
Spring BlazeDS Integration Reference
Guide

Jeremy Grelle

Version 1.0.3.RELEASE
Published March 2010

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents
1. Spring BlazeDS Integration Overview ... 1

1.1. Background .. 1
1.2. What Spring BlazeDS Integration requires to run ... 1
1.3. Where to get support .. 1

2. Configuring and Using the BlazeDS MessageBroker with Spring 3
2.1. Introduction .. 3
2.2. Configuring the Spring DispatcherServlet ... 3
2.3. Configuring the MessageBroker in Spring .. 3
2.4. Mapping Requests to the MessageBroker .. 4
2.5. Using Flex clients alongside Spring MVC Controllers ... 6
2.6. Using Spring-managed Destinations from the Flex Client 7
2.7. Advanced MessageBroker Customization ... 8
2.8. Using Custom Exception Translators .. 9
2.9. Using Custom Message Interceptors ... 9
2.10. Providing Custom Service Adapters .. 10

3. Exporting Spring Beans for Flex Remoting .. 11
3.1. Introduction .. 11
3.2. Configuring the Remoting Service .. 11
3.3. Using the remoting-destination Tag ... 12
3.4. Exporting Beans for Remoting with @RemotingDestination 13

4. Securing BlazeDS Destinations with Spring Security .. 15
4.1. Introduction .. 15
4.2. Configuring the Spring Security Integration .. 16
4.3. Configuring Endpoint and Destination Security .. 18

5. Integration with the BlazeDS Message Service .. 21
5.1. Introduction .. 21
5.2. Configuring the Message Service .. 21
5.3. Using AMF Message Destinations .. 22
5.4. Using JMS Message Destinations .. 23
5.5. Using Spring Integration Message Destinations .. 23
5.6. Sending AMF Messages with the MessageTemplate .. 24

6. Building and Running the Spring BlazeDS Integration Samples 25
6.1. Introduction .. 25

Version 1.0.3.RELEASE iii

iv Spring BlazeDS Integration

1. Spring BlazeDS Integration Overview

1.1. Background

Spring has always aimed to be agnostic to the client technologies being used to access its core
services, intentionally leaving options open and letting the community drive the demand for any
new first-class integration solutions to be added to the Spring project portfolio. Spring BlazeDS
Integration is an answer to the commmunity demand for a top-level solution for building
Spring-powered Rich Internet Applications using Adobe Flex for the client-side technology.

BlazeDS is an open source project from Adobe that provides the remoting and messaging
foundation for connecting a Flex-based front-end to Java back-end services. Though it has
previously been possible to use BlazeDS to connect to Spring-managed services, it has not been
in a way that feels "natural" to a Spring developer, requiring the extra burden of having to
maintain a separate BlazeDS xml configuration. Spring BlazeDS Integration turns the tables by
making the BlazeDS MessageBroker a Spring-managed object, opening up the pathways to a
more extensive integration that follows "the Spring way".

1.2. What Spring BlazeDS Integration requires to run

Java 5 or higher

Spring 2.5.6 or higher *

Adobe BlazeDS 3.2 or higher **

* As of the 1.0.2.RELEASE version, Spring BlazeDS Integration is forward-compatible with
Spring 3.0.x

** As of the 1.0.3.RELEASE version, Spring BlazeDS Integration is forward-compatible with
BlazeDS 4.

1.3. Where to get support

Professional from-the-source support on Spring BlazeDS Integration is available from
SpringSource, the company behind Spring.

Spring BlazeDS Integration
Overview

1

Version 1.0.3.RELEASE 1

http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/
http://www.springsource.com

2 Spring BlazeDS Integration

2
Spring BlazeDS Integration

Overview

2. Configuring and Using the BlazeDS
MessageBroker with Spring

2.1. Introduction

The central component that must be configured to use Spring BlazeDS Integration is the
MessageBroker. HTTP messages from the Flex client will be routed through the Spring
DispatcherServlet to the Spring-managed MessageBroker. There is no need to
configure the BlazeDS MessageBrokerServlet when using the Spring-managed
MessageBroker.

2.2. Configuring the Spring DispatcherServlet

The DispatcherServlet must be configured as normal in web.xml to bootstrap a Spring
WebApplicationContext. For example:

<!-- The front controller of this Spring Web application, responsible for handling all application requests -->
<servlet>

<servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/config/web-application-config.xml</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

2.3. Configuring the MessageBroker in Spring

A simplified Spring XML config namespace is provided for configuring the MessageBroker in
your WebApplicationContext. To use the namespace support you must add the schema location
in your Spring XML config files. A typical config will look something like the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:flex="http://www.springframework.org/schema/flex"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/flex
http://www.springframework.org/schema/flex/spring-flex-1.0.xsd">

...
</beans>

This makes the Spring BlazeDS Integration configuration tags available under the flex
namespace in your configuration files. The above setup will be assumed for the rest of the
configuration examples to follow. For the full detail of every attribute and tag available in the

Configuring and Using the
BlazeDS MessageBroker with

3

Version 1.0.3.RELEASE 3

config namespace, be sure to refer to the spring-flex-1.0.xsd as every element and attribute is
fully documented there. Using an XSD-aware XML editor such as the one in Eclipse should
bring up the documentation automatically as you type.

At a minimum, the MessageBrokerFactoryBean must be configured as a bean in your
Spring WebApplicationContext in order to bootstrap the MessageBroker, along with a
MessageBrokerHandlerAdapter and an appropriate HandlerMapping (usually a
SimpleUrlHandlerMapping) to route incoming requests to the Spring-managed
MessageBroker.

These beans will be registered automatically by using the provided message-broker tag in
your bean definition file. For example, in its simplest form:

<flex:message-broker/>

This will set up the MessageBroker and necessary supporting infrastructure using sensible
defaults. The defaults can be overriden using the provided attributes of the message-broker
tag and its associated child elements. For example, the default location of the BlazeDS XML
configuration file (/WEB-INF/flex/services-config.xml) can be overridden using the
services-config-path attribute. The MessageBrokerFactoryBean uses Spring's
ResourceLoader abstraction, so that typical Spring resource paths may be used. For
example, to load the configuration from the application's classpath:

<flex:message-broker services-config-path="classpath*:services-config.xml"

The equivalent MessageBrokerFactoryBean definition using vanilla Spring configuration
would be:

<!-- Bootstraps and exposes the BlazeDS MessageBroker -->
<bean id="_messageBroker" class="org.springframework.flex.core.MessageBrokerFactoryBean" >

<property name="servicesConfigPath" value="classpath*:services-config.xml" />
</bean>

Note especially that with the message-broker tag, it is not necessary to assign a custom id to
the MessageBroker, and it is in fact discouraged so that you won't have to continually reference
it later. The only reason you would ever need to provide a custom id is if you were bootstrapping
more than one MessageBroker in the same WebApplicationContext.

2.4. Mapping Requests to the MessageBroker

To properly route incoming requests to the Spring-managed MessageBroker, request
mapping must be configured in three places:

1. DispatcherServlet mapping in web.xml

2. HandlerMapping in the Spring WebApplicationContext

4 Spring BlazeDS Integration

4
Configuring and Using the

BlazeDS MessageBroker with

3. Channel definitions in the BlazeDS services-config.xml

The simplest request mapping scenario is when the Flex front-end is the only client type for the
application. In this case you can just map /messagebroker as the top-level path for requests. The
mapping in web.xml would be:

<!-- Map all /messagbroker requests to the DispatcherServlet for handling -->
<servlet-mapping>

<servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
<url-pattern>/messagebroker/*</url-pattern>

</servlet-mapping>

When using the message-broker config tag, a SimpleUrlHandlerMapping is installed
that by default maps all incoming DispatcherServlet requests to the Spring-managed
MessageBroker using a /*path pattern. The default mapping can be overridden by providing
one or more mapping child elements. If you want to provide your own HandlerMapping
bean configuration, you can disable the default using the disable-default-mapping
attribute of the message-broker tag. The order of the installed
SimpleUrlHandlerMapping can be set (for complex scenarios where multiple handler
mapping types are installed in the same context) using the mapping-order attribute.

The SimpleUrlHandlerMapping in the Spring WebApplicationContext maps all requests
to the Spring-managed MessageBroker via the MessageBrokerHandlerAdapter. The
default setup installed by the message-broker config tag is equivalent to the following bean
definitions:

<!-- Maps request paths at /* to the BlazeDS MessageBroker -->
<bean class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="mappings">
<value>

/*=_messageBroker
</value>

</property>
</bean>

<!-- Dispatches requests mapped to a MessageBroker -->
<bean class="org.springframework.flex.servlet.MessageBrokerHandlerAdapter"/>

Channel definitions in the BlazeDS services-config.xml must correspond to the chosen mapping.
For example, to set up a typical AMF channel in BlazeDS that matches the above mapping
strategy:

<channel-definition id="my-amf" class="mx.messaging.channels.AMFChannel">
<endpoint url="http://{server.name}:{server.port}/{context.root}/messagebroker/amf"

class="flex.messaging.endpoints.AMFEndpoint"/>
<properties>

<polling-enabled>false</polling-enabled>
</properties>

</channel-definition>

See the BlazeDS documentation for more information on configuring communication channels
in services-config.xml.

2.5. Using Flex clients alongside Spring MVC

Configuring and Using the
BlazeDS MessageBroker with

5

Version 1.0.3.RELEASE 5

http://livedocs.adobe.com/blazeds/1/blazeds_devguide/

Controllers

It could often be the case that your application needs to serve more than just Flex-based clients.
For example, you may be constructing a RESTful architecture that is meant to serve multiple
client-types. You could potentially even be consuming RESTful endpoints using the Flex
HTTPService component. Spring MVC's controller model provides a simple, flexible means to
create such RESTful endpoints. In these sorts of hybrid web application secenarios, you will
need to consider an alternate mapping strategy.

The simplest approach is to use a hierarchical application context with multiple
DispatcherServlets. In this approach, you configure your main application layer
(services, security, supporting infrastructure, etc) in a parent context loaded via the
ContextLoaderListener, and then configure all aspects of your Spring MVC controllers
in one child DispatcherServlet context, and all aspects specific to your Flex client in a
separate child DispatcherServlet context. This approach could look as follows in
web.xml:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>

/WEB-INF/spring/*-context.xml
</param-value>

</context-param>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<servlet>
<servlet-name>flex</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>flex</servlet-name>
<url-pattern>/messagebroker/*</url-pattern>

</servlet-mapping>

<servlet>
<servlet-name>spring-mvc</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>spring-mvc</servlet-name>
<url-pattern>/spring/*</url-pattern>

</servlet-mapping>

Here the parent application context is being assembled from a group of files ending in
-context.xml contained in the /WEB-INF/spring/ directory. The child context for the
Flex-specific setup would be built (by convention) from /WEB-INF/flex-servlet.xml,
and the context for the Spring MVC controllers would be built from
/WEB-INF/spring-mvc-servlet.xml. This approach provides a nice separation of
concerns and will allow Spring 2.5+ annotated controllers to work using their default
configuration.

An alternate approach is to keep things consolidated under one DispatcherServlet
context. The down-side to this approach is that it requires some additional manual configuration,
and you have to modify your mapping approach accordingly, such as mapping /spring/* to

6 Spring BlazeDS Integration

Spring

the DispatcherServlet, mapping /messagebroker/* to the Spring-managed
MessageBroker via the mapping XML namespace config tag, and modifying any BlazeDS
channel definitions accordingly. You would override the default mapping strategy of the
message-broker tag as follows:

<flex:message-broker>
<flex:mapping pattern="/messagebroker/*" />

</flex:message-broker>

and you would have to account for the /spring/* mapping in your BlazeDS channel definitions.
For example:

<channel-definition id="my-amf" class="mx.messaging.channels.AMFChannel">
<endpoint url="http://{server.name}:{server.port}/{context.root}/spring/messagebroker/amf"

class="flex.messaging.endpoints.AMFEndpoint"/>
<properties>

<polling-enabled>false</polling-enabled>
</properties>

</channel-definition>

In addition to setting up the consolidated mapping strategy, you will also have to manually
enable the correct HandlerMapping and HandlerAdapter for your Spring MVC
controllers as described in the Spring MVC documentation, due to the fact that alternate
HandlerMapping and HandlerAdapter beans are configured automatically when using
the message-broker tag.

2.6. Using Spring-managed Destinations from the Flex
Client

Explicit channel definition is a requirement when using dynamic destinations (meaning any
destination that is added programmatically and not defined in the BlazeDS services-config.xml,
i.e. the destinations created by the remoting-destination tag and the various
*-message-destination tags). See Adobe's documentation for more detail.

The only way you don't have to explicitly define the ChannelSet on the client is if

1. you are using explicitly defined destinations in services-config.xml (i.e, not dynamic
destinations) AND you compile your flex client against that file

2. your destination is using the application-wide default channel AND you compile your flex
client against that file

Even if you weren't using dynamically created destinations it is debatable whether it is a good
idea to ever compile your client against services-config.xml, thus coupling your client to your
server configuration. It is often desirable to keep your flex client and your server side code as
two distinct modules, but compiling against services-config.xml blurs the lines between those
modules.

Our recommendation is that it is generally cleaner to keep the client-side configuration of

Spring

Version 1.0.3.RELEASE 7

http://static.springframework.org/spring/docs/2.5.x/reference/mvc.html#mvc-ann-setup
http://livedocs.adobe.com/blazeds/1/blazeds_devguide/runtimeconfig_5.html#194376

ChannelSets explicitly contained within the client module. An excellent way to do this without
having to hard-code the URLs in your client code is to use an ActionScript DI framework such
as Spring ActionScript (a Spring Extensions project, formerly known as Prana).

If you choose to go the route of compiling your client against services-config.xml, note that you
can at least keep the URL information out of the client code by using ServerConfig.getChannel
as described in the referenced BlazeDS documentation.

2.7. Advanced MessageBroker Customization

The initialization of the MessageBroker by the MessageBrokerFactoryBean logically
consists of two phases:

1. Parsing the BlazeDS XML configuration files and applying their settings to a newly created
MessageBroker

2. Starting the MessageBroker and its services

A special MessageBrokerConfigProcessor callback interface is provided that allows
custom processing to be done on the newly created MessageBroker after each phase, before it is
made available for request processing. This interface is used internally by Spring BlazeDS
Integration, but is also available for general use in advanced programmatic introspection and
customization of the MessageBroker. A custom MessageBrokerConfigProcessor
can be configured as a Spring bean and then registered with the
MessageBrokerFactoryBean via the config-processor tag. For example, given a
trivial implementation to log some additional info about the MessageBroker:

package com.example;

import org.springframework.flex.config.MessageBrokerConfigProcessor;

import flex.messaging.MessageBroker;
import flex.messaging.services.RemotingService;

public class MyDestinationCountingConfigProcessor implements MessageBrokerConfigProcessor {

public MessageBroker processAfterStartup(MessageBroker broker) {
RemotingService remotingService =

(RemotingService) broker.getServiceByType(RemotingService.class.getName());
if (remotingService.isStarted()) {

System.out.println("The Remoting Service has been started with "
+remotingService.getDestinations().size()+" Destinations.");

}
return broker;

}

public MessageBroker processBeforeStartup(MessageBroker broker) {
return broker;

}
}

This class could be configured and registered with the MessageBroker as follows:

<flex:message-broker>
<flex:config-processor ref="myConfigProcessor" />

</flex:message-broker>

<bean id="myConfigProcessor" class="com.example.MyDestinationCountingConfigProcessor" />

8 Spring BlazeDS Integration

8
Configuring and Using the

BlazeDS MessageBroker with

2.8. Using Custom Exception Translators

In order to propagate useful information back to the Flex client when an exception occurs on the
server, the original exception must be translated into an instance of
flex.messaging.MessageException. If special translation logic is not applied, a
generic "Server.Processing" error will propagate to the client that doesn't give the client the
chance to reason on the real cause of the error to take appropriate action. Special exception
translators are configured by default for transforming Spring Security exceptions into an
appropriate MessageException, but it could also be useful to provide custom translation for
your own application-level exceptions.

Custom exception translation logic can be provided through implementations of the
org.springframework.flex.core.ExceptionTranslator interface. These
implementations must be configured as Spring beans and then registered through the XML
configuration namespace as follows:

<!-- Custom exception translator configured as a Spring bean -->
<bean id="myExceptionTranslator" class="com.foo.app.MyBusinessExceptionTranslator"/>

<flex:message-broker>
<flex:exception-translator ref="myExceptionTranslator"/>

</flex:message-broker>

2.9. Using Custom Message Interceptors

Custom message interceptors may be used to apply special processing logic to incoming and
outgoing AMF messages in their de-serialized Java form. For example, an interceptor can be
used to inspect the contents of the incoming message, or to add extra information to the outgoing
message.

Custom message processing logic is provided through implementations of the
org.springframework.flex.core.MessageInterceptor interface. These
implementations must be configured as Spring beans and then registered through the XML
configuration namespace as follows:

<!-- Custom message interceptor configured as a Spring bean -->
<bean id="myMessageInterceptor" class="com.foo.app.MyMessageInterceptor"/>

<flex:message-broker>
<flex:message-interceptor ref="myMessageInterceptor"/>

</flex:message-broker>

As of release 1.0.2 of Spring BlazeDS Integration, an additional
org.springframework.flex.core.ResourceHandlingMessageInterceptor
interface is available to use. Interceptors that implement this extended interface receive an
additional guaranteed callback after message processing is completed, whether processing was
successful or failed due to an exception being thrown by the Endpoint. This allows the
interceptor to clean up any resources that it may have been using. This interface extends the
basic MessageInterceptor interface, thus it is configured the same way using the

Configuring and Using the
BlazeDS MessageBroker with

9

Version 1.0.3.RELEASE 9

message-interceptor tag.

2.10. Providing Custom Service Adapters

Using the XML config namespace automatically installs the needed implementations of
flex.messaging.services.ServiceAdapter for use with the Remoting and Message
services. Third-party adapters (such as those provided by the dpHibernate or Gilead projects) can
be configured using the
org.springframework.flex.core.ManageableComponentFactoryBean. This
factory bean implementation is able to process arbitrarily complex configuration metadata
supplied in JSON format (instead of arbitrarily complex XML as in the native BlazeDS
configuration) and honors the lifecycle semantics (such as proper invocation of the
initialize method) of the ManageableComponent. These custom adapters may be used by
Spring-managed Remoting and Message destinations by either setting its id as the default for the
Remoting or Message service, or by setting the service-adapter attribute for a specific
destination (see the Remoting and Messaging chapters for further detail).

For example, to use the special adapter provided by dpHibernate as the default adapter with the
Remoting service, the configuration would be similar to the following:

<bean id="hibernate-object" class="org.springframework.flex.core.ManageableComponentFactoryBean">
<constructor-arg value="net.digitalprimates.persistence.hibernate.HibernateAdapter"/>

<property name="properties">
<value>

{"hibernate" :
{"sessionFactory" :

{ "class" : "net.digitalprimates.persistence.hibernate.utils.HibernateUtil",
"getCurrentSessionMethod" : "getCurrentSession"

}
}

}
</value>

</property>
</bean>

<flex:message-broker>
<flex:remoting-service default-adapter-id="hibernate-object" />

</flex:message-broker>

10 Spring BlazeDS Integration

Spring

3. Exporting Spring Beans for Flex Remoting

3.1. Introduction

Using a Spring-managed MessageBroker enables Spring beans to be easily exported for
direct remoting calls from a Flex client. This approach is quite similar to that taken with other
remoting technologies in the core Spring Framework. Remoting is applied to existing
Spring-managed beans as an external configuration concern. The MessageBroker
transparently handles the process of serialization and deserialization between the Flex AMF data
format and Java.

3.2. Configuring the Remoting Service

The BlazeDS RemotingService has traditionally been configured by the inclusion of a
remoting-config.xml file in the BlazeDS XML configuration. When using only Spring-managed
remoting destinations, this config file can be left out completely as the inclusion of the
message-broker tag in your Spring configuration will cause the RemotingService to be
configured with sensible defaults if none already exists at startup time. The end result is
essentially equivalent to including the following minimal remoting-config.xml in your BlazeDS
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<service id="remoting-service"

class="flex.messaging.services.RemotingService">

<adapters>
<adapter-definition id="java-object"

class="flex.messaging.services.remoting.adapters.JavaAdapter"
default="true"/>

</adapters>

<default-channels>
<channel ref="my-amf"/>

</default-channels>

</service>

Note that this assumes that there is already an equivalent application-wide
default-channels configuration. It is recommended that you set the desired
service-specific channels (see example below) if not relying on an application-wide default
setup. If no application-wide defaults exist, a best guess will be made by configuring the first
available channel from the MessageBroker that uses an AMFEndpoint as the default for the
RemotingService.

If you wish to have more explicit control over the defaults that will be set on the
RemotingService, you can customize them via the remoting-service child element of
the message-broker tag. For example:

<flex:message-broker>
<flex:remoting-service default-adapter-id="my-default-remoting-adapter"

default-channels="my-amf, my-secure-amf" />

Exporting Spring Beans for
Flex Remoting

11

Version 1.0.3.RELEASE 11

</flex:message-broker>

If you have an existing remoting-config.xml for a legacy BlazeDS application, the
RemotingDestinationExporter will be able to work transparently with it, allowing you
to gradually migrate to all Spring-managed remoting destinations.

3.3. Using the remoting-destination Tag

The remoting-destination configuration tag can be used to export existing
Spring-managed services for direct remoting from a Flex client. Given the following Spring bean
definition for a productService bean:

<bean id="productService" class="flex.samples.product.ProductServiceImpl" />

and assuming the existance of a Spring-managed MessageBroker configured via the
message-broker tag, the following top-level remoting-destination tag will expose
the service for remoting to the Flex client as a remote service destination named
productService:

<!-- Expose the productService bean for BlazeDS remoting -->
<flex:remoting-destination ref="productService" />

By default, the remote service destination exposed to the Flex client will use bean name of the
bean being exported as the service id of the destination, but this may be overridden using the
destination-id attribute on the remoting-destination tag.

An alternate way of using the remoting-destination tag is as a child element of an
top-level bean definition. This is even more concise and works well if you don't have a need to
keep your domain-layer bean definitions separate from infrastructure concerns such as Flex
remoting. (Keep in mind that keeping them separate can lead to easier testability of the core
domain layer.) The following achieves the equivalent result to the previous example:

<bean id="productService" class="flex.samples.product.ProductServiceImpl" >
<flex:remoting-destination />

</bean>

The methods that are exposed to be called by the Flex client can be more tightly controlled
through use of the include-methods and exclude-methods attributes of the
remoting-destination tag. The BlazeDS channels over which the destination is exposed
can also be controlled using the channels attribute. (These attributes are available whether
using the top-level or the nested version.) A more extensively customized example would look
something like:

<flex:remoting-destination ref="productService"
include-methods="read, update"
exclude-methods="create, delete"
channels="my-amf, my-secure-amf" />

12 Spring BlazeDS Integration

12
Exporting Spring Beans for

Flex Remoting

The remoting-destination tag is transparently configuring a
RemotingDestinationExporter bean instance for each bean being exported. The
equivalent full bean syntax without the namespace support would be:

<!-- Expose the productService bean for BlazeDS remoting -->
<bean id="product" class="org.springframework.flex.remoting.RemotingDestinationExporter">

<property name="messageBroker" ref="_messageBroker"/>
<property name="service" ref="productService"/>
<property name="destinationId" value="productService"/>
<property name="includeMethods" value="read, update"/>
<property name="excludeMethods" value="create, delete"/>
<property name="channels" value="my-amf, my-secure-amf"/>

</bean>

3.4. Exporting Beans for Remoting with
@RemotingDestination

The @RemotingDestination annotation may be used as an alternative to the XML
remoting-destination tag when using annotation-based Spring configuration.
@RemotingDestination is used at the type level to indicate the class being exported.
@RemotingInclude and @RemotingExclude are used at the method level to mark the
methods that should be included and excluded for remoting.

The following example illustrates the productService bean configured exclusively through
annotations:

package flex.samples.product;

import org.springframework.flex.remoting.RemotingDestination;
import org.springframework.flex.remoting.RemotingExclude;
import org.springframework.flex.remoting.RemotingInclude;
import org.springframework.stereotype.Service;

@Service("productService")
@RemotingDestination(channels={"my-amf","my-secure-amf"})
public class ProductServiceImpl implements ProductService {

@RemotingInclude
public Product read(String id) {

...
}

@RemotingExclude
public Product create(Product product){

...
}

@RemotingInclude
public Product update(Product product){

...
}

@RemotingExclude
public void delete(Product product) {

...
}

}

Exporting Spring Beans for
Flex Remoting

13

Version 1.0.3.RELEASE 13

14 Spring BlazeDS Integration

14
Exporting Spring Beans for

Flex Remoting

4. Securing BlazeDS Destinations with
Spring Security

4.1. Introduction

Spring Security provides an extremely flexible alternative to the container-based security support
provided out-of-the-box with BlazeDS. Spring BlazeDS Integration provides explicit integration
support for incorporating Spring Security smoothly into your Flex/BlazeDS application. Spring
Security provides a wealth of different configuration options, but rather than go into the many
different combinations here, we'll leave most of that to the Spring Security documentation.

As of version 1.0.2, Spring BlazeDS Integration also supports both Spring Security versions 2
and 3. The Spring Security version being used will be detected at startup time and the proper
integration support automatically installed. Note that if you were previously
customizing/extending any of the classes in the org.springframework.flex.security package, you
will need to switch to the versions in the org.springframework.flex.security3 package in order to
be compatible with Spring Security 3.

A simple Spring Security 2 configuration

Here is a simple Spring Security starting configuration for use in conjunction with the explicit
integration features provided by Spring BlazeDS Integration that should be a solid starting point
for securing a typical Flex application:

<beans:beans xmlns="http://www.springframework.org/schema/security"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-2.0.4.xsd">

<http entry-point-ref="preAuthenticatedEntryPoint" />

<beans:bean id="preAuthenticatedEntryPoint"
class="org.springframework.security.ui.preauth.PreAuthenticatedProcessingFilterEntryPoint" />

<authentication-provider>
<user-service>

<user name="jeremy" password="atlanta" authorities="ROLE_USER, ROLE_ADMIN" />
<user name="keith" password="melbourne" authorities="ROLE_USER" />

</user-service>
</authentication-provider>

</beans:beans>

With a typical Flex application, this approach is preferred to using Spring Security's auto-config
setup. Auto-config sets up a number of features that typically are not needed with a Flex
application. For instance, auto-config sets up a default intercept-url entry that requires
authentication for all URL paths within the application. This does not work well for the needs of
a typical BlazeDS setup as it would result in the server returning a 403 response code for
un-authenticated calls to BlazeDS endpoints which the Flex client does not handle gracefully.

Securing BlazeDS Destinations
with Spring Security

15

Version 1.0.3.RELEASE 15

(See Securing BlazeDS Channels by Endpoint URL Path for an alternative to intercept-url
that generates proper AMF responses for the Flex client.) It is recommended to start simple as in
this example, and add the additional features as needed.

A simple Spring Security 3 configuration

Here is an equivalent starting configuration using the Spring Security 3 schema:

<beans:beans xmlns="http://www.springframework.org/schema/security"
xmlns:beans="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/security http://www.springframework.org/schema/security/spring-security-3.0.xsd">

<http entry-point-ref="entryPoint">
<anonymous enabled="false"/>

</http>

<beans:bean id="entryPoint" class="org.springframework.security.web.authentication.Http403ForbiddenEntryPoint"/>

<authentication-manager>
<authentication-provider>

<user-service>
<user name="john" password="john" authorities="ROLE_USER" />
<user name="admin" password="admin" authorities="ROLE_USER, ROLE_ADMIN" />
<user name="guest" password="guest" authorities="ROLE_GUEST" />
</user-service>

</authentication-provider>
</authentication-manager>

</beans:beans>

Enabling the Spring Security filter chain in web.xml

For a typical setup with Spring Security, it is critical to remember to enable the Spring Security
filter chain by adding the appropriate entry to web.xml:

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

We will assume the above configuration is in place for the remainder of the examples in this
chapter. For additional details on the many options available in configuring and using Spring
Security, please refer to that project's documentation.

4.2. Configuring the Spring Security Integration

Spring Security integration is enabled through the secured child element of the
message-broker tag. The simplest possible configuration would be:

<flex:message-broker>
<flex:secured />

</flex:message-broker>

16 Spring BlazeDS Integration

16
Securing BlazeDS Destinations

with Spring Security

http://static.springsource.org/spring-security/site/reference.html

This enables the basic security features. A special BlazeDS LoginCommand implementation is
automatically installed that enables ChannelSet.login and ChannelSet.logout requests to integrate
with Spring Security's Authorization mechanisms. Additionally, the special LoginCommand
enables Spring Security granted authorities to be referenced in BlazeDS XML security
constraints. For example, if we were using a traditional BlazeDS remoting destination defined in
remoting-config.xml, we could have something like the following:

<destination id="productService">
...
<security>

<security-constraint>
<auth-method>Custom</auth-method>
<roles>

<role>ROLE_USER</role>
</roles>

</security-constraint>
</security>

</destination>

As you can see, we are referencing the "ROLE_USER" authority from our simple Spring
Security setup. The invocation of this remote destination would cause the provided
LoginCommand to be invoked to both verify that the user is logged in and to check that they
have the appropriate role. Violation of either will result in an exception being thrown by Spring
Security.

Accessing User Details

When using the ChannelSet.login API call from the Flex client with Spring Security integration
enabled, the resulting ResponseEvent fired client-side upon successful completion will contain
additional information that can be inspected about the current user. The name and authorities will
be extracted from the Authentication object and added to the body of the response message. This
information, for example, can then be used to conditionally display different portions of the UI
based on the user's identity and granted roles:

var token:AsyncToken = myChannelSet.login("jeremy","atlanta");
token.addResponder(

new AsyncResponder(
function(event:ResultEvent, token:Object = null):void {

if (event.result.authorities.indexOf("ROLE_ADMIN") >= 0) {
displayAdminPanel(event.result.name);

} else {
displayUserPanel(event.result.name);

}
},
function(event:FaultEvent, token:Object = null):void {

displayErrorMessage("Login Failed: "+event.fault.faultString);
}

)
);

Security Exception Translation

Another feature that is automatically installed when the secured tag is used is automatic
exception translation from any thrown SpringSecurityException to the proper BlazeDS

Securing BlazeDS Destinations
with Spring Security

17

Version 1.0.3.RELEASE 17

SecurityException. The exceptions are caught and translated at the proper point in the execution
chain such that it will result in the proper AMF error message being serialized and sent back to
the client.

This is alternative to the normal Spring Security behavior where a filter in the chain catches the
exception and sends back a corresponding HTTP status code. The problem with sending back
HTTP status codes other than 200 is that this causes the Flex client to throw a generic and rather
unhelpful exception, and often the status code can't be determined from the Flex client. Sending
back specific AMF error messages instead causes a FaultEvent to be thrown client-side that
contains the proper security fault code that can then be reasoned on and appropriate action can be
taken. This behavior is equivalent to that of the out-of-the-box container-based security
mechanisms provided with BlazeDS, so the programming model client-side remains the same.

secured Configuration Attributes

The secured tag has several additional attributes that allow further customization.

If you are not using Spring Security's default bean ids for the AuthenticationManager or
AccessDecisionManager, you can specify your custom bean references using the
corresponding authentication-manager and access-decision-manager attributes
respectively on the secured tag.

The configuration of the provided LoginCommand can be further controlled via the secured
tag. The invalidate-flex-session attribute controls whether the current Flex session is
invalidated when the logout() method is called on the LoginCommand, and defaults to
"true" if not specified. The per-client-authentication attribute turns BlazeDS's
per-client authentication mode on when true, and defaults to "false" if not specified. Enabling
per-client authentication will cause the Security context to no longer be stored in the session
between requests and thus will prevent the use of any Spring Security filters that rely on the
Security Context being available in the session, but the authentication and authorization
integration will otherwise work as expected. (See the BlazeDS docs for further information on
the difference between per-session and per-client authentication.)

4.3. Configuring Endpoint and Destination Security

The Spring Security integration allows flexible control over how you secure your application.
You can secure BlazeDS endpoints in a manner similar to Spring Security's traditional URL
security, and you can secure your Spring services using the many existing object security
mechanisms of Spring Security just as if you were writing a traditional web application.

Securing Specific BlazeDS Channels

You can set security constraints on specific BlazeDS channels using the secured-channel
child element of the secured tag. For example:

<flex:message-broker>

18 Spring BlazeDS Integration

18
Securing BlazeDS Destinations

with Spring Security

<flex:secured>
<flex:secured-channel channel="my-amf" access="ROLE_USER" />

</flex:secured>
</flex:message-broker>

This results in any request being routed to the "my-amf" channel to require the user to be logged
in and to have the "ROLE_USER" authority. If either of those is violated, a FaultEvent will
be signaled on the client.

Securing BlazeDS Channels by Endpoint URL Path

You can set security constraints on multiple BlazeDS channels at once using the
secured-endpoint-path child element of the secured tag. In this case you specify a
URL pattern to be secured instead of a specific channel id. For example:

<flex:message-broker>
<flex:secured>

<flex:secured-endpoint-path pattern="**/messagebroker/**" access="ROLE_USER" />
</flex:secured>

</flex:message-broker>

This results in any request being routed to any channel whose endpoint URL contains
"/messagebroker/" in the path to require the user to be logged in and to have the "ROLE_USER"
authority. If either of those is violated, a FaultEvent will be signaled on the client.

Securing Exported Spring Services

Earlier in this chapter you saw an example of using the BlazeDS XML configuration to secure a
BlazeDS-managed destination. Since most of the time you will instead be defining destinations
by exporting Spring beans using the remoting-destinationtag, an alternate approach to
securing destinations is needed. This is where Spring Security comes in, as all of its existing
authorization mechanisms should "just work" when security integration is enabled using the
secured tag.

One of the major strengths of Spring Security is the multiple levels of granularity it provides you
when securing your Spring services. You can go from securing your entire service layer in one
concise statement:

<global-method-security>
<protect-pointcut expression="execution(* com.mycompany.*Service.*(..))" access="ROLE_USER"/>

</global-method-security>

to controlling access in a more fine-grained manner at the method layer using XML:

<bean id="myService" class="com.mycompany.myapp.MyService">
<flex:remoting-destination/>

<security:intercept-methods>
<security:protect method="set*" access="ROLE_ADMIN" />
<security:protect method="get*" access="ROLE_ADMIN,ROLE_USER" />
<security:protect method="doSomething" access="ROLE_USER" />

</security:intercept-methods>
</bean>

Securing BlazeDS Destinations
with Spring Security

19

Version 1.0.3.RELEASE 19

to using a combination of XML and annotations:

<security:global-method-security secured-annotations="enabled" jsr250-annotations="enabled"/>
...
<flex:remoting-destination ref="myBankServiceImpl" />

public interface BankService {

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")
public Account readAccount(Long id);

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")
public Account[] findAccounts();

@Secured("ROLE_TELLER")
public Account post(Account account, double amount);

}

to even more fine-grained ACL-based domain object permissions. For more details on the
options available, see the Spring Security documentation.

20 Spring BlazeDS Integration

20
Securing BlazeDS Destinations

with Spring Security

5. Integration with the BlazeDS Message
Service

5.1. Introduction

The BlazeDS MessageService provides a common abstraction for asynchronous messaging
style communication that is ultimately agnostic to the messaging protocol being used on the
server side. Messages can be passed exclusively between Flex clients, from Java POJOs to
subscribed Flex clients, from Flex clients to POJO message handlers, or between just about any
combination thereof. Using the Spring-managed MessageBroker enables support for using
BlazeDS-native AMF messaging, JMS messaging based on Spring's proven and simple JMS
abstractions, or messaging using Spring Integration's MessageChannel abstraction, all from a
common programming model.

The same Consumer and Producer APIs are used to interact with message destinations from
the Flex client, regardless of which underlying messaging protocol is being used on the server.
As such, this chapter will focus mainly on setting up and using the various message destination
types on the server side. For more details on how to use the Consumer and Producer APIs in
the client, see the BlazeDS documentation.

5.2. Configuring the Message Service

The BlazeDS MessageService has traditionally been configured by the inclusion of a
messaging-config.xml file in the BlazeDS XML configuration. When using only
Spring-managed message destinations, this config file can be left out completely as the inclusion
of the message-broker tag in your Spring configuration will cause the MessageService
to be configured with sensible defaults if none already exists at startup time. The end result is
essentially equivalent to including the following minimal messaging-config.xml in your BlazeDS
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<service id="remoting-service"

class="flex.messaging.services.MessageService">

<adapters>
<adapter-definition id="actionscript"

class="flex.messaging.services.messaging.adapters.ActionScriptAdapter"
default="true"/>

</adapters>

<default-channels>
<channel ref="my-polling-amf"/>

</default-channels>

</service>

Note that this assumes that there is already an equivalent application-wide
default-channels configuration. It is recommended that you set the desired
service-specific channels (see example below) if not relying on an application-wide default

Integration with the BlazeDS
Message Service

21

Version 1.0.3.RELEASE 21

setup. If no application-wide defaults exist, a best guess will be made by configuring the first
available channel from the MessageBroker that uses an AMFEndpoint with polling enabled
as the default for the MessageService.

If you wish to have more explicit control over the defaults that will be set on the
MessageService, you can customize them via the message-service child element of
the message-broker tag. For example:

<flex:message-broker>
<flex:message-service default-adapter-id="my-default-messaging-adapter"

default-channels="my-polling-amf" />
</flex:message-broker>

If you have an existing messaging-config.xml for a legacy BlazeDS application, the
MessageDestinationFactory will be able to work transparently with it, allowing you to
gradually migrate to all Spring-managed messaging destinations.

5.3. Using AMF Message Destinations

For simple messaging needs where there are no requirements for message durability, transaction
support, or advanced routing logic, the BlazeDS-native AMF-based message destination is the
ideal choice. These destinations can be fully configured in a Spring application context using the
message-destination XML namespace tag. For example, assuming a Spring-managed
MessageBroker has been configured, all that is needed to set up a basic destination named
"event-bus" with default settings is the following:

<flex:message-destination id="event-bus" />

This sets up a destination to use the BlazeDS ActionScriptAdapter to handle incoming
messages. The settings of the destination can be further customized through the various attributes
of the message-destination tag. Here is an example of the "event-bus" destination
configured with most of the available attributes:

<flex:message-destination id="event-bus"
message-broker="messageServiceBroker"
channels="my-polling-amf, my-secure-amf"
allow-subtopics="true"
cluster-message-routing="broadcast"
message-time-to-live="1"
send-security-constraint="fooConstraint"
subscribe-security-constraint="barConstraint"
subscription-timeout-minutes="1"
subtopic-separator="/"
throttle-inbound-max-frequency="500"
throttle-inbound-policy="ERROR"
throttle-outbound-max-frequency="500"
throttle-outbound-policy="IGNORE" />

The message-broker attribute is a reference to the id of a Spring-managed
MessageBroker. The channels attribute allows you to specify a comma-delimited list of
the BlazeDS channels to be used (in order of preference) for this destination. The remaining
attributes correspond to the options available via the network and server settings when
configuring a message destination in the BlazeDS-specific XML. Each of these additional

22 Spring BlazeDS Integration

22
Integration with the BlazeDS

Message Service

attributes is documented in the XSD to provide live code-completion assistance. For additional
details on their usage, see the BlazeDS documentation. The message-destination tag
serves as a base for the jms-message-destination and
integration-message-destination tags so that the same configuration options are
available no matter the type of the underlying MessagingAdapter.

The only attribute available on the message-destination tag that is not available in the
JMS and Spring Integration implementations is the service-adapter attribute, which can be
used to provide a custom ServiceAdapter via a reference to a
ManageableComponentFactoryBean. This can be used to provide integration with
additional messaging protocols not directly supported by Spring BlazeDS Integration. See
Providing Custom Service Adapters for additional information on using the
ManageableComponentFactoryBean.

5.4. Using JMS Message Destinations

For integration with JMS, a special JmsAdapter is provided that internally makes use of
Spring's JmsTemplate, DestinationResolver,
DefaultMessageListenerContainer and other such JMS abstractions for simplified
interaction with JMS resources. The jms-message-destination XML namespace tag is
used to expose JMS destinations as BlazeDS message destinations. The minimal attributes that
must be specified are the destination id and exactly one of jms-destination,
queue-name, or topic-name. A JMS ConnectionFactory reference is also required,
but does not have to be explicitly specified if there is already one configured in the current
application context with an id of "connectionFactory". For example, to configure a BlazeDS
message destination named "chatIn" that uses a Spring-managed ActiveMQ JMS queue with a
local ActiveMQ installation:

<bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616"/>

</bean>

<bean id="chatInQueue" class="org.apache.activemq.command.ActiveMQQueue">
<constructor-arg value="queue.flex.chat.in"/>

</bean>

<flex:jms-message-destination id="chatIn" jms-destination="chatInQueue" />

Using queue-name or topic-name will cause the destination to be resolved using a Spring
DestinationResolver. The destination-resolver, message-converter, and
transaction-manager attributes may be used to set custom references to a
Spring-managed DestinationResolver, MessageConverter, or
TransactionManager respectively.

5.5. Using Spring Integration Message Destinations

For routing messages with Spring Integration, a special IntegrationAdapter is provided
that is able to send/receive messages via a MessageChannel. This is especially useful when
you have more complex routing needs for your messages, such as connecting to email or FTP

Integration with the BlazeDS
Message Service

23

Version 1.0.3.RELEASE 23

endpoints. The integration-message-destination XML namespace tag is used to
expose a Spring Integration MessageChannel as a BlazeDS message destination. For
example, to configure a BlazeDS message destination named "chatOut" that uses a Spring
Integration PublishSubscribeChannel:

<integration:publish-subscribe-channel id="chatOutPubSubChannel" />

<flex:integration-message-destination id="chatOut" message-channel="chatOutPubSubChannel" />

5.6. Sending AMF Messages with the
MessageTemplate

A convenient MessageTemplate helper class is provided that allows you to push messages to
any BlazeDS MessageDestination from a simple POJO. This provides a nice abstraction
over push style messaging that hides away the details of the underlying messaging protocol.
Whether using a simple AMF based destination or full-blown JMS, etc., the use of the
MessageTemplate stays the same. The only thing the MessageTemplate requires is a
reference to a Spring-managed MessageBroker. If the MessageTemplate is configured as
a Spring bean, it will try and auto-detect the MessageBroker from its application context.

As an example of how the MessageTemplate could be used, suppose we have a RESTful
travel application that has a Flex-based admin console but also exposes an API over HTTP. To
give the admin console a "live" view of the data, we want to push updates to it anytime a new
hotel booking is created. Given the following setup in our application context:

<flex:message-broker />

<bean id="defaultMessageTemplate" class="org.springframework.flex.messaging.MessageTemplate" />

<flex:message-destination id="bookingUpdates" />

and assuming the Flex client is subscribed to the "bookingUpdates" destination, this could be
achieved with the following controller code:

@Controller
public class BookingController {

private MessageTemplate template;

private BookingService bookingService;

@RequestMapping(value="/bookings", method=RequestMethod.POST)
public String createBooking(Booking booking){

booking = bookingService.saveBooking(booking);
template.send("bookingUpdates", booking);
return "redirect:/bookings/"+booking.getId();

}

@Autowired
public void setTemplate(MessageTemplate template) {

this.template = template;
}

@Autowired
public void setBookingService(BookingService bookingService) {

this.bookingService = bookingService;
}

}

24 Spring BlazeDS Integration

24
Integration with the BlazeDS

Message Service

6. Building and Running the Spring BlazeDS
Integration Samples

6.1. Introduction

Included in the project distribution is a collection of samples called the Spring BlazeDS
Integration Test Drive. This samples project is set up to be built with Maven and then imported
into Eclipse for running the application via WTP.

Building the Test Drive

The sample build requires Maven 2.0.9 or greater. Because the build compiles several seperate
Flex and AIR projects, it can require setting the MAVEN_OPTS variable for your environment
to allocate more memory than the default. The setting we find works well is:

MAVEN_OPTS="-Xms256m -Xmx512m -XX:PermSize=128m -XX:MaxPermSize=256m"

Once your Maven environment is set up correctly, cd to {project distribution
root}/spring-flex-samples/spring-flex-testdrive and execute:

mvn clean install

This will first build all of the individual Flex projects and then finally assemble the 'testdrive'
WAR project.

Building the Test Drive to use Spring 3 and Spring Security 3

As of release 1.0.2 of Spring BlazeDS Integration, the Test Drive's Maven build includes an
additional profile for building the samples to use Spring 3 and Spring Security 3. To build the
samples using this profile, execute:

mvn clean install -P spring_3_0

Download the Pre-packaged Test Drive

As a convenience for anyone who is adverse to using Maven and just wants to get the Test Drive
up and running quickly in Eclipse, pre-packaged builds of the Test Drive can be downloaded
directly via the following links:

Building and Running the
Spring BlazeDS Integration

25

Version 1.0.3.RELEASE 25

• Spring BlazeDS Integration Test Drive with Spring 2.5.6

• Spring BlazeDS Integration Test Drive with Spring 3.0

Unzip the download and then follow the directions below for importing into Eclipse, substituting
the unzipped directory in place of the {project distribution
root}/spring-flex-samples/spring-flex-testdrive path.

Importing and Running the Test Drive in Eclipse

The individual Test Drive projects are pre-configured to be imported in Eclipse and run with
WTP. (There are a number of individual projects, so you may want to consider creating a fresh
workspace or at least create a new working set to manage the projects.) We recommend using the
free SpringSource Tool Suite to work with the samples so that you can take full advantage of its
extensive Spring support, but any version of Eclipse 3.4+ with WTP should work.

To import the samples, select File->Import...->General->Existing Projects into Workspace and
navigate to the {project distribution root}/spring-flex-samples/spring-flex-testdrive directory and
import all of the projects found.

There is an individual project for each Flex sample, and one WTP project for the 'testdrive'
WAR. Once the projects have been imported, you can start the web application by selecting the
'testdrive' project, right-clicking and selecting Run As->Run on Server. The samples have been
most thoroughly tested in Tomcat 6.0, but should run in any Servlet 2.4 container that WTP
supports. Once the application has started successfully, you can access the samples walk-through
at http://localhost:8080/testdrive (If running on a server other than Tomcat, change the port
number as needed.)

26 Spring BlazeDS Integration

26
Building and Running the

Spring BlazeDS Integration

http://static.springsource.org/spring-flex/docs/1.0.x/samples/spring-flex-testdrive.zip
http://static.springsource.org/spring-flex/docs/1.0.x/samples/spring-flex-testdrive-spring3.zip
http://www.springsource.com/products/sts
http://localhost:8080/testdrive

	Spring BlazeDS Integration Reference Guide
	Table of Contents
	1. Spring BlazeDS Integration Overview
	1.1. Background
	1.2. What Spring BlazeDS Integration requires to run
	1.3. Where to get support

	2. Configuring and Using the BlazeDS MessageBroker with Spring
	2.1. Introduction
	2.2. Configuring the Spring DispatcherServlet
	2.3. Configuring the MessageBroker in Spring
	2.4. Mapping Requests to the MessageBroker
	2.5. Using Flex clients alongside Spring MVC Controllers
	2.6. Using Spring-managed Destinations from the Flex Client
	2.7. Advanced MessageBroker Customization
	2.8. Using Custom Exception Translators
	2.9. Using Custom Message Interceptors
	

	2.10. Providing Custom Service Adapters

	3. Exporting Spring Beans for Flex Remoting
	3.1. Introduction
	3.2. Configuring the Remoting Service
	3.3. Using the remoting-destination Tag
	3.4. Exporting Beans for Remoting with @RemotingDestination

	4. Securing BlazeDS Destinations with Spring Security
	4.1. Introduction
	A simple Spring Security 2 configuration
	A simple Spring Security 3 configuration
	Enabling the Spring Security filter chain in web.xml

	4.2. Configuring the Spring Security Integration
	Accessing User Details
	Security Exception Translation
	secured Configuration Attributes

	4.3. Configuring Endpoint and Destination Security
	Securing Specific BlazeDS Channels
	Securing BlazeDS Channels by Endpoint URL Path
	Securing Exported Spring Services

	5. Integration with the BlazeDS Message Service
	5.1. Introduction
	5.2. Configuring the Message Service
	5.3. Using AMF Message Destinations
	5.4. Using JMS Message Destinations
	5.5. Using Spring Integration Message Destinations
	5.6. Sending AMF Messages with the MessageTemplate

	6. Building and Running the Spring BlazeDS Integration Samples
	6.1. Introduction
	Building the Test Drive
	Building the Test Drive to use Spring 3 and Spring Security 3
	Download the Pre-packaged Test Drive
	Importing and Running the Test Drive in Eclipse

