Spring Integration Reference Manual

Mark Fisher
Marius Bogoevici
Iwein Fuld
Jonas Partner

€ Spring

ur ce

1.0.2

© SpringSource Inc., 2008

Spring Integration

Table of Contents

1. Spring INtegration OVEIVIEWeiiiieeeiiiiiiieiee e e e e e et eee e e e e e s e s e e e e aeessaanereeeeeaaeesaaansnenees 1
O 2 T o 1 011 o PSPPI 1
1.2. GOAlS AN PrINCIPIES ...ttt e e e s 1
1.3. Main COMPONENES ...uvvviiiiieeeiiiiiiieee et e e e e s s et e e e e e e e e e st te e e e e e e e s s santbbeereeaeesssansnrraneeeaeeas 2

IVIESSATE ...ttt e e e nrnnnnnrnnnrnnnrne 2
S 0T O 7= PP 3
MESSA0E ENAPOINT ...ttt ettt e e e e st e e annn e e s 3
1.4. MESSAE ENUPOINTSeeiiiieee ittt e e et e e e e e e s e et e e e e e e e e e ennneeaeeeaeeens 4
LI 1S L 0= S PP UPPRTTPPPPRP 4
] SR 4
ROULET ...ttt ettt ettt e e s e e e e nn e 5
S o] L= TSP PPPPRPO 5
N [0 £ = 1 U 5
SEIVICE ACHIVALON ...eeiieiiiiiie ettt ettt e e et e e s s bb e e e s nnbb e e e ennees 6
ChanNEl AQADEELeeeieie e 6

2. MESSAGE CONSIIUCLIONvviieiieeeei ittt e e e e e e s et e e e e e s s e e e e e e e s e s e sab b e e eeeaeeessasntbrneeaeeessannnes 8
2.1, TREMESSA0E INLEITACE ... ettt 8
2.2. MESSAGE HEBAEISt e e e e e st e e e e e e e atara s 8
2.3. Message IMPIEMENLALIONSc.vvrieeiiiiiee et e ettt e e e e snre e e neees 9
2.4. The MessageBuilder HElper Class ... 10

3. MESSAGE ChaNNEIS e e e e e s s r e e e e e e e aaaees 12
3.1. The MessageChannel INTEITACEccuvviiiiiiiiee e 12

POHEDIECNANNEL ... 12
SUBSCHDAbIECANNEL 12
3.2. Message Channel ImMplementationscoooccuiiieiieee e 13
PUbliShSUDSCIHTDEChANNEL ... e 13
QUEUEChANNE] ... 13
PriorityChannelooeiiiii e 13
ReNdEZVOUSCNENNELoooiiiiiiee e e e e 14
D1 o (O =0 1 PRSP 14
ThreadL oCaAChaNNE! ... e e e e e e e as 15
3.3. Channel INtErCEPLOrScoceeeee e 15
3.4. MessageChannel TEMPIELEueeiiiiiiiie et 16
3.5. Configuring Message Channels ... 16
DirectChannel Configurationcceeeeiiiiiiiiiiiiee e e e 17
QueueChannel CONFIGUIALTONc.uuiiiiiiieiee et e e 17
PublishSubscribeChannel Configurationccceeeiviiiiiiiiee e 17
PriorityChannel ConfigUIationccueeieiiiiiieeiiiiiee e 18
RendezvousChannel Configurationuueeeiieiirmiuimnireiiermrerne—.. 18
ThreadL ocal Channel Configurationc.eeeeiiiieieiiiiiee e 18
1.0.2 Spring Integration Reference ii

Spring Integration

4. MESSAgE ENAPOINTS ...ttt ie et e e e e s e e e e e e e e e e e bbb e e e e e e e e e e s eaaraaeeeeaeeas 20
4.1, MESSA0E HANAIEN ...ttt et e e e s 20

4.2, EVENE-DIVEN CONSUMESeiiiiiieeeiiiiiieieeee e e e e e ettt eeeaeeessanateeeeeaeaeeeaaansneeaeeeeaeeeeaannes 20

4.3, POHING CONSUMIESciiiiiiiieiet e e e e e s ettt e e e e e e e et e e e aeeesssantbaneeeeaeessasnsntaneeeeaeesaannnes 21

4.4, NaAMESPACE SUPPOITeeieeeeeeee e e e e e e e e s e e e e e e e e s s s e e e e e e e e e s snnnnnn e e e e e e e e s sannes 22

5. SEIVICE ACHVELOT ...uieeiie ettt ettt e e ettt e e e st e e e s anbe e e e e e bbe e e e s ennbeeeesnnbeeeeeann 25
L300 I 1 1 [o o o RS SPP 25

5.2. The <service-activator/> EIeMeNtcoooiiiiiiiiiiiiie et 25

6. ChanNEl AGBPLES ...ttt e e e r e e et e e e n e e e e anrnr e e e e 26
6.1. The <inbound-channel-adapter> elementccccoe i 26

6.2. The <outbound-channel-adapter/> elementccccceoiiiiiiiiei e, 26

T ROULED . 28
7.1. RoUter IMPlEMENTALIONScoiiiiiiiiiee e e e e e s e e e e e e e e e e eaeranees 28
Payl0a0TYPEROULESceiiiiiiee ittt e e e s 28
RECIPIENILISIROULESuuuieieiiiiiiiiiuiirneaeriaeueeereeererearre e errerrrerreeeenreerererersrensnsnnnnnns 28

7.2. The <TOULEr= ElEMENLooviiii it e e e e st r e e e e e e e e nsnenees 28

7.3. The @ROULET ANNOLBEION ...cveieeeeeeee ettt et e et e et e e ea e et e reeaare s reeaeeeeneeesnareees 29

I =SS o Lol 1 (= SRS 30
S 300 T 1 1 [F o o o PRSP 30

8.2. The <FIlter> ElOMENteeeiiiiiiie ettt e e anes 30

LS I = 0 0 1= USRS 32
1S 80 R 1 1 [F o1 o o PP SPP 32

9.2. The <transformer> EIEBMENEccvvviiiiieie it e et 32

9.3. The @TranSfOrmMEr ANNOLALIONuveeeeeee et e e ettt et e e eaa e e et seeeraeareeenaeeenareees 32
OS] 1 (= S PP PP PP PRPPPPRRP 34
0 0 T 1 4o [o 1) o SRR 34

10.2. FUNCHIONAITY ..ot e e e e s r e e e e e e et e e e e e e e s s santraeeeaaeeas 34
10.3. Programming MOE]cooiiiiiieiiiii e 34
10.4. Configuring a Splitter USING XIML ..cooeiiii e 35

10.5. Configuring a Splitter With ANNOLALIONSocvveeiiiiiiiie e 35

L0 AGOEEOBION ..o 36
0 g 0 [F o1 o I PP PPPRP 36

11,2, FUNCHONEIITY oottt e s e e s e e e 36
11.3. Programming MOAEoooiiiiiiiii et e e e e e st e e e e e e s st r e e e e e e as 36
ADSIraCtM ESSAPEAGUIEGEIONveeeeeeieite ettt e e e s e et e e s 37
COMPIELIONSLIELETY ...ceeeeeeeeeeeee e 38
COITEIELIONSIIAIEGY ...eeeuvveeeeeiteeeeeaaiteee e e et e e s st e e st br e e e st e e e s abbe e e e s sbreeeeannbneeeeane 38

11.4. Configuring an Aggregator With XIMLcooiiiiiiiiiiece e 39

11.5. Configuring an Aggregator with ANNOLaLIONSc.cvvveiieeee i1 41

12, RESBOUENCES .oeeiiiiiieiiteeeee e e e e ettt ettt e e e e s s e e et e e e e e e s s n e e e et e e e e e s s e sn e b ee e e e e e e e s e s ansnrrneeeeeeesnannne 43
20 T g1 0 [F o 1 o I SRR 43

12,2 FUNCHIONEIITY oottt et e e st e e s e e 43
12.3. Configuring a Resequencer With XML ..o, 43

13. Message Handler Chaincociiiiieiicc et a e e e st e e e e e e e e e annes 45
G 0 I 1 4o [o 1) o SRR 45

1.0.2 Spring Integration Reference

Spring Integration

13.2. The <Chain> El@MENEooiiiiiiii et e e e e e 45
14. InbouNd MESSAQING GAIEWEAY'Seeeeiuieeeeeiiieiee e ettt e ettt e e st e e e st e e e s abn e e e s asnb e e e e nanbeeeeeanes 46
14.1. SIMPIEMESSA0INGGALEWEYcceeeeeeeeee e 46
14.2. GatewayProxyFaCtoryBeanccoooiviiiiii s 46
15. MESSAgING BIIAGE ...eeeiiiiiiiieitit ettt e e st e e e e e e aae 48
S0 g1 0 [F o1 o IR PR 48
15.2. The <bridge™ EIEMENT ..ot 48
ST 1= U o] o o] O PPPRTR 50
00 I 1 1 o [1 o) o SRR 50
16.2. REAAING FIIES ..o 50
16.3. WHLING FIlES oo a e e e e e e e e aaeeas 51
16.4. FilE TraNSFOMIENSeeeiieeeei it ee e e e et ee e e e e e e ettt e e e e e e e e st e e e aeeeeaannnneeeeeaaeens 52
N Y S o oo APPSR 53
17.1. Inbound Channel AdaPLENoooiiiiiieeie e 53
17.2. Message-Driven Channel Adapter ..o 54
17.3. Outbound Channel AdBPLENcoouuiiieiieie e 54
17.4. 1NDOUNA GBLEWAYcccceee e 55
17.5. OULDOUNT GALEWEY ...eeveeeeeiiiiiiiieiie e e e e e et e e e e e s e et e e e e e e e st e e e e e e e e s s ssntaaeeeaaeens 56
17.6. IMS SAMPIES ...ttt e e e e e e e e e s e e e e e e s e e e e rae e e e e nrees 56
18. WED SENVICES SUPPOM oeieiieeiiiiiiieiet et e ettt e e e e e e e et e e e e e e s e st re e e e eaeessaasnbbeeeeeaeeseananes 57
18.1. Outbound WeD SErviCe GaIEWEYSccovurrreeiiirieeeiiiiieeaaitiee e et e e e e e e e 57
18.2. Inbound Webh SErviCe GaIEWEYSccooeeieeiiie e 57
18.3. Web Service Namespate SUPPOITeeeeiureeeeiiieieeeiiieeee st e s esitee e e s e e sinseeesenees 57
T, RMI QU0 e 59
S0 g1 0 [F o1 o IR PR 59
RS T2 @1 111U 0 I SRR 59
SRS I g1 o o I 1Y PP 59
19.4. RMI NAMESPACE SUPPONT ...eeieetieiieeeeeeeeiiiie ettt e e e e sttt e e e e e e s s anb e e e e e e e e e s s snsnnrneeeaeeess 59
20. HHPINVOKEr SUPPOIT ..., 61
20 I8 O | g1 0o 1 o ' o PRSP 61
20.2. HttpInvoker INDOUN GaLEWEYeeiiieieiiiiiiieiie et e e e e e 61
20.3. Httplnvoker OUtbound GatEWaYccooecuiiiiiieee e e e 62
20.4. Httplnvoker NameSpace SUPPOIToeoiririeiiiieieeesiteee et essinee e e e enneeeeeeanee 62
2 T o I I o o USRS 64
2 I O | g1 0o 1 o ' o PSP 64
21.2. Http INbouNd GaLEWEYccceeeieeeieeeeeee e 64
21.3. Http OULDOUNT GALEWAYceiueeeeeeeiiiiee ettt e e e nnbeee e e e 65
21.4. Http NameSPace SUPPOITooceeireeieieeeeeieirrre e e e s e e e e s e e e e e s e 65
B\ T IS W o] oo SRR 67
22.1. Mail-Sending Channel AGPLENovviiiiiiiie e 67
22.2. Mail-Receiving Channel Adaptercooiiiiiiiiiiecee e 67
22.3. Mail NaMESPACE SUPPOMT ...eeeiuiieieeiiitiee ettt e e ettt e e st e e e s b e e e e nbeeeeaanes 68
A I =0 1S 0] 1 PP 70
P20 1 R 1 g 110 To 8 1 o o PSP P PPPPPTROPPPRPN 70
23.2. Reading frOM SIrEAIMIScoiiiiiiieeiiiiie ettt e nrre e e e e 70

Spring Integration

23.3. WIHLING L0 SITEAIMSuviiiiiiei e e ettt e e e e e e e et e e e e e e s s st b re e e e e e e e e s e nterneeas 70
23.4. Stream NameSPaCE SUPPOIT ...t e e e ettt e e e e et e e e e e s e e e e e e e e s nenrnees 71
24. Spring ApplicationEvent SUPPOITcoooeiiiiii 72
25. Dealing With XML PaylOadsc.cvviiiiiieei ettt e e traae e e e e 73
b2 T I | g1 0o 1o ' o RSP 73
25.2. Transforming Xml PaylOadseeeeiiiieiiiiiiiieiice e e 73
25.3. Namespace support for Xml tranSfOrMErSocveiieiiiiiieeeiieee e 74
25.4. SPlitting XMl MESSAGESeeeeeiiiiiiiiiei et e e e e et e e e e e e s s st e e e e e e e e e e eentreaees 76
25.5. Routing xml messages using XPathc.cooviiiiiiiiiiiiiee e 76
25.6. Selecting xml messages using XPath ... 77
25.7. XPath components NAmMeSPace SUPPOITvuvvrereeeeeeeieiirieeeeeeeeesssnrrrereeeee e e e snnsneeees 77
26. Security in SPring INTEGratioNcooueiiiiiiiee et e e e e e e 80
P22 300 IR 1 g 10 To 1 1 o o PP PRSPPI 80
26.2. SECUINNG ChaNNEIS ..ot e e e 80
A. Spring INtegration SAMPIESuuuuuuruieiuiiieieruierrrerrrrrerrrrr . 82
AL The Caf@ SAMPIE ...ttt e s 82
A.2. The xml messaging SAMPIEoooi i e e e e 86
B. CONFIGQUIBLION ... iee et e e s e e e e e e e e e e et e e e e e e e s s annttaeeeeaaeeeaannsneneees 87
2 30 O g1 oo 1o o) o PP RRE 87
B.2. NaMESPACE SUPPOIT ...eieeeiiiieie e e e e ettt e e e e e ettt s s s e e e e e e e aatar s s e e e e e e e essssaaseeeeeeeeeennnnn 87
B.3. Configuring the Task SChedUIENcoocuiiiiiiiicee e 88
2 ol =T | 1T o PPNt 89
B.5. ANNOLELION SUPPOIT ...ttt e e e e e e e e e e 20
C. AdditioNal RESOUITESeeeiiiiieeeiieeete ettt e e e e e e ettt e e e e e e e e e et ee e e e e e e e e e sansneneeeeaaeens 93
C.1. Spring INtegration HOMEcccuiiiiiiiie et e e e e st r e e e e e e e e anneaees 93

1.0.2 Spring Integration Reference

Spring Integration

1. Spring Integration Overview

1.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic
cross-cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially the
fact that it is based upon well-established best practices such as programming to interfaces and favoring
composition over inheritance. Spring's simplified abstractions and powerful support libraries boost
developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles.
It extends the Spring programming model into the messaging domain and builds upon Spring's existing
enterprise integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain business logic
should execute and wher e the response should be sent. It supports routing and transformation of messages
so that different transports and different data formats can be integrated without impacting testability. In
other words, the messaging and integration concerns are handled by the framework, so business
components are further isolated from the infrastructure and developers are relieved of complex integration
responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean"
elements, and of course direct usage of the underlying API. That API is based upon well-defined strategy
interfaces and non-invasive, delegating adapters. Spring Integration’'s design is inspired by the recognition
of a strong affinity between common patterns within Spring and the well-known Enterprise Integration
Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf (Addison
Wesley, 2004). Developers who have read that book should be immediately comfortable with the Spring
Integration concepts and terminology .

1.2 Goals and Principles

Spring Integration is motivated by the following goals:

* Provide asimple model for implementing complex enterprise integration solutions.

1.0.2 Spring Integration Reference 1

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

 Facilitate asynchronous, message-driven behavior within a Spring-based application.

» Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration logic.

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse and
portability.

1.3 Main Components

From the vertical perspective, alayered architecture facilitates separation of concerns, and interface-based
contracts between layers promate loose coupling. Spring-based applications are typicaly designed this
way, and the Spring framework and portfolio provide a strong foundation for following this best practice
for the full-stack of an enterprise application. Message-driven architectures add a horizontal perspective,
yet these same goals are still relevant. Just as "layered architecture” is an extremely generic and abstract
paradigm, messaging systems typically follow the similarly abstract "pipes-and-filters’ model. The
"filters" represent any component that is capable of producing and/or consuming messages, and the
"pipes’ transport the messages between filters so that the components themsel ves remain |oosely-coupl ed.
It is important to note that these two high-level paradigms are not mutually exclusive. The underlying
messaging infrastructure that supports the "pipes" should still be encapsulated in a layer whose contracts
are defined as interfaces. Likewise, the "filters' themselves would typically be managed within a layer
that is logically above the application's service layer, interacting with those services through interfaces
much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be of
any type and the headers hold commonly required information such as id, timestamp, expiration, and
return address. Headers are also used for passing values to and from connected transports. For example,
when creating a Message from a received File, the file name may be stored in a header to be accessed by
downstream components. Likewise, if a Message's content is ultimately going to be sent by an outbound
Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured as Message header
values by an upstream component. Devel opers can aso store any arbitrary key-value pairsin the headers.

1.0.2 Spring Integration Reference 2

Spring Integration

Message

Header

Payload

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to
a channel, and consumers receive Messages from a channel. The Message Channel therefore decouples
the messaging components, and also provides a convenient point for interception and monitoring of

Messages.

send(Message) receive()
Producer Consumer

Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a
Point-to-Point channel, at most one consumer can receive each Message sent to the channel.
Publish/Subscribe channels, on the other hand, will attempt to broadcast each Message to al of its
subscribers. Spring Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer
messages? In Spring Integration, Pollable Channels are capable of buffering Messages within a queue.
The advantage of buffering is that it alows for throttling the inbound Messages and thereby prevents
overloading a consumer. However, as the name suggests, this also adds some complexity, since a
consumer can only receive the Messages from such a channel if a poller is configured. On the other hand,
a consumer connected to a Subscribable Channel is ssimply Message-driven. The variety of channel
implementations available in Spring Integration will be discussed in detail in Section 3.2, “Message
Channel Implementations’.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration

Manud

Spring Integration

solutions through inversion of control. This means that you should not have to implement consumers and
producers directly, and you should not even have to build Messages and invoke send or receive operations
on a Message Channel. Instead, you should be able to focus on your specific domain model with an
implementation based on plain Objects. Then, by providing declarative configuration, you can "connect"”
your domain-specific code to the messaging infrastructure provided by Spring Integration. The
components responsible for these connections are Message Endpoints. This does not mean that you will
necessarily connect your existing application code directly. Any real-world enterprise integration solution
will require some amount of code focused upon integration concerns such as routing and transformation.
The important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the goal should
be to provide athin but dedicated layer that translates inbound requests into service layer invocations, and
then trandates service layer return values into outbound replies. The next section will provide an
overview of the Message Endpoint types that handle these responsibilities, and in upcoming chapters, you
will see how Spring Integration's declarative configuration options provide a non-invasive way to use
each of these.

1.4 Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary role is to connect application code to the messaging framework and to do so in a
non-invasive manner. In other words, the application code should idealy have no awareness of the
Message objects or the Message Channels. This is similar to the role of a Controller in the MVC
paradigm. Just as a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as
Controllers are mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal
is the same in both cases: isolate application code from the infrastructure. These concepts are discussed at
length along with all of the patterns that follow in the Enterprise Integration Patterns book. Here, we
provide only a high-level description of the main endpoint types supported by Spring Integration and their
roles. The chapters that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message's content or structure and returning the
modified Message. Probably the most common type of transformer is one that converts the payload of the
Message from one format to another (e.g. from XML Document to javalang.String). Similarly, a
transformer may be used to add, remove, or modify the Message's header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at al. This simply
requires a boolean test method that may check for a particular payload content type, a property value, the
presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if not it will be
dropped (or for a more severe implementation, an Exception could be thrown). Message Filters are often

1.0.2 Spring Integration Reference 4

http://www.eaipatterns.com

Spring Integration

used in conjunction with a Publish Subscribe channel, where multiple consumers may receive the same
Message and use the filter to narrow down the set of Messages to be processed based on some criteria.

Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural
pattern with this specific endpoint type that selectively narrows down the Messages flowing
between two channels. The Pipes-and-Filters concept of "filter" matches more closely with
Spring Integration's Message Endpoint: any component that can be connected to Message
Channel(s) in order to send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message next
(if any). Typicaly the decision is based upon the Message's content and/or metadata available in the
Message Headers. A Message Router is often used as a dynamic alternative to a statically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise, a
Message Router provides a proactive alternative to the reactive Message Filters used by multiple
subscribers as described above.

Channel A

M EE" Message
g Router
Channel B
Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.
Thisis typicaly used for dividing a"composite" payload object into a group of Messages containing the
sub-divided payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often downstream
consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more complex than a
Splitter, because it is required to maintain state (the Messages to-be-aggregated), to decide when the

Manud

Spring Integration

complete group of Messages is available, and to timeout if necessary. Furthermore, in case of atimeout,
the Aggregator needs to know whether to send the partial results or to discard them to a separate channel.
Spring Integration provides a Conpl eti onStrat egy as well as configurable settings for timeout,
whether to send partial results upon timeout, and the discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system. The
input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

Note
The output channel is optional, since each Message may aso provide its own 'Return
Address header. This same rule appliesfor al consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message's payload and converting if necessary (if the method does not expect a
Message-typed parameter). Whenever the service object's method returns a value, that return value will
likewise be converted to a reply Message if necessary (if it's not already a Message). That reply Message
is sent to the output channel. If no output channel has been configured, then the reply will be sent to the
channel specified in the Message's "return address” if available.

——
handle(Message) M:'PUl
O Sevieo [__________ seage |/ | g
Input Activator [Output™ Handion
Me
Channel ssage
Qutput
Channel
A request-reply "Service Activator" endpoint connects a target object's method to input and output

Message Channels.

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Reguest, IMS Message, etc). Depending on the transport, the Channel Adapter may
also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

1.0.2 Spring Integration Reference 6

Spring Integration

=
o |~ @D

Message
Channel

An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.
Message

I,
Message — Target
Channel

An outbound "Channel Adapter" endpoint connects a MessageChannel to atarget system.

Manua

Spring Integration

2. Message Construction

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message aso includes headers containing user-extensible properties as key-value
pairs.

2.1 The Message Interface

Hereisthe definition of the Message interface:

public interface Message<T> {
T get Payl oad() ;
MessageHeader s get Headers();

}

The Message is obviously a very important part of the APl. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the datas type. As an
application evolves to support new types, or when the types themselves are modified and/or extended, the
messaging system will not be affected by such changes. On the other hand, when some component in the
messaging system does require access to information about the Message, such metadata can typically be
stored to and retrieved from the metadata in the M essage Headers.

2.2 Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports any
Object types as header values. In fact, the MessageHeader s class implements the java.util.Map
interface:

public final class MessageHeaders inplenents Map<String, Object>, Serializable {

}

Note

Even though the MessageHeaders implements Map, it is effectively a read-only
implementation. Any attempt to put a value in the Map will result in an
Unsupport edOper at i onExcepti on. The same applies for remove and clear. Since
Messages may be passed to multiple consumers, the structure of the Map cannot be modified.
Likewise, the Message's payload Object can not be set after the initial creation. However, the
mutability of the header values themselves (or the payload Object) is intentionally left as a
decision for the framework user.

1.0.2 Spring Integration Reference 8

Spring Integration

As an implementation of Map, the headers can obviously be retrieved by calling get (. .) with the name
of the header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. Here is an example of
each of these three options:

hj ect soneVal ue = nessage. get Headers(). get ("soneKey");
Customer|d custonerld = message. get Headers(). get ("“custonerld", Custonerld.class);

Long ti nestanp = nessage. get Header s(). get Ti mest anp();

The following Message headers are pre-defined:

Table 2.1. Pre-defined Message Headers

Header Name Header Type
ID java.util.UUID

TIMESTAMP javalang.Long

EXPIRATION_DATE
CORRELATION_ID
REPLY_CHANNEL

javalang.Long
java.lang.Object

javalang.Object (can be a
MessageChannel)

String

or

SEQUENCE_NUMBER
SEQUENCE_SIZE

javalang.Integer

javalang.Integer

PRIORITY MessagePriority (an enum)

Many inbound and outbound adapter implementations will also provide and/or expect certain headers,
and additional user-defined headers can aso be configured.

2.3 Message Implementations

The base implementation of the Message interface is Generi cMessage<T>, and it provides two
constructors:
new Ceneri cMessage<T>(T payl oad);

new Ceneri cMessage<T>(T payl oad, Map<String, Object> headers)

When a Message is created, a random unigue id will be generated. The constructor that accepts a Map of
headers will copy the provided headers to the newly created M essage.

1.0.2 Spring Integration Reference 9

Spring Integration

There are also two convenient subclasses available: Stri ngMessage and Error Message. The
former accepts a String as its payload:

StringMessage nessage = new StringMessage("hello world");
String s = message. get Payl oad() ;

And, the latter accepts any Thr owabl e object asits payload:

Error Message nmessage = new Error Message(soneThr owabl e) ;

Throwabl e t = nessage. get Payl oad() ;

Notice that these implementations take advantage of the fact that the Generi cMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
M essage payload Object.

2.4 The MessageBuilder Helper Class

You may hotice that the Message interface defines retrieval methods for its payload and headers but no
setters. The reason for thisis that a Message cannot be modified after itsinitial creation. Therefore, when
a Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if one of
those consumers needs to send a reply with a different payload type, it will need to create a new Message.
As aresult, the other consumers are not affected by those changes. Keep in mind, that multiple consumers
may access the same payload instance or header value, and whether such an instance isitself immutableis
a decision left to the developer. In other words, the contract for Messages is similar to that of an
unmodifiable Collection, and the MessageHeaders map further exemplifies that; even though the
MessageHeaders class implementsj ava. uti | . Map, any attempt to invoke a put operation (or 'remove’
or 'clear') on the MessageHeaders will result in an Unsuppor t edOper at i onExcepti on.

Rather than requiring the creation and population of a Map to pass into the GenericM essage constructor,
Spring Integration does provide a far more convenient way to construct Messages: MessageBui | der .
The MessageBuilder provides two factory methods for creating Messages from either an existing
Message or with a payload Object. When building from an existing Message, the headers and payload of
that Message will be copied to the new Message:

Message<Stri ng> nessagel = MessageBui | der. wit hPayl oad("test")
. set Header ("foo0", "bar")
Cbuild();

Message<Stri ng> nessage2 = MessageBui | der. fromVessage(nessagel). buil d();
assertEqual s("test", nessage2.get Payl oad());

assert Equal s("bar", message2.get Headers().get("foo"));

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the 'copy' methods.

Message<Stri ng> nessage3 = MessageBui | der. wi t hPayl oad("t est 3")
. copyHeader s(nessagel. get Header s())
.bui 1 d();

Manud

Spring Integration

Message<Stri ng> nmessage4 = MessageBui |l der. wi t hPayl oad("test4")
. set Header ("f 00", 123)
. copyHeader sl f Absent (nessagel. get Headers())
cbuild();

assert Equal s("bar", message3. get Headers().get("foo"));
assert Equal s(123, nessage4. get Headers().get ("fo0"));

Notice that the copyHeader sl f Absent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with set Header . Findly, there are set
methods available for the predefined headers as well as a non-destructive method for setting any header
(MessageHeaders also defines constants for the pre-defined header names).

Message<I nt eger > i nport ant Message = MessageBui | der. wi t hPayl oad(99)
.setPriority(MessagePriority. H GHEST)
. bui ld();

assert Equal s(MessagePriority. H GHEST, inportant Message. get Headers().getPriority());

Message<I| nt eger > anot her Message = MessageBui | der. f romVessage(i nport ant Message)
. set Header | f Absent (MessageHeaders. PRI ORI TY, MessagePriority. LON
Cbuild();

assert Equal s(MessagePriority. H GHEST, anot her Message. get Headers().getPriority());

The MessagePriority isonly considered when using a Pri ori t yChannel (as described in the
next chapter). It is defined as an enum with five possible values:

public enum MessagePriority {
HI GHEST,
HI GH,
NORVAL,
Low
LOVEST

1.0.2 Spring Integration Reference 11

Spring Integration

3. Message Channels

While the Message plays the crucia role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

3.1 The MessageChannel Interface

Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {
String get Name();
bool ean send(Message nessage);

bool ean send(Message nmessage, |ong tineout);

}

When sending a message, the return value will be true if the message is sent successfully. If the send call
times out or isinterrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are two
sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior. Here
isthe definition of Pol | abl eChannel .
public interface Poll abl eChannel extends MessageChannel {
Message<?> receive();
Message<?> recei ve(long ti meout);
Li st <Message<?>> clear();

Li st <Message<?>> pur ge(MessageSel ector sel ector);

}
Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

The Subscri babl eChannel base interface is implemented by channels that send Messages directly
to their subscribed consumers. Therefore, they do not provide receive methods for polling, but instead
define methods for handling those subscribers:

public interface Subscribabl eChannel extends MessageChannel {

bool ean subscri be(MessageConsunmer consuner)

1.0.2 Spring Integration Reference 12

Spring Integration

bool ean unsubscri be(MessageConsuner consumer);

3.2 Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly described
in the sections below.

PublishSubscribeChannel

The Publ i shSubscri beChannel implementation broadcasts any Message sent to it to al of its
subscribed consumers. This is most often used for sending Event Messages whose primary role is
notification as opposed to Document Messages which are generally intended to be processed by a single
consumer. Note that the Publ i shSubscri beChannel is intended for sending only. Since it
broadcasts to its subscribers directly when its send(Message) method is invoked, consumers cannot
poll for Messages (it does not implement Pol | abl eChannel and therefore has no recei ve()
method). Instead, any subscriber must be a MessageConsuner itself, and the subscriber's
send(Message) method will be invoked in turn.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike, the Publ i shSubscri beChannel , the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default
no-argument constructor (providing an essentially unbounded capacity of | nt eger . MAX VALUE) as
well as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (i nt capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Likewise, a receive call will
return immediately if a message is available on the queue, but if the queue is empty, then a receive call
may block until either a message is available or the timeout elapses. In either case, it is possible to force
an immediate return regardless of the queue's state by passing a timeout value of 0. Note however, that
calling the no-arg versionsof send() andr ecei ve() will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the Pri ori t yChannel isan
aternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the 'pri ori t y' header within each message. However,

1.0.2 Spring Integration Reference 13

Spring Integration

for custom priority determination logic, a comparator of type Conpar at or <Message<?>> can be
provided tothe Pri ori t yChannel 's constructor.

RendezvousChannel

The RendezvousChannel enables a"direct-handoff" scenario where a sender will block until another
party invokes the channel's r ecei ve() method or vice-versa. Internally, this implementation is quite
similar to the QueueChannel except that it uses a SynchronousQueue (a zero-capacity
implementation of Bl ocki ngQueue). This works well in situations where the sender and receiver are
operating in different threads but simply dropping the message in a queue asynchronoudly is too
dangerous. For example, the sender's thread could roll back a transaction if the send operation times out,
whereas with a QueueChannel , the message would have been stored to the internal queue and
potentially never received.

The RendezvousChannel is also useful for implementing request-reply operations. The sender can
create a temporary, anonymous instance of RendezvousChannel which it then sets as the
'replyChannel’ header when building a Message. After sending that Message, the sender can immediately
call receive (optionally providing atimeout value) in order to block while waiting for areply Message.

DirectChannel

The Direct Channel has point-to-point semantics, but otherwise is more similar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described above.
It implements the Subscr i babl eChannel interfaceinstead of the Pol | abl eChannel interface, so
it dispatches Messages directly to a subscriber. As a point-to-point channel, however, it differs from the
Publ i shSubscri beChannel in that it will only send each Message to a single subscribed
MessageConsuner . Its primary purpose is to enable a single thread to perform the operations on "both
sides’ of the channel. For example, if a consumer is subscribed to a Di r ect Channel , then sending a
Message to that channel will trigger invocation of that consumer's onMessage(Message) method
directly in the sender's thread. The key motivation for providing a channel implementation with this
behavior is to support transactions that must span across the channel while still benefiting from the
abstraction and loose coupling that the channel provides. If the send call is invoked within the scope of a
transaction, then the outcome of the consumer's invocation (e.g. updating a database record) can play a
role in determining the ultimate result of that transaction (commit or rollback).

Note

Sincethe Di r ect Channel isthe simplest option and does not add any additional overhead
that would be required for scheduling and managing the threads of a poller, it is the default
channel type within Spring Integration. The general idea is to define the channels for an
application and then to consider which of those needs to provide buffering to throttle input,
and to modify those to be queue-based Pol | abl eChannel s. Likewise, if a channel needs
to broadcast messages, it should not be a DirectChannel but rather a
Publ i shSubscri beChannel . Below you will see how these can be configured.

Manud

Spring Integration

ThreadLocalChannel

The final channel implementation type is Thr eadLocal Channel . This channel also delegates to a
gueue internally, but the queue is bound to the current thread. That way the thread that sends to the
channel will later be able to receive those same Messages, but no other thread would be able to access
them. While probably the least common type of channel, this is useful for situations where
Di r ect Channel s are being used to enforce a single thread of operation but any reply Messages should
be sent to a "terminal" channel. If that terminal channel is a Thr eadLocal Channel , the original
sending thread can collect itsreplies from it.

3.3 Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since the
Messages are being sent to and received from MessageChannel s, those channels provide an
opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations:

public interface Channel I nterceptor {
Message<?> preSend(Message<?> nessage, MessageChannel channel);
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);
bool ean preRecei ve(MessageChannel channel);

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

}
After implementing the interface, registering the interceptor with achannel is just a matter of caling:

channel . addl nt er cept or (sonmeChannel | nt er cept or) ;

The methods that return a Message instance can be used for transforming the Message or can return 'null’
to prevent further processing (of course, any of the methods can throw an Exception). Also, the
pr eRecei ve method can return 'f al se' to prevent the receive operation from proceeding.

Because it is rarely necessary to implement al of the interceptor methods, a
Channel | nt er cept or Adapt er classis aso available for sub-classing. It provides no-op methods
(thevoi d method is empty, the Message returning methods return the Message parameter as-is, and the
bool ean method returnst r ue). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need as in the following example.

public class CountingChannel | nterceptor extends Channel | nterceptorAdapter {

private final Atom clnteger sendCount = new Atomni clnteger();

@verride

publ i c Message<?> preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncrement AndGet () ;
return nessage;

1.0.2 Spring Integration Reference 15

Spring Integration

Note

Keep in mind that r ecei ve() calls are only relevant for Pol | abl eChannel s. In fact
the Subscri babl eChannel interface does not even define ar ecei ve() method. The
reason for thisis that when a Message is sent to a Subscr i babl eChannel it will be sent
directly to one or more subscribers depending on the type of channel (eg. a
PublishSubscribeChannel sends to all of its subscribers). Therefore, the pr eRecei ve(. .)
and post Recei ve(..) interceptor methods are only invoked when the interceptor is
appliedto aPol | abl eChannel .

3.4 MessageChannelTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of your
application code from the messaging system. However, sometimes it is necessary to invoke the messaging
system from your application code. For convenience when implementing such use-cases, Spring
Integration provides a MessageChannel Tenpl at e that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for areply.

MessageChannel Tenpl ate tenpl ate = new MessageChannel Tenpl ate() ;

Message reply = tenpl ate. sendAndRecei ve(new StringMessage("test"), soneChannel)

In that example, a temporary anonymous channel would be created internally by the template. The
'sendTimeout’ and 'receiveTimeout' properties may also be set on the template, and other exchange types
are also supported.

publ i c bool ean send(final Message<?> nessage, final MessageChannel channel) { ... }
publ i c Message<?> sendAndRecei ve(final Message<?> request, final MessageChannel channel) { .. }
publ i c Message<?> receive(final Pollabl eChannel <?> channel) { ... }

3.5 Configuring Message Channels

To create a Message Channel instance, you can use the 'channel’ element:

<channel i d="exanpl eChannel "/>

The default channel type is Point to Point. To create a Publish Subscribe channel, use the
"publish-subscribe-channel" element:

<publ i sh-subscri be-channel id="exanpl eChannel"/>

Manud

Spring Integration

To create a Datatype Channel that only accepts messages containing a certain payload type, provide the
fully-qualified class namein the channel element'sdat at ype attribute:

<channel id="nunber Channel" datatype="java.| ang. Nunber"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other words,
the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger or
j ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<channel id="stringO Nunber Channel" datatype="java.l ang. String,java.| ang. Nunber"/>

When using the "channel" element without any sub-elements, it will create aDi r ect Channel instance
(aSubscri babl eChannel).

However, you can aso provide a variety of "queue" sub-elements to create the channel types (as
described in Section 3.2, “Message Channel Implementations”). Examples of each are shown below.

DirectChannel Configuration

As mentioned above, Di r ect Channel isthe default type.

<channel i d="exanpl eChannel "/>

QueueChannel Configuration

To create aQueueChannel , use the "queue" sub-element. Y ou may specify the channel's capacity:

<channel id="exanpl eChannel ">
<queue capacity="25"/>
</ channel >

Note

If you do not provide a value for the 'capacity’ attribute on this <queue/> sub-element, the
resulting queue will be unbounded. To avoid issues such as OutOfMemoryErrors, it's highly
recommended to set an explicit value for a bounded queue.

PublishSubscribeChannel Configuration

To create a Publ i shSubscri beChannel , use the "publish-subscribe-channel” element. When using
this element, you can aso specify the "task-executor" used for publishing Messages (if noneis specified it
simply publishes in the sender's thread):

<publ i sh-subscri be-channel i d="exanpl eChannel" task-executor="sonmeTaskExecutor"/>

If you are providing a Resequencer or Aggregator downstream from a Publ i shSubscri beChannel ,
then you can set the "apply-sequence' property for the channel. That will indicate that the channel should

1.0.2 Spring Integration Reference 17

http://www.eaipatterns.com/DatatypeChannel.html

Spring Integration

set the sequence-size and sequence-number Message headers prior to passing the Messages along. For
example, if there are 5 subscribers, the sequence-size would be set to 5, and the Messages would have
sequence-number header values ranging from 1 to 5. Thisvaueis 'false' by default.

<publ i sh- subscri be- channel i d="exanpl eChannel" apply-sequence="true"/>

PriorityChannel Configuration

TocreateaPri orit yChannel , usethe "priority-queue" sub-element:

<channel id="exanpl eChannel ">
<priority-queue capacity="20"/>
</ channel >
By default, the channel will consult the MessagePri ori ty header of the message. However, a custom
Compar at or reference may be provided instead. Also, note that the Pri ori t yChannel (like the
other types) does support the "datatype” attribute. As with the QueueChannel, it also supports a " capacity”
attribute. The following example demonstrates all of these:

<channel id="exanpl eChannel" datatype="exanpl e. W dget ">
<priority-queue conparator="w dget Conpar at or"
capaci ty="10"/>
</ channel >

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not
provide any additional configuration options.

<channel id="exanpl eChannel"/>
<rendezvous- queue/ >
</ channel >

ThreadLocalChannel Configuration

The Thr eadLocal Channel does not provide any additional configuration options.

<t hr ead- | ocal - channel i d="exanpl eChannel "/>

Message channels may also have interceptors as described in Section 3.3, “Channel Interceptors’. One or
more <interceptor> elements can be added as sub-elements of <channel> (or the more specific element
types). Provide the "ref" attribute to reference any Spring-managed object that implements the
Channel | nt er cept or interface:

<channel id="exanpl eChannel ">
<i nt er cept or s>
<ref bean="trafficMonitoringlnterceptor"/>
</int erceptors>
</ channel >

Manud

Spring Integration

In generdl, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

1.0.2 Spring Integration Reference 19

Spring Integration

4. Message Endpoints

As mentioned in the overview, Message Endpoints are responsible for connecting the various messaging
components to channels. Over the next severa chapters, you will see a number of different components
that consume Messages. Some of these are also capable of sending reply Messages. Sending Messages is
quite straightforward. As shown above in Chapter 3, Message Channels, it's easy to send a Message to a
Message Channel. However, receiving is a bit more complicated. The main reason is that there are two
types of consumers. Polling Consumers and Event-Driven Consumers.

Of the two, Event-Driven Consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially just listeners with a callback method. When connecting to one
of Spring Integration's subscribable Message Channels, this simple option works great. However, when
connecting to a buffering, pollable Message Channel, some component has to schedule and manage the
polling thread(s). Spring Integration provides two different endpoint implementations to accommodate
these two types of consumers. Therefore, the consumers themselves can simply implement the callback
interface. When polling is required, the endpoint acts as a "container" for the consumer instance. The
benefit is similar to that of using a container for hosting Message-Driven Beans, but since these
consumers are simply Spring-managed Objects running within an ApplicationContext, it more closely
resembles Spring's own Messagel istener containers.

4.1 Message Handler

Spring Integration's MessageHand| er interface isimplemented by many of the components within the
framework. In other words, this is not part of the public API, and a developer would not typically
implement MessageHandl er directly. Nevertheless, it is used by a Message Consumer for actually
handling the consumed Messages, and so being aware of this strategy interface does help in terms of
understanding the overal role of aconsumer. The interface is defined as follows:

public interface MessageHandl er {

voi d handl eMessage(Message<?> nessage) ;

}
Despite its simplicity, this provides the foundation for most of the components that will be covered in the
following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc). Those
components each perform very different functionality with the Messages they handle, but the
requirements for actually receiving a Message are the same, and the choice between polling and
event-driven behavior is also the same. Spring Integration provides two endpoint implementations that
"host" these callback-based handlers and allow them to be connected to Message Channels.

4.2 Event-Driven Consumer

Because it is the simpler of the two, we will cover the Event-Driven Consumer endpoint first. You may

1.0.2 Spring Integration Reference 20

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

Spring Integration

recall that the Subscri babl eChannel interface provides a subscri be() method and that the
method accepts a MessageHandl er parameter (as shown in the section called * SubscribableChannel”):

subscri babl eChannel . subscri be(messageHandl er) ;
Since a handler that is subscribed to a channel does not have to actively poll that channel, this is an
Event-Driven Consumer, and the implementation provided by Spring Integration accepts a a
Subscri babl eChannel and aMessageHandl er:

Subscri babl eChannel channel = (Subscribabl eChannel) context. get Bean("exanpl eSubscri babl eChannel ") ;

Event Dri venConsuner consuner = new Event Dri venConsuner (channel , exanpl eHandl er);

4.3 Polling Consumer

Spring Integration also provides a Pol | i ngConsuner, and it can be instantiated in the same way
except that the channel must implement Pol | abl eChannel :
Pol | abl eChannel channel = (Pol | abl eChannel) context. get Bean("exanpl ePol | abl eChannel ");

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , exanpl eHandl er) ;

There are many other configuration options for the Polling Consumer. For example, the trigger is a
required property:

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);

consumer. set Tri gger (new | nterval Tri gger (30, TimeUnit.SECONDS));

Spring Integration currently provides two implementations of the Trigger interface
I nterval Tri gger and CronTri gger.Thel nterval Tri gger istypicaly defined with asimple
interval (in milliseconds), but also supports an ‘initialDelay’ property and a boolean ‘fixedRate' property
(the default isfalse - i.e. fixed delay):

Interval Trigger trigger = new Interval Trigger (1000);
trigger.setlnitial Del ay(5000);
trigger. setFi xedRate(true);

TheCronTri gger simply requires the cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

In addition to the trigger, severa other polling-related configuration properties may be specified:

Pol | i ngConsuner consumer = new Pol | i ngConsuner (channel , handl er);
consuner . set MaxMessagesPer Pol | (10);

consuner . set Recei veTi neout (5000) ;

A Polling Consumer may even delegate to a Spring TaskExecut or and participate in Spring-managed

1.0.2 Spring Integration Reference 21

Spring Integration

transactions. The following example shows the configuration of both:

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);

TaskExecut or taskExecutor = (TaskExecutor) context.getBean("exanpl eExecutor");
consuner . set TaskExecut or (t askExecut or) ;

Pl at f or nilr ansact i onManager txManager = (Pl atfornilransati onManager) context.get Bean("exanpl eTxManager");
consuner . set Transact i onManager (t xManager)

The examples above show dependency lookups, but keep in mind that these consumers will most often be
configured as Spring bean definitions. In fact, Spring Integration also provides a Fact or yBean that
creates the appropriate consumer type based on the type of channel, and there is full XML namespace
support to even further hide those details. The namespace-based configuration will be featured as each
component type is introduced.

Note

Many of the MessageHand| er implementations are also capable of generating reply
Messages. As mentioned above, sending Messages is trivial when compared to the Message
reception. Nevertheless, when and how many reply Messages are sent depends on the handler
type. For example, an Aggregator waits for a number of Messages to arrive and is often
configured as a downstream consumer for a Splitter which may generate multiple replies for
each Message it handles. When using the namespace configuration, you do not strictly need
to know all of the details, but it still might be worth knowing that several of these
components share a common base class, the
Abst ract Repl yPr oduci ngMessageHandl er, and it provides a
set Qut put Channel (..) method.

4.4 Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements,
such as router, transformer, service-activator, and so on. Most of these will support an "input-channel"
attribute and many will support an "output-channel™ attribute. After being parsed, these endpoint elements
produce an instance of either the Pol | i ngConsuner or the Event Dri venConsumer depending on
the type of the "input-channel" that is referenced: Pol | abl eChannel or Subscri babl eChannel

respectively. When the channel is pollable, then the polling behavior is determined based on the endpoint
element's "poller" sub-element. For example, a simple interval-based poller with a 1-second interval
would be configured like this:

<transformer input-channel ="pollable"
ref ="transfornmer"
out put - channel =" out put ">

<pol | er>
<interval -trigger interval ="1000"/>
</ pol | er>

</transfornmer>

For a poller based on a Cron expression, use the "cron-trigger” child element instead:

Manud

Spring Integration

<transformer input-channel ="pollable"
ref ="transfornmer"
out put - channel =" out put ">
<pol | er >
<cron-trigger expression="*/10 * * * * MON-FRI"/>
</ pol | er>
</transforner>

If the input channel isa Pol | abl eChannel , then the poller configuration is required. Specifically, as
mentioned above, the 'trigger' is a required property of the PollingConsumer class. Therefore, if you omit
the "poller" sub-element for a Polling Consumer endpoint's configuration, an Exception will be thrown.
However, it is also possible to create top-level pollersin which case only a"ref" isrequired:

<pol | er id="weekdayPol | er" >
<cron-trigger expression="*/10 * * * * MON-FRI"/>
</ pol | er>

<transforner input-channel ="pol | abl e"
ref="transforner"
out put - channel =" out put ">
<pol | er ref="weekdayPol |l er"/>
</ transfor ner>

In fact, to simplify the configuration, you can define a global default poller. A single top-level poller
within an ApplicationContext may have the default attribute with a value of "true'. In that case, any
endpoint with a PollableChannel for its input-channel that is defined within the same ApplicationContext
and has no explicitly configured 'poller' sub-element will use that default.

<pol l er id="defaul tPoller" default="true" nmax-messages-per-poll="5">
<interval -trigger interval ="3" time-unit="SECONDS"/>

</ pol | er>

<I-- No <poller/> sub-elenment is necessary since there is a default -->

<t ransformer input-channel ="pol | abl e"
ref ="transforner"
out put - channel =" out put "/ >

Spring Integration also provides transaction support for the pollers so that each receive-and-forward
operation can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add
the <transactional/> sub-element. The attributes for this element should be familiar to anyone who has
experience with Spring's Transaction management:

<pol | er >
<interval -trigger interval ="1000"/>
<transactional transaction-manager="txManager"
propagat i on="REQUI RES_NEW
i sol at i on=" REPEATABLE_READ"
ti meout ="10000"
read-onl y="fal se"/>
</ pol | er>

The polling threads may be executed by any instance of Spring's TaskExecut or abstraction. This
enables concurrency for an endpoint or group of endpoints. As a convenience, there is also hamespace
support for creating a simple thread pool executor. The <thread-pool-task-executor/> element defines
attributes for common concurrency settings such as core-size, max-size, and queue-capacity. Configuring
a thread-pooling executor can make a substantial difference in how the endpoint performs under load.

1.0.2 Spring Integration Reference 23

Spring Integration

These settings are available per-endpoint since the performance of an endpoint is one of the major factors
to consider (the other major factor being the expected volume on the channel to which the endpoint
subscribes). To enable concurrency for a polling endpoint that is configured with the XML namespace
support, provide the 'task-executor' reference on its <poller/> element and then provide one or more of the
properties shown below:

<pol | er task-executor="pool"/>
<interval -trigger interval="5" time-unit="SECONDS"/>
</ pol | er>

<t hr ead- pool - t ask- execut or i d="pool"

core-size="5"

nax- si ze=" 25"

queue- capaci t y="20"

keep-al i ve- seconds="120"/>
If no 'task-executor' is provided, the consumer's handler will be invoked in the caller's thread. Note that
the "caller" is usually the MessageBus' task scheduler. Also, keep in mind that the 'task-executor' attribute
can provide a reference to any implementation of Spring's TaskExecut or interface by specifying the

bean name. The thread pool elementsis simply provided for convenience.

Manud

Spring Integration

5. Service Activator

5.1 Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel
so that it may play the role of a service. If the service produces output, it may also be connected to an
output channel. Alternatively, an output producing service may be located at the end of a processing
pipeline or message flow in which case, the inbound Message's "replyChannel” header can be used. This
is the default behavior if no output channel is defined, and as with most of the configuration options you'll
see here, the same behavior actually applies for most of the other components we have seen.

5.2 The <service-activator/> Element

To create a Service Activator, use the 'service-activator' element with the 'input-channel' and 'ref'
attributes:

<servi ce-activator input-channel ="exanpl eChannel" ref="exanpl eHandl er"/>

The configuration above assumes that "exampleHandler" either contains a single method annotated with
the @ServiceActivator annotation or that it contains only one public method at all. To delegate to an
explicitly defined method of any object, simply add the "method" attribute.

<servi ce-activator input-channel ="exanpl eChannel" ref="somePoj 0" method="sonmeMet hod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the
reply message to an appropriate reply channel. To determine the reply channel, it will first check if an
"output-channel" was provided in the endpoint configuration:

<servi ce-activator input-channel ="exanpl eChannel" out put-channel ="repl yChannel "
ref ="sonePoj 0" net hod="sonmeMet hod"/ >

If no "output-channel" is available, it will then check the Message's RETURN _ADDRESS header value. If
that value is available, it will then check itstype. If it isaMessageChannel , the reply message will be
sent to that channel. If itisa St ri ng, then the endpoint will attempt to resolve the channel name to a
channel instance. If the channel cannot be resolved, then a Channel Resol ut i onExcepti on will be
thrown.

1.0.2 Spring Integration Reference 25

Spring Integration

6. Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to a
Message Channel. Spring Integration provides a number of adapters out of the box to support various
transports, such as IMS, File, etc. Those will be discussed in upcoming chapters of this reference guide.
However, this chapter focuses on the simple but flexible Method-invoking Channel Adapter support.
There is an inbound and outbound adapter, and each may be configured with XML elements provided in
the core namespace.

6.1 The <inbound-channel-adapter> element

An "inbound-channel-adapter”" element can invoke any method on a Spring-managed Object and send a
non-null return value to a MessageChannel after converting it to a Message. When the adapter's
subscription is activated, a poller will attempt to receive messages from the source. The poller will be
scheduled with the TaskSchedul er according to the provided configuration. To configure the polling
‘interval’ or 'cronExpression’ for an individual channel-adapter's schedule, provide a 'poller' element with
either an 'interval-trigger' (in milliseconds) or 'cron-trigger' sub-element:

<i nbound- channel - adapt er ref="sourcel" nethod="net hodl" channel ="channel 1">

<pol | er >
<interval -trigger interval ="5000"/>
</ pol |l er>

</ i nbound- channel - adapt er >
<i nbound- channel - adapt er ref="source2" met hod="nmet hod2" channel ="channel 2">
<pol | er >
<cron-trigger expression="30 * * * * MON-FRI"/>

</ pol | er>
</ channel - adapt er >

6.2 The <outbound-channel-adapter/> element

An "outbound-channel-adapter" element can also connect a MessageChannel to any method that
should be invoked with the payload of any Message sent to that channel.

<out bound- channel - adapt er channel ="channel 1" ref="target1" method="nethod1"/>

If the channel being adapted isaPol | abl eChannel , provide a poller sub-element:

<out bound- channel - adapt er channel ="channel 2" ref="target2" method="nethod2">

<pol | er >
<interval -trigger interval ="3000"/>
</ pol | er>

</ out bound- channel - adapt er >

Any Channel Adapter can be created without a "channel”" reference in which case it will implicitly create
an instance of Di r ect Channel . The created channel's name will match the "id" attribute of the
<inbound-channel-adapter/> or <outbound-channel-adapter element. Therefore, if the "channel" is not

1.0.2 Spring Integration Reference 26

Spring Integration

provided, the "id" is required.

1.0.2

Spring Integration Reference

27

Spring Integration

/. Router

7.1 Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require Spring
Integration's options for delegating to POJOs using the XML namespace support and/or Annotations.
Both of these are discussed below, but first we present a couple implementations that are available
out-of-the-box since they fulfill generic, but common, regquirements.

PayloadTypeRouter

A Payl oadTypeRout er will send Messages to the channel as defined by payl oad-type mappings.

<bean i d="payl oadTypeRout er" cl ass="org. springfranework.integration.router.Payl oadTypeRouter">
<property nanme="payl oadTypeChannel Map" >
<map>
<entry key="java.lang. String" val ue-ref="stringChannel "/>
<entry key="java.l ang.|nteger" val ue-ref="integerChannel "/ >
</ map>
</ property>
</ bean>

RecipientListRouter

A Reci pi ent Li st Rout er will send each received Message to a statically-defined list of Message
Channels:

<bean id="recipientListRouter" class="org.springfranmework.integration.router.RecipientListRouter">
<property name="channel s">
<list>
<ref bean="channel 1"/>
<ref bean="channel 2"/>
<ref bean="channel 3"/>
</list>
</ property>
</ bean>

Note

The router implementations share some common properties, such as "defaultOutputChannel"
and "resolutionRequired". If "resolutionRequired” is set to "true”, and the router is unable to
determine a target channel (e.g. there is no matching payload for a PayloadTypeRouter and
no "defaultOutputChannel" has been specified), then an Exception will be thrown.

7.2 The <router> element

1.0.2 Spring Integration Reference 28

Spring Integration

The "router" element provides a simple way to connect a router to an input channel, and also accepts the
optional default output channel. The "ref" may provide the bean name to one of the implementations
described above:

<router ref="payl oadTypeRouter" input-channel ="i nput1" default-output-channel ="defaul t Qut put1"/>

<router ref="recipientListRouter" input-channel="input2" default-output-channel ="defaul t Qut put2"/>

Alternatively, the "ref" may point to a simple Object that contains the @Router annotation (see below), or
the "ref" may be combined with an explicit "method” name. When specifying a "method", the same
behavior applies as described in the @Router annotation section below.

<router input-channel ="input" ref="somePojo" method="soneMethod"/>

7.3 The @Router Annotation

When using the @Rout er annotation, the annotated method can return either the MessageChannel or
String type. In the case of the latter, the endpoint will resolve the channel name as it does for the
default output. Additionally, the method can return either asingle value or a collection. When a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are al valid.

@Rout er
publ i c MessageChannel route(Message nmessage) {...}

@Rout er

publ i c List<MessageChannel > rout e(Message nmessage) {...}

@Rout er
public String route(Foo payload) {...}

@out er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available
within the message header as either a property or attribute. Rather than requiring use of the Message
type as the method parameter, the @Rout er annotation may also use the @Header parameter annotation
that is documented in section Section B.5, “ Annotation Support”.

@out er
public List<String> route(@eader("orderStatus") OrderStatus status)

Note
For routing of XM L-based Messages, including XPath support, see Chapter 25, Dealing with
XML Payloads.

1.0.2 Spring Integration Reference 29

Spring Integration

8. Message Filter

8.1 Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on some
criteria such as a Message Header value or even content within the Message itself. Therefore, a Message
Filter is similar to a router, except that for each Message received from the filter's input channel, that
same Message may or may not be sent to the filter's output channel. Unlike the router, it makes no
decision regarding which Message Channel to send to but only decides whether to send.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to some
implementation of the MessageSel ect or interface. That interface isitself quite simple:
public interface MessageSel ector {

bool ean accept (Message<?> nmessage) ;

}
The MessageFi | t er constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(soneSel ector);

8.2 The <filter> Element

The <filter> element is used to create a Message-selecting endpoint. In addition to "input-channel" and
"output-channel" attributes, it requiresa"ref". The "ref" may point to a M essageSel ector implementation:

<filter input-channel ="input" ref="selector" output-channel ="output"/>

<bean id="sel ector" cl ass="exanpl e. MessageSel ectorl npl"/>

Alternatively, the "method" attribute can be added at which point the "ref" may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages. The
return value of the method must be a boolean value. Any time the method returns 'true’, the Message will
be passed along to the output-channel. Otherwise, it will be dropped.

<filter input-channel="input" output-channel ="output"
ref ="exanpl eCbj ect" net hod="soneBool eanRet ur ni ngMet hod"/ >

<bean id="exanpl e(oj ect" cl ass="exanpl e. SomreChj ect"/ >

Note

A common usage for Message Filters is in conjunction with a publish/subscribe channel.
Many filter endpoints may be subscribed to the same channel, and they decide whether or not
to pass the Message for the next endpoint which could be any of the supported types (e.g.

1.0.2 Spring Integration Reference 30

Spring Integration

Service Activator). This provides a reactive aternative to the more proactive approach of
using a Message Router with a single point-to-point input channel and multiple output
channels.

1.0.2 Spring Integration Reference 31

Spring Integration

9. Transformer

9.1 Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers
and Message Consumers. Rather than requiring every Message-producing component to know what type
is expected by the next consumer, Transformers can be added between those components. Generic
transformers, such as one that converts a String to an XML Document, are aso highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration's genera
philosophy is not to require any particular format. Rather, for maximum flexibility, Spring Integration
aims to provide the simplest possible model for extension. As with the other endpoint types, the use of
declarative configuration in XML and/or Annotations enables simple POJOs to be adapted for the role of
Message Transformers. These configuration options will be described below.

Note

For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for
dealing with XML-based payloads if that is indeed the right choice for your application. For
more information on those transformers, see Chapter 25, Dealing with XML Payloads.

9.2 The <transformer> Element

The <transformer> element is used to create a Message-transforming endpoint. In addition to
"input-channel" and "output-channel" attributes, it requires a "ref". The "ref" may either point to an
Object that contains the @Transformer annotation on a single method (see below) or it may be combined
with an explicit method name value provided viathe "method" attribute.

The method that is used for transformation may expect either the Message type or the payload type of
inbound Messages. The return value of the method can be any type. If the return value is itself a
Message, that will be passed along to the transformer's output channel. If the return value is null, then
no reply Message will be sent (effectively the same behavior as a Message Filter). Otherwise, the return
value will be sent as the payload of a Message.

9.3 The @Transformer Annotation

The @ ansf or mer annotation can also be added to methods that expect either the Message type or
the message payload type. The return value will be handled in the exact same way as described above in
the section describing the <transformer> element.

1.0.2 Spring Integration Reference 32

http://www.eaipatterns.com/CanonicalDataModel.html

Spring Integration

@r ansf or mer

Order generateOrder (String productld) {
return new O der(productld);

}

Transformer methods may also accept the @Header and @Headers annotations that is documented in
section Section B.5, “ Annotation Support”

@r ansf or mer

Order generateOrder(String productld, @eader("customerNanme") String custoner) {
return new Order(productld, customer);

}

1.0.2 Spring Integration Reference 33

Spring Integration

10. Splitter

10.1 Introduction

The Splitter is a component whose role is to partition a message in severa parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that
includes an Aggregator.

10.2 Functionality

10.3 Programming model

The API for performing splitting consists from one base class, AbstractMessageSplitter, which is a
M essageConsumer implementation, encapsulating features which are common to splitters, such as filling
in the appropriate message headers CORRELATION ID, SEQUENCE SIZE, and
SEQUENCE_NUMBER on the messages that are produced. This alows to track down the messages and
the results of their processing (in a typical scenario, these headers would be copied over to the messages
that are produced by the various transforming endpoints), and use them, for example, in a Composed
M essage Processor scenario.

An excerpt from AbstractM essageSplitter can be seen below:

public abstract class Abstract MessageSplitter
ext ends Abstract Repl yProduci ngMessageConsuner {

protected abstract Object splitMssage(Message<?> nessage);

}

For implementing a specific Splitter in an application, a developer can extend AbstractM essageSplitter
and implement the splitMessage method, thus defining the actual logic for splitting the messages. The
return value can be one of the following:

» aCollection (or subclass thereof) or an array of Message objects - in this case the messages will be sent
as such (after the CORRELATION_ID, SEQUENCE_SIZE and SEQUENCE_NUMBER will be
populated). Using this approach gives more control to the developer, for example for populating
custom message headers as part of the splitting process.

» aCollection (or subclass thereof) or an array of non-Message objects - works like the prior case, except
that each collection element will be used as a Message payload. Using this approach allows to focus on
the

1.0.2 Spring Integration Reference 34

Spring Integration

» aMessage or non-Message object (but not a Collection or an Array) - it works like the previous cases,
except that there is a single message to be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method
that accepts a single argument and has a return value. In this case, the return value of the method will be
interpreted as described above. The input argument might either be a Message or a simple POJO. In the
latter case, the splitter will receive the payload of the incoming message.

10.4 Configuring a Splitter using XML

A splitter can be configured through XML asfollows:

<channel id="input Channel"/>

<splitter id="splitter" O
ref="splitterBean" 0O
met hod="split" 0O
i nput - channel ="i nput Channel * O
out put - channel =" out put Channel " 0O/ >

<channel i d="out put Channel "/>

<beans: bean id="splitterBean" class="sanple.PojoSplitter"/>

0 Theid of the splitter is optional.

O A reference to a bean defined in the application context. The bean must implement the splitting
logic as described in the section above. Required.

O Themethod (defined on the bean specified above) that implements the splitting logic. Optional.

O Theinput channd of the splitter. Required.

[0 The channel where the splitter will send the results of splitting the incoming message. Optional
(because incoming messages can specify a reply channel themselves).

10.5 Configuring a Splitter with Annotations

The @bpl i tter annotation is applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a collection of any type. If the
returned values are not actual Message objects, then each of them will be sent as the payload of a
message. Those messages will be sent to the output channel as designated for the endpoint on which the
@plitter isdefined.

@plitter

Li st<Li neltenr extractltenms(Order order) {
return order.getltens()

}

1.0.2 Spring Integration Reference 35

Spring Integration

11. Aggregator

11.1 Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often downstream
consumers in a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is required to maintain state (the
M essages to-be-aggregated), to decide when the complete group of Messages is available, and to timeout
if necessary. Furthermore, in case of atimeout, the Aggregator needs to know whether to send the partial
results or to discard them to a separate channel.

11.2 Functionality

The Aggregator combines a group of related messages, by storing and grouping them, until the group is
deemed complete. At that point, the Aggregator will create a single message by processing the whole
group, and will send the result message further.

As messages might arrive with a certain delay (or certain messages from the group might not arrive at
all), the Aggregator can specify atimeout (counted from the moment when the first message in the group
has arrived), and whether, in the case of a timeout, the group should be discarded, or the Aggregator
should merely attempt to create a single message out of what has arrived so far. An important aspect of
implementing an Aggregator is providing the logic that has to be executed when the aggregation (creation
of asingle message out of many) takes place.

In Spring Integration, the grouping of the messages for aggregation is done by default based on their
CORRELATION_ID message header (i.e. the messages with the same CORRELATION_ID will be
grouped together). However, this can be customized, and the users can opt for different other ways of
specifying how the messages should be grouped together, by using a CorrelationStrategy (see below).

An important concern with respect to the timeout is, what happens if late messages arrive after the
aggregation has taken place? In this case, a configuration option alows the user to decide whether they
should be discarded or not.

11.3 Programming model

The Aggregation API consists of a number of classes:

* The base class Abst ract MessageAggr egat or and its subclass
Met hodl nvoki ngMessageAggr egat or

1.0.2 Spring Integration Reference 36

Spring Integration

* The Conmpl eti onStr at egy interface and its default implementation
SequenceSi zeConpl eti onSt r at egy

* The Correl ati onStrat egy interface and its default implementation
Header Attri but eCorrel ati onStrat egy

AbstractMessageAggregator

The Abstract MessageAggr egat or is a MessageHandl er implementation, encapsulating the
common functionalities of an Aggregator, which are: storing messages until the message sequence to
aggregate is complete and processing them afterwards, and implementing the timeout functionality. The
responsibility of deciding how the messages should be grouped together is delegated to a
CorrelationStrategy instance. The responsibility of deciding whether the message sequence is complete is
delegated to aConpl et i onSt r at egy instance.

A brief highlight of the base Abst r act MessageAggr egat or (the responsibility of implementing the
aggregateM essages method is left to the devel oper):

public abstract class Abstract MessageAggr egat or
ext ends Abstract MessageBarri er Handl er {

private volatile ConpletionStrategy conpletionStrategy
= new SequenceSi zeConpl eti onStrategy();

protected abstract Message<?> aggregat eMessages(Li st <Message<?>> nessages) ;

}

For implementing a specific aggregator object for an application, a developer can extend
Abst ract MessageAggr egat or and implement the aggr egat eMessages method. However,
there are better suited (which reads, less coupled to the API) solutions for implementing the aggregation
logic, which can be configured easily either through XML or through annotations.

In general, any ordinary Java class (i.e. POJO) can implement the aggregation algorithm. For doing so, it
must provide a method that accepts as an argument a single java.util.List (parametrized lists are supported
aswell). This method will be invoked for aggregating messages, as follows:

« if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then
the whole list of messages accumulated for aggregation will be sent to the aggregator

« if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message,
then the method will receive the payloads of the accumulated messages

« if the return type is not assignable to Message, then it will be treated as the payload for a Message that
will be created automatically by the framework.

Note

1.0.2 Spring Integration Reference 37

Spring Integration

In the interest of code simplicity, and promoting best practices such as low coupling,
testability, etc., the preferred way of implementing the aggregation logic is through a POJO,
and using the XML or annotation support for setting it up in the application.

CompletionStrategy

The Conpl eti onSt r at egy interface is defined as follows:

public interface ConpletionStrategy {

bool ean i sConpl et e(Li st <Message<?>> nessages);

}

In general, any ordinary Java class (i.e. POJO) can implement the completion decision mechanism. For
doing so, it must provide a method that accepts as an argument a single java.util.List (parametrized lists
are supported as well), and returns a boolean value. This method will be invoked after the arrival of anew
message, to decide whether the group is complete or not, as follows:

« if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then
the whole list of messages accumulated in the group will be sent to the method

« if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message,
then the method will receive the payloads of the accumulated messages

» the method must return true if the message group is complete and ready for aggregation, and false
otherwise.

Spring Integration provides an out-of-the box implementation for Conpl eti onStrat egy, the
SequenceSi zeConpl eti onSt r at egy. Thisimplementation uses the SEQUENCE_NUMBER and
SEQUENCE_SIZE of the arriving messages for deciding when a message group is complete and ready to
be aggregated.

CorrelationStrategy

TheCorrel ati onStr at egy interfaceis defined as follows:

public interface Correl ationStrategy {

hj ect get Correl ati onKey(Message<?> nessage) ;

}

The method shall return an Object which represents the correlation key used for grouping messages
together. The key must satisfy the criteria used for a key in a Map with respect to the implementation of
equals() and hashCode().

Manud

Spring Integration

In genera, any ordinary Java class (i.e. POJO) can implement the correlation decision mechanism, and
the rules for mapping a message to method's argument (or arguments) are the same as for a
Servi ceActi vat or (including support for @Header annotations). The method must return a value,
and the value must not be null.

Spring Integration provides an out-of-the box implementation for Correl ati onStr at egy, the
Header At tri but eCorrel ati onStrat egy. This implementation returns the value of one of the
message headers (whose name is specified by a constructor argument) as the correlation key. By default,
the correlation strategy is a HeaderAttributeCorrelationStrategy returning the vaue of the
CORRELATION_ID header attribute.

11.4 Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggregator/>
element. Below you can see an example of an aggregator with all optional parameters defined.

<channel id="input Channel"/>

<aggregator id="conpl etel yDefi nedAggregator" 0O

i nput - channel ="i nput Channel * O
out put - channel =" out put Channel " 0O
di scar d- channel ="di scardChannel " 0O

ref ="aggr egat or Bean" [

nmet hod="add" 0O

conpl eti on-strategy="conpl eti onStrategyBean" 0O
conpl eti on-strat egy- met hod="checkConpl et eness" O
correl ation-strategy="correl ati onStrat egyBean" O
correl ati on-strategy-nethod="correl ati onStrategyMethod" 0O
ti meout =" 42"

send-partial -result-on-ti meout="true"
reaper-interval =" 135"

tracked-correl ation-id-capacity="99"

send-ti meout =" 86420000" />

<channel id="out put Channel "/>
<bean i d="aggregat or Bean" cl ass="sanpl e. Poj oAggr egator"/>

<bean i d="conpl eti onStrat egyBean" cl ass="sanpl e. Poj oConpl eti onStrategy"/>

O Theid of the aggregator is optional.

O Theinput channel of the aggregator. Required.

O The channel where the aggregator will send the aggregation results. Optional (because incoming
messages can specify a reply channel themselves).

O The channel where the aggregator will send the messages that timed out (if
send-partial -resul ts-on-ti nmeout isfalse). Optional.

O A reference to a bean defined in the application context. The bean must implement the aggregation
logic as described above. Required.

O A method defined on the bean referenced by ref, that implements the message aggregation
algorithm. Optional, with restrictions (see above).

O A reference to a bean that implements the decision algorithm as to whether a given message group is

1.0.2 Spring Integration Reference 39

Spring Integration

complete. The bean can be an implementation of the CompletionStrategy interface or a POJO. In the
latter case the completion-strategy-method attribute must be defined as well. Optional (by default,
the aggregator will use sequence size) .

A method defined on the bean referenced by conpl eti on- strat egy, that implements the
completion decision algorithm. Optional, with restrictions (requires conpl et i on- st r at egy to
be present).

A reference to a bean that implements the correlation strategy. The bean can be an implementation
of the CorrelationStrategy interface or a POJO. In the latter case the correlation-strategy-method
attribute must be defined as well. Optional (by default, the aggregator will use the correlation id
header attribute) .

A method defined on the bean referenced by correl ati on- strat egy, that implements the
completion decision algorithm. Optional, with restrictions (requires corr el ati on- st rat egy
to be present).

The timeout for aggregating messages (counted from the arrival of the first message). Optional.
Whether upon the expiration of the timeout, the aggregator shall try to aggregate the already arrived
messages. Optional (false by default).

The interval (in milliseconds) at which areaper task is executed, checking if there are any timed out
groups. Optional.

The capacity of the correlation id tracker. Remembers the aready processed correlation ids,
preventing the formation of new groups for messages that arrive after their group has been aready
processed (aggregated or discarded). Optional.

The timeout for sending out messages. Optional.

An implementation of the aggregator bean, for example, looks as follows:

public cl ass Poj oAggregator {

}

publ i c Long add(List<Long> results) {

}

long total = 0I;
for (long partial Result: results) {
total += partial Result;

}

return total;

An implementation of the completion strategy bean for the example above may be as follows:

public class Poj oConpl etionStrategy {

publ i c bool ean checkConpl et eness(Li st<Long> nunbers) {

}

}

int sum = 0;
for (long number: nunbers) ({
sum += nunber ;

}

return sum >= maxVal ue;

Wherever it makes sense, the completion strategy method and the aggregator method can be combined in
asingle bean.

Manud

Spring Integration

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrel ationStrategy {

public Long groupsNunbersBylLastDi git(Long nunber) {
return nunber % 10;

}
}

For example, this aggregator would group numbers by some criterion (in our case the remainder by
dividing to 10) and will hold on the group until the sum of the numbers which represents the payload
exceeds a certain value.

Wherever it makes sense, the completion strategy method, correlation strategy method and the aggregator
method can be combined in asingle bean (all of them or any two).

11.5 Configuring an Aggregator with Annotations

An aggregator configured using annotations can look like this.

public class Waiter {

@\ggr egat or #
public Delivery aggregati ngMet hod(Li st<Orderltenm> itens) {

}

@Conpl etionStrategy #
publ i c bool ean conpl eti onChecker (Li st <Message<?>> nessages) {

_—

@onpl etionStrategy #
public String correlateBy(Orderltemitemn) {

_

O An annotation indicating that this method shall be used as an aggregator. Must be specified if this
class will be used as an aggregator.

O An annotation indicating that this method shall be used as the completion strategy of an aggregator.
If not present of the method, the aggregator will use the SequenceSizeCompl etionStrategy .

O Anannotation indicating that this method shall be used as the correlation strategy of an aggregator.
If not present of the method, the aggregator will use the HeaderAttributeCorrelationStrategy based
on CORRELATION_ID.

All the configuration options provided by xml element are available for the @Aggregator annotation.

The aggregator can be either referenced explicitly from XML or, if the @M essageEndpoint is defined on

1.0.2 Spring Integration Reference 41

Spring Integration

the class, detected automatically through classpath scanning.

Manud

Spring Integration

12. Resequencer

12.1 Introduction

Related to the Aggregator, abeit different from afunctional standpoint, is the Resequencer.

12.2 Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the
CORRELATION_ID to store messages in groups, the difference being that all what the Resequencer
does, isto release them in the order of their SEQUENCE_NUMBER.

With respect to that, the user might opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SIZE, has been released), or as soon as a valid sequence is available.
Another option is to set a timeout, deciding whether to drop the whole sequence if the timeout has
expired, and not all messages have arrived, or to release the messages accumulated so far, in the
appropriate order.

12.3 Configuring a Resequencer with XML

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<channel id="i nput Channel "/>
<channel i d="out put Channel "/>

<resequencer id="conpl etel yDefi nedResequencer" #
i nput - channel ="i nput Channel " #
out put - channel =" out put Channel " #
di scard- channel ="di scar dChannel " #
rel ease-parti al - sequences="true" #
ti meout ="42" #
send-partial -result-on-timeout="true" #
reaper-interval ="135" #
tracked-correl ation-id-capacity="99" #
send-ti meout =" 86420000" # />

Theid of the resequencer is optional.

The input channel of the resequencer. Required.

The channel where the resequencer will send the reordered messages. Optional.

The channel where the resequencer will send the messages that timed out (if
send-partial -resul t-on-ti neout isfalse). Optional.

I I R B

1.0.2 Spring Integration Reference 43

Spring Integration

O Whether to send out ordered sequences as soon as they are available, or only after the whole
message group arrives. Optional (true by default).

O The timeout for reordering message sequences (counted from the arrival of the first message).
Optional.

O Whether, upon the expiration of the timeout, the ordered group shall be sent out (even if some of the
messages are missing). Optional (false by default).

0 Theinterval (in milliseconds) at which areaper task is executed, checking if there are any timed out
groups. Optional.

[0 The capacity of the correlation id tracker. Remembers the already processed correlation ids,
preventing the formation of new groups for messages that arrive after their group has been already
processed (reordered or discarded). Optional.

0 Thetimeout for sending out messages. Optional.

Note
Since there is no custom behaviour to be implemented in Java classes for resequencers, there
iS no annotation support for it.

1.0.2 Spring Integration Reference 44

Spring Integration

13. Message Handler Chain

13.1 Introduction

The MessageHandl er Chai n isan implementation of MessageHandl| er that can be configured as a
single Message Endpoint while actually delegating to a chain of other handlers, such as Filters,
Transformers, Splitters, and so on. This can lead to a much simpler configuration when several handlers
need to be connected in a fixed, linear progression. For example, it is fairly common to provide a
Transformer before other components. Similarly, when providing a Filter before some other component
in a chain, you are essentially creating a Selective Consumer. In either case, the chain only requires a
single input-channel and a single output-channel as opposed to the configuration of channels for each
individual component.

Tip

Spring Integration's Filter provides a boolean property ‘throwExceptionOnRejection’. When
providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to 'true’ (the default isfalse) so that the dispatcher
will know that the Message was rejected and as a result will attempt to pass the Message on
to other subscribers. If the Exception were not thrown, then it would appear to the dispatcher
as if the Message had been passed on successfully even though the Filter had dropped the
Message to prevent further processing.

The handler chain simplifies configuration while internally maintaining the same degree of loose coupling
between components, and it is trivia to modify the configuration if a some point a non-linear
arrangement is required.

13.2 The <chain> Element

The <chain> element provides an 'input-channel’ attribute, and if the last element in the chain is capable
of producing reply messages, it may optionaly provide an ‘output-channel’ attribute. The sub-elements
are then filters, transformers, splitters, and service-activators. The last element may be a router.

<chai n i nput-channel ="i nput" out put - channel =" out put ">
<filter ref="soneSel ector" throw exception-on-rejection="true"/>
<header-enricher error-channel =" cust onErr or Channel ">
<header nane="foo" val ue="bar"/>
</ header - enri cher >
<servi ce-activator ref="soneService" nethod="someMet hod"/>
</ chai n>

The <header-enricher> used in the above example will set a message header with name "foo" and value
"bar" on the message.

1.0.2 Spring Integration Reference 45

http://www.eaipatterns.com/MessageSelector.html

Spring Integration

14. Inbound Messaging Gateways

14.1 SimpleMessagingGateway

Even though the MessageChannel Tenpl at e is fairly straightforward, it does not hide the details of
messaging from your application code. To support working with plain Objects instead of messages,
Spring Integration provides Si npl eMessagi ngGat eway with the following methods:

public void send(Cbject object) { ... }
public Object receive() { ... }
public Object sendAndRecei ve(Cbject object) { ... }

Message<?> sendAndRecei veMessage(Obj ect obj ect);

It enables configuration of a request and/or reply channel and delegates to instances of the
I nboundMessageMapper and Qut boundMessageMapper strategy interfaces.

Si npl eMessagi ngGat eway gateway = new Si npl eMessagi ngGat eway(i nboundMapper, out boundMapper);
gat eway. set Request Channel (r equest Channel) ;

gat eway. set Repl yChannel (repl yChannel) ;

bj ect result = gateway. sendAndRecei ve("test");

14.2 GatewayProxyFactoryBean

Working with Objects instead of Messages is an improvement. However, it would be even better to have
no dependency on the Spring Integration API at all - including the gateway class. For that reason, Spring
Integration also provides a Gat ewayPr oxyFact or yBean that generates a proxy for any interface and
internally invokes the gateway methods shown above. Namespace support is aso provided as
demonstrated by the following example.

<gat eway i d="fooService"
servi ce-interface="org. exanpl e. FooServi ce"
def aul t -request - channel ="r equest Channel "
def aul t -repl y- channel ="r epl yChannel "/ >

Then, the "fooService" can be injected into other beans, and the code that invokes the methods on that
proxied instance of the FooService interface has no awareness of the Spring Integration API. The general
approach is similar to that of Spring Remoting (RMI, Httplnvoker, etc.). See the "Samples" Appendix for
an example that uses this "gateway" element.

The reason that the attributes on the 'gateway' element are named 'default-request-channel' and
‘default-reply-channel’ is that you may aso provide per-method channel references by using the
@Gateway annotation.

public interface Cafe {

@zat eway (r equest Channel =" or ders")
voi d pl aceOrder (Order order);

1.0.2 Spring Integration Reference 46

Spring Integration

1.0.2

Spring Integration Reference

47

Spring Integration

15. Messaging Bridge

15.1 Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels or
Channel Adapters. For example, you may want to connect a Pol | abl eChannel to a
Subscri babl eChannel so that the subscribing endpoints do not have to worry about any polling
configuration. Instead, the Messaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle
inbound Messages. The poller's trigger will determine the rate at which messages arrive on the second
channel, and the poller's "maxM essagesPerPoll" property will enforce alimit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration's role would be limited to making the connection between these systems and managing a
poller if necessary. It is probably more common to have at least a Transformer between the two systems
to translate between their formats, and in that case, the channels would be provided as the ‘input-channel’
and 'output-channel' of a Transformer endpoint. If data format trandation is not required, the Messaging
Bridge may indeed be sufficient.

15.2 The <bridge> Element

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel” and "output-channel” attributes:

<bridge input-channel ="i nput" out put-channel ="out put"/>

As mentioned above, a common use case for the Messaging Bridge is to connect aPol | abl eChannel
toaSubscri babl eChannel , and when performing this role, the Messaging Bridge may also serve as
athrottler:

<bri dge i nput-channel ="pol | abl e" out put - channel ="subscri babl e" >

<pol | er max- messages- per-pol | ="10">
<interval -trigger interval ="5" time-unit="SECONDS"/>
</ pol | er>
</ bri dge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and
"stdout" adapters from Spring Integration's "stream™" namespace.

<stream st di n-channel - adapter id="stdin"/>

<stream st dout - channel - adapter id="stdout"/>

<bridge id="echo" input-channel ="stdin" output-channel ="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter

1.0.2 Spring Integration Reference 48

Spring Integration

bridges, such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in
upcoming chapters.

1.0.2 Spring Integration Reference 49

Spring Integration

16. File Support

16.1 Introduction

Spring Integration File extends the Spring Integration Core with dedicated vocabulary to deal with
reading, writing and transforming files. There is a namespace that enables elements that define channel
adapters dedicated to files and support for transformers that transform files into strings or byte arrays.

This section will explan the workings of Fi | eReadi ngMessageSour ce,
Fil eWitingMessageHandl er and how to configure them as beans. Also the support for dealing
with files through file specific implementations of Tr ansf or mer will be discussed. Finaly the file
specific namespace will be explained.

16.2 Reading Files

A Fi | eReadi ngMessageSour ce can be used to consume files from the filesystem. This is an
implementation of MessageSour ce that creates messages from afile system directory.

<bean i d="pol | abl eFi | eSour ce"
class="org. springframework.integration.file.FileReadi ngMessageSource"
p:inputDirectory="file:${input.directory.property}"/>

To prevent creating messages for certain files, you may supply a Fi | eLi st Fi | t er. By default, an
Accept OnceFi | eLi st Fil ter isused. This filter ensures files are picked up only once from the
directory.

<bean i d="pol | abl eFi | eSour ce"
class="org. springframework.integration.file.Fil|eReadi ngMessageSource"
p:inputDirectory="file:${input.directory.property}"
p:filter-ref="custonFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default
Accept OnceFi |l eLi st Fil ter does not prevent this. In most cases, this can be prevented if the
file-writing process renames each file as soon as it is ready for reading. A pattern-matching filter that
accepts only files that are ready (eg. based on a known suffix), composed with the default
Accept OnceFi | eLi st Fil ter alowsfor this.

<bean id="pol | abl eFi | eSour ce"
cl ass="org. springframework.integration.file.FileReadi ngMessageSource"
p:inputDirectory="file:${input.directory. property}"
p:filter-ref="conpositeFilter"/>
<bean id="conpositeFilter" class="org.springframework.integration.file.ConpositeFileListFilter">
<const ructor - arg>
<list>
<bean cl ass="org. springframework.integration.file.AcceptOnceFileListFilter" />
<bean cl ass="org. springframework.integration.file.PatternMatchingFileListFilter">
<constructor-arg val ue=""test.*$"/>
</ bean>

1.0.2 Spring Integration Reference 50

Spring Integration

</list>
</ constructor-arg>
</ bean>

The configuration can be simplified using the file specific namespace. To do this use the following
template.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww. springfranework. org/schema/integration"
xm ns: file="http://wwm. springfranmework. org/schema/integration/file"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranmework. org/ schema/integration
http://ww. spri ngfranewor k. org/ schema/ i ntegration/spring-integration-1.0.xsd
http://ww. springfranmework. org/schema/integration/file
http://ww. springframework. org/ schema/integration/file/spring-integration-file-1.0.xsd"
</ beans>

Within this namespace you can reduce the FileReadingMessageSource and wrap it in an
InboundChannel Adapter like this:

<fil e:inbound-channel - adapter id="fil esln"
directory="file:${input.directory. property}"/>
<fil e:inbound-channel - adapter id="fil esln"
directory="file:${input.directory. property}"
filter="custonFilterBean" />
<fil e:inbound-channel - adapter id="filesln"
directory="file:${input.directory. property}"
fil ename-pattern=""test.*$" />
Where the first channel adapter is relying on the default filter that just prevents duplication. The second is
using a custom filter and the third is using the filename-pattern attribute to add a Pat t er n based filter to

theFi | eReadi ngMessageSour ce

16.3 Writing files

To write messages to the file system you canuseaFi | eW i ti ngMessageHand| er . Thisclasscan
deal with File or byte[] payloads and otherwise invokes the toString() method on the payload to establish
the contents of the File. Initssimplest formthe Fi | eW i t i ngMessageHand!| er just needs a parent
directory for thefiles.

Additionally, you can configure the encoding and the charset that will be used in case of afallback on the
toString() method.

To make things easier you can configure the FileWritingM essageHandler as part of an outbound channel
adapter using the namespace.

<fil e: out bound-channel - adapter id="filesQut" directory="file:${input.directory. property}"/>

If you have more elaborate requirements to the payload to file conversion you could extend the
FilewritingM essageHandler, but a much better optionisto rely onaTr ansf or ner

1.0.2 Spring Integration Reference 51

Spring Integration

16.4 File Transformers

To transform data read from the file system to objects and the other way around you need to do some
work. Contrary to Fil eReadi ngMessageSour ce and to a lesser extent
FileWitingMessageHandl er itisvery likely that you will need your own mechanism to get the
job done. For this you can implement the Transformer interfacee Or extend the
Abstract Fi | ePayl oadTransf orner for inbound messages. Some obvious implementations
have been provided.

Fi |l eToByt eArrayTransforner transforms Files into byte[]s using Fi | eCopyUtils . It is
often better to use a sequence of transformers than to put all transformations in asingle class, in that case
the File to byte[] conversion might be alogical first step.

Fi | eToStri ngTransformer will convert Files to Strings as the name suggests. This is mainly
useful for debugging.

To configure File specific transformers you can use the appropriate elements from the file namespace.

<file-to-bytes-transforner input-channel="input" output-channel ="output" delete-files="true"/>

The delete-files option signals the transformer to delete the File after the transformation is done. Thisisin
no way areplacement for using the Accept OnceFi | eLi st Fi | t er with the PollableFileSourcein a
multi-threaded environment (e.g. Spring Integration in general).

Manud

Spring Integration

17. IMS Support

Spring Integration provides Channel Adapters for recelving and sending JMS messages. There are
actually two JMS-based inbound Channel Adapters. The first uses Spring's JnsTenpl at e to receive
based on a polling period. The second is "message-driven” and relies upon a Spring MessageL istener
container. There is also an outbound Channel Adapter which uses the Jns Tenpl at e to convert and
send a JM'S Message on demand.

Whereas the JMS Channel Adapters are intended for unidirectional Messaging (send-only or
receive-only), Spring Integration also provides inbound and outbound JMS Gateways for request/reply
operations. The inbound gateway relies on one of Spring's MessagelListener container implementations
for Message-driven reception that is also capable of sending areturn value to the "reply-to" Destination as
provided by the received Message. The outbound Gateway sends a JMS Message to a
"request-destination” and then receives a reply Message. The "reply-destination” reference (or
"reply-destination-name™) can be configured explicitly or else the outbound gateway will use a IMS
TemporaryQueue.

17.1 Inbound Channel Adapter

The inbound Channel Adapter requires a reference to either a single Jms Tenpl at e instance or both
Connecti onFactory and Desti nati on (a 'destinationName can be provided in place of the
‘destination’ reference). The following example defines an inbound Channel Adapter with a
Desti nat i on reference.

<j ms: i nbound- channel - adapter id="jnsln" destination="i nQueue" channel =" exanpl eChannel ">
<i ntegration:poller>
<integration:interval-trigger interval="30" time-unit="SECONDS"/>
</integration:poller>
</j ms: i nbound- channel - adapt er >

Note

All of the IMS adapters that require a reference to the ConnectionFactory will automatically
look for a bean named "connectionFactory" by default. That is why you don't see a
"connection-factory” attribute in many of the examples. However, if your JMS
ConnectionFactory has a different bean name, then you will need to provide that attribute.

If 'extract-payload’ is set to true (which is the default), the received IMS Message will be passed through
the MessageConverter. When relying on the default SimpleMessageConverter, this means that the
resulting Spring Integration Message will have the JIMS Message's body as its payload. A IMS
TextMessage will produce a String-based payload, a IMS BytesMessage will produce a byte array
payload, and a IMS ObjectMessage's Serializable instance will become the Spring Integration Message's
payload. If instead you prefer to have the raw IMS Message as the Spring I ntegration Message's payload,
then set 'extract-payload' to false.

1.0.2 Spring Integration Reference 53

Spring Integration

<j ms: i nbound- channel - adapt er id="j nmsln"
destinati on="i nQueue"
channel =" exanpl eChannel "
extract - payl oad="fal se"/>
<i ntegration:poller>
<integration:interval -trigger interval="30" time-unit="SECONDS"/>
</integration:poller>
</j ms: i nbound- channel - adapt er >

17.2 Message-Driven Channel Adapter

The "message-driven-channel-adapter” requires a reference to either an instance of a Spring
Messagel istener container (any subclass of Abstract Messageli st ener Cont ai ner) or both
ConnectionFactory and Destinati on (a 'destinationName can be provided in place of the
'destination’ reference). The following example defines a message-driven Channel Adapter with a
Dest i nat i on reference.

<j ns: message- dri ven- channel - adapter id="jnsln" destination="i nQueue" channel ="exanpl eChannel "/>

Note

The Message-Driven adapter also accepts several properties that pertain to the
MessagelL istener container. These values are only considered if you do not provide an actual
‘container’ reference. In that case, an instance of DefaultMessagel istenerContainer will be
created and configured based on these properties. For example, you can specify the
"transaction-manager" reference, the "concurrent-consumers' value, and several other
property references and values. Refer to the JavaDoc and Spring Integration's IMS Schema
(spring-integration-jms-1.0.xsd) for more detail.

The 'extract-payload' property has the same effect as described above, and once again its default value is
'true’. The poller sub-element is not applicable for a message-driven Channel Adapter, as it will be
actively invoked. For most usage scenarios, the message-driven approach is better since the Messages
will be passed along to the MessageChannel as soon as they are received from the underlying IMS
consumer.

17.3 Outbound Channel Adapter

The JnmeSendi ngMessageHand! er implements the MessageHandl er interface and is capable of
converting Spring Integration Messages to JMS messages and then sending to a JMS destination. It
requires either a 'jmsTemplate’ reference or both '‘connectionFactory' and 'destination’ references (again,
the 'destinationName’ may be provided in place of the 'destination’). As with the inbound Channel
Adapter, the easiest way to configure this adapter is with the namespace support. The following
configuration will produce an adapter that receives Spring Integration Messages from the
"exampleChannel” and then converts those into IMS Messages and sends them to the JIMS Destination
reference whose bean name is "outQueue".

1.0.2 Spring Integration Reference 54

Spring Integration

<j ms: out bound- channel - adapter id="jnmsQut" destinati on="out Queue" channel =" exanpl eChannel "/ >

As with the inbound Channel Adapters, there is an 'extract-payload’ property. However, the meaning is
reversed for the outbound adapter. Rather than applying to the IMS Message, the boolean property
applies to the Spring Integration Message payload. In other words, the decision is whether to pass the
Spring Integration Message itself as the IMS Message body or whether to pass the Spring Integration
Message's payload as the IMS Message body. The default valueis once again 'true’. Therefore, if you pass
a Spring Integration Message whose payload is a String, a IMS TextMessage will be created. If on the
other hand you want to send the actual Spring Integration Message to another system via JMS, then
simply set thisto ‘false’.

Note

Regardless of the boolean value for payload extraction, the Spring Integration
MessageHeaders will map to JMS properties as long as you are relying on the default
converter or provide a reference to another instance of HeaderMappingM essageConverter
(the same holds true for 'inbound’ adapters except that in those cases, it's the IMS properties
mapping to Spring Integration M essageHeaders).

17.4 Inbound Gateway

Spring Integration's message-driven JMS inbound-gateway delegates to a Messageli st ener
container, supports dynamically adjusting concurrent consumers, and can also handle replies. The
inbound gateway requires references to a Connect i onFact ory, and a request Desti nati on (or
'requestDestinationName’). The following example defines a IMS "inbound-gateway" that receives from
the IMS queue referenced by the bean id "inQueue" and sends to the Spring Integration channel named
"exampleChannel".

<j ms: i nbound- gat eway i d="j nsl nGat enay"
request - desti nati on="i nQueue"
request - channel =" exanpl eChannel "/ >

Since the gateways provide reguest/reply behavior instead of unidirectional send or receive, they also
have two distinct properties for the "payload extraction” (as discussed above for the Channel Adapters
‘extract-payload' setting). For an inbound-gateway, the 'extract-request-payload’ property determines
whether the received IM'S Message body will be extracted. If ‘false, the IMS Message itself will become
the Spring Integration Message payload. The default is 'true'.

Similarly, for an inbound-gateway the 'extract-reply-payload’ property applies to the Spring Integration
Message that is going to be converted into a reply JIMS Message. If you want to pass the whole Spring
Integration Message (as the body of a IMS ObjectMessage) then set this to 'false'. By default, it is also
'true’ such that the Spring Integration Message payload will be converted into a IMS Message (e.g. String
payload becomes a IMS TextM essage).

Manud

Spring Integration

17.5 Outbound Gateway

The outbound Gateway creates IMS Messages from Spring Integration Messages and then sends to a
'request-destination’. It will then handle the IMS reply Message either by using a selector to receive from
the 'reply-destination’ that you configure, or if no 'reply-destination' is provided, it will create IMS
TemporaryQueues. Natice that the "reply-channel" is also provided.

<j ms: out bound- gat eway i d="j nsQut Gat eway"
request - desti nati on="out Queue"
request - channel =" out boundJnsRequest s"
repl y-channel ="j nsRepl i es"/ >

The ‘'outbound-gateway' payload extraction properties are inversely related to those of the
‘inbound-gateway' (see the discussion above). That means that the 'extract-request-payload’ property value
applies to the Spring Integration Message that is being converted into a IMS Message to be sent as a
request, and the 'extract-reply-payload' property value applies to the IMS Message that is received as a
reply and then converted into a Spring Integration Message to be subsequently sent to the ‘reply-channel’
as shown in the example configuration above.

Note

For al of these IMS adapters, you can also specify your own "message-converter" reference.
Simply provide the bean name of an instance of MessageConverter that is avalable
within the same ApplicationContext. Note, however, that when you provide your own
MessageConverter instance, the default HeaderM appingM essageConverter will not be used.
This means that the 'extract-request-payload' and ‘extract-reply-payload' properties will have
no effect. Of course, you can provide a reference to your own instance of
HeaderM appingM essageConverter. It simply delegates to a MessageConverter while aso
mapping the Spring Integration M essageHeaders to IMS M essage properties and vice-versa.

17.6 IMS Samples

To experiment with these IMS adapters, check out the samples available within the "jms" package of the
"org.springframework.integration.samples' module (in the distribution). There are two samples included.
One provides inbound and outbound Channel Adapters, and the other provides inbound and outbound
Gateways. They are configured to run with an embedded ActiveMQ process, but the "common.xml" file
can easily be modified to support either a different JMS provider or a standalone ActiveMQ process. In
other words, you can split the configuration so that the inbound and outbound adapters are running in
separate VMs. If you have ActiveMQ installed, smply modify the "brokerURL" property within the
configuration to use "tcp://localhost:61616" for example (instead of "vm://localhost™).

1.0.2 Spring Integration Reference 56

Spring Integration

18. Web Services Support

18.1 Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both of which
build upon the Spring Web Services project: Si npl eWebSer vi ceQut boundGat eway and
Mar shal | i ngWebSer vi ceQut boundGat eway. The former will accept either a String or
javax. xm . transform Source as the message payload. The latter provides support for any
implementation of the Mar shal | er and Unmar shal | er interfaces. Both require the URI of the Web
Service to be called.

si nmpl eGat eway = new Si npl eWebSer vi ceQut boundGat eway(uri);

mar shal | i ngGat eway = new Marshal | i ngWebSer vi ceCQut boundGat eway(uri, marshaller);

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering
client access as well as the chapter covering Object/ XML mapping.

18.2 Inbound Web Service Gateways

To send a message to a channel upon receiving a Web Service invocation, there are two options again:
Si mpl eWebSer vi cel nboundGat eway and Marshal | i ngWebSer vi cel nboundGat eway.
The former will extract aj avax. xmi . t ransf or m Sour ce from the WebSer vi ceMessage and
set it as the message payload. The latter provides support for implementation of the Mar shal | er and
Unmar shal | er interfaces. If the incoming web service message is a SOAP message the SOAP Action
header will be added to the headers of the Message that is forwarded onto the request channel.

si npl eGat eway = new Si npl eWebSer vi cel nboundGat eway(uri);
si npl eGat eway. set Request Channel (f orwar dOnt oThi sChannel) ;
si npl eGat eway. set Repl yChannel (I i st enFor ResponseHere); //Optional

mar shal | i ngGat eway = new Marshal | i ngWebSer vi cel nboundGat eway(mar shal | er);
/'l set request and optionally reply channel

Both gateways implement MessageEndpoint to they can be configured with a
MessageDi spat cher Ser vl et asper standard Spring Web Services configuration.

For more detail on how to use these components, see the Spring Web Services reference guide's chapter
covering creating a Web Service. The chapter covering Object/XML mapping is also applicable again.

18.3 Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway" element from the "ws"
namespace:

1.0.2 Spring Integration Reference 57

http://static.springframework.org/spring-ws/sites/1.5/
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Spring Integration

<ws: out bound- gat eway i d="si npl eGat enay"
request - channel ="i nput Channel "
uri="http://exanple.org"/>

To set up an inbound Web Service Gateway, use the "inbound-gateway":

<ws: i nbound- gat eway i d="si npl eGat enay"
request - channel ="i nput Channel "/ >

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references. For outbound:

<ws: out bound- gat eway i d="rmarshal | i ngGat eway"
request - channel ="r equest Channel "
uri="http://exanpl e.org"
mar shal | er =" soneMar shal | er"
unmar shal | er ="someUnmar shal | er"/ >

And for inbound:

<ws: i nbound- gat eway i d="marshal | i ngGat enway"
request - channel ="r equest Channel "
mar shal | er =" soneMar shal | er"
unmar shal | er ="someUnmar shal | er"/ >

Note

Most Mar shal | er implementations also implement the Unmar shal | er interface. When
using such a Mar shal | er, only the "marshaller" attribute is necessary. Even when using a
Mar shal | er, you may also provide a reference for the "request-callback™ on the outbound
gateways.

For either outbound gateway type, the "message-factory"” attribute can also be configured with a reference
to any Spring Web Services\WWebSer vi ceMessageFact or y implementation.

For the smple inbound gateway type, the "extract-payload" attribute can set to false to forward the entire
WebSer vi ceMessage, instead of just its payload as a Message to the request channel.

1.0.2 Spring Integration Reference 58

Spring Integration

19. RMI Support

19.1 Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over multiple
JVMs. The first section will deal with sending messages over RMI. The second section shows how to
receive messages over RMI. The last section shows how to define rmi channel adapters through the
namespace support

19.2 Outbound RMI

To send messages from a channel over RMI, simply define an Rmi Qut boundGat eway. This gateway
will use Spring's RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that to
invoke a remote interface that doesn't use Spring Integration you should use a service activator in
combination with Spring's RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

<bean id="rm Qut Gat eway" cl ass=org.spf.integration.rm .Rm Qut boundGat enay>
<constructor-arg value="rm://host"/>
<property name="repl yChannel " val ue="replies"/>

</ bean>

19.3 Inbound RMI

To receive messages over RMI you need to use a Rmi | nboundGat eway. This gateway can be
configured like this

<bean id="rm Qut Gat eway" cl ass=org.spf.integration.rm .Rnm | nboundGateway>
<property nanme="request Channel " val ue="requests"/>
</ bean>

19.4 RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The following
code snippet shows the different configuration options that are supported.
<rm :inbound- gat eway i d="gatewayW t hDef aul ts" request-channel ="t est Channel "/>

<rm :inbound- gat eway i d="gat ewayW t hCust onProperti es" request-channel ="test Channel "
expect-reply="fal se" request-tinmeout="123" reply-tinmeout="456"/>

1.0.2 Spring Integration Reference 59

Spring Integration

<rm : i nbound- gat eway i d="gatewayWthHost" request-channel ="t est Channel "
regi stry-host="1ocal host"/>

<rm :inbound-gatenay id="gatewayWthPort" request-channel ="test Channel "
regi stry-port="1234"/>

<rm :inbound- gat enay id="gatewayW t hExecutorRef" request-channel ="t est Channel "
renot e-i nvocati on- execut or ="i nvocat i onExecut or"/ >

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound rmi gateway.

<rm : out bound- gat eway i d="gat eway"
request - channel =" | ocal Channel "
renot e- channel ="t est Channel "
host =" | ocal host"/ >

1.0.2 Spring Integration Reference 60

Spring Integration

20. Httplnvoker Support

20.1 Introduction

Httplnvoker is a Spring-specific remoting option that essentially enables Remote Procedure Calls (RPC)
over HTTP. In order to accomplish this, an outbound representation of a method invocation is serialized
using standard Java serialization and then passed within an HTTP POST request. After being invoked on
the target system, the method's return value is then serialized and written to the HTTP response. There are
two main requirements. First, you must be using Spring on both sides since the marshalling to and from
HTTP reguests and responses is handled by the client-side invoker and server-side exporter. Second, the
Objects that you are passing must implement Seri al i zabl e and be available on both the client and
server.

While traditional RPC provides physical decoupling, it does not offer nearly the same degree of logical
decoupling as a messaging-based system. In other words, both participants in an RPC-based invocation
must be aware of a specific interface and specific argument types. Interestingly, in Spring Integration, the
"parameter” being sent is a Spring Integration Message, and the interface is an internal detail of Spring
Integration's implementation. Therefore, the RPC mechanism is being used as a transport so that from the
end user's perspective, it is not necessary to consider the interface and argument types. It's just another
adapter to enable messaging between two systems.

20.2 Httplnvoker Inbound Gateway

To recelve messages over http you need to use an Ht t pl nvoker | nboundGat eway. Here is an
example bean definition:

<bean i d="i nboundGat eway"
cl ass="org. springframework.integration. httpinvoker. H t pl nvoker | nboundGat eway" >
<property name="request Channel " ref="request Channel "/>
<property name="repl yChannel " ref="repl yChannel "/>
<property name="request Ti reout" val ue="30000"/>
<property name="repl yTi neout" val ue="10000"/>
</ bean>

Because the inbound gateway must be able to receive HTTP requests, it must be configured within a
Servlet container. The easiest way to do thisisto provide a servlet definition in web.xml:

<servl et >

<servl et - nane>i nboundGat eway</ ser vl et - nane>

<servl et -cl ass>org. spri ngfranewor k. web. cont ext . support. H t pRequest Handl er Ser vl et </ servl et - c| ass>
</ servl et >

Notice that the servlet name matches the bean name.

Note

If you are running within a Spring MVC application and using the
BeanNameHandlerM apping, then the servlet definition is not necessary. In that case, the bean

1.0.2 Spring Integration Reference 61

Spring Integration

name for your gateway can be matched against the URL path just like a Spring MVC
Controller bean.

20.3 HttpInvoker Outbound Gateway

To configurethe Ht t pl nvoker Qut boundGat eway write a bean definition like this:

<bean i d="out boundGat eway"
cl ass="org. springframework.integration. httpinvoker. Ht tpl nvoker Qut boundGat eway" >
<property name="repl yChannel " ref="repl yChannel "/ >
</ bean>

The outbound gateway is a MessageHandl er and can therefore be registered with either a
Pol | i ngConsuner or Event Dri venConsuner . The URL must match that defined by an inbound
Httplnvoker Gateway as described in the previous section.

20.4 Httplnvoker Namespace Support

Spring Integration provides an "httpinvoker" namespace and schema definition. To include it in your
configuration, simply provide the following URI within a namespace declaration:
"http://www.springframework.org/schemalintegration/httpinvoker'. The schema location should then map
to

"http://www.springframework.org/schemali ntegrati on/httpi nvoker/spring-integration- httpinvoker-1.0.xsd'.

To configure the inbound gateway you can choose to use the namespace support for it. The following
code snippet shows the different configuration options that are supported.

<ht t pi nvoker: i nbound- gat eway i d="i nboundGat eway"
request - channel ="r equest Channel "
request - ti meout =" 10000"
expect-reply="fal se"
reply-tineout ="30000"/>

Note
A 'reply-channel’ may also be provided, but it is recommended to rely on the temporary
anonymous channel that will be created automatically for handling replies.

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound Httplnvoker gateway. Only the 'url' and
‘request-channel’ are required.

<ht t pi nvoker : out bound- gat eway i d=" out boundGat eway"
url ="http://| ocal host: 8080/ exanpl e"
request - channel ="r equest Channel "
request - ti meout =" 5000"
repl y-channel ="r epl yChannel "

1.0.2 Spring Integration Reference 62

Spring Integration

repl y-ti meout ="10000"/ >

Manud

Spring Integration

21. HTTP Support

21.1 Introduction

The HTTP support alows for the making of HTTP requests and the processing of inbound Http requests.
Because interaction over HTTP is aways synchronous, even if all that is returned is a 200 status code the
Http support consists of two gateway implementations Httpl nboundEndpoi nt and
Ht t pOQut boundEndpoi nt .

21.2 Http Inbound Gateway

To receive messages over http you need to use an Ht t pl nboundEndpoi nt. In common with the
Httplnvoker support the Http Inbound Gateway needs to be deployed within a servlet container. The
easiest way to do this is to provide a servlet definition in web.xml, see Section 20.2, “Httplnvoker
Inbound Gateway” for further details. Below is an example bean definition for a simple
Ht t pl nboundEndpoi nt

<bean id="httpl nbound" class="org.springfranmework.integration.http.Httpl nboundEndpoi nt">
<property nanme="request Channel " ref="httpRequest Channel " />
<property name="repl yChannel " ref="httpRepl yChannel" />
</ bean>
The Ht t pl nboundEndpoi nt accepts an instance of | nboundRequest Mapper which alows
customisation of the mapping from Ht t pSer vl et Request to Message. If none is provided the an
instance of Def aul t| nboundRequest Mapper will be used. This encapsulates a simple strategy,
which for example will create a String message for a POST request where the content type starts with

"text", see the Javadoc for full details.

In sending a response to the client there are a number of ways to customise the behaviour of the gateway.
By default the gateway will simply acknowledge that the request was received by sending a 200 status
code back. It is possible to customise this response by providing an implementation of the Spring MVC
Vi ew which will be invoked with the created Message. In the case that the gateway should expect a
reply to the Message then setting the expectReply flag will cause the gateway to wait for a response
Message before creating an Http response. Below is an example of a gateway configured to use a
custom view and to wait for aresponse. It also shows how to customise the Http methods accepted by the
gateway, which are POST and GET by default.

<bean id="httpl nbound" class="org.springfranmework.integration.http.Httpl nboundEndpoi nt">
<property nanme="request Channel " ref="httpRequest Channel " />
<property name="repl yChannel " ref="httpRepl yChannel " />
<property name="view' ref="jsonView' />
<property name="supportedMet hods" >
<list>
<val ue>CGET</ val ue>
<val ue>DELETE</ val ue>
</list>
</ property>
<property nanme="expect Reply" val ue="true" />

1.0.2 Spring Integration Reference 64

Spring Integration

<property name="request Mapper" ref="custonRequest Mapper" />
</ bean>

The message created from the request will be available in the Model map. The key that is used for that
map entry by default is ‘requestMessage’, but this can be overridden by setting the 'requestKey' property
on the endpoint's configuration.

21.3 Http Outbound Gateway

To configure the Ht t pQut boundEndpoi nt write abean definition like this;

<bean id="httpQut bound" class="org.springframework.integration.http.HttpQutboundEndpoi nt" >
<property name="out put Channel " ref="responseChannel " />
</ bean>

This bean definition will execute Http requests by first converting the message to the Http request using
an instance of Def aul t Qut boundRequest Mapper . Thiswill expect to find the request URL in the
message header under the key HitpHeaders. REQUEST URL. It is also possible to set a default target
URL as a constructor argument along with other options as shown below.

<bean id="httpQutbound" class="org. springframework.integration.http.HtpQutboundEndpoi nt" >
<constructor-arg value="http://|ocal host: 8080/ exanpl e" />
<property nanme="out put Channel * ref="responseChannel " />
<property name="sendTi meout" val ue="5000" />
<property nanme="request Mapper" ref="custonRequest Mapper" />
</ bean>

By default the Http request will be made using an instance of Si npl eHt t pRequest Execut or which
uses the JDK Ht t pURLConnect i on. Use of the Apache Commons Http Client is aso supported
through the provided ConmonsHt t pRequest Execut or which can be injected into the outbound
gateway.

21.4 Http Namespace Support

Spring Integration provides an "http" namespace and schema definition. To include it in your
configuration, simply provide the following URI within a namespace declaration:
"http://www.springframework.org/schemalintegration/http’. The schema location should then map to
'http://www.springframework.org/schema/integrati on/http/spring-integration-http-1.0.xsd'.

To configure an inbound http channel adapter which is an instance of Htt pl nboundEndpoi nt
configured not to expect a response.

<htt p: i nbound- channel - adapt er i d="htt pChannel Adapter " channel ="requests" supported- met hods="PUT,

To configure an inbound http gateway which expects a response.

<htt p: i nbound- gat eway i d="i nboundGat eway" request-channel ="requests" reply-channel ="responses"/>

To configure the outbound gateway you can use the namespace support as well. The following code

1.0.2 Spring Integration Reference 65

DELETE"/ >

Spring Integration

snippet shows the different configuration options for an outbound Http gateway.

<ht t p: out bound- gat eway i d="ful | Confi gW t hout Mapper "
request - channel ="r equest s"
defaul t-url="http://1 ocal host/test"
extract -request - payl oad="f al se"
char set =" UTF- 8"
request - execut or =" execut or "
request -ti meout =" 1234"
repl y-channel ="replies"/>

If you want to provide a custom OutboundRequestMapper, then a reference may be supplied to the
‘request-mapper’ attribute. In that case however you will not be allowed to set the default URL, charset,
and 'extract-request-payload’ properties since those are al properties of the default mapper (see the
JavaDoc for DefaultOutboundRequestM apper for more information).

Manud

Spring Integration

22. Mail Support

22.1 Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the Mai | Sendi ngMessageHandl er . It
delegates to a configured instance of Spring's JavaMai | Sender :

JavaMai | Sender nmi | Sender = (JavaMai |l Sender) context. get Bean("nuil Sender");

Mai | Sendi ngMessageHandl er mai | Sendi ngHandl er = new Mai | Sendi ngMessageHandl er (mai | Sender) ;

Mai | Sendi ngMessageHandl er various mapping strategies use Spring's Mai | Message
abstraction. If the received Message's payload is aready a MailMessage instance, it will be sent directly.
Therefore, it is generally recommended to precede this consumer with a Transformer for non-trivial
MailMessage construction requirements. However, a few simple Message mapping strategies are
supported out-of-the-box. For example, if the message payload is a byte array, then that will be mapped to
an attachment. If the payload is neither a MailMessage or byte array, then a MailMessage will be created
with text content corresponding to the value returned from the Spring Integration Message payload's
t oSt ri ng() method. For simple text-based emails, simply provide a String-based Message payload.

The outbound MailMessage may aso be configured with certain values from the MessageHeader s. If
available, values will be mapped to the outbound mail's properties, such as the recipients (TO, CC, and
BCC), the from/reply-to, and the subject. The header names are defined by the following constants:

Mai | Header s. SUBJECT
Mai | Headers. TO

Mai | Header s. CC

Mai | Header s. BCC

Mai | Header s. FROM

Mai | Header s. REPLY_TO

22.2 Mail-Receiving Channel Adapter

Spring Integration aso provides support for inbound email with the
Mai | Recei vi ngMessageSour ce. It delegates to a configured instance of Spring Integration's own
Mai | Recei ver interface, and there are two implementations. Pop3Mai | Recei ver and
| mapMai | Recei ver. The easiest way to instantiate either of these is by passing the 'uri' for a Mail
store to the receiver's constructor. For example:

Mai | Recei ver receiver = new Pop3Mai | Recei ver (" pop3://usr: pwd@ ocal host /| NBOX") ;

Another option for receiving mail is the IMAP "idle" command (if supported by the mail server you are
using). Spring Integration provides the | mapl dl eChannel Adapt er which is itself a
Message-producing endpoint. It delegates to an instance of the | mapMai | Recei ver but enables
asynchronous reception of Mail Messages. There are examples in the next section of configuring both

1.0.2 Spring Integration Reference 67

Spring Integration

types of inbound Channel Adapter with Spring Integration’'s namespace support in the 'mail’ schema.

22.3 Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the following
schema locations.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: mai | ="http://ww. springfranmework. org/ schema/integration/ mail"
Xxsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schema/ i nt egrati on/ nai
http://ww. springfranework. org/ schema/integration/ mail/spring-integration-mil-1.0.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the Mail Sender:

<mai | : out bound- channel - adapt er channel =" out boundMai | "
mai | - sender =" mai | Sender" />

Alternatively, provide the host, username, and password:

<mai | : out bound- channel - adapt er channel =" out boundMai | "
host ="sonehost" user name="soneuser" password="sonmepassword"/ >

Note

Keep in mind, as with any outbound Channel Adapter, if the referenced channd is a
PollableChannel, a <poller> sub-element should be provided with either an interval-trigger or
cron-trigger.

To configure an inbound Channel Adapter, you have the choice between polling or event-driven
(assuming your mail server supports IMAP IDLE - if not, then polling is the only option). A polling
Channel Adapter simply requires the store URI and the channel to send inbound Messages to. The URI
may begin with "pop3" or "imap":

<mai | : i nbound- channel - adapt er channel ="mai | I n"
store-uri="imap://usr: pwd@ map. exanpl e. com | NBOX" >
<pol | er max- messages- per-pol | ="3">
<interval -trigger interval ="30" time-unit="SECONDS"/>
</ pol | er>
</ muai | : i nbound- channel - adapt er >

If you do have IMAP idle support, then you may want to configure the "imap-idle-channel-adapter"
element instead. Since the "idle" command enables event-driven notifications, no poller is necessary for
this adapter. It will send a Message to the specified channel as soon as it receives the notification that new
mail isavailable:

<mai | : i map-idl e-channel - adapt er channel ="mai |l | n"
store-uri="imaps://usr: pwd@ map. exanpl e. com 993/ | NBOX"/ >

1.0.2 Spring Integration Reference 68

Spring Integration

When using the namespace support, a header-enricher Message Transformer is also available. This
simplifies the application of the headers mentioned above to any Message prior to sending to the
Mail-sending Channel Adapter.

<mai | : header - enri cher subj ect="Exanple Mail"
to="t o@xanpl e. or g"
cc="cc@xanpl e. org"
bcc="bcc@xanpl e. or g"
from="fromaxanpl e. org"
repl y-to="repl yTo@xanpl e. or g"
overwrite="fal se"/>

Manud

Spring Integration

23. Stream Support

23.1 Introduction

In many cases application data is obtained from a stream. It is not recommended to send a reference to a
Stream as a message payload to a consumer. Instead messages are created from data that is read from an
input stream and message payl oads are written to an output stream one by one.

23.2 Reading from streams

Spring Integration provides two adapters for streams. Both Byt eSt r eanReadi ngMessageSour ce
and Char act er St r eanReadi ngMessageSour ce implement MessageSour ce. By configuring
one of these within a channel-adapter element, the polling period can be configured, and the Message Bus
can automatically detect and schedule them. The byte stream version requiresan | nput St r eam and the
character stream version requires a Reader as the single constructor argument. The
Byt eSt r eanReadi ngMessageSour ce aso accepts the 'bytesPerMessage’ property to determine
how many bytesit will attempt to read into each Message. The default value is 1024

<bean cl ass="org. springframework.integration.stream Byt eStreanReadi ngMessageSour ce" >
<constructor-arg ref="somel nput Streani/>
<property nanme="byt esPer Message" val ue="2048"/>

</ bean>

<bean cl ass="org. spri ngframework.integration.stream Charact er St r eanReadi ngMessageSour ce" >
<constructor-arg ref="someReader"/>
</ bean>

23.3 Writing to streams

For target streams, there are also two implementations. Byt eSt r eanWW i t i ngMessageHand!| er and
Character StreanWiti ngMessageHandl| er. Each requires a single constructor argument -
Qut put St r eam for byte streams or Wit er for character streams, and each provides a second
constructor that adds the optional ‘bufferSize. Since both of these ultimately implement the
MessageHandl er interface, they can be referenced from a channel-adapter configuration as described
in more detail in Chapter 6, Channel Adapter.

<bean cl ass="org. spri ngframework.integration.stream ByteStreamWitingMessageHandl er" >
<constructor-arg ref="someCutput Streant'/>
<constructor-arg val ue="1024"/>

</ bean>

<bean cl ass="org. spri ngframework.integration.stream CharacterStream/NitingMessageHandl er">
<constructor-arg ref="someWiter"/>
</ bean>

1.0.2 Spring Integration Reference 70

Spring Integration

23.4 Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace defined. The
following schema locations are needed to use it.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://wwmv springfranmewor k. org/ schema/ i nt egrati on/ streant
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="htt p: //wwm. spri ngf ramewor k. or g/ schema/ beans"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranework. org/ schenma/integration/stream
http://ww. springframework. org/ schema/ i ntegration/stream spring-integration-stream 1.0.

To configure the inbound channel adapter the following code snippet shows the different configuration
options that are supported.
<stdi n-channel - adapt er i d="adapt er Wt hDef aul t Charset"/>

<stdi n-channel - adapt er id="adapter WthProvi dedCharset" charset="UTF-8"/>

To configure the outbound channel adapter you can use the namespace support as well. The following
code snippet shows the different configuration for an outbound channel adapters.
<stdout - channel - adapt er i d="stdout Adapt er Wt hDef aul t Charset" channel ="t est Channel "/ >
<stdout - channel - adapt er i d="stdout Adapter WthProvi dedCharset" charset="UTF-8" channel ="t est Channel "/ >
<stderr-channel - adapt er id="stderrAdapter" channel ="t est Channel "/ >

<st dout - channel - adapt er id="new i neAdapter" append-new i ne="true" channel ="t est Channel "/>

1.0.2 Spring Integration Reference 71

Spring Integration

24. Spring ApplicationEvent Support

Spring Integration also provides support for inbound and outbound Appl i cat i onEvent s. To receive
events and send to a channe, simply define an instance of Spring Integration's
Appl i cati onEvent Li st eni ngChannel Adapt er. This class is an implementation of Spring's
Appl i cationLi stener interface. By default it will pass all received events as Spring Integration
Messages. To limit based on the type of event, configure the list of event types that you want to receive
with the 'eventTypes property.

To send Spring ApplicationEvents, create an instance of the
Appl i cati onEvent Publ i shi ngMessageHandl er and register it within an endpoint. This
implementation of the MessageHandl er interface aso implements Spring's

Appl i cati onEvent Publ i sher Awar e interface and thus acts as a bridge between Spring
Integration Messages and Appl i cat i onEvent s.

1.0.2 Spring Integration Reference 72

Spring Integration

25. Dealing with XML Payloads

25.1 Introduction

Spring Integration's XML support extends the Spring Integration Core with implementations of splitter,
transformer, selector and router designed to make working with xml messages in Spring Integration
simple. The provided messaging components are designed to work with xml represented in a range of
formats including instances of java.lang.String, org.w3c.dom Docunent and
javax. xm . transf orm Sour ce. It should be noted however that where a DOM representation is
required, for example in order to evaluate an XPath expression, the St ri ng payload will be converted
into the required type and then converted back again to St r i ng. Components that require an instance of
Docunent Bui | der will create a namespace aware instance if one is not provided. Where greater
control of the document being created is required an appropriately configured instance of
Docunent Bui | der should be provided.

25.2 Transforming xml payloads

This section will explain the workings of Xm Payl oadUnmarshal | i ngTransf or ner,
Xm Payl oadMar shal | i ngTr ansf or ner, Xsl t Payl oadTr ansf or mer and how to configure
them as beans. All of the provided xml transformers extend Abst r act Payl oadTr ansf or mer and
therefore implement Tr ansf or mer . When configuring xml transformers as beans in Spring Integration
you would normaly configure the transformer in conjunction with either a
MessageTr ansf orni ngChannel I nterceptor or a MessageTransf or mi ngConsurner.
This allows the transformer to be used as either an interceptor, which transforms the message as it is sent
or received to the channel, or as an endpoint. Finally the namespace support will be discussed which
allows for the simple configuration of the transformers as MessageEndpoi nt instances.

Xm Payl oadUnnmar shal | i ngTr ansf or mer alows an xml Sour ce to be unmarshalled using
implementations of Spring OXM Unmar shal | er. Spring OXM provides several implementations
supporting marshalling and unmarshalling using JAXB, Castor and JiBX amongst others. Since the
unmarshaller requires an instance of Sour ce where the message payload is not currently an instance of
Sour ce, conversion will be attempted. Currently St ri ng and or g. w3c. dom Docunent payloads
are supported. Custom conversion to a Sour ce is aso supported by injecting an implementation of
Sour ceFact ory.

<bean id="unmarshal | i ngTransf or mer"
cl ass="org. springframework.integration.xnl.transformer. Xn Payl oadUnnar shal | i ngTr ansf or ner " >
<constructor-arg>
<bean cl ass="org. spri ngframewor k. oxm j axb. Jaxb1Marshal | er" >
<property name="cont extPath" val ue="org. exanpl e" />
</ bean>
</ constructor-arg>
</ bean>

1.0.2 Spring Integration Reference 73

Spring Integration

The Xnl Payl oadMar shal | i ngTr ansf or ner alows an object graph to be converted into xml
using a Spring OXM Mar shal | er . By default the Xm Payl oadMar shal | i ngTr ansf or mer will
return a DomResul t. However the type of result can be controlled by configuring an alternative
Resul t Fact ory such as St ri ngResul t Fact ory. In many cases it will be more convenient to
transform the payload into an aternative xml format. To achieve this configure a
Resul t Tr ansf or mer. Two implementations are provided, one which converts to String and
another which convertsto Docunent .

<bean id="marshal | i ngTransf ormer"
cl ass="org. springframework.integration.xm .transforner. Xm Payl oadMar shal | i ngTr ansf or mer " >

<const ructor-arg>

<bean cl ass="org. spri ngframewor k. oxm j axb. JaxblMarshal | er" >

<property name="cont ext Path" val ue="org. exanple" />

</ bean>
</ constructor-arg>
<constructor-arg>

<bean cl ass="org. spri ngframework.integration.xm .transfornmer.Resul t ToDocunent Tr ansf or ner "

</ constructor-arg>
</ bean>

Xsl t Payl oadTr ansf or mer transforms xml payloads using xdl. The transformer requires an instance
of either Resour ce or Tenpl at es. PassinginaTenpl at es instance allows for greater configuration
of the TransformerFactory used to create the template instance. As in the case of
Xm Payl oadMar shal | i ngTr ansf or mer by default Xsl t Payl oadTr ansf or mer will create a

message with a Resul t payload. This can be customised by providing a Resul t Fact ory and/or a
Resul t Tr ansf or ner .

<bean id="xsltPayl oadTransf or mer"

cl ass="org. springframework.integration.xm .transforner. Xsl t Payl oadTr ansf or mer " >
<constructor-arg val ue="cl asspat h: or g/ exanpl e/ xsl /transform xsl" />
<construct or - ar g>

/>

<bean cl ass="org. springframework.integration.xm .transformer.Resul t ToDocunment Transformer" />

</ constructor-arg>
</ bean>

25.3 Namespace support for xml transformers

Namespace support for all xml transformers is provided in the Spring Integration xml namespace, a
template for which can be seen below. The namespace support for transformers creates an instance of
either Subscr i bi ngConsuner Endpoi nt or Pol | i ngConsumer Endpoi nt according to the type
of the provided input channel. The namespace support is designed to reduce the amount of xml
configuration by allowing the creation of an endpoint and transformer using one element.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:integration="http://ww.springframework. org/schena/integration"
xm ns: si-xm ="http://ww. springfranmework. org/ schema/integration/xm"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans-2. 5. xsd
http://ww. springframework. or g/ schema/ i nt egrati on
http://ww. springframework. org/ schema/ i ntegration/spring-integration-1.0.xsd
http://ww. springframework. org/ schema/ i nt egrati on/ xm

1.0.2 Spring Integration Reference 74

Spring Integration

http://ww. springframework. org/ schema/ i ntegration/xm /spring-integration-xm-1.0.xsd">
</ beans>

The namespace support for Xml Payl oadUnmar shal | i ngTr ansf or mer is shown below. Since the
namespace is now creating an instance of MessageEndpoi nt rather than a transformer a poller can
also be nested within the element to control the polling of the input channel.

<si -xm : unmar shal | i ng-transfornmer id="defaul t Unmarshal | er"
i nput - channel ="i nput "
out put - channel =" out put "
unnar shal | er ="unmar shal | er"/ >

<si -xml : unmarshal | i ng-transfornmer id="unmarshallerWthPoller"
i nput - channel ="i nput "
out put - channel =" out put "
unmar shal | er ="unmar shal | er">
<si:poller>
<si:interval -trigger interval="2000"/>
</si:poller>
<si -xm : unmar shal | i ng-transformer/>

The namespace support for the marshalling transformer requires an input channel, output channel and a
reference to a marshaller. The optional result-type attribute can be used to control the type of result
created, valid values are StringResult or DomResult (the default). Where the provided result types are not
sufficient areference to a custom implementation of Resul t Fact or y can be provided as an alternative
to setting the result-type attribute using the result-factory attrbitue. An optional result-transformer can
also be specified in order to convert the created Resul t after marshalling.

<si -xmnl : marshal | i ng-transf orner
i nput - channel =" mar shal | i ngTr ansf or mer St ri ngResul t Fact ory*"
out put - channel =" out put "
mar shal | er="nmarshal | er"
result-type="StringResult" />

<si -xml : marshal | i ng-transf or mer
i nput - channel =" mar shal | i ngTr ansf or mer Wt hResul t Tr ansf or ner "
out put - channel =" out put "
mar shal | er="marshal | er"
result-transforner="resultTransfornmer" />

<bean id="resultTransforner"
class="org. springframework.integration.xm .transformer.Resul t ToStri ngTransformer"/>

Namespace support for the Xsl t Payl oadTr ansf or mer allows either a resource to be passed in in
order to create the Tenpl at es instance or aternatively a precreated Tenpl at es instance can be
passed in as a reference. In common with the marshalling transformer the type of the result output can be
controlled by specifying either the result-factory or result-type attribute. A result-transfomer attribute can
also be used to reference an implementation of Resul t Tr ansf omer where conversion of the result is
required before sending.

<si-xm :xslt-transforner id="xsltTransfornerWthResource"

i nput - channel =" wi t hResour cel n"

out put - channel =" out put "

xsl -resource="or g/ springframework/integration/xm/config/test.xsl"/>
<si-xm:xslt-transformer id="xsltTransfornerWthTenpl at esAndResul t Tr ansf or ner"

i nput - channel ="wi t hTenpl at esAndResul t Tr ansf or mer | n*

out put - channel =" out put "

xsl -tenpl at es="t enpl at es"

Manud

Spring Integration

resul t-transforner="result Transformer"/>

25.4 Splitting xml messages

XPat hMessageSpl i tter supports messages with either String or Docunent payloads. The
splitter uses the provided XPath expression to split the payload into a number of nodes. By default this
will result in each Node instance becoming the payload of a new message. Where it is preferred that each
message be a Document the cr eat eDocunent s flag can be set. Wherea St r i ng payload is passed in
the payload will be converted then split before being converted back to a number of String messages. The
XPath splitter implements MessageConsuner and should therefore be configured in conjunction with
an appropriate endpoint.

<bean id="splittingEndpoint"
cl ass="org. spri ngframework. i nt egration. endpoi nt. Subscri bi ngConsuner Endpoi nt ">
<const ruct or - ar g>
<bean cl ass="org. springfranework.integration.xm.splitter.XPathMessageSplitter">
<constructor-arg val ue="/order/items" />
<property nanme="document Bui | der" ref="custon sedDocunent Bui | der" />
<property name="out put Channel " ref="orderltenmsChannel" />
</ bean>
</ constructor-arg>
<constructor-arg ref="order Channel " />
</ bean>

25.5 Routing xml messages using XPath

Two Router implementations based on XPath are provided XPat hSi ngl eChannel Rout er and
XPat hMul t i Channel Rout er . The implementations differ in respect to how many channels any
given message may be routed to, exactly one in the case of the single channel version or zero or morein
the case of the multichannel router. Both evaluate an XPath expression against the xml payload of the
message, supported payload types by default are Node, Docurnent and St ri ng. For other payload
types a custom implementation of Xml Payl oadConverter can be provided. The router
implementations use Channel NameResol ver to convert the result(s) of the XPath expression to a
channel name. By default a BeanFact or yChannel Name strategy will be used, this means that the
string returned by the X Path evaluation should correspond directly to the name of a channel. Wherethisis
not the case an aternative implementation of Channel NaneResol ver can be used. Where thereis a
simple mapping from Xpath result to channel name the provided MapBasedChannel Nane can be
used.

<l-- Expects a channel for each value of order type to exist -->
<bean i d="si ngl eChannel Routi ngEndpoi nt"
cl ass="org. spri ngframework. i ntegration. endpoi nt. Subscri bi ngConsuner Endpoi nt ">
<constructor-arg>
<bean cl ass="org. springframework.integration.xm .router.XPathSi ngl eChannel Rout er ">
<constructor-arg val ue="/order/ @ype" />
</ bean>
</ constructor-arg>
<constructor-arg ref="order Channel " />
</ bean>

1.0.2 Spring Integration Reference 76

Spring Integration

<l-- Milti channel router which uses a map channel resolver to resolve the channel nane
based on the XPath evaluation result Since the router is nulti channel it may deliver
nmessage to one or both of the configured channels -->
<bean id="nul ti Channel Routi ngEndpoi nt"
cl ass="org. springfranmework.integrati on. endpoi nt. Subscri bi ngConsuner Endpoi nt ">
<const ructor - ar g>
<bean cl ass="org. springfranmework.integration.xm .router.XPat hMil ti Channel Rout er">
<constructor-arg val ue="/order/recipient" />
<property name="channel Resol ver" >
<bean cl ass="org. spri ngframework.integrati on.channel . MapBasedChannel Resol ver" >
<constructor-arg>
<map>
<entry key="accounts"
val ue-ref ="account Confi r mati onChannel " />
<entry key="humanResour ces"
val ue-ref =" humanResour cesConf i r mat i onChannel " />
</ map>
</ constructor-arg>
</ bean>
</ property>
</ bean>
</ constructor-arg>
<constructor-arg ref="order Channel" />
</ bean>

25.6 Selecting xml messages using XPath

Two MessageSel ect or implementations are provided, Bool eanTest XPat hMessageSel ect or
and StringVal ueTest XPat hMessageSel ect or. Bool eanTest XPat hMessageSel ect or
requires an XPathExpression which evaluates to a boolean, for example boolean(/one/two) which will
only select messages which have an element named two which is a child of a root element named one.

StringVal ueTest XPat hMessageSel ect or evauates any XPath expression as a St ri ng and
compares the result with the provided value.

<l-- Interceptor which rejects messages that do not have a root elenent order -->
<bean i d="order Sel ecti ngl nterceptor"
class="org. springframework.integration.channel.interceptor. MessageSel ecti ngl nterceptor">
<constructor-arg>

<bean cl ass="org. springframework.integration.xmnl .sel ector.Bool eanTest XPat hMessageSel ect or" >
<constructor-arg val ue="bool ean(/order)" />

</ bean>
</ constructor-arg>
</ bean>
<l-- Interceptor which rejects nessages that are not version one orders -->

<bean i d="versi onOneOr der Sel ecti ngl nterceptor"

cl ass="org. springframework. i ntegrati on.channel .interceptor. MessageSel ecti ngl nterceptor">
<const ructor - arg>
<bean cl ass="org. springframework.integration.xm .sel ector. StringVal ueTest XPat hMessageSel ect or" >
<constructor-arg val ue="/order/ @ersion" index="0"/>
<constructor-arg val ue="1" index="1"/>
</ bean>
</ constructor-arg>
</ bean>

25.7 XPath components namespace support

Manud

Spring Integration

All XPath based components have namespace support alowing them to be configured as instances of
MessageEndpoi nt with the exception of the XPath selectors which are not designed to act as
endpoints. Each component allows the XPath to either be referenced at the top level or configured via a
nested xpath-expression element. So the following configurations of an xpath-selector are all valid and
represent the general form of XPath namespace support. All forms of XPath expression result in the
creation of an XPat hExpr essi on using the Spring XPat hExpr essi onFact ory

<si -xml : xpat h- sel ect or i d="xpat hRef Sel ect or"
xpat h- expr essi on="r ef ToXpat hExpr essi on"
eval uation-resul t-type="bool ean" />

<si-xm : xpat h-sel ector id="sel ector WthNoNS" eval uati on-resul t-type="bool ean" >
<si - xml : xpat h- expr essi on expressi on="/nanme"/ >
</si-xm : xpat h- sel ect or >

<si-xm : xpat h-sel ector id="sel ectorWthOneNS" eval uation-result-type="bool ean" >
<si - xml : xpat h- expressi on expressi on="/ns1: name"
ns-prefix="ns1l" ns-uri="www. exanple.org" />
</ si-xm : xpat h-sel ect or >

<si-xml : xpat h-sel ector id="sel ectorWthTwoNS" eval uati on-result-type="bool ean" >
<si -xml : xpat h- expr essi on expressi on="/ns1l: name/ ns2: t ype" >
<map>
<entry key="nsl1" val ue="wwmw. exanpl e. or g/ one" />
<entry key="ns2" val ue="www. exanpl e. org/ two" />
</ map>
</ si-xm : xpat h- expr essi on>
</si-xm : xpat h- sel ect or >

<si-xml : xpat h-sel ector id="sel ector Wt hNanespaceMapRef" eval uation-result-type="bool ean" >
<si -xml : xpat h- expr essi on expressi on="/nsl: name/ ns2:type"
nanmespace- map="def aul t Nanespaces"/ >
</si-xm : xpat h- sel ect or >

<util:map id="defaul t Nanespaces" >
<util:entry key="ns1" val ue="www. exanpl e. or g/ one" />
<util:entry key="ns2" val ue="ww. exanpl e. org/two" />
</util:map>

XPath splitter namespace support allows the creation of a MessageEndpoint with an input channel and
output channel.

<l-- Split the order into itens creating a new nessage for each item node -->
<si-xm :xpath-splitter id="orderltenSplitter"
i nput - channel =" or der Channel "
out put - channel =" or der | t emsChannel " >
<si -xml : xpat h- expr essi on expressi on="/order/itens"/>
</si-xm : xpath-splitter>

<I-- Split the order into itens creating a new docunent for each item->
<si-xm :xpath-splitter id="orderltenDocunmentSplitter"
i nput - channel =" or der Channel "
out put - channel =" or der | t emsChannel "
creat e-docunment s="true">
<si - xml : xpat h- expressi on expressi on="/order/itens"/>
<si:poll er>
<si:interval -trigger interval ="2000"/>
</si:poller>
</si-xm :xpath-splitter>

1.0.2 Spring Integration Reference 78

Spring Integration

XPath router namespace support allows for the creation of a MessageEndpoint with an input channel but
no output channel since the output channel is determined dynamically. The multi-channel attribute causes
the creation of amulti channel router capable of routing a single message to many channels when true and
asingle channel router when false.

<l-- route the nessage according to exactly one order type channel -->

<si-xm : xpat h-router id="orderTypeRouter" input-channel ="orderChannel" mnulti-channel ="fal se">
<si - xml : xpat h- expr essi on expressi on="/order/type"/>

</si-xm : xpat h-rout er >

<l-- route the order to all responders-->
<si-xm : xpath-router id="responderRouter" input-channel ="orderChannel" mnulti-channel ="true">
<si - xml : xpat h- expr essi on expressi on="/request/responders"/>
<si:poller>
<si:interval -trigger interval ="2000"/>
</si:poller>
</ si-xm : xpat h-rout er >

Manud

Spring Integration

26. Security in Spring Integration

26.1 Introduction

Spring Integration provides integration with the Spring Security project to alow role based security
checks to be applied to channel send and receive invocations.

26.2 Securing channels

Spring Integration provides the interceptor Channel Securityl nterceptor, which extends
Abstract Securityl nterceptor and intercepts send and receive cals on the channel. Access
decisions are then made with reference to Channel | nvocati onDefi ni ti onSour ce which
provides the definition of the send and receive security constraints. The interceptor requires that a valid
SecurityCont ext has been established by authenticating with Spring Security, see the Spring
Security reference documentation for details.

Namespace support is provided to alow easy configuration of security constraints. This consists of the
secured channels tag which allows definition of one or more channel name patterns in conjunction with a
definition of the security configuration for send and receive. The pattern is a
java. util.regexp. Pattern.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns="http://ww. spri ngfranework. org/ schema/ i nt egration"
xm ns: si-security="http://ww. springfranmework. org/schema/integration/security"
xm ns: beans="htt p://ww. spri ngf ramewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: security="http://ww. springframework. org/ schema/ security"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. org/ schema/ security
http://ww. springfranework. org/ schema/ security/spring-security-2.0.xsd
http://ww. springframework. or g/ schema/ i nt egrati on
http://ww. springfranework. org/ schema/integration/spring-integration-1.0.xsd
http://ww. springframework. org/ schema/i ntegration/security
http://ww. springframework. org/ schema/i ntegration/security/spring-integration-security-

<si -security: secured-channel s>
<si-security:access-policy pattern="adm n.*" send-access="ROLE_ADM N'/>
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER'/ >
</si-security: secured-channel s>

By default the secured-channels namespace element expects a bean named authenticationManager which
implements Aut henti cati onManager and a bean named accessDecisonManager which
implements AccessDeci si onManager . Where thisis not the case references to the appropriate beans
can be configured as attributes of the secured-channels element as below.

<si -security:secured-channel s access-deci si on- manager =" cust omAccessDeci si onManager"
aut henti cat i on- nanager =" cust omAut hent i cat i onManager " >
<si-security:access-policy pattern="adm n.*" send-access="ROLE_ADM N'/ >
<si-security:access-policy pattern="user.*" receive-access="ROLE USER'/ >

1.0.2 Spring Integration Reference 80

http://static.springframework.org/spring-security/site/

Spring Integration

</si-security: secured-channel s>

1.0.2

Spring Integration Reference

81

Spring Integration

Appendix A. Spring Integration
Samples

A.1 The Cafe Sample

In this section, we will review a sample application that is included in the Spring Integration distribution.
This sampleisinspired by one of the samples featured in Gregor Hohpe's Ramblings.

The domain isthat of a Cafe, and the basic flow is depicted in the following diagram:

hotDrinks

placeOrder

The Or der object may contain multiple Or der | t ens. Once the order is placed, a Splitter will break
the composite order message into a single message per drink. Each of these is then processed by a Router
that determines whether the drink is hot or cold (checking the Or der | t emaobject's 'islced' property).
Finally the Bar i st a prepares each drink, but hot and cold drink preparation are handled by two distinct
methods: 'prepareHotDrink' and 'prepareColdDrink’. The prepared drinks are then sent to the Waiter
where they are aggregated into aDel i ver y object.

Hereisthe XML configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://ww. spri ngfranmework. org/ schema/ i nt egration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="htt p: //ww. spri ngfranewor k. or g/ schena/ beans"
xm ns: stream="http://ww. springfranmewor k. or g/ schema/ i nt egrati on/ streant
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. springframework. org/ schema/i ntegration/spring-integration-1.0.xsd
http://ww. springframework. org/ schema/ i ntegration/ stream
http: //wwv. spri ngfranewor k. or g/ schema/ i ntegrati on/streani spring-integration-stream1.0.xsd">

<gateway id="cafe" service-interface="org.springframework.integration.sanples.cafe.Cafe"/>

<channel id="orders"/>
<splitter input-channel ="orders" ref="orderSplitter" nmethod="split" output-channel ="dri nks"/>

<channel id="drinks"/>
<router input-channel ="drinks" ref="drinkRouter" nethod="resol veOr derltemChannel "/>

<channel id="col dDri nks">
<queue capacity="10"/>
</ channel >
<servi ce-activator input-channel ="col dDri nks" ref="barista"

1.0.2 Spring Integration Reference 82

http://www.eaipatterns.com/ramblings.html

Spring Integration

met hod=" pr epar eCol dDr i nk" out put - channel =" pr epar edDr i nks"/ >

<channel id="hotDrinks">
<queue capacity="10"/>
</ channel >
<servi ce-activator input-channel ="hotDrinks" ref="barista"
net hod="pr epar eHot Dri nk" out put - channel =" prepar edDri nks"/ >

<channel id="preparedDrinks"/>
<aggregat or input-channel ="preparedDrinks" ref="waiter"
met hod="pr epar eDel i very" out put -channel ="del i veri es"/ >

<stream st dout - channel - adapter id="deliveries"/>

<beans: bean i d="orderSplitter"
cl ass="org. springframework.integration.sanpl es.cafe.xm .OderSplitter"/>

<beans: bean id="dri nkRouter"
cl ass="org. springframework.integration.sanpl es.cafe.xm .Dri nkRouter"/>

<beans: bean id="barista" class="org.springfranmework.integration.sanples.cafe.xm.Barista"/>
<beans: bean id="waiter" class="org.springframework.integration.sanples.cafe.xm.Witer"/>

<pol I er id="poller" default="true">
<interval -trigger interval ="1000"/>
</ pol | er>

</ beans: beans>

As you can see, each Message Endpoint is connected to input and/or output channels. Each endpoint will
manage its own Lifecycle (by default endpoints start automatically upon initialization - to prevent that
add the "auto-startup” attribute with a value of "false"). Most importantly, notice that the objects are
simple POJOs with strongly typed method arguments. For example, here is the Splitter:

public class OderSplitter {

public List<Orderltenr split(Order order) {
return order.getltens();

}
}

In the case of the Router, the return value does not have to be a MessageChannel instance (athough it
can be). Asyou seein this example, a String-value representing the channel name is returned instead.

public class DrinkRouter {

public String resol veOderltenmChannel (Orderltemorderltenm {
return (orderltemislced()) ? "coldDrinks" : "hotDrinks";

}

Now turning back to the XML, you see that there are two <service-activator> elements. Each of these is
delegating to the same Bar i st a instance but different methods: 'prepareHotDrink' or 'prepareColdDrink'
corresponding to the two channels where order items have been routed.

public class Barista {

private |ong hotDrinkDel ay = 5000;
private | ong col dDri nkDel ay = 1000;

private Atonmi clnteger hotDrinkCounter = new Atoni clnteger();
private Atom clnteger col dDrinkCounter = new Atoniclnteger();

1.0.2 Spring Integration Reference 83

Spring Integration

public void setHotDrinkDel ay(l ong hot Dri nkDel ay) {
thi s. hot Dri nkDel ay = hot Dri nkDel ay;
}

public void setCol dDri nkDel ay(| ong col dDri nkDel ay) {
this.col dDri nkDel ay = col dDri nkDel ay;
}

public Drink prepareHotDrink(Orderltemorderltem {
try {
Thr ead. sl eep(t hi s. hot Dri nkDel ay) ;
System out . println(Thread. current Thread() . get Nane()
+ " prepared hot drink #" + hotDrinkCounter.increnent AndGCet ()

+ " for order #"' + orderltemgetOrder().getNunber() + ": " + orderltem;

return new Drink(orderltem get Order().getNunber(), orderltem getDrinkType(),
orderitemislced(), orderltem getShots());
}
catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

}

public Drink prepareCol dDri nk(Orderltemorderltem {
try {
Thr ead. sl eep(t hi s. col dDri nkDel ay) ;
System out . println(Thread. current Thread() . get Nane()
+ " prepared cold drink #" + col dDrinkCounter.increment AndGet ()

+ " for order #" + orderltemgetOrder().getNunber() + ": " + orderltem;

return new Drink(orderltem get Order().getNunber(), orderltem getDrinkType(),
orderitemislced(), orderltem getShots());

catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

As you can see from the code excerpt above, the barista methods have different delays (the hot drinks
take 5 times as long to prepare). This simulates work being completed at different rates. When the
Caf eDenp 'main' method runs, it will loop 100 times sending a single hot drink and a single cold drink
each time. It actually sends the messages by invoking the 'placeOrder’ method on the Cafe interface.
Above, you will see that the <gateway> element is specified in the configuration file. This triggers the
creation of a proxy that implements the given 'service-interface’ and connects it to a channel. The channel

nameis provided on the @Gateway annotation of the Caf e interface.

public interface Cafe {

@zat eway (r equest Channel =" or ders")
voi d pl aceOrder (Order order);

}
Finally, have alook at the mai n() method of the Caf eDenp itself.

public static void main(String[] args) {
Abst ract Appl i cati onCont ext context = null;
if (args.length > 0) {
context = new Fil eSystenXm Applicati onCont ext (args);
}

Manud

Spring Integration

el se {
context = new Cl assPat hXm Appli cati onCont ext (" caf eDeno. xm ", Caf eDeno. cl ass);

Cafe cafe = (Cafe) context.getBean("cafe");
for (int i =1; i <= 100; i++) {
Order order = new O der(i);
order. addl tem(Dri nkType. LATTE, 2, false);
order. addl tem(Dri nkType. MOCHA, 3, true);
caf e. pl aceOrder (order);

To run this demo, go to the "samples"' directory within the root of the Spring Integration distribution. On
Unix/Mac you can run ‘cafeDemo.sh’, and on Windows you can run ‘cafeDemo.bat’. Each of these will by
default create a Spring Appl i cati onCont ext from the ‘cafeDemo.xml' file that is in the
"spring-integration-samples’ JAR and hence on the classpath (it is the same as the XML above).
However, a copy of that file is also available within the "samples" directory, so that you can provide the
file name as a command line argument to either ‘cafeDemo.sh' or ‘cafeDemo.bat’. This will allow you to
experiment with the configuration and immediately run the demo with your changes. It is probably a good
ideato first copy the original file so that you can make as many changes as you want and still refer back
to the original to compare.

When you run cafeDemo, you will seethat the cold drinks areinitially prepared more quickly than the hot
drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of the hot drink
preparation. This is to be expected based on their respective delays of 1000 and 5000 milliseconds.
However, by configuring a poller with a concurrent task executor, you can dramatically change the
results. For example, you could use a thread pool executor with 5 workers for the hot drink barista while
keeping the cold drink baristaasitis:

<servi ce-activator input-channel ="hotDri nks"
ref="barista"
met hod=" pr epar eHot Dr i nk"
out put - channel =" pr epar edDr i nks"/ >

<servi ce-activator input-channel ="hotDri nks"
ref="barista"
met hod=" pr epar eHot Dr i nk"
out put - channel =" pr epar edDr i nks" >
<pol | er task-executor="pool ">
<interval -trigger interval ="1000"/>
</ pol | er>
</ servi ce-activator>

<t hr ead- pool - t ask- execut or i d="pool" core-size="5"/>

Also, notice that the worker thread name is displayed with each invocation. You will see that the hot
drinks are prepared by the task-executor threads. If you provide a much shorter poller interval (such as
100 milliseconds), then you will notice that occasiondly it throttles the input by forcing the
task-scheduler (the caller) to invoke the operation.

In addition to experimenting with the poller's concurrency settings, you can aso add the ‘transactional’
sub-element. If you want to explore the sample in more detail, the source JAR is available in the "src"
directory: 'org.springframework.integration.samples-sources-1.0.0.jar".

1.0.2 Spring Integration Reference 85

Spring Integration

A.2 The xml messaging sample

The xml messaging sample in org.springframework.integration.samples.xml illustrates how to use some
of the provided components which deal with xml payloads. The sample uses the idea of processing an
order for books represented as xml.

First the order is split into a number of messages, each one representing a single order item using the
XPath splitter component.

<si-xm :xpath-splitter id="orderltenfSplitter" input-channel ="ordersChannel"
out put - channel =" st ockChecker Channel " creat e-docunents="true">

<si-xm : xpat h- expressi on expressi on="/order Ns: order/order Ns: order|tenl namespace- nap="or der NanmespaceMap" />
</si-xm:xpath-splitter>

A service activator is then used to pass the message into a stock checker POJO. The order item document
is enriched with information from the stock checker about order item stock level. This enriched order item
message is then used to route the message. In the case where the order item is in stock the message is
routed to the warehouse. The XPath router makes use of a MapBasedChannel Resol ver which maps
the X Path evaluation result to a channel reference.

<si-xml : xpath-router id="instockRouter" channel -resol ver="mapChannel Resol ver"
i nput - channel =" or der Rout i ngChannel " resol ution-required="true">

<si-xm : xpat h- expressi on expressi on="/order Ns: order|tem @ n-stock" namespace- map="or der NanespaceMap" />
</si-xm : xpat h-rout er>

<bean i d="mapChannel Resol ver"
cl ass="org. springfranmework. i nt egrati on. channel . MapBasedChannel Resol ver" >
<property name="channel Map" >
<n’ap>
<entry key="true" val ue-ref="warehouseD spat chChannel " />
<entry key="fal se" val ue-ref="out O St ockChannel " />
</ map>
</ property>
</ bean>

Where the order item is not in stock the message is transformed using xslt into a format suitable for
sending to the supplier.

<si-xm :xslt-transfornmer input-channel ="out Of StockChannel" out put-channel ="resuppl yO der Channel "
xsl -resource="cl asspat h: or g/ spri ngf ramewor k/ i nt egrati on/ sanpl es/ xm / bi gBooksSuppl i er Tr ansf or ner. xsl "/ >

Manud

Spring Integration

Appendix B. Configuration

B.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your
particular needs and at what level you prefer to work. As with the Spring framework in general, it is also
possible to mix and match the various techniques according to the particular problem at hand. For
example, you may choose the X SD-based namespace for the magjority of configuration combined with a
handful of objects that are configured with annotations. As much as possible, the two provide consistent
naming. XML eements defined by the XSD schema will match the names of annotations, and the
attributes of those XML elements will match the names of annotation properties. Direct usage of the AP
is of course always an option, but we expect that most users will choose one of the higher-level options,
or acombination of the namespace-based and annotation-driven configuration.

B.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the
terminology and concepts of enterprise integration. In many cases, the element names match those of the
Enterprise I ntegration Patterns.

To enable Spring Integration's core namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:integration="http://ww.springframework. org/schena/integration”
xsi : schemalLocat i on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/i ntegration/spring-integration-1.0.xsd">

You can choose any name after "xmins:"; integration is used here for clarity, but you might prefer a
shorter abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of
auto-completion may convince you to keep the longer name for clarity. Alternatively, you can create
configuration files that use the Spring I ntegration schema as the primary namespace:

<beans: beans xm ns="http://wwm. springfranmewor k. org/ schema/ i ntegration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="htt p: //ww. spri ngf ramewor k. or g/ schena/ beans"
xsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. springframework. org/ schema/i ntegration/spring-integration-1.0.xsd">

When using this aternative, no prefix is necessary for the Spring Integration elements. On the other hand,
if you want to define a generic Spring "bean" within the same configuration file, then a prefix would be

1.0.2 Spring Integration Reference 87

http://www.eaipatterns.com

Spring Integration

required for the bean element (<beans.bean ... />). Since it is generally a good idea to modularize the
configuration files themselves based on responsibility and/or architectural layer, you may find it
appropriate to use the latter approach in the integration-focused configuration files, since generic beans
are seldom necessary within those same files. For purposes of this documentation, we will assume the
"integration” namespaceis primary.

Many other namespaces are provided within the Spring Integration distribution. In fact, each adapter type
(IMS, File, etc.) that provides namespace support defines its elements within a separate schema. In order
to use these elements, simply add the necessary namespaces with an "xmlns"' entry and the corresponding
"schemal ocation” mapping. For example, the following root element shows several of these namespace
declarations:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springframewor k. or g/ schema/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns:integration="http://ww. springfranmework. org/schema/integration"

xm ns: file="http://ww.springframework. org/schema/integration/file"

xm ns:jms="http://wwm. springfranmework. org/ schema/integration/jns"

xm ns: mai | =" http://ww. springframework. org/ schema/integration/ mail"

xm ns: rm ="http://ww. springframework. org/ schema/integration/rm?"

xm ns:ws="http://ww.springfranework. org/ schema/ i nt egration/ws"

xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. spri ngfranewor k. org/ schenma/ i ntegration
http://ww. springfranmework. org/ schema/integration/spring-integration-1.0.xsd
http://ww. spri ngfranewor k. org/ schema/integration/file
http://ww. springfranmework. org/schema/integration/file/spring-integration-file-1.0.xsd
http://ww. springframework. org/ schema/ i ntegration/jns
http://ww. springfranework. org/ schenma/integration/jns/spring-integration-jns-1.0.xsd
http://ww. springframework. org/ schema/ i ntegration/ nail
http://ww. springfranework. org/ schema/integration/ mail/spring-integration-mail-1.0.xsd
http://ww. springframework. org/ schema/integration/rm
http://ww. springfranework. org/ schenma/integration/rmni/spring-integration-rm-1.0.xsd
http://ww. springframework. org/ schema/ i ntegration/ws
http://ww. springframework. org/ schema/ i ntegration/ws/spring-integration-ws-1.0.xsd">

</ beans>
The reference manual provides specific examples of the various elementsin their corresponding chapters.

Here, the main thing to recognize is the consistency of the naming for each namespace URI and schema
location.

B.3 Configuring the Task Scheduler

In Spring Integration, the ApplicationContext plays the central role of a Message Bus, and there are only
a couple configuration options to be aware of. First, you may want to control the central TaskScheduler
instance. Y ou can do so by providing a single bean with the name "taskScheduler”. Thisis also defined as
aconstant:

I ntegrati onContext Utils. TASK_SCHEDULER BEAN_ NAME
By default Spring Integration uses the Si npl eTaskSchedul er implementation. That in turn just
delegates to any instance of Spring's TaskExecut or abstraction. Therefore, it's rather trivial to supply
your own configuration. The "taskScheduler" bean is then responsible for managing all pollers. The

1.0.2 Spring Integration Reference 88

Spring Integration

TaskScheduler will startup automatically by default. If you provide your own instance of
SimpleTaskScheduler however, you can set the 'autoStartup' property to false instead.

When the endpoints are concurrency-enabled with their own 'taskExecutor' reference, the invocation of
the handling methods will happen within that executor's thread pool and not the main scheduler pool.
However, when no task-executor is provided for an endpoint's poller, it will be invoked in the dispatcher's
thread (with the exception of subscribable channels where the subscribers will be invoked directly). The
next section will describe what happensif Exceptions occur within the asynchronous invocations.

B.4 Error Handling

As described in the overview at the very beginning of this manual, one of the main motivations behind a
Message-oriented framework like Spring Integration is to promote loose-coupling between components.
The Message Channel plays an important role in that producers and consumers do not have to know about
each other. However, the advantages also have some drawbacks. Some things become more complicated
in avery loosely coupled environment, and one example is error handling.

When sending a Message to a channel, the component that ultimately handles that Message may or may
not be operating within the same thread as the sender. If using a simple default DirectChannel (with the
<channel> element that has no <queue> sub-element), the handling will be in the same thread. In that
case, if an Exception is thrown, it will be catch-able by the sender (or it may propagate past the sender if
it is an uncaught RuntimeException). So far, everything is fine. This is the same behavior as an
Exception-throwing operation in a normal call stack. However, when adding the asynchronous aspect,
things become much more complicated. For instance, if the 'channel' element does provide a 'queue
sub-element, then the component that handles the Message will be operating in a different thread than the
sender. The sender may have dropped the Message and moved on to other things. There is no way for the
Exception to be thrown directly back to that sender using standard Exception throwing techniques.
Instead, to handle errors for asynchronous processes requires an asynchronous error-handling mechanism
aswell.

Spring Integration supports error handling for its components by publishing errors to a Message Channel.
Specifically, the Exception will become the payload of a Spring Integration Message. That Message will
then be sent to a Message Channel that is resolved in a way that is very similar to the 'replyChannel’
resolution. First, if the request Message being handled at the time the Exception occurred contains an
‘errorChannel’ header (the header name is defined in the constant:
MessageHeaders. ERROR_CHANNEL), the ErrorMessage will be sent to that channel. Otherwise, the
error handler will send to a"global" channel whose bean name is "errorChannel” (thisis also defined as a
constant: IntegrationContextUtils ERROR_CHANNEL_BEAN_NAME).

Whenever relying on Spring Integration's XML namespace support, a default "errorChannel” bean will be
created behind the scenes. However, you can just as easily define your own if you want to control the
settings.

<channel id="errorChannel" capacity="500"/>

Manud

Spring Integration

The most important thing to understand here is that the Messaging-based error handling will only apply to
Exceptions that are thrown by a Spring Integration task that is executing within a TaskExecutor. This
does not apply to Exceptions thrown by a handler that is operating within the same thread as the sender
(e.g. through a DirectChannel as described above). However, when Exceptions occur in a scheduled
poller task's execution, those exceptions will be wrapped in Error Messages and sent to the
‘errorChannel’ by default. To enable global error handling, simply register a handler on that channel. For
example, you can configure Spring Integration's Er r or MessageExcept i onTypeRout er as the
handler of an endpoint that is subscribed to the 'errorChannel’. That router can then spread the error
messages across multiple channels based on Except i on type.

B.5 Annotation Support

In addition to the XML namespace support for configuring Message Endpoints, it is al'so possible to use
annotations. First, Spring Integration provides the class-level @/kessageEndpoi nt as a stereotype
annotation meaning that is itself annotated with Spring's @Component annotation and therefore is
recognized automatically as a bean definition when using Spring component-scanning.

Even more importantly are the various Method-level annotations that indicate the annotated method is
capable of handling a message. The following example demonstrates both:

@essageEndpoi nt
public class FooService {

@ser vi ceAct i vat or
public void processMessage(Message nmessage) {

}
}

Exactly what it means for the method to "handle" the Message depends on the particular annotation. The
following are available with Spring Integration, and the behavior of each is described in its own chapter
or section within this reference: @Transformer, @Router, @Splitter, @Aggregator, @ServiceActivator,
and @Channel Adapter.

Note

The @MessageEndpoint is not required. If you want to configure a POJO reference from the
"ref" attribute of a <service-activator/> element, it is sufficient to provide the method-level
annotations.

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message's payload type.
public class FooService {

@Handl er
public void bar(Foo foo) {

}

1.0.2 Spring Integration Reference 90

Spring Integration

}

When the method parameter should be mapped from a value in the MessageHeader , another option is
to use the parameter-level @Header annotation. In general, methods annotated with the Spring
Integration annotations can either accept the Message itself, the message payload, or a header value
(with @Header) as the parameter. In fact, the method can accept a combination, such as.

public class FooService {

@ser vi ceAct i vat or
public void bar(String payl oad, @deader("x") int valueX, @+eader("y") int valueY) {

}

}
There is also a @Headers annotation that provides all of the Message headers as a M ap:

public class FooService {

@per vi ceActi vat or
public void bar(String payl oad, @eaders Map<String, bject> headerMap) {

}

For several of these annotations, when a Message-handling method returns a non-null value, the endpoint
will attempt to send a reply. This is consistent across both configuration options (namespace and
annotations) in that the such an endpoint's output channel will be used if available, and the message
header's REPLY _CHANNEL vaue will be the fallback.

In addition to the examples shown here, these annotations also support inputChannel and outputChannel
properties.

public class FooService {

@er vi ceAct i vat or (i nput Channel ="i nput”, out put Channel =" out put")
public void bar(String payl oad, @eaders Map<String, bject> header Map) {

}

}

That provides a pure annotation-driven alternative to the XML configuration. However, it is generally
recommended to use XML for the endpoints, sinceit is easier to keep track of the overall configuration in
a single, external location (and besides the XML configuration is not very verbose). If you do prefer to
provide channels with the annotations however, you just need to enable a BeanPostProcessor. The
following element should be added:

<annot at i on-confi g/ >

Note
When configuring the "inputChannel" and "outputChannel® with annotations, the

Manud

Spring Integration

"inputChannel" must be a reference to a Subscri babl eChannel instance. Otherwise, it
would be necessary to also provide the full poller configuration via annotations, and those
settings (e.g. the trigger for scheduling the poller) should be externalized rather than
hard-coded within an annotation. If the input channel that you want to receive Messages from
isindeed a Pol | abl eChannel instance, one option to consider is the Messaging Bridge.
Spring Integration's "bridge" element can be used to connect a PollableChannel directly to a
SubscribableChannel. Then, the polling metadata is externally configured, but the annotation
option is till available. For more detail see Chapter 15, Messaging Bridge.

1.0.2

Spring Integration Reference 92

Spring Integration

Appendix C. Additional Resources

C.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home at
http://www.springframework.org. That site serves as a hub of information and is the best place to find
up-to-date announcements about the project as well as links to articles, blogs, and new sample
applications.

1.0.2 Spring Integration Reference 93

http://www.springsource.com/spring-integration
http://www.springsource.com

	Spring Integration Reference Manual
	Table of Contents
	1. Spring Integration Overview
	1.1 Background
	1.2 Goals and Principles
	1.3 Main Components
	Message
	Message Channel
	Message Endpoint

	1.4 Message Endpoints
	Transformer
	Filter
	Router
	Splitter
	Aggregator
	Service Activator
	Channel Adapter

	2. Message Construction
	2.1 The Message Interface
	2.2 Message Headers
	2.3 Message Implementations
	2.4 The MessageBuilder Helper Class

	3. Message Channels
	3.1 The MessageChannel Interface
	PollableChannel
	SubscribableChannel

	3.2 Message Channel Implementations
	PublishSubscribeChannel
	QueueChannel
	PriorityChannel
	RendezvousChannel
	DirectChannel
	ThreadLocalChannel

	3.3 Channel Interceptors
	3.4 MessageChannelTemplate
	3.5 Configuring Message Channels
	DirectChannel Configuration
	QueueChannel Configuration
	PublishSubscribeChannel Configuration
	PriorityChannel Configuration
	RendezvousChannel Configuration
	ThreadLocalChannel Configuration

	4. Message Endpoints
	4.1 Message Handler
	4.2 Event-Driven Consumer
	4.3 Polling Consumer
	4.4 Namespace Support

	5. Service Activator
	5.1 Introduction
	5.2 The <service-activator/> Element

	6. Channel Adapter
	6.1 The <inbound-channel-adapter> element
	6.2 The <outbound-channel-adapter/> element

	7. Router
	7.1 Router Implementations
	PayloadTypeRouter
	RecipientListRouter

	7.2 The <router> element
	7.3 The @Router Annotation

	8. Message Filter
	8.1 Introduction
	8.2 The <filter> Element

	9. Transformer
	9.1 Introduction
	9.2 The <transformer> Element
	9.3 The @Transformer Annotation

	10. Splitter
	10.1 Introduction
	10.2 Functionality
	10.3 Programming model
	10.4 Configuring a Splitter using XML
	10.5 Configuring a Splitter with Annotations

	11. Aggregator
	11.1 Introduction
	11.2 Functionality
	11.3 Programming model
	AbstractMessageAggregator
	CompletionStrategy
	CorrelationStrategy

	11.4 Configuring an Aggregator with XML
	11.5 Configuring an Aggregator with Annotations

	12. Resequencer
	12.1 Introduction
	12.2 Functionality
	12.3 Configuring a Resequencer with XML

	13. Message Handler Chain
	13.1 Introduction
	13.2 The <chain> Element

	14. Inbound Messaging Gateways
	14.1 SimpleMessagingGateway
	14.2 GatewayProxyFactoryBean

	15. Messaging Bridge
	15.1 Introduction
	15.2 The <bridge> Element

	16. File Support
	16.1 Introduction
	16.2 Reading Files
	16.3 Writing files
	16.4 File Transformers

	17. JMS Support
	17.1 Inbound Channel Adapter
	17.2 Message-Driven Channel Adapter
	17.3 Outbound Channel Adapter
	17.4 Inbound Gateway
	17.5 Outbound Gateway
	17.6 JMS Samples

	18. Web Services Support
	18.1 Outbound Web Service Gateways
	18.2 Inbound Web Service Gateways
	18.3 Web Service Namespace Support

	19. RMI Support
	19.1 Introduction
	19.2 Outbound RMI
	19.3 Inbound RMI
	19.4 RMI namespace support

	20. HttpInvoker Support
	20.1 Introduction
	20.2 HttpInvoker Inbound Gateway
	20.3 HttpInvoker Outbound Gateway
	20.4 HttpInvoker Namespace Support

	21. HTTP Support
	21.1 Introduction
	21.2 Http Inbound Gateway
	21.3 Http Outbound Gateway
	21.4 Http Namespace Support

	22. Mail Support
	22.1 Mail-Sending Channel Adapter
	22.2 Mail-Receiving Channel Adapter
	22.3 Mail Namespace Support

	23. Stream Support
	23.1 Introduction
	23.2 Reading from streams
	23.3 Writing to streams
	23.4 Stream namespace support

	24. Spring ApplicationEvent Support
	25. Dealing with XML Payloads
	25.1 Introduction
	25.2 Transforming xml payloads
	25.3 Namespace support for xml transformers
	25.4 Splitting xml messages
	25.5 Routing xml messages using XPath
	25.6 Selecting xml messages using XPath
	25.7 XPath components namespace support

	26. Security in Spring Integration
	26.1 Introduction
	26.2 Securing channels

	Appendix A. Spring Integration Samples
	A.1 The Cafe Sample
	A.2 The xml messaging sample

	Appendix B. Configuration
	B.1 Introduction
	B.2 Namespace Support
	B.3 Configuring the Task Scheduler
	B.4 Error Handling
	B.5 Annotation Support

	Appendix C. Additional Resources
	C.1 Spring Integration Home

