate names.
-
Some
Exception
messages differ between the generation 2 and 3 servers as well as between the MMap.v1 and WiredTiger storage engines.
Appendix
Appendix A: Namespace reference
The <repositories />
Element
The <repositories />
element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package
, which defines the package to scan for Spring Data repository interfaces. See “XML configuration”. The following table describes the attributes of the <repositories />
element:
Name | Description |
---|---|
|
Defines the package to be scanned for repository interfaces that extend |
|
Defines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix are considered as candidates. Defaults to |
|
Determines the strategy to be used to create finder queries. See “Query Lookup Strategies” for details. Defaults to |
|
Defines the location to search for a Properties file containing externally defined queries. |
|
Whether nested repository interface definitions should be considered. Defaults to |
Appendix B: Populators namespace reference
The <populator /> element
The <populator />
element allows to populate the a data store via the Spring Data repository infrastructure.[2]
Name | Description |
---|---|
|
Where to find the files to read the objects from the repository shall be populated with. |
Appendix C: Repository query keywords
Supported query keywords
The following table lists the keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some keywords listed here might not be supported in a particular store.
Logical keyword | Keyword expressions |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Appendix D: Repository query return types
Supported Query Return Types
The following table lists the return types generally supported by Spring Data repositories. However, consult the store-specific documentation for the exact list of supported return types, because some types listed here might not be supported in a particular store.
Geospatial types (such as GeoResult , GeoResults , and GeoPage ) are available only for data stores that support geospatial queries.
|
Return type | Description |
---|---|
|
Denotes no return value. |
Primitives |
Java primitives. |
Wrapper types |
Java wrapper types. |
|
An unique entity. Expects the query method to return one result at most. If no result is found, |
|
An |
|
A |
|
A |
|
A Java 8 or Guava |
|
Either a Scala or Javaslang |
|
A Java 8 |
|
A |
|
A Java 8 |
|
A |
|
A sized chunk of data with an indication of whether there is more data available. Requires a |
|
A |
|
A result entry with additional information, such as the distance to a reference location. |
|
A list of |
|
A |
|
A Project Reactor |
|
A Project Reactor |
|
A RxJava |
|
A RxJava |
|
A RxJava |