
Spring BlazeDS Integration Reference Guide

Version 1.6.0.RC1

October 2014

Jeremy Grelle (Pivotal)

Copyright © 2010-2011

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

1. Spring BlazeDS Integration Overview .. 1
1.1. Background ... 1
1.2. Minimum major dependency versions Spring BlazeDS Integration 1.6 requires to run 1
1.3. Minimum major dependency versions required by optional features 1

2. Configuring and Using the BlazeDS MessageBroker with Spring ... 2
2.1. Introduction ... 2
2.2. Configuring the Spring DispatcherServlet .. 2
2.3. Configuring the MessageBroker in Spring ... 2
2.4. Mapping Requests to the MessageBroker ... 3
2.5. Using Flex clients alongside Spring MVC Controllers .. 4
2.6. Using Spring-managed Destinations from the Flex Client ... 6
2.7. Advanced MessageBroker Customization .. 6
2.8. Using Custom Exception Translators ... 7
2.9. Using Custom Message Interceptors .. 7

2.9.1. Resource Handling with Custom Message Interceptors .. 8
2.9.2. Customizing the Message Interceptor Chain .. 8

2.10. Providing Custom Service Adapters .. 9
3. Exporting Spring Beans for Flex Remoting ... 10

3.1. Introduction ... 10
3.2. Configuring the Remoting Service ... 10
3.3. Using the remoting-destination Tag .. 11
3.4. Exporting Beans for Remoting with @RemotingDestination ... 12

3.4.1. Supplying Externalized Channel Ids ... 12
4. Communicating with RESTful Spring MVC Endpoints using AMF ... 14

4.1. Introduction ... 14
4.2. Using AmfView ... 14
4.3. Using AmfHttpMessageConverter ... 15
4.4. Interacting with RESTful AMF Endpoints from the Flex Client .. 16

5. Enhanced AMF Support .. 17
5.1. Customizing AMF Conversion .. 17

5.1.1. Configuring AMF Type Conversion ... 17
5.2. Working with Hibernate ... 21

5.2.1. Configuring Hibernate Entity Serialization/Deserialization Support 21
5.3. Using Classpath Scanning for AMF Configuration ... 21

6. Securing BlazeDS Destinations with Spring Security .. 23
6.1. Introduction ... 23

6.1.1. A simple Spring Security 3 configuration .. 23
6.1.2. Enabling the Spring Security filter chain in web.xml .. 24

6.2. Configuring the Spring Security Integration ... 24
6.2.1. Using a Custom LoginCommand .. 25
6.2.2. Accessing User Details .. 25
6.2.3. Security Exception Translation ... 25
6.2.4. secured Configuration Attributes ... 26

6.3. Configuring Endpoint and Destination Security .. 26
6.3.1. Securing Specific BlazeDS Channels .. 26
6.3.2. Securing BlazeDS Channels by Endpoint URL Path .. 27
6.3.3. Securing Exported Spring Services ... 27

7. Integration with the BlazeDS Message Service ... 29
7.1. Introduction ... 29
7.2. Configuring the Message Service .. 29
7.3. Using AMF Message Destinations ... 30
7.4. Using JMS Message Destinations .. 31

Version 1.6.0.RC1 ii

7.5. Using Spring Integration Message Destinations .. 31
7.6. Sending AMF Messages with the MessageTemplate ... 31

8. Building and Running the Spring BlazeDS Integration Samples ... 33
8.1. Introduction ... 33

8.1.1. Maven Setup ... 33
8.1.2. Building and Running the Test Drive .. 33
8.1.3. Using BlazeDS 4 with Maven .. 33
8.1.4. Importing and Running the Test Drive in Eclipse ... 34

Spring BlazeDS Integration

Version 1.6.0.RC1 iii

Chapter 1. Spring BlazeDS Integration Overview

1.1. Background

Spring has always aimed to be agnostic to the client technologies being used to access its core services,
intentionally leaving options open and letting the community drive the demand for any new first-class
integration solutions to be added to the Spring project portfolio. Spring BlazeDS Integration is an answer to the
commmunity demand for a top-level solution for building Spring-powered Rich Internet Applications using
Adobe Flex for the client-side technology.

BlazeDS is an open source project from Adobe that provides the remoting and messaging foundation for
connecting a Flex-based front-end to Java back-end services. Though it has previously been possible to use
BlazeDS to connect to Spring-managed services, it has not been in a way that feels "natural" to a Spring
developer, requiring the extra burden of having to maintain a separate BlazeDS xml configuration. Spring
BlazeDS Integration turns the tables by making the BlazeDS MessageBroker a Spring-managed object, opening
up the pathways to a more extensive integration that follows "the Spring way".

1.2. Minimum major dependency versions Spring BlazeDS
Integration 1.6 requires to run

Java 6

Spring 4.0

Adobe BlazeDS 4.0

1.3. Minimum major dependency versions required by optional
features

Spring Security 3.0

Spring Integration 2.0

Hibernate 3.5

Version 1.6.0.RC1 1

http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/

Chapter 2. Configuring and Using the BlazeDS
MessageBroker with Spring

2.1. Introduction

The central component that must be configured to use Spring BlazeDS Integration is the MessageBroker. HTTP
messages from the Flex client will be routed through the Spring DispatcherServlet to the Spring-managed
MessageBroker. There is no need to configure the BlazeDS MessageBrokerServlet when using the
Spring-managed MessageBroker.

2.2. Configuring the Spring DispatcherServlet

The DispatcherServlet must be configured as normal in web.xml to bootstrap a Spring
WebApplicationContext. For example:

<!-- The front controller of this Spring Web application, responsible for handling all application
requests -->
<servlet>

<servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/config/web-application-config.xml</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

2.3. Configuring the MessageBroker in Spring

A simplified Spring XML config namespace is provided for configuring the MessageBroker in your
WebApplicationContext. To use the namespace support you must add the schema location in your Spring XML
config files. A typical config will look something like the following:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:flex="http://www.springframework.org/schema/flex"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/flex
http://www.springframework.org/schema/flex/spring-flex.xsd">

...
</beans>

This makes the Spring BlazeDS Integration configuration tags available under the flex namespace in your
configuration files. The above setup will be assumed for the rest of the configuration examples to follow. For
the full detail of every attribute and tag available in the config namespace, be sure to refer to the
spring-flex-1.0.xsd as every element and attribute is fully documented there. Using an XSD-aware XML editor
such as the one in Eclipse should bring up the documentation automatically as you type.

Version 1.6.0.RC1 2

At a minimum, the MessageBrokerFactoryBean must be configured as a bean in your Spring
WebApplicationContext in order to bootstrap the MessageBroker, along with a MessageBrokerHandlerAdapter

and an appropriate HandlerMapping (usually a SimpleUrlHandlerMapping) to route incoming requests to the
Spring-managed MessageBroker.

These beans will be registered automatically by using the provided message-broker tag in your bean definition
file. For example, in its simplest form:

<flex:message-broker/>

This will set up the MessageBroker and necessary supporting infrastructure using sensible defaults. The
defaults can be overriden using the provided attributes of the message-broker tag and its associated child
elements. For example, the default location of the BlazeDS XML configuration file
(/WEB-INF/flex/services-config.xml) can be overridden using the services-config-path attribute. The
MessageBrokerFactoryBean uses Spring's ResourceLoader abstraction, so that typical Spring resource paths
may be used. For example, to load the configuration from the application's classpath:

<flex:message-broker services-config-path="classpath*:services-config.xml"

The equivalent MessageBrokerFactoryBean definition using vanilla Spring configuration would be:

<!-- Bootstraps and exposes the BlazeDS MessageBroker -->
<bean id="_messageBroker" class="org.springframework.flex.core.MessageBrokerFactoryBean" >

<property name="servicesConfigPath" value="classpath*:services-config.xml" />
</bean>

Note especially that with the message-broker tag, it is not necessary to assign a custom id to the
MessageBroker, and it is in fact discouraged so that you won't have to continually reference it later. The only
reason you would ever need to provide a custom id is if you were bootstrapping more than one MessageBroker

in the same WebApplicationContext.

2.4. Mapping Requests to the MessageBroker

To properly route incoming requests to the Spring-managed MessageBroker, request mapping must be
configured in three places:

1. DispatcherServlet mapping in web.xml

2. HandlerMapping in the Spring WebApplicationContext

3. Channel definitions in the BlazeDS services-config.xml

The simplest request mapping scenario is when the Flex front-end is the only client type for the application. In
this case you can just map /messagebroker as the top-level path for requests. The mapping in web.xml would
be:

<!-- Map all /messagbroker requests to the DispatcherServlet for handling -->
<servlet-mapping>

Configuring and Using the BlazeDS MessageBroker with

Version 1.6.0.RC1 3

<servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
<url-pattern>/messagebroker/*</url-pattern>

</servlet-mapping>

When using the message-broker config tag, a SimpleUrlHandlerMapping is installed that by default maps all
incoming DispatcherServlet requests to the Spring-managed MessageBroker using a /*path pattern. The
default mapping can be overridden by providing one or more mapping child elements. If you want to provide
your own HandlerMapping bean configuration, you can disable the default using the
disable-default-mapping attribute of the message-broker tag. The order of the installed
SimpleUrlHandlerMapping can be set (for complex scenarios where multiple handler mapping types are
installed in the same context) using the mapping-order attribute.

The SimpleUrlHandlerMapping in the Spring WebApplicationContext maps all requests to the Spring-managed
MessageBroker via the MessageBrokerHandlerAdapter. The default setup installed by the message-broker

config tag is equivalent to the following bean definitions:

<!-- Maps request paths at /* to the BlazeDS MessageBroker -->
<bean class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="mappings">
<value>

/*=_messageBroker
</value>

</property>
</bean>

<!-- Dispatches requests mapped to a MessageBroker -->
<bean class="org.springframework.flex.servlet.MessageBrokerHandlerAdapter"/>

Channel definitions in the BlazeDS services-config.xml must correspond to the chosen mapping. For example,
to set up a typical AMF channel in BlazeDS that matches the above mapping strategy:

<channel-definition id="my-amf" class="mx.messaging.channels.AMFChannel">
<endpoint url="http://{server.name}:{server.port}/{context.root}/messagebroker/amf"

class="flex.messaging.endpoints.AMFEndpoint"/>
<properties>

<polling-enabled>false</polling-enabled>
</properties>

</channel-definition>

See the BlazeDS documentation for more information on configuring communication channels in
services-config.xml.

2.5. Using Flex clients alongside Spring MVC Controllers

It could often be the case that your application needs to serve more than just Flex-based clients. For example,
you may be constructing a RESTful architecture that is meant to serve multiple client-types. You could
potentially even be consuming RESTful endpoints using the Flex HTTPService component. Spring MVC's
controller model provides a simple, flexible means to create such RESTful endpoints. In these sorts of hybrid
web application secenarios, you will need to consider an alternate mapping strategy.

The simplest approach is to use a hierarchical application context with multiple DispatcherServlets. In this
approach, you configure your main application layer (services, security, supporting infrastructure, etc) in a
parent context loaded via the ContextLoaderListener, and then configure all aspects of your Spring MVC
controllers in one child DispatcherServlet context, and all aspects specific to your Flex client in a separate

Spring

Version 1.6.0.RC1 4

http://livedocs.adobe.com/blazeds/1/blazeds_devguide/

child DispatcherServlet context. This approach could look as follows in web.xml:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>

/WEB-INF/spring/*-context.xml
</param-value>

</context-param>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<servlet>
<servlet-name>flex</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>flex</servlet-name>
<url-pattern>/messagebroker/*</url-pattern>

</servlet-mapping>

<servlet>
<servlet-name>spring-mvc</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>spring-mvc</servlet-name>
<url-pattern>/spring/*</url-pattern>

</servlet-mapping>

Here the parent application context is being assembled from a group of files ending in -context.xml contained
in the /WEB-INF/spring/ directory. The child context for the Flex-specific setup would be built (by
convention) from /WEB-INF/flex-servlet.xml, and the context for the Spring MVC controllers would be built
from /WEB-INF/spring-mvc-servlet.xml. This approach provides a nice separation of concerns and will allow
Spring 2.5+ annotated controllers to work using their default configuration.

An alternate approach is to keep things consolidated under one DispatcherServlet context. The down-side to
this approach is that it requires some additional manual configuration, and you have to modify your mapping
approach accordingly, such as mapping /spring/* to the DispatcherServlet, mapping /messagebroker/* to
the Spring-managed MessageBroker via the mapping XML namespace config tag, and modifying any BlazeDS
channel definitions accordingly. You would override the default mapping strategy of the message-broker tag
as follows:

<flex:message-broker>
<flex:mapping pattern="/messagebroker/*" />

</flex:message-broker>

and you would have to account for the /spring/* mapping in your BlazeDS channel definitions. For example:

<channel-definition id="my-amf" class="mx.messaging.channels.AMFChannel">
<endpoint url="http://{server.name}:{server.port}/{context.root}/spring/messagebroker/amf"

class="flex.messaging.endpoints.AMFEndpoint"/>
<properties>

<polling-enabled>false</polling-enabled>
</properties>

</channel-definition>

Configuring and Using the BlazeDS MessageBroker with

Version 1.6.0.RC1 5

In addition to setting up the consolidated mapping strategy, you will also have to manually enable the correct
HandlerMapping and HandlerAdapter for your Spring MVC controllers as described in the Spring MVC
documentation, due to the fact that alternate HandlerMapping and HandlerAdapter beans are configured
automatically when using the message-broker tag.

2.6. Using Spring-managed Destinations from the Flex Client

Explicit channel definition is a requirement when using dynamic destinations (meaning any destination that is
added programmatically and not defined in the BlazeDS services-config.xml, i.e. the destinations created by the
remoting-destination tag and the various *-message-destination tags). See Adobe's documentation for
more detail.

The only way you don't have to explicitly define the ChannelSet on the client is if

1. you are using explicitly defined destinations in services-config.xml (i.e, not dynamic destinations) AND you
compile your flex client against that file

2. your destination is using the application-wide default channel AND you compile your flex client against that
file

Even if you weren't using dynamically created destinations it is debatable whether it is a good idea to ever
compile your client against services-config.xml, thus coupling your client to your server configuration. It is
often desirable to keep your flex client and your server side code as two distinct modules, but compiling against
services-config.xml blurs the lines between those modules.

Our recommendation is that it is generally cleaner to keep the client-side configuration of ChannelSets
explicitly contained within the client module. An excellent way to do this without having to hard-code the
URLs in your client code is to use an ActionScript DI framework such as Spring ActionScript (a Spring
Extensions project, formerly known as Prana).

If you choose to go the route of compiling your client against services-config.xml, note that you can at least
keep the URL information out of the client code by using ServerConfig.getChannel as described in the
referenced BlazeDS documentation.

2.7. Advanced MessageBroker Customization

The initialization of the MessageBroker by the MessageBrokerFactoryBean logically consists of two phases:

1. Parsing the BlazeDS XML configuration files and applying their settings to a newly created MessageBroker

2. Starting the MessageBroker and its services

A special MessageBrokerConfigProcessor callback interface is provided that allows custom processing to be
done on the newly created MessageBroker after each phase, before it is made available for request processing.
This interface is used internally by Spring BlazeDS Integration, but is also available for general use in
advanced programmatic introspection and customization of the MessageBroker. A custom
MessageBrokerConfigProcessor can be configured as a Spring bean and then registered with the
MessageBrokerFactoryBean via the config-processor tag. For example, given a trivial implementation to log
some additional info about the MessageBroker:

Spring

Version 1.6.0.RC1 6

http://static.springframework.org/spring/docs/2.5.x/reference/mvc.html#mvc-ann-setup
http://static.springframework.org/spring/docs/2.5.x/reference/mvc.html#mvc-ann-setup
http://livedocs.adobe.com/blazeds/1/blazeds_devguide/runtimeconfig_5.html#194376

package com.example;

import org.springframework.flex.config.MessageBrokerConfigProcessor;

import flex.messaging.MessageBroker;
import flex.messaging.services.RemotingService;

public class MyDestinationCountingConfigProcessor implements MessageBrokerConfigProcessor {

public MessageBroker processAfterStartup(MessageBroker broker) {
RemotingService remotingService =

(RemotingService) broker.getServiceByType(RemotingService.class.getName());
if (remotingService.isStarted()) {

System.out.println("The Remoting Service has been started with "
+remotingService.getDestinations().size()+" Destinations.");

}
return broker;

}

public MessageBroker processBeforeStartup(MessageBroker broker) {
return broker;

}
}

This class could be configured and registered with the MessageBroker as follows:

<flex:message-broker>
<flex:config-processor ref="myConfigProcessor" />

</flex:message-broker>

<bean id="myConfigProcessor" class="com.example.MyDestinationCountingConfigProcessor" />

2.8. Using Custom Exception Translators

In order to propagate useful information back to the Flex client when an exception occurs on the server, the
original exception must be translated into an instance of flex.messaging.MessageException. If special
translation logic is not applied, a generic "Server.Processing" error will propagate to the client that doesn't give
the client the chance to reason on the real cause of the error to take appropriate action. Special exception
translators are configured by default for transforming Spring Security exceptions into an appropriate
MessageException, but it could also be useful to provide custom translation for your own application-level
exceptions.

Custom exception translation logic can be provided through implementations of the
org.springframework.flex.core.ExceptionTranslator interface. These implementations must be
configured as Spring beans and then registered through the XML configuration namespace as follows:

<!-- Custom exception translator configured as a Spring bean -->
<bean id="myExceptionTranslator" class="com.foo.app.MyBusinessExceptionTranslator"/>

<flex:message-broker>
<flex:exception-translator ref="myExceptionTranslator"/>

</flex:message-broker>

2.9. Using Custom Message Interceptors

Custom message interceptors may be used to apply special processing logic to incoming and outgoing AMF

Configuring and Using the BlazeDS MessageBroker with

Version 1.6.0.RC1 7

messages in their de-serialized Java form. For example, an interceptor can be used to inspect the contents of the
incoming message, or to add extra information to the outgoing message.

Custom message processing logic is provided through implementations of the
org.springframework.flex.core.MessageInterceptor interface. These implementations must be configured
as Spring beans and then registered through the XML configuration namespace as follows:

<!-- Custom message interceptor configured as a Spring bean -->
<bean id="myMessageInterceptor" class="com.foo.app.MyMessageInterceptor"/>

<flex:message-broker>
<flex:message-interceptor ref="myMessageInterceptor"/>

</flex:message-broker>

2.9.1. Resource Handling with Custom Message Interceptors

For housekeeping purposes, an additional
org.springframework.flex.core.ResourceHandlingMessageInterceptor interface is available to use.
Interceptors that implement this extended interface receive an additional guaranteed callback after message
processing is completed, whether processing was successful or failed due to an exception being thrown by the
Endpoint. This allows the interceptor to clean up any resources that it may have been using. This interface
extends the basic MessageInterceptor interface, thus it is configured the same way using the
message-interceptor tag.

2.9.2. Customizing the Message Interceptor Chain

The framework installs a number of predefined MessageInterceptors that are automatically configured
through the use of the configuration namespace. These interceptors are configured in a specific order, and any
custom interceptors are by default added to the beginning of the chain, in the order that their
message-interceptor elements appear. It is possible to specify an explicit order via the position, before, and
after attributes. The position attribute allows the user to *override* the framework-supplied interceptor at
that position, or to simply specify that the interceptor should be at the beginning or end of the chain by using
the FIRST and LAST values respectively. The before and after attributes allow specifying position *relative to*
the framework-supplied filters.

The ordering and implementation of the framework-supplied filters is shown in the table below.

Table 2.1. Standard Interceptor Aliases and Ordering

Alias MessageInterceptor Class Namespace
Element or
Attribute

PER_CLIENT_AUTH_INTERCEPTOR PerClientAuthenticationInterceptor message-broker /

secured @

per-client-authentication

LOGIN_MESSAGE_INTERCEPTOR LoginMessageInterceptor message-broker /

secured

ENDPOINT_INTERCEPTOR EndpointInterceptor message-broker /

secured /

Spring

Version 1.6.0.RC1 8

Alias MessageInterceptor Class Namespace
Element or
Attribute

secured-endpoint-path

or message-broker

/ secured /

secured-channel

2.10. Providing Custom Service Adapters

Using the XML config namespace automatically installs the needed implementations of
flex.messaging.services.ServiceAdapter for use with the Remoting and Message services. Third-party
adapters (such as those provided by the dpHibernate or Gilead projects) can be configured using the
org.springframework.flex.core.ManageableComponentFactoryBean. This factory bean implementation is
able to process arbitrarily complex configuration metadata supplied in JSON format (instead of arbitrarily
complex XML as in the native BlazeDS configuration) and honors the lifecycle semantics (such as proper
invocation of the initialize method) of the ManageableComponent. These custom adapters may be used by
Spring-managed Remoting and Message destinations by either setting its id as the default for the Remoting or
Message service, or by setting the service-adapter attribute for a specific destination (see the Remoting and
Messaging chapters for further detail).

For example, to use the special adapter provided by dpHibernate as the default adapter with the Remoting
service, the configuration would be similar to the following:

<bean id="hibernate-object" class="org.springframework.flex.core.ManageableComponentFactoryBean">
<constructor-arg value="net.digitalprimates.persistence.hibernate.HibernateAdapter"/>

<property name="properties">
<value>

{"hibernate" :
{"sessionFactory" :

{ "class" : "net.digitalprimates.persistence.hibernate.utils.HibernateUtil",
"getCurrentSessionMethod" : "getCurrentSession"

}
}

}
</value>

</property>
</bean>

<flex:message-broker>
<flex:remoting-service default-adapter-id="hibernate-object" />

</flex:message-broker>

Configuring and Using the BlazeDS MessageBroker with

Version 1.6.0.RC1 9

Chapter 3. Exporting Spring Beans for Flex
Remoting

3.1. Introduction

Using a Spring-managed MessageBroker enables Spring beans to be easily exported for direct remoting calls
from a Flex client. This approach is quite similar to that taken with other remoting technologies in the core
Spring Framework. Remoting is applied to existing Spring-managed beans as an external configuration
concern. The MessageBroker transparently handles the process of serialization and deserialization between the
Flex AMF data format and Java.

3.2. Configuring the Remoting Service

The BlazeDS RemotingService has traditionally been configured by the inclusion of a remoting-config.xml file
in the BlazeDS XML configuration. When using only Spring-managed remoting destinations, this config file
can be left out completely as the inclusion of the message-broker tag in your Spring configuration will cause
the RemotingService to be configured with sensible defaults if none already exists at startup time. The end
result is essentially equivalent to including the following minimal remoting-config.xml in your BlazeDS
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<service id="remoting-service"

class="flex.messaging.services.RemotingService">

<adapters>
<adapter-definition id="java-object"

class="flex.messaging.services.remoting.adapters.JavaAdapter"
default="true"/>

</adapters>

<default-channels>
<channel ref="my-amf"/>

</default-channels>

</service>

Note that this assumes that there is already an equivalent application-wide default-channels configuration. It
is recommended that you set the desired service-specific channels (see example below) if not relying on an
application-wide default setup. If no application-wide defaults exist, a best guess will be made by configuring
the first available channel from the MessageBroker that uses an AMFEndpoint as the default for the
RemotingService.

If you wish to have more explicit control over the defaults that will be set on the RemotingService, you can
customize them via the remoting-service child element of the message-broker tag. For example:

<flex:message-broker>
<flex:remoting-service default-adapter-id="my-default-remoting-adapter"

default-channels="my-amf, my-secure-amf" />
</flex:message-broker>

If you have an existing remoting-config.xml for a legacy BlazeDS application, the

Version 1.6.0.RC1 10

RemotingDestinationExporter will be able to work transparently with it, allowing you to gradually migrate to
all Spring-managed remoting destinations.

3.3. Using the remoting-destination Tag

The remoting-destination configuration tag can be used to export existing Spring-managed services for
direct remoting from a Flex client. Given the following Spring bean definition for a productService bean:

<bean id="productService" class="flex.samples.product.ProductServiceImpl" />

and assuming the existance of a Spring-managed MessageBroker configured via the message-broker tag, the
following top-level remoting-destination tag will expose the service for remoting to the Flex client as a
remote service destination named productService:

<!-- Expose the productService bean for BlazeDS remoting -->
<flex:remoting-destination ref="productService" />

By default, the remote service destination exposed to the Flex client will use bean name of the bean being
exported as the service id of the destination, but this may be overridden using the destination-id attribute on
the remoting-destination tag.

An alternate way of using the remoting-destination tag is as a child element of an top-level bean definition.
This is even more concise and works well if you don't have a need to keep your domain-layer bean definitions
separate from infrastructure concerns such as Flex remoting. (Keep in mind that keeping them separate can lead
to easier testability of the core domain layer.) The following achieves the equivalent result to the previous
example:

<bean id="productService" class="flex.samples.product.ProductServiceImpl" >
<flex:remoting-destination />

</bean>

The methods that are exposed to be called by the Flex client can be more tightly controlled through use of the
include-methods and exclude-methods attributes of the remoting-destination tag. The BlazeDS channels
over which the destination is exposed can also be controlled using the channels attribute. (These attributes are
available whether using the top-level or the nested version.) A more extensively customized example would
look something like:

<flex:remoting-destination ref="productService"
include-methods="read, update"
exclude-methods="create, delete"
channels="my-amf, my-secure-amf" />

The remoting-destination tag is transparently configuring a RemotingDestinationExporter bean instance
for each bean being exported. The equivalent full bean syntax without the namespace support would be:

<!-- Expose the productService bean for BlazeDS remoting -->
<bean id="product" class="org.springframework.flex.remoting.RemotingDestinationExporter">

<property name="messageBroker" ref="_messageBroker"/>
<property name="service" ref="productService"/>

Exporting Spring Beans for Flex Remoting

Version 1.6.0.RC1 11

<property name="destinationId" value="productService"/>
<property name="includeMethods" value="read, update"/>
<property name="excludeMethods" value="create, delete"/>
<property name="channels" value="my-amf, my-secure-amf"/>

</bean>

3.4. Exporting Beans for Remoting with
@RemotingDestination

The @RemotingDestination annotation may be used as an alternative to the XML remoting-destination tag
when using annotation-based Spring configuration. @RemotingDestination is used at the type level to indicate
the class being exported. @RemotingInclude and @RemotingExclude are used at the method level to mark the
methods that should be included and excluded for remoting.

The following example illustrates the productService bean configured exclusively through annotations:

package flex.samples.product;

import org.springframework.flex.remoting.RemotingDestination;
import org.springframework.flex.remoting.RemotingExclude;
import org.springframework.flex.remoting.RemotingInclude;
import org.springframework.stereotype.Service;

@Service("productService")
@RemotingDestination(channels={"my-amf","my-secure-amf"})
public class ProductServiceImpl implements ProductService {

@RemotingInclude
public Product read(String id) {

...
}

@RemotingExclude
public Product create(Product product){

...
}

@RemotingInclude
public Product update(Product product){

...
}

@RemotingExclude
public void delete(Product product) {

...
}

}

3.4.1. Supplying Externalized Channel Ids

One potential drawback of the @RemotingDestination approach is the potential need to hard-code AMF
channel ids in multiple classes throughout your codebase. The specification of the channels property is
optional (if not specified, the defaults for the RemotingService will be used), but in cases where they do need to
be specified, one shouldn't need to edit all instances of @RemotingDestination any time the channel identifiers
change. To support this need, the channels attribute is able to resolve values supplied in the
ApplicationContext through a PropertyPlaceholderConfigurer. For example, the previous hardcoded
example could be replaced with:

package flex.samples.product;

Exporting Spring Beans for Flex Remoting

Version 1.6.0.RC1 12

import org.springframework.flex.remoting.RemotingDestination;
import org.springframework.flex.remoting.RemotingExclude;
import org.springframework.flex.remoting.RemotingInclude;
import org.springframework.stereotype.Service;

@Service("productService")
@RemotingDestination(channels={"${channel1}","${channel2}"})
public class ProductServiceImpl implements ProductService {

...
}

assuming you have a PropertyPlaceholderConfigurer provided along the lines of:

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="properties">

<props>
<prop key="channel1">my-amf</prop>
<prop key="channel2">my-secure-amf, my-amf</prop>

</props>
</property>

</bean>

Exporting Spring Beans for Flex Remoting

Version 1.6.0.RC1 13

Chapter 4. Communicating with RESTful Spring
MVC Endpoints using AMF

4.1. Introduction

Spring MVC 3 introduced support for building RESTful services using the @Controller programming model.
This allows for serving multiple representations of the same content based on what the client has requested. For
example, a single RESTful endpoint could be configured to serve HTML, XML, or JSON all from a single
request handling Java method on the @Controller class. This approach allows a single service implementation
to support a variety of different client types, automatically providing the representation that a particular client
desires. In order to better support Flex as one of those client types, Spring BlazeDS Integration adds the
necessary support to be able to support an AMF representation of a given RESTful resource.

AmfView and AmfHttpMessageConverter provide the foundation necessary to use AMF with Spring MVC
@Controllers. The implementations are quite similar to MappingJacksonJsonView and
MappingJacksonHttpMessageConverter which provide Spring's out-of-the-box JSON support. The basics of
configuring these classes are shown throughout the rest of this chapter.

4.2. Using AmfView

AmfView is a Spring MVC View implementation that is intended to be used in conjunction with Spring MVC's
ContentNegotiatingViewResolver. In particular, it is expected that it will be configured as a "default" singleton
view implementation that can render any MVC model as AMF, rather than needing to have a unique instance
per logical view name.

The following example shows a simple configuration of ContentNegotiatingViewResolver to support both
JSON and AMF representations:

<bean class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver">
<property name="mediaTypes">
<map>
<entry key="json" value="application/json"/>
<entry key="amf" value="application/x-amf"/>

</map>
</property>
<property name="defaultViews">
<list>
<bean class="org.springframework.web.servlet.view.json.MappingJacksonJsonView" />
<bean class="org.springframework.flex.http.AmfView" />

</list>
</property>

</bean>

The above example includes setting the mediaTypes property to map file extensions to media types. This is
helpful for clients (such as Flex) that aren't always able to set an appropriate Accept header. So given the above
configuration, and a simple controller such as the following:

@Controller
@RequestMapping("/contacts")
public class ContactsController {

Version 1.6.0.RC1 14

http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/mvc.html#mvc-controller
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/mvc.html#mvc-viewresolver
http://docs.spring.io/spring/docs/4.1.x/spring-framework-reference/html/mvc.html#mvc-multiple-representations

@Autowired
private IContactDAO contactDAO;

@RequestMapping(method=RequestMethod.GET)
public List<Contact> find() {

return contactDAO.findAll();
}

}

an HTTP GET request issued to either http://localhost/myapp/contacts.amf without an appropriate Accept

header or tohttp://localhost/myapp/contacts with an accept header of application/x-amf will return the
list of contacts as an AMF message that may then be deserialized to an ArrayCollection of ActionScript
objects on the Flex client.

4.3. Using AmfHttpMessageConverter

AmfHttpMessageConverter is a HttpMessageConverter implementation that can convert to and from AMF. In
order to be able to convert HTTP POST and PUT request message bodies from AMF to Java objects to be passed
as a @RequestBody arguments to @Controller methods, it must be added to the converters used by Spring
MVC's AnnotationMethodHandlerAdapter. In order to add AMF support while also leaving the framework's
default HttpMessageConverters in place, a simple BeanPostProcessor such as the following example can be
used:

package org.springframework.flex.samples.rest;

import org.springframework.beans.BeansException;
import org.springframework.beans.factory.config.BeanPostProcessor;
import org.springframework.flex.http.AmfHttpMessageConverter;
import org.springframework.http.converter.HttpMessageConverter;
import org.springframework.util.ObjectUtils;
import org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter;

public class HandlerAdapterPostProcessor implements BeanPostProcessor {

public Object postProcessBeforeInitialization(Object bean, String beanName)
throws BeansException {

return bean;
}

public Object postProcessAfterInitialization(Object bean, String beanName)
throws BeansException {

if (bean instanceof AnnotationMethodHandlerAdapter) {
AnnotationMethodHandlerAdapter adapter = (AnnotationMethodHandlerAdapter) bean;
HttpMessageConverter<?>[] converters = adapter.getMessageConverters();
adapter.setMessageConverters(

(HttpMessageConverter<?>[]) ObjectUtils.
addObjectToArray(converters, new AmfHttpMessageConverter()));

}
return bean;

}

}

With this configuration in place, and a controller such as the following:

@Controller
@RequestMapping("/contacts")
public class ContactsController {

Communicating with RESTful Spring MVC Endpoints using

Version 1.6.0.RC1 15

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/remoting.html#rest-message-conversion
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-ann-requestbody
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-extension-bpp

@Autowired
private IContactDAO contactDAO;

@RequestMapping(method=RequestMethod.POST)
public Contact create(@RequestBody Contact contact) {

return contactDAO.create(contact);
}

}

the Flex client can send an HTTP POST request with an ActionScript Contact serialized to AMF in the message
body to http://localhost/myapp/contacts in order to persist that contact to the database.

4.4. Interacting with RESTful AMF Endpoints from the Flex
Client

Effectively interacting with a RESTful service from the Flex client using AMF is generally a matter of
dropping down to some lower-level Flash APIs such as flash.net.URLRequest and flash.net.URLStream.
There are some limitations to how a Flash/Flex application can interact with a REST service from within the
browser. These limitations are generally imposed by the host browser, and are similar to the limitations
imposed on HTML pages. Fortunately, Spring MVC already accounts for such browser limitations and
provides useable workarounds.

The first major limitation is that the Flash player is typically not able to set the Accept header for the request to
application/x-amf when using URLRequest. Spring supports mapping file extensions to media types as an
alternative (see the example Section 4.2, “Using AmfView” configuration for how this is achieved).

The second major limitation is the inability to properly send HTTP PUT and DELETE requests. Spring provides
the HiddenHttpMethodFilter to help cope with this. With the filter configured, a DELETE request (for example)
could be simulated by sending a POST request to a URL such as
http://localhost/myapp/contacts/1.amf?_method=DELETE.

A complete insync-rest example of interacting with a Spring MVC @Controller is now provided in the Test
Drive. This sample duplicates the full functionality of the complete inSync application that was originally built
using BlazeDS Remoting. It shows in detail how to work around Flash player's limitations to use AMF to
interact with a RESTful service that supports it.

AMF

Version 1.6.0.RC1 16

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/index.html?org/springframework/web/filter/HiddenHttpMethodFilter.html

Chapter 5. Enhanced AMF Support

5.1. Customizing AMF Conversion

While BlazeDS provides excellent support for serialization/deserialization between Java beans and AMF, there
are certain limitations in the types of objects that can be handled out-of-the-box. For example, objects to be
converted to/from AMF must have getter and setter methods and must have a public no-arg constructor. In
order to allow for a more flexible approach, we have provided an extension mechanism for easily customizing
the AMF type conversion process through Spring configuration.

5.1.1. Configuring AMF Type Conversion

A special Spring-aware PropertyProxy (a BlazeDS-specific interface for customizing serialization) is provided
that uses Spring's PropertyAccessor interface for type introspection and delegates to the Spring 3+
ConversionService to allow for additional property conversion logic to be plugged in during the
serialization/deserialization process. This enhanced PropertyProxy optionally supports:

• Direct field access for properties (instead of requiring getters and setters)

• Use of an alternate constructor annotated with @AmfCreator for deserialization (instead of a public no-arg
constructor)

• Ignoring certain properties during serialization and/or deserialization when marked with @AmfIgnore or
@AmfIgnoreField

To take advantage of the enhanced AMF support, an instance of SpringPropertyProxy must be registered for
each individual type that could potentially be converted to/from AMF. A specialized set of
MessageBrokerConfigProcessors are provided that take varied approaches to locating the types to be
registered:

Table 5.1. AMF Handling MessageBrokerConfigProcessors

Class Implementation

org.springframework.flex.core.io.
HibernateConfigProcessor

Uses the Hibernate metadata API to locate mapped
Hibernate types to register for AMF conversion and
configures specialized Hibernate Converters. See
Section 5.2, “Working with Hibernate”

org.springframework.flex.core.io.
JpaHibernateConfigProcessor

Uses the Hibernate metadata API to locate mapped
Hibernate JPA types to register for AMF conversion
and configures specialized Hibernate Converters.
See Section 5.2, “Working with Hibernate”

org.springframework.flex.core.io.
ClassPathScanningAmfConversionService
ConfigProcessor

Uses classpath scanning to locate types to register for
AMF conversion. See Section 5.3, “Using Classpath
Scanning for AMF Configuration”

Explicit configuration of one of these classes is done just as with any other MessageBrokerConfigProcessor,

Version 1.6.0.RC1 17

by defining the desired implementation as a bean and wiring it into the MessageBroker using the
config-processor namespace tag.

5.1.1.1. Using Direct Field Mapping

By default, the SpringPropertyProxy will read and write property values during AMF conversion using
JavaBean standard get and set methods, just as the default BlazeDS BeanProxy does. Alternatively, you many
configure it to access fields directly. This is useful in such cases as when you have a class that does not expose
public getter or setter methods, such as the following:

@Entity
public class PackagePrivatePerson {

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
Integer id;

@Version
@Column(name = "version")
Integer version;

String name;
}

In order to be able to convert such a class to/from AMF, you must configure the useDirectFieldAccess

property of one of the supplied AMF configuration processors. For example:

<flex:message-broker>
<flex:config-processor ref="myJpaConfigProcessor" />

</flex:message-broker>

<bean id="myJpaConfigProcessor" class="org.springframework.flex.core.io.JpaConfigProcessor">
<property name="useDirectFieldAccess" value="true" />

</bean>

5.1.1.2. Deserializing Immutable Objects with @AmfCreator

By default, the SpringPropertyProxy will try to instantiate types using a public no-arg constructor during the
AMF deserialization process. Types that do not have a no-arg constructor must provide an alternate constructor
annotated with org.springframework.flex.core.io.AmfCreator, whose properties are in turn annotated with
org.springframework.flex.core.io.AmfProperty, in order to be eligible for AMF conversion. For example:

public class ImmutableValueObject {

final String foo;

final Integer zoo;

@AmfCreator
public ImmutableValueObject(@AmfProperty("foo") String foo, @AmfProperty("zoo") Integer zoo) {

this.foo = foo;
this.zoo = zoo;

}

public String getFoo() {
return this.foo;

}

Enhanced AMF Support

Version 1.6.0.RC1 18

public Integer getZoo() {
return this.zoo;

}
}

5.1.1.3. Ignoring Properties During AMF Conversion

Sometimes it is desirable to ignore certain properties during serialization and/or deserialization. For example,
there may be a property in your Java object that you do not wish to ever send to the Flex client.
SpringPropertyProxy provides a means of achieving this by adding some additional annotations to your Java
objects.

The annotation org.springframework.flex.core.io.AmfIgnore may be used on getter and setter methods.
Annotating a getter method with @AmfIgnore will cause the property to be ignored during serialization to AMF,
and annotating a setter method with @AmfIgnore will cause the property to be ignored during deserialization
from AMF. For example:

public class IgnorablePropsObject {

//Will be ignored on both serialization and deserialization
private String foo;

//Will be ignored only on serialization
private String bar;

//Will be ignored only on deserialization
private String baz;

@AmfIgnore
public String getFoo() {

return foo;
}

@AmfIgnore
public void setFoo(String foo) {

this.foo = foo;
}

@AmfIgnore
public String getBar() {

return bar;
}

public void setBar(String bar) {
this.bar = bar;

}

public String getBaz() {
return baz;

}

@AmfIgnore
public void setBaz(String baz) {

this.baz = baz;
}

}

When using direct field mapping, the annotation org.springframework.flex.core.io.AmfIgnoreField may
be used on fields to achieve equivalent functionality. For example:

Enhanced AMF Support

Version 1.6.0.RC1 19

public class IgnorableFieldsObject {

//Will be ignored on both serialization and deserialization
@AmfIgnoreField
private String foo;

//Will be ignored only on serialization
@AmfIgnoreField(onDeserialization=false)
private String bar;

//Will be ignored only on deserialization
@AmfIgnoreField(onSerialization=false)
private String baz;

}

5.1.1.4. Providing Custom Converters

Customizing the way Java objects are converted to/from AMF is a matter of providing Spring 3 type
Converters and registering them with the ConversionService. The provided AMF config processors all
extend from org.springframework.flex.core.io.AbstractAmfConversionServiceConfigProcessor, which
provides a template method for registering additional converters. One such use for this would be if you wanted
to use classpath scanning to locate AMF-eligible types, but still wanted to register the specialized Hibernate
converters. The following example illustrates this:

First, we configure the ClassPathScanningAmfConversionServiceConfigProcessor using the Spring 3
@Configuration style:

package com.foo.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.convert.converter.ConverterRegistry;
import org.springframework.flex.core.io.ClassPathScanningAmfConversionServiceConfigProcessor;
import org.springframework.flex.hibernate3.io.HibernateProxyConverter;
import org.springframework.flex.hibernate3.io.PersistentCollectionConverterFactory;

@Configuration
public class CustomConverterConfiguration {

@Bean
public ClassPathScanningAmfConversionServiceConfigProcessor myConfigProcessor() {

return new ClassPathScanningAmfConversionServiceConfigProcessor("com.foo.domain") {

@Override
protected void configureConverters(ConverterRegistry registry) {

registry.addConverter(new HibernateProxyConverter());
registry.addConverterFactory(new PersistentCollectionConverterFactory());

}

};
}

}

Then we simply reference that config processor as usual in our MessageBroker configuration:

<flex:message-broker>
<flex:config-processor ref="myConfigProcessor" />

</flex:message-broker>

Enhanced AMF Support

Version 1.6.0.RC1 20

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java

5.2. Working with Hibernate

Using Hibernate to handle persistence concerns is quite common in Spring applications. A common problem
arises, though, when attempting to directly use Hibernate-loaded entities in AMF messages with BlazeDS. In
essence, the default BlazeDS serialization mechanism tries to walk the entire object graph, forcing initialization
of any lazily loaded associations that might be encountered. This generally leads either to LazyInitialization
errors, or (if using a solution such as Spring's OpenSessionInViewFilter) the undesirable n+1 selects scenario.
The other problem that arises is when associations are eagerly loaded, but still wrapped in a Hibernate-specific
collection or proxy, which can cause unexpected results in the way the association gets serialized.

Spring BlazeDS Integration provides a simple solution that will allow the direct use of Hibernate entities in
AMF messages. A few special Hibernate-aware Converters are automatically installed that understand how to
properly convert Hibernate-specific types when they are encountered.

5.2.1. Configuring Hibernate Entity Serialization/Deserialization Support

The Hibernate serialization/deserialization support will be automatically configured with a default
ConversionService upon application startup if Hibernate is detected on the classpath. This support is provided
in the form of two different MessageBrokerConfigProcessors - one for "native" Hibernate and one for using
Hibernate as a JPA provider. The proper one will be configured based on the presence of the JPA api on the
classpath.

The default behavior of the SpringPropertyProxy (in the case of both "native" Hibernate and JPA), when this
support is configured is as follows:

1. Check each bean property to see whether it is contains a Hibernate-specific Proxy or Collection

2. If the Proxy/Collection is initialized, unwrap the underlying value for serialization

3. If the Proxy/Collection is uninitialized, return null for the value to be serialized

At startup time, Hibernate's Metadata API is used to determine which types to register with BlazeDS to use the
specialized SpringPropetyProxy.

The default behavior may be extended/overridden by manually deploying either the
HibernateConfigProcessor, JpaHibernateConfigProcessor, or some other custom extension of
AbstractAmfConversionServiceConfigProcessor as a Spring bean and wiring it into the MessageBroker via
the config-processor XML namespace tag as shown in Section 5.1.1, “Configuring AMF Type Conversion”.

5.3. Using Classpath Scanning for AMF Configuration

As an alternative to using the Hibernate Metadata API to find types to which the SpringPropertyProxy should
be applied, a more general config processor implementation,
org.springframework.flex.core.io.ClassPathScanningAmfConversionServiceConfigProcessor, is
supplied as an alternative that will instead find types using Spring's internal classpath scanning support. The
implementation scans recursively starting from a given base package, and all classes found in the scan will be
registered to have the SpringPropertyProxy applied to them for AMF conversion. The scanning process may
be customized further by configuring org.springframework.core.type.filter.TypeFilter implementations

Enhanced AMF Support

Version 1.6.0.RC1 21

to either include or exclude matching types. For example, Spring provides out-of-the-box RegEx-based and
Annotation-based TypeFilter implementations. The easiest way to configure this implementation is by using
the Java config support provided in Spring 3+, as in the following example:

package com.foo.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.convert.converter.Converter;
import org.springframework.core.convert.converter.ConverterRegistry;
import org.springframework.core.type.filter.AnnotationTypeFilter;
import org.springframework.flex.core.io.ClassPathScanningAmfConversionServiceConfigProcessor;
import org.springframework.flex.hibernate3.HibernateProxyConverter;
import org.springframework.flex.hibernate3.PersistentCollectionConverterFactory;

@Configuration
public class ApplicationConfig {

@Bean
public ClassPathScanningAmfConversionServiceConfigProcessor amfConfigProcessor() {

ClassPathScanningAmfConversionServiceConfigProcessor configProcessor =
new ClassPathScanningAmfConversionServiceConfigProcessor("com.foo.domain") {

@Override
protected void configureConverters(ConverterRegistry registry) {

registry.addConverter(new HibernateProxyConverter());
registry.addConverterFactory(new PersistentCollectionConverterFactory());
registry.addConverter(new MyCustomConverter());

}

};

configProcessor.addIncludeFilter(new AnnotationTypeFilter(MyCustomAmfAnnotation.class));

return configProcessor;
}

}

<flex:message-broker>
<flex:config-processor ref="amfConfigProcessor" />

</flex:message-broker>

Enhanced AMF Support

Version 1.6.0.RC1 22

Chapter 6. Securing BlazeDS Destinations with
Spring Security

6.1. Introduction

Spring Security provides an extremely flexible alternative to the container-based security support provided
out-of-the-box with BlazeDS. Spring BlazeDS Integration provides explicit integration support for
incorporating Spring Security smoothly into your Flex/BlazeDS application. Spring Security provides a wealth
of different configuration options, but rather than go into the many different combinations here, we'll leave
most of that to the Spring Security documentation.

6.1.1. A simple Spring Security 3 configuration

Here is a simple Spring Security starting configuration for use in conjunction with the explicit integration
features provided by Spring BlazeDS Integration that should be a solid starting point for securing a typical Flex
application:

<beans:beans xmlns="http://www.springframework.org/schema/security"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-3.2.xsd">

<http entry-point-ref="entryPoint">
<anonymous enabled="false"/>

</http>

<beans:bean id="entryPoint"
class="org.springframework.flex.security3.FlexAuthenticationEntryPoint"/>

<authentication-manager>
<authentication-provider>

<user-service>
<user name="john" password="john" authorities="ROLE_USER" />
<user name="admin" password="admin" authorities="ROLE_USER, ROLE_ADMIN" />
<user name="guest" password="guest" authorities="ROLE_GUEST" />

</user-service>
</authentication-provider>

</authentication-manager>

</beans:beans>

With a typical Flex application, this approach is preferred to using Spring Security's auto-config setup.
Auto-config sets up a number of features that typically are not needed with a Flex application. For instance,
auto-config sets up a default intercept-url entry that requires authentication for all URL paths within the
application. The FlexAuthenticationEntryPoint will return a proper AMF error response when such URL's
are hit via normal Flex communication processing, but it's invocation should generally be considered a last
resort. Most of the time, authentication and authorization processing should happen deeper within the BlazeDS
request handling process, where there are opportunities to provide more useful information to the client. (See
Securing BlazeDS Channels by Endpoint URL Path for an alternative to intercept-url that generates proper
AMF responses for the Flex client.) It is recommended to start simple as in this example, and add the additional
features as needed.

Version 1.6.0.RC1 23

6.1.2. Enabling the Spring Security filter chain in web.xml

For a typical setup with Spring Security, it is critical to remember to enable the Spring Security filter chain by
adding the appropriate entry to web.xml:

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

We will assume the above configuration is in place for the remainder of the examples in this chapter. For
additional details on the many options available in configuring and using Spring Security, please refer to that
project's documentation.

6.2. Configuring the Spring Security Integration

Spring Security integration is enabled through the secured child element of the message-broker tag. The
simplest possible configuration would be:

<flex:message-broker>
<flex:secured />

</flex:message-broker>

This enables the basic security features. A special BlazeDS LoginCommand implementation is automatically
installed that enables ChannelSet.login and ChannelSet.logout requests to integrate with Spring Security's
Authorization mechanisms. Additionally, the special LoginCommand enables Spring Security granted authorities
to be referenced in BlazeDS XML security constraints. For example, if we were using a traditional BlazeDS
remoting destination defined in remoting-config.xml, we could have something like the following:

<destination id="productService">
...
<security>

<security-constraint>
<auth-method>Custom</auth-method>
<roles>

<role>ROLE_USER</role>
</roles>

</security-constraint>
</security>

</destination>

As you can see, we are referencing the "ROLE_USER" authority from our simple Spring Security setup. The
invocation of this remote destination would cause the provided LoginCommand to be invoked to both verify that
the user is logged in and to check that they have the appropriate role. Violation of either will result in an
exception being thrown by Spring Security.

The provided LoginCommand mimics as much as possible the functionality of Spring Security's

Securing BlazeDS Destinations with Spring Security

Version 1.6.0.RC1 24

http://static.springsource.org/spring-security/site/reference.html

AbstractAuthenticationProcessingFilter including taking the necessary actions to coordinate Spring
Security's additional features such as, Remember Me, Session Fixation Protection, and Concurrent Session
Management upon commencement of the authentication process. Additionally, it will invoke any configured
LogoutHandlers as part of the logout process, including both those auto-configured by Spring Security, and
any that might be supplied by the application developer.

6.2.1. Using a Custom LoginCommand

While the supplied LoginCommand covers many of the most common security configuration scenarios,
sometimes it can be useful to provide your own implementation that either extends
SpringSecurityLoginCommand, while using the Spring container to wire in any necessary dependencies. A
custom LoginCommand can be supplied via the login-command attribute of the secured tag as follows:

<flex:message-broker>
<flex:secured login-command="myLoginCommand"/>

</flex:message-broker>

<bean id="myLoginCommand" class="com.foo.app.security.CustomLoginCommand"/>

If your custom LoginCommand extends SpringSecurityLoginCommand, the following properties will be
autowired by the container if possible:

• rememberMeServices

• sessionAuthenticationStrategy

• logoutHandlers

6.2.2. Accessing User Details

When using the ChannelSet.login API call from the Flex client with Spring Security integration enabled, the
resulting ResponseEvent fired client-side upon successful completion will contain additional information that
can be inspected about the current user. The name and authorities will be extracted from the Authentication
object and added to the body of the response message. This information, for example, can then be used to
conditionally display different portions of the UI based on the user's identity and granted roles:

var token:AsyncToken = myChannelSet.login("jeremy","atlanta");
token.addResponder(

new AsyncResponder(
function(event:ResultEvent, token:Object = null):void {

if (event.result.authorities.indexOf("ROLE_ADMIN") >= 0) {
displayAdminPanel(event.result.name);

} else {
displayUserPanel(event.result.name);

}
},
function(event:FaultEvent, token:Object = null):void {

displayErrorMessage("Login Failed: "+event.fault.faultString);
}

)
);

6.2.3. Security Exception Translation

Securing BlazeDS Destinations with Spring Security

Version 1.6.0.RC1 25

http://static.springsource.org/spring-security/site/docs/3.0.x/reference/springsecurity-single.html#remember-me
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/springsecurity-single.html#ns-session-fixation
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/springsecurity-single.html#concurrent-sessions
http://static.springsource.org/spring-security/site/docs/3.0.x/reference/springsecurity-single.html#concurrent-sessions

Another feature that is automatically installed when the secured tag is used is automatic exception translation
from any thrown SpringSecurityException to the proper BlazeDS SecurityException. The exceptions are caught
and translated at the proper point in the execution chain such that it will result in the proper AMF error message
being serialized and sent back to the client.

This is alternative to the normal Spring Security behavior where a filter in the chain catches the exception and
sends back a corresponding HTTP status code. The problem with sending back HTTP status codes other than
200 is that this causes the Flex client to throw a generic and rather unhelpful exception, and often the status
code can't be determined from the Flex client. Sending back specific AMF error messages instead causes a
FaultEvent to be thrown client-side that contains the proper security fault code that can then be reasoned on
and appropriate action can be taken. This behavior is equivalent to that of the out-of-the-box container-based
security mechanisms provided with BlazeDS, so the programming model client-side remains the same.

6.2.4. secured Configuration Attributes

The secured tag has several additional attributes that allow further customization.

If you are not using Spring Security's default bean ids for the AuthenticationManager or
AccessDecisionManager, you can specify your custom bean references using the corresponding
authentication-manager and access-decision-manager attributes respectively on the secured tag.

The configuration of the provided LoginCommand can be further controlled via the secured tag. The
invalidate-flex-session attribute controls whether the current Flex session is invalidated when the
logout() method is called on the LoginCommand, and defaults to "true" if not specified. The
per-client-authentication attribute turns BlazeDS's per-client authentication mode on when true, and
defaults to "false" if not specified. Enabling per-client authentication will cause the Security context to no
longer be stored in the session between requests and thus will prevent the use of any Spring Security filters that
rely on the Security Context being available in the session, but the authentication and authorization integration
will otherwise work as expected. (See the BlazeDS docs for further information on the difference between
per-session and per-client authentication.)

6.3. Configuring Endpoint and Destination Security

The Spring Security integration allows flexible control over how you secure your application. You can secure
BlazeDS endpoints in a manner similar to Spring Security's traditional URL security, and you can secure your
Spring services using the many existing object security mechanisms of Spring Security just as if you were
writing a traditional web application.

6.3.1. Securing Specific BlazeDS Channels

You can set security constraints on specific BlazeDS channels using the secured-channel child element of the
secured tag. For example:

<flex:message-broker>
<flex:secured>

<flex:secured-channel channel="my-amf" access="ROLE_USER" />
</flex:secured>

</flex:message-broker>

This results in any request being routed to the "my-amf" channel to require the user to be logged in and to have

Securing BlazeDS Destinations with Spring Security

Version 1.6.0.RC1 26

the "ROLE_USER" authority. If either of those is violated, a FaultEvent will be signaled on the client.

6.3.2. Securing BlazeDS Channels by Endpoint URL Path

You can set security constraints on multiple BlazeDS channels at once using the secured-endpoint-path child
element of the secured tag. In this case you specify a URL pattern to be secured instead of a specific channel
id. For example:

<flex:message-broker>
<flex:secured>

<flex:secured-endpoint-path pattern="**/messagebroker/**" access="ROLE_USER" />
</flex:secured>

</flex:message-broker>

This results in any request being routed to any channel whose endpoint URL contains "/messagebroker/" in the
path to require the user to be logged in and to have the "ROLE_USER" authority. If either of those is violated, a
FaultEvent will be signaled on the client.

6.3.3. Securing Exported Spring Services

Earlier in this chapter you saw an example of using the BlazeDS XML configuration to secure a
BlazeDS-managed destination. Since most of the time you will instead be defining destinations by exporting
Spring beans using the remoting-destinationtag, an alternate approach to securing destinations is needed.
This is where Spring Security comes in, as all of its existing authorization mechanisms should "just work"
when security integration is enabled using the secured tag.

Note

When securing destinations as in the examples shown below, it is important to keep in mind that
this feature of Spring Security is using Spring AOP. By default, Spring AOP uses JDK dynamic
proxies. As such, if you have need to secure methods on a class that are not part of an interface that
the class implements, then you will need either factor those methods out into an interface, or
configure Spring to use CGLIB-based proxies instead. See the following Spring documentation
references for futher guidance:

1. AOP Proxies

2. Proxying Mechanisms

One of the major strengths of Spring Security is the multiple levels of granularity it provides you when securing
your Spring services. You can go from securing your entire service layer in one concise statement:

<global-method-security>
<protect-pointcut expression="execution(* com.mycompany.*Service.*(..))" access="ROLE_USER"/>

</global-method-security>

to controlling access in a more fine-grained manner at the method layer using XML:

<bean id="myService" class="com.mycompany.myapp.MyService">
<flex:remoting-destination/>

Securing BlazeDS Destinations with Spring Security

Version 1.6.0.RC1 27

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/aop.html#aop-proxying

<security:intercept-methods>
<security:protect method="set*" access="ROLE_ADMIN" />
<security:protect method="get*" access="ROLE_ADMIN,ROLE_USER" />
<security:protect method="doSomething" access="ROLE_USER" />

</security:intercept-methods>
</bean>

to using a combination of XML and annotations:

<security:global-method-security secured-annotations="enabled" jsr250-annotations="enabled"/>
...
<flex:remoting-destination ref="myBankServiceImpl" />

public interface BankService {

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")
public Account readAccount(Long id);

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")
public Account[] findAccounts();

@Secured("ROLE_TELLER")
public Account post(Account account, double amount);

}

to even more fine-grained ACL-based domain object permissions. For more details on the options available, see
the Spring Security documentation.

Securing BlazeDS Destinations with Spring Security

Version 1.6.0.RC1 28

Chapter 7. Integration with the BlazeDS Message
Service

7.1. Introduction

The BlazeDS MessageService provides a common abstraction for asynchronous messaging style
communication that is ultimately agnostic to the messaging protocol being used on the server side. Messages
can be passed exclusively between Flex clients, from Java POJOs to subscribed Flex clients, from Flex clients
to POJO message handlers, or between just about any combination thereof. Using the Spring-managed
MessageBroker enables support for using BlazeDS-native AMF messaging, JMS messaging based on Spring's
proven and simple JMS abstractions, or messaging using Spring Integration's MessageChannel abstraction, all
from a common programming model.

The same Consumer and Producer APIs are used to interact with message destinations from the Flex client,
regardless of which underlying messaging protocol is being used on the server. As such, this chapter will focus
mainly on setting up and using the various message destination types on the server side. For more details on
how to use the Consumer and Producer APIs in the client, see the BlazeDS documentation.

7.2. Configuring the Message Service

The BlazeDS MessageService has traditionally been configured by the inclusion of a messaging-config.xml
file in the BlazeDS XML configuration. When using only Spring-managed message destinations, this config
file can be left out completely as the inclusion of the message-broker tag in your Spring configuration will
cause the MessageService to be configured with sensible defaults if none already exists at startup time. The
end result is essentially equivalent to including the following minimal messaging-config.xml in your BlazeDS
configuration:

<?xml version="1.0" encoding="UTF-8"?>
<service id="message-service"

class="flex.messaging.services.MessageService">

<adapters>
<adapter-definition id="actionscript"

class="flex.messaging.services.messaging.adapters.ActionScriptAdapter"
default="true"/>

</adapters>

<default-channels>
<channel ref="my-polling-amf"/>

</default-channels>

</service>

Note that this assumes that there is already an equivalent application-wide default-channels configuration. It
is recommended that you set the desired service-specific channels (see example below) if not relying on an
application-wide default setup. If no application-wide defaults exist, a best guess will be made by configuring
the first available channel from the MessageBroker that uses an AMFEndpoint with polling enabled as the
default for the MessageService.

If you wish to have more explicit control over the defaults that will be set on the MessageService, you can
customize them via the message-service child element of the message-broker tag. For example:

Version 1.6.0.RC1 29

<flex:message-broker>
<flex:message-service default-adapter-id="my-default-messaging-adapter"

default-channels="my-polling-amf" />
</flex:message-broker>

If you have an existing messaging-config.xml for a legacy BlazeDS application, the
MessageDestinationFactory will be able to work transparently with it, allowing you to gradually migrate to
all Spring-managed messaging destinations.

7.3. Using AMF Message Destinations

For simple messaging needs where there are no requirements for message durability, transaction support, or
advanced routing logic, the BlazeDS-native AMF-based message destination is the ideal choice. These
destinations can be fully configured in a Spring application context using the message-destination XML
namespace tag. For example, assuming a Spring-managed MessageBroker has been configured, all that is
needed to set up a basic destination named "event-bus" with default settings is the following:

<flex:message-destination id="event-bus" />

This sets up a destination to use the BlazeDS ActionScriptAdapter to handle incoming messages. The settings
of the destination can be further customized through the various attributes of the message-destination tag.
Here is an example of the "event-bus" destination configured with most of the available attributes:

<flex:message-destination id="event-bus"
message-broker="messageServiceBroker"
channels="my-polling-amf, my-secure-amf"
allow-subtopics="true"
cluster-message-routing="broadcast"
message-time-to-live="1"
send-security-constraint="fooConstraint"
subscribe-security-constraint="barConstraint"
subscription-timeout-minutes="1"
subtopic-separator="/"
throttle-inbound-max-frequency="500"
throttle-inbound-policy="ERROR"
throttle-outbound-max-frequency="500"
throttle-outbound-policy="IGNORE" />

The message-broker attribute is a reference to the id of a Spring-managed MessageBroker. The channels

attribute allows you to specify a comma-delimited list of the BlazeDS channels to be used (in order of
preference) for this destination. The remaining attributes correspond to the options available via the network

and server settings when configuring a message destination in the BlazeDS-specific XML. Each of these
additional attributes is documented in the XSD to provide live code-completion assistance. For additional
details on their usage, see the BlazeDS documentation. The message-destination tag serves as a base for the
jms-message-destination and integration-message-destination tags so that the same configuration
options are available no matter the type of the underlying MessagingAdapter.

The only attribute available on the message-destination tag that is not available in the JMS and Spring
Integration implementations is the service-adapter attribute, which can be used to provide a custom
ServiceAdapter via a reference to a ManageableComponentFactoryBean. This can be used to provide
integration with additional messaging protocols not directly supported by Spring BlazeDS Integration. See
Providing Custom Service Adapters for additional information on using the

Integration with the BlazeDS Message Service

Version 1.6.0.RC1 30

ManageableComponentFactoryBean.

7.4. Using JMS Message Destinations

For integration with JMS, a special JmsAdapter is provided that internally makes use of Spring's JmsTemplate,
DestinationResolver, DefaultMessageListenerContainer and other such JMS abstractions for simplified
interaction with JMS resources. The jms-message-destination XML namespace tag is used to expose JMS
destinations as BlazeDS message destinations. The minimal attributes that must be specified are the destination
id and exactly one of jms-destination, queue-name, or topic-name. A JMS ConnectionFactory reference is
also required, but does not have to be explicitly specified if there is already one configured in the current
application context with an id of "connectionFactory". For example, to configure a BlazeDS message
destination named "chatIn" that uses a Spring-managed ActiveMQ JMS queue with a local ActiveMQ
installation:

<bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616"/>

</bean>

<bean id="chatInQueue" class="org.apache.activemq.command.ActiveMQQueue">
<constructor-arg value="queue.flex.chat.in"/>

</bean>

<flex:jms-message-destination id="chatIn" jms-destination="chatInQueue" />

Using queue-name or topic-name will cause the destination to be resolved using a Spring
DestinationResolver. The destination-resolver, message-converter, and transaction-manager

attributes may be used to set custom references to a Spring-managed DestinationResolver,
MessageConverter, or TransactionManager respectively.

7.5. Using Spring Integration Message Destinations

For routing messages with Spring Integration, a special IntegrationAdapter is provided that is able to
send/receive messages via a MessageChannel. This is especially useful when you have more complex routing
needs for your messages, such as connecting to email or FTP endpoints. The
integration-message-destination XML namespace tag is used to expose a Spring Integration
MessageChannel as a BlazeDS message destination. For example, to configure a BlazeDS message destination
named "chatOut" that uses a Spring Integration PublishSubscribeChannel:

<integration:publish-subscribe-channel id="chatOutPubSubChannel" />

<flex:integration-message-destination id="chatOut" message-channel="chatOutPubSubChannel" />

7.6. Sending AMF Messages with the MessageTemplate

A convenient MessageTemplate helper class is provided that allows you to push messages to any BlazeDS
MessageDestination from a simple POJO. This provides a nice abstraction over push style messaging that
hides away the details of the underlying messaging protocol. Whether using a simple AMF based destination or
full-blown JMS, etc., the use of the MessageTemplate stays the same. The only thing the MessageTemplate

requires is a reference to a Spring-managed MessageBroker. If the MessageTemplate is configured as a Spring

Integration with the BlazeDS Message Service

Version 1.6.0.RC1 31

bean, it will try and auto-detect the MessageBroker from its application context.

As an example of how the MessageTemplate could be used, suppose we have a RESTful travel application that
has a Flex-based admin console but also exposes an API over HTTP. To give the admin console a "live" view
of the data, we want to push updates to it anytime a new hotel booking is created. Given the following setup in
our application context:

<flex:message-broker />

<bean id="defaultMessageTemplate" class="org.springframework.flex.messaging.MessageTemplate" />

<flex:message-destination id="bookingUpdates" />

and assuming the Flex client is subscribed to the "bookingUpdates" destination, this could be achieved with the
following controller code:

@Controller
public class BookingController {

private MessageTemplate template;

private BookingService bookingService;

@RequestMapping(value="/bookings", method=RequestMethod.POST)
public String createBooking(Booking booking){

booking = bookingService.saveBooking(booking);
template.send("bookingUpdates", booking);
return "redirect:/bookings/"+booking.getId();

}

@Autowired
public void setTemplate(MessageTemplate template) {

this.template = template;
}

@Autowired
public void setBookingService(BookingService bookingService) {

this.bookingService = bookingService;
}

}

Integration with the BlazeDS Message Service

Version 1.6.0.RC1 32

Chapter 8. Building and Running the Spring
BlazeDS Integration Samples

8.1. Introduction

Included in the project distribution is a collection of samples called the Spring BlazeDS Integration Test Drive.
This samples project is set up to be built with Maven and either run via an embedded Tomcat instance using the
Maven Tomcat plugin, or else imported into Eclipse for running via WTP.

8.1.1. Maven Setup

The sample build requires Maven 2.2.0 or greater. Because the build compiles several seperate Flex and AIR
projects, it can require setting the MAVEN_OPTS variable for your environment to allocate more memory than
the default. The setting we find works well is:

MAVEN_OPTS="-Xms256m -Xmx512m -XX:PermSize=128m -XX:MaxPermSize=256m"

8.1.2. Building and Running the Test Drive

Once your Maven environment is set up correctly, cd to {project distribution
root}/samples/spring-flex-testdrive and execute:

mvn clean install

This will first build all of the individual Flex projects and then finally assemble the 'testdrive' WAR project.
After building successfully, if you'd like to run the application from the command line with an embedded
Tomcat instance, execute:

mvn tomcat:run

Once the application has started successfully, you can access the samples walk-through at
http://localhost:8080/testdrive/index.html

8.1.3. Using BlazeDS 4 with Maven

Spring BlazeDS Integration 1.6 requires BlazeDS 4, but as of this writing the BlazeDS 4 artifacts have not yet
been published to Maven central. The artifacts have been published to the Spring External maven repository (as
required for the Spring BlazeDS Integration automated builds). Declaring a dependency on the spring-flex-core
jar *should* cause the BlazeDS 4 artifacts to be pulled down transitively from the Spring External repository,
but if you encounter any problems, add the following repository entry (either to settings.xml or to your project's
pom.xml):

Version 1.6.0.RC1 33

http://localhost:8080/testdrive/index.html

<repository>
<id>spring-external</id>
<name>Spring repository for third party libraries</name>
<url>http://repo.spring.io/ext-release-local</url>

</repository>

8.1.4. Importing and Running the Test Drive in Eclipse

The individual Test Drive projects are pre-configured to be imported in Eclipse and run with WTP. (There are a
number of individual projects, so you may want to consider creating a fresh workspace or at least create a new
working set to manage the projects.) We recommend using the free SpringSource Tool Suite to work with the
samples so that you can take full advantage of its extensive Spring support, but any version of Eclipse 3.5+
with WTP should work.

To import the samples, select File->Import...->General->Existing Projects into Workspace and navigate to the
{project distribution root}/spring-flex-samples/spring-flex-testdrive directory and import all of the projects
found.

There is an individual project for each Flex sample, and one WTP project for the 'testdrive' WAR. Once the
projects have been imported, you can start the web application by selecting the 'testdrive' project, right-clicking
and selecting Run As->Run on Server. The samples have been most thoroughly tested in Tomcat 6.0, but
should run in any Servlet 2.4 container that WTP supports. Once the application has started successfully, you
can access the samples walk-through at http://localhost:8080/testdrive/index.html (If running on a server other
than Tomcat, change the port number as needed.)

Building and Running the Spring BlazeDS Integration

Version 1.6.0.RC1 34

http://spring.io/tools
http://localhost:8080/testdrive/index.html

	Spring BlazeDS Integration Reference Guide
	Table of Contents
	Chapter 1. Spring BlazeDS Integration Overview
	1.1. Background
	1.2. Minimum major dependency versions Spring BlazeDS Integration 1.6 requires to run
	1.3. Minimum major dependency versions required by optional features

	Chapter 2. Configuring and Using the BlazeDS MessageBroker with Spring
	2.1. Introduction
	2.2. Configuring the Spring DispatcherServlet
	2.3. Configuring the MessageBroker in Spring
	2.4. Mapping Requests to the MessageBroker
	2.5. Using Flex clients alongside Spring MVC Controllers
	2.6. Using Spring-managed Destinations from the Flex Client
	2.7. Advanced MessageBroker Customization
	2.8. Using Custom Exception Translators
	2.9. Using Custom Message Interceptors
	2.9.1. Resource Handling with Custom Message Interceptors
	2.9.2. Customizing the Message Interceptor Chain

	2.10. Providing Custom Service Adapters

	Chapter 3. Exporting Spring Beans for Flex Remoting
	3.1. Introduction
	3.2. Configuring the Remoting Service
	3.3. Using the remoting-destination Tag
	3.4. Exporting Beans for Remoting with @RemotingDestination
	3.4.1. Supplying Externalized Channel Ids

	Chapter 4. Communicating with RESTful Spring MVC Endpoints using AMF
	4.1. Introduction
	4.2. Using AmfView
	4.3. Using AmfHttpMessageConverter
	4.4. Interacting with RESTful AMF Endpoints from the Flex Client

	Chapter 5. Enhanced AMF Support
	5.1. Customizing AMF Conversion
	5.1.1. Configuring AMF Type Conversion
	5.1.1.1. Using Direct Field Mapping
	5.1.1.2. Deserializing Immutable Objects with @AmfCreator
	5.1.1.3. Ignoring Properties During AMF Conversion
	5.1.1.4. Providing Custom Converters

	5.2. Working with Hibernate
	5.2.1. Configuring Hibernate Entity Serialization/Deserialization Support

	5.3. Using Classpath Scanning for AMF Configuration

	Chapter 6. Securing BlazeDS Destinations with Spring Security
	6.1. Introduction
	6.1.1. A simple Spring Security 3 configuration
	6.1.2. Enabling the Spring Security filter chain in web.xml

	6.2. Configuring the Spring Security Integration
	6.2.1. Using a Custom LoginCommand
	6.2.2. Accessing User Details
	6.2.3. Security Exception Translation
	6.2.4. secured Configuration Attributes

	6.3. Configuring Endpoint and Destination Security
	6.3.1. Securing Specific BlazeDS Channels
	6.3.2. Securing BlazeDS Channels by Endpoint URL Path
	6.3.3. Securing Exported Spring Services

	Chapter 7. Integration with the BlazeDS Message Service
	7.1. Introduction
	7.2. Configuring the Message Service
	7.3. Using AMF Message Destinations
	7.4. Using JMS Message Destinations
	7.5. Using Spring Integration Message Destinations
	7.6. Sending AMF Messages with the MessageTemplate

	Chapter 8. Building and Running the Spring BlazeDS Integration Samples
	8.1. Introduction
	8.1.1. Maven Setup
	8.1.2. Building and Running the Test Drive
	8.1.3. Using BlazeDS 4 with Maven
	8.1.4. Importing and Running the Test Drive in Eclipse

