Spring BlazeDS Integration Reference Guide

Version 1.6.0.RC1

October 2014

Jeremy Grelle (Pivotal)

Copyright © 2010-2011

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

1. Spring BlazeDS INtegration OVEINVIEWcciciiiiiiiiiunnnnnnnnnnnnnnnnsnnnsasnsnnnsnsnnnnnssnnsnsnsnsnnnsnsnsnsnnns 1

O 2 7= (o | {011 o PRSPPI 1

1.2. Minimum major dependency versions Spring BlazeDS Integration 1.6 requiresto run 1

1.3. Minimum major dependency versions required by optional featurescccccvveeeeeeeniiinnne, 1

2. Configuring and Using the BlazeDS MessageBroker With SPring ..o 2
P28 R 1 1o o L o1 o o PP 2

2.2. Configuring the Spring DiSPaiCherSEIVIELccuveiiiiiiiiie e 2

2.3. Configuring the MessageBroKer in SPringcoeeeeoiiiiiiiiieee e 2

2.4. Mapping Requests to the MeSsageBIOKEScoovviiiiiiiiiiiiiece e 3

2.5. Using Flex clients alongside Spring MV C CONtrollersccuevieiiiiiieeiiieiee e 4

2.6. Using Spring-managed Destinations fromthe Flex Clientcccooveeeeeiiiiiiieecee e, 6

2.7. Advanced MessageBroker CUSIOMIZALIONcuuvieiiiiiiiee it 6

2.8. Using Custom EXception Translalorsccoooeveiiiiee i, 7

2.9. Using Custom MeSSage INTEICEPLOIScoiuueiiieiiiiieeeeiieie e et et e e e e e e snne e e e nees 7
2.9.1. Resource Handling with Custom Message INterceptorseevvveciieieeeeeeeneeciiieeeenn. 8

2.9.2. Customizing the Message Interceptor Chaincccciviiieriee e 8

2.10. Providing CustOm ServiCe AQADLENSoueeiieiiiiiie et 9

3. Exporting Spring Beans for FIEX REMOLINGovviiiiiiii e 10
R0 50 I 1 0140 [o R 10

3.2. Configuring the REMOLING SEMVICE «..cvvviiiiiiiiieeeeeeeeeeeee ettt e e e e e 10

3.3. Usingtherenot i ng-desti nati 0n TAQ ..ceeiiueeieiiiiiiee et 11

3.4. Exporting Beans for Remoting with @RemotingDestinationcccceevvivieeiniiieeeniiieeeens 12
3.4.1. Supplying Externalized Channel 1dSccccvvieiiieeiiiiie e 12

4. Communicating with RESTful Spring MV C Endpoints using AMFooiiiiiiiiiec e 14
0 I g1 oo (1 o 1 o PP UPSRRTRRI 14

4.2, USING AMEVIBIV ittt et e e et e e et e e e e e e e e e nnbneeeean 14

4.3. Using AMfHIPM ESSAQECONVEITESceeviiiiiiiiiiieieeeeeeeeeeeee e e e ee e e e ee e e e e e e e e e e e eeee e e e e eeeeeeeeeees 15

4.4. Interacting with RESTful AMF Endpoints from the Flex Clientccccovvveeeeiiiciiieeenn. 16

5. ENNANCEA AME SUPPOITeeiieiiiiie ettt ettt e a e et e s e e e e e e e e e e anrreeeeans 17
5.1. CustomiZing AMEF CONVEISIONuvviiiieeeeiiiiiiiiieeeee e e s e eetitee e e e e e e e s s ssaatraeeeaaesessanatrbaeeeaaaeeaaans 17
5.1.1. Configuring AMF Type CONVEISIONc.uvviiiiiiiiieeiiiiiee et e et 17

5.2. Working With HIDEINALE ...t e e e 21
5.2.1. Configuring Hibernate Entity Serialization/Deserialization SUPPOrtccccvvveee... 21

5.3. Using Classpath Scanning for AMF Configurationccccooeeeiii, 21

6. Securing BlazeDS Destinations With Spring SECUMLYvvveiieeeiiiiiiiiee e 23
200 R 1 1 T L o 1 oo USRS 23
6.1.1. A simple Spring Security 3 CONfigUIationcccooiciiiieiieeeiiiiiiiee e 23

6.1.2. Enabling the Spring Security filter chain in Web.Xxmlcccccooiiiiiiiiiieeeee 24

6.2. Configuring the Spring Security Integrationccccoooe i, 24
6.2.1. Using a Custom LOginCOMMENGcooouurieiiiiirie ettt et 25

6.2.2. Accessing User DEailSooooeeiiiiii 25

6.2.3. Security EXCeption Trangationooociiiiiiiie e 25

6.2.4. secur ed Configuration AttriDULESceviiiiiiiiieeii e 26

6.3. Configuring Endpoint and Destination SECUMLYccccviiieeiie e s et e e e 26
6.3.1. Securing Specific BlazeDS Channels ..o 26

6.3.2. Securing BlazeDS Channels by Endpoint URL Pathcco, 27

6.3.3. Securing EXported SPring SEIVICESoocuvviiiiiiiiie e 27

7. Integration with the BlazeDS MESSA0E SEIVICEooiiiiiiiiiiieieiee ettt e 29
4% T [1 (T [F o1 o o I PRSP P R OUPRRPPPPRRN 29

7.2. Configuring the MESSAgE SEIVICEvviiiiiiiiie ettt 29

7.3. USiNg AMF MeSSage DESIINGLIONSceeeeiiiiiiiiiieeee ettt s s e e e e e e e et bne e e e e e e e e 30
7.4.USiNg IMS MESSAgE DESIINGALIONSvvviiiiiiiiie ettt e e e 31

Version 1.6.0.RC1

Spring BlazeDS Integration

7.5. Using Spring Integration Message DESHINGLIONSccuvviieiiiiiieeiiiee e 31

7.6. Sending AMF Messages with the MessageTemplateeeeviveiiiiiiiiiieieee e 31

8. Building and Running the Spring BlazeDS Integration Samplesccoovieieiiiiiiiee e 33
8. L. INEFOTUCTION ...ttt ettt e e e e e e e e s e e e e e e e e e anrneeeeans 33
8.1 MAVEN SELUD ...ttt ettt et e e e e e e e e s e eeeeas 33

8.1.2. Building and RUNNING the TESE DIVceviiiiiiiee e 33

8.1.3. Using BlazeDS 4 With MAVENccoeeeiiiiiiiieiiee ettt e s 33

8.1.4. Importing and Running the Test Drive in EClIPSEovviiiiiiiiiiiiee e 34

Version 1.6.0.RC1

Chapter 1. Spring BlazeDS Integration Overview

1.1. Background

Spring has always aimed to be agnostic to the client technologies being used to access its core services,
intentionally leaving options open and letting the community drive the demand for any new first-class
integration solutions to be added to the Spring project portfolio. Spring BlazeDS Integration is an answer to the
commmunity demand for a top-level solution for building Spring-powered Rich Internet Applications using
Adobe Flex for the client-side technol ogy.

BlazeDS is an open source project from Adobe that provides the remoting and messaging foundation for
connecting a Flex-based front-end to Java back-end services. Though it has previously been possible to use
BlazeDS to connect to Spring-managed services, it has not been in a way that feels "natural" to a Spring
developer, requiring the extra burden of having to maintain a separate BlazeDS xml configuration. Spring
BlazeDS Integration turns the tables by making the BlazeDS MessageBroker a Spring-managed object, opening
up the pathways to a more extensive integration that follows "the Spring way".

1.2. Minimum major dependency versions Spring BlazeDS
Integration 1.6 requires to run

Java 6

Spring 4.0

Adobe BlazeDS 4.0

1.3. Minimum major dependency versions required by optional
features

Spring Security 3.0

Spring Integration 2.0

Hibernate 3.5

Version 1.6.0.RC1 1

http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/

Chapter 2. Configuring and Using the BlazeDS
MessageBroker with Spring

2.1. Introduction

The central component that must be configured to use Spring BlazeDS Integration is the MessageBr oker . HTTP
messages from the Flex client will be routed through the Spring bi spat cher Servl et to the Spring-managed
MessageBroker. There is no need to configure the BlazeDS MessageBroker Servl et when using the
Spring-managed MessageBr oker .

2.2. Configuring the Spring DispatcherServlet

The DispatcherServiet must be configured as norma in webxml to bootstrap a Spring
WebA pplicationContext. For example:

<l-- The front controller of this Spring Web application, responsible for handling all application
requests -->
<servl et >

<servl et-nanme>Spri ng M/C Di spat cher Servlet</servlet-nanme>
<servl et-cl ass>org. spri ngfranmewor k. web. servl et. Di spat cher Servl et </ servl et -cl ass>
<i ni t-parane
<par am nane>cont ext Confi gLocat i on</ par am nane>
<par am val ue>/ WEB- | NF/ conf i g/ web- appl i cati on-confi g. xm </ param val ue>
</init-paran
<l oad- on- st art up>1</1| oad- on-start up>
</servl et>

2.3. Configuring the MessageBroker in Spring

A simplified Spring XML config namespace is provided for configuring the MessageBroker in your
WebA pplicationContext. To use the namespace support you must add the schema location in your Spring XML
config files. A typical config will look something like the following:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"
xm ns: fl ex="http://ww. springfranmework. org/ schenma/ f| ex"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocat i on="
http://ww. springfranmework. or g/ scherma/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranework. org/ schena/ f| ex
http://ww. springframework. org/ schema/ fl ex/spring-flex.xsd">

</ beans>

This makes the Spring BlazeDS Integration configuration tags available under the f1 ex hamespace in your
configuration files. The above setup will be assumed for the rest of the configuration examples to follow. For
the full detail of every attribute and tag available in the config namespace, be sure to refer to the
spring-flex-1.0.xsd as every element and attribute is fully documented there. Using an XSD-aware XML editor
such as the one in Eclipse should bring up the documentation automatically as you type.

Version 1.6.0.RC1 2

Configuring and Using the BlazeDS MessageBroker with

At a minimum, the MessageBrokerFactoryBean must be configured as a bean in your Spring
WebA pplicationContext in order to bootstrap the MessageBr oker , along with a MessageBr oker Handl er Adapt er
and an appropriate Handl er Mappi ng (usually a Si npl eUr | Handl er Mappi ng) tO route incoming requests to the
Spring-managed MessageBr oker .

These beans will be registered automatically by using the provided nessage- br oker tag in your bean definition
file. For example, in its smplest form:

<f | ex: message- br oker/ >

This will set up the MessageBroker and necessary supporting infrastructure using sensible defaults. The
defaults can be overriden using the provided attributes of the nessage- br oker tag and its associated child
elements. For example, the default location of the BlazeDS XML configuration file
(/WEB-INF/flex/services-config.xml) can be overridden using the services-config-path attribute. The
MessageBr oker Fact or yBean USES Spring's Resour ceLoader abstraction, so that typical Spring resource paths
may be used. For example, to load the configuration from the application's classpath:

<fl ex: message- br oker services-confi g-pat h="cl asspat h*: servi ces-confi g. xm "

The equivalent MessageBr oker Fact or yBean definition using vanilla Spring configuration would be:

<I-- Bootstraps and exposes the Bl azeDS MessageBr oker -->

<bean id="_nessageBroker" class="org. springfranmework.flex.core. MessageBr oker Fact oryBean" >
<property name="servi cesConfigPath" val ue="cl asspat h*: servi ces-config.xm" />

</ bean>

Note especially that with the nessage-broker tag, it is not necessary to assign a custom id to the
MessageBroker, and it isin fact discouraged so that you won't have to continually reference it later. The only
reason you would ever need to provide a custom id is if you were bootstrapping more than one MessageBr oker
in the same WebA pplicationContext.

2.4. Mapping Requests to the MessageBroker

To properly route incoming requests to the Spring-managed MessageBroker, request mapping must be
configured in three places:

1. Di spat cher Servl et mapping in web.xml
2. Handl er Mappi ng in the Spring WebA pplicationContext
3. Channel definitionsin the BlazeDS services-config.xml

The simplest request mapping scenario is when the Flex front-end is the only client type for the application. In
this case you can just map /messagebroker as the top-level path for requests. The mapping in web.xml would
be:

<l-- Map all /nmessagbroker requests to the DispatcherServlet for handling -->
<servl et - mappi ng>

Version 1.6.0.RC1 3

Spring

<servl et-nane>Spri ng M/C Di spat cher Servl et </servl et-nanme>
<url - patt ern>/ messagebr oker/*</ url - pattern>
</ servl et - mappi ng>

When using the nessage- br oker config tag, a Si npl eUr | Handl er Mappi ng is installed that by default maps all
incoming Di spat cher Servl et requests to the Spring-managed MessageBroker using a /*path pattern. The
default mapping can be overridden by providing one or more nappi ng child elements. If you want to provide
your own Handl erMapping bean configuration, you can disable the default using the
di sabl e-def aul t - mappi ng aitribute of the nessage-broker tag. The order of the instaled
Si npl eUr | Handl er Mappi ng can be set (for complex scenarios where multiple handler mapping types are
installed in the same context) using the mappi ng- or der attribute.

The si npl eUr | Handl er Mappi ng in the Spring WebA pplicationContext maps all requests to the Spring-managed
MessageBr oker Via the MessageBr oker Handl er Adapt er . The default setup installed by the nessage- br oker
config tag is equivalent to the following bean definitions:

<l-- Maps request paths at /* to the Bl azeDS MessageBr oker -->
<bean cl ass="org. springfranmework. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property name="mappi ngs">

<val ue>
/ *=_messageBr oker
</ val ue>
</ property>
</ bean>
<I-- Dispatches requests mapped to a MessageBroker -->

<bean cl ass="org. springfranmework. fl ex. servl et. MessageBr oker Handl er Adapter"/>

Channel definitions in the BlazeDS services-config.xml must correspond to the chosen mapping. For example,
to set up atypical AMF channel in BlazeDS that matches the above mapping strategy:

<channel -definition id="ny-anf" class="nx.nessagi ng. channel s. AMFChannel ">
<endpoi nt url="http://{server.nane}: {server.port}/{context.root}/nmessagebroker/anf"
cl ass="fl ex. nessagi ng. endpoi nt s. AMFEndpoi nt"/ >
<properties>
<pol | i ng- enabl ed>f al se</ pol | i ng- enabl ed>
</ properties>
</ channel - defi ni ti on>

See the BlazeDS documentation for more information on configuring communication channels in
services-config.xml.

2.5. Using Flex clients alongside Spring MVC Controllers

It could often be the case that your application needs to serve more than just Flex-based clients. For example,
you may be constructing a RESTful architecture that is meant to serve multiple client-types. You could
potentially even be consuming RESTful endpoints using the Flex HTTPService component. Spring MVC's
controller model provides a simple, flexible means to create such RESTful endpoints. In these sorts of hybrid
web application secenarios, you will need to consider an alternate mapping strategy.

The simplest approach is to use a hierarchical application context with multiple bi spat cher Servl et s. In this
approach, you configure your main application layer (services, security, supporting infrastructure, etc) in a
parent context loaded via the Cont ext Loader Li st ener, and then configure all aspects of your Spring MVC
controllers in one child Di spat cher Servl et context, and all aspects specific to your Flex client in a separate

Version 1.6.0.RC1 4

http://livedocs.adobe.com/blazeds/1/blazeds_devguide/

Configuring and Using the BlazeDS MessageBroker with

child Di spat cher Ser vl et context. This approach could look as follows in web.xml:

<cont ext - par an>
<par am nane>cont ext Confi gLocat i on</ par am nane>
<par am val ue>
/ VEEB- | NF/ spri ng/ *- cont ext . xn
</ par am val ue>
</ cont ext - par an®

<listener>
<l istener-class>org. springfranework. web. cont ext. Cont ext Loader Li stener</|i stener-class>
</l|istener>

<servl et >
<servl et - name>f | ex</ servl et - nane>
<servl et-cl ass>org. spri ngfranmewor k. web. servl et. Di spat cher Servl et </ servl et -cl ass>
<l oad- on- st art up>1</| oad- on- st art up>

</ servl et >

<servl et - mappi ng>

<servl et - nanme>f | ex</ servl et - nane>

<url - patt ern>/ messagebroker/*</url - pattern>
</ servl et - mappi ng>

<servl et >
<servl et - nanme>spri ng- mc</ servl et - nane>
<servl et -cl ass>org. spri ngfranmewor k. web. servl et. Di spat cher Servl et </ servl et -cl ass>
<l oad- on- st art up>1</1| oad- on-start up>

</servl et>

<servl et - mappi ng>
<servl et - nane>spri ng- mc</ servl et - nane>
<url -pattern>/spring/*</url-pattern>

</ servl et - mappi ng>

Here the parent application context is being assembled from a group of filesending in - cont ext . xm contained
in the /weB-1NF/ spring/ directory. The child context for the Flex-specific setup would be built (by
convention) from / VEB- | NF/ f | ex- servl et . xm , and the context for the Spring MV C controllers would be built
from / WEB- | NF/ spri ng- nvc-servl et . xm . This approach provides a nice separation of concerns and will allow
Spring 2.5+ annotated controllers to work using their default configuration.

An alternate approach is to keep things consolidated under one Di spat cher Ser vl et context. The down-side to
this approach is that it requires some additional manual configuration, and you have to modify your mapping
approach accordingly, such as mapping / spri ng/ * to the bi spat cher Ser vl et , mapping / messagebr oker/ * t0
the Spring-managed MessageBr oker Viathe mappi ng XML namespace config tag, and modifying any BlazeDS
channel definitions accordingly. You would override the default mapping strategy of the nessage- br oker tag
asfollows:

<f | ex: nessage- br oker >
<fl ex: mappi ng pattern="/nmessagebroker/*" />
</ fl ex: nessage- br oker >

and you would have to account for the /spring/* mapping in your BlazeDS channel definitions. For example:

<channel -definition id="ny-anf" class="nx.nessagi ng. channel s. AM=Channel ">
<endpoint url="http://{server.nane}: {server.port}/{context.root}/spring/ messagebroker/anf"
cl ass="f| ex. messagi ng. endpoi nt s. AMFEndpoi nt "/ >
<properties>
<pol I i ng- enabl ed>f al se</ pol | i ng- enabl ed>
</ properties>
</ channel - definition>

Version 1.6.0.RC1 5

Spring

In addition to setting up the consolidated mapping strategy, you will also have to manually enable the correct
Handl er Mappi ng and Handl er Adapt er for your Spring MV C controllers as described in the Spring MVC
documentation, due to the fact that alternate Handl er Mappi ng and Handl er Adapt er beans are configured
automatically when using the nessage- br oker tag.

2.6. Using Spring-managed Destinations from the Flex Client

Explicit channel definition is a requirement when using dynamic destinations (meaning any destination that is
added programmatically and not defined in the BlazeDS services-config.xml, i.e. the destinations created by the
renot i ng-destination tag and the various *- nessage- desti nati on tags). See Adobe's documentation for
more detail.

The only way you don't have to explicitly define the Channel Set on the client is if

1. you are using explicitly defined destinations in services-config.xml (i.e, not dynamic destinations) AND you
compile your flex client against that file

2. your destination is using the application-wide default channel AND you compile your flex client against that
file

Even if you weren't using dynamically created destinations it is debatable whether it is a good idea to ever
compile your client against services-config.xml, thus coupling your client to your server configuration. It is
often desirable to keep your flex client and your server side code as two distinct modules, but compiling against
services-config.xml blurs the lines between those modul es.

Our recommendation is that it is generally cleaner to keep the client-side configuration of ChannelSets
explicitly contained within the client module. An excellent way to do this without having to hard-code the
URLSs in your client code is to use an ActionScript DI framework such as Spring ActionScript (a Spring
Extensions project, formerly known as Prana).

If you choose to go the route of compiling your client against services-config.xml, note that you can at least
keep the URL information out of the client code by using ServerConfig.getChannel as described in the
referenced BlazeDS documentation.

2.7. Advanced MessageBroker Customization

Theinitialization of the MessageBr oker by the MessageBr oker Fact or yBean logically consists of two phases:

1. Parsing the BlazeDS XML configuration files and applying their settings to a newly created MessageBroker
2. Starting the MessageBroker and its services

A special MessageBr oker Confi gProcessor callback interface is provided that allows custom processing to be
done on the newly created MessageBroker after each phase, before it is made available for request processing.
This interface is used internally by Spring BlazeDS Integration, but is also available for general use in
advanced programmatic introspection and customization of the MessageBroker. A custom
MessageBr oker Conf i gProcessor can be configured as a Spring bean and then registered with the
MessageBr oker Fact or yBean Viathe confi g- processor tag. For example, given atrivial implementation to log
some additional info about the MessageBroker:

Version 1.6.0.RC1 6

http://static.springframework.org/spring/docs/2.5.x/reference/mvc.html#mvc-ann-setup
http://static.springframework.org/spring/docs/2.5.x/reference/mvc.html#mvc-ann-setup
http://livedocs.adobe.com/blazeds/1/blazeds_devguide/runtimeconfig_5.html#194376

Configuring and Using the BlazeDS MessageBroker with

package com exanpl e;
i mport org.springframework. fl ex.config. MessageBr oker Confi gProcessor;

i mport fl ex.nessagi ng. MessageBr oker ;
i nport fl ex.nessagi ng. servi ces. Renpti ngSer vi ce;

public class MyDestinati onCounti ngConfi gProcessor inplenents MessageBroker Confi gProcessor {

publ i c MessageBr oker processAfterStartup(MessageBroker broker) {
Renot i ngSer vi ce renotingService =
(Renot i ngServi ce) broker. get Servi ceByType(Renoti ngServi ce. cl ass. get Nane());
if (renptingService.isStarted()) {
Systemout. println("The Renpting Service has been started with "
+renot i ngServi ce. get Destinations().size()+" Destinations.");

}

return broker;

}

publ i c MessageBr oker processBeforeStartup(MessageBroker broker) {
return broker;

}

This class could be configured and registered with the MessageBr oker as follows:

<fl ex: message- br oker >
<fl ex: confi g- processor ref="myConfigProcessor" />
</ fl ex: message- br oker >

<bean i d="nyConfigProcessor" class="com exanpl e. MyDesti nati onCounti ngConfi gProcessor" />

2.8. Using Custom Exception Translators

In order to propagate useful information back to the Flex client when an exception occurs on the server, the
original exception must be trandated into an instance of flex. nessagi ng. MessageException. If specia
trandation logic is not applied, a generic "Server.Processing” error will propagate to the client that doesn't give
the client the chance to reason on the real cause of the error to take appropriate action. Special exception
trandators are configured by default for transforming Spring Security exceptions into an appropriate
MessageExcept i on, but it could also be useful to provide custom translation for your own application-level
exceptions.

Custom exception trandation logic can be provided through implementations of the
org. springframework. fl ex. core. ExceptionTranslator interface. These implementations must be
configured as Spring beans and then registered through the XML configuration namespace as follows:

<l-- Custom exception translator configured as a Spring bean -->
<bean i d="nyExceptionTransl ator" cl ass="com foo0. app. MyBusi nessExcepti onTransl ator"/>

<f | ex: message- br oker >
<fl ex: exception-transl ator ref="nmyExceptionTranslator"/>
</ fl ex: nessage- br oker >

2.9. Using Custom Message Interceptors

Custom message interceptors may be used to apply special processing logic to incoming and outgoing AMF

Version 1.6.0.RC1 7

Spring

messages in their de-serialized Java form. For example, an interceptor can be used to inspect the contents of the
incoming message, or to add extra information to the outgoing message.

Custom message processing logic is provided through implementations of the
org. springframework. fl ex. core. Messagel nt er cept or interface. These implementations must be configured
as Spring beans and then registered through the XML configuration namespace as follows:

<l-- Custom nessage interceptor configured as a Spring bean -->
<bean i d="nyMessagel nterceptor" class="com foo. app. \yMessagel nt erceptor"/>

<f| ex: message- br oker >
<fl ex: message-i nterceptor ref="myMessagel nterceptor"/>
</ fl ex: nessage- br oker >

2.9.1. Resource Handling with Custom Message Interceptors

For housekeeping purposes, an additional
org. springframewor k. fl ex. core. Resour ceHandl i ngMessagel nterceptor interface is avalable to use
Interceptors that implement this extended interface receive an additional guaranteed callback after message
processing is completed, whether processing was successful or failed due to an exception being thrown by the
Endpoint. This allows the interceptor to clean up any resources that it may have been using. This interface
extends the basic Messagel nterceptor interface, thus it is configured the same way using the
message- i nt er cept or tag.

2.9.2. Customizing the Message Interceptor Chain

The framework installs a number of predefined Messagel nterceptors that are automatically configured
through the use of the configuration namespace. These interceptors are configured in a specific order, and any
custom interceptors are by default added to the beginning of the chain, in the order that their
message- i nt er cept or elements appear. It is possible to specify an explicit order viathe posi ti on, bef ore, and
after attributes. The position attribute allows the user to *override* the framework-supplied interceptor at
that position, or to simply specify that the interceptor should be at the beginning or end of the chain by using
the FI RST and LAST values respectively. The bef ore and af t er attributes allow specifying position * relative to*
the framework-supplied filters.

The ordering and implementation of the framework-supplied filters is shown in the table bel ow.

Table 2.1. Standard I nterceptor Aliasesand Ordering

Alias M essagel nter ceptor Class Namespace
Element or
Attribute

PER_CLIENT_AUTH_INTERCEPTOR Perd i ent Aut henti cati onl nt er cept or message- br oker /
secured @
per-client-authentication

LOGIN_MESSAGE_INTERCEPTOR Logi nMessagel nt er cept or message- br oker /
secured

ENDPOINT_INTERCEPTOR Endpoi nt | nt er cept or message- br oker /
secured /

Version 1.6.0.RC1 8

Configuring and Using the BlazeDS MessageBroker with

Alias M essagel nter ceptor Class Namespace
Element or
Attribute

secur ed- endpoi nt - pat h
or message- br oker

| secured /
secur ed- channel

2.10. Providing Custom Service Adapters

Using the XML config namespace automatically installs the needed implementations of
f1 ex. messagi ng. servi ces. Servi ceAdapt er for use with the Remoting and Message services. Third-party
adapters (such as those provided by the dpHibernate or Gilead projects) can be configured using the
org. springframewor k. f | ex. cor e. Manageabl eConponent Fact or yBean. This factory bean implementation is
able to process arbitrarily complex configuration metadata supplied in JSON format (instead of arbitrarily
complex XML as in the native BlazeDS configuration) and honors the lifecycle semantics (such as proper
invocation of theinitial i ze method) of the ManageableComponent. These custom adapters may be used by
Spring-managed Remoting and Message destinations by either setting its id as the default for the Remoting or
Message service, or by setting the ser vi ce- adapt er attribute for a specific destination (see the Remoting and
Messaging chapters for further detail).

For example, to use the special adapter provided by dpHibernate as the default adapter with the Remoting
service, the configuration would be similar to the following:

<bean i d="hi bernat e-obj ect” class="org.springfranmework.flex.core. Manageabl eConponent Fact or yBean" >
<constructor-arg val ue="net. digital pri mates. persi stence. hi bernat e. H bernat eAdapter"/>
<property name="properties">
<val ue>
{"hi bernate" :
{"sessi onFactory" :
{ "class" : "net.digital prinmates. persistence. hibernate.utils.H bernateUtil",
"get Current Sessi onMet hod" : "get Current Sessi on”
}
}
}

</ val ue>
</ property>
</ bean>

<f| ex: nessage- br oker >
<flex:renmoting-servi ce default-adapter-id="hibernate-object" />
</ fl ex: nessage- br oker >

Version 1.6.0.RC1 9

Chapter 3. Exporting Spring Beans for Flex
Remoting

3.1. Introduction

Using a Spring-managed MessageBr oker enables Spring beans to be easily exported for direct remoting calls
from a Flex client. This approach is quite similar to that taken with other remoting technologies in the core
Spring Framework. Remoting is applied to existing Spring-managed beans as an externa configuration
concern. The MessageBr oker transparently handles the process of serialization and deserialization between the
Flex AMF dataformat and Java.

3.2. Configuring the Remoting Service

The BlazeDS Renmt i ngSer vi ce has traditionally been configured by the inclusion of a remoting-config.xml file
in the BlazeDS XML configuration. When using only Spring-managed remoting destinations, this config file
can be left out completely as the inclusion of the nessage- br oker tag in your Spring configuration will cause
the Renot i ngSer vi ce to be configured with sensible defaults if none already exists at startup time. The end
result is essentially equivalent to including the following minimal remoting-config.xml in your BlazeDS
configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<servi ce id="renoting-service"
cl ass="fl ex. nessagi ng. servi ces. Renoti ngServi ce" >

<adapt er s>
<adapter-definition id="java-object"
cl ass="fl ex. messagi ng. servi ces. renot i ng. adapt ers. JavaAdapt er "
defaul t="true"/>
</ adapt er s>

<def aul t - channel s>
<channel ref="ny-anf"/>
</ def aul t - channel s>

</ servi ce>

Note that this assumes that there is already an equivalent application-wide def aul t - channel s configuration. It
is recommended that you set the desired service-specific channels (see example below) if not relying on an
application-wide default setup. If no application-wide defaults exist, a best guess will be made by configuring
the first available channel from the MessageBroker that uses an AMFEndpoint as the default for the
Renot i ngSer vi ce.

If you wish to have more explicit control over the defaults that will be set on the Renot i ngSer vi ce, you can
customize them viather enot i ng- ser vi ce child element of the nessage- br oker tag. For example:

<f| ex: nessage- br oker >
<flex:renmoting-servi ce defaul t-adapter-id="ny-default-renoting-adapter"”
def aul t - channel s="ny-anf, ny-secure-anf" />
</ fl ex: nessage- br oker >

If you have an exising remoting-configxml for a legacy BlazeDS application, the

Version 1.6.0.RC1 10

Exporting Spring Beans for Flex Remoting

Renot i ngDest i nati onExport er Will be able to work transparently with it, allowing you to gradually migrate to
all Spring-managed remoting destinations.

3.3. Using the renot i ng- destinati on Tag

The renoti ng-desti nati on configuration tag can be used to export existing Spring-managed services for
direct remoting from a Flex client. Given the following Spring bean definition for apr oduct Ser vi ce bean:

<bean id="product Servi ce" class="fl ex.sanpl es. product. Product Servi cel npl " />

and assuming the existance of a Spring-managed MessageBr oker configured via the nessage- br oker tag, the
following top-level renoting-destination tag will expose the service for remoting to the Flex client as a
remote service destination named pr oduct Ser vi ce:

<l-- Expose the productService bean for Bl azeDS renoting -->
<fl ex: renoting-destinati on ref="product Servi ce" />

By default, the remote service destination exposed to the Flex client will use bean name of the bean being
exported as the service id of the destination, but this may be overridden using the dest i nati on-i d attribute on
therenot i ng- desti nati on tag.

An dternate way of using the r enot i ng- desti nati on tag is as a child element of an top-level bean definition.
This is even more concise and works well if you don't have a need to keep your domain-layer bean definitions
separate from infrastructure concerns such as Flex remoting. (Keep in mind that keeping them separate can lead
to easier testability of the core domain layer.) The following achieves the equivaent result to the previous
example:

<bean i d="product Servi ce" class="fl ex.sanpl es. product. Product Servi cel npl" >
<fl ex: renoting-destination />
</ bean>

The methods that are exposed to be called by the Flex client can be more tightly controlled through use of the
i ncl ude- met hods and excl ude- met hods attributes of the r enoti ng- desti nati on tag. The BlazeDS channels
over which the destination is exposed can also be controlled using the channel s attribute. (These attributes are
available whether using the top-level or the nested version.) A more extensively customized example would
look something like:

<fl ex: renoting-destinati on ref="product Service"
i ncl ude- met hods="read, update"
excl ude- net hods="create, delete"
channel s="ny-anf, ny-secure-anf" />

The renoti ng- desti nati on tag is transparently configuring a Renot i ngDest i nat i onExpor t er bean instance
for each bean being exported. The equivalent full bean syntax without the namespace support would be:

<l -- Expose the product Service bean for Bl azeDS renoting -->

<bean id="product" class="org.springframework.flex.renoting. RenotingDestinati onExporter">
<property name="nessageBroker" ref="_nessageBroker"/>
<property name="service" ref="product Service"/>

Version 1.6.0.RC1 11

Exporting Spring Beans for Flex Remoting

<property name="destinationld" val ue="product Servi ce"/>

<property name="incl udeMet hods" val ue="read, update"/>

<property name="excl udeMet hods" val ue="create, delete"/>

<property name="channel s" val ue="ny-anf, ny-secure-anf"/>
</ bean>

3.4. Exporting Beans for Remoting with
@RemotingDestination

The @renot i ngDest i nati on annotation may be used as an aternative to the XML remoting-destination tag
when using annotation-based Spring configuration. @enot i ngDest i nat i on IS used at the type level to indicate
the class being exported. @enot i ngl ncl ude and @enot i ngExcl ude are used at the method level to mark the
methods that should be included and excluded for remoting.

The following exampleillustrates the productService bean configured exclusively through annotations:

package fl ex. sanpl es. product;

i mport org.springframework. fl ex.renoting. Renoti ngDesti nation;
i mport org.springframework. fl ex.renmoting. Renot i ngExcl ude;

i mport org.springframework. fl ex.renoting. Renoti ngl ncl ude;

i mport org.springframework. st ereotype. Servi ce;

@ser vi ce(" product Servi ce")
@Renot i ngDest i nati on(channel s={"ny-anf", "ny-secure-anf"})
public class Product Servicel npl inplenents Product Service {

@Renot i ngl ncl ude
public Product read(String id) {

}

@Renot i ngExcl ude
public Product create(Product product){

}

@Renot i ngl ncl ude
public Product update(Product product){

}

@Renot i ngExcl ude
public voi d del ete(Product product) {

}

3.4.1. Supplying Externalized Channel Ids

One potential drawback of the @enotingDestination approach is the potential need to hard-code AMF
channel ids in multiple classes throughout your codebase. The specification of the channel s property is
optional (if not specified, the defaults for the RemotingService will be used), but in cases where they do need to
be specified, one shouldn't need to edit all instances of @Renot i ngDest i nati on any time the channel identifiers
change. To support this need, the channels attribute is able to resolve values supplied in the
Appl i cationContext through a PropertyPl acehol der Confi gurer. For example, the previous hardcoded
example could be replaced with:

package fl ex. sanpl es. product;

Version 1.6.0.RC1 12

Exporting Spring Beans for Flex Remoting

i mport org.springframework. fl ex.renoting. Renoti ngDestination
i nport org.springfranework. flex.renpting. Renpti ngExcl ude

i mport org.springframework. fl ex.renoting. Renoti ngl ncl ude

i mport org. springframework. st ereotype. Service

@per vi ce(" product Servi ce")
@renot i ngDest i nati on(channel s={"${channel 1}", "${channel 2}"})
public class Product Servicel npl inplenents Product Service {

}

assuming you have aPr oper t yPl acehol der Conf i gur er provided along the lines of:

<bean cl ass="org. spri ngfranmework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="properties">
<props>
<prop key="channel 1" >ny-anf </ prop>
<prop key="channel 2" >ny-secure-anf, ny-anf</prop>
</ props>
</ property>
</ bean>

Version 1.6.0.RC1

Chapter 4. Communicating with RESTful Spring
MVC Endpoints using AMF

4.1. Introduction

Spring MV C 3 introduced support for building RESTful services using the @Controller programming model.
This allows for serving multiple representations of the same content based on what the client has requested. For
example, a single RESTful endpoint could be configured to serve HTML, XML, or JSON al from a single
request handling Java method on the @Controller class. This approach alows a single service implementation
to support a variety of different client types, automatically providing the representation that a particular client
desires. In order to better support Flex as one of those client types, Spring BlazeDS Integration adds the
necessary support to be able to support an AMF representation of a given RESTful resource.

Anf Vi ew and Anf Ht t pMessageConverter provide the foundation necessary to use AMF with Spring MVC
@Controllers. The implementations are quite similar to Mappi ngdacksonJsonview and
Mappi ngJacksonHt t pMessageConver t er Which provide Spring's out-of-the-box JSON support. The basics of
configuring these classes are shown throughout the rest of this chapter.

4.2. Using AmfView

Anf Vi ewis a Spring MVC View implementation that is intended to be used in conjunction with Spring MVC's
ContentNegotiatingViewResolver. In particular, it is expected that it will be configured as a "default" singleton
view implementation that can render any MV C model as AMF, rather than needing to have a unique instance
per logical view name.

The following example shows a simple configuration of Cont ent Negot i at i ngVi ewResol ver to support both
JSON and AMF representations:

<bean cl ass="org. spri ngfranmewor k. web. servl et. vi ew. Cont ent Negot i ati ngVi ewResol ver">
<property name="nedi aTypes">
<r‘r‘ap>
<entry key="json" val ue="application/json"/>
<entry key="anf" val ue="application/x-anf"/>
</ map>
</ property>
<property name="defaul t Vi ews">
<list>
<bean cl ass="org. spri ngfranmewor k. web. servl et. vi ew. j son. Mappi ngJacksonJsonVi ew' />
<bean cl ass="org. springfranmework. flex. http. AnfView' />
</list>
</ property>
</ bean>

The above example includes setting the nedi aTypes property to map file extensions to media types. This is
helpful for clients (such as Flex) that aren't always able to set an appropriate Accept header. So given the above
configuration, and a simple controller such as the following:

@ontroller
@Request Mappi ng("/ contacts")
public class ContactsController {

Version 1.6.0.RC1 14

http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/mvc.html#mvc-controller
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/mvc.html#mvc-viewresolver
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/mvc.html#mvc-multiple-representations

Communicating with RESTful Spring MV C Endpoints using

@\ut owi r ed
private | Contact DAO cont act DAG,

@Request Mappi ng(met hod=Request Met hod. CET)
public List<Contact> find() {

return contact DAO. findAll ();
}

an HTTP GeT request issued to either htt p: / /1 ocal host / nyapp/ cont act s. anf Without an appropriate Accept
header or tohttp://1 ocal host/ nyapp/ cont act s With an accept header of appl i cati on/ x-anf will return the
list of contacts as an AMF message that may then be deserialized to an ArrayCol | ecti on of ActionScript
objects on the Flex client.

4.3. Using AmfHttpMessageConverter

Anf Ht t pMessageConverter IS a HitpMessageConverter implementation that can convert to and from AMF. In
order to be able to convert HTTP posT and PUT request message bodies from AMF to Java objects to be passed
as a @RequestBody arguments to @ont rol | er methods, it must be added to the converters used by Spring
MVC's Annot at i onMet hodHandl er Adapt er . In order to add AMF support while also leaving the framework's
default He t pMessageConverters in place, a simple BeanPostProcessor such as the following example can be
used:

package org. springframework. fl ex. sanpl es. rest;

i mport org.springframework. beans. BeansExcepti on;

i mport org.springframework. beans. factory. confi g. BeanPost Processor ;

i mport org.springframework. flex. http. Anf Ht t pMessageConverter;

i mport org.springframework. http. converter. Htt pMessageConverter;

i nport org.springfranmework.util.ObjectUtils;

i mport org.springframework. web. servl et. m/c. annot ati on. Annot at i onMet hodHandl er Adapt er ;

public class Handl er Adapt er Post Processor i npl enents BeanPost Processor {

public Object postProcessBeforelnitializati on(Object bean, String beanNane)
t hrows BeansException {
return bean;

}

public Object postProcessAfterlnitialization(Object bean, String beanNane)
throws BeansException {
i f (bean instanceof AnnotationMethodHandl er Adapter) {
Annot at i onMet hodHandl er Adapt er adapter = (Annot ati onMet hodHandl er Adapt er) bean;
Ht t pMessageConverter<?>[] converters = adapter.get MessageConverters();
adapt er . set MessageConverter s(
(Ht t pMessageConverter<?>[]) CbjectUtils.
addObj ect ToArray(converters, new Anf Ht t pMessageConverter()));

return bean;

With this configuration in place, and a controller such as the following:

@Controller
@Request Mappi ng("/ cont acts")
public class ContactsController {

Version 1.6.0.RC1 15

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/remoting.html#rest-message-conversion
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-ann-requestbody
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-extension-bpp

AMF

@\ut owi r ed
private | Contact DAO cont act DAG,

@Request Mappi ng(met hod=Request Met hod. POST)

public Contact create(@equestBody Contact contact) {
return contact DAO. cr eat e(cont act);

}

the Flex client can send an HTTP PoST request with an ActionScript Cont act serialized to AMF in the message
body tohttp://1 ocal host/ nyapp/ cont act s in order to persist that contact to the database.

4.4. Interacting with RESTful AMF Endpoints from the Flex
Client

Effectively interacting with a RESTful service from the Flex client using AMF is generally a matter of
dropping down to some lower-level Flash APIs such as 1 ash. net. URLRequest and fl ash. net. URLSt r eam
There are some limitations to how a Flash/Flex application can interact with a REST service from within the
browser. These limitations are generaly imposed by the host browser, and are similar to the limitations
imposed on HTML pages. Fortunately, Spring MVC dready accounts for such browser limitations and
provides useable workarounds.

The first magjor limitation is that the Flash player is typically not able to set the Accept header for the request to
appl i cation/ x-anf when using URLRequest . Spring supports mapping file extensions to media types as an
alternative (see the example Section 4.2, “Using AmfView” configuration for how thisis achieved).

The second major limitation is the inability to properly send HTTP PUT and DELETE requests. Spring provides
the HiddenHttpM ethodFilter to help cope with this. With the filter configured, a DELETE request (for example)
could be smulated by sending a PosT request to a URL such as
http://1 ocal host/ nyapp/ contacts/ 1. anf?_net hod=DELETE.

A completei nsync-rest example of interacting with a Spring MVC @Controller is now provided in the Test
Drive. This sample duplicates the full functionality of the complete inSync application that was originally built
using BlazeDS Remoting. It shows in detail how to work around Flash player's limitations to use AMF to
interact with a RESTful service that supportsit.

Version 1.6.0.RC1 16

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/index.html?org/springframework/web/filter/HiddenHttpMethodFilter.html

Chapter 5. Enhanced AMF Support

5.1. Customizing AMF Conversion

While BlazeDS provides excellent support for serialization/deserialization between Java beans and AMF, there
are certain limitations in the types of objects that can be handled out-of-the-box. For example, objects to be
converted to/from AMF must have getter and setter methods and must have a public no-arg constructor. In
order to allow for a more flexible approach, we have provided an extension mechanism for easily customizing
the AMF type conversion process through Spring configuration.

5.1.1. Configuring AMF Type Conversion

A specia Spring-aware Pr oper t yPr oxy (& BlazeDS-specific interface for customizing serialization) is provided
that uses Spring's PropertyAccessor interface for type introspection and delegates to the Spring 3+
Conversi onService to allow for additional property conversion logic to be plugged in during the
serialization/deserialization process. This enhanced Pr oper t yPr oxy optionally supports:

« Direct field access for properties (instead of requiring getters and setters)

» Use of an dternate constructor annotated with @nf Creat or for deseriaization (instead of a public no-arg
constructor)

 Ignoring certain properties during serialization and/or deserialization when marked with @nf I gnore or
@\nf | gnoreField

To take advantage of the enhanced AMF support, an instance of Spri ngPr opert yProxy must be registered for
each individua type that could potentialy be converted to/from AMF. A speciaized set of
MessageBr oker Confi gProcessors are provided that take varied approaches to locating the types to be
registered:

Table5.1. AMF Handling M essageBr oker ConfigProcessor s

Class Implementation
org.springframework.flex.core.io. Uses the Hibernate metadata API to locate mapped
HibernateConfigProcessor Hibernate types to register for AMF conversion and

configures specialized Hibernate Converters. See
Section 5.2, “Working with Hibernate”

org.springframework.flex.core.io. Uses the Hibernate metadata API to locate mapped
JpaHibernateConfigProcessor Hibernate JPA typesto register for AMF conversion

and configures specialized Hibernate Converters.
See Section 5.2, “Working with Hibernate’

org.springframework.flex.core.io. Uses classpath scanning to locate types to register for
ClassPathScanningAmfConversionService AMF conversion. See Section 5.3, “Using Classpath
ConfigProcessor Scanning for AMF Configuration”

Explicit configuration of one of these classes is done just as with any other MessageBr oker Conf i gPr ocessor,

Version 1.6.0.RC1 17

Enhanced AMF Support

by defining the desired implementation as a bean and wiring it into the MessageBroker using the
confi g- processor namespace tag.

5.1.1.1. Using Direct Field Mapping

By default, the springPropertyProxy will read and write property values during AMF conversion using
JavaBean standard get and set methods, just as the default BlazeDS BeanpPr oxy does. Alternatively, you many
configure it to access fields directly. Thisis useful in such cases as when you have a class that does not expose
public getter or setter methods, such as the following:

@ntity

public class PackagePrivatePerson {

@d
@ener at edVal ue(strategy = GenerationType. AUTO)
I nt eger id,;

@/er si on
@Col um(name = "version")
I nt eger version;

String nang;

In order to be able to convert such a class to/from AMF, you must configure the useDi r ect Fi el dAccess
property of one of the supplied AMF configuration processors. For example:

<f| ex: message- br oker >
<fl ex: confi g- processor ref="nyJpaConfi gProcessor" />
</ fl ex: nessage- br oker >

<bean i d="nyJpaConfi gProcessor" class="org.springfranmework.flex.core.io.JpaConfigProcessor">
<property name="useDirectFi el dAccess" val ue="true" />
</ bean>

5.1.1.2. Deserializing Immutable Objects with @AmfCreator

By default, the Spri ngPropert yProxy will try to instantiate types using a public no-arg constructor during the
AMF deserialization process. Types that do not have a no-arg constructor must provide an alternate constructor
annotated with or g. spri ngf ramewor k. f | ex. core. i 0. Anf Cr eat or , Whose properties are in turn annotated with
org. springframework. fl ex. core.io. Anf Property, in order to be eligible for AMF conversion. For example:

public class | nmutabl eVal ueCbj ect {
final String foo;
final Integer zoo;

@\nf Cr eat or

publ i c | mut abl eVal ueOoj ect (@\nf Property("foo") String foo, @\nfProperty("zoo") Integer zoo) {
this.foo = foo;
this.zoo = zoo;

}

public String getFoo() {
return this.foo;
}

Version 1.6.0.RC1 18

Enhanced AMF Support

public Integer getZoo() ({
return this.zoo;
}

5.1.1.3. Ignoring Properties During AMF Conversion

Sometimes it is desirable to ignore certain properties during serialization and/or deserialization. For example,
there may be a property in your Java object that you do not wish to ever send to the Flex client.
Spri ngPropertyProxy provides a means of achieving this by adding some additional annotations to your Java
objects.

The annotation or g. spri ngframewor k. f1 ex. core. i 0. Anf I gnore may be used on getter and setter methods.
Annotating a getter method with @nf | gnor e will cause the property to be ignored during serialization to AMF,
and annotating a setter method with @nf | gnor e will cause the property to be ignored during deserialization
from AMF. For example:

public class Ignorabl ePropsbj ect {

//WI11 be ignored on both serialization and deserialization
private String foo;

//WI11l be ignored only on serialization
private String bar;

//WI11 be ignored only on deserialization
private String baz;

@A\nf | gnor e

public String getFoo() {
return foo;

}

@A\nf | gnor e

public void setFoo(String foo) {
this.foo = foo;

}

@\nf | gnor e

public String getBar() {
return bar;

}

public void setBar(String bar) {
this.bar = bar;
}

public String getBaz() {
return baz;
}

@\nf | gnor e

public void setBaz(String baz) {
this.baz = baz;

}

When using direct field mapping, the annotation or g. spri ngf ramewor k. f| ex. core. i 0. Anf | gnor eFi el d may
be used on fields to achieve equivalent functionality. For example:

Version 1.6.0.RC1 19

Enhanced AMF Support

public class Ignorabl eFiel dsObj ect {

[TWII

[ITWII
@Anf | gnor eFi el d(onDeseri al i zat i on=f al se)
private String bar;

[ITWII
@AnTf | gnor eFi el d(onSeri al i zat i on=f al se)
private String baz;

be i gnored on both serialization and deserialization

@Anf | gnor eFi el d
private String foo;

be ignored only

be ignored only

on serialization

on deserialization

5.1.1.4. Providing Custom Converters

Customizing the way Java objects are converted to/from AMF is a matter of providing Spring 3 type
Converters and registering them with the Conversi onServi ce. The provided AMF config processors all
extend from or g. spri ngf ranmework. fl ex. core. i 0. Abst ract Anf Conver si onSer vi ceConf i gPr ocessor, which
provides a template method for registering additional converters. One such use for this would be if you wanted
to use classpath scanning to locate AMF-€ligible types, but still wanted to register the specialized Hibernate
converters. The following exampleillustrates this:

First, we configure the d assPat hScanni ngAnf Conver si onSer vi ceConfi gProcessor using the Spring 3
@cConfiguration style:

package com foo. confi g;

i mport
i mport
i mport
i mport
i mport
i mport

org.
org.
org.
org.
org.
org.

spri ngf ramewor k.
spri ngf ramewor k.
spri ngf ramewor k.
spri ngf ramewor k.
spri ngf ramewor k.
spri ngf ramewor k.

@Configuration
public class CustonConverterConfiguration {

@ean
publ i c C assPat hScanni ngAnf Conver si onSer vi ceConfi gProcessor myConfi gProcessor () {

cont ext . annot at i on. Bean;
cont ext . annot ati on. Confi gurati on;
core. convert.converter. ConverterRegistry;

fl ex. core.io.d assPat hScanni ngAnf Conver si onSer vi ceConf i gPr ocessor;

fl ex. hi bernat e3.i o. Hi ber nat eProxyConverter;
fl ex. hi bernat e3. i 0. Persi stent Col | ecti onConverterFactory;

return new O assPat hScanni ngAnf Conver si onSer vi ceConf i gProcessor ("com f oo. donai n") {

@verride

protected void

confi gureConverters(ConverterRegistry registry) {

regi stry. addConverter (new Hi ber nat eProxyConverter());
regi stry. addConverter Fact ory(new Persi st ent Col | ecti onConverterFactory());

Then we simply reference that config processor as usual in our MessageBr oker configuration:

<f | ex: nessage- br oker >
<fl ex: confi g- processor ref="nyConfigProcessor" />
</ fl ex: nessage- br oker >

Version 1.6.0.RC1

20

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java

Enhanced AMF Support

5.2. Working with Hibernate

Using Hibernate to handle persistence concerns is quite common in Spring applications. A common problem
arises, though, when attempting to directly use Hibernate-loaded entities in AMF messages with BlazeDS. In
essence, the default BlazeDS serialization mechanism tries to walk the entire object graph, forcing initialization
of any lazily loaded associations that might be encountered. This generally leads either to Lazylnitialization
errors, or (if using a solution such as Spring's OpenSessi onl nVi ewFi | t er) the undesirable n+1 selects scenario.
The other problem that arises is when associations are eagerly loaded, but still wrapped in a Hibernate-specific
collection or proxy, which can cause unexpected resultsin the way the association gets serialized.

Spring BlazeDS Integration provides a simple solution that will alow the direct use of Hibernate entities in
AMF messages. A few special Hibernate-aware Converters are automatically installed that understand how to
properly convert Hibernate-specific types when they are encountered.

5.2.1. Configuring Hibernate Entity Serialization/Deserialization Support

The Hibernate serialization/deserialization support will be automaticaly configured with a default
Conver si onSer vi ce Upon application startup if Hibernate is detected on the classpath. This support is provided
in the form of two different MessageBr oker Conf i gPr ocessors - one for "native" Hibernate and one for using
Hibernate as a JPA provider. The proper one will be configured based on the presence of the JPA api on the

classpath.

The default behavior of the spri ngPropertyProxy (in the case of both "native" Hibernate and JPA), when this
support is configured is as follows:

1. Check each bean property to see whether it is contains a Hibernate-specific Proxy or Collection
2. If the Proxy/Collection isinitialized, unwrap the underlying value for serialization
3. If the Proxy/Collection is uninitialized, return nul | for the value to be serialized

At startup time, Hibernate's Metadata API is used to determine which types to register with BlazeDS to use the
specialized Spri ngPr opet yPr oxy.

The default behavior may be extended/overridden by manualy deploying either the
H ber nat eConfi gProcessor, JpaHi bernateConfi gProcessor, Or some other custom extension of
Abst r act Anf Conver si onSer vi ceConf i gProcessor as a Spring bean and wiring it into the MessageBr oker via
the confi g- processor XML namespace tag as shown in Section 5.1.1, “ Configuring AMF Type Conversion”.

5.3. Using Classpath Scanning for AMF Configuration

As an dternative to using the Hibernate Metadata APl to find types to which the Spri ngPr oper t yPr oxy should

be applied, a more general config processor implementation,
org. springframework. fl ex. core.io.d assPat hScanni ngAnf Conver si onSer vi ceConfi gPr ocessor, is

supplied as an alternative that will instead find types using Spring's interna classpath scanning support. The
implementation scans recursively starting from a given base package, and al classes found in the scan will be
registered to have the Spri ngPropert yProxy applied to them for AMF conversion. The scanning process may
be customized further by configuring or g. spri ngframework. core. type. filter. TypeFil ter implementations

Version 1.6.0.RC1 21

Enhanced AMF Support

to either include or exclude matching types. For example, Spring provides out-of-the-box RegEx-based and
Annotation-based TypeFi | t er implementations. The easiest way to configure this implementation is by using
the Java config support provided in Spring 3+, as in the following example:

package com foo. confi g;

i nport org.springfranework. cont ext. annot ati on. Bean;

i mport org.springframework. cont ext. annot ati on. Confi gurati on;

i nport org.springfranmework. core. convert.converter. Converter;

i nport org.springfranework. core.convert.converter. ConverterRegistry;

i nport org.springfranework.core.type.filter.AnnotationTypeFilter;

i mport org.springframework. flex. core.io.C assPat hScanni ngAnf Conver si onSer vi ceConfi gProcessor;
i mport org.springframework. flex. hi bernate3. Hi ber nat ePr oxyConverter;

i nport org.springfranework. flex. hi bernat e3. Persi stent Col | ecti onConverterFactory;

@Configuration
public class ApplicationConfig {

@Bean
publ i ¢ C assPat hScanni ngAnf Conver si onSer vi ceConfi gProcessor anf Confi gProcessor () {
Cl assPat hScanni ngAnf Conver si onSer vi ceConfi gProcessor confi gProcessor =
new C assPat hScanni ngAnf Conver si onSer vi ceConf i gProcessor (" com f oo. donai n") {

@verride

protected void configureConverters(ConverterRegistry registry) {
regi stry. addConverter (new H bernat eProxyConverter());
regi stry. addConverter Fact ory(new Persi stent Col | ecti onConverterFactory());
regi stry. addConverter(new MyCustonConverter());

b6

confi gProcessor. addl ncl udeFi | ter (new Annot ati onTypeFi | t er (MyCust omAnf Annot ati on. cl ass));

return configProcessor;

<f| ex: nessage- br oker >
<fl ex: confi g- processor ref="anf ConfigProcessor" />
</ fl ex: nessage- br oker >

Version 1.6.0.RC1 22

Chapter 6. Securing BlazeDS Destinations with
Spring Security

6.1. Introduction

Spring Security provides an extremely flexible aternative to the container-based security support provided
out-of-the-box with BlazeDS. Spring BlazeDS Integration provides explicit integration support for
incorporating Spring Security smoothly into your Flex/BlazeDS application. Spring Security provides a wealth
of different configuration options, but rather than go into the many different combinations here, well leave
most of that to the Spring Security documentation.

6.1.1. A simple Spring Security 3 configuration

Here is a simple Spring Security starting configuration for use in conjunction with the explicit integration
features provided by Spring BlazeDS Integration that should be a solid starting point for securing atypical Flex
application:

<beans: beans xm ns="http://ww. spri ngfranmework. org/ schena/ security"
xm ns: beans="http://ww. spri ngfranmewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocati on="http://ww:. spri ngframewor k. or g/ schenma/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranework. org/ schena/ security
http://ww. springframework. or g/ schema/ security/spring-security-3.2.xsd">

<http entry-point-ref="entryPoint">
<anonynous enabl ed="fal se"/>
</ http>

<beans: bean i d="ent ryPoi nt"
cl ass="org. springfranmework. fl ex. security3. Fl exAut henti cati onEntryPoi nt"/>

<aut henti cati on- manager >
<aut henti cati on- provi der >
<user - servi ce>
<user name="john" password="john" authorities="ROLE USER' />
<user nanme="adm n" password="adm n" authorities="ROLE USER, ROLE ADM N' />
<user name="guest" password="guest" authorities="ROLE GUEST" />
</ user-servi ce>
</ aut henti cati on- provi der >
</ aut henti cati on- nanager >

</ beans: beans>

With a typical Flex application, this approach is preferred to using Spring Security's auto-config setup.
Auto-config sets up a number of features that typically are not needed with a Flex application. For instance,
auto-config sets up a default i ntercept-url entry that requires authentication for all URL paths within the
application. The FI exAut hent i cat i onEnt ryPoi nt Will return a proper AMF error response when such URL's
are hit via normal Flex communication processing, but it's invocation should generally be considered a last
resort. Most of the time, authentication and authorization processing should happen deeper within the BlazeDS
request handling process, where there are opportunities to provide more useful information to the client. (See
Securing BlazeDS Channels by Endpoint URL Path for an aternative to i nter cept - ur| that generates proper
AMF responses for the Flex client.) It is recommended to start simple as in this example, and add the additional
features as needed.

Version 1.6.0.RC1 23

Securing BlazeDS Destinations with Spring Security

6.1.2. Enabling the Spring Security filter chain in web.xml

For atypical setup with Spring Security, it is critical to remember to enable the Spring Security filter chain by
adding the appropriate entry to web.xml:

<filter>
<filter-nane>springSecurityFilterChain</filter-nane>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mappi ng>
<filter-nane>springSecurityFilterChain</filter-nanme>
<url-pattern>/*</url-pattern>

</filter-nmappi ng>

We will assume the above configuration is in place for the remainder of the examples in this chapter. For
additional details on the many options available in configuring and using Spring Security, please refer to that
project's documentation.

6.2. Configuring the Spring Security Integration

Spring Security integration is enabled through the secured child element of the message- broker tag. The
simplest possible configuration would be:

<f | ex: nessage- br oker >
<fl ex:secured />
</ fl ex: nessage- br oker >

This enables the basic security features. A special BlazeDS Logi nConmand implementation is automatically
installed that enables ChannelSet.login and Channel Set.logout requests to integrate with Spring Security's
Authorization mechanisms. Additionally, the special Logi nComrand enables Spring Security granted authorities
to be referenced in BlazeDS XML security constraints. For example, if we were using a traditional BlazeDS
remoting destination defined in remoting-config.xml, we could have something like the following:

<destination id="product Service">

<security>
<security-constraint>
<aut h- met hod>Cust onx/ aut h- net hod>
<rol es>
<r ol e>ROLE_USER</ r ol e>
</rol es>
</ security-constraint>
</security>
</ desti nati on>

As you can see, we are referencing the "ROLE_USER" authority from our simple Spring Security setup. The
invocation of this remote destination would cause the provided Logi nConmrand to be invoked to both verify that
the user is logged in and to check that they have the appropriate role. Violation of either will result in an
exception being thrown by Spring Security.

The provided Logi nCommand mimics as much as possible the functionality of Spring Security's

Version 1.6.0.RC1 24

http://static.springsource.org/spring-security/site/reference.html

Securing BlazeDS Destinations with Spring Security

Abst ract Aut henti cati onProcessi ngFil ter including taking the necessary actions to coordinate Spring
Security's additional features such as, Remember Me, Session Fixation Protection, and Concurrent Session
Management upon commencement of the authentication process. Additionaly, it will invoke any configured
Logout Handl er s as part of the logout process, including both those auto-configured by Spring Security, and
any that might be supplied by the application devel oper.

6.2.1. Using a Custom LoginCommand

While the supplied Logi nConmand covers many of the most common security configuration scenarios,
sometimes it can be useful to provide your own implementation that either extends
SpringSecuri tyLogi nCormand, While using the Spring container to wire in any necessary dependencies. A
custom Logi nConmrand can be supplied viathe | ogi n- conmand attribute of the secur ed tag asfollows:

<fl ex: message- br oker >
<fl ex: secured | ogi n- command="nyLogi nConmand"/ >
</ fl ex: message- br oker >

<bean id="nyLogi nConmand" cl ass="com f 00. app. security. Cust onLogi nConmand"/ >

If your custom Logi nCormand extends SpringSecuritylogi nConmand, the following properties will be
autowired by the container if possible:

* rememberMeServices
 sessionAuthenticationStrategy

¢ logoutHandlers

6.2.2. Accessing User Details

When using the Channel Set.login API call from the Flex client with Spring Security integration enabled, the
resulting ResponseEvent fired client-side upon successful completion will contain additional information that
can be inspected about the current user. The name and authorities will be extracted from the Authentication
object and added to the body of the response message. This information, for example, can then be used to
conditionally display different portions of the Ul based on the user'sidentity and granted roles:

var token: AsyncToken = nmyChannel Set. | ogin("jereny","atlanta");
t oken. addResponder (
new AsyncResponder (
function(event: Resul t Event, token: Qject = null):void {
if (event.result.authorities.indexO("ROLE_ADM N') >= 0) {
di spl ayAdni nPanel (event.result. nane);
} else {
di spl ayUser Panel (event.resul t.nanme);
}
b

function(event: Faul t Event, token: Cbject = null):void {
di spl ayError Message("Login Failed: "+event.fault.faultString);

}

6.2.3. Security Exception Translation

Version 1.6.0.RC1 25

http://static.springsource.org/spring-security/site/docs/3.0.x/reference/springsecurity-single.html#remember-me
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/springsecurity-single.html#ns-session-fixation
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/springsecurity-single.html#concurrent-sessions
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/springsecurity-single.html#concurrent-sessions

Securing BlazeDS Destinations with Spring Security

Another feature that is automatically installed when the secur ed tag is used is automatic exception translation
from any thrown SpringSecurityException to the proper BlazeDS SecurityException. The exceptions are caught
and translated at the proper point in the execution chain such that it will result in the proper AMF error message
being serialized and sent back to the client.

This is aternative to the normal Spring Security behavior where afilter in the chain catches the exception and
sends back a corresponding HTTP status code. The problem with sending back HTTP status codes other than
200 is that this causes the Flex client to throw a generic and rather unhelpful exception, and often the status
code can't be determined from the Flex client. Sending back specific AMF error messages instead causes a
Faul t Event to be thrown client-side that contains the proper security fault code that can then be reasoned on
and appropriate action can be taken. This behavior is equivalent to that of the out-of-the-box container-based
security mechanisms provided with BlazeDS, so the programming model client-side remains the same.

6.2.4. secured Configuration Attributes

The secur ed tag has several additional attributes that allow further customization.

If you are not using Spring Security's default bean ids for the AuthenticationManager Or
AccessDeci si onManager, Yyou can specify your custom bean references using the corresponding
aut henti cati on- manager and access- deci si on- manager attributes respectively on the secur ed tag.

The configuration of the provided Logi nConmand can be further controlled via the secured tag. The
i nval i dat e-fl ex-sessi on atribute controls whether the current Flex session is invalidated when the
logout () method is called on the Logi nCormand, and defaults to "true" if not specified. The
per-client-authentication attribute turns BlazeDS's per-client authentication mode on when true, and
defaults to "false" if not specified. Enabling per-client authentication will cause the Security context to no
longer be stored in the session between requests and thus will prevent the use of any Spring Security filters that
rely on the Security Context being available in the session, but the authentication and authorization integration
will otherwise work as expected. (See the BlazeDS docs for further information on the difference between
per-session and per-client authentication.)

6.3. Configuring Endpoint and Destination Security

The Spring Security integration allows flexible control over how you secure your application. You can secure
BlazeDS endpoints in a manner similar to Spring Security's traditional URL security, and you can secure your
Spring services using the many existing object security mechanisms of Spring Security just as if you were
writing atraditional web application.

6.3.1. Securing Specific BlazeDS Channels

Y ou can set security constraints on specific BlazeDS channels using the secur ed- channel child element of the
secur ed tag. For example:

<f | ex: nessage- br oker >
<fl ex: secur ed>
<fl ex: secured-channel channel ="ny-anf" access="ROLE_USER' />
</fl ex: secured>
</ fl ex: message- br oker >

Thisresults in any request being routed to the "my-amf" channel to require the user to be logged in and to have

Version 1.6.0.RC1 26

Securing BlazeDS Destinations with Spring Security

the "ROLE_USER" authority. If either of those isviolated, aFaul t Event will be signaled on the client.

6.3.2. Securing BlazeDS Channels by Endpoint URL Path

Y ou can set security constraints on multiple BlazeDS channels at once using the secur ed- endpoi nt - pat h child
element of the secur ed tag. In this case you specify a URL pattern to be secured instead of a specific channel
id. For example:

<fl ex: message- br oker >
<fl ex: secur ed>
<fl ex: secur ed- endpoi nt - pat h pattern="**/nmessagebroker/**" access="ROLE_USER"' />
</ fl ex: secured>
</ fl ex: message- br oker >

This results in any request being routed to any channel whose endpoint URL contains "/messagebroker/" in the
path to require the user to be logged in and to have the "ROLE_USER" authority. If either of those isviolated, a
Faul t Event Will be signaled on the client.

6.3.3. Securing Exported Spring Services

Earlier in this chapter you saw an example of using the BlazeDS XML configuration to secure a
BlazeDS-managed destination. Since most of the time you will instead be defining destinations by exporting
Spring beans using the renot i ng- dest i nati ontag, an aternate approach to securing destinations is needed.
This is where Spring Security comes in, as al of its existing authorization mechanisms should "just work"
when security integration is enabled using the secur ed tag.

Note

When securing destinations as in the examples shown below, it is important to keep in mind that
this feature of Spring Security is using Spring AOP. By default, Spring AOP uses JDK dynamic
proxies. As such, if you have need to secure methods on a class that are not part of an interface that
the class implements, then you will need either factor those methods out into an interface, or
configure Spring to use CGLIB-based proxies instead. See the following Spring documentation
references for futher guidance:

1. AOP Proxies

2. Proxying Mechanisms

One of the mgjor strengths of Spring Security isthe multiple levels of granularity it provides you when securing
your Spring services. Y ou can go from securing your entire service layer in one concise statement:

<gl obal - met hod- security>
<prot ect - poi nt cut expressi on="execution(* com myconpany. *Service.*(..))" access="ROLE _USER'/ >
</ gl obal - net hod- securi ty>

to controlling access in a more fine-grained manner at the method layer using XML.:

<bean i d="nyService" class="com myconpany. nyapp. MyService">
<fl ex: renoting-destination/>

Version 1.6.0.RC1 27

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/aop.html#aop-proxying

Securing BlazeDS Destinations with Spring Security

<security:intercept-nethods>
<security:protect method="set*" access="ROLE_ADM N' />
<security:protect method="get*" access="ROLE_ADM N, ROLE_USER' />
<security: protect method="doSonethi ng" access="ROLE_USER' />
</security:intercept-nmethods>
</ bean>

to using a combination of XML and annotations:

<security: gl obal - net hod-security secured-annotati ons="enabl ed" jsr250-annotations="enabl ed"/>

<fl ex: renoting-destination ref="myBankServicel nmpl" />

public interface BankService {

@ecured(" | S_AUTHENTI CATED_ANONYMOUSLY")
public Account readAccount(Long id);

@ecur ed(" | S_AUTHENTI CATED_ANONYMOUSLY")
public Account[] findAccounts();

@pecur ed(" ROLE_TELLER")
public Account post(Account account, double ampunt);

to even more fine-grained ACL -based domain object permissions. For more details on the options available, see
the Spring Security documentation.

Version 1.6.0.RC1 28

Chapter 7. Integration with the BlazeDS Message
Service

7.1. Introduction

The BlazeDS MessageService provides a common abstraction for asynchronous messaging style
communication that is ultimately agnostic to the messaging protocol being used on the server side. Messages
can be passed exclusively between Flex clients, from Java POJOs to subscribed Flex clients, from Flex clients
to POJO message handlers, or between just about any combination thereof. Using the Spring-managed
MessageBr oker enables support for using BlazeDS-native AMF messaging, JM S messaging based on Spring's
proven and simple JM S abstractions, or messaging using Spring Integration's MessageChannel abstraction, all
from a common programming model.

The same Consuner and Producer APIs are used to interact with message destinations from the Flex client,
regardless of which underlying messaging protocol is being used on the server. As such, this chapter will focus
mainly on setting up and using the various message destination types on the server side. For more details on
how to use the Consuner and Producer APIsin the client, see the BlazeDS documentation.

7.2. Configuring the Message Service

The BlazeDS MessageSer vi ce has traditionally been configured by the inclusion of a messaging-config.xml
file in the BlazeDS XML configuration. When using only Spring-managed message destinations, this config
file can be left out completely as the inclusion of the nessage- broker tag in your Spring configuration will
cause the MessageSer vi ce to be configured with sensible defaults if none already exists at startup time. The
end result is essentially eguivalent to including the following minimal messaging-config.xml in your BlazeDS
configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<servi ce id="nmessage-service"
cl ass="fl ex. messagi ng. servi ces. MessageSer vi ce" >

<adapt er s>
<adapter-definition id="actionscript"
cl ass="fl ex. messagi ng. servi ces. messagi ng. adapt ers. Acti onScri pt Adapter"
defaul t="true"/>
</ adapt er s>

<def aul t - channel s>
<channel ref="ny-polling-anf"/>
</ def aul t - channel s>

</ servi ce>

Note that this assumes that there is already an equivalent application-wide def aul t - channel s configuration. It
is recommended that you set the desired service-specific channels (see example below) if not relying on an
application-wide default setup. If no application-wide defaults exist, a best guess will be made by configuring
the first available channel from the MessageBroker that uses an AMFEndpoi nt with polling enabled as the
default for the MessageSer vi ce.

If you wish to have more explicit control over the defaults that will be set on the MessageSer vi ce, you can
customize them viathe message- ser vi ce child element of the nessage- br oker tag. For example:

Version 1.6.0.RC1 29

Integration with the BlazeDS Message Service

<fl ex: message- br oker >
<fl ex: message-servi ce defaul t-adapter-id="ny-default-nmessagi ng-adapter"
def aul t - channel s="ny-pol li ng-anf" />
</ fl ex: nessage- br oker >

If you have an existing messaging-configxml for a legacy BlazeDS application, the
MessageDest i nati onFact ory Will be able to work transparently with it, allowing you to gradualy migrate to
all Spring-managed messaging destinations.

7.3. Using AMF Message Destinations

For simple messaging needs where there are no requirements for message durability, transaction support, or
advanced routing logic, the BlazeDS-native AMF-based message destination is the ideal choice. These
destinations can be fully configured in a Spring application context using the nessage- desti nati on XML
namespace tag. For example, assuming a Spring-managed MessageBr oker has been configured, al that is
needed to set up a basic destination named "event-bus"' with default settingsis the following:

<fl ex: message- destinati on i d="event-bus" />

This sets up adestination to use the BlazeDS Act i onScri pt Adapt er to handle incoming messages. The settings
of the destination can be further customized through the various attributes of the message- dest i nati on tag.
Here is an example of the "event-bus' destination configured with most of the available attributes:

<fl ex: message-destinati on i d="event - bus"
nmessage- br oker =" messagesSer vi ceBr oker "
channel s="ny-pol | i ng-anf, ny-secure-anf"
al | ow subt opi cs="true"
cl ust er - message- rout i ng="br oadcast "
nmessage-time-to-1live="1"
send- security-constraint="fooConstraint"
subscri be-security-constraint="bar Constraint"
subscription-ti meout-m nutes="1"
subt opi c-separat or="/"
throttl e-i nbound- max- frequency="500"
throttl e-inbound-policy="ERROR'
throttl e- out bound- max- f requency="500"
throttl e-out bound- policy="1GNORE" />

The nessage- broker attribute is a reference to the id of a Spring-managed MessageBr oker . The channel s
atribute allows you to specify a comma-delimited list of the BlazeDS channels to be used (in order of
preference) for this destination. The remaining attributes correspond to the options available via the net wor k
and server settings when configuring a message destination in the BlazeDS-specific XML. Each of these
additional attributes is documented in the XSD to provide live code-completion assistance. For additional
details on their usage, see the BlazeDS documentation. The nessage- dest i nati on tag serves as a base for the
j ms- message- destinati on and integration-nessage-destination tags so that the same configuration
options are available no matter the type of the underlying Messagi ngAdapt er .

The only attribute available on the nessage- desti nati on tag that is not available in the IMS and Spring
Integration implementations is the servi ce-adapt er attribute, which can be used to provide a custom
Servi ceAdapt er Vvia a reference to a Manageabl eConponent Fact oryBean. This can be used to provide
integration with additional messaging protocols not directly supported by Spring BlazeDS Integration. See
Providing Custom Service Adapters for additional information on using the

Version 1.6.0.RC1 30

Integration with the BlazeDS Message Service

Manageabl eConponent Fact or yBean.

7.4. Using JMS Message Destinations

For integration with IMS, a special JnsAdapt er is provided that internally makes use of Spring's JnsTenpl at e,
Dest i nati onResol ver, Def aul t Messageli st ener Cont ai ner and other such JMS abstractions for simplified
interaction with JMS resources. The j ms- nessage- dest i nati on XML namespace tag is used to expose IMS
destinations as BlazeDS message destinations. The minimal attributes that must be specified are the destination
i d and exactly one of j ns- desti nati on, queue- nare, Of t opi c- name. A JMS Connect i onFact ory referenceis
also required, but does not have to be explicitly specified if there is already one configured in the current
application context with an id of "connectionFactory". For example, to configure a BlazeDS message
destination named "chatln" that uses a Spring-managed ActiveMQ JMS queue with a local ActiveMQ
installation:

<bean i d="connectionFactory" class="org. apache. acti venqg. Acti veMConnecti onFactory">
<property name="broker URL" val ue="tcp://| ocal host: 61616"/ >
</ bean>

<bean id="chat| nQueue" cl ass="org. apache. acti venqg. command. Acti veMXQueue" >
<constructor-arg val ue="queue.flex.chat.in"/>
</ bean>

<flex:] nms-nessage-destination id="chatln" jns-destination="chatlnQueue" />

Using queue-name Or topic-nane Wwill cause the destination to be resolved using a Spring
Desti nati onResol ver. The destination-resolver, message-converter, and transaction-manager
attributes may be used to set custom references to a Spring-managed Desti nationResol ver,
MessageConverter, OF Transact i onManager respectively.

7.5. Using Spring Integration Message Destinations

For routing messages with Spring Integration, a special | ntegrationAdapter is provided that is able to
send/receive messages via a MessageChannel . This is especially useful when you have more complex routing
needs for your messages, such as connecting to emall or FTP endpoints. The
i ntegration-message-destination XML namespace tag is used to expose a Spring Integration
MessageChannel as a BlazeDS message destination. For example, to configure a BlazeDS message destination
named "chatOut" that uses a Spring Integration Publ i shSubscri beChannel :

<i ntegration: publ i sh-subscribe-channel id="chatQutPubSubChannel" />

<flex:integration-nessage-destination id="chatQut" nmessage- channel ="chat Qut PubSubChannel " />

7.6. Sending AMF Messages with the MessageTemplate

A convenient MessageTenpl at e helper class is provided that allows you to push messages to any BlazeDS
MessageDesti nati on from a simple POJO. This provides a nice abstraction over push style messaging that
hides away the details of the underlying messaging protocol. Whether using a simple AMF based destination or
full-blown JMS, etc., the use of the MessageTenpl at e Stays the same. The only thing the MessageTenpl at e
requires is a reference to a Spring-managed MessageBr oker . If the MessageTenpl at e is configured as a Spring

Version 1.6.0.RC1 31

Integration with the BlazeDS Message Service

bean, it will try and auto-detect the MessageBr oker from its application context.

As an example of how the MessageTenpl at e could be used, suppose we have a RESTful travel application that
has a Flex-based admin console but also exposes an API over HTTP. To give the admin console a "live" view
of the data, we want to push updates to it anytime a new hotel booking is created. Given the following setup in
our application context:

<fl ex: message- br oker />
<bean i d="defaul t MessageTenpl ate" class="org. springfranework. fl ex. messagi ng. MessageTenpl ate" />

<fl ex: message- desti nati on i d="booki ngUpdat es" />

and assuming the Flex client is subscribed to the "bookingUpdates" destination, this could be achieved with the
following controller code:

@Controller

public class Booki ngController {
private MessageTenpl ate tenpl ate;
privat e Booki ngService booki ngServi ce;

@Request Mappi ng(val ue="/ booki ngs", met hod=Request Met hod. POST)
public String createBooki ng(Booking booki ng) {

booki ng = booki ngServi ce. saveBooki ng(booki ng) ;

t enpl at e. send(" booki ngUpdat es", booki ng);

return "redirect:/booki ngs/"+booking. getld();

}

@\ut owi r ed

public void set Tenpl at e(MessageTenpl ate tenpl ate) {
this.tenplate = tenpl ate;

}

@A\ut owi r ed
public voi d setBooki ngServi ce(Booki ngServi ce booki ngService) {
t hi s. booki ngServi ce = booki ngServi ce;

}

Version 1.6.0.RC1 32

Chapter 8. Building and Running the Spring
BlazeDS Integration Samples

8.1. Introduction
Included in the project distribution is a collection of samples called the Spring BlazeDS Integration Test Drive.

This samples project is set up to be built with Maven and either run via an embedded Tomcat instance using the
Maven Tomcat plugin, or elseimported into Eclipse for running viaWTP.

8.1.1. Maven Setup

The sample build requires Maven 2.2.0 or greater. Because the build compiles several seperate Flex and AIR
projects, it can require setting the MAVEN_OPTS variable for your environment to alocate more memory than
the default. The setting we find works well is:

MAVEN_OPTS="- Xns256m - Xnx512m - XX: Per n5i ze=128m - XX: MaxPer nSi ze=256nt

8.1.2. Building and Running the Test Drive

Once vyour Maven environment is set up correctly, cd to {project distribution
root} /samples/spring-flex-testdrive and execute:

mvn clean install
This will first build al of the individual Flex projects and then finally assemble the 'testdrive’ WAR project.

After building successfully, if you'd like to run the application from the command line with an embedded
Tomcat instance, execute:

m/n toncat:run

Once the application has started successfully, you can access the samples wak-through at
http://|ocal host:8080/testdrive/index.html

8.1.3. Using BlazeDS 4 with Maven

Spring BlazeDS Integration 1.6 requires BlazeDS 4, but as of this writing the BlazeDS 4 artifacts have not yet
been published to Maven central. The artifacts have been published to the Spring External maven repository (as
required for the Spring BlazeDS I ntegration automated builds). Declaring a dependency on the spring-flex-core
jar *should* cause the BlazeDS 4 artifacts to be pulled down transitively from the Spring External repository,
but if you encounter any problems, add the following repository entry (either to settings.xml or to your project's
pom.xml):

Version 1.6.0.RC1 33

http://localhost:8080/testdrive/index.html

Building and Running the Spring BlazeDS Integration

<r eposi tory>
<i d>spring-external </id>
<nanme>Spring repository for third party |ibraries</nane>
<url>http://repo.spring.iolext-rel ease-local </ url>
</repository>

8.1.4. Importing and Running the Test Drive in Eclipse

Theindividual Test Drive projects are pre-configured to be imported in Eclipse and run with WTP. (There are a
number of individual projects, so you may want to consider creating a fresh workspace or at least create a new
working set to manage the projects.) We recommend using the free SpringSource Tool Suite to work with the
samples so that you can take full advantage of its extensive Spring support, but any version of Eclipse 3.5+
with WTP should work.

To import the samples, select File->Import...->General->Existing Projects into Workspace and navigate to the
{project distribution root}/spring-flex-samples/spring-flex-testdrive directory and import al of the projects
found.

There is an individual project for each Flex sample, and one WTP project for the 'testdrive’ WAR. Once the
projects have been imported, you can start the web application by selecting the 'testdrive' project, right-clicking
and selecting Run As->Run on Server. The samples have been most thoroughly tested in Tomcat 6.0, but
should run in any Servlet 2.4 container that WTP supports. Once the application has started successfully, you
can access the samples walk-through at http://local host:8080/testdrive/index.html (If running on a server other
than Tomcat, change the port number as needed.)

Version 1.6.0.RC1 34

http://spring.io/tools
http://localhost:8080/testdrive/index.html

	Spring BlazeDS Integration Reference Guide
	Table of Contents
	Chapter 1. Spring BlazeDS Integration Overview
	1.1. Background
	1.2. Minimum major dependency versions Spring BlazeDS Integration 1.6 requires to run
	1.3. Minimum major dependency versions required by optional features

	Chapter 2. Configuring and Using the BlazeDS MessageBroker with Spring
	2.1. Introduction
	2.2. Configuring the Spring DispatcherServlet
	2.3. Configuring the MessageBroker in Spring
	2.4. Mapping Requests to the MessageBroker
	2.5. Using Flex clients alongside Spring MVC Controllers
	2.6. Using Spring-managed Destinations from the Flex Client
	2.7. Advanced MessageBroker Customization
	2.8. Using Custom Exception Translators
	2.9. Using Custom Message Interceptors
	2.9.1. Resource Handling with Custom Message Interceptors
	2.9.2. Customizing the Message Interceptor Chain

	2.10. Providing Custom Service Adapters

	Chapter 3. Exporting Spring Beans for Flex Remoting
	3.1. Introduction
	3.2. Configuring the Remoting Service
	3.3. Using the remoting-destination Tag
	3.4. Exporting Beans for Remoting with @RemotingDestination
	3.4.1. Supplying Externalized Channel Ids

	Chapter 4. Communicating with RESTful Spring MVC Endpoints using AMF
	4.1. Introduction
	4.2. Using AmfView
	4.3. Using AmfHttpMessageConverter
	4.4. Interacting with RESTful AMF Endpoints from the Flex Client

	Chapter 5. Enhanced AMF Support
	5.1. Customizing AMF Conversion
	5.1.1. Configuring AMF Type Conversion
	5.1.1.1. Using Direct Field Mapping
	5.1.1.2. Deserializing Immutable Objects with @AmfCreator
	5.1.1.3. Ignoring Properties During AMF Conversion
	5.1.1.4. Providing Custom Converters

	5.2. Working with Hibernate
	5.2.1. Configuring Hibernate Entity Serialization/Deserialization Support

	5.3. Using Classpath Scanning for AMF Configuration

	Chapter 6. Securing BlazeDS Destinations with Spring Security
	6.1. Introduction
	6.1.1. A simple Spring Security 3 configuration
	6.1.2. Enabling the Spring Security filter chain in web.xml

	6.2. Configuring the Spring Security Integration
	6.2.1. Using a Custom LoginCommand
	6.2.2. Accessing User Details
	6.2.3. Security Exception Translation
	6.2.4. secured Configuration Attributes

	6.3. Configuring Endpoint and Destination Security
	6.3.1. Securing Specific BlazeDS Channels
	6.3.2. Securing BlazeDS Channels by Endpoint URL Path
	6.3.3. Securing Exported Spring Services

	Chapter 7. Integration with the BlazeDS Message Service
	7.1. Introduction
	7.2. Configuring the Message Service
	7.3. Using AMF Message Destinations
	7.4. Using JMS Message Destinations
	7.5. Using Spring Integration Message Destinations
	7.6. Sending AMF Messages with the MessageTemplate

	Chapter 8. Building and Running the Spring BlazeDS Integration Samples
	8.1. Introduction
	8.1.1. Maven Setup
	8.1.2. Building and Running the Test Drive
	8.1.3. Using BlazeDS 4 with Maven
	8.1.4. Importing and Running the Test Drive in Eclipse

