
Spring Integration Reference Manual

Mark Fisher
Marius Bogoevici

Iwein Fuld
Jonas Partner

Oleg Zhurakousky
Gary Russell
Josh Long

Spring Integration Reference Manual
by Mark Fisher, Marius Bogoevici, Iwein Fuld, Jonas Partner, Oleg Zhurakousky, Gary Russell, and Josh Long

2.0.0.RC1

© SpringSource Inc., 2010

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual iii

Table of Contents

1. Spring Integration Overview ... 1

1.1. Background ... 1

1.2. Goals and Principles .. 1

1.3. Main Components ... 2

Message ... 2

Message Channel ... 2

Message Endpoint .. 3

1.4. Message Endpoints .. 3

Transformer ... 4

Filter .. 4

Router .. 4

Splitter ... 4

Aggregator ... 5

Service Activator .. 5

Channel Adapter .. 5

2. Message Construction ... 7

2.1. The Message Interface ... 7

2.2. Message Headers ... 7

2.3. Message Implementations .. 8

2.4. The MessageBuilder Helper Class .. 9

3. Message Channels .. 11

3.1. The MessageChannel Interface ... 11

PollableChannel .. 11

SubscribableChannel ... 11

3.2. Message Channel Implementations ... 12

PublishSubscribeChannel .. 12

QueueChannel .. 12

PriorityChannel .. 12

RendezvousChannel .. 12

DirectChannel .. 13

ExecutorChannel .. 14

ThreadLocalChannel ... 15

3.3. Channel Interceptors .. 15

3.4. MessagingTemplate ... 16

3.5. Configuring Message Channels ... 17

DirectChannel Configuration ... 17

QueueChannel Configuration .. 18

PublishSubscribeChannel Configuration ... 18

ExecutorChannel .. 18

PriorityChannel Configuration ... 19

RendezvousChannel Configuration .. 19

ThreadLocalChannel Configuration ... 19

Channel Interceptor Configuration ... 19

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual iv

Global Channel Interceptor Configuration .. 20

Wire Tap ... 21

4. Message Endpoints ... 22

4.1. Message Handler ... 22

4.2. Event Driven Consumer ... 23

4.3. Polling Consumer .. 23

4.4. Namespace Support ... 25

4.5. Payload Type Conversion ... 27

4.6. Asynchronous polling .. 28

5. Service Activator .. 29

5.1. Introduction ... 29

5.2. The <service-activator/> Element ... 29

6. Channel Adapter ... 31

6.1. The <inbound-channel-adapter> element ... 31

6.2. The <outbound-channel-adapter/> element .. 31

7. Router .. 33

7.1. Router Implementations ... 33

PayloadTypeRouter ... 33

HeaderValueRouter ... 33

RecipientListRouter .. 34

7.2. The <router> element .. 35

7.3. The @Router Annotation ... 36

7.4. Dynamic Routers ... 36

8. Filter .. 40

8.1. Introduction ... 40

8.2. The <filter> Element ... 40

9. Transformer ... 43

9.1. Introduction ... 43

9.2. The <transformer> Element .. 43

9.3. The @Transformer Annotation ... 46

10. Splitter ... 47

10.1. Introduction ... 47

10.2. Programming model ... 47

10.3. Configuring a Splitter using XML .. 48

10.4. Configuring a Splitter with Annotations .. 48

11. Aggregator ... 50

11.1. Introduction ... 50

11.2. Functionality .. 50

11.3. Programming model ... 50

CorrelatingMessageHandler ... 51

ReleaseStrategy .. 52

CorrelationStrategy ... 53

11.4. Configuring an Aggregator with XML .. 53

11.5. Managing State in an Aggregator: MessageGroupStore .. 56

11.6. Configuring an Aggregator with Annotations ... 57

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual v

12. Resequencer ... 58

12.1. Introduction ... 58

12.2. Functionality .. 58

12.3. Configuring a Resequencer with XML .. 58

13. Delayer .. 60

13.1. Introduction ... 60

13.2. The <delayer> Element .. 60

14. Message Handler Chain .. 62

14.1. Introduction ... 62

14.2. The <chain> Element ... 63

15. Messaging Bridge ... 65

15.1. Introduction ... 65

15.2. The <bridge> Element ... 65

16. Inbound Messaging Gateways ... 67

16.1. GatewayProxyFactoryBean ... 67

16.2. Asynchronous Gateway .. 69

16.3. Gateway behavior when no response is coming ... 70

17. Message Publishing .. 72

17.1. Message Publishing Configuration .. 72

Annotation-driven approach via @Publisher annotation .. 72

XML-based approach via <publishing-interceptor> element .. 74

Producing and publishing messages based on a scheduled trigger .. 76

18. Transaction Support .. 78

18.1. Understanding Transactions in Message flows ... 78

Poller Transaction Support .. 79

18.2. Transaction Boundaries .. 80

19. Message History ... 82

19.1. Message History Configuration ... 82

20. File Support ... 84

20.1. Introduction ... 84

20.2. Reading Files ... 84

20.3. Writing files .. 86

20.4. File Transformers ... 87

21. JDBC Support .. 88

21.1. Inbound Channel Adapter ... 88

Polling and Transactions ... 89

21.2. Outbound Channel Adapter .. 89

21.3. Outbound Gateway .. 90

21.4. Message Store ... 90

Initializing the Database ... 91

Partitioning a Message Store ... 91

22. JMS Support .. 92

22.1. Inbound Channel Adapter ... 92

22.2. Message-Driven Channel Adapter ... 93

22.3. Outbound Channel Adapter .. 93

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual vi

22.4. Inbound Gateway ... 94

22.5. Outbound Gateway .. 95

22.6. Message Conversion, Marshalling and Unmarshalling .. 95

22.7. JMS Backed Message Channels .. 96

22.8. JMS Samples ... 97

23. Web Services Support ... 98

23.1. Outbound Web Service Gateways ... 98

23.2. Inbound Web Service Gateways ... 98

23.3. Web Service Namespace Support .. 99

24. RMI Support .. 101

24.1. Introduction ... 101

24.2. Outbound RMI ... 101

24.3. Inbound RMI ... 101

24.4. RMI namespace support ... 101

25. HttpInvoker Support ... 103

25.1. Introduction ... 103

25.2. HttpInvoker Inbound Gateway .. 103

25.3. HttpInvoker Outbound Gateway .. 103

25.4. HttpInvoker Namespace Support ... 104

26. HTTP Support .. 105

26.1. Introduction ... 105

26.2. Http Inbound Gateway ... 105

26.3. Http Outbound Gateway ... 106

26.4. HTTP Namespace Support .. 106

26.5. HTTP Samples ... 107

Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway (server) 107

27. TCP and UDP Support .. 109

27.1. Introduction ... 109

27.2. UDP Adapters .. 109

27.3. TCP Connection Factories .. 111

27.4. Tcp Connection Interceptors ... 113

27.5. TCP Adapters .. 114

27.6. TCP Gateways ... 115

27.7. IP Configuration Attributes ... 116

28. Mail Support .. 121

28.1. Mail-Sending Channel Adapter ... 121

28.2. Mail-Receiving Channel Adapter .. 121

28.3. Mail Namespace Support .. 122

29. JMX Support .. 125

29.1. Notification Listening Channel Adapter ... 125

29.2. Notification Publishing Channel Adapter ... 125

29.3. Attribute Polling Channel Adapter .. 126

29.4. Operation Invoking Channel Adapter .. 126

29.5. Operation Invoking outbound Gateway .. 127

29.6. MBean Exporter ... 127

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual vii

29.7. Control Bus ... 127

30. XMPP Support ... 129

30.1. Introduction ... 129

30.2. Using The Spring Integration XMPP Namespace .. 129

30.3. XMPP Connection ... 130

30.4. XMPP Messages .. 130

Inbound Message Adapter ... 130

Outbound Message Adapter .. 131

30.5. XMPP Presence ... 133

Inbound Presence Adapter ... 133

Outbound Presence Adapter .. 133

31. Stream Support ... 134

31.1. Introduction ... 134

31.2. Reading from streams ... 134

31.3. Writing to streams .. 134

31.4. Stream namespace support .. 135

32. Spring ApplicationEvent Support ... 136

32.1. Receiving Spring ApplicationEvents .. 136

32.2. Sending Spring ApplicationEvents .. 136

33. XML Support - Dealing with XML Payloads ... 138

33.1. Introduction ... 138

33.2. Transforming xml payloads .. 138

33.3. Namespace support for xml transformers ... 139

33.4. Splitting xml messages ... 141

33.5. Routing xml messages using XPath ... 142

33.6. Selecting xml messages using XPath ... 142

33.7. Transforming xml messages using XPath .. 143

33.8. XPath components namespace support .. 145

34. Security in Spring Integration .. 147

34.1. Introduction ... 147

34.2. Securing channels .. 147

35. Groovy support ... 148

35.1. Groovy configuration ... 148

A. Spring Integration Samples ... 150

A.1. Introduction .. 150

A.2. Where to get Samples ... 150

A.3. Samples structure .. 151

A.4. Samples .. 152

Loan Broker ... 152

The Cafe Sample .. 157

The XML Messaging Sample .. 162

B. Configuration ... 163

B.1. Introduction ... 163

B.2. Namespace Support ... 163

B.3. Configuring the Task Scheduler ... 164

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual viii

B.4. Error Handling .. 165

B.5. Annotation Support ... 166

B.6. Message Mapping rules and conventions .. 168

Simple Scenarios .. 168

Complex Scenarios ... 170

C. Additional Resources ... 173

C.1. Spring Integration Home .. 173

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 1

1. Spring Integration Overview

1.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means

that the framework handles responsibilities on behalf of the components that are managed within its context.

The components themselves are simplified since they are relieved of those responsibilities. For example,

dependency injection relieves the components of the responsibility of locating or creating their dependencies.

Likewise, aspect-oriented programming relieves business components of generic cross-cutting concerns by

modularizing them into reusable aspects. In each case, the end result is a system that is easier to test, understand,

maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for building

enterprise applications. Developers benefit from the consistency of this model and especially the fact that it is

based upon well-established best practices such as programming to interfaces and favoring composition over

inheritance. Spring's simplified abstractions and powerful support libraries boost developer productivity while

simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles. It

extends the Spring programming model into the messaging domain and builds upon Spring's existing enterprise

integration support to provide an even higher level of abstraction. It supports message-driven architectures

where inversion of control applies to runtime concerns, such as when certain business logic should execute

and where the response should be sent. It supports routing and transformation of messages so that different

transports and different data formats can be integrated without impacting testability. In other words, the

messaging and integration concerns are handled by the framework, so business components are further isolated

from the infrastructure and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of configuration

options including annotations, XML with namespace support, XML with generic "bean" elements, and of

course direct usage of the underlying API. That API is based upon well-defined strategy interfaces and

non-invasive, delegating adapters. Spring Integration's design is inspired by the recognition of a strong

affinity between common patterns within Spring and the well-known Enterprise Integration Patterns [http://

www.eaipatterns.com] as described in the book of the same name by Gregor Hohpe and Bobby Woolf (Addison

Wesley, 2004). Developers who have read that book should be immediately comfortable with the Spring

Integration concepts and terminology.

1.2 Goals and Principles

Spring Integration is motivated by the following goals:

• Provide a simple model for implementing complex enterprise integration solutions.

• Facilitate asynchronous, message-driven behavior within a Spring-based application.

• Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

http://www.eaipatterns.com
http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 2

• Components should be loosely coupled for modularity and testability.

• The framework should enforce separation of concerns between business logic and integration logic.

• Extension points should be abstract in nature but within well-defined boundaries to promote reuse and

portability.

1.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-based

contracts between layers promote loose coupling. Spring-based applications are typically designed this way,

and the Spring framework and portfolio provide a strong foundation for following this best practice for the full-

stack of an enterprise application. Message-driven architectures add a horizontal perspective, yet these same

goals are still relevant. Just as "layered architecture" is an extremely generic and abstract paradigm, messaging

systems typically follow the similarly abstract "pipes-and-filters" model. The "filters" represent any component

that is capable of producing and/or consuming messages, and the "pipes" transport the messages between filters

so that the components themselves remain loosely-coupled. It is important to note that these two high-level

paradigms are not mutually exclusive. The underlying messaging infrastructure that supports the "pipes" should

still be encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters" themselves

would typically be managed within a layer that is logically above the application's service layer, interacting

with those services through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used by the

framework while handling that object. It consists of a payload and headers. The payload can be of any type and

the headers hold commonly required information such as id, timestamp, expiration, and return address. Headers

are also used for passing values to and from connected transports. For example, when creating a Message from

a received File, the file name may be stored in a header to be accessed by downstream components. Likewise,

if a Message's content is ultimately going to be sent by an outbound Mail adapter, the various properties (to,

from, cc, subject, etc.) may be configured as Message header values by an upstream component. Developers

can also store any arbitrary key-value pairs in the headers.

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to a

channel, and consumers receive Messages from a channel. The Message Channel therefore decouples the

messaging components, and also provides a convenient point for interception and monitoring of Messages.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 3

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-Point

channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe channels, on

the other hand, will attempt to broadcast each Message to all of its subscribers. Spring Integration supports

both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will

ultimately receive each Message, there is another important consideration: should the channel buffer messages?

In Spring Integration, Pollable Channels are capable of buffering Messages within a queue. The advantage of

buffering is that it allows for throttling the inbound Messages and thereby prevents overloading a consumer.

However, as the name suggests, this also adds some complexity, since a consumer can only receive the

Messages from such a channel if a poller is configured. On the other hand, a consumer connected to a

Subscribable Channel is simply Message-driven. The variety of channel implementations available in Spring

Integration will be discussed in detail in Section 3.2, “Message Channel Implementations”.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration solutions

through inversion of control. This means that you should not have to implement consumers and producers

directly, and you should not even have to build Messages and invoke send or receive operations on a Message

Channel. Instead, you should be able to focus on your specific domain model with an implementation based on

plain Objects. Then, by providing declarative configuration, you can "connect" your domain-specific code to

the messaging infrastructure provided by Spring Integration. The components responsible for these connections

are Message Endpoints. This does not mean that you will necessarily connect your existing application

code directly. Any real-world enterprise integration solution will require some amount of code focused upon

integration concerns such as routing and transformation. The important thing is to achieve separation of

concerns between such integration logic and business logic. In other words, as with the Model-View-Controller

paradigm for web applications, the goal should be to provide a thin but dedicated layer that translates inbound

requests into service layer invocations, and then translates service layer return values into outbound replies.

The next section will provide an overview of the Message Endpoint types that handle these responsibilities,

and in upcoming chapters, you will see how Spring Integration's declarative configuration options provide a

non-invasive way to use each of these.

1.4 Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the

endpoint's primary role is to connect application code to the messaging framework and to do so in a non-

invasive manner. In other words, the application code should ideally have no awareness of the Message objects

or the Message Channels. This is similar to the role of a Controller in the MVC paradigm. Just as a Controller

handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are mapped to URL

patterns, Message Endpoints are mapped to Message Channels. The goal is the same in both cases: isolate

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 4

application code from the infrastructure. These concepts are discussed at length along with all of the patterns

that follow in the Enterprise Integration Patterns [http://www.eaipatterns.com] book. Here, we provide only a

high-level description of the main endpoint types supported by Spring Integration and their roles. The chapters

that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message's content or structure and returning the

modified Message. Probably the most common type of transformer is one that converts the payload of the

Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a transformer

may be used to add, remove, or modify the Message's header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This simply

requires a boolean test method that may check for a particular payload content type, a property value, the

presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if not it will be

dropped (or for a more severe implementation, an Exception could be thrown). Message Filters are often used

in conjunction with a Publish Subscribe channel, where multiple consumers may receive the same Message

and use the filter to narrow down the set of Messages to be processed based on some criteria.

Note
Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural pattern

with this specific endpoint type that selectively narrows down the Messages flowing between two

channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring Integration's

Message Endpoint: any component that can be connected to Message Channel(s) in order to send

and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message next (if

any). Typically the decision is based upon the Message's content and/or metadata available in the Message

Headers. A Message Router is often used as a dynamic alternative to a statically configured output channel on

a Service Activator or other endpoint capable of sending reply Messages. Likewise, a Message Router provides

a proactive alternative to the reactive Message Filters used by multiple subscribers as described above.

Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input

channel, split that Message into multiple Messages, and then send each of those to its output channel. This is

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 5

typically used for dividing a "composite" payload object into a group of Messages containing the sub-divided

payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives multiple

Messages and combines them into a single Message. In fact, Aggregators are often downstream consumers in

a pipeline that includes a Splitter. Technically, the Aggregator is more complex than a Splitter, because it is

required to maintain state (the Messages to-be-aggregated), to decide when the complete group of Messages

is available, and to timeout if necessary. Furthermore, in case of a timeout, the Aggregator needs to know

whether to send the partial results or to discard them to a separate channel. Spring Integration provides a

CompletionStrategy as well as configurable settings for timeout, whether to send partial results upon

timeout, and the discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system. The input

Message Channel must be configured, and if the service method to be invoked is capable of returning a value,

an output Message Channel may also be provided.

Note
The output channel is optional, since each Message may also provide its own 'Return Address'

header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message, extracting

the request Message's payload and converting if necessary (if the method does not expect a Message-typed

parameter). Whenever the service object's method returns a value, that return value will likewise be converted

to a reply Message if necessary (if it's not already a Message). That reply Message is sent to the output channel.

If no output channel has been configured, then the reply will be sent to the channel specified in the Message's

"return address" if available.

A request-reply "Service Activator" endpoint connects a

target object's method to input and output Message Channels.

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport. Channel

Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some mapping between

the Message and whatever object or resource is received-from or sent-to the other system (File, HTTP Request,

JMS Message, etc). Depending on the transport, the Channel Adapter may also populate or extract Message

header values. Spring Integration provides a number of Channel Adapters, and they will be described in

upcoming chapters.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 6

An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 7

2. Message Construction

The Spring Integration Message is a generic container for data. Any object can be provided as the payload,

and each Message also includes headers containing user-extensible properties as key-value pairs.

2.1 The Message Interface

Here is the definition of the Message interface:

public interface Message<T> {

 T getPayload();

 MessageHeaders getHeaders();

}

The Message is obviously a very important part of the API. By encapsulating the data in a generic wrapper,

the messaging system can pass it around without any knowledge of the data's type. As an application evolves to

support new types, or when the types themselves are modified and/or extended, the messaging system will not

be affected by such changes. On the other hand, when some component in the messaging system does require

access to information about the Message, such metadata can typically be stored to and retrieved from the

metadata in the Message Headers.

2.2 Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports any Object

types as header values. In fact, the MessageHeaders class implements the java.util.Map interface:

public final class MessageHeaders implements Map<String, Object>, Serializable {

 ...

}

Note
Even though the MessageHeaders implements Map, it is effectively a read-only implementation.

Any attempt to put a value in the Map will result in an UnsupportedOperationException.

The same applies for remove and clear. Since Messages may be passed to multiple consumers, the

structure of the Map cannot be modified. Likewise, the Message's payload Object can not be set

after the initial creation. However, the mutability of the header values themselves (or the payload

Object) is intentionally left as a decision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get(..) with the name of

the header. Alternatively, you can provide the expected Class as an additional parameter. Even better, when

retrieving one of the pre-defined values, convenient getters are available. Here is an example of each of these

three options:

 Object someValue = message.getHeaders().get("someKey");

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 8

 CustomerId customerId = message.getHeaders().get("customerId", CustomerId.class);

 Long timestamp = message.getHeaders().getTimestamp();

The following Message headers are pre-defined:

Table 2.1. Pre-defined Message Headers

Header Name Header Type

ID java.util.UUID

TIMESTAMP java.lang.Long

EXPIRATION_DATE java.lang.Long

CORRELATION_ID java.lang.Object

REPLY_CHANNEL java.lang.Object (can be a String or MessageChannel)

ERROR_CHANNEL java.lang.Object (can be a String or MessageChannel)

SEQUENCE_NUMBER java.lang.Integer

SEQUENCE_SIZE java.lang.Integer

PRIORITY MessagePriority (an enum)

Many inbound and outbound adapter implementations will also provide and/or expect certain headers, and

additional user-defined headers can also be configured.

2.3 Message Implementations

The base implementation of the Message interface is GenericMessage<T>, and it provides two

constructors:

new GenericMessage<T>(T payload);

new GenericMessage<T>(T payload, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map of

headers will copy the provided headers to the newly created Message.

There are also two convenient subclasses available: StringMessage and ErrorMessage. The former

accepts a String as its payload:

StringMessage message = new StringMessage("hello world");

String s = message.getPayload();

And, the latter accepts any Throwable object as its payload:

ErrorMessage message = new ErrorMessage(someThrowable);

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 9

Throwable t = message.getPayload();

Notice that these implementations take advantage of the fact that the GenericMessage base class is

parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the Message

payload Object.

2.4 The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but no setters.

The reason for this is that a Message cannot be modified after its initial creation. Therefore, when a Message

instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if one of those consumers

needs to send a reply with a different payload type, it will need to create a new Message. As a result, the

other consumers are not affected by those changes. Keep in mind, that multiple consumers may access the

same payload instance or header value, and whether such an instance is itself immutable is a decision left

to the developer. In other words, the contract for Messages is similar to that of an unmodifiable Collection,

and the MessageHeaders' map further exemplifies that; even though the MessageHeaders class implements

java.util.Map, any attempt to invoke a put operation (or 'remove' or 'clear') on the MessageHeaders will

result in an UnsupportedOperationException.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,

Spring Integration does provide a far more convenient way to construct Messages: MessageBuilder. The

MessageBuilder provides two factory methods for creating Messages from either an existing Message or with

a payload Object. When building from an existing Message, the headers and payload of that Message will be

copied to the new Message:

Message<String> message1 = MessageBuilder.withPayload("test")

 .setHeader("foo", "bar")

 .build();

Message<String> message2 = MessageBuilder.fromMessage(message1).build();

assertEquals("test", message2.getPayload());

assertEquals("bar", message2.getHeaders().get("foo"));

If you need to create a Message with a new payload but still want to copy the headers from an existing Message,

you can use one of the 'copy' methods.

Message<String> message3 = MessageBuilder.withPayload("test3")

 .copyHeaders(message1.getHeaders())

 .build();

Message<String> message4 = MessageBuilder.withPayload("test4")

 .setHeader("foo", 123)

 .copyHeadersIfAbsent(message1.getHeaders())

 .build();

assertEquals("bar", message3.getHeaders().get("foo"));

assertEquals(123, message4.getHeaders().get("foo"));

Notice that the copyHeadersIfAbsent does not overwrite existing values. Also, in the second

example above, you can see how to set any user-defined header with setHeader. Finally, there are set

methods available for the predefined headers as well as a non-destructive method for setting any header

(MessageHeaders also defines constants for the pre-defined header names).

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 10

Message<Integer> importantMessage = MessageBuilder.withPayload(99)

 .setPriority(MessagePriority.HIGHEST)

 .build();

assertEquals(MessagePriority.HIGHEST, importantMessage.getHeaders().getPriority());

Message<Integer> anotherMessage = MessageBuilder.fromMessage(importantMessage)

 .setHeaderIfAbsent(MessageHeaders.PRIORITY, MessagePriority.LOW)

 .build();

assertEquals(MessagePriority.HIGHEST, anotherMessage.getHeaders().getPriority());

The MessagePriority is only considered when using a PriorityChannel (as described in the next

chapter). It is defined as an enum with five possible values:

public enum MessagePriority {

 HIGHEST,

 HIGH,

 NORMAL,

 LOW,

 LOWEST

}

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 11

3. Message Channels
While the Message plays the crucial role of encapsulating data, it is the MessageChannel that decouples

message producers from message consumers.

3.1 The MessageChannel Interface

Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {

 String getName();

 boolean send(Message message);

 boolean send(Message message, long timeout);

}

When sending a message, the return value will be true if the message is sent successfully. If the send call times

out or is interrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are two sub-

interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior. Here is the

definition of PollableChannel.

public interface PollableChannel extends MessageChannel {

 Message<?> receive();

 Message<?> receive(long timeout);

 List<Message<?>> clear();

 List<Message<?>> purge(MessageSelector selector);

}

Similar to the send methods, when receiving a message, the return value will be null in the case of a timeout

or interrupt.

SubscribableChannel

The SubscribableChannel base interface is implemented by channels that send Messages directly to

their subscribed MessageHandlers. Therefore, they do not provide receive methods for polling, but instead

define methods for managing those subscribers:

public interface SubscribableChannel extends MessageChannel {

 boolean subscribe(MessageHandler handler);

 boolean unsubscribe(MessageHandler handler);

}

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 12

3.2 Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly described in

the sections below.

PublishSubscribeChannel

The PublishSubscribeChannel implementation broadcasts any Message sent to it to all of its subscribed

handlers. This is most often used for sending Event Messages whose primary role is notification as opposed

to Document Messages which are generally intended to be processed by a single handler. Note that the

PublishSubscribeChannel is intended for sending only. Since it broadcasts to its subscribers directly

when its send(Message) method is invoked, consumers cannot poll for Messages (it does not implement

PollableChannel and therefore has no receive() method). Instead, any subscriber must be a

MessageHandler itself, and the subscriber's handleMessage(Message) method will be invoked in

turn.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the PublishSubscribeChannel, the

QueueChannel has point-to-point semantics. In other words, even if the channel has multiple consumers,

only one of them should receive any Message sent to that channel. It provides a default no-argument constructor

(providing an essentially unbounded capacity of Integer.MAX_VALUE) as well as a constructor that accepts

the queue capacity:

public QueueChannel(int capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the send()

method will return immediately even if no receiver is ready to handle the message. If the queue has reached

capacity, then the sender will block until room is available. Or, if using the send call that accepts a timeout,

it will block until either room is available or the timeout period elapses, whichever occurs first. Likewise, a

receive call will return immediately if a message is available on the queue, but if the queue is empty, then a

receive call may block until either a message is available or the timeout elapses. In either case, it is possible to

force an immediate return regardless of the queue's state by passing a timeout value of 0. Note however, that

calls to the no-arg versions of send() and receive() will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the PriorityChannel is an

alternative implementation that allows for messages to be ordered within the channel based upon a priority.

By default the priority is determined by the 'priority' header within each message. However, for custom

priority determination logic, a comparator of type Comparator<Message<?>> can be provided to the

PriorityChannel's constructor.

RendezvousChannel

The RendezvousChannel enables a "direct-handoff" scenario where a sender will block until another

party invokes the channel's receive() method or vice-versa. Internally, this implementation is quite similar

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 13

to the QueueChannel except that it uses a SynchronousQueue (a zero-capacity implementation of

BlockingQueue). This works well in situations where the sender and receiver are operating in different

threads but simply dropping the message in a queue asynchronously is not appropriate. In other words, with a

RendezvousChannel at least the sender knows that some receiver has accepted the message, whereas with

a QueueChannel, the message would have been stored to the internal queue and potentially never received.

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only.

When persistence is required, you can either invoke a database operation within a handler or use

Spring Integration's support for JMS-based Channel Adapters. The latter option allows you to take

advantage of any JMS provider's implementation for message persistence, and it will be discussed

in Chapter 22, JMS Support. However, when buffering in a queue is not necessary, the simplest

approach is to rely upon the DirectChannel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender can create

a temporary, anonymous instance of RendezvousChannel which it then sets as the 'replyChannel' header

when building a Message. After sending that Message, the sender can immediately call receive (optionally

providing a timeout value) in order to block while waiting for a reply Message. This is very similar to the

implementation used internally by many of Spring Integration's request-reply components.

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the

PublishSubscribeChannel than any of the queue-based channel implementations described above.

It implements the SubscribableChannel interface instead of the PollableChannel interface, so

it dispatches Messages directly to a subscriber. As a point-to-point channel, however, it differs from

the PublishSubscribeChannel in that it will only send each Message to a single subscribed

MessageHandler.

In addition to being the simplest point-to-point channel option, one of its most important features is that it

enables a single thread to perform the operations on "both sides" of the channel. For example, if a handler

is subscribed to a DirectChannel, then sending a Message to that channel will trigger invocation of that

handler's handleMessage(Message) method directly in the sender's thread, before the send() method

invocation can return.

The key motivation for providing a channel implementation with this behavior is to support transactions that

must span across the channel while still benefiting from the abstraction and loose coupling that the channel

provides. If the send call is invoked within the scope of a transaction, then the outcome of the handler's

invocation (e.g. updating a database record) will play a role in determining the ultimate result of that transaction

(commit or rollback).

Note
Since the DirectChannel is the simplest option and does not add any additional overhead that

would be required for scheduling and managing the threads of a poller, it is the default channel type

within Spring Integration. The general idea is to define the channels for an application and then

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 14

to consider which of those need to provide buffering or to throttle input, and then modify those

to be queue-based PollableChannels. Likewise, if a channel needs to broadcast messages,

it should not be a DirectChannel but rather a PublishSubscribeChannel. Below you

will see how each of these can be configured.

The DirectChannel internally delegates to a Message Dispatcher to invoke its subscribed Message

Handlers, and that dispatcher can have a load-balancing strategy. The load-balancer determines how

invocations will be ordered in the case that there are multiple handlers subscribed to the same channel. When

using the namespace support described below, the default strategy is "round-robin" which essentially load-

balances across the handlers in rotation.

Note
The "round-robin" strategy is currently the only implementation available out-of-the-box in Spring

Integration. Other strategy implementations may be added in future versions.

The load-balancer also works in combination with a boolean failover property. If the "failover" value is true (the

default), then the dispatcher will fall back to any subsequent handlers as necessary when preceding handlers

throw Exceptions. The order is determined by an optional order value defined on the handlers themselves or,

if no such value exists, the order in which the handlers are subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler, then fallback in the same

fixed order sequence every time an error occurs, no load-balancing strategy should be provided. In other words,

the dispatcher still supports the failover boolean property even when no load-balancing is enabled. Without

load-balancing, however, the invocation of handlers will always begin with the first according to their order.

For example, this approach works well when there is a clear definition of primary, secondary, tertiary, and so

on. When using the namespace support, the "order" attribute on any endpoint will determine that order.

Note
Keep in mind that load-balancing and failover only apply when a channel has more than one

subscribed Message Handler. When using the namespace support, this means that more than one

endpoint shares the same channel reference in the "input-channel" attribute.

ExecutorChannel

The ExecutorChannel is a point-to-point channel that supports the same dispatcher configuration

as DirectChannel (load-balancing strategy and the failover boolean property). The key difference

between these two dispatching channel types is that the ExecutorChannel delegates to an instance of

TaskExecutor to perform the dispatch. This means that the send method typically will not block, but it

also means that the handler invocation may not occur in the sender's thread. It therefore does not support

transactions spanning the sender and receiving handler.

Tip
Note that there are occasions where the sender may block. For example, when using

a TaskExecutor with a rejection-policy that throttles back on the client (such as the

ThreadPoolExecutor.CallerRunsPolicy), the sender's thread will execute the method

directly anytime the thread pool is at its maximum capacity and the executor's work queue is full.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 15

Since that situation would only occur in a non-predictable way, that obviously cannot be relied

upon for transactions.

ThreadLocalChannel

The final channel implementation type is ThreadLocalChannel. This channel also delegates to a queue

internally, but the queue is bound to the current thread. That way the thread that sends to the channel will later

be able to receive those same Messages, but no other thread would be able to access them. While probably the

least common type of channel, this is useful for situations where DirectChannels are being used to enforce

a single thread of operation but any reply Messages should be sent to a "terminal" channel. If that terminal

channel is a ThreadLocalChannel, the original sending thread can collect its replies from it.

3.3 Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and capture

meaningful information about the messages passing through the system in a non-invasive way. Since the

Messages are being sent to and received from MessageChannels, those channels provide an opportunity

for intercepting the send and receive operations. The ChannelInterceptor strategy interface provides

methods for each of those operations:

public interface ChannelInterceptor {

 Message<?> preSend(Message<?> message, MessageChannel channel);

 void postSend(Message<?> message, MessageChannel channel, boolean sent);

 boolean preReceive(MessageChannel channel);

 Message<?> postReceive(Message<?> message, MessageChannel channel);

}

After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel.addInterceptor(someChannelInterceptor);

The methods that return a Message instance can be used for transforming the Message or can return 'null'

to prevent further processing (of course, any of the methods can throw a RuntimeException). Also, the

preReceive method can return 'false' to prevent the receive operation from proceeding.

Note
Keep in mind that receive() calls are only relevant for PollableChannels. In fact the

SubscribableChannel interface does not even define a receive() method. The reason for

this is that when a Message is sent to a SubscribableChannel it will be sent directly to one

or more subscribers depending on the type of channel (e.g. a PublishSubscribeChannel sends to

all of its subscribers). Therefore, the preReceive(..) and postReceive(..) interceptor

methods are only invoked when the interceptor is applied to a PollableChannel.

Spring Integration also provides an implementation of the Wire Tap [http://eaipatterns.com/WireTap.html]

pattern. It is a simple interceptor that sends the Message to another channel without otherwise altering the

existing flow. It can be very useful for debugging and monitoring. An example is shown in the section called

“Wire Tap”.

http://eaipatterns.com/WireTap.html
http://eaipatterns.com/WireTap.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 16

Because it is rarely necessary to implement all of the interceptor methods, a

ChannelInterceptorAdapter class is also available for sub-classing. It provides no-op methods (the

void method is empty, the Message returning methods return the Message as-is, and the boolean method

returns true). Therefore, it is often easiest to extend that class and just implement the method(s) that you

need as in the following example.

public class CountingChannelInterceptor extends ChannelInterceptorAdapter {

 private final AtomicInteger sendCount = new AtomicInteger();

 @Override

 public Message<?> preSend(Message<?> message, MessageChannel channel) {

 sendCount.incrementAndGet();

 return message;

 }

}

Tip
The order of invocation for the interceptor methods depends on the type of channel. As described

above, the queue-based channels are the only ones where the receive method is intercepted in the

first place. Additionally, the relationship between send and receive interception depends on the

timing of separate sender and receiver threads. For example, if a receiver is already blocked while

waiting for a message the order could be: preSend, preReceive, postReceive, postSend. However, if

a receiver polls after the sender has placed a message on the channel and already returned, the order

would be: preSend, postSend, (some-time-elapses) preReceive, postReceive. The time that elapses

in such a case depends on a number of factors and is therefore generally unpredictable (in fact, the

receive may never happen!). Obviously, the type of queue also plays a role (e.g. rendezvous vs.

priority). The bottom line is that you cannot rely on the order beyond the fact that preSend will

precede postSend and preReceive will precede postReceive.

3.4 MessagingTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring Integration

provides a foundation for messaging components that enables non-invasive invocation of your application

code from the messaging system. However, sometimes it is necessary to invoke the messaging system from

your application code. For convenience when implementing such use-cases, Spring Integration provides a

MessagingTemplate that supports a variety of operations across the Message Channels, including request/

reply scenarios. For example, it is possible to send a request and wait for a reply.

MessagingTemplate template = new MessagingTemplate();

Message reply = template.sendAndReceive(new StringMessage("test"), someChannel);

In that example, a temporary anonymous channel would be created internally by the template. The

'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and other exchange types are

also supported.

public boolean send(final Message<?> message, final MessageChannel channel) { ... }

public Message<?> sendAndReceive(final Message<?> request, final MessageChannel channel) { .. }

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 17

public Message<?> receive(final PollableChannel<?> channel) { ... }

Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or header

values instead of Message instances is described in Section 16.1, “GatewayProxyFactoryBean”.

3.5 Configuring Message Channels

To create a Message Channel instance, you can use the 'channel' element:

<channel id="exampleChannel"/>

The default channel type is Point to Point. To create a Publish Subscribe channel, use the "publish-subscribe-

channel" element:

<publish-subscribe-channel id="exampleChannel"/>

To create a Datatype Channel [http://www.eaipatterns.com/DatatypeChannel.html] that only accepts messages

containing a certain payload type, provide the fully-qualified class name in the channel element's datatype

attribute:

<channel id="numberChannel" datatype="java.lang.Number"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other

words, the "numberChannel" above would accept messages whose payload is java.lang.Integer or

java.lang.Double. Multiple types can be provided as a comma-delimited list:

<channel id="stringOrNumberChannel" datatype="java.lang.String,java.lang.Number"/>

When using the "channel" element without any sub-elements, it will create a DirectChannel instance (a

SubscribableChannel).

However, you can alternatively provide a variety of "queue" sub-elements to create any of the pollable channel

types (as described in Section 3.2, “Message Channel Implementations”). Examples of each are shown below.

DirectChannel Configuration

As mentioned above, DirectChannel is the default type.

<channel id="directChannel"/>

A default channel will have a round-robin load-balancer and will also have failover enabled (See the discussion

in the section called “DirectChannel” for more detail). To disable one or both of these, add a <dispatcher/>

sub-element and configure the attributes:

<channel id="failFastChannel">

 <dispatcher failover="false"/>

</channel>

http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/DatatypeChannel.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 18

<channel id="channelWithFixedOrderSequenceFailover">

 <dispatcher load-balancer="none"/>

</channel>

QueueChannel Configuration

To create a QueueChannel, use the "queue" sub-element. You may specify the channel's capacity:

<channel id="queueChannel">

 <queue capacity="25"/>

</channel>

Note
If you do not provide a value for the 'capacity' attribute on this <queue/> sub-element, the resulting

queue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly recommended

to set an explicit value for a bounded queue.

PublishSubscribeChannel Configuration

To create a PublishSubscribeChannel, use the "publish-subscribe-channel" element. When using this

element, you can also specify the "task-executor" used for publishing Messages (if none is specified it simply

publishes in the sender's thread):

<publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

If you are providing a Resequencer or Aggregator downstream from a PublishSubscribeChannel, then

you can set the 'apply-sequence' property on the channel to true. That will indicate that the channel should

set the sequence-size and sequence-number Message headers as well as the correlation id prior to passing the

Messages along. For example, if there are 5 subscribers, the sequence-size would be set to 5, and the Messages

would have sequence-number header values ranging from 1 to 5.

<publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

Note
The 'apply-sequence' value is false by default so that a Publish Subscribe Channel can send the

exact same Message instances to multiple outbound channels. Since Spring Integration enforces

immutability of the payload and header references, the channel creates new Message instances

with the same payload reference but different header values when the flag is set to true.

ExecutorChannel

To create an ExecutorChannel, add the <dispatcher> sub-element along with a 'task-executor' attribute.

Its value can reference any TaskExecutor within the context. For example, this enables configuration of a

thread-pool for dispatching messages to subscribed handlers. As mentioned above, this does break the "single-

threaded" execution context between sender and receiver so that any active transaction context will not be

shared by the invocation of the handler (i.e. the handler may throw an Exception, but the send invocation has

already returned successfully).

<channel id="executorChannel">

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 19

 <dispatcher task-executor="someExecutor"/>

</channel>

Note
The "load-balancer" and "failover" options are also both available on the dispatcher sub-element as

described above in the section called “DirectChannel Configuration”. The same defaults apply as

well. So, the channel will have a round-robin load-balancing strategy with failover enabled unless

explicit configuration is provided for one or both of those attributes.

<channel id="executorChannelWithoutFailover">

 <dispatcher task-executor="someExecutor" failover="false"/>

</channel>

PriorityChannel Configuration

To create a PriorityChannel, use the "priority-queue" sub-element:

<channel id="priorityChannel">

 <priority-queue capacity="20"/>

</channel>

By default, the channel will consult the MessagePriority header of the message. However, a custom

Comparator reference may be provided instead. Also, note that the PriorityChannel (like the other

types) does support the "datatype" attribute. As with the QueueChannel, it also supports a "capacity" attribute.

The following example demonstrates all of these:

<channel id="priorityChannel" datatype="example.Widget">

 <priority-queue comparator="widgetComparator"

 capacity="10"/>

</channel>

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not

provide any additional configuration options to those described above, and its queue does not accept any

capacity value since it is a 0-capacity direct handoff queue.

<channel id="rendezvousChannel"/>

 <rendezvous-queue/>

</channel>

ThreadLocalChannel Configuration

The ThreadLocalChannel does not provide any additional configuration options.

<thread-local-channel id="threadLocalChannel"/>

Channel Interceptor Configuration

Message channels may also have interceptors as described in Section 3.3, “Channel Interceptors”. The

<interceptors> sub-element can be added within <channel> (or the more specific element types). Provide

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 20

the "ref" attribute to reference any Spring-managed object that implements the ChannelInterceptor

interface:

<channel id="exampleChannel">

 <interceptors>

 <ref bean="trafficMonitoringInterceptor"/>

 </interceptors>

</channel>

In general, it is a good idea to define the interceptor implementations in a separate location since they usually

provide common behavior that can be reused across multiple channels.

Global Channel Interceptor Configuration

Channel Interceptors allow you for a clean and concise way of applying cross-cutting behavior per individual

channel. But what if the same behavior should be applied on multiple channels, configuring the same set of

interceptors for each channel would not be the most efficient way. The better way would be to configure

interceptors globally and apply them on multiple channels in one shot. Spring Integration provides capabilities

to configure Global Interceptors and apply them on multiple channels. Look at the example below:

<int:channel-interceptor pattern="input*, bar*, foo" order="3">

 <bean class="foo.barSampleInterceptor"/>

</int:channel-interceptor>

or

<int:channel-interceptor ref="myInterceptor" pattern="input*, bar*, foo" order="3"/>

<bean id="myInterceptor" class="foo.barSampleInterceptor"/>

<channel-interceptor> element allows you to define a global interceptor which will be applied on all channels

that match patterns defined via pattern attribute. In the above case the global interceptor will be applied on

'foo' channel and all other channels that begin with 'bar' and 'input'. The order attribute allows you to manage

the place where this interceptor will be injected. For example, channel 'inputChannel' could have individual

interceptors configured locally (see below):

<int:channel id="inputChannel">

 <int:interceptors>

 <int:wire-tap channel="logger"/>

 </int:interceptors>

</int:channel>

The reasonable question would be how global interceptor will be injected in relation to other interceptors

configured locally or through other global interceptor definitions? Current implementation provides a very

simple and clever mechanism of handling this. Positive number in the order attribute will ensure interceptor

injection after existing interceptors and negative number will ensure that such interceptors injected before. This

means that in the above example global interceptor will be injected AFTER (since its order is greater then 0)

'wire-tap' interceptor configured locally. If there was another global interceptor with matching pattern their

order would be determined based on who's got the higher or lower value in order attribute. To inject global

interceptor BEFORE the existing interceptors use negative value for the order attribute.

Note
Note that order and pattern attributes are optional. The default value for order will be 0 and for

pattern is '*'

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 21

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can

configure a Wire Tap on any channel within an 'interceptors' element. This is especially useful for debugging,

and can be used in conjunction with Spring Integration's logging Channel Adapter as follows:

 <channel id="in">

 <interceptors>

 <wire-tap channel="logger"/>

 </interceptors>

 </channel>

 <logging-channel-adapter id="logger" level="DEBUG"/>

Tip
The 'logging-channel-adapter' also accepts a boolean attribute: 'log-full-message'. That is false by

default so that only the payload is logged. Setting that to true enables logging of all headers in

addition to the payload.

Note

If namespace support is enabled, there are also two special channels defined within the context by

default: errorChannel and nullChannel. The 'nullChannel' acts like /dev/null, simply

logging any Message sent to it at DEBUG level and returning immediately. Any time you face

channel resolution errors for a reply that you don't care about, you can set the affected component's

'output-channel' to reference 'nullChannel' (the name 'nullChannel' is reserved within the context).

The 'errorChannel' is used internally for sending error messages, and it can be overridden with a

custom configuration. It is discussed in greater detail in Section B.4, “Error Handling”.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 22

4. Message Endpoints

The first part of this chapter covers some background theory and reveals quite a bit about the underlying API

that drives Spring Integration's various messaging components. This information can be helpful if you want

to really understand what's going on behind the scenes. However, if you want to get up and running with

the simplified namespace-based configuration of the various elements, feel free to skip ahead to Section 4.4,

“Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various messaging

components to channels. Over the next several chapters, you will see a number of different components

that consume Messages. Some of these are also capable of sending reply Messages. Sending Messages

is quite straightforward. As shown above in Chapter 3, Message Channels, it's easy to send a Message

to a Message Channel. However, receiving is a bit more complicated. The main reason is that there are

two types of consumers: Polling Consumers [http://www.eaipatterns.com/PollingConsumer.html] and Event

Driven Consumers [http://www.eaipatterns.com/EventDrivenConsumer.html].

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a separate

poller thread, they are essentially just listeners with a callback method. When connecting to one of Spring

Integration's subscribable Message Channels, this simple option works great. However, when connecting to

a buffering, pollable Message Channel, some component has to schedule and manage the polling thread(s).

Spring Integration provides two different endpoint implementations to accommodate these two types of

consumers. Therefore, the consumers themselves can simply implement the callback interface. When polling

is required, the endpoint acts as a "container" for the consumer instance. The benefit is similar to that of using

a container for hosting Message Driven Beans, but since these consumers are simply Spring-managed Objects

running within an ApplicationContext, it more closely resembles Spring's own MessageListener containers.

4.1 Message Handler

Spring Integration's MessageHandler interface is implemented by many of the components within the

framework. In other words, this is not part of the public API, and a developer would not typically implement

MessageHandler directly. Nevertheless, it is used by a Message Consumer for actually handling the

consumed Messages, and so being aware of this strategy interface does help in terms of understanding the

overall role of a consumer. The interface is defined as follows:

public interface MessageHandler {

 void handleMessage(Message<?> message);

}

Despite its simplicity, this provides the foundation for most of the components that will be covered in the

following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc). Those components

each perform very different functionality with the Messages they handle, but the requirements for actually

receiving a Message are the same, and the choice between polling and event-driven behavior is also the same.

Spring Integration provides two endpoint implementations that "host" these callback-based handlers and allow

them to be connected to Message Channels.

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 23

4.2 Event Driven Consumer

Because it is the simpler of the two, we will cover the Event Driven Consumer endpoint first. You may recall

that the SubscribableChannel interface provides a subscribe() method and that the method accepts

a MessageHandler parameter (as shown in the section called “SubscribableChannel”):

subscribableChannel.subscribe(messageHandler);

Since a handler that is subscribed to a channel does not have to actively poll that channel, this is an Event Driven

Consumer, and the implementation provided by Spring Integration accepts a a SubscribableChannel

and a MessageHandler:

SubscribableChannel channel = (SubscribableChannel) context.getBean("subscribableChannel");

EventDrivenConsumer consumer = new EventDrivenConsumer(channel, exampleHandler);

4.3 Polling Consumer

Spring Integration also provides a PollingConsumer, and it can be instantiated in the same way except

that the channel must implement PollableChannel:

PollableChannel channel = (PollableChannel) context.getBean("pollableChannel");

PollingConsumer consumer = new PollingConsumer(channel, exampleHandler);

There are many other configuration options for the Polling Consumer. For example, the trigger is a required

property:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setTrigger(new IntervalTrigger(30, TimeUnit.SECONDS));

Spring Integration currently provides two implementations of the Trigger interface: IntervalTrigger

and CronTrigger. The IntervalTrigger is typically defined with a simple interval (in milliseconds),

but also supports an 'initialDelay' property and a boolean 'fixedRate' property (the default is false, i.e. fixed

delay):

IntervalTrigger trigger = new IntervalTrigger(1000);

trigger.setInitialDelay(5000);

trigger.setFixedRate(true);

The CronTrigger simply requires a valid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

In addition to the trigger, several other polling-related configuration properties may be specified:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setMaxMessagesPerPoll(10);

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 24

consumer.setReceiveTimeout(5000);

The 'maxMessagesPerPoll' property specifies the maximum number of messages to receive within a given

poll operation. This means that the poller will continue calling receive() without waiting until either

null is returned or that max is reached. For example, if a poller has a 10 second interval trigger and a

'maxMessagesPerPoll' setting of 25, and it is polling a channel that has 100 messages in its queue, all 100

messages can be retrieved within 40 seconds. It grabs 25, waits 10 seconds, grabs the next 25, and so on.

The 'receiveTimeout' property specifies the amount of time the poller should wait if no messages are available

when it invokes the receive operation. For example, consider two options that seem similar on the surface but

are actually quite different: the first has an interval trigger of 5 seconds and a receive timeout of 50 milliseconds

while the second has an interval trigger of 50 milliseconds and a receive timeout of 5 seconds. The first one

may receive a message up to 4950 milliseconds later than it arrived on the channel (if that message arrived

immediately after one of its poll calls returned). On the other hand, the second configuration will never miss

a message by more than 50 milliseconds. The difference is that the second option requires a thread to wait,

but as a result it is able to respond much more quickly to arriving messages. This technique, known as "long

polling", can be used to emulate event-driven behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecutor, and it can be configured to participate

in Spring-managed transactions. The following example shows the configuration of both:

PollingConsumer consumer = new PollingConsumer(channel, handler);

TaskExecutor taskExecutor = (TaskExecutor) context.getBean("exampleExecutor");

consumer.setTaskExecutor(taskExecutor);

PlatformTransactionManager txManager = (PlatformTransationManager) context.getBean("exampleTxManager");

consumer.setTransactionManager(txManager);

The examples above show dependency lookups, but keep in mind that these consumers will most often be

configured as Spring bean definitions. In fact, Spring Integration also provides a FactoryBean that creates

the appropriate consumer type based on the type of channel, and there is full XML namespace support to

even further hide those details. The namespace-based configuration will be featured as each component type

is introduced.

Note
Many of the MessageHandler implementations are also capable of generating reply Messages.

As mentioned above, sending Messages is trivial when compared to the Message reception.

Nevertheless, when and how many reply Messages are sent depends on the handler type. For

example, an Aggregator waits for a number of Messages to arrive and is often configured as

a downstream consumer for a Splitter which may generate multiple replies for each Message

it handles. When using the namespace configuration, you do not strictly need to know all

of the details, but it still might be worth knowing that several of these components share a

common base class, the AbstractReplyProducingMessageHandler, and it provides a

setOutputChannel(..) method.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 25

4.4 Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements, such

as router, transformer, service-activator, and so on. Most of these will support an "input-channel" attribute

and many will support an "output-channel" attribute. After being parsed, these endpoint elements produce an

instance of either the PollingConsumer or the EventDrivenConsumer depending on the type of the

"input-channel" that is referenced: PollableChannel or SubscribableChannel respectively. When

the channel is pollable, then the polling behavior is determined based on the endpoint element's "poller" sub-

element and its attributes. For example, a simple interval-based poller with a 1-second interval would be

configured like this:

 <transformer input-channel="pollable"

 ref="transformer"

 output-channel="output">

 <poller fixed-rate="1000"/>

</transformer>

As an alternative to 'fixed-rate' you cna also use 'fixed-delay' attribute.

For a poller based on a Cron expression, use the "cron" attribute instead:

 <transformer input-channel="pollable"

 ref="transformer"

 output-channel="output">

 <poller cron="*/10 * * * * MON-FRI"/>

 </transformer>

If the input channel is a PollableChannel, then the poller configuration is required. Specifically, as

mentioned above, the 'trigger' is a required property of the PollingConsumer class. Therefore, if you omit

the "poller" sub-element for a Polling Consumer endpoint's configuration, an Exception may be thrown. The

exception will also be thrown if you attempt to configure a poller on the element that is connected to a non-

pollable channel.

It is also possible to create top-level pollers in which case only a "ref" is required:

 <poller id="weekdayPoller" cron="*/10 * * * * MON-FRI"/>

 <transformer input-channel="pollable"

 ref="transformer"

 output-channel="output">

 <poller ref="weekdayPoller"/>

 </transformer>

In fact, to simplify the configuration, you can define a global default poller. A single top-level poller within an

ApplicationContext may have the default attribute with a value of "true". In that case, any endpoint with a

PollableChannel for its input-channel that is defined within the same ApplicationContext and has no explicitly

configured 'poller' sub-element will use that default.

 <poller id="defaultPoller" default="true" max-messages-per-poll="5" fixed-rate="3000"/>

 <!-- No <poller/> sub-element is necessary since there is a default -->

 <transformer input-channel="pollable"

 ref="transformer"

 output-channel="output"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 26

Spring Integration also provides transaction support for the pollers so that each receive-and-forward operation

can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add the

<transactional/> sub-element. The attributes for this element should be familiar to anyone who has experience

with Spring's Transaction management:

<poller fixed-delay="1000">

 <transactional transaction-manager="txManager"

 propagation="REQUIRED"

 isolation="REPEATABLE_READ"

 timeout="10000"

 read-only="false"/>

</poller>

AOP Advice chains

Since Spring transaction support depends on the Proxy mechanism with TransactionInterceptor

(AOP Advice) handling transactional behavior of the message flow initiated by the poler, some times there

is a need to provide extra Advice(s) to handle other cross cutting behavior associated with the poller. For

that poller defines an 'advice-chain' element allowing you to add more advices - class that implements

MethodInterceptor interface..

<service-activator id="advicedSa" input-channel="goodInputWithAdvice" ref="testBean"

 method="good" output-channel="output">

 <poller max-messages-per-poll="1" fixed-rate="10000">

 <transactional transaction-manager="txManager" />

 <advice-chain>

 <ref bean="adviceA" />

 <beans:bean class="org.bar.SampleAdvice"/>

 </advice-chain>

 </poller>

</service-activator>

For more information on how to implement MethodInterceptor please refer to AOP sections of Spring reference

manual (section 7 and 8). Advice chain can also be applied on the poller that does not have any transaction

configuration essentially allowing you to enhance the behavior of the message flow initiated by the poller.

The polling threads may be executed by any instance of Spring's TaskExecutor abstraction. This enables

concurrency for an endpoint or group of endpoints. As of Spring 3.0, there is a "task" namespace in the core

Spring Framework, and its <executor/> element supports the creation of a simple thread pool executor. That

element accepts attributes for common concurrency settings such as pool-size and queue-capacity. Configuring

a thread-pooling executor can make a substantial difference in how the endpoint performs under load. These

settings are available per-endpoint since the performance of an endpoint is one of the major factors to consider

(the other major factor being the expected volume on the channel to which the endpoint subscribes). To enable

concurrency for a polling endpoint that is configured with the XML namespace support, provide the 'task-

executor' reference on its <poller/> element and then provide one or more of the properties shown below:

 <poller task-executor="pool" fixed-rate="1000"/>

 <task:executor id="pool"

 pool-size="5-25"

 queue-capacity="20"

 keep-alive="120"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 27

If no 'task-executor' is provided, the consumer's handler will be invoked in the caller's thread. Note that the

"caller" is usually the default TaskScheduler (see Section B.3, “Configuring the Task Scheduler”). Also,

keep in mind that the 'task-executor' attribute can provide a reference to any implementation of Spring's

TaskExecutor interface by specifying the bean name. The "executor" element above is simply provided

for convenience.

As mentioned in the background section for Polling Consumers above, you can also configure a Polling

Consumer in such a way as to emulate event-driven behavior. With a long receive-timeout and a short interval-

trigger, you can ensure a very timely reaction to arriving messages even on a polled message source. Note that

this will only apply to sources that have a blocking wait call with a timeout. For example, the File poller does

not block, each receive() call returns immediately and either contains new files or not. Therefore, even if a

poller contains a long receive-timeout, that value would never be usable in such a scenario. On the other hand

when using Spring Integration's own queue-based channels, the timeout value does have a chance to participate.

The following example demonstrates how a Polling Consumer will receive Messages nearly instantaneously.

 <service-activator input-channel="someQueueChannel"

 output-channel="output">

 <poller receive-timeout="30000" fixed-rate="10"/>

 </service-activator>

Using this approach does not carry much overhead since internally it is nothing more then a timed-wait thread

which does not require nearly as much CPU resource usage as a thrashing, infinite while loop for example.

4.5 Payload Type Conversion

Throughout the reference manual, you will also see specific configuration and implementation examples

of various endpoints which can accept a Message or any arbitrary Object as an input parameter.

In the case of an Object, such parameter will be mapped to a Message payload or part of

the payload or header (when using Spring Expression Language). However there are times when

the type of input parameter of the endpoint method does not match the type of the payload

or its part. In this scenario we need to perform type conversion. Spring Integration provides a

convenient way for registering type converters (using Spring 3.x ConversionService) within its own

instance of the conversion service bean named integrationConversionService which is automatically

created as soon as the first converter is defined. To register such converter all you need is to

implement org.springframework.core.convert.converter.Converter and register via

cionvinient namespace support:

 <int:converter ref="sampleConverter"/>

 <bean id="sampleConverter" class="foo.bar.TestConverter"/>

or

 <int:converter>

 <bean class="org.springframework.integration.config.xml.ConverterParserTests$TestConverter3"/>

 </int:converter>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 28

4.6 Asynchronous polling

If you want the polling to be asynchronous, Poller can optionaly specify 'task-executor' attribute pointing to an

existing instance of TaskExecutor bean (Spring 3.0 provides a convinient namespaces configuration via

the task namespace). However, there are certain things you must understand when configuring Poller with

TaskExecutor.

The problem is that there are two configurations in place. The Poller and the TaskExecutor and they both have

to be in tune with each other otherwise you might end up creating an artificial memory leak.

Let's look at the following configuration provided by one of the users on the Spring's forums (http://

forum.springsource.org/showthread.php?t=94519):

<int:service-activator input-channel="publishChannel" ref="myService">

 <int:poller receive-timeout="5000" task-executor="taskExecutor" fixed-rate="50"/>

</si:service-activator>

<task:executor id="taskExecutor" pool-size="20" queue-capacity="20"/>

The above configuration demonstrates one of those out of tune configurations.

The poller keeps scheduling new tasks even though all the threads are blocked waiting for either a new message

to arrive, or the timeout to expire. Given that there are 20 threads executing tasks with a 5 second timeout, they

will be executed at a rate of 4 per second (5000/20 = 250ms). But, new tasks are being scheduled at a rate of

20 per second, so the internal queue in the task executor will grow at a rate of 16 per second (while the process

is idle), so we essentially have a memory leak.

One of the ways to handle this is to set queue-capacity attribute of Task Executor to 0. You can also

manage it by specifying what to do with messages that can not be queued up by setting rejection-policy

attribute of Task Executor (e.g., DISCARD). In other words there are certain details you must understand with

regard to configuring the TaskExecutor. Please refer to - Section 25 - Task Execution and Scheduling of Spring

reference manual.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 29

5. Service Activator

5.1 Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel so

that it may play the role of a service. If the service produces output, it may also be connected to an output

channel. Alternatively, an output producing service may be located at the end of a processing pipeline or

message flow in which case, the inbound Message's "replyChannel" header can be used. This is the default

behavior if no output channel is defined, and as with most of the configuration options you'll see here, the same

behavior actually applies for most of the other components we have seen.

5.2 The <service-activator/> Element

To create a Service Activator, use the 'service-activator' element with the 'input-channel' and 'ref' attributes:

<service-activator input-channel="exampleChannel" ref="exampleHandler"/>

The configuration above assumes that "exampleHandler" either contains a single method annotated with the

@ServiceActivator annotation or that it contains only one public method at all. To delegate to an explicitly

defined method of any object, simply add the "method" attribute.

<service-activator input-channel="exampleChannel" ref="somePojo" method="someMethod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the reply

message to an appropriate reply channel. To determine the reply channel, it will first check if an "output-

channel" was provided in the endpoint configuration:

<service-activator input-channel="exampleChannel" output-channel="replyChannel"

 ref="somePojo" method="someMethod"/>

If no "output-channel" is available, it will then check the Message's REPLY_CHANNEL header value. If that

value is available, it will then check its type. If it is a MessageChannel, the reply message will be sent

to that channel. If it is a String, then the endpoint will attempt to resolve the channel name to a channel

instance. If the channel cannot be resolved, then a ChannelResolutionException will be thrown.

The argument in the service method could be either a Message or an arbitrary type. If the latter, then it will

be assumed that it is a Message payload, which will be extracted from the message and injected into such

service method. This is generally the recommended approach as it follows and promotes a POJO model when

working with Spring Integration. Arguments may also have @Header, @Headers annotations as described in

Section B.5, “Annotation Support”

Note
Since v1.0.3 of Spring Integration, the service method is not required to have an argument at all,

which means you can now implement event-style Service Activators, where all you care about is

an invocation of the service method, not worrying about the contents of the message. Think of

it as a NULL JMS message. An example use-case for such an implementation could be a simple

counter/monitor of messages deposited on the input channel.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 30

Using a "ref" attribute is generally recommended if the custom Service Activator handler implementation can

be reused in other <service-activator> definitions. However if the custom Service Activator handler

implementation should be scoped to a single definition of the <service-activator>, you can use an

inner bean definition:

<service-activator id="exampleServiceActivator" input-channel="inChannel"

 output-channel = "outChannel" method="foo">

 <beans:bean class="org.foo.ExampleServiceActivator"/>

</service-activator>

Note

Using both the "ref" attribute and an inner handler definition in the same <service-

activator> configuration is not allowed, as it creates an ambiguous condition and will result

in an Exception being thrown.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 31

6. Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to a Message

Channel. Spring Integration provides a number of adapters out of the box to support various transports, such

as JMS, File, HTTP, Web Services, and Mail. Those will be discussed in upcoming chapters of this reference

guide. However, this chapter focuses on the simple but flexible Method-invoking Channel Adapter support.

There are both inbound and outbound adapters, and each may be configured with XML elements provided in

the core namespace.

6.1 The <inbound-channel-adapter> element

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send a non-

null return value to a MessageChannel after converting it to a Message. When the adapter's subscription

is activated, a poller will attempt to receive messages from the source. The poller will be scheduled with

the TaskScheduler according to the provided configuration. To configure the polling interval or cron

expression for an individual channel-adapter, provide a 'poller' element with either an 'interval-trigger' (in

milliseconds) or 'cron-trigger' sub-element.

<inbound-channel-adapter ref="source1" method="method1" channel="channel1">

 <poller fixed-rate="5000"/>

</inbound-channel-adapter>

<inbound-channel-adapter ref="source2" method="method2" channel="channel2">

 <poller cron="30 * 9-17 * * MON-FRI"/>

</channel-adapter>

Note

If no poller is provided, then a single default poller must be registered within the context. See

Section 4.4, “Namespace Support” for more detail.

6.2 The <outbound-channel-adapter/> element

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer

method that should be invoked with the payload of Messages sent to that channel.

<outbound-channel-adapter channel="channel1" ref="target1" method="method1"/>

If the channel being adapted is a PollableChannel, provide a poller sub-element:

<outbound-channel-adapter channel="channel2" ref="target2" method="method2">

 <poller fixed-rate="3000"/>

</outbound-channel-adapter>

<beans:bean id="target1" class="org.bar.Foo"/>

Using a "ref" attribute is generally recommended if the POJO consumer implementation can be reused in other

<outbound-channel-adapter> definitions. However if the consumer implementation should be scoped

to a single definition of the <outbound-channel-adapter>, you can define it as inner bean:

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 32

<outbound-channel-adapter channel="channel2" method="method2">

 <beans:bean class="org.bar.Foo"/>

</outbound-channel-adapter>

Note

Using both the "ref" attribute and an inner handler definition in the same <outbound-

channel-adapter> configuration is not allowed, as it creates an ambiguous condition and will

result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly create an

instance of DirectChannel. The created channel's name will match the "id" attribute of the <inbound-

channel-adapter/> or <outbound-channel-adapter element. Therefore, if the "channel" is not provided, the "id"

is required.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 33

7. Router

7.1 Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require Spring

Integration's options for delegating to POJOs using the XML namespace support and/or Annotations. Both of

these are discussed below, but first we present a couple implementations that are available out-of-the-box since

they fulfill generic, but common, requirements.

PayloadTypeRouter

A PayloadTypeRouter will send Messages to the channel as defined by payload-type mappings.

<bean id="payloadTypeRouter" class="org.springframework.integration.router.PayloadTypeRouter">

 <property name="payloadTypeChannelMap">

 <map>

 <entry key="java.lang.String" value-ref="stringChannel"/>

 <entry key="java.lang.Integer" value-ref="integerChannel"/>

 </map>

 </property>

</bean>

Configuration of PayloadTypeRouter is also supported via the namespace provided by Spring Integration

(see Section B.2, “Namespace Support”), which essentially simplifies configuration by combining <router/

> configuration and its corresponding implementation defined using <bean/> element into a single and

more concise configuration element. The example below demonstrates PayloadTypeRouter configuration

which is equivalent to the one above using Spring Integration's namespace support:

<payload-type-router input-channel="routingChannel">

 <mapping type="java.lang.String" channel="stringChannel" />

 <mapping type="java.lang.Integer" channel="integerChannel" />

</payload-type-router>

HeaderValueRouter

A HeaderValueRouter will send Messages to the channel based on the individual header value mappings.

When HeaderValueRouter is created it is initialized with the name of the header to be evaluated, using

constructor-arg. The value of the header could be one of two things:

1. Arbitrary value

2. Channel name

If arbitrary value, then a channelResolver should be provided to map header values to channel names.

The example below uses MapBasedChannelResolver to set up a map of header values to channel names.

 <bean id="myHeaderValueRouter"

 class="org.springframework.integration.router.HeaderValueRouter">

 <constructor-arg value="someHeaderName" />

 <property name="channelResolver">

 <bean class="org.springframework.integration.channel.MapBasedChannelResolver">

 <property name="channelMap">

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 34

 <map>

 <entry key="someHeaderValue" value-ref="channelA" />

 <entry key="someOtherHeaderValue" value-ref="channelB" />

 </map>

 </property>

 </bean>

 </property>

</bean>

If channelResolver is not specified, then the header value will be treated as a channel name making

configuration much simpler, where no channelResolver needs to be specified.

<bean id="myHeaderValueRouter"

 class="org.springframework.integration.router.HeaderValueRouter">

 <constructor-arg value="someHeaderName" />

</bean>

Similar to the PayloadTypeRouter, configuration of HeaderValueRouter is also supported via

namespace support provided by Spring Integration (see Section B.2, “Namespace Support”). The example

below demonstrates two types of namespace-based configuration of HeaderValueRouter which are

equivalent to the ones above using Spring Integration namespace support:

1. Configuration where mapping of header values to channels is required

<header-value-router input-channel="routingChannel" header-name="testHeader">

 <mapping value="someHeaderValue" channel="channelA" />

 <mapping value="someOtherHeaderValue" channel="channelB" />

</header-value-router>

2. Configuration where mapping of header values is not required if header values themselves represent the

channel names

<header-value-router input-channel="routingChannel" header-name="testHeader"/>

Note
The two router implementations shown above share some common properties, such as

"defaultOutputChannel" and "resolutionRequired". If "resolutionRequired" is set to "true", and

the router is unable to determine a target channel (e.g. there is no matching payload for a

PayloadTypeRouter and no "defaultOutputChannel" has been specified), then an Exception will

be thrown.

RecipientListRouter

A RecipientListRouter will send each received Message to a statically-defined list of Message

Channels:

<bean id="recipientListRouter" class="org.springframework.integration.router.RecipientListRouter">

 <property name="channels">

 <list>

 <ref bean="channel1"/>

 <ref bean="channel2"/>

 <ref bean="channel3"/>

 </list>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 35

 </property>

</bean>

Configuration for RecipientListRouter is also supported via namespace support provided by Spring

Integration (see Section B.2, “Namespace Support”). The example below demonstrates namespace-based

configuration of RecipientListRouter and all the supported attributes using Spring Integration

namespace support:

<recipient-list-router id="customRouter" input-channel="routingChannel"

 timeout="1234"

 ignore-send-failures="true"

 apply-sequence="true">

 <recipient channel="channel1"/>

 <recipient channel="channel2"/>

</recipient-list-router>

Note
The 'apply-sequence' flag here has the same affect as it does for a publish-subscribe-channel, and

like publish-subscribe-channel it is disabled by default on the recipient-list-router. Refer to the

section called “PublishSubscribeChannel Configuration” for more information.

7.2 The <router> element

The "router" element provides a simple way to connect a router to an input channel, and also accepts the optional

default output channel. The "ref" may provide the bean name of a custom Router implementation (extending

AbstractMessageRouter):

<router ref="payloadTypeRouter" input-channel="input1" default-output-channel="defaultOutput1"/>

<router ref="recipientListRouter" input-channel="input2" default-output-channel="defaultOutput2"/>

<router ref="customRouter" input-channel="input3" default-output-channel="defaultOutput3"/>

<beans:bean id="customRouterBean class="org.foo.MyCustomRouter"/>

Alternatively, the "ref" may point to a simple Object that contains the @Router annotation (see below), or

the "ref" may be combined with an explicit "method" name. When specifying a "method", the same behavior

applies as described in the @Router annotation section below.

<router input-channel="input" ref="somePojo" method="someMethod"/>

Using a "ref" attribute is generally recommended if the custom router implementation can be reused in other

<router> definitions. However if the custom router implementation should be scoped to a concrete definition

of the <router>, you can provide an inner bean definition:

<router method="someMethod" input-channel="input3" default-output-channel="defaultOutput3">

 <beans:bean class="org.foo.MyCustomRouter"/>

</router>

Note

Using both the "ref" attribute and an inner handler definition in the same <router> configuration

is not allowed, as it creates an ambiguous condition and will result in an Exception being thrown.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 36

7.3 The @Router Annotation

When using the @Router annotation, the annotated method can return either the MessageChannel or

String type. In the case of the latter, the endpoint will resolve the channel name as it does for the default

output. Additionally, the method can return either a single value or a collection. When a collection is returned,

the reply message will be sent to multiple channels. To summarize, the following method signatures are all

valid.

@Router

public MessageChannel route(Message message) {...}

@Router

public List<MessageChannel> route(Message message) {...}

@Router

public String route(Foo payload) {...}

@Router

public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available within the

message header as either a property or attribute. Rather than requiring use of the Message type as the method

parameter, the @Router annotation may also use the @Header parameter annotation that is documented in

Section B.5, “Annotation Support”.

@Router

public List<String> route(@Header("orderStatus") OrderStatus status)

Note
For routing of XML-based Messages, including XPath support, see Chapter 33, XML Support -

Dealing with XML Payloads.

7.4 Dynamic Routers

So as you can see, Spring Integration provides quite a few different router configurations for most common

content-based routing use cases as well as the option of implementing custom routers as POJOs. For example;

Payload Type Router provides a simple way to configure a router which computes channels based on the

payload type of the incoming Message while Header Value Router provides the same convenience in

configuring a router which computes channels based on evaluating the value of a particular Message Header.

There is also an expression-based (SpEL) routers where the channel is determined based on evaluating an

expression which gives these type of routers some dynamic characteristics.

However these routers share one common attribute - static configuration. Even in the case of expression-

based routers, the expression itself is defined as part of the router configuration which means that “the same

expression operating on the same value will always result in the computation of the same channel”. This is

good in most cases since such routes are well defined and therefore predictable. But there are times when we

need to change router configurations dynamically so message flows could be routed to a different channel.

For example:

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 37

You might want to bring down some part of your system for maintenance. So, temporarily you want to re-

reroute messages to a different message flow. Or you may want to introduce more granularity to your message

flow by adding another route to handle a more concrete type of java.lang.Number (in cases of Payload Type

Router).

Unfortunately with static router configuration to accomplish this you'd have to bring down your entire

application, change the configuration of the router (change routes) and bring it back up. This is obviously not

the solution.

Dynamic Router [http://www.eaipatterns.com/DynamicRouter.html] pattern describes the mechanisms by

which one can change/configure routers dynamically without bringing down your system or individual routers.

Before we get into the specifics of how it is accomplished in Spring Integration lets quickly summarize the

typical flow of the router, which consists of 3 simple steps:

• Step 1 - Compute channel identifier which is a value calculated by the router once it receives the

Message. Typically it is a String or and instance of the actual MessageChannel.

• Step 2 - Resolve channel identifier to channel name. We'll describe specifics of this process

in a moment.

• Step 3 - Resolve channel name to the actual MessageChannel

There is not much that could be done with regard to router dynamics if Step 1 results in the actual instance of the

MessageChannel simply because MessageChannel is the final product of any router's job. However,

if Step 1 results in channel identifier that is not and instance of MessageChannel, then there are

quite a few possibilities to influence the process of calculating what will be the final instance of the Message

Channel. Lets look at couple of the examples in the context of the 3 steps mentioned above:

Payload Type Router

<payload-type-router input-channel="routingChannel">

 <mapping type="java.lang.String" channel="channel1" />

 <mapping type="java.lang.Integer" channel="channel2" />

</payload-type-router>

Within the context of the Payload Type Router the 3 steps mentioned above would be realized as:

• Step 1 - Compute channel identifier which is the fully qualified name of the payload type (e.g.,

java.lang.String).

• Step 2 - Resolve channel identifier to channel name where the result of the previous step is

used to select the appropriate value from the payload type mapping defined via mapping element.

• Step 3 - Resolve channel name to the actual instance of the MessageChannel where using

ChannelResolver router will obtain a reference to a bean (which is hopefully a MessageChannel)

identified by the result of the previous step.

In other words each step feeds the next step until thr process completes.

Header Value Router

http://www.eaipatterns.com/DynamicRouter.html
http://www.eaipatterns.com/DynamicRouter.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 38

<header-value-router input-channel="inputChannel" header-name="testHeader">

 <mapping value="foo" channel="fooChannel" />

 <mapping value="bar" channel="barChannel" />

</header-value-router>

Similar to the PayloadTypeRouter:

• Step 1 - Compute channel identifier which is the value of the header identified by the header-

name attribute.

• Step 2 - Resolve channel identifier to channel name where the result of the previous step is

used to select the appropriate value from the general mapping defined via mapping element.

• Step 3 - Resolve channel name to the actual instance of the MessageChannel where using

ChannelResolver router will obtain a reference to a bean (which is hopefully a MessageChannel)

identified by the result of the previous step.

The above two configurations of two different router types look almost identical. However if we look at the

different configuration of the HeaderValueRouter we clearly see that there is no mapping sub element:

<header-value-router input-channel="inputChannel" header-name="testHeader">

But configuration is still perfectly valid. So the natural question is what about the maping in the Step 2?

What this means is that Step 2 is now an optional step. If mapping is not defined then the channel

identifier value computed in Step 1 will automatically be treated as the channel name which will

now be resolved to the actual MessageChannel in the Step 3. What it also means is that Step 2 is one of

the key steps to provide dynamic characteristics to the routers, since it introduces a process which allows you

to change the way 'channel identifier' resolves to 'channel name', thus influencing the process of determining

the final instance of the MessageChannel from the initial channel identifier.

For Example:

In the above configuration lets assume that the testHeader value is 'kermit' which is now a channel

identifier (Step 1). Since there is no mapping in this router, resolving this channel identifier to

a channel name (Step 2) is impossible and this channel identifier is now treated as channel

name. However what if there was mapping but for a different value, the end result would still be the same and

that is: if new value can not be determined through the process of resolving 'channel identifier' to a 'channel

name', such 'channel identifier' becomes 'channel name'

So all that is left is for Step 3 to resolve channel name ('kermit') to an actual instance of the

MessageChannel identified by this name. That will be done via default ChannelResolver implementation

which is BeanFactoryChannelResolver which basically does a bean lookup by the name provided. So

now all messages which contain the header/value pair as testHeader=kermit are going to be routed to

a 'kermit' MessageChannel.

But what if you want to route these messages to 'simpson' channel? Obviously changing static configuration

would work, but would also require bringing your system down. However if you had access to channel

identifier map, then you could just introduce a new mapping where header/value pair is now

kermit=simpson, thus allowing Step 2 to treat 'kermit' as channel identifier while resolving it to

'simpson' as channel name .

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 39

The same obviously applies for PayloadTypeRouter where you can now remap or remove a particular

payload type mapping, and every other router including expression-based routers since their computed value

will now have a chance to go through Step 2 to be aditionally resolved to the actual channel name.

In Spring Integration 2.0 routers hierarchy underwent major refactoring and now any router that is a subclass

of the AbstractMessageRouter (all framework defined routers) is a Dynamic Router simply because

channelIdentiferMap is defined at the AbstractMessageRouter with convenient accessors and

modifiers exposed as public methods allowing you to change/add/remove router mapping at runtime via JMX

(see section section 29) or ControlBus (see section section 29.7) functionality.

Control Bus

One of the way to manage the router mappings is through the Control Bus [http://www.eaipatterns.com/

ControlBus.html] which exposes a Control Channel where you can send control messages to manage and

monitor Spring Integration components which includes routers. For more information about the Control Bus

see section 29.7. Typically you would send a control message asking to invoke a particular JMX operation

on a particular managed component (e.g., router). The two managed operations (methods) that are specific to

changing router resolution process are:

• public void setChannelMapping(String channelIdentifier, String channelName) - will allow you to add new

or modify existing mapping of channel identifier to channel name

• public void removeChannelMapping(String channelIdentifier) - will allow you to remove a particular

channel mapping, thus disconnecting the relationship between channel identifier and channel

name

There are obviously other managed operations, so please refer to an AbstractMessageRouter for more

detail

You can also use your favorite JMX client (e.g., JConsole) and use those operations (methods) to change router

configuration. For more information on Spring Integration management and monitoring please visit section

29 of this manual.

http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/ControlBus.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 40

8. Filter

8.1 Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on some

criteria such as a Message Header value or even content within the Message itself. Therefore, a Message Filter

is similar to a router, except that for each Message received from the filter's input channel, that same Message

may or may not be sent to the filter's output channel. Unlike the router, it makes no decision regarding which

Message Channel to send to but only decides whether to send.

Note
As you will see momentarily, the Filter does also support a discard channel, so in certain cases it

can play the role of a very simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to some

implementation of the MessageSelector interface. That interface is itself quite simple:

 public interface MessageSelector {

 boolean accept(Message<?> message);

 }

The MessageFilter constructor accepts a selector instance:

 MessageFilter filter = new MessageFilter(someSelector);

In combination with the namespace and SpEL very powerful filters can be configured with very little java code.

8.2 The <filter> Element

The <filter> element is used to create a Message-selecting endpoint. In addition to "input-channel" and "output-

channel" attributes, it requires a "ref". The "ref" may point to a MessageSelector implementation:

 <filter input-channel="input" ref="selector" output-channel="output"/>

 <bean id="selector" class="example.MessageSelectorImpl"/>

Alternatively, the "method" attribute can be added at which point the "ref" may refer to any object. The

referenced method may expect either the Message type or the payload type of inbound Messages. The return

value of the method must be a boolean value. Any time the method returns 'true', the Message will be passed

along to the output-channel.

 <filter input-channel="input" output-channel="output"

 ref="exampleObject" method="someBooleanReturningMethod"/>

 <bean id="exampleObject" class="example.SomeObject"/>

If the selector or adapted POJO method returns false, there are a few settings that control the fate of the

rejected Message. By default (if configured like the example above), the rejected Messages will be silently

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 41

dropped. If rejection should instead indicate an error condition, then set the 'throw-exception-on-rejection' flag

to true:

 <filter input-channel="input" ref="selector"

 output-channel="output" throw-exception-on-rejection="true"/>

If you want the rejected messages to go to a specific channel, provide that reference as the 'discard-channel':

 <filter input-channel="input" ref="selector"

 output-channel="output" discard-channel="rejectedMessages"/>

Note
A common usage for Message Filters is in conjunction with a Publish Subscribe Channel. Many

filter endpoints may be subscribed to the same channel, and they decide whether or not to pass the

Message for the next endpoint which could be any of the supported types (e.g. Service Activator).

This provides a reactive alternative to the more proactive approach of using a Message Router

with a single Point-to-Point input channel and multiple output channels.

Using a "ref" attribute is generally recommended if the custom filter implementation can be reused in other

<filter> definitions. However if the custom filter implementation should be scoped to a single <filter>

element, provide an inner bean definition:

<filter method="someMethod" input-channel="inChannel" output-channel="outChannel">

 <beans:bean class="org.foo.MyCustomFilter"/>

</filter>

Note

Using both the "ref" attribute and an inner handler definition in the same <filter> configuration

is not allowed, as it creates an ambiguous condition, and it will therefore result in an Exception

being thrown.

With the introduction of SpEL Spring Integration has added the expression attribute to the filter element.

It can be used to avoid Java entirely for simple filters.

 <filter input-channel="input" expression="payload.equals(nonsense)"/>

The string passed as the expression attribute will be evaluated as a SpEL expression in the context

of the message. If it is needed to include the result of an expression in the scope of the application

context you can use the #{} notation as defined in the SpEL reference documentation SpEL

reference documentation [http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/

expressions.html#expressions-beandef].

 <filter input-channel="input" expression="payload.matches(#{filterPatterns.nonsensePattern})"/>

If the Expression itself needs to be dynamic, then an 'expression' sub-element may be used. That provides a level

of indirection for resolving the Expression by its key from an ExpressionSource. That is a strategy interface

that you can implement directly, or you can rely upon a version available in Spring Integration that loads

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 42

Expressions from a "resource bundle" and can check for modifications after a given number of seconds. All of

this is demonstrated in the following configuration sample where the Expression could be reloaded within one

minute if the underlying file had been modified. If the ExpressionSource bean is named "expressionSource",

then it is not necessary to provide the "source" attribute on the <expression> element, but in this case it's shown

for completeness.

 <filter input-channel="input" output-channel="output">

 <expression key="filterPatterns.example" source="myExpressions"/>

 </filter>

 <beans:bean id="myExpressions" id="myExpressions"

 class="org.springframework.integration.expression.ReloadableResourceBundleExpressionSource">

 <beans:property name="basename" value="config/integration/expressions"/>

 <beans:property name="cacheSeconds" value="60"/>

 </beans:bean>

Then, the 'config/integration/expressions.properties' file (or any more specific version with a locale extension

to be resolved in the typical way that resource-bundles are loaded) would contain a key/value pair:

 filterPatterns.example=payload > 100

Note
All of the examples that use "expression" as an attribute or sub-element can also be applied

within transformer, router, splitter, service-activator, and header-enricher elements. Of course,

the semantics/role of the given component type would affect the interpretation of the evaluation

result in the same way that the return or a method-invocation would be interpreted. For example,

an expression can return Strings that are to be treated as Message Channel names by a router

component.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 43

9. Transformer

9.1 Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers

and Message Consumers. Rather than requiring every Message-producing component to know what type is

expected by the next consumer, Transformers can be added between those components. Generic transformers,

such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model [http://www.eaipatterns.com/

CanonicalDataModel.html], but Spring Integration's general philosophy is not to require any particular format.

Rather, for maximum flexibility, Spring Integration aims to provide the simplest possible model for extension.

As with the other endpoint types, the use of declarative configuration in XML and/or Annotations enables

simple POJOs to be adapted for the role of Message Transformers. These configuration options will be

described below.

Note
For the same reason of maximizing flexibility, Spring does not require XML-based Message

payloads. Nevertheless, the framework does provide some convenient Transformers for dealing

with XML-based payloads if that is indeed the right choice for your application. For more

information on those transformers, see Chapter 33, XML Support - Dealing with XML Payloads.

9.2 The <transformer> Element

The <transformer> element is used to create a Message-transforming endpoint. In addition to "input-channel"

and "output-channel" attributes, it requires a "ref". The "ref" may either point to an Object that contains the

@Transformer annotation on a single method (see below) or it may be combined with an explicit method name

value provided via the "method" attribute.

<transformer id="testTransformer" ref="testTransformerBean" input-channel="inChannel"

 method="transform" output-channel="outChannel"/>

<beans:bean id="testTransformerBean" class="org.foo.TestTransformer" />

Using a "ref" attribute is generally recommended if the custom transformer handler implementation can be

reused in other <transformer> definitions. However if the custom transformer handler implementation

should be scoped to a single definition of the <transformer>, you can define an inner bean definition:

<transformer id="testTransformer" input-channel="inChannel" method="transform"

 output-channel="outChannel">

 <beans:bean class="org.foo.TestTransformer"/>

</transformer>

Note

Using both the "ref" attribute and an inner handler definition in the same <transformer>

configuration is not allowed, as it creates an ambiguous condition and will result in an Exception

being thrown.

http://www.eaipatterns.com/CanonicalDataModel.html
http://www.eaipatterns.com/CanonicalDataModel.html
http://www.eaipatterns.com/CanonicalDataModel.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 44

The method that is used for transformation may expect either the Message type or the payload type of inbound

Messages. It may also accept Message header values either individually or as a full map by using the @Header

and @Headers parameter annotations respectively. The return value of the method can be any type. If the return

value is itself a Message, that will be passed along to the transformer's output channel. If the return type is a

Map, and the original Message payload was not a Map, the entries in that Map will be added to the Message

headers of the original Message (the keys must be Strings). If the return value is null, then no reply Message

will be sent (effectively the same behavior as a Message Filter returning false). Otherwise, the return value will

be sent as the payload of an outbound reply Message.

There are a also a few Transformer implementations available out of the box. Because, it is

fairly common to use the toString() representation of an Object, Spring Integration provides an

ObjectToStringTransformer whose output is a Message with a String payload. That String is the result

of invoking the toString operation on the inbound Message's payload.

 <object-to-string-transformer input-channel="in" output-channel="out"/>

A potential example for this would be sending some arbitrary object to the 'outbound-channel-adapter' in the

file namespace. Whereas that Channel Adapter only supports String, byte-array, or java.io.File payloads

by default, adding this transformer immediately before the adapter will handle the necessary conversion. Of

course, that works fine as long as the result of the toString() call is what you want to be written to the

File. Otherwise, you can just provide a custom POJO-based Transformer via the generic 'transformer' element

shown previously.

Tip
When debugging, this transformer is not typically necessary since the 'logging-channel-adapter' is

capable of logging the Message payload. Refer to the section called “Wire Tap” for more detail.

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring

Integration provides symmetrical serialization transformers.

 <payload-serializing-transformer input-channel="objectsIn" output-channel="bytesOut"/>

 <payload-deserializing-transformer input-channel="bytesIn" output-channel="objectsOut"/>

If you only need to add headers to a Message, and they are not dynamically determined by Message content,

then referencing a custom implementation may be overkill. For that reason, Spring Integration provides the

'header-enricher' element.

 <header-enricher input-channel="in" output-channel="out">

 <header name="foo" value="123"/>

 <header name="bar" ref="someBean"/>

 </header-enricher>

As added convenience, Spring Integration also provides Object-to-Map and Map-to-Object transformers which

utilize Spring Expression Language (SpEL) to serialize and de-serialize the object graphs. Object hierarchy

is introspected to the most primitive types (e.g., String, int etc.). The path to this type is described via SpEL,

which becomes the keykey in the transformed Map with primitive type being the value.

For example:

public class Parent{

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 45

 private Child child;

 private String name;

 // setters and getters are omitted

}

public class Child{

 private String name;

 private List<String> nickNames;

 // setters and getters are omitted

}

... will be transformed to a Map which looks like this: {person.name=George,

person.child.name=Jenna, person.child.nickNames[0]=Bimbo . . . etc}

SpEL-based Map allows you to describe the object structure without sharing the actual types allowing you to

restore/rebuild the object graph into a differently typed Object graph as long as you maintain the structure.

For example: The above structure could be easily restored back to the following Object graph via Map-to-

Object transformer:

public class Father{

 private Kid child;

 private String name;

 // setters and getters are omitted

}

public class Kid{

 private String name;

 private List<String> nickNames;

 // setters and getters are omitted

}

To configure these transformers, Spring Integration provides namespace support Object-to-Map:

<object-to-map-transformer input-channel="directInput" output-channel="output"/>

Map-to-Object

<int:map-to-object-transformer input-channel="input"

 output-channel="output"

 type="org.foo.Person"/>

or

<int:map-to-object-transformer input-channel="inputA"

 output-channel="outputA"

 ref="person"/>

<bean id="person" class="org.foo.Person" scope="prototype"/>

Note
NOTE: 'ref' and 'type' attributes are mutually exclusive. You can only use either one. Also, if using

'ref' attribute you must point to a 'prototype' scoped bean, otherwise BeanCreationException will

be thrown.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 46

9.3 The @Transformer Annotation

The @Transformer annotation can also be added to methods that expect either the Message type or the

message payload type. The return value will be handled in the exact same way as described above in the section

describing the <transformer> element.

@Transformer

Order generateOrder(String productId) {

 return new Order(productId);

}

Transformer methods may also accept the @Header and @Headers annotations that is documented in

Section B.5, “Annotation Support”

@Transformer

Order generateOrder(String productId, @Header("customerName") String customer) {

 return new Order(productId, customer);

}

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 47

10. Splitter

10.1 Introduction

The Splitter is a component whose role is to partition a message in several parts, and send the resulting

messages to be processed independently. Very often, they are upstream producers in a pipeline that includes

an Aggregator.

10.2 Programming model

The API for performing splitting consists from one base class, AbstractMessageSplitter, which is a

MessageHandler implementation, encapsulating features which are common to splitters, such as filling in

the appropriate message headers CORRELATION_ID, SEQUENCE_SIZE, and SEQUENCE_NUMBER on

the messages that are produced. This allows to track down the messages and the results of their processing

(in a typical scenario, these headers would be copied over to the messages that are produced by the various

transforming endpoints), and use them, for example, in a Composed Message Processor scenario.

An excerpt from AbstractMessageSplitter can be seen below:

public abstract class AbstractMessageSplitter

 extends AbstractReplyProducingMessageConsumer {

 ...

 protected abstract Object splitMessage(Message<?> message);

}

For implementing a specific Splitter in an application, a developer can extend AbstractMessageSplitter and

implement the splitMessage method, thus defining the actual logic for splitting the messages. The return value

can be one of the following:

• a Collection (or subclass thereof) or an array of Message objects - in this case the messages will be sent

as such (after the CORRELATION_ID, SEQUENCE_SIZE and SEQUENCE_NUMBER are populated).

Using this approach gives more control to the developer, for example for populating custom message headers

as part of the splitting process.

• a Collection (or subclass thereof) or an array of non-Message objects - works like the prior case, except

that each collection element will be used as a Message payload. Using this approach allows developers to

focus on the domain objects without having to consider the Messaging system and produces code that is

easier to test.

• a Message or non-Message object (but not a Collection or an Array) - it works like the previous cases, except

that there is a single message to be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method

that accepts a single argument and has a return value. In this case, the return value of the method will be

interpreted as described above. The input argument might either be a Message or a simple POJO. In the latter

case, the splitter will receive the payload of the incoming message. Since this decouples the code from the

Spring Integration API and will typically be easier to test, it is the recommended approach.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 48

10.3 Configuring a Splitter using XML

A splitter can be configured through XML as follows:

<channel id="inputChannel"/>

<splitter id="splitter"

 ref="splitterBean"

 method="split"

 input-channel="inputChannel"

 output-channel="outputChannel" />

<channel id="outputChannel"/>

<beans:bean id="splitterBean" class="sample.PojoSplitter"/>

The id of the splitter is optional.

A reference to a bean defined in the application context. The bean must implement the splitting

logic as described in the section above. Optional. If reference to a bean is not provided, then it is

assumed that the payload of the Message that arrived on the input-channel is an implementation of

java.util.Collection and the default splitting logic will be applied on such Collection, incorporating each

individual element into a Message and depositing it on the output-channel.

The method (defined on the bean specified above) that implements the splitting logic. Optional.

The input channel of the splitter. Required.

The channel where the splitter will send the results of splitting the incoming message. Optional (because

incoming messages can specify a reply channel themselves).

Using a "ref" attribute is generally recommended if the custom splitter handler implementation can be reused

in other <splitter> definitions. However if the custom splitter handler implementation should be scoped

to a single definition of the <splitter>, you can configure an inner bean definition:

<splitter id="testSplitter" input-channel="inChannel" method="split"

 output-channel="outChannel">

 <beans:bean class="org.foo.TestSplitter"/>

</spliter>

Note

Using both a "ref" attribute and an inner handler definition in the same <splitter>

configuration is not allowed, as it creates an ambiguous condition and will result in an Exception

being thrown.

10.4 Configuring a Splitter with Annotations

The @Splitter annotation is applicable to methods that expect either the Message type or the message

payload type, and the return values of the method should be a collection of any type. If the returned values are

not actual Message objects, then each of them will be sent as the payload of a message. Those messages will

be sent to the output channel as designated for the endpoint on which the @Splitter is defined.

@Splitter

List<LineItem> extractItems(Order order) {

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 49

 return order.getItems()

}

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 50

11. Aggregator

11.1 Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives multiple

Messages and combines them into a single Message. In fact, Aggregators are often downstream consumers in

a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is required to maintain state (the

Messages to be aggregated), to decide when the complete group of Messages is available. In order to do this

it requires a MessageStore

11.2 Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group is

deemed complete. At that point, the Aggregator will create a single message by processing the whole group,

and will send that aggregated message as output.

An main aspect of implementing an Aggregator is providing the logic that has to be executed when the

aggregation (creation of a single message out of many) takes place. The other two aspects are correlation and

release

In Spring Integration, the grouping of the messages for aggregation (correlation) is done by default based

on their CORRELATION_ID message header (i.e. the messages with the same CORRELATION_ID will be

grouped together). However, this can be customized, and the users can opt for other ways of specifying how

the messages should be grouped together, by using a CorrelationStrategy (see below).

To determine whether or not a group of messages may be processed, a ReleaseStrategy is consulted. The default

release strategy for aggregator will release groups that have all messages from the sequence, but this can be

entirely customized

11.3 Programming model

The Aggregation API consists of a number of classes:

• The interface MessageGroupProcessor and related base class

AbstractAggregatingMessageGroupProcessor and its subclass

MethodInvokingAggregatingMessageGroupProcessor

• The ReleaseStrategy interface and its default implementation

SequenceSizeReleaseStrategy

• The CorrelationStrategy interface and its default implementation

HeaderAttributeCorrelationStrategy

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 51

CorrelatingMessageHandler

The CorrelatingMessageHandler is a MessageHandler implementation, encapsulating the

common functionalities of an Aggregator (and other correlating use cases), which are:

• correlating messages into a group to be aggregated

• maintaining those messages in a MessageStore until the group may be released

• deciding when the group is in fact may be released

• processing the released group into a single aggregated message

• recognizing and responding to an expired group

The responsibility of deciding how the messages should be grouped together is delegated to a

CorrelationStrategy instance. The responsibility of deciding whether the message group can be

released is delegated to a ReleaseStrategy instance.

Here is a brief highlight of the base AbstractAggregatingMessageGroupProcessor (the

responsibility of implementing the aggregateMessages method is left to the developer):

public abstract class AbstractAggregatingMessageGroupProcessor

 implements MessageGroupProcessor {

 protected Map<String, Object> aggregateHeaders(MessageGroup group) {

 }

 protected abstract Object aggregatePayloads(MessageGroup group);

}

The CorrelationStrategy is owned by the CorrelatingMessageHandler and it has a default value based

on the correlation ID message header:

private volatile CorrelationStrategy correlationStrategy =

 new HeaderAttributeCorrelationStrategy(MessageHeaders.CORRELATION_ID);

When appropriate, the simplest option is the DefaultAggregatingMessageGroupProcessor. It

creates a single Message whose payload is a List of the payloads received for a given group. It uses the

default CorrelationStrategy and CompletionStrategy as shown above. This works well for

simple Scatter Gather implementations with either a Splitter, Publish Subscribe Channel, or Recipient List

Router upstream.

Note

When using a Publish Subscribe Channel or Recipient List Router in this type of scenario, be sure

to enable the flag to apply-sequence. That will add the necessary headers (correlation id, sequence

number and sequence size). That behavior is enabled by default for Splitters in Spring Integration,

but it is not enabled for the Publish Subscribe Channel or Recipient List Router because those

components may be used in a variety of contexts where those headers are not necessary.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 52

When implementing a specific aggregator object for an application, a developer can extend

AbstractAggregatingMessageGroupProcessor and implement the aggregatePayloads

method. However, there are better suited (which reads, less coupled to the API) solutions for implementing the

aggregation logic, which can be configured easily either through XML or through annotations.

In general, any ordinary Java class (i.e. POJO) can implement the aggregation algorithm. For doing so, it must

provide a method that accepts as an argument a single java.util.List (parametrized lists are supported as well).

This method will be invoked for aggregating messages, as follows:

• if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then the

whole list of messages accumulated for aggregation will be sent to the aggregator

• if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message, then

the method will receive the payloads of the accumulated messages

• if the return type is not assignable to Message, then it will be treated as the payload for a Message that will

be created automatically by the framework.

Note

In the interest of code simplicity, and promoting best practices such as low coupling, testability,

etc., the preferred way of implementing the aggregation logic is through a POJO, and using the

XML or annotation support for setting it up in the application.

ReleaseStrategy

The ReleaseStrategy interface is defined as follows:

public interface ReleaseStrategy {

 boolean canRelease(MessageGroup messages);

}

In general, any ordinary Java class (i.e. POJO) can implement the completion decision mechanism. For doing

so, it must provide a method that accepts as an argument a single java.util.List (parametrized lists are supported

as well), and returns a boolean value. This method will be invoked after the arrival of a new message, to decide

whether the group is complete or not, as follows:

• if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then the

whole list of messages accumulated in the group will be sent to the method

• if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message, then

the method will receive the payloads of the accumulated messages

• the method must return true if the message group is ready for aggregation, and false otherwise.

When the group is released for aggregation, all its unmarked messages are processed and then marked so they

will not be processed again. If the group is also complete (i.e. if all messages from a sequence have arrived

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 53

or if there is no sequence defined) then the group is removed from the message store. Partial sequences can

be released, in which case the next time the ReleaseStrategy is called it will be presented with a group

containing marked messages (already processed) and unmarked messages (a potential new partial sequence)

Spring Integration provides an out-of-the box implementation for ReleaseStrategy, the

SequenceSizerReleaseStrategy. This implementation uses the SEQUENCE_NUMBER and

SEQUENCE_SIZE of the arriving messages for deciding when a message group is complete and ready to be

aggregated. As shown above, it is also the default strategy.

CorrelationStrategy

The CorrelationStrategy interface is defined as follows:

public interface CorrelationStrategy {

 Object getCorrelationKey(Message<?> message);

}

The method shall return an Object which represents the correlation key used for grouping messages together.

The key must satisfy the criteria used for a key in a Map with respect to the implementation of equals() and

hashCode().

In general, any ordinary Java class (i.e. POJO) can implement the correlation decision mechanism, and the rules

for mapping a message to a method's argument (or arguments) are the same as for a ServiceActivator

(including support for @Header annotations). The method must return a value, and the value must not be null.

Spring Integration provides an out-of-the box implementation for CorrelationStrategy, the

HeaderAttributeCorrelationStrategy. This implementation returns the value of one of the

message headers (whose name is specified by a constructor argument) as the correlation key. By default, the

correlation strategy is a HeaderAttributeCorrelationStrategy returning the value of the CORRELATION_ID

header attribute.

11.4 Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggregator/> element.

Below you can see an example of an aggregator with all optional parameters defined.

<channel id="inputChannel"/>

<aggregator id="completelyDefinedAggregator"

 input-channel="inputChannel"

 output-channel="outputChannel"

 discard-channel="discardChannel"

 ref="aggregatorBean"

 method="add"

 release-strategy="releaseStrategyBean"

 release-strategy-method="canRelease"

 correlation-strategy="correlationStrategyBean"

 correlation-strategy-method="groupNumbersByLastDigit"

 message-store="messageStore"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 54

 send-partial-result-on-expiry="true"

 send-timeout="86420000" />

<channel id="outputChannel"/>

<bean id="aggregatorBean" class="sample.PojoAggregator"/>

<bean id="releaseStrategyBean" class="sample.PojoReleaseStrategy"/>

<bean id="correlationStrategyBean" class="sample.PojoCorrelationStrategy"/>

The id of the aggregator is optional.

The input channel of the aggregator. Required.

The channel where the aggregator will send the aggregation results. Optional (because incoming messages

can specify a reply channel themselves).

The channel where the aggregator will send the messages that timed out (if send-partial-

results-on-timeout is false). Optional.

A reference to a bean defined in the application context. The bean must implement the aggregation logic

as described above. Required.

A method defined on the bean referenced by ref, that implements the message aggregation algorithm.

Optional, with restrictions (see above).

A reference to a bean that implements the decision algorithm as to whether a given message group is

complete. The bean can be an implementation of the CompletionStrategy interface or a POJO. In the

latter case the completion-strategy-method attribute must be defined as well. Optional (by default, the

aggregator will use sequence size) .

A method defined on the bean referenced by release-strategy, that implements the completion

decision algorithm. Optional, with restrictions (requires completion-strategy to be present).

A reference to a bean that implements the correlation strategy. The bean can be an implementation of the

CorrelationStrategy interface or a POJO. In the latter case the correlation-strategy-method attribute must

be defined as well. Optional (by default, the aggregator will use the correlation id header attribute) .

A method defined on the bean referenced by correlation-strategy, that implements the

correlation key algorithm. Optional, with restrictions (requires correlation-strategy to be

present).

A reference to a MessageGroupStore that can be used to store groups of messages under their

correlation key until they are complete. Optional with default a volatile in-memory store.

Whether upon the expiration of the message group, the aggregator will try to aggregate the messages that

have already arrived. Optional (false by default).

The timeout for sending the aggregated messages to the output or reply channel. Optional.

Using a "ref" attribute is generally recommended if a custom aggregator handler implementation can be reused

in other <aggregator> definitions. However if a custom aggregator handler implementation should be

scoped to a concrete definition of the <aggregator>, you can use an inner bean definition (starting with

version 1.0.3) for custom aggregator handlers within the <aggregator> element:

<aggregator input-channel="input" method="sum" output-channel="output">

 <beans:bean class="org.foo.ExampleAggregator"/>

</aggregator>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 55

Note

Using both a "ref" attribute and an inner bean definition in the same <aggregator>

configuration is not allowed, as it creates an ambiguous condition. In such cases, an Exception

will be thrown.

An example implementation of the aggregator bean looks as follows:

public class PojoAggregator {

 public Long add(List<Long> results) {

 long total = 0l;

 for (long partialResult: results) {

 total += partialResult;

 }

 return total;

 }

}

An implementation of the completion strategy bean for the example above may be as follows:

public class PojoReleaseStrategy {

...

 public boolean canRelease(List<Long> numbers) {

 int sum = 0;

 for (long number: numbers) {

 sum += number;

 }

 return sum >= maxValue;

 }

}

Note

Wherever it makes sense, the release strategy method and the aggregator method can be combined

in a single bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrelationStrategy {

...

 public Long groupNumbersByLastDigit(Long number) {

 return number % 10;

 }

}

For example, this aggregator would group numbers by some criterion (in our case the remainder after dividing

by 10) and will hold the group until the sum of the numbers which represents the payload exceeds a certain

value.

Note

Wherever it makes sense, the release strategy method, correlation strategy method and the

aggregator method can be combined in a single bean (all of them or any two).

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 56

11.5 Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires decisions to be

made based on a group of messages that have arrived over a period of time, all with the same correlation key.

The design of the interfaces in the stateful patterns (e.g. ReleaseStrategy) is driven by the principle that

the components (framework and user) should be to remain stateless. All state is carried by the MessageGroup

and its management is delegated to the MessageGroupStore.

The MessageGroupStore accumulates state information in MessageGroups, potentially forever. So

to prevent stale state from hanging around, and for volatile stores to provide a hook for cleaning up when

the application shots down, the MessageGroupStore allows the user to register callbacks to apply to

MessageGroups when they expire. The interface is very straighforward:

public interface MessageGroupCallback {

 void execute(MessageGroupStore messageGroupStore, MessageGroup group);

}

The callback has access directly to the store and the message group so it can manage the persistent state (e.g.

by removing the group from the store entirely).

The MessageGroupStore maintains a list of these callbacks which it applies when asked to all messages whose

timestamp is earlier than a time supplied as a parameter:

public interface MessageGroupStore {

 void registerMessageGroupExpiryCallback(MessageGroupCallback callback);

 int expireMessageGroups(long timeout);

}

The expireMessageGroups method can be called with a timeout value: any message older than the current time

minus this value wiull be expired, and have the callbacks applied. Thus it is the user of the store that defines

what is meant by message group "expiry".

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the form of a

MessageGroupStoreReaper:

<bean id="reaper" class="org...MessageGroupStoreReaper">

 <property name="messageGroupStore" ref="messageStore"/>

 <property name="timeout" value="10"/>

</bean>

<task:scheduled-tasks scheduler="scheduler">

 <task:scheduled ref="reaper" method="run" fixed-rate="10000"/>

</task:scheduled-tasks>

The reaper is a Runnable, and all that is happening is that the message group store's expire method is being

called in the sample above once every 10 seconds. In addition to the reaper, the expiry callbacks are invoked

when the application shuts down via a lifecycle callback in the CorrelatingMessageHandler.

The CorrelatingMessageHandler registers its own expiry callback, and this is the link with the boolean

flag send-partial-result-on-expiry in the XML configuration of the aggregator. If the flag is set to

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 57

true, then when the expiry callback is invoked then any unmarked messages in groups that are not yet released

can be sent on to the downstream channel.

11.6 Configuring an Aggregator with Annotations

An aggregator configured using annotations can look like this.

public class Waiter {

 ...

 @Aggregator

 public Delivery aggregatingMethod(List<OrderItem> items) {

 ...

 }

 @ReleaseStrategy

 public boolean releaseChecker(List<Message<?>> messages) {

 ...

 }

 @CorrelationStrategy

 public String correlateBy(OrderItem item) {

 ...

 }

}

An annotation indicating that this method shall be used as an aggregator. Must be specified if this class

will be used as an aggregator.

An annotation indicating that this method shall be used as the release strategy of an aggregator. If not

present on any method, the aggregator will use the SequenceSizeCompletionStrategy.

An annotation indicating that this method shall be used as the correlation strategy of an aggregator. If no

correlation strategy is indicated, the aggregator will use the HeaderAttributeCorrelationStrategy based

on CORRELATION_ID.

All of the configuration options provided by the xml element are also available for the @Aggregator annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is defined on the

class, detected automatically through classpath scanning.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 58

12. Resequencer

12.1 Introduction

Related to the Aggregator, albeit different from a functional standpoint, is the Resequencer.

12.2 Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the CORRELATION_ID

to store messages in groups, the difference being that the Resequencer does not process the messages in any

way. It simply releases them in the order of their SEQUENCE_NUMBER header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence, according to

the SEQUENCE_SIZE, has been released), or as soon as a valid sequence is available.

12.3 Configuring a Resequencer with XML

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<channel id="inputChannel"/>

<channel id="outputChannel"/>

<resequencer id="completelyDefinedResequencer"

 input-channel="inputChannel"

 output-channel="outputChannel"

 discard-channel="discardChannel"

 release-partial-sequences="true"

 message-store="messageStore"

 send-partial-result-on-expiry="true"

 send-timeout="86420000" />

The id of the resequencer is optional.

The input channel of the resequencer. Required.

The channel where the resequencer will send the reordered messages. Optional.

The channel where the resequencer will send the messages that timed out (if send-partial-

result-on-timeout is false). Optional.

Whether to send out ordered sequences as soon as they are available, or only after the whole message

group arrives. Optional (false by default).

If this flag is not specified (so a complete sequence is defined by the sequence headers) then it can make

sense to provide a custom Comparator to be used to order the messages when sending (use the XML

attribute comparator to point to a bean definition). If release-partial-sequences is true

then there is no way with a custom comparator to define a partial sequence. To do that you would have

to provide a release-strategy (also a reference to another bean definition, either a POJO or a

ReleaseStrategy).

A reference to a MessageGroupStore that can be used to store groups of messages under their

correlation key until they are complete. Optional with default a volatile in-memory store.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 59

Whether, upon the expiration of the group, the ordered group should be sent out (even if some of the

messages are missing). Optional (false by default). See Section 11.5, “Managing State in an Aggregator:

MessageGroupStore”.

The timeout for sending out messages. Optional.

Note
Since there is no custom behavior to be implemented in Java classes for resequencers, there is no

annotation support for it.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 60

13. Delayer

13.1 Introduction

A Delayer is a simple endpoint that allows a Message flow to be delayed by a certain interval. When a Message

is delayed, the original sender will not block. Instead, the delayed Messages will be scheduled with an instance

of java.util.concurrent.ScheduledExecutorService to be sent to the output channel after

the delay has passed. This approach is scalable even for rather long delays, since it does not result in a large

number of blocked sender Threads. On the contrary, in the typical case a thread pool will be used for the actual

execution of releasing the Messages. Below you will find several examples of configuring a Delayer.

13.2 The <delayer> Element

The <delayer> element is used to delay the Message flow between two Message Channels. As with the other

endpoints, you can provide the "input-channel" and "output-channel" attributes, but the delayer also requires

at least the 'default-delay' attribute with the number of milliseconds that each Message should be delayed.

 <delayer input-channel="input" default-delay="3000" output-channel="output"/>

If you need per-Message determination of the delay, then you can also provide the name of a header within

the 'delay-header-name' attribute:

 <delayer input-channel="input" output-channel="output"

 default-delay="3000" delay-header-name="delay"/>

In the example above the 3 second delay would only apply in the case that the header value is not present for

a given inbound Message. If you only want to apply a delay to Messages that have an explicit header value,

then you can set the 'default-delay' to 0. For any Message that has a delay of 0 (or less), the Message will be

sent directly. In fact, if there is not a positive delay value for a Message, it will be sent to the output channel

on the calling Thread.

Tip
The delay handler actually supports header values that represent an interval in milliseconds (any

Object whose toString() method produces a value that can be parsed into a Long) as well as

java.util.Date instances representing an absolute time. In the former case, the milliseconds

will be counted from the current time (e.g. a value of 5000 would delay the Message for at least 5

seconds from the time it is received by the Delayer). In the latter case, with an actual Date instance,

the Message will not be released until that Date occurs. In either case, a value that equates to a

non-positive delay, or a Date in the past, will not result in any delay. Instead, it will be sent directly

to the output channel in the original sender's Thread.

The delayer delegates to an instance of Spring's TaskScheduler abstraction. The default scheduler is

a ThreadPoolTaskScheduler instance with a pool size of 1. If you want to delegate to a different

scheduler, you can provide a reference through the delayer element's 'scheduler' attribute:

 <delayer input-channel="input" output-channel="output"

 default-delay="0" delay-header-name="delay"

 scheduler="exampleTaskScheduler"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 61

 <task:scheduler id="exampleTaskScheduler" pool-size="3"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 62

14. Message Handler Chain

14.1 Introduction

The MessageHandlerChain is an implementation of MessageHandler that can be configured as a

single Message Endpoint while actually delegating to a chain of other handlers, such as Filters, Transformers,

Splitters, and so on. This can lead to a much simpler configuration when several handlers need to be connected

in a fixed, linear progression. For example, it is fairly common to provide a Transformer before other

components. Similarly, when providing a Filter before some other component in a chain, you are essentially

creating a Selective Consumer [http://www.eaipatterns.com/MessageSelector.html]. In either case, the chain

only requires a single input-channel and a single output-channel as opposed to the configuration of channels

for each individual component.

Tip
Spring Integration's Filter provides a boolean property 'throwExceptionOnRejection'. When

providing multiple Selective Consumers on the same point-to-point channel with different

acceptance criteria, this value should be set to 'true' (the default is false) so that the dispatcher

will know that the Message was rejected and as a result will attempt to pass the Message on to

other subscribers. If the Exception were not thrown, then it would appear to the dispatcher as if

the Message had been passed on successfully even though the Filter had dropped the Message to

prevent further processing.

The handler chain simplifies configuration while internally maintaining the same degree of loose coupling

between components, and it is trivial to modify the configuration if at some point a non-linear arrangement

is required.

Internally, the chain will be expanded into a linear setup of the listed endpoints, separated by direct channels.

The reply channel header will not be taken into account within the chain: only after the last handler is invoked

will the resulting message be forwarded on to the reply channel or the chain's output channel. Because of this

setup all handlers except the last require a setOutputChannel implementation. The last handler only needs

an output channel if the outputChannel on the MessageHandlerChain is set.

Note

As with other endpoints, the output-channel is optional. If there is a reply Message at the end of

the chain, the output-channel takes precedence, but if not available, the chain handler will check

for a reply channel header on the inbound Message.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on

namespace support for the chain element. Most Spring Integration endpoints, like Service Activators and

Transformers, are suitable for use within a MessageHandlerChain.

http://www.eaipatterns.com/MessageSelector.html
http://www.eaipatterns.com/MessageSelector.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 63

14.2 The <chain> Element

The <chain> element provides an 'input-channel' attribute, and if the last element in the chain is capable of

producing reply messages (optional), it also supports an 'output-channel' attribute. The sub-elements are then

filters, transformers, splitters, and service-activators. The last element may also be a router.

 <chain input-channel="input" output-channel="output">

 <filter ref="someSelector" throw-exception-on-rejection="true"/>

 <header-enricher error-channel="customErrorChannel">

 <header name="foo" value="bar"/>

 </header-enricher>

 <service-activator ref="someService" method="someMethod"/>

 </chain>

The <header-enricher> element used in the above example will set a message header with name "foo" and value

"bar" on the message. A header enricher is a specialization of Transformer that touches only header values.

You could obtain the same result by implementing a MessageHandler that did the header modifications and

wiring that as a bean.

Some time you need to make a nested call to another chain from within the chain and then come back and

continue execution within the original chain. To accomplish this you can utilize Messaging Gateway by

including light-configuration via <gateway> element. For example:

 <si:chain id="main-chain" input-channel="inputA" output-channel="inputB">

 <si:header-enricher>

 <si:header name="name" value="Many" />

 </si:header-enricher>

 <si:service-activator>

 <bean class="org.foo.SampleService" />

 </si:service-activator>

 <si:gateway request-channel="inputC"/>

 </si:chain>

 <si:chain id="nested-chain-a" input-channel="inputC">

 <si:header-enricher>

 <si:header name="name" value="Moe" />

 </si:header-enricher>

 <si:gateway request-channel="inputD"/>

 <si:service-activator>

 <bean class="org.foo.SampleService" />

 </si:service-activator>

 </si:chain>

 <si:chain id="nested-chain-b" input-channel="inputD">

 <si:header-enricher>

 <si:header name="name" value="Jack" />

 </si:header-enricher>

 <si:service-activator>

 <bean class="org.foo.SampleService" />

 </si:service-activator>

 </si:chain>

In the above example the nested-chain-a will be called at the end of main-chain processing by the 'gateway'

element configured there. While in nested-chain-a a call to a nested-chain-b will be made after header

enrichment and then it will come back to finish execution in nested-chain-b finally getting back to the

main-chain. When light version of <gateway> element is defined in the chain SI will construct an instance

SimpleMessagingGateway (no need to provide 'service-interface' configuration) which will take the

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 64

message in its current state and will place it on the channel defined via 'request-channel' attribute. Upon

processing Message will be returned to the gateway and continue its journey within the current chain.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 65

15. Messaging Bridge

15.1 Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels or Channel

Adapters. For example, you may want to connect a PollableChannel to a SubscribableChannel so

that the subscribing endpoints do not have to worry about any polling configuration. Instead, the Messaging

Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle inbound

Messages. The poller's trigger will determine the rate at which messages arrive on the second channel, and the

poller's "maxMessagesPerPoll" property will enforce a limit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring

Integration's role would be limited to making the connection between these systems and managing a poller if

necessary. It is probably more common to have at least a Transformer between the two systems to translate

between their formats, and in that case, the channels would be provided as the 'input-channel' and 'output-

channel' of a Transformer endpoint. If data format translation is not required, the Messaging Bridge may indeed

be sufficient.

15.2 The <bridge> Element

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel

Adapters. Simply provide the "input-channel" and "output-channel" attributes:

 <bridge input-channel="input" output-channel="output"/>

As mentioned above, a common use case for the Messaging Bridge is to connect a PollableChannel

to a SubscribableChannel, and when performing this role, the Messaging Bridge may also serve as a

throttler:

 <bridge input-channel="pollable" output-channel="subscribable">

 <poller max-messages-per-poll="10" fixed-rate="5000"/>

 </bridge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and "stdout"

adapters from Spring Integration's "stream" namespace.

 <stream:stdin-channel-adapter id="stdin"/>

 <stream:stdout-channel-adapter id="stdout"/>

 <bridge id="echo" input-channel="stdin" output-channel="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter bridges,

such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in upcoming chapters.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 66

Note

If no 'output-channel' is defined on a bridge, the reply channel provided by the inbound Message

will be used, if available. If neither output or reply channel is available, an Exception will be

thrown.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 67

16. Inbound Messaging Gateways

16.1 GatewayProxyFactoryBean

Working with Objects instead of Messages is an improvement. However, it would be even better to have

no dependency on the Spring Integration API at all - including the gateway class. For that reason, Spring

Integration also provides a GatewayProxyFactoryBean that generates a proxy for any interface and

internally invokes the gateway methods shown above. Namespace support is also provided as demonstrated

by the following example.

<gateway id="fooService"

 service-interface="org.example.FooService"

 default-request-channel="requestChannel"

 default-reply-channel="replyChannel"/>

Then, the "fooService" can be injected into other beans, and the code that invokes the methods on that proxied

instance of the FooService interface has no awareness of the Spring Integration API. The general approach is

similar to that of Spring Remoting (RMI, HttpInvoker, etc.). See the "Samples" Appendix for an example that

uses this "gateway" element (in the Cafe demo).

The reason that the attributes on the 'gateway' element are named 'default-request-channel' and 'default-reply-

channel' is that you may also provide per-method channel references by using the @Gateway annotation.

 public interface Cafe {

 @Gateway(requestChannel="orders")

 void placeOrder(Order order);

 }

... as well as method sub element if yuo prefer XML configuration (see next paragraph)

It is also possible to pass values to be interpreted as Message headers on the Message that is created and sent

to the request channel by using the @Header annotation:

 public interface FileWriter {

 @Gateway(requestChannel="filesOut")

 void write(byte[] content, @Header(FileHeaders.FILENAME) String filename);

 }

If you prefer XML way of configuring Gateway methods, you can provide method sub-elements to the gateway

configuration (see below)

<si:gateway id="myGateway" service-interface="org.foo.bar.TestGateway"

 default-request-channel="inputC">

 <si:method name="echo" request-channel="inputA" reply-timeout="2" request-timeout="200"/>

 <si:method name="echoUpperCase" request-channel="inputB"/>

 <si:method name="echoViaDefault"/>

</si:gateway>

You can also provide individual headers per method invocation via XML. This could be very useful if the

headers you want to set are static in nature and you don't want to embed them in the gateway's method

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 68

signature via @Header annotations. For example, in the Loan Broker example we want to influence how

aggregation of the Loan quotes will be done based on what type of request was initiated (single quote or

all quotes). Determining the type of the request by evaluating what gateway method was invoked, although

possible would violate the separation of concerns paradigm (method is a java artifact), but expressing your

intention (meta information) via Message headers is natural in a Messaging architecture.

<int:gateway id="loanBrokerGateway"

 service-interface="org.springframework.integration.loanbroker.LoanBrokerGateway">

 <int:method name="getLoanQuote" request-channel="loanBrokerPreProcessingChannel">

 <int:header name="RESPONSE_TYPE" value="BEST"/>

 </int:method>

 <int:method name="getAllLoanQuotes" request-channel="loanBrokerPreProcessingChannel">

 <int:header name="RESPONSE_TYPE" value="ALL"/>

 </int:method>

</int:gateway>

In the above case you can clearly see how a different header value will be set for the 'RESPONSE_TYPE'

header based on the gateway's method.

As with anything else, Gateway invocation might result in errors. By default any error that has occurred

downstream will be re-thrown as a MessagingExeption (RuntimeException) upon the Gateway's method

invocation. However there are times when you may want to treat an Exception as a valid reply, by mapping

it to a Message. To accomplish this our Gateway provides support for Exception mappers via the exception-

mapper attribute.

<si:gateway id="sampleGateway"

 default-request-channel="gatewayChannel"

 service-interface="foo.bar.SimpleGateway"

 exception-mapper="exceptionMapper"/>

<bean id="exceptionMapper" class="foo.bar.SampleExceptionMapper"/>

foo.bar.SampleExceptionMapper is the implementation of

org.springframework.integration.message.InboundMessageMapper which only defines one method:

toMessage(Object object).

public static class SampleExceptionMapper implements InboundMessageMapper<Throwable>{

 public Message<?> toMessage(Throwable object) throws Exception {

 MessageHandlingException ex = (MessageHandlingException) object;

 return MessageBuilder.withPayload("Error happened in message: " +

 ex.getFailedMessage().getPayload()).build();

 }

}

Important
Exposing messaging system via POJO Gateway is obviously a great benefit, but it does come at the

price so there are certain things you must be aware of. We want our Java method to return as quick

as possible and not hang for infinite amount of time until they can return (void , exception or return

value). When regular methods are used as a proxies in front of the Messaging system we have to

take into account the asynchronous nature of the Messaging Systems. This means that there might

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 69

be a chance that a Message hat was initiated by a Gateway could be dropped by a Filter, thus never

reaching a component that is responsible to produce a reply. Some Service Activator method might

result in the Exception, thus resulting in no-reply (as we don't generate Null messages).So as you

can see there are multiple scenarios where reply message might not be coming which is perfectly

natural in messaging systems. However think about the implication on the gateway method. The

Gateway's method input arguments were incorporated into a Message and sent downstream. The

reply Message would be converted to a return value of the Gateway's method. So you can see

how ugly it could get if you can not guarantee that for each Gateway call there will alway be a

reply Message. Basically your Gateway method will never return and will hang infinitely. (work

in progress!!!!) One of the ways of handling this situation is via AsyncGateway (explained later

in this section). Another way of handling it is to explicitly set the reply-timeout attribute. This

way gateway will not hang for more then the time that was specified by the reply-timout and will

return 'null'.

16.2 Asynchronous Gateway

As a pattern the Messaging Gateway is a very nice way to hide messaging-specific code while still exposing

the full capabilities of the messaging system. And GatewayProxyFactoryBean provides a convenient

way to expose a Proxy over a service-interface thus giving you a POJO-based access to a messaging system

(based on objects in your own domain, or primitives/Strings, etc). But when a gateway is exposed via simple

POJO methods which return values it does imply that for each Request message (generated when the method is

invoked) there must be a Reply message (generated when the method has returned). Since Messaging systems

naturally are asynchronous you may not always be able to guarantee the contract where "for each request

there will always be be a reply". With Spring Integration 2.0 we are introducing support for an Asynchronous

Gateway which is a convenient way to initiate flows where you may not know if a reply is expected or how

long will it take for it to arrive.

A natural way to handle these types of scenarios in Java would be relying upon java.util.concurrent.Future

instances, and that is exactly what Spring Integration uses to support an Asynchronous Gateway.

From the XML configuration, there is nothing different and you still define Asynchronous Gateway the same

way as a regular Gateway.

<int:gateway id="mathService"

 service-interface="org.springframework.integration.sample.gateway.futures.MathServiceGateway"

 default-request-channel="requestChannel"/>

However the Gateway Interface (service-interface) is a bit different.

public interface MathServiceGateway {

 Future<Integer> multiplyByTwo(int i);

}

As you can see from the example above the return type for the gateway method is Future. When

GatewayProxyFactoryBean sees that the return type of the gateway method is Future, it immediately

switches to the async mode by utilizing an AsyncTaskExecutor. That is all. The call to a method always

returns immediately with Future encapsulating the interaction with the framework. Now you can interact

with the Future at your own pace to get the result, timeout, get the exception etc...

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 70

MathServiceGateway mathService = ac.getBean("mathService", MathServiceGateway.class);

Future<Integer> result = mathService.multiplyByTwo(number);

// do something else here since the reply might take a moment

int finalResult = result.get(1000, TimeUnit.SECONDS);

For a more detailed example, please refer to the async-gateway sample distributed within the Spring Integration

samples.

16.3 Gateway behavior when no response is coming

As it was explained earlier, Gateway provides a convenient way of interacting with Messaging system via

POJO method invocations, but realizing that a typical method invocation, which is generally expected to always

return (even with Exception), might not always map one-to-one to message exchanges (e.g., reply message

might not be coming which is equivalent to method not returning), it is important to go over several scenarios

especially in the Sync Gateway case and understand what the default behavior of the Gateway and how to

deal with these scenarios to make Sync Gateway behavior more predictable regardless of the outcome of the

message flow that was initialed from such Gateway.

There are certain attributes that could be configured to make Sync Gateway behavior more predictable, but

some of them might not always work as you might have expected. One of them is reply-timeout. So, lets

look at the reply-timeout attribute and see how it can/can't influence the behavior of the Sync Gateway in

various scenarios. We will look at single-theraded scenario (all components downstream are connected via

Direct Channel) and multi-theraded scenarios (e.g., somewhere downstream you may have Pollable or Executor

Channel which breaks single-thread boundary)

Long running process downstream

Sync Gateway - single-threaded. If a component downstream is still running (e.g., infinite loop or a very slow

service), then setting reply-timeout has no effect and Gateway method call will not return until such downstream

service exits (e.g., return or exception). Sync Gateway - multi-threaded. If a component downstream is still

running (e.g., infinite loop or a very slow service), in a multi-threaded message flow setting reply-timeout

will have an effect by allowing gateway method invocation to return once the timeout has been reached,

since GatewayProxyFactoryBean will simply poll on the reply channel waiting for a message untill

the timeout expires. However it could result in the 'null' return from the Gateway method if the timeout has

been reached before the actual reply was produced. It is also important to understand that the reply message (if

produced) will be sent to a reply channel after Gateway method invocation might have returned, so you must

be aware of that and design your flow with this in mind.

Downstream component returns 'null'

Sync Gateway - single-threaded. If a component downstream returns 'null' and no reply-timeout has been

configured, the Gateway method call will hang indefinitely unless: a) reply-timeout has been configured or b)

requires-reply attribute has been set on the downstream component (e.g., service-activator) that might return

'null'. In this case, the exception will be thrown and propagated to the Gateway. Sync Gateway - multi-threaded.

Behavior is the same as above.

Downstream component return signature is 'void' while Gateway method signature is non-void

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 71

Sync Gateway - single-threaded. If a component downstream returns 'void' and no reply-timeout has been

configured, the Gateway method call will hang indefinitely unless reply-timeout has been configured Sync

Gateway - multi-threaded Behavior is the same as above.

Downstream component results in Runtime Exception (regardless of the method signature)

Sync Gateway - single-threaded. If a component downstream throws a Runtime Exception, such exception will

be propagated via Error Message back to the gateway and re-thrown. Sync Gateway - multi-threaded Behavior

is the same as above.

Important
It is also important to understand that by default reply-timout is unbounded which means that

if not explicitly set there are several scenarios (described above) where your Gateway method

invocation might hang indefinitely, so make sure you analyze your flow and if there is even a

remote possibility of one of these scenarios to occur, set the reply-timout attribute to a 'safe' value or

better off set the requires-reply attribute of the downstream component to 'true' to ensure a timely

response. But also, realize that there are some scenarios (see the very first one) where reply-timout

will not help which means it is also important to analyze your message flow and decide when to

use Sync Gateway vs Async Gateway where Gateway method invocation is always guaranteed to

return while giving you a more granular control over the results of the invocation via Java Futures.

Also, when dealing with Router you should remember that seeting resolution-required attribute to

'true' will result in the exception thrown by the router if it can not resolve a particular chanel. And

when dealing with the filter you can also set throw-exception-on-rejection attribute. Both of these

will help to ensure a timely response from the Gateway method invocation.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 72

17. Message Publishing
The AOP Message Publishing feature allows you to construct and send a message as a by-product of method

invocation. For example, imagine you have a component and every time the state of this component changes

you would like to be notified via a Message. The easiest way to send such notifications would be to send a

message to a dedicated channel, but how would you connect the method invocation that changes the state of

the object to a message sending process, and how should the notification Message be structured? The AOP

Message Publishing feature handles these responsibilities with a configuration-driven approach.

17.1 Message Publishing Configuration

Spring Integration provides two approaches: XML and Annotation-driven.

Annotation-driven approach via @Publisher annotation

The annotation-driven approach allows you to annotate any method with the @Publisher annotation,

specifying 'channel' attribute. The Message will be constructed from the return value of method invocation

and sent to a channel specified by 'channel' attribute. To further manage message structure you can also use a

combination of both @Payload and @Header annotations.

Internally message publishing feature of Spring Integration uses both Spring AOP by defining

PublisherAnnotationAdvisor and Spring 3.0 Expression Language (SpEL) support, giving you

considerable flexibility and control over the structure of the Message it will build.

PublisherAnnotationAdvisor defines and binds the following variables:

• #return - will bind to a return value allowing you to reference it or its attributes (e.g., #return.foo where 'foo'

is an attribute of the object bound to #return)

• #exception - will bind to an exception if one is thrown by the method invocation.

• #args - will bind to method arguments, so individual arguments could be extracted by name (e.g.,

#args.fname as in the above method)

Let's look at couple of examples:

@Publisher

public String defaultPayload(String fname, String lname) {

 return fname + " " + lname;

}

In the above example the Message will be constructed with the following structure:

• Message payload - will be the return type and value of the method. This is the default.

• A newly constructed message will be sent to a default publisher channel configured with annotation post

processor (see the end of this section).

@Publisher(channel="testChannel")

public String defaultPayload(String fname, @Header("last") String lname) {

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 73

 return fname + " " + lname;

}

In this example everything is the same as above, however we are not using default publishing channel. Instead

we are specifying the publishing channel via 'channel' attribute of @Publisher annotation. We are also adding

@Header annotation which results in the Message header with the name 'last' and the value of 'lname' input

parameter to be added to the newly constructed Message.

@Publisher(channel="testChannel")

@Payload

public String defaultPayloadButExplicitAnnotation(String fname, @Header String lname) {

 return fname + " " + lname;

}

The above example is almost identical to the previous one. The only difference here is that we are using

@Payload annotation on the method, thus explicitly specifying that the return value of the method should be

used as a payload of the Message.

@Publisher(channel="testChannel")

@Payload("#return + #args.lname")

public String setName(String fname, String lname, @Header("x") int num) {

 return fname + " " + lname;

}

Here we are expending on the previous configuration by using Spring Expression language in the @Payload

annotation further instructing the framework on how the message should be constructed. In this particular case

the message will be a concatenation of the return value of the method invocation and 'lname' input argument.

Message header 'x' with value of 'num' input argument will be added to the newly constructed Message.

@Publisher(channel="testChannel")

public String argumentAsPayload(@Payload String fname, @Header String lname) {

 return fname + " " + lname;

}

In the above example you see another usage of @Payload annotation. Here we are annotating method argument

which will become a payload of newly constructed message.

As with most other annotation-driven features in Spring, you will need to register a post-processor

(PublisherAnnotationBeanPostProcessor).

<bean class="org.springframework.integration.aop.PublisherAnnotationBeanPostProcessor"/>

You can also use namespace support for added convenience:

<si:annotation-config default-publisher-channel="defaultChannel"/>

Similar to other Spring annotations (e.g., @Controller), @Publisher is a meta-annotation, which means you

can define your own annotations that will be treated as @Publisher

@Target({ElementType.METHOD, ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)

@Publisher(channel="auditChannel")

public @interface Audit {

}

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 74

Here we defined @Audit annotation which itself is a @Publisher. Also note that you can define channel

attribute on the meta-annotation thus encapsulating the behavior of where messages will be sent inside of this

annotation. Now you can annotate any method:

@Audit

public String test() {

 return "foo";

}

In the above example every invocation of test() method will result in Message with payload which is the

return value of the method invocation to be sent to auditChannel You can also annotate the class which would

mean that the properties of this annotation will be applied on every public method of this class

@Audit

static class BankingOperationsImpl implements BankingOperations {

 public String debit(String amount) {

 . . .

 }

 public String credit(String amount) {

 . . .

 }

}

XML-based approach via <publishing-interceptor> element

The XML-based approach allows you to configure the same AOP-based Message Publishing functionality with

simple namespace-based configuration of a MessagePublishingInterceptor. It certainly has some

benefits over the annotation-driven approach since it allows you to use AOP pointcut expressions, thus possibly

intercepting multiple methods at once or intercepting and publishing methods to which you don't have the

source code.

To configure Message Publishing via XML, you only need to do the following two things:

• Provide configuration for MessagePublishingInterceptor via the <publishing-

interceptor> XML element.

• Provide AOP configuration to apply the MessagePublishingInterceptor to managed objects.

<aop:config>

 <aop:advisor advice-ref="interceptor" pointcut="bean(testBean)" />

</aop:config>

<publishing-interceptor id="interceptor" default-channel="defaultChannel">

 <method pattern="echo" payload="'Echoing: ' + #return" channel="echoChannel">

 <header name="foo" value="bar"/>

 </method>

 <method pattern="repl*" payload="'Echoing: ' + #return" channel="echoChannel">

 <header name="foo" expression="'bar'.toUpperCase()"/>

 </method>

 <method pattern="echoDef*" payload="#return"/>

</publishing-interceptor>

As you can see the <publishing-interceptor> configuration look rather similar to Annotation-based

approach and it also utilizes the power of the Spring 3.0 Expression Language.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 75

In the above example the execution of the echo method of a testBean will render a Message with the

following structure:

• The Message payload will be of type String and value of "Echoing: [value]" where value is the value

returned by an executed method.

• The Message will have header with the key "foo" value "bar".

• The Message will be sent to echoChannel.

The second method is very similar to the first. Here every method that begins with 'repl' will render a Message

with the following structure:

• The Message payload will be the same as in the above sample

• The Message will have header with the key "foo" and value that is the result of the SpEL expression

'bar'.toUpperCase() .

• The Message will be sent to echoChannel.

The second method, mapping the execution of any method that begins with echoDef of testBean, will

produce a Message with the following structure.

• The Message payload will be the value returned by an executed method.

• Since the channel attribute is not provided explicitly, the Message will be sent to the defaultChannel

defined by the publisher.

For simple mapping rules you can rely on the publisher defaults. For example:

<publishing-interceptor id="anotherInterceptor"/>

This will map the return value of every method that matches the pointcut expression to a payload and will

be sent to a default-channel. If the defaultChannelis not specified (as above) the messages will be sent to the

global nullChannel.

Async Publishing

One important thing to understand is that publishing occurs in the same thread as your component's execution.

So by default in is synchronous. This means that the entire message flow would have to wait until he

publisher flow completes. However, quite often you want the complete opposite and that is to use Message

publishing feature to initiate asynchronous sub-flows. For example, you might host a service (HTTP, WS

etc.) which receives a remote request.You may want to send this request internally into a process that might

take a while. However you may also want to reply to the user right away. So, instead of sending inbound

request for processing via the output channel (the conventional way), you can simply use ''outout-channel

or $replyChannel'' header to send simple acknowledgment-like reply back to the caller while using Message

publisher feature to initiate a complex flow.

EXAMPLE: Here is the simple service that receives a complex payload, which needs to be sent further for

processing, but it also need to reply to the caller with a simple acknowledgment.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 76

public String echo(Object complexPayload){

 return "ACK";

}

So instead of hooking up the complex flow to the output channel we use Message publishing feature instead

configuring it to create a new Message using the input argument of the service method (above) and sending it

to the 'localProcessChannel'. And to make sure this sub-flow is asynchronous all we need to do is make sure

that we send it to any type of async channel (ExecutorChannel in this example).

<int:service-activator input-channel="inputChannel" output-channel="outputChannel" ref="sampleservice"/>

<bean id="sampleservice" class="test.SampleService"/>

<aop:config>

 <aop:advisor advice-ref="interceptor" pointcut="bean(sampleservice)" />

</aop:config>

<int:publishing-interceptor id="interceptor" >

 <int:method pattern="echo" payload="#args[0]" channel="localProcessChannel">

 <int:header name="sample_header" expression="'some sample value'"/>

 </int:method>

</int:publishing-interceptor>

<int:channel id="localProcessChannel">

 <int:dispatcher task-executor="executor"/>

</int:channel>

<task:executor id="executor" pool-size="5"/>

Another way of handling thi type of scenario is through wire-tap

Producing and publishing messages based on a scheduled trigger

In the above sections we looked at the Message publishing feature of Spring Integration which constructs and

publishes messages as by-products of Method invocations. However in that case, you are still responsible for

invoking the method. In Spring Integration 2.0 we've added another related useful feature: support for scheduled

Message producers/publishers via the new "expression" attribute on the 'inbound-channel-adapter' element.

Scheduling could be based on several triggers, any one of which may be configured on the 'poller' sub-element.

Currently we support cron, fixed-rate, fixed-delay as well as any custom trigger implemented by

you.

As mentioned above, support for scheduled producers/publishers is provided via the <inbound-channel-

adapter> xml element. Let's look at couple of examples:

<inbound-channel-adapter id="fixedDelayProducer"

 expression="'fixedDelayTest'"

 channel="fixedDelayChannel">

 <poller fixed-delay="1000"/>

</inbound-channel-adapter>

In the above example an inbound Channel Adapter will be created which will construct a Message with its

payload being the result of the expression defined in the expression attribute. Such message will be created

and sent every time after the delay specified by the fixed-delay attribute.

<inbound-channel-adapter id="fixedRateProducer"

 expression="'fixedRateTest'"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 77

 channel="fixedRateChannel">

 <poller fixed-rate="1000"/>

</inbound-channel-adapter>

This example is very similar to the previous one, except that we are using the fixed-rate attribute which

will allow us to send messages at a fixed rate (measuring from the start time of each task).

<inbound-channel-adapter id="cronProducer"

 expression="'cronTest'"

 channel="cronChannel">

 <poller cron="7 6 5 4 3 ?"/>

</inbound-channel-adapter>

This example demonstrates how you can apply a Cron trigger with a value specified in the cron attribute.

<inbound-channel-adapter id="headerExpressionsProducer"

 expression="'headerExpressionsTest'"

 channel="headerExpressionsChannel"

 auto-startup="false">

 <poller fixed-delay="5000"/>

 <header name="foo" expression="6 * 7"/>

 <header name="bar" value="x"/>

</inbound-channel-adapter>

Here you can see that in a way very similar to the Message publishing feature we are enriching a newly

constructed Message with extra Message headers which could take scalar values as well as the results of

evaluating Spring expressions.

If you need to implement your own custom trigger you can use the trigger attribute to provide a reference

to any spring configured bean which implements the org.springframework.scheduling.Trigger

interface.

<inbound-channel-adapter id="triggerRefProducer"

 expression="'triggerRefTest'" channel="triggerRefChannel">

 <poller trigger="customTrigger"/>

</inbound-channel-adapter>

<beans:bean id="customTrigger" class="org.springframework.scheduling.support.PeriodicTrigger">

 <beans:constructor-arg value="9999"/>

</beans:bean>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 78

18. Transaction Support

18.1 Understanding Transactions in Message flows

Spring Integration exposes several hooks to address transactional needs of you message flows. But to better

understand these hooks and how you can benefit from them we must first revisit the 6 mechanisms that could

be used to initiate Message flows and see how transactional needs of these flows could be addressed within

each of these mechanisms.

Here are the 6 mechanisms to initiate a Message flow and their short summary (details for each are provided

throughout this manual):

• Gateway Proxy - Your basic Messaging Gateway

• MessageChannel - Direct interactions with MessageChannel methods (e.g., channel.send(message))

• Message Publisher - the way to initiate message flow as a bi-product of method invocations on Spring beans

• Inbound Channel Adapters/Gateways - the way to initiate message flow based on connecting third-party

system with Spring Integration messaging system(e.g., [JmsMessage] -> Jms Inbound Adapter[SI Message]

-> SI Channel)

• Scheduler - the way to initiate message flow based on scheduling events distributed by a pre-configured

Scheduler

• Poller - similar to the Scheduler and is the way to initiate message flow based on scheduling or interval-

based events distributed by a pre-configured Poller

These 6 cold be split in 2 general categories:

• Message flows initiated by a USER process - Example scenarios in this category would be invoking a

Gateway method or explicitly sending a Message to a MessageChannel. In other words these message flows

depend on third party process (e.g., some code that we wrote) to be initiated

• Message flows initiated by the DAEMON process - Example scenarios in this category would be a Poller

polling for a Message queue to initiate a new Message flow with the polled Message or a Scheduler

scheduling the process, by creating a new Message and initiating a message flow at a predefined time

Clearly the Gateway Proxy, MessageChannel.send(..) and MessagePublisher are all belong to the 1st category

and Inbound Adapters/Gateways, Scheduler and Poller belong to the 2nd.

So, how do we address transactional needs in various scenarios within each category and is there a need for

Spring Integration to provide something explicitly with regard to transaction for a particular scenario or Spring's

Transaction Support could be leveraged instead?.

First of all, the first and obvious goal is NOT to re-invent something that has already been invented unless you

can provide a beter solution. In our case Spring itself provides a first class support for transaction management.

So our goal here is not to provide something new but rather delegate/use Spring to benefit from the existing

support for transactions. In other words as a framework we must expose hooks to the Transaction management

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 79

functionality provided by Spring. But since Spring Integration configuration is based on Spring Configuration

it is not always neccessery to expose these hooks as they already expposed via Spring natively. Remeber every

Spring Integration component is a Spring Bean after all.

With this goal in mind let's look at the two scenarios.

If you think about it, Message flows that are initiated by the USER process (Category 1) and obviously

configured in Spring Application Context, are subject to transactional configuration of such process and

therefore don't need to be explicitly configured by Spring Integration to support transactions. The transaction

could and should be initiated by such process through standard Transaction support provided by Spring and

Spring Integration message flow will honor transactional semantics of the components naturally because

it is Spring configured. For example; A Gateway or ServiceActivator methods could be annotated with

@Transactional or TransactionInterceptor could be configured in XML configuration with

point-cut expression pointing to specific methods that should be transactional. The bottom line you have full

control over transaction configuration and boundaries in these scenarios.

However, things are a bit different when it comes to Message flows initiated by the DAEMON process

(Category 2). Although configured by the developer these flows do not directly involve human or some other

process to be initiated. These are trigger-based flows that are initiated by a trigger process (DAEMON process)

based on the configuration of such process. For example, we could have a Scheduler initiating a message flow

every Friday night of every week. We can also configure a trigger that initiates a Message flow every second,

etc. So, we obviously need the same way to let these trigger-based processes know of our intention to make

these Message flows transactional so Transaction context could be created whenever a new Message flow is

initiated. In other words we need to expose some Transaction configuration, but ONLY enough to delegate to

Transaction support already provided by Spring (as we do in other scenarios).

Spring Integration provides transactional support for Pollers. Pollers are a special case comoponents becouse

we can call receive() within that poller task against a resource that is itself transactional thus including receive()

call in the the boundaries of the Transaction allowing it to be rolled back in case of a task failure. If we were

to add the same support for channels, the added transactions would affect all downstream components starting

with that send() call. That is providing a rather wide scope for transaction demarcation without any strong

reason especially when Spring already provides several way to address transactional needs of any component

downstream. However the receive() method being included in a transaction boundary is the "strong reason"

for pollers.

Poller Transaction Support

Any time you configure a Poller you can provide transactional configuration via transactional element and

its attributes:

<poller max-messages-per-poll="1" fixed-rate="1000">

 <transactional transaction-manager="txManager"

 isolation="DEFAULT"

 propagation="REQUIRED"

 read-only="true"

 timeout="1000"/>

</poller>

As you can see this configuration looks evry similar to native Spring transaction configuration. You

must still provide reference to Transaction manager and specify transaction attributes or rely on defauls

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 80

(e.g., if 'transaction-manager'' attribute is not specified then it will default to the bean with the name

'transactionManager'). Internally the process would be wrapped in the Spring's native Transaction where

TransactionInterceptor is responsible to handle transactions. For more information on how to

configure Transaction Manager, the types of Transaction Managers (e.g., JTA, Datasource etc.) and other

details related to transaction configuration please refer to Spring's Reference manual (Chapter 10 - Transaction

Management).

With the above configuration all Message flows initiated by this poller will be transactional. For more

information and details on Poller's transactional configuration please refer to section - 21.1.1. Polling and

Transactions.

There times when besides transaction several more cross cutting concerns needs to be addressed when running

Poller. To help with that, Poller element defines <advice-chain> sub-element which allows you to define a

custom chain of Advices to be applied on the Poller. (see section 4.4 for more details) In Spring Integration 2.0

Poller went through the major refactoring effort and is now using proxy mechanism to address transactional

concerns as well as other cross cutting concerns, one of the significant changes evolving from this effort is

that we made <transactional> and <advice-chain> elements mutually exclusive. The rational behind this is;

If you need more then one advice, and one of them is Transaction advice, then you can simply include it in

the <advice-chain> with the same convenience as before but with much more control since you now have an

option to position any advice in the desired order.

<poller max-messages-per-poll="1" fixed-rate="10000">

 <advice-chain>

 <ref bean="txAdvice"/>

 <ref bean="someAotherAdviceBean" />

 <beans:bean class="foo.bar.SampleAdvice"/>

 </advice-chain>

</poller>

<tx:advice id="txAdvice" transaction-manager="txManager">

 <tx:attributes>

 <tx:method name="get*" read-only="true"/>

 <tx:method name="*"/>

 </tx:attributes>

</tx:advice>

As yo can see from the example above, we have provided a very basic XML-based configuration of Spring

Transaction advice - "txAdvice" and included it within the <advice-chain> defined by the Poller. And if you

only need to address transactional concerns of the Poller, then you can still use <transactional> element as

a convinience.

18.2 Transaction Boundaries

Another important factor that needs to be understood is the boundaries of the Transactions within the Message

flow. When transaction is started, transaction context is bound to the current thread. So regardless of how many

endpoints and channels you have in your Message flow you transaction context will be preserved as long as

you are ensuring that the flow continues on the same thread. As soon as you break it by introducing a Pollable

Channel or Executor Channel or initiate a new thread manually in some service, the Transactional boundary

will be broken as well. Essentially the Transaction will END right there and if successfull hand of happened

between the threads, the flow would be considered a success and COMMIT signal would be sent even though

the flow might still result in the exception somewhere downstream. If such flow was synchronous the exception

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 81

would be thrown back to the initiator of the Message flow who is also the initiator of the transactional context

and transaction would result in a ROLLBACK.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 82

19. Message History

The key benefit of messaging architecture is loose coupling where participating components do not maintain

any awareness about one another. This fact alone makes you architecture extremely flexible allowing you to

change components without affecting the rest of the flow, change messaging routs, message consuming styles

(polling vs event driven) etc... However, this unassuming style of architecture could prove to be problematic

when things go wrong. For example, if something happened you would probably like to get as much information

about the message as you can (its origin, where it was etc.)

Message History is one of those patterns that could help by giving you an option to maintain some level of

awareness of a message path either for debugging purposes or to maintain an audit trail. Spring integration

provides a simple way to configure your message flows to maintain Message History by adding Message

History header to a Message every time a message goes through a tracked component.

19.1 Message History Configuration

To enable Message History all you need is define message-history element in your configuration.

<int:message-history/>

Now every named component (component that has an 'id' defined) will be tracked. The framework will set

the '$history' header in your Message who's value is very simple - List<Properties>. The need for this

simple structure is mandated by the loosely coupled architecture of messaging systems where the framework

must not require you to share any dependencies outside of Java itself.

<int:gateway id="sampleGateway"

 service-interface="org.springframework.integration.history.sample.SampleGateway"

 default-request-channel="bridgeInChannel"/>

<int:chain id="sampleChain" input-channel="chainChannel" output-channel="filterChannel">

 <int:header-enricher>

 <int:header name="baz" value="baz"/>

 </int:header-enricher>

</int:chain>

The above configuration will produce a very simple Message History structure:

[{name=sampleGateway, type=gateway, timestamp=1283281668091},

 {name=sampleChain, type=chain, timestamp=1283281668094}]

To get access to Message History all you need is access the MessageHistory header. For example:

Iterator<Properties> historyIterator =

 message.getHeaders().get(MessageHistory.HEADER_NAME, MessageHistory.class).iterator();

assertTrue(historyIterator.hasNext());

Properties gatewayHistory = historyIterator.next();

assertEquals("sampleGateway", gatewayHistory.get("name"));

assertTrue(historyIterator.hasNext());

Properties chainHistory = historyIterator.next();

assertEquals("sampleChain", chainHistory.get("name"));

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 83

Some times you might not want to track all of the components. To accomplish this all you need is provide

tracked-components attribute where you can specify comma delimited list of component names and/or

patterns you want to track.

<int:message-history tracked-components="*Gateway, sample*, foo"/>

In the above example, Message History will only be maintained for all of the components that end with

'Gateway', all components that start with 'sample' and 'foo' component.

Note
Remember, that by definition History is immutable (you can't re-write history,although some try),

therefore Message History can not be changed once written. Every attempt will end in exception.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 84

20. File Support

20.1 Introduction

Spring Integration's File support extends the Spring Integration Core with a dedicated vocabulary to deal

with reading, writing, and transforming files. It provides a namespace that enables elements defining Channel

Adapters dedicated to files and support for Transformers that can read file contents into strings or byte arrays.

This section will explain the workings of FileReadingMessageSource and

FileWritingMessageHandler and how to configure them as beans. Also the support for dealing with

files through file specific implementations of Transformer will be discussed. Finally the file specific

namespace will be explained.

20.2 Reading Files

A FileReadingMessageSource can be used to consume files from the filesystem. This is an

implementation of MessageSource that creates messages from a file system directory.

<bean id="pollableFileSource"

 class="org.springframework.integration.file.FileReadingMessageSource"

 p:inputDirectory="file:${input.directory}"/>

To prevent creating messages for certain files, you may supply a FileListFilter. By default, an

AcceptOnceFileListFilter is used. This filter ensures files are picked up only once from the directory.

<bean id="pollableFileSource"

 class="org.springframework.integration.file.FileReadingMessageSource"

 p:inputDirectory="file:${input.directory}"

 p:filter-ref="customFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default

AcceptOnceFileListFilter does not prevent this. In most cases, this can be prevented if the file-writing

process renames each file as soon as it is ready for reading. A pattern-matching filter that accepts only files

that are ready (e.g. based on a known suffix), composed with the default AcceptOnceFileListFilter

allows for this. The CompositeFileListFilter enables the composition.

<bean id="pollableFileSource"

 class="org.springframework.integration.file.FileReadingMessageSource"

 p:inputDirectory="file:${input.directory}"

 p:filter-ref="compositeFilter"/>

<bean id="compositeFilter" class="org.springframework.integration.file.filters.CompositeFileListFilter">

 <constructor-arg>

 <list>

 <bean class="org.springframework.integration.file.filters.AcceptOnceFileListFilter" />

 <bean class="org.springframework.integration.file.filters.PatternMatchingFileListFilter">

 <constructor-arg value="^test.*$"/>

 </bean>

 </list>

 </constructor-arg>

</bean>

The configuration can be simplified using the file specific namespace. To do this use the following template.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 85

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:integration="http://www.springframework.org/schema/integration"

 xmlns:file="http://www.springframework.org/schema/integration/file"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration-2.0.xsd

 http://www.springframework.org/schema/integration/file

 http://www.springframework.org/schema/integration/file/spring-integration-file-2.0.xsd">

</beans>

Within this namespace you can reduce the FileReadingMessageSource and wrap it in an inbound Channel

Adapter like this:

 <file:inbound-channel-adapter id="filesIn"

 directory="file:${input.directory}" prevent-duplicates="true"/>

 <file:inbound-channel-adapter id="filesIn"

 directory="file:${input.directory}"

 filter="customFilterBean" />

 <file:inbound-channel-adapter id="filesIn"

 directory="file:${input.directory}"

 filename-pattern="test*" />

The first channel adapter is relying on the default filter that just prevents duplication, the second is using a

custom filter, and the third is using the filename-pattern attribute to add a AntPathMatcher based filter to

the FileReadingMessageSource. The file-name-pattern and filter attributes are mutually exclusive, but

you can use a CompositeFileListFilter to use any combination of filters, including a pattern based

filter to fit your particular needs.

When multiple processes are reading from the same directory it can be desirable to lock files to prevent

them from being picked up concurrently. To do this you can use a FileLocker. There is a java.nio based

implementation available out of the box, but it is also possible to implement your own locking scheme. The

nio locker can be injected as follows

 <file:inbound-channel-adapter id="filesIn"

 directory="file:${input.directory}" prevent-duplicates="true">

 <file:nio-locker/>

 </file:inbound-channel-adapter>

A custom locker you can configure like this:

 <file:inbound-channel-adapter id="filesIn"

 directory="file:${input.directory}" prevent-duplicates="true">

 <file:locker ref="customLocker"/>

 </file:inbound-channel-adapter>

When filtering and locking files is not enough it might be needed to control the way files are listed entirely.

To implement this type of requirement you can use an implementation of DirectoryScanner. This

scanner allows you to determine entirely what files are listed each poll. This is also the interface that Spring

Integration uses internally to wire FileListFilters FileLocker to the FileReadingMessageSource. A custom

DirectoryScanner can be injected into the <file:inbound-channel-adapter/> on the scanner attribute.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 86

 <file:inbound-channel-adapter id="filesIn"

 directory="file:${input.directory}" prevent-duplicates="true" scanner="customDirectoryScanner"/>

This gives you full freedom to choose the ordering, listing and locking strategies.

20.3 Writing files

To write messages to the file system you can use a FileWritingMessageHandler. This class can deal

with File, String, or byte array payloads. In its simplest form the FileWritingMessageHandler only

requires a destination directory for writing the files. The name of the file to be written is determined by

the handler's FileNameGenerator. The default implementation looks for a Message header whose key

matches the constant defined as FileHeaders.FILENAME.

Additionally, you can configure the encoding and the charset that will be used in case of a String payload.

To make things easier you can configure the FileWritingMessageHandler as part of an outbound channel

adapter using the namespace.

 <file:outbound-channel-adapter id="filesOut" directory="file:${input.directory.property}"/>

The namespace based configuration also supports a delete-source-files attribute. If set to true, it

will trigger deletion of the original source files after writing to a destination. The default value for that flag

is false.

 <file:outbound-channel-adapter id="filesOut"

 directory="file:${output.directory}"

 delete-source-files="true"/>

Note

The delete-source-files attribute will only have an effect if the inbound Message has a

File payload or if the FileHeaders.ORIGINAL_FILE header value contains either the source

File instance or a String representing the original file path.

In cases where you want to continue processing messages based on the written File you can use the

outbound-gateway instead. It plays a very similar role as the outbound-channel-adapter.

However after writing the File, it will also send it to the reply channel as the payload of a Message.

 <file:outbound-gateway id="mover" request-channel="moveInput"

 reply-channel="output"

 directory="${output.directory}"

 delete-source-files="true"/>

Note
The 'outbound-gateway' works well in cases where you want to first move a File and then send

it through a processing pipeline. In such cases, you may connect the file namespace's 'inbound-

channel-adapter' element to the 'outbound-gateway' and then connect that gateway's reply-channel

to the beginning of the pipeline.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 87

If you have more elaborate requirements or need to support additional payload types as input to be converted

to file content you could extend the FileWritingMessageHandler, but a much better option is to rely on a

Transformer.

20.4 File Transformers

To transform data read from the file system to objects and the other way around you need to do some work.

Contrary to FileReadingMessageSource and to a lesser extent FileWritingMessageHandler,

it is very likely that you will need your own mechanism to get the job done. For this you can implement the

Transformer interface. Or extend the AbstractFilePayloadTransformer for inbound messages.

Some obvious implementations have been provided.

FileToByteArrayTransformer transforms Files into byte[]s using Spring's FileCopyUtils. It is

often better to use a sequence of transformers than to put all transformations in a single class. In that case the

File to byte[] conversion might be a logical first step.

FileToStringTransformer will convert Files to Strings as the name suggests. If nothing else, this can

be useful for debugging (consider using with a Wire Tap).

To configure File specific transformers you can use the appropriate elements from the file namespace.

 <file-to-bytes-transformer input-channel="input" output-channel="output"

 delete-files="true"/>

 <file:file-to-string-transformer input-channel="input" output-channel="output

 delete-files="true" charset="UTF-8"/>

The delete-files option signals to the transformer that it should delete the inbound File after the transformation

is complete. This is in no way a replacement for using the AcceptOnceFileListFilter when the

FileReadingMessageSource is being used in a multi-threaded environment (e.g. Spring Integration in general).

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 88

21. JDBC Support

Spring Integration provides Channel Adapters for receiving and sending messages via database queries.

21.1 Inbound Channel Adapter

The main function of an inbound Channel Adapter is to execute a SQL SELECT query and turn the result

set into a message. The message payload is the whole result set, expressed as a List, and the types of the

items in the list depends on the row-mapping strategy that is used. The default strategy is a generic mapper

that just returns a Map for each row i nthe query. Optionally this can be changed by adding a reference to

requires a reference to a RowMapper instance (see the Spring JDBC [http://static.springsource.org/spring/

docs/3.0.x/spring-framework-reference/html/jdbc.html] documentation for more detailed information about

row mapping).

Note

If you want to convert rows in the SELECT query result to individual messages you can use a

downstream splitter.

The inbound adapter also requires a reference to either JdbcTemplate instance or DataSource.

As well as the SELECT statement to generate the messages, the adapter above also has an UPDATE statement

that is being used to mark the records as processed, so they don't show up in the next poll. The update can be

parameterised by the list of ids from the original select. This is done through a naming convention by default

(a column in the input result set called "id" is translated into a list in the parameter map for the update called

"id"). The following example defines an inbound Channel Adapter with an update query and a DataSource

reference.

<jdbc:inbound-channel-adapter query="select * from item where status=2"

 channel="target" data-source="dataSource"

 update="update item set status=10 where id in (:id)" />

Note
The parameters in the update query are specified with a colon (:) prefix to the name of a parameter

(which in this case is an expression to be applied to each of the rows in the polled result set).

This is a standard feature of the named parameter JDBC support in Spring JDBC combined with

a convention (projection onto the polled result list) adopted in Spring Integration. The underlying

Spring JDBC features limit the available expressions (e.g. most special characters other than period

are disallowed), but since the target is usually a list of or an individual object addressable by simple

bean paths this isn't unduly restrictive.

To change the parameter generation strategy you can inject a SqlParameterSourceFactory into

the adapter to override the default behaviour (the adapter has a sql-parameter-source-factory

attribute).

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 89

Polling and Transactions

The inbound adapter accepts a regular Spring Integration poller as a sub element, so for instance the frequency

of the polling can be controlled. A very important feature of the poller for JDBC usage is the option to wrap

the poll operation in a transaction, for example:

<jdbc:inbound-channel-adapter query="..."

 channel="target" data-source="dataSource"

 update="...">

 <poller fixed-rate"1000">

 <transactional/>

 </poller>

</jdbc:inbound-channel-adapter>

Note
If a poller is not explicitly specified a default value will be used (and as per normal with Spring

Integration can be defined as a top level bean)

In this example the database is polled every 1000 milliseconds, and the update and select queries are both

executed in the same transaction. The transaction manager configuration is not shown, but as long as it is aware

of the data source then the poll is transactional. A common use case is for the downstream channels to be direct

channels (the default), so that the endpoints are invoked in the same thread, and hence the same transaction.

then if any of them fails, the transaction rolls back and the input data are reverted to their original state.

21.2 Outbound Channel Adapter

The outbound Channel Adapter is the inverse of the inbound: its role is to handle a message and use it to

execute a SQL query. The message payload and headers are available by default as input parameters to the

query, for instance:

<jdbc:outbound-channel-adapter

 query="insert into foos (id, status, name) values (:headers[$id], 0, :payload[foo])"

 channel="input" data-source="dataSource"/>

In the example above, messages arriving on the channel "input" have a payload of a map with key "foo", so

the [] operator dereferences that value from the map. The headers are also accessed as a map.

Note
The parameters in the query above are bean property expressions on the incoming message (not

Spring EL expressions). This behaviour is part of the SqlParameterSource which is the

default source created by the outbound adapter. Other behaviour is possible in the adapter, and

requires the user to inject a different SqlParameterSourceFactory .

The outbound adapter requires a reference to either a DataSource or a JdbcTemplate. It can also have a

SqlParameterSourceFactory injected to control the binding of incoming message to the query.

If the input channel is a direct channel then the outbound adapter runs its query in the same thread, and therefor

ethe same transaction (if there is one) as the sender of the message.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 90

21.3 Outbound Gateway

The outbound Gateway is like a combination of the outbound and inbound adapters: its role is to handle a

message and use it to execute a SQL query and then respond with the result sending it to a reply channel. The

message payload and headers are available by default as input parameters to the query, for instance:

<jdbc:outbound-gateway

 update="insert into foos (id, status, name) values (:headers[$id], 0, :payload[foo])"

 request-channel="input" reply-channel="output" data-source="dataSource" />

The result of the above would be to insert a record into the "foos" table and return a message to the output

channel indicating the number of rows affected (the payload is a map {UPDATED=1}.

If the update query is an insert with auto-generated keys, the reply message can be populated with the generated

keys by adding keys-generated="true" to the above example (this is not the default because it is not

supported by some database platforms). For example:

<jdbc:outbound-gateway

 update="insert into foos (status, name) values (0, :payload[foo])"

 request-channel="input" reply-channel="output" data-source="dataSource"

 keys-generated="true"/>

Instead of the update count or the generated keys, you can also provide a select query to execute and generate

a reply message that way (like the inbound adapter), e.g:

<jdbc:outbound-gateway

 update="insert into foos (id, status, name) values (:headers[$id], 0, :payload[foo])"

 query="select * from foos where id=:headers[$id]"

 request-channel="input" reply-channel="output" data-source="dataSource" />

Like with the adapters there is also the option to provide SqlParameterSourceFactory instances for

request and reply. The default is the same as for the outbound adapter, so the request message is available as

the root of an expression. If keys-generated="true" then the root of the expression is the generated keys (a map

if there is only one or a list of maps if multi-valued).

The outbound gateway requires a reference to either a DataSource or a JdbcTemplate. It can also have a

SqlParameterSourceFactory injected to control the binding of incoming message to the query.

21.4 Message Store

The JDBC module provides an implementation of the Spring Integration MessageStore (important in the

Claim Check pattern) and MessageGroupStore (important in stateful patterns like Aggregator) backed by

a database. Both interfaces are implemented by the JdbcMessageStore and there is also support for configuring

store instances in XML. For example:

<jdbc:message-store id="messageStore" data-source="dataSource"/>

A JdbcTemplate can be specified instead of a DataSource.

Other optional attributes are show in the next example:

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 91

<jdbc:message-store id="messageStore" data-source="dataSource"

 lob-handler="lobHandler" table-prefix="MY_INT_"/>

Here we have specified a LobHandler for dealing with messages as large objects (e.g. often necessary if

using Oracle) and a prefix for the table names in the queries generated by the store. The table name prefix

defaults to "INT_".

Initializing the Database

Spring Integration ships with some sample scripts that can be used to initialize a database. In the spring-

integration-jdbc JAR file you will find scripts in the org.springframework.integration.jdbc

package: there is a create and a drop script example for a range of common database platforms. A common way

to use these scripts is to reference them in a Spring JDBC data source initializer [http://static.springsource.org/

spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182]. Note that the scripts are provided as

samples or specifications of the the required table and column names. You may find that you need to enhance

them for production use (e.g. with index declarations).

Partitioning a Message Store

It is common to use a JdbcMessageStore as a global store for a group of applications, or nodes in the same

application. To provide some portection against name clashes, and to give control over the database meta-data

configuration, the message store allows the tables to be partitioned in two ways. One is to use separate table

names, by changing the prefix as described above, and the other is to specify a "region" name for partitioning

data within a single table. An important use case for this is using the store to manage persistent queues backing

a Spring Integration channel. The message data for a persistent channel is keyed in the store on the channel

name, so if the channel names are not globally unique then there is the danger of channels picking up data

that was not intended for them. To avoid this the message store region can be used to keep data separate for

different physical channels that happen to have the same logical name.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 92

22. JMS Support

Spring Integration provides Channel Adapters for receiving and sending JMS messages. There are actually two

JMS-based inbound Channel Adapters. The first uses Spring's JmsTemplate to receive based on a polling

period. The second is "message-driven" and relies upon a Spring MessageListener container. There is also an

outbound Channel Adapter which uses the JmsTemplate to convert and send a JMS Message on demand.

Whereas the JMS Channel Adapters are intended for unidirectional Messaging (send-only or receive-only),

Spring Integration also provides inbound and outbound JMS Gateways for request/reply operations. The

inbound gateway relies on one of Spring's MessageListener container implementations for Message-driven

reception that is also capable of sending a return value to the "reply-to" Destination as provided by the received

Message. The outbound Gateway sends a JMS Message to a "request-destination" and then receives a reply

Message. The "reply-destination" reference (or "reply-destination-name") can be configured explicitly or else

the outbound gateway will use a JMS TemporaryQueue.

22.1 Inbound Channel Adapter

The inbound Channel Adapter requires a reference to either a single JmsTemplate instance or both

ConnectionFactory and Destination (a 'destinationName' can be provided in place of the 'destination'

reference). The following example defines an inbound Channel Adapter with a Destination reference.

 <jms:inbound-channel-adapter id="jmsIn" destination="inQueue" channel="exampleChannel">

 <integration:poller fixed-rate="30000"/>

 </jms:inbound-channel-adapter>

Tip
Notice from the configuration that the inbound-channel-adapter is a Polling Consumer. That means

that it invokes receive() when triggered. This should only be used in situations where polling is

done relatively infrequently and timeliness is not important. For all other situations (a vast majority

of JMS-based use-cases), the message-driven-channel-adapter described below is a better option.

Note
All of the JMS adapters that require a reference to the ConnectionFactory will automatically look

for a bean named "connectionFactory" by default. That is why you don't see a "connection-factory"

attribute in many of the examples. However, if your JMS ConnectionFactory has a different bean

name, then you will need to provide that attribute.

If 'extract-payload' is set to true (which is the default), the received JMS Message will be passed through the

MessageConverter. When relying on the default SimpleMessageConverter, this means that the resulting Spring

Integration Message will have the JMS Message's body as its payload. A JMS TextMessage will produce a

String-based payload, a JMS BytesMessage will produce a byte array payload, and a JMS ObjectMessage's

Serializable instance will become the Spring Integration Message's payload. If instead you prefer to have the

raw JMS Message as the Spring Integration Message's payload, then set 'extract-payload' to false.

 <jms:inbound-channel-adapter id="jmsIn"

 destination="inQueue"

 channel="exampleChannel"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 93

 extract-payload="false"/>

 <integration:poller fixed-rate="30000"/>

 </jms:inbound-channel-adapter>

22.2 Message-Driven Channel Adapter

The "message-driven-channel-adapter" requires a reference to either an instance of a Spring MessageListener

container (any subclass of AbstractMessageListenerContainer) or both ConnectionFactory

and Destination (a 'destinationName' can be provided in place of the 'destination' reference). The following

example defines a message-driven Channel Adapter with a Destination reference.

 <jms:message-driven-channel-adapter id="jmsIn" destination="inQueue" channel="exampleChannel"/>

Note
The Message-Driven adapter also accepts several properties that pertain to the MessageListener

container. These values are only considered if you do not provide an actual 'container' reference.

In that case, an instance of DefaultMessageListenerContainer will be created and configured

based on these properties. For example, you can specify the "transaction-manager" reference,

the "concurrent-consumers" value, and several other property references and values. Refer to the

JavaDoc and Spring Integration's JMS Schema (spring-integration-jms-2.0.xsd) for more detail.

The 'extract-payload' property has the same effect as described above, and once again its default value is 'true'.

The poller sub-element is not applicable for a message-driven Channel Adapter, as it will be actively invoked.

For most usage scenarios, the message-driven approach is better since the Messages will be passed along to

the MessageChannel as soon as they are received from the underlying JMS consumer.

22.3 Outbound Channel Adapter

The JmsSendingMessageHandler implements the MessageHandler interface and is capable of

converting Spring Integration Messages to JMS messages and then sending to a JMS destination. It

requires either a 'jmsTemplate' reference or both 'connectionFactory' and 'destination' references (again, the

'destinationName' may be provided in place of the 'destination'). As with the inbound Channel Adapter, the

easiest way to configure this adapter is with the namespace support. The following configuration will produce

an adapter that receives Spring Integration Messages from the "exampleChannel" and then converts those into

JMS Messages and sends them to the JMS Destination reference whose bean name is "outQueue".

<jms:outbound-channel-adapter id="jmsOut" destination="outQueue" channel="exampleChannel"/>

As with the inbound Channel Adapters, there is an 'extract-payload' property. However, the meaning is reversed

for the outbound adapter. Rather than applying to the JMS Message, the boolean property applies to the Spring

Integration Message payload. In other words, the decision is whether to pass the Spring Integration Message

itself as the JMS Message body or whether to pass the Spring Integration Message's payload as the JMS

Message body. The default value is once again 'true'. Therefore, if you pass a Spring Integration Message whose

payload is a String, a JMS TextMessage will be created. If on the other hand you want to send the actual Spring

Integration Message to another system via JMS, then simply set this to 'false'.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 94

Note
Regardless of the boolean value for payload extraction, the Spring Integration MessageHeaders

will map to JMS properties as long as you are relying on the default converter or provide

a reference to another instance of HeaderMappingMessageConverter (the same holds true for

'inbound' adapters except that in those cases, it's the JMS properties mapping to Spring Integration

MessageHeaders).

22.4 Inbound Gateway

Spring Integration's message-driven JMS inbound-gateway delegates to a MessageListener

container, supports dynamically adjusting concurrent consumers, and can also handle replies. The

inbound gateway requires references to a ConnectionFactory, and a request Destination (or

'requestDestinationName'). The following example defines a JMS "inbound-gateway" that receives from

the JMS queue referenced by the bean id "inQueue" and sends to the Spring Integration channel named

"exampleChannel".

 <jms:inbound-gateway id="jmsInGateway"

 request-destination="inQueue"

 request-channel="exampleChannel"/>

Since the gateways provide request/reply behavior instead of unidirectional send or receive, they also have two

distinct properties for the "payload extraction" (as discussed above for the Channel Adapters' 'extract-payload'

setting). For an inbound-gateway, the 'extract-request-payload' property determines whether the received JMS

Message body will be extracted. If 'false', the JMS Message itself will become the Spring Integration Message

payload. The default is 'true'.

Similarly, for an inbound-gateway the 'extract-reply-payload' property applies to the Spring Integration

Message that is going to be converted into a reply JMS Message. If you want to pass the whole Spring

Integration Message (as the body of a JMS ObjectMessage) then set this to 'false'. By default, it is also 'true'

such that the Spring Integration Message payload will be converted into a JMS Message (e.g. String payload

becomes a JMS TextMessage).

As with anything else, Gateway invocation might result in error. By default Producer will not be notified of

the errors thta might have occurredon ythe consumer side and will time out waiting for the reply. However

there might be times when you to communicate error condition back to the consumer, in other words treat the

Exception as a valid reply valid reply by mapping it to a Message. To accomplish this JMS Inbound Gateway

provides support for Exception mappers via exception-mapper attribute.

<int-jms:inbound-gateway request-destination="requestQueue"

 request-channel="jmsinputchannel"

 exception-mapper="errorMessageMapper"/>

<bean id="exceptionMapper" class="foo.bar.SampleExceptionMapper"/>

foo.bar.SampleExceptionMapper is the implementation of

org.springframework.integration.message.InboundMessageMapper which only defines one method

toMessage(Object object).

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 95

public static class SampleExceptionMapper implements InboundMessageMapper<Throwable>{

 public Message<?> toMessage(Throwable object) throws Exception {

 MessageHandlingException ex = (MessageHandlingException) object;

 return MessageBuilder.withPayload("Error happened in message: " +

 ex.getFailedMessage().getPayload()).build();

 }

}

22.5 Outbound Gateway

The outbound Gateway creates JMS Messages from Spring Integration Messages and then sends to a 'request-

destination'. It will then handle the JMS reply Message either by using a selector to receive from the 'reply-

destination' that you configure, or if no 'reply-destination' is provided, it will create JMS TemporaryQueues.

Notice that the "reply-channel" is also provided.

 <jms:outbound-gateway id="jmsOutGateway"

 request-destination="outQueue"

 request-channel="outboundJmsRequests"

 reply-channel="jmsReplies"/>

The 'outbound-gateway' payload extraction properties are inversely related to those of the 'inbound-

gateway' (see the discussion above). That means that the 'extract-request-payload' property value applies to the

Spring Integration Message that is being converted into a JMS Message to be sent as a request, and the 'extract-

reply-payload' property value applies to the JMS Message that is received as a reply and then converted into a

Spring Integration Message to be subsequently sent to the 'reply-channel' as shown in the example configuration

above.

22.6 Message Conversion, Marshalling and Unmarshalling

If you need to convert the message, all JMS adapters and gateways, allow you to provide

a MessageConverter via message-converter attribute. Simply provide the bean name of

an instance of MessageConverter that is available within the same ApplicationContext.

Also, to provide some consistency with Marshaller and Unmarshaller interfaces Spring provides

MarshallingMessageConverter which you can configure with your own custom Marshallers and

Unmarshallers

 <int-jms:inbound-gateway request-destination="requestQueue"

 request-channel="inbound-gateway-channel"

 message-converter="marshallingMessageConverter"/>

 <bean id="marshallingMessageConverter"

 class="org.springframework.jms.support.converter.MarshallingMessageConverter">

 <constructor-arg>

 <bean class="org.bar.SampleMarshaller"/>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.bar.SampleUnmarshaller"/>

 </constructor-arg>

 </bean>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 96

Note
Note, however, that when you provide your own MessageConverter instance, it will still be

wrapped within the HeaderMappingMessageConverter. This means that the 'extract-request-

payload' and 'extract-reply-payload' properties may effect what actual objects are passed

to your converter. The HeaderMappingMessageConverter itself simply delegates to a target

MessageConverter while also mapping the Spring Integration MessageHeaders to JMS Message

properties and vice-versa.

22.7 JMS Backed Message Channels

The Channel Adapters and Gateways featured above are all intended for applications that are integrating with

other external systems. The inbound options assume that some other system is sending JMS Messages to the

JMS Destination and the outbound options assume that some other system is receiving from the Destination.

The other system may or may not be a Spring Integration application. Of course, when sending the Spring

Integration Message instance as the body of the JMS Message itself (with the 'extract-payload' value set

to false), it is assumed that the other system is based on Spring Integration. However, that is by no means

a requirement. That flexibility is one of the benefits of using a Message-based integration option with the

abstraction of "channels" or Destinations in the case of JMS.

There are cases where both the producer and consumer for a given JMS Destination are intended to be part of

the same application, running within the same process. This could be accomplished by using a pair of inbound

and outbound Channel Adapters. The problem with that approach is that two adapters are required even though

conceptually the goal is to have a single Message Channel. A better option is supported as of Spring Integration

version 2.0. Now it is possible to define a single "channel" when using the JMS namespace.

 <jms:channel id="jmsChannel" queue="exampleQueue"/>

The channel in the above example will behave much like a normal <channel/> element from the main Spring

Integration namespace. It can be referenced by both "input-channel" and "output-channel" attributes of any

endpoint. The difference is that this channel is backed by a JMS Queue instance named "exampleQueue".

This means that asynchronous messaging is possible between the producing and consuming endpoints, but

unlike the simpler asynchronous Message Channels created by adding a <queue/> sub-element within a non-

JMS <channel/> element, the Messages are not just stored in an in-memory queue. Instead those Messages are

passed within a JMS Message body, and the full power of the underlying JMS provider is then available for

that channel. Probably the most common rationale for using this alternative would be to take advantage of the

persistence made available by the store and forward approach of JMS messaging. If configured properly, the

JMS-backed Message Channel also supports transactions. In other words, a producer would not actually write

to a transactional JMS-backed channel if its send operation is part of a transaction that rolls back. Likewise,

a consumer would not physically remove a JMS Message from the channel if the reception of that Message

is part of a transaction that rolls back. Note that the producer and consumer transactions are separate in such

a scenario. This is significantly different than the propagation of a transactional context across the simple,

synchronous <channel/> element that has no <queue/> sub-element.

Since the example above is referencing a JMS Queue instance, it will act as a point-to-point channel. If on

the other hand, publish/subscribe behavior is needed, then a separate element can be used, and a JMS Topic

can be referenced instead.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 97

 <jms:publish-subscribe-channel id="jmsChannel" topic="exampleTopic"/>

For either type of JMS-backed channel, the name of the destination may be provided instead of a reference.

 <jms:channel id="jmsQueueChannel" queue-name="exampleQueueName"/>

 <jms:publish-subscribe-channel id="jmsTopicChannel" topic-name="exampleTopicName"/>

In the examples above, the Destination names would be resolved by Spring's

default DynamicDestinationResolver implementation, but any implementation of the

DestinationResolver interface could be provided. Also, the JMS ConnectionFactory is a required

property of the channel, but by default the expected bean name would be "connectionFactory". The example

below provides both a custom instance for resolution of the JMS Destination names and a different name for

the ConnectionFactory.

 <jms:channel id="jmsChannel" queue-name="exampleQueueName"

 destination-resolver="customDestinationResolver"

 connection-factory="customConnectionFactory"/>

22.8 JMS Samples

To experiment with these JMS adapters, check out the samples available within the "samples/jms" directory in

the distribution. There are two samples included. One provides inbound and outbound Channel Adapters, and

the other provides inbound and outbound Gateways. They are configured to run with an embedded ActiveMQ

process, but the "common.xml" file can easily be modified to support either a different JMS provider or a

standalone ActiveMQ process. In other words, you can split the configuration so that the inbound and outbound

adapters are running in separate JVMs. If you have ActiveMQ installed, simply modify the "brokerURL"

property within the configuration to use "tcp://localhost:61616" for example (instead of "vm://localhost"). Both

of the samples accept input via stdin and then echo back to stdout. Look at the configuration to see how these

messages are routed over JMS.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 98

23. Web Services Support

23.1 Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both of

which build upon the Spring Web Services [http://static.springframework.org/spring-ws/sites/1.5/] project:

SimpleWebServiceOutboundGateway and MarshallingWebServiceOutboundGateway.

The former will accept either a String or javax.xml.transform.Source as the message payload.

The latter provides support for any implementation of the Marshaller and Unmarshaller interfaces.

Both require a Spring Web Services DestinationProvider for determining the URI of the Web Service

to be called.

 simpleGateway = new SimpleWebServiceOutboundGateway(destinationProvider);

 marshallingGateway = new MarshallingWebServiceOutboundGateway(destinationProvider, marshaller);

Note
When using the namespace support described below, you will only need to set a URI. Internally,

the parser will configure a fixed URI DestinationProvider implementation. If you do need

dynamic resolution of the URI at runtime, however, then the DestinationProvider can provide

such behavior as looking up the URI from a registry. See the Spring Web Services javadoc

[http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html] for more information about

the DestinationProvider strategy.

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering client

access [http://static.springframework.org/spring-ws/site/reference/html/client.html] as well as the chapter

covering Object/XML mapping [http://static.springframework.org/spring-ws/site/reference/html/oxm.html].

23.2 Inbound Web Service Gateways

To send a message to a channel upon receiving a Web Service invocation, there are two options again:

SimpleWebServiceInboundGateway and MarshallingWebServiceInboundGateway. The

former will extract a javax.xml.transform.Source from the WebServiceMessage and set it as the

message payload. The latter provides support for implementation of the Marshaller and Unmarshaller

interfaces. If the incoming web service message is a SOAP message the SOAP Action header will be added to

the headers of the Message that is forwarded onto the request channel.

 simpleGateway = new SimpleWebServiceInboundGateway();

 simpleGateway.setRequestChannel(forwardOntoThisChannel);

 simpleGateway.setReplyChannel(listenForResponseHere); //Optional

 marshallingGateway = new MarshallingWebServiceInboundGateway(marshaller);

 //set request and optionally reply channel

Both gateways implement the Spring Web Services MessageEndpoint interface, so they can be configured

with a MessageDispatcherServlet as per standard Spring Web Services configuration.

For more detail on how to use these components, see the Spring Web Services reference guide's

chapter covering creating a Web Service [http://static.springframework.org/spring-ws/sites/1.5/reference/html/

http://static.springframework.org/spring-ws/sites/1.5/
http://static.springframework.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 99

server.html]. The chapter covering Object/XML mapping [http://static.springframework.org/spring-ws/site/

reference/html/oxm.html] is also applicable again.

23.3 Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway" element from the "ws"

namespace:

<ws:outbound-gateway id="simpleGateway"

 request-channel="inputChannel"

 uri="http://example.org"/>

Note
Notice that this example does not provide a 'reply-channel'. If the Web Service were to return

a non-empty response, the Message containing that response would be sent to the reply channel

provided in the request Message's REPLY_CHANNEL header, and if that were not available a

channel resolution Exception would be thrown. If you want to send the reply to another channel

instead, then provide a 'reply-channel' attribute on the 'outbound-gateway' element.

Tip
When invoking a Web Service that returns an empty response after using a String payload for

the request Message, no reply Message will be sent by default. Therefore you don't need to set a

'reply-channel' or have a REPLY_CHANNEL header in the request Message. If for any reason

you actually do want to receive the empty response as a Message, then provide the 'ignore-empty-

responses' attribute with a value of false (this only applies for Strings, because using a Source

or Document object simply leads to a NULL response and will therefore never generate a reply

Message).

To set up an inbound Web Service Gateway, use the "inbound-gateway":

<ws:inbound-gateway id="simpleGateway"

 request-channel="inputChannel"/>

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references. For outbound:

<ws:outbound-gateway id="marshallingGateway"

 request-channel="requestChannel"

 uri="http://example.org"

 marshaller="someMarshaller"

 unmarshaller="someUnmarshaller"/>

And for inbound:

<ws:inbound-gateway id="marshallingGateway"

 request-channel="requestChannel"

 marshaller="someMarshaller"

 unmarshaller="someUnmarshaller"/>

Note
Most Marshaller implementations also implement the Unmarshaller interface. When

using such a Marshaller, only the "marshaller" attribute is necessary. Even when using a

http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 100

Marshaller, you may also provide a reference for the "request-callback" on the outbound

gateways.

For either outbound gateway type, a "destination-provider" attribute can be specified instead of the

"uri" (exactly one of them is required). You can then reference any Spring Web Services DestinationProvider

implementation (e.g. to lookup the URI at runtime from a registry).

For either outbound gateway type, the "message-factory" attribute can also be configured with a reference to

any Spring Web Services WebServiceMessageFactory implementation.

For the simple inbound gateway type, the "extract-payload" attribute can be set to false to forward the entire

WebServiceMessage instead of just its payload as a Message to the request channel. This might be useful,

for example, when a custom Transformer works against the WebServiceMessage directly.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 101

24. RMI Support

24.1 Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over multiple JVMs.

The first section will deal with sending messages over RMI. The second section shows how to receive messages

over RMI. The last section shows how to define rmi channel adapters through the namespace support.

24.2 Outbound RMI

To send messages from a channel over RMI, simply define an RmiOutboundGateway. This gateway will

use Spring's RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that to invoke a

remote interface that doesn't use Spring Integration you should use a service activator in combination with

Spring's RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

 <bean id="rmiOutGateway" class=org.spf.integration.rmi.RmiOutboundGateway>

 <constructor-arg value="rmi://host"/>

 <property name="replyChannel" value="replies"/>

 </bean>

24.3 Inbound RMI

To receive messages over RMI you need to use a RmiInboundGateway. This gateway can be configured

like this

 <bean id="rmiOutGateway" class=org.spf.integration.rmi.RmiInboundGateway>

 <property name="requestChannel" value="requests"/>

 </bean>

24.4 RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The following code

snippet shows the different configuration options that are supported.

 <rmi:inbound-gateway id="gatewayWithDefaults" request-channel="testChannel"/>

 <rmi:inbound-gateway id="gatewayWithCustomProperties" request-channel="testChannel"

 expect-reply="false" request-timeout="123" reply-timeout="456"/>

 <rmi:inbound-gateway id="gatewayWithHost" request-channel="testChannel"

 registry-host="localhost"/>

 <rmi:inbound-gateway id="gatewayWithPort" request-channel="testChannel"

 registry-port="1234"/>

 <rmi:inbound-gateway id="gatewayWithExecutorRef" request-channel="testChannel"

 remote-invocation-executor="invocationExecutor"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 102

To configure the outbound gateway you can use the namespace support as well. The following code snippet

shows the different configuration for an outbound rmi gateway.

 <rmi:outbound-gateway id="gateway"

 request-channel="localChannel"

 remote-channel="testChannel"

 host="localhost"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 103

25. HttpInvoker Support

25.1 Introduction

HttpInvoker is a Spring-specific remoting option that essentially enables Remote Procedure Calls (RPC) over

HTTP. In order to accomplish this, an outbound representation of a method invocation is serialized using

standard Java serialization and then passed within an HTTP POST request. After being invoked on the target

system, the method's return value is then serialized and written to the HTTP response. There are two main

requirements. First, you must be using Spring on both sides since the marshalling to and from HTTP requests

and responses is handled by the client-side invoker and server-side exporter. Second, the Objects that you are

passing must implement Serializable and be available on both the client and server.

While traditional RPC provides physical decoupling, it does not offer nearly the same degree of logical

decoupling as a messaging-based system. In other words, both participants in an RPC-based invocation must be

aware of a specific interface and specific argument types. Interestingly, in Spring Integration, the "parameter"

being sent is a Spring Integration Message, and the interface is an internal detail of Spring Integration's

implementation. Therefore, the RPC mechanism is being used as a transport so that from the end user's

perspective, it is not necessary to consider the interface and argument types. It's just another adapter to enable

messaging between two systems.

25.2 HttpInvoker Inbound Gateway

To receive messages over http you can use an HttpInvokerInboundGateway. Here is an example bean

definition:

<bean id="inboundGateway"

 class="org.springframework.integration.httpinvoker.HttpInvokerInboundGateway">

 <property name="requestChannel" ref="requestChannel"/>

 <property name="replyChannel" ref="replyChannel"/>

 <property name="requestTimeout" value="30000"/>

 <property name="replyTimeout" value="10000"/>

</bean>

Because the inbound gateway must be able to receive HTTP requests, it must be configured within a Servlet

container. The easiest way to do this is to provide a servlet definition in web.xml:

<servlet>

 <servlet-name>inboundGateway</servlet-name>

 <servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>

</servlet>

Notice that the servlet name matches the bean name.

Note
If you are running within a Spring MVC application and using the BeanNameHandlerMapping,

then the servlet definition is not necessary. In that case, the bean name for your gateway can be

matched against the URL path just like a Spring MVC Controller bean.

25.3 HttpInvoker Outbound Gateway

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 104

To configure the HttpInvokerOutboundGateway write a bean definition like this:

<bean id="outboundGateway"

 class="org.springframework.integration.httpinvoker.HttpInvokerOutboundGateway">

 <property name="replyChannel" ref="replyChannel"/>

</bean>

The outbound gateway is a MessageHandler and can therefore be registered with either a

PollingConsumer or EventDrivenConsumer. The URL must match that defined by an inbound

HttpInvoker Gateway as described in the previous section.

25.4 HttpInvoker Namespace Support

Spring Integration provides an "httpinvoker" namespace and schema definition. To include it in

your configuration, simply provide the following URI within a namespace declaration: 'http://

www.springframework.org/schema/integration/httpinvoker'. The schema location should then map to 'http://

www.springframework.org/schema/integration/httpinvoker/spring-integration-httpinvoker-2.0.xsd'.

To configure the inbound gateway you can choose to use the namespace support for it. The following code

snippet shows the different configuration options that are supported.

<httpinvoker:inbound-gateway id="inboundGateway"

 request-channel="requestChannel"

 request-timeout="10000"

 expect-reply="false"

 reply-timeout="30000"/>

Note
A 'reply-channel' may also be provided, but it is recommended to rely on the temporary anonymous

channel that will be created automatically for handling replies.

To configure the outbound gateway you can use the namespace support as well. The following code snippet

shows the different configuration for an outbound HttpInvoker gateway. Only the 'url' and 'request-channel'

are required.

<httpinvoker:outbound-gateway id="outboundGateway"

 url="http://localhost:8080/example"

 request-channel="requestChannel"

 request-timeout="5000"

 reply-channel="replyChannel"

 reply-timeout="10000"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 105

26. HTTP Support

26.1 Introduction

The HTTP support allows for the execution of HTTP requests and the processing of inbound HTTP

requests. Because interaction over HTTP is always synchronous, even if all that is returned is a 200

status code, the HTTP support consists of two gateway implementations: HttpInboundEndpoint and

HttpRequestExecutingMessageHandler.

26.2 Http Inbound Gateway

To receive messages over HTTP you need to use an HTTP inbound Channel Adapter or Gateway. In common

with the HttpInvoker support the HTTP inbound adapters need to be deployed within a servlet container. The

easiest way to do this is to provide a servlet definition in web.xml, see Section 25.2, “HttpInvoker Inbound

Gateway” for further details. Below is an example bean definition for a simple HTTP inbound endpoint.

<bean id="httpInbound" class="org.springframework.integration.http.HttpRequestHandlingMessagingGateway">

 <property name="requestChannel" ref="httpRequestChannel" />

 <property name="replyChannel" ref="httpReplyChannel" />

</bean>

The HttpRequestHandlingMessagingGateway accepts a list of HttpMessageConverter

instances or else relies on a default list. The converters allow customization of the mapping from

HttpServletRequest to Message. The default converters encapsulate simple strategies, which for

example will create a String message for a POST request where the content type starts with "text", see the

Javadoc for full details.

Starting with this release MultiPart File support was implemented. If the request has been wrapped as a

MultipartHttpServletRequest, when using the default converters, that request will be converted to a Message

payload that is a MultiValueMap containing values that may be byte arrays, Strings, or instances of Spring's

MultipartFile depending on the content type of the individual parts.

Note
The HTTP inbound Endpoint will locate a MultipartResolver in the context if one exists with the

bean name "multipartResolver" (the same name expected by Spring's DispatcherServlet). If it does

in fact locate that bean, then the support for MultipartFiles will be enabled on the inbound request

mapper. Otherwise, it will fail when trying to map a multipart-file request to a Spring Integration

Message. For more on Spring's support for MultipartResolvers, refer to the Spring Reference

Manual [http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart].

In sending a response to the client there are a number of ways to customize the behavior of the gateway.

By default the gateway will simply acknowledge that the request was received by sending a 200 status

code back. It is possible to customize this response by providing a 'viewName' to be resolved by the Spring

MVC ViewResolver. In the case that the gateway should expect a reply to the Message then setting the

expectReply flag (constructor argument) will cause the gateway to wait for a reply Message before creating

an HTTP response. Below is an example of a gateway configured to serve as a Spring MVC Controller with a

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart
http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart
http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 106

view name. Because of the constructor arg value of TRUE, it wait for a reply. This also shows how to customize

the HTTP methods accepted by the gateway, which are POST and GET by default.

<bean id="httpInbound" class="org.springframework.integration.http.HttpRequestHandlingController">

 <constructor-arg value="true" /> <!-- indicates that a reply is expected -->

 <property name="requestChannel" ref="httpRequestChannel" />

 <property name="replyChannel" ref="httpReplyChannel" />

 <property name="viewName" value="jsonView" />

 <property name="supportedMethodNames" >

 <list>

 <value>GET</value>

 <value>DELETE</value>

 </list>

 </property>

 <property name="expectReply" value="true" />

</bean>

The reply message will be available in the Model map. The key that is used for that map entry by default is

'reply', but this can be overridden by setting the 'replyKey' property on the endpoint's configuration.

26.3 Http Outbound Gateway

To configure the HttpRequestExecutingMessageHandler write a bean definition like this:

<bean id="httpOutbound" class="org.springframework.integration.http.HttpRequestExecutingMessageHandler" >

 <constructor-arg value="http://localhost:8080/example" />

 <property name="outputChannel" ref="responseChannel" />

</bean>

This bean definition will execute HTTP requests by delegating to a RestTemplate. That template in turn

delegates to a list of HttpMessageConverters to generate the HTTP request body from the Message payload.

You can configure those converters as well as the ClientHttpRequestFactory instance to use:

<bean id="httpOutbound" class="org.springframework.integration.http.HttpRequestExecutingMessageHandler" >

 <constructor-arg value="http://localhost:8080/example" />

 <property name="outputChannel" ref="responseChannel" />

 <property name="messageConverters" ref="messageConverterList" />

 <property name="requestFactory" ref="customRequestFactory" />

</bean>

By default the HTTP request will be generated using an instance of

SimpleClientHttpRequestFactory which uses the JDK HttpURLConnection. Use

of the Apache Commons HTTP Client is also supported through the provided

CommonsClientHttpRequestFactory which can be injected as shown above.

26.4 HTTP Namespace Support

Spring Integration provides an "http" namespace and schema definition. To include it in your configuration,

simply provide the following URI within a namespace declaration: 'http://www.springframework.org/

schema/integration/http'. The schema location should then map to 'http://www.springframework.org/schema/

integration/http/spring-integration-http.xsd'.

To configure an inbound http channel adapter which is an instance of HttpInboundEndpoint configured

not to expect a response.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 107

 <http:inbound-channel-adapter id="httpChannelAdapter" channel="requests" supported-methods="PUT, DELETE"/>

To configure an inbound http gateway which expects a response.

 <http:inbound-gateway id="inboundGateway" request-channel="requests" reply-channel="responses"/>

To configure the outbound gateway you can use the namespace support as well. The following code snippet

shows the different configuration options for an outbound Http gateway. Most importantly, notice that the 'http-

method' and 'expected-response-type' are provided. Those are two of the most commonly configured values.

The default http-method is POST, and the default response type is null. With a null response type, the payload

of the reply Message would only contain the status code (e.g. 200) as long as it's a successful status (non-

successful status codes will throw Exceptions). If you are expecting a different type, such as a String, then

provide that fully-qualified class name as shown below.

<http:outbound-gateway id="example"

 request-channel="requests"

 url="http://localhost/test"

 http-method="POST"

 extract-request-payload="false"

 expected-response-type="java.lang.String"

 charset="UTF-8"

 request-factory="requestFactory"

 request-timeout="1234"

 reply-channel="replies"/>

If your outbound adapter is to be used in a unidirectional way, then you can use an outbound-channel-adapter

instead. This means that a successful response will simply execute without sending any Messages to a reply

channel. In the case of any non-successful response status code, it will throw an exception. The configuration

looks very similar to the gateway:

<http:outbound-channel-adapter id="example"

 url="http://localhost/example"

 http-method="GET"

 channel="requests"

 charset="UTF-8"

 extract-payload="false"

 expected-response-type="java.lang.String"

 request-factory="someRequestFactory"

 order="3"

 auto-startup="false"/>

26.5 HTTP Samples

Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
(server)

This example demonstrates how simple it is to send a Multipart HTTP request via Spring's RestTemplate

and receive it by Spring Integration HTTP Inbound Adapter. All we are doing is creating MultiValueMap

and populating it with multi-part data. RestTemplate will take care of the rest by converting it

to MultipartHttpServletRequest THis particular client will send a multipart Http Request which

contains the name of the company as well as the image file with company logo.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 108

RestTemplate template = new RestTemplate();

String uri = "http://localhost:8080/multipart-http/inboundAdapter.htm";

Resource s2logo =

 new ClassPathResource("org/springframework/integration/samples/multipart/spring09_logo.png");

MultiValueMap map = new LinkedMultiValueMap();

map.add("company", "SpringSource");

map.add("company-logo", s2logo);

HttpHeaders headers = new HttpHeaders();

headers.setContentType(new MediaType("multipart", "form-data"));

HttpEntity request = new HttpEntity(map, headers);

ResponseEntity<?> httpResponse = template.exchange(uri, HttpMethod.POST, request, null);

That is all for the client.

On the server side we have the following configuration:

<int-http:inbound-channel-adapter id="httpInboundAdapter"

 channel="receiveChannel"

 name="/inboundAdapter.htm"

 supported-methods="GET, POST" />

<int:channel id="receiveChannel"/>

<int:service-activator input-channel="receiveChannel">

 <bean class="org.springframework.integration.samples.multipart.MultipartReceiever"/>

</int:service-activator>

<bean id="multipartResolver"

 class="org.springframework.web.multipart.commons.CommonsMultipartResolver"/>

The 'httpInboundAdapter' will receive the request, convert it to a Message with a payload

as LinkedMultiValueMap which we are parsing in the 'multipartReceiver' service-activator;

public void recieve(LinkedMultiValueMap<String, Object> multipartRequest){

 System.out.println("### Successfully recieved multipart request ###");

 for (String elementName : multipartRequest.keySet()) {

 if (elementName.equals("company")){

 System.out.println("\t" + elementName + " - " +

 ((String[]) multipartRequest.getFirst("company"))[0]);

 } else if (elementName.equals("company-logo")){

 System.out.println("\t" + elementName + " - as UploadedMultipartFile: " +

 ((UploadedMultipartFile) multipartRequest.getFirst("company-logo")).getOriginalFilename());

 }

 }

}

You should see the following output:

Successfully recieved multipart request

 company - SpringSource

 company-logo - as UploadedMultipartFile: spring09_logo.png

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 109

27. TCP and UDP Support

Spring Integration provides Channel Adapters for receiving and sending messages over internet protocols. Both

UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) adapters are provided. Each adapter

provides for one-way communication over the underlying protocol. In addition, simple inbound and outbound

tcp gateways are provided. These are used when two-way communication is needed.

27.1 Introduction

Two flavors each of UDP inbound and outbound adapters are provided

UnicastSendingMessageHandler sends a datagram packet to a single

destination. UnicastReceivingChannelAdapter receives incoming datagram packets.

MulticastSendingMessageHandler sends (broadcasts) datagram packets to a multicast address.

MulticastReceivingChannelAdapter receives incoming datagram packets by joining to a multicast

address.

TCP inbound and outbound adapters are provided TcpSendingMessageHandler sends messages over

TCP. TcpReceivingChannelAdapter receives messages over TCP.

An inbound TCP gateway is provided; this allows for simple request/response processing. While the gateway

can support any number of connections, each connection can only process serially. The thread that reads from

the socket waits for, and sends, the response before reading again. If the connection factory is configured for

single use connections, the connection is closed after the socket times out.

An outbound TCP gateway is provided; this allows for simple request/response processing. If the associated

connection factory is configured for single use connections, a new connection is immediately created for each

new request. Otherwise, if the connection is in use, the calling thread blocks on the connection until either a

response is received or a timeout or I/O error occurs.

27.2 UDP Adapters

 <ip:udp-outbound-channel-adapter id="udpOut"

 host="somehost"

 port="11111"

 multicast="false"

 channel="exampleChannel" />

A simple UDP outbound channel adapter.

Tip
When setting multicast to true, provide the multicast address in the host attribute.

UDP is an efficient, but unreliable protocol. Two attributes are added to improve reliability. When check-length

is set to true, the adapter precedes the message data with a length field (4 bytes in network byte order). This

enables the receiving side to verify the length of the packet received. If a receiving system uses a buffer that

is too short the contain the packet, the packet can be truncated. The length header provides a mechanism to

detect this.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 110

 <ip:udp-outbound-channel-adapter id="udpOut"

 host="somehost"

 port="11111"

 multicast="false"

 check-length="true"

 channel="exampleChannel" />

An outbound channel adapter that adds length checking to the datagram packets.

Tip
The recipient of the packet must also be configured to expect a length to precede the actual data.

For a Spring Integration UDP inbound channel adapter, set its check-length attribute.

The second reliability improvement allows an application-level acknowledgment protocol to be used. The

receiver must send an acknowledgment to the sender within a specified time.

 <ip:udp-outbound-channel-adapter id="udpOut"

 host="somehost"

 port="11111"

 multicast="false"

 check-length="true"

 acknowledge="true"

 ack-host="thishost"

 ack-port="22222"

 ack-timeout="10000"

 channel="exampleChannel" />

An outbound channel adapter that adds length checking to the datagram packets and waits for an

acknowledgment.

Tip
Setting acknowledge to true implies the recipient of the packet can interpret the header added to

the packet containing acknowledgment data (host and port). Most likely, the recipient will be a

Spring Integration inbound channel adapter.

Tip
When multicast is true, an additional attribute min-acks-for-success specifies how many

acknowledgments must be received within the ack-timeout.

For even more reliable networking, TCP can be used.

 <ip:udp-inbound-channel-adapter id="udpReceiver"

 channel="udpOutChannel"

 port="11111"

 receive-buffer-size="500"

 multicast="false"

 check-length="true" />

A basic unicast inbound udp channel adapter.

 <ip:udp-inbound-channel-adapter id="udpReceiver"

 channel="udpOutChannel"

 port="11111"

 receive-buffer-size="500"

 multicast="true"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 111

 multicast-address="225.6.7.8"

 check-length="true" />

A basic multicast inbound udp channel adapter.

27.3 TCP Connection Factories

For TCP, the configuration of the underlying connection is provided using a Connection Factory. Two

types of connection factory are provided; a client connection factory and a server connection factory. Client

connection factories are used to establish outgoing connections; Server connection factories listen for incoming

connections.

A client connection factory is used by an outbound channel adapter but a reference to a client connection

factory can also be provided to an inbound channel adapter and that adapter will receive any incoming messages

received on connections created by the outbound adapter.

A server connection factory is used by an inbound channel adapter or gateway (in fact the connection factory

will not function without one). A reference to a server connection factory can also be provided to an outbound

adapter; that adapter can then be used to send replies to incoming messages to the same connection.

Tip
Reply messages will only be routed to the connection if the reply contains the header

$ip_connection_id that was inserted into the original message by the connection factory.

Tip
This is the extent of message correlation performed when sharing connection factories between

inbound and outbound adapters. Such sharing allows for asynchronous two-way communication

over TCP. Only payload information is transferred using TCP; therefore any message correlation

must be performed by downstream components such as aggregators or other endpoints.

A maximum of one adapter of each type may be given a reference to a connection factory.

Connection factories using java.net.Socket and java.nio.channel.SocketChannel are

provided.

 <ip:tcp-connection-factory id="server"

 type="server"

 port="1234"

 />

A simple server connection factory that uses java.net.Socket connections.

 <ip:tcp-connection-factory id="server"

 type="server"

 port="1234"

 using-nio="true"

 />

A simple server connection factory that uses java.nio.channel.SocketChannel connections.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 112

 <ip:tcp-connection-factory id="client"

 type="client"

 host="localhost"

 port="1234"

 single-use="true"

 so-timeout="10000"

 />

A client connection factory that uses java.net.Socket connections and creates a new connection for each

message.

 <ip:tcp-connection-factory id="client"

 type="client"

 host="localhost"

 port="1234"

 single-use="true"

 so-timeout="10000"

 using-nio=true

 />

A client connection factory that uses java.nio.channel.Socket connections and creates a new

connection for each message.

TCP is a streaming protocol; this means that some structure has to be provided to data transported over

TCP, so the receiver can demarcate the data into discrete messages. Connection factories are configured

to use (de)serializers to convert between the message payload and the bits that are sent over TCP.

This is accomplished by providing a deserializer and serializer for inbound and outbound messages

respectively. Four standard (de)serializers are provided; the first is ByteArrayCrlfSerializer, which

can convert a byte array to a stream of bytes followed by carriage return and linefeed characters (\r\n).

This is the default (de)serializer and can be used with telnet as a client, for example. The second is is

ByteArrayStxEtxSerializer, which can convert a byte array to a stream of bytes preceded by an

STX (0x02) and followed by an ETX (0x03). The third is ByteArrayLengthHeaderSerializer,

which can convert a byte array to a stream of bytes preceded by a 4 byte binary length

in network byte order. Each of these is a subclass of AbstractByteArraySerializer

which implements both org.springframework.core.serializer.Serializer and

org.springframework.core.serializer.Deserializer. For backwards compatibility,

connections using any subclass of AbstractByteArraySerializer for serialization will also

accept a String which will be converted to a byte array first. Each of these (de)serializers

converts an input stream containing the corresponding format to a byte array payload. The

fourth standard serializer is org.springframework.core.serializer.DefaultSerializer

which can be used to convert Serializable objects using java serialization.

org.springframework.core.serializer.DefaultDeserializer is provided for inbound

deserialization of streams containing Serializable objects. To implement a custom

(de)serializer pair, implement the org.springframework.core.serializer.Deserializer

and org.springframework.core.serializer.Serializer interfaces. If you do not wish to

use the default (de)serializer (ByteArrayCrLfSerializer), you must supply serializer and

deserializer attributes on the connection factory (example below).

 <bean id="javaSerializer"

 class="org.springframework.core.serializer.DefaultSerializer" />

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 113

 <bean id="javaDeserializer"

 class="org.springframework.core.serializer.DefaultDeserializer" />

 <ip:tcp-connection-factory id="server"

 type="server"

 port="1234"

 deserializer="JavaDeserializer"

 serializer="javaSerializer"

 />

A server connection factory that uses java.net.Socket connections and uses Java serialization on the

wire.

For full details of the attributes available on connection factories, see the reference at the end of this section.

27.4 Tcp Connection Interceptors

Connection factories can be configured with a reference to a

TcpConnectionInterceptorFactoryChain. Interceptors can be used to add behavior to

connections, such as negotiation, security, and other setup. No interceptors are currently provided by

the framework but, for an example, see the InterceptedSharedConnectionTests in the source

repository.

The HelloWorldInterceptor used in the test case works as follows:

When configured with a client connection factory, when the first message is sent over a connection that is

intercepted, the interceptor sends 'Hello' over the connection, and expects to receive 'world!'. When that occurs,

the negotiation is complete and the original message is sent; further messages that use the same connection are

sent without any additional negotiation.

When configured with a server connection factory, the interceptor requires the first message to be 'Hello' and,

if it is, returns 'world!'. Otherwise it throws an exception causing the connection to be closed.

All TcpConnection methods are intercepted. Interceptor instances are created for each connection

by an interceptor factory. If an interceptor is stateful, the factory should create a new instance

for each connection. Interceptor factories are added to the configuration of an interceptor

factory chain, which is provided to a connection factory using the interceptor-factory

attribute. Interceptors must implement the TcpConnectionInterceptor interface; factories

must implement the TcpConnectionInterceptorFactory interface. A convenience class

AbstractTcpConnectionInterceptor is provided with passthrough methods; by extending this class,

you only need to implement those methods you wish to intercept.

<bean id="helloWorldInterceptorFactory"

 class="org.springframework.integration.ip.tcp.connection.TcpConnectionInterceptorFactoryChain">

 <property name="interceptors">

 <array>

 <bean class="org.springframework.integration.ip.tcp.connection.HelloWorldInterceptorFactory"/>

 </array>

 </property>

</bean>

<int-ip:tcp-connection-factory id="server"

 type="server"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 114

 port="12345"

 using-nio="true"

 single-use="true"

 interceptor-factory-chain="helloWorldInterceptorFactory"

/>

<int-ip:tcp-connection-factory id="client"

 type="client"

 host="localhost"

 port="12345"

 single-use="true"

 so-timeout="100000"

 using-nio="true"

 interceptor-factory-chain="helloWorldInterceptorFactory"

/>

Configuring a connection interceptor factory chain.

27.5 TCP Adapters

TCP inbound and outbound channel adapters that utilize the above connection factories are provided. These

adapters have just 2 attributes connection-factory and channel. The channel attribute specifies

the channel on which messages arrive at an outbound adapter and on which messages are placed by an

inbound adapter. The connection-factory attribute indicates which connection factory is to be used to manage

connections for the adapter. While both inbound and outbound adapters can share a connection factory, server

connection factories are always 'owned' by an inbound adapter; client connection factories are always 'owned'

by an outbound adapter. One, and only one, adapter of each type may get a reference to a connection factory.

 <bean id="javaSerializer"

 class="org.springframework.core.serializer.DefaultSerializer" />

 <bean id="javaDeserializer"

 class="org.springframework.core.serializer.DefaultDeserializer" />

 <int-ip:tcp-connection-factory id="server"

 type="server"

 port="1234"

 deserializer="javaDeserializer"

 serializer="javaSerializer"

 using-nio="true"

 single-use="true"

 />

 <int-ip:tcp-connection-factory id="client"

 type="client"

 host="localhost"

 port="#{server.port}"

 single-use="true"

 so-timeout="10000"

 deserializer="javaDeserializer"

 serializer="javaSerializer"

 />

 <int:channel id="input" />

 <int:channel id="replies">

 <int:queue/>

 </int:channel>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 115

 <int-ip:tcp-outbound-channel-adapter id="outboundClient"

 channel="input"

 connection-factory="client"/>

 <int-ip:tcp-inbound-channel-adapter id="inboundClient"

 channel="replies"

 connection-factory="client"/>

 <int-ip:tcp-inbound-channel-adapter id="inboundServer"

 channel="loop"

 connection-factory="server"/>

 <int-ip:tcp-outbound-channel-adapter id="outboundServer"

 channel="loop"

 connection-factory="server"/>

 <int:channel id="loop" />

In this configuration, messages arriving in channel 'input' are serialized over connections created by 'client'

received at the server and placed on channel 'loop'. Since 'loop' is the input channel for 'outboundServer' the

message is simply looped back over the same connection and received by 'inboundClient' and deposited in

channel 'replies'. Java serialization is used on the wire.

27.6 TCP Gateways

The inbound TCP gateway TcpInboundGateway and oubound TCP gateway TcpOutboundGateway

use a server and client connection factory respectively. Each connection can process a single request/response

at a time.

The intbound gateway, after constructing a message with the incoming payload and sending it to the

requestChannel, waits for a response and sends the payload from the response message by writing it to the

connection.

The outbound gateway, after sending a message over the connection, waits for a response and constructs a

response message and puts in on the reply channel. Communications over the connections are single-threaded.

Users should be aware that only one message can be handled at a time and, if another thread attempts to send a

message before the current response has been received, it will block until any previous requests are complete

(or time out). If, however, the client connection factory is configured for single-use connections each new

request gets its own connection and is processed immediately.

 <ip:tcp-inbound-gateway id="inGateway"

 request-channel="tcpChannel"

 reply-channel="replyChannel"

 connection-factory="cfServer"

 reply-timeout="10000"

 />

A simple inbound TCP gateway; if a connection factory configured with the default (de)serializer is used,

messages will be \r\n delimited data and the gateway can be used by a simple client such as telnet.

 <ip:tcp-outbound-gateway id="outGateway"

 request-channel="tcpChannel"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 116

 reply-channel="replyChannel"

 connection-factory="cfClient"

 request-timeout="10000"

 reply-timeout="10000"

 />

A simple oubound TCP gateway.

27.7 IP Configuration Attributes

Table 27.1. Connection Factory Attributes

Attribute Name Client? Server? Allowed Values Attribute Description

type Y Y client, server Determines whether the connection factory

is a client or server.

host Y N The host name or ip address of the

destination.

port Y Y The port.

serializer Y Y An implementation of Serializer used

to serialize the payload. Defaults to

ByteArrayCrLfSerializer

deserializer Y Y An implementation of Deserializer

used to deserialize the payload. Defaults to

ByteArrayCrLfSerializer

using-nio Y Y true, false Whether or not the tcp adapter is using

NIO. Refer to the java.nio package for more

information. Default false.

using-direct-buffers Y N true, false When using NIO, whether or not the

tcp adapter uses direct buffers. Refer to

java.nio.ByteBuffer documentation

for more information. Must be false if using-

nio is false.

so-timeout Y Y See java.net.Socket setSoTimeout()

methods for more information.

so-send-buffer-size Y Y See java.net.Socket

setSendBufferSize() methods for more

information.

so-receive-buffer-

size

Y Y See java.net.Socket

setReceiveBufferSize() methods for more

information.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 117

Attribute Name Client? Server? Allowed Values Attribute Description

so-keep-alive Y Y true, false See java.net.Socket.

setKeepAlive().

so-linger Y Y Sets linger to true with supplied

value. See java.net.Socket.

setSoLinger().

so-tcp-no-delay Y Y true, false See java.net.Socket.

setTcpNoDelay().

so-traffic-class Y Y See java.net.Socket.

setTrafficClass().

local-address N Y On a multi-homed system, specifies an IP

address for the interface to which the socket

will be bound.

task-executor Y Y Specifies a specific Executor to be used

for socket handling. If not supplied, an

internal pooled executor will be used.

Needed on some platforms that require the

use of specific task executors such as a

WorkManagerTaskExecutor. See pool-size

for thread requirements, depending on other

options.

single-use Y Y true, false Specifies whether a connection can be

used for multiple messages. If true, a new

connection will be used for each message.

pool-size Y Y Specifies the concurrency. For tcp, not using

nio, specifies the number of concurrent

connections supported by the adapter. For

tcp, using nio, specifies the number of tcp

fragments that are concurrently reassembled

into complete messages. It only applies in

this sense if task-executor is not configured.

However, pool-size is also used for the

server socket backlog, regardless of whether

an external task executor is used. Defaults to

5.

interceptor-factory-

chain

Y Y Documentation to be supplied.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 118

Table 27.2. UDP Outbound Channel Adapter Attributes

Attribute Name Allowed Values Attribute Description

host The host name or ip address of the destination. For

multicast udp adapters, the multicast address.

port The port on the destination.

multicast true, false Whether or not the udp adapter uses multicast.

acknowledge true, false Whether or not a udp adapter requires an

acknowledgment from the destination. when enabled,

requires setting the following 4 attributes.

ack-host When acknowledge is true, indicates the host or ip

address to which the acknowledgment should be sent.

Usually the current host, but may be different, for

example when Network Address Transation (NAT) is

being used.

ack-port When acknowledge is true, indicates the port to which

the acknowledgment should be sent. The adapter

listens on this port for acknowledgments.

ack-timeout When acknowledge is true, indicates the time in

milliseconds that the adapter will wait for an

acknowlegment. If an acknowlegment is not received

in time, the adapter will throw an exception.

min-acks-for- success Defaults to 1. For multicast adapters, you can set

this to a larger value, requiring acknowlegments from

multiple destinations.

check-length true, false Whether or not a udp adapter includes a data length

field in the packet sent to the destination.

time-to-live For multicast adapters, specifies the time to live

attribute for the MulticastSocket; controls the

scope of the multicasts. Refer to the Java API

documentation for more information.

so-timeout See java.net.DatagramSocket

setSoTimeout() methods for more information.

so-send-buffer-size See java.net.DatagramSocket

setSendBufferSize() methods for more information.

so-receive-buffer- size Used for udp acknowlegment packets. See

java.net.DatagramSocket

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 119

Attribute Name Allowed Values Attribute Description

setReceiveBufferSize() methods for more

information.

local-address On a multi-homed system, for the UDP adapter,

specifies an IP address for the interface to which

the socket will be bound for reply messages. For a

multicast adapter it is also used to determine which

interface the multicast packets will be sent over.

task-executor Specifies a specific Executor to be used for

acknowledgment handling. If not supplied, an internal

single threaded executor will be used. Needed on

some platforms that require the use of specific

task executors such as a WorkManagerTaskExecutor.

One thread will be dedicated to handling

acknowledgments (if the acknowledge option is true).

Table 27.3. UDP Inbound Channel Adapter Attributes

Attribute Name Allowed Values Attribute Description

port The port on which the adapter listens.

multicast true, false Whether or not the udp adapter uses multicast.

multicast-address When multicast is true, the multicast address to which

the adapter joins.

pool-size Specifies the concurrency. Specifies how many

packets can be handled concurrently. It only applies

if task-executor is not configured. Defaults to 5.

task-executor Specifies a specific Executor to be used for socket

handling. If not supplied, an internal pooled executor

will be used. Needed on some platforms that

require the use of specific task executors such as a

WorkManagerTaskExecutor. See pool-size for thread

requirements.

receive-buffer-size The size of the buffer used to receive

DatagramPackets. Usually set to the MTU size. If a

smaller buffer is used than the size of the sent packet,

truncation can occur. This can be detected by means

of the check-length attribute..

check-length true, false Whether or not a udp adapter expects a data length

field in the packet received. Used to detect packet

truncation.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 120

Attribute Name Allowed Values Attribute Description

so-timeout See java.net.DatagramSocket

setSoTimeout() methods for more information.

so-send-buffer-size Used for udp acknowlegment packets. See

java.net.DatagramSocket

setSendBufferSize() methods for more information.

so-receive-buffer- size See java.net.DatagramSocket

setReceiveBufferSize() for more information.

local-address On a multi-homed system, specifies an IP address for

the interface to which the socket will be bound.

Table 27.4. TCP Inbound Gateway Attributes

Attribute Name Allowed Values Attribute Description

port The port on which the gateway listens.

Table 27.5. TCP Outbound Gateway Attributes

Attribute Name Allowed Values Attribute Description

host The host name or ip address of the destination.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 121

28. Mail Support

28.1 Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the MailSendingMessageHandler. It

delegates to a configured instance of Spring's JavaMailSender:

 JavaMailSender mailSender = (JavaMailSender) context.getBean("mailSender");

 MailSendingMessageHandler mailSendingHandler = new MailSendingMessageHandler(mailSender);

MailSendingMessageHandler has various mapping strategies that use Spring's MailMessage

abstraction. If the received Message's payload is already a MailMessage instance, it will be sent directly.

Therefore, it is generally recommended to precede this consumer with a Transformer for non-trivial

MailMessage construction requirements. However, a few simple Message mapping strategies are supported

out-of-the-box. For example, if the message payload is a byte array, then that will be mapped to an attachment.

For simple text-based emails, you can provide a String-based Message payload. In that case, a MailMessage

will be created with that String as the text content. If you are working with a Message payload type

whose toString() method returns appropriate mail text content, then consider adding Spring Integration's

ObjectToStringTransformer prior to the outbound Mail adapter (see the example within Section 9.2, “The

<transformer> Element” for more detail).

The outbound MailMessage may also be configured with certain values from the MessageHeaders. If

available, values will be mapped to the outbound mail's properties, such as the recipients (TO, CC, and BCC),

the from/reply-to, and the subject. The header names are defined by the following constants:

 MailHeaders.SUBJECT

 MailHeaders.TO

 MailHeaders.CC

 MailHeaders.BCC

 MailHeaders.FROM

 MailHeaders.REPLY_TO

Note
MailHeaders also allows you to override corresponding MailMessage values. For example:

If MailMessage.to is set to 'foo@bar.com' and MailHeaders.TO Message header is

provided it will take precedence and override the corresponding value in MailMessage

28.2 Mail-Receiving Channel Adapter

Spring Integration also provides support for inbound email with the MailReceivingMessageSource. It

delegates to a configured instance of Spring Integration's own MailReceiver interface, and there are two

implementations: Pop3MailReceiver and ImapMailReceiver. The easiest way to instantiate either of

these is by passing the 'uri' for a Mail store to the receiver's constructor. For example:

 MailReceiver receiver = new Pop3MailReceiver("pop3://usr:pwd@localhost/INBOX");

Another option for receiving mail is the IMAP "idle" command (if supported by the mail server you are using).

Spring Integration provides the ImapIdleChannelAdapter which is itself a Message-producing endpoint.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 122

It delegates to an instance of the ImapMailReceiver but enables asynchronous reception of Mail Messages.

There are examples in the next section of configuring both types of inbound Channel Adapter with Spring

Integration's namespace support in the 'mail' schema.

28.3 Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the following

schema locations.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:mail="http://www.springframework.org/schema/integration/mail"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/integration/mail

 http://www.springframework.org/schema/integration/mail/spring-integration-mail-2.0.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the MailSender:

<mail:outbound-channel-adapter channel="outboundMail"

 mail-sender="mailSender"/>

Alternatively, provide the host, username, and password:

<mail:outbound-channel-adapter channel="outboundMail"

 host="somehost" username="someuser" password="somepassword"/>

Note
Keep in mind, as with any outbound Channel Adapter, if the referenced channel is a

PollableChannel, a <poller> sub-element should be provided with either an interval-trigger or cron-

trigger.

To configure an inbound Channel Adapter, you have the choice between polling or event-driven (assuming

your mail server supports IMAP IDLE - if not, then polling is the only option). A polling Channel Adapter

simply requires the store URI and the channel to send inbound Messages to. The URI may begin with "pop3"

or "imap":

<int-mail:inbound-channel-adapter id="imapAdapter"

 store-uri="imaps://[username]:[password]@imap.gmail.com/INBOX"

 java-mail-properties="javaMailProperties"

 channel="recieveChannel"

 should-delete-messages="true"

 should-mark-messages-as-read="true"

 auto-startup="true">

 <int:poller max-messages-per-poll="1" fixed-rate="5000"/>

</int-mail:inbound-channel-adapter>

If you do have IMAP idle support, then you may want to configure the "imap-idle-channel-adapter" element

instead. Since the "idle" command enables event-driven notifications, no poller is necessary for this adapter. It

will send a Message to the specified channel as soon as it receives the notification that new mail is available:

<int-mail:imap-idle-channel-adapter id="customAdapter"

 store-uri="imaps://[username]:[password]@imap.gmail.com/INBOX"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 123

 channel="recieveChannel"

 auto-startup="true"

 should-delete-messages="false"

 should-mark-messages-as-read="true"

 java-mail-properties="javaMailProperties"/>

... where javaMailProperties could be provided by creating and populating a regular

java.utils.Properties object. For example via util namespace provided by Spring.

<util:properties id="javaMailProperties">

 <prop key="mail.imap.socketFactory.class">javax.net.ssl.SSLSocketFactory</prop>

 <prop key="mail.imap.socketFactory.fallback">false</prop>

 <prop key="mail.store.protocol">imaps</prop>

 <prop key="mail.debug">false</prop>

</util:properties>

Important
In both configurations channel and should-delete-messages are the REQUIRED

 attributes. The important thing to understand is why should-delete-messages is required?

 The issue is with POP3 protocol, which does NOT have any knowlege of messages that were

READ. It can only know what's been read within a single session. This means that when your

POP3 mail adapter is running emails are successfully consumed as as they become available during

each poll and no single email message will be delivered more then once. However, as soon as

you restart your adapter and begin a new session all the email messages that might have been

retreeved in the previous session will be retrieved again. That is the nature of POP3. Some might

argue that why not set should-delete-messages to TRUE by default? Becouse there are

two valid amd mutually exclusive use cases which makes it very hard pick the right default.

You may want to configure your adapter as the only email receiever in which case you want

to be able to restart such adapter without fear that messages that were delivered before will not be

redelivered again. In this case setting should-delete-messages to TRUE would make

most sence. However, you may have anoher use case where you may want to have multiple

adapters that simply monitor email servers and their content. In other words you just want to 'peek

but not touch'. Then setting should-delete-messages to FALSE would be much more

appropriate. So since it is hard to choose what should be the right default value for should-

delete-messages attribute we simply made it required to be set - leaving it up to you while

also not letting you to forget that you must set it.

Note
When configuring a polling adapter (e.g., inbound-channel-adapter) should-mark-messages-as-

read be aware of the protocol you are configuring to retrieve messages. For example POP3 does

not support this flag which means setting it to either value will have no effect as messages will

NOT be marked as read

When using the namespace support, a header-enricher Message Transformer is also available. This simplifies

the application of the headers mentioned above to any Message prior to sending to the Mail-sending Channel

Adapter.

<mail:header-enricher subject="Example Mail"

 to="to@example.org"

 cc="cc@example.org"

 bcc="bcc@example.org"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 124

 from="from@example.org"

 reply-to="replyTo@example.org"

 overwrite="false"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 125

29. JMX Support

Spring Integration provides Channel Adapters for receiving and publishing JMX Notifications. There is also

an inbound Channel Adapter for polling JMX MBean attribute values, and an outbound Channel Adapter for

invoking JMX MBean operations.

29.1 Notification Listening Channel Adapter

The Notification-listening Channel Adapter requires a JMX ObjectName for the MBean that publishes

Notifications to which this listener should be registered. A very simple configuration might look like this:

 <jmx:notification-listening-channel-adapter id="adapter"

 channel="channel"

 object-name="example.domain:name=publisher"/>

Tip
The notification-listening-channel-adapter registers with an MBeanServer at startup, and the

default bean name is "mbeanServer" which happens to be the same bean name generated when

using Spring's <context:mbean-server/> element. If you need to use a different name be sure to

include the "mbean-server" attribute.

The adapter can also accept a reference to a NotificationFilter and a "handback" Object to provide some context

that is passed back with each Notification. Both of those attributes are optional. Extending the above example

to include those attributes as well as an explicit MBeanServer bean name would produce the following:

 <jmx:notification-listening-channel-adapter id="adapter"

 channel="channel"

 mbean-server="someServer"

 object-name="example.domain:name=somePublisher"

 notification-fliter="notificationFilter"

 handback="myHandback"/>

Since the notification-listening adapter is registered with the MBeanServer directly, it is event-driven and does

not require any poller configuration.

29.2 Notification Publishing Channel Adapter

The Notification-publishing Channel Adapter is relatively simple. It only requires a JMX ObjectName in its

configuration as shown below.

 <context:mbean:export/>

 <jmx:notification-publishing-channel-adapter id="adapter"

 channel="channel"

 object-name="example.domain:name=publisher"/>

It does also require that an MBeanExporter be present in the context. That is why the <context:mbean-export/

> element is shown above as well.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 126

When Messages are sent to the channel for this adapter, the Notification is created from the Message content.

If the payload is a String it will be passed as the "message" text for the Notification. Any other payload type

will be passed as the "userData" of the Notification.

JMX Notifications also have a "type", and it should be a dot-delimited String. There are two ways

to provide the type. Precedence will always be given to a Message header value associated with the

JmxHeaders.NOTIFICATION_TYPE key. On the other hand, you can rely on a fallback "default-notification-

type" attribute provided in the configuration.

 <context:mbean:export/>

 <jmx:notification-publishing-channel-adapter id="adapter"

 channel="channel"

 object-name="example.domain:name=publisher"

 default-notification-type="some.default.type"/>

29.3 Attribute Polling Channel Adapter

The attribute polling adapter is useful when you have a requirement to periodically check on some value that

is available through an MBean as a managed attribute. The poller can be configured in the same way as any

other polling adapter in Spring Integration (or it's possible to rely on the default poller). The "object-name" and

"attribute-name" are required. An MBeanServer reference is also required, but it will automatically check for

a bean named "mbeanServer" by default just like the notification-listening-channel-adapter described above.

 <jmx:attribute-polling-channel-adapter id="adapter"

 channel="channel"

 object-name="example.domain:name=someService"

 attribute-name="InvocationCount">

 <si:poller max-messages-per-poll="1" fixed-rate="5000"/>

 </jmx:attribute-polling-channel-adapter>

29.4 Operation Invoking Channel Adapter

The operation-invoking-channel-adapter enables Message-driven invocation of any managed operation

exposed by an MBean. Each invocation requires the operation name to be invoked and the ObjectName of the

target MBean. Both of these must be explicitly provided via adapter configuration:

 <jmx:operation-invoking-channel-adapter id="adapter"

 object-name="example.domain:name=TestBean"

 operation-name="ping"/>

Then the adapter only needs to be able to discover the "mbeanServer" bean. If a different bean name is required,

then provide the "mbean-server" attribute with a reference.

The payload of the Message will be mapped to the parameters of the operation, if any. A Map-typed payload

with String keys is treated as name/value pairs whereas a List or array would be passed as a simple argument

list (with no explicit parameter names). If the operation requires a single parameter value, then the payload can

represent that single value, and if the operation requires no parameters, then the payload would be ignored.

If you want to expose a channel for a single common operation to be invoked by Messages that need not contain

headers, then that option works well.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 127

29.5 Operation Invoking outbound Gateway

Similar to operation-invoking-channel-adapter Spring Integration also provides operation-invoking-outbound-

gateway which could be used when dealing with non-void operations and return value is required. Such return

value will be sent as message payload to the 'reply-channel' specified by this Gateway.

 <jmx:operation-invoking-outbound-gateway request-channel="requestChannel"

 reply-channel="replyChannel"

 object-name="org.springframework.integration.jmx.config:type=TestBean,name=testBeanGateway"

 operation-name="testWithReturn"/>

Another way of provideing the 'reply-channel' is by setting MessageHeaders.REPLY_CHANNEL Message

Header

29.6 MBean Exporter

Spring Integration components themselves may be exposed as MBeans when

the IntegrationMBeanExporter is configured. To create an instance of the

IntegrationMBeanExporter, define a bean and provide a reference to an MBeanServer and a domain

name (if desired). The domain can be left out in which case the default domain is "spring.application".

 <jmx:mbean-exporter domain="my.company.domain" mbean-server="mbeanServer"/>

 <bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean">

 <property name="locateExistingServerIfPossible" value="true"/>

 </bean>

The MBean exporter is orthogonal to the one provided in Spring core - it registers message channels and

message handlers, but not itself (you can expose the exporter itself using the standard <context:mbean-

export/> tag).

29.7 Control Bus

As described in (EIP [http://www.eaipatterns.com/ControlBus.html]), the idea behind the Control Bus is that

the same messaging system can be used for monitoring and managing the components within the framework

as is used for "application-level" messaging. In Spring Integration we build upon the adapters described above

so that it's possible to send Messages as a means of invoking exposed operations. Internally, the Control Bus

uses a Spring MBeanExporter instance to expose the various endpoints and channels. To create an instance of

the Control Bus, define a bean and provide a reference to an MBeanServer and a domain name.

 <jmx:control-bus mbean-exporter="mbeanExporter" operation-channel="operationChannel"/>

 <jmx:mbean-exporter id="mbeanExporter" mbean-server="mbeanServer"/>

The Control Bus has an "operationChannel" that can be accessed for invoking operations on the MBeans that it

has exported. This will also be covered by namespace support soon to make it easier to configure references to

that channel for other producers. We will likely add some other channels for notifications and attribute polling

as well.

http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/ControlBus.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 128

The Control Bus functionality is a work in progress. At this time, one can perform some basic monitoring

of Message Channels and/or invoke Lifecycle operations (start/stop) on Message Endpoints. Now that the

foundation is available, however, we will be able to extend the attributes and operations that are being exposed.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 129

30. XMPP Support

Spring Integration provides Channel Adapters for XMPP [http://www.xmpp.org].

30.1 Introduction

Spring Integration provides adapters for sending and receiving both XMPP messages and status changes from

other entries in your roster as well as XMPP.

XMPP describes a way for multiple agents to communicate with each other in a distributed system. The

canonical use case is to send and receive instant messages, though XMPP can be, and is, used for far more

applications. XMPP is used to describe a network of actors. Within that network, actors may address each other

directly, as well as broadcast status changes.

XMPP provides the messaging fabric that underlies some of the biggest Instant Messaging networks in the

world, including Google Talk (GTalk) - which is also available from within GMail - and Facebook Chat. There

are many good open-source XMPP servers available. Two popular implementations are Openfire [http://

www.igniterealtime.org/projects/openfire/] and ejabberd [http://www.ejabberd.im] .

In XMPP, rosters (the roster corresponds to the notion of a "buddy list" in your typical IM client) are used to

manage a list of other agents ("contacts", or "buddies", in an IM client) in the system, calledroster items. The

roster item contains - at a minimum - the roster item's JID which is its unique ID on the network. An actor may

subscribe to the state changes of another actor in the system. The subscription can be bidirectional, as well.

The subscription settings determine whose status updates are broadcast, and to whom. These subscriptions are

stored on the XMPP server, and are thus durable.

30.2 Using The Spring Integration XMPP Namespace

Using the Spring Integration XMPP namespace support is simple. Its use is like any other module in the Spring

framework: import the XML schema, and use it to define elements. A prototypical XMPP-based integration

might feature the following header. We won't repeat this in subsequent examples, because it is uninteresting.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans

 xmlns="http://www.springframework.org/schema/integration"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:p="http://www.springframework.org/schema/p"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:util="http://www.springframework.org/schema/util"

 xmlns:xmpp="http://www.springframework.org/schema/integration/xmpp"

 xmlns:tool="http://www.springframework.org/schema/tool"

 xmlns:lang="http://www.springframework.org/schema/lang"

 xsi:schemaLocation="

http://www.springframework.org/schema/integration/xmpp

http://www.springframework.org/schema/integration/xmpp/spring-integration-xmpp.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/integration

http://www.xmpp.org
http://www.xmpp.org
http://www.igniterealtime.org/projects/openfire/
http://www.igniterealtime.org/projects/openfire/
http://www.igniterealtime.org/projects/openfire/
http://www.ejabberd.im
http://www.ejabberd.im

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 130

http://www.springframework.org/schema/integration/spring-integration.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.0.xsd

">

 ...

</beans:beans>

30.3 XMPP Connection

To participate in the network, an actor must connect to an XMPP server. Typically this requires - at a minimum -

a user, apassword, ahost, and aport. To create an XMPP connection, you may use the XML namespace.

<xmpp:xmpp-connection

 id="myConnection"

 user="user"

 password="password"

 host="host"

 port="port"

 resource="theNameOfTheResource"

 subscription-mode="accept_all"

/>

30.4 XMPP Messages

Inbound Message Adapter

The Spring Integration adapters support receiving messages from other users in the system. To do this, the

adapter "logs in" as a user on your behalf and receives the messages sent to that user. Those messages are then

forwarded to your Spring Integration client. The payload of the inbound Spring Integration message may be of

the raw type org.jivesoftware.smack.packet.Message, or of the type java.lang.String

- which is the type of the raw Message's body property - depending on whether you specify extract-

payload on the adapter's configuration or not. Inbound Messages are typically small and are text-oriented.

Messages received using the adapter have a pretty standard layout, with known headers (all headers have keys

defined on org.springframework.integration.xmpp.XmppHeaders):

Table 30.1. Header Values

Header Name What It Describes

XmppHeaders.TYPE The value of the the

org.jivesoftware.smack.packet.Message.Type

enum that describes the inbound message.

Possible values are: normal, chat, groupchat,

headline, error.

XmppHeaders.CHAT A reference to the

org.jivesoftware.smack.Chat class which

represents the threaded conversation containing the

message.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 131

This adapter requires a reference to an XMPP Connection. You may use the xmpp-connection element to define

one. An example might look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans ... >

 <context:component-scan

 base-package="com.myxmppclient.inbound"/>

 <context:property-placeholder

 location="#{ systemProperties['user.home'] }/xmpp/xmppclient.properties"/>

 <channel id="xmppInbound"/>

 <xmpp:xmpp-connection

 id="testConnection"

 ...

 />

 <xmpp:message-inbound-channel-adapter

 channel="xmppInbound"

 xmpp-connection="testConnection"/>

 <service-activator input-channel="xmppInbound"

 ref="xmppMessageConsumer"/>

</beans:beans>

In this example, the message is received from the XMPP adapter and passed to a service-activator

component. Here's the declaration of theservice-activator.

package com.myxmppclient.inbound ;

import org.jivesoftware.smack.packet.Message;

import org.springframework.integration.annotation.ServiceActivator;

import org.springframework.stereotype.Component;

@Component

public class XmppMessageConsumer {

 @ServiceActivator

 public void consume(Message input) throws Throwable {

 String text = input.getBody();

 System.out.println("Received message: " + text) ;

 }

}

Outbound Message Adapter

You may also send messages to other users on XMPP using the outbound-message-channel-

adapter adapter. The is configured like the xmpp-message-inbound-channel-adapter. The adapter takes

an xmpp-connection reference. Here is a (necessarily) contrived example solution using the outbound

adapter.

<?xml version="1.0" encoding="UTF-8"?>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 132

<beans:beans ... >

 <context:component-scan

 base-package="com.myxmppproducer.outbound"/>

 <context:property-placeholder

 location="#{ systemProperties['user.home'] }/xmpp/xmppclient.properties"/>

 <beans:bean id="xmppProducer"

 class="com.myxmppproducer.outbound.XmppMessageProducer"

 p:recipient="${user.2.login}"/>

 <poller default="true" fixed-rate="10000"/>

 <xmpp:xmpp-connection

 id="testConnection"

 ...

 />

 <inbound-channel-adapter ref="xmppProducer"

 channel="outboundChannel"/>

 <channel id="outboundChannel"/>

 <xmpp:message-outbound-channel-adapter

 channel="outboundChannel"

 xmpp-connection="testConnection"/>

</beans:beans>

The adapter expects as its input - at a minimum - a payload of type java.lang.String, and a header value

for XmppHeaders.CHAT_TO_USER that specifies to which the user the payload body should be sent to. To

create a message destined for theoutbound-message-channel-adapter, you might use the following

Java code:

 Message<String> xmppOutboundMsg = MessageBuilder.withPayload("Hello, world!")

 .setHeader(XmppHeaders.CHAT_TO_USER, "userhandle")

 .build();

It's easy enough to use Java to update the XmppHeaders.CHAT_TO_USER header, and this has the advantage

of dynamically updating the header at runtime in Java code. If, however, the target is more static in nature,

you can configure it using the XMPP enricher support. Here is an example using the enricher. The enricher

enriches the Spring Integration message to support the header values that the outbound XMPP adapters expect.

<channel id="input"/>

<channel id="output"/>

<xmpp:header-enricher input-channel="input" output-channel="output">

 <xmpp:message-to value="test1@example.org"/>

</xmpp:header-enricher>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 133

30.5 XMPP Presence

XMPP also supports broadcasting state. You can use this capability to let people who have you on their roster

see your state changes. This happens all the time with your IM clients - you change your away status, and then

set an away message, and everybody who has you on their roster sees your icon or username change to reflect

this new state, and additionally might see your new "away" message. If you would like to receive notification,

or notify others, of state changes, you can use Spring Integration's "presence" adapters.

The most important data for these adapters resides in the headers. The header keys are enumerated on

the org.springframework.integration.xmpp.XmppHeaders class. The header keys specific to

these "presence" adapters start with the token "PRESENCE_". Not all headers are available for both inbound

and outbound.

Table 30.2. Header Values

Header Name What It Describes

XmppHeaders.PRESENCE_LANGUAGE The java.lang.String language in which the

message was written.

XmppHeaders.PRESENCE_PRIORITY The priority (int) of the message. Arbitrary, but it can

be used to help assign relevance to a message which

in turn might be used in its handling.

XmppHeaders.PRESENCE_MODE An instance of the enum

org.jivesoftware.smack.packet.Presence.Mode

that has one of the following values: chat,

available, away, xa, dnd

XmppHeaders.PRESENCE_TYPE An instance of the enum

org.jivesoftware.smack.packet.Presence.Type

that has one of the following values: available,

unavailable, subscribe, subscribed,

unsubscribe, unsubscribed, and error.

XmppHeaders.PRESENCE_STATUS A java.lang.String string representing the

status of the agent. This corresponds to an agents

"away" message.

XmppHeaders.PRESENCE_FROM A java.lang.String string representing the

handle of the user whose state is being received.

Inbound Presence Adapter

The first adapter supports receiving messages whenever an agent on your roster has updated its state. Most of

the important data comes in through the headers.

Outbound Presence Adapter

TBD

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 134

31. Stream Support

31.1 Introduction

In many cases application data is obtained from a stream. It is not recommended to send a reference to a Stream

as a message payload to a consumer. Instead messages are created from data that is read from an input stream

and message payloads are written to an output stream one by one.

31.2 Reading from streams

Spring Integration provides two adapters for streams. Both ByteStreamReadingMessageSource

and CharacterStreamReadingMessageSource implement MessageSource. By configuring one

of these within a channel-adapter element, the polling period can be configured, and the Message

Bus can automatically detect and schedule them. The byte stream version requires an InputStream,

and the character stream version requires a Reader as the single constructor argument. The

ByteStreamReadingMessageSource also accepts the 'bytesPerMessage' property to determine how

many bytes it will attempt to read into each Message. The default value is 1024

<bean class="org.springframework.integration.stream.ByteStreamReadingMessageSource">

 <constructor-arg ref="someInputStream"/>

 <property name="bytesPerMessage" value="2048"/>

</bean>

<bean class="org.springframework.integration.stream.CharacterStreamReadingMessageSource">

 <constructor-arg ref="someReader"/>

</bean>

31.3 Writing to streams

For target streams, there are also two implementations: ByteStreamWritingMessageHandler

and CharacterStreamWritingMessageHandler. Each requires a single constructor argument -

OutputStream for byte streams or Writer for character streams, and each provides a second constructor

that adds the optional 'bufferSize'. Since both of these ultimately implement the MessageHandler interface,

they can be referenced from a channel-adapter configuration as described in more detail in Chapter 6, Channel

Adapter.

<bean class="org.springframework.integration.stream.ByteStreamWritingMessageHandler">

 <constructor-arg ref="someOutputStream"/>

 <constructor-arg value="1024"/>

</bean>

<bean class="org.springframework.integration.stream.CharacterStreamWritingMessageHandler">

 <constructor-arg ref="someWriter"/>

</bean>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 135

31.4 Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace defined. The

following schema locations are needed to use it.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/integration/stream"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/integration/stream

 http://www.springframework.org/schema/integration/stream/spring-integration-stream-2.0.xsd">

To configure the inbound channel adapter the following code snippet shows the different configuration options

that are supported.

<stdin-channel-adapter id="adapterWithDefaultCharset"/>

<stdin-channel-adapter id="adapterWithProvidedCharset" charset="UTF-8"/>

To configure the outbound channel adapter you can use the namespace support as well. The following code

snippet shows the different configuration for an outbound channel adapters.

<stdout-channel-adapter id="stdoutAdapterWithDefaultCharset" channel="testChannel"/>

<stdout-channel-adapter id="stdoutAdapterWithProvidedCharset" charset="UTF-8" channel="testChannel"/>

<stderr-channel-adapter id="stderrAdapter" channel="testChannel"/>

<stdout-channel-adapter id="newlineAdapter" append-newline="true" channel="testChannel"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 136

32. Spring ApplicationEvent Support

Spring Integration provides support for inbound and outbound ApplicationEvents as defined

by the underlying Spring Framework. For more information about the events and listeners, refer to

the Spring Reference Manual [http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-

functionality-events].

32.1 Receiving Spring ApplicationEvents

To receive events and send them to a channel, simply define an instance of Spring Integration's

ApplicationEventListeningChannelAdapter. This class is an implementation of Spring's

ApplicationListener interface. By default it will pass all received events as Spring Integration

Messages. To limit based on the type of event, configure the list of event types that you want to receive with

the 'eventTypes' property.

For convenience namespace support was provided to

configure ApplicationEventListeningChannelAdapter via inbound-channel-adapter

<int-event:inbound-channel-adapter channel="input" event-types="foo.bar.FooApplicationEvent, foo.bar.BarApplicationEvent"/>

<int:publish-subscribe-channel id="sampleEventChannel"/>

In the above sample, all Application Context events that are of type specified by the 'event-types' (optional)

attribute will be delivered as Spring Integration Messages to 'sampleEventChannel'.

32.2 Sending Spring ApplicationEvents

To send Spring ApplicationEvents, create an instance of the

ApplicationEventPublishingMessageHandler and register it within an endpoint.

This implementation of the MessageHandler interface also implements Spring's

ApplicationEventPublisherAware interface and thus acts as a bridge between Spring Integration

Messages and ApplicationEvents.

For convenience namespace support was provided to

configure ApplicationEventPublishingMessageHandler via outbound-channel-adapter element

<int:channel id="input"/>

<int-event:outbound-channel-adapter channel="input"/>

If you are using PollableChannel (e.g., Queue), you can also provide poller as sub-element of outbound-

channel-adapter, optionally providing task-executor

<int:channel id="input">

 <int:queue/>

</int:channel>

<int-event:outbound-channel-adapter channel="input">

 <int:poller max-messages-per-poll="1" task-executor="executor" fixed-rate="100"/>

</int-event:outbound-channel-adapter>

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 137

<task:executor id="executor" pool-size="5"/>

In the above sample, all messages sent to an 'input' channel will be published as ApplicationEvents to Spring

Application sContext

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 138

33. XML Support - Dealing with XML Payloads

33.1 Introduction

Spring Integration's XML support extends the Spring Integration Core with implementations of

splitter, transformer, selector and router designed to make working with xml messages in Spring

Integration simple. The provided messaging components are designed to work with xml represented

in a range of formats including instances of java.lang.String, org.w3c.dom.Document and

javax.xml.transform.Source. It should be noted however that where a DOM representation is

required, for example in order to evaluate an XPath expression, the String payload will be converted

into the required type and then converted back again to String. Components that require an instance of

DocumentBuilder will create a namespace aware instance if one is not provided. Where greater control of

the document being created is required an appropriately configured instance of DocumentBuilder should

be provided.

33.2 Transforming xml payloads

This section will explain the workings of UnmarshallingTransformer,

MarshallingTransformer, XsltPayloadTransformer and how to configure them as beans. All of

the provided xml transformers extend AbstractTransformer or AbstractPayloadTransformer

and therefore implement Transformer. When configuring xml transformers as beans in

Spring Integration you would normally configure the transformer in conjunction with either a

MessageTransformingChannelInterceptor or a MessageTransformingHandler. This

allows the transformer to be used as either an interceptor, which transforms the message as it is sent or received

to the channel, or as an endpoint. Finally the namespace support will be discussed which allows for the simple

configuration of the transformers as elements in XML.

UnmarshallingTransformer allows an xml Source to be unmarshalled using implementations of

Spring OXM Unmarshaller. Spring OXM provides several implementations supporting marshalling and

unmarshalling using JAXB, Castor and JiBX amongst others. Since the unmarshaller requires an instance

of Source where the message payload is not currently an instance of Source, conversion will be

attempted. Currently String and org.w3c.dom.Document payloads are supported. Custom conversion

to a Source is also supported by injecting an implementation of SourceFactory.

<bean id="unmarshallingTransformer"

 class="org.springframework.integration.xml.transformer.UnmarshallingTransformer">

 <constructor-arg>

 <bean class="org.springframework.oxm.jaxb.Jaxb1Marshaller">

 <property name="contextPath" value="org.example" />

 </bean>

 </constructor-arg>

</bean>

The MarshallingTransformer allows an object graph to be converted into xml using a Spring

OXM Marshaller. By default the MarshallingTransformer will return a DomResult.

However the type of result can be controlled by configuring an alternative ResultFactory such as

StringResultFactory. In many cases it will be more convenient to transform the payload into an

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 139

alternative xml format. To achieve this configure a ResultTransformer. Two implementations are

provided, one which converts to String and another which converts to Document.

<bean id="marshallingTransformer"

 class="org.springframework.integration.xml.transformer.MarshallingTransformer">

 <constructor-arg>

 <bean class="org.springframework.oxm.jaxb.Jaxb1Marshaller">

 <property name="contextPath" value="org.example" />

 </bean>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.springframework.integration.xml.transformer.ResultToDocumentTransformer" />

 </constructor-arg>

</bean>

By default, the MarshallingTransformer will pass the payload Object to the Marshaller, but if

its boolean "extractPayload" property is set to "false", the entire Message instance will be passed to the

Marshaller instead. That may be useful for certain custom implementations of the Marshaller interface,

but typically the payload is the appropriate source Object for marshalling when delegating to any of the various

out-of-the-box Marshaller implementations.

XsltPayloadTransformer transforms xml payloads using xsl. The transformer requires an

instance of either Resource or Templates. Passing in a Templates instance allows for greater

configuration of the TransformerFactory used to create the template instance. As in the case of

XmlPayloadMarshallingTransformer by default XsltPayloadTransformer will create a

message with a Result payload. This can be customised by providing a ResultFactory and/or a

ResultTransformer.

<bean id="xsltPayloadTransformer"

 class="org.springframework.integration.xml.transformer.XsltPayloadTransformer">

 <constructor-arg value="classpath:org/example/xsl/transform.xsl" />

 <constructor-arg>

 <bean class="org.springframework.integration.xml.transformer.ResultToDocumentTransformer" />

 </constructor-arg>

</bean>

33.3 Namespace support for xml transformers

Namespace support for all xml transformers is provided in the Spring Integration xml namespace, a

template for which can be seen below. The namespace support for transformers creates an instance of either

EventDrivenConsumer or PollingConsumer according to the type of the provided input channel.

The namespace support is designed to reduce the amount of xml configuration by allowing the creation of an

endpoint and transformer using one element.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:integration="http://www.springframework.org/schema/integration"

 xmlns:si-xml="http://www.springframework.org/schema/integration/xml"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration-2.0.xsd

 http://www.springframework.org/schema/integration/xml

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 140

 http://www.springframework.org/schema/integration/xml/spring-integration-xml-2.0.xsd">

</beans>

The namespace support for UnmarshallingTransformer is shown below. Since the namespace is now

creating an endpoint instance rather than a transformer, a poller can also be nested within the element to control

the polling of the input channel.

<si-xml:unmarshalling-transformer id="defaultUnmarshaller"

 input-channel="input"

 output-channel="output"

 unmarshaller="unmarshaller"/>

<si-xml:unmarshalling-transformer id="unmarshallerWithPoller"

 input-channel="input"

 output-channel="output"

 unmarshaller="unmarshaller">

 <si:poller fixed-rate="2000"/>

<si-xml:unmarshalling-transformer/>

The namespace support for the marshalling transformer requires an input channel, output channel and a

reference to a marshaller. The optional result-type attribute can be used to control the type of result created,

valid values are StringResult or DomResult (the default). Where the provided result types are not sufficient a

reference to a custom implementation of ResultFactory can be provided as an alternative to setting the

result-type attribute using the result-factory attribute. An optional result-transformer can also be specified in

order to convert the created Result after marshalling.

<si-xml:marshalling-transformer

 input-channel="marshallingTransformerStringResultFactory"

 output-channel="output"

 marshaller="marshaller"

 result-type="StringResult" />

<si-xml:marshalling-transformer

 input-channel="marshallingTransformerWithResultTransformer"

 output-channel="output"

 marshaller="marshaller"

 result-transformer="resultTransformer" />

<bean id="resultTransformer"

 class="org.springframework.integration.xml.transformer.ResultToStringTransformer"/>

Namespace support for the XsltPayloadTransformer allows either a resource to be passed in in order

to create the Templates instance or alternatively a precreated Templates instance can be passed in as

a reference. In common with the marshalling transformer the type of the result output can be controlled by

specifying either the result-factory or result-type attribute. A result-transfomer attribute can also be used to

reference an implementation of ResultTransfomer where conversion of the result is required before

sending.

<si-xml:xslt-transformer id="xsltTransformerWithResource"

 input-channel="withResourceIn"

 output-channel="output"

 xsl-resource="org/springframework/integration/xml/config/test.xsl"/>

<si-xml:xslt-transformer id="xsltTransformerWithTemplatesAndResultTransformer"

 input-channel="withTemplatesAndResultTransformerIn"

 output-channel="output"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 141

 xsl-templates="templates"

 result-transformer="resultTransformer"/>

Very often to assist with transformation you may need to have access to Message data (e.g., Message Headers).

For example; you may need to get access to certain Message Headers and pass them on as parameters

to a transformer (e.g., transformer.setParameter(..)). Spring Integration provides two convenient ways to

accomplish this. Just look at the following XML snippet.

<si-xml:xslt-transformer id="paramHeadersCombo"

 input-channel="paramHeadersComboChannel"

 output-channel="output"

 xsl-resource="classpath:transformer.xslt"

 xslt-param-headers="testP*, *foo, bar, baz">

 <int-xml:xslt-param name="helloParameter" value="hello"/>

 <int-xml:xslt-param name="firstName" expression="headers.fname"/>

</int-xml:xslt-transformer>

If message header names match 1:1 to parameter names, you can simply use xslt-param-headers attribute.

There you can also use wildcards for simple pattern matching which supports the following simple pattern

styles: "xxx*", "*xxx", "*xxx*" and "xxx*yyy".

You can also configure individual xslt parameters via xslt-param sub element. There you can

use expression or value attribute. The expression attribute should be any valid SpEL expression

with Message being the root object of the expression evaluation context. The value attribute just like any

value in Spring beans allows you to specify simple scalar vallue. YOu can also use property placeholders

(e.g., ${some.value}) So as you can see, with the expression and value attribute xslt parameters could

now be mapped to any accessible part of the Message as well as any literal value.

33.4 Splitting xml messages

XPathMessageSplitter supports messages with either String or Document payloads. The splitter

uses the provided XPath expression to split the payload into a number of nodes. By default this will result in

each Node instance becoming the payload of a new message. Where it is preferred that each message be a

Document the createDocuments flag can be set. Where a String payload is passed in the payload will be

converted then split before being converted back to a number of String messages. The XPath splitter implements

MessageHandler and should therefore be configured in conjunction with an appropriate endpoint (see the

namespace support below for a simpler configuration alternative).

<bean id="splittingEndpoint"

 class="org.springframework.integration.endpoint.EventDrivenConsumer">

 <constructor-arg ref="orderChannel" />

 <constructor-arg>

 <bean class="org.springframework.integration.xml.splitter.XPathMessageSplitter">

 <constructor-arg value="/order/items" />

 <property name="documentBuilder" ref="customisedDocumentBuilder" />

 <property name="outputChannel" ref="orderItemsChannel" />

 </bean>

 </constructor-arg>

</bean>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 142

33.5 Routing xml messages using XPath

Two Router implementations based on XPath are provided XPathSingleChannelRouter and

XPathMultiChannelRouter. The implementations differ in respect to how many channels any given

message may be routed to, exactly one in the case of the single channel version or zero or more in

the case of the multichannel router. Both evaluate an XPath expression against the xml payload of the

message, supported payload types by default are Node, Document and String. For other payload types

a custom implementation of XmlPayloadConverter can be provided. The router implementations use

ChannelResolver to convert the result(s) of the XPath expression to a channel name. By default a

BeanFactoryChannelResolver strategy will be used, this means that the string returned by the XPath

evaluation should correspond directly to the name of a channel. Where this is not the case an alternative

implementation of ChannelResolver can be used. Where there is a simple mapping from Xpath result to

channel name the provided MapBasedChannelResolver can be used.

<!-- Expects a channel for each value of order type to exist -->

<bean id="singleChannelRoutingEndpoint"

 class="org.springframework.integration.endpoint.EventDrivenConsumer">

 <constructor-arg ref="orderChannel" />

 <constructor-arg>

 <bean class="org.springframework.integration.xml.router.XPathSingleChannelRouter">

 <constructor-arg value="/order/@type" />

 </bean>

 </constructor-arg>

</bean>

<!-- Multi channel router which uses a map channel resolver to resolve the channel name

 based on the XPath evaluation result Since the router is multi channel it may deliver

 message to one or both of the configured channels -->

<bean id="multiChannelRoutingEndpoint"

 class="org.springframework.integration.endpoint.EventDrivenConsumer">

 <constructor-arg ref="orderChannel" />

 <constructor-arg>

 <bean class="org.springframework.integration.xml.router.XPathMultiChannelRouter">

 <constructor-arg value="/order/recipient" />

 <property name="channelResolver">

 <bean class="org.springframework.integration.channel.MapBasedChannelResolver">

 <constructor-arg>

 <map>

 <entry key="accounts"

 value-ref="accountConfirmationChannel" />

 <entry key="humanResources"

 value-ref="humanResourcesConfirmationChannel" />

 </map>

 </constructor-arg>

 </bean>

 </property>

 </bean>

 </constructor-arg>

</bean>

33.6 Selecting xml messages using XPath

Two MessageSelector implementations are provided, BooleanTestXPathMessageSelector and

StringValueTestXPathMessageSelector. BooleanTestXPathMessageSelector requires

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 143

an XPathExpression which evaluates to a boolean, for example boolean(/one/two) which will only

select messages which have an element named two which is a child of a root element named one.

StringValueTestXPathMessageSelector evaluates any XPath expression as a String and

compares the result with the provided value.

<!-- Interceptor which rejects messages that do not have a root element order -->

<bean id="orderSelectingInterceptor"

 class="org.springframework.integration.channel.interceptor.MessageSelectingInterceptor">

 <constructor-arg>

 <bean class="org.springframework.integration.xml.selector.BooleanTestXPathMessageSelector">

 <constructor-arg value="boolean(/order)" />

 </bean>

 </constructor-arg>

</bean>

<!-- Interceptor which rejects messages that are not version one orders -->

<bean id="versionOneOrderSelectingInterceptor"

 class="org.springframework.integration.channel.interceptor.MessageSelectingInterceptor">

 <constructor-arg>

 <bean class="org.springframework.integration.xml.selector.StringValueTestXPathMessageSelector">

 <constructor-arg value="/order/@version" index="0"/>

 <constructor-arg value="1" index="1"/>

 </bean>

 </constructor-arg>

</bean>

33.7 Transforming xml messages using XPath

When it comes to message transformation XPath is a great way to transform Messages that have XML payloads

by defining XPath transformers via xpath-transformer element.

Simple XPath transformation

Let's look at the following transformer configuration:

<xpath-transformer input-channel="inputChannel" output-channel="outputChannel"

 xpath-expression="/person/@name" />

. . . and Message

Message<?> message =

 MessageBuilder.withPayload("<person name='John Doe' age='42' married='true'/>").build();

After sending this message to the 'inputChannel' the XPath transformer configured above will transform this

XML Message to a simple Message with payload of 'John Doe' all based on the simple XPath Expression

specified in the xpath-expression attribute.

XPath also has capability to perform simple conversion of extracted elements to a desired type. Valid return

types are defined in XPathConstants and follows the conversion rules specified by the XPath.

The following constants are defined by the XPathConstants: BOOLEAN, DOM_OBJECT_MODEL,

NODE, NODESET, NUMBER, STRING

You can configure the desired type by simply using evaluation-type attribute of the xpath-transformer element.

<xpath-transformer input-channel="numberInput" xpath-expression="/person/@age"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 144

 evaluation-type="NUMBER_RESULT" output-channel="output"/>

<xpath-transformer input-channel="booleanInput" xpath-expression="/person/@married = 'true'"

 evaluation-type="BOOLEAN_RESULT" output-channel="output"/>

Node Mappers

If you need to provide custom mapping for the node extracted by the XPath expression simply provide

a reference to the implementation of the org.springframework.xml.xpath.NodeMapper - an

interface used by XPathOperations implementations for mapping Node objects on a per-node basis. To

provide a reference to a NodeMapper simply use node-mapper attribute:

<xpath-transformer input-channel="nodeMapperInput" xpath-expression="/person/@age"

 node-mapper="testNodeMapper" output-channel="output"/>

. . . and Sample NodeMapper implementation:

class TestNodeMapper implements NodeMapper {

 public Object mapNode(Node node, int nodeNum) throws DOMException {

 return node.getTextContent() + "-mapped";

 }

}

XML Payload Converter

You can also use implementation of the

org.springframework.integration.xml.XmlPayloadConverter to provide more granular

transformation:

<xpath-transformer input-channel="customConverterInput" xpath-expression="/test/@type"

 converter="testXmlPayloadConverter" output-channel="output"/>

. . . and Sample XmlPayloadConverter implementation:

class TestXmlPayloadConverter implements XmlPayloadConverter {

 public Source convertToSource(Object object) {

 throw new UnsupportedOperationException();

 }

 //

 public Node convertToNode(Object object) {

 try {

 return DocumentBuilderFactory.newInstance().newDocumentBuilder().parse(

 new InputSource(new StringReader("<test type='custom'/>")));

 }

 catch (Exception e) {

 throw new IllegalStateException(e);

 }

 }

 //

 public Document convertToDocument(Object object) {

 throw new UnsupportedOperationException();

 }

}

Combination of SpEL and XPath expressions

You can also combine Spring Expression Language (SpEL) expressions with XPath expression and configure

them using expression attribute:

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 145

xpath-expression id="testExpression" expression="/person/@age * 2"/>

In the above case the overall result of the expression will be the result of the XPathe expression multiplied by 2.

33.8 XPath components namespace support

All XPath based components have namespace support allowing them to be configured as Message Endpoints

with the exception of the XPath selectors which are not designed to act as endpoints. Each component allows

the XPath to either be referenced at the top level or configured via a nested xpath-expression element. So the

following configurations of an xpath-selector are all valid and represent the general form of XPath namespace

support. All forms of XPath expression result in the creation of an XPathExpression using the Spring

XPathExpressionFactory

<si-xml:xpath-selector id="xpathRefSelector"

 xpath-expression="refToXpathExpression"

 evaluation-result-type="boolean" />

<si-xml:xpath-selector id="selectorWithNoNS" evaluation-result-type="boolean" >

 <si-xml:xpath-expression expression="/name"/>

</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithOneNS" evaluation-result-type="boolean" >

 <si-xml:xpath-expression expression="/ns1:name"

 ns-prefix="ns1" ns-uri="www.example.org" />

</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithTwoNS" evaluation-result-type="boolean" >

 <si-xml:xpath-expression expression="/ns1:name/ns2:type">

 <map>

 <entry key="ns1" value="www.example.org/one" />

 <entry key="ns2" value="www.example.org/two" />

 </map>

 </si-xml:xpath-expression>

</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithNamespaceMapRef" evaluation-result-type="boolean" >

 <si-xml:xpath-expression expression="/ns1:name/ns2:type"

 namespace-map="defaultNamespaces"/>

</si-xml:xpath-selector>

<util:map id="defaultNamespaces">

 <util:entry key="ns1" value="www.example.org/one" />

 <util:entry key="ns2" value="www.example.org/two" />

</util:map>

XPath splitter namespace support allows the creation of a Message Endpoint with an input channel and output

channel.

<!-- Split the order into items creating a new message for each item node -->

<si-xml:xpath-splitter id="orderItemSplitter"

 input-channel="orderChannel"

 output-channel="orderItemsChannel">

 <si-xml:xpath-expression expression="/order/items"/>

</si-xml:xpath-splitter>

<!-- Split the order into items creating a new document for each item-->

<si-xml:xpath-splitter id="orderItemDocumentSplitter"

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 146

 input-channel="orderChannel"

 output-channel="orderItemsChannel"

 create-documents="true">

 <si-xml:xpath-expression expression="/order/items"/>

 <si:poller fixed-rate="2000"/>

</si-xml:xpath-splitter>

XPath router namespace support allows for the creation of a Message Endpoint with an input channel but no

output channel since the output channel is determined dynamically. The multi-channel attribute causes the

creation of a multi channel router capable of routing a single message to many channels when true and a single

channel router when false.

<!-- route the message according to exactly one order type channel -->

<si-xml:xpath-router id="orderTypeRouter" input-channel="orderChannel" multi-channel="false">

 <si-xml:xpath-expression expression="/order/type"/>

</si-xml:xpath-router>

<!-- route the order to all responders-->

<si-xml:xpath-router id="responderRouter" input-channel="orderChannel" multi-channel="true">

 <si-xml:xpath-expression expression="/request/responders"/>

 <si:poller fixed-rate="2000"/>

</si-xml:xpath-router>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 147

34. Security in Spring Integration

34.1 Introduction

Spring Integration provides integration with the Spring Security project [http://static.springframework.org/

spring-security/site/] to allow role based security checks to be applied to channel send and receive invocations.

34.2 Securing channels

Spring Integration provides the interceptor ChannelSecurityInterceptor, which extends

AbstractSecurityInterceptor and intercepts send and receive calls on the channel. Access

decisions are then made with reference to ChannelInvocationDefinitionSource which provides

the definition of the send and receive security constraints. The interceptor requires that a valid

SecurityContext has been established by authenticating with Spring Security, see the Spring Security

reference documentation for details.

Namespace support is provided to allow easy configuration of security constraints. This consists of the secured

channels tag which allows definition of one or more channel name patterns in conjunction with a definition of

the security configuration for send and receive. The pattern is a java.util.regexp.Pattern.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/integration"

 xmlns:si-security="http://www.springframework.org/schema/integration/security"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:security="http://www.springframework.org/schema/security"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://www.springframework.org/schema/security

 http://www.springframework.org/schema/security/spring-security-2.0.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration-2.0.xsd

 http://www.springframework.org/schema/integration/security

 http://www.springframework.org/schema/integration/security/spring-integration-security-2.0.xsd">

<si-security:secured-channels>

 <si-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>

 <si-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>

</si-security:secured-channels>

By default the secured-channels namespace element expects a bean named authenticationManager which

implements AuthenticationManager and a bean named accessDecisionManager which implements

AccessDecisionManager. Where this is not the case references to the appropriate beans can be configured

as attributes of the secured-channels element as below.

<si-security:secured-channels access-decision-manager="customAccessDecisionManager"

 authentication-manager="customAuthenticationManager">

 <si-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>

 <si-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>

</si-security:secured-channels>

http://static.springframework.org/spring-security/site/
http://static.springframework.org/spring-security/site/
http://static.springframework.org/spring-security/site/

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 148

35. Groovy support

With Spring Integration 2.0 we've added Groovy support allowing you to use Groovy scripting language

to provide integration and business logic for various integration components similar to the way Spring

Expression Language (SpEL) is use to implement routing, transformation and other integration concerns.

For more information about Groovy please refer to Groovy documentation which you can find here: http://

groovy.codehaus.org/

35.1 Groovy configuration

Depending on the complexity of your integration requirements Groovy scripts could be provided inline as

CDATA in XML configuration or as a reference to a file containing Groovy script. To enable Groovy

support Spring Integration defines GroovyScriptExecutingMessageProcessor which will create a

groovy Binding object identifying Message Payload as payload variable and Message Headers as headers

variable. All that is left for you to do is write script that uses these variables. Below are couple of sample

configurations:

Filter

<filter input-channel="referencedScriptInput">

 <groovy:script location="some/path/to/groovy/file/GroovyFilterTests.groovy"/>

</filter>

<filter input-channel="inlineScriptInput">

 <groovy:script><![CDATA[

 return payload == 'good'

]]></groovy:script>

</filter>

You see that script could be included inline or via location attribute using the groovy namespace sport.

Other supported elements are router, service-activator, transformer, splitter

Another interesting aspect of using Groovy support is framework's ability to update (reload) scripts without

restarting the Application Context. To accomplish this all you need is specify refresh-check-delay

attribute on script element. The reason for this attribute is to make reloading of the script more efficient.

<groovy:script location="..." refresh-check-delay="5000"/>

In the above example for the next 5 seconds after you update the script you'll still be using the old script and

after 5 seconds the context will be updated with the new script. This is a good example where 'near real time'

is acceptable.

<groovy:script location="..." refresh-check-delay="0"/>

In the above example the context will be updated with the new script every time the script is modified. Basically

this is the example of the 'real-time' and might not be the most efficient way.

<groovy:script location="..." refresh-check-delay="-1"/>

Any negative number value means the script will never be refreshed after initial initialization of application

context. DEFAULT BEHAVIOR

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 149

Important
Inline defined script can not be reloaded.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 150

Appendix A. Spring Integration Samples

A.1 Introduction

Starting with the current release of Spring Integration the samples are no longer included with Spring

Integration distribution. Instead we've switched to a much simpler collaborative model that should promote

better community participation and community contributions. Samples now have a dedicated Git SCM

repository and a dedicated JIRA Issue Tracking system. Sample development will also have its own lifecycle

which is not dependent on the lifecycle of the framework releases although the repository will still be tagged

with each major release for compatibility reasons.

The great benefit to the community is that we can now add more samples and make them available to you right

away without waiting for the release to get them out to you. Having its own JIRA that is not tied up to the

the actual framework is also a great benefit. You now have a dedicated place to suggest samples as well as

report issues with existing samples. Or you may want to submit a sample to us as an attachment through the

JIRA and if we believe your sample adds value we would be more then glad to add it to a samples repository

properly crediting the author.

A.2 Where to get Samples

To monitor samples development and to get more information on the repository you can visit the following

URL: http://git.springsource.org/spring-integration/samples Since we are using Git SCM we should use the

proper terminology as well when it comes to the tasks you need to perform to make samples available locally

on your machine. For more information on Git SCM please visit their website: http://git-scm.com/

CLONE samples repository. (For those unfamiliar with Git, this is somewhat the equivalent of a checkout.)

This is the first step you should go through. You must have Git installed on your machine. There are many GUI-

based products available for many platforms. Simple Google search will let you find them. To clone samples

repository from command line:

> mkdir spring-itegration-samples

> cd spring-itegration-samples

> git clone git://git.springsource.org/spring-integration/samples.git

That is all you need to do. Now you have cloned the entire samples repository. Since samples repository is

a live repository, you might want to perform periodic updates to get new samples as well as updates to the

existing samples. To get the updates use git PULL command:

> git pull

Submit samples or sample requests

As mentioned earlier, Spring Integration samples have a dedicated JIRA Issue tracking system. To submit new

sample request or to submit the actual sample (as an attachment) please visit our JIRA Issue Tracking system:

https://jira.springframework.org/browse/INTSAMPLES

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 151

A.3 Samples structure

The structure of the samples changed as well. With plans for more samples we realized that some samples have

different goals then others. While they all share the common goal of showing you how to apply and work with

Spring Integration framework, they also defer in areas where some samples were meant to concentrate on a

technical use case while others on the business use case and some samples are all about showcasing various

techniques that could be applied to address certain scenarios (both technical and business). Categorization of

samples will allow us better organize them based on the problem each sample addresses while giving you a

simpler way of finding the right sample

Currently there are 4 categories. Within the samples repository each category has its own directory which is

named after the category name:

BASIC (samples/basic)

This is a good place to get started. The samples here are technically motivated and demonstrate the bare

minimum with regard to configuration and code, to help you to get started quickly by introducing you to the

basic concepts, API and configuration of Spring Integration as well as Enterprise Integration Patterns (EIP).

For example; If your are looking for an answer on how to implement and wire Service Activator to a Channel

or how to use Messaging Gateway to your message exchange or how to get started with using MAIL or TCP/

UDP modules etc., this would be the right place to find a good sample. The bottom line is this is a good place

to get started.

INTERMEDIATE (samples/intermediate)

This category targets developers who are already familiar with Spring Integration framework (past getting

started), but need some more guidance while resolving a more advanced technical problems one might deal

with once switch to a Messaging architecture. For example; If you are looking for an answer on how to handle

errors in various message exchange scenarios or how to properly configure the Aggregator for the situations

where some messages might not ever arrive for aggregation etc,. and any other issue that goes beyond a basic

implementation and configuration of a particular component and addresses "what else you can do with it" type

of problem this would be the right place to find these type of samples.

ADVANCED (samples/advanced)

This category targets develoopers who are very familiar with Spring Integration framework but looking to

extend it to address a specific custom need by using Spring Integration public API. For example; if you are

looking for samples showing you how to implement a custom Channel or Consumer (event-based or polling-

based), or you trying to figure out what is the most appropriate way to implement custom Bean parser on top of

Spring Integration Bean parsers hierarchy when implementing custom name space for a custom component, this

would be the right place to look. Here you can also find samples that will help you with Adapter development.

Spring Integration comes with an extensive library of adapters to allow you to connect remote systems with

Spring Integration messaging framework. However you might have a need to integrate with system for which

the core framework does not provide an adapter. So you have to implement your own. This category would

include samples showing you how to do it.

APPLICATIONS (samples/applications)

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 152

This category targets developers and architects who have a good understanding of the Messaging architecture,

EIP and above average understanding of Spring and Spring Integration frameworks and are looking for samples

that address a particular business problem. In other words the emphasis of samples in this category is business

use cases and how it could be solved via Messaging Architecture and Spring Integration in particular. For

example; If you are interested to see how a Loan Broker or Travel Agent process could be implemented and

automated via Spring Integration this would be the right place to find these types of samples.

Important
Remember! Spring Integration is a community driven framework, therefore community

participation is IMPORTANT. That includes Samples, so if you can't find what you are looking

for let us know.

A.4 Samples

Currently Spring Integration comes with quite a few samples and you can only expect more. To help you better

navigate through them, each sample comes with its own readme.txt file which coveres sevaral details about

the sample (e.g., what EIP patterns it addresses, what problem it is trying to solve, how to run sample etc.).

However, certain samples require a more detailed and some times graphical explanation. In these section you'll

find details on samples that we believe require special attention.

Loan Broker

In this section, we will review a Loan Broker sample application that is included in the Spring Integration

samples. This sample is inspired by one of the samples featured in Gregor Hohpe's Ramblings [http://

www.eaipatterns.com/ramblings.html].

The diagram below represents the entire process

http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 153

Now lets look at this process in more details

At the core of EIP architecture are the very simple yet powerful concepts of Pipes and Filters and Message.

Endpoints (Filters) are connected with one another via Channels (Pipes). The producing endpoint sends

Message to the Channel and the Message is retrieved by the Consuming endpoint. This architecture is meant

to define various mechanisms that describe How information is exchanged between the endpoints, without any

awareness of What those endpoints are or What information they are exchanging, thus providing for a very

loosely coupled and flexible collaboration model while also, decoupling Integration concerns from Business

concerns. EIP extends this architecture by further defining:

• The types of pipes (Point-to-Point Channel, Publish-Subscribe Channel, Channel Adapter, etc.)

• The core filters and patterns around how filters collaborate with pipes (Message Router, Splitters and

Aggregators, various Message Transformation patterns, etc.)

The details and variations of this use case are very nicely described in Chapter 9 of the EIP Book, but here

is the brief summary; A Consumer while shopping for the best Loan Quote(s) subscribes to the services of a

Loan Broker, which handles details such as:

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 154

• Consumer pre-screening (e.g., obtain and review the consumer's Credit history)

• Determine the most appropriate Banks (e.g., based on consumer's credit history/score)

• Send a Loan quote request to each selected Bank

• Collect responses from each Bank

• Filter responses and determine the best quote(s), based on consumer's requirements.

• Pass the Loan quote(s) back to the consumer.

Obviously the real process of obtaining a loan quote is a bit more complex, but since our goal here is to

demonstrate how Enterprise Integration Patterns are realized and implemented within SI, the use case has been

simplified to concentrate only on the Integration aspects of the process. It is not an attempt to give you an

advice in consumer finances.

As you can see, by hiring a Loan Broker, the consumer is isolated from the details of the Loan Broker's

operations, and each Loan Broker's operations may defer from one another to maintain competitive advantage,

so whatever we assemble/implement must be flexible so any changes could be introduced quickly and

painlessly. Speaking of change, the Loan Broker sample does not actually talk to any 'imaginary' Banks or

Credit bureaus. Those services are stubbed out. Our goal here is to assemble, orchestrate and test the integration

aspect of the process as a whole. Only then can we start thinking about wiring such process to the real services.

At that time the assembled process and its configuration will not change regardless of the number of Banks

a particular Loan Broker is dealing with, or the type of communication media (or protocols) used (JMS, WS,

TCP, etc.) to communicate with these Banks.

DESIGN

As you analyze the 6 requirements above you'll quickly see that they all fall into the category of Integration

concerns. For example, in the consumer pre-screening step we need to gather additional information about the

consumer and the consumer's desires and enrich the loan request with additional meta information. We then

have to filter such information to select the most appropriate list of Banks, and so on. Enrich, filter, select

– these are all integration concerns for which EIP defines a solution in the form of patterns. SI provides an

implementation of these patterns.

Messaging Gateway

The Messaging Gateway pattern provides a simple mechanism to access messaging systems, including our Loan

Broker. In SI you define the Gateway as a Plain Old Java Interface (no need to provide an implementation),

configure it via the XML <gateway> element or via annotation and use it as any other Spring bean. SI will take

care of delegating and mapping method invocations to the Messaging infrastructure by generating a Message

(payload is mapped to an input parameter of the method) and sending it to the designated channel.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 155

<gateway id="loanBrokerGateway"

 default-request-channel="loanBrokerPreProcessingChannel"

 service-interface="org.springframework.integration.samples.loanbroker.LoanBrokerGateway">

 <method name="getBestLoanQuote">

 <header name="RESPONSE_TYPE" value="BEST"/>

 </method>

</gateway>

Our current Gateway provides two methods that could be invoked. One that will return the best single quote

and another one that will return all quotes. Somehow downstream we need to know what type of reply the caller

is looking for. The best way to achieve this in Messaging architecture is to enrich the content of the message

with some meta-data describing your intentions. Content Enricher is one of the patterns that addresses this and

although Spring Integration does provide a separate configuration element to enrich Message Headers with

arbitrary data (we'll see it later), as a convenience, since Gateway element is responsible to construct the initial

Message it provides embedded capability to enrich the newly created Message with arbitrary Message Headers.

In our example we are adding header RESPONSE_TYPE with value 'BEST'' whenever the getBestQuote()

method is invoked. For other method we are not adding any header. Now we can check downstream for an

existence of this header and based on its presence and its value we can determine what type of reply the caller

is looking for.

Based on the use case we also know there are some pre-screening steps that needs to be performed such as

getting and evaluating the consumer's credit score, simply because some premiere Banks will only typically

accept quote requests from consumers that meet a minimum credit score requirement. So it would be nice if

the Message would be enriched with such information before it is forwarded to the Banks. It would also be

nice if when several processes needs to be completed to provide such meta-information, those processes could

be grouped in a single unit. In our use case we need to determine credit score and based on the credit score and

some rule select a list of Message Channels (Bank Channels) we will sent quote request to.

Composed Message Processor

The Composed Message Processor pattern describes rules around building endpoints that maintain control

over message flow which consists of multiple message processors. In Sprig Integration Composed Message

Processor pattern is implemented via <chain> element.

As you can see from the above configuration we have a chain with inner header-enricher element which will

further enrich the content of the Message with the header CREDIT_SCORE and value that will be determined

by the call to a credit service (simple POJO spring bean identified by 'creditBureau' name) and then it will

delegate to the Message Router

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 156

Message Router

There are several implementation of Message Routing pattern available in Spring Integration. Here we are using

router that will determine a list of channels based on evaluating an expression (Spring Expression Language)

which will look at the credit score that was determined is the previous step and will select the list of channels

from the Map bean with id 'banks' whose values are 'premier' or 'secondary' based o the value of credit score.

Once the list of Channels is selected, the Message will be routed to those Channels.

Now, one last thing the Loan Broker needs to to is to receive the loan quotes form the banks, aggregate them

by consumer (we don't want to show quotes from one consumer to another), assemble the response based on

the consumer's selection criteria (single best quote or all quotes) and reply back to the consumer.

Message Aggregator

An Aggregator pattern describes an endpoint which groups related Messages into a single Message. Criteria and

rules can be provided to determine an aggregation and correlation strategy. SI provides several implementations

of the Aggregator pattern as well as a convenient name-space based configuration.

<aggregator id="quotesAggregator"

 input-channel="quotesAggregationChannel"

 method="aggregateQuotes">

 <beans:bean class="org.springframework.integration.samples.loanbroker.LoanQuoteAggregator"/>

</aggregator>

Our Loan Broker defines a 'quotesAggregator' bean via the <aggregator> element which provides a default

aggregation and correlation strategy. The default correlation strategy correlates messages based on the

$corelationId header (see Correlation Identifier pattern). What's interesting is that we never provided

the value for this header. It was set earlier by the router automatically, when it generated a separate Message

for each Bank channel.

Once the Messages are correlated they are released to the actual Aggregator implementation. Although default

Aggregator is provided by SI, its strategy (gather the list of payloads from all Messages and construct a new

Message with this List as payload) does not satisfy our requirement. The reason is that our consumer might

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 157

require a single best quote or all quotes. To communicate the consumer's intention, earlier in the process we set

the RESPONSE_TYPE header. Now we have to evaluate this header and return either all the quotes (the default

aggregation strategy would work) or the best quote (the default aggregation strategy will not work because we

have to determine which loan quote is the best).

Obviously selecting the best quote could be based on complex criteria and would influence the complexity of the

aggregator implementation and configuration, but for now we are making it simple. If consumer wants the best

quote we will select a quote with the lowest interest rate. To accomplish that the LoanQuoteAggregator.java

will sort all the quotes and return the first one. The LoanQuote.java implements Comparable which

compares quotes based on the rate attribute. Once the response Message is created it is sent to the default-

reply-channel of the Messaging Gateway (thus the consumer) which started the process. Our consumer got

the Loan Quote!

Conclusion

As you can see a rather complex process was assembled based on POJO (read existing, legacy), light weight,

embeddable messaging framework (Spring Integration) with a loosely coupled programming model intended to

simplify integration of heterogeneous systems without requiring a heavy-weight ESB-like engine or proprietary

development and deployment environment, becouse as a developer you should not be porting your Swing or

console-based application to an ESB-like server or implementing proprietary interfaces just because you have

an integration concern.

This and other samples in this section are build on top of Enterprise Integration Patterns that meant to describe

"building blocks" for YOUR solution but not to be solutions in of themselves. Integration concerns exist in all

types of applications (server based and not) and should not require change in design, testing and deployment

strategy if such applications need to integrate with one another.

The Cafe Sample

In this section, we will review a Cafe sample application that is included in the Spring Integration samples. This

sample is inspired by another sample featured in Gregor Hohpe's Ramblings [http://www.eaipatterns.com/

ramblings.html].

The domain is that of a Cafe, and the basic flow is depicted in the following diagram:

http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 158

The Order object may contain multiple OrderItems. Once the order is placed, a Splitter will break

the composite order message into a single message per drink. Each of these is then processed by a Router

that determines whether the drink is hot or cold (checking the OrderItem object's 'isIced' property). The

Barista prepares each drink, but hot and cold drink preparation are handled by two distinct methods:

'prepareHotDrink' and 'prepareColdDrink'. The prepared drinks are then sent to the Waiter where they are

aggregated into a Delivery object.

Here is the XML configuration:

<?xml version="1.0" encoding="UTF-8"?>

 <beans:beans xmlns="http://www.springframework.org/schema/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:stream="http://www.springframework.org/schema/integration/stream"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration-2.0.xsd

 http://www.springframework.org/schema/integration/stream

 http://www.springframework.org/schema/integration/stream/spring-integration-stream-2.0.xsd">

 <gateway id="cafe" service-interface="org.springframework.integration.samples.cafe.Cafe"/>

 <channel id="orders"/>

 <splitter input-channel="orders" ref="orderSplitter" method="split" output-channel="drinks"/>

 <channel id="drinks"/>

 <router input-channel="drinks" ref="drinkRouter" method="resolveOrderItemChannel"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 159

 <channel id="coldDrinks">

 <queue capacity="10"/>

 </channel>

 <service-activator input-channel="coldDrinks" ref="barista"

 method="prepareColdDrink" output-channel="preparedDrinks"/>

 <channel id="hotDrinks">

 <queue capacity="10"/>

 </channel>

 <service-activator input-channel="hotDrinks" ref="barista"

 method="prepareHotDrink" output-channel="preparedDrinks"/>

 <channel id="preparedDrinks"/>

 <aggregator input-channel="preparedDrinks" ref="waiter"

 method="prepareDelivery" output-channel="deliveries"/>

 <stream:stdout-channel-adapter id="deliveries"/>

 <beans:bean id="orderSplitter"

 class="org.springframework.integration.samples.cafe.xml.OrderSplitter"/>

 <beans:bean id="drinkRouter"

 class="org.springframework.integration.samples.cafe.xml.DrinkRouter"/>

 <beans:bean id="barista" class="org.springframework.integration.samples.cafe.xml.Barista"/>

 <beans:bean id="waiter" class="org.springframework.integration.samples.cafe.xml.Waiter"/>

 <poller id="poller" default="true" fixed-rate="1000"/>

 </beans:beans>

As you can see, each Message Endpoint is connected to input and/or output channels. Each endpoint will

manage its own Lifecycle (by default endpoints start automatically upon initialization - to prevent that add the

"auto-startup" attribute with a value of "false"). Most importantly, notice that the objects are simple POJOs

with strongly typed method arguments. For example, here is the Splitter:

public class OrderSplitter {

 public List<OrderItem> split(Order order) {

 return order.getItems();

 }

 }

In the case of the Router, the return value does not have to be a MessageChannel instance (although it can

be). As you see in this example, a String-value representing the channel name is returned instead.

public class DrinkRouter {

 public String resolveOrderItemChannel(OrderItem orderItem) {

 return (orderItem.isIced()) ? "coldDrinks" : "hotDrinks";

 }

 }

Now turning back to the XML, you see that there are two <service-activator> elements. Each of these is

delegating to the same Barista instance but different methods: 'prepareHotDrink' or 'prepareColdDrink'

corresponding to the two channels where order items have been routed.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 160

public class Barista {

 private long hotDrinkDelay = 5000;

 private long coldDrinkDelay = 1000;

 private AtomicInteger hotDrinkCounter = new AtomicInteger();

 private AtomicInteger coldDrinkCounter = new AtomicInteger();

 public void setHotDrinkDelay(long hotDrinkDelay) {

 this.hotDrinkDelay = hotDrinkDelay;

 }

 public void setColdDrinkDelay(long coldDrinkDelay) {

 this.coldDrinkDelay = coldDrinkDelay;

 }

 public Drink prepareHotDrink(OrderItem orderItem) {

 try {

 Thread.sleep(this.hotDrinkDelay);

 System.out.println(Thread.currentThread().getName()

 + " prepared hot drink #" + hotDrinkCounter.incrementAndGet()

 + " for order #" + orderItem.getOrder().getNumber() + ": " + orderItem);

 return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(),

 orderItem.isIced(), orderItem.getShots());

 }

 catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 return null;

 }

 }

 public Drink prepareColdDrink(OrderItem orderItem) {

 try {

 Thread.sleep(this.coldDrinkDelay);

 System.out.println(Thread.currentThread().getName()

 + " prepared cold drink #" + coldDrinkCounter.incrementAndGet()

 + " for order #" + orderItem.getOrder().getNumber() + ": " + orderItem);

 return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(),

 orderItem.isIced(), orderItem.getShots());

 }

 catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 return null;

 }

 }

 }

As you can see from the code excerpt above, the barista methods have different delays (the hot drinks take 5

times as long to prepare). This simulates work being completed at different rates. When the CafeDemo 'main'

method runs, it will loop 100 times sending a single hot drink and a single cold drink each time. It actually

sends the messages by invoking the 'placeOrder' method on the Cafe interface. Above, you will see that the

<gateway> element is specified in the configuration file. This triggers the creation of a proxy that implements

the given 'service-interface' and connects it to a channel. The channel name is provided on the @Gateway

annotation of the Cafe interface.

public interface Cafe {

 @Gateway(requestChannel="orders")

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 161

 void placeOrder(Order order);

 }

Finally, have a look at the main() method of the CafeDemo itself.

public static void main(String[] args) {

 AbstractApplicationContext context = null;

 if (args.length > 0) {

 context = new FileSystemXmlApplicationContext(args);

 }

 else {

 context = new ClassPathXmlApplicationContext("cafeDemo.xml", CafeDemo.class);

 }

 Cafe cafe = (Cafe) context.getBean("cafe");

 for (int i = 1; i <= 100; i++) {

 Order order = new Order(i);

 order.addItem(DrinkType.LATTE, 2, false);

 order.addItem(DrinkType.MOCHA, 3, true);

 cafe.placeOrder(order);

 }

 }

Tip
To run this sample as well as 8 others, refer to the README.txt within the "samples" directory

of the main distribution as described at the beginning of this chapter.

When you run cafeDemo, you will see that the cold drinks are initially prepared more quickly than the hot

drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of the hot drink

preparation. This is to be expected based on their respective delays of 1000 and 5000 milliseconds. However,

by configuring a poller with a concurrent task executor, you can dramatically change the results. For example,

you could use a thread pool executor with 5 workers for the hot drink barista while keeping the cold drink

barista as it is:

<service-activator input-channel="hotDrinks"

 ref="barista"

 method="prepareHotDrink"

 output-channel="preparedDrinks"/>

 <service-activator input-channel="hotDrinks"

 ref="barista"

 method="prepareHotDrink"

 output-channel="preparedDrinks">

 <poller task-executor="pool" fixed-rate="1000"/>

 </service-activator>

 <task:executor id="pool" pool-size="5"/>

Also, notice that the worker thread name is displayed with each invocation. You will see that the hot drinks are

prepared by the task-executor threads. If you provide a much shorter poller interval (such as 100 milliseconds),

then you will notice that occasionally it throttles the input by forcing the task-scheduler (the caller) to invoke

the operation.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 162

Note
In addition to experimenting with the poller's concurrency settings, you can also add the

'transactional' sub-element and then refer to any PlatformTransactionManager instance within the

context.

The XML Messaging Sample

The xml messaging sample in the org.springframework.integration.samples.xml illustrates how to use some

of the provided components which deal with xml payloads. The sample uses the idea of processing an order

for books represented as xml.

First the order is split into a number of messages, each one representing a single order item using the XPath

splitter component.

<si-xml:xpath-splitter id="orderItemSplitter" input-channel="ordersChannel"

 output-channel="stockCheckerChannel" create-documents="true">

 <si-xml:xpath-expression expression="/orderNs:order/orderNs:orderItem" namespace-map="orderNamespaceMap" />

 </si-xml:xpath-splitter>

A service activator is then used to pass the message into a stock checker POJO. The order item document

is enriched with information from the stock checker about order item stock level. This enriched order item

message is then used to route the message. In the case where the order item is in stock the message is routed

to the warehouse. The XPath router makes use of a MapBasedChannelResolver which maps the XPath

evaluation result to a channel reference.

<si-xml:xpath-router id="instockRouter" channel-resolver="mapChannelResolver"

 input-channel="orderRoutingChannel" resolution-required="true">

 <si-xml:xpath-expression expression="/orderNs:orderItem/@in-stock" namespace-map="orderNamespaceMap" />

 </si-xml:xpath-router>

 <bean id="mapChannelResolver"

 class="org.springframework.integration.channel.MapBasedChannelResolver">

 <property name="channelMap">

 <map>

 <entry key="true" value-ref="warehouseDispatchChannel" />

 <entry key="false" value-ref="outOfStockChannel" />

 </map>

 </property>

 </bean>

Where the order item is not in stock the message is transformed using xslt into a format suitable for sending

to the supplier.

<si-xml:xslt-transformer input-channel="outOfStockChannel" output-channel="resupplyOrderChannel"

 xsl-resource="classpath:org/springframework/integration/samples/xml/bigBooksSupplierTransformer.xsl"/>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 163

Appendix B. Configuration

B.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your

particular needs and at what level you prefer to work. As with the Spring framework in general, it is also

possible to mix and match the various techniques according to the particular problem at hand. For example, you

may choose the XSD-based namespace for the majority of configuration combined with a handful of objects

that are configured with annotations. As much as possible, the two provide consistent naming. XML elements

defined by the XSD schema will match the names of annotations, and the attributes of those XML elements

will match the names of annotation properties. Direct usage of the API is of course always an option, but we

expect that most users will choose one of the higher-level options, or a combination of the namespace-based

and annotation-driven configuration.

B.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the terminology and

concepts of enterprise integration. In many cases, the element names match those of the Enterprise Integration

Patterns [http://www.eaipatterns.com].

To enable Spring Integration's core namespace support within your Spring configuration files, add the following

namespace reference and schema mapping in your top-level 'beans' element:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:integration="http://www.springframework.org/schema/integration"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration-2.0.xsd">

You can choose any name after "xmlns:"; integration is used here for clarity, but you might prefer a shorter

abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of auto-completion

may convince you to keep the longer name for clarity. Alternatively, you can create configuration files that use

the Spring Integration schema as the primary namespace:

<beans:beans xmlns="http://www.springframework.org/schema/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration-2.0.xsd">

When using this alternative, no prefix is necessary for the Spring Integration elements. On the other hand, if

you want to define a generic Spring "bean" within the same configuration file, then a prefix would be required

for the bean element (<beans:bean ... />). Since it is generally a good idea to modularize the configuration

files themselves based on responsibility and/or architectural layer, you may find it appropriate to use the latter

http://www.eaipatterns.com
http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 164

approach in the integration-focused configuration files, since generic beans are seldom necessary within those

same files. For purposes of this documentation, we will assume the "integration" namespace is primary.

Many other namespaces are provided within the Spring Integration distribution. In fact, each adapter type

(JMS, File, etc.) that provides namespace support defines its elements within a separate schema. In order

to use these elements, simply add the necessary namespaces with an "xmlns" entry and the corresponding

"schemaLocation" mapping. For example, the following root element shows several of these namespace

declarations:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:integration="http://www.springframework.org/schema/integration"

 xmlns:file="http://www.springframework.org/schema/integration/file"

 xmlns:jms="http://www.springframework.org/schema/integration/jms"

 xmlns:mail="http://www.springframework.org/schema/integration/mail"

 xmlns:rmi="http://www.springframework.org/schema/integration/rmi"

 xmlns:ws="http://www.springframework.org/schema/integration/ws"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration-2.0.xsd

 http://www.springframework.org/schema/integration/file

 http://www.springframework.org/schema/integration/file/spring-integration-file-2.0.xsd

 http://www.springframework.org/schema/integration/jms

 http://www.springframework.org/schema/integration/jms/spring-integration-jms-2.0.xsd

 http://www.springframework.org/schema/integration/mail

 http://www.springframework.org/schema/integration/mail/spring-integration-mail-2.0.xsd

 http://www.springframework.org/schema/integration/rmi

 http://www.springframework.org/schema/integration/rmi/spring-integration-rmi-2.0.xsd

 http://www.springframework.org/schema/integration/ws

 http://www.springframework.org/schema/integration/ws/spring-integration-ws-2.0.xsd">

 ...

</beans>

The reference manual provides specific examples of the various elements in their corresponding chapters. Here,

the main thing to recognize is the consistency of the naming for each namespace URI and schema location.

B.3 Configuring the Task Scheduler

In Spring Integration, the ApplicationContext plays the central role of a Message Bus, and there are only a

couple configuration options to be aware of. First, you may want to control the central TaskScheduler instance.

You can do so by providing a single bean with the name "taskScheduler". This is also defined as a constant:

 IntegrationContextUtils.TASK_SCHEDULER_BEAN_NAME

By default Spring Integration uses the SimpleTaskScheduler implementation. That in turn just delegates

to any instance of Spring's TaskExecutor abstraction. Therefore, it's rather trivial to supply your own

configuration. The "taskScheduler" bean is then responsible for managing all pollers. The TaskScheduler will

startup automatically by default. If you provide your own instance of SimpleTaskScheduler however, you can

set the 'autoStartup' property to false instead.

When Polling Consumers provide an explicit task-executor reference in their configuration, the invocation of

the handler methods will happen within that executor's thread pool and not the main scheduler pool. However,

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 165

when no task-executor is provided for an endpoint's poller, it will be invoked by one of the main scheduler's

threads.

Note
An endpoint is a Polling Consumer if its input channel is one of the queue-based (i.e. pollable)

channels. On the other hand, Event Driven Consumers are those whose input channels have

dispatchers instead of queues (i.e. they are subscribable). Such endpoints have no poller

configuration since their handlers will be invoked directly.

The next section will describe what happens if Exceptions occur within the asynchronous invocations.

B.4 Error Handling

As described in the overview at the very beginning of this manual, one of the main motivations behind a

Message-oriented framework like Spring Integration is to promote loose-coupling between components. The

Message Channel plays an important role in that producers and consumers do not have to know about each

other. However, the advantages also have some drawbacks. Some things become more complicated in a very

loosely coupled environment, and one example is error handling.

When sending a Message to a channel, the component that ultimately handles that Message may or may not be

operating within the same thread as the sender. If using a simple default DirectChannel (with the <channel>

element that has no <queue> sub-element and no 'task-executor' attribute), the Message-handling will occur

in the same thread as the Message-sending. In that case, if an Exception is thrown, it can be caught by the

sender (or it may propagate past the sender if it is an uncaught RuntimeException). So far, everything is fine.

This is the same behavior as an Exception-throwing operation in a normal call stack. However, when adding

the asynchronous aspect, things become much more complicated. For instance, if the 'channel' element does

provide a 'queue' sub-element, then the component that handles the Message will be operating in a different

thread than the sender. The sender may have dropped the Message into the channel and moved on to other

things. There is no way for the Exception to be thrown directly back to that sender using standard Exception

throwing techniques. Instead, to handle errors for asynchronous processes requires an asynchronous error-

handling mechanism as well.

Spring Integration supports error handling for its components by publishing errors to a Message Channel.

Specifically, the Exception will become the payload of a Spring Integration Message. That Message will then

be sent to a Message Channel that is resolved in a way that is similar to the 'replyChannel' resolution. First, if the

request Message being handled at the time the Exception occurred contains an 'errorChannel' header (the header

name is defined in the constant: MessageHeaders.ERROR_CHANNEL), the ErrorMessage will be sent to that

channel. Otherwise, the error handler will send to a "global" channel whose bean name is "errorChannel" (this

is also defined as a constant: IntegrationContextUtils.ERROR_CHANNEL_BEAN_NAME).

Whenever relying on Spring Integration's XML namespace support, a default "errorChannel" bean will be

created behind the scenes. However, you can just as easily define your own if you want to control the settings.

 <channel id="errorChannel">

 <queue capacity="500"/>

 </channel>

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 166

Note
The default "errorChannel" is a PublishSubscribeChannel.

The most important thing to understand here is that the messaging-based error handling will only apply to

Exceptions that are thrown by a Spring Integration task that is executing within a TaskExecutor. This does not

apply to Exceptions thrown by a handler that is operating within the same thread as the sender (e.g. through

a DirectChannel as described above).

Note
When Exceptions occur in a scheduled poller task's execution, those exceptions will be wrapped

in ErrorMessages and sent to the 'errorChannel' as well.

To enable global error handling, simply register a handler on that channel. For example, you can configure

Spring Integration's ErrorMessageExceptionTypeRouter as the handler of an endpoint that is

subscribed to the 'errorChannel'. That router can then spread the error messages across multiple channels based

on Exception type.

B.5 Annotation Support

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to

use annotations. First, Spring Integration provides the class-level @MessageEndpoint as a stereotype

annotation meaning that is itself annotated with Spring's @Component annotation and therefore is recognized

automatically as a bean definition when using Spring component-scanning.

Even more importantly are the various Method-level annotations that indicate the annotated method is capable

of handling a message. The following example demonstrates both:

@MessageEndpoint

public class FooService {

 @ServiceActivator

 public void processMessage(Message message) {

 ...

 }

}

Exactly what it means for the method to "handle" the Message depends on the particular annotation. The

following are available with Spring Integration, and the behavior of each is described in its own chapter

or section within this reference: @Transformer, @Router, @Splitter, @Aggregator, @ServiceActivator, and

@ChannelAdapter.

Note
The @MessageEndpoint is not required if using XML configuration in combination with

annotations. If you want to configure a POJO reference from the "ref" attribute of a <service-

activator/> element, it is sufficient to provide the method-level annotations. In that case, the

annotation prevents ambiguity even when no "method" attribute exists on the <service-activator/

> element.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 167

In most cases, the annotated handler method should not require the Message type as its parameter. Instead,

the method parameter type can match the message's payload type.

public class FooService {

 @ServiceActivator

 public void bar(Foo foo) {

 ...

 }

}

When the method parameter should be mapped from a value in the MessageHeaders, another option is

to use the parameter-level @Header annotation. In general, methods annotated with the Spring Integration

annotations can either accept the Message itself, the message payload, or a header value (with @Header) as

the parameter. In fact, the method can accept a combination, such as:

public class FooService {

 @ServiceActivator

 public void bar(String payload, @Header("x") int valueX, @Header("y") int valueY) {

 ...

 }

}

There is also a @Headers annotation that provides all of the Message headers as a Map:

public class FooService {

 @ServiceActivator

 public void bar(String payload, @Headers Map<String, Object> headerMap) {

 ...

 }

}

For several of these annotations, when a Message-handling method returns a non-null value, the endpoint will

attempt to send a reply. This is consistent across both configuration options (namespace and annotations) in

that such an endpoint's output channel will be used if available, and the REPLY_CHANNEL message header

value will be used as a fallback.

Tip
The combination of output channels on endpoints and the reply channel message header enables

a pipeline approach where multiple components have an output channel, and the final component

simply allows the reply message to be forwarded to the reply channel as specified in the original

request message. In other words, the final component depends on the information provided by the

original sender and can dynamically support any number of clients as a result. This is an example

of Return Address [http://eaipatterns.com/ReturnAddress.html].

In addition to the examples shown here, these annotations also support inputChannel and outputChannel

properties.

public class FooService {

http://eaipatterns.com/ReturnAddress.html
http://eaipatterns.com/ReturnAddress.html

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 168

 @ServiceActivator(inputChannel="input", outputChannel="output")

 public void bar(String payload, @Headers Map<String, Object> headerMap) {

 ...

 }

}

That provides a pure annotation-driven alternative to the XML configuration. However, it is generally

recommended to use XML for the endpoints, since it is easier to keep track of the overall configuration

in a single, external location (and besides the namespace-based XML configuration is not very verbose). If

you do prefer to provide channels with the annotations however, you just need to enable a SI Annotations

BeanPostProcessor. The following element should be added:

 <int:annotation-config/>

Note
When configuring the "inputChannel" and "outputChannel" with annotations, the "inputChannel"

must be a reference to a SubscribableChannel instance. Otherwise, it would be necessary

to also provide the full poller configuration via annotations, and those settings (e.g. the trigger for

scheduling the poller) should be externalized rather than hard-coded within an annotation. If the

input channel that you want to receive Messages from is indeed a PollableChannel instance,

one option to consider is the Messaging Bridge. Spring Integration's "bridge" element can be used

to connect a PollableChannel directly to a SubscribableChannel. Then, the polling metadata is

externally configured, but the annotation option is still available. For more detail see Chapter 15,

Messaging Bridge.

B.6 Message Mapping rules and conventions

Spring Integration implements a flexible facility to map Messages to Methods and their arguments without

providing extra configuration by relying on some default rules as well as defining certain conventions.

Simple Scenarios

Single un-annotated parameter (object or primitive) which is not a Map/Properties with non-void return type;

public String foo(Object o);

Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an attempt will

be made to convert it using Conversion Service provided by Spring 3.0. The return value will be incorporated

as a Payload of the returned Message

Single un-annotated parameter (object or primitive) which is not a Map/Properties with Message return type;

public Message foo(Object o);

Details:

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 169

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an attempt will

be made to convert it using Conversion Service provided by Spring 3.0. The return value is a newly constructed

Message that will be sent to the next destination.

Single parameter which is a Message or its subclass with arbitrary object/primitive return type;

public int foo(Message msg);

Details:

Input parameter is Message itself. The return value will become a payload of the Message that will be sent

to the next destination.

Single parameter which is a Message or its subclass with Message or its subclass as a return type;

public Message foo(Message msg);

Details:

Input parameter is Message itself. The return value is a newly constructed Message that will be sent to the

next destination.

Single parameter which is of type Map or Properties with Message as a return type;

public Message foo(Map m);

Details:

This one is a bit interesting. Although at first it might seem like an easy mapping straight to Message Headers,

the preference is always given to a Message Payload. This means that if Message Payload is of type Map,

this input argument will represent Message Payload. However if Message Payload is not of type Map, then

no conversion via Conversion Service will be attempted and the input argument will be mapped to Message

Headers.

Two parameters where one of them is arbitrary non-Map/Properties type object/primitive and another is Map/

Properties type object (regardless of the return)

public Message foo(Map h, <T> t);

Details:

This combination contains two input parameters where one of them is of type Map. Naturally the non-Map

parameters (regardless of the order) will be mapped to a Message Payload and the Map/Properties (regardless

of the order) will be mapped to Message Headers giving you a nice POJO way of interacting with Message

structure.

No parameters (regardless of the return)

public String foo();

Details:

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 170

This Message Handler method will be invoked based on the Message sent to the input channel this handler is

hooked up to, however no Message data will be mapped, thus making Message act as event/trigger to invoke

such handlerThe output will be mapped according to the rules above

No parameters, void return

public void foo();

Details:

Same as above, but no output

Annotation based mappings

Annotation based mapping is the safest and least ambiguous approach to map Messages to Methods. There wil

be many pointers to annotation based mapping throughout this manual, however here are couple of examples:

public String foo(@Payload String s, @Header("foo") String b)

Very simple and explicite way of mapping Messages to method. As you'll see later on without annotation this

signature would result in the ambiguous condition, however by explicitly mapping first argument to a Message

Payload and second argument to a value of the 'foo' Message Header we have avoided ambiguity.

public String foo(@Payload String s, @RequestParam("foo") String b)

Looks almost identical to the previous example, however @RequestMapping or any other non-SI mapping

annotation is irrelevant and therefore will be ignored leaving the second parameter unmapped. And although

the second parameters could easily be mapped to a Payload, there can only be one Payload, therefore this

method becomes ambiguous.

public String foo(String s, @Header("foo") String b)

The same as above. The only difference is that the first argument will be mapped to Message Payload implicitly.

public String foo(@Headers Map m, @Header("foo")Map f, @Header("bar") String bar)

Yet another signature that would definitely be treated as ambiguous because it has more then 2 arguments, plus

two of them are Maps, however with annotation-based mapping ambiguity is easily avoided. In this example

the first argument is mapped to all the Message Headers, while second and third argument map to the values

of Message Headers 'foo' and 'bar'.

Complex Scenarios

Multiple parameters:

Multiple parameters could create a lot of ambiguity with regards to determining the appropriate mappings. The

general advice is to annotate your method parameters with @Payload and/or @Header/@Headers Below are

some of the examples of ambiguous conditions which result in exception being raised.

public String foo(String s, int i)

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 171

- the two parameters are equal in weight, therefore no way to determine which one is a payload and what to

do with another.

public String foo(String s, Map m, String b)

- almost the same as above. Although Map could be easily mapped to Message Headers, there is no way to

determine what to do with two Strings.

public String foo(Map m, Map f)

- although one might argue that one Map could be mapped to Message Payload and another one to Message

Headers, it would be unreasonable to rely on the order (e.g., first is Payload, second Headers)

Tip
Basically any method signature with more then one method argument which is not (Map, <T>)

and those parameters are not annotated will result in the ambiguous condition thus triggering an

exception.

Multiple methods:

Message Handlers with multiple methods are mapped based on the same rules that are described above, however

some scenarios might still look confusing.

Multiple methods (same or different name) with legal (mappable) signatures:

public class Foo{

 public String foo(String str, Map m);

 public String foo(Map m)

}

As you can see, the Message could be mapped to either method. The first method would be invoked where

Message Payload could be mapped to 'str' and Message Headers could be mapped to 'm'. The second method

could easily also be a candidate where only Message Headers are mapped to 'm'. To make meters worse both

methods have the same name which at first might look very ambiguous considering the following configuration:

<si:service-activator input-channel="input" output-channel="output" method="foo">

 <bean class="org.bar.Foo"/>

</si:service-activator>

At this point it would be important to understand Spring Integration mapping Conventions where at the very

core, mappings are based on Payload first and everything else next. In other words the method whose argument

could be mapped to a Payload will take precedence over all other methods.

On the other hand let's look at slightly different example:

public class Foo{

 public String foo(String str, Map m);

 public String foo(String str)

}

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 172

If you look at it you can probably see a truly an ambiguous condition. In this example since both methods

have signatures that could be mapped to a Message Payload. They also have the same name. Such handler will

trigger an exception. However if method names were different you could influence the mapping with 'method'

attribute (see below):

public class Foo{

 public String foo(String str, Map m);

 public String bar(String str)

}

<si:service-activator input-channel="input" output-channel="output" method="bar">

 <bean class="org.bar.Foo"/>

</si:service-activator>

Now there is no ambiguity since the configuration explicitly maps to 'bar' method which has no name conflicts.

Spring Integration

2.0.0.RC1

Spring Integration

Reference Manual 173

Appendix C. Additional Resources

C.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home [http://

www.springsource.org/spring-integration] at http://www.springsource.org. That site serves as a hub of

information and is the best place to find up-to-date announcements about the project as well as links to articles,

blogs, and new sample applications.

http://www.springsource.org/spring-integration
http://www.springsource.org/spring-integration
http://www.springsource.org/spring-integration
http://www.springsource.org

	Spring Integration Reference Manual
	Table of Contents
	1. Spring Integration Overview
	1.1 Background
	1.2 Goals and Principles
	1.3 Main Components
	Message
	Message Channel
	Message Endpoint

	1.4 Message Endpoints
	Transformer
	Filter
	Router
	Splitter
	Aggregator
	Service Activator
	Channel Adapter

	2. Message Construction
	2.1 The Message Interface
	2.2 Message Headers
	2.3 Message Implementations
	2.4 The MessageBuilder Helper Class

	3. Message Channels
	3.1 The MessageChannel Interface
	PollableChannel
	SubscribableChannel

	3.2 Message Channel Implementations
	PublishSubscribeChannel
	QueueChannel
	PriorityChannel
	RendezvousChannel
	DirectChannel
	ExecutorChannel
	ThreadLocalChannel

	3.3 Channel Interceptors
	3.4 MessagingTemplate
	3.5 Configuring Message Channels
	DirectChannel Configuration
	QueueChannel Configuration
	PublishSubscribeChannel Configuration
	ExecutorChannel
	PriorityChannel Configuration
	RendezvousChannel Configuration
	ThreadLocalChannel Configuration
	Channel Interceptor Configuration
	Global Channel Interceptor Configuration
	Wire Tap

	4. Message Endpoints
	4.1 Message Handler
	4.2 Event Driven Consumer
	4.3 Polling Consumer
	4.4 Namespace Support
	4.5 Payload Type Conversion
	4.6 Asynchronous polling

	5. Service Activator
	5.1 Introduction
	5.2 The <service-activator/> Element

	6. Channel Adapter
	6.1 The <inbound-channel-adapter> element
	6.2 The <outbound-channel-adapter/> element

	7. Router
	7.1 Router Implementations
	PayloadTypeRouter
	HeaderValueRouter
	RecipientListRouter

	7.2 The <router> element
	7.3 The @Router Annotation
	7.4 Dynamic Routers

	8. Filter
	8.1 Introduction
	8.2 The <filter> Element

	9. Transformer
	9.1 Introduction
	9.2 The <transformer> Element
	9.3 The @Transformer Annotation

	10. Splitter
	10.1 Introduction
	10.2 Programming model
	10.3 Configuring a Splitter using XML
	10.4 Configuring a Splitter with Annotations

	11. Aggregator
	11.1 Introduction
	11.2 Functionality
	11.3 Programming model
	CorrelatingMessageHandler
	ReleaseStrategy
	CorrelationStrategy

	11.4 Configuring an Aggregator with XML
	11.5 Managing State in an Aggregator: MessageGroupStore
	11.6 Configuring an Aggregator with Annotations

	12. Resequencer
	12.1 Introduction
	12.2 Functionality
	12.3 Configuring a Resequencer with XML

	13. Delayer
	13.1 Introduction
	13.2 The <delayer> Element

	14. Message Handler Chain
	14.1 Introduction
	14.2 The <chain> Element

	15. Messaging Bridge
	15.1 Introduction
	15.2 The <bridge> Element

	16. Inbound Messaging Gateways
	16.1 GatewayProxyFactoryBean
	16.2 Asynchronous Gateway
	16.3 Gateway behavior when no response is coming

	17. Message Publishing
	17.1 Message Publishing Configuration
	Annotation-driven approach via @Publisher annotation
	XML-based approach via <publishing-interceptor> element
	Producing and publishing messages based on a scheduled trigger

	18. Transaction Support
	18.1 Understanding Transactions in Message flows
	Poller Transaction Support

	18.2 Transaction Boundaries

	19. Message History
	19.1 Message History Configuration

	20. File Support
	20.1 Introduction
	20.2 Reading Files
	20.3 Writing files
	20.4 File Transformers

	21. JDBC Support
	21.1 Inbound Channel Adapter
	Polling and Transactions

	21.2 Outbound Channel Adapter
	21.3 Outbound Gateway
	21.4 Message Store
	Initializing the Database
	Partitioning a Message Store

	22. JMS Support
	22.1 Inbound Channel Adapter
	22.2 Message-Driven Channel Adapter
	22.3 Outbound Channel Adapter
	22.4 Inbound Gateway
	22.5 Outbound Gateway
	22.6 Message Conversion, Marshalling and Unmarshalling
	22.7 JMS Backed Message Channels
	22.8 JMS Samples

	23. Web Services Support
	23.1 Outbound Web Service Gateways
	23.2 Inbound Web Service Gateways
	23.3 Web Service Namespace Support

	24. RMI Support
	24.1 Introduction
	24.2 Outbound RMI
	24.3 Inbound RMI
	24.4 RMI namespace support

	25. HttpInvoker Support
	25.1 Introduction
	25.2 HttpInvoker Inbound Gateway
	25.3 HttpInvoker Outbound Gateway
	25.4 HttpInvoker Namespace Support

	26. HTTP Support
	26.1 Introduction
	26.2 Http Inbound Gateway
	26.3 Http Outbound Gateway
	26.4 HTTP Namespace Support
	26.5 HTTP Samples
	Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway (server)

	27. TCP and UDP Support
	27.1 Introduction
	27.2 UDP Adapters
	27.3 TCP Connection Factories
	27.4 Tcp Connection Interceptors
	27.5 TCP Adapters
	27.6 TCP Gateways
	27.7 IP Configuration Attributes

	28. Mail Support
	28.1 Mail-Sending Channel Adapter
	28.2 Mail-Receiving Channel Adapter
	28.3 Mail Namespace Support

	29. JMX Support
	29.1 Notification Listening Channel Adapter
	29.2 Notification Publishing Channel Adapter
	29.3 Attribute Polling Channel Adapter
	29.4 Operation Invoking Channel Adapter
	29.5 Operation Invoking outbound Gateway
	29.6 MBean Exporter
	29.7 Control Bus

	30. XMPP Support
	30.1 Introduction
	30.2 Using The Spring Integration XMPP Namespace
	30.3 XMPP Connection
	30.4 XMPP Messages
	Inbound Message Adapter
	Outbound Message Adapter

	30.5 XMPP Presence
	Inbound Presence Adapter
	Outbound Presence Adapter

	31. Stream Support
	31.1 Introduction
	31.2 Reading from streams
	31.3 Writing to streams
	31.4 Stream namespace support

	32. Spring ApplicationEvent Support
	32.1 Receiving Spring ApplicationEvents
	32.2 Sending Spring ApplicationEvents

	33. XML Support - Dealing with XML Payloads
	33.1 Introduction
	33.2 Transforming xml payloads
	33.3 Namespace support for xml transformers
	33.4 Splitting xml messages
	33.5 Routing xml messages using XPath
	33.6 Selecting xml messages using XPath
	33.7 Transforming xml messages using XPath
	33.8 XPath components namespace support

	34. Security in Spring Integration
	34.1 Introduction
	34.2 Securing channels

	35. Groovy support
	35.1 Groovy configuration

	Appendix A. Spring Integration Samples
	A.1 Introduction
	A.2 Where to get Samples
	A.3 Samples structure
	A.4 Samples
	Loan Broker
	The Cafe Sample
	The XML Messaging Sample

	Appendix B. Configuration
	B.1 Introduction
	B.2 Namespace Support
	B.3 Configuring the Task Scheduler
	B.4 Error Handling
	B.5 Annotation Support
	B.6 Message Mapping rules and conventions
	Simple Scenarios
	Complex Scenarios

	Appendix C. Additional Resources
	C.1 Spring Integration Home

