Spring BlazeDS Integration Reference
Guide

Jeremy Grelle

Version 1.0.3.RELEASE
Published March 2010

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

1. Spring BlazeDS INtegration OVEIVIEWccccooiierirerieieiesie st seeas 1
1.1, BACKGIOUNG ...ttt bbb e 1
1.2. What Spring BlazeDS Integration reqUIr€Sto rUnccoceeeverereeieenieseesieseesnene 1
1.3. WhHEre t0 gt SUPPOIT «..ouveeeitieiieiieieeie ettt 1
2. Configuring and Using the BlazeDS MessageBroker with Springcccccceevevevenicnienne. 3
P20 W 1 g (0o [0 Tox i o] IO USRS 3
2.2. Configuring the Spring DispatCherServIet ... 3
2.3. Configuring the MessageBroKer in SPringcccceoeverereneneseneeeeee e 3
2.4. Mapping Requests to the MessageBroKer ..o 4
2.5. Using Flex clients alongside Spring MV C Controllersccoceovveveneneneneniens 6
2.6. Using Spring-managed Destinations from the Flex Client ... 7
2.7. Advanced MessageBroker CUSIOMIZALIONcocveeerierierieneseseseeee e 8
2.8. Using Custom EXCeption Translatorsc.ccoeeeieneneneseseseseeee e 9
2.9. Using Custom M eSssage INTErCEPLONScoeruererieeieriesiesiesie s siesee e see e seesne e 9
2.10. Providing Custom Service AdapLErScooereriereriese e 10
3. Exporting Spring Beans for Flex REMOLINGcooveerieiirereseseseseeeeee e 11
1300 I 1 0o [0 Tox i o] ISR 11
3.2. Configuring the REMOLiNG SEIVICEcccoieiiiiceee e 11
3.3. Using the remoting-destination Tagcccceererirrieriene e 12
3.4. Exporting Beans for Remoting with @RemotingDestinationccccoeevenene. 13
4. Securing BlazeDS Destinations with Spring SECUNtYcocovevenineniinieenesesesee s 15
vt I 1 oo [F o1 o o ST 15
4.2. Configuring the Spring Security INterationccoeverererierieeieenese e 16
4.3. Configuring Endpoint and Destination SECUNTYcoceverereririeeniesesese e 18
5. Integration with the BlazeDS MESSage SEIVICEccveiiiiiire e 21
o300 I g (0o [0 Tox i o] ISP 21
5.2. Configuring the MeSSage SEIVICE ... 21
5.3. Using AMF Message DESHINGLIONSccerueruerereeieniesiesie st 22
5.4.Using IMS Message DEStINALIONSccerieriererieieniesie s 23
5.5. Using Spring Integration Message DeStinationsccoevererererneeniesesee e 23
5.6. Sending AMF Messages with the MessageTemplateccocveeeeerienenencnennne 24
6. Building and Running the Spring BlazeDS Integration Samplesccccccevevenerennene 25
(G300 I g1 0o 8o (o] o SO 25

Version 1.0.3.RELEASE

Spring BlazeDS Integration

Spring BlazeDS Integration
Overview

1. Spring BlazeDS Integration Overview

1.1. Background

Spring has always aimed to be agnostic to the client technologies being used to accessits core
services, intentionally leaving options open and |letting the community drive the demand for any
new first-class integration solutions to be added to the Spring project portfolio. Spring BlazeDS
Integration is an answer to the commmunity demand for atop-level solution for building
Spring-powered Rich Internet Applications using Adobe Flex for the client-side technology.

BlazeDS is an open source project from Adobe that provides the remoting and messaging
foundation for connecting a Flex-based front-end to Java back-end services. Though it has
previously been possible to use BlazeDS to connect to Spring-managed services, it has not been
in away that feels "natural” to a Spring developer, requiring the extra burden of having to
maintain a separate BlazeDS xml configuration. Spring BlazeDS Integration turns the tables by
making the BlazeDS M essageBroker a Spring-managed object, opening up the pathwaysto a
more extensive integration that follows "the Spring way".

1.2. What Spring BlazeDS Integration requires to run

Java 5 or higher
Spring 2.5.6 or higher *
Adobe BlazeDS 3.2 or higher **

* Asof the 1.0.2.RELEASE version, Spring BlazeDS Integration is forward-compatible with
Spring 3.0.x

** Asof the 1.0.3.RELEASE version, Spring BlazeDS Integration is forward-compatible with
BlazeDS 4.

1.3. Where to get support

Professiona from-the-source support on Spring BlazeDS Integration is available from
SpringSource, the company behind Spring.

Version 1.0.3.RELEASE

http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/
http://www.springsource.com

Spring BlazeDS Integration

Spring BlazeDS Integration
Overview

Configuring and Using the 3
BlazeDS MessageBroker with

2. Configuring and Using the BlazeDS
MessageBroker with Spring

2.1. Introduction

The central component that must be configured to use Spring BlazeDS Integration is the
MessageBr oker . HTTP messages from the Flex client will be routed through the Spring
Di spat cher Ser vl et to the Spring-managed MessageBr oker . Thereisno need to
configure the BlazeDS MessageBr oker Ser vl et when using the Spring-managed
MessageBr oker .

2.2. Configuring the Spring DispatcherServlet

The Di spat cher Ser vl et must be configured as normal in web.xml to bootstrap a Spring
WebA pplicationContext. For example:

<l-- The front controller of this Spring Web application, responsible for handling all application requests -->
<servl et >
<servl et-name>Spri ng WC Di spat cher Servl et</servlet-nanme>
<servl et-cl ass>org. spri ngframewor k. web. servl et. Di spat cher Servl et </ servl et-cl ass>
<init-paranp
<par am name>cont ext Conf i gLocat i on</ par am nane>
<param val ue>/ \EEB- | NF/ conf i g/ web- appl i cati on-confi g. xm </ param val ue>
</init-paranm>
<| oad- on- st art up>1</| oad- on- st art up>
</servlet>

2.3. Configuring the MessageBroker in Spring

A smplified Spring XML config namespace is provided for configuring the MessageBroker in
your WebA pplicationContext. To use the namespace support you must add the schema location
inyour Spring XML config files. A typical config will look something like the following:

<?xm version="1.0" encodi ng="UTF-8"7?>
<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans"
xm ns: fl ex="http://ww. springframework. org/ schema/ f | ex"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="
http://ww. spri ngfranework. or g/ schena/ beans
ht t p: // www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. spri ngfranework. org/ schema/ f| ex
http://ww. springfranework. org/ schena/ fl ex/ spring-flex-1.0.xsd">

</ beans>

This makes the Spring BlazeDS Integration configuration tags available under the f | ex
namespace in your configuration files. The above setup will be assumed for the rest of the
configuration examples to follow. For the full detail of every attribute and tag available in the

Version 1.0.3.RELEASE 3

4 Spring BlazeDS Integration

config namespace, be sure to refer to the spring-flex-1.0.xsd as every element and attribute is
fully documented there. Using an X SD-aware XML editor such as the one in Eclipse should
bring up the documentation automatically as you type.

At aminimum, the MessageBr oker Fact or yBean must be configured as a bean in your
Spring WebA pplicationContext in order to bootstrap the MessageBr oker , along with a
MessageBr oker Handl er Adapt er and an appropriate Handl er Mappi ng (usualy a
Si npl eUr | Handl er Mappi ng) to route incoming requests to the Spring-managed
MessageBr oker .

These beans will be registered automatically by using the provided nessage- br oker tagin
your bean definition file. For example, in its smplest form:

<f | ex: message- br oker/ >

Thiswill set up the MessageBr oker and necessary supporting infrastructure using sensible
defaults. The defaults can be overriden using the provided attributes of the nessage- br oker
tag and its associated child elements. For example, the default location of the BlazeDS XML
configuration file (/WEB-INF/flex/services-config.xml) can be overridden using the

servi ces-confi g- pat h attribute. The MessageBr oker Fact or yBean uses Spring's
Resour ceLoader abstraction, so that typical Spring resource paths may be used. For
example, to load the configuration from the application's classpath:

<fl ex: message- br oker services-config-path="cl asspath*: services-config.xm"

The equivalent MessageBr oker Fact or yBean definition using vanilla Spring configuration
would be:

<!-- Bootstraps and exposes the Bl azeDS MessageBr oker -->

<bean id="_nessageBroker" class="org. springfranmework. flex.core. MessageBr oker Fact oryBean" >
<property name="servi cesConfigPath" val ue="cl asspat h*: servi ces-config.xm" />

</ bean>

Note especially that with the nessage- br oker tag, it isnot necessary to assign a custom id to
the MessageBroker, and it isin fact discouraged so that you won't have to continually reference
it later. The only reason you would ever need to provide acustom id isif you were bootstrapping
more than one MessageBr oker in the same WebA pplicationContext.

2.4. Mapping Requests to the MessageBroker

To properly route incoming requests to the Spring-managed MessageBr oker , request
mapping must be configured in three places:

1. Di spat cher Ser vl et mapping in web.xml

2. Handl er Mappi ng in the Spring WebA pplicationContext

Configuring and Using the
4 BlazeDS MessageBroker with

Configuring and Using the 5
BlazeDS MessageBroker with

3. Channel definitionsin the BlazeDS services-config.xml

The simplest request mapping scenario is when the Flex front-end is the only client type for the
application. In this case you can just map /messagebroker as the top-level path for requests. The
mapping in web.xml would be:

<l-- Map all /nessagbroker requests to the DispatcherServlet for handling -->
<servl et - mappi ng>

<servl et-name>Spring MWC Di spat cher Servlet</servlet-nanme>

<url -pattern>/ messagebroker/*</url-pattern>
</ servl et - mappi ng>

When using the nessage- br oker configtag, aSi npl eUr | Handl er Mappi ng isinstalled
that by default maps all incoming Di spat cher Ser vl et requests to the Spring-managed
MessageBr oker using a/ * path pattern. The default mapping can be overridden by providing
one or more mappi ng child elements. If you want to provide your own Handl er Mappi ng
bean configuration, you can disable the default using the di sabl e- def aul t - mappi ng
attribute of the message- br oker tag. The order of theinstalled

Si npl eUr | Handl er Mappi ng can be set (for complex scenarios where multiple handler
mapping types are installed in the same context) using the mappi ng- or der attribute.

The Si npl eUr | Handl er Mappi ng in the Spring WebA pplicationContext maps all requests

to the Spring-managed MessageBr oker viathe MessageBr oker Handl er Adapt er . The
default setup installed by the message- br oker config tag is equivalent to the following bean
definitions:

<!-- Maps request paths at /* to the Bl azeDS MessageBr oker -->
<bean cl ass="org. springfranmewor k. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="mappi ngs">

<val ue>
/*=_nmessageBr oker
</ val ue>
</ property>
</ bean>
<!-- Dispatches requests mapped to a MessageBroker -->

<bean cl ass="org. springfranmework. flex. servl et. MessageBr oker Handl er Adapter"/ >

Channel definitions in the BlazeDS services-config.xml must correspond to the chosen mapping.
For example, to set up atypical AMF channel in BlazeDS that matches the above mapping

strategy:

<channel -definition id="my-anf" class="nx. messagi ng. channel s. AMFChannel ">
<endpoint url="http://{server.nane}:{server.port}/{context.root}/ messagebroker/anf"
cl ass="fl ex. messagi ng. endpoi nt s. AVFEndpoi nt"/ >
<properties>
<pol | i ng- enabl ed>f al se</ pol | i ng- enabl ed>
</ properties>
</ channel -definition>

See the BlazeD S documentation for more information on configuring communication channels
in services-config.xml.

2.5. Using Flex clients alongside Spring MVC

Version 1.0.3.RELEASE 5

http://livedocs.adobe.com/blazeds/1/blazeds_devguide/

6 Spring BlazeDS Integration

Controllers

It could often be the case that your application needs to serve more than just Flex-based clients.
For example, you may be constructing a RESTful architecture that is meant to serve multiple
client-types. Y ou could potentially even be consuming RESTful endpoints using the Flex
HTTPService component. Spring MV C's controller model provides asimple, flexible meansto
create such RESTful endpoints. In these sorts of hybrid web application secenarios, you will
need to consider an alternate mapping strategy.

The simplest approach isto use a hierarchical application context with multiple

Di spat cher Ser vl et s. In this approach, you configure your main application layer
(services, security, supporting infrastructure, etc) in a parent context loaded viathe

Cont ext Loader Li st ener , and then configure all aspects of your Spring MV C controllers
inone child Di spat cher Ser vl et context, and all aspects specific to your Flex clientin a
separate child Di spat cher Ser vl et context. This approach could look as followsin
web.xml:

<cont ext - par an®
<par am nane>cont ext Confi gLocati on</ par am nane>
<par am val ue>
/ VEB- | NF/ spri ng/ *- cont ext . xm
</ param val ue>
</ cont ext - par an>

<l i stener>

<l istener-class>org. springframework. web. cont ext. Cont ext Loader Li stener</|istener-class>
</l|istener>
<servl et>

<servl et - nane>f | ex</ servl et - nane> !

<servl et-class>org. springfranmework. web. servl et. Di spatcher Servl et </servlet-class>

<l| oad- on- st art up>1</| oad- on- st art up>
</ servl et >

<servl et - mappi ng>
<servl et - name>f | ex</ servl et - name>

<url -pattern>/ messagebroker/*</url-pattern>
</ servl et - mappi ng>
<servl et>
<servl et - name>spri ng- mvc</ servl et - nane>
<servl et-cl ass>org. springfranmewor k. web. servl et. Di spat cher Servl et </ servl et-class>
<l oad- on- st artup>1</1| oad- on-startup>
</ servlet>
<servl et - mappi ng>
<servl et-nanme>spring-nmvc</servl et -nane>
<url-pattern>/spring/*</url-pattern>
</ servl et - mappi ng>

Here the parent application context is being assembled from a group of filesending in

-cont ext . xm containedinthe/ V\EB- | NF/ spri ng/ directory. The child context for the
Flex-specific setup would be built (by convention) from/ VEB- | NF/ f | ex- servl et. xm ,
and the context for the Spring MV C controllers would be built from

/ WEB- | NF/ spri ng-mvc-servl et. xm . Thisapproach provides a nice separation of
concerns and will allow Spring 2.5+ annotated controllers to work using their default
configuration.

An alternate approach is to keep things consolidated under one Di spat cher Ser vl et
context. The down-side to this approach isthat it requires some additional manual configuration,
and you have to modify your mapping approach accordingly, such as mapping/ spri ng/ * to

Spring

Spring

the Di spat cher Ser vl et , mapping/ nessagebr oker / * to the Spring-managed
MessageBr oker viathe mappi ng XML namespace config tag, and modifying any BlazeDS
channel definitions accordingly. Y ou would override the default mapping strategy of the
nmessage- br oker tagasfollows:

<f | ex: message- br oker >
<fl ex: mappi ng pattern="/nmessagebroker/*" [>
</ fl ex: message- br oker >

and you would have to account for the /spring/* mapping in your BlazeDS channel definitions.
For example:

<channel -definition id="ny-anf" class="nx. messagi ng. channel s. AM=Channel ">
<endpoint url="http://{server.nanme}:{server.port}/{context.root}/spring/ messagebroker/anf"
cl ass="f| ex. messagi ng. endpoi nt s. AMFEndpoi nt"/ >
<properties>
<pol | i ng- enabl ed>f al se</ pol | i ng- enabl ed>
</ properties>
</ channel -definition>

In addition to setting up the consolidated mapping strategy, you will also have to manually
enable the correct Handl er Mappi ng and Handl er Adapt er for your Spring MVC
controllers as described in the Spring MV C documentation, due to the fact that alternate
Handl er Mappi ng and Handl er Adapt er beans are configured automatically when using
themessage- br oker tag.

2.6. Using Spring-managed Destinations from the Flex
Client

Explicit channel definition is arequirement when using dynamic destinations (meaning any
destination that is added programmatically and not defined in the BlazeDS services-config.xml,
i.e. the destinations created by ther enot i ng- dest i nat i on tag and the various
*-message- desti nati on tags). See Adobe's documentation for more detail.

The only way you don't have to explicitly define the Channel Set on the client isiif

1. you are using explicitly defined destinations in services-config.xml (i.e, not dynamic
destinations) AND you compile your flex client against that file

2. your destination is using the application-wide default channel AND you compile your flex
client against that file

Even if you weren't using dynamically created destinations it is debatable whether it is a good
ideato ever compile your client against services-config.xml, thus coupling your client to your
server configuration. It is often desirable to keep your flex client and your server side code as
two distinct modules, but compiling against services-config.xml blurs the lines between those
modules.

Our recommendation isthat it is generally cleaner to keep the client-side configuration of

Version 1.0.3.RELEASE

http://static.springframework.org/spring/docs/2.5.x/reference/mvc.html#mvc-ann-setup
http://livedocs.adobe.com/blazeds/1/blazeds_devguide/runtimeconfig_5.html#194376

8 Spring BlazeDS Integration

Channel Sets explicitly contained within the client module. An excellent way to do this without
having to hard-code the URLsin your client code isto use an ActionScript DI framework such
as Spring ActionScript (a Spring Extensions project, formerly known as Prana).

If you choose to go the route of compiling your client against services-config.xml, note that you
can at least keep the URL information out of the client code by using ServerConfig.getChannel
as described in the referenced BlazeDS documentation.

2.7. Advanced MessageBroker Customization

Theinitialization of the MessageBr oker by the MessageBr oker Fact or yBean logically
consists of two phases:

1. Parsing the BlazeDS XML configuration files and applying their settings to a newly created
MessageBroker

2. Starting the MessageBroker and its services

A special MessageBr oker Conf i gPr ocessor callback interfaceis provided that allows
custom processing to be done on the newly created MessageBroker after each phase, beforeit is
made available for request processing. Thisinterface isused internally by Spring BlazeDS
Integration, but is also available for general use in advanced programmatic introspection and
customization of the MessageBr oker . A custom MessageBr oker Conf i gPr ocessor
can be configured as a Spring bean and then registered with the

MessageBr oker Fact or yBean viatheconf i g- pr ocessor tag. For example, given a
trivial implementation to log some additional info about the M essageBroker:

package com exanpl e;
import org.springfranmework. flex.config. MessageBr oker Confi gProcessor;

inport flex.messagi ng. MessageBr oker ;
inmport flex.messaging. services. RenotingService;

public class MyDestinati onCountingConfigProcessor inplenents MessageBroker Confi gProcessor {

publ i c MessageBroker processAfterStartup(MessageBroker broker) {
Renoti ngServi ce renotingService =
(Renot i ngServi ce) broker. get Servi ceByType(RenotingServi ce. cl ass. get Nanme());
if (remptingService.isStarted()) {
Systemout. println("The Renoting Service has been started with "
+renot i ngSer vi ce. get Destinations().size()+" Destinations.");

return broker;

}

publ i c MessageBroker processBeforeStartup(MessageBroker broker) {
return broker;
}

This class could be configured and registered with the MessageBr oker asfollows:

<f | ex: message- br oker >
<fl ex: confi g-processor ref="nmyConfigProcessor" />
</ fl ex: message- br oker >

<bean id="myConfigProcessor" class="com exanpl e. MyDesti nati onCounti ngConfi gProcessor" />

Configuring and Using the
8 BlazeDS MessageBroker with

Configuring and Using the 9
BlazeDS MessageBroker with

2.8. Using Custom Exception Translators

In order to propagate useful information back to the Flex client when an exception occurs on the
server, the original exception must be translated into an instance of

fl ex. messagi ng. MessageExcept i on. If special trandation logic is not applied, a
generic "Server.Processing" error will propagate to the client that doesn't give the client the
chance to reason on the real cause of the error to take appropriate action. Special exception
tranglators are configured by default for transforming Spring Security exceptions into an
appropriate MessageExcept i on, but it could also be useful to provide custom translation for
your own application-level exceptions.

Custom exception translation logic can be provided through implementations of the

org. springframewor k. fl ex. core. Excepti onTr ansl at or interface. These
implementations must be configured as Spring beans and then registered through the XML
configuration namespace as follows:

<!-- Custom exception translator configured as a Spring bean -->
<bean id="nmyExceptionTranslator" class="com fo00. app. M/Busi nessExcepti onTransl ator"/>

<f| ex: message- br oker >

<fl ex:exception-translator ref="myExceptionTranslator"/>
</ f1 ex: message- br oker >

2.9. Using Custom Message Interceptors

Custom message interceptors may be used to apply special processing logic to incoming and
outgoing AMF messages in their de-serialized Javaform. For example, an interceptor can be
used to inspect the contents of the incoming message, or to add extra information to the outgoing

message.

Custom message processing logic is provided through implementations of the

org. springframework. fl ex. core. Messagel nt er cept or interface. These
implementations must be configured as Spring beans and then registered through the XML
configuration namespace as follows:

<l-- Custom nessage interceptor configured as a Spring bean -->
<bean id="nyMessagel nterceptor” class="com foo0. app. MyMessagel nterceptor"/>

<f | ex: message- br oker >

<fl ex: message-interceptor ref="nmyMessagel nterceptor"/>
</ fl ex: message- br oker >

Asof release 1.0.2 of Spring BlazeDS Integration, an additional

org. springframework. fl ex. core. Resour ceHandl i ngMessagel nt er cept or
interface is available to use. Interceptors that implement this extended interface receive an
additional guaranteed callback after message processing is completed, whether processing was
successful or failed due to an exception being thrown by the Endpoint. This allows the
interceptor to clean up any resources that it may have been using. This interface extends the
basic Messagel nt er cept or interface, thusit is configured the same way using the

Version 1.0.3.RELEASE 9

10 Spring BlazeDS Integration

nmessage-i nt er cept or tag.

2.10. Providing Custom Service Adapters

Using the XML config namespace autometically installs the needed implementations of

fl ex. messagi ng. servi ces. Servi ceAdapt er for use with the Remoting and Message
services. Third-party adapters (such as those provided by the dpHibernate or Gilead projects) can
be configured using the

org. spri ngfranmewor k. fl ex. core. Manageabl eConponent Fact or yBean. This
factory bean implementation is able to process arbitrarily complex configuration metadata
supplied in JSON format (instead of arbitrarily complex XML asin the native BlazeDS
configuration) and honors the lifecycle semantics (such as proper invocation of the

i ni tialize method) of the ManageableComponent. These custom adapters may be used by
Spring-managed Remoting and Message destinations by either setting its id as the default for the
Remoting or Message service, or by setting theser vi ce- adapt er attribute for a specific
destination (see the Remoting and Messaging chapters for further detail).

For example, to use the special adapter provided by dpHibernate as the default adapter with the
Remoting service, the configuration would be similar to the following:

<bean id="hi bernate-object" class="org.springfranmework. flex.core. Manageabl eConponent Fact or yBean" >
<constructor-arg val ue="net. digital pri mates. persi stence. hi bernate. H bernat eAdapter"/>
<property nane="properties">
<val ue>
{" hi ber nat e"
{"sessionFactory" :
{ "class" : "net.digital primates. persistence. hibernate.utils.H bernateUtil"
"get Current Sessi onMet hod" : "get Current Sessi on"”

}

</ val ue>
</ property>
</ bean>

<f | ex: message- br oker >

<fl ex: renoting-servi ce defaul t-adapter-id="hibernate-object" />
</ f1 ex: message- br oker >

Spring

Exporting Spring Beans for 11
Flex Remoting

3. Exporting Spring Beans for Flex Remoting

3.1. Introduction

Using a Spring-managed MessageBr oker enables Spring beans to be easily exported for
direct remoting calls from a Flex client. This approach is quite similar to that taken with other
remoting technologies in the core Spring Framework. Remoting is applied to existing
Spring-managed beans as an external configuration concern. The MessageBr oker
transparently handles the process of serialization and deserialization between the Flex AMF data
format and Java.

3.2. Configuring the Remoting Service

The BlazeDS Renvot i ngSer vi ce hastraditionally been configured by the inclusion of a
remoting-config.xml file in the BlazeDS XML configuration. When using only Spring-managed
remoting destinations, this config file can be left out completely as the inclusion of the
nmessage- br oker taginyour Spring configuration will cause the Renot i ngSer vi ce to be
configured with sensible defaults if none aready exists at startup time. The end result is
essentially equivalent to including the following minimal remoting-config.xml in your BlazeDS
configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<service id="renoting-service"
cl ass="f| ex. messagi ng. servi ces. Renot i ngServi ce">
<adapt er s>
<adapter-definition id="java-object"
cl ass="fl ex. messagi ng. servi ces. renoti ng. adapt ers. JavaAdapt er"
defaul t="true"/>
</ adapt er s>
<def aul t - channel s>
<channel ref="ny-anf"/>
</ def aul t - channel s>

</service>

Note that this assumes that there is already an equivalent application-wide

def aul t - channel s configuration. It is recommended that you set the desired
service-specific channels (see example below) if not relying on an application-wide default
setup. If no application-wide defaults exist, a best guess will be made by configuring the first
available channel from the MessageBr oker that usesan AMFEndpoi nt asthe default for the
Renot i ngSer vi ce.

If you wish to have more explicit control over the defaults that will be set on the
Renot i ngSer vi ce, you can customize them viather enot i ng- ser vi ce child element of
thenessage- br oker tag. For example:

<f| ex: message- br oker >
<fl ex: renoting-service default-adapter-id="ny-default-renoting-adapter"
def aul t - channel s="ny-anf, ny-secure-anf" />

Version 1.0.3.RELEASE 11

12 Spring BlazeDS Integration

</ fl ex: message- br oker >

If you have an existing remoting-config.xml for alegacy BlazeDS application, the
Renot i ngDest i nat i onExport er will be ableto work transparently with it, allowing you
to gradually migrate to al Spring-managed remoting destinations.

3.3. Using therenot i ng- desti nati on Tag

Ther enot i ng- desti nat i on configuration tag can be used to export existing
Spring-managed services for direct remoting from a Flex client. Given the following Spring bean
definition for apr oduct Ser vi ce bean:

<bean id="product Service" class="fl ex.sanpl es. product. Product Servi cel npl" />

and assuming the existance of a Spring-managed MessageBr oker configured viathe
message- br oker tag, the following top-level r enot i ng- dest i nat i on tag will expose
the service for remoting to the Flex client as a remote service destination named

pr oduct Servi ce:

<!-- Expose the productService bean for BlazeDS renoting -->
<fl ex: renoting-destination ref="product Servi ce" />

By default, the remote service destination exposed to the Flex client will use bean name of the
bean being exported as the service id of the destination, but this may be overridden using the
desti nati on-i d attribute on ther enot i ng- dest i nati on tag.

An aternate way of using ther enot i ng- dest i nat i on tagisasachild element of an
top-level bean definition. Thisis even more concise and works well if you don't have a need to
keep your domain-layer bean definitions separate from infrastructure concerns such as Flex
remoting. (Keep in mind that keeping them separate can lead to easier testability of the core
domain layer.) The following achieves the equivalent result to the previous example:

<bean id="product Servi ce" class="flex. sanpl es. product. Product Servi cel npl " >
<fl ex: renoting-destination />
</ bean>

The methods that are exposed to be called by the Flex client can be more tightly controlled
through use of thei ncl ude- net hods and excl ude- et hods attributes of the

renot i ng- desti nati on tag. The BlazeDS channels over which the destination is exposed
can also be controlled using the channel s attribute. (These attributes are available whether
using the top-level or the nested version.) A more extensively customized example would look
something like:

<flex:renoting-destination ref="product Service"
i ncl ude- net hods="read, update"
excl ude- met hods="create, delete"
channel s="ny-anf, ny-secure-anf" />

Exporting Spring Beans for
12 Flex Remoting

Exporting Spring Beans for 13
Flex Remoting

Ther enot i ng- dest i nat i on tagistransparently configuring a
Renot i ngDest i nat i onExport er beaninstance for each bean being exported. The
equivalent full bean syntax without the namespace support would be:

<!-- Expose the productService bean for BlazeDS renoting -->
<bean id="product" class="org.springframework.flex.renoting. RenotingDestinati onExporter">
<property nane="nmessageBroker" ref="_nessageBroker"/>
<property nanme="service" ref="productService"/>
<property name="destinationld" val ue="product Service"/>
<property nanme="incl udeMet hods" val ue="read, update"/>
<property nanme="excl udeMet hods" val ue="create, delete"/>
<property nane="channel s" val ue="ny-anf, ny-secure-anf"/>
</ bean>

3.4. Exporting Beans for Remoting with
@RemotingDestination

The @Renot i ngDest i nat i on annotation may be used as an alternative to the XML
remoting-destination tag when using annotation-based Spring configuration.

@Renot i ngDesti nati on isused at the type level to indicate the class being exported.
@Renot i ngl ncl ude and @enot i ngExcl ude are used at the method level to mark the
methods that should be included and excluded for remoting.

The following example illustrates the productService bean configured exclusively through
annotations:

package fl ex.sanples. product;

inmport org.springframework. flex.renoting. RenotingDestination;
i mport org.springframework. flex.renmoting. Renoti ngExcl ude;
import org.springframework. flex.renoting. Renotingl ncl ude;
inport org.springfranework. st ereotype. Servi ce;

@per vi ce(" product Service")

@Renot i ngDest i nati on(channel s={"ny-anf", "ny-secure-anf"})
public class ProductServicel npl inplenments ProductService {

@Renot i ngl ncl ude
public Product read(String id) {

}

@Renot i ngExcl ude
public Product create(Product product){

}

@Renot i ngl ncl ude
public Product update(Product product){

}

@Renot i ngExcl ude
public void del ete(Product product) {

}

Version 1.0.3.RELEASE 13

14

14

Spring BlazeDS Integration

Exporting Spring Beans for
Flex Remoting

Securing BlazeDS Destinations 15
with Spring Security

4. Securing BlazeDS Destinations with
Spring Security

4.1. Introduction

Spring Security provides an extremely flexible alternative to the container-based security support
provided out-of-the-box with BlazeDS. Spring BlazeDS Integration provides explicit integration
support for incorporating Spring Security smoothly into your Flex/BlazeDS application. Spring
Security provides awealth of different configuration options, but rather than go into the many
different combinations here, we'll leave most of that to the Spring Security documentation.

Asof version 1.0.2, Spring BlazeDS Integration also supports both Spring Security versions 2
and 3. The Spring Security version being used will be detected at startup time and the proper
integration support automatically installed. Note that if you were previously
customizing/extending any of the classes in the org.springframework.flex.security package, you
will need to switch to the versions in the org.springframework.flex.security3 package in order to
be compatible with Spring Security 3.

A simple Spring Security 2 configuration

Hereisasimple Spring Security starting configuration for use in conjunction with the explicit
integration features provided by Spring BlazeDS Integration that should be a solid starting point
for securing atypical Flex application:

<beans: beans xm ns="http://ww. springfranmework. org/ schema/ security"
xm ns: beans="http://ww. spri ngframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://ww. spri ngframework. or g/ schema/ beans
http: //ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd
ht t p: // www. spri ngf ramewor k. or g/ schema/ security
http: //ww. spri ngfranework. or g/ schena/ security/spring-security-2.0.4.xsd">

<http entry-point-ref="preAuthenticatedEntryPoint" />

<beans: bean id="preAut henti catedEntryPoint"
cl ass="org. springfranmework. security. ui.preauth. PreAut henti cat edProcessingFilterEntryPoint" />
<aut henti cati on- provi der >
<user-servi ce>
<user nane="jereny" password="atlanta" authorities="ROLE USER, ROLE ADM N' />
<user nane="keith" password="nel bourne" authorities="ROLE USER' />
</ user-servi ce>
</ aut henti cati on- provi der >

</ beans: beans>

With atypical Flex application, this approach is preferred to using Spring Security's auto-config
setup. Auto-config sets up a number of features that typically are not needed with a Flex
application. For instance, auto-config sets up adefaulti nt er cept - ur |l entry that requires
authentication for all URL paths within the application. This does not work well for the needs of
atypical BlazeDS setup as it would result in the server returning a 403 response code for
un-authenticated calls to BlazeDS endpoints which the Flex client does not handle gracefully.

Version 1.0.3.RELEASE 15

16 Spring BlazeDS Integration

(See Securing BlazeDS Channels by Endpoint URL Path for an aternativetoi nt er cept - ur |
that generates proper AMF responses for the Flex client.) It is recommended to start smple asin
this example, and add the additional features as needed.

A simple Spring Security 3 configuration
Hereis an equivalent starting configuration using the Spring Security 3 schema:

<beans: beans xml ns="http://ww. spri ngfranmework. or g/ schena/ security"
xm ns: beans="http://ww. spri ngframework. or g/ scherma/ beans" xml ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://ww. spri ngframework. org/ schema/ beans http://ww. spri ngframework. or g/ schema/ beans/ spri ng- beans- 3. 0.
http://ww. springfranmewor k. org/ schema/ security http://ww. springfranmework. org/ schema/ security/spring-seci

<http entry-point-ref="entryPoint">

<anonynous enabl ed="fal se"/>
</ http>

<beans: bean id="entryPoint" class="org.springframework.security.web. aut henti cation. Htt p403For bi ddenEnt ryPoi nt"/>
<aut henti cat i on- manager >
<aut henti cati on- provi der >
<user-servi ce>
<user nane="john" password="john" authorities="ROLE_USER' />
<user nanme="adm n" password="adm n" authorities="ROLE USER, ROLE ADM N' />
<user nanme="guest" password="guest" authorities="ROLE GUEST" />
</ user - servi ce>
</ aut henti cati on- provi der >
</ aut henti cati on- manager >

</ beans: beans>

Enabling the Spring Security filter chain in web.xml

For atypical setup with Spring Security, it iscritical to remember to enable the Spring Security
filter chain by adding the appropriate entry to web.xml:

<filter>
<filter-nanme>springSecurityFilterChain</filter-nane>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>
<filter-mappi ng>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

We will assume the above configuration isin place for the remainder of the examplesin this
chapter. For additional details on the many options available in configuring and using Spring
Security, please refer to that project's documentation.

4.2. Configuring the Spring Security Integration

Spring Security integration is enabled through the secur ed child element of the
nmessage- br oker tag. The smplest possible configuration would be:

<f | ex: message- br oker >
<fl ex: secured />
</ fl ex: message- br oker >

Securing BlazeDS Destinations
16 with Spring Security

http://static.springsource.org/spring-security/site/reference.html

Securing BlazeDS Destinations 17
with Spring Security

This enables the basic security features. A special BlazeDS Logi nConmand implementation is
automatically installed that enables Channel Set.login and Channel Set.logout requests to integrate
with Spring Security's Authorization mechanisms. Additionally, the special Logi nConmand
enables Spring Security granted authorities to be referenced in BlazeDS XML security
constraints. For example, if we were using atraditional BlazeDS remoting destination defined in
remoting-config.xml, we could have something like the following:

<destination id="product Service">
<security>
<security-constraint>
<aut h- met hod>Cust onx/ aut h- net hod>
<rol es>
<r ol e>ROLE_USER</ r ol e>
</rol es>
</security-constraint>
</security>
</ desti nati on>

Asyou can see, we are referencing the "ROLE_USER" authority from our simple Spring
Security setup. The invocation of this remote destination would cause the provided

Logi nComrand to be invoked to both verify that the user islogged in and to check that they
have the appropriate role. Violation of either will result in an exception being thrown by Spring
Security.

Accessing User Details

When using the Channel Set.login API call from the Flex client with Spring Security integration
enabled, the resulting ResponseEvent fired client-side upon successful completion will contain
additional information that can be inspected about the current user. The name and authorities will
be extracted from the Authentication object and added to the body of the response message. This
information, for example, can then be used to conditionally display different portions of the Ul
based on the user's identity and granted roles:

var token: AsyncToken = nyChannel Set. | ogin("jereny","atlanta");
t oken. addResponder (
new AsyncResponder (
function(event: Resul t Event, token:Cbject = null):void {
if (event.result.authorities.indexO("ROLE_ADM N') >= 0) {
di spl ayAdmi nPanel (event. resul t. nanme);
} else

}

1
function(event: Faul t Event, token:Cbject = null):void {

di spl ayError Message("Login Failed: "+event.fault.faultString);
}

di spl ayUser Panel (event. resul t. nane);

Security Exception Translation

Another feature that is automatically installed when the secur ed tag is used is automatic
exception trandation from any thrown SpringSecurityException to the proper BlazeDS

Version 1.0.3.RELEASE 17

18 Spring BlazeDS Integration

SecurityException. The exceptions are caught and translated at the proper point in the execution
chain such that it will result in the proper AMF error message being serialized and sent back to
the client.

Thisis aternative to the normal Spring Security behavior where afilter in the chain catches the
exception and sends back a corresponding HT TP status code. The problem with sending back
HTTP status codes other than 200 is that this causes the Flex client to throw a generic and rather
unhelpful exception, and often the status code can't be determined from the Flex client. Sending
back specific AMF error messages instead causesaFaul t Event to be thrown client-side that
contains the proper security fault code that can then be reasoned on and appropriate action can be
taken. This behavior is equivalent to that of the out-of-the-box container-based security
mechanisms provided with BlazeDS, so the programming model client-side remains the same.

secur ed Configuration Attributes

The secur ed tag has several additional attributes that allow further customization.

If you are not using Spring Security's default bean ids for the Aut hent i cat i onManager or
AccessDeci si onManager , you can specify your custom bean references using the
corresponding aut hent i cat i on- manager andaccess-deci si on- manager attributes
respectively onthesecur ed tag.

The configuration of the provided Logi nConmrand can be further controlled viathe secur ed
tag. Thei nval i dat e- f | ex- sessi on attribute controls whether the current Flex session is
invalidated when thel ogout () method iscalled on the Logi nComand, and defaults to
"true” if not specified. The per - cl i ent - aut hent i cat i on attribute turns BlazeDS's
per-client authentication mode on when true, and defaults to "false” if not specified. Enabling
per-client authentication will cause the Security context to no longer be stored in the session
between requests and thus will prevent the use of any Spring Security filters that rely on the
Security Context being available in the session, but the authentication and authorization
integration will otherwise work as expected. (See the BlazeDS docs for further information on
the difference between per-session and per-client authentication.)

4.3. Configuring Endpoint and Destination Security

The Spring Security integration allows flexible control over how you secure your application.
Y ou can secure BlazeDS endpoints in a manner similar to Spring Security's traditional URL
security, and you can secure your Spring services using the many existing object security
mechanisms of Spring Security just asif you were writing a traditional web application.

Securing Specific BlazeDS Channels

Y ou can set security constraints on specific BlazeDS channels using the secur ed- channel
child element of the secur ed tag. For example:

<f | ex: message- br oker >

Securing BlazeDS Destinations
18 with Spring Security

Securing BlazeDS Destinations 19
with Spring Security

<fl ex: secur ed>
<f| ex: secur ed- channel channel ="ny-anf" access="ROLE USER' />
</ fl ex: secured>
</ fl ex: message- br oker >

Thisresultsin any request being routed to the "my-amf" channel to require the user to be logged
in and to have the "ROLE_USER" authority. If either of thoseisviolated, aFaul t Event will
be signaled on the client.

Securing BlazeDS Channels by Endpoint URL Path

Y ou can set security constraints on multiple BlazeDS channels at once using the
secur ed- endpoi nt - pat h child element of the secur ed tag. In this case you specify a
URL pattern to be secured instead of a specific channel id. For example:

<f | ex: message- br oker >
<fl ex: secur ed>
<f | ex: secured- endpoi nt - path pattern="**/nmessagebroker/**" access="ROLE USER' />
</ fl ex: secured>
</ fl ex: message- br oker >

Thisresultsin any request being routed to any channel whose endpoint URL contains
"/messagebroker/" in the path to require the user to be logged in and to have the "ROLE_USER"
authority. If either of thoseisviolated, aFaul t Event will be signaled on the client.

Securing Exported Spring Services

Earlier in this chapter you saw an example of using the BlazeDS XML configuration to secure a
BlazeDS-managed destination. Since most of the time you will instead be defining destinations
by exporting Spring beans using ther enot i ng- dest i nat i ontag, an alternate approach to
securing destinations is needed. Thisiswhere Spring Security comesin, asall of its existing
authorization mechanisms should "just work" when security integration is enabled using the
secur ed tag.

One of the major strengths of Spring Security isthe multiple levels of granularity it provides you
when securing your Spring services. Y ou can go from securing your entire service layer in one
concise statement:

<gl obal - met hod- security>
<protect-poi ntcut expression="execution(* com nmyconpany.*Service.*(..))" access="ROLE _USER'/ >
</ gl obal - net hod- security>

to controlling access in a more fine-grained manner at the method layer using XML.:

<bean id="nyService" class="com nyconpany. nyapp. MyServi ce">
<fl ex: renpoting-destination/>
<security:intercept-nethods>
<security:protect nethod="set*" access="ROLE_ ADM N' />
<security:protect nmethod="get*" access="ROLE_ADM N, ROLE_USER' />
<security:protect method="doSonething" access="ROLE _USER' />
</security:intercept-nethods>
</ bean>

Version 1.0.3.RELEASE 19

20 Spring BlazeDS Integration

to using a combination of XML and annotations:

<security: gl obal - met hod-security secured-annotati ons="enabl ed" jsr250-annotati ons="enabl ed"/>

<fiex: remoti ng- desti nati on ref="nmyBankServicelml" />

public interface BankService {

@secur ed("1 S_AUTHENTI CATED_ANONYMOUSLY")
public Account readAccount(Long id);

@secur ed("1 S_AUTHENTI CATED_ANONYMOUSLY")
public Account[] findAccounts();

@secur ed(" ROLE_TELLER")
public Account post(Account account, doubl e anount);

to even more fine-grained ACL-based domain object permissions. For more details on the
options available, see the Spring Security documentation.

Securing BlazeDS Destinations
20 with Spring Security

Integration with the BlazeDS 21
Message Service

5. Integration with the BlazeDS Message
Service

5.1. Introduction

The BlazeDS MessageSer vi ce provides acommon abstraction for asynchronous messaging
style communication that is ultimately agnostic to the messaging protocol being used on the
server side. Messages can be passed exclusively between Flex clients, from Java POJOs to
subscribed Flex clients, from Flex clients to POJO message handlers, or between just about any
combination thereof. Using the Spring-managed MessageBr oker enables support for using
BlazeDS-native AMF messaging, JM S messaging based on Spring's proven and ssimple IMS
abstractions, or messaging using Spring Integration's MessageChannel abstraction, all from a
common programming model.

The same Consuner and Pr oducer APIsare used to interact with message destinations from
the Flex client, regardless of which underlying messaging protocol is being used on the server.
As such, this chapter will focus mainly on setting up and using the various message destination
types on the server side. For more details on how to use the Consuner and Pr oducer APIsin
the client, see the BlazeDS documentation.

5.2. Configuring the Message Service

The BlazeDS MessageSer vi ce hastraditionally been configured by the inclusion of a
messaging-config.xml file in the BlazeDS XML configuration. When using only
Spring-managed message destinations, this config file can be left out completely as the inclusion
of themessage- br oker taginyour Spring configuration will cause the MessageSer vi ce
to be configured with sensible defaults if none already exists at startup time. The end result is
essentially equivalent to including the following minimal messaging-config.xml in your BlazeDS
configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<service id="renoting-service")
class="fl ex. messagi ng. servi ces. MessageServi ce" >

<adapt er s>
<adapter-definition id="actionscript"
cl ass="fl ex. messagi ng. servi ces. nessagi ng. adapt ers. Acti onScri pt Adapt er"
defaul t="true"/>
</ adapt er s>
<def aul t - channel s>
<channel ref="ny-polling-anf"/>
</ def aul t - channel s>

</ service>

Note that this assumes that there is already an equivalent application-wide
def aul t - channel s configuration. It is recommended that you set the desired
service-specific channels (see example below) if not relying on an application-wide default

Version 1.0.3.RELEASE 21

22 Spring BlazeDS Integration

setup. If no application-wide defaults exist, a best guess will be made by configuring the first
available channel from the MessageBr oker that usesan AMFEndpoi nt with polling enabled
asthe default for the MessageSer vi ce.

If you wish to have more explicit control over the defaults that will be set on the
MessageSer vi ce, you can customize them viathe mnessage- ser vi ce child element of
the message- br oker tag. For example:

<f | ex: message- br oker >
<fl ex: message-servi ce defaul t-adapter-id="ny-defaul t-nmessagi ng-adapter"
def aul t - channel s="ny-pol | i ng-anf" />
</ f1 ex: message- br oker >

If you have an existing messaging-config.xml for alegacy BlazeDS application, the
MessageDest i nati onFact ory will be able to work transparently with it, allowing you to
gradually migrate to all Spring-managed messaging destinations.

5.3. Using AMF Message Destinations

For simple messaging needs where there are no requirements for message durability, transaction
support, or advanced routing logic, the BlazeDS-native AMF-based message destination is the
ideal choice. These destinations can be fully configured in a Spring application context using the
nmessage- dest i nati on XML namespace tag. For example, assuming a Spring-managed
MessageBr oker has been configured, al that is needed to set up a basic destination named
"event-bus" with default settings is the following:

<f| ex: nessage-destinati on id="event-bus" />

This sets up a destination to use the BlazeDS Act i onScr i pt Adapt er to handleincoming
messages. The settings of the destination can be further customized through the various attributes
of themessage- dest i nati on tag. Hereis an example of the "event-bus' destination
configured with most of the available attributes:

<fl ex: nessage- destination id="event-bus"
nessage- br oker =" nessageSer vi ceBr oker "
channel s="ny-pol | i ng-anf, ny-secure-anf"
al | ow subt opi cs="true"
cl ust er- nessage-routi ng="br oadcast"
send-security-constraint="fooConstraint"
subscri be-securi ty-constrai nt="bar Constraint"
subscription-timeout-m nutes="1"
throttl e-inbound- max-frequency="500"
throttle-inbound-policy="ERROR
throttl e-out bound- max- f requency="500"
throttle-outbound-policy="I1 GNORE" />

Thenmessage- br oker attributeis areference to the id of a Spring-managed

MessageBr oker . Thechannel s attribute allows you to specify acomma-delimited list of
the BlazeDS channels to be used (in order of preference) for this destination. The remaining
attributes correspond to the options available viathe net wor k and ser ver settings when
configuring a message destination in the BlazeDS-specific XML. Each of these additional

Integration with the BlazeDS
22 Message Service

Integration with the BlazeDS 23
Message Service

attributes is documented in the XSD to provide live code-completion assistance. For additional
details on their usage, see the BlazeDS documentation. The nessage- dest i nat i on tag
serves asabasefor thej ns- nessage- desti nati on and

i nt egrati on- nessage- desti nat i on tags so that the same configuration options are
available no matter the type of the underlying Messagi ngAdapt er .

The only attribute available on the message- dest i nat i on tag that is not available in the
JMS and Spring Integration implementationsisthe ser vi ce- adapt er attribute, which can be
used to provide acustom Ser vi ceAdapt er viaareferenceto a

Manageabl eConponent Fact or yBean. This can be used to provide integration with
additional messaging protocols not directly supported by Spring BlazeDS Integration. See
Providing Custom Service Adapters for additional information on using the

Manageabl eConponent Fact or yBean.

5.4. Using JMS Message Destinations

For integration with IMS, a special Jns Adapt er isprovided that internally makes use of
Spring'sJnsTenpl at e, Dest i nati onResol ver,

Def aul t MessagelLi st ener Cont ai ner and other such IMS abstractions for simplified
interaction with IMS resources. Thej nms- nessage- dest i nat i on XML namespacetag is
used to expose JM S destinations as BlazeDS message destinations. The minimal attributes that
must be specified are the destination i d and exactly one of j ns- desti nati on,

gueue- nane, ort opi c- nane. A IMSConnect i onFact ory referenceisalso required,
but does not have to be explicitly specified if there is already one configured in the current
application context with an id of "connectionFactory". For example, to configure a BlazeDS
message destination named "chatIn” that uses a Spring-managed ActiveMQ JM S queue with a
local ActiveMQ installation:

<bean id="connectionFactory" class="org. apache. activeng. Acti veMXonnecti onFactory">
<property name="broker URL" val ue="tcp://|ocal host: 61616"/ >

</ bean>

<bean id="chat|l nQueue" cl ass="org. apache. acti venqg. command. Acti veMXQueue" >
<constructor-arg val ue="queue.flex.chat.in"/>

</ bean>

<fl ex:j ne- message- destination id="chatln" jnms-destination="chat|nQueue" />

Using queue- nane or t opi ¢c- nane will cause the destination to be resolved using a Spring
Desti nati onResol ver.Thedesti nati on-resol ver, message- convert er, and
transacti on- manager attributes may be used to set custom referencesto a
Spring-managed Dest i nat i onResol ver , MessageConvert er, or

Transact i onManager respectively.

5.5. Using Spring Integration Message Destinations
For routing messages with Spring Integration, aspecia | nt egr at i onAdapt er isprovided
that is able to send/receive messages viaaMessageChannel . Thisisespecialy useful when
you have more complex routing needs for your messages, such as connecting to email or FTP

Version 1.0.3.RELEASE 23

24 Spring BlazeDS Integration

endpoints. Thei nt egr ati on- nessage- desti nati on XML namespacetag isused to
expose a Spring Integration MessageChannel asaBlazeDS message destination. For
example, to configure a BlazeDS message destination named "chatOut" that uses a Spring
Integration Publ i shSubscri beChannel :

<i ntegration: publ i sh-subscri be-channel id="chat Qut PubSubChannel " />

<fl ex:integration-nessage-destination id="chatQut" nessage-channel ="chat Qut PubSubChannel " />

5.6. Sending AMF Messages with the
MessageTemplate

A convenient MessageTenpl at e helper classis provided that allows you to push messages to
any BlazeDS MessageDest i nat i on from asimple POJO. This provides a nice abstraction
over push style messaging that hides away the details of the underlying messaging protocol.
Whether using a simple AMF based destination or full-blown JMS, etc., the use of the
MessageTenpl at e staysthe same. The only thing the MessageTenpl at e requiresisa
reference to a Spring-managed MessageBr oker . If the MessageTenpl at e isconfigured as
a Spring bean, it will try and auto-detect the MessageBr oker from its application context.

As an example of how the MessageTenpl at e could be used, suppose we have a RESTful
travel application that has a Flex-based admin console but also exposes an APl over HTTP. To
give the admin console a"live" view of the data, we want to push updatesto it anytime a new
hotel booking is created. Given the following setup in our application context:

<f| ex: message- br oker />
<bean id="def aul t MessageTenpl ate" cl ass="org. spri ngframework. f| ex. messagi ng. MessageTenpl ate" />

<fl ex: message- destination id="booki ngUpdates" />

and assuming the Flex client is subscribed to the "bookingUpdates' destination, this could be
achieved with the following controller code:

@ontroll er
public class BookingController {

private MessageTenpl ate tenpl ate;
private Booki ngServi ce booki ngServi ce;

@Request Mappi ng(val ue="/booki ngs", net hod=Request Met hod. POST)
public String createBooki ng(Booki ng booking){

booki ng = booki ngServi ce. saveBookl ng(booki ng) ;

t enpl ate. send(booki ngUpdat es", booki ng);

return “redirect:/bookings/" +booki ng. get I d();

}
@\ut owi r ed

public void setTenpl at e(MessageTenpl ate tenplate) {
this.tenplate = tenpl ate;
}

@\ut owi r ed

public void setBooki ngSer vi ce(Booki ngSer vi ce booki ngService) {
t hi s. booki ngServi ce = booki ngServi ce;

}

Integration with the BlazeDS
24 Message Service

Building and Running the 25
Spring BlazeDS Integration

6. Building and Running the Spring BlazeDS
Integration Samples

6.1. Introduction

Included in the project distribution is a collection of samples called the Spring BlazeDS
Integration Test Drive. This samples project is set up to be built with Maven and then imported
into Eclipse for running the application viaWTP.

Building the Test Drive
The sample build requires Maven 2.0.9 or greater. Because the build compiles several seperate
Flex and AIR projects, it can require setting the MAVEN_OPTS variable for your environment
to allocate more memory than the default. The setting we find works well is:

MAVEN_OPTS="- Xn8256m - Xnx512m - XX: Per n5i ze=128m - XX: MaxPer n5i ze=256n1
Once your Maven environment is set up correctly, cd to { project distribution

root} /spring-flex-samples/spring-flex-testdrive and execute:

m/n clean install

Thiswill first build all of the individual Flex projects and then finally assemble the 'testdrive
WAR project.

Building the Test Drive to use Spring 3 and Spring Security 3
Asof release 1.0.2 of Spring BlazeDS Integration, the Test Drive's Maven build includes an
additional profile for building the samples to use Spring 3 and Spring Security 3. To build the
samples using this profile, execute:

nmvn clean install -P spring_3_0

Download the Pre-packaged Test Drive

As aconvenience for anyone who is adverse to using Maven and just wants to get the Test Drive
up and running quickly in Eclipse, pre-packaged builds of the Test Drive can be downloaded
directly viathe following links:

Version 1.0.3.RELEASE 25

26 Spring BlazeDS Integration

* Spring BlazeDS Integration Test Drive with Spring 2.5.6

* Spring BlazeDS Integration Test Drive with Spring 3.0

Unzip the download and then follow the directions below for importing into Eclipse, substituting
the unzipped directory in place of the { project distribution
root} /spring-flex-samples/spring-flex-testdrive path.

Importing and Running the Test Drive in Eclipse

Theindividual Test Drive projects are pre-configured to be imported in Eclipse and run with
WTP. (There are anumber of individual projects, so you may want to consider creating afresh
workspace or at least create a new working set to manage the projects.) We recommend using the
free SpringSource Tool Suite to work with the samples so that you can take full advantage of its
extensive Spring support, but any version of Eclipse 3.4+ with WTP should work.

To import the samples, select File->Import...->General->EXxisting Projects into Workspace and
navigate to the { project distribution root} /spring-flex-sampl es/spring-flex-testdrive directory and
import al of the projects found.

Thereisan individual project for each Flex sample, and one WTP project for the 'testdrive
WAR. Once the projects have been imported, you can start the web application by selecting the
testdrive' project, right-clicking and selecting Run As->Run on Server. The samples have been
most thoroughly tested in Tomcat 6.0, but should run in any Servlet 2.4 container that WTP
supports. Once the application has started successfully, you can access the samples walk-through
at http://localhost:8080/testdrive (If running on a server other than Tomcat, change the port
number as needed.)

Building and Running the
26 Spring BlazeDS Integration

http://static.springsource.org/spring-flex/docs/1.0.x/samples/spring-flex-testdrive.zip
http://static.springsource.org/spring-flex/docs/1.0.x/samples/spring-flex-testdrive-spring3.zip
http://www.springsource.com/products/sts
http://localhost:8080/testdrive

	Spring BlazeDS Integration Reference Guide
	Table of Contents
	1. Spring BlazeDS Integration Overview
	1.1. Background
	1.2. What Spring BlazeDS Integration requires to run
	1.3. Where to get support

	2. Configuring and Using the BlazeDS MessageBroker with Spring
	2.1. Introduction
	2.2. Configuring the Spring DispatcherServlet
	2.3. Configuring the MessageBroker in Spring
	2.4. Mapping Requests to the MessageBroker
	2.5. Using Flex clients alongside Spring MVC Controllers
	2.6. Using Spring-managed Destinations from the Flex Client
	2.7. Advanced MessageBroker Customization
	2.8. Using Custom Exception Translators
	2.9. Using Custom Message Interceptors
	

	2.10. Providing Custom Service Adapters

	3. Exporting Spring Beans for Flex Remoting
	3.1. Introduction
	3.2. Configuring the Remoting Service
	3.3. Using the remoting-destination Tag
	3.4. Exporting Beans for Remoting with @RemotingDestination

	4. Securing BlazeDS Destinations with Spring Security
	4.1. Introduction
	A simple Spring Security 2 configuration
	A simple Spring Security 3 configuration
	Enabling the Spring Security filter chain in web.xml

	4.2. Configuring the Spring Security Integration
	Accessing User Details
	Security Exception Translation
	secured Configuration Attributes

	4.3. Configuring Endpoint and Destination Security
	Securing Specific BlazeDS Channels
	Securing BlazeDS Channels by Endpoint URL Path
	Securing Exported Spring Services

	5. Integration with the BlazeDS Message Service
	5.1. Introduction
	5.2. Configuring the Message Service
	5.3. Using AMF Message Destinations
	5.4. Using JMS Message Destinations
	5.5. Using Spring Integration Message Destinations
	5.6. Sending AMF Messages with the MessageTemplate

	6. Building and Running the Spring BlazeDS Integration Samples
	6.1. Introduction
	Building the Test Drive
	Building the Test Drive to use Spring 3 and Spring Security 3
	Download the Pre-packaged Test Drive
	Importing and Running the Test Drive in Eclipse

