Spring Integration Reference Manual

Mark Fisher
Marius Bogoevici
Iwein Fuld
Jonas Partner
Oleg Zhurakousky
Gary Russell
Josh Long

Spring Integration Reference Manual
by Mark Fisher, Marius Bogoevici, Iwein Fuld, Jonas Partner, Oleg Zhurakousky, Gary Russell, and Josh Long

2.0.0.RC1

© SpringSource Inc., 2010

Spring Integration

Table of Contents

1. SPring INTEGratioN OVEINVIEWcociiiueiiieiiiiiie ettt ettt e e ettt ettt e e e st e e e e b e e e e abbe e e e s anbn e e e e anneeeeeannes 1
0 2 7= (o {011 o SRR 1
1.2. GOaAlS aNd PrINCIPIES ..o e e e e e e e s e e eraeaae s 1
G T = T ¢ 00 = | K= 2

IMIESSAOE ... 2
MESSAgE CANNELot e e b e e e e e e e 2
MESSAGE ENUPOINT ..ottt ettt e e e e e e e e et e e e e aba e e e e e e e s 3
1.4, MESSA0E ENCAPOINTSeeiiiiiiiiie ettt et e e et e e et e e e e e e e e e e 3
B2 0 (010 PRSP 4
1= PR 4
ROULET ...t b e b b nnne e 4
S o 11 = ST P PP PPPRPPO 4
L0 0] (<= o T 5
SEIVICE ACHIVELOTvviiireee ittt e e e et e e e e e s e et e e e e e e e e s s n e b aaereaaeeessaasstaaeeaaeeessnnntbaneeaaens 5
(@117 19101 I 0 7o = PR PPRRPR 5

2. MESSAGE CONSITUCTION ...uvviiiiieeiiiiiiieie e e e e e e st e e e e e e e e e st e e e e e e e s s s aaaeaaeeeaaeessasantbseeeeaaeeessasssrraneeaaessans 7
2.1. The Message INterface ..o 7
2.2. MESSA0E HEATEIS ...ttt e 7
2.3. Message IMPIEMENTALIONSvereeeiiiiiee ettt ettt e e st e e e e r e e e s annneeas 8
2.4. The MessageBuilder HEIPEr ClaSsscoiuiiiiiiiiiiie ettt 9

3. MESSAGE ChaNNEISo e e e e e e e e e e e e e e s e et e e e e e e e e e e e nnarraeeaaas 11
3.1. The MessageChannel INtEITaCevviiiiiii e 11

[0 = o 1= @ 7= = SRR 11
SULSCHbADIECANNEL e eas 11
3.2. Message Channel IMpPlemMENtaLiONSeveeiiiireeeiiiiee e e e 12
PUbliShSUDSCIHTDEChANNELeiieieiieeee e e e 12
(@1 1= 011710111 PO PPRPRPPRRPRR 12
PriorityChannel ... e aa e e 12
ReNdEZVOUSCNENNELo et e e e e e e e e e e e e e et eeeeaeeeeaans 12
1 = ot (@ =g P SOPRRRR 13
EXECULOrCRNENNEL ... e e e e e s s et e e e e e e e e s rnaeeeeaeens 14
ThreadL oCalChanNEloeiiiiiii e e e a e e e s s nrraeraaaeeas 15
3.3, ChannEl INTEICEPLOIS ...uveeiiee e ettt e s e e e e e e e e e e e e e e e s s annberaeaeaeeesaenneees 15
3.4, MESSAQINGTEMPIALEeeiiiieieie e e e e e e e e e e e e e e s e st ee e e e e e e e e aansarareeeaeeeas 16
3.5. Configuring Message ChannElSooivviiiiiiiiieeee e 17
DirectChannel ConfigUIrationcoiiiooiiiiiiiiiee e e e e e e s eeee e e e e e e e s eeereeeeeaeeeaanes 17
QueueChannel CONFIGUIALTONooiiiiiiiee ittt e e e e s aneeee e 18
PublishSubscribeChannel Configurationccueeeoiiiiie i 18
EXECULOrCRENNEL ...ttt e e e s anne e s 18
PriorityChannel Configurationeoeiiiiiiiiiiiiiie e e s e e e e srrrere e e e e e e e 19
RendezvousChannel Configuration ..o, 19
ThreadL ocalChannel ConfigUIaLioncoioiiiiiiiir e eee e 19
Channel Interceptor CONfIQUIELIONooeeiiiiiiiiie e 19

Spring Integration
Reference Manual iii

Spring Integration

Globa Channel Interceptor ConfigUIationooccivieriee i e e 20

L AT LTI 1= SRS 21

4, MeSSAgE ENUPOINLScoeeiiiieiiiiieee e 22
IV =" T o = 1 o | = U UPERR 22

4.2, EVENE DIVEN CONSUMEY ..oiiiiiiiiiiitieieee e e s eeetitteeeeeaeeesasnsseeareeeaeessaanntaeaeeeaaeesssannnssaneeaeaessannnsees 23

4.3, POIING CONSUIMESeiiiiiiitiie ettt a e e bt e e e e st e e st b e e e e e enbe e e e e anbb e e e e annneeeeennnes 23

N NP 1SS 07 0= 0] 0 S 25

4.5, Payload TYPE CONMVEISIONcccceiiiiiiiieiee e e e e e ettt e e e e e s s st e e e e e e e e s s satabaaeeeaaeessansatsreeeeaaeseannes 27

4.6. ASYNChronOUS POIIINGuiii e sannsnsnnnnnnnnnnnnnnns 28

B SEIVICE ACHIVELONeiiieieii ettt ettt et e e ettt e e e e e e ettt et e ae e e s s e nnteeeeeaeeeesaansneeeeeeaaeesaannnnens 29
L300 R 1 011 [o o) o USSP 29

5.2. The <service-activator/> EIEMENTooviiiiii i srrre e e 29

O g =g 0= N 0 = = PR URRPR 31
6.1. The <inbound-channel-adapter> element ..o 31

6.2. The <outbound-channel-adapter/> element ... 31

T ROULEE 33
7.1. Router IMPIEMENTBLIONSoiiiiiiiiie it e e a e 33

Pyl O0TYPEROULETcoiiiiiieeiitiie ettt e e e e e s e e e st e e e e e e e e e e annes 33
HEAAEIVAIUBROULEceiiiee ittt e e e e st e e e e e e s s s eeeaaeeesaenneees 33
RECIPIENTLISIROULEYuviiiiiee it e e e e e e e e r e e e e e s s aentaraeeeeaeeeaanns 34

7.2. The <roULEr> ElEIMENTooii e e st e e e et e e e e nne e e e e annneeas 35

7.3. THe @ROULET ANNOLAEION ...ovuieiee ettt e ettt e et et e et e e ee e e e s eeaseeareeseseenseenarerrareeanserens 36

7.4, DYNAMIC ROULEISeiiiiiiii ettt ettt e e e e e e e e e e e e e e e e s e e e e e e nne e e e e annes 36

S T 1 | (= 40
S O 11 [o R RRRRRRRRRR 40

8.2. The <FIlter> EIEMENTeiiiiiiieiie ettt e e s nneeas 40

LS I I =0 o 1 1 PP 43
1S 80 R 1 01100 [o 1 o) o S 43

9.2. The <transformer=> EIEMENLoooii it e e e e e et e e e e e e s e e nnneeeeeeeens 43

9.3. The @Transformer ANNOLELIONuuuiiiiieiiiieeeeee e e e e e e e e e e er e e e e e e e e eeeabaaaeeeaeseenees 46

(OIS o L] 5= GO 47
025 g1 T [F o1 o o I PP PP PUPRPPPTRRR 47
10.2. Programming MOGE]oocuiiiiiiii e e e e e e e e e e e e s s e ae e e e e e e e e s e naenenees 47
10.3. Configuring a Splitter using XML ... 48
10.4. Configuring a Splitter With ANNOLBLIONSccoiiiiiiieiiiiiie e 48

I o | (' = o PRSP PPPPPPPPPP 50
T OO g 11 T (1 o o PSRRI 50
A o ¥ v (o = PSPPI 50
11.3. Programming MOGE]ooiiuiiiiiiii e e e e e e e e e s e e e e e e e e e e s e nannrnees 50
CorrelaingMeSSagEHANAIEYuuuuiiiii e raraenrnrnrnrararnrarnrnrns 51

RSS2 S = 1o | PR 52
COITEIAIONSITEIEGYveeeeiuereeeeeeiteeee e ettt e et e e et e e et e e e e e e e s e e e e e st e e e e s anbe et e e anneeeeennnes 53

11.4. Configuring an Aggregator With XIMLccueeiiiiiiieiiiiie e 53

11.5. Managing State in an Aggregator: MessageGroUPSIOreccuvvvveeiieeevi i e eeveee e 56

11.6. Configuring an Aggregator With ANNOLELIONSccieeiiiiiiiiiiee e e 57

Spring Integration
2.0.0.RC1 Reference Manual iv

Spring Integration

R = 110 PPN 58
220 I 1 1 T [F o1 o o PRSPPSO 58
12.2. FUNCLIONALILY oo, 58
12.3. Configuring a Resequencer With XMLooiiiiiiiiee e e e 58

(RS D= I = TP P PR PPPPPPPP 60
G 350 T 1 1 [o o PRSP 60
13.2. The <delayer> EIOMENT ..o e e e e e s e e e e e e e e ennrneees 60

14. Message Handler Chainoooii oo e e e e e e e e e e e s s eannerees 62
It T 1 1 [H o 1 o o PRSP 62
14.2. The <Chain> EIBMENToeeiiiiiieeei et e e e e e e et r e e e e e e s e e nnereeeeeeens 63

15. MESSAING BIIOGE ...ttt ettt ek e e e e e e e e e e e e e e e e 65
IS 300 R 1 1 [o o PRSP 65
15.2. The <bridge> EIEmMENtovviiiiiiei et e e e et e e e e e e s e e annrnaees 65

16. INbouNd MESSB0ING GAIEWAY'Scceeeeiiiiciiiiieiieeee e e ceet e e e e e e e e se e e e e e e e s essatbbeaeeeaeeesssasatareeeeaaessaanes 67
16.1. GatewayProxXyFaCtOrYBEaNccouuuuiii i e et s e e e e et s e e e e e e e eeeaaa s e eeaeeeeennes 67
16.2. ASYNCOIONOUS GALEWEYvvvveeeeereeeeeeeeeeeseeeeeseeeseesssssssnsssesssssssnsnsesssssssssssssssssssssssssssnsssnnnnnnnns 69
16.3. Gateway behavior when no response iS COMINGcooiiiriiiiiiiiie e 70

17. MESSAgE PUDITISNINGeeeeiiiieiie ettt e e e e e e et e e e e e e e 72
17.1. Message Publishing ConfiguIationeoooiiieieiiiiiie e 72

Annotation-driven approach via @Publisher annotationc.cccccoecciiiiiieee e 72
XML-based approach via <publishing-interceptor> elementccccveveeieei e, 74
Producing and publishing messages based on a scheduled triggerooooeveeeveeeieee e, 76

18. TranSACLION SUPPOITeeeeeiiiiieee ettt ettt e e et e e ek e e e e s ke e e e e e s et e e e s be e e e e asbn e e e e annnn e e e e annneeeeans 78

18.1. Understanding Transactions in MeSSage FlOWScovuiiiiiiiiiiieeiiee e 78
Poller TranSaCtion SUPPOIToiiiieeee ittt ettt e s e e e e nnbe e e e s nbreeeeeas 79
18.2. TranSaCtion BOUNGEIEScoiiiiiiiieiiiiiie ettt e s e et e s e nbaeeeen 80

19. MESSAGE HISLOMY .oeiiiiiiiiiiiiee et e e e e e et e e e e e e e e e e s et b b e e e e eaeesssanatbbeeeeaeeeessnnssrenes 82
19.1. Message History Configurationccoovvviiiiiiiii e 82

20. FlE SUDPOIT ...ttt ettt e e ek e e e e et e e e R et e e e s b e e e e e s e e e e e e e e e nrneeena 84
b0 IS OO g1 0o o i o] USRS 84
20.2. REAAING FlES ...ttt e st e e e e e e b e e e n 84
b0 R 1Y) 1 o T 1 =PRSS 86
PO A e L I = o 1 £ PSPPI 87

DA T 3 1T s oo 88
21.1. Inbound Channel AdBPLETooeiiiiiiiie e 88

POIING @Nd TIaNSACHIONSeeiiiiiiieeeiiie ettt e s e e e e e e e nnbreeeen 89
21.2. Outbound Channel AdBPLESeiiiiiiiie it e e 89
21.3. OULDOUNT GELEWEYevviieiiiee e e ettt e e s e e e e e e e e e s s e e e e e e e s s et aaeeeaaeeessannsraneeaeens 20
DA Ve o o o = RSP 90

INitializing the Dalabasecccoiiiiiiieiee s e 91

Partitioning 8 MESSAJE SLOTEueiiiiiiiie ettt e e e e st e e e e e e e s et eeeaeeeseaenneeneeeeaeeeeaannes 91

22, JIM'S SUPPIONT ...etteeeeeeee e e ettt e e e e s e ettt e e e e s s s e e et e e e e e e s s R e e et e e e e e e e s R R b e e e e e e e e e e e a R e n e e e e e e e e nannrrnes 92
22.1. Inbound Channel ABPLESeeeiiiiiiie e e e 92
22.2. Message-Driven Channel AaDEEroccuiiiiieiie e e e e 93
22.3. Outbound Channel AGADLEYcooiiiiiieee e e e e e s eaaeas 93

Spring Integration
2.0.0.RC1 Reference Manual %

Spring Integration

22.4. INDOUNG GBLEWEYevviieieiieeeeieeite e e e e e e ettt e e e e e e e e e et e e e e e ae e e s s ststeaeeeaaeessasntbrneeeaaeeaaans 9
22.5. OULDOUNT GBLEWEYeeviiiiiiee e e e eecit e e e e s e e e e e e e e e e e e e e e e e e s e e a b b e e e e e eaeeessannnrraneeaaens 95
22.6. Message Conversion, Marshalling and Unmarshallingccccoeeeee, 95
22.7. IMS Backed Message Channelsoeiiiioiiiec e a e e 96
22.8. IMS SAMPIES .eeeiitiiie ettt e e e et e e e e e e e ettt e e e e st eeeeastae e e e e nar e e e e e nteeeeeanae e e e e nnnaeeeanrees 97

23, WED SEIVICES SUPPONT ...eeeeiuittiee ettt e e ettt e ettt e ettt e e ettt e e s aabe et e e e sb e e e e aasb et e e s annb e e e e anbeeeeeannnneeeans 98
23.1. Outbound WED SErviCe GaEWAYSccvviiiiiiee e e e e e e e e e e e e e s e sanaenes 98
23.2. INboUNd WED SEIVICE GaLEWEAYScceevvieieeiie e e e ettt e e e e e e e e e e e e s e e e e e e e e e s seaabaraeeeaeeas 98
23.3. Web Service Namespace SUPPOITcooveeeieieieee e 99

24, RMI SUPPOIT ... 101
o O 11 0o o i o] o PSS OPPUSRRR 101
R @ 11 1 oo 11 o 1Y SR 101
24.3. INPOUNG RMI .ttt e e st b e e e e nabn e e e e s nne e e e e e 101
24.4. RMI NAMESPACE SUPPOIT ...ttt e e e et ettt s e e e e et et s s e e e e e e e eetba e e e e e e e eeeeben e eeeeeeeesnennn 101

25, HEPINVOKES SUPPOIT ..eeiieiiiiitiee ettt e e e e e e et e e e e e e e e e aa b bt e e e e e e e e s saabbbaaeeeaeeesassnbrnneeeaeeasans 103
22 T I 11 0o T i o] o USSP 103
25.2. HttpInvoker INDOUNT GELEWEYccciiiuiriieiiiiiiee ittt a e 103
25.3. HttpInvoker OUtboUNd GELEWEYccoiieriieiiiiiie ittt 103
25.4. Httplnvoker NameSPaCe SUPPOITeiiurrieeiiiiieeeriieie e sttt e et e e e e e snnnee s 104

T o I o oo S PSPPI 105
b2 0 T 1 (oo [0 ' o SRR 105
26.2. HUp INDOUND GALEWEYceeeeeieeiieeeeeee et 105
26.3. Http OULDOUNT GELEWEYcoiiuiieieiiiiiie ettt e e e e e e 106
26.4. HTTP NamMESPACE SUPPOITeeeeeieeiiiiiiiiieteeeeee s sttt e e e e s st e et e e e s s s ssnreb e e e e e e e e s aannnbeneeeeas 106
26.5. HTTP SAMPIES ..iiiie ettt e et e e e ettt e e e et e e e e eat e e e e sansaeeeeanteeaessnrnneeeanns 107
Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway (server) 107

27. TCP and UDP SUPPOITutieiiiieeeeiiiiiitie e e e e e ettt e e e e e e e s e sttt e e e e e e e s s eaatbbeeeeeaeessasntatsaereaaeessansnreens 109
5 W 11 oo o i o] USSP 109
27.2. UDP AGADEENS oo eieiee ettt ettt e e e et e e e e et e e e e e stae e e e enteeeeeasaeeeeannnteaeeannrneeeeanns 109
27.3. TCP CONNECLION FACLOMESuvvieiiieeei i it iee e e eeee e e e e e s s e e e e e e s e e et ee e e e e e e e snnrenees 111
27.4. Tcp CONNECLION INTEFCEPIONSeviiiiiiiie ettt ettt e e e e s e e e e s e e e e ennees 113
27.5. TCP AGADLEL'S ...eeieiiiiiie ettt ettt e et e e e ettt e e e e bbbt e e e abae e e e e enbbe e e e ennbneeenans 114
R O el € (= T YL PRSP 115
27.7. 1P Configuration AHIDULEScoveviieiiiee e 116

28. MBI SUPPOIT ...ttt ekt oo et et e e e s e e e e e R e e e e e R e e e e n e e e e e nr e e e e aan 121
28.1. Mail-Sending Channel AdEDLEYoooiiiiiiiiiie e 121
28.2. Mail-Receiving Channel Adaptercooiiiiiiiiiiiie e 121
28.3. Mail NameSPaCe SUPPOITeiiiiieiieeeesceeite e e e e e e s e e e e e e e s s st e e e e e e e s s s annbeaneeeaaeeeannnes 122

B2 N 1V Qs o] o U PPPPTR 125
29.1. Notification Listening Channel Adapter ... 125
29.2. Notification Publishing Channel Adaptereveiiiiiiiei e 125
29.3. Attribute Polling Channel AapLErcooiiiiiiiiiee e 126
29.4. Operation INvoKing Channel AGPLENc.uviiiiiiiiiee e 126
29.5. Operation Invoking outbound GaLEWEYccciicuviriiiieeee e e e 127

A R AT =T g oo (= U 127

Spring Integration
2.0.0.RC1 Reference Manual Vi

Spring Integration

20.7. CONEIOl BUSeetieiiiieie ettt ettt e e ettt e e e bbbt e e e e bt e e e e anba e e e e e nbe e e e s nnbeeeeeann 127

GO = s U o] o OSSP 129
G105/ 11 0o o i o] PSP SOPPPRRRR 129
30.2. Using The Spring Integration XMPP NameSPaCecceuveiiireeeiiiiiiiiieeeee e e eciiiieeeeee e 129
30.3. XIMPP COMNECLIONeeiiiiieeeiiiiieiiie e e e ettt e e e e e et e e e e e e e e s sttt e e eaeeessannsenaeeeaaeeeaannneees 130
30.4. XIMPP IMESSAJESceiiiiiiiieeei ittt e e e ettt e e e e e s s b e e et e e e e s s bbb e e et e e e e s e e nnrrrreeeaaeeaaaan 130
INbOUNT MESSAOE ATAPLETvveieiiie e e it e e e s r e e e e s e e e e e e e e e e e sannreaees 130

Outbound MeSSAgE AGPLESoeeei i e e e 131

30.5. XIMPP PIrESENCE .ocuitiiee ettt ettt ettt e ettt e e e nbt e e e sste e e e e annte e e e annbeeeeeanneeeeeans 133
INDOUNT PreSenCe AGDEIENooio et e e e e e e et e e e e e e e e e annerneeeeeens 133

OutbouNd PreSence AQBDLEYoeiiiiiiiieee ittt 133

3L, SEEAM SUPPOIT .. eeeeeeeeiiiit ettt ettt e e e s e et e e e e e s s b e et e e e e e e s s bbb et e e e e e e s aannbbeneeeeaeessnannnnnees 134
It T 1 (oo [0 (oo PO PP PP PP RPPPPR 134
31.2. Reading frOM SITEAIMSuviiiiiie i e e e e e e e et e e e e e e e s sanreraeeeaaeas 134
3L.3. WIHLING 10 SITEAIMSt e ettt e et e e e e e e e e e e e e e e s e e nab b e e e e e e e e e s snasnraneeeaaeeas 134
31.4. Stream NamMESPACE SUPPONT ... 135

32. Spring ApplicatioNEVENt SUPPOITceeiiiiiiieeiiiiee ettt e et e e s e e e e e e ennes 136
32.1. Receiving Spring AppliCatiONEVENLSoooiiiiiieiiiiie e 136
32.2. Sending Spring ApPPliCaLIONEVENTScviiiiiiiieiiiiiee ettt niee e 136

33. XML Support - Dealing with XML Payloadsc.ueeeiiieiiiiiiiiiecce et e e 138
130 150 T 1 oo [0 ' o U PRI 138
33.2. Transforming Xml PaYIOAAScceeveeiiiiiiiiiiiiiiie e e eeee e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 138
33.3. Namespace support for Xml transformerscoooiiiiieiiiiiiee e 139
33.4. SPIIttiNg XMl MESSAGESeeeieiiiiiee et ee ettt e et e e a e e e e et e e e e abn e e e e e snbaeeeeanrneeeen 141
33.5. Routing xml messages USING XPahcoiuiiiiiiiiiie e 142
33.6. Selecting xml messages using XPathoviviiiiiiiiie e 142
33.7. Transforming Xml messages USiNG XPathc.oooiiiiiiiiiiiie e 143
33.8. XPath components NAMESPACE SUPPOITveeereeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeererreerereeerereeereeeeeees 145

34. Security in SPriNg INEEGIELIONcoiuiieeeiiiiie ettt e e et e e e s e e e s e e e e s e e e e e annees 147
7 R 11 0o [o i o o PSSO 147
34.2. SECUNNG ChaNNEIS ... e e e 147

35, GIOOVY SUPPOIT «.eeeeeeeeee e e et ettt ettt ettt ettt e e et e aaaaaaaaaaaaaaaaaaens 148
35.1. GrooVy CONFIQUIBLIONeiiiieiii ittt e e e et e e e s e e e e e e e e e st b e e e e e e e e s s seanbbrneeeeaeeeaannes 148

A. Spring INtegration SAMPIESccooeeiii i 150
Nt I 1 T [F o 1 o o SRR 150
A.2. WNEre 10 gt SAMPIES ...ttt e s e e s e e e 150

A3, SAMPIES SITUCTUIE ...ttt ettt e e e e e ettt e e s e nbb e e e e e nnbae e e e entneeeen 151

y S 1 01 o] =R 152
[0 7= =T 1= PP RR 152

The Caf@ SAIMPIE ... s nnnnnnnnnnnnnnnnnnns 157

The XML MeSSaging SAMPIEccoiiiiiiiiii ettt e e e e e e ee e e e e e e e e aneneeeeeeens 162

B. CONFIQUIBLION ...ttt e e et e e e et e e e s e e e e e sttt e e e bt e e e e nnnn e e e e annrneeean 163
2 0 OO 11 oo o i o o PO PPEEPR 163

B.2. NaMESPACE SUPPOIT ...t s snnnsnnnnns 163

B.3. Configuring the Task SChEAUIESoeiiiiiiii e 164

Spring Integration
2.0.0.RC1 Reference Manual Vii

Spring Integration

2 g o gl e =0T | T USRS 165

B.5. ANNOLatioN SUPPOITccoiiiiiiiiee e e e e e e e e e e e e e e e e e s e e bt e e e e e e e e s eannnrreaeeeeas 166

B.6. Message Mapping rules and CONVENLIONSccovviiiiiiiiiiiiicceeceeeeeeeeeeeeeeeee e 168
SIMPIE SCENAITOSeeeeeiieee ettt e e e et e e e e e e e e e e ne e e e e eaeeesaannneaeeeeaaeeeaanneees 168

COMPIEX SCENAMOSeeeeeeiteee ettt ettt e e e e e e e e e e st e e e aannneee s 170

C. AdItIONal RESOUICESeiieeiiiiiiiiieeeie e s s ettt e e e e e s sttt e et e e e e s s st aeeeaeessaassebaeeeaaeessaansnraneeeaeessans 173
C.1. Spring INtegration HOMEcoiiiiiiiiiieiee et e e e e e s e e e e s e e e eeeaaas 173

Spring Integration
2.0.0.RC1 Reference Manual viii

Spring Integration

1. Spring Integration Overview

1.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its context.
The components themselves are simplified since they are relieved of those responsibilities. For example,
dependency injection relieves the components of the responsibility of locating or creating their dependencies.
Likewise, aspect-oriented programming relieves business components of generic cross-cutting concerns by
modularizing them into reusable aspects. In each case, the end result isasystem that iseasier to test, understand,
maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for building
enterprise applications. Devel opers benefit from the consistency of this model and especialy the fact that it is
based upon well-established best practices such as programming to interfaces and favoring composition over
inheritance. Spring's simplified abstractions and powerful support libraries boost devel oper productivity while
simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles. It
extendsthe Spring programming model into the messaging domain and builds upon Spring's existing enterprise
integration support to provide an even higher level of abstraction. It supports message-driven architectures
where inversion of control applies to runtime concerns, such as when certain business logic should execute
and where the response should be sent. It supports routing and transformation of messages so that different
transports and different data formats can be integrated without impacting testability. In other words, the
messaging and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and devel opers are relieved of complex integration responsibilities.

Asan extension of the Spring programming model, Spring I ntegration provides awide variety of configuration
options including annotations, XML with namespace support, XML with generic "bean" elements, and of
course direct usage of the underlying API. That APl is based upon well-defined strategy interfaces and
non-invasive, delegating adapters. Spring Integration's design is inspired by the recognition of a strong
affinity between common patterns within Spring and the well-known Enterprise Integration Patterns [http://
www.eai patterns.com] as described in the book of the same name by Gregor Hohpe and Babby Woolf (Addison
Wesley, 2004). Developers who have read that book should be immediately comfortable with the Spring
Integration concepts and terminology.

1.2 Goals and Principles

Spring Integration is motivated by the following goals:

» Provide asimple model for implementing complex enterprise integration solutions.

« Facilitate asynchronous, message-driven behavior within a Spring-based application.
* Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

Spring Integration
2.0.0.RC1 Reference Manual 1

http://www.eaipatterns.com
http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

» Components should be loosely coupled for modularity and testability.
» The framework should enforce separation of concerns between business logic and integration logic.

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse and
portability.

1.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-based
contracts between layers promote loose coupling. Spring-based applications are typically designed this way,
and the Spring framework and portfolio provide a strong foundation for following this best practice for thefull-
stack of an enterprise application. Message-driven architectures add a horizontal perspective, yet these same
goalsare still relevant. Just as"layered architecture” is an extremely generic and abstract paradigm, messaging
systemstypically follow the similarly abstract " pipes-and-filters' model. The"filters' represent any component
that is capable of producing and/or consuming messages, and the "pipes" transport the messages between filters
so that the components themselves remain loosely-coupled. It is important to note that these two high-level
paradigmsare not mutually exclusive. The underlying messaging infrastructure that supportsthe"pipes' should
still be encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters' themselves
would typically be managed within a layer that is logically above the application's service layer, interacting
with those services through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used by the
framework while handling that object. It consists of apayload and headers. The payload can be of any type and
the headers hold commonly required information such asid, timestamp, expiration, and return address. Headers
are also used for passing values to and from connected transports. For example, when creating a Message from
areceived File, the file name may be stored in a header to be accessed by downstream components. Likewise,
if a Message's content is ultimately going to be sent by an outbound Mail adapter, the various properties (to,
from, cc, subject, etc.) may be configured as Message header values by an upstream component. Devel opers
can also store any arbitrary key-value pairsin the headers.

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to a
channel, and consumers receive Messages from a channel. The Message Channel therefore decouples the
messaging components, and also provides a convenient point for interception and monitoring of Messages.

Spring Integration
2.0.0.RC1 Reference Manual 2

Spring Integration

] send(Message) receive()
Producer Consumer

Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-Point
channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe channels, on
the other hand, will attempt to broadcast each Message to all of its subscribers. Spring Integration supports
both of these.

Whereas "Point-to-Point” and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, thereisanother important consideration: should the channel buffer messages?
In Spring Integration, Pollable Channels are capable of buffering Messages within a queue. The advantage of
buffering is that it allows for throttling the inbound Messages and thereby prevents overloading a consumer.
However, as the name suggests, this also adds some complexity, since a consumer can only receive the
Messages from such a channd if a poller is configured. On the other hand, a consumer connected to a
Subscribable Channel is simply Message-driven. The variety of channel implementations available in Spring
Integration will be discussed in detail in Section 3.2, “Message Channel Implementations”.

Message Endpoint

Oneof the primary goals of Spring Integrationisto simplify the development of enterpriseintegration solutions
through inversion of control. This means that you should not have to implement consumers and producers
directly, and you should not even have to build Messages and invoke send or receive operations on aMessage
Channel. Instead, you should be able to focus on your specific domain model with an implementation based on
plain Objects. Then, by providing declarative configuration, you can "connect” your domain-specific code to
the messaging infrastructure provided by Spring Integration. The components responsiblefor these connections
are Message Endpoints. This does not mean that you will necessarily connect your existing application
code directly. Any real-world enterprise integration solution will require some amount of code focused upon
integration concerns such as routing and transformation. The important thing is to achieve separation of
concerns between such integration logic and businesslogic. In other words, aswith the Model-View-Controller
paradigm for web applications, the goal should be to provide athin but dedicated layer that translates inbound
requests into service layer invocations, and then translates service layer return values into outbound replies.
The next section will provide an overview of the Message Endpoint types that handle these responsibilities,
and in upcoming chapters, you will see how Spring Integration's declarative configuration options provide a
non-invasive way to use each of these.

1.4 Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary role is to connect application code to the messaging framework and to do so in a non-
invasive manner. In other words, the application code should ideally have no awareness of the M essage objects
or the Message Channels. Thisis similar to therole of a Controller in the MV C paradigm. Just as a Controller
handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are mapped to URL
patterns, Message Endpoints are mapped to Message Channels. The goal is the same in both cases: isolate

Spring Integration
2.0.0.RC1 Reference Manual 3

Spring Integration

application code from the infrastructure. These concepts are discussed at length along with all of the patterns
that follow in the Enterprise Integration Patterns [http://www.eai patterns.com] book. Here, we provide only a
high-level description of the main endpoint types supported by Spring Integration and their roles. The chapters
that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message's content or structure and returning the
modified Message. Probably the most common type of transformer is one that converts the payload of the
Message from one format to another (e.g. from XML Document to javalang.String). Similarly, atransformer
may be used to add, remove, or modify the Message's header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This ssmply
requires a boolean test method that may check for a particular payload content type, a property value, the
presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if not it will be
dropped (or for a more severe implementation, an Exception could be thrown). Message Filters are often used
in conjunction with a Publish Subscribe channel, where multiple consumers may receive the same Message
and use the filter to narrow down the set of Messages to be processed based on some criteria.

Note

N\. Be careful not to confusethe generic use of "filter" within the Pipes-and-Filtersarchitectural pattern
with this specific endpoint type that selectively narrows down the Messages flowing between two
channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring Integration's
Message Endpoint: any component that can be connected to Message Channel(s) in order to send
and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message next (if
any). Typicaly the decision is based upon the Message's content and/or metadata available in the Message
Headers. A Message Router is often used as a dynamic alternative to a statically configured output channel on
aService Activator or other endpoint capable of sending reply Messages. Likewise, aMessage Router provides
aproactive alternative to the reactive Message Filters used by multiple subscribers as described above.

Channel A

Message
Router

Channel B

Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel. Thisis

Spring Integration
2.0.0.RC1 Reference Manual 4

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

typically used for dividing a"composite”" payload object into a group of Messages containing the sub-divided
payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is atype of Message Endpoint that receives multiple
Messages and combines them into asingle Message. In fact, Aggregators are often downstream consumersin
a pipeline that includes a Splitter. Technically, the Aggregator is more complex than a Splitter, because it is
regquired to maintain state (the Messages to-be-aggregated), to decide when the complete group of Messages
is available, and to timeout if necessary. Furthermore, in case of atimeout, the Aggregator needs to know
whether to send the partial results or to discard them to a separate channel. Spring Integration provides a
Conpl et i onSt r at egy aswell as configurable settings for timeout, whether to send partial results upon
timeout, and the discard channel.

Service Activator

A Service Activator is ageneric endpoint for connecting a service instance to the messaging system. Theinput
Message Channel must be configured, and if the service method to be invoked is capabl e of returning avalue,
an output Message Channel may also be provided.

Note

\ The output channel is optional, since each Message may also provide its own 'Return Address
header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message, extracting
the request Message's payload and converting if necessary (if the method does not expect a Message-typed
parameter). Whenever the service object's method returns a value, that return value will likewise be converted
to areply Messageif necessary (if it'snot already aMessage). That reply Messageis sent to the output channel.
If no output channel has been configured, then the reply will be sent to the channel specified in the Message's
"return address” if available.

A request-reply "Service Activator" endpoint connects a
target object's method to input and output Message Channels.

Channel Adapter

A Channel Adapter isan endpoint that connects aMessage Channel to some other system or transport. Channel
Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some mapping between
the Message and whatever object or resourceis received-from or sent-to the other system (File, HTTP Reguest,
JMS Message, etc). Depending on the transport, the Channel Adapter may also populate or extract Message
header values. Spring Integration provides a number of Channel Adapters, and they will be described in
upcoming chapters.

Spring Integration
2.0.0.RC1 Reference Manual 5

Spring Integration

An inbound "Channel Adapter" endpoint connects a source system to a M essageChannel.

An outbound "Channel Adapter" endpoint connects a MessageChannel to atarget system.

Spring Integration
2.0.0.RC1 Reference Manual

Spring Integration

2. Message Construction

The Spring Integration Message is a generic container for data. Any object can be provided as the payload,
and each Message also includes headers containing user-extensible properties as key-value pairs.

2.1 The Message Interface

Here isthe definition of the Message interface:

public interface Message<T> {
T get Payl oad() ;

MessageHeader s get Header s();

The Message isobvioudly avery important part of the API. By encapsulating the datain a generic wrapper,
the messaging system can passit around without any knowledge of the data'stype. Asan application evolvesto
support new types, or when the types themselves are modified and/or extended, the messaging system will not
be affected by such changes. On the other hand, when some component in the messaging system does require
access to information about the Message, such metadata can typically be stored to and retrieved from the
metadata in the M essage Headers.

2.2 Message Headers

Just as Spring I ntegration allows any Object to be used as the payload of aMessage, it also supports any Object
types as header values. In fact, the MessageHeader s class implements the java.util.Map interface:

public final class MessageHeaders inplements Map<String, Object>, Serializable {

}

Note

\u Even though the M essageHeaders implements Map, it is effectively a read-only implementation.
Any attempt to put avaluein the Map will resultinan Unsuppor t edOper at i onExcepti on.
The same appliesfor remove and clear. Since Messages may be passed to multiple consumers, the
structure of the Map cannot be modified. Likewise, the Message's payload Object can not be set
after theinitial creation. However, the mutability of the header values themselves (or the payload
Object) isintentionally left as a decision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get (. .) with the name of
the header. Alternatively, you can provide the expected Class as an additional parameter. Even better, when
retrieving one of the pre-defined values, convenient getters are available. Here is an example of each of these
three options:

Obj ect soneVal ue = nmessage. get Headers() . get (" soneKey");

Spring Integration
2.0.0.RC1 Reference Manual 7

Spring Integration

Custonerld custonerld = nessage. get Headers().get ("custonerld", Custonerld.class);

Long tinestanp = nmessage. get Headers(). get Ti mest anp() ;

The following Message headers are pre-defined:

Table 2.1. Pre-defined Message Headers

Header Name Header Type
ID java.util.UUID
TIMESTAMP javalang.Long
EXPIRATION_DATE javalang.Long
CORRELATION_ID javalang.Object
REPLY_ CHANNEL javalang.Object (can bea String or M essageChannel)
ERROR_CHANNEL javalang.Object (can bea String or M essageChannel)
SEQUENCE_NUMBER javalang.Integer
SEQUENCE _SIZE javalang.Integer
PRIORITY MessagePriority (an enum)

Many inbound and outbound adapter implementations will also provide and/or expect certain headers, and
additional user-defined headers can aso be configured.

2.3 Message Implementations

The base implementation of the Message interface is Generi cMessage<T>, and it provides two
constructors:

new Generi cMessage<T>(T payl oad);

new Generi cMessage<T>(T payl oad, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map of
headers will copy the provided headers to the newly created Message.

There are also two convenient subclasses available: St ri ngMessage and Er r or Message. The former
accepts a String as its payload:

Stri ngMessage nmessage = new StringMessage("hello world");

String s = nessage. get Payl oad();

And, the latter accepts any Thr owabl e object asits payload:

Error Message nessage = new Error Message(sonmeThr owabl e) ;

Spring Integration
2.0.0.RC1 Reference Manual 8

Spring Integration

Throwabl e t = nessage. get Payl oad() ;

Notice that these implementations take advantage of the fact that the Generi cMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the Message
payload Object.

2.4 The MessageBuilder Helper Class

Y ou may notice that the M essage interface defines retrieval methods for its payload and headers but no setters.
The reason for this is that a Message cannot be modified after itsinitial creation. Therefore, when a Message
instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if one of those consumers
needs to send a reply with a different payload type, it will need to create a new Message. As a result, the
other consumers are not affected by those changes. Keep in mind, that multiple consumers may access the
same payload instance or header value, and whether such an instance is itself immutable is a decision left
to the developer. In other words, the contract for Messages is similar to that of an unmodifiable Collection,
and the MessageHeaders map further exemplifies that; even though the MessageHeaders class implements
java. util . Map, any attempt to invoke a put operation (or 'remove’ or ‘clear’) on the M essageHeaders will
resultinan Unsupport edOper at i onExcepti on.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,
Spring Integration does provide a far more convenient way to construct Messages. MessageBui | der . The
MessageBuilder provides two factory methods for creating M essages from either an existing Message or with
a payload Object. When building from an existing Message, the headers and payload of that Message will be
copied to the new Message:

Message<Stri ng> nmessagel = MessageBui |l der. wi t hPayl oad("test")
. set Header ("foo", "bar")
Cbui ld();

Message<Stri ng> nessage2 = MessageBui |l der. fromvessage(nessagel) . buil d();

assert Equal s("test", nessage2.get Payl oad());
assert Equal s("bar", nessage2. get Headers().get("foo0"));

If you need to create aM essage with anew payload but still want to copy the headersfrom an existing M essage,
you can use one of the ‘copy' methods.

Message<Stri ng> nmessage3 = MessageBui | der. w t hPayl oad("t est 3")
. copyHeader s(nessagel. get Header s())
Lbui ld();

Message<Stri ng> nessage4 = MessageBuil der.w t hPayl oad("test4")
. set Header ("fo0", 123)
. copyHeader sl f Absent (nmessagel. get Headers())
L bui Id();

assert Equal s("bar", message3. get Headers().get("foo"));
assert Equal s(123, nessage4. get Headers().get("fo0"));

Notice that the copyHeader sl f Absent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with set Header . Finally, there are set
methods available for the predefined headers as well as a non-destructive method for setting any header
(MessageHeaders al so defines constants for the pre-defined header names).

Spring Integration
2.0.0.RC1 Reference Manual 9

Spring Integration

Message<I| nt eger > i nport ant Message = MessageBui |l der. wi t hPayl oad(99)
.setPriority(MessagePriority.H GHEST)
Cbui 1 d();

assert Equal s(MessagePriority. H GHEST, inportant Message. get Headers().getPriority());
Message<I| nt eger > anot her Message = MessageBui | der. fromvessage(i nport ant Message)
. set Header | f Absent (MessageHeaders. PRIORI TY, MessagePriority. LOW

. bui 1d();

assert Equal s(MessagePriority. H GHEST, anot her Message. get Headers().getPriority());

The MessagePriority isonly considered when usingaPri ori t yChannel (asdescribed in the next
chapter). It is defined as an enum with five possible values:

public enum MessagePriority {
HI GHEST,
HI GH,
NORNAL,
Low
LOVWEST

Spring Integration
2.0.0.RC1 Reference Manual 10

Spring Integration

3. Message Channels

While the Message playsthe crucial role of encapsulating data, it isthe MessageChannel that decouples
message producers from message consumers.

3.1 The MessageChannel Interface

Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {
String getName();
bool ean send(Message nessage);

bool ean send(Message nessage, |ong tineout);

}

When sending amessage, the return value will be true if the message is sent successfully. If the send call times
out or isinterrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are two sub-
interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior. Here is the
definition of Pol | abl eChannel .

public interface Pollabl eChannel extends MessageChannel {
Message<?> receive();
Message<?> recei ve(long tineout);
Li st <Message<?>> clear();
Li st <Message<?>> pur ge(MessageSel ect or sel ector);

}

Similar to the send methods, when receiving a message, the return value will be null in the case of atimeout
or interrupt.

SubscribableChannel

The Subscri babl eChannel base interface is implemented by channels that send Messages directly to
their subscribed MessageHandl er s. Therefore, they do not provide receive methods for polling, but instead
define methods for managing those subscribers:

public interface Subscribabl eChannel extends MessageChannel {
bool ean subscri be(MessageHandl er handl er);

bool ean unsubscri be(MessageHandl er handl er) ;

Spring Integration
2.0.0.RC1 Reference Manual 11

Spring Integration

3.2 Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly described in
the sections below.

PublishSubscribeChannel

ThePubl i shSubscri beChannel implementationbroadcastsany Messagesenttoittoall of itssubscribed
handlers. Thisis most often used for sending Event Messages whose primary role is notification as opposed
to Document Messages which are generally intended to be processed by a single handler. Note that the
Publ i shSubscri beChannel isintended for sending only. Since it broadcasts to its subscribers directly
whenitssend(Message) method is invoked, consumers cannot poll for Messages (it does not implement
Pol | abl eChannel and therefore has no recei ve() method). Instead, any subscriber must be a
MessageHandl er itsdlf, and the subscriber's handl eMessage(Message) method will be invoked in
turn.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the Publ i shSubscri beChannel , the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple consumers,
only one of them should receive any M essage sent to that channel. It provides adefault no-argument constructor
(providing an essentially unbounded capacity of | nt eger . MAX_VALUE) aswell asaconstructor that accepts
the queue capacity:

publ i ¢ QueueChannel (i nt capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the send()

method will return immediately even if no receiver is ready to handle the message. If the queue has reached
capacity, then the sender will block until room is available. Or, if using the send call that accepts a timeout,
it will block until either room is available or the timeout period elapses, whichever occurs first. Likewise, a
receive call will return immediately if a message is available on the queue, but if the queue is empty, then a
receive call may block until either amessage is available or the timeout elapses. In either case, it is possible to
force an immediate return regardless of the queue's state by passing a timeout value of 0. Note however, that
callsto the no-arg versions of send() andr ecei ve() will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-inffirst-out (FIFO) ordering, the Pri ori t yChannel isan
aternative implementation that allows for messages to be ordered within the channel based upon a priority.
By default the priority is determined by the 'pri ori t y' header within each message. However, for custom
priority determination logic, a comparator of type Conpar at or <Message<?>> can be provided to the
Pri orityChannel 'sconstructor.

RendezvousChannel

The RendezvousChannel enables a "direct-handoff" scenario where a sender will block until another
party invokesthe channel'sr ecei ve() method or vice-versa. Internaly, thisimplementation is quite similar

Spring Integration
2.0.0.RC1 Reference Manual 12

Spring Integration

to the QueueChannel except that it uses a Synchr onousQueue (a zero-capacity implementation of
Bl ocki ngQueue). This works well in situations where the sender and receiver are operating in different
threads but simply dropping the message in a queue asynchronously is not appropriate. In other words, with a
RendezvousChannel at least the sender knows that some receiver has accepted the message, whereas with
aQueueChannel , the message would have been stored to the internal queue and potentially never received.

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only.
When persistence is required, you can either invoke a database operation within a handler or use
Spring Integration's support for IM S-based Channel Adapters. The latter option allowsyou to take
advantage of any JM S provider's implementation for message persistence, and it will be discussed
in Chapter 22, IMS Support. However, when buffering in a queue is not necessary, the simplest
approach isto rely uponthe Di r ect Channel discussed next.

The RendezvousChannel isalso useful for implementing request-reply operations. The sender can create
atemporary, anonymous instance of RendezvousChannel which it then sets as the 'replyChannel’ header
when building a Message. After sending that Message, the sender can immediately call receive (optionally
providing a timeout value) in order to block while waiting for a reply Message. This is very similar to the
implementation used internally by many of Spring Integration's request-reply components.

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described above.
It implements the Subscri babl eChannel interface instead of the Pol | abl eChannel interface, so
it dispatches Messages directly to a subscriber. As a point-to-point channel, however, it differs from
the Publ i shSubscri beChannel in that it will only send each Message to a single subscribed
MessageHandl er.

In addition to being the simplest point-to-point channel option, one of its most important features is that it
enables a single thread to perform the operations on "both sides' of the channel. For example, if a handler
is subscribed to a Di r ect Channel , then sending a Message to that channel will trigger invocation of that
handler's handl eMessage(Message) method directly in the sender's thread, before the send() method
invocation can return.

The key motivation for providing a channel implementation with this behavior is to support transactions that
must span across the channel while still benefiting from the abstraction and loose coupling that the channel
provides. If the send call is invoked within the scope of a transaction, then the outcome of the handler's
invocation (e.g. updating adatabase record) will play arolein determining the ultimate result of that transaction
(commit or rollback).

Note

\ Sincethe Di r ect Channel isthe simplest option and does not add any additional overhead that
would berequired for scheduling and managing the threads of apoller, it isthe default channel type
within Spring Integration. The general idea is to define the channels for an application and then

Spring Integration
2.0.0.RC1 Reference Manual 13

Spring Integration

to consider which of those need to provide buffering or to throttle input, and then modify those
to be queue-based Pol | abl eChannel s. Likewise, if a channel needs to broadcast messages,
it should not bea Di r ect Channel but rather aPubl i shSubscri beChannel . Below you
will see how each of these can be configured.

The Di r ect Channel internally delegates to a Message Dispatcher to invoke its subscribed Message
Handlers, and that dispatcher can have a load-balancing strategy. The load-balancer determines how
invocations will be ordered in the case that there are multiple handlers subscribed to the same channel. When
using the namespace support described below, the default strategy is "round-robin” which essentially load-
balances across the handlers in rotation.

Note

\n The"round-robin" strategy iscurrently the only implementation available out-of-the-box in Spring
Integration. Other strategy implementations may be added in future versions.

Theload-balancer al so worksin combination with aboolean failover property. If the"failover” valueistrue (the
default), then the dispatcher will fall back to any subsequent handlers as necessary when preceding handlers
throw Exceptions. The order is determined by an optional order value defined on the handlers themselves or,
if no such value exists, the order in which the handlers are subscribed.

If acertain situation requiresthat the dispatcher alwaystry to invoke thefirst handler, then fallback in the same
fixed order sequence every time an error occurs, no load-bal ancing strategy should be provided. In other words,
the dispatcher still supports the failover boolean property even when no load-balancing is enabled. Without
load-balancing, however, the invocation of handlers will aways begin with the first according to their order.
For example, this approach works well when there is a clear definition of primary, secondary, tertiary, and so
on. When using the namespace support, the "order" attribute on any endpoint will determine that order.

Note

k\ Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than one
endpoint shares the same channel reference in the "input-channel” attribute.

ExecutorChannel

The Execut or Channel is a point-to-point channel that supports the same dispatcher configuration
as Di rect Channel (load-balancing strategy and the failover boolean property). The key difference
between these two dispatching channel types is that the Execut or Channel delegates to an instance of
TaskExecut or to perform the dispatch. This means that the send method typically will not block, but it
also means that the handler invocation may not occur in the sender's thread. It therefore does not support
transactions spanning the sender and receiving handler.

Tip

1 Note that there are occasions where the sender may block. For example, when using
a TaskExecutor with a rejection-policy that throttles back on the client (such as the
Thr eadPool Execut or. Cal | er RunsPol i cy), the sender's thread will execute the method
directly anytime the thread poal is at its maximum capacity and the executor's work queue isfull.

Spring Integration
2.0.0.RC1 Reference Manual 14

Spring Integration

Since that situation would only occur in a non-predictable way, that obviously cannot be relied
upon for transactions.

ThreadLocalChannel

The final channel implementation type is Thr eadLocal Channel . This channel also delegates to a queue
internally, but the queue is bound to the current thread. That way the thread that sends to the channel will later
be able to receive those same Messages, but no other thread would be able to access them. While probably the
least common type of channel, thisisuseful for situationswhereDi r ect Channel s arebeing used to enforce
a single thread of operation but any reply Messages should be sent to a "terminal”" channel. If that terminal
channel isaThr eadLocal Channel , the original sending thread can collect its replies fromit.

3.3 Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since the
Messages arebeing sent to and received from MessageChannel s, those channels provide an opportunity
for intercepting the send and receive operations. The Channel | nt er cept or strategy interface provides
methods for each of those operations:

public interface Channel I nterceptor {
Message<?> preSend(Message<?> nessage, MessageChannel channel);
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);
bool ean preRecei ve(MessageChannel channel);

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

}
After implementing the interface, registering the interceptor with achannel isjust a matter of calling:

channel . addl nt er cept or (sonmeChannel | nt erceptor) ;

The methods that return a Message instance can be used for transforming the Message or can return 'null’
to prevent further processing (of course, any of the methods can throw a RuntimeException). Also, the
pr eRecei ve method can return'f al se' to prevent the receive operation from proceeding.

Note

k\ Keep in mind that r ecei ve() cals are only relevant for Pol | abl eChannel s. In fact the
Subscri babl eChannel interface doesnot evendefinear ecei ve() method. Thereasonfor
thisisthat when aMessage is sent to aSubscr i babl eChannel it will be sent directly to one
or more subscribers depending on the type of channel (e.g. a PublishSubscribeChannel sends to
al of its subscribers). Therefore, the pr eRecei ve(..) and post Recei ve(..) interceptor
methods are only invoked when the interceptor is applied to a Pol | abl eChannel .

Spring Integration also provides an implementation of the Wire Tap [http://eai patterns.com/WireTap.html]
pattern. It is a simple interceptor that sends the Message to another channel without otherwise altering the
existing flow. It can be very useful for debugging and monitoring. An example is shown in the section called
“Wire Tap”.

Spring Integration
2.0.0.RC1 Reference Manual 15

http://eaipatterns.com/WireTap.html
http://eaipatterns.com/WireTap.html

Spring Integration

Because it is rarely necessasy to implement al of the interceptor methods, a
Channel | nt er cept or Adapt er classis also available for sub-classing. It provides no-op methods (the
voi d method isempty, the Message returning methods return the Message as-is, and thebool ean method
returns t r ue). Therefore, it is often easiest to extend that class and just implement the method(s) that you
need as in the following example.

public class CountingChannel | nterceptor extends Channel | nt erceptorAdapter {
private final Atom clnteger sendCount = new Atom clnteger();

@verride

publ i c Message<?> preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncrement AndGet () ;
return nessage;

Tip

1 The order of invocation for the interceptor methods depends on the type of channel. As described
above, the queue-based channels are the only ones where the receive method isintercepted in the
first place. Additionally, the relationship between send and receive interception depends on the
timing of separate sender and receiver threads. For example, if areceiver isalready blocked while
waiting for amessagethe order could be: preSend, preReceive, postReceive, postSend. However, if
areceiver pollsafter the sender has placed amessage on the channel and already returned, the order
would be: preSend, postSend, (some-time-elapses) preReceive, postReceive. Thetimethat elapses
in such a case depends on anumber of factors and istherefore generally unpredictable (in fact, the
receive may never happen!). Obvioudly, the type of queue also plays arole (e.g. rendezvous vs.
priority). The bottom line is that you cannot rely on the order beyond the fact that preSend will
precede postSend and preReceive will precede postReceive.

3.4 MessagingTemplate

Asyou will see when the endpoints and their various configuration options are introduced, Spring Integration
provides a foundation for messaging components that enables non-invasive invocation of your application
code from the messaging system. However, sometimes it is necessary to invoke the messaging system from
your application code. For convenience when implementing such use-cases, Spring Integration provides a
Messagi ngTenpl at e that supportsavariety of operations across the Message Channels, including request/
reply scenarios. For example, it is possible to send a request and wait for areply.

Messagi ngTenpl ate tenpl ate = new Messagi ngTenpl ate();

Message reply = tenpl ate. sendAndRecei ve(new Stri ngMessage("test"), soneChannel);

In that example, a temporary anonymous channel would be created internally by the template. The
'sendTimeout' and 'receiveTimeout’ properties may also be set on the template, and other exchange types are
also supported.

publ i c bool ean send(final Message<?> nessage, final MessageChannel channel) { ... }

publ i c Message<?> sendAndRecei ve(final Message<?> request, final MessageChannel channel) { .. }

Spring Integration
2.0.0.RC1 Reference Manual 16

Spring Integration

publ i c Message<?> receive(final Pollabl eChannel <?> channel) { ... }

Note

"

A lessinvasive approach that allows you to invoke simple interfaces with payload and/or header
values instead of Message instances is described in Section 16.1, “ GatewayProxyFactoryBean”.

3.5 Configuring Message Channels

To create a Message Channel instance, you can use the 'channel’ element:

<channel id="exanpl eChannel"/>

The default channel typeis Point to Point. To create a Publish Subscribe channel, use the " publish-subscribe-
channel" element:

<publ i sh-subscri be-channel i d="exanpl eChannel "/>

To create a Datatype Channel [http://www.eai patterns.com/DatatypeChannel .html] that only accepts messages
containing a certain payload type, provide the fully-qualified class namein the channel element'sdat at ype
attribute;

<channel id="nunber Channel" dat atype="java. | ang. Nunber"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other
words, the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger or
j ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<channel id="stringO Nunber Channel " datatype="java.lang. String,java.lang. Nunber"/>

When using the "channel" element without any sub-elements, it will create aDi r ect Channel instance (a
Subscri babl eChannel).

However, you can alternatively provide avariety of "queue" sub-elementsto create any of the pollable channel
types (as described in Section 3.2, “Message Channel Implementations”). Examples of each are shown below.

DirectChannel Configuration

As mentioned above, Di r ect Channel isthe default type.

<channel id="directChannel"/>

A default channel will have around-robinload-balancer and will also havefailover enabled (Seethe discussion
in the section called “DirectChannel” for more detail). To disable one or both of these, add a <dispatcher/>
sub-element and configure the attributes:

<channel id="fail Fast Channel ">
<di spat cher failover="fal se"/>
</ channel >

Spring Integration
2.0.0.RC1 Reference Manual 17

http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/DatatypeChannel.html

Spring Integration

<channel id="channel Wt hFi xedOr der SequenceFai | over" >
<di spat cher | oad- bal ancer="none"/ >
</ channel >

QueueChannel Configuration

To create aQueueChannel , use the "queue" sub-element. Y ou may specify the channel's capacity:

<channel id="queueChannel ">
<queue capacity="25"/>
</ channel >

Note

\n If you do not provide avaluefor the 'capacity’ attribute on this <queue/> sub-element, the resulting
gueue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly recommended
to set an explicit value for a bounded queue.

PublishSubscribeChannel Configuration

To create aPubl i shSubscri beChannel , use the "publish-subscribe-channel” element. When using this
element, you can also specify the "task-executor” used for publishing Messages (if noneis specified it simply
publishes in the sender's thread):

<publ i sh-subscri be-channel id="pubsubChannel" task-executor="sonmeExecutor"/>

If you are providing a Resequencer or Aggregator downstream fromaPubl i shSubscri beChannel , then
you can set the 'apply-sequence' property on the channel to t r ue. That will indicate that the channel should
set the sequence-size and sequence-number Message headers as well as the correlation id prior to passing the
Messages along. For example, if there are 5 subscribers, the sequence-size would be set to 5, and the Messages
would have sequence-number header values ranging from 1 to 5.

<publ i sh-subscri be-channel id="pubsubChannel" apply-sequence="true"/>

Note

k\ The 'apply-sequence' valueisf al se by default so that a Publish Subscribe Channel can send the
exact same Message instances to multiple outbound channels. Since Spring Integration enforces
immutability of the payload and header references, the channel creates new Message instances
with the same payload reference but different header valueswhen theflagissettot r ue.

ExecutorChannel

To create an Execut or Channel , add the <dispatcher> sub-element along with a 'task-executor' attribute.
Its value can reference any TaskExecut or within the context. For example, this enables configuration of a
thread-pool for dispatching messages to subscribed handlers. As mentioned above, this does break the "single-
threaded" execution context between sender and receiver so that any active transaction context will not be
shared by the invocation of the handler (i.e. the handler may throw an Exception, but the send invocation has
aready returned successfully).

<channel i d="execut or Channel ">

Spring Integration
2.0.0.RC1 Reference Manual 18

Spring Integration

<di spat cher task-executor="sonmeExecutor"/>
</ channel >

Note

\u The"load-balancer" and "failover" options are also both available on the dispatcher sub-element as
described above in the section called “ DirectChannel Configuration”. The same defaults apply as
well. So, the channel will have a round-robin load-balancing strategy with failover enabled unless
explicit configuration is provided for one or both of those attributes.

<channel i d="execut or Channel W't hout Fai | over">
<di spat cher task-executor="soneExecutor" failover="false"/>
</ channel >

PriorityChannel Configuration

TocreateaPri orit yChannel , usethe "priority-queue” sub-element:

<channel id="priorityChannel">
<priority-queue capacity="20"/>
</ channel >
By default, the channel will consult the MessagePri ority header of the message. However, a custom
Conpar at or reference may be provided instead. Also, note that the Pri ori t yChannel (like the other
types) does support the "datatype" attribute. Aswith the QueueChannel, it also supports a " capacity" attribute.
The following example demonstrates all of these:

<channel id="priorityChannel" datatype="exanple. Wdget">
<priority-queue conparator="w dget Conpar at or"
capaci ty="10"/>
</ channel >

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not
provide any additional configuration options to those described above, and its queue does not accept any
capacity value since it is a 0-capacity direct handoff queue.

<channel i d="rendezvousChannel "/ >
<r endezvous- queue/ >
</ channel >

ThreadLocalChannel Configuration

The Thr eadLocal Channel does not provide any additional configuration options.

<t hread-| ocal - channel id="threadLocal Channel "/>

Channel Interceptor Configuration

Message channels may also have interceptors as described in Section 3.3, “Channel Interceptors’. The
<interceptors> sub-element can be added within <channel> (or the more specific element types). Provide

Spring Integration
2.0.0.RC1 Reference Manual 19

Spring Integration

the "ref" attribute to reference any Spring-managed object that implements the Channel | nt er cept or
interface:

<channel i d="exanpl eChannel ">
<i nterceptors>
<ref bean="trafficMnitoringlnterceptor"/>
</i nt er cept or s>
</ channel >

In general, it isagood ideato define the interceptor implementations in a separate location since they usually
provide common behavior that can be reused across multiple channels.

Global Channel Interceptor Configuration

Channél Interceptors allow you for a clean and concise way of applying cross-cutting behavior per individua
channel. But what if the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. The better way would be to configure
interceptors globally and apply them on multiple channelsin one shot. Spring Integration provides capabilities
to configure Global Interceptors and apply them on multiple channels. Look at the example below:

<int:channel -interceptor pattern="input*, bar*, foo" order="3">
<bean cl ass="f 00. bar Sanpl el nt erceptor"/>
</int:channel -interceptor>

or

<int:channel -interceptor ref="nylnterceptor" pattern="input*, bar*, foo" order="3"/>

<bean i d="nylnterceptor" class="fo0o0. bar Sanpl el nterceptor"/>

<channel-interceptor> element allows you to define a global interceptor which will be applied on all channels
that match patterns defined via pattern attribute. In the above case the global interceptor will be applied on
'foo’ channel and al other channels that begin with 'bar' and 'input'. The order attribute allows you to manage
the place where this interceptor will be injected. For example, channel 'inputChannel’ could have individual
interceptors configured locally (see below):

<i nt:channel id="inputChannel ">
<int:interceptors>
<int:wre-tap channel ="l ogger"/>
</int:interceptors>
</int:channel >

The reasonable question would be how global interceptor will be injected in relation to other interceptors
configured locally or through other global interceptor definitions? Current implementation provides a very
simple and clever mechanism of handling this. Positive number in the order attribute will ensure interceptor
injection after existing interceptors and negative number will ensurethat such interceptorsinjected before. This
means that in the above example global interceptor will be injected AFTER (since its order is greater then 0)
'wire-tap' interceptor configured locally. If there was another global interceptor with matching pattern their
order would be determined based on who's got the higher or lower value in order attribute. To inject global
interceptor BEFORE the existing interceptors use negative value for the order attribute.

Note
\ Note that order and pattern attributes are optional. The default value for order will be 0 and for
patternis"*'

Spring Integration
2.0.0.RC1 Reference Manual 20

Spring Integration

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure aWire Tap on any channel within an 'interceptors element. Thisis especially useful for debugging,
and can be used in conjunction with Spring Integration's logging Channel Adapter as follows:

<channel id="in">
<i nter cept ors>
<wi re-tap channel ="1 ogger"/>
</interceptors>
</ channel >

<l oggi ng- channel - adapt er i d="1|ogger" | evel ="DEBUG'/ >

: Tip

1 The 'logging-channel-adapter' also accepts a boolean attribute: 'log-full-message'’. That is false by
default so that only the payload is logged. Setting that to true enables logging of all headersin
addition to the payload.
Note

If namespace support is enabled, there are also two special channels defined within the context by
default: er r or Channel andnul | Channel . The'nullChannel' actslike/ dev/ nul | , simply
logging any Message sent to it at DEBUG level and returning immediately. Any time you face
channel resolution errorsfor areply that you don't care about, you can set the affected component's
‘output-channel’ to reference 'null Channel’ (the name 'null Channel' is reserved within the context).
The 'errorChannel’ is used internally for sending error messages, and it can be overridden with a
custom configuration. It is discussed in greater detail in Section B.4, “Error Handling”.

Spring Integration
2.0.0.RC1 Reference Manual 21

Spring Integration

4. Message Endpoints

The first part of this chapter covers some background theory and reveals quite a bit about the underlying API
that drives Spring Integration’s various messaging components. This information can be helpful if you want
to really understand what's going on behind the scenes. However, if you want to get up and running with
the simplified namespace-based configuration of the various elements, feel free to skip ahead to Section 4.4,
“Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various messaging
components to channels. Over the next severa chapters, you will see a number of different components
that consume Messages. Some of these are also capable of sending reply Messages. Sending Messages
is quite straightforward. As shown above in Chapter 3, Message Channels, it's easy to send a Message
to a Message Channel. However, receiving is a bit more complicated. The main reason is that there are
two types of consumers: Polling Consumers [http://www.eal patterns.com/PollingConsumer.html] and Event
Driven Consumers [http://www.eal patterns.com/EventDrivenConsumer.html].

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a separate
poller thread, they are essentialy just listeners with a callback method. When connecting to one of Spring
Integration's subscribable Message Channels, this simple option works great. However, when connecting to
a buffering, pollable Message Channel, some component has to schedule and manage the polling thread(s).
Spring Integration provides two different endpoint implementations to accommodate these two types of
consumers. Therefore, the consumers themselves can simply implement the callback interface. When polling
isrequired, the endpoint acts asa"container" for the consumer instance. The benefit is similar to that of using
acontainer for hosting Message Driven Beans, but since these consumers are simply Spring-managed Objects
running within an ApplicationContext, it more closely resembles Spring's own MessagelL istener containers.

4.1 Message Handler

Spring Integration's MessageHand!| er interface is implemented by many of the components within the
framework. In other words, thisis not part of the public API, and a developer would not typically implement
MessageHandl er directly. Nevertheless, it is used by a Message Consumer for actualy handling the
consumed Messages, and so being aware of this strategy interface does help in terms of understanding the
overal role of aconsumer. The interfaceis defined as follows:

public interface MessageHandl er {
voi d handl eMessage(Message<?> nessage) ;

}

Despite its simplicity, this provides the foundation for most of the components that will be covered in the
following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc). Those components
each perform very different functionality with the Messages they handle, but the requirements for actually
receiving a Message are the same, and the choice between polling and event-driven behavior is aso the same.
Spring Integration provides two endpoint implementations that "host" these callback-based handlers and allow
them to be connected to Message Channels.

Spring Integration
2.0.0.RC1 Reference Manual 22

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

Spring Integration

4.2 Event Driven Consumer

Because it isthe simpler of the two, we will cover the Event Driven Consumer endpoint first. Y ou may recall
that the Subscr i babl eChannel interface providesasubscri be() method and that the method accepts
aMessageHandl er parameter (as shown in the section called “ SubscribableChannel”):

subscri babl eChannel . subscri be(messageHandl er) ;

Sinceahandler that i s subscribed to achannel doesnot haveto actively poll that channel, thisisan Event Driven
Consumer, and the implementation provided by Spring Integration accepts a a Subscr i babl eChannel
and aMessageHandl er:

Subscri babl eChannel channel = (Subscri babl eChannel) context. get Bean("subscri babl eChannel ");

Event Dri venConsuner consuner = new Event Dri venConsuner (channel , exanpl eHandl er);

4.3 Polling Consumer

Spring Integration also provides a Pol | i ngConsuner , and it can be instantiated in the same way except
that the channel must implement Pol | abl eChannel :

Pol | abl eChannel channel = (Poll abl eChannel) context.getBean("pol | abl eChannel ") ;

Pol I i ngConsuner consunmer = new Pol | i ngConsumner (channel , exanpl eHandl er) ;

There are many other configuration options for the Polling Consumer. For example, the trigger is arequired
property:

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

consuner . set Tri gger (new | nterval Tri gger (30, Ti neUnit. SECONDS));

Spring Integration currently provides two implementations of the Tr i gger interface: | nt er val Tri gger
and CronTri gger.Thel nt erval Tri gger istypically defined with asimpleinterva (in milliseconds),
but also supports an 'initialDelay’ property and a boolean 'fixedRate' property (the default is false, i.e. fixed

delay):

Interval Trigger trigger = new Interval Trigger(1000);
trigger.setlnitial Del ay(5000);
trigger.setFi xedRate(true);

TheCronTri gger simply requires avalid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FR");

In addition to the trigger, several other polling-related configuration properties may be specified:

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

consuner . set MaxMessagesPer Pol | (10) ;

Spring Integration
2.0.0.RC1 Reference Manual 23

Spring Integration

consuner . set Recei veTi neout (5000) ;

The 'maxMessagesPerPoll" property specifies the maximum number of messages to receive within a given
poll operation. This means that the poller will continue calling receive() without waiting until either
nul | is returned or that max is reached. For example, if a poller has a 10 second interval trigger and a
'maxM essagesPerPoll' setting of 25, and it is polling a channd that has 100 messages in its queue, all 100
messages can be retrieved within 40 seconds. It grabs 25, waits 10 seconds, grabs the next 25, and so on.

The 'receiveTimeout' property specifies the amount of time the poller should wait if no messages are available
when it invokes the receive operation. For example, consider two options that seem similar on the surface but
areactualy quitedifferent: thefirst hasaninterval trigger of 5 seconds and areceivetimeout of 50 milliseconds
while the second has an interval trigger of 50 milliseconds and a receive timeout of 5 seconds. The first one
may receive a message up to 4950 milliseconds later than it arrived on the channel (if that message arrived
immediately after one of its poll calls returned). On the other hand, the second configuration will never miss
a message by more than 50 milliseconds. The difference is that the second option requires a thread to wait,
but as aresult it is able to respond much more quickly to arriving messages. This technique, known as "long
polling", can be used to emulate event-driven behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecut or, and it can be configured to participate
in Spring-managed transactions. The following example shows the configuration of both:

Pol I i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);

TaskExecut or taskExecutor = (TaskExecutor) context.getBean("exanpl eExecutor");
consuner . set TaskExecut or (t askExecut or) ;

Pl at f or mTr ansact i onManager txManager = (Pl atfornlransati onManager) cont ext.get Bean("exanpl eTxManager");
consuner. set Transact i onManager (t xManager) ;

The examples above show dependency lookups, but keep in mind that these consumers will most often be
configured as Spring bean definitions. In fact, Spring Integration also providesaFact or yBean that creates
the appropriate consumer type based on the type of channel, and there is full XML namespace support to
even further hide those details. The namespace-based configuration will be featured as each component type
isintroduced.

Note

\ Many of the MessageHandl er implementations are al so capable of generating reply Messages.
As mentioned above, sending Messages is trivial when compared to the Message reception.
Nevertheless, when and how many reply Messages are sent depends on the handler type. For
example, an Aggregator waits for a number of Messages to arrive and is often configured as
a downstream consumer for a Splitter which may generate multiple replies for each Message
it handles. When using the namespace configuration, you do not strictly need to know al
of the details, but it still might be worth knowing that severa of these components share a
common base class, the Abst r act Repl yPr oduci ngMessageHandl er, and it provides a
set Qut put Channel (. .) method.

Spring Integration
2.0.0.RC1 Reference Manual 24

Spring Integration

4.4 Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint el ements, such
as router, transformer, service-activator, and so on. Most of these will support an "input-channel” attribute
and many will support an "output-channel” attribute. After being parsed, these endpoint elements produce an
instance of either the Pol | i ngConsuner or the Event Dri venConsuner depending on the type of the
"input-channel" that is referenced: Pol | abl eChannel or Subscri babl eChannel respectively. When
the channel is pollable, then the polling behavior is determined based on the endpoint element's "poller" sub-
element and its attributes. For example, a simple interval-based poller with a 1-second interval would be
configured like this:

<transformer input-channel ="poll abl e"
ref="transf orner"
out put - channel =" out put " >
<pol I er fixed-rate="1000"/>
</ transformer>

Asan dlternative to 'fixed-rate' you cna also use 'fixed-delay’ attribute.

For apoller based on a Cron expression, use the "cron" attribute instead:

<t ransforner input-channel ="pol | abl e"
ref="transforner"
out put - channel =" out put " >
<poller cron="*/10 * * * * MON-FRI"/>
</t r ansf or mer >

If the input channel is a Pol | abl eChannel , then the poller configuration is required. Specifically, as
mentioned above, the 'trigger' is a required property of the PollingConsumer class. Therefore, if you omit
the "poller" sub-element for a Polling Consumer endpoint's configuration, an Exception may be thrown. The
exception will also be thrown if you attempt to configure a poller on the element that is connected to a non-
pollable channel.

It isalso possible to create top-level pollersin which case only a"ref" is required:

<pol | er id="weekdayPoller" cron="*/10 * * * * MON-FRI"/>

<transformer input-channel ="poll abl e"
ref ="transformer"
out put - channel =" out put " >
<pol | er ref="weekdayPol |l er"/>
</ transf orner >

In fact, to simplify the configuration, you can define aglobal default poller. A singletop-level poller within an
ApplicationContext may have the def aul t attribute with avalue of "true". In that case, any endpoint with a

PollableChannel for itsinput-channel that is defined within the same ApplicationContext and has no explicitly
configured 'poller' sub-element will use that default.

<pol l er id="defaultPoller" default="true" max-nmessages-per-poll="5" fixed-rate="3000"/>

<l-- No <poller/> sub-elenent is necessary since there is a default -->
<t ransforner input-channel ="pol | abl e"

ref ="transformer"

out put - channel =" out put "/ >

Spring Integration
2.0.0.RC1 Reference Manual 25

Spring Integration

Spring Integration a so provides transaction support for the pollers so that each receive-and-forward operation
can be performed as an atomic unit-of-work. To configure transactions for a poller, smply add the
<transactional/> sub-element. The attributes for this element should be familiar to anyone who has experience
with Spring's Transaction management:

<pol | er fixed-del ay="1000">
<transactional transaction-nanager="txManager"
pr opagat i on=" REQUI RED"
i sol ati on=" REPEATABLE_READ'
ti meout =" 10000"
read-onl y="fal se"/>
</ pol | er>

AOP Advice chains

Since Spring transaction support depends on the Proxy mechanism with Tr ansact i onl nt er cept or
(AOP Advice) handling transactional behavior of the message flow initiated by the poler, some times there
is a need to provide extra Advice(s) to handle other cross cutting behavior associated with the poller. For
that poller defines an 'advice-chain' element allowing you to add more advices - class that implements
Met hodl nt er cept or interface..

<service-activator id="advi cedSa" input-channel ="goodl nput Wt hAdvi ce" ref="testBean"
met hod="good" out put - channel =" out put ">
<pol | er max- nessages- per-pol | ="1" fixed-rate="10000">
<transacti onal transaction-nmanager="txManager" />
<advi ce- chai n>
<ref bean="advi ceA" />
<beans: bean cl ass="org. bar. Sanpl eAdvi ce"/ >
</ advi ce- chai n>
</ pol | er>
</ servi ce-activator>
For moreinformation on how to implement Methodl nterceptor pleaserefer to AOP sections of Spring reference
manual (section 7 and 8). Advice chain can also be applied on the poller that does not have any transaction

configuration essentially allowing you to enhance the behavior of the message flow initiated by the poller.

The polling threads may be executed by any instance of Spring's TaskExecut or abstraction. This enables
concurrency for an endpoint or group of endpoints. As of Spring 3.0, there is a "task" namespace in the core
Spring Framework, and its <executor/> element supports the creation of a simple thread pool executor. That
element accepts attributes for common concurrency settings such as pool-size and queue-capacity. Configuring
a thread-pooling executor can make a substantial difference in how the endpoint performs under load. These
settings are available per-endpoint since the performance of an endpoint is one of the major factors to consider
(the other major factor being the expected volume on the channel to which the endpoint subscribes). To enable
concurrency for a polling endpoint that is configured with the XML namespace support, provide the ‘task-
executor' reference on its <poller/> element and then provide one or more of the properties shown below:

<pol | er task-executor="pool" fixed-rate="1000"/>

<t ask: execut or id="pool"
pool - si ze="5- 25"
queue- capaci t y="20"
keep-al i ve="120"/>

Spring Integration
2.0.0.RC1 Reference Manual 26

Spring Integration

If no 'task-executor' is provided, the consumer's handler will be invoked in the caller's thread. Note that the
"caller" isusually the default TaskSchedul er (see Section B.3, “Configuring the Task Scheduler”). Also,
keep in mind that the 'task-executor' attribute can provide a reference to any implementation of Spring's
TaskExecut or interface by specifying the bean name. The "executor” element above is simply provided
for convenience.

As mentioned in the background section for Polling Consumers above, you can also configure a Polling
Consumer in such away asto emulate event-driven behavior. With along receive-timeout and a short interval-
trigger, you can ensure avery timely reaction to arriving messages even on a polled message source. Note that
thiswill only apply to sources that have a blocking wait call with atimeout. For example, the File poller does
not block, each receive() call returns immediately and either contains new files or not. Therefore, even if a
poller contains along receive-timeout, that value would never be usable in such a scenario. On the other hand
when using Spring I ntegration's own queue-based channels, the timeout val ue does have achanceto participate.
The following example demonstrates how a Polling Consumer will receive Messages nearly instantaneously.

<servi ce-activator input-channel ="soneQueueChannel "
out put - channel =" out put " >
<pol | er receive-tineout="30000" fixed-rate="10"/>

</ servi ce-activat or >

Using this approach does not carry much overhead since internally it is nothing more then atimed-wait thread
which does not require nearly as much CPU resource usage as a thrashing, infinite while loop for example.

4.5 Payload Type Conversion

Throughout the reference manual, you will also see specific configuration and implementation examples
of various endpoints which can accept a Message or any arbitrary Object as an input parameter.
In the case of an Object, such parameter will be mapped to a Message payload or part of
the payload or header (when using Spring Expression Language). However there are times when
the type of input parameter of the endpoint method does not match the type of the payload
or its part. In this scenario we need to perform type conversion. Spring Integration provides a
convenient way for registering type converters (using Spring 3.x ConversionService) within its own
instance of the conversion service bean named integrationConversionService which is automatically
created as soon as the first converter is defined. To register such converter all you need is to
implement org. spri ngfranmework. core. convert.converter. Converter and register via
cionvinient namespace support:

<int:converter ref="sanpl eConverter"/>

<bean i d="sanpl eConverter" class="fo0o0. bar. Test Converter"/>

or

<i nt:converter>
<bean cl ass="org. spri ngframework.integration.config.xmn.ConverterParser Test s$Test Converter3"/>
</int:converter>

Spring Integration
2.0.0.RC1 Reference Manual 27

Spring Integration

4.6 Asynchronous polling

If you want the polling to be asynchronous, Poller can optionaly specify 'task-executor' attribute pointing to an
existing instance of TaskExecut or bean (Spring 3.0 provides a convinient namespaces configuration via
the t ask namespace). However, there are certain things you must understand when configuring Poller with
TaskExecutor.

The problem is that there are two configurationsin place. The Poller and the TaskExecutor and they both have
to be in tune with each other otherwise you might end up creating an artificial memory leak.

Let's look at the following configuration provided by one of the users on the Spring's forums (http://
forum.springsource.org/showthread.php?=94519):

<int:service-activator input-channel ="publishChannel" ref="myService">
<int:poller receive-timeout="5000" task-executor="taskExecutor" fixed-rate="50"/>
</ si:service-activator>

<t ask: execut or id="taskExecutor" pool -si ze="20" queue-capacity="20"/>

The above configuration demonstrates one of those out of tune configurations.

The poller keeps scheduling new tasks even though all the threads are bl ocked waiting for either anew message
to arrive, or the timeout to expire. Given that there are 20 threads executing tasks with a5 second timeout, they
will be executed at a rate of 4 per second (5000/20 = 250ms). But, new tasks are being scheduled at a rate of
20 per second, so theinternal queue in the task executor will grow at arate of 16 per second (while the process
isidle), so we essentially have amemory leak.

One of the ways to handle this is to set queue- capaci t y attribute of Task Executor to 0. You can also
manageit by specifying what to do with messagesthat can not be queued up by settingr ej ect i on- pol i cy
attribute of Task Executor (e.g., DISCARD). In other words there are certain details you must understand with
regard to configuring the TaskExecutor. Please refer to - Section 25 - Task Execution and Scheduling of Spring
reference manual.

Spring Integration
2.0.0.RC1 Reference Manual 28

Spring Integration

5. Service Activator

5.1 Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel so
that it may play the role of a service. If the service produces output, it may also be connected to an output
channel. Alternatively, an output producing service may be located at the end of a processing pipeline or
message flow in which case, the inbound Message's "replyChannel”" header can be used. This is the default
behavior if no output channel is defined, and as with most of the configuration optionsyou'll see here, the same
behavior actually applies for most of the other components we have seen.

5.2 The <service-activator/> Element

To create a Service Activator, use the 'service-activator' element with the 'input-channel’ and 'ref' attributes:

<servi ce-activator input-channel ="exanpl eChannel " ref="exanpl eHandl er"/>

The configuration above assumes that "exampleHandler" either contains a single method annotated with the
@ServiceActivator annotation or that it contains only one public method at al. To delegate to an explicitly
defined method of any object, simply add the "method" attribute.

<servi ce-activator input-channel ="exanpl eChannel" ref="sonmePoj 0" nethod="sonmeMet hod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the reply
message to an appropriate reply channel. To determine the reply channel, it will first check if an "output-
channel" was provided in the endpoint configuration:

<servi ce-activator input-channel ="exanpl eChannel " out put -channel ="r epl yChannel "
ref ="sonmePoj 0" net hod="sonmeMet hod"/ >

If no "output-channel” is available, it will then check the Message's REPLY_CHANNEL header value. If that
value is available, it will then check its type. If it is a MessageChannel , the reply message will be sent
to that channel. If it isa St ri ng, then the endpoint will attempt to resolve the channel name to a channel
instance. If the channel cannot be resolved, then aChannel Resol ut i onExcept i on will be thrown.

The argument in the service method could be either a Message or an arbitrary type. If the latter, then it will
be assumed that it is a Message payload, which will be extracted from the message and injected into such
service method. Thisis generally the recommended approach asit follows and promotes a POJO model when
working with Spring Integration. Arguments may also have @Header, @Headers annotations as described in
Section B.5, “ Annotation Support”

Note

\ Since v1.0.3 of Spring Integration, the service method is not required to have an argument at all,
which means you can now implement event-style Service Activators, where all you care about is
an invocation of the service method, not worrying about the contents of the message. Think of
itasaNULL JMS message. An example use-case for such an implementation could be asimple
counter/monitor of messages deposited on the input channel.

Spring Integration
2.0.0.RC1 Reference Manual 29

Spring Integration

Using a"ref" attribute is generally recommended if the custom Service Activator handler implementation can
be reused in other <ser vi ce- act i vat or > definitions. However if the custom Service Activator handler
implementation should be scoped to a single definition of the <ser vi ce- acti vat or >, you can use an
inner bean definition:

<service-activator id="exanpl eServiceActivator" input-channel ="i nChannel "
out put - channel = "out Channel " net hod="f 00" >
<beans: bean cl ass="org. f 00o. Exanpl eServi ceActivator"/>
</ servi ce-activator>

Note

S

Using both the "ref* attribute and an inner handler definition in the same <servi ce-
act i vat or > configuration is not allowed, as it creates an ambiguous condition and will result
in an Exception being thrown.

Spring Integration
2.0.0.RC1 Reference Manual 30

Spring Integration

6. Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to a Message
Channel. Spring Integration provides a number of adapters out of the box to support various transports, such
as JMS, File, HTTP, Web Services, and Mail. Those will be discussed in upcoming chapters of this reference
guide. However, this chapter focuses on the simple but flexible Method-invoking Channel Adapter support.
There are both inbound and outbound adapters, and each may be configured with XML elements provided in
the core namespace.

6.1 The <inbound-channel-adapter> element

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send a non-
null return valueto aMessageChannel after converting it to aMessage. When the adapter's subscription
is activated, a poller will attempt to receive messages from the source. The poller will be scheduled with
the TaskSchedul er according to the provided configuration. To configure the polling interval or cron
expression for an individual channel-adapter, provide a 'poller’ element with either an 'interval-trigger' (in
milliseconds) or ‘cron-trigger' sub-element.

<i nbound- channel - adapt er ref="sourcel" method="net hodl" channel ="channel 1">

<pol | er fixed-rate="5000"/>
</ i nbound- channel - adapt er >

<i nbound- channel - adapt er ref="source2" method="net hod2" channel ="channel 2">
<poller cron="30 * 9-17 * * MON-FRI "/ >
</ channel - adapt er >

Note

"

If no poller is provided, then a single default poller must be registered within the context. See
Section 4.4, “Namespace Support” for more detail.

6.2 The <outbound-channel-adapter/> element

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of Messages sent to that channel.

<out bound- channel - adapt er channel ="channel 1" ref="target1" method="rmet hod1"/>
If the channel being adapted isaPol | abl eChannel , provide a poller sub-element:

<out bound- channel - adapt er channel =" channel 2" ref="target2" nethod="net hod2">
<pol | er fixed-rate="3000"/>

</ out bound- channel - adapt er >
<beans: bean i d="target1" class="org. bar. Foo"/>

Using a"ref" attributeis generally recommended if the POJO consumer implementation can be reused in other
<out bound- channel - adapt er > definitions. However if the consumer implementation should be scoped
to asingle definition of the <out bound- channel - adapt er >, you can defineit asinner bean:

Spring Integration
2.0.0.RC1 Reference Manual 31

Spring Integration

<out bound- channel - adapt er channel =" channel 2" net hod="net hod2" >
<beans: bean cl ass="org. bar. Foo"/ >

</ out bound- channel - adapt er >

Note
Using both the "ref" attribute and an inner handler definition in the same <out bound-

channel - adapt er > configurationisnot allowed, asit creates an ambiguous condition and will
result in an Exception being thrown.

Any Channel Adapter can be created without a "channel” reference in which case it will implicitly create an
instance of Di r ect Channel . The created channel's name will match the "id" attribute of the <inbound-

channel-adapter/> or <outbound-channel-adapter element. Therefore, if the "channel” is not provided, the "id"
isrequired.

Spring Integration
2.0.0.RC1 Reference Manual 32

Spring Integration

7. Router

7.1 Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require Spring
Integration's options for delegating to POJOs using the XML namespace support and/or Annotations. Both of
these are discussed below, but first we present a couple implementations that are availabl e out-of-the-box since
they fulfill generic, but common, requirements.

PayloadTypeRouter
A Payl oadTypeRout er will send Messages to the channel as defined by payload-type mappings.

<bean i d="payl oadTypeRout er" cl ass="org. spri ngfranework. i ntegration.router.Payl oadTypeRouter">
<property nanme="payl oadTypeChannel Map" >
<rTap>
<entry key="java.lang. String" val ue-ref="stringChannel "/>
<entry key="java.lang.|nteger" val ue-ref="integer Channel "/>
</ map>
</ property>
</ bean>

Configuration of Payl oadTypeRout er isalso supported viathe namespace provided by Spring Integration
(see Section B.2, “Namespace Support™), which essentially simplifies configuration by combining <r out er /
> configuration and its corresponding implementation defined using <bean/ > element into a single and
more concise configuration el ement. The example below demonstratesPay| oad Ty peRout er configuration
which is equivalent to the one above using Spring Integration's namespace support:

<payl oad- t ype-rout er input-channel ="routi ngChannel ">
<mappi ng type="java.l ang. String" channel ="stri ngChannel " />
<mappi ng type="j ava. |l ang. | nteger" channel ="i nt eger Channel " />
</ payl oad- t ype-rout er >

HeaderValueRouter

A Header Val ueRout er will send Messages to the channel based on the individual header value mappings.
When Header Val ueRout er iscreated it isinitialized with the name of the header to be evaluated, using
construct or - ar g. The value of the header could be one of two things:

1. Arbitrary value
2. Channel name

If arbitrary value, then achannel Resol ver should be provided to map header values to channel names.
The example below usesMapBasedChannel Resol ver to set up amap of header valuesto channel names.

<bean i d="nyHeader Val ueRout er "
cl ass="org. spri ngframework.integration.router.Header Val ueRout er" >
<constructor-arg val ue="soneHeader Nane" />
<property nane="channel Resol ver">
<bean cl ass="org. springframework. integration.channel . MapBasedChannel Resol ver" >
<property nane="channel Map" >

Spring Integration
2.0.0.RC1 Reference Manual 33

Spring Integration

<r’r‘ap>
<entry key="soneHeader Val ue" val ue-ref="channel A" />
<entry key="someQ her Header Val ue" val ue-ref="channel B" />

</ map>

</ property>
</ bean>
</ property>
</ bean>

If channel Resol ver is not specified, then the header value will be treated as a channel name making
configuration much simpler, where no channel Resol ver needsto be specified.

<bean i d="nyHeader Val ueRout er"
cl ass="org. springframework.integration.router.Header Val ueRout er " >
<constructor-arg val ue="sonmeHeader Nane" />

</ bean>

Similar to the Payl oadTypeRout er, configuration of Header Val ueRout er is aso supported via
namespace support provided by Spring Integration (see Section B.2, “Namespace Support”). The example
below demonstrates two types of namespace-based configuration of Header Val ueRout er which are
equivalent to the ones above using Spring Integration namespace support:

1. Configuration where mapping of header values to channelsis required

<header - val ue-rout er input-channel ="routi ngChannel " header - name="t est Header " >
<mappi ng val ue="soneHeader Val ue" channel ="channel A" />
<mappi ng val ue="soneQ her Header Val ue" channel =" channel B" />

</ header - val ue-rout er >

2. Configuration where mapping of header values is not required if header values themselves represent the
channel names

<header - val ue-rout er input-channel ="routi ngChannel " header - nane="t est Header"/ >

Note

\ The two router implementations shown above share some common properties, such as
"defaultOutputChannel” and "resolutionRequired”. If "resolutionRequired” is set to "true", and
the router is unable to determine a target channel (e.g. there is no matching payload for a
PayloadTypeRouter and no "defaultOutputChannel” has been specified), then an Exception will
be thrown.

RecipientListRouter

A Reci pi ent Li st Rout er will send each received Message to a statically-defined list of Message
Channels:

<bean i d="reci pi entLi stRouter" class="org.springframework.integration.router.RecipientListRouter">
<property nane="channel s">
<list>
<ref bean="channel 1"/ >
<ref bean="channel 2"/ >
<ref bean="channel 3"/ >
</list>

Spring Integration
2.0.0.RC1 Reference Manual 34

Spring Integration

</ property>
</ bean>

Configuration for Reci pi ent Li st Rout er is also supported via namespace support provided by Spring
Integration (see Section B.2, “Namespace Support”). The example below demonstrates namespace-based
configuration of Reci pi ent Li st Rout er and al the supported attributes using Spring Integration
namespace support:

<recipient-list-router id="custonRouter" input-channel ="routingChannel"
ti meout ="1234"
i gnore-send-failures="true"
appl y- sequence="true">
<reci pi ent channel ="channel 1"/ >
<reci pi ent channel ="channel 2"/>
</recipient-list-router>

Note

\ The "apply-sequence' flag here has the same affect as it does for a publish-subscribe-channel, and
like publish-subscribe-channdl it is disabled by default on the recipient-list-router. Refer to the
section called * PublishSubscribeChannel Configuration” for more information.

7.2 The <router> element

The"router" element providesasimpleway to connect arouter to aninput channel, and al so acceptsthe optional
default output channel. The "ref" may provide the bean name of a custom Router implementation (extending
AbstractM essageRouter):

<router ref="payl oadTypeRouter" i nput-channel ="input1l" default-output-channel ="defaul t Qut put1"/>
<router ref="recipientListRouter" input-channel ="input2" default-output-channel ="defaul t Qut put2"/>
<router ref="custonRouter" input-channel ="i nput3" default-output-channel ="defaul t Qut put 3"/>

<beans: bean i d="cust onmRout er Bean cl ass="org. f oo. MyCust onRout er "/ >

Alternatively, the "ref" may point to a simple Object that contains the @Router annotation (see below), or
the "ref" may be combined with an explicit "method" name. When specifying a"method", the same behavior
applies as described in the @Router annotation section below.

<router input-channel ="input" ref="sonePoj 0" nethod="sonmeMethod"/>

Using a "ref" attribute is generally recommended if the custom router implementation can be reused in other
<r out er > definitions. However if the custom router implementation should be scoped to aconcrete definition
of the <r out er >, you can provide an inner bean definition:

<rout er met hod="soneMet hod" i nput-channel ="i nput 3" def aul t - out put - channel =" def aul t CQut put 3" >
<beans: bean cl ass="org. f oo. M/Cust onRout er"/ >
</router>
Note

Using both the"ref" attribute and aninner handler definition in the same<r out er > configuration
isnot allowed, asit creates an ambiguous condition and will result in an Exception being thrown.

Spring Integration
2.0.0.RC1 Reference Manual 35

Spring Integration

7.3 The @Router Annotation

When using the @Rout er annotation, the annotated method can return either the MessageChannel or
St ri ng type. In the case of the latter, the endpoint will resolve the channel name as it does for the default
output. Additionally, the method can return either a single value or acollection. When a collection is returned,
the reply message will be sent to multiple channels. To summarize, the following method signatures are all
valid.

@Rout er
publ i c MessageChannel route(Message nessage) {...}

@Rout er
public List<MessageChannel > rout e(Message nessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available within the
message header as either aproperty or attribute. Rather than requiring use of the Mes sage type asthe method
parameter, the @Rout er annotation may also use the @Header parameter annotation that is documented in
Section B.5, “ Annotation Support”.

@Rout er
public List<String> route(@eader("orderStatus") OrderStatus status)

Note
k\ For routing of XML-based Messages, including XPath support, see Chapter 33, XML Support -
Dealing with XML Payloads.

7.4 Dynamic Routers

S0 as you can see, Spring Integration provides quite a few different router configurations for most common
content-based routing use cases as well as the option of implementing custom routers as POJOs. For example;
Payload Type Router provides a simple way to configure a router which computes channel s based on the
payl oad type of theincoming Message while Header Value Router provides the same convenience in
configuring arouter which computeschannel s based on evaluating the value of aparticular Message Header.
There is aso an expression-based (SpEL) routers where the channel is determined based on evaluating an
expression which gives these type of routers some dynamic characteristics.

However these routers share one common attribute - static configuration. Even in the case of expression-
based routers, the expression itself is defined as part of the router configuration which means that “the same
expression operating on the same value will always result in the computation of the same channel”. This is
good in most cases since such routes are well defined and therefore predictable. But there are times when we
need to change router configurations dynamically so message flows could be routed to a different channel.

For example:

Spring Integration
2.0.0.RC1 Reference Manual 36

Spring Integration

You might want to bring down some part of your system for maintenance. So, temporarily you want to re-
reroute messages to a different message flow. Or you may want to introduce more granularity to your message
flow by adding another route to handle a more concrete type of java.lang.Number (in cases of Payload Type
Router).

Unfortunately with static router configuration to accomplish this you'd have to bring down your entire
application, change the configuration of the router (change routes) and bring it back up. Thisis obviously not
the solution.

Dynamic Router [http://www.eal patterns.com/DynamicRouter.html] pattern describes the mechanisms by
which one can change/configure routers dynamically without bringing down your system or individual routers.

Before we get into the specifics of how it is accomplished in Spring Integration lets quickly summarize the
typical flow of the router, which consists of 3 simple steps:

« Sep1- Computechannel identifier whichisavalue calculated by the router once it receives the
Message. Typically itisa St r i ng or and instance of the actual MessageChannel .

* Sep2- Resolvechannel identifier tochannel name. Well describe specifics of this process
in amoment.

e Sep 3- Resolvechannel nane tothe actual MessageChannel

Thereisnot much that could be donewith regard to router dynamicsif Step 1 resultsin the actual instance of the
MessageChannel simply because MessageChannel isthe final product of any router's job. However,
if Step 1resultsinchannel identifier thatisnot and instance of MessageChannel , then there are
quite afew possibilities to influence the process of cal culating what will be the final instance of the Message
Channel . Letslook at couple of the examplesin the context of the 3 steps mentioned above:

Payload Type Router

<payl oad- t ype-rout er input-channel ="routi ngChannel ">
<mappi ng type="java.l ang. String" channel ="channel 1" />
<mappi ng type="j ava. |l ang. | nteger" channel ="channel 2" />
</ payl oad- t ype-rout er >

Within the context of the Payload Type Router the 3 steps mentioned above would be realized as:

e Sep 1- Compute channel identifier whichisthefully quaified name of the payload type (e.g.,
javalang.String).

« Sep 2 - Resolve channel identifier tochannel nanme where the result of the previous step is
used to select the appropriate value from the payl oad type mapping defined viamappi ng e ement.

e Sep 3 - Resolve channel nane to the actua instance of the MessageChannel where using
Channel Resol ver router will obtain areference to a bean (which is hopefully aMessageChannel)
identified by the result of the previous step.

In other words each step feeds the next step until thr process compl etes.

Header Value Router

Spring Integration
2.0.0.RC1 Reference Manual 37

http://www.eaipatterns.com/DynamicRouter.html
http://www.eaipatterns.com/DynamicRouter.html

Spring Integration

<header - val ue-rout er input-channel ="i nput Channel " header - nanme="t est Header " >
<mappi ng val ue="foo0" channel ="fooChannel " />
<mappi ng val ue="bar" channel ="bar Channel " />

</ header - val ue-r out er >

Similar to the PayloadTypeRouter:

e Sepl- Computechannel identifier whichisthevaue of the header identified by the header -
name attribute.

* Sep 2 - Resolvechannel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the general mapping defined viamappi ng element.

* Sep 3 - Resolve channel name to the actua instance of the MessageChannel where using
Channel Resol ver router will obtain areference to a bean (which is hopefully aMessageChannel)
identified by the result of the previous step.

The above two configurations of two different router types look almost identical. However if we look at the
different configuration of the Header Val ueRout er we clearly see that thereisno mappi ng sub element:

<header - val ue-rout er input-channel ="i nput Channel " header - nane="t est Header " >

But configuration is still perfectly valid. So the natural question iswhat about the maping in the Step 2?

What this means is that Step 2 is now an optional step. If mapping is not defined then the channel

i dentifier value computed in Step 1 will automatically be treated as the channel name which will
now be resolved to the actua MessageChannel inthe Step 3. What it also means is that Step 2 is one of
the key steps to provide dynamic characteristics to the routers, since it introduces a process which allows you
to change the way 'channel identifier' resolves to 'channel name', thus influencing the process of determining
the final instance of the MessageChannel fromtheinitia channel identifier.

For Example:

In the above configuration lets assume that the t est Header value is 'kermit' which is now a channel

identifier (Stepl). Sincethereisno mapping in this router, resolving thischannel identifier to
achannel nane (Step 2) isimpossible and thischannel identifi er isnow treated as channel

name. However what if there was mapping but for a different value, the end result would still be the same and
that is: if new value can not be determined through the process of resolving 'channel identifier' to a 'channel
name', such 'channel identifier' becomes 'channel name'

So dl that is left is for Step 3 to resolve channel nane (‘kermit’) to an actua instance of the
MessageChannel identified by this name. That will be done via default Channel Resolver implementation
whichisBeanFact or yChannel Resol ver which basically does abean lookup by the name provided. So
now all messages which contain the header/value pair ast est Header =ker m t are going to be routed to
a'kermit' MessageChannel .

But what if you want to route these messages to 'simpson' channel? Obviously changing static configuration
would work, but would also require bringing your system down. However if you had access to channel
i dentifier map, then you could just introduce a new mapping where header/value pair is now
ker m t =si npson, thusalowing Step 2 to treat 'kermit' aschannel identi fi er whileresolving it to
'smpson’ aschannel nane .

Spring Integration
2.0.0.RC1 Reference Manual 38

Spring Integration

The same obviously applies for Payl oadTypeRout er where you can now remap or remove a particular
payl oad type mapping, and every other router including expression-based routers since their computed value
will now have a chance to go through Step 2 to be aditionally resolved to the actual channel narre.

In Spring Integration 2.0 routers hierarchy underwent major refactoring and now any router that is a subclass
of the Abst r act MessageRout er (al framework defined routers) is a Dynamic Router simply because
channel I dent i f er Map is defined at the Abst r act MessageRout er with convenient accessors and
modifiers exposed as public methods allowing you to change/add/remove router mapping at runtime via IM X
(see section section 29) or Control Bus (see section section 29.7) functionality.

Control Bus

One of the way to manage the router mappings is through the Control Bus [http://www.eai patterns.com/
ControlBus.html] which exposes a Control Channel where you can send control messages to manage and
monitor Spring Integration components which includes routers. For more information about the Control Bus
see section 29.7. Typicaly you would send a control message asking to invoke a particular IMX operation
on a particular managed component (e.g., router). The two managed operations (methods) that are specific to
changing router resolution process are:

* public void setChannel Mapping(String channel I dentifier, Sring channelName) - will alow you to add new
or modify existing mapping of channel identifier tochannel nane

 public void removeChannelMapping(String channelldentifier) - will alow you to remove a particular
channel mapping, thus disconnecting the relationship between channel identifier and channel
name

There are obviously other managed operations, so please refer to an Abst r act MessageRout er for more

detail

Y ou can also use your favorite IMX client (e.g., JConsole) and use those operations (methods) to change router
configuration. For more information on Spring Integration management and monitoring please visit section
29 of this manual.

Spring Integration
2.0.0.RC1 Reference Manual 39

http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/ControlBus.html

Spring Integration

8. Filter

8.1 Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on some
criteriasuch as aMessage Header value or even content within the Messageitself. Therefore, a Message Filter
issimilar to arouter, except that for each Message received from the filter's input channel, that same Message
may or may nhot be sent to the filter's output channel. Unlike the router, it makes no decision regarding which
Message Channel to send to but only decides whether to send.

Note

k\ Asyou will see momentarily, the Filter does also support a discard channel, so in certain cases it
can play therole of avery simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to some
implementation of the MessageSel ect or interface. That interface isitself quite simple:

public interface MessageSel ector {
bool ean accept (Message<?> nessage) ;

}
The MessageFi | t er constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(sonmeSel ector);

In combination with the namespace and SpEL very powerful filters can be configured with very littlejavacode.

8.2 The <filter> Element

The<filter> element is used to create a M essage-sel ecting endpoint. In addition to "input-channel" and " output-
channel” attributes, it requires a"ref". The "ref" may point to a MessageSel ector implementation:

<filter input-channel="input" ref="selector" output-channel ="output"/>

<bean i d="sel ector" cl ass="exanpl e. MessageSel ectorlnpl"/>

Alternatively, the "method" attribute can be added at which point the "ref" may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages. The return
value of the method must be a boolean value. Any time the method returns 'true’, the Message will be passed
along to the output-channel.

<filter input-channel ="input" out put-channel =" out put "
ref =" exanpl eObj ect " net hod="soneBool eanRet ur ni nghet hod" / >

<bean i d="exanpl eCbj ect" cl ass="exanpl e. SomeChj ect"/ >

If the selector or adapted POJO method returns f al se, there are a few settings that control the fate of the
rejected Message. By default (if configured like the example above), the rejected Messages will be silently

Spring Integration
2.0.0.RC1 Reference Manual 40

Spring Integration

dropped. If rejection should instead indicate an error condition, then set the 'throw-exception-on-rejection’ flag
totrue:

<filter input-channel ="input" ref="sel ector"
out put - channel ="out put" throw exception-on-rejection="true"/>

If you want the rejected messages to go to a specific channel, provide that reference as the 'discard-channel":

<filter input-channel="input" ref="selector"
out put - channel =" out put" di scard- channel ="r ej ect edMessages"/ >

Note

\ A common usage for Message Filtersis in conjunction with a Publish Subscribe Channel. Many
filter endpoints may be subscribed to the same channel, and they decide whether or not to passthe
Message for the next endpoint which could be any of the supported types (e.g. Service Activator).
This provides a reactive alternative to the more proactive approach of using a Message Router
with a single Point-to-Point input channel and multiple output channels.

Using a "ref" attribute is generally recommended if the custom filter implementation can be reused in other
<f il t er > definitions. However if the custom filter implementation should be scopedto asingle<fi | t er >
element, provide an inner bean definition:

<filter method="soneMethod" input-channel ="inChannel" out put-channel ="out Channel ">
<beans: bean cl ass="org.foo. MyCustonFilter"/>
</filter>
Note

5

Using both the"ref" attribute and aninner handler definitioninthesame<f i | t er > configuration
is not alowed, as it creates an ambiguous condition, and it will therefore result in an Exception
being thrown.

With the introduction of SpEL Spring Integration has added the expr essi on attribute to the filter element.
It can be used to avoid Java entirely for simple filters.

<filter input-channel ="input" expression="payl oad. equal s(nonsense)"/>

The string passed as the expression attribute will be evaluated as a SpEL expression in the context
of the message. If it is needed to include the result of an expression in the scope of the application
context you can use the #{} notation as defined in the SpEL reference documentation SpEL
reference documentation [http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmil/
expressions.html#expressions-beandef].

<filter input-channel ="input" expression="payl oad. matches(#{filterPatterns. nonsensePattern})"/>

If the Expression itself needsto be dynamic, then an ‘expression’ sub-element may be used. That providesalevel
of indirection for resolving the Expression by its key from an ExpressionSource. That is a strategy interface
that you can implement directly, or you can rely upon a version available in Spring Integration that |oads

Spring Integration
2.0.0.RC1 Reference Manual 41

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef

Spring Integration

Expressions from a"resource bundl€" and can check for modifications after a given number of seconds. All of
thisis demonstrated in the following configuration sample where the Expression could be reloaded within one
minute if the underlying file had been modified. If the ExpressionSource bean is named "expressionSource”,
then it isnot necessary to provide the "source” attribute on the <expression> element, but in this caseit's shown

for completeness.

<filter input-channel="input" output-channel ="out put">
<expressi on key="filterPatterns. exanpl e" source="nyExpressi ons"/>
</filter>

<beans: bean i d="nyExpr essi ons" i d="myExpressi ons"
cl ass="org. springframework.integration. expressi on. Rel oadabl eResour ceBundl eExpr essi onSour ce" >

<beans: property nane="basenanme" val ue="confi g/integration/expressions"/>
<beans: property nane="cacheSeconds" val ue="60"/>
</ beans: bean>

Then, the 'config/integration/expressions.properties file (or any more specific version with alocale extension
to be resolved in the typical way that resource-bundles are loaded) would contain a key/value pair:

filterPatterns. exanpl e=payl oad > 100

Note

\ All of the examples that use "expression” as an attribute or sub-element can also be applied
within transformer, router, splitter, service-activator, and header-enricher elements. Of course,
the semantics/role of the given component type would affect the interpretation of the evaluation
result in the same way that the return or a method-invocation would be interpreted. For example,
an expression can return Strings that are to be treated as Message Channel names by a router

component.

Spring Integration
2.0.0.RC1 Reference Manual 42

Spring Integration

9. Transformer

9.1 Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers
and Message Consumers. Rather than requiring every Message-producing component to know what type is
expected by the next consumer, Transformers can be added between those components. Generic transformers,
such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Mode [http://www.eaipatterns.com/
Canonical DataM odel.html], but Spring Integration's general philosophy isnot to require any particular format.
Rather, for maximum flexibility, Spring Integration aims to provide the simplest possible model for extension.
As with the other endpoint types, the use of declarative configuration in XML and/or Annotations enables
simple POJOs to be adapted for the role of Message Transformers. These configuration options will be
described below.

Note

k\ For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for dealing
with XML-based payloads if that is indeed the right choice for your application. For more
information on those transformers, see Chapter 33, XML Support - Dealing with XML Payloads.

9.2 The <transformer> Element

The <transformer> element is used to create a Message-transforming endpoint. In addition to "input-channel"
and "output-channel” attributes, it requires a "ref". The "ref" may either point to an Object that contains the
@Transformer annotation on a single method (see below) or it may be combined with an explicit method name
value provided viathe "method" attribute.

<transfornmer id="testTransforner" ref="testTransfornmerBean" input-channel ="i nChannel "
met hod="t ransf orn' out put - channel =" out Channel "/ >
<beans: bean i d="t est Tr ansf or mer Bean" cl ass="org. f 0o. Test Transforner" />

Using a "ref" attribute is generally recommended if the custom transformer handler implementation can be
reused in other <t r ansf or mer > definitions. However if the custom transformer handler implementation
should be scoped to a single definition of the <t r ansf or mer >, you can define an inner bean definition:

<transformer id="testTransfornmer" input-channel ="i nChannel" nethod="transf ornt
out put - channel =" out Channel ">
<beans: bean cl ass="org. f 0o. Test Tr ansf ormer"/>
</t ransfornmer>

Note

"

Using both the "ref" attribute and an inner handler definition in the same <t r ansf or ner >
configuration is not allowed, asit creates an ambiguous condition and will result in an Exception
being thrown.

Spring Integration
2.0.0.RC1 Reference Manual 43

http://www.eaipatterns.com/CanonicalDataModel.html
http://www.eaipatterns.com/CanonicalDataModel.html
http://www.eaipatterns.com/CanonicalDataModel.html

Spring Integration

The method that isused for transformation may expect either the Mes sage type or the payload type of inbound
Messages. It may also accept Message header values either individually or asafull map by using the @Header
and @Headers parameter annotations respectively. Thereturn value of the method can beany type. If thereturn
valueisitself aMessage, that will be passed along to the transformer's output channel. If the return typeisa
Map, and the original Message payload was not a Map, the entries in that Map will be added to the Message
headers of the original Message (the keys must be Strings). If the return value is null, then no reply Message
will be sent (effectively the same behavior asaMessage Filter returning false). Otherwise, the return value will
be sent as the payload of an outbound reply Message.

There are a adso a few Transformer implementations available out of the box. Because, it is
fairly common to use the t oString() representation of an Object, Spring Integration provides an
oj ect ToSt ri ngTr ansf or mer whose output isaMessage with a String payload. That String istheresult
of invoking the toString operation on the inbound Message's payload.

<obj ect-to-string-transformer input-channel="in" output-channel ="out"/>

A potential example for this would be sending some arbitrary object to the 'outbound-channel-adapter’ in the
file namespace. Whereas that Channel Adapter only supports String, byte-array, orj ava. i 0. Fi | e payloads
by default, adding this transformer immediately before the adapter will handle the necessary conversion. Of
course, that works fine as long as the result of thet oSt ri ng() call iswhat you want to be written to the
File. Otherwise, you can just provide a custom POJO-based Transformer viathe generic 'transformer' element
shown previoudly.

: Tip
When debugging, thistransformer is not typically necessary since the 'logging-channel-adapter' is
capable of logging the M essage payload. Refer to the section called “Wire Tap” for more detail.

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring
Integration provides symmetrical serialization transformers.

<payl oad- seri al i zi ng-transf ormer i nput-channel ="obj ectsln" out put-channel ="bytesQut"/>

<payl oad- deseri al i zi ng-transforner input-channel ="bytesln" out put-channel ="objectsQut"/>

If you only need to add headers to a Message, and they are not dynamically determined by Message content,
then referencing a custom implementation may be overkill. For that reason, Spring Integration provides the
'header-enricher' element.

<header - enri cher i nput-channel ="i n" out put - channel =" out ">
<header nane="foo" val ue="123"/>
<header nanme="bar" ref="soneBean"/>

</ header - enri cher >

Asadded convenience, Spring Integration also provides Object-to-Map and Map-to-Object transformerswhich
utilize Spring Expression Language (SpEL) to serialize and de-serialize the object graphs. Object hierarchy
is introspected to the most primitive types (e.g., String, int etc.). The path to thistype is described via SpEL,
which becomes the keykey in the transformed Map with primitive type being the value.

For example:

public class Parent{

Spring Integration
2.0.0.RC1 Reference Manual 44

Spring Integration

private Child child;
private String nane;
/] setters and getters are onitted

}

public class Child{
private String nane;
private List<String> ni ckNanes;
/] setters and getters are onitted

will be transformed to a Map which looks like this. {person. nane=Ceor ge,
person. chi |l d. name=Jenna, person.child.nickNanes[0]=Binbo . . . etc}

SpEL -based Map alows you to describe the object structure without sharing the actual types allowing you to
restore/rebuild the object graph into a differently typed Object graph as long as you maintain the structure.

For example: The above structure could be easily restored back to the following Object graph via Map-to-
Object transformer:

public class Father{
private Kid child;
private String nane;
/] setters and getters are onitted

}

public class Kid{
private String nane;
private List<String> nickNanes;
/] setters and getters are onmitted

To configure these transformers, Spring Integration provides namespace support Object-to-Map:

<obj ect -t o- map-transforner input-channel ="directlnput" output-channel =" output"/>

Map-to-Object

<i nt: map-to-obj ect-transfornmer input-channel="input"
out put - channel =" out put "
type="org. f oo. Person"/>

or

<i nt: map-to-object-transformer input-channel ="inputA"
out put - channel =" out put A"
ref ="person"/>
<bean i d="person" class="org.foo. Person" scope="prototype"/>

Note
\ NOTE: 'ref' and 'type' attributes are mutually exclusive. Y ou can only use either one. Also, if using
'ref' attribute you must point to a 'prototype’ scoped bean, otherwise BeanCreationException will

be thrown.

Spring Integration
2.0.0.RC1 Reference Manual 45

Spring Integration

9.3 The @Transformer Annotation

The @ ansf or mer annotation can also be added to methods that expect either the Message type or the
message payload type. Thereturn value will be handled in the exact sameway as described above in the section
describing the <transformer> element.

@r ansf or mer
Order generateOrder(String productld) {
return new O der(productld);

}

Transformer methods may also accept the @Header and @Headers annotations that is documented in
Section B.5, “ Annotation Support”

@r ansf or ner
Order generateOrder(String productld, @deader("custonmerNane") String custoner) {
return new O der(productld, custoner);

}

Spring Integration
2.0.0.RC1 Reference Manual 46

Spring Integration

10. Splitter

10.1 Introduction

The Splitter is a component whose role is to partition a message in severa parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that includes
an Aggregator.

10.2 Programming model

The API for performing splitting consists from one base class, AbstractMessageSplitter, which is a
MessageHandler implementation, encapsulating features which are common to splitters, such as filling in
the appropriate message headers CORRELATION_ID, SEQUENCE_SIZE, and SEQUENCE_NUMBER on
the messages that are produced. This allows to track down the messages and the results of their processing
(in atypical scenario, these headers would be copied over to the messages that are produced by the various
transforming endpoints), and use them, for example, in a Composed Message Processor scenario.

An excerpt from AbstractM essageSplitter can be seen below:

public abstract class Abstract MessageSplitter
ext ends Abstract Repl yProduci ngMessageConsuner {

protected abstract Object splitMssage(Message<?> nessage);

}

For implementing a specific Splitter in an application, a developer can extend AbstractMessageSplitter and
implement the splitM essage method, thus defining the actual 1ogic for splitting the messages. The return value
can be one of the following:

» aCollection (or subclass thereof) or an array of Message objects - in this case the messages will be sent
as such (after the CORRELATION_ID, SEQUENCE_SIZE and SEQUENCE_NUMBER are popul ated).
Using thisapproach gives more control to the devel oper, for examplefor popul ating custom message headers
as part of the splitting process.

» a Collection (or subclass thereof) or an array of non-Message objects - works like the prior case, except
that each collection element will be used as a Message payload. Using this approach allows developers to
focus on the domain objects without having to consider the Messaging system and produces code that is
easier to test.

» aMessage or non-Message object (but not a Collection or an Array) - it workslike the previous cases, except
that there is a single message to be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method
that accepts a single argument and has a return value. In this case, the return value of the method will be
interpreted as described above. The input argument might either be a Message or asimple POJO. In the latter
case, the splitter will receive the payload of the incoming message. Since this decouples the code from the
Spring Integration APl and will typically be easier to test, it is the recommended approach.

Spring Integration
2.0.0.RC1 Reference Manual 47

Spring Integration

10.3 Configuring a Splitter using XML

A splitter can be configured through XML as follows:

<channel id="input Channel "/>

<splitter id="splitter"
ref="splitterBean"
net hod="split"
i nput - channel ="i nput Channel "
out put - channel =" out put Channel " />

<channel i d="out put Channel "/>

<beans: bean i d="splitterBean" class="sanple.PojoSplitter"/>

Theid of the splitter is optional.

A reference to a bean defined in the application context. The bean must implement the splitting
logic as described in the section above. Optional. If reference to a bean is not provided, then it is
assumed that the payload of the Message that arrived onthei nput - channel isanimplementation of
java.util.Collection and the default splitting logic will be applied on such Collection, incorporating each
individual element into a Message and depositing it on the out put - channel .

The method (defined on the bean specified above) that implements the splitting logic. Optional.

The input channel of the splitter. Required.

The channel where the splitter will send the results of splitting the incoming message. Optional (because
incoming messages can specify a reply channel themselves).

Using a"ref" attribute is generally recommended if the custom splitter handler implementation can be reused
in other <spl it t er > definitions. However if the custom splitter handler implementation should be scoped
to asingle definition of the<spl i t t er >, you can configure an inner bean definition:

<splitter id="testSplitter" input-channel ="inChannel" nethod="split"
out put - channel =" out Channel ">
<beans: bean cl ass="org.foo. TestSplitter"/>
</spliter>

Note

"

Using both a "ref" attribute and an inner handler definition in the same <splitter>
configuration is not alowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

10.4 Configuring a Splitter with Annotations

The @pl i tt er annotation is applicable to methods that expect either the Message type or the message
payload type, and the return values of the method should be a collection of any type. If the returned values are
not actual Message objects, then each of them will be sent as the payload of a message. Those messages will
be sent to the output channel as designated for the endpoint on which the @pl i t t er isdefined.

@plitter
Li st<Linelten> extractltens(Order order) {

Spring Integration
2.0.0.RC1 Reference Manual 48

Spring Integration

return order.getltens()

2.0.0.RC1

Spring Integration
Reference Manual

49

Spring Integration

11. Aggregator

11.1 Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives multiple
Messages and combines them into a single Message. In fact, Aggregators are often downstream consumersin
apipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is required to maintain state (the
Messages to be aggregated), to decide when the complete group of Messages is available. In order to do this
it requires a MessageStore

11.2 Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group is
deemed complete. At that point, the Aggregator will create a single message by processing the whole group,
and will send that aggregated message as output.

An main aspect of implementing an Aggregator is providing the logic that has to be executed when the
aggregation (creation of a single message out of many) takes place. The other two aspects are correlation and
release

In Spring Integration, the grouping of the messages for aggregation (correlation) is done by default based
on their CORRELATION_ID message header (i.e. the messages with the sasme CORRELATION_ID will be
grouped together). However, this can be customized, and the users can opt for other ways of specifying how
the messages should be grouped together, by using a CorrelationStrategy (see below).

To determinewhether or not agroup of messages may be processed, a ReleaseStrategy isconsulted. The default
release strategy for aggregator will release groups that have all messages from the sequence, but this can be
entirely customized

11.3 Programming model

The Aggregation APl consists of a number of classes:

e The interface Message& oupPr ocessor and related base class
Abst ract Aggr egat i ngMessageG oupPr ocessor and its subclass
Met hodl nvoki ngAggr egat i ngMessageG oupPr ocessor

e The Rel easeStr at egy interface and its default implementation
SequenceSi zeRel easeStr at egy

e The Correl ati onStrat egy interface and its default implementation
Header Attri but eCorrel ati onStrat egy

Spring Integration
2.0.0.RC1 Reference Manual 50

Spring Integration

CorrelatingMessageHandler

The Correl ati ngMessageHandl er is a MessageHandl er implementation, encapsulating the
common functionalities of an Aggregator (and other correlating use cases), which are:

* correlating messages into a group to be aggregated

* maintaining those messages in a MessageStore until the group may be released
« deciding when the group isin fact may be released

 processing the released group into a single aggregated message

* recognizing and responding to an expired group

The responsibility of deciding how the messages should be grouped together is delegated to a
Correl ati onStrat egy instance. The responsibility of deciding whether the message group can be
released isdelegated to aRel easeSt r at egy instance.

Here is a brief highlight of the base Abstract Aggr egati ngMessageG oupProcessor (the
responsibility of implementing the aggregateM essages method is left to the devel oper):

public abstract class Abstract Aggregati ngMessageG oupProcessor
i mpl ements MessageG oupProcessor {

protected Map<String, Object> aggregat eHeaders(MessageG oup group) {
}
protected abstract Object aggregatePayl oads(MessageG oup group);

}

The CorrelationStrategy isowned by the Cor r el at i ngMessageHandl er and it hasadefault value based
on the correlation 1D message header:

private volatile Correl ationStrategy correl ati onStrategy =
new Header Attri buteCorrel ati onStrat egy(MessageHeader s. CORRELATI ON_| D) ;

When appropriate, the simplest option is the Def aul t Aggr egat i ngMessageG oupPr ocessor. It
creates a single Message whose payload is a List of the payloads received for a given group. It uses the
default Correl ati onStrat egy and Conpl eti onStrat egy as shown above. This works well for
simple Scatter Gather implementations with either a Splitter, Publish Subscribe Channel, or Recipient List
Router upstream.

Note

"

When using a Publish Subscribe Channel or Recipient List Router in thistype of scenario, be sure
to enable the flag to apply-sequence. That will add the necessary headers (correlation id, sequence
number and sequence size). That behavior is enabled by default for Splittersin Spring Integration,
but it is not enabled for the Publish Subscribe Channel or Recipient List Router because those
components may be used in avariety of contexts where those headers are not necessary.

Spring Integration
2.0.0.RC1 Reference Manual 51

Spring Integration

When implementing a specific aggregator object for an application, a developer can extend
Abst ract Aggr egat i ngMessageG oupProcessor and implement the aggr egat ePayl oads
method. However, there are better suited (which reads, less coupled to the API) solutions for implementing the
aggregation logic, which can be configured easily either through XML or through annotations.

In general, any ordinary Javaclass (i.e. POJO) can implement the aggregation a gorithm. For doing so, it must
provide amethod that accepts as an argument asingle java.util.List (parametrized lists are supported as well).
This method will be invoked for aggregating messages, as follows:

« if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then the
whole list of messages accumulated for aggregation will be sent to the aggregator

* if the argument is a non-parametrized java.util.List or the parameter typeis not assignable to Message, then
the method will receive the payloads of the accumulated messages

« if the return typeis not assignable to Message, then it will be treated as the payload for a Message that will
be created automatically by the framework.

Note

"

In the interest of code simplicity, and promoting best practices such as low coupling, testability,
etc., the preferred way of implementing the aggregation logic is through a POJO, and using the
XML or annotation support for setting it up in the application.

ReleaseStrategy

TheRel easeSt r at egy interface is defined as follows:

public interface Rel easeStrategy {

bool ean canRel ease(MessageG oup nessages) ;

In general, any ordinary Javaclass (i.e. POJO) can implement the completion decision mechanism. For doing
so, it must provide amethod that accepts as an argument asinglejava.util.List (parametrized lists are supported
aswell), and returns aboolean value. Thismethod will beinvoked after the arrival of anew message, to decide
whether the group is complete or not, as follows:

« if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then the
whole list of messages accumulated in the group will be sent to the method

« if the argument is a non-parametrized java.util.List or the parameter typeis not assignable to Message, then
the method will receive the payloads of the accumulated messages

« the method must return true if the message group is ready for aggregation, and false otherwise.

When the group is released for aggregation, all its unmarked messages are processed and then marked so they
will not be processed again. If the group is also complete (i.e. if all messages from a sequence have arrived

Spring Integration
2.0.0.RC1 Reference Manual 52

Spring Integration

or if there is no sequence defined) then the group is removed from the message store. Partial sequences can
be released, in which case the next time the Rel easeSt r at egy is called it will be presented with a group
containing marked messages (already processed) and unmarked messages (a potential new partial sequence)

Spring Integration provides an out-of-the box implementation for Rel easeStrategy, the
SequenceSi zer Rel easeStrat egy. This implementation uses the SEQUENCE NUMBER and
SEQUENCE_SIZE of the arriving messages for deciding when a message group is complete and ready to be
aggregated. As shown above, it is also the default strategy.

CorrelationStrategy

TheCorrel ati onStr at egy interface is defined as follows:

public interface Correl ati onStrategy {

bj ect get Correl ati onKey(Message<?> nessage) ;

The method shall return an Object which represents the correlation key used for grouping messages together.
The key must satisfy the criteria used for a key in a Map with respect to the implementation of equals() and
hashCode().

Ingeneral, any ordinary Javaclass(i.e. POJO) can implement the correl ation decision mechanism, and therules
for mapping a message to a method's argument (or arguments) are the same asfor a Ser vi ceAct i vat or
(including support for @Header annotations). The method must return avalue, and thevaluemust not benul | .

Spring Integration provides an out-of-the box implementation for Correl ati onStrat egy, the
Header Attri but eCorrel ati onStrat egy. This implementation returns the value of one of the
message headers (whose name is specified by a constructor argument) as the correlation key. By default, the
correlation strategy is a HeaderAttributeCorrelationStrategy returning the value of the CORRELATION_ID
header attribute.

11.4 Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggregator/> element.
Below you can see an example of an aggregator with all optional parameters defined.

<channel id="input Channel "/ >

<aggregat or id="conpl et el yDefi nedAggr egat or"
i nput - channel ="i nput Channel "
out put - channel =" out put Channel "
di scar d- channel ="di scar dChannel "
r ef =" aggr egat or Bean"
nmet hod="add"
rel ease-strategy="rel easeSt r at egyBean"
rel ease- strat egy- net hod="canRel ease"
correl ation-strategy="correl ati onStrat egyBean"
correl ati on-strategy-net hod="groupNunber sByLastDigit"
message- st or e="nmessagesSt or e"

Spring Integration
2.0.0.RC1 Reference Manual 53

Spring Integration

send- partial -resul t-on-expiry="true"
send-ti meout =" 86420000" />

<channel i d="out put Channel "/>
<bean i d="aggr egat or Bean" cl ass="sanpl e. Poj oAggr egat or"/>
<bean i d="rel easeStrat egyBean" cl ass="sanpl e. Poj oRel easeStr at egy"/ >

<bean i d="correl ati onStrat egyBean" cl ass="sanpl e. Poj oCorrel ati onStrategy"/>

Theid of the aggregator is optional.

The input channel of the aggregator. Required.

Thechannel wherethe aggregator will send the aggregation results. Optional (becauseincoming messages
can specify a reply channel themselves).

The channel where the aggregator will send the messages that timed out (if send-parti al -
resul ts-on-ti meout isfalse). Optional.

A reference to abean defined in the application context. The bean must implement the aggregation logic
as described above. Required.

A method defined on the bean referenced by r ef , that implements the message aggregation algorithm.
Optional, with restrictions (see above).

A reference to a bean that implements the decision algorithm as to whether a given message group is
complete. The bean can be an implementation of the CompletionStrategy interface or a POJO. In the
latter case the completion-strategy-method attribute must be defined as well. Optional (by default, the
aggregator will use sequence size) .

A method defined on the bean referenced by r el ease- st r at egy, that implements the completion
decision algorithm. Optional, with restrictions (requiresconpl et i on- st r at egy to be present).

A reference to abean that implements the correlation strategy. The bean can be an implementation of the
CorrelationStrategy interface or a POJO. In the latter case the correlation-strategy-method attribute must
be defined as well. Optional (by default, the aggregator will use the correlation id header attribute) .

A method defined on the bean referenced by correl ati on-strategy, that implements the
correlation key algorithm. Optional, with restrictions (requires correl ati on-strat egy to be
present).

A reference to a MessageG oupsSt or e that can be used to store groups of messages under their
correlation key until they are complete. Optional with default avolatile in-memory store.

Whether upon the expiration of the message group, the aggregator will try to aggregate the messages that
have already arrived. Optional (false by default).

The timeout for sending the aggregated messages to the output or reply channel. Optional.

Using a"ref" attribute is generally recommended if a custom aggregator handler implementation can be reused
in other <aggr egat or > definitions. However if a custom aggregator handler implementation should be
scoped to a concrete definition of the <aggr egat or >, you can use an inner bean definition (starting with
version 1.0.3) for custom aggregator handlers within the <aggr egat or > element:

<aggregat or input-channel ="input" nethod="sun out put-channel ="out put">
<beans: bean cl ass="or g. f 0o. Exanpl eAggr egat or "/ >
</ aggr egat or >

Spring Integration
2.0.0.RC1 Reference Manual 54

Spring Integration

Note

"

Using both a "ref" attribute and an inner bean definition in the same <aggr egat or >
configuration is not allowed, as it creates an ambiguous condition. In such cases, an Exception
will be thrown.

An example implementation of the aggregator bean looks as follows:

publ i c cl ass Poj oAggr egat or {

public Long add(List<Long> results) {
long total = 0l;
for (long partial Result: results) {
total += partial Result;
}
return total;

}
}

An implementation of the completion strategy bean for the example above may be as follows:

public cl ass Poj oRel easeStrategy {

publ i ¢ bool ean canRel ease(Li st<Long> nunbers) {
int sum= O;
for (long nunber: nunbers) {
sum += nunber;

}

return sum >= nmaxVal ue;
}
}

Note

"

Wherever it makes sense, the rel ease strategy method and the aggregator method can be combined
in asingle bean.

An implementation of the correlation strategy bean for the exampl e above may be as follows:

public class PojoCorrel ati onStrategy {

public Long groupNunbersBylLastDi git(Long nunber) {
return nunber % 10;
}
}

For example, this aggregator would group numbers by some criterion (in our case the remainder after dividing
by 10) and will hold the group until the sum of the numbers which represents the payload exceeds a certain
value.

Note

"

Wherever it makes sense, the release strategy method, correlation strategy method and the
aggregator method can be combined in a single bean (all of them or any two).

Spring Integration
2.0.0.RC1 Reference Manual 55

Spring Integration

11.5 Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires decisions to be
made based on a group of messages that have arrived over aperiod of time, all with the same correlation key.
The design of the interfacesin the stateful patterns (e.g. Rel easeSt r at egy) isdriven by the principle that
the components (framework and user) should beto remain stateless. All stateiscarried by theMessage G oup
and its management is delegated to the MessageG oupSt or e.

The MessageG oupSt or e accumulates state information in Message& oups, potentialy forever. So
to prevent stale state from hanging around, and for volatile stores to provide a hook for cleaning up when
the application shots down, the MessageG oupSt or e alows the user to register callbacks to apply to
MessageG oups when they expire. Theinterface is very straighforward:

public interface MessageG oupCal |l back {

voi d execut e(MessageG oupSt ore nmessageG oupStore, MessageG oup group);

}

The callback has access directly to the store and the message group so it can manage the persistent state (e.g.
by removing the group from the store entirely).

The MessageGroupStore maintains alist of these callbackswhich it applies when asked to all messages whose
timestamp is earlier than atime supplied as a parameter:

public interface MessageG oupStore {
voi d regi ster MessageG oupExpi ryCal | back(MessageG oupCal | back cal | back) ;
int expi reMessageG oups(long tinmeout);

}

The expireM essageGroups method can be called with atimeout value: any message older than the current time
minus this value wiull be expired, and have the callbacks applied. Thus it is the user of the store that defines
what is meant by message group "expiry".

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the form of a
MessageG oupSt or eReaper:

<bean i d="reaper" class="org...MessageG oupSt or eReaper" >
<property nane="nessageG oupStore" ref="nessageStore"/>
<property name="tineout" val ue="10"/>

</ bean>

<t ask: schedul ed-tasks schedul er="schedul er">
<t ask: schedul ed ref="reaper" nethod="run" fixed-rate="10000"/>
</t ask: schedul ed-t asks>

The reaper is a Runnable, and al that is happening is that the message group store's expire method is being
called in the sample above once every 10 seconds. In addition to the reaper, the expiry callbacks are invoked
when the application shuts down viaalifecycle calback in the Cor r el at i ngMessageHandl er .

TheCorr el ati ngMessageHand| er registersitsown expiry callback, and thisisthelink with the boolean
flagsend- parti al -resul t - on- expi ry inthe XML configuration of the aggregator. If theflagisset to

Spring Integration
2.0.0.RC1 Reference Manual 56

Spring Integration

true, then when the expiry callback isinvoked then any unmarked messages in groups that are not yet released
can be sent on to the downstream channel.

11.6 Configuring an Aggregator with Annotations

An aggregator configured using annotations can look like this.

public class Waiter {

@\ggr egat or
public Delivery aggregatingMethod(List<Orderltenr itens) {

}

@Rel easeStr at egy
publ i ¢ bool ean rel easeChecker (Li st <Message<?>> nmessages) {

}

@correl ationStrat egy
public String correlateBy(Orderltemiten) {

}

An annotation indicating that this method shall be used as an aggregator. Must be specified if this class
will be used as an aggregator.

An annotation indicating that this method shall be used as the release strategy of an aggregator. If not
present on any method, the aggregator will use the SequenceSizeCompl etionStrategy .

An annotation indicating that this method shall be used as the correlation strategy of an aggregator. If no
correlation strategy is indicated, the aggregator will use the HeaderAttributeCorrelationStrategy based
on CORRELATION_ID.

All of the configuration options provided by thexml element are al so availablefor the @A ggregator annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is defined on the
class, detected automatically through classpath scanning.

Spring Integration
2.0.0.RC1 Reference Manual 57

Spring Integration

12. Resequencer

12.1 Introduction

Related to the Aggregator, albeit different from afunctional standpoint, isthe Resequencer.

12.2 Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the CORRELATION _ID
to store messages in groups, the difference being that the Resequencer does not process the messages in any
way. It simply releases them in the order of their SEQUENCE _NUMBER header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence, according to
the SEQUENCE_SIZE, has been released), or as soon as avalid sequenceis available.

12.3 Configuring a Resequencer with XML

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<channel id="input Channel "/>
<channel id="out put Channel "/ >

<resequencer i d="conpl et el yDefi nedResequencer "
i nput - channel ="i nput Channel "
out put - channel =" out put Channel "
di scar d- channel ="di scar dChannel "
rel ease-parti al - sequences="true"
nmessage- st or e="nessageSt or e"
send-partial -resul t-on-expiry="true"
send-ti meout =" 86420000" />

Theid of the resequencer is optional.

The input channel of the resequencer. Required.

The channel where the resequencer will send the reordered messages. Optional.

The channel where the resequencer will send the messages that timed out (if send-parti al -
resul t-on-ti meout isfalse). Optional.

Whether to send out ordered sequences as soon as they are available, or only after the whole message
group arrives. Optional (false by default).

If thisflag is not specified (so a complete sequence is defined by the sequence headers) then it can make
sense to provide a custom Conpar at or to be used to order the messages when sending (use the XML
attribute conpar at or to point to a bean definition). If r el ease-parti al - sequences istrue
then there is no way with a custom comparator to define a partial sequence. To do that you would have
to provide ar el ease- str at egy (aso a reference to another bean definition, either a POJO or a
Rel easeStrat egy).

A reference to a MessageG oupSt or e that can be used to store groups of messages under their
correlation key until they are complete. Optional with default avolatile in-memory store.

Spring Integration
2.0.0.RC1 Reference Manual 58

Spring Integration

Whether, upon the expiration of the group, the ordered group should be sent out (even if some of the

messages are missing). Optional (false by default). See Section 11.5, “Managing State in an Aggregator:
MessageGroupStore”.

The timeout for sending out messages. Optional.

Note

"

Since there is no custom behavior to be implemented in Java classes for resequencers, thereisno
annotation support for it.

Spring Integration

2.0.0.RC1 Reference Manual

59

Spring Integration

13. Delayer

13.1 Introduction

A Delayer isasimple endpoint that allows aMessage flow to be delayed by a certain interval. When aMessage
isdelayed, the original sender will not block. Instead, the delayed Messages will be scheduled with an instance
of java. util.concurrent. Schedul edExecut or Ser vi ce to be sent to the output channel after
the delay has passed. This approach is scalable even for rather long delays, since it does not result in alarge
number of blocked sender Threads. On the contrary, in the typical case athread pool will be used for the actual
execution of releasing the Messages. Below you will find several examples of configuring a Delayer.

13.2 The <delayer> Element

The <delayer> element is used to delay the Message flow between two Message Channels. As with the other
endpoints, you can provide the "input-channel” and "output-channel” attributes, but the delayer also requires
at least the 'default-delay’ attribute with the number of milliseconds that each Message should be delayed.

<del ayer input-channel ="input" default-del ay="3000" out put-channel ="out put"/>

If you need per-Message determination of the delay, then you can aso provide the name of a header within
the 'delay-header-name’ attribute:

<del ayer i nput-channel ="i nput" out put-channel =" out put"
def aul t - del ay="3000" del ay- header - nane="del ay"/ >

In the exampl e above the 3 second delay would only apply in the case that the header value is not present for
a given inbound Message. If you only want to apply a delay to Messages that have an explicit header value,
then you can set the 'default-delay’ to 0. For any Message that has a delay of 0 (or less), the Message will be
sent directly. In fact, if there is not a positive delay value for a Message, it will be sent to the output channel
on the calling Thread.

Tip

1 The delay handler actually supports header values that represent an interval in milliseconds (any
Object whoset oSt ri ng() method produces avalue that can be parsed into aLong) as well as
j ava. util . Dat e instances representing an absolute time. In the former case, the milliseconds
will be counted from the current time (e.g. a value of 5000 would delay the Message for at least 5
secondsfrom thetimeit isreceived by the Delayer). Inthelatter case, with an actual Date instance,
the Message will not be released until that Date occurs. In either case, a value that equates to a
non-positive delay, or aDatein the past, will not result in any delay. Instead, it will be sent directly
to the output channel in the original sender's Thread.

The delayer delegates to an instance of Spring's TaskSchedul er abstraction. The default scheduler is
a Thr eadPool TaskSchedul er instance with a pool size of 1. If you want to delegate to a different
scheduler, you can provide a reference through the delayer element's 'scheduler’ attribute:

<del ayer i nput-channel ="i nput" out put - channel =" out put "
def aul t - del ay="0" del ay- header - name="del ay"
schedul er =" exanpl eTaskSchedul er"/ >

Spring Integration
2.0.0.RC1 Reference Manual 60

Spring Integration

<t ask: schedul er id="exanpl eTaskSchedul er" pool -si ze="3"/>

Spring Integration
2.0.0.RC1 Reference Manual

61

Spring Integration

14. Message Handler Chain

14.1 Introduction

The MessageHandl er Chai n is an implementation of MessageHandl| er that can be configured as a
single Message Endpoint while actually delegating to a chain of other handlers, such as Filters, Transformers,
Splitters, and so on. This can lead to amuch simpler configuration when several handlers need to be connected
in a fixed, linear progression. For example, it is fairly common to provide a Transformer before other
components. Similarly, when providing a Filter before some other component in a chain, you are essentialy
creating a Selective Consumer [http://www.eal patterns.com/MessageSel ector.html]. In either case, the chain
only requires a single input-channel and a single output-channel as opposed to the configuration of channels
for each individual component.

Tip

1 Spring Integration's Filter provides a boolean property ‘throwExceptionOnRejection’. When
providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to 'true' (the default is false) so that the dispatcher
will know that the Message was rejected and as a result will attempt to pass the Message on to
other subscribers. If the Exception were not thrown, then it would appear to the dispatcher as if
the Message had been passed on successfully even though the Filter had dropped the Message to
prevent further processing.

The handler chain simplifies configuration while internally maintaining the same degree of loose coupling
between components, and it is trivial to modify the configuration if at some point a non-linear arrangement
isrequired.

Internally, the chain will be expanded into alinear setup of the listed endpoints, separated by direct channels.
The reply channel header will not be taken into account within the chain: only after the last handler isinvoked
will the resulting message be forwarded on to the reply channel or the chain's output channel. Because of this
setup all handlers except thelast requireaset Qut put Channel implementation. Thelast handler only needs
an output channel if the outputChannel on the MessageHandlerChain is set.

Note

As with other endpoints, the output-channel is optional. If there is a reply Message at the end of
the chain, the output-channel takes precedence, but if not available, the chain handler will check
for areply channel header on the inbound Message.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on
namespace support for the chain element. Most Spring Integration endpoints, like Service Activators and
Transformers, are suitable for use within aMessageHand!| er Chai n.

Spring Integration
2.0.0.RC1 Reference Manual 62

http://www.eaipatterns.com/MessageSelector.html
http://www.eaipatterns.com/MessageSelector.html

Spring Integration

14.2 The <chain> Element

The <chain> element provides an 'input-channel' attribute, and if the last element in the chain is capable of
producing reply messages (optional), it aso supports an ‘output-channel’ attribute. The sub-elements are then
filters, transformers, splitters, and service-activators. The last element may also be arouter.

<chai n i nput -channel ="i nput" out put - channel =" out put ">
<filter ref="someSel ector" throw exception-on-rejection="true"/>
<header - enri cher error-channel ="cust onErr or Channel ">
<header nane="foo" val ue="bar"/>
</ header - enri cher>

<service-activator ref="someService" nethod="sonmeMethod"/>
</ chai n>

The <header-enricher> element used in the above examplewill set amessage header with name"foo" and value
"bar" on the message. A header enricher is a specialization of Transformer that touches only header values.
Y ou could obtain the same result by implementing a MessageHandler that did the header modifications and
wiring that as a bean.

Some time you need to make a nested call to another chain from within the chain and then come back and
continue execution within the origina chain. To accomplish this you can utilize Messaging Gateway by
including light-configuration via <gateway> element. For example:

<si:chai n id="mai n-chai n" input-channel ="i nput A" out put - channel ="i nput B">
<si : header-enri cher >
<si : header name="nane" val ue="Many" />
</ si : header -enri cher >
<si:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</ si:service-activator>

<si : gat eway request-channel ="i nputC'/>
</ si : chai n>
<si:chai n i d="nest ed-chai n-a" input-channel ="i nput C'>

<si : header-enri cher >
<si : header nanme="nane" val ue="Me" />
</ si : header -enri cher >
<si : gat eway request-channel ="i nputD'/>
<si:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</si:service-activator>
</ si : chai n>
<si:chai n id="nest ed-chai n-b" input-channel ="i nput D'>
<si : header-enri cher >
<si : header nanme="nane" val ue="Jack" />
</ si : header -enri cher >
<si:service-activator>
<bean cl ass="org. f 0o. Sanpl eServi ce" />
</ si :service-activator>
</ si : chai n>

In the above example the nested-chain-a will be called at the end of main-chain processing by the 'gateway’
element configured there. While in nested-chain-a a call to a nested-chain-b will be made after header
enrichment and then it will come back to finish execution in nested-chain-b finally getting back to the
main-chain. When light version of <gateway> element is defined in the chain Sl will construct an instance
Si mpl eMessagi ngGat eway (no need to provide 'service-interface’ configuration) which will take the

Spring Integration
2.0.0.RC1 Reference Manual 63

Spring Integration

message in its current state and will place it on the channel defined via 'request-channel’ attribute. Upon
processing Message will be returned to the gateway and continue its journey within the current chain.

Spring Integration
2.0.0.RC1 Reference Manual 64

Spring Integration

15. Messaging Bridge

15.1 Introduction

A Messaging Bridge is arelatively trivial endpoint that smply connects two Message Channels or Channel
Adapters. For example, you may want to connect aPol | abl eChannel toaSubscri babl eChannel so
that the subscribing endpoints do not have to worry about any polling configuration. Instead, the Messaging
Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a M essaging Bridge can be used to throttle inbound
Messages. The poller'strigger will determine the rate at which messages arrive on the second channel, and the
poller's "maxM essagesPerPoll" property will enforce alimit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration's role would be limited to making the connection between these systems and managing a poller if
necessary. It is probably more common to have at least a Transformer between the two systems to translate
between their formats, and in that case, the channels would be provided as the 'input-channel' and ‘output-
channel’ of aTransformer endpoint. If dataformat translation is not required, the M essaging Bridge may indeed
be sufficient.

15.2 The <bridge> Element

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel" attributes:

<bri dge i nput-channel ="i nput" out put - channel =" out put "/ >
As mentioned above, a common use case for the Messaging Bridge is to connect a Pol | abl eChannel

to a Subscri babl eChannel , and when performing this role, the Messaging Bridge may also serve as a
throttler:

<bri dge i nput-channel ="pol | abl e" out put - channel =" subscri babl e">
<pol | er max- nessages- per-pol | ="10" fi xed-rate="5000"/>
</ bri dge>

Connecting Channel Adaptersisjust as easy. Here is a simple echo example between the "stdin" and "stdout"
adapters from Spring Integration's "stream" namespace.

<stream st di n-channel - adapter id="stdin"/>

<stream st dout - channel - adapt er id="stdout"/>

<bridge id="echo" input-channel ="stdin" output-channel ="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter bridges,
such as Fileto IMS, or Mail to File. The various Channel Adapterswill be discussed in upcoming chapters.

Spring Integration
2.0.0.RC1 Reference Manual 65

Spring Integration

Note

If no 'output-channel’ is defined on a bridge, the reply channel provided by the inbound Message
will be used, if available. If neither output or reply channel is available, an Exception will be

thrown.

Spring Integration
2.0.0.RC1 Reference Manual

66

Spring Integration

16. Inbound Messaging Gateways

16.1 GatewayProxyFactoryBean

Working with Objects instead of Messages is an improvement. However, it would be even better to have
no dependency on the Spring Integration APl at all - including the gateway class. For that reason, Spring
Integration also provides a Gat ewayPr oxyFact or yBean that generates a proxy for any interface and
internally invokes the gateway methods shown above. Namespace support is also provided as demonstrated
by the following example.

<gat eway i d="fooService"
servi ce-interface="org. exanpl e. FooServi ce"
def aul t - request - channel ="r equest Channel "
def aul t -repl y- channel ="r epl yChannel "/ >

Then, the "fooService" can be injected into other beans, and the code that invokes the methods on that proxied
instance of the FooService interface has no awareness of the Spring Integration API. The general approach is
similar to that of Spring Remoting (RMI, Httplnvoker, etc.). See the "Samples’ Appendix for an example that
uses this "gateway" element (in the Cafe demo).

The reason that the attributes on the 'gateway' element are named 'default-request-channel’ and ‘default-reply-
channel' is that you may also provide per-method channel references by using the @Gateway annotation.

public interface Cafe {

@zat eway (r equest Channel =" or ders")
voi d pl aceOrder (Order order);

}
... aswell asmet hod sub element if yuo prefer XML configuration (see next paragraph)

It is aso possible to pass values to be interpreted as Message headers on the Message that is created and sent
to the request channel by using the @Header annotation:

public interface FileWiter {

@zat eway(request Channel ="fil esCut")
void wite(byte[] content, @eader (Fi|eHeaders. FI LENAVE) String fil enane);

}

If you prefer XML way of configuring Gateway methods, you can provide method sub-elementsto the gateway
configuration (see below)

<si:gateway id="nyGateway" service-interface="org.foo.bar. Test Gat eway"

def aul t -request - channel ="i nput C' >
<si : net hod name="echo" request-channel ="input A" reply-tineout="2" request-tineout="200"/>
<si : met hod name="echoUpper Case" request-channel ="i nputB"/>

<si : met hod nanme="echoVi aDef aul t"/>
</ si : gat eway>

You can also provide individual headers per method invocation via XML. This could be very useful if the
headers you want to set are static in nature and you don't want to embed them in the gateway's method

Spring Integration
2.0.0.RC1 Reference Manual 67

Spring Integration

signature via @Header annotations. For example, in the Loan Broker example we want to influence how
aggregation of the Loan quotes will be done based on what type of request was initiated (single quote or
al quotes). Determining the type of the request by evaluating what gateway method was invoked, although
possible would violate the separation of concerns paradigm (method is a java artifact), but expressing your
intention (meta information) via Message headers is natural in a Messaging architecture.

<i nt:gateway id="|oanBroker Gat eway"
servi ce-interface="org.springframework.integration.| oanbroker. LoanBroker Gat eway" >
<i nt:nethod nane="get LoanQuot e" request-channel ="| oanBr oker Pr ePr ocessi ngChannel ">
<i nt: header nanme="RESPONSE TYPE" val ue="BEST"/>
</int: met hod>
<i nt:nethod nane="get Al | LoanQuot es" request-channel ="| oanBr oker Pr ePr ocessi ngChannel ">
<i nt: header name="RESPONSE TYPE" val ue="ALL"/>
</int: met hod>
</int: gat eway>

In the above case you can clearly see how a different header value will be set for the 'RESPONSE_TY PE'
header based on the gateway's method.

As with anything else, Gateway invocation might result in errors. By default any error that has occurred
downstream will be re-thrown as a MessagingExeption (RuntimeException) upon the Gateway's method
invocation. However there are times when you may want to treat an Exception as a valid reply, by mapping
it to a Message. To accomplish this our Gateway provides support for Exception mappers via the exception-
mapper attribute.

<si : gat eway i d="sanpl eGat eway"
def aul t - request - channel =" gat ewayChannel "
servi ce-interface="foo. bar. Si npl eGat eway"
excepti on- mapper =" excepti onMapper"/ >

<bean i d="excepti onMapper" cl ass="f 0o. bar. Sanpl eExcepti onMapper"/>

foo.bar.Sampl eExceptionMapper is the implementation of
org.springframewor k.integration.message.l nboundMessageMapper which only defines one method:
t oMessage(Qhj ect object).

public static class Sanpl eExcepti onMapper inpl enments | nboundMessageMapper <Thr owabl e>{
publ i c Message<?> t oMessage(Throwabl e obj ect) throws Exception {
MessageHandl i ngExcepti on ex = (MessageHandl i ngExcepti on) object;
return MessageBui |l der.wi t hPayl oad("Error happened in nessage: " +
ex. get Fai | edMessage() . get Payl oad()) . buil d();

| mportant

! Exposing messaging system via POJO Gateway isobviously agreat benefit, but it doescomeat the
price so there are certain things you must be aware of. We want our Java method to return as quick
as possible and not hang for infinite amount of time until they can return (void , exception or return
value). When regular methods are used as a proxies in front of the Messaging system we have to
take into account the asynchronous nature of the Messaging Systems. This means that there might

Spring Integration
2.0.0.RC1 Reference Manual 68

Spring Integration

be a chance that aMessage hat was initiated by a Gateway could be dropped by aFilter, thus never
reaching acomponent that isresponsible to produce areply. Some Service Activator method might
result in the Exception, thus resulting in no-reply (as we don't generate Null messages).So as you
can see there are multiple scenarios where reply message might not be coming which is perfectly
natural in messaging systems. However think about the implication on the gateway method. The
Gateway's method input arguments were incorporated into a Message and sent downstream. The
reply Message would be converted to a return value of the Gateway's method. So you can see
how ugly it could get if you can not guarantee that for each Gateway call there will alway be a
reply Message. Basically your Gateway method will never return and will hang infinitely. (work
in progress!!!!) One of the ways of handling this situation is via AsyncGateway (explained later
in this section). Another way of handling it is to explicitly set the reply-timeout attribute. This
way gateway will not hang for more then the time that was specified by the reply-timout and will
return 'null’.

16.2 Asynchronous Gateway

As a pattern the Messaging Gateway is a very nice way to hide messaging-specific code while still exposing
the full capabilities of the messaging system. And Gat ewayPr oxyFact or yBean provides a convenient
way to expose a Proxy over a service-interface thus giving you a POJO-based access to a messaging system
(based on objectsin your own domain, or primitives/Strings, etc). But when a gateway is exposed viasimple
POJO methods which return valuesit doesimply that for each Request message (generated when the method is
invoked) there must be a Reply message (generated when the method has returned). Since Messaging systems
naturally are asynchronous you may not always be able to guarantee the contract where "for each request
there will always be beareply”. With Spring Integration 2.0 we are introducing support for an Asynchronous
Gateway which is a convenient way to initiate flows where you may not know if areply is expected or how
long will it take for it to arrive.

A natural way to handle these types of scenarios in Java would be relying upon java.util.concurrent.Future
instances, and that is exactly what Spring Integration uses to support an Asynchronous Gateway.

From the XML configuration, there is nothing different and you still define Asynchronous Gateway the same
way as aregular Gateway.

<int:gateway id="nmathService"
service-interface="org. springframework.integration. sanpl e. gat eway. f ut ures. Mat hSer vi ceGat eway"
def aul t - request - channel ="r equest Channel "/ >

However the Gateway Interface (service-interface) is a bit different.

public interface MthServiceGateway {
Fut ure<lI nteger> nul ti pl yByTwo(int i);
}

As you can see from the example above the return type for the gateway method is Fut ur e. When
Gat ewayPr oxyFact or yBean seesthat the return type of the gateway method is Fut ur e, it immediately
switches to the async mode by utilizing an AsyncTaskExecut or . That isall. The call to amethod always
returns immediately with Fut ur e encapsulating the interaction with the framework. Now you can interact
with the Fut ur e at your own pace to get the result, timeout, get the exception etc...

Spring Integration
2.0.0.RC1 Reference Manual 69

Spring Integration

Mat hSer vi ceGat eway mat hServi ce = ac. get Bean("mat hServi ce", MathServi ceGat eway. cl ass) ;
Fut ure<l nteger> result = nat hService. nul ti pl yByTwo(nunber);
/1 do sonething el se here since the reply m ght take a nonent
int final Result = result.get (1000, Ti meUnit.SECONDS);
For amore detailed example, please refer to the async-gateway sample distributed within the Spring Integration

samples.

16.3 Gateway behavior when no response is coming

As it was explained earlier, Gateway provides a convenient way of interacting with Messaging system via
POJO method invocations, but realizing that atypical method invocation, which isgenerally expected to aways
return (even with Exception), might not always map one-to-one to message exchanges (e.g., reply message
might not be coming which is equivalent to method not returning), it is important to go over several scenarios
especidly in the Sync Gateway case and understand what the default behavior of the Gateway and how to
deal with these scenarios to make Sync Gateway behavior more predictable regardless of the outcome of the
message flow that was initialed from such Gateway.

There are certain attributes that could be configured to make Sync Gateway behavior more predictable, but
some of them might not always work as you might have expected. One of them is reply-timeout. So, lets
look at the reply-timeout attribute and see how it can/can't influence the behavior of the Sync Gateway in
various scenarios. We will look at single-theraded scenario (all components downstream are connected via
Direct Channel) and multi-theraded scenarios (e.g., somewhere downstream you may have Pollable or Executor
Channel which breaks single-thread boundary)

Long running process downstream

Sync Gateway - single-threaded. If a component downstream is till running (e.g., infinite loop or avery slow
service), then setting reply-timeout has no effect and Gateway method call will not return until such downstream
service exits (e.g., return or exception). Sync Gateway - multi-threaded. If a component downstream is still
running (e.g., infinite loop or a very slow service), in a multi-threaded message flow setting reply-timeout
will have an effect by allowing gateway method invocation to return once the timeout has been reached,
since Gat ewayPr oxyFact or yBean will simply poll on the reply channel waiting for a message untill
the timeout expires. However it could result in the 'null' return from the Gateway method if the timeout has
been reached before the actual reply was produced. It is also important to understand that the reply message (if
produced) will be sent to areply channel after Gateway method invocation might have returned, so you must
be aware of that and design your flow with thisin mind.

Downstream component returns 'null’

Sync Gateway - single-threaded. If a component downstream returns 'null’ and no reply-timeout has been
configured, the Gateway method call will hang indefinitely unless: @) reply-timeout has been configured or b)
requires-reply attribute has been set on the downstream component (e.g., service-activator) that might return
'null’. Inthis case, the exception will bethrown and propagated to the Gateway. Sync Gateway - multi-threaded.
Behavior isthe same as above.

Downstream component return signature is 'void' while Gateway method signature is non-void

Spring Integration
2.0.0.RC1 Reference Manual 70

Spring Integration

Sync Gateway - single-threaded. If a component downstream returns 'void' and no reply-timeout has been
configured, the Gateway method call will hang indefinitely unless reply-timeout has been configured Sync
Gateway - multi-threaded Behavior is the same as above.

Downstream component results in Runtime Exception (regardless of the method signature)

Sync Gateway - single-threaded. If acomponent downstream throws a Runtime Exception, such exception will
be propagated via Error Message back to the gateway and re-thrown. Sync Gateway - multi-threaded Behavior
is the same as above.

| mportant

It is also important to understand that by default reply-timout is unbounded which means that
if not explicitly set there are several scenarios (described above) where your Gateway method
invocation might hang indefinitely, so make sure you analyze your flow and if there is even a
remote possibility of one of these scenariosto occur, set thereply-timout attributeto a'safe’ value or
better off set the requires-reply attribute of the downstream component to 'true' to ensure atimely
response. But also, realize that there are some scenarios (see the very first one) where reply-timout
will not help which meansiit is also important to analyze your message flow and decide when to
use Sync Gateway vs Async Gateway where Gateway method invocation is always guaranteed to
return while giving you amore granular control over the results of the invocation via Java Futures.

Also, when dealing with Router you should remember that seeting resolution-required attribute to
'true’ will result in the exception thrown by the router if it can not resolve a particular chanel. And
when dealing with the filter you can also set throw-exception-on-rejection attribute. Both of these
will help to ensure atimely response from the Gateway method invocation.

2.0.0.RC1

Spring Integration
Reference Manual 71

Spring Integration

17. Message Publishing

The AOP Message Publishing feature allows you to construct and send a message as a by-product of method
invocation. For example, imagine you have a component and every time the state of this component changes
you would like to be notified via a Message. The easiest way to send such notifications would be to send a
message to a dedicated channel, but how would you connect the method invocation that changes the state of
the object to a message sending process, and how should the notification Message be structured? The AOP
Message Publishing feature handles these responsibilities with a configuration-driven approach.

17.1 Message Publishing Configuration
Spring Integration provides two approaches. XML and Annotation-driven.

Annotation-driven approach via @Publisher annotation

The annotation-driven approach alows you to annotate any method with the @ubl i sher annotation,
specifying ‘channel’ attribute. The Message will be constructed from the return value of method invocation
and sent to a channel specified by 'channel’ attribute. To further manage message structure you can also use a
combination of both @ay| oad and @eader annotations.

Internally message publishing feature of Spring Integration uses both Spring AOP by defining
Publ i sher Annot at i onAdvi sor and Spring 3.0 Expression Language (SpEL) support, giving you
considerable flexibility and control over the structure of the Message it will build.

Publ i sher Annot at i onAdvi sor defines and binds the following variables:

 #return - will bind to areturn value allowing you to referenceit or its attributes (e.g., #return.foo where 'foo'
is an attribute of the object bound to #return)

 #Hexception - will bind to an exception if one is thrown by the method invocation.

» #args - will bind to method arguments, so individual arguments could be extracted by name (eg.,
#args.fname as in the above method)

Let'slook at couple of examples:

@ubl i sher
public String defaul tPayload(String fname, String |nanme) {
return fname + " " + | nane;

}
In the above exampl e the Message will be constructed with the following structure:
» Message payload - will be the return type and value of the method. Thisis the default.

* A newly constructed message will be sent to a default publisher channel configured with annotation post
processor (see the end of this section).

@,ubl i sher (channel ="t est Channel ")
public String defaultPayload(String fnane, @ieader("last") String | nane) {

Spring Integration
2.0.0.RC1 Reference Manual 72

Spring Integration

return fname + " " + | nane;

}

In this example everything is the same as above, however we are not using default publishing channel. Instead
we are specifying the publishing channd via 'channel’ attribute of @Publisher annotation. We are also adding
@Header annotation which results in the Message header with the name 'last' and the value of 'Iname’ input
parameter to be added to the newly constructed Message.

@Publ i sher (channel ="t est Channel ")

@Pay| oad

public String defaultPayl oadBut ExplicitAnnotation(String fname, @deader String | nane) {
return fname + " " + | nane;

}

The above example is amost identical to the previous one. The only difference here is that we are using
@Payload annotation on the method, thus explicitly specifying that the return value of the method should be
used as a payload of the Message.

@Publ i sher (channel ="t est Channel ")

@Payl oad("#return + #args. | name")

public String setName(String fname, String |name, @deader("x") int num) {
return fname + " " + | nane;

}

Here we are expending on the previous configuration by using Spring Expression language in the @Payload
annotation further instructing the framework on how the message should be constructed. In this particular case
the message will be a concatenation of the return value of the method invocation and 'Iname'’ input argument.
Message header 'x' with value of 'num’ input argument will be added to the newly constructed Message.

@ubl i sher (channel ="t est Channel ")
public String argunent AsPayl oad(@ayl oad String fnane, @dader String | nane) {
return fname + " " + | nane;

}

In the above example you see another usage of @Payload annotation. Here we are annotating method argument
which will become a payload of newly constructed message.

As with most other annotation-driven features in Spring, you will need to register a post-processor
(Publ i sher Annot at i onBeanPost Pr ocessor).

<bean cl ass="org. spri ngfranmework.integration.aop. Publi sher Annot ati onBeanPost Processor"/ >

Y ou can also use namespace support for added convenience:

<si:annot ati on-confi g default-publisher-channel ="defaul t Channel "/ >

Similar to other Spring annotations (e.g., @Controller), @Publ i sher isameta-annotation, which meansyou
can define your own annotations that will be treated as @Publ i sher

@rar get ({ El enent Type. METHOD, El enent Type. TYPE})
@Ret enti on(Ret ent i onPol i cy. RUNTI VE)

@,ubl i sher (channel =" audi t Channel ")

public @nterface Audit {

}

Spring Integration
2.0.0.RC1 Reference Manual 73

Spring Integration

Herewedefined @Audi t annotation whichitself isa@Publ i sher . Also notethat you can definechannel
attribute on the meta-annotation thus encapsul ating the behavior of where messages will be sent inside of this
annotation. Now you can annotate any method:

@\udi t
public String test() {
return "foo";

}
In the above example every invocation of t est () method will result in Message with payload which is the
return value of the method invocation to be sent to auditChannel Y ou can a so annotate the class which would
mean that the properties of this annotation will be applied on every public method of this class

@\udi t
static class Banki ngQperationsl npl inplenents Banki ngQperations {

public String debit(String amount) {
}
public String credit(String amount) {

}
}

XML-based approach via <publishing-interceptor> element

The XM L-based approach allows you to configure the same AOP-based M essage Publishing functionality with
simple namespace-based configuration of a MessagePubl i shi ngl nt er cept or. It certainly has some
benefits over the annotation-driven approach since it alowsyou to use AOP pointcut expressions, thus possibly
intercepting multiple methods at once or intercepting and publishing methods to which you don't have the
source code.

To configure Message Publishing via XML, you only need to do the following two things:

* Provide configuration for MessagePublishinglnterceptor via the <publishing-
i nt er cept or > XML element.

» Provide AOP configuration to apply the MessagePubl i shi ngl nt er cept or to managed objects.

<aop: confi g>
<aop: advi sor advi ce-ref="interceptor" pointcut="bean(testBean)" />
</ aop: confi g>
<publ i shing-interceptor id="interceptor" default-channel ="defaul t Channel ">

<net hod pattern="echo" payl oad="'Echoing: ' + #return" channel ="echoChannel ">
<header nane="foo0" val ue="bar"/>

</ met hod>

<net hod pattern="repl *" payl oad="' Echoi ng: ' + #return" channel ="echoChannel ">
<header nane="fo0o0" expression="'bar'.toUpperCase()"/>

</ met hod>

<nmet hod pattern="echoDef*" payl oad="#return"/>
</ publ i shi ng-i nt er cept or >

Asyou can seethe<publ i shi ng-i nt er cept or > configuration look rather similar to Annotation-based
approach and it also utilizes the power of the Spring 3.0 Expression Language.

Spring Integration
2.0.0.RC1 Reference Manual 74

Spring Integration

In the above example the execution of the echo method of at est Bean will render a Message with the
following structure:

» The Message payload will be of type String and value of "Echoing: [value]” where val ue is the value
returned by an executed method.

» The Message will have header with the key "foo" value "bar".
» The Message will be sent to echoChannel .

The second method is very similar to the first. Here every method that beginswith 'repl’ will render aMessage
with the following structure:

* The Message payload will be the same asin the above sample

» The Message will have header with the key "foo" and value that is the result of the SpEL expression
"bar'.toUpper Case() .

» The Message will be sent to echoChannel .

The second method, mapping the execution of any method that begins with echoDef of t est Bean, will
produce a M essage with the following structure.

» The Message payload will be the value returned by an executed method.

» Sincethechannel attributeisnot provided explicitly, the Message will be sent tothedef aul t Channel
defined by the publisher.

For simple mapping rules you can rely on the publisher defaults. For example:

<publ i shi ng-interceptor id="anotherlnterceptor"/>

This will map the return value of every method that matches the pointcut expression to a payload and will
be sent to a default-channel. If the defaultChannelis not specified (as above) the messages will be sent to the
globa nullChannel.

Async Publishing

Oneimportant thing to understand is that publishing occursin the same thread as your component's execution.
So by default in is synchronous. This means that the entire message flow would have to wait until he
publisher flow completes. However, quite often you want the complete opposite and that is to use Message
publishing feature to initiate asynchronous sub-flows. For example, you might host a service (HTTP, WS
etc.) which receives a remote request.Y ou may want to send this request internally into a process that might
take a while. However you may also want to reply to the user right away. So, instead of sending inbound
regquest for processing via the output channel (the conventional way), you can simply use "outout-channel
or $replyChannel" header to send simple acknowledgment-like reply back to the caller while using Message
publisher feature to initiate a complex flow.

EXAMPLE: Here is the smple service that receives a complex payload, which needs to be sent further for
processing, but it also need to reply to the caller with a simple acknowledgment.

Spring Integration
2.0.0.RC1 Reference Manual 75

Spring Integration

public String echo(Object conpl exPayl oad) {
return "ACK";

}
So instead of hooking up the complex flow to the output channel we use Message publishing feature instead
configuring it to create a new Message using the input argument of the service method (above) and sending it
to the 'local ProcessChannel’. And to make sure this sub-flow is asynchronous all we need to do is make sure
that we send it to any type of async channel (ExecutorChannel in this example).

<int:service-activator input-channel="inputChannel" out put-channel ="out put Channel " ref ="sanpl eservi ce"/>
<bean i d="sanpl eservi ce" class="test. Sanpl eService"/>

<aop: confi g>
<aop: advi sor advi ce-ref="interceptor" pointcut="bean(sanpl eservice)" />
</ aop: confi g>

<int:publishing-interceptor id="interceptor" >
<int:nethod pattern="echo" payl oad="#args[0]" channel ="| ocal ProcessChannel ">
<i nt: header nanme="sanpl e_header" expressi on=""'sone sanple value'"/>
</int: met hod>
</int:publishing-interceptor>

<i nt:channel id="I|ocal ProcessChannel ">

<i nt:di spatcher task-executor="executor"/>
</int:channel >
<t ask: execut or id="executor" pool -size="5"/>

Another way of handling thi type of scenario is through wire-tap

Producing and publishing messages based on a scheduled trigger

In the above sections we looked at the Message publishing feature of Spring Integration which constructs and
publishes messages as by-products of Method invocations. However in that case, you are still responsible for
invoking the method. In Spring Integration 2.0 we've added another related useful feature: support for scheduled
Message producers/publishers via the new "expression” attribute on the 'inbound-channel-adapter' element.
Scheduling could be based on several triggers, any one of which may be configured on the 'poller' sub-element.
Currently we support cr on, fi xed-r at e, fi xed- del ay aswell as any custom trigger implemented by
you.

As mentioned above, support for scheduled producers/publishers is provided via the <inbound-channel-
adapter> xml element. Let'slook at couple of examples:

<i nbound- channel - adapt er i d="fi xedDel ayProducer"
expressi on=""fi xedDel ayTest" "
channel ="fi xedDel ayChannel ">
<pol | er fixed-del ay="1000"/>
</ i nbound- channel - adapt er >

In the above example an inbound Channel Adapter will be created which will construct a Message with its
payload being the result of the expression definedintheexpr essi on attribute. Such message will be created
and sent every time after the delay specified by thef i xed- del ay attribute.

<i nbound- channel - adapt er i d="fi xedRat ePr oducer"
expression=""'fixedRateTest"'"

Spring Integration
2.0.0.RC1 Reference Manual 76

Spring Integration

channel ="fi xedRat eChannel " >
<pol | er fixed-rate="1000"/>
</ i nbound- channel - adapt er >

This example is very similar to the previous one, except that we are using the f i xed- r at e attribute which
will allow usto send messages at a fixed rate (measuring from the start time of each task).

<i nbound- channel - adapt er i d="cronProducer"
expressi on=""'cronTest" "
channel ="cr onChannel ">
<poller cron="7 6 5 4 3 ?"/>
</i nbound- channel - adapt er >

This example demonstrates how you can apply a Cron trigger with avalue specified in the cr on attribute.

<i nbound- channel - adapt er i d="header Expr essi onsPr oducer"
expr essi on=""' header Expr essi onsTest"' "
channel =" header Expr essi onsChannel "
aut o-startup="fal se">
<pol I er fixed-del ay="5000"/>
<header nane="foo" expression="6 * 7"/>
<header nane="bar" val ue="x"/>
</ i nbound- channel - adapt er >

Here you can see that in a way very similar to the Message publishing feature we are enriching a newly
constructed Message with extra Message headers which could take scalar values as well as the results of
evaluating Spring expressions.

If you need to implement your own custom trigger you can usethet ri gger attribute to provide areference
to any spring configured bean which implementstheor g. spri ngf r amewor k. schedul i ng. Tri gger
interface.

<i nbound- channel - adapt er i d="tri gger Ref Producer"
expressi on=""triggerRef Test'" channel ="tri gger Ref Channel ">
<pol I er trigger="customlrigger"/>
</ i nbound- channel - adapt er >

<beans: bean i d="custonflrigger" class="org.springfranmework.schedul i ng. support. Periodi cTri gger">
<beans: constructor-arg val ue="9999"/>
</ beans: bean>

Spring Integration
2.0.0.RC1 Reference Manual 77

Spring Integration

18. Transaction Support

18.1 Understanding Transactions in Message flows

Spring Integration exposes severa hooks to address transactional needs of you message flows. But to better
understand these hooks and how you can benefit from them we must first revisit the 6 mechanisms that could
be used to initiate Message flows and see how transactional needs of these flows could be addressed within
each of these mechanisms.

Here are the 6 mechanisms to initiate a Message flow and their short summary (details for each are provided
throughout this manual):

o Gateway Proxy - Y our basic Messaging Gateway
» MessageChannel - Direct interactions with MessageChannel methods (e.g., channel.send(message))
» Message Publisher - the way to initiate message flow as a bi-product of method invocations on Spring beans

 Inbound Channel Adapters/Gateways - the way to initiate message flow based on connecting third-party
system with Spring Integration messaging system(e.g., [JmsMessage] -> Jms Inbound Adapter[SI M essage]
-> S| Channel)

« Scheduler - the way to initiate message flow based on scheduling events distributed by a pre-configured
Scheduler

» Poller - similar to the Scheduler and is the way to initiate message flow based on scheduling or interval-
based events distributed by a pre-configured Poller

These 6 cold be split in 2 general categories:

» Message flows initiated by a USER process - Example scenarios in this category would be invoking a
Gateway method or explicitly sending a M essage to a M essageChannel. In other words these message flows
depend on third party process (e.g., some code that we wrote) to beinitiated

» Message flows initiated by the DAEMON process - Example scenarios in this category would be a Poller
polling for a Message queue to initiate a new Message flow with the polled Message or a Scheduler
scheduling the process, by creating a new Message and initiating a message flow at a predefined time

Clearly the Gateway Proxy, MessageChannel .send(..) and MessagePublisher are al belong to the 1st category
and Inbound Adapter sGateways, Scheduler and Poller belong to the 2nd.

So, how do we address transactional needs in various scenarios within each category and is there a need for
Spring Integration to provide something explicitly with regard to transaction for aparticul ar scenario or Spring's
Transaction Support could be leveraged instead?.

First of al, the first and obvious goal is NOT to re-invent something that has already been invented unlessyou
can provide abeter solution. In our case Spring itself provides afirst class support for transaction management.
So our goal here is not to provide something new but rather delegate/use Spring to benefit from the existing
support for transactions. In other words as aframework we must expose hooks to the Transaction management

Spring Integration
2.0.0.RC1 Reference Manual 78

Spring Integration

functionality provided by Spring. But since Spring Integration configuration is based on Spring Configuration
it is not always neccessery to expose these hooks asthey already expposed via Spring natively. Remeber every
Spring Integration component is a Spring Bean after all.

With thisgoal in mind let's ook at the two scenarios.

If you think about it, Message flows that are initiated by the USER process (Category 1) and obviously
configured in Spring Application Context, are subject to transactional configuration of such process and
therefore don't need to be explicitly configured by Spring Integration to support transactions. The transaction
could and should be initiated by such process through standard Transaction support provided by Spring and
Spring Integration message flow will honor transactional semantics of the components naturally because
it is Spring configured. For example; A Gateway or ServiceActivator methods could be annotated with
@ransactional or Transacti onl nterceptor could be configured in XML configuration with
point-cut expression pointing to specific methods that should be transactional. The bottom line you have full
control over transaction configuration and boundaries in these scenarios.

However, things are a bit different when it comes to Message flows initiated by the DAEMON process
(Category 2). Although configured by the devel oper these flows do not directly involve human or some other
processto beinitiated. These are trigger-based flowsthat areinitiated by atrigger process (DAEMON process)
based on the configuration of such process. For example, we could have a Scheduler initiating a message flow
every Friday night of every week. We can also configure atrigger that initiates a Message flow every second,
etc. So, we obviously need the same way to let these trigger-based processes know of our intention to make
these Message flows transactional so Transaction context could be created whenever a new Message flow is
initiated. In other words we need to expose some Transaction configuration, but ONLY enough to delegate to
Transaction support already provided by Spring (as we do in other scenarios).

Spring Integration provides transactional support for Pollers. Pollers are a special case comoponents becouse
we can call receive() within that poller task against aresourcethat isitself transactional thusincluding receive()
call in the the boundaries of the Transaction allowing it to be rolled back in case of atask failure. If we were
to add the same support for channels, the added transactions would affect all downstream components starting
with that send() call. That is providing a rather wide scope for transaction demarcation without any strong
reason especially when Spring already provides several way to address transactional needs of any component
downstream. However the receive() method being included in a transaction boundary is the "strong reason"
for pollers.

Poller Transaction Support

Any time you configure a Poller you can provide transactional configuration via transactional element and
its attributes:

<pol | er max- nessages- per-pol | ="1" fixed-rate="1000">
<transacti onal transaction-nmanager="txManager"
i sol ati on="DEFAULT"
pr opagat i on=" REQUI RED"
read-only="true"
ti meout ="1000"/ >
</ poll er>

As you can see this configuration looks evry similar to native Spring transaction configuration. You
must till provide reference to Transaction manager and specify transaction attributes or rely on defauls

Spring Integration
2.0.0.RC1 Reference Manual 79

Spring Integration

(eg., if 'transaction-manager" attribute is not specified then it will default to the bean with the name
'transactionManager'). Internally the process would be wrapped in the Spring's native Transaction where
Transactionl ntercept or is responsible to handle transactions. For more information on how to
configure Transaction Manager, the types of Transaction Managers (e.g., JTA, Datasource etc.) and other
detailsrelated to transaction configuration please refer to Spring's Reference manual (Chapter 10 - Transaction
Management).

With the above configuration all Message flows initiated by this poller will be transactional. For more
information and details on Poller's transactional configuration please refer to section - 21.1.1. Polling and
Transactions.

There times when besides transaction several more cross cutting concerns needs to be addressed when running
Poller. To help with that, Poller element defines <advice-chain> sub-element which allows you to define a
custom chain of Advicesto be applied on the Poller. (see section 4.4 for more details) In Spring Integration 2.0
Poller went through the major refactoring effort and is now using proxy mechanism to address transactional
concerns as well as other cross cutting concerns, one of the significant changes evolving from this effort is
that we made <transactional> and <advice-chain> elements mutually exclusive. The rational behind thisis;
If you need more then one advice, and one of them is Transaction advice, then you can simply include it in
the <advice-chain> with the same convenience as before but with much more control since you now have an
option to paosition any advice in the desired order.

<pol | er max- messages- per-pol | ="1" fixed-rate="10000">
<advi ce- chai n>
<ref bean="t xAdvi ce"/>
<ref bean="soneAot her Advi ceBean" />
<beans: bean cl ass="f 0o0. bar. Sanpl eAdvi ce"/ >
</ advi ce- chai n>
</ pol | er>

<t x: advi ce i d="txAdvi ce" transaction-manager ="t xManager" >
<tx:attributes>
<t x: net hod nanme="get*" read-only="true"/>

</tx:attributes>
</t x: advi ce>

As yo can see from the example above, we have provided a very basic XML-based configuration of Spring
Transaction advice - "txAdvice" and included it within the <advice-chain> defined by the Poller. And if you
only need to address transactional concerns of the Poller, then you can still use <transactional> element as
aconvinience.

18.2 Transaction Boundaries

Another important factor that needs to be understood is the boundaries of the Transactions within the Message
flow. When transaction is started, transaction context isbound to the current thread. So regardless of how many
endpoints and channels you have in your Message flow you transaction context will be preserved as long as
you are ensuring that the flow continues on the same thread. As soon as you break it by introducing a Pollable
Channel or Executor Channel or initiate a new thread manually in some service, the Transactional boundary
will be broken as well. Essentially the Transaction will END right there and if successfull hand of happened
between the threads, the flow would be considered a success and COMMIT signal would be sent even though
the flow might still result in the exception somewhere downstream. |f such flow was synchronous the exception

Spring Integration
2.0.0.RC1 Reference Manual 80

Spring Integration

would be thrown back to the initiator of the Message flow who is aso theinitiator of the transactional context
and transaction would result in aROLLBACK.

Spring Integration
2.0.0.RC1 Reference Manual 81

Spring Integration

19. Message History

The key benefit of messaging architecture is loose coupling where participating components do not maintain
any awareness about one another. This fact alone makes you architecture extremely flexible allowing you to
change components without affecting the rest of the flow, change messaging routs, message consuming styles
(polling vs event driven) etc... However, this unassuming style of architecture could prove to be problematic
whenthingsgowrong. For example, if something happened you would probably liketo get asmuch information
about the message as you can (its origin, where it was €etc.)

Message History is one of those patterns that could help by giving you an option to maintain some level of
awareness of a message path either for debugging purposes or to maintain an audit trail. Spring integration
provides a smple way to configure your message flows to maintain Message History by adding Message
History header to a Message every time a message goes through a tracked component.

19.1 Message History Configuration

To enable Message History all you need is define nessage- hi st or y element in your configuration.

<i nt: nessage- hi story/ >

Now every named component (component that has an 'id' defined) will be tracked. The framework will set
the '$history" header in your Message who's value is very simple- Li st <Pr operti es>. The need for this
simple structure is mandated by the loosely coupled architecture of messaging systems where the framework
must not require you to share any dependencies outside of Javaitself.

<i nt:gateway id="sanpl eGat enay"
servi ce-interface="org.springframework.integration. history. sanpl e. Sanpl eGat eway"
def aul t - request - channel =" bri dgel nChannel "/ >

<int:chain id="sanpl eChai n" input-channel ="chai nChannel " out put -channel ="filter Channel ">
<i nt: header-enricher>
<i nt: header nane="baz" val ue="baz"/>
</int:header-enricher>
</int:chain>

The above configuration will produce avery simple Message History structure:

[{nane=sanpl eGat eway, type=gateway, tinmestanp=1283281668091},
{nanme=sanpl eChai n, type=chain, tinestanp=1283281668094}]

To get access to Message History all you need is access the MessageHistory header. For example:

I terator<Properties> historylterator =
message. get Header s() . get (MessageHi st ory. HEADER NAME, MessageHi story.class).iterator();
assert True(hi storylterator.hasNext());
Properties gatewayHi story = historylterator.next();
assert Equal s("sanpl eGat eway", gatewayHi story. get("nanme"));
assert True(hi storylterator.hasNext());
Properties chainHi story = historylterator.next();
assert Equal s("sanpl eChai n", chai nHi story. get ("nane"));

Spring Integration
2.0.0.RC1 Reference Manual 82

Spring Integration

Some times you might not want to track all of the components. To accomplish this all you need is provide
t racked- conponent s attribute where you can specify comma delimited list of component names and/or
patterns you want to track.

<i nt:nessage-hi story tracked-conponent s="*Cat eway, sanple*, foo"/>

In the above example, Message History will only be maintained for all of the components that end with
'‘Gateway', all components that start with 'ssmple’ and 'foo' component.

Note

\u Remember, that by definition History isimmutable (you can't re-write history,athough some try),
therefore Message History can not be changed once written. Every attempt will end in exception.

Spring Integration
2.0.0.RC1 Reference Manual 83

Spring Integration

20. File Support

20.1 Introduction

Spring Integration's File support extends the Spring Integration Core with a dedicated vocabulary to deal
with reading, writing, and transforming files. It provides a namespace that enables elements defining Channel
Adapters dedicated to files and support for Transformers that can read file contents into strings or byte arrays.

This section will explan the workings of Fil eReadi ngMessageSource and
Fil eWitingMessageHandl er and how to configure them as beans. Also the support for dealing with
files through file specific implementations of Tr ansf or mer will be discussed. Finaly the file specific
namespace will be explained.

20.2 Reading Files

A Fil eReadi ngMessageSour ce can be used to consume files from the filesystem. This is an
implementation of MessageSour ce that creates messages from afile system directory.

<bean i d="pol | abl eFi | eSour ce"
class="org.springframework.integration.file.FileReadi ngMessageSource"
p:inputDirectory="file:${input.directory}"/>

To prevent creating messages for certain files, you may supply a Fi | eLi st Fi |l t er. By default, an
Accept OnceFi | eLi st Fi | t er isused. Thisfilter ensuresfilesare picked up only oncefrom thedirectory.

<bean i d="pol | abl eFi | eSour ce"
class="org. springframework.integration.file.FileReadi ngMessageSource"
p:inputDirectory="file:${input.directory}"
p:filter-ref="custonFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default
Accept OnceFi | eLi st Fi | t er doesnot prevent this. In most cases, thiscan be prevented if thefile-writing
process renames each file as soon asiit is ready for reading. A pattern-matching filter that accepts only files
that are ready (e.g. based on a known suffix), composed with the default Accept OnceFil eListFilter
allowsfor this. The Conposi t eFi | eLi st Fi | t er enablesthe composition.

<bean i d="pol | abl eFi | eSour ce"
cl ass="org. springframework.integration.file.Fil|eReadi ngMessageSource"
p:inputDirectory="file:${input.directory}"
p:filter-ref="conpositeFilter"/>
<bean i d="conpositeFilter" class="org.springframework.integration.file.filters. ConpositeFilelListFilter">
<const ruct or - ar g>
<list>
<bean cl ass="org. springframework.integration.file.filters. AcceptOnceFilelListFilter" />
<bean cl ass="org. springframework.integration.file.filters.PatternMatchingFilelListFilter">
<constructor-arg val ue=""test.*$"/>

</ bean>
</list>
</ constructor-arg>

</ bean>

The configuration can be simplified using the file specific namespace. To do this use the following template.

Spring Integration
2.0.0.RC1 Reference Manual 84

Spring Integration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springframework. org/schena/integration"
xm ns: file="http://ww.springfranmework. org/schema/integration/file"
xsi : schemalLocati on="http://ww. spri ngf ranmewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://wwv. springfranmewor k. org/ schema/ i ntegration
http://ww. springfranmework. org/ schema/integration/spring-integration-2.0.xsd
http://ww. springframework. org/ schema/integration/file
http://ww. springfranmewor k. org/ schema/integration/file/spring-integration-file-2.0.xsd">
</ beans>

Within this namespace you can reduce the FileReadingM essageSource and wrap it in an inbound Channel
Adapter likethis:

<fil e:inbound-channel - adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true"/>

<fil e:inbound-channel - adapter id="filesln"
directory="file: ${i nput.directory}”
filter="custonFilterBean" />

<fil e:i nbound- channel - adapter id="filesln"
directory="file:${input.directory}"
filename-pattern="test*" />

The first channel adapter is relying on the default filter that just prevents duplication, the second is using a
custom filter, and the third is using the filename-pattern attribute to add a Ant Pat hMat cher based filter to
theFi | eReadi ngMessageSour ce. Thefile-name-pattern and filter attributes are mutually exclusive, but
you can use a Conposi t eFi | eLi st Fi | t er to use any combination of filters, including a pattern based
filter to fit your particular needs.

When multiple processes are reading from the same directory it can be desirable to lock files to prevent
them from being picked up concurrently. To do thisyou can use aFi | eLocker . Thereis ajavanio based
implementation available out of the box, but it is also possible to implement your own locking scheme. The
nio locker can beinjected as follows

<fil e:inbound-channel - adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true">
<file:nio-|ocker/>
</fil e:inbound-channel - adapt er >

A custom locker you can configure like this:

<fil e:inbound-channel -adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true">
<file:locker ref="custonlLocker"/>
</file:inbound-channel - adapt er >

When filtering and locking files is not enough it might be needed to control the way files are listed entirely.
To implement this type of requirement you can use an implementation of Di r ect or yScanner . This
scanner allows you to determine entirely what files are listed each poll. Thisis also the interface that Spring
Integration uses internally to wire FileListFilters FileLocker to the FileReadingMessageSource. A custom
DirectoryScanner can be injected into the <file:inbound-channel-adapter/> on the scanner attribute.

Spring Integration
2.0.0.RC1 Reference Manual 85

Spring Integration

<fil e:inbound-channel -adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true" scanner="custonDirectoryScanner"/>

This gives you full freedom to choose the ordering, listing and locking strategies.

20.3 Writing files

To write messages to the file system you can useaFi | eW i ti ngMessageHandl er . Thisclass can deal
with File, String, or byte array payloads. Initssimplest formtheFi | eW it i ngMessageHandl er only
requires a destination directory for writing the files. The name of the file to be written is determined by
the handler's Fi | eNameGener at or . The default implementation looks for a Message header whose key
matches the constant defined as Fi | eHeader s. FI LENAME.

Additionally, you can configure the encoding and the charset that will be used in case of a String payload.

To make things easier you can configure the FileWritingMessageHandler as part of an outbound channel
adapter using the namespace.

<fil e: out bound- channel - adapter id="filesQut" directory="file:${input.directory. property}"/>

The namespace based configuration also supports adel et e- sour ce-fi |l es attribute. If settot rue, it
will trigger deletion of the original source files after writing to a destination. The default value for that flag
isfal se.

<fil e: out bound- channel - adapter id="filesCQut"
directory="file:${output.directory}"
del ete-source-fil es="true"/>

Note

Thedel et e- sour ce- fi | es attribute will only have an effect if the inbound Message has a
Filepayload or if theFi | eHeader s. ORI G NAL_FI LE header value contains either the source
File instance or a String representing the original file path.

In cases where you want to continue processing messages based on the written File you can use the
out bound- gat eway instead. It plays a very similar role as the out bound- channel - adapt er.
However after writing the File, it will also send it to the reply channel as the payload of a Message.

<fil e: out bound- gat eway i d="nover" request-channel ="novel nput"
repl y- channel =" out put "
directory="${output.directory}"
del et e-source-files="true"/>

Note

\u The 'outbound-gateway' works well in cases where you want to first move a File and then send
it through a processing pipeline. In such cases, you may connect the file namespace's 'inbound-
channel-adapter' element to the 'outbound-gateway' and then connect that gateway's reply-channel
to the beginning of the pipeline.

Spring Integration
2.0.0.RC1 Reference Manual 86

Spring Integration

If you have more elaborate requirements or need to support additional payload types as input to be converted
to file content you could extend the FileWritingMessageHandler, but a much better option is to rely on a
Tr ansf or mer .

20.4 File Transformers

To transform data read from the file system to objects and the other way around you need to do some work.
Contrary to Fi | eReadi ngMessageSour ce and to alesser extent Fi | eW i ti ngMessageHandl er,
itis very likely that you will need your own mechanism to get the job done. For this you can implement the
Tr ansf or mer interface. Or extend the Abst r act Fi | ePayl oadTr ansf or ner for inbound messages.
Some obvious implementations have been provided.

Fi | eToByt eArrayTransf or mer transforms Files into byte[]s using Spring's Fi | eCopyUti | s. Itis
often better to use a sequence of transformers than to put al transformations in asingle class. In that case the
File to byte[] conversion might be alogical first step.

Fil eToSt ri ngTransf or mer will convert Filesto Strings as the name suggests. If nothing else, this can
be useful for debugging (consider using with a Wire Tap).

To configure File specific transformers you can use the appropriate elements from the file namespace.

<file-to-bytes-transforner input-channel ="input" output-channel ="out put"
del ete-files="true"/>

<file:file-to-string-transforner input-channel ="input" output-channel =" out put
del ete-files="true" charset="UTF-8"/>

The delete-files option signals to the transformer that it should delete the inbound File after the transformation

is complete. This is in no way a replacement for using the Accept OnceFi | eLi st Fi | t er when the
FileReadingM essageSource is being used in a multi-threaded environment (e.g. Spring Integration in general).

Spring Integration
2.0.0.RC1 Reference Manual 87

Spring Integration

21. JDBC Support

Spring Integration provides Channel Adapters for receiving and sending messages via database queries.

21.1 Inbound Channel Adapter

The main function of an inbound Channel Adapter is to execute a SQL SELECT query and turn the result
set into a message. The message payload is the whole result set, expressed as a Li st , and the types of the
items in the list depends on the row-mapping strategy that is used. The default strategy is a generic mapper
that just returns a Map for each row i nthe query. Optionally this can be changed by adding a reference to
requires a reference to a Rowivapper instance (see the Spring JDBC [http://static.springsource.org/spring/
docs/3.0.x/spring-framework-reference/html/jdbc.html] documentation for more detailed information about

row mapping).

Note
If you want to convert rows in the SELECT query result to individual messages you can use a
downstream splitter.

The inbound adapter also requires areference to either Jdbc Tenpl at e instance or Dat aSour ce.

Aswell asthe SELECT statement to generate the messages, the adapter above also has an UPDATE statement
that is being used to mark the records as processed, so they don't show up in the next poll. The update can be
parameterised by the list of ids from the original select. Thisis done through a naming convention by default
(acolumn in the input result set called "id" istranslated into alist in the parameter map for the update called
"id"). The following example defines an inbound Channel Adapter with an update query and a Dat aSour ce
reference.

<j dbc: i nbound- channel - adapter query="select * fromitem where status=2"
channel ="target" data-source="dat aSour ce"
updat e="update item set status=10 where id in (:id)" />

Note

k\ The parametersin the update query are specified with acolon (;) prefix to the name of a parameter
(which in this case is an expression to be applied to each of the rows in the polled result set).
Thisis a standard feature of the named parameter JDBC support in Spring JDBC combined with
a convention (projection onto the polled result list) adopted in Spring Integration. The underlying
Spring JDBC featureslimit the available expressions (e.g. most special characters other than period
aredisallowed), but sincethetarget isusually alist of or anindividual object addressable by simple
bean paths thisisn't unduly restrictive.

To change the parameter generation strategy you can inject a Sql Par anet er Sour ceFact ory into
the adapter to override the default behaviour (the adapter has a sql - par anet er - source-factory
attribute).

Spring Integration
2.0.0.RC1 Reference Manual 88

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html

Spring Integration

Polling and Transactions

Theinbound adapter accepts aregular Spring Integration poller as a sub element, so for instance the frequency
of the polling can be controlled. A very important feature of the poller for JDBC usage is the option to wrap
the poll operation in atransaction, for example:

<j dbc: i nbound- channel - adapt er query="..."
channel ="t arget" dat a- source="dat aSour ce"
update="...">
<pol l er fixed-rate"1000">
<transacti onal / >
</ pol | er>
</ j dbc: i nbound- channel - adapt er >

Note
\'\u If apoller is not explicitly specified a default value will be used (and as per normal with Spring
Integration can be defined as atop level bean)

In this example the database is polled every 1000 milliseconds, and the update and select queries are both
executed in the same transaction. The transaction manager configuration is not shown, but aslong asitisaware
of the data source then the poll istransactional. A common use case is for the downstream channelsto be direct
channels (the default), so that the endpoints are invoked in the same thread, and hence the same transaction.
then if any of them fails, the transaction rolls back and the input data are reverted to their original state.

21.2 Outbound Channel Adapter

The outbound Channel Adapter is the inverse of the inbound: its role is to handle a message and use it to
execute a SQL query. The message payload and headers are available by default as input parameters to the
guery, for instance:

<j dbc: out bound- channel - adapt er
query="insert into foos (id, status, nanme) values (:headers[$id], O, :payload[foo])"
channel ="i nput" dat a- sour ce="dat aSour ce"/>

In the example above, messages arriving on the channel "input" have a payload of a map with key "foo", so
the[] operator dereferences that value from the map. The headers are also accessed as a map.

Note

k\ The parameters in the query above are bean property expressions on the incoming message (not
Spring EL expressions). This behaviour is part of the Sql Par armet er Sour ce which is the
default source created by the outbound adapter. Other behaviour is possible in the adapter, and
requires the user to inject adifferent Sql Par amet er Sour ceFact ory .

The outbound adapter requires a reference to either a DataSource or a JdbcTemplate. It can aso have a
Sql Par anet er Sour ceFact or y injected to control the binding of incoming message to the query.

If theinput channel isadirect channel then the outbound adapter runsits query in the samethread, and therefor
ethe same transaction (if there is one) as the sender of the message.

Spring Integration
2.0.0.RC1 Reference Manual 89

Spring Integration

21.3 Outbound Gateway

The outbound Gateway is like a combination of the outbound and inbound adapters: its role is to handle a
message and use it to execute a SQL query and then respond with the result sending it to areply channel. The
message payload and headers are available by default as input parameters to the query, for instance:

<j dbc: out bound- gat eway
update="insert into foos (id, status, nane) values (:headers[$id], O, :payload[foo])"
request - channel ="i nput" reply-channel ="out put" dat a-sour ce="dat aSource" />

The result of the above would be to insert a record into the "foos' table and return a message to the output
channel indicating the number of rows affected (the payload is a map { UPDATED=1} .

If the update query isan insert with auto-generated keys, the reply message can be popul ated with the generated
keys by adding keys- gener at ed="t r ue" to the above example (thisis not the default because it is not
supported by some database platforms). For example:

<j dbc: out bound- gat eway
update="insert into foos (status, nane) values (0, :payload[foo])"
request - channel ="i nput" reply-channel ="out put" dat a- sour ce="dat aSour ce"
keys-generat ed="true"/>

Instead of the update count or the generated keys, you can also provide a select query to execute and generate
areply message that way (like the inbound adapter), e.g:

<j dbc: out bound- gat eway
update="insert into foos (id, status, nane) values (:headers[$id], 0, :payload[foo])"
query="sel ect * from foos where id=:headers[$id]"
request - channel ="i nput" reply-channel ="out put" dat a-sour ce="dat aSource" />

Like with the adapters there is also the option to provide Sql Par amet er Sour ceFact or y instances for
reguest and reply. The default is the same as for the outbound adapter, so the request message is available as
the root of an expression. If keys-generated="true" then the root of the expression isthe generated keys (a map
if thereisonly one or alist of mapsif multi-valued).

The outbound gateway requires a reference to either a DataSource or a JdbcTemplate. It can also have a
Sql Par anet er Sour ceFact ory injected to control the binding of incoming message to the query.

21.4 Message Store

The JDBC module provides an implementation of the Spring Integration Message St or e (important in the
Claim Check pattern) and MessageGr oupSt or e (important in stateful patterns like Aggregator) backed by
adatabase. Both interfaces are implemented by the JdbcM essageStore and thereis also support for configuring
store instancesin XML. For example:

<j dbc: message- store i d="nessageSt ore" data-source="dat aSource"/>

A JdbcTenpl at e can be specified instead of a Dat aSour ce.

Other optional attributes are show in the next example:

Spring Integration
2.0.0.RC1 Reference Manual 90

Spring Integration

<j dbc: message-store i d="nessageSt ore" dat a- sour ce="dat aSour ce"
| ob- handl er ="1 obHandl er" tabl e-prefix="MY_I NT_"/>
Here we have specified a LobHandl er for dealing with messages as large objects (e.g. often necessary if
using Oracle) and a prefix for the table names in the queries generated by the store. The table name prefix
defaultsto "INT_".

Initializing the Database

Spring Integration ships with some sample scripts that can be used to initialize a database. In the spring-
integration-jdbc JAR file you will find scripts in the or g. spri ngf ramewor k. i nt egrati on.j dbc
package: thereisacreate and adrop script example for arange of common database platforms. A common way
to use these scriptsisto reference them in a Spring JDBC data source initializer [http://static.springsource.org/
spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182]. Note that the scriptsare provided as
samples or specifications of the the required table and column names. Y ou may find that you need to enhance
them for production use (e.g. with index declarations).

Partitioning a Message Store

ItiscommontouseaJdbcMessageSt or e asaglobal storefor agroup of applications, or nodesin the same
application. To provide some portection against name clashes, and to give control over the database meta-data
configuration, the message store allows the tables to be partitioned in two ways. One is to use separate table
names, by changing the prefix as described above, and the other is to specify a"region” name for partitioning
datawithin asingle table. Animportant use case for thisis using the store to manage persistent queues backing
a Spring Integration channel. The message data for a persistent channel is keyed in the store on the channel
name, so if the channel names are not globally unique then there is the danger of channels picking up data
that was not intended for them. To avoid this the message store region can be used to keep data separate for
different physical channels that happen to have the same logical name.

Spring Integration
2.0.0.RC1 Reference Manual 91

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182

Spring Integration

22. JMS Support

Spring Integration provides Channel Adaptersfor receiving and sending JM S messages. There are actually two
JM S-based inbound Channel Adapters. The first uses Spring's Jns Tenpl at e to receive based on a polling
period. The second is "message-driven” and relies upon a Spring Messagel istener container. Thereisalso an
outbound Channel Adapter which usesthe Js Tenpl at e to convert and send a JIMS Message on demand.

Whereas the IMS Channel Adapters are intended for unidirectional Messaging (send-only or receive-only),
Spring Integration also provides inbound and outbound JMS Gateways for request/reply operations. The
inbound gateway relies on one of Spring's MessageL istener container implementations for Message-driven
reception that is also capable of sending areturn valueto the "reply-to" Destination as provided by the received
Message. The outbound Gateway sends a IMS Message to a "request-destination” and then receives a reply
Message. The "reply-destination™ reference (or "reply-destination-name") can be configured explicitly or else
the outbound gateway will use a JM S TemporaryQueue.

22.1 Inbound Channel Adapter

The inbound Channel Adapter requires a reference to either a single JnsTenpl at e instance or both
Connect i onFact ory andDest i nat i on (a'destinationName' can be providedin place of the 'destination’
reference). The following example defines an inbound Channel Adapter with aDest i nat i on reference.

<j ms: i nbound- channel - adapter id="jmsln" destination="inQueue" channel ="exanpl eChannel ">
<integration:poller fixed-rate="30000"/>
</ j ms: i nbound- channel - adapt er >

Tip

1 Notice from the configuration that the inbound-channel -adapter isaPolling Consumer. That means
that it invokes receive() when triggered. This should only be used in situations where polling is
donerelatively infrequently and timelinessis not important. For all other situations (avast majority
of IM S-based use-cases), the message-driven-channel-adapter described below is a better option.

Note

\ All of the IM S adapters that require areference to the ConnectionFactory will automatically look
for abean named " connectionFactory" by default. That iswhy you don't see a" connection-factory”
attribute in many of the examples. However, if your IMS ConnectionFactory has a different bean
name, then you will need to provide that attribute.

If 'extract-payload' is set to true (which is the default), the received IMS Message will be passed through the
MessageConverter. When relying on the default SimpleM essageConverter, this meansthat the resulting Spring
Integration Message will have the IMS Message's body as its payload. A IMS TextMessage will produce a
String-based payload, a IMS BytesMessage will produce a byte array payload, and a IMS ObjectM essage's
Seridizable instance will become the Spring Integration Message's payload. If instead you prefer to have the
raw JM S Message as the Spring Integration Message's payload, then set 'extract-payload' to false.

<j ms: i nbound- channel - adapter id="jnsln"
desti nati on="i nQueue"
channel =" exanpl eChannel "

Spring Integration
2.0.0.RC1 Reference Manual 92

Spring Integration

extract - payl oad="fal se"/>
<integration:poller fixed-rate="30000"/>
</ j ms: i nbound- channel - adapt er >

22.2 Message-Driven Channel Adapter

The "message-driven-channel-adapter" requires areference to either an instance of a Spring Messagel istener
container (any subclass of Abst r act MessagelLi st ener Cont ai ner) or both Connect i onFact ory
andDest i nat i on (a'destinationName' can be provided in place of the 'destination’ reference). Thefollowing
example defines a message-driven Channel Adapter with aDest i nat i on reference.

<j ms: nessage-dri ven- channel - adapter id="jnmsln" destination="i nQueue" channel =" exanpl eChannel "/ >

Note

\‘ The Message-Driven adapter also accepts several properties that pertain to the Messagel istener
container. These values are only considered if you do not provide an actual ‘container’ reference.
In that case, an instance of DefaultMessagelistenerContainer will be created and configured
based on these properties. For example, you can specify the "transaction-manager” reference,
the "concurrent-consumers' value, and several other property references and values. Refer to the
JavaDoc and Spring Integration's IM S Schema (spring-integration-jms-2.0.xsd) for more detail.

The 'extract-payload' property has the same effect as described above, and once again its default valueis'true’.
The poller sub-element is not applicable for amessage-driven Channel Adapter, asit will be actively invoked.
For most usage scenarios, the message-driven approach is better since the Messages will be passed along to
the MessageChannel assoon asthey are received from the underlying JM S consumer.

22.3 Outbound Channel Adapter

The JnsSendi ngMessageHandl er implements the MessageHandl| er interface and is capable of
converting Spring Integration Messages to JMS messages and then sending to a JMS destination. It
requires either a 'jmsTemplate’ reference or both 'connectionFactory' and 'destination’ references (again, the
'destinationName’ may be provided in place of the 'destination’). As with the inbound Channel Adapter, the
easiest way to configure this adapter is with the namespace support. The following configuration will produce
an adapter that receives Spring Integration Messages from the "exampleChannel" and then converts those into
JMS Messages and sends them to the IM S Destination reference whose bean name is "outQueue”.

<j ms: out bound- channel - adapter id="jnmsQut" destination="out Queue" channel =" exanpl eChannel "/ >

Aswiththeinbound Channel Adapters, thereisan 'extract-payload' property. However, the meaning isreversed
for the outbound adapter. Rather than applying to the IMS Message, the bool ean property appliesto the Spring
Integration Message payload. In other words, the decision is whether to pass the Spring Integration Message
itself as the IMS Message body or whether to pass the Spring Integration Message's payload as the IMS
Message body. The default valueisonceagain 'true'. Therefore, if you passa Spring Integration M essage whose
payloadisaString, aJM S TextM essage will be created. If on the other hand you want to send the actual Spring
Integration Message to another system via IM S, then simply set thisto 'false'.

Spring Integration
2.0.0.RC1 Reference Manual 93

Spring Integration

Note

K\ Regardless of the boolean value for payload extraction, the Spring Integration MessageHeaders
will map to IMS properties as long as you are relying on the default converter or provide
a reference to another instance of HeaderMappingM essageConverter (the same holds true for
'inbound' adapters except that in those cases, it's the IM S properties mapping to Spring Integration
M essageHeaders).

22.4 Inbound Gateway

Spring Integration's message-driven JMS inbound-gateway delegates to a Messageli st ener
container, supports dynamically adjusting concurrent consumers, and can aso handle replies. The
inbound gateway requires references to a Connecti onFactory, and a request Desti nati on (or
'requestDestinationName’). The following example defines a JMS "inbound-gateway" that receives from
the IMS queue referenced by the bean id "inQueue" and sends to the Spring Integration channel named
"exampleChanngl".

<j ms: i nbound- gat eway i d="j nmsl nGat enway"
request - desti nati on="i nQueue"
request - channel =" exanpl eChannel "/ >

Since the gateways provide request/reply behavior instead of unidirectional send or receive, they also havetwo
distinct propertiesfor the "payload extraction” (as discussed above for the Channel Adapters 'extract-payload'
setting). For an inbound-gateway, the 'extract-request-payload' property determines whether the received IMS
Message body will be extracted. If 'false', the IMS Message itself will become the Spring Integration Message
payload. The default is 'true’.

Similarly, for an inbound-gateway the 'extract-reply-payload’ property applies to the Spring Integration
Message that is going to be converted into a reply JIMS Message. If you want to pass the whole Spring
Integration Message (as the body of a IMS ObjectMessage) then set this to 'false'. By default, it is aso 'true
such that the Spring Integration Message payload will be converted into a JIMS Message (e.g. String payload
becomes a IMS TextM essage).

As with anything else, Gateway invocation might result in error. By default Producer will not be notified of
the errors thta might have occurredon ythe consumer side and will time out waiting for the reply. However
there might be times when you to communicate error condition back to the consumer, in other words treat the
Exception asavalid reply valid reply by mapping it to a Message. To accomplish this IMS Inbound Gateway
provides support for Exception mappers via exception-mapper attribute.

<i nt-j ns:i nbound- gat eway request-desti nation="request Queue"
request - channel ="j nsi nput channel "
excepti on- mapper ="error MessageMapper "/ >

<bean i d="excepti onMapper" cl ass="f 0o. bar. Sanpl eExcepti onMapper"/>

foo.bar.Sampl eExceptionMapper is the implementation of
org.springframewor k.integration.message.lnboundMessageMapper which only defines one method
t oMessage(Chj ect object).

Spring Integration
2.0.0.RC1 Reference Manual 94

Spring Integration

public static class Sanpl eExcepti onMapper inplenments | nboundMessageMapper <Thr owabl e>{
publ i c Message<?> toMessage(Throwabl e object) throws Exception {
MessageHandl i ngExcepti on ex = (MessageHandl i ngExcepti on) object;
return MessageBui |l der. wit hPayl oad(" Error happened in nmessage: " +
ex. get Fai | edMessage() . get Payl oad()) . buil d()

22.5 Outbound Gateway

The outbound Gateway creates IM S M essages from Spring I ntegration Messages and then sends to a 'request-
destination'. It will then handle the IMS reply Message either by using a selector to receive from the 'reply-
destination' that you configure, or if no 'reply-destination’ is provided, it will create IMS TemporaryQueues.
Notice that the "reply-channel" is also provided.

<j ms: out bound- gat eway i d="j nsQut Gat eway"
request - desti nati on="out Queue"
request - channel =" out boundJnmsRequest s"
repl y-channel ="j nsRepl i es"/ >

The 'outbound-gateway' payload extraction properties are inversely related to those of the 'inbound-
gateway' (see the discussion above). That meansthat the 'extract-request-payload' property value appliesto the
Spring I ntegration Message that is being converted into aJM S Message to be sent asa request, and the 'extract-
reply-payload' property value applies to the IMS Message that isreceived as a reply and then converted into a
Spring I ntegration M essage to be subsequently sent to the 'reply-channel’ as shown in the example configuration
above.

22.6 Message Conversion, Marshalling and Unmarshalling

If you need to convert the message, al JMS adapters and gateways, alow you to provide
a MessageConverter via message-converter attribute. Simply provide the bean name of
an instance of MessageConverter that is avalable within the same ApplicationContext.
Also, to provide some consistency with Marshaller and Unmarshaller interfaces Spring provides
Mar shal | i ngMessageConvert er which you can configure with your own custom Marshallers and
Unmarshallers

<int-jms:inbound-gateway request-destinati on="request Queue"
request - channel ="i nbound- gat eway- channel "
message- converter="marshal | i ngMessageConverter"/>

<bean i d="mar shal | i ngMessageConverter"
cl ass="org. springfranmework.jns. support.converter. Marshal | i ngMessageConverter">
<const ruct or - ar g>
<bean cl ass="org. bar. Sanpl eMar shal | er"/ >
</ constructor-arg>
<const ruct or - ar g>
<bean cl ass="org. bar. Sanpl eUnnar shal | er"/ >
</ constructor-arg>
</ bean>

Spring Integration
2.0.0.RC1 Reference Manual 95

Spring Integration

Note

K\ Note, however, that when you provide your own MessageConverter instance, it will still be
wrapped within the HeaderMappingMessageConverter. This means that the 'extract-request-
payload' and ‘extract-reply-payload’ properties may effect what actual objects are passed
to your converter. The HeaderMappingMessageConverter itself simply delegates to a target
MessageConverter while also mapping the Spring Integration MessageHeaders to IMS Message
properties and vice-versa.

22.7 IMS Backed Message Channels

The Channel Adapters and Gateways featured above are all intended for applications that are integrating with
other externa systems. The inbound options assume that some other system is sending JIM S Messages to the
JMS Destination and the outbound options assume that some other system is receiving from the Destination.
The other system may or may not be a Spring Integration application. Of course, when sending the Spring
Integration Message instance as the body of the IMS Message itself (with the 'extract-payload' value set
to false), it is assumed that the other system is based on Spring Integration. However, that is by no means
a requirement. That flexibility is one of the benefits of using a Message-based integration option with the
abstraction of "channels" or Destinations in the case of IMS.

There are cases where both the producer and consumer for agiven JM S Destination are intended to be part of
the same application, running within the same process. This could be accomplished by using a pair of inbound
and outbound Channel Adapters. The problem with that approach isthat two adapters are required even though
conceptually the goal isto have asingle Message Channel. A better option is supported as of Spring Integration
version 2.0. Now it is possible to define asingle "channel" when using the IMS namespace.

<j ms: channel id="jnsChannel" queue="exanpl eQueue"/>

The channel in the above example will behave much like a normal <channel/> element from the main Spring
Integration namespace. It can be referenced by both "input-channel” and "output-channel” attributes of any
endpoint. The difference is that this channel is backed by a IMS Queue instance named "exampleQueue".
This means that asynchronous messaging is possible between the producing and consuming endpoints, but
unlike the simpler asynchronous Message Channels created by adding a <queue/> sub-element within a non-
JMS <channel/> element, the Messages are not just stored in an in-memory queue. Instead those Messages are
passed within a IMS Message body, and the full power of the underlying JMS provider is then available for
that channel. Probably the most common rationale for using this alternative would be to take advantage of the
persistence made available by the store and forward approach of IMS messaging. If configured properly, the
IM S-backed M essage Channel also supports transactions. In other words, a producer would not actually write
to atransactional IM S-backed channel if its send operation is part of a transaction that rolls back. Likewise,
a consumer would not physically remove a IMS Message from the channel if the reception of that Message
is part of atransaction that rolls back. Note that the producer and consumer transactions are separate in such
a scenario. This is significantly different than the propagation of a transactional context across the simple,
synchronous <channel/> element that has no <queue/> sub-element.

Since the example above is referencing a IMS Queue instance, it will act as a point-to-point channel. If on
the other hand, publish/subscribe behavior is needed, then a separate element can be used, and a IMS Topic
can be referenced instead.

Spring Integration
2.0.0.RC1 Reference Manual 96

Spring Integration

<j ms: publ i sh-subscri be-channel id="jnsChannel" topic="exanpl eTopic"/>

For either type of JM S-backed channel, the name of the destination may be provided instead of areference.

<j ms: channel id="jnsQueueChannel " queue-nane="exanpl eQueueNane"/ >

<j ms: publ i sh-subscri be-channel id="jnsTopi cChannel " topic-nanme="exanpl eTopi cNanme"/>

In the examples above, the Dedtination names would be resolved by Spring's
default Dynam cDesti nati onResol ver implementation, but any implementation of the
Desti nati onResol ver interface could be provided. Also, theIMSConnect i onFact or y isarequired
property of the channel, but by default the expected bean name would be "connectionFactory". The example
below provides both a custom instance for resolution of the IM S Destination names and a different name for
the ConnectionFactory.

<j ms: channel id="jnsChannel" queue-nane="exanpl eQueueNane"
destination-resol ver="cust onDesti nati onResol ver"
connecti on-factory="cust omConnecti onFact ory"/>

22.8 IMS Samples

To experiment with these IM S adapters, check out the samples available within the "samplesjms’ directory in
the distribution. There are two samples included. One provides inbound and outbound Channel Adapters, and
the other providesinbound and outbound Gateways. They are configured to run with an embedded ActiveMQ
process, but the "common.xml" file can easily be modified to support either a different IMS provider or a
standalone ActiveM Q process. In other words, you can split the configuration so that the inbound and outbound
adapters are running in separate WVMs. If you have ActiveMQ instaled, simply modify the "brokerURL"
property within the configuration to use"tcp://localhost:61616" for example (instead of "vm://localhost™"). Both
of the samples accept input via stdin and then echo back to stdout. L ook at the configuration to see how these
messages are routed over IMS.

Spring Integration
2.0.0.RC1 Reference Manual 97

Spring Integration

23. Web Services Support

23.1 Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both of
which build upon the Spring Web Services [http://static.springframework.org/spring-ws/sites/1.5/] project:
Si npl eWebSer vi ceQut boundGat eway and Marshal | i ngWebSer vi ceQut boundGat eway.
The former will accept either aStri ng or j avax. xm .t ransf orm Sour ce as the message payload.
The latter provides support for any implementation of the Mar shal | er and Unmar shal | er interfaces.
Both require a Spring Web Services Dest i nat i onPr ovi der for determining the URI of the Web Service
to be called.

si npl eGat eway = new Si npl eWebSer vi ceQut boundGat eway(desti nati onProvi der);

mar shal | i ngGat eway = new Marshal | i ng\WebSer vi ceQut boundGat eway(dest i nati onProvi der, narshaller);

Note

\ When using the namespace support described below, you will only need to set a URI. Internally,
the parser will configure a fixed URI DestinationProvider implementation. If you do need
dynamic resolution of the URI at runtime, however, then the DestinationProvider can provide
such behavior as looking up the URI from a registry. See the Spring Web Services javadoc
[http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html] for more information about
the DestinationProvider strategy.

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering client
access [http://static.springframework.org/spring-wg/site/reference/html/client.html] as well as the chapter
covering Object/ XML mapping [http://static.springframework.org/spring-ws/site/reference/html/oxm.html].

23.2 Inbound Web Service Gateways

To send a message to a channel upon receiving a Web Service invocation, there are two options again:
Si mpl eWebSer vi cel nboundGat eway and Mar shal | i ngWebSer vi cel nboundGat eway. The
former will extractaj avax. xm . t ransf or m Sour ce fromtheWebSer vi ceMessage and setit asthe
message payload. The latter provides support for implementation of the Mar shal | er and Unnar shal | er
interfaces. If the incoming web service message is a SOA P message the SOAP Action header will be added to
the headers of the Message that isforwarded onto the request channel.

si npl eGat eway = new Si npl eWebSer vi cel nboundGat eway() ;
si npl eGat eway. set Request Channel (f or war dOnt oThi sChannel) ;
si npl eGat eway. set Repl yChannel (| i st enFor ResponseHere); //Opti onal

mar shal | i ngGat eway = new Marshal | i ngWebSer vi cel nboundGat eway(mar shal | er);
//set request and optionally reply channel

Both gateways implement the Spring Web ServicesMessageEndpoi nt interface, so they can be configured
withaMessageDi spat cher Ser vl et as per standard Spring Web Services configuration.

For more detail on how to use these components, see the Spring Web Services reference guide's
chapter covering creating aWeb Service[http://static.springframework.org/spring-ws/sites/1.5/reference/html/

Spring Integration
2.0.0.RC1 Reference Manual 98

http://static.springframework.org/spring-ws/sites/1.5/
http://static.springframework.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html

Spring Integration

server.html]. The chapter covering Object/XML mapping [http://static.springframework.org/spring-ws/site/
reference/html/oxm.html] is also applicable again.

23.3 Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway” element from the "ws"

namespace:

<ws: out bound- gat eway i d="si npl eGat enway"

r equest - channel ="i nput Channel "
uri="http://exanple.org"/>

"

Note

Notice that this example does not provide a 'reply-channel’. If the Web Service were to return
a non-empty response, the Message containing that response would be sent to the reply channel
provided in the request Message's REPLY _CHANNEL header, and if that were not available a
channel resolution Exception would be thrown. If you want to send the reply to another channel
instead, then provide a 'reply-channel’ attribute on the 'outbound-gateway' element.

Tip

When invoking a Web Service that returns an empty response after using a String payload for
the request Message, no reply Message will be sent by default. Therefore you don't need to set a
'reply-channel’ or have a REPLY_CHANNEL header in the request Message. If for any reason
you actually do want to receive the empty response as a Message, then provide the 'ignore-empty-
responses attribute with a value of false (this only applies for Strings, because using a Source
or Document object simply leads to a NULL response and will therefore never generate a reply

Message).

To set up an inbound Web Service Gateway, use the "inbound-gateway":

<ws: i nbound- gat eway i d="si npl eGat enay"

request - channel ="i nput Channel "/ >

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references. For outbound:

<ws: out bound- gat eway i d="marshal | i ngGat eway"

request - channel ="r equest Channel "
uri="http://exanpl e.org"

mar shal | er =" soneMar shal | er"

unmar shal | er =" soneUnnar shal | er"/ >

And for inbound:

<ws: i nbound- gat eway i d="marshal | i ngGat eway"

"

request - channel ="r equest Channel "
mar shal | er =" soneMar shal | er"
unmar shal | er =" someUnnar shal | er"/ >

Note

Most Mar shal | er implementations also implement the Unmar shal | er interface. When
using such a Mar shal | er, only the "marshaller”" attribute is necessary. Even when using a

2.0.0.RC1

Spring Integration
Reference Manual 99

http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Spring Integration

Mar shal | er, you may aso provide a reference for the "request-callback" on the outbound
gateways.

For either outbound gateway type, a "destination-provider" attribute can be specified instead of the
"uri" (exactly one of them isrequired). Y ou can then reference any Spring Web Services DestinationProvider
implementation (e.g. to lookup the URI at runtime from aregistry).

For either outbound gateway type, the "message-factory” attribute can also be configured with a reference to
any Spring Web Services\WebSer vi ceMessageFact or y implementation.

For the simple inbound gateway type, the "extract-payload” attribute can be set to false to forward the entire
WebSer vi ceMessage instead of justits payload asaMes sage totherequest channel. Thismight be useful,
for example, when a custom Transformer works against the WebSer vi ceMessage directly.

Spring Integration
2.0.0.RC1 Reference Manual 100

Spring Integration

24. RMI Support

24.1 Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over multiple JVMs.
Thefirst section will deal with sending messages over RMI. The second section shows how to receive messages
over RMI. The last section shows how to define rmi channel adapters through the namespace support.

24.2 Outbound RMI

To send messages from a channel over RMI, smply define an Rm Qut boundGat eway . This gateway will
use Spring's RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that to invoke a
remote interface that doesn't use Spring Integration you should use a service activator in combination with
Spring's RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

<bean i d="rm Qut Gat eway" cl ass=org.spf.integration.rm .Rm Qut boundGat eway>
<constructor-arg value="rm://host"/>
<property nanme="repl yChannel " val ue="replies"/>

</ bean>

24.3 Inbound RMI

To receive messages over RMI you need to use a Rmi | nboundGat eway. This gateway can be configured
likethis

<bean i d="rm Qut Gat eway" cl ass=org.spf.integration.rm .Rm |nboundGat eway>
<property nanme="request Channel " val ue="requests"/>
</ bean>

24.4 RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The following code
snippet shows the different configuration options that are supported.

<rm : i nbound- gat eway i d="gat ewayW t hDef aul t s" request-channel ="t est Channel "/ >

<rm : i nbound- gat eway i d="gat ewayW t hCust onProperti es" request-channel ="t est Channel "
expect-reply="fal se" request-timeout="123" reply-ti meout="456"/>

<rm : i nbound- gat eway i d="gatewayW t hHost" request-channel ="t est Channel "
regi stry-host="1ocal host"/>

<rm : i nbound- gat eway i d="gatewayWthPort" request-channel ="t est Channel "
regi stry-port="1234"/>

<rm : i nbound- gat eway i d="gat ewayW t hExecut or Ref" request-channel ="t est Channel "
renot e-i nvocat i on- execut or ="i nvocat i onExecutor"/ >

Spring Integration
2.0.0.RC1 Reference Manual 101

Spring Integration

To configure the outbound gateway you can use the namespace support as well. The following code snippet
shows the different configuration for an outbound rmi gateway.

<rm : out bound- gat eway i d="gat eway"
request - channel ="l ocal Channel "
r enot e- channel ="t est Channel "
host ="1 ocal host"/ >

Spring Integration
2.0.0.RC1 Reference Manual 102

Spring Integration

25. HttpInvoker Support

25.1 Introduction

Httplnvoker is a Spring-specific remoting option that essentially enables Remote Procedure Calls (RPC) over
HTTP. In order to accomplish this, an outbound representation of a method invocation is serialized using
standard Java seriaization and then passed within an HTTP POST request. After being invoked on the target
system, the method's return value is then serialized and written to the HTTP response. There are two main
requirements. First, you must be using Spring on both sides since the marshalling to and from HTTP requests
and responses is handled by the client-side invoker and server-side exporter. Second, the Objects that you are
passing must implement Ser i al i zabl e and be available on both the client and server.

While traditional RPC provides physical decoupling, it does not offer nearly the same degree of logical
decoupling as amessaging-based system. In other words, both participantsin an RPC-based invocation must be
aware of a specific interface and specific argument types. Interestingly, in Spring Integration, the " parameter"
being sent is a Spring Integration Message, and the interface is an internal detail of Spring Integration's
implementation. Therefore, the RPC mechanism is being used as a transport so that from the end user's
perspective, it is not necessary to consider the interface and argument types. It's just another adapter to enable
messaging between two systems.

25.2 Httplnvoker Inbound Gateway

To receive messages over http you canusean Ht t pl nvoker | nboundGat eway. Hereis an example bean
definition:

<bean i d="i nboundGat eway"
cl ass="org. springframework.integration. httpi nvoker. H t pl nvoker | nboundGat eway" >
<property nanme="request Channel " ref="request Channel "/ >
<property name="repl yChannel " ref="repl yChannel "/>
<property nane="request Ti meout" val ue="30000"/>
<property nane="repl yTi neout" val ue="10000"/>
</ bean>

Because the inbound gateway must be able to receive HTTP requests, it must be configured within a Servlet
container. The easiest way to do thisisto provide a servlet definition in web.xml:

<servl et >

<ser vl et - nane>i nboundGat eway</ ser vl et - name>

<servl et - cl ass>org. spri ngf ramewor k. web. cont ext . support. Ht t pRequest Handl er Ser vl et </ servl et - cl ass>
</ servl et >

Notice that the servlet name matches the bean name.

Note

\ If you are running within a Spring MV C application and using the BeanNameHandlerM apping,
then the servlet definition is not necessary. In that case, the bean name for your gateway can be
matched against the URL path just like a Spring MV C Controller bean.

25.3 Httplnvoker Outbound Gateway

Spring Integration
2.0.0.RC1 Reference Manual 103

Spring Integration

To configurethe Ht t pl nvoker Qut boundGat eway write abean definition like this:

<bean i d="out boundGat eway"
cl ass="org. springframework.integration.httpinvoker. H tpl nvoker Qut boundGat eway" >
<property nanme="repl yChannel " ref="repl yChannel "/>
</ bean>

The outbound gateway is a MessageHandl er and can therefore be registered with either a
Pol | i ngConsuner or Event Dri venConsumner . The URL must match that defined by an inbound
Httplnvoker Gateway as described in the previous section.

25.4 Httplnvoker Namespace Support

Spring Integration provides an "httpinvoker" namespace and schema definition. To include it in
your configuration, simply provide the following URI within a namespace declaration: ‘http://
www.springframework.org/schema/integration/httpinvoker'. The schema location should then map to 'http://
www.springframework.org/schema/integrati on/httpi nvoker/spring-integration-httpinvoker-2.0.xsd'.

To configure the inbound gateway you can choose to use the namespace support for it. The following code
snippet shows the different configuration options that are supported.

<ht t pi nvoker: i nbound- gat eway i d="i nboundGat eway"
request - channel ="r equest Channel "
request - ti neout ="10000"
expect-reply="fal se"
repl y-ti meout =" 30000"/ >

Note

\\ A 'reply-channel" may also be provided, but it isrecommended to rely on the temporary anonymous
channel that will be created automatically for handling replies.

To configure the outbound gateway you can use the namespace support as well. The following code snippet
shows the different configuration for an outbound Httplnvoker gateway. Only the 'url" and ‘request-channel’
arerequired.

<ht t pi nvoker : out bound- gat eway i d="out boundGat eway"
url ="http://I1 ocal host: 8080/ exanpl e"
r equest - channel ="r equest Channel "
request - ti meout =" 5000"
repl y- channel ="r epl yChannel "
reply-ti meout ="10000"/ >

Spring Integration
2.0.0.RC1 Reference Manual 104

Spring Integration

26. HTTP Support

26.1 Introduction

The HTTP support allows for the execution of HTTP requests and the processing of inbound HTTP
requests. Because interaction over HTTP is always synchronous, even if al that is returned is a 200
status code, the HTTP support consists of two gateway implementations: Ht t pl nboundEndpoi nt and
Ht t pRequest Execut i ngMessageHandl er.

26.2 Http Inbound Gateway

To receive messages over HTTP you need to use an HT TP inbound Channel Adapter or Gateway. |n common
with the Httplnvoker support the HT TP inbound adapters need to be deployed within a servlet container. The
easiest way to do thisis to provide a servlet definition in web.xml, see Section 25.2, “Httplnvoker Inbound
Gateway” for further details. Below is an example bean definition for asimple HTTP inbound endpoint.

<bean id="httpl nbound" class="org.springframework.integration.http. HttpRequest Handl i ngMessagi ngGat eway" >
<property nane="request Channel " ref="httpRequest Channel " />
<property nanme="repl yChannel " ref="httpRepl yChannel " />
</ bean>
The Ht t pRequest Handl i ngMessagi ngGat eway accepts a list of Htt pMessageConvert er
instances or else relies on a default list. The converters allow customization of the mapping from
Ht t pSer vl et Request to Message. The default converters encapsulate simple strategies, which for
example will create a String message for a POST request where the content type starts with "text", see the
Javadoc for full details.

Starting with this release MultiPart File support was implemented. If the request has been wrapped as a
MultipartHttpServietRequest, when using the default converters, that request will be converted to a Message
payload that is a MultiVaueMap containing values that may be byte arrays, Strings, or instances of Spring's
Mul ti part Fi | e depending on the content type of the individua parts.

Note

\ The HTTP inbound Endpoint will locate a MultipartResolver in the context if one exists with the
bean name "multipartResolver" (the same name expected by Spring's DispatcherServlet). If it does
in fact locate that bean, then the support for MultipartFiles will be enabled on the inbound request
mapper. Otherwise, it will fail when trying to map a multipart-file request to a Spring Integration
Message. For more on Spring's support for MultipartResolvers, refer to the Spring Reference
Manual [http://static.springsource.org/spring/docs/2.5.x/ref erence/mvc.html#mve-multipart].

In sending a response to the client there are a number of ways to customize the behavior of the gateway.
By default the gateway will simply acknowledge that the request was received by sending a 200 status
code back. It is possible to customize this response by providing a 'viewName' to be resolved by the Spring
MVC Vi ewResol ver . In the case that the gateway should expect areply to the Message then setting the
expectReply flag (constructor argument) will cause the gateway to wait for areply Message before creating
an HTTP response. Below is an example of a gateway configured to serve as a Spring MV C Controller with a

Spring Integration
2.0.0.RC1 Reference Manual 105

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart
http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart
http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

Spring Integration

view name. Because of the constructor arg value of TRUE, it wait for areply. Thisalso shows how to customize
the HTTP methods accepted by the gateway, which are POST and GET by default.

<bean i d="httpl nbound" cl ass="org. springframework.integration. http. HtpRequest Handl i ngControl |l er">
<constructor-arg value="true" /> <!-- indicates that a reply is expected -->
<property nanme="request Channel " ref="httpRequest Channel " />
<property nanme="repl yChannel " ref="httpRepl yChannel" />
<property nane="vi ewNane" val ue="jsonView' />
<property nanme="supportedMet hodNanmes" >
<list>
<val ue>CGET</ val ue>
<val ue>DELETE</ val ue>
</list>
</ property>
<property nanme="expect Reply" val ue="true" />
</ bean>

The reply message will be available in the Model map. The key that is used for that map entry by default is
'reply’, but this can be overridden by setting the 'replyKey' property on the endpoint's configuration.

26.3 Http Outbound Gateway

To configurethe Ht t pRequest Execut i ngMessageHandl er write abean definition like this:

<bean i d="htt pQut bound" cl ass="org. springfranmework.integration. http. HttpRequest Executi ngMessageHandl| er"
<constructor-arg val ue="http://| ocal host: 8080/ exanpl e" />
<property nane="out put Channel " ref="responseChannel " />
</ bean>
This bean definition will execute HTTP requests by delegating to a Rest Tenpl at e. That template in turn
delegates to alist of HttpMessageConverters to generate the HTTP request body from the M essage payload.

Y ou can configure those converters as well as the ClientHttpRequestFactory instance to use:

<bean i d="htt pQut bound" cl ass="org. springframework.integration. http.HttpRequest Executi ngMessageHandl| er"
<constructor-arg val ue="http://| ocal host: 8080/ exanpl e" />
<property nane="out put Channel " ref="responseChannel " />
<property nanme="nmessageConverters" ref="nmessageConverterList" />
<property nanme="request Factory" ref="custonRequest Factory" />
</ bean>

By default the HTTP request will be generated using an instance of
Si mpl eCl i ent Ht t pRequest Fact ory which uses the JDK HtpURLConnection. Use
of the Apache Commons HTTP Client is aso supported through the provided
Conmonsd i ent Ht t pRequest Fact or y which can be injected as shown above.

26.4 HTTP Namespace Support

Spring Integration provides an "http" namespace and schema definition. To include it in your configuration,
simply provide the following URI within a namespace declaration: ‘http://www.springframework.org/
schema/integration/http'. The schema location should then map to 'http://www.springframework.org/schema/
integrati on/http/spring-integration-http.xsd'.

To configure an inbound http channel adapter which isan instance of Ht t pl nboundEndpoi nt configured
not to expect a response.

Spring Integration
2.0.0.RC1 Reference Manual 106

Spring Integration

<ht t p: i nbound- channel - adapt er i d="httpChannel Adapter" channel ="requests" support ed-net hods="PUT, DELETE"/>

To configure an inbound http gateway which expects a response.

<htt p: i nbound- gat eway i d="i nboundGat eway" request-channel ="requests" reply-channel ="responses"/>

To configure the outbound gateway you can use the namespace support as well. The following code snippet
showsthe different configuration optionsfor an outbound Http gateway. Most importantly, notice that the 'http-
method' and 'expected-response-type' are provided. Those are two of the most commonly configured values.
The default http-method is POST, and the default response type is null. With anull response type, the payload
of the reply Message would only contain the status code (e.g. 200) as long as it's a successful status (non-
successful status codes will throw Exceptions). If you are expecting a different type, suchasa St ri ng, then
provide that fully-qualified class name as shown below.

<ht t p: out bound- gat eway i d="exanpl e"
request - channel ="r equest s"
url ="http://|ocal host/test"
ht t p- net hod="POST"
extract -request - payl oad="f al se"
expect ed-response-type="j ava. | ang. Stri ng"
char set =" UTF- 8"
request - f act ory="request Fact ory"
request-ti neout =" 1234"
repl y-channel ="replies"/>

If your outbound adapter is to be used in a unidirectional way, then you can use an outbound-channel -adapter
instead. This means that a successful response will smply execute without sending any Messages to a reply
channel. In the case of any non-successful response status code, it will throw an exception. The configuration
looks very similar to the gateway:

<ht t p: out bound- channel - adapt er i d="exanpl e"
url ="http://I ocal host/exanpl e"
htt p- net hod=" GET"
channel ="r equest s"
char set =" UTF- 8"
extract - payl oad="f al se"
expect ed-response-type="j ava. |l ang. Stri ng"
request - f act ory="sonmeRequest Fact ory"

aut o-startup="fal se"/>

26.5 HTTP Samples

Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
(server)

This example demonstrates how simple it is to send a Multipart HTTP request via Spring's RestTemplate
and receive it by Spring Integration HTTP Inbound Adapter. All we are doing is creating Mul t i Val ueMap
and populating it with multi-part data. Rest Tenpl at e will take care of the rest by converting it
toMul ti part Ht t pSer vl et Request THis particular client will send a multipart Hitp Request which
contains the name of the company as well as the image file with company logo.

Spring Integration
2.0.0.RC1 Reference Manual 107

Spring Integration

Rest Tenpl ate tenpl ate = new Rest Tenpl ate();
String uri = "http://|ocal host: 8080/ multipart-http/inboundAdapt er. ht ni';
Resource s2l ogo =
new C assPat hResour ce("or g/ spri ngfranework/integration/sanpl es/nultipart/spring09_I ogo.png");
Mul ti Val ueMap map = new Li nkedMul ti Val ueMap();
map. add(" conpany”, "SpringSource");
map. add(" conpany- | ogo", s2l 0go);
Ht t pHeader s headers = new Htt pHeaders();
header s. set Cont ent Type(new Medi aType("nultipart”, "formdata"));
Htt pEntity request = new HttpEntity(map, headers);
ResponseEnt i t y<?> htt pResponse = tenpl at e. exchange(uri, HttpMethod. POST, request, null);

That isall for the client.

On the server side we have the following configuration:

<int-http:inbound-channel - adapter id="httpl nboundAdapt er"
channel ="r ecei veChannel "
name="/i nboundAdapt er . ht ni
support ed- net hods="GET, POST" />

<i nt:channel id="receiveChannel"/>

<int:service-activator input-channel="recei veChannel ">
<bean cl ass="org. springfranmework.integration.sanples. nmultipart. MiltipartReceiever"/>
</int:service-activator>

<bean id="nul ti part Resol ver"
cl ass="org. spri ngframewor k. web. mul ti part. commons. CommonsMul ti part Resol ver"/>

The ‘httplnboundAdapter' will receive the request, convert it to a Message with a payload
asLi nkedMul ti Val ueMap which we are parsing in the 'multipartReceiver' service-activator;

public void recieve(Li nkedMul ti Val ueMap<String, Object> nultipartRequest) {
System out. printl n("### Successfully recieved nultipart request ###");
for (String el enmentNane : nultipart Request. keySet()) {
i f (el ement Nane. equal s("conpany")){
Systemout.println("\t" + el ementName + " - " +
((String[]) nultipartRequest.getFirst("conmpany"))[0]);
} else if (el enentNane. equal s("conpany-10go0")){
Systemout.println("\t" + elementName + " - as Upl oadedMul tipartFile: " +
((Upl oadedMul tipartFile) nultipartRequest.getFirst("conmpany-logo")).getOiginal Filenane());

Y ou should see the following output:

Successfully recieved nultipart request
conpany - SpringSource
conpany-1ogo - as Upl oadedMul tipartFile: spring09_| ogo.png

Spring Integration
2.0.0.RC1 Reference Manual 108

Spring Integration

27. TCP and UDP Support

Spring Integration provides Channel Adaptersfor receiving and sending messages over internet protocols. Both
UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) adapters are provided. Each adapter
provides for one-way communication over the underlying protocol. In addition, simpleinbound and outbound
tcp gateways are provided. These are used when two-way communication is needed.

27.1 Introduction

Two flavors each of UDP inbound and outbound adapters are provided
Uni cast Sendi ngMessageHand| er sends a datagram packet to a single
degtination. Uni cast Recei vi ngChannel Adapt er receives incoming datagram packets.
Mul ti cast Sendi ngMessageHandl er sends (broadcasts) datagram packets to a multicast address.
Mul ti cast Recei vi ngChannel Adapt er receivesincoming datagram packets by joining to a multicast
address.

TCP inbound and outbound adapters are provided TcpSendi ngMessageHand!| er sends messages over
TCP. TcpRecei vi ngChannel Adapt er receives messages over TCP.

Aninbound TCP gateway is provided; this allows for simple request/response processing. While the gateway
can support any number of connections, each connection can only process serially. The thread that reads from
the socket waits for, and sends, the response before reading again. If the connection factory is configured for
single use connections, the connection is closed after the socket times out.

An outbound TCP gateway is provided; this allows for simple request/response processing. If the associated
connection factory is configured for single use connections, a new connection isimmediately created for each
new reguest. Otherwise, if the connection isin use, the calling thread blocks on the connection until either a
response s received or atimeout or 1/O error occurs.

27.2 UDP Adapters

<i p: udp- out bound- channel - adapt er i d="udpCut"
host =" sonehost "
port="11111"
mul ti cast="fal se"
channel =" exanpl eChannel * />

A simple UDP outbound channel adapter.

: Tip
When setting multicast to true, provide the multicast address in the host attribute.

UDPisan efficient, but unreliable protocol. Two attributes are added to improvereliability. When check-length
is set to true, the adapter precedes the message data with alength field (4 bytes in network byte order). This
enables the receiving side to verify the length of the packet received. If areceiving system uses a buffer that
is too short the contain the packet, the packet can be truncated. The length header provides a mechanism to
detect this.

Spring Integration
2.0.0.RC1 Reference Manual 109

Spring Integration

<i p: udp- out bound- channel - adapt er i d="udpCQut"
host =" sonehost "
port="11111"
mul ticast="fal se"
check-1 engt h="true"
channel =" exanpl eChannel " />

An outbound channel adapter that adds length checking to the datagram packets.

. Tip
The recipient of the packet must also be configured to expect alength to precede the actual data.
For a Spring Integration UDP inbound channel adapter, set itscheck- | engt h attribute.

The second reliability improvement allows an application-level acknowledgment protocol to be used. The
receiver must send an acknowledgment to the sender within a specified time.

<i p: udp- out bound- channel - adapt er i d="udpQCut"
host =" sonmehost "
port="11111"
mul ti cast="fal se"
check-1 engt h="true"
acknow edge="true"
ack-host ="t hi shost"
ack- port="22222"
ack-ti meout ="10000"
channel =" exanpl eChannel " />

An outbound channel adapter that adds length checking to the datagram packets and waits for an
acknowledgment.

Tip

1 Setting acknowledge to true implies the recipient of the packet can interpret the header added to
the packet containing acknowledgment data (host and port). Most likely, the recipient will be a
Spring Integration inbound channel adapter.

Tip
1 When multicast is true, an additional attribute min-acks-for-success specifies how many
acknowledgments must be received within the ack-timeout.

For even more reliable networking, TCP can be used.

<i p: udp- i nbound- channel - adapt er i d="udpRecei ver"
channel =" udpQut Channel "
port="11111"
recei ve- buf fer-size="500"
mul ti cast="fal se"
check-1 ength="true" />

A basic unicast inbound udp channel adapter.

<i p: udp- i nbound- channel - adapt er i d="udpRecei ver"
channel =" udpQut Channel "
port="11111"
recei ve- buf fer-size="500"
mul ticast="true"

Spring Integration
2.0.0.RC1 Reference Manual 110

Spring Integration

mul ti cast - address="225.6.7.8"
check-1 ength="true" />

A basic multicast inbound udp channel adapter.

27.3 TCP Connection Factories

For TCP, the configuration of the underlying connection is provided using a Connection Factory. Two
types of connection factory are provided; a client connection factory and a server connection factory. Client
connection factories are used to establish outgoing connections; Server connection factories|isten for incoming
connections.

A client connection factory is used by an outbound channel adapter but a reference to a client connection
factory can also be provided to aninbound channel adapter and that adapter will receive any incoming messages
received on connections created by the outbound adapter.

A server connection factory is used by an inbound channel adapter or gateway (in fact the connection factory
will not function without one). A reference to a server connection factory can also be provided to an outbound
adapter; that adapter can then be used to send replies to incoming messages to the same connection.

Tip
1 Reply messages will only be routed to the connection if the reply contains the header
$ip_connection _id that was inserted into the original message by the connection factory.

Tip

1 This is the extent of message correlation performed when sharing connection factories between
inbound and outbound adapters. Such sharing allows for asynchronous two-way communication
over TCP. Only payload information is transferred using TCP; therefore any message correlation
must be performed by downstream components such as aggregators or other endpoints.

A maximum of one adapter of each type may be given areference to a connection factory.

Connection factories using j ava. net. Socket and j ava. ni 0. channel . Socket Channel are
provided.

<i p:tcp-connection-factory id="server"
type="server"
port="1234"

/>

A simple server connection factory that usesj ava. net . Socket connections.

<i p:tcp-connection-factory id="server"
type="server"
port="1234"
usi ng-ni o="true"
/>

A simple server connection factory that usesj ava. ni 0. channel . Socket Channel connections.

Spring Integration
2.0.0.RC1 Reference Manual 111

Spring Integration

<i p:tcp-connection-factory id="client"
type="client"
host ="1 ocal host "
port="1234"
si ngl e-use="true"
so-ti meout =" 10000"
/>

A client connection factory that usesj ava. net . Socket connectionsand creates anew connection for each
message.

<i p:tcp-connection-factory id="client"
type="client"
host ="1 ocal host "
port="1234"
si ngl e-use="true"
so-ti meout ="10000"
usi ng- ni o=t rue
/>

A client connection factory that uses j ava. ni 0. channel . Socket connections and creates a new
connection for each message.

TCP is a streaming protocol; this means that some structure has to be provided to data transported over
TCP, so the receiver can demarcate the data into discrete messages. Connection factories are configured
to use (de)seridizers to convert between the message payload and the bits that are sent over TCP.
This is accomplished by providing a deserializer and serializer for inbound and outbound messages
respectively. Four standard (de)serializers are provided; the firstisByt eArrayCr | f Seri al i zer, which
can convert a byte array to a stream of bytes followed by carriage return and linefeed characters (\r\n).
This is the default (de)serializer and can be used with telnet as a client, for example. The second is is
Byt eArraySt xEt xSeri al i zer, which can convert a byte array to a stream of bytes preceded by an
STX (0x02) and followed by an ETX (0x03). The third is Byt eArr ayLengt hHeader Seri al i zer,
which can convert a byte array to a stream of bytes preceded by a 4 byte binary length
in network byte order. Each of these is a subclass of AbstractByteArraySerializer
which implements both org. springframework. core. serializer.Serializer and
org. springframework. core. serializer.Deserializer. For backwards compatibility,
connections using any subclass of AbstractByteArraySerializer for seridization will also
accept a String which will be converted to a byte array first. Each of these (de)seriaizers
converts an input stream containing the corresponding format to a byte array payload. The
fourth standard serializer is or g. spri ngf ramewor k. core. seri alizer.DefaultSerializer
which can be used to convert Seridizable objects using java seridization.
org. springframework. core. serializer.Defaul tDeserializer is provided for inbound
deserialization of streams containing Seriadlizable objects. To implement a custom
(de)serializer pair, implement the or g. spri ngframewor k. core. serializer. Deserializer
and or g. spri ngframework. core. serializer. Serializer interfaces. If you do not wish to
use the default (de)serializer (Byt eArrayCrLf Serializer), you must supply serializer and
deseri al i zer attributes on the connection factory (example below).

<bean i d="j avaSerial i zer"
cl ass="org. springframework. core. serializer.Defaul tSerializer" />

Spring Integration
2.0.0.RC1 Reference Manual 112

Spring Integration

<bean i d="j avaDeseri al i zer"
cl ass="org. springframework. core. seri al i zer. Def aul t Deseri al i zer" />

<i p:tcp-connection-factory id="server"
type="server"
port="1234"
deserial i zer="JavaDeseri al i zer"
serializer="javaSerializer"
/>

A server connection factory that uses j ava. net . Socket connections and uses Java serialization on the
wire.

For full details of the attributes available on connection factories, see the reference at the end of this section.

27.4 Tcp Connection Interceptors

Connection factories can be configured with a reference to a
TcpConnecti onl nt er cept or Fact or yChai n. Interceptors can be used to add behavior to
connections, such as negotiation, security, and other setup. No interceptors are currently provided by
the framework but, for an example, see the | nt er cept edShar edConnecti onTest s in the source
repository.

TheHel | oWor | dI nt er cept or used in the test case works as follows:

When configured with a client connection factory, when the first message is sent over a connection that is
intercepted, theinterceptor sends'Hello' over the connection, and expectsto receive 'world!'. When that occurs,
the negotiation is complete and the original message is sent; further messages that use the same connection are
sent without any additional negotiation.

When configured with a server connection factory, the interceptor requires the first message to be 'Hello' and,
if itis, returns'world!'. Otherwise it throws an exception causing the connection to be closed.

All TcpConnecti on methods are intercepted. Interceptor instances are created for each connection
by an interceptor factory. If an interceptor is stateful, the factory should create a new instance
for each connection. Interceptor factories are added to the configuration of an interceptor
factory chain, which is provided to a connection factory using the interceptor-factory
atribute. Interceptors must implement the TcpConnecti onl nt erceptor interface; factories
must implement the TcpConnecti onl nterceptorFactory interface. A convenience class
Abst ract TcpConnect i onl nt er cept or isprovided with passthrough methods; by extending thisclass,
you only need to implement those methods you wish to intercept.

<bean i d="hel | oWor | dl nt er cept or Fact or y"
cl ass="org. springframework.integration.ip.tcp.connection. TcpConnecti onl ntercept or Fact or yChai n" >
<property nanme="interceptors">
<array>
<bean cl ass="org. spri ngframework.integration.ip.tcp.connection. HelloWrldlnterceptorFactory"/>
</ array>
</ property>
</ bean>

<int-ip:tcp-connection-factory id="server"
type="server"

Spring Integration
2.0.0.RC1 Reference Manual 113

Spring Integration

port="12345"

usi ng- ni o="true"

si ngl e-use="true"

i nterceptor-factory-chai n="hel | oWr| dl nt er cept or Fact ory"
/>

<int-ip:tcp-connection-factory id="client"

type="client"

host ="1 ocal host "

port="12345"

si ngl e-use="true"

so-ti meout ="100000"

usi ng-ni o="true"

i nterceptor-factory-chai n="hel | oWr | dl nt er cept or Fact or y"
/>

Configuring a connection interceptor factory chain.

27.5 TCP Adapters

TCP inbound and outbound channel adapters that utilize the above connection factories are provided. These
adapters have just 2 attributes connecti on-factory and channel . The channel attribute specifies
the channel on which messages arrive at an outbound adapter and on which messages are placed by an
inbound adapter. The connection-factory attribute indicates which connection factory isto be used to manage
connections for the adapter. While both inbound and outbound adapters can share a connection factory, server
connection factories are aways 'owned' by an inbound adapter; client connection factories are aways 'owned'
by an outbound adapter. One, and only one, adapter of each type may get a reference to a connection factory.

<bean i d="javaSeri al i zer"

cl ass="org. springframework. core.serializer.DefaultSerializer" />
<bean i d="j avaDeseri alizer"

cl ass="org. springframework. core. seri alizer. Defaul t Deserializer" />

<int-ip:tcp-connection-factory id="server"
type="server"
port="1234"
deserial i zer="j avaDeseri al i zer"
serializer="javaSerializer"
usi ng- ni o="true"
si ngl e-use="true"

/>

<int-ip:tcp-connection-factory id="client"
type="client"
host ="1 ocal host "
port="#{server.port}"
si ngl e-use="true"
so-ti meout =" 10000"
deserial i zer="j avaDeseri alizer"
serializer="javaSerializer"
/>

<int:channel id="input" />
<int:channel id="replies">

<i nt: queue/ >
</int:channel >

Spring Integration
2.0.0.RC1 Reference Manual 114

Spring Integration

<i nt-i p:tcp-out bound- channel - adapt er i d="out boundd i ent"
channel ="i nput"
connection-factory="client"/>

<int-ip:tcp-inbound-channel -adapter id="i nboundd ient"
channel ="repl i es"
connection-factory="client"/>

<int-ip:tcp-inbound-channel - adapt er id="i nboundServer"
channel ="1 oop"
connection-factory="server"/>

<i nt-i p:tcp-out bound- channel - adapt er i d="out boundSer ver"
channel ="1 oop"

connection-factory="server"/>

<int:channel id="Iloop" />

In this configuration, messages arriving in channel ‘input’ are serialized over connections created by ‘client’
received at the server and placed on channel 'loop'. Since 'loop' is the input channel for 'outboundServer' the
message is simply looped back over the same connection and received by ‘inboundClient’ and deposited in
channel 'replies. Java seridlization is used on the wire.

27.6 TCP Gateways

The inbound TCP gateway Tcpl nboundGat eway and oubound TCP gateway TcpQut boundGat eway
use aserver and client connection factory respectively. Each connection can process a single request/response
at atime.

The intbound gateway, after constructing a message with the incoming payload and sending it to the
requestChannel, waits for a response and sends the payload from the response message by writing it to the
connection.

The outbound gateway, after sending a message over the connection, waits for a response and constructs a
response message and putsin on the reply channel. Communications over the connections are single-threaded.
Users should be aware that only one message can be handled at atime and, if another thread attemptsto send a
message before the current response has been received, it will block until any previous requests are complete
(or time out). If, however, the client connection factory is configured for single-use connections each new
request gets its own connection and is processed immediately.

<i p: tcp-i nbound- gat eway i d="i nGat eway"
request - channel ="t cpChannel "
repl y-channel ="r epl yChannel "
connection-factory="cf Server"
reply-timeout="10000"
/>

A simple inbound TCP gateway; if a connection factory configured with the default (de)serializer is used,
messages will be \r\n delimited data and the gateway can be used by asimple client such as telnet.

<i p: t cp- out bound- gat eway i d="out Gat eway"
request - channel ="t cpChannel "

Spring Integration
2.0.0.RC1 Reference Manual 115

Spring Integration

repl y- channel ="r epl yChannel "
connection-factory="cfCient"
request - ti neout =" 10000"
repl y-ti meout ="10000"

/>

A simple oubound TCP gateway.

27.7 IP Configuration Attributes

Table 27.1. Connection Factory Attributes

Attribute Name Client?|Server? Allowed Values Attribute Description
type Y Y client, server Determines whether the connection factory
isaclient or server.
host Y N The host name or ip address of the
destination.
port Y Y The port.
seriaizer Y Y An implementation of Seri al i zer used
to seridize the payload. Defaults to
Byt eArrayCrLfSerializer
deserializer Y Y An implementation of Deseri ali zer
used to deserialize the payload. Defaults to
Byt eArrayCrLfSerializer
using-nio Y Y true, false Whether or not the tcp adapter is using
NIO. Refer to the java.nio package for more
information. Default false.
using-direct-buffers Y N true, false When using NIO, whether or not the
tcp adapter uses direct buffers. Refer to
j ava. ni 0. Byt eBuf f er documentation
for moreinformation. Must befalseif using-
nioisfalse.
so-timeout Y Y See j ava. net . Socket setSoTimeout()
methods for more information.
so-send-buffer-size Y Y See j ava. net . Socket
setSendBufferSize() methods for more
information.
Y Y See j ava. net . Socket

so-receive-buffer-
size

setReceiveBufferSize() methods for more
information.

2.0.0.RC1

Spring Integration
Reference Manual

116

Spring Integration

Attribute Name

Client?

Server?

Allowed Values

Attribute Description

so-keep-dive

Y

true, false

See j ava. net . Socket .
set KeepAlive().

so-linger

Sets linger to true with supplied
value. See j ava. net . Socket .
set SoLi nger ().

so-tcp-no-delay

so-traffic-class

|ocal-address

task-executor

single-use

Y

true, false

true, false

See j ava. net . Socket .
set TcpNoDel ay() .

See j ava. net . Socket .
set TrafficC ass().

On a multi-homed system, specifies an IP
address for the interface to which the socket
will be bound.

Specifies a specific Executor to be used
for socket handling. If not supplied, an
internal pooled executor will be used.
Needed on some platforms that require the
use of specific task executors such as a
WorkM anager TaskExecutor. See pool-size
for thread requirements, depending on other
options.

Specifies whether a connection can be
used for multiple messages. If true, a new
connection will be used for each message.

pool-size

interceptor-factory-
chain

Specifiesthe concurrency. For tcp, not using
nio, specifies the number of concurrent
connections supported by the adapter. For
tcp, using nio, specifies the number of tcp
fragmentsthat are concurrently reassembled
into complete messages. It only applies in
this senseif task-executor is not configured.
However, pool-size is aso used for the
server socket backlog, regardless of whether
an external task executor isused. Defaultsto
5.

Documentation to be supplied.

2.0.0.RC1

Spring Integration
Reference Manual

117

Spring Integration

Table 27.2. UDP Outbound Channel Adapter Attributes

Attribute Name Allowed Values Attribute Description

host The host name or ip address of the destination. For
multicast udp adapters, the multicast address.

port The port on the destination.

multicast true, false Whether or not the udp adapter uses multicast.

acknowledge true, false Whether or not a udp adapter requires an
acknowledgment from the destination. when enabl ed,
reguires setting the following 4 attributes.

ack-host When acknowledge is true, indicates the host or ip
address to which the acknowledgment should be sent.
Usually the current host, but may be different, for
examplewhen Network Address Transation (NAT) is
being used.

ack-port When acknowledgeistrue, indicatesthe port to which
the acknowledgment should be sent. The adapter
listens on this port for acknowledgments.

ack-timeout When acknowledge is true, indicates the time in

milliseconds that the adapter will wait for an
acknowlegment. If an acknowlegment is not received
in time, the adapter will throw an exception.

min-acks-for- success

check-length true, false

time-to-live

So-timeout

Defaults to 1. For multicast adapters, you can set
thisto alarger value, requiring acknowlegments from
multiple destinations.

Whether or not a udp adapter includes a data length
field in the packet sent to the destination.

For multicast adapters, specifies the time to live
attribute for the Mul t i cast Socket ; controls the
scope of the multicasts. Refer to the Java API
documentation for more information.

See j ava. net . Dat agr anSocket
setSoTimeout() methods for more information.

so-send-buffer-size

See j ava. net . Dat agr anSocket
setSendBufferSize() methods for more information.

so-receive-buffer- size

Used for udp acknowlegment packets. See
j ava. net . Dat agr anSocket

2.0.0.RC1

Spring Integration
Reference Manual 118

Spring Integration

Attribute Name Allowed Values

Attribute Description

|ocal-address

setReceiveBufferSize() methods for

information.

more

On a multi-homed system, for the UDP adapter,
specifies an IP address for the interface to which
the socket will be bound for reply messages. For a
multicast adapter it is aso used to determine which
interface the multicast packets will be sent over.

task-executor

Table 27.3. UDP Inbound Channel Adapter Attributes

Attribute Name Allowed Values
port
multicast true, false

multicast-address

pool-size

task-executor

recelve-buffer-size

Specifies a specific Executor to be used for
acknowledgment handling. If not supplied, aninternal
single threaded executor will be used. Needed on
some platforms that require the use of specific
task executors such asaWorkManager TaskExecutor.
One thread will be dedicated to handling
acknowledgments (if the acknowledge optionistrue).

Attribute Description
The port on which the adapter listens.
Whether or not the udp adapter uses multicast.

When multicast istrue, the multicast addressto which
the adapter joins.

Specifies the concurrency. Specifies how many
packets can be handled concurrently. It only applies
if task-executor is not configured. Defaultsto 5.

Specifies a specific Executor to be used for socket
handling. If not supplied, an interna pooled executor
will be used. Needed on some platforms that
require the use of specific task executors such as a
WorkManagerTaskExecutor. See pool-sizefor thread
reguirements.

The size of the buffer used to receve
DatagramPackets. Usually set to the MTU size. If a
smaller buffer is used than the size of the sent packet,
truncation can occur. This can be detected by means
of the check-length attribute..

check-length true, false

Whether or not a udp adapter expects a data length
field in the packet received. Used to detect packet
truncation.

Spring Integration

2.0.0.RC1

Reference Manual

119

Spring Integration

Attribute Name Allowed Values Attribute Description

so-timeout See j ava. net . Dat agr anSocket
setSoTimeout() methods for more information.

so-send-buffer-size Used for udp acknowlegment packets. See
j ava. net . Dat agr anSocket
setSendBufferSize() methods for more information.

so-receive-buffer- size See j ava. net . Dat agr anSocket
setReceiveBufferSize() for more information.

local-address On amulti-homed system, specifiesan |P address for
the interface to which the socket will be bound.

Table 27.4. TCP Inbound Gateway Attributes

Attribute Name | Allowed Values Attribute Description

port The port on which the gateway listens.

Table 27.5. TCP Outbound Gateway Attributes

Attribute Name | Allowed Values Attribute Description

host The host name or ip address of the destination.

Spring Integration
2.0.0.RC1 Reference Manual 120

Spring Integration

28. Mail Support

28.1 Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the Mai | Sendi ngMessageHand| er . It
delegates to a configured instance of Spring's JavaMai | Sender :

JavaMai | Sender nmi | Sender = (JavaMail Sender) context.get Bean("nail Sender");

Mai | Sendi ngMessageHandl er nmai | Sendi ngHandl er = new Mai | Sendi ngMessageHand| er (nai | Sender) ;

Mai | Sendi ngMessageHandl er has various mapping strategies that use Spring's Mai | Message
abstraction. If the received Message's payload is already a Mai | Message instance, it will be sent directly.
Therefore, it is generdly recommended to precede this consumer with a Transformer for non-trivial
MailMessage construction requirements. However, a few simple Message mapping strategies are supported
out-of-the-box. For example, if the message payload is abyte array, then that will be mapped to an attachment.
For simple text-based emails, you can provide a String-based Message payload. In that case, a MailMessage
will be created with that String as the text content. If you are working with a Message payload type
whose toString() method returns appropriate mail text content, then consider adding Spring Integration's
ObjectToSringTransformer prior to the outbound Mail adapter (see the example within Section 9.2, “The
<transformer> Element” for more detail).

The outbound MailMessage may also be configured with certain values from the MessageHeader s. If
available, values will be mapped to the outbound mail's properties, such as the recipients (TO, CC, and BCC),
the from/reply-to, and the subject. The header names are defined by the following constants:

Mai | Header s. SUBJECT
Mai | Headers. TO

Mai | Header s. CC

Mai | Header s. BCC

Mai | Header s. FROM

Mai | Header s. REPLY_TO

Note

k\ Mai | Header s also allows you to override corresponding Mai | Message values. For example:
If Mai | Message. to is set to 'foo@bar.com' and Mai | Header s. TO Message header is
provided it will take precedence and override the corresponding valuein Mai | Message

28.2 Mail-Receiving Channel Adapter

Spring Integration also provides support for inbound email with the Mai | Recei vi ngMessageSour ce. It
delegates to a configured instance of Spring Integration's own Mai | Recei ver interface, and there are two
implementations. Pop3Mai | Recei ver and| mapMai | Recei ver . Theeasiest way to instantiate either of
these is by passing the 'uri' for aMail store to the receiver's constructor. For example:

Mai | Recei ver receiver = new Pop3Mui | Recei ver ("pop3://usr: pwd@ ocal host /| NBOX") ;

Another option for receiving mail isthe IMAP "idle" command (if supported by the mail server you are using).
Spring Integration providesthel mapl dl eChannel Adapt er whichisitself aMessage-producing endpoint.

Spring Integration
2.0.0.RC1 Reference Manual 121

Spring Integration

It delegatesto aninstance of thel mapMai | Recei ver but enablesasynchronous reception of Mail Messages.
There are examples in the next section of configuring both types of inbound Channel Adapter with Spring
Integration's namespace support in the 'mail* schema.

28.3 Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the following
schema locations.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: mai | ="http://ww. spri ngframewor k. org/ schena/integrati on/ mail"
xsi : schemalLocati on="http://ww. spri ngf ranmewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ i nt egrati on/ nai
http://ww. springfranmework. org/ schema/integration/ mail/spring-integration-mil-2.0.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the Mail Sender:

<mai | : out bound- channel - adapt er channel =" out boundMai | *
nai | - sender =" nai | Sender"/ >

Alternatively, provide the host, username, and password:

<mai | : out bound- channel - adapt er channel =" out boundMai | *
host ="sonmehost" user nanme="someuser" password="sonmepassword"/>

Note

\‘ Keep in mind, as with any outbound Channel Adapter, if the referenced channel is a
PollableChannel, a<poller> sub-element should be provided with either aninterval -trigger or cron-
trigger.

To configure an inbound Channel Adapter, you have the choice between polling or event-driven (assuming
your mail server supports IMAP IDLE - if not, then polling is the only option). A polling Channel Adapter
simply requires the store URI and the channel to send inbound Messages to. The URI may begin with "pop3"
or "imap":

<i nt-nmai | : i nbound- channel - adapt er i d="i napAdapt er"
store-uri="imaps://[usernane]:[password] @ nmap. gnai | . com | NBOX"
java-nmai | - properti es="j avaMai | Properties"
channel ="r eci eveChannel "
shoul d- del et e- nessages="t rue"
shoul d- mar k- mressages- as-read="true"
aut o-startup="true">
<int:poller max-nmessages-per-poll="1" fixed-rate="5000"/>
</int-mail:inbound-channel - adapt er>

If you do have IMAP idle support, then you may want to configure the "imap-idle-channel-adapter”" element

instead. Since the"idle" command enables event-driven notifications, no poller is necessary for this adapter. It
will send a Message to the specified channel as soon as it receives the notification that new mail is available:

<int-mail:imp-idle-channel - adapter id="customAdapter"
store-uri ="imaps://[usernane]: [password] @ map. gmai | . conl | NBOX"

Spring Integration
2.0.0.RC1 Reference Manual 122

Spring Integration

channel ="r eci eveChannel "

aut o-startup="true"

shoul d- del et e- nessages="f al se"

shoul d- mar k- mressages- as-read="true"

java-nmui |l - properties="javaMil Properties"/>

where javaMailProperties could be provided by creating and populating a regular
java.utils. Properti es object. For example via util namespace provided by Spring.

<util:properties id="javaMil Properties">
<prop key="nmil.imap. socket Factory. cl ass">j avax. net. ssl . SSLSocket Fact or y</ pr op>
<prop key="nmil.imp. socket Factory. fal |l back">f al se</ prop>
<prop key="nmuil.store. protocol "> maps</ prop>
<prop key="nuil . debug">fal se</prop>
</util:properties>

| mportant
! In both configurations channel and shoul d- del et e- nessages are the REQUIRED
attributes. Theimportant thing to understand iswhy shoul d- del et e- messages isrequired?
The issue is with POP3 protocol, which does NOT have any knowlege of messages that were
READ. It can only know what'sbeenread within a single session. This means that when your
POP3 mail adapter isrunning emailsare successfully consumed as asthey become availableduring
each poll and no single email message will be delivered more then once. However, as soon as
you restart your adapter and begin anew session all the email messages that might have been
retreeved in the previous session will be retrieved again. That is the nature of POP3. Some might
argue that why not set shoul d- del et e- messages to TRUE by default? Becouse there are
two valid amd mutually exclusive use cases ~ which makes it very hard pick the right default.
Y ou may want to configure your adapter as the only email receiever in which case you want
to be able to restart such adapter without fear that messages that were delivered before will not be
redelivered again. Inthis case setting shoul d- del et e- messages to TRUE would make
most sence. However, you may have anoher use case where you may want to have multiple
adaptersthat simply monitor email servers and their content. In other words you just want to 'peek
but not touch’. Then setting shoul d- del et e- nessages to FALSE would be much more
appropriate. So since it is hard to choose what should be the right default value for shoul d-
del et e- nessages attribute we simply madeit required to be set - leaving it uptoyou while
also not letting you to forget that you must set it.

Note

\\ When configuring a polling adapter (e.g., inbound-channel-adapter) should-mark-messages-as-
read be aware of the protocol you are configuring to retrieve messages. For example POP3 does
not support this flag which means setting it to either value will have no effect as messages will
NOT be marked as read

When using the namespace support, a header-enricher Message Transformer is also available. This simplifies
the application of the headers mentioned above to any Message prior to sending to the Mail-sending Channel
Adapter.

<mai | : header - enri cher subject="Exanple Mil"
to="t o@xanpl e. org"
cc="cc@xanpl e. org"
bcc="bcc@xanpl e. or g"

Spring Integration
2.0.0.RC1 Reference Manual 123

Spring Integration

from="fromaxanpl e. org"
reply-to="repl yTo@xanpl e. or g"
overwite="fal se"/>

Spring Integration
2.0.0.RC1 Reference Manual 124

Spring Integration

29. JIMX Support

Spring Integration provides Channel Adapters for receiving and publishing IMX Notifications. There is also
an inbound Channel Adapter for polling IMX MBean attribute values, and an outbound Channel Adapter for
invoking JIMX MBean operations.

29.1 Notification Listening Channel Adapter

The Notification-listening Channel Adapter requires a JMX ObjectName for the MBean that publishes
Notifications to which this listener should be registered. A very simple configuration might look like this:

<jm:notification-Ilistening-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. donai n: nane=publ i sher"/ >

Tip

1 The notification-listening-channel-adapter registers with an MBeanServer at startup, and the
default bean name is "mbeanServer" which happens to be the same bean name generated when
using Spring's <context:mbean-server/> element. If you need to use a different name be sure to
include the "mbean-server" attribute.

The adapter can al so accept areferenceto aNotificationFilter and a"handback” Object to provide some context
that is passed back with each Notification. Both of those attributes are optional. Extending the above example
to include those attributes as well as an explicit MBeanServer bean name would produce the following:

<jmx:notification-Ilistening-channel -adapter id="adapter"
channel =" channel "
nmbean- server =" soneSer ver "
obj ect - nane="exanpl e. donmai n: name=sonePubl i sher"
notification-fliter="notificationFilter"
handback="nyHandback" / >

Since the notification-listening adapter isregistered with the MBeanServer directly, it is event-driven and does
not require any poller configuration.

29.2 Notification Publishing Channel Adapter

The Notification-publishing Channel Adapter is relatively simple. It only requires a IMX ObjectName in its
configuration as shown below.

<cont ext : mbean: export/ >

<j nx: noti fication-publishi ng-channel - adapter id="adapter"
channel =" channel "
obj ect - name="exanpl e. domai n: name=publ i sher"/>
It does also require that an MBeanExporter be present in the context. That is why the <context:mbean-export/

> element is shown above as well.

Spring Integration
2.0.0.RC1 Reference Manual 125

Spring Integration

When Messages are sent to the channel for this adapter, the Notification is created from the M essage content.
If the payload is a String it will be passed as the "message” text for the Notification. Any other payload type
will be passed as the "userData" of the Notification.

JMX Notifications also have a "type", and it should be a dot-delimited String. There are two ways
to provide the type. Precedence will aways be given to a Message header value associated with the
JmxHeaders.NOTIFICATION_TY PE key. On the other hand, you can rely on afallback "default-notification-
type" attribute provided in the configuration.

<cont ext : mbean: export/>

<jmx: notification-publishing-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. domai n: name=publ i sher"
defaul t-notification-type="sone.default.type"/>

29.3 Attribute Polling Channel Adapter

The attribute polling adapter is useful when you have a requirement to periodically check on some value that
is available through an MBean as a managed attribute. The poller can be configured in the same way as any
other polling adapter in Spring Integration (or it's possible to rely on the default poller). The "object-name” and
"attribute-name" are required. An MBeanServer reference is also required, but it will automatically check for
abean named "mbeanServer" by default just like the notification-listening-channel-adapter described above.

<jmx:attribute-polling-channel -adapter id="adapter"
channel =" channel "
obj ect - nanme="exanpl e. domai n: nane=soneSer vi ce"
attribute-name="Invocati onCount ">
<si:pol | er max- messages-per-poll="1" fixed-rate="5000"/>
</jnx:attribute-polling-channel - adapter>

29.4 Operation Invoking Channel Adapter

The operation-invoking-channel-adapter enables Message-driven invocation of any managed operation
exposed by an MBean. Each invocation requires the operation name to be invoked and the ObjectName of the
target MBean. Both of these must be explicitly provided via adapter configuration:

<j nx: oper ati on-i nvoki ng- channel - adapt er i d="adapter"
obj ect - nane="exanpl e. domai n: nanme=Test Bean"
oper ati on- name="pi ng"/ >

Then the adapter only needsto be ableto discover the"mbeanServer” bean. If adifferent bean nameisrequired,
then provide the "mbean-server" attribute with areference.

The payload of the Message will be mapped to the parameters of the operation, if any. A Map-typed payload
with String keys is treated as name/value pairs whereas a List or array would be passed as a simple argument
list (with no explicit parameter names). If the operation requires a single parameter value, then the payload can
represent that single value, and if the operation requires no parameters, then the payload would be ignored.

If you want to expose achannel for asingle common operation to beinvoked by Messagesthat need not contain
headers, then that option works well.

Spring Integration
2.0.0.RC1 Reference Manual 126

Spring Integration

29.5 Operation Invoking outbound Gateway

Similar to operation-invoking-channel -adapter Spring | ntegration al so provides oper ation-invoking-outbound-
gateway which could be used when dealing with non-void operations and return value is required. Such return
value will be sent as message payload to the 'reply-channel’ specified by this Gateway.

<j mx: oper at i on-i nvoki ng- out bound- gat eway request -channel ="r equest Channel "
repl y- channel ="r epl yChannel "
obj ect - nane="org. spri ngf ramewor k. i nt egrati on. j nx. confi g: t ype=Test Bean, nane=t est BeanGat eway"
oper ati on-nanme="t est Wt hReturn"/ >

Another way of provideing the 'reply-channel' isby setting MessageHeader s. REPLY CHANNEL Message
Header

29.6 MBean Exporter

Spring Integration components themselves may be exposed a MBeans when
the Integrati onMBeanExporter is configured. To create an instance of the
I nt egr ati onMBeanExport er, define abean and provide a reference to an MBeanServer and a domain
name (if desired). The domain can be left out in which case the default domain is " spring.application”.

<j mx: nbean- exporter domai n="rmy. conpany. domai n* nbean- server =" nbeanServer"/ >

<bean i d="nbeanServer" class="org. springframework.jnmx.support.MBeanServer Fact or yBean" >
<property nanme="| ocat eExi sti ngServer| f Possi bl e" val ue="true"/>
</ bean>

The MBean exporter is orthogonal to the one provided in Spring core - it registers message channels and
message handlers, but not itself (you can expose the exporter itself using the standard <cont ext : nbean-
export/ > tag).

29.7 Control Bus

As described in (EIP [http://www.eai patterns.com/Control Bus.html]), the idea behind the Control Busis that
the same messaging system can be used for monitoring and managing the components within the framework
asisused for "application-level" messaging. In Spring Integration we build upon the adapters described above
so that it's possible to send Messages as a means of invoking exposed operations. Internally, the Control Bus
uses a Spring MBeanExporter instance to expose the various endpoints and channels. To create an instance of
the Control Bus, define a bean and provide areference to an MBeanServer and a domain name.

<j mx: control - bus nbean- exporter="nbeanExporter" operation-channel ="operati onChannel "/>

<j nx: mbean- exporter id="nbeanExporter" mnbean-server="nbeanServer"/>

The Control Bus has an "operationChannel" that can be accessed for invoking operations on the MBeansthat it
has exported. Thiswill also be covered by namespace support soon to make it easier to configure referencesto
that channel for other producers. We will likely add some other channels for notifications and attribute polling
aswell.

Spring Integration
2.0.0.RC1 Reference Manual 127

http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/ControlBus.html

Spring Integration

The Control Bus functionality is a work in progress. At this time, one can perform some basic monitoring
of Message Channels and/or invoke Lifecycle operations (start/stop) on Message Endpoints. Now that the
foundation isavailable, however, we will be able to extend the attributes and operationsthat are being exposed.

Spring Integration
2.0.0.RC1 Reference Manual 128

Spring Integration

30. XMPP Support

Spring Integration provides Channel Adapters for XM PP [http://www.xmpp.org].

30.1 Introduction

Spring Integration provides adapters for sending and receiving both XM PP messages and status changes from
other entriesin your roster aswell as XMPP.

XMPP describes a way for multiple agents to communicate with each other in a distributed system. The
canonical use case is to send and receive instant messages, though XMPP can be, and is, used for far more
applications. XMPPisused to describe anetwork of actors. Within that network, actors may address each other
directly, as well as broadcast status changes.

XMPP provides the messaging fabric that underlies some of the biggest Instant Messaging networks in the
world, including Google Talk (GTak) - which isalso available from within GMail - and Facebook Chat. There
are many good open-source XMPP servers available. Two popular implementations are Openfire [http:/
www.igniterealtime.org/projects/openfire/] and gabberd [http://www.gjabberd.im] .

In XMPP, rosters (the roster corresponds to the notion of a"buddy list" in your typical IM client) are used to
manage alist of other agents ("contacts', or "buddies', in an IM client) in the system, calledroster items. The
roster item contains - at aminimum - the roster item's JID which isitsunique ID on the network. An actor may
subscribe to the state changes of another actor in the system. The subscription can be bidirectional, as well.
The subscription settings determine whose status updates are broadcast, and to whom. These subscriptions are
stored on the XM PP server, and are thus durable.

30.2 Using The Spring Integration XMPP Namespace

Using the Spring I ntegration X M PP namespace support issimple. Itsuseislike any other modulein the Spring
framework: import the XML schema, and use it to define elements. A prototypical XM PP-based integration
might feature the following header. We won't repeat this in subsequent examples, because it is uninteresting.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans: beans
xm ns="http://ww. spri ngfranework. org/ schema/ i nt egration"
xm ns: beans="http://ww. spri ngfranmewor k. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. spri ngfranework. org/ schenma/ p"
xm ns: cont ext ="htt p: // ww. spri ngfranewor k. or g/ schema/ cont ext "
xm ns:util="http://ww.springfranmework. org/schema/util"
xm ns: xmpp="ht t p: // www. spri ngf ramewor k. or g/ schen®a/ i nt egrati on/ xnpp"
xm ns: t ool ="http://ww. spri ngframewor k. or g/ schena/t ool "
xm ns: | ang="http: // ww. spri ngfranmewor k. or g/ schema/ | ang"
xsi : schemalLocat i on="
http://ww. springframework. org/ schema/ i ntegration/ xnmpp
http://wwv springfranmewor k. org/ schema/ i ntegrati on/ xnpp/ spring-integration-xnpp. xsd
http://ww. springfranmework. or g/ schema/ beans
http://ww. springframework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. org/ schema/i ntegration

Spring Integration
2.0.0.RC1 Reference Manual 129

http://www.xmpp.org
http://www.xmpp.org
http://www.igniterealtime.org/projects/openfire/
http://www.igniterealtime.org/projects/openfire/
http://www.igniterealtime.org/projects/openfire/
http://www.ejabberd.im
http://www.ejabberd.im

Spring Integration

http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. springfranmewor k. or g/ schema/ cont ext

http://ww. springfranmework. or g/ schema/ cont ext/ spri ng-cont ext - 3. 0. xsd

">

</ beans: beans>

30.3 XMPP Connection

To participatein the network, an actor must connect to an XM PP server. Typically thisrequires- at aminimum -
auser ,apasswor d, ahost ,and apor t . To create an XM PP connection, you may use the XML namespace.

<Xmpp: Xnmpp- connect i on

i d="nyConnecti on"

user ="user"

passwor d=" passwor d"

host =" host "

port="port"

resour ce="t heNameCOf TheResour ce"

subscri ption- nrode="accept _al | "
/>

30.4 XMPP Messages

Inbound Message Adapter

The Spring Integration adapters support receiving messages from other users in the system. To do this, the
adapter "logsin" asauser on your behalf and receives the messages sent to that user. Those messages are then
forwarded to your Spring Integration client. The payload of the inbound Spring I ntegration message may be of
theraw type org.jivesoftware. smack. packet. Message, or of thetypej ava. | ang. Stri ng
- which is the type of theraw Message's body property - depending on whether you specify ext r act -

payl oad on the adapter's configuration or not. Inbound Messages are typically small and are text-oriented.
M essages received using the adapter have a pretty standard layout, with known headers (all headers have keys
definedon or g. spri ngf ramewor k. i nt egrati on. xnpp. XnppHeader s):

Table 30.1. Header Values

Header Name What It Describes

XmppHeaders. TY PE The value of the the
org.jivesoftware. smack. packet. Message. Type
enum that describes the inbound message.

Possible values are: nor mal , chat , gr oupchat
headl i ne,error.

XmppHeaders.CHAT A reference to the
org.jivesoftware. smack. Chat classwhich
represents the threaded conversation containing the

message.

Spring Integration
2.0.0.RC1 Reference Manual 130

Spring Integration

Thisadapter requiresareferenceto an XM PP Connection. Y ou may use the xmpp-connection element to define
one. An example might look as follows:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans ... >

<cont ext : component - scan
base- package="com nyxnmppcl i ent . i nbound"/ >

<cont ext: property-pl acehol der
| ocati on="#{ systenProperties['user.hone'] }/xnmpp/xnppclient.properties"/>

<channel i d="xnppl nbound"/ >

<XMmpp: XNpp- connect i on
i d="t est Connecti on"

/>
<xmpp: message- i nbound- channel - adapt er
channel =" xnmppl nbound"

xmpp- connect i on="t est Connecti on"/>

<servi ce-activator input-channel =" xnppl nbound"
ref =" xnmppMessageConsuner "/ >

</ beans: beans>

In this example, the message is received from the XM PP adapter and passed to a ser vi ce- acti vat or
component. Here's the declaration of theser vi ce- acti vat or.

package com nyxnppclient.inbound
import org.jivesoftware. smack. packet. Message

i mport org.springframework.integration.annotation. Servi ceActi vat or
i mport org. springfranmework. st ereotype. Conponent ;

@conponent
public class XnppMessageConsuner {

@per vi ceActi vat or

public void consune(Message i nput) throws Throwabl e {
String text = input.getBody();
Systemout. println("Received nessage: " + text) ;

Outbound Message Adapter

You may also send messages to other users on XMPP using the out bound- nessage- channel -
adapt er adapter. The is configured like the xmpp-message-inbound-channel-adapter. The adapter takes
an xnpp- connect i on reference. Here is a (necessarily) contrived example solution using the outbound
adapter.

<?xm version="1.0" encodi ng="UTF-8"?>

Spring Integration
2.0.0.RC1 Reference Manual 131

Spring Integration

<beans: beans ... >

<cont ext : conponent - scan
base- package="com nyxnmpppr oducer . out bound"/ >

<cont ext : property-pl acehol der
| ocation="#{ systenProperties['user.honme'] }/xnpp/xnppclient.properties"/>

<beans: bean i d="xnppPr oducer"
cl ass="com nmyxnmpppr oducer . out bound. XnppMessagePr oducer"
p:recipi ent="${user. 2.1 ogin}"/>

<pol |l er default="true" fixed-rate="10000"/>

<XMmpp: XNpp- connect i on
i d="t est Connecti on"

/>

<i nbound- channel - adapt er ref="xnppProducer"
channel =" out boundChannel "/ >

<channel i d="out boundChannel"/>
<xnpp: nessage- out bound- channel - adapt er
channel =" out boundChannel "

Xnmpp- connect i on="t est Connecti on"/ >

</ beans: beans>

The adapter expectsasitsinput - at aminimum - apayload of typej ava. | ang. St ri ng, and aheader value
for XnppHeader s. CHAT _TO USERthat specifiesto which the user the payload body should be sent to. To
create amessage destined for theout bound- nessage- channel - adapt er, you might use the following
Java code:

Message<Stri ng> xnmppQut boundMsg = MessageBui | der. wi t hPayl oad("Hel | o, world!")
. set Header (XnppHeader s. CHAT_TO USER, "userhandl e")
L bui Id();

It'seasy enoughto use Javato updatethe XnppHeader s. CHAT_TO_USERheader, and thishasthe advantage
of dynamically updating the header at runtime in Java code. If, however, the target is more static in nature,
you can configure it using the XM PP enricher support. Here is an example using the enricher. The enricher
enrichesthe Spring I ntegration message to support the header values that the outbound XM PP adapters expect.

<channel id="input"/>
<channel id="output"/>

<xnpp: header - enri cher i nput-channel ="i nput" out put-channel =" out put ">
<xnpp: nessage-to val ue="t est 1@xanpl e. org"/ >
</ xnmpp: header - enri cher >

Spring Integration
2.0.0.RC1 Reference Manual 132

Spring Integration

30.5 XMPP Presence

XM PP also supports broadcasting state. Y ou can use this capability to let people who have you on their roster
see your state changes. This happensall the time with your IM clients - you change your away status, and then
set an away message, and everybody who has you on their roster sees your icon or username change to reflect
this new state, and additionally might see your new "away" message. If you would like to receive notification,
or notify others, of state changes, you can use Spring Integration's "presence” adapters.

The most important data for these adapters resides in the headers. The header keys are enumerated on
theor g. spri ngf ramewor k. i nt egrati on. xnpp. XnppHeader s class. The header keys specific to
these "presence" adapters start with the token "PRESENCE _". Not all headers are available for both inbound
and outbound.

Table 30.2. Header Values

Header Name What It Describes

XmppHeaders. PRESENCE_LANGUAGE The j ava. | ang. Stri ng language in which the
message was written.

XmppHeaders. PRESENCE_PRIORITY The priority (int) of the message. Arbitrary, but it can
be used to help assign relevance to a message which
in turn might be used in its handling.

XmppHeaders.PRESENCE_MODE An instance of the enum
org.jivesoftware. smack. packet. Presence. Mode
that has one of the following vaues. chat,
avai |l abl e, away, xa, dnd

XmppHeaders.PRESENCE_TY PE An instance of the enum
org.jivesoftware. smack. packet. Presence. Type
that has one of the following values: avai | abl e,
unavai | abl e, subscribe, subscribed,
unsubscri be, unsubscri bed, anderror.

XmppHeaders.PRESENCE_STATUS A java.lang. String string representing the
status of the agent. This corresponds to an agents
"away" message.

XmppHeaders. PRESENCE_FROM A java.lang. String string representing the

handle of the user whose state is being received.

Inbound Presence Adapter

The first adapter supports receiving messages whenever an agent on your roster has updated its state. Most of
the important data comes in through the headers.

Outbound Presence Adapter

TBD

Spring Integration
2.0.0.RC1 Reference Manual 133

Spring Integration

31. Stream Support

31.1 Introduction

In many cases application datais obtained from astream. It is not recommended to send areferenceto a Stream
as amessage payload to a consumer. Instead messages are created from data that is read from an input stream
and message payloads are written to an output stream one by one.

31.2 Reading from streams

Spring Integration provides two adapters for streams. Both Byt eSt r eanReadi ngMessageSour ce
and Char act er St r eanReadi ngMessageSour ce implement MessageSour ce. By configuring one
of these within a channel-adapter element, the polling period can be configured, and the Message
Bus can automatically detect and schedule them. The byte stream version requires an | nput St r eam
and the character stream version requires a Reader as the single constructor argument. The
Byt eSt r eanmReadi ngMessageSour ce aso accepts the 'bytesPerMessage’ property to determine how
many bytesit will attempt to read into each Message. The default valueis 1024

<bean cl ass="org. spri ngframework. i ntegration.stream Byt eStreanReadi ngMessageSour ce" >
<constructor-arg ref="sonel nput Streani'/ >
<property nane="byt esPer Message" val ue="2048"/>

</ bean>

<bean cl ass="org. spri ngframework. i ntegration. stream Char act er St r eanReadi ngMessageSour ce" >
<constructor-arg ref="soneReader"/>
</ bean>

31.3 Writing to streams

For target streams, there are also two implementations. Byt eStream/iti ngMessageHandl er
and Character StreamWi ti ngMessageHandl er . Each requires a single constructor argument -
Qut put St r eamfor byte streamsor Wi t er for character streams, and each provides a second constructor
that adds the optional 'bufferSize'. Since both of these ultimately implement the MessageHandl er interface,
they can be referenced from achannel-adapter configuration as described in more detail in Chapter 6, Channel
Adapter.

<bean cl ass="org. spri ngfranmework.integration.stream ByteStreaniti ngMessageHandl er" >
<constructor-arg ref="soneQut put Streani/>
<constructor-arg val ue="1024"/>

</ bean>

<bean cl ass="org. springframework.integration.stream CharacterStrean¥iti ngMessageHandl er">
<constructor-arg ref="someWiter"/>
</ bean>

Spring Integration
2.0.0.RC1 Reference Manual 134

Spring Integration

31.4 Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace defined. The
following schema locations are needed to use it.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns="http://ww. spri ngfranmework. org/ schena/i ntegration/streant
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="http://ww. spri ngfranmewor k. or g/ schema/ beans"
xsi : schemalLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ i ntegration/stream
http://ww. springfranmework. org/ schema/ i ntegration/streani spring-integration-stream 2.0.xsd">

To configure theinbound channel adapter the following code snippet shows the different configuration options
that are supported.

<stdi n- channel - adapt er i d="adapt er Wt hDef aul t Charset"/>
<st di n- channel - adapt er i d="adapt er Wt hProvi dedCharset" charset="UTF-8"/>

To configure the outbound channel adapter you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound channel adapters.

<st dout - channel - adapt er i d="st dout Adapt er Wt hDef aul t Charset" channel ="t est Channel "/ >
<st dout - channel - adapt er i d="stdout Adapt er Wt hProvi dedCharset" charset="UTF-8" channel ="t est Channel "/ >
<stderr-channel - adapt er id="stderrAdapter" channel ="t est Channel "/ >

<st dout - channel - adapt er i d="new i neAdapter" append-new i ne="true" channel ="t est Channel "/ >

Spring Integration
2.0.0.RC1 Reference Manual 135

Spring Integration

32. Spring ApplicationEvent Support

Spring Integration provides support for inbound and outbound Appli cati onEvents as defined
by the underlying Spring Framework. For more information about the events and listeners, refer to
the Spring Reference Manual [http://static.springsource.org/spring/docs/2.5.x/ref erence/beans.html#context-
functionality-events).

32.1 Receiving Spring ApplicationEvents

To receive events and send them to a channel, simply define an instance of Spring Integration's
Appl i cati onEvent Li st eni ngChannel Adapt er. This class is an implementation of Spring's
Appl i cationLi st ener interface. By default it will pass al received events as Spring Integration
Messages. To limit based on the type of event, configure the list of event types that you want to receive with
the 'eventTypes' property.

For convenience namespace support was provided to
configure Appl i cat i onEvent Li st eni ngChannel Adapt er viainbound-channel-adapter

<i nt-event:inbound-channel - adapt er channel ="i nput" event-types="fo00. bar. FooApplicati onEvent, foo.bar. BarAppli c:

<i nt: publish-subscri be-channel id="sanpl eEvent Channel "/ >

In the above sample, all Application Context events that are of type specified by the ‘event-types (optional)
attribute will be delivered as Spring Integration Messages to ‘'sasmpleEventChannel'.

32.2 Sending Spring ApplicationEvents

To send Spring ApplicationEvents, create an instance of the
Applicati onEvent Publ i shi ngMessageHandl er and register it within an endpoint.
This implementation of the MessageHandl er interface also implements Spring's
Appl i cati onEvent Publ i sher Awar e interface and thus acts as a bridge between Spring Integration
Messages and Appl i cat i onEvent s.

For convenience namespace support was provided to
configure Appl i cati onEvent Publ i shi ngMessageHand| er viaoutbound-channel-adapter element

<int:channel id="input"/>

<i nt - event : out bound- channel - adapt er channel ="i nput"/>

If you are using PollableChannel (e.g., Queue), you can also provide poller as sub-element of outbound-
channel-adapter, optionally providing task-executor

<i nt:channel id="input">
<i nt: queue/ >
</int:channel >

<i nt - event : out bound- channel - adapt er channel ="i nput" >
<int:poller max-nmessages-per-poll="1" task-executor="executor" fixed-rate="100"/>
</int-event: out bound- channel - adapt er >

Spring Integration
2.0.0.RC1 Reference Manual 136

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

Spring Integration

<t ask: execut or id="executor" pool -size="5"/>

In the above sample, all messages sent to an 'input’ channel will be published as ApplicationEvents to Spring
Application sContext

Spring Integration
2.0.0.RC1 Reference Manual 137

Spring Integration

33. XML Support - Dealing with XML Payloads

33.1 Introduction

Spring Integration's XML support extends the Spring Integration Core with implementations of
splitter, transformer, selector and router designed to make working with xml messages in Spring
Integration simple. The provided messaging components are designed to work with xml represented
in a range of formats including instances of j ava. | ang. Stri ng, org. w3c. dom Docunent and
javax. xm . transform Sour ce. It should be noted however that where a DOM representation is
required, for example in order to evaluate an XPath expression, the St ri ng payload will be converted
into the required type and then converted back again to St ri ng. Components that require an instance of
Docurrent Bui | der will create anamespace aware instance if oneis not provided. Where greater control of
the document being created is required an appropriately configured instance of Docunent Bui | der should
be provided.

33.2 Transforming xml payloads

This section will explain the workings of Unmar shal | i ngTr ansf or mer,
Mar shal | i ngTr ansf or ner, Xsl t Payl oadTr ansf or ner and how to configurethem asbeans. All of
the provided xml transformers extend Abst r act Tr ansf or mer or Abst r act Payl oadTr ansf or ner
and therefore implement Transformer. When configuring xml transformers as beans in
Spring Integration you would normally configure the transformer in conjunction with either a
MessageTr ansf or m ngChannel I nt erceptor or a MessageTransfor m ngHandl er. This
allowsthetransformer to be used as either an interceptor, which transformsthe message asit is sent or received
to the channel, or as an endpoint. Finally the namespace support will be discussed which allowsfor the simple
configuration of the transformers as elementsin XML.

Unmar shal | i ngTr ansf or mer alows an xml Sour ce to be unmarshalled using implementations of
Spring OXM Unmar shal | er . Spring OXM provides several implementations supporting marshalling and
unmarshalling using JAXB, Castor and JiBX amongst others. Since the unmarshaller requires an instance
of Sour ce where the message payload is not currently an instance of Sour ce, conversion will be
attempted. Currently St ri ng and or g. w3c. dom Docunent payloads are supported. Custom conversion
to aSour ce isalso supported by injecting an implementation of Sour ceFact ory.

<bean i d="unmarshal | i ngTr ansf or ner"
cl ass="org. springframework.integration.xnl.transforner.Unmarshal | i ngTransf or mer">
<const ruct or - ar g>
<bean cl ass="org. spri ngframewor k. oxm j axb. JaxblMarshal | er ">
<property nane="cont extPath" val ue="org. exanpl e" />
</ bean>
</ constructor-arg>
</ bean>

The Mar shal | i ngTr ansf or ner alows an object graph to be converted into xml using a Spring
OXM WMarshal |l er. By default the Marshal | i ngTransformer will return a DonResul t.
However the type of result can be controlled by configuring an aternative Resul t Fact ory such as
StringResul t Fact ory. In many cases it will be more convenient to transform the payload into an

Spring Integration
2.0.0.RC1 Reference Manual 138

Spring Integration

aternative xml format. To achieve this configure a Resul t Tr ansf or ner. Two implementations are
provided, one which convertsto St r i ng and another which convertsto Docunent .

<bean i d="nmarshal | i ngTr ansf or ner "
class="org. springframework.integration.xm .transforner. Marshal |l i ngTransf or ner" >
<const ruct or - ar g>
<bean cl ass="org. spri ngf ramewor k. oxm j axb. Jaxb1Mar shal | er" >
<property nane="context Path" val ue="org. exanpl e" />
</ bean>
</ constructor-arg>
<constructor-arg>
<bean cl ass="org. spri ngframework.integration.xmn .transforner. Resul t ToDocunent Tr ansf or mer" />
</ constructor-arg>
</ bean>

By default, the Mar shal | i ngTr ansf or mer will pass the payload Object to the Mar shal | er, but if
its boolean "extractPayload" property is set to "false", the entire Message instance will be passed to the
Mar shal | er instead. That may be useful for certain custom implementations of the Mar shal | er interface,
but typically the payload isthe appropriate source Object for marshalling when delegating to any of the various
out-of-the-box Mar shal | er implementations.

Xsl t Payl oadTr ansf or ner transforms xml payloads using xd. The transformer requires an
instance of either Resour ce or Tenpl at es. Passing in a Tenpl at es instance allows for greater
configuration of the Tr ansf or ner Fact ory used to create the template instance. As in the case of
Xm Payl oadMar shal | i ngTr ansf or mer by default Xsl t Payl oadTr ansf or mer will create a
message with a Resul t payload. This can be customised by providing a Resul t Fact ory and/or a
Resul t Tr ansf or mer .

<bean i d="xsl t Payl oadTr ansf or ner "
class="org. springframework.integration.xm .transforner. XsltPayl oadTr ansf or ner" >
<constructor-arg val ue="cl asspat h: or g/ exanpl e/ xsl /transform xsl" />
<const ruct or - ar g>
<bean cl ass="org. spri ngfranmework.integration.xnl.transforner. Result ToDocunent Transfornmer" />
</ const ructor-arg>
</ bean>

33.3 Namespace support for xml transformers

Namespace support for al xml transformers is provided in the Spring Integration xml namespace, a
template for which can be seen below. The namespace support for transformers creates an instance of either
Event Dri venConsuner or Pol | i ngConsuner according to the type of the provided input channel.
The namespace support is designed to reduce the amount of xml configuration by allowing the creation of an
endpoint and transformer using one element.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springfranmework. org/schema/integration"
xm ns: si -xm ="http://ww. springfranework. org/ schema/ i ntegration/xm"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schenma/ beans
http: //wwv spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ scherma/ i ntegration
http://ww. springframework. org/ schema/i ntegration/spring-integration-2.0.xsd
http://ww. springfranmewor k. org/ schema/ i nt egrati on/ xmn

Spring Integration
2.0.0.RC1 Reference Manual 139

Spring Integration

http://ww. springframework. org/ schema/integration/xm /spring-integration-xm-2.0.xsd">
</ beans>

The namespace support for Unmar shal | i ngTr ansf or mer is shown below. Since the namespace is now
creating an endpoint instance rather than atransformer, apoller can also be nested within the element to control
the polling of the input channel.

<si -xm : unmar shal | i ng-transforner id="defaultUnnarshaller"
i nput - channel ="i nput "
out put - channel =" out put "
unmar shal | er ="unmar shal I er"/ >

<si -xm : unmar shal | i ng-transforner id="unmarshallerWthPoller"
i nput - channel ="i nput "
out put - channel =" out put "
unmar shal | er =" unnmar shal | er" >
<si:poller fixed-rate="2000"/>
<si -xm : unnmar shal | i ng-transf orner/ >

The namespace support for the marshalling transformer requires an input channel, output channel and a
reference to a marshaller. The optional result-type attribute can be used to control the type of result created,
valid values are StringResult or DomResult (the default). Where the provided result types are not sufficient a
reference to a custom implementation of Resul t Fact or y can be provided as an aternative to setting the
result-type attribute using the result-factory attribute. An optional result-transformer can aso be specified in
order to convert the created Resul t after marshalling.

<si -xm : mar shal | i ng-transf or mer
i nput - channel =" mar shal | i ngTr ansf or mer St ri ngResul t Fact ory*"
out put - channel =" out put "
mar shal | er ="mar shal | er "
result-type="StringResult" />

<si -xm : mar shal | i ng-transf or ner
i nput - channel =" mar shal | i ngTr ansf or mer Wt hResul t Tr ansf or ner "
out put - channel =" out put "
mar shal | er="marshal | er"
result-transformer="result Transformer" />

<bean i d="resul t Tr ansf or ner"
cl ass="org. springframework.integration.xm .transformer. Resul t ToStri ngTransformer"/>

Namespace support for the Xsl t Payl oadTr ansf or mer alows either a resource to be passed in in order
to create the Tenpl at es instance or alternatively a precreated Tenpl at es instance can be passed in as
a reference. In common with the marshalling transformer the type of the result output can be controlled by
specifying either the result-factory or result-type attribute. A result-transfomer attribute can aso be used to
reference an implementation of Resul t Tr ansf omer where conversion of the result is required before
sending.

<si-xm :xslt-transforner id="xsltTransfornerWthResource"
i nput - channel ="wi t hResour cel n"
out put - channel =" out put "
xsl -resource="or g/ spri ngfranmework/integration/xm/config/test.xsl"/>
<si-xm :xslt-transforner id="xsltTransfornerWthTenpl at esAndResul t Tr ansf or ner "
i nput - channel ="wi t hTenpl at esAndResul t Tr ansf or ner | n"
out put - channel =" out put "

Spring Integration
2.0.0.RC1 Reference Manual 140

Spring Integration

xsl -tenpl at es="t enpl at es"
result-transformer="result Transforner"/>

Very often to assist with transformation you may need to have accessto Message data (e.g., Message Headers).
For example; you may need to get access to certain Message Headers and pass them on as parameters
to a transformer (e.g., transformer.setParameter(..)). Spring Integration provides two convenient ways to
accomplish this. Just look at the following XML snippet.

<si-xm : xslt-transfornmer id="parantHeader sConbo"
i nput - channel =" par anHeader sConboChannel "
out put - channel =" out put "
xsl -resource="cl asspat h: transforner. xslt"
xsl t - param headers="test P*, *foo, bar, baz">

<int-xm :xslt-param nane="hel | oParaneter" val ue="hel |l 0"/ >
<int-xm:xslt-param name="first Name" expressi on="headers. f nane"/>
</int-xm:xslt-transforner>
If message header names match 1:1 to parameter names, you can simply use xdt-param-headers attribute.
There you can also use wildcards for simple pattern matching which supports the following simple pattern
styles: "xxx*", "*xxx", "*xxx*" and "Xxx*yyy".

You can aso configure individual xslt parameters via xdt-param sub element. There you can
use expr essi on or val ue attribute. The expr essi on attribute should be any valid SpEL expression
with Message being the root object of the expression evaluation context. The val ue attribute just like any
val ue in Spring beans alows you to specify simple scalar value. YOu can also use property placeholders
(e.g., ¥ some.value}) So as you can see, with the expr essi on and val ue attribute xdt parameters could
now be mapped to any accessible part of the Message as well as any literal value.

33.4 Splitting xml messages

XPat hMessageSpl i tt er supports messages with either St ri ng or Docunent payloads. The splitter
uses the provided XPath expression to split the payload into a number of nodes. By default thiswill result in
each Node instance becoming the payload of a new message. Where it is preferred that each message be a
Document thecr eat eDocunent s flag canbeset. WhereaSt r i ng payload is passed in the payload will be
converted then split before being converted back to anumber of String messages. The X Path splitter implements
MessageHandl| er and should therefore be configured in conjunction with an appropriate endpoint (see the
namespace support below for asimpler configuration alternative).

<bean i d="splittingEndpoint"
cl ass="org. spri ngframework. i ntegration. endpoi nt. Event Dri venConsuner ">
<constructor-arg ref="order Channel " />
<const ruct or - ar g>
<bean cl ass="org. springframework.integration.xm .splitter.XPathMessageSplitter">
<constructor-arg val ue="/order/itens" />
<property nanme="docunent Bui | der" ref="custom sedDocunent Bui | der" />
<property nanme="out put Channel " ref="orderltensChannel" />
</ bean>
</ constructor-arg>
</ bean>

Spring Integration
2.0.0.RC1 Reference Manual 141

Spring Integration

33.5 Routing xml messages using XPath

Two Router implementations based on XPath are provided XPat hSi ngl eChannel Rout er and
XPat hiul t i Channel Rout er . The implementations differ in respect to how many channels any given
message may be routed to, exactly one in the case of the single channel version or zero or more in
the case of the multichannel router. Both evaluate an XPath expression against the xml payload of the
message, supported payload types by default are Node, Docunent and St ri ng. For other payload types
a custom implementation of Xm Payl oadConvert er can be provided. The router implementations use
Channel Resol ver to convert the result(s) of the XPath expression to a channel name. By default a
BeanFact or yChannel Resol ver strategy will be used, this means that the string returned by the XPath
evaluation should correspond directly to the name of a channel. Where this is not the case an alternative
implementation of Channel Resol ver can be used. Where there is a simple mapping from Xpath result to
channel name the provided MapBasedChannel Resol ver can be used.

<! -- Expects a channel for each value of order type to exist -->
<bean i d="si ngl eChannel Rout i ngEndpoi nt "
cl ass="org. springframework.integration. endpoi nt. Event Dri venConsuner" >
<constructor-arg ref="order Channel " />
<const ruct or - arg>
<bean cl ass="org. spri ngframework.integration.xm .router.XPat hSi ngl eChannel Rout er ">
<constructor-arg val ue="/order/ @ype" />

</ bean>
</ constructor-arg>
</ bean>
<l-- Milti channel router which uses a map channel resolver to resolve the channel nane

based on the XPath evaluation result Since the router is nulti channel it may deliver
message to one or both of the configured channels -->
<bean i d="nmul ti Channel Routi ngEndpoi nt "
cl ass="org. springframework.integrati on. endpoi nt. Event Dri venConsuner" >
<constructor-arg ref="order Channel " />
<const ruct or - ar g>
<bean cl ass="org. spri ngfranmework.integration.xmnl.router.XPat hMil ti Channel Rout er" >
<constructor-arg val ue="/order/recipient" />
<property nane="channel Resol ver">
<bean cl ass="org. springfranmework. i ntegration.channel . MapBasedChannel Resol ver" >
<const ruct or - ar g>
<map>
<entry key="accounts"
val ue-ref="account Confi rmati onChannel " />
<entry key="humanResour ces"
val ue-ref ="humanResour cesConf i r mat i onChannel " />
</ map>
</ constructor-arg>
</ bean>
</ property>
</ bean>
</ constructor-arg>
</ bean>

33.6 Selecting xml messages using XPath

Two MessageSel ect or implementationsare provided, Bool eanTest XPat hMessageSel ect or and
StringVal ueTest XPat hMessageSel ect or . Bool eanTest XPat hMessageSel ect or requires

Spring Integration
2.0.0.RC1 Reference Manual 142

Spring Integration

an XPathExpression which evaluates to a boolean, for example boolean(/one/two) which will only
select messages which have an element named two which is a child of a root element named one.
St ri ngVal ueTest XPat hMessageSel ect or evaluates any XPath expression as a Stri ng and
compares the result with the provided value.

<l-- Interceptor which rejects nessages that do not have a root elenent order -->
<bean i d="order Sel ecti ngl nt er cept or "
cl ass="org. springframework.integration.channel .interceptor. MessageSel ecti nglnterceptor">
<const ruct or - ar g>
<bean cl ass="org. spri ngfranmework.integration.xnl . sel ector. Bool eanTest XPat hMessageSel ect or" >
<constructor-arg val ue="bool ean(/order)" />

</ bean>
</ constructor-arg>
</ bean>
<l-- Interceptor which rejects nessages that are not version one orders -->

<bean i d="versi onOneOr der Sel ecti ngl nt erceptor"
cl ass="org. spri ngframework.integration.channel .interceptor. MessageSel ecti ngl nterceptor">
<const ruct or - ar g>
<bean cl ass="org. spri ngfranmework.integration.xmnl.selector. StringVal ueTest XPat hMessageSel ect or" >
<constructor-arg val ue="/order/ @ersion" index="0"/>
<constructor-arg val ue="1" index="1"/>
</ bean>
</ constructor-arg>
</ bean>

33.7 Transforming xml messages using XPath

When it comesto message transformation X Path isagreat way to transform Messagesthat have XML payloads
by defining X Path transformers via xpath-transformer element.

Smple XPath transformation

Let'slook at the following transformer configuration:

<xpat h-transformer input-channel ="i nput Channel " out put - channel =" out put Channel "
xpat h- expr essi on="/ per son/ @ane" />
... and Message

Message<?> nessage =
MessageBui | der. wi t hPayl oad(" <per son nane='John Doe' age='42" married="true'/>").build()

After sending this message to the 'inputChannel’ the XPath transformer configured above will transform this
XML Message to a simple Message with payload of 'John Doe' all based on the simple XPath Expression
specified in the xpath-expression attribute.

XPath also has capability to perform simple conversion of extracted elements to a desired type. Valid return
types are defined in XPat hConst ant s and follows the conversion rules specified by the XPat h.

The following constants are defined by the XPat hConst ant s: BOOLEAN, DOM_OBJECT _MODEL,
NODE, NODESET, NUMBER, STRING

Y ou can configure the desired type by simply using eval uation-type attribute of the xpath-transformer element.

<xpat h-transforner input-channel ="nunber| nput" xpat h-expressi on="/per son/ @Gge"

Spring Integration
2.0.0.RC1 Reference Manual 143

Spring Integration

eval uati on-type="NUVBER RESULT" out put - channel ="out put"/>

<xpat h-transformer i nput-channel ="bool eanl nput" xpat h- expressi on="/person/ @arried = '"true'"
eval uati on-type="BOOLEAN_RESULT" out put - channel =" out put"/>

Node Mappers

If you need to provide custom mapping for the node extracted by the XPath expression simply provide
a reference to the implementation of the or g. spri ngframewor k. xni . xpat h. NodeMapper - an
interface used by XPat hQper at i ons implementations for mapping Node objects on a per-node basis. To
provide areferenceto aNodeMapper simply use node-mapper attribute:

<xpat h-transformer input-channel ="nodeMapper | nput" xpath-expressi on="/person/ @Gge"
node- mapper ="t est NodeMapper" out put - channel =" out put "/ >

... and Sample NodeM apper implementation:

cl ass Test NodeMapper inpl enents NodeMapper {
public Obj ect mapNode(Node node, int nodeNunm) throws DOVException {
return node. get Text Content () + "-mapped";
}
}

XML Payload Converter

You can also use implementation of the
org. springfranmework. integration.xm . Xm Payl oadConvert er to provide more granular
transformation:

<xpat h-transformer input-channel ="custonConverterlnput" xpath-expression="/test/ @ype"
converter="test Xm Payl oadConverter" output-channel ="output"/>

... and Sample XmlPayloadConverter implementation:

cl ass Test Xm Payl oadConverter inplenments Xm Payl oadConverter {
publ i c Source convert ToSour ce(Cbj ect object) {
t hrow new Unsupport edOper ati onExcepti on();

}
I/
publ i c Node convert ToNode(Obj ect object) {
try {
return Docunent Bui | der Fact ory. newl nst ance() . newDocunent Bui | der () . par se(
new | nput Sour ce(new Stri ngReader ("<test type='custoni/>")));
}
catch (Exception e) {
throw new ||| egal St at eException(e);
}
}
I

publ i ¢ Docunent convert ToDocunent (CObj ect object) {
t hrow new Unsupport edOper at i onException();
}
}

Combination of oEL and XPath expressions

Y ou can also combine Spring Expression Language (SpEL) expressions with X Path expression and configure
them using expression attribute:

Spring Integration
2.0.0.RC1 Reference Manual 144

Spring Integration

xpat h- expressi on i d="t est Expressi on" expressi on="/person/ @ge * 2"/>

In the above case the overall result of the expression will bethe result of the X Pathe expression multiplied by 2.

33.8 XPath components namespace support

All XPath based components have namespace support allowing them to be configured as M essage Endpoints
with the exception of the XPath selectors which are not designed to act as endpoints. Each component allows
the X Path to either be referenced at the top level or configured via a nested xpath-expression element. So the
following configurations of an xpath-selector are al valid and represent the general form of X Path namespace
support. All forms of XPath expression result in the creation of an XPat hExpr essi on using the Spring

XPat hExpr essi onFact ory

<si -xm : xpat h- sel ect or i d="xpat hRef Sel ect or"
xpat h- expr essi on="r ef ToXpat hExpr essi on"
eval uation-resul t-type="bool ean" />

<si -xm : xpat h-sel ector id="sel ector WthNoNS" eval uati on-result-type="bool ean" >
<si -xm : xpat h- expr essi on expressi on="/nanme"/ >
</ si -xm : xpat h- sel ect or>

<si-xm : xpat h-sel ector id="sel ectorWthOneNS" eval uati on-result-type="bool ean" >
<si -xm : xpat h- expr essi on expressi on="/ns1: nane"
ns-prefix="ns1l" ns-uri="ww. exanple.org" />
</ si -xm : xpat h- sel ect or >

<si -xm : xpat h- sel ector id="sel ector WthTwoNS" eval uati on-result-type="bool ean" >
<si -xm : xpat h- expr essi on expressi on="/nsl: nane/ ns2:type">
<r’r‘ap>
<entry key="ns1l" val ue="www. exanpl e. or g/ one" />
<entry key="ns2" val ue="ww. exanpl e. org/two" />
</ map>
</ si -xm : xpat h- expr essi on>
</ si -xm : xpat h- sel ect or >

<si -xm : xpat h-sel ector id="sel ect or Wt hNanespaceMapRef" eval uati on-result-type="bool ean"

<si -xm : xpat h- expr essi on expressi on="/ns1: nane/ ns2: type"
namespace- map="def aul t Nanespaces"/ >
</ si -xm : xpat h- sel ect or >

<util:map id="defaul t Nanespaces" >
<util:entry key="nsl1l" val ue="ww. exanpl e. or g/ one" />
<util:entry key="ns2" val ue="ww. exanpl e. org/tw" />
</util:map>

>

XPath splitter namespace support allows the creation of a Message Endpoint with an input channel and output

channdl.

<l-- Split the order into itens creating a new nessage for each item node -->
<si-xm:xpath-splitter id="orderltentplitter"
i nput - channel =" or der Channel "
out put - channel =" or der | t ensChannel ">
<si -xm : xpat h- expressi on expressi on="/order/itens"/>
</si-xm:xpath-splitter>

<l-- Split the order into itens creating a new docunent for each item->
<si-xm : xpath-splitter id="orderltenmDocunment Splitter"

Spring Integration
2.0.0.RC1 Reference Manual

145

Spring Integration

i nput - channel =" or der Channel "
out put - channel =" or der | t ensChannel "
creat e-docunent s="true">
<si -xm : xpat h- expressi on expressi on="/order/itens"/>
<si:poller fixed-rate="2000"/>
</si-xm:xpath-splitter>

XPath router namespace support allows for the creation of a Message Endpoint with an input channel but no
output channel since the output channel is determined dynamically. The multi-channel attribute causes the
creation of amulti channel router capable of routing a single message to many channels when true and asingle
channel router when false.

<l-- route the message according to exactly one order type channel -->

<si-xm : xpat h-router id="orderTypeRouter" input-channel ="orderChannel" nulti-channel ="fal se">
<si -xm : xpat h- expr essi on expressi on="/order/type"/>

</ si -xm : xpat h-rout er >

<l-- route the order to all responders-->

<si-xm : xpat h-router id="responderRouter" input-channel ="order Channel" nulti-channel ="true">
<si - xm : xpat h- expr essi on expressi on="/request/responders"/>
<si:poller fixed-rate="2000"/>

</ si -xm : xpat h-rout er >

Spring Integration
2.0.0.RC1 Reference Manual 146

Spring Integration

34. Security in Spring Integration

34.1 Introduction

Spring Integration provides integration with the Spring Security project [http://static.springframework.org/
spring-security/sitef] to allow role based security checksto be applied to channel send and receive invocations.

34.2 Securing channels

Spring Integration provides the interceptor Channel Securityl nterceptor, which extends
Abstract Securitylnterceptor and intercepts send and receive cals on the channel. Access
decisions are then made with reference to Channel | nvocat i onDef i ni ti onSour ce which provides
the definition of the send and receive security constraints. The interceptor requires that a valid
Secur it yCont ext has been established by authenticating with Spring Security, see the Spring Security
reference documentation for details.

Namespace support is provided to allow easy configuration of security constraints. This consists of the secured
channels tag which allows definition of one or more channel hame patternsin conjunction with a definition of
the security configuration for send and receive. The patternisaj ava. uti | . regexp. Patt ern.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://ww. spri ngframewor k. org/ schena/i ntegration"
xm ns: si -security="http://ww.springframework. org/schena/integration/security"
xm ns: beans="htt p: // ww. spri ngf ramewor k. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: security="http://ww.springfranmework. org/ schema/ security"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ scherma/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. org/ schema/ security
http://wwv springfranmewor k. or g/ schema/ security/spring-security-2.0.xsd
http://ww. springframework. org/ schema/ i ntegrati on
http://ww. springframework. org/ schema/ i ntegration/spring-integration-2.0.xsd
http://ww. springfranmewor k. org/ schema/ i ntegration/security
http://ww. springframework. org/ schema/integration/security/spring-integration-security-2.0.xsd">

<si -security: secured- channel s>
<si-security:access-policy pattern="adm n.*" send-access="ROLE_ADM N'/>
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER'/>
</ si -security: secured- channel s>

By default the secured-channels namespace element expects a bean named authenticationManager which
implements Aut hent i cat i onManager and a bean named accessDecisionManager which implements
AccessDeci si onManager . Wherethisisnot the casereferencesto the appropriate beans can be configured
as attributes of the secured-channels element as below.

<si -security: secured-channel s access-deci si on- mranager =" cust omAccessDeci si onManager "
aut henti cati on- manager =" cust omAut hent i cati onManager " >
<si-security:access-policy pattern="adm n.*" send-access="ROLE_ADM N'/>
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER'/>
</ si -security: secured-channel s>

Spring Integration
2.0.0.RC1 Reference Manual 147

http://static.springframework.org/spring-security/site/
http://static.springframework.org/spring-security/site/
http://static.springframework.org/spring-security/site/

Spring Integration

35. Groovy support

With Spring Integration 2.0 we've added Groovy support allowing you to use Groovy scripting language
to provide integration and business logic for various integration components similar to the way Spring
Expression Language (SpEL) is use to implement routing, transformation and other integration concerns.
For more information about Groovy please refer to Groovy documentation which you can find here: http://
groovy.codehaus.org/

35.1 Groovy configuration

Depending on the complexity of your integration requirements Groovy scripts could be provided inline as
CDATA in XML configuration or as a reference to a file containing Groovy script. To enable Groovy
support Spring Integration defines G- oovy Scri pt Execut i ngMessagePr ocessor whichwill createa
groovy Binding object identifying Message Payload as pay| oad variable and Message Headersasheader s
variable. All that is left for you to do is write script that uses these variables. Below are couple of sample
configurations:

Filter

<filter input-channel ="referencedScriptlnput">
<groovy:script |ocation="sone/path/to/groovy/filel/ G oovyFilterTests.groovy"/>
</[filter>

<filter input-channel="inlineScriptlnput">
<gr oovy: scri pt ><! [CDATA[
return payl oad == ' good
]11></groovy: scri pt>
</[filter>

Y ou see that script could beincluded inline or vial ocat i on attribute using the groovy namespace sport.
Other supported elements are router, service-activator, transformer, splitter

Another interesting aspect of using Groovy support is framework's ability to update (reload) scripts without
restarting the Application Context. To accomplish this all you need is specify r ef r esh- check- del ay
attribute on script element. The reason for this attribute is to make reloading of the script more efficient.

<groovy:script location="..." refresh-check-del ay="5000"/>

In the above example for the next 5 seconds after you update the script you'll still be using the old script and
after 5 seconds the context will be updated with the new script. Thisisagood example where 'near real time
is acceptable.

<groovy:script location="..." refresh-check-del ay="0"/>

In the above exampl e the context will be updated with the new script every timethe script ismodified. Basically
thisis the example of the 'real-time' and might not be the most efficient way.

<groovy:script location="..." refresh-check-del ay="-1"/>

Any negative number value means the script will never be refreshed after initial initialization of application
context. DEFAULT BEHAVIOR

Spring Integration
2.0.0.RC1 Reference Manual 148

Spring Integration

% | mportant
I Inline defined script can not be rel oaded.

Spring Integration
2.0.0.RC1 Reference Manual 149

Spring Integration

Appendix A. Spring Integration Samples

A.1l Introduction

Starting with the current release of Spring Integration the samples are no longer included with Spring
Integration distribution. Instead we've switched to a much simpler collaborative model that should promote
better community participation and community contributions. Samples now have a dedicated Git SCM
repository and a dedicated JIRA Issue Tracking system. Sample development will also have its own lifecycle
which is not dependent on the lifecycle of the framework rel eases although the repository will still be tagged
with each major release for compatibility reasons.

The great benefit to the community isthat we can now add more samples and make them available to you right
away without waiting for the release to get them out to you. Having its own JIRA that is not tied up to the
the actual framework is aso a great benefit. You now have a dedicated place to suggest samples as well as
report issues with existing samples. Or you may want to submit a sample to us as an attachment through the
JRA and if we believe your sample adds value we would be more then glad to add it to a samples repository
properly crediting the author.

A.2 Where to get Samples

To monitor samples development and to get more information on the repository you can visit the following
URL: http://git.springsource.org/spring-integration/samples Since we are using Git SCM we should use the
proper terminology as well when it comes to the tasks you need to perform to make samples available locally
on your machine. For more information on Git SCM please visit their website: http://git-scm.com/

CLONE samples repository. (For those unfamiliar with Git, thisis somewhat the equivalent of a checkout.)

Thisisthefirst step you should go through. Y ou must have Git installed on your machine. There are many GUI-
based products available for many platforms. Simple Google search will let you find them. To clone samples
repository from command line:

> nkdir spring-itegration-sanples
> cd spring-itegration-sanples
> git clone git://git.springsource.org/spring-integration/sanples.git

That is all you need to do. Now you have cloned the entire samples repository. Since samples repository is
a live repository, you might want to perform periodic updates to get new samples as well as updates to the
existing samples. To get the updates use git PULL command:

> git pull
Submit samples or sample requests

Asmentioned earlier, Spring I ntegration samples have a dedicated JIRA Issue tracking system. To submit new
sample request or to submit the actual sample (as an attachment) please visit our JIRA Issue Tracking system:
https://jira.springframework.org/browse/INTSAMPLES

Spring Integration
2.0.0.RC1 Reference Manual 150

Spring Integration

A.3 Samples structure

The structure of the samples changed aswell. With plans for more samples we realized that some samples have
different goals then others. While they all share the common goal of showing you how to apply and work with
Spring Integration framework, they also defer in areas where some samples were meant to concentrate on a
technical use case while others on the business use case and some samples are al about showcasing various
techniques that could be applied to address certain scenarios (both technical and business). Categorization of
samples will allow us better organize them based on the problem each sample addresses while giving you a
simpler way of finding the right sample

Currently there are 4 categories. Within the samples repository each category has its own directory which is
named after the category name:

BAS C (sampleg/basic)

This is a good place to get started. The samples here are technically motivated and demonstrate the bare
minimum with regard to configuration and code, to help you to get started quickly by introducing you to the
basic concepts, API and configuration of Spring Integration as well as Enterprise Integration Patterns (EIP).
For example; If your are looking for an answer on how to implement and wire Service Activator to a Channel
or how to use Messaging Gateway to your message exchange or how to get started with using MAIL or TCP/
UDP modules etc., this would be the right place to find a good sample. The bottom line isthisis agood place
to get started.

INTERMEDIATE (samples/intermediate)

This category targets developers who are aready familiar with Spring Integration framework (past getting
started), but need some more guidance while resolving a more advanced technical problems one might deal
with once switch to a Messaging architecture. For example; If you are looking for an answer on how to handle
errors in various message exchange scenarios or how to properly configure the Aggregator for the situations
where some messages might not ever arrive for aggregation etc,. and any other issue that goes beyond a basic
implementation and configuration of a particular component and addresses "what €l se you can do with it" type
of problem this would be the right place to find these type of samples.

ADVANCED (samples/advanced)

This category targets develoopers who are very familiar with Spring Integration framework but looking to
extend it to address a specific custom need by using Spring Integration public API. For example; if you are
looking for samples showing you how to implement a custom Channel or Consumer (event-based or polling-
based), or you trying to figure out what isthe most appropriate way to implement custom Bean parser on top of
Spring Integration Bean parsers hierarchy when implementing custom name space for acustom component, this
would be theright place to look. Here you can a so find samples that will help you with Adapter devel opment.
Spring Integration comes with an extensive library of adapters to allow you to connect remote systems with
Spring Integration messaging framework. However you might have a need to integrate with system for which
the core framework does not provide an adapter. So you have to implement your own. This category would
include samples showing you how to do it.

APPLICATIONS (sampl es/applications)

Spring Integration
2.0.0.RC1 Reference Manual 151

Spring Integration

This category targets devel opers and architects who have a good understanding of the M essaging architecture,
EIP and above average understanding of Spring and Spring Integration frameworksand are looking for samples
that address a particular business problem. In other words the emphasis of samplesin this category is business
use cases and how it could be solved via Messaging Architecture and Spring Integration in particular. For
example; If you are interested to see how a Loan Broker or Travel Agent process could be implemented and
automated via Spring Integration this would be the right place to find these types of samples.

| mportant

! Remember! Spring Integration is a community driven framework, therefore community
participation is IMPORTANT. That includes Samples, so if you can't find what you are looking
for let us know.

A.4 Samples

Currently Spring Integration comes with quite afew samples and you can only expect more. To help you better
navigate through them, each sample comeswithitsownr eadne. t xt filewhich coveressevaral details about
the sample (e.g., what EIP patterns it addresses, what problem it is trying to solve, how to run sample etc.).
However, certain samplesrequire amore detailed and some times graphical explanation. In these section you'll
find details on samples that we believe require special attention.

Loan Broker

In this section, we will review a Loan Broker sample application that is included in the Spring Integration
samples. This sample is inspired by one of the samples featured in Gregor Hohpe's Ramblings [http://
www.eal patterns.com/ramblings.htmi].

The diagram below represents the entire process

Spring Integration
2.0.0.RC1 Reference Manual 152

http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html

Spring Integration

9
|
kerGat...

A

.
_JI

aply chann

preProcessChain

' —_— e e : —
-'1. f T . (] [L L= | | .
—.-I H e !
@ L)
loanBrokerPre... preProcessCh... kil ;
fpreProcessChain
Bank Channels '|'
-
el
) |
—_— 2 o
L
QuotEsAGYreg... qQuUOtEsSAGgreg...

bankRoL

Now letslook at this processin more details

At the core of EIP architecture are the very simple yet powerful concepts of Pipes and Filters and Message.
Endpoints (Filters) are connected with one another via Channels (Pipes). The producing endpoint sends
Message to the Channel and the Message is retrieved by the Consuming endpoint. This architecture is meant
to define various mechanisms that describe How information is exchanged between the endpoints, without any
awareness of What those endpoints are or What information they are exchanging, thus providing for a very
loosely coupled and flexible collaboration model while aso, decoupling Integration concerns from Business
concerns. EIP extends this architecture by further defining:

» Thetypes of pipes (Point-to-Point Channel, Publish-Subscribe Channel, Channel Adapter, etc.)

» The core filters and patterns around how filters collaborate with pipes (Message Router, Splitters and
Aggregators, various Message Transformation patterns, etc.)

The details and variations of this use case are very nicely described in Chapter 9 of the EIP Book, but here
is the brief summary; A Consumer while shopping for the best Loan Quote(s) subscribes to the services of a
L oan Broker, which handles details such as:

Spring Integration
2.0.0.RC1 Reference Manual 153

Spring Integration

» Consumer pre-screening (e.g., obtain and review the consumer's Credit history)

» Determine the most appropriate Banks (e.g., based on consumer's credit history/score)
» Send a Loan quote request to each selected Bank

 Collect responses from each Bank

« Filter responses and determine the best quote(s), based on consumer's requirements.
 Passthe Loan quote(s) back to the consumer.

Obviously the rea process of obtaining a loan quote is a bit more complex, but since our goal here is to
demonstrate how Enterprise Integration Patterns are realized and implemented within S, the use case has been
simplified to concentrate only on the Integration aspects of the process. It is not an attempt to give you an
advice in consumer finances.

As you can see, by hiring a Loan Broker, the consumer is isolated from the details of the Loan Broker's
operations, and each Loan Broker's operations may defer from one another to maintain competitive advantage,
so whatever we assemble/implement must be flexible so any changes could be introduced quickly and
painlessly. Speaking of change, the Loan Broker sample does not actually talk to any ‘imaginary’ Banks or
Credit bureaus. Those services are stubbed out. Our goal hereisto assemble, orchestrate and test theintegration
aspect of the process as awhole. Only then can we start thinking about wiring such processto thereal services.
At that time the assembled process and its configuration will not change regardless of the number of Banks
aparticular Loan Broker is dealing with, or the type of communication media (or protocols) used (JMS, WS,
TCP, etc.) to communicate with these Banks.

DESGN

As you analyze the 6 regquirements above you'll quickly see that they all fall into the category of Integration
concerns. For example, in the consumer pre-screening step we need to gather additional information about the
consumer and the consumer's desires and enrich the loan request with additional meta information. We then
have to filter such information to select the most appropriate list of Banks, and so on. Enrich, filter, select
— these are all integration concerns for which EIP defines a solution in the form of patterns. Sl provides an
implementation of these patterns.

Messaging Gateway

The Messaging Gateway pattern providesasimple mechanism to access messaging systems, including our Loan
Broker. In Sl you define the Gateway as a Plain Old Java Interface (no need to provide an implementation),
configureit viathe XML <gateway> element or viaannotation and useit as any other Spring bean. Sl will take
care of delegating and mapping method invocations to the Messaging infrastructure by generating a Message
(payload is mapped to an input parameter of the method) and sending it to the designated channel.

Spring Integration
2.0.0.RC1 Reference Manual 154

Spring Integration

<gat eway i d="1 oanBr oker Gat enway"
def aul t - request - channel ="| oanBr oker Pr ePr ocessi ngChannel "
servi ce-interface="org. springframework.integration.sanpl es.| oanbroker. LoanBr oker Gat enway" >
<met hod nane="get Best LoanQuot e" >
<header nanme="RESPONSE TYPE' val ue="BEST"/>
</ met hod>
</ gat eway>

Our current Gateway provides two methods that could be invoked. One that will return the best single quote
and another onethat will return all quotes. Somehow downstream we need to know what type of reply the caller
islooking for. The best way to achieve this in Messaging architecture is to enrich the content of the message
with some meta-data describing your intentions. Content Enricher isone of the patterns that addresses this and
although Spring Integration does provide a separate configuration element to enrich Message Headers with
arbitrary data (we'll seeit later), asaconvenience, since Gateway element isresponsible to construct theinitial
Messageit provides embedded capability to enrich the newly created Message with arbitrary Message Header s.
In our example we are adding header RESPONSE_TY PE with value 'BEST" whenever the getBestQuote()
method is invoked. For other method we are not adding any header. Now we can check downstream for an
existence of this header and based on its presence and its value we can determine what type of reply the caller
islooking for.

Based on the use case we also know there are some pre-screening steps that needs to be performed such as
getting and evaluating the consumer's credit score, simply because some premiere Banks will only typically
accept quote requests from consumers that meet a minimum credit score requirement. So it would be nice if
the Message would be enriched with such information before it is forwarded to the Banks. It would also be
nice if when several processes needs to be completed to provide such meta-information, those processes could
be grouped in asingle unit. In our use case we need to determine credit score and based on the credit score and
some rule select alist of Message Channels (Bank Channels) we will sent quote request to.

Composed Message Processor

The Composed Message Processor pattern describes rules around building endpoints that maintain control
over message flow which consists of multiple message processors. In Sprig Integration Composed Message
Processor pattern isimplemented via<chain> element.

preProcessChain

LJLIL] -

@]

creditScoreSer ... hankRouter

préProcessCh..

[fpreProcessChain

Asyou can see from the above configuration we have a chain with inner header-enricher element which will
further enrich the content of the Message with the header CREDIT_SCORE and value that will be determined
by the call to a credit service (simple POJO spring bean identified by 'creditBureau' name) and then it will
delegate to the Message Router

Spring Integration
2.0.0.RC1 Reference Manual 155

Spring Integration

Message Router

B

bankRouter

There are severa implementation of Message Routing pattern availablein Spring Integration. Herewe are using
router that will determine alist of channels based on evaluating an expression (Spring Expression Language)
which will look at the credit score that was determined is the previous step and will select the list of channels
from the Map bean with id 'banks whose values are ‘premier’ or 'secondary' based o the value of credit score.
Oncethelist of Channelsis selected, the Message will be routed to those Channels.

Now, one last thing the Loan Broker needs to to is to receive the loan quotes form the banks, aggregate them
by consumer (we don't want to show quotes from one consumer to another), assemble the response based on
the consumer's selection criteria (single best quote or all quotes) and reply back to the consumer.

Message Aggregator

[]
[=—[]

L] ®

guotesAggreg...

An Aggregator pattern describes an endpoint which groupsrelated Messagesinto asingle Message. Criteriaand
rules can be provided to determine an aggregation and correlation strategy. Sl provides several implementations
of the Aggregator pattern aswell as a convenient name-space based configuration.

<aggregat or id="quot esAggregator"
i nput - channel =" quot esAggr egat i onChannel "
nmet hod="aggr egat eQuot es" >
<beans: bean cl ass="org. spri ngf ramework. i nt egrati on. sanpl es. | oanbr oker. LoanQuot eAggr egat or "/ >
</ aggr egat or >

Our Loan Broker defines a 'quotesAggregator' bean via the <aggregator> element which provides a default
aggregation and correlation strategy. The default correlation strategy correlates messages based on the
$cor el ati onl d header (see Correlation Identifier pattern). What's interesting is that we never provided
the value for this header. It was set earlier by the router automatically, when it generated a separate Message
for each Bank channel.

Once the Messages are correlated they are rel eased to the actual Aggregator implementation. Although default
Aggregator is provided by S, its strategy (gather the list of payloads from all Messages and construct a new
Message with this List as payload) does not satisfy our requirement. The reason is that our consumer might

Spring Integration
2.0.0.RC1 Reference Manual 156

Spring Integration

regquire asingle best quote or all quotes. To communicate the consumer'sintention, earlier in the process we set
the RESPONSE TY PE header. Now we haveto eval uate this header and return either all the quotes (the default
aggregation strategy would work) or the best quote (the default aggregation strategy will not work because we
have to determine which loan quote is the best).

Obviously selecting the best quote could be based on complex criteriaand would influence the compl exity of the
aggregator implementation and configuration, but for now we are making it simple. If consumer wants the best
guote we will select a quote with the lowest interest rate. To accomplish that the LoanQuoteAggregator.java
will sort all the quotes and return the first one. The LoanQuot e. j ava implements Conpar abl e which
compares guotes based on the rate attribute. Once the response Message is created it is sent to the default-
reply-channel of the Messaging Gateway (thus the consumer) which started the process. Our consumer got
the Loan Quote!

Conclusion

Asyou can see arather complex process was assembled based on POJO (read existing, legacy), light weight,
embeddabl e messaging framework (Spring I ntegration) with aloosely coupled programming model intended to
simplify integration of heterogeneous systemswithout requiring aheavy-weight ESB-like engine or proprietary
development and deployment environment, becouse as a developer you should not be porting your Swing or
console-based application to an ESB-like server or implementing proprietary interfaces just because you have
an integration concern.

This and other samplesin this section are build on top of Enterprise Integration Patterns that meant to describe
"building blocks' for Y OUR solution but not to be solutionsin of themselves. Integration concerns exist in all
types of applications (server based and not) and should not require change in design, testing and deployment
strategy if such applications need to integrate with one another.

The Cafe Sample

Inthis section, wewill review a Cafe sample application that isincluded in the Spring Integration samples. This
sample is inspired by another sample featured in Gregor Hohpe's Ramblings [http://www.eai patterns.com/
ramblings.html].

The domain isthat of a Cafe, and the basic flow is depicted in the following diagram:

Spring Integration
2.0.0.RC1 Reference Manual 157

http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html

Spring Integration

]
_— _ _
'— o] = = ——
N —$ $
orders ordersplitter drinks
| —=
’ ——>
.-..i' ' | T .'
& @ - F —
- . coldDrinks coldDrinksSer_.. [] ;
o | / — g _ \ ___}‘
™ L - .
i |
-E — |
H " a - ﬂ
outer L
P preparedDrinks orderAggregat... delivel

%) i .""a}
, P *\\ o
Y -]]
hotDrinks hotDrinksServi...

The Or der object may contain multiple Or der | t ens. Once the order is placed, a Splitter will break
the composite order message into a single message per drink. Each of these is then processed by a Router
that determines whether the drink is hot or cold (checking the Or der | t emobject's 'islced' property). The
Bar i st a prepares each drink, but hot and cold drink preparation are handled by two distinct methods:
'prepareHotDrink’ and 'prepareColdDrink’. The prepared drinks are then sent to the Waiter where they are
aggregated into aDel i very object.

Hereisthe XML configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://ww. spri ngfranework. org/ schema/i nt egration"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: beans="htt p: // ww. spri ngf ramewor k. or g/ schenma/ beans"

xm ns: stream="http://ww. spri ngfranework. org/ schena/ i nt egrati on/ streant

xsi : schemalLocati on="http://ww. spri ngf ranmewor k. or g/ schena/ beans
http://wwv spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/i ntegration/spring-integration-2.0.xsd
http://ww. springfranmewor k. org/ schema/ i ntegrati on/stream
http://ww. springframework. org/ schema/ i ntegration/stream spring-integration-stream 2.0.xsd">

<gateway i d="cafe" service-interface="org.springframework.integration.sanples.cafe.Cafe"/>

<channel id="orders"/>
<splitter input-channel ="orders" ref="orderSplitter" method="split" output-channel ="drinks"/>

<channel id="drinks"/>
<rout er input-channel ="drinks" ref="drinkRouter" method="resol veOr derltenChannel"/>

Spring Integration
2.0.0.RC1 Reference Manual 158

Spring Integration

<channel id="col dDri nks">
<gqueue capacity="10"/>
</ channel >
<servi ce-activator input-channel ="col dDri nks" ref="barista"
met hod="pr epar eCol dDri nk" out put - channel =" pr epar edDr i nks"/ >

<channel id="hotDrinks">
<gqueue capacity="10"/>
</ channel >
<servi ce-activator input-channel ="hotDrinks" ref="barista"
met hod=" pr epar eHot Dr i nk" out put - channel =" pr epar edDri nks"/>
<channel id="preparedDrinks"/>
<aggregat or input-channel ="preparedDrinks" ref="waiter"
met hod="pr epar eDel i very" out put - channel ="del i veri es"/ >

<stream st dout - channel - adapt er id="deliveries"/>

<beans: bean i d="orderSplitter"
cl ass="org. springframework.integration.sanpl es.cafe.xm .OderSplitter"/>

<beans: bean i d="dri nkRout er"
cl ass="org. springframework.integration. sanpl es. cafe. xnl . Dri nkRouter"/>

<beans: bean i d="barista" class="org.springframework.integration.sanples.cafe.xnl.Barista"/>
<beans: bean i d="waiter" class="org.springframework.integration.sanples.cafe.xm.Witer"/>
<pol ler id="poller" default="true" fixed-rate="1000"/>

</ beans: beans>

As you can see, each Message Endpoint is connected to input and/or output channels. Each endpoint will
manage its own Lifecycle (by default endpoints start automatically upon initialization - to prevent that add the
"auto-startup" attribute with a value of "false"). Most importantly, notice that the objects are simple POJOs
with strongly typed method arguments. For example, hereis the Splitter:

public class OrderSplitter {

public List<Orderlten> split(Order order) {
return order.getltens();
}
}

In the case of the Router, the return value does not have to be aMessageChannel instance (although it can
be). Asyou seein this example, a String-value representing the channel name is returned instead.

public class DrinkRouter {

public String resol veOrderltenChannel (Orderltemorderlten) {
return (orderltemislced()) ? "coldDrinks" : "hotDrinks";

}

Now turning back to the XML, you see that there are two <service-activator> elements. Each of these is
delegating to the same Bar i st a instance but different methods:. 'prepareHotDrink' or 'prepareColdDrink'
corresponding to the two channels where order items have been routed.

Spring Integration
2.0.0.RC1 Reference Manual 159

Spring Integration

public class Barista {

private |ong hotDrinkDel ay = 5000;
private |l ong col dDri nkDel ay = 1000;

private Atom cl nteger hotDri nkCounter = new Atom clnteger();
private Atom cl nteger col dDri nkCounter = new Atomniclnteger();

public void setHotDrinkDel ay(l ong hot Dri nkDel ay) {
thi s. hot Dri nkDel ay = hot Dri nkDel ay;
}

public void setCol dDri nkDel ay(l ong col dDri nkDel ay) {
this.col dDri nkDel ay = col dDri nkDel ay;
}

public Drink prepareHotDrink(Orderltemorderlten) {
try {
Thr ead. sl eep(t hi s. hot Dri nkDel ay) ;
System out . printl n(Thread. current Thread(). get Nane()
+ " prepared hot drink #' + hotDrinkCounter.increnent AndGet ()
+ " for order #" + orderltemgetOrder().getNunber() + ": " + orderlten);
return new Drink(orderltem get Order().getNunber (), orderltem getDrinkType(),
orderltemislced(), orderltem getShots());
}
catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

}

public Drink prepareCol dDrink(Orderltemorderlten) {
try {

Thr ead. sl eep(this. col dDri nkDel ay) ;

System out . printl n(Thread. current Thread(). get Nane()
+ " prepared cold drink #' + col dDri nkCounter.increnent AndGet ()
+ " for order #" + orderltemgetOrder().getNunber() + ": " + orderlten);

return new Drink(orderltem get Order().getNunber (), orderltem getDrinkType(),
orderltemislced(), orderltem getShots());

}

catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

Asyou can see from the code excerpt above, the barista methods have different delays (the hot drinks take 5
times aslong to prepare). This simulates work being completed at different rates. When the Caf eDenp 'main'
method runs, it will loop 100 times sending a single hot drink and a single cold drink each time. It actually
sends the messages by invoking the 'placeOrder’ method on the Cafe interface. Above, you will see that the
<gateway> element is specified in the configuration file. This triggers the creation of a proxy that implements
the given 'service-interface’ and connects it to a channel. The channel name is provided on the @Gateway
annotation of the Caf e interface.

public interface Cafe {

@zat eway(r equest Channel =" or ders")

Spring Integration
2.0.0.RC1 Reference Manual 160

Spring Integration

voi d pl aceOrder (Order order);

}
Finally, have alook at the mai n() method of the Caf eDenv itself.

public static void main(String[] args) {
Abstract Appl i cati onCont ext context = null;
if (args.length > 0) {
context = new Fil eSyst emXm Appl i cati onCont ext (args);
}
el se {
context = new C assPat hXm Appl i cati onCont ext (" caf eDeno. xm ", Caf eDenp. cl ass);
}
Cafe cafe = (Cafe) context.getBean("cafe");
for (int i =1; i <= 100; i++) {
O der order = new Oder(i);
order. addl tem(Dri nkType. LATTE, 2, fal se);
order. addl tem(Dri nkType. MOCHA, 3, true);
cafe. pl aceOrder(order);

Tip
1 To run this sample as well as 8 others, refer to the README. t xt within the "samples® directory
of the main distribution as described at the beginning of this chapter.

When you run cafeDemo, you will see that the cold drinks are initialy prepared more quickly than the hot
drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of the hot drink
preparation. Thisis to be expected based on their respective delays of 1000 and 5000 milliseconds. However,
by configuring a poller with a concurrent task executor, you can dramatically change the results. For example,
you could use a thread pool executor with 5 workers for the hot drink barista while keeping the cold drink
baristaasitis:

<servi ce-activator input-channel ="hotDri nks"
ref="barista"
met hod=" pr epar eHot Dri nk"
out put - channel =" pr epar edDri nks"/ >

<servi ce-activator input-channel ="hotDri nks"
ref ="barista"
met hod=" pr epar eHot Dr i nk"
out put - channel =" pr epar edDr i nks" >
<pol | er task-executor="pool" fixed-rate="1000"/>

</ servi ce-activator >

<t ask: execut or id="pool" pool -size="5"/>

Also, notice that the worker thread name is displayed with each invocation. Y ou will see that the hot drinks are
prepared by the task-executor threads. If you provide a much shorter poller interval (such as 100 milliseconds),
then you will notice that occasionally it throttles the input by forcing the task-scheduler (the caller) to invoke
the operation.

Spring Integration
2.0.0.RC1 Reference Manual 161

Spring Integration

Note

\ In addition to experimenting with the poller's concurrency settings, you can aso add the
‘transactional’ sub-element and then refer to any PlatformTransactionManager instance within the
context.

The XML Messaging Sample

The xml messaging sample in the org.springframework.integration.samples.xml illustrates how to use some
of the provided components which deal with xml payloads. The sample uses the idea of processing an order
for books represented as xml.

First the order is split into a number of messages, each one representing a single order item using the XPath
splitter component.

<si-xm :xpath-splitter id="orderltentBplitter" input-channel ="ordersChannel"
out put - channel =" st ockChecker Channel " creat e- docunent s="true">
<si -xm : xpat h- expr essi on expressi on="/order Ns: order/order Ns: order|tem nanmespace- map="or der NanespaceMap"
</si-xm:xpath-splitter>

A service activator is then used to pass the message into a stock checker POJO. The order item document
is enriched with information from the stock checker about order item stock level. This enriched order item
message is then used to route the message. In the case where the order item is in stock the message is routed
to the warehouse. The XPath router makes use of aMapBasedChannel Resol ver which maps the XPath
evaluation result to a channel reference.

<si-xm : xpath-router id="instockRouter" channel -resol ver ="mapChannel Resol ver"
i nput - channel =" or der Rout i ngChannel " resol ution-required="true">
<si -xm : xpat h- expressi on expressi on="/orderNs: order|ltem @ n-stock" nanespace-map="or der NanespaceMap" />
</ si -xml : xpat h-r out er >

<bean i d="mapChannel Resol ver"
cl ass="org. spri ngfranmework. i nt egration. channel . MapBasedChannel Resol ver" >
<property nanme="channel Map" >
<n‘ap>
<entry key="true" val ue-ref="war ehouseDi spat chChannel " />
<entry key="fal se" val ue-ref="out O St ockChannel " />
</ map>
</ property>
</ bean>

Where the order item is not in stock the message is transformed using xdlt into a format suitable for sending
to the supplier.

<si-xm :xslt-transformer input-channel ="out Of St ockChannel " out put - channel ="r esuppl yOr der Channel "
xsl -resour ce="cl asspat h: or g/ spri ngf ramewor k/ i nt egr ati on/ sanpl es/ xm / bi gBooksSuppl i er Tr ansf or ner. xsl "/ >

Spring Integration
2.0.0.RC1 Reference Manual 162

Spring Integration

Appendix B. Configuration

B.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your
particular needs and at what level you prefer to work. As with the Spring framework in general, it is also
possibleto mix and match the various techniques according to the particular problem at hand. For example, you
may choose the X SD-based namespace for the majority of configuration combined with a handful of objects
that are configured with annotations. As much as possible, the two provide consistent naming. XML elements
defined by the XSD schema will match the names of annotations, and the attributes of those XML elements
will match the names of annotation properties. Direct usage of the API is of course always an option, but we
expect that most users will choose one of the higher-level options, or a combination of the namespace-based
and annotation-driven configuration.

B.2 Namespace Support

Spring Integration components can be configured with XML elementsthat map directly to the terminology and
concepts of enterprise integration. In many cases, the element names match those of the Enterprise Integration
Patterns [http://www.eai patterns.com].

To enable Spring Integration's core namespace support within your Spring configuration files, add thefollowing
namespace reference and schema mapping in your top-level 'beans' element:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springframework. org/schenma/integration”
xsi : schemalLocati on="http://ww. spri ngf ranmewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ i ntegrati on
http://ww. springframework. org/ schema/integration/spring-integration-2.0.xsd">

Y ou can choose any name after "xmins:"; integration is used here for clarity, but you might prefer a shorter
abbreviation. Of courseif you are using an XML-editor or IDE support, then the availability of auto-completion
may convince you to keep the longer namefor clarity. Alternatively, you can create configuration filesthat use
the Spring Integration schema as the primary namespace:

<beans: beans xm ns="http://ww. spri ngframewor k. org/ schena/i ntegration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="http://ww. spri ngfranmewor k. or g/ schena/ beans"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://wwv spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ i ntegrati on
http://ww. springframework. org/ schema/i ntegration/spring-integration-2.0.xsd">

When using this alternative, no prefix is necessary for the Spring Integration elements. On the other hand, if
you want to define ageneric Spring "bean” within the same configuration file, then a prefix would be required
for the bean element (<beans:bean ... />). Since it is generally a good idea to modularize the configuration
files themselves based on responsibility and/or architectural layer, you may find it appropriate to use the latter

Spring Integration
2.0.0.RC1 Reference Manual 163

http://www.eaipatterns.com
http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

approach in the integration-focused configuration files, since generic beans are seldom necessary within those
same files. For purposes of this documentation, we will assume the "integration" namespace is primary.

Many other namespaces are provided within the Spring Integration distribution. In fact, each adapter type
(JMS, File, etc.) that provides namespace support defines its elements within a separate schema. In order
to use these elements, ssimply add the necessary namespaces with an "xmiIns" entry and the corresponding
"schemal ocation" mapping. For example, the following root element shows several of these namespace
declarations:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schenma/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns:integration="http://ww.springframework. org/schema/integration"

xm ns: file="http://ww.springframework. org/schema/integration/file"

xm ns:jms="http://ww.springframework. org/schema/integration/jns"

xm ns: mai | =" http://ww. spri ngframewor k. org/ schena/integrati on/mail"

xm ns:rm ="http://ww. springfranmework. org/schema/integration/rm"

xm ns: ws="http://ww.springframework. org/schema/integration/ws"

xsi : schemalLocati on="http://ww. spri ngfranewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ i ntegrati on
http://ww. springfranmework. org/ schema/i ntegration/spring-integration-2.0.xsd
http://ww. springframework. org/ schema/integration/file
http://ww. springframework. org/ schema/integration/file/spring-integration-file-2.0.xsd
http://ww. springframework. org/ schema/integration/jns
http://ww. springfranmework. org/ schema/integration/jnms/spring-integration-jmns-2.0.xsd
http://ww. springframework. org/ schenma/i ntegration/ mail
http://ww. springfranmework. org/ schema/integration/mail/spring-integration-nail-2.0.xsd
http://ww. springfranmework. org/ schema/integration/rm
http://ww. springframework. org/ schema/integration/rmi/spring-integration-rm-2.0.xsd
http://ww. springfranmework. org/ schema/i ntegration/ws
http://ww. springfranmework. org/ schema/integration/ws/spring-integration-ws-2.0.xsd">

</ beans>

Thereference manual provides specific examples of the various elementsin their corresponding chapters. Here,
the main thing to recognize is the consistency of the naming for each namespace URI and schema |ocation.

B.3 Configuring the Task Scheduler

In Spring Integration, the ApplicationContext plays the central role of a Message Bus, and there are only a
couple configuration options to be aware of.. First, you may want to control the central TaskScheduler instance.
Y ou can do so by providing a single bean with the name "taskScheduler”. Thisis also defined as a constant:

I ntegrationContextUtils. TASK SCHEDULER BEAN NANME

By default Spring Integration usesthe Si npl eTaskSchedul er implementation. That inturn just delegates
to any instance of Spring's TaskExecut or abstraction. Therefore, it's rather trivial to supply your own
configuration. The "taskScheduler” bean is then responsible for managing all pollers. The TaskScheduler will
startup automatically by default. If you provide your own instance of SimpleTaskScheduler however, you can
set the ‘autoStartup’ property to false instead.

When Polling Consumers provide an explicit task-executor reference in their configuration, the invocation of
the handler methods will happen within that executor's thread pool and not the main scheduler pool. However,

Spring Integration
2.0.0.RC1 Reference Manual 164

Spring Integration

when no task-executor is provided for an endpoint's poller, it will be invoked by one of the main scheduler's
threads.

Note

\ An endpoint is a Polling Consumer if its input channel is one of the queue-based (i.e. pollable)
channels. On the other hand, Event Driven Consumers are those whose input channels have
dispatchers instead of queues (i.e. they are subscribable). Such endpoints have no poller
configuration since their handlers will be invoked directly.

The next section will describe what happens if Exceptions occur within the asynchronous invocations.

B.4 Error Handling

As described in the overview at the very beginning of this manual, one of the main motivations behind a
Message-oriented framework like Spring Integration is to promote loose-coupling between components. The
Message Channel plays an important role in that producers and consumers do not have to know about each
other. However, the advantages also have some drawbacks. Some things become more complicated in a very
loosely coupled environment, and one example is error handling.

When sending a Message to achannel, the component that ultimately handles that M essage may or may not be
operating within the same thread as the sender. If using a simple default DirectChannel (with the <channel>
element that has no <queue> sub-element and no 'task-executor' attribute), the Message-handling will occur
in the same thread as the Message-sending. In that case, if an Exception is thrown, it can be caught by the
sender (or it may propagate past the sender if it is an uncaught RuntimeException). So far, everything is fine.
Thisis the same behavior as an Exception-throwing operation in a normal call stack. However, when adding
the asynchronous aspect, things become much more complicated. For instance, if the ‘channel' element does
provide a 'queue’ sub-element, then the component that handles the Message will be operating in a different
thread than the sender. The sender may have dropped the Message into the channel and moved on to other
things. There is no way for the Exception to be thrown directly back to that sender using standard Exception
throwing techniques. Instead, to handle errors for asynchronous processes requires an asynchronous error-
handling mechanism as well.

Spring Integration supports error handling for its components by publishing errors to a Message Channel.
Specifically, the Exception will become the payload of a Spring Integration Message. That Message will then
be sent to aMessage Channel that isresolved in away that issimilar to the 'replyChannel’ resolution. First, if the
request M essage being handled at the time the Exception occurred contains an 'errorChannel’ header (the header
name is defined in the constant: M essageHeaders. ERROR_CHANNEL), the ErrorMessage will be sent to that
channel. Otherwise, the error handler will send to a"global" channel whose bean nameis"errorChannel” (this
isalso defined as a constant: I ntegrationContextUtils ERROR_CHANNEL_BEAN_NAME).

Whenever relying on Spring Integration's XML namespace support, a default "errorChannel” bean will be
created behind the scenes. However, you can just as easily define your own if you want to control the settings.

<channel id="error Channel ">
<gqueue capacity="500"/>
</ channel >

Spring Integration
2.0.0.RC1 Reference Manual 165

Spring Integration

Note
\ The default "errorChannel” is a PublishSubscribeChannel.

The most important thing to understand here is that the messaging-based error handling will only apply to
Exceptions that are thrown by a Spring Integration task that is executing within a TaskExecutor. This does not
apply to Exceptions thrown by a handler that is operating within the same thread as the sender (e.g. through
a DirectChannel as described above).

Note

k\ When Exceptions occur in a scheduled poller task's execution, those exceptions will be wrapped
in Err or Messages and sent to the 'errorChannel’ as well.

To enable global error handling, simply register a handler on that channel. For example, you can configure
Spring Integration's Er r or MessageExcept i onTypeRout er as the handler of an endpoint that is
subscribed to the 'errorChannel’. That router can then spread the error messages across multiple channel s based
on Excepti on type.

B.5 Annotation Support

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to
use annotations. First, Spring Integration provides the class-level @/kessageEndpoi nt as a stereotype
annotation meaning that isitself annotated with Spring's @Component annotation and therefore is recognized
automatically as a bean definition when using Spring component-scanning.

Even more importantly are the various Method-level annotations that indicate the annotated method is capable
of handling a message. The following example demonstrates both:

@kessageEndpoi nt
public class FooService {

@er vi ceAct i vat or
public void processMessage(Message nessage) {

}

Exactly what it means for the method to "handle" the Message depends on the particular annotation. The
following are available with Spring Integration, and the behavior of each is described in its own chapter
or section within this reference: @Transformer, @Router, @Splitter, @Aggregator, @ServiceActivator, and
@Channel Adapter.

Note

\ The @MessageEndpoint is not required if using XML configuration in combination with
annotations. If you want to configure a POJO reference from the "ref" attribute of a <service-
activator/> element, it is sufficient to provide the method-level annotations. In that case, the
annotation prevents ambiguity even when no "method" attribute exists on the <service-activator/
> element.

Spring Integration
2.0.0.RC1 Reference Manual 166

Spring Integration

In most cases, the annotated handler method should not require the Message type as its parameter. |nstead,
the method parameter type can match the message's payload type.

public class FooService {

@ber vi ceAct i vat or
public void bar(Foo foo) {

}

When the method parameter should be mapped from a value in the MessageHeader s, another option is
to use the parameter-level @Header annotation. In general, methods annotated with the Spring Integration
annotations can either accept the Message itself, the message payload, or a header value (with @Header) as
the parameter. In fact, the method can accept a combination, such as:

public class FooService {

@per vi ceActi vat or
public void bar(String payl oad, @deader("x") int valueX, @deader("y") int valueY) {

}

}
Thereis also a @Headers annotation that provides all of the Message headers as a Map:

public class FooService {

@ser vi ceActi vat or
public void bar(String payl oad, @deaders Map<String, Object> header Map) {

}

For several of these annotations, when a M essage-handling method returns a non-null value, the endpoint will
attempt to send a reply. Thisis consistent across both configuration options (namespace and annotations) in
that such an endpoint's output channel will be used if available, and the REPLY_ CHANNEL message header
value will be used as a fallback.

Tip

1 The combination of output channels on endpoints and the reply channel message header enables
a pipeline approach where multiple components have an output channel, and the final component
simply allows the reply message to be forwarded to the reply channel as specified in the original
reguest message. In other words, the final component depends on the information provided by the
original sender and can dynamically support any number of clients asaresult. Thisisan example
of Return Address [http://eai patterns.com/ReturnAddress.html].

In addition to the examples shown here, these annotations also support inputChannel and outputChannel
properties.

public class FooService {

Spring Integration
2.0.0.RC1 Reference Manual 167

http://eaipatterns.com/ReturnAddress.html
http://eaipatterns.com/ReturnAddress.html

Spring Integration

@er vi ceAct i vat or (i nput Channel ="i nput", out put Channel ="out put")
public void bar(String payl oad, @deaders Map<String, bject> header Map) {

}

}

That provides a pure annotation-driven alternative to the XML configuration. However, it is generaly
recommended to use XML for the endpoints, since it is easier to keep track of the overall configuration
in asingle, external location (and besides the namespace-based XML configuration is not very verbose). If
you do prefer to provide channels with the annotations however, you just need to enable a SI Annotations
BeanPostProcessor. The following element should be added:

<int:annotation-config/>

Note

\ When configuring the "inputChannel" and "outputChannel" with annotations, the "inputChannel"
must be areference to a Subscr i babl eChannel instance. Otherwise, it would be necessary
to also provide the full poller configuration via annotations, and those settings (e.g. the trigger for
scheduling the poller) should be externalized rather than hard-coded within an annotation. If the
input channel that you want to receive Messagesfromisindeed aPol | abl eChannel instance,
one option to consider isthe Messaging Bridge. Spring Integration's "bridge" element can be used
to connect a PollableChannel directly to a SubscribableChannel. Then, the polling metadata is
externally configured, but the annotation option is still available. For more detail see Chapter 15,
Messaging Bridge.

B.6 Message Mapping rules and conventions

Spring Integration implements a flexible facility to map Messages to Methods and their arguments without
providing extra configuration by relying on some default rules as well as defining certain conventions.

Simple Scenarios

Sngle un-annotated parameter (object or primitive) which is not a Map/Properties with non-void return type;

public String foo(Object 0);
Details:
Input parameter is Message Payload. If parameter typeisnot compatible with Message Payload an attempt will
be made to convert it using Conversion Service provided by Spring 3.0. The return value will be incorporated

as a Payload of the returned Message

Sngle un-annotated parameter (object or primitive) which isnot a Map/Properties with Message return type;

public Message foo(Object 0);

Details:

Spring Integration
2.0.0.RC1 Reference Manual 168

Spring Integration

Input parameter is Message Payload. If parameter typeisnot compatible with Message Payload an attempt will
be madeto convert it using Conversion Service provided by Spring 3.0. Thereturn valueisanewly constructed
Message that will be sent to the next destination.

Single parameter which is a Message or its subclass with arbitrary object/primitive return type;

public int foo(Message nsQ);

Detalls:

Input parameter is Message itself. The return value will become a payload of the Message that will be sent
to the next destination.

Sngle parameter which is a Message or its subclass with Message or its subclass as a return type;

public Message foo(Message nsgQ);

Details:

Input parameter is Message itself. The return value is a newly constructed Message that will be sent to the
next destination.

Sngle parameter which is of type Map or Properties with Message as a return type;

public Message foo(Map n);

Details:

Thisoneisabit interesting. Although at first it might seem like an easy mapping straight to M essage Headers,
the preference is always given to a Message Payload. This means that if Message Payload is of type Map,
this input argument will represent Message Payload. However if Message Payload is not of type Map, then
no conversion via Conversion Service will be attempted and the input argument will be mapped to Message
Headers.

Two parameters where one of themis arbitrary non-Map/Properties type object/primitive and another is Map/
Properties type object (regardless of the return)

public Message foo(Map h, <T> t);

Details:

This combination contains two input parameters where one of them is of type Map. Naturally the non-Map
parameters (regardliess of the order) will be mapped to a Message Payload and the Map/Properties (regardless
of the order) will be mapped to Message Headers giving you a nice POJO way of interacting with Message
structure.

No parameters (regardless of the return)

public String foo();

Details:

Spring Integration
2.0.0.RC1 Reference Manual 169

Spring Integration

This Message Handler method will be invoked based on the Message sent to the input channel this handler is
hooked up to, however no Message data will be mapped, thus making Message act as event/trigger to invoke
such handlerThe output will be mapped according to the rules above

No parameters, void return

public void foo();

Details:
Same as above, but no output
Annotation based mappings

Annotation based mapping is the safest and least ambiguous approach to map Messages to Methods. There wil
be many pointers to annotation based mapping throughout this manual, however here are couple of examples:

public String foo(@ayl oad String s, @eader("foo0") String b)

Very simple and explicite way of mapping Messages to method. Asyou'll see later on without annotation this
signature would result in the ambiguous condition, however by explicitly mapping first argument to aMessage
Payload and second argument to a value of the 'foo' Message Header we have avoided ambiguity.

public String foo(@ayl oad String s, @RequestParan("foo") String b)

Looks almost identical to the previous example, however @RequestMapping or any other non-SI mapping
annotation isirrelevant and therefore will be ignored leaving the second parameter unmapped. And athough
the second parameters could easily be mapped to a Payload, there can only be one Payload, therefore this
method becomes ambiguous.

public String foo(String s, @eader("foo0") String b)
Thesameasabove. Theonly differenceisthat thefirst argument will be mapped to M essage Payload implicitly.

public String foo(@eaders Map m @deader ("foo0")Nap f, @deader("bar") String bar)

Y et another signature that would definitely be treated as ambiguous because it has more then 2 arguments, plus
two of them are Maps, however with annotation-based mapping ambiguity is easily avoided. In this example
the first argument is mapped to all the Message Headers, while second and third argument map to the values
of Message Headers 'foo' and 'bar’.

Complex Scenarios

Multiple parameters:

Multiple parameters could create alot of ambiguity with regardsto determining the appropriate mappings. The
general advice is to annotate your method parameters with @Payload and/or @Header/ @Headers Below are
some of the examples of ambiguous conditions which result in exception being raised.

public String foo(String s, int i)

Spring Integration
2.0.0.RC1 Reference Manual 170

Spring Integration

- the two parameters are equal in weight, therefore no way to determine which one is a payload and what to
do with another.

public String foo(String s, Map m String b)

- almost the same as above. Although Map could be easily mapped to Message Headers, there is no way to
determine what to do with two Strings.

public String foo(Map m Map f)

- although one might argue that one Map could be mapped to Message Payload and another one to Message
Headers, it would be unreasonable to rely on the order (e.g., first is Payload, second Headers)

: Tip

1 Basically any method signature with more then one method argument which is not (Map, <T>)
and those parameters are not annotated will result in the ambiguous condition thus triggering an
exception.

Multiple methods:

M essage Handl erswith multiple methods are mapped based on the samerul esthat are described above, however
some scenarios might still look confusing.

Multiple methods (same or different name) with legal (mappable) signatures:

public class Foo{
public String foo(String str, Map m;

public String foo(Map m
}

As you can see, the Message could be mapped to either method. The first method would be invoked where
Message Payload could be mapped to 'str' and Message Headers could be mapped to 'm'. The second method
could easily also be a candidate where only Message Headers are mapped to 'm'. To make meters worse both
methods have the same hamewhich at first might look very ambiguous considering the foll owing configuration:

<si:service-activator input-channel="input" output-channel ="out put" nethod="fo00">
<bean cl ass="org. bar. Foo"/ >
</ si:service-activator>

At this point it would be important to understand Spring Integration mapping Conventions where at the very
core, mappings are based on Payload first and everything el se next. In other words the method whose argument
could be mapped to a Payload will take precedence over al other methods.

On the other hand let's ook at dlightly different example:

public class Foo{
public String foo(String str, Map m;

public String foo(String str)
}

Spring Integration
2.0.0.RC1 Reference Manual 171

Spring Integration

If you look at it you can probably see a truly an ambiguous condition. In this example since both methods
have signatures that could be mapped to a M essage Payload. They also have the same name. Such handler will
trigger an exception. However if method names were different you could influence the mapping with 'method’
attribute (see below):

public class Foo{
public String foo(String str, Map m;

public String bar(String str)
}

<si:service-activator input-channel="input" output-channel ="output" method="bar">
<bean cl ass="org. bar. Foo"/>
</ si:service-activator>

Now thereisno ambiguity since the configuration explicitly mapsto 'bar* method which has no name conflicts.

Spring Integration
2.0.0.RC1 Reference Manual 172

Spring Integration

Appendix C. Additional Resources

C.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home [http:/
WWw.springsource.org/spring-integration] at http://www.springsource.org. That site serves as a hub of
information and is the best place to find up-to-date announcements about the project aswell aslinksto articles,
blogs, and new sample applications.

Spring Integration
2.0.0.RC1 Reference Manual 173

http://www.springsource.org/spring-integration
http://www.springsource.org/spring-integration
http://www.springsource.org/spring-integration
http://www.springsource.org

	Spring Integration Reference Manual
	Table of Contents
	1. Spring Integration Overview
	1.1 Background
	1.2 Goals and Principles
	1.3 Main Components
	Message
	Message Channel
	Message Endpoint

	1.4 Message Endpoints
	Transformer
	Filter
	Router
	Splitter
	Aggregator
	Service Activator
	Channel Adapter

	2. Message Construction
	2.1 The Message Interface
	2.2 Message Headers
	2.3 Message Implementations
	2.4 The MessageBuilder Helper Class

	3. Message Channels
	3.1 The MessageChannel Interface
	PollableChannel
	SubscribableChannel

	3.2 Message Channel Implementations
	PublishSubscribeChannel
	QueueChannel
	PriorityChannel
	RendezvousChannel
	DirectChannel
	ExecutorChannel
	ThreadLocalChannel

	3.3 Channel Interceptors
	3.4 MessagingTemplate
	3.5 Configuring Message Channels
	DirectChannel Configuration
	QueueChannel Configuration
	PublishSubscribeChannel Configuration
	ExecutorChannel
	PriorityChannel Configuration
	RendezvousChannel Configuration
	ThreadLocalChannel Configuration
	Channel Interceptor Configuration
	Global Channel Interceptor Configuration
	Wire Tap

	4. Message Endpoints
	4.1 Message Handler
	4.2 Event Driven Consumer
	4.3 Polling Consumer
	4.4 Namespace Support
	4.5 Payload Type Conversion
	4.6 Asynchronous polling

	5. Service Activator
	5.1 Introduction
	5.2 The <service-activator/> Element

	6. Channel Adapter
	6.1 The <inbound-channel-adapter> element
	6.2 The <outbound-channel-adapter/> element

	7. Router
	7.1 Router Implementations
	PayloadTypeRouter
	HeaderValueRouter
	RecipientListRouter

	7.2 The <router> element
	7.3 The @Router Annotation
	7.4 Dynamic Routers

	8. Filter
	8.1 Introduction
	8.2 The <filter> Element

	9. Transformer
	9.1 Introduction
	9.2 The <transformer> Element
	9.3 The @Transformer Annotation

	10. Splitter
	10.1 Introduction
	10.2 Programming model
	10.3 Configuring a Splitter using XML
	10.4 Configuring a Splitter with Annotations

	11. Aggregator
	11.1 Introduction
	11.2 Functionality
	11.3 Programming model
	CorrelatingMessageHandler
	ReleaseStrategy
	CorrelationStrategy

	11.4 Configuring an Aggregator with XML
	11.5 Managing State in an Aggregator: MessageGroupStore
	11.6 Configuring an Aggregator with Annotations

	12. Resequencer
	12.1 Introduction
	12.2 Functionality
	12.3 Configuring a Resequencer with XML

	13. Delayer
	13.1 Introduction
	13.2 The <delayer> Element

	14. Message Handler Chain
	14.1 Introduction
	14.2 The <chain> Element

	15. Messaging Bridge
	15.1 Introduction
	15.2 The <bridge> Element

	16. Inbound Messaging Gateways
	16.1 GatewayProxyFactoryBean
	16.2 Asynchronous Gateway
	16.3 Gateway behavior when no response is coming

	17. Message Publishing
	17.1 Message Publishing Configuration
	Annotation-driven approach via @Publisher annotation
	XML-based approach via <publishing-interceptor> element
	Producing and publishing messages based on a scheduled trigger

	18. Transaction Support
	18.1 Understanding Transactions in Message flows
	Poller Transaction Support

	18.2 Transaction Boundaries

	19. Message History
	19.1 Message History Configuration

	20. File Support
	20.1 Introduction
	20.2 Reading Files
	20.3 Writing files
	20.4 File Transformers

	21. JDBC Support
	21.1 Inbound Channel Adapter
	Polling and Transactions

	21.2 Outbound Channel Adapter
	21.3 Outbound Gateway
	21.4 Message Store
	Initializing the Database
	Partitioning a Message Store

	22. JMS Support
	22.1 Inbound Channel Adapter
	22.2 Message-Driven Channel Adapter
	22.3 Outbound Channel Adapter
	22.4 Inbound Gateway
	22.5 Outbound Gateway
	22.6 Message Conversion, Marshalling and Unmarshalling
	22.7 JMS Backed Message Channels
	22.8 JMS Samples

	23. Web Services Support
	23.1 Outbound Web Service Gateways
	23.2 Inbound Web Service Gateways
	23.3 Web Service Namespace Support

	24. RMI Support
	24.1 Introduction
	24.2 Outbound RMI
	24.3 Inbound RMI
	24.4 RMI namespace support

	25. HttpInvoker Support
	25.1 Introduction
	25.2 HttpInvoker Inbound Gateway
	25.3 HttpInvoker Outbound Gateway
	25.4 HttpInvoker Namespace Support

	26. HTTP Support
	26.1 Introduction
	26.2 Http Inbound Gateway
	26.3 Http Outbound Gateway
	26.4 HTTP Namespace Support
	26.5 HTTP Samples
	Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway (server)

	27. TCP and UDP Support
	27.1 Introduction
	27.2 UDP Adapters
	27.3 TCP Connection Factories
	27.4 Tcp Connection Interceptors
	27.5 TCP Adapters
	27.6 TCP Gateways
	27.7 IP Configuration Attributes

	28. Mail Support
	28.1 Mail-Sending Channel Adapter
	28.2 Mail-Receiving Channel Adapter
	28.3 Mail Namespace Support

	29. JMX Support
	29.1 Notification Listening Channel Adapter
	29.2 Notification Publishing Channel Adapter
	29.3 Attribute Polling Channel Adapter
	29.4 Operation Invoking Channel Adapter
	29.5 Operation Invoking outbound Gateway
	29.6 MBean Exporter
	29.7 Control Bus

	30. XMPP Support
	30.1 Introduction
	30.2 Using The Spring Integration XMPP Namespace
	30.3 XMPP Connection
	30.4 XMPP Messages
	Inbound Message Adapter
	Outbound Message Adapter

	30.5 XMPP Presence
	Inbound Presence Adapter
	Outbound Presence Adapter

	31. Stream Support
	31.1 Introduction
	31.2 Reading from streams
	31.3 Writing to streams
	31.4 Stream namespace support

	32. Spring ApplicationEvent Support
	32.1 Receiving Spring ApplicationEvents
	32.2 Sending Spring ApplicationEvents

	33. XML Support - Dealing with XML Payloads
	33.1 Introduction
	33.2 Transforming xml payloads
	33.3 Namespace support for xml transformers
	33.4 Splitting xml messages
	33.5 Routing xml messages using XPath
	33.6 Selecting xml messages using XPath
	33.7 Transforming xml messages using XPath
	33.8 XPath components namespace support

	34. Security in Spring Integration
	34.1 Introduction
	34.2 Securing channels

	35. Groovy support
	35.1 Groovy configuration

	Appendix A. Spring Integration Samples
	A.1 Introduction
	A.2 Where to get Samples
	A.3 Samples structure
	A.4 Samples
	Loan Broker
	The Cafe Sample
	The XML Messaging Sample

	Appendix B. Configuration
	B.1 Introduction
	B.2 Namespace Support
	B.3 Configuring the Task Scheduler
	B.4 Error Handling
	B.5 Annotation Support
	B.6 Message Mapping rules and conventions
	Simple Scenarios
	Complex Scenarios

	Appendix C. Additional Resources
	C.1 Spring Integration Home

