Spring Integration Reference Manual

Mark Fisher
Marius Bogoevici
Iwein Fuld
Jonas Partner
Oleg Zhurakousky
Gary Russell
Dave Syer
Josh Long
David Turanski

Spring Integration Reference Manual
by Mark Fisher, Marius Bogoevici, lwein Fuld, Jonas Partner, Oleg Zhurakousky, Gary Russell, Dave Syer, Josh
Long, and David Turanski

2.1.0.M2

© SpringSource Inc., 2011

Spring Integration

Table of Contents

= = o= SRR Xii
1. COUE CONVENLIONSvveieieiiiiie ettt e ettt e ettt e e ettt e e et e e s et e e e e e snbne e e e annnbeeeeenrneeenans Xii
I. What's new in Spring INtegration 2.0ccuviiiiriee e e e e e 1
1. What's new in Spring INtegration 2.07uuueeuruiururuiiiuinrnrnrernrnrnrnrnrnnnnn.————. 2
TR S o G IR0 o 1 ORI 2
Support for the Spring Expression Language (SPEL)coovviiieeiiiiiiieiiiieee e 2
ConversionService and CONVEITEruueiieeeeiiiiiiieieee e sieeer e e e e e senreaeeeeee s 2
TaskScheduler @nd TIIGOEN ...ooovveeieeiiiie e 2
RestTemplate and HitpM essageCONVEITErvuviieeeeiiiiciiiiiee et 2

1.2. Enterprise Integration Pattern Additionscveeeeeeiiiiiiiiie e 2
TS 0T o 3

MESSAJE SOeeeieeeei ittt e e e e e e e e s e e e e e e s s s r e e e e e e e e s s nnrn e e e e eeennaas 3

ClaM CHECK .vviiiiie ittt r e e e e s et e e e ae e e s s ssnntaaneeeeeeesannne 3

CONLIOI BUS eiieeeeiicitie sttt e e e e e e e et e e e e e e e s e nnnntaeeeeaaeeeeannnnens 3

1.3. New Channel Adapters and Gateway'sc.cuveeeeeeeeiiiiiiiiiieeee e ccciieeer e e e 3
TCP/UDP AGPLENSeeeeeeeiiiiee ettt e st e e st e e e s s e e s s nnneee e e snnneeeeans 3

Twitter Adapters ..., 3

XMPP AGADEENS .ottt e e s e e e 4
FTP/IFTPS AGGDLENSeeeieeieiieee ettt ettt s 4

SFETP AGADIEN'S ..ottt et e e e s e nbeeeeeane 4

FEEA ATADIENSo a e 4

1.4, Other AAAItIONSooiiiiiiiie et sanaeeae s 4

L 10T0LY YA o 1 4

MED TIANSFOMMENS ...ttt e e enre e e e e e 4

JSON TranNSfOMMENS ..eevieeeeiieiiiiie e e e e e e s e e e e e e e e e e snnneeees 4
Serialization TranSfOrMErSeviiiei e e e 4

1.5. Framework REfaCtONNGcooiciiiiiiiee e e e 4

1.6. New Source Control Management and Build Infrastructureocccovveeeeieennnns 5

1.7. New Spring Integration SAMPIESceeeeieieeiieiiiiiieiees 5

1.8. SpringSource Tool Suite Visua Editor for Spring Integrationcccccoevevveeennnen. 5

1.9. Upcoming Spring Integration ROO SUPPOITccoiuurreeiiiiiieeeiiieee e e e 5

[1. Overview of Spring INtegration FrameWorKcoooiiiiiieiiiiiiee e 6
2. Spring INtegration OVEIVIEWueeiiiieeiiiiiiiiieeeee e e s s st ee e e e e e s s st ar e e e eaeessasnatnraaeeeaaeaaan 7
A% T Y- To: (o 011 oo [PPERPR 7

2.2. GOaAlS aNd PriNCIPIES ...ccce e 7

2.3. MaiN COMPONENES ..oiiieeeiiiiitii e e et e e e e e e e e e e e e e e e e e e e s enneeeeeeeaaeesaaaneneeeeeeas 8
MBSSAOE ...t 8

MESSAgE ChanNElooiiiiiiii e 9

MeSSAgE ENAPOINT ... e e e e e 9

2.4. MeSSAgE ENCPOINESeeeieieeiiiiciiiiie e ee e e e e e s st r e e e e e s e et ra e e e e e e e e s sennnees 10

L= 15 0 117= PSRRI 10

1= SRS RRR PSR 10

ROULEY et e e et e e e e e e e e e e n e e e e e e e e e rnr s 10

Spring Integration
2.1.0.M2 Reference Manual iii

Spring Integration

S o] 1 1= PSPPI 11

F N [0 [0T o P 11
SEIVICE ACHVELON ...eeiiiiiiiiiteeiee et e e e et e e e e e e e e nnnbeeeeeeas 11
Channel AdaptEr ... aa e e 12

[T, COIE IMIESSAINGeteeeeeutteeee ettt e e ettt e ekttt e et e e e s bt e e ek et e e e e st e e e e st e e e e e anbe e e e e e nnn e e e e annnes 13
3. MeSSagiNg CRANNELSccoiiiiiii e 14
3.1 MeSSage ChannElSvieiiiiie e a e 14
The MessageChannel INterfaceoooviiiiiiiii e, 14
POHADIEChANNELeeeeieee e 14
SubscribableChannelc..eveiii e 14

Message Channel Implementationseeoiiieieiiiiiiie e 15
PuUblishSUDSCIHDEChaNNEooviiiiee e 15
QUEUECKNANNE!oiieiiieieiiieeiteeeeeeeteeeeereseseaerereseseresssssssesssssssrrrsrsrrrsrrrsrrerrrnes 15
PriorityChannel ..o 15
ReNdezVOUSCRANNEcoooiiiiiee e 15
DireCtChanngloeeiiiiee e 16
EXeCUtOrChannglooueiiiiie e 17

SCOPEd ChaNNE! ... 18

Channel TNTEFCEPLONSeiiiiiiiiee et 18
MeESSAINGTEMPIALEvvveiieeeei i e e e e e s e e e e e e e eanes 20
Configuring Message Channels ... 20
DirectChannel Configurationeeueeuieiermrminimrnn—. 21

Datatype Channel Configurationccceeeeiiiiieeeniieeees e 21
QueueChannel ConfiguIationceeeeiiiirieeiiiiie e 22
PublishSubscribeChannel Configurationccccoviiiveiiiiiiee i 23
EXECULOrCRanNElveiiiiiiiie e e 24
PriorityChannel Configurationcccccoeeiiiiiiieiie e 24
RendezvousChannel Configurationccceveieiiiiiiiniiininire. 25

Scoped Channel Configurationeooiiiieieeniiiiee e 25

Channel Interceptor ConfiguIationc.ceooiuireeiniriee e 25

Global Channel TNTENCEPIONoiveiiee i 25

R AT (S 1= o 26

Global Wire Tap Configurationccooiiiiiiiiieieee e ee e 27

Special Channels ... 28

3.2. Channel AdBPLENcooiiiiie e 28
Configuring Inbound Channel Adaptercoocvviiiiiiiiieiiiee e 28
Configuring Outbound Channel Adapterooccueieiiiiiieeeiiee e 29

3.3. MeSSaiNG BHOGE ...ttt 30
[F gL 0T [N o1 o o I PP 30
Configuring Bridge ..cceevvveiiiiiieieeeeee e 31

4. MESSAGE CONSITUCTTIONeeiiiiieeiiieiiieiee e e e e ettt e e e e e e e et e e e e e e e e e e anteeeeeeaaeeessannnnneeeeaaeens 32
AL MESSAJE ... 32
The MeSSage INTEITACEcooiiiiiee e 32
MESSAE HEAEY'S e e e e e e e s et e e e e e e e e ans 32
Message IMpPlemMENLAtiONSeeeiieeieiiiiiiieeee e e e e 33

Spring Integration
2.1.0.M2 Reference Manual iv

Spring Integration

The MessageBuilder HEIPEr Classcooiiiiiiiiiiiei et 34

5. MESSAGE ROULING ...vvviiiiieeeii ittt e et e e e e s et e e e e e e e s e st r e e e e e e e s s sannabaneeaaeeeaaanes 36
5.1 ROULEIS ... e 36
OVEIVIBIW .ottt ettt e e e e e et e e e e e e e s e ettt e e e e e e e e eaantbeeeeeeaeeesaannnnnees 36
Router ImplemeENtationScooiiiiieiiei e 38
Payl0a0TYPEROULEYcoiueiiiieiiiiie et e 38
HEaderValUEBROULEYoeiiiiiiiiie e 39
RECIPIENTLISIROULESveeeiiieieicee e 39

Routing and Error handling ..., 40
ConfiguriNg ROULENoooiiiiieieee et e e e e 41
Configuring a Content Based Router with XMLcooviiiiiiiiiiiiciiiieeeee 41
Configuring a Router with ANNOLELIONSeveiiiiiiee e 42

DYNAMIC ROULET'Seeviiiiiiiie ettt e e e e st e e e e e e s e s areeeaaeeenans 43

I 1L (= PP PSPPI 46
g1 0T [N o1 o o ISP 46
Configuring FIlterooovvviiiii 47
Configuring a Filter With XIMLoovviiiii e 47
Configuring a Filter with ANNOLALIONScuvvviiiiiiiie e 49

RS o 1111 PP RPN 49
[F Lo [N o1 o o PP PEPR 49
Programming MOGE!oueiiiiieii e 49
ConfiguIiNg SPITLELueieie e 50
Configuring a Splitter USING XMLccuviiiiiiiiiieeeiiee e 50
Configuring a Splitter with ANNOLAtIONScocvviieiiiiiie e 51

5.4, AQOUEUEBLON ...ttt e et et e e et e e et e e e e n e e nnnnnnnnrnnnrnrrrne 51
[F 10T [N o1 o o PP PEP 51
FUNCLIONBIITY ... e e e e e e e e 51
Programming model ..., 52
CorrelatingMessageHaNIENoeviiiiiiiie e 52
REIEESESIITAOIYvvveeeeiitiie ettt 54
COITElaliONSIIAIEGYvvveeeierrieeeiieeiee et e e st e e et e e e s e e e s sbe e e e s sbreeeeens 55
ConfiguriNg AQgrEgalorcvvviieiiee e e s eccire e e e e e e e e e s s s e e e e e e s e e snerenees 55
Configuring an Aggregator With XMLcooooiiiiiiiiiiiiee e 55
Configuring an Aggregator with ANNOtationscccceeveiiiiiiiiiicieiccccrens 59

Managing State in an Aggregator: MessageGroupStOrecoocvveveerrvieeeeinnneens 60

5.5, RESEQUENCESeeiieieieieiiieieieieenet et nrne 62
1100 [V Tox 1 o o TSR 62
FUNCLIONAIITY ... e e e e e e e e e e e s ennnnaees 62
Configuring @ RESEQUENCES ...ttt e e e e et rrre e e e e e e e 62

5.6. Message Handler Chainooovviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee ettt 63
10T U Tox £ o o TSP 63
ConfiguING CRAIN ... e e 64

6. MeSSage TranSfOMMELIONcooiiiiieieiiiiiie et e e e e e e e e 66
N T I = 10 0 0 1= PP 66
[F g0 [N o1 o o ISP 66

Spring Integration
2.1.0.M2 Reference Manual %

Spring Integration

Configuring TranSfOMMENueiiieeei e e e e e 66
Configuring Transformer with XML ... 66
Configuring a Transformer with AnNotationscccccccvvvvveieieieiicececeeee, 69

Header FIlTEr ... e e 69

(A e 01 = 0| B = o = USSP 70
1100 [0 Tox 1 o o TSP 70
Header ENMICHENoooiiiee e 70

6.3, ClaimM ChECKoiiiiiiiiieie e 71

110 o (U Tox 1 o o PRI 71
Incoming Claim Check Transformercc.ovveiviieeiiiieeeee e 72
Outgoing Claim Check Transformerceveeviiiieeeiiieee e 72

7. MeSSagiNg ENAPOINTSuveiieiiiiiiie ettt e e e e e anneeas 74

7.1, MeSSage ENCPOINTSeeeieieeiiiiiiieie e et e e e e s s e e e e e e e e e e e e e e e e s senneees 74

MESSAE HANAIES ... e 74

EVent Driven CONSUMETc.uueeeiiiiieeeaiiiieeseniieeeesssneeeessnneeeesssssneesssnsneeesssnnens 75

0] T o O] 1 = 75

NBIMESPECE SUPPONTeeveeeieeeeeiiitree et e e e e s e e e e e e s s e e e e e e s s s snnr e eeeeeeeeaannes 77

Payload TYPE CONVEISION ...ccoiuueiiieiiiiiiee ettt e e 79

ASYNCHIrONOUS POITING ...eeiiiiiiiieiieie e 80

7.2. Inbound Messaging GatEWaYScccuvvreiieeeeeiiiiiieeiee e e e e s ssrrre e e e e e e s e s sanrrraeeeaa e 80

GatewayProxXyFaCtOryBeanciiiiiiiiiieiics e e e e e e e e e e e e eeennes 80

ASYNCHIONOUS GELEWAYuvvvurirnininniiinininnnneinnnnnnnnnnnnnnnnnannnnannanannnnnannnaa——a———————_ 84

Gateway behavior when no reSponse armivesc.evveeiiieee i 85

7.3, SEIVICE ACHVEION ..oeeeei ittt e e e e e e e s et e e e e e e s e s s nenaaneeeeeeens 86
11100 [V Tox 1 o o TP 86
Configuring Service ACHVEIONcc.vvvieiiie e e e 87

TA. DEIQYEL ... e e a e e e e e a 88
10T U o £ o o ISP 88
Configuring DEIAYEroviieeiiee e 88

7.5, SCIIPLNG SUPPOIT «...eeeieeeiee ettt e e e st e e s s e e e e nnnn e e e e nnnees 89
SCHPL CONFIGUIALTON .ottt 20

ST (0101 S ¥ o] oo] A 92
Groovy CONfIQUIALIONccoiiiiiiiieeie e e e s e ettt e e e e e s e et e e e e e e s e st b e e e e e e e s s ennneees 92
CONLIOI BUS ..ttt e e e et e e e e e e e s e et ee e e e e e e e eannenes 93

8. SySteM MaNaZEMENT ... e 94

8.1, IMX SUPPOIT .ttt e e e e e e s e e e e e s e r e e e e e e e e 94

Notification Listening Channel Adapterccvveiiiiiiiiiiiiiee e 9

Notification Publishing Channel Adapterccooociiiiiiee e, 9

Attribute Polling Channel Adaptercooveeiiiiiiiiiee e 95

Operation Invoking Channel Adapter ..., 95

Operation Invoking outbound GateWalcccuueeeiireeeiiiiiiieiee e 96

MBEAN EXPOITEY ... 96
MBean ODJECINAIMESooviiiiiiiie i 97
MessageChannel MBean FEAtUIEScccoovviciiiiieiiee e 97

8.2. MESSAGE HISLONY ..ooeeieiieee et e e e e e e e e e e e e e e e e 98

Spring Integration
2.1.0.M2 Reference Manual Vi

Spring Integration

Message History Configurationccccuvieeieeeii i e 99

8.3, CONLIOI BUS ..eeeiiiiiiei et 100

IV. Integration Adaplersoooviiiiiiiie 101

O. AIMQP SUDPONT . eeeeteeeteetteteeeeteeteaeeeteeetese e eseeeses s ee s s s st s st s s s 5555t s st s s st et sstsnnnnnnnnnnnes 102

LS 80 R 1 o [1 o o PSR 102

9.2. Inbound Channel AdaDIESoooiiiiiieeiie e 102

9.3. Outbound Channel AdapLereeviiieiiiiieee e 104

9.4, INDOUNA GALEWAYcei it e e e e e e e s et e e e e e e e e enerraaee s 105

9.5. OUtboUNd GELEWAYuuiii e 106

9.6. AMQP Backed Message ChannelSooeiiiiiiiie e 106

9.7. AMQP SAMPIES ...t ee et n s en st en e en e 107

10. Spring AppliCatiONEVENT SUPPOITcoiiiiiiieeiiieie ettt e sieee e 108

10.1. Receiving Spring AppliCatioNEVENLScoocvviiieiiee e e e ee e 108

10.2. Sending Spring AppliCatiONEVENESc..vvvvieieeee e 108

I s I o o = GRS 110

I T 1 0o [o o SRR 110

11.2. Feed Inbound Channel Adapterooiiiiiiiieeiiieee e 110

12, FlE SUPPOIT ...ttt e e et e e e s st e e e e e b e e e nnbneeeean 112

2 TR 1 o (1 o o) S UPRRRR 112

12.2. REAAING FIIES ..ooiiiiiiiie et e e 112

12.3. WHHING FIlES oo e e 114

12.4. File TranSfOMMIEIS ...t eee e ettt e e et e e e e e s e et e e e e e e e e e ennneeeeeeaeeas 115

G e I o ST Y = o= £ SRR 117

G 3¢ I 1 1o [o o) SRR 117

13.2. FTP SESSION FACIOMY ...eviiiiiiiieiiiiiie ettt sttt 117

13.3. FTP Inbound Channel Adapterccooiiiiiiiiiiie et e e 118

13.4. FTP Outbound Channel Adaptercooiiiiiiiiieiie e 120

13.5. FTP Outbound GalEWaYceevvveiiiiiiieiiiiieeeeeeeeeeeeeeeeeeeeee e ee e e e e erereeeeeeeeeeeeeeeeeees 121

13.6. FTP SESSION CAChING ..eveiiiiiiieeiiiiie ettt 122

14, GEMFITE SUPPOIT ...eeeeeeiiiieee ettt e ettt et e e e et e e e s et e e e e anbr e e e e s anbe e e e e anneeeeeannes 123

2 T T o (1 o (o) U URRRRR 123

14.2. Inbound Channel Adaptercooveiiiiiiiiieece e 123

14.3. Continuous Query Inbound Channel Adaptercoovviiiiiiieiieeiiniiieeeee e 124

14.4. Outbound Channel Adapter ..., 125

15, HTTP SUPPOIT .ottt e e e e e e e e s s e e e e e e e s e ennes 126

LS00 1 o (1 o ') o SRR 126

15.2. Http INDOUNA GELIEWEYevveieiiiiiieiiiieie ettt 126

15.3. Http Outbound GateWaycoieeiiiiiiiiiieiiee e 127

15.4. HTTP NameSPace SUPPONT ...ceevureeieieeeiieeiiiiiin s e e eeeseeetiin s e s e e s seeessnnnanseeseeeennnes 128

15.5. HTTP Proxy configuration ..., 129

15.6. HTTP Header MapPiNgScceiiieeiiiiiiiieeeee e e e eeiieeee e e e e e e s s eieteeee e e e e e e s emeeeeeeeeens 130

15.7. HTTP SAMPIES ...eeeiieiiiiiee ettt e e e e et r e e e e e e e snnnaaee e e e e e e e e enneees 131
Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway

(S 8Y/=) TP 131

16. TCP and UDP SUPPOITcoeiiieiiiieiee ettt e e st e e e e e e e s st re e e e e e e e s e ennaraneeeeas 133

Spring Integration
2.1.0.M2 Reference Manual Vii

Spring Integration

16.1. INEFOTUCTION .ottt et e st e e e nbr e e e s enees 133
16.2. UDP AQBPLENSeeeeeeiiiiiiie ettt ettt e et e e s e e e s ee e e e 133
16.3. TCP CoNNECtioN FACLOMESoooeiieiieeiee ettt e e e e e e 135
16.4. Tcp ConNeCtion INEEICEPLONSeeeeieieiiee e et e et r e e e e e eeeeeee e e e e e e 138
16.5. TCP AGDLEIS ...ttt e e s e e 139
16.6. TCP GaLEWAYSeeeeeeeeeiiiiiiieeeeeee e e sttt e e e e s s et e e e e e e s s aann b e e e e e e e e e saannneees 140
16.7. TCP Message COrTelalioneeiieeeiiiiiiiiiiiee e e e s cciiee e e e e e s ssiareee e e e e e e 141
OVEIVIBIW ittt ettt e et e e ettt e e e st e e e e bt e e e e nbe e e e e nnbneeeeann 141

LT = PSP 141
Collaborating Outbound and Inbound Channel Adapters..........ccccevveeeiiiciiieennn. 141
16.8. A NOtE ADOUL NIO ..ot 142
16.9. IP Configuration AtHDULESoooiiiiiie e 143
N 5 1T O o] o) A 150
17.1. Inbound Channel Adaptercooveiiiiiiiiiiieee e 150
Polling and TranSaCtionseeiieeiiiiiiiiieeee e 151
17.2. Outbound Channel Adaptercoiiiioiiiiee e e 151
17.3. OULDOUND GELEWEYevveeeeiiieee ettt et e e e e e e e e 152
17.4. MESSAgE SLOTEeeiiieiiie ettt e e e e e e e e e e e e e e s nnnnes 152
Initializing the Datalasecooouviiiiiiiie e 153
Partitioning & MESSAgE SIOMEuvviieeeeiicciiieiee et e s e e e eaneees 153

17.5. SEOred PrOCEAUIEScoiiiiiiiie ettt e e et e e e e nnneeeas 153
Common Configuration Parameterscccoeeeeeee 153
SUPPOITE Par8MELENSeviieiiiiiiee et 153
Defining Parameter SOUIMCEScuviiiiiiiiiee et 154
Stored Procedures Inbound Channel Adapterccevvvviieieiiiiiiee e, 154
Stored Procedures Outbound Channel Adaptercceevvveeeiiiiiiiiieiee e, 155
Stored Procedures Outbound Gatewayccooiiiiiiiriieeeeeeiiciiiiieee e 156

R T Y ST o 1 A 158
18.1. Inbound Channel AADIENoooiiiiiieiiie e 158
18.2. Message-Driven Channel Adapterooooiviiiiiiiieeeieeeeee e 159
18.3. Outbound Channel AdapLErcooiuiiiiiiie e 160
18.4. INDOUNA GALEWAYeeeeeeeeieiiiiiiee e e e e e e e e e e e e e e e et e e e e e e e e e ennraees 160
18.5. OULDOUNI GALEWEYvveeeeeeeiiiiiiiiiiee e e e ettt e e e e e e e et e e e e e e e s s errbaeeeeeeeeeenns 161
18.6. Mapping Message Headers to/from IMS MeSsageooooeeeeeeeeeeeeeeeee e, 162
18.7. Message Conversion, Marshalling and Unmarshallingccocvvveeiiiiinecnnne. 162
18.8. IMS Backed Message Channelscoccuvieeiiiiiiiiiieeeee e 162
18.9. IMS SAMPIES ...t 164
19, Mail SUPPOI ... e e e e e e e r e e e e e e s s e n b e e e e e e e e e s annrraraaaaens 165
19.1. Mail-Sending Channel Adaptercoovveeiiiiiiiiiieeee e 165
19.2. Mail-Receiving Channel Adaptercccooiiiiiiiiiiiii s 165
19.3. Mail NameSPACE SUPPOITeeeeeeeeeieiiiiiieeeee e e e e ettt e e e e e e e e eeneeee e e e e e e e s eeneeeeeeeeeas 166
19.4. Email MeSsSage Filteringc.eveieiiiiiieeiii et 169
20. MONQGODD SUPPOIT ...ttt et e e e e e e nnbreeeeane 170
P2Z0 1 I 1 100 0o 1o o PP UPPRPPPPRRPN 170
20.2. Connecting to MoNGODDuuiiiiiiie e 170

Spring Integration
2.1.0.M2 Reference Manual viii

Spring Integration

20.3. MONQODB MESSAJE SIOMEcceiiiiiiiiieieee e 171

P I (= o (£ o] o] PSPPI 172
P2 N I [11 0o 0ot i o o PSPPSR 172
21.2. CoNNECtiNg t0 REAISeiiiieei e 172
21.3. Messaging With REAIScoouueiiiiiiiieeeie e 173
Redis Publish/Subscribe channel ... 173

Redis Inbound Channel Adapteroocciiiiiieiee e 174

Redis Outbound Channel Adapteroooiciiiiiiiee e 174

21.4. RE0IS MESSAQE SLOIEuvvvvrrrireerereunnenenererennnenenenennnenenrnenenrnrrenenrnrnrnrnrnrnrnrnnnnnnn 175

22, RMI SUPPOI .. 176
272 W [911 oo [0 o i o) o XU ORI 176
22.2. OUBOUNT RIMI ...ttt e e e e e e e e e s eeeeeeee e 176
22.3. 1NDOUNA RMI .t e e 176
22.4. RMI NamMESPAaCE SUPPONT ..vvueiieeiieeeiiiiise e e eeeeeeariie s s s e e e s e e eaernn e s e e e s e e eaeeannnneeees 176

23, SFTP AGADIEIS ettt et e e e e et e e e sttt e e e e nae e e e e e nee e e e e nees 178
220 T I [11 0o 1o o o XU 178
23.2. SFTP SESSION FACLOMYeeiiiiiiiie ittt 178
23.3. SFTP Inbound Channel Adaptercooiueiiiiiiiiieeeiieee e 179
23.4. SFTP Outbound Channel Adapteroccveiiiiiiieieiiieee e 180
23.5. SFTP OUtboUNd GalEWEYcevveeeiiiciiiieiiee e e e et e e e s e e e e e e e s snrraeeeeeas 180
23.6. SFTP/ISCH LOGUING ..vvveiiieeiiiiiiiieiiee e ettt e e e e e s s seibrre e e e e e e e s searrbae e e e e e e s eenns 182
23.7. SFTP Session Cachingoooooeeeiei i, 182

24, SEEAM SUPPOIT ..ottt e e e e s e e e e e e e e s s s e e e e e e e s s s s nrnr e e e e e e e s s annnnnes 183
2z I 11 0o [0 o o o SRR 183
24.2. Reading frOm SITEAIMSoiiiiiiii e 183
24.3. WIItiNG 10 SIFEAIMSuvviiiieiie ettt e e e e e e e e e s reeaae s 183
24.4. Stream NaMESPACE SUPPOITeveeeeeriiie e e e e eeeeeieas e e e e e e e eettea s e e e e eeeeeeannareeeeaeeenene 184

25, TWItter AdapLer ... 185
2 T8 I [11 0o 1 o i o o XSSP 185
25.2. Twitter OAUth CONfIQUIELIONccciiiiiieeiiiiee e 185
25.3. TWItLEr TEMPIBEEeeeeiiiiiiie ettt e e anes 186
25.4. Twitter INbouNd ABPLEIS ... e 186
Inbound Message Channel Adapteroccciiiiiiiie e 187

Direct Inbound Message Channel Adapterccooeeeeeei, 188

Mentions Inbound Message Channel Adapterccovveviiiieeiiiiee e 188

Search Inbound Message Channel Adapteroccvvveiiiiieiiiiieee e 188

25.5. Twitter OutbouNd AEDLENoeiiiiiiieei e 188
Twitter Outbound Update Channel Adapterccveevveeeeiiiiiiiieieee e, 189

Twitter Outbound Direct Message Channel Adapterccceevvveeiiiiiiiiieeieeeenn, 189

26. WED SErVICES SUPPOITeeeeeeeeeeeeieeeieeeeeeeeeeee e e e eeeeeeeeeeeeeeeeeeeeeeeeeseeseeseeeeererereeeeereeeeereees 191
26.1. Outbound Webh Service GalEBWEYSceeureeeeiiiaeieiiiieaeeeeeeiiieieeeaee e e e aeneeeeeeeeaeas 191
26.2. Inbound WED Service GaLEWEYSccorrirriieiiiiiee et 191
26.3. Web Service NameSpace SUPPOITcivereeeiriieieesiiiiee s et e e e snneeee s 192

27. XML Support - Dealing with XML Payloadscccoeiieiieiiiiicieeee e, 194
P25 W 1 g 10 o 1 1 o o PP PPRPPPPRRP 194

Spring Integration
2.1.0.M2 Reference Manual IX

Spring Integration

27.2. Transforming Xml payloadscceeveeiiiiciiiiiiiee e 194
27.3. Namespace support for xml transformerscccccveeeiiiiiiiieeeee e 195
27.4. Splitting XMl MESSAGEScceeviieieeeeee e 197
27.5. Routing xml messages using XPathccccviiiiiiii e 198
27.6. Selecting xml messages USiNg XPathc.eeviiiiiiiiiiiie e 199
27.7. Transforming xml messages using XPathcccooiiiiiiiiniiieec e, 199
27.8. XPath components NamMesPace SUPPOITeevveeeeriiciiiieieeeeeeeeeeiiiereeeee e e e e enneees 201

P I Y L s oo 1 SRS 203
22 T I 11 0o 0ot i o) o PP PERRR 203
28.2. XMPP CONNECLION ...eeiiiieiiiiiiiiiiee ettt e e e e e e e e e e e e e nneees 203
28.3. XIMPP IMESSAZESeeeeiiieiiiiiiiiiiei ettt e e e s ne e e e e e annn s 204
Inbound Message Channel Adapterooooiiiiiiiiiiiee e 204

Outbound Message Channel Adapterevvveeeiiiiciiiiiiee e 204

28.4. XIMPP PIESENCEvveiieiiiiiie ettt ettt et e e e s e e s s e e e nnrneeeeane 205
Inbound Presence Message Channel Adaptercccvveeeeieei i, 205

Outbound Presence Message Channel Adapterccoveeviiiiiiiieneee e 205

28.5. APPENTICES ...ttt 206

VL APPENAICES ...ttt et e e e e e e e b e e e e e e e e e annes 208
29. Message PUBIISNINGeeiiiiiiiie e 209
29.1. Message Publishing Configurationccccuueeriiee i 209
Annotation-driven approach via @Publisher annotationcccccceeeeeeiinnnnee, 209
XML-based approach via the <publishing-interceptor> element 211

Producing and publishing messages based on a scheduled trigger 213

30. TranSaCtioN SUPPOITvvieeiitiiee ettt e et e e et e e et e e e e e e e s annne s 215
30.1. Understanding Transactions in Message fIOWScceveeviiiiiiiiiiiic e 215
Poller Transaction SUPPOITuvveiiieeee it e e e s e e e e ennees 216

30.2. TransaCtion BOUNGAITESueeeeeiiiiiiie ettt 217

31. Security in SPring INtEQratiONeeeeeeeererereeerereeeeererereeererereeerererrrrrrrrrerererrrererereree 219
1 0 O [11 0o 1 o o o XU 219
31.2. SECUNNG ChANNELS ... 219

A. Spring INtegration SAMPIEScoiiiiiiei e 220
R [11 o [FTox o o [PPSR OPPPRTRPPRRIN 220
A.2. Where t0 get SAMPIESveiiiiiei e e e a e e 220

YR T 110 1= 1 U o (1 = 221

S 01T o] =SSR 222
[0 7= I =] o SRR 222

The Cafe SAMPIE ... 227

The XML Messaging Sampleuvvieiiiieiiiciiee et 231

I Oo g1 1T U= o] o PP 233
2 30 I [g1 0o 0o o o O RPN PPEPRP 233

B N =01 07 0 I B 0] 0 o R 233

B.3. Configuring the Task SChedUIErcoociiiiiiiiiiiee e 234

B.4. Error HandliNgcooeveiiiiiiiie ettt 235

B.5. ANNOLELioN SUPPOITeeeiiiiieiee e et e e e e e e e e e e e e e e e s e et raeeeeas 236

B.6. Message Mapping rules and CoONVENLIONScccuvveeieeeeescciiiieeeee e 239

Spring Integration
2.1.0.M2 Reference Manual X

Spring Integration

SIMPIE SCENAIIOSuviiiiiiiie et e e e e e e e e e e e e e aeaes 239

COMPIEX SCENAIOS ...uvvviieeieeeeiieciiie e e e e e e e e e e e e e e s s st e e e e e e e s s antbraeeeaaeeeaaans 241

C. AdditioNal RESOUITES ..ottt ee ettt e e e e e st e e e e e e e e e e nnrreeeeeaeeeaaas 243
C.1. Spring INtegration HOMEcooiiiiiiiiiieee e e 243

Spring Integration

2.1.0.M2 Reference Manua Xi

Spring Integration

Preface

1 Code Conventions

The Spring Framework 2.0 introduced support for namespaces, which simplifiesthe Xml configuration
of the application context, and consequently Spring Integration provides broad namespace support. This
reference guide applies the following conventions for all code examples that use namespace support:

The int namespace prefix will be used for Spring Integration's core namespace support. Each Spring
Integration adapter type (module) will provide its own namespace, which is configured using the
following convention:

int- followed by the name of the module, e.g. int-twitter, int-stream, ...

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww.springframework. org/schema/integration”
xmns:int-twitter="http://ww. springfranework. org/schema/integration/twitter"
xm ns:int-stream="http://ww. springfranmework. org/ schena/integration/streant
xsi : schemalLocat i on="
http://ww. springfranmework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schenma/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration-2.0.xsd
http://ww. springframework. org/ schema/integration/tw tter
http://ww. springfranework. org/schema/integration/twitter/spring-integration-twtter.xsd
http://ww. springframework. org/ schema/ i nt egrati on/ stream
http://ww. springframework. org/ schema/ i ntegration/stream spring-integration-stream xsd">

</ beans>

For a detailed explanation regarding Spring Integration's namespace support see Section B.2,
“ Namespace Support” .

Note

Please note that the namespace prefix can be freely chosen. You may even choose not to
use any namespace prefixes at al. Therefore, apply the convention that suits your application
needs best. Be aware, though, that SpringSource Tool Suite™ (STS) uses the same namespace
conventions for Spring Integration as used in this reference guide.

Spring Integration
2.1.0.M2 Reference Manual Xii

Part |. What's new In
Spring Integration 2.0

For those who are already familiar with Spring Integration, this chapter provides a brief overview of
the new features of version 2.0.

Spring Integration

1. What's new in Spring Integration 2.07?

1.1 Spring 3 support

Spring Integration 2.0 is built on top of Spring 3.0.5 and makes many of its features available to our
USers.

Support for the Spring Expression Language (SpEL)

Y ou can now use SpEL expressions within the transformer, router, filter, splitter, aggregator, service-
activator, header-enricher, and many more elements of the Spring Integration core namespace as well
as various adapters. There are many samples provided throughout this manual.

ConversionService and Converter

You can now benefit from Conversion Service support provided with Spring while configuring
many Spring Integration components such as Datatype Channel [http://www.eaipatterns.com/
DatatypeChannel.html]. See the section called “ Message Channel Implementations’ aswell the section
called “Introduction”. Also, the SpEL support mentioned in the previous point also relies upon the
ConversionService. Therefore, you can register Converters once, and take advantage of them anywhere
you are using SpEL expressions.

TaskScheduler and Trigger

Spring 3.0 defines two new strategies related to scheduling: TaskScheduler and Trigger Spring
Integration (which uses alot of scheduling) now builds upon these. In fact, Spring Integration 1.0 had
originally defined some of the components (e.g. CronTrigger) that have now been migrated into Spring
3.0's core API. Now, you can benefit from reusing the same components within the entire Application
Context (not just Spring I ntegration configuration). Configuration of Spring Integration Pollershasbeen
greatly simplified aswell by providing attributesfor directly configuring rates, delays, cron expressions,
and trigger references. See Section 3.2, “ Channel Adapter” for sample configurations.

RestTemplate and HttpMessageConverter
Our outbound HTTP adapters now delegate to Spring's RestTemplate for executing the HTTP request

and handling its response. This also means that you can reuse any custom HttpM essageConverter
implementations. See Section 15.3, “Http Outbound Gateway” for more details.

1.2 Enterprise Integration Pattern Additions

Also in 2.0 we have added support for even more of the patterns described in Hohpe and Woolf's
Enterprise Integration Patterns [http://www.eai patterns.com/] book.

Spring Integration
2.1.0.M2 Reference Manual 2

http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/
http://www.eaipatterns.com/

Spring Integration

Message History

We now provide support for the Message History [http://www.eai patterns.com/M essageHistory.html]
pattern allowing you to keep track of all traversed components, including the name of each channel and
endpoint aswell asthe timestamp of that traversal. See Section 8.2, “Message History” for more details.

Message Store

We now provide support for the Message Store [http://www.eai patterns.com/M essageStore.html]
pattern. The Message Store provides a strategy for persisting messages on behalf of any process
whose scope extends beyond a single transaction, such as the Aggregator and Resequencer. Many
sections of this document provide samples on how to use a Message Store as it affects several areas
of Spring Integration. See Section 6.3, “Claim Check”, Section 3.1, “Message Channels’, Section 5.4,
“Aggregator”, Chapter 17, JDBC Support, and Section 5.5, “Resequencer” for more details

Claim Check

We have added an implementation of the Claim Check [http://www.eaipatterns.com/
StorelnLibrary.html] pattern. The idea behind the Claim Check pattern is that you can exchange a
Message payload for a"claim ticket" and vice-versa. This allows you to reduce bandwidth and/or avoid
potential security issues when sending Messages across channels. See Section 6.3, “Claim Check” for
more details.

Control Bus

We have provided implementations of the Control Bus [http://www.eai patterns.com/Control Bus.html]
pattern which alows you to use messaging to manage and monitor endpoints and channels. The
implementations include both a SpEL-based approach and one that executes Groovy scripts. See
Section 8.3, “Control Bus’ and the section called “ Control Bus’ for more details.

1.3 New Channel Adapters and Gateways
We have added several new Channel Adapters and Messaging Gateways in Spring Integration 2.0.

TCP/UDP Adapters

We have added Channel Adapters for receiving and sending messages over the TCP and UDP
internet protocols. See Chapter 16, TCP and UDP Support for more details. Also, you can checkout
the following blog: TCP/UDP support [http://blog.springsource.com/2010/03/29/using-udp-and-tcp-
adapters-in-spring-integration-2-0-m3/]

Twitter Adapters

Twitter adapters provides support for sending and receiving Twitter Status updates as well as Direct
Messages. Y ou can also perform Twitter Searches with an inbound Channel Adapter. See Chapter 25,
Twitter Adapter for more details.

Spring Integration
2.1.0.M2 Reference Manual 3

http://www.eaipatterns.com/MessageHistory.html
http://www.eaipatterns.com/MessageHistory.html
http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html
http://www.eaipatterns.com/StoreInLibrary.html
http://www.eaipatterns.com/StoreInLibrary.html
http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/ControlBus.html
http://blog.springsource.com/2010/03/29/using-udp-and-tcp-adapters-in-spring-integration-2-0-m3/
http://blog.springsource.com/2010/03/29/using-udp-and-tcp-adapters-in-spring-integration-2-0-m3/
http://blog.springsource.com/2010/03/29/using-udp-and-tcp-adapters-in-spring-integration-2-0-m3/

Spring Integration

XMPP Adapters

The new XMPP adapters support both Chat Messages and Presence events. See Chapter 28, XMPP
Support for more details.

FTP/FTPS Adapters

Inbound and outbound File transfer support over FTP/FTPS is now available. See Chapter 13, FTP/
FTPS Adapters for more details.

SFTP Adapters

Inbound and outbound Filetransfer support over SFTPisnow available. See Chapter 23, SFTP Adapters
for more details.

Feed Adapters

We have also added Channel Adapters for receiving news feeds (ATOM/RSS). See Chapter 11, Feed
Adapter for more details.

1.4 Other Additions

Groovy Support

With Spring Integration 2.0 we've added Groovy support allowing you to use Groovy scripting language
to provide integration and/or business logic. See Section 7.6, “Groovy support” for more details.

Map Transformers

These symmetrical transformers convert payload objects to and from a Map. See Section 6.1,
“Transformer” for more details.

JSON Transformers

These symmetrical transformers convert payload objects to and from JSON. See Section 6.1,
“Transformer” for more details.

Serialization Transformers

These symmetrical transformers convert payload objectsto and from byte arrays. They also support the
Serializer and Deserializer strategy interfaces that have been added as of Spring 3.0.5. See Section 6.1,
“Transformer” for more details.

1.5 Framework Refactoring

The core API went through some significant refactoring to make it smpler and more usable. Although
we anticipate that the impact to the end user should be minimal, please read through this document

Spring Integration
2.1.0.M2 Reference Manual 4

Spring Integration

to find what was changed. Especially, visit the section caled “Dynamic Routers’ , Section 7.2,
“Inbound M essaging Gateways’, Section 15.3, “ Http Outbound Gateway” , Section 4.1, “Message”, and
Section 5.4, “ Aggregator” for moredetails. If you are depending directly on some of the core components
(Message, MessageHeaders, MessageChannel, MessageBuilder, etc.), you will notice that you need to
update any import statements. We restructured some packaging to provide the flexibility we needed for
extending the domain model while avoiding any cyclical dependencies (it isapolicy of the framework
to avoid such "tangles").

1.6 New Source Control Management and Build
Infrastructure

With Spring Integration 2.0 we have switched our build environment to use Git for source control. To
access our repository simply follow this URL: http://git.springsource.org/spring-integration. We have
also switched our build system to Gradle [http://gradle.org/].

1.7 New Spring Integration Samples

With Spring Integration 2.0 we have decoupled the samples from our main release
distribution. Please read this blog to get more info New Spring Integration Samples [http://
bl og.springsource.com/2010/09/29/new-spring-integration-samples/] We have also created many new
samples, including samples for every new Adapter.

1.8 SpringSource Tool Suite Visual Editor for Spring
Integration

There is an amazing new visual editor for Spring Integration included within the latest version of
SpringSource Tool Suite. If you are not already using STS 2.5.1, please download it here: STS [http://
www.springsource.com/landing/best-devel opment-tool -enterprise-java]

1.9 Upcoming Spring Integration ROO support

We have started working on Spring Integration ROO support, and plan to have a first milestone
release soon. You can follow its development here: Spring Integration Roo Add-on [https://
jiraspringframework.org/browse/INTROQ].

Spring Integration
2.1.0.M2 Reference Manual 5

http://git.springsource.org/spring-integration
http://gradle.org/
http://gradle.org/
http://blog.springsource.com/2010/09/29/new-spring-integration-samples/
http://blog.springsource.com/2010/09/29/new-spring-integration-samples/
http://blog.springsource.com/2010/09/29/new-spring-integration-samples/
http://www.springsource.com/landing/best-development-tool-enterprise-java
http://www.springsource.com/landing/best-development-tool-enterprise-java
http://www.springsource.com/landing/best-development-tool-enterprise-java
https://jira.springframework.org/browse/INTROO
https://jira.springframework.org/browse/INTROO
https://jira.springframework.org/browse/INTROO

Part Il. Overview of Spring
Integration Framework

Spring Integration provides an extension of the Spring programming model to support the well-known
Enterprise Integration Patterns [http://www.eai patterns.com/]. It enables lightweight messaging within
Spring-based applications and supports integration with external systems via declarative adapters.
Those adapters provide a higher-level of abstraction over Spring's support for remoting, messaging,
and scheduling. Spring Integration's primary goal is to provide a simple model for building enterprise
integration solutions while maintaining the separation of concerns that is essential for producing
mai ntainable, testable code.

http://www.eaipatterns.com/
http://www.eaipatterns.com/

Spring Integration

2. Spring Integration Overview

2.1 Background

One of the key themes of the Spring Framework isinversion of control. Inits broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic cross-
cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Devel opers benefit from the consistency of this model and especially
the fact that it is based upon well-established best practices such as programming to interfaces and
favoring composition over inheritance. Spring's simplified abstractions and powerful support libraries
boost developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring programming
model into the messaging domain and builds upon Spring's existing enterprise integration support to
provide an even higher level of abstraction. It supports message-driven architectures where inversion of
control applies to runtime concerns, such as when certain business logic should execute and where the
response should be sent. It supports routing and transformation of messages so that different transports
and different dataformats can be integrated without impacting testability. In other words, the messaging
and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and devel opers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean"
elements, and of course direct usage of the underlying API. That API is based upon well-defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration's design isinspired by the
recognition of astrong affinity between common patterns within Spring and the well-known Enterprise
Integration Patterns [http://www.eai patterns.com] as described in the book of the same name by Gregor
Hohpe and Bobby Woolf (Addison Wesley, 2004). Developers who have read that book should be
immediately comfortable with the Spring Integration concepts and terminology.

2.2 Goals and Principles

Spring Integration is motivated by the following goals:

» Provide asimple model for implementing complex enterprise integration solutions.

* Facilitate asynchronous, message-driven behavior within a Spring-based application.
» Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

Spring Integration
2.1.0.M2 Reference Manual 7

http://www.eaipatterns.com
http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

» Components should be loosely coupled for modularity and testability.
» The framework should enforce separation of concerns between business logic and integration logic.

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse
and portability.

2.3 Main Components

From the vertical perspective, alayered architecture facilitates separation of concerns, and interface-
based contractsbetween layers promotel oose coupling. Spring-based applicationsaretypically designed
this way, and the Spring framework and portfolio provide a strong foundation for following this best
practice for the full-stack of an enterprise application. Message-driven architectures add a horizontal
perspective, yet these same goals are still relevant. Just as"layered architecture” is an extremely generic
and abstract paradigm, messaging systems typicaly follow the similarly abstract "pipes-and-filters"
model. The "filters" represent any component that is capable of producing and/or consuming messages,
and the "pipes' transport the messages between filters so that the components themselves remain
loosely-coupled. It isimportant to note that these two high-level paradigms are not mutually exclusive.
The underlying messaging infrastructure that supportsthe "pipes’ should still be encapsulated in alayer
whose contracts are defined asinterfaces. Likewise, the"filters' themselveswould typically be managed
within a layer that is logically above the application's service layer, interacting with those services
through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, aMessage is ageneric wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can
be of any type and the headers hold commonly required information such asid, timestamp, correlation
id, and return address. Headers are also used for passing values to and from connected transports. For
example, when creating a Message from areceived File, the file name may be stored in a header to be
accessed by downstream components. Likewise, if a Message's content is ultimately going to be sent
by an outbound Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured as
Message header values by an upstream component. Developers can also store any arbitrary key-value

pairsin the headers.
Message h

Header

Payload

Spring Integration
2.1.0.M2 Reference Manual 8

Spring Integration

Message Channel

A Message Channel representsthe " pipe" of apipes-and-filtersarchitecture. Producers send M essagesto
achannel, and consumers receive Messages from a channel. The Message Channel therefore decouples
the messaging components, and also provides a convenient point for interception and monitoring of

M essages.

send(Message) & - :

Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-
Point channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe
channels, on the other hand, will attempt to broadcast each Message to all of its subscribers. Spring
Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers
will ultimately receive each Message, there is another important consideration: should the channel
buffer messages? In Spring Integration, Pollable Channels are capable of buffering Messages within
a gqueue. The advantage of buffering is that it allows for throttling the inbound Messages and thereby
prevents overloading a consumer. However, as the name suggests, this also adds some complexity,
since a consumer can only receive the Messages from such a channel if a poller is configured. On the
other hand, a consumer connected to a Subscribable Channel is simply Message-driven. The variety of
channel implementations available in Spring Integration will be discussed in detail in the section called
“Message Channel |mplementations’.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration
solutions through inversion of control. This means that you should not have to implement consumers
and producers directly, and you should not even have to build Messages and invoke send or receive
operations on a Message Channel. Instead, you should be able to focus on your specific domain model
with an implementation based on plain Objects. Then, by providing declarative configuration, you can
"connect" your domain-specific code to the messaging infrastructure provided by Spring Integration.
The components responsible for these connections are M essage Endpoints. This does not mean that you
will necessarily connect your existing application code directly. Any real-world enterprise integration
solution will require some amount of code focused upon integration concerns such as routing and
transformation. The important thing isto achieve separation of concerns between such integration logic
and business logic. In other words, as with the Model-View-Controller paradigm for web applications,
the goal should beto provide athin but dedicated layer that trand atesinbound requestsinto servicelayer
invocations, and then trandates service layer return values into outbound replies. The next section will
provide an overview of the Message Endpoint types that handle these responsibilities, and in upcoming
chapters, you will see how Spring I ntegration's declarative configuration options provide anon-invasive
way to use each of these.

Spring Integration
2.1.0.M2 Reference Manual 9

Spring Integration

2.4 Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary roleisto connect application code to the messaging framework and to do so in anon-
invasive manner. In other words, the application code should ideally have no awareness of the Message
objects or the Message Channels. Thisis similar to the role of a Controller in the MV C paradigm. Just
asaController handles HT TP requests, the M essage Endpoint handles M essages. Just as Controllersare
mapped to URL patterns, M essage Endpoints are mapped to Message Channels. The goal isthe samein
both cases: isolate application code from the infrastructure. These concepts are discussed at length along
with all of the patterns that follow in the Enterprise Integration Patterns [http://www.eai patterns.com]
book. Here, we provide only a high-level description of the main endpoint types supported by Spring
Integration and their roles. The chapters that follow will elaborate and provide sample code as well as
configuration examples.

Transformer

A Message Transformer isresponsible for converting aMessage's content or structure and returning the
modified Message. Probably the most common type of transformer is one that converts the payload of
the Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a
transformer may be used to add, remove, or modify the Message's header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at al. This
simply requires a boolean test method that may check for a particular payload content type, a property
value, the presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if
not it will be dropped (or for a more severe implementation, an Exception could be thrown). Message
Filters are often used in conjunction with a Publish Subscribe channel, where multiple consumers may
receive the same Message and use the filter to narrow down the set of Messages to be processed based
on some criteria.

Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural
pattern with this specific endpoint type that selectively narrows down the Messages flowing
between two channels. The Pipes-and-Filters concept of "filter" matches more closely with
Spring Integration's Message Endpoint: any component that can be connected to Message
Channel(s) in order to send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message
next (if any). Typically the decision is based upon the Message's content and/or metadata available in
the Message Headers. A Message Router is often used asadynamic aternative to astatically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise,
a Message Router provides a proactive aternative to the reactive Message Filters used by multiple
subscribers as described above.

Spring Integration
2.1.0.M2 Reference Manual 10

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

. Message Channel A
e Router
Channel B

Splitter

A Splitter isanother type of M essage Endpoint whose responsibility isto accept aMessage fromitsinput
channel, split that Message into multiple Messages, and then send each of those to its output channel.
Thisistypically used for dividing a "composite" payload object into a group of Messages containing
the sub-divided payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple M essages and combinesthem into asingle Message. In fact, Aggregators are often downstream
consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more complex than a
Splitter, because it is required to maintain state (the Messages to-be-aggregated), to decide when the
complete group of Messagesisavailable, and to timeout if necessary. Furthermore, in case of atimeout,
the Aggregator needsto know whether to send the partial results or to discard them to a separate channel.
Spring Integration provides a Conpl et i onSt r at egy as well as configurable settings for timeout,
whether to send partial results upon timeout, and the discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

Note

The output channel isoptional, since each Message may also provideits own 'Return Address
header. This same rule applies for al consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message's payload and converting if necessary (if the method does not expect a
M essage-typed parameter). Whenever the service object's method returns avalue, that return value will
likewise be converted to areply Message if necessary (if it'snot already aMessage). That reply Message
is sent to the output channel. If no output channel has been configured, then the reply will be sent to the
channel specified in the Message's "return address” if available.

Spring Integration
2.1.0.M2 Reference Manual 11

Spring Integration

handle(Message)

Message
Handler

Service
Activator

Input
Channel

Output
Channel

A request-reply "Service Activator" endpoint connects a
target object's method to input and output Message Channels.

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typicaly, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Request, IMS Message, etc). Depending on the transport, the Channel Adapter
may also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

Pk

O o |
P Adapter Message
Message
Channel

An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

(L

hannel | o -
- Adapter " e
Message
Channel

An outbound "Channel Adapter" endpoint connects a MessageChannel to atarget system.

Spring Integration
2.1.0.M2 Reference Manual 12

Part Ill. Core Messaging

Thissection coversall aspects of the core messaging APl in Spring Integration. Hereyou will learn about
Messages, Message Channels, and Message Endpoints. Many of the Enterprise Integration Patterns
are covered here as well, such as Filters, Routers, Transformers, Service-Activators, Splitters, and
Aggregators. The section also contains material about System Management, including the Control Bus
and Message History support.

Spring Integration

3. Messaging Channels

3.1 Message Channels

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

The MessageChannel Interface

Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {
bool ean send(Message nessage);

bool ean send(Message nessage, |ong tineout);

When sending a message, the return value will be true if the message is sent successfully. If the send
call times out or isinterrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are
two sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior.
Here isthe definition of Pol | abl eChannel .

public interface Pollabl eChannel extends MessageChannel {
Message<?> receive();

Message<?> recei ve(long tinmeout);

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

TheSubscri babl eChannel baseinterfaceisimplemented by channelsthat send Messages directly
to their subscribed MessageHandl er s. Therefore, they do not provide receive methods for polling,
but instead define methods for managing those subscribers:

public interface Subscribabl eChannel extends MessageChannel {
bool ean subscri be(MessageHandl er handl er);

bool ean unsubscri be(MessageHandl er handl er);

Spring Integration
2.1.0.M2 Reference Manual 14

Spring Integration

Message Channel Implementations

Spring Integration provides severa different Message Channel implementations. Each is briefly
described in the sections below.

PublishSubscribeChannel

The Publ i shSubscri beChannel implementation broadcasts any Message sent to it to al of
its subscribed handlers. This is most often used for sending Event Messages whose primary role
is notification as opposed to Document Messages which are generally intended to be processed
by a single handler. Note that the Publ i shSubscri beChannel is intended for sending only.
Since it broadcasts to its subscribers directly when its send(Message) method is invoked,
consumers cannot poll for Messages (it does not implement Pol | abl eChannel and therefore has no
r ecei ve() method). Instead, any subscriber must beaMessageHandl er itself, and the subscriber's
handl eMessage(Message) method will be invoked in turn.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the Publ i shSubscri beChannel ,
the QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default
no-argument constructor (providing an essentially unbounded capacity of | nt eger . MAX_VALUE) as
well as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (i nt capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the
gueue has reached capacity, then the sender will block until room is available. Or, if using the send
call that accepts a timeout, it will block until either room is available or the timeout period elapses,
whichever occursfirst. Likewise, areceive call will return immediately if a message is available on the
gueue, but if the queue is empty, then a receive call may block until either a message is available or
the timeout elapses. In either caseg, it is possible to force an immediate return regardless of the queue's
state by passing a timeout value of 0. Note however, that calls to the no-arg versions of send() and
recei ve() will block indefinitely.

PriorityChannel

Whereasthe QueueChannel enforcesfirst-in/first-out (FIFO) ordering, the Pri or i t yChannel is
an aternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority isdetermined by the'pr i or i t y' header within each message. However,
for custom priority determination logic, a comparator of type Conpar at or <Message<?>> can be
provided to the Pr i or i t yChannel 's constructor.

RendezvousChannel

The RendezvousChannel enables a "direct-handoff" scenario where a sender will block until
another party invokesthe channel'sr ecei ve() method or vice-versa. Internally, thisimplementation
is quite similar to the QueueChannel except that it usesa Synchr onousQueue (a zero-capacity

Spring Integration
2.1.0.M2 Reference Manual 15

Spring Integration

implementation of Bl ocki ngQueue). This works well in situations where the sender and receiver
are operating in different threads but simply dropping the message in a queue asynchronoudly is not
appropriate. Inother words, withaRendezvousChannel atleast the sender knowsthat somereceiver
has accepted the message, whereas with a QueueChannel , the message would have been stored to
the internal queue and potentially never received.

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only by
default. When persistenceisrequired, you can either provide a'message-store' attribute within
the 'queue’ element to reference a persistent M essageStore implementation, or you can replace
the local channel with onethat isbacked by apersistent broker, such asa JM S-backed channel
or Channel Adapter. The latter option allows you to take advantage of any JMS provider's
implementation for message persistence, and it will be discussed in Chapter 18, IMS Support.
However, when buffering in a queue is not necessary, the simplest approach is to rely upon
theDi r ect Channel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender
can create a temporary, anonymous instance of RendezvousChannel which it then sets as the
'replyChannel’ header when building aMessage. After sending that M essage, the sender canimmediately
call receive (optionally providing atimeout value) in order to block while waiting for areply Message.
Thisisvery similar to the implementation used internally by many of Spring Integration’s request-reply
components.

DirectChannel

The Direct Channel has point-to-point semantics but otherwise is more similar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described
above. It implements the Subscr i babl eChannel interface instead of the Pol | abl eChannel
interface, so it dispatches Messages directly to a subscriber. As a point-to-point channel, however, it
differs from the Publ i shSubscri beChannel in that it will only send each Message to a single
subscribed MessageHandl er .

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on "both sides' of the channel. For example,
if ahandler is subscribed toaDi r ect Channel , then sending a Message to that channel will trigger
invocation of that handler's handl eMessage(Message) method directly in the sender's thread,
before the send() method invocation can return.

The key motivation for providing achannel implementation with this behavior isto support transactions
that must span across the channel while still benefiting from the abstraction and loose coupling that the
channel provides. If the send call isinvoked within the scope of atransaction, then the outcome of the
handler's invocation (e.g. updating a database record) will play arole in determining the ultimate result
of that transaction (commit or rollback).

Note

SincetheDi r ect Channel isthe simplest option and does not add any additional overhead
that would be required for scheduling and managing the threads of a poller, it is the default

Spring Integration
2.1.0.M2 Reference Manual 16

Spring Integration

channel type within Spring Integration. The general idea is to define the channels for an
application and then to consider which of those need to provide buffering or to throttle
input, and then modify those to be queue-based Pol | abl eChannel s. Likewise, if a
channel needs to broadcast messages, it should not be a Di r ect Channel but rather a
Publ i shSubscri beChannel . Below you will see how each of these can be configured.

TheDi r ect Channel internally delegatesto a Message Dispatcher to invoke its subscribed Message
Handlers, and that dispatcher can have a load-balancing strategy. The load-balancer determines how
invocations will be ordered in the case that there are multiple handlers subscribed to the same channel.
When using the namespace support described below, the default strategy is "round-robin” which
essentially load-balances across the handlers in rotation.

Note

The "round-robin" strategy is currently the only implementation available out-of-the-box in
Spring Integration. Other strategy implementations may be added in future versions.

The load-balancer also works in combination with a boolean failover property. If the "failover" value
is true (the default), then the dispatcher will fall back to any subsequent handlers as hecessary when
preceding handlers throw Exceptions. The order is determined by an optional order value defined on
the handlers themselves or, if no such value exists, the order in which the handlers are subscribed.

If acertain situation requiresthat the dispatcher alwaystry to invokethefirst handler, then fallback in the
same fixed order sequence every time an error occurs, no load-balancing strategy should be provided.
In other words, the dispatcher still supports the failover boolean property even when no load-balancing
is enabled. Without load-balancing, however, the invocation of handlers will aways begin with the
first according to their order. For example, this approach works well when there is a clear definition
of primary, secondary, tertiary, and so on. When using the namespace support, the "order" attribute on
any endpoint will determine that order.

Note

Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than
one endpoint shares the same channel reference in the "input-channel" attribute.

ExecutorChannel

The Execut or Channel isapoint-to-point channel that supports the same dispatcher configuration
asDi r ect Channel (load-balancing strategy and the failover boolean property). The key difference
between these two dispatching channel types isthat the Execut or Channel delegatesto aninstance
of TaskExecut or to perform the dispatch. This means that the send method typically will not block,
but it also means that the handler invocation may not occur in the sender's thread. 1t therefore does not
support transactions spanning the sender and receiving handler.

Tip

Note that there are occasions where the sender may block. For example, when using
a TaskExecutor with a rejection-policy that throttles back on the client (such as the
Thr eadPool Execut or. Cal | er RunsPol i cy), the sender's thread will execute the

Spring Integration
2.1.0.M2 Reference Manual 17

Spring Integration

method directly anytime the thread pooal is at its maximum capacity and the executor's work
gueue is full. Since that situation would only occur in a non-predictable way, that obviously
cannot be relied upon for transactions.

Scoped Channel

Spring Integration 1.0 providedaThr eadLocal Channel implementation, but that hasbeenremoved
as of 2.0. Now, there is a more general way for handling the same requirement by simply adding a
"scope" attribute to a channel. The value of the attribute can be any name of a Scope that is available
within the context. For example, in a web environment, certain Scopes are available, and any custom
Scope implementations can be registered with the context. Here's an example of a ThreadL ocal-based
scope being applied to a channel, including the registration of the Scope itself.

<i nt:channel id="threadScopedChannel" scope="thread">
<int:queue />
</i nt:channel >

<bean cl ass="org. spri ngframework. beans. factory. confi g. Cust onScopeConfi gurer">
<property nanme="scopes">
<map>
<entry key="thread" val ue="org. springframework. context.support.Si npl eThreadScope" />
</ map>
</ property>
</ bean>

The channel above also delegates to a queue internaly, but the channel is bound to the current thread,
so the contents of the queue are aswell. That way the thread that sends to the channel will later be able
to receive those same Messages, but no other thread would be able to access them. While thread-scoped
channels are rarely needed, they can be useful in situations where Di r ect Channel s are being used
to enforce a single thread of operation but any reply Messages should be sent to a "terminal” channel.
If that terminal channel isthread-scoped, the original sending thread can collect its replies from it.

Now, since any channel can be scoped, you can define your own scopesin addition to Thread Local.

Channel Interceptors

One of the advantages of amessaging architectureisthe ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since
the Messages are being sent to and received from MessageChannel s, those channels provide an
opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations:

public interface Channel I nterceptor {
Message<?> preSend(Message<?> nessage, MessageChannel channel);
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);
bool ean preRecei ve(MessageChannel channel);

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

Spring Integration
2.1.0.M2 Reference Manual 18

Spring Integration

After implementing the interface, registering the interceptor with a channel is just a matter of caling:

channel . addl nt er cept or (sonmeChannel | nt er cept or) ;

The methods that return a Message instance can be used for transforming the Message or can return
'null' to prevent further processing (of course, any of the methods can throw a RuntimeException). Also,
the pr eRecei ve method can return 'f al se' to prevent the receive operation from proceeding.

Note

Keep in mind that recei ve() cals are only relevant for Pol | abl eChannel s. In
fact the Subscri babl eChannel interface does not even definear ecei ve() method.
The reason for this is that when a Message is sent to a Subscri babl eChannel it
will be sent directly to one or more subscribers depending on the type of channel (eg. a
PublishSubscribeChannel sendsto all of its subscribers). Therefore, the pr eRecei ve(. .)
and post Recei ve(..) interceptor methods are only invoked when the interceptor is
appliedto aPol | abl eChannel .

Spring Integration also provides an implementation of the Wire Tap [http://eaipatterns.com/
WireTap.html] pattern. It is a simple interceptor that sends the Message to another channel without
otherwise altering the existing flow. It can be very useful for debugging and monitoring. An example
isshown in the section called “Wire Tap”.

Because it is rarely necessary to implement al of the interceptor methods, a
Channel | nt er cept or Adapt er classisalso availablefor sub-classing. It provides no-op methods
(the voi d method is empty, the Message returning methods return the Message as-is, and the
bool ean method returnst r ue). Therefore, it is often easiest to extend that class and just implement
the method(s) that you need as in the following example.

publ i c class CountingChannel | nterceptor extends Channel | nt erceptorAdapter {
private final Atomclnteger sendCount = new Atomni clnteger();

@verride

publ i c Message<?> preSend(Message<?> nessage, MessageChannel channel) ({
sendCount . i ncr ement AndCet () ;
return nessage;

Tip

The order of invocation for the interceptor methods depends on the type of channel. As
described above, the queue-based channels are the only ones where the receive method
is intercepted in the first place. Additionaly, the relationship between send and receive
interception depends on the timing of separate sender and receiver threads. For example,
if areceiver is aready blocked while waiting for a message the order could be: preSend,
preReceive, postReceive, postSend. However, if areceiver polls after the sender has placed a
message on the channel and already returned, the order would be: preSend, postSend, (some-
time-elapses) preReceive, postReceive. The time that elapses in such a case depends on a
number of factors and is therefore generally unpredictable (in fact, the receive may never
happen!). Obvioudly, the type of queue aso plays a role (e.g. rendezvous vs. priority). The

Spring Integration
2.1.0.M2 Reference Manual 19

http://eaipatterns.com/WireTap.html
http://eaipatterns.com/WireTap.html
http://eaipatterns.com/WireTap.html

Spring Integration

bottom line is that you cannot rely on the order beyond the fact that preSend will precede
postSend and preReceive will precede postReceive.

MessagingTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of
your application code from the messaging system. However, sometimes it is necessary to invoke the
messaging system from your application code. For convenience when implementing such use-cases,
Spring Integration provides aMessagi ngTenpl at e that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for areply.

Messagi ngTenpl ate tenpl ate = new Messagi ngTenpl ate();
Message reply = tenpl ate. sendAndRecei ve(soneChannel , new Generi cMessage(“test"));
In that example, a temporary anonymous channel would be created internally by the template. The

'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and other exchange types
are also supported.

publ i c bool ean send(final MessageChannel channel, final Message<?> nmessage) { ... }
publ i c Message<?> sendAndRecei ve(final MessageChannel channel, final Message<?> request) { ..

publ i c Message<?> recei ve(final Poll abl eChannel <?> channel) { ... }

Note

A less invasive approach that allows you to invoke simple interfaces with payload
and/or header values instead of Message instances is described in the section called
“GatewayProxyFactoryBean”.

Configuring Message Channels

To create a Message Channel instance, you can use the <channel/> element:

<i nt:channel id="exanpl eChannel"/>

The default channel type is Point to Point. To create a Publish Subscribe channel, use the <publish-
subscribe-channel/> element:

<int:publish-subscribe-channel id="exanpl eChannel"/>

When using the <channel/> element without any sub-elements, it will create a Di r ect Channel
instance (aSubscr i babl eChannel).

However, you can alternatively provide avariety of <queue/> sub-elementsto create any of the pollable
channel types (as described in the section called “Message Channel Implementations”). Examples of
each are shown below.

Spring Integration
2.1.0.M2 Reference Manual 20

}

Spring Integration

DirectChannel Configuration

As mentioned above, Di r ect Channel isthe default type.

<i nt:channel id="directChannel"/>

A default channel will have around-robin load-balancer and will also have failover enabled (See the
discussion in the section called “DirectChannel” for more detail). To disable one or both of these, add
a <dispatcher/> sub-element and configure the attributes:

<int:channel id="fail FastChannel ">
<int:dispatcher failover="fal se"/>
</ channel >

<i nt:channel id="channel Wt hFi xedOr der SequenceFai | over">
<i nt:di spat cher | oad-bal ancer="none"/>
</int:channel >

Datatype Channel Configuration

Thereare timeswhen aconsumer can only process aparticular type of payload and you need to therefore
ensure the payload type of input Messages. Of course the first thing that comes to mind is Message
Filter. However all that Message Filter will do is filter out Messages that are not compliant with the
reguirements of the consumer. Another way would be to use aContent Based Router and route M essages
with non-compliant data-types to specific Transformers to enforce transformation/conversion to the
required data-type. This of course would work, but asimpler way of accomplishing the samethingisto
apply the Datatype Channel [http://www.eai patterns.com/DatatypeChannel .html] pattern. Y ou can use
separate Datatype Channels for each specific payload data-type.

To create a Datatype Channel that only accepts messages containing a certain payload type, provide the
fully-qualified class namein the channel element'sdat at ype attribute:

<int:channel id="nunberChannel" datatype="java.l ang. Nunber"/>

Note that the type check passes for any typethat is assignabl e to the channel's datatype. In other words,
the "numberChannel” above would accept messages whose payload is j ava. | ang. | nt eger or
j ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<i nt:channel id="stringO Nunmber Channel" datatype="java.lang. String,java.l ang. Number"/>

So the 'numberChannel’ above will only accept Messages with adata-type of j ava. | ang. Nunber .
But what happens if the payload of the Message is not of the required type? It depends on whether
you have defined a bean named "integrationConversionService' that is an instance of Spring's
Conversion Service [http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
validation.html#core-convert-ConversionService-API]. If not, then an Exception would be thrown
immediately, but if you do have an "integrationConversionService" bean defined, it will be used in an
attempt to convert the Message's payload to the acceptable type.

Y ou can even register custom converters. For example, let's say you are sending a M essage with a String
payload to the 'numberChannel' we configured above.

Spring Integration
2.1.0.M2 Reference Manual 21

http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/DatatypeChannel.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert-ConversionService-API
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert-ConversionService-API
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

Spring Integration

MessageChannel inChannel = context.get Bean("nunber Channel ", MessageChannel . cl ass);
i nChannel . send(new Generi cMessage<String>("5"));

Typically thiswould be a perfectly legal operation, however since we are using Datatype Channel the
result of such operation would generate an exception:

Exception in thread "mai n" org.springfranmework.integrati on. MessageDel i ver yExcepti on:
Channel ' nunber Channel'

expected one of the foll ow ng datataypes [class java.lang. Nunber],

but received [class java.lang. String]

And rightfully so since we are requiring the payload type to be a Number while sending a String. So we
need something to convert String to a Number. All we need to do isimplement a Converter.

public static class StringTolntegerConverter inplenents Converter<String, |nteger> {
public Integer convert(String source) {
return | nteger. parselnt(source);
}
}

Then, register it as a Converter with the Integration Conversion Service:

<int:converter ref="strTolnt"/>

<bean id="strTolnt" class="org.springframework.integration.util.Deno.StringTolntegerConverter"/>

When the 'converter' element is parsed, it will create the "integrationConversionService' bean on-
demand if one is not already defined. With that Converter in place, the send operation would now be
successful sincethe Datatype Channel will usethat Converter to convert the String payload to an Integer.

QueueChannel Configuration

To create aQueueChannel , use the <queue/> sub-element. Y ou may specify the channel's capacity:

<i nt:channel id="queueChannel">
<queue capacity="25"/>
</int:channel >

Note

If you do not provide a value for the 'capacity' attribute on this <queue/> sub-element, the
resulting queue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly
recommended to set an explicit value for a bounded queue.

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer Messages, but does so in-memory only
by default, it also introduces a possibility that Messages could be lost in the event of a system
failure. To mitigate this risk, a QueueChannel may be backed by a persistent implementation of
the MessageG oupSt or e strategy interface. For more details on MessageG oupSt or e and
MessageSt or e see Section 17.4, “Message Store”.

Spring Integration
2.1.0.M2 Reference Manual 22

Spring Integration

When aQueueChannel receivesaMessage, it will add it to the Message Store, and when a Message
ispolled from a QueueChannel , it is removed from the Message Store.

By default any QueueChannel only stores its Messages in an in-memory Queue and can
therefore lead to the lost message scenario mentioned above. However Spring Integration provides a
JdbcMessageSt or e to alow aQueueChannel to be backed by an RDBMS.

You can configure a Message Store for any QueueChannel by adding the nessage- st ore
attribute as shown in the next example.

<i nt:channel id="dbBackedChannel ">
<i nt:queue message-store="nmessageStore">
<i nt:channel id="myChannel">

<int-jdbc: message-store i d="nmessageStore" data-source="sonmeDat aSource"/>

The above example aso shows that JdbcMessageStore can be configured with the
namespace support provided by the Spring Integration JDBC module. All you need to do
is inject any j avax.sgql . DataSource instance. The Spring Integration JDBC module
also provides schema DDL for most popular databases. These schemas are located in the
org.springframewor k.integration.jdbc package of that module (spring-integration-jdbc).

1 I mportant
' Oneimportant feature is that with any transactional persistent store (e.g., JdbcM essageStore),
aslong asthe poller has atransaction configured, a M essage removed from the store will only
be permanently removed if the transaction completes successfully, otherwise the transaction
will roll back and the Message will not be lost.

Many other implementations of the Message Store will be available as the growing number of Spring
projects related to "NoSQL" data stores provide the underlying support. Of course, you can always
provide your own implementation of the MessageGroupStore interfaceif you cannot find one that meets
your particular needs.

PublishSubscribeChannel Configuration

To create a Publ i shSubscri beChannel , use the <publish-subscribe-channel/> element. When
using this element, you can also specify thet ask- execut or used for publishing Messages (if hone
is specified it simply publishesin the sender's thread):

<i nt: publish-subscribe-channel id="pubsubChannel" task-executor="soneExecutor"/>

If you ae providing a Resequencer or Aggregator downstream from a
Publ i shSubscri beChannel , then you can set the 'apply-sequence’ property on the channel to
t r ue. That will indicate that the channel should set the sequence-size and sequence-number M essage
headers as well as the correlation id prior to passing the Messages along. For example, if there are 5
subscribers, the sequence-size would be set to 5, and the M essages woul d have sequence-number header
values ranging from 1 to 5.

<int:publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

Spring Integration
2.1.0.M2 Reference Manual 23

Spring Integration

Note

The appl y- sequence vaueis f al se by default so that a Publish Subscribe Channel
can send the exact same Message instances to multiple outbound channels. Since Spring
Integration enforces immutability of the payload and header references, the channel creates
new Message instances with the same payload reference but different header values when the
flagissettotrue.

ExecutorChannel

To createan Execut or Channel , add the <dispatcher> sub-element along with at ask- execut or

attribute. Its value can reference any TaskExecut or within the context. For example, this enables
configuration of a thread-pool for dispatching messages to subscribed handlers. As mentioned above,
this does break the "single-threaded" execution context between sender and receiver so that any active
transaction context will not be shared by the invocation of the handler (i.e. the handler may throw an
Exception, but the send invocation has already returned successfully).

<i nt:channel id="executorChannel">
<i nt:di spatcher task-executor="sonmeExecutor"/>
</int:channel >

Note

Thel oad- bal ancer andf ai | over options are also both available on the <dispatcher/>
sub-element as described abovein the section called “ DirectChannel Configuration”. Thesame
defaults apply as well. So, the channel will have a round-robin load-balancing strategy with
failover enabled unless explicit configuration is provided for one or both of those attributes.

<i nt:channel id="executorChannel Wthout Fail over">
<i nt:di spatcher task-executor="someExecutor" failover="false"/>
</i nt:channel >

PriorityChannel Configuration

TocreateaPri orit yChannel , use the <priority-queue/> sub-element:

<int:channel id="priorityChannel">
<int:priority-queue capacity="20"/>
</int:channel >
By default, the channel will consult the MessagePri ority header of the message. However, a
custom Conpar at or reference may be provided instead. Also, note that the Pri ori t yChannel
(likethe other types) does support thedat at ype attribute. Aswith the QueueChannel, it also supports
acapaci ty attribute. The following example demonstrates all of these:

<i nt:channel id="priorityChannel" datatype="exanple. W dget">
<int:priority-queue conparator="w dget Conpar at or "
capaci ty="10"/>
</int:channel >

Spring Integration
2.1.0.M2 Reference Manual 24

Spring Integration

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does
not provide any additional configuration optionsto those described above, and its queue does not accept
any capacity value sinceit is a 0-capacity direct handoff queue.

<i nt:channel id="rendezvousChannel"/>
<i nt:rendezvous- queue/ >
</int: channel >

Scoped Channel Configuration

Any channel can be configured with a"scope" attribute.

<i nt:channel id="threadLocal Channel" scope="thread"/>

Channel Interceptor Configuration

M essage channels may also have interceptors as described in the section called “ Channel Interceptors’.
The <interceptors/> sub-element can be added within <channel/> (or the more specific element
types). Provide the r ef attribute to reference any Spring-managed object that implements the
Channel | nt er cept or interface:

<i nt:channel id="exanpl eChannel ">
<int:interceptors>
<ref bean="trafficMonitoringlnterceptor"/>
</int:interceptors>
</i nt:channel >
In general, it is a good idea to define the interceptor implementations in a separate location since they

usually provide common behavior that can be reused across multiple channels.
Global Channel Interceptor Configuration

Channel Interceptors provide aclean and concise way of applying cross-cutting behavior per individual
channel. If the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. To avoid repeated configuration
while also enabling interceptors to apply to multiple channels, Spring Integration provides Global
Interceptors. Look at the example below:

<int:channel -interceptor pattern="input*, bar*, foo" order="3">
<bean cl ass="f 0o. bar Sanpl el nterceptor"/>
</int:channel -i nt er cept or >

or

<int:channel -interceptor ref="nylnterceptor" pattern="input*, bar*, foo" order="3"/>

<bean i d="nyl nterceptor" cl ass="foo. bar Sanpl el nterceptor"/>

Each <channel-interceptor/> element allows you to define aglobal interceptor which will be applied on
all channels that match any patterns defined via the pat t er n attribute. In the above case the global
interceptor will be applied on the 'foo' channel and all other channels that begin with 'bar' or 'input'.
The order attribute allows you to manage where this interceptor will be injected if there are multiple

Spring Integration
2.1.0.M2 Reference Manual 25

Spring Integration

interceptors on agiven channel. For example, channel 'inputChannel’ could have individual interceptors
configured locally (see below):

<i nt:channel id="inputChannel">
<int:interceptors>
<int:wre-tap channel ="l ogger"/>
</int:interceptors>
</int:channel >

A reasonable question is how will a global interceptor be injected in relation to other interceptors
configured locally or through other global interceptor definitions? The current implementation provides
a very simple mechanism for defining the order of interceptor execution. A positive number in the
or der attribute will ensure interceptor injection after any existing interceptors and a negative number
will ensure that the interceptor is injected before existing interceptors. This means that in the above
example, the global interceptor will be injected AFTER (since its order is greater than 0) the ‘wire-tap’
interceptor configured locally. If there were another global interceptor with a matching pat t er n, its
order would be determined by comparing thevaluesof theor der attribute. Toinject aglobal interceptor
BEFORE the existing interceptors, use a negative value for the or der attribute.

Note
Notethat both theor der and pat t er n attributes are optional. The default valuefor or der
will be 0 and for pat t er n, the default is"*' (to match al channels).

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You
can configure a Wire Tap on any channel within an <interceptors/> element. Thisis especially useful
for debugging, and can be used in conjunction with Spring Integration's logging Channel Adapter as
follows:

<i nt:channel id="in">
<int:interceptors>
<int:wre-tap channel ="l ogger"/>
</int:interceptors>
</int:channel >

<i nt: | oggi ng- channel - adapter id="1ogger" |evel ="DEBUG'/>

Tip

The 'logging-channel-adapter' also accepts an 'expression’ attribute so that you can evaluate a
SpEL expression against 'payload' and/or 'headers variables. Alternatively, to simply log the
full Message toString() result, provide a value of "true" for the 'log-full-message’ attribute.
That isf al se by default so that only the payload is logged. Setting that to t r ue enables
logging of all headersin addition to the payload. The 'expression’ option does provide the most
flexibility, however (e.g. expression="payload.user.name").

Alittle more on Wire Tap

One of the common misconceptions about the wire tap and other similar components (Section 29.1,
“Message Publishing Configuration”) isthat they are automatically asynchronousin nature. Wire-tap as

Spring Integration
2.1.0.M2 Reference Manual 26

Spring Integration

a component is not invoked asynchronously be default. Instead, Spring Integration focuses on a single
unified approach to configuring asynchronous behavior: the M essage Channel . What makes certain parts
of the message flow sync or async is the type of Message Channel that has been configured within that
flow. That is one of the primary benefits of the Message Channel abstraction. From the inception of
the framework, we have always emphasized the need and the value of the Message Channel as a first-
class citizen of the framework. It isnot just an internal, implicit realization of the EIP pattern, itisfully
exposed as a configurable component to the end user. So, the Wire-tap component isONLY responsible
for performing the following 3 tasks:

* intercept a message flow by tapping into a channel (e.g., channelA)
 grab each message

* send the message to another channel (e.g., channel B)

It is essentiadly a variation of the Bridge, but it is encapsulated within a channel definition (and
hence easier to enable and disable without disrupting a flow). Also, unlike the bridge, it basically
forks another message flow. Is that flow synchronous or asynchronous? The answer simply depends
on the type of Message Channel that 'channelB' is. And, now you know that we have: Direct Channel,
Pollable Channel, and Executor Channel as options. The last two do break the thread boundary making
communication via such channels asynchronous simply because the dispatching of the message from
that channel to its subscribed handlers happens on a different thread than the one used to send the
message to that channel. That iswhat is going to make your wire-tap flow sync or async. It is consistent
with other components within the framework (e.g., Message Publisher) and actually brings a level of
consistency and simplicity by sparing you from worrying in advance (other than writing thread safe
code) whether a particular piece of code should be implemented as sync or async. The actual wiring
of two pieces of code (component A and component B) via Message Channel is what makes their
collaboration sync or async. Y ou may even want to change from sync to async in the future and Message
Channel iswhat's going to allow you to do it swiftly without ever touching the code.

Onefinal point regarding the Wire Tap isthat, despite the rational e provided above for not being async
be default, one should keep in mind it is usually desirable to hand off the M essage as soon as possible.
Therefore, it would be quite common to use an asynchronous channel option as the wire-tap's outbound
channel. Nonetheless, another reason that we do not enforce asynchronous behavior by default is that
you might not want to break atransactional boundary. Perhaps you are using the Wire Tap for auditing
purposes, and you DO want the audit M essagesto be sent within the original transaction. Asan example,
you might connect the wire-tap to a IM S outbound-channel-adapter. That way, you get the best of both
worlds: 1) the sending of aJM S Message can occur within the transaction while 2) it is still a"fire-and-
forget" action thereby preventing any noticeable delay in the main message flow.

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the Global Channel Interceptor. Simply
configure a top level wi r e-t ap element. Now, in addition to the normal wi r e- t ap namespace
support, the pat t er n and or der attributes are supported and work in exactly the same way as with
thechannel -i nt er cept or

<int:wire-tap pattern="input*, bar*, foo" order="3" channel ="wi ret apChannel "/ >

Spring Integration
2.1.0.M2 Reference Manual 27

Spring Integration

Tip

A global wire tap provides a convenient way to configure asingle channel wire tap externally
without modifying the existing channel configuration. Simply set the pat t er n attribute to
the target channel name. For example, This technique may be used to configure atest case to
verify messages on a channel.

Special Channels

If namespace support is enabled, there are two special channels defined within the application context
by default: er r or Channel and nul | Channel . The 'nullChannel’ acts like / dev/ nul | , smply
logging any Message sent to it at DEBUG level and returning immediately. Any time you face channel
resolution errors for areply that you don't care about, you can set the affected component's out put -
channel attribute to 'nullChannel' (the name 'nullChannel' is reserved within the application context).
The 'errorChannel’ is used internally for sending error messages and may be overridden with a custom
configuration. Thisis discussed in greater detail in Section B.4, “Error Handling”.

3.2 Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to a
Message Channel. Spring Integration provides a number of adapters out of the box to support various
transports, such as JIMS, File, HTTP, Web Services, Mail, and more. Those will be discussed in
upcoming chapters of this reference guide. However, this chapter focuses on the ssmple but flexible
Method-invoking Channel Adapter support. There are both inbound and outbound adapters, and each
may be configured with XML elements provided in the core namespace. These provide an easy way
to extend Spring Integration as long as you have a method that can be invoked as either a source or
destination.

Configuring Inbound Channel Adapter

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send
anon-null return valueto aMessageChannel after converting it to aMessage. When the adapter's
subscription is activated, a poller will attempt to receive messages from the source. The poller will
be scheduled with the TaskSchedul er according to the provided configuration. To configure the
polling interval or cron expression for an individual channel-adapter, provide a'poller’ element with one
of the scheduling attributes, such as 'fixed-rate' or ‘cron'.

<i nt:inbound-channel - adapter ref="sourcel" nethod="nethodl" channel ="channel 1">
<int:poller fixed-rate="5000"/>
</int:inbound-channel - adapt er >

<i nt:inbound-channel - adapter ref="source2" nethod="nethod2" channel ="channel 2">
<int:poller cron="30 * 9-17 * * MON-FRI"/>
</int:channel - adapt er >

Note

If no poller is provided, then a single default poller must be registered within the context. See
the section called “ Namespace Support” for more detail.

Spring Integration
2.1.0.M2 Reference Manual 28

Spring Integration

1 I mportant
Poller Configuration

Some i nbound- channel - adapt er types are backed by a
Sour cePol | i ngChannel Adapt er which means they contain Poller configuration
which will poll the MessageSour ce (invoke a custom method which produces the value
that becomes aMessage payload) based on the configuration specified in the Poller.

For example:
<int:poller max-nmessages-per-poll="1" fixed-rate="1000"/>
<int:poller max-nessages-per-poll="10" fixed-rate="1000"/>

In the the first configuration the polling task will be invoked once per poll and during such
task (poll) the method (which results in the production of the Message) will be invoked once
based on the max- messages- per - pol | attribute value. In the second configuration the
polling task will be invoked 10 times per poll or until it returns 'null® thus possibly producing
10 Messages per poll while each poll happens at 1 second intervals. However what if the
configuration looks like this:

<int:poller fixed-rate="1000"/>

Note there is no max- messages- per - pol | specified. Asyou'll learn later the identical
poller configuration in the Pol | i ngConsuner (e.g., service-activator, filter, router etc.)
would have a default value of -1 for max- messages- per - pol | which means "execute
poling task non-stop unless polling method returns null (e.g., no more Messages in the
QueueChannel)" and then sleep for 1 second.

However in the SourcePollingChannel Adapter it isabit different. The default value for nax-
nmessages- per - pol | will be set to 1 by default unless you explicitly set it to a negative
value (e.g., -1). Itisdone so to make surethat poller can react to aLifeCycle events (e.g., start/
stop) and prevent it from potentially spinning in the infinite loop if the implementation of the
custom method of the MessageSour ce has a potential to never return null and happened
to be non-interruptible.

However if you are sure that your method can return null and you need the behavior where
you want to poll for as many sources as available per each poll, then you should explicitly set
max- messages- per - pol | to negative value.

<int:poller max-nessages-per-poll="-1" fixed-rate="1000"/>

Configuring Outbound Channel Adapter

An"outbound-channel-adapter" element can also connect aMessageChannel toany POJO consumer
method that should be invoked with the payload of Messages sent to that channel.

<i nt:out bound- channel - adapt er channel ="channel 1" ref="target" method="handl e"/>

<beans: bean id="target" cl ass="org. Foo"/>

Spring Integration
2.1.0.M2 Reference Manual 29

Spring Integration

If the channel being adapted isaPol | abl eChannel , provide a poller sub-element:

<i nt: out bound- channel - adapt er channel =" channel 2" ref="target" nethod="handl e">
<int:poller fixed-rate="3000"/>

</i nt: out bound- channel - adapt er >

<beans: bean i d="target" class="org. Foo"/>

Using a"ref" attribute is generally recommended if the POJO consumer implementation can be reused
in other <out bound- channel - adapt er > definitions. However if the consumer implementation
isonly referenced by a single definition of the <out bound- channel - adapt er >, you can define
it asinner bean:

<i nt: out bound- channel - adapt er channel ="channel " net hod="handl e" >
<beans: bean cl ass="org. Foo"/>

</i nt: out bound- channel - adapt er >

Note

Using both the "ref" attribute and an inner handler definition in the same <out bound-
channel - adapt er > configuration is not allowed as it creates an ambiguous condition.
Such a configuration will result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly
create an instance of Di r ect Channel . The created channel's name will match the "id" attribute of
the <inbound-channel -adapter/> or <outbound-channel-adapter> element. Therefore, if the "channel" is
not provided, the"id" isrequired.

3.3 Messaging Bridge
Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels
or Channel Adapters. For example, you may want to connect a Pol | abl eChannel to a
Subscri babl eChannel so that the subscribing endpoints do not have to worry about any polling
configuration. Instead, the Messaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle
inbound Messages. The poller's trigger will determine the rate at which messages arrive on the second
channel, and the poller's "maxM essagesPerPoll" property will enforce alimit on the throughput.

Another valid use for aMessaging Bridge isto connect two different systems. In such ascenario, Spring
Integration's role would be limited to making the connection between these systems and managing a
poller if necessary. It is probably more common to have at |east a Transformer between the two systems
to trangdlate between their formats, and in that case, the channelswould be provided asthe'input-channel'
and 'output-channel’ of a Transformer endpoint. If dataformat translation is not required, the Messaging
Bridge may indeed be sufficient.

Spring Integration
2.1.0.M2 Reference Manual 30

Spring Integration

Configuring Bridge

The <bridge> element is used to create a M essaging Bridge between two M essage Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel” attributes:

<int:bridge input-channel ="input" out put-channel ="out put"/>

Asmentioned above, acommon use casefor the Messaging Bridgeisto connect aPol | abl eChannel
toaSubscri babl eChannel , and when performing this role, the Messaging Bridge may also serve
asathrottler:

<int:bridge input-channel ="pol | abl e" output-channel ="subscri babl e">
<int:poller max-nmessages-per-poll="10" fixed-rate="5000"/>
</int:bridge>

Connecting Channel Adaptersisjust as easy. Here is a simple echo example between the "stdin" and
"stdout" adapters from Spring Integration's "stream™" namespace.

<i nt-stream stdi n-channel - adapter id="stdin"/>
<i nt-stream st dout - channel - adapter id="stdout"/>

<int:bridge id="echo" input-channel ="stdin" output-channel ="stdout"/>
Of course, the configuration would be similar for other (potentially more useful) Channel Adapter

bridges, such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in
upcoming chapters.

Note

If no 'output-channel' is defined on a bridge, the reply channel provided by the inbound
Message will be used, if available. If neither output or reply channel is available, an Exception
will be thrown.

Spring Integration
2.1.0.M2 Reference Manual 31

Spring Integration

4. Message Construction

4.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message also includes headers containing user-extensible properties as key-value
pairs.

The Message Interface

Hereisthe definition of the Message interface:

public interface Message<T> {
T get Payl oad();

MessageHeader s get Headers();

The Message is obviously a very important part of the API. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the data's type. As an
application evolves to support new types, or when the types themselves are modified and/or extended,
the messaging system will not be affected by such changes. On the other hand, when some component
in the messaging system does require access to information about the Message, such metadata can
typically be stored to and retrieved from the metadata in the Message Headers.

Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports
any Object types as header values. In fact, the MessageHeader s classimplements the java.util.Map
interface:

public final class MessageHeaders inplements Map<String, Object>, Serializable {

}

Note

Even though the MessageHeaders implements Map, it is effectively a read-only
implementation. Any attempt to put a value in the Map will result in an
Unsupport edOper ati onExcept i on. The same applies for remove and clear. Since
Messages may be passed to multiple consumers, the structure of the Map cannot be modified.
Likewise, the Message's payl oad Object can not be set after the initial creation. However, the
mutability of the header values themselves (or the payload Object) is intentionally left as a
decision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get (. .) with the
name of the header. Alternatively, you can provide the expected Class as an additional parameter.

Spring Integration
2.1.0.M2 Reference Manual 32

Spring Integration

Even better, when retrieving one of the pre-defined values, convenient getters are available. Hereisan
example of each of these three options:

Obj ect soneVal ue = nessage. get Headers() . get (" sonmeKey") ;
Custonerld custonerld = message. get Headers(). get ("custonerld", Custonerld.class);

Long ti mestanp = nessage. get Headers(). get Ti nest anp() ;

The following M essage headers are pre-defined:

Table 4.1. Pre-defined Message Headers

Header Name Header Type

ID
TIMESTAMP

CORRELATION_ID

javautil.UUID
javalang.Long

java.lang.Object

REPLY_CHANNEL javalang.Object (can be a String or
MessageChannel)
ERROR_CHANNEL javalang.Object (can be a String or

SEQUENCE_NUMBER
SEQUENCE_SIZE

MessageChannel)
javalang.Integer

javalang.Integer

EXPIRATION_DATE

javalang.Long

PRIORITY MessagePriority (an enum)

Many inbound and outbound adapter implementations will also provide and/or expect certain headers,
and additional user-defined headers can aso be configured.

Message Implementations

The base implementation of the Message interface is Gener i cMessage<T>, and it provides two
constructors:

new Ceneri cMessage<T>(T payl oad);

new Generi cMessage<T>(T payl oad, Map<String, Object> headers)

When a Message is created, arandom unique id will be generated. The constructor that accepts a Map
of headers will copy the provided headers to the newly created Message.

There is aso a convenient implementation of Message designed to communicate error conditions.
THisimplementation takes Thr owabl e object asits payload:

Error Message message = new Error Message(sonmeThr owabl e) ;

Spring Integration
2.1.0.M2 Reference Manual 33

Spring Integration

Throwabl e t = nessage. get Payl oad() ;

Notice that this implementation takes advantage of the fact that the Gener i cMessage base class
is parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
M essage payload Object.

The MessageBuilder Helper Class

Y ou may notice that the Message interface defines retrieval methods for its payload and headers but
no setters. The reason for thisis that a Message cannot be modified after itsinitial creation. Therefore,
when a Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channédl), if
one of those consumers needs to send areply with adifferent payload type, it will need to create a new
Message. Asaresult, the other consumersare not affected by those changes. Keep in mind, that multiple
consumers may access the same payload instance or header value, and whether such an instanceisitself
immutable is a decision left to the developer. In other words, the contract for Messages is similar to
that of an unmodifiable Collection, and the M essageHeaders map further exemplifiesthat; even though
the MessageHeaders class implements j ava. uti | . Map, any attempt to invoke a put operation (or
‘remove' or ‘clear’) on the MessageHeaderswill resultinan Unsuppor t edOper at i onExcept i on.

Rather than requiring the creation and population of aMap to passinto the GenericM essage constructor,
Spring Integration does provide afar more convenient way to construct Messages. MessageBui | der .
The MessageBuilder provides two factory methods for creating Messages from either an existing
Message or with a payload Object. When building from an existing Message, the headers and payload
of that Message will be copied to the new Message:

Message<String> nessagel = MessageBuil der. wit hPayl oad("test")
. set Header ("foo0", "bar")
. bui ld();

Message<Stri ng> nessage2 = MessageBui |l der. fromVessage(messagel) . buil d();

assert Equal s("test", nessage2.get Payl oad());
assert Equal s("bar", message2.get Headers().get("foo"));

If you need to create a Message with a new payload but till want to copy the headers from an existing
Message, you can use one of the 'copy’ methods.

Message<Stri ng> nmessage3 = MessageBui | der. wi t hPayl oad("test 3")
. copyHeader s(nessagel. get Header s())
.build();

Message<Stri ng> nmessage4 = MessageBui |l der. wi t hPayl oad("t est 4")
. set Header ("f o0", 123)
. copyHeader sl f Absent (nessagel. get Headers())
. bui ld();

assert Equal s("bar", message3. get Headers().get("foo"));
assert Equal s(123, nessage4. get Headers().get("fo0"));

Notice that the copyHeader sI f Absent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with set Header . Finaly, there are set
methods available for the predefined headers as well as a non-destructive method for setting any header
(MessageHeaders al so defines constants for the pre-defined header names).

Spring Integration
2.1.0.M2 Reference Manual 34

Spring Integration

Message<I nt eger > i nport ant Message = MessageBui | der. wi t hPayl oad(99)
.setPriority(MessagePriority. H GHEST)
Cbuild();

assert Equal s(MessagePriority. H GHEST, inportant Message. get Headers().getPriority());
Message<I nt eger > anot her Message = MessageBui | der. fromVessage(i nmport ant Message)

. set Header | f Absent (MessageHeaders. PRIORI TY, MessagePriority. LOWN

.bui 1 d();

assert Equal s(MessagePriority. LON anot her Message. get Headers().getPriority());

TheMessagePri ority isonly considered whenusingaPri ori t yChannel (asdescribedinthe

next chapter). It is defined as an enum with five possible values:

public enum MessagePriority {
HI GHEST,
HI GH,
NORVAL,
Low
LOVNEST

Spring Integration
2.1.0.M2 Reference Manual

35

Spring Integration

5. Message Routing

5.1 Routers

Overview

Routersareacrucia element in many messaging architectures. They consume Messagesfrom aM essage
Channel and forward each consumed message to one or more different Message Channel depending on
a set of conditions.

Spring Integration provides the following routers out-of-the-box:
* (Generic) Router

» Header Value Router

» XPath Router (Part of the XML Module)

» Payload Type Router

* Recipient List Router

» Error Message Exception Type Router

Router implementations share many configuration parameters. Y et, certain differences exist between
routers. Furthermore, the availability of configuration parameters depends on whether Routers are used
inside or outside of a chain. In order to provide a quick overview, al available attributes are listed in
the 2 tables below.

Table 5.1. Routers Outside a Chain

Attribute router header xpath payload recipient exception
value router type list type
router router router router

apply-sequence X X X X X X

default-output-channel X X X X X X

resolution-required X X X X X X

ignore-send-failures X X X X X X

timeout X X X X X X

id X X X X X X

auto-startup X X X X X X

input-channel X X X X X X

order X X X X X X

Spring Integration
2.1.0.M2 Reference Manual 36

Spring Integration

Attribute router header xpath payload recipient exception
value router type list type
router router router router

channel-resolver X

method X

ref X

expression X

header-name X

evaluate-as-string

xpath-expression-ref

Table 5.2. Routers Inside a Chain

Attribute router header xpath payload recipient exception
value router type list type
router router router router

apply-sequence X X X X X

default-output-channel X X X X X

resolution-required X X X X X

ignore-send-failures X X X X X

timeout X X X X X

id

auto-startup

input-channel

order

channel-resolver X

method X

ref X

expression X

header-name X

evauate-as-string

xpath-expression-ref

Spring Integration
2.1.0.M2 Reference Manual 37

Spring Integration

Note

Router parameters have been more standardized across all router implementations in Spring
Integration 2.1. Consequently, there are a few minor changes that leave the possibility of
breaking older Spring Integration based applications.

1 I mportant
' Since Spring Integration 2.1 the "ignore-channel-name-resolution-failures' attribute was
removed in favor of consolidating its behavior with the "resolution-required” attribute.
Also, the "resolution-required” attribute now defaults to "true". Prior to these changes, the
"resolution-required" attribute defaulted to fal se causing messagesto be dropped silently when
no channel was resolved and no "default-output-channel” was set. The new behavior will
require at least one resolved channel and by default will throw an Exception if no channel
was determined (or an attempt to send was not successful). If you do desire to drop messages

silently simply set "default-output-channel="null Channel ™.

Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require
Spring Integration's options for delegating to POJOs using the XML namespace support and/or
Annotations. Both of these are discussed below, but first we present a couple implementations that are
available out-of-the-box since they fulfill common requirements.

PayloadTypeRouter

A Payl oadTypeRout er will send Messages to the channel as defined by payload-type mappings.

<bean i d="payl oadTypeRouter" cl ass="org. spri ngframework.integration.router.Payl oadTypeRout er">
<property nanme="channel | denti fi er Map" >
<r’r‘ap>
<entry key="java.lang. String" val ue-ref="stri ngChannel "/>
<entry key="java.l ang.|nteger" val ue-ref="integer Channel "/ >
</ map>
</ property>
</ bean>

Configuration of the Payl oadTypeRout er is also supported via the namespace provided by
Spring Integration (see Section B.2, “Namespace Support”), which essentially simplifies configuration
by combining the <r out er/ > configuration and its corresponding implementation defined using
a <bean/ > element into a single and more concise configuration element. The example below
demonstrates a Payl oadTypeRout er configuration which is equivaent to the one above using the
namespace support:

<int:payl oad-type-router input-channel="routingChannel ">
<i nt: mappi ng type="java.lang. String" channel ="stringChannel" />
<i nt: mappi ng type="java.l ang. I nteger" channel ="i nt eger Channel " />
</int:payl oad-type-router>

Spring Integration
2.1.0.M2 Reference Manual 38

Spring Integration

HeaderValueRouter

A Header Val ueRout er will send Messages to the channel based on the individual header value
mappings. When a Header Val ueRout er is created it is initialized with the name of the header to
be evaluated. The value of the header could be one of two things:

1. Arbitrary value
2. Channel name

If arbitrary then additional mappings for these header values to channel names is required, otherwise
no additional configuration is needed.

Spring Integration provides a simple namespace-based XML configuration to configure a
Header Val ueRout er. The example below demonstrates two types of namespace-based
configuration for the Header Val ueRout er .

1. Configuration where mapping of header valuesto channelsisrequired

<i nt: header-val ue-router input-channel ="routi ngChannel " header - name="t est Header " >
<i nt: mappi ng val ue="soneHeader Val ue" channel ="channel A" />
<i nt: mappi ng val ue="soneQ her Header Val ue" channel ="channel B" />

</'i nt: header - val ue-rout er >

During the resolution process this router may encounter channel resolution failures, causing an
exception. If you want to suppress such exceptions and send unresolved messages to the default output
channel (identified with the def aul t - out put - channel attribute) set i gnor e- channel -
name-r esol uti on-fail ures to true. Normally, messages for which the header value is not
explicitly mapped to a channel will be sent to the def aul t - out put - channel . However, in cases
where the header value is mapped to a channel name but the channel cannot be resolved, setting the
i gnor e- channel - nane-resol ution-fail ures attribute to true will result in routing such
messages to thedef aul t - out put - channel .

2. Configuration where mapping of header valuesto channel namesisnot required since header values
themselves represent channel names

<i nt:header-val ue-router input-channel ="routingChannel" header-nanme="t est Header"/ >

Note

The two router implementations shown above share some common attributes, such
as def aul t - out put - channel and resol uti on-required. If resol ution-
r equi r ed is set to true, and the router is unable to determine atarget channel (e.g. thereis
no matching payload for a PayloadTypeRouter and no def aul t - out put - channel has
been specified), then an Exception will be thrown.

RecipientListRouter

A Reci pi ent Li st Rout er will send each received Message to a statically defined list of Message
Channels:

<bean id="recipientlListRouter" class="org.springframework.integration.router.RecipientListRouter">

Spring Integration
2.1.0.M2 Reference Manual 39

Spring Integration

<property name="channel s">
<list>
<ref bean="channel 1"/>
<ref bean="channel 2"/ >
<ref bean="channel 3"/>
</list>
</ property>
</ bean>

Spring Integration also provides namespace support for the Reci pi ent Li st Rout er configuration
(see Section B.2, “Namespace Support”) as the example below demonstrates.

<int:recipient-list-router id="custonRouter" input-channel ="routingChannel"
ti meout ="1234"
i gnore-send-failures="true"
appl y- sequence="true">
<int:recipient channel ="channel 1"/>
<i nt:recipient channel ="channel 2"/>
</int:recipient-list-router>

Note

The "apply-sequence’ flag here has the same effect as it does for a publish-subscribe-channel,
and like a publish-subscribe-channel, it is disabled by default on the recipient-list-router. Refer
to the section called “ PublishSubscribeChannel Configuration” for more information.

Another convenient option when configuring aReci pi ent Li st Rout er isto use Spring Expression
Language (SpEL) support as selectors for individual recipient channels. Thisissimilar to using a Filter
at the beginning of 'chain’ to act as a "Selective Consumer”. However, in this case, it's al combined
rather concisely into the router's configuration.

<int:recipient-list-router id="custonRouter" input-channel ="routingChannel ">

<i nt:recipient channel ="channel 1" sel ect or - expressi on="payl oad. equal s(' foo')"/>
<int:recipient channel ="channel 2" sel ect or- expressi on="headers. cont ai nsKey(' bar')"/>
</int:recipient-list-router>

In the above configuration a SpEL expression identified by the sel ect or - expr essi on attribute
will be evaluated to determine if this recipient should be included in the recipient list for a given input
Message. The evaluation result of the expression must be a boolean. If this attribute is not defined, the
channel will always be among the list of recipients.

Routing and Error handling

Spring Integration aso provides a specia type-based router called
Err or MessageExcept i onTypeRout er for routing Error Messages (M essageswhose pay| oad
is a Throwabl e instance). Error MessageExcepti onTypeRout er is very similar to
the Payl oadTypeRouter. In fact they are almost identical. The only difference is that
while Payl oadTypeRout er navigates the instance hierarchy of a payload instance (e.g.,
payl oad. get O ass() . get Super cl ass()) to find the most specific type/channel mappings,
the Er r or MessageExcept i onTypeRout er navigates the hierarchy of ‘exception causes (e.g.,
payl oad. get Cause()) to find the most specific Thr owabl e type/channel mappings.

Below isasample configuration for Er r or MessageExcept i onTypeRout er .

Spring Integration
2.1.0.M2 Reference Manual 40

Spring Integration

<i nt:exception-type-router input-channel="inputChannel" default-output-channel ="defaul t Channel ">
<i nt: mappi ng exception-type="java.l ang. ||| egal Argunment Excepti on" channel ="i || egal Channel "/ >
<i nt: mappi ng exception-type="java. | ang. Nul | Poi nt er Excepti on" channel =" npeChannel "/ >
</int:exception-type-router>

<int:channel id="illegal Channel" />
<i nt:channel id="npeChannel" />

Configuring Router
Configuring a Content Based Router with XML

The "router" element provides a simple way to connect a router to an input channel and also accepts
the optional def aul t - out put - channel attribute. Ther ef attribute references the bean name of
acustom Router implementation (extending Abst r act MessageRout er):

<int:router ref="payl oadTypeRouter" input-channel="input1l" default-output-channel ="defaultQutputl"/>
<int:router ref="recipientListRouter" input-channel ="input2" default-output-channel ="defaul t Qut put2"/>
<int:router ref="custonRouter" input-channel ="input3" default-output-channel ="defaul t Qut put3"/>
<beans: bean i d="cust onRout er Bean cl ass="org. f oo. MyCust onRout er"/ >

Alternatively, r ef may point to a simple POJO that contains the @Router annotation (see below), or
the r ef may be combined with an explicit met hod name. Specifying a met hod applies the same
behavior described in the @Router annotation section below.

<int:router input-channel ="input" ref="sonePojo" nethod="someMethod"/>

Using ar ef attribute is generally recommended if the custom router implementation is referenced in
other <r out er > definitions. However if the custom router implementation should be scoped to asingle
definition of the <r out er >, you may provide an inner bean definition:

<int:router nethod="soneMethod" input-channel ="i nput3" default-output-channel ="defaul t Qut put 3">
<beans: bean cl ass="org. f oo. M/Cust onRouter"/>
</int:router>

Note

Using both the r ef attribute and an inner handler definition in the same <r out er >
configuration is not allowed, as it creates an ambiguous condition, and an Exception will be
thrown.

Routers and the Spring Expression Language (SpEL)

Sometimes the routing logic may be simple and writing a separate class for it and configuring it
as a bean may seem like overkill. As of Spring Integration 2.0 we offer an alternative where you
can now use SpEL [http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmi/
expressions.htm] to implement simple computations that previously required a custom POJO router.
Generally a SpEL expression is evaluated and the result is mapped to a channel:

Spring Integration
2.1.0.M2 Reference Manual 41

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.htm
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.htm
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.htm

Spring Integration

<int:router input-channel ="inChannel" expressi on="payl oad. paynent Type" >
<i nt: mappi ng val ue="CASH' channel =" cashPaynent Channel "/ >
<i nt: mappi ng val ue="CREDI T" channel ="aut hori zePaynment Channel "/ >
<i nt: mappi ng val ue="DEBI T" channel ="aut hori zePaynent Channel "/ >
</int:router>

To simplify things even more, the SpEL expression may evaluate to a channel name:

<int:router input-channel="inChannel" expression="payl oad + ' Channel"'"/>

In the above configuration the result channel will be computed by the SpEL expression which simply
concatenates the value of the payl oad with the literal String 'Channel’.

Another value of SpEL for configuring routersisthat an expression can actually returnaCol | ect i on,
effectively making every <r out er > aRecipient List Router. Whenever the expression returns multiple
channel values the Message will be forwarded to each channel.

<int:router input-channel ="inChannel" expressi on="headers. channel s"/>

In the above configuration, if the Message includes a header with the name 'channels' the value
of which is a Li st of channel names then the Message will be sent to each channel in the
list. You may also find Coallection Projection and Collection Selection expressions useful to select
multiple channels. See "http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/
html/expressions.html#d0e12084" [http://static.springsource.org/spring/docs/3.0.x/spring-framework-
reference/html/expressions.html#d0e12084]

Configuring a Router with Annotations

When using @Rout er to annotate a method, the method may return either a MessageChannel or
St ri ng type. In the latter case, the endpoint will resolve the channel name as it does for the default
output channel. Additionally, the method may return either asingle value or a collection. If acollection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are al valid.

@Rout er
publ i c MessageChannel route(Message nessage) {...}

@Rout er
public List<MessageChannel > rout e(Message nessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a Message may be routed based on metadata available within the
message header as either a property or attribute. In this case, a method annotated with @Rout er may
include a parameter annotated with @Header which is mapped to a header value as illustrated below
and documented in Section B.5, “ Annotation Support”.

@Rout er
public List<String> route(@eader("orderStatus") OrderStatus status)

Spring Integration
2.1.0.M2 Reference Manual 42

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#d0e12084
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#d0e12084
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#d0e12084
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#d0e12084

Spring Integration

Note
For routing of XML -based Messages, including X Path support, see Chapter 27, XML Support
- Dealing with XML Payloads.

Dynamic Routers

So as you can see, Spring Integration provides quite a few different router configurations for common
content-based routing use cases as well as the option of implementing custom routers as POJOSs.
For example Payl oadTypeRout er provides a simple way to configure a router which computes
channel s based on the payl oad t ype of theincoming Message while Header Val ueRout er
provides the same convenience in configuring a router which computes channel s by evaluating
the value of a particular Message Header. There are also expression-based (SpEL) routers where the
channel isdetermined based on evaluating an expression. Thus, these type of routers exhibit some
dynamic characteristics.

However these routers all require static configuration. Even in the case of expression-based routers, the
expression itself is defined as part of the router configuration which means that the same expression
operating on the samevaluewill alwaysresult in the computation of the same channel. Thisisacceptable
in most cases since such routes are well defined and therefore predictable. But there are times when we
need to changerouter configurations dynamically so message flows may berouted to adifferent channel.

Example:

Y ou might want to bring down some part of your system for maintenance and temporarily re-reroute
messages to a different message flow. Or you may want to introduce more granularity to your message
flow by adding another route to handle a more concrete type of javalang.Number (in the case of
Payl oadTypeRout er).

Unfortunately with static router configuration to accomplish this you would have to bring down your
entire application, change the configuration of the router (change routes) and bring it back up. Thisis
obviously not the solution.

The Dynamic Router [http://www.eaipatterns.com/DynamicRouter.html] pattern describes the
mechani sms by which one can change/configure routers dynamically without bringing down the system
or individual routers.

Beforewe get into the specifics of how thisisaccomplished in Spring I ntegration let'squickly summarize
the typical flow of the router, which consists of 3 simple steps:

* Sepl-Computechannel identifier whichisavaluecaculated by therouter onceit receives
the Message. Typicaly itisaSt ri ng or and instance of the actual MessageChannel .

* Sep 2 - Resolve channel identifier tochannel name. Well describe specifics of this
process in a moment.

* Sep 3- Resolvechannel nane tothe actual MessageChannel

There is not much that can be done with regard to dynamic routing if Step 1 results in the actual
instance of the MessageChannel simply because the MessageChannel is the final product of

Spring Integration
2.1.0.M2 Reference Manual 43

http://www.eaipatterns.com/DynamicRouter.html
http://www.eaipatterns.com/DynamicRouter.html

Spring Integration

any router's job. However, if Step 1 resultsin achannel i dentifier thatisnot an instance of
MessageChannel , then there are quite a few possibilities to influence the process of deriving the
Message Channel . Letslook at couple of the examples in the context of the 3 steps mentioned
above:

Payload Type Router

<i nt: payl oad-type-router input-channel ="routingChannel ">
<i nt: mapping type="java.lang. String" channel ="channel 1" />
<int:mappi ng type="java.l ang. | nteger" channel ="channel 2" />
</int: payl oad-type-router>

Within the context of the Payload Type Router the 3 steps mentioned above would be realized as:

* Sepl- Computechannel identifier whichisthefully qualified name of the payload type
(e.g., javalang.String).

» Sep2- Resolvechannel identifier tochannel nane wheretheresult of the previous step
is used to select the appropriate value from the payl oad type mapping defined viamappi ng element.

« Sep 3 - Resolve channel nane to the actual instance of the MessageChannel where
using Channel Resol ver, the router will obtain a reference to a bean (which is hopefully a
MessageChannel) identified by the result of the previous step.

In other words each step feeds the next step until the process compl etes.

Header Value Router

<i nt: header-val ue-router input-channel ="i nput Channel " header - nane="t est Header " >
<i nt: mappi ng val ue="fo0" channel ="fooChannel " />
<i nt: mappi ng val ue="bar" channel ="bar Channel " />

</'i nt: header - val ue-rout er >

Similar to the PayloadTypeRouter:

* Sep 1 - Compute channel identifier which isthe value of the header identified by the
header - nane attribute.

* Sep 2 - Resolve channel identifier tochannel nanme wherethe result of the previous
step is used to select the appropriate value from the general mapping defined viarmappi ng element.

* Sep 3 - Resolve channel nane to the actua instance of the MessageChannel where
using Channel Resol ver, the router will obtain a reference to a bean (which is hopefully a
MessageChannel) identified by the result of the previous step.

The above two configurations of two different router types look almost identical. However if we look
at the aternate configuration of the Header Val ueRout er we clearly see that thereis no mappi ng
sub element:

<i nt: header - val ue-rout er input-channel ="i nput Channel " header - nanme="t est Header " >

Spring Integration
2.1.0.M2 Reference Manual 44

Spring Integration

But the configuration is till perfectly valid. So the natural question is what about the mapping in the
Step 2?

What this means is that Step 2 is now an optional step. If mapping is not defined then the channel
i denti fier value computed in Step 1 will automatically be treated asthe channel narme which
will now be resolved to the actual MessageChannel inthe Step 3. What it also meansisthat Step 2is
one of the key stepsto provide dynamic characteristicsto the routers, sinceit introduces aprocess which
allowsyou to changetheway 'channel identifier' resolvesto 'channel name', thusinfluencing the process
of determining thefinal instance of theMessageChannel fromtheinitial channel identifier.

For Example:

In the above configuration let's assume that the t est Header value is 'kermit' which is now a
channel identifier (Step1l). Sincethereisno mapping in thisrouter, resolving thischannel

i dentifier toachannel name (Step2)isimpossibleandthischannel identifier isnow
treated aschannel nane. However what if there was a mapping but for a different value? The end
result would still be the same and that is: if new value cannot be determined through the process of
resolving the ‘channel identifier' to a ‘'channel name', such 'channel identifier' becomes'channel name'.

So al that is left is for Step 3 to resolve the channel nane (‘kermit) to an actua
instance of the MessageChannel identified by this name. That will be done via the default
Channel Resolver implementation which is a BeanFact or yChannel Resol ver . It basicaly does
a bean lookup for the name provided. So now all messages which contain the header/value pair as
t est Header =ker nmi t are going to be routed to a MessageChannel whose bean name (id) is
‘kermit'.

But what if you want to route these messages to the 'simpson’ channel? Obviously changing a static
configuration will work, but will also require bringing your system down. However if you had accessto
thechannel identifier map,thenyoucouldjustintroduceanew mappingwherethe header/value
pair isnow ker mi t =si npson, thus alowing Step 2 to treat 'kermit' asachannel identifier
whileresolving it to 'ssmpson’ asthechannel narne .

The same obviously applies for Payl oadTypeRout er where you can now remap or remove a
particular payload type mapping. In fact, it applies to every other router including expression-based
routers since their computed values will now have a chance to go through Step 2 to be additionally
resolved to the actual channel nane.

In Spring Integration 2.0 the routers hierarchy underwent significant refactoring so that now any
router that is a subclass of the Abst r act MessageRout er (which includes al framework defined
routers) is a Dynamic Router ssimply because the channel | denti f er Map is defined at the
Abst ract MessageRout er level. That map'ssetter method isexposed asapublic method along with
'setChannelMapping' and 'removeChannelMapping’ methods. These allow you to change/add/remove
router mappings at runtime as long as you have a reference to the router itself. It also means that you
could expose these same configuration optionsviaJM X (see Section 8.1, “JMX Support™) or the Spring
Integration Control Bus (see Section 8.3, “Control Bus') functionality.

Control Bus

Spring Integration
2.1.0.M2 Reference Manual 45

Spring Integration

One way to manage the router mappings is through the Control Bus [http://www.eai patterns.com/
ControlBus.html] pattern which exposes a Control Channel where you can send control messages to
manage and monitor Spring Integration components, including routers. For more information about
the Control Bus see Section 8.3, “Control Bus’. Typically you would send a control message asking
to invoke a particular operation on a particular managed component (e.g., router). The two managed
operations (methods) that are specific to changing the router resolution process are:

e public void setChannel Mapping(String channelldentifier, String
channel Nane) - will allow you to add a new or modify an existing mapping between channel
identifier andchannel nane

* public void renoveChannel Mappi ng(String channel ldentifier) -will alow
you to remove a particular channel mapping, thus disconnecting the relationship between channel
i dentifier andchannel nane

Y ou can also expose arouter instance with Spring's IM S support and then use your favorite IMX client
(e.g., JConsol€e) to manage those operations (methods) for changing the router's configuration. For more
information on Spring | ntegration management and monitoring pleasevisit Section 8.1, “IMX Support”.

5.2 Filter

Introduction

M essage Filters are used to decide whether a M essage should be passed along or dropped based on some
criteriasuch asaMessage Header value or Message content itself. Therefore, aMessage Filter issimilar
to a router, except that for each Message received from the filter's input channel, that same Message
may or may not be sent to the filter's output channel. Unlike the router, it makes no decision regarding
which Message Channel to send the Message to but only decides whether to send.

Note
As you will see momentarily, the Filter also supports a discard channel, so in certain cases it
can play therole of avery simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to an
implementation of the MessageSel ect or interface. That interfaceisitself quite simple:

public interface MessageSel ector {

bool ean accept (Message<?> nessage) ;

}
The MessageFi | t er constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(soneSel ector);

In combination with the namespace and SpEL, very powerful filters can be configured with very little
java code.

Spring Integration
2.1.0.M2 Reference Manual 46

http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/ControlBus.html

Spring Integration

Configuring Filter

Configuring a Filter with XML

The <filter> element is used to create a M essage-selecting endpoint. In additionto"i nput - channel
and out put - channel attributes, it requiresar ef . Ther ef may point to aMessageSel ect or
implementation:

<int:filter input-channel="input" ref="selector" output-channel ="output"/>

<bean i d="sel ector" cl ass="exanpl e. MessageSel ector| npl "/ >

Alternatively, the met hod attribute can be added at which point ther ef may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages. The
method must return a boolean value. If the method returns 'true’, the Message will be sent to the output-
channel.

<int:filter input-channel ="input" output-channel ="output"
ref ="exanpl eObj ect" net hod="sonmeBool eanRet ur ni ngMet hod"/ >

<bean i d="exanpl e(vj ect" cl ass="exanpl e. SomreChj ect"/ >

If the selector or adapted POJO method returnsf al se, there areafew settingsthat control the handling
of the rejected Message. By default (if configured like the example above), rejected Messages will
be silently dropped. If rejection should instead result in an error condition, then set the t hr ow-
exception-on-rejection attributetot r ue:

<int:filter input-channel ="input" ref="sel ector”
out put - channel =" out put" throw excepti on-on-rejecti on="true"/>

If you want rejected messagesto be routed to aspecific channel, providethat referenceasthedi scar d-
channel :

<int:filter input-channel ="input" ref="sel ector"
out put - channel ="out put" di scard-channel ="rej ect edMessages"/ >

Note

Message Filters are commonly used in conjunction with a Publish Subscribe Channel. Many
filter endpoints may be subscribed to the same channel, and they decide whether or not to
pass the Message to the next endpoint which could be any of the supported types (e.g. Service
Activator). This provides a reactive aternative to the more proactive approach of using a
Message Router with a single Point-to-Point input channel and multiple output channels.

Using ar ef attribute is generally recommended if the custom filter implementation is referenced
in other <fi |t er > definitions. However if the custom filter implementation is scoped to a single
<filter> eement, provide aninner bean definition:

<int:filter method="someMethod" input-channel ="inChannel" out put-channel =" out Channel ">
<beans: bean cl ass="org.foo. MyCustonFilter"/>
</filter>

Spring Integration
2.1.0.M2 Reference Manual 47

Spring Integration

Note

Using both the r ef attribute and an inner handler definition in the same <filter>
configuration is not allowed, as it creates an ambiguous condition, and an Exception will be
thrown.

Withtheintroduction of SpEL support, Spring Integration added theexpr essi on attributeto thefilter
element. It can be used to avoid Java entirely for simple filters.

<int:filter input-channel ="input" expression="payl oad. equal s(' nonsense')"/>

The string passed as the expression attribute will be evaluated as a SpEL expression with the
Message available in the evaluation context. If it is necessary to include the result of an expression
in the scope of the application context you can use the #{} notation as defined in the SpEL
reference documentation [http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/
html/expressi ons.html#expressi ons-beandef].

<int:filter input-channel="input"
expressi on="payl oad. mat ches(#{fil terPatterns. nonsensePattern})"/>

If the Expressionitself needsto be dynamic, then an'expression' sub-element may beused. That provides
alevel of indirection for resolving the Expression by itskey from an ExpressionSource. That isastrategy
interface that you can implement directly, or you can rely upon aversion availablein Spring Integration
that loads Expressionsfrom a"resource bundle" and can check for modifications after agiven number of
seconds. All of thisis demonstrated in the following configuration sample where the Expression could
be reloaded within one minute if the underlying file had been modified. If the ExpressionSource beanis
named "expressionSource”, thenitisnot necessary to providethesour ce attribute on the <expression>
element, but in this case it's shown for compl eteness.

<int:filter input-channel ="input" output-channel ="out put">
<int:expression key="filterPatterns.exanple" source="nmyExpressions"/>
</int:filter>

<beans: bean i d="nyExpressions" id="nyExpressions"
<beans: property nanme="basenane" val ue="confi g/integration/expressions"/>

<beans: property nanme="cacheSeconds" val ue="60"/>
</ beans: bean>

Then, the 'config/integration/expressions.properties file (or any more specific version with a locale
extension to be resolved in the typical way that resource-bundles are loaded) would contain akey/value
pair:

filterPatterns. exanpl e=payl oad > 100

Note

All of these examples that use expr essi on as an attribute or sub-element can also be
applied within transformer, router, splitter, service-activator, and header-enricher elements.
Of course, the semantics/role of the given component type would affect the interpretation of
the evaluation result in the same way that the return value of a method-invocation would be

Spring Integration
2.1.0.M2 Reference Manual 48

cl ass="org. spri ngframework. i ntegration. expressi on. Rel oadabl eResour ceBundl eExpr essi onSour ce" >

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef

Spring Integration

interpreted. For example, an expression can return Strings that are to be treated as Message
Channel names by a router component. However, the underlying functionality of evaluating
the expression against the Message as the root object, and resolving bean names if prefixed
with '@’ is consistent across al of the core EIP components within Spring Integration.

Configuring a Filter with Annotations
A filter configured using annotations would look like this.

public class PetFilter {

@ilter O
publ i c bool ean dogsOnly(String input) {

}

O An annotation indicating that this method shall be used as a filter. Must be specified if this class
will be used as afilter.

All of the configuration options provided by the xml element are also available for the @i | t er
annotation.

Thefilter can be either referenced explicitly from XML or, if the @/essageEndpoi nt annotationis
defined on the class, detected automatically through classpath scanning.

5.3 Splitter

Introduction

The Splitter is a component whose role isto partition a message in severa parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that
includes an Aggregator.

Programming model

The API for performing splitting consists of one base class, Abst r act MessageSpl i tter, which
is a MessageHand| er implementation, encapsulating features which are common to splitters,
such as filling in the appropriate message headers CORRELATION _ID, SEQUENCE _SIZE, and
SEQUENCE_NUMBER on the messages that are produced. This enables tracking down the messages
and the results of their processing (in a typical scenario, these headers would be copied over to the
messages that are produced by the various transforming endpoints), and use them, for example, in a
Composed Message Processor [http://www.eai patterns.com/DistributionAggregate.html] scenario.

An excerpt from Abst ract MessageSpl i tt er can be seen below:

public abstract class Abstract MessageSplitter
ext ends Abstract Repl yProduci ngMessageConsuner {

protected abstract Object splitMssage(Message<?> nessage);

Spring Integration
2.1.0.M2 Reference Manual 49

http://www.eaipatterns.com/DistributionAggregate.html
http://www.eaipatterns.com/DistributionAggregate.html

Spring Integration

}

To implement a specific Splitter in an application, extend Abst ract MessageSplitter and
implement the spl i t Message method, which contains logic for splitting the messages. The return
value may be one of the following:

» aCol | ecti on (or subclassthereof) or an array of Message objects- in this case the messages will
be sent as such (after the CORRELATION_ID, SEQUENCE_SIZE and SEQUENCE_NUMBER
are populated). Using this approach gives more control to the developer, for example for populating
custom message headers as part of the splitting process.

» aCol | ecti on (or subclassthereof) or an array of hon-Message objects - workslike the prior case,
except that each collection element will be used as a Message payload. Using this approach alows
developers to focus on the domain objects without having to consider the Messaging system and
produces code that is easier to test.

» aMessage or non-Message object (but not a Collection or an Array) - it works like the previous
cases, except a single message will be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it definesamethod
that accepts asingle argument and has areturn value. In this case, the return value of the method will be
interpreted as described above. Theinput argument might either beaMessage or asimple POJO. Inthe
latter case, the splitter will receive the payload of the incoming message. Since this decouples the code
from the Spring Integration APl and will typically be easier to test, it is the recommended approach.

Configuring Splitter
Configuring a Splitter using XML

A splitter can be configured through XML as follows:

<i nt:channel id="inputChannel"/>

<int:splitter id="splitter" O
ref="splitterBean" O
net hod="split" O
i nput - channel ="i nput Channel * 0O
out put - channel =" out put Channel * 0O/ >

<i nt:channel id="out put Channel"/>

<beans: bean i d="splitterBean" class="sanple.PojoSplitter"/>

0 Theid of the splitter is optional.

O A reference to a bean defined in the application context. The bean must implement the splitting
logic as described in the section above .Optional. If reference to a bean is not provided, then
it is assumed that the payload of the Message that arrived on the i nput - channel is an
implementation of j ava. util. Col | ecti on and the default splitting logic will be applied
to the Collection, incorporating each individual element into a Message and sending it to the
out put - channel .

Spring Integration
2.1.0.M2 Reference Manual 50

Spring Integration

0 Themethod (defined on the bean specified above) that implements the splitting logic. Optional.
The input channel of the splitter. Required.

0 Thechannel to which the splitter will send the results of splitting the incoming message. Optional
(because incoming messages can specify a reply channel themselves).

O

Usingar ef attributeisgenerally recommended if the custom splitter implementation may bereferenced
in other <spl i tt er > definitions. However if the custom splitter handler implementation should be
scoped to asingle definition of the <spl i t t er >, configure an inner bean definition:

<int:splitter id="testSplitter" input-channel ="inChannel" nethod="split"
out put - channel =" out Channel ">
<beans: bean cl ass="org.foo. TestSplitter"/>
</int:spliter>

Note

Using both ar ef attribute and an inner handler definition inthesame<i nt: splitter>
configuration is not allowed, as it creates an ambiguous condition and will result in an
Exception being thrown.

Configuring a Splitter with Annotations

The @Bpl i tter annotation is applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a Col | ect i on of any type. If
the returned values are not actual Message abjects, then each item will be wrapped in a Message as
its payload. Each message will be sent to the designated output channel for the endpoint on which the
@plitter isdefined.

@plitter
Li st<Li neltenr extractltens(Order order) {
return order.getltens()

}

5.4 Aggregator

Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives
multiple Messages and combines them into a single Message. In fact, an Aggregator is often a
downstream consumer in a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is stateful as it must hold
the Messages to be aggregated and determine when the complete group of Messages is ready to be
aggregated. In order to do thisit requiresaMessageSt or e.

Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group
is deemed complete. At that point, the Aggregator will create a single message by processing the whole
group, and will send the aggregated message as outpui.

Spring Integration
2.1.0.M2 Reference Manual 51

Spring Integration

Implementing an Aggregator requires providing the logic to perform the aggregation (i.e., the creation
of asingle message from many). Two related concepts are correlation and release.

Correlation determines how messages are grouped for aggregation. In Spring Integration correlation
is done by default based on the CORRELATION_ID message header. Messages with the same
CORRELATION_ID will be grouped together. However, the correlation strategy may be customized
to allow other ways of specifying how the messages should be grouped together by implementing a
Correl ati onStrat egy (see below).

To determine the point at which agroup of messagesis ready to be processed, aRel easeSt r at egy
is consulted. The default release strategy for the Aggregator will release a group when all messages
included in a sequence are present, based on the SEQUENCE_SIZE header. This default strategy may
be overridden by providing areference to a custom Rel easeSt r at egy implementation.

Programming model
The Aggregation API consists of a number of classes:

* The interface MessageG oupPr ocessor, and its subclasses:
Met hodl nvoki ngAggr egat i ngMessageG oupPr ocessor and
Expr essi onEval uati ngMessage& oupPr ocessor

* The Rel easeSt r at egy interface and its default implementation
SequenceSi zeRel easeStr at egy

* The Correl ati onStrat egy interface and its default implementation
Header Attri but eCorrel ati onStrat egy

CorrelatingMessageHandler

TheCorr el ati ngMessageHandl er isaMessageHand| er implementation, encapsulating the
common functionalities of an Aggregator (and other correlating use cases), which are:

* correlating messages into a group to be aggregated

* maintaining those messagesin aMessageSt or e until the group can be released
* deciding when the group can be released

 aggregating the released group into a single message

* recognizing and responding to an expired group

The responsibility of deciding how the messages should be grouped together is delegated to a
Correl ati onSt r at egy instance. Theresponsibility of deciding whether the message group can be
released isdelegated to aRel easeSt r at egy instance.

Here is a brief highlight of the base Abst r act Aggr egat i ngMessageG oupPr ocessor (the
responsibility of implementing the aggr egat ePayl oads method is left to the devel oper):

Spring Integration
2.1.0.M2 Reference Manual 52

Spring Integration

public abstract class Abstract Aggregati ngMessageG oupProcessor
i npl enents MessageG oupProcessor {

protected Map<String, Object> aggregat eHeader s(MessageG oup group) {
/] default inplenentation exists

}
protected abstract Object aggregatePayl oads(MessageG oup group, Map<String, Object> default Headers);

}

The Correl ati onStrat egy is owned by the Corr el ati ngMessageHandl er and it has a
default value based on the CORRELATION_ID message header:

public Correl ati ngMessageHand| er (MessageG oupProcessor processor, MessageG oupStore store,
CorrelationStrategy correlationStrategy, ReleaseStrategy rel easeStrategy) {

this.correlationStrategy = correlationStrategy == null ?

new Header Attri buteCorrel ati onStrategy(MessageHeaders. CORRELATION I D) : correl ationStrategy;
this.releaseStrategy = rel easeStrategy == null ? new SequenceSi zeRel easeStrategy() : rel easeStrategy;

}

As for actual processing of the message group, the default implementation is the
Def aul t Aggr egat i ngMessageG oupPr ocessor . It creates a single Message whose payload
is a List of the payloads received for a given group. This works well for simple Scatter Gather
implementations with either a Splitter, Publish Subscribe Channel, or Recipient List Router upstream.

Note

When using a Publish Subscribe Channel or Recipient List Router in this type of scenario,
be sure to enable the flag to appl y- sequence. That will add the necessary headers
(CORRELATION_ID, SEQUENCE_NUMBER and SEQUENCE_SIZE). That behavior is
enabled by default for Splitters in Spring Integration, but it is not enabled for the Publish
Subscribe Channel or Recipient List Router because those componentsmay beused inavariety
of contextsin which these headers are not necessary.

When implementing a specific aggregator strategy for an application, a developer
can extend Abstract Aggregati ngMessageG oupProcessor and implement the
aggr egat ePayl oads method. However, there are better solutions, less coupled to the API, for
implementing the aggregation logic which can be configured easily either through XML or through
annotations.

In general, any POJO can implement the aggregation algorithm if it provides a method that accepts a
singlej ava. uti |l . Li st asan argument (parameterized lists are supported as well). This method
will be invoked for aggregating messages as follows:

o if theargumentisaj ava. util . Li st <T>, and the parameter type T is assignable to Message,
then the whole list of messages accumulated for aggregation will be sent to the aggregator

* if the argument is a non-parameterized j ava. uti | . Li st or the parameter type is not assignable
to Message, then the method will receive the payloads of the accumulated messages

Spring Integration
2.1.0.M2 Reference Manual 53

Spring Integration

« if thereturn typeis not assignable to Message, then it will be treated as the payload for a Message
that will be created automatically by the framework.

Note

Intheinterest of codesimplicity, and promoting best practi ces such aslow coupling, testability,
etc., the preferred way of implementing the aggregation logic is through a POJO, and using
the XML or annotation support for configuring it in the application.

ReleaseStrategy

TheRel easeSt r at egy interface is defined as follows:

public interface Rel easeStrategy {

bool ean canRel ease(MessageG oup group);

In general, any POJO can implement the completion decision logic if it provides a method that accepts
asinglej ava. uti |l . Li st asan argument (parameterized lists are supported as well), and returns a
boolean value. This method will be invoked after the arrival of each new message, to decide whether
the group is complete or not, as follows:

o if theargumentisaj ava. util . Li st <T>, and the parameter type T is assignable to Message,
then the whole list of messages accumulated in the group will be sent to the method

* if theargument isanon-parametrizedj ava. uti | . Li st or the parameter typeisnot assignable to
Message, then the method will receive the payloads of the accumulated messages

* the method must return true if the message group is ready for aggregation, and false otherwise.
For example:

public class M/Rel easeStrategy {

@Rel easeStr at egy
publ i c bool ean canMessagesBeRel eased(Li st <Message<?>>) {...}

public class M/Rel easeStrategy {

@Rel easeStr at egy
publ i ¢ bool ean canMessagesBeRel eased(List<String>) {...}

As you can see based on the above signatures, the POJO-based Release Strategy will be passed a
Col | ect i on of unmarked Messagesif you need accessto the whole Message or Col | ecti on of
payload objectsif the type parameter is anything other than Message. Typically thiswould satisfy the
majority of use cases. However if for some reason you need to accessthe full Message G oup - which
contains unmar ked and mar ked Messages - then you should simply provide an implementation of
the Rel easeSt r at egy interface.

Spring Integration
2.1.0.M2 Reference Manual 54

Spring Integration

When the group is released for aggregation, al its unmarked messages are processed and then marked
so they will not be processed again. If the group is also complete (i.e. if all messages from a sequence
have arrived or if there is no sequence defined), then the group is removed from the message store.
Partial sequences can bereleased, in which casethe next timethe Rel easeSt r at egy iscalled it will
be presented with a group containing marked messages (already processed) and unmarked messages
(potentially anew partial sequence).

Spring Integration provides an out-of-the box implementation for Rel easeStrat egy, the
SequenceSi zeRel easeSt r at egy. This implementation consults the SEQUENCE_NUMBER
and SEQUENCE_SIZE headers of each arriving message to decide when a message group is complete
and ready to be aggregated. As shown above, it is also the default strategy.

CorrelationStrategy

TheCorrel ati onStr at egy interfaceis defined asfollows:

public interface Correl ationStrategy {

Obj ect get Correl ati onKey(Message<?> nessage) ;

The method returns an Object which represents the correlation key used for associating the message
with a message group. The key must satisfy the criteria used for a key in a Map with respect to the
implementation of equals() and hashCode().

In general, any POJO can implement the correlation logic, and the rules for mapping a message to a
method's argument (or arguments) are the same asfor aSer vi ceAct i vat or (including support for
@Header annotations). The method must return avalue, and the value must not be nul | .

Spring Integration provides an out-of-the box implementation for Corr el ati onStr at egy, the
Header Attri but eCorrel ati onStrat egy. This implementation returns the value of one
of the message headers (whose name is specified by a constructor argument) as the correlation
key. By default, the correlation strategy is a Header Attri but eCorrel ati onStrat egy
returning the value of the CORRELATION_ID header attribute. If you have a custom header
name you would like to use for correlation, then simply configure that on an instance of
Header At tri but eCorrel ati onStr at egy and providethat as areference for the Aggregator's
correlation-strategy.

Configuring Aggregator
Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggregator/>
element. Below you can see an example of an aggregator.

<channel id="inputChannel"/>

<int:aggregator id="nyAggregator" 0O

Spring Integration
2.1.0.M2 Reference Manual 55

Spring Integration

auto-startup="true" O

i nput - channel ="i nput Channel * O

out put - channel =" out put Channel " 0O

di scard- channel ="t hr owAwayChannel " [
message- st or e="per si st ent MessageStore" [
order="1" 0O

send-partial -result-on-expiry="false" 0O
send-ti meout ="1000" O

correl ation-strategy="correl ati onStrat egyBean" O
correl ati on-strategy-nmethod="correl ate"

ref =" aggr egat or Bean"
met hod="aggr egat e"

rel ease-strategy="rel easeStr at egyBean"
rel ease- strat egy- net hod="r el ease"/ >
<i nt:channel id="outputChannel"/>
<i nt:channel id="throwAwayChannel "/>
<bean i d="persistent MessageStore" cl ass="org. springframework.integration.jdbc.JdbcMessageStore">
<constructor-arg ref="dataSource"/>
</ bean>

<bean i d="aggregat or Bean" cl ass="sanpl e. Poj oAggr egat or"/ >

<bean i d="rel easeStrat egyBean" cl ass="sanpl e. Poj oRel easeStrat egy"/ >

<bean id="correl ati onStrategyBean" class="sanpl e. Poj oCorrel ationStrategy"/>

0 Theid of the aggregator is Optional.

0 Lifecycle attribute signaling if aggregator should be started during Application Context startup.
Optional (default is'true).

0 Thechannel from which where aggregator will receive messages. Required.

0 Thechannel towhichthe aggregator will send the aggregation results. Optional (becauseincoming
messages can specify a reply channel themselves via 'replyChannel’ Message Header).

0 Thechanne to which the aggregator will send the messages that timed out (if send- parti al -
resul t - on- expi ry isfalse). Optional.

0 AreferencetoaMessage& oupSt or e used to store groups of messages under their correlation
key until they are complete. Optional, by default a volatile in-memory store.

0 Order of thisaggregator when more than one handleis subscribed to the same DirectChannel (use
for load balancing purposes). Optional.

0 Indicates that expired messages should be aggregated and sent to the
‘output-channel' or 'replyChannel' once their containing MessageGroup is
expired (see MessageG oupSt ore. expi reMessage& oups(long)). One way
of expiring MessageGroups is by configuring a MessageG oupSt or eReaper .
However MessageG oups can adternatively be expired by smply caling
MessageG oupSt or e. expi reMessageG oup(gr oupl d) . That could be accomplished
via a Control Bus operation or by simply invoking that method if you have a reference to the
MessageG oupSt or e instance. Otherwise by itself thisattribute hasno behavior. It only serves

Spring Integration
2.1.0.M2 Reference Manual 56

Spring Integration

as an indicator of what to do (discard or send to the output/reply channel) with Messages that are
till in the MessageG oup that is about to be expired. Optional.

Default - 'false'’.

Thetimeout interval for sending the aggregated messages to the output or reply channel. Optional.
A reference to a bean that implements the message correlation (grouping) algorithm. The bean
can be an implementation of the Corr el ati onSt r at egy interface or a POJO. In the latter
case the correlation-strategy-method attribute must be defined as well. Optional (by default, the
aggregator will use the CORRELATION_ID header) .

A method defined on the bean referenced by cor r el ati on- str at egy, that implements the
correlation decision algorithm. Optional, withrestrictions(requirescor r el ati on- str at egy
to be present).

A reference to abean defined in the application context. The bean must implement the aggregation
logic as described above. Optional (by default the list of aggregated Messages will become a
payload of the output message).

A method defined on the bean referenced by r ef , that implements the message aggregation
algorithm. Optional, dependsonr ef attribute being defined.

A reference to a bean that implements the release strategy. The bean can be an implementation
of the Rel easeStrat egy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
SEQUENCE_SIZE header attribute).

A method defined on the bean referenced by r el ease- strat egy, that implements the
completion decision algorithm. Optional, with restrictions (requires r el ease- str at egy to
be present).

Using ar ef attribute is generally recommended if a custom aggregator handler implementation may
be referenced in other <aggr egat or > definitions. However if a custom aggregator implementation
isonly being used by a single definition of the <aggr egat or >, you can use an inner bean definition
(starting with version 1.0.3) to configure the aggregation POJO within the <aggr egat or > element:

<aggregat or input-channel ="input" method="sunl out put-channel =" out put">

<beans: bean cl ass="org. f 0o. Poj oAggregator"/ >

</ aggr egat or >

Note

Using both a r ef attribute and an inner bean definition in the same <aggr egat or >
configurationisnot allowed, asit creates an ambiguous condition. In such cases, an Exception
will be thrown.

An example implementation of the aggregator bean looks as follows:

public class PojoAggregator {

publ i c Long add(List<Long> results) {
long total = Ol
for (long partial Result: results) {
total += partial Result;

}

return total

Spring Integration

2.1.0.M2 Reference Manual 57

Spring Integration

An implementation of the completion strategy bean for the example above may be as follows:

public cl ass Poj oRel easeStrategy {

publ i ¢ bool ean canRel ease(Li st<Long> nunbers) {
int sum= 0;
for (long number: nunbers) ({
sum += nunber ;
}
return sum >= maxVal ue;

}

}

Note

Wherever it makes sense, the release strategy method and the aggregator method can be
combined in asingle bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrel ationStrategy {

public Long groupNunbersBylLastDi git(Long nunber) {
return nunmber % 10;
}
}

For example, this aggregator would group numbers by some criterion (in our case the remainder after
dividing by 10) and will hold the group until the sum of the numbers provided by the payloads exceeds
acertain value.

Note

Wherever it makes sense, the release strategy method, correlation strategy method and the
aggregator method can be combined in asingle bean (all of them or any two).

Aggregators and Spring Expression Language (SpEL)

Since Spring Integration 2.0, the various strategies (correlation, release, and aggregation) may be
handled with SpEL [http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
expressions.html] which is recommended if the logic behind such release strategy is relatively ssimple.
Let's say you have alegacy component that was designed to receive an array of objects. We know that
the default release strategy will assemble all aggregated messages in the List. So now we have two
problems. First we need to extract individual messages from the list, and then we need to extract the
payload of each message and assemble the array of objects (see code below).

public String[] processRel ease(List<Message<String>> nessages) {
Li st<String> stringList = new ArrayList<String>();
for (Message<String> nmessage : nessages) {

Spring Integration
2.1.0.M2 Reference Manual 58

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html

Spring Integration

stringLi st. add(nessage. get Payl oad());

}
return stringlist.toArray(new String[]{});

}

However, with SpEL such a requirement could actually be handled relatively easily with a one-line
expression, thus sparing you from writing a custom class and configuring it as a bean.

<i nt: aggregat or input-channel ="aggChannel "
out put - channel ="r epl yChannel "
expressi on="#t his.![payl oad].toArray()"/>

In the above configuration we are using a Collection Projection [http://static.springsource.org/spring/
docs/3.0.x/spring-framework-reference/html/expressions.html#d0e12113] expression to assemble a
new collection from the payloads of al messages in the list and then transforming it to an Array, thus
achieving the same result as the java code above.

The same expression-based approach can be applied when dealing with custom Release and Correlation
strategies.

Instead of defining a bean for a custom Correl ati onStrategy via the correl ati on-
strat egy attribute, you can implement your simple correlation logic via a SpEL expression and
configureit viathecorr el ati on-st rat egy- expr essi on attribute.

For example:

correl ati on-strategy-expressi on="payl oad. person.id"

In the above exampleit is assumed that the payload has an attribute per son withani d whichisgoing
to be used to correlate messages.

Likewise, for the Rel easeSt r at egy you can implement your release logic as a SpEL expression
and configure it viather el ease- str at egy- expr essi on attribute. The only difference is that
since ReleaseStrategy is passed the List of Messages, the root object in the SpEL evaluation context is
theListitself. That List can be referenced as#t hi s within the expression.

For example:

rel ease-strat egy- expressi on="#t hi s.size() gt 5"

In this example the root object of the SpEL Evaluation Context isthe MessageG oup itself, and you
are simply stating that as soon as there are more than 5 messages in this group, it should be released.

Configuring an Aggregator with Annotations
An aggregator configured using annotations would look like this.

public class Waiter {

@\ggregator O
public Delivery aggregatingMet hod(List<Orderlten> itens) {

}

@Rel easeStrategy O

Spring Integration
2.1.0.M2 Reference Manual 59

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#d0e12113
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#d0e12113
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#d0e12113

Spring Integration

publ i c bool ean rel easeChecker (Li st <Message<?>> nmessages) {

}

@Correl ationStrategy O
public String correl ateBy(Orderltemitenm) {

}

O Anannotation indicating that this method shall be used as an aggregator. Must be specified if this
class will be used as an aggregator.

O Anannotation indicating that this method shall be used as the release strategy of an aggregator. If
not present on any method, the aggregator will use the SequenceSizeRel easeStrategy.

00 An annotation indicating that this method shall be used as the correlation strategy
of an aggregator. If no correlation strategy is indicated, the aggregator will use the
HeaderAttributeCorrel ationStrategy based on CORRELATION _ID.

All of the configuration options provided by the xml element are also available for the @Aggregator
annotation.

The aggregator can be either referenced explicitly from XML or, if the @M essageEndpoint is defined
on the class, detected automatically through classpath scanning.

Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires decisions
to be made based on a group of messages that have arrived over a period of time, al with the same
correlation key. The design of theinterfacesinthe stateful patterns(e.g. Rel easeSt r at egy) isdriven
by the principle that the components (whether defined by the framework or a user) should be able to
remain stateless. All state is carried by the MessageG oup and its management is delegated to the
MessageG oupSt or e.

public interface MessageG oupStore {
i nt get MessageCount For Al | MessageG oups() ;

i nt get Mar kedMessageCount For Al | MessageG oups() ;

int get MessageG oupCount ();

MessageG oup get MessageG oup(Qbj ect groupl d);

MessageG oup addMessageToGr oup(Obj ect groupld, Message<?> nmessage);
MessageG oup mar kMessageG oup(MessageG oup group);

MessageG oup renoveMessageFr omG oup(Cbj ect key, Message<?> nessageToRenove);
MessageG oup mar kMessageFr onGr oup(Obj ect key, Message<?> nessageToMarKk) ;

voi d renoveMessageG oup(Cbj ect groupld);

voi d regi ster MessageG oupExpi ryCal | back(MessageG oupCal | back cal | back) ;

Spring Integration
2.1.0.M2 Reference Manual 60

Spring Integration

int expi reMessageG oups(long tineout);

}

For more information please refer to the JavaDoc [http://static.springsource.org/spring-integration/api/
org/springframework/integration/store/M essageGroupStore.html].

The MessageG oupSt or e accumulates state information in MessageG oups whilewaiting for a
release strategy to betriggered, and that event might not ever happen. So to prevent stale messagesfrom
lingering, and for volatile stores to provide ahook for cleaning up when the application shuts down, the
MessageG oupSt or e alows the user to register callbacks to apply to its MessageG oups when
they expire. The interface is very straightforward:

public interface MessageG oupCal |l back {

voi d execut e(MessageG oupSt ore nmessage& oupStore, MessageG oup group);

}

The callback has direct access to the store and the message group so it can manage the persistent state
(e.g. by removing the group from the store entirely).

The MessageG oupSt or e maintains a list of these callbacks which it applies, on demand,
to al messages whose timestamp is earlier than a time supplied as a parameter (see
the regi st er MessageG oupExpi ryCal | back(..) and expireMessageG oups(..)
methods above).

The expi r eMessageG oups method can be called with a timeout value. Any message older than
the current time minus this value will be expired, and have the callbacks applied. Thusit is the user of
the store that defines what is meant by message group "expiry".

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the form
of aMessageG oupSt or eReaper:

<bean i d="reaper" class="org...MessageG oupSt or eReaper ">
<property nanme="nessageG oupStore" ref="nessageStore"/>
<property name="ti meout" val ue="30000"/>

</ bean>

<t ask: schedul ed-t asks schedul er ="schedul er">
<t ask: schedul ed ref="reaper" nethod="run" fixed-rate="10000"/>
</t ask: schedul ed-t asks>

The reaper isaRunnabl e, and al that is happening in the example above is that the message group
store's expire method is being called once every 10 seconds. The timeout itself is 30 seconds.

Note

It is important to understand that the ‘timeout' property of the
MessageG oupSt or eReaper isan approximate value and isimpacted by the the rate of
the task scheduler since this property will only be checked on the next scheduled execution
of the MessageG oupSt or eReaper task. For example if the timeout is set for 10 min,
but the MessageG oupSt or eReaper task is scheduled to run every 60 min and the last
execution of the MessageG oupSt or eReaper task happened 1 min before the timeout,

Spring Integration
2.1.0.M2 Reference Manual 61

http://static.springsource.org/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html

Spring Integration

the MessageG oup will not expire for the next 59 min. So it is recommended to set the rate
at least equal to the value of the timeout or shorter.

In addition to thereaper, the expiry callbacks areinvoked when the application shutsdown viaalifecycle
callback inthe Cor r el at i ngMessageHandl er .

TheCorr el at i ngMessageHandl er registersits own expiry callback, and thisisthe link with the
boolean flag send- parti al -resul t - on- expi ry inthe XML configuration of the aggregator.
If the flag is set to true, then when the expiry callback is invoked, any unmarked messages in groups
that are not yet released can be sent on to the output channel.

5.5 Resequencer

Introduction

Related to the Aggregator, abeit different from afunctional standpoint, is the Resequencer.

Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the
CORRELATION_ID to store messages in groups, the difference being that the Resequencer does not
process the messages in any way. It simply releases them in the order of their SEQUENCE_NUMBER
header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SIZE, has been released), or as soon as avalid sequenceis available.

Configuring a Resequencer
Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<i nt:channel id="inputChannel"/>

<i nt:channel id="outputChannel"/>

<i nt:resequencer id="conpl etel yDefi nedResequencer" [
i nput - channel ="i nput Channel * O
out put - channel =" out put Channel * 0O
di scard- channel ="di scardChannel " O
rel ease-parti al - sequences="true" 0O
message- st or e="nessageStore" 0O
send-partial -result-on-expiry="true" 0O
send-ti meout =" 86420000" O />

0 Theid of the resequencer is optional.
O Theinput channe of the resequencer. Required.
0 Thechannel to which the resequencer will send the reordered messages. Optional.

Spring Integration
2.1.0.M2 Reference Manual 62

Spring Integration

0 Thechannel to which the resequencer will send the messagesthat timed out (if send- parti al -
resul t-on-ti nmeout isfalse). Optional.

O Whether to send out ordered sequences as soon as they are available, or only after the whole

message group arrives. Optional (false by default).
If thisflag is not specified (so acomplete sequenceis defined by the sequence headers) then it may
make sense to provide a custom Conpar at or to be used to order the messages when sending
(use the XML attribute conpar at or to point to a bean definition). If r el ease- parti al -
sequences istrue then there is no way with a custom comparator to define a partial sequence.
To do that you would haveto provide ar el ease- st r at egy (also areference to another bean
definition, either aPOJO or aRel easeSt r at egy).

O AreferencetoaMessageG oupSt or e that can be used to store groups of messages under their
correlation key until they are complete. Optional with default a volatile in-memory store.

0 Whether, upon the expiration of the group, the ordered group should be sent out (even if some of
the messages are missing). Optional (false by default). See the section called “Managing State in
an Aggregator: MessageGroupStore”.

0 Thetimeout for sending out messages. Optional.

Note

Since there is no custom behavior to be implemented in Java classes for resequencers, there
IS No annotation support for it.

5.6 Message Handler Chain

Introduction

The MessageHandl er Chai n isan implementation of MessageHand| er that can be configured
as a single Message Endpoint while actually delegating to a chain of other handlers, such as Filters,
Transformers, Splitters, and so on. This can lead to a much simpler configuration when severa
handlers need to be connected in a fixed, linear progression. For example, it is fairly common to
provide a Transformer before other components. Similarly, when providing a Filter before some other
component in a chain, you are essentially creating a Selective Consumer [http://www.eai patterns.com/
M essageSel ector.html]. In either case, the chain only requiresasinglei nput - channel and asingle
out put - channel eliminating the need to define channels for each individual component.

Tip

Spring Integration's Filter provides a boolean property
t hr owExcepti onOnRej ect i on. When providing multiple Selective Consumers on the
same point-to-point channel with different acceptance criteria, this value should be set to
'true’ (the default isfalse) so that the dispatcher will know that the M essage was rejected and
as a result will attempt to pass the Message on to other subscribers. If the Exception were
not thrown, then it would appear to the dispatcher as if the Message had been passed on
successfully even though the Filter had dropped the M essage to prevent further processing. If
you do indeed want to "drop" the Messages, then the Filter's 'discard-channel' might be useful
sinceit does give you achanceto perform some operation with the dropped message (e.g. send
to aJMS queue or simply write to alog).

Spring Integration
2.1.0.M2 Reference Manual 63

http://www.eaipatterns.com/MessageSelector.html
http://www.eaipatterns.com/MessageSelector.html
http://www.eaipatterns.com/MessageSelector.html

Spring Integration

The handler chain simplifies configuration while internally maintaining the same degree of loose
coupling between components, and it istrivial to modify the configuration if at some point a non-linear
arrangement is required.

Internally, the chain will be expanded into alinear setup of the listed endpoints, separated by anonymous
channels. The reply channel header will not be taken into account within the chain: only after the last
handler isinvoked will the resulting message be forwarded on to the reply channel or the chain's output
channel. Because of this setup all handlers except the last required to implement the M essageProducer
interface (which providesa'setOutputChannel () method). Thelast handler only needs an output channel
if the outputChannel on the MessageHandlerChain is set.

Note

Aswith other endpoints, theout put - channel isoptiond. If thereisareply Message at the
end of the chain, the output-channel takes precedence, but if not available, the chain handler
will check for areply channel header on the inbound Message as a fallback.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on
namespace support for the chain element. Most Spring Integration endpoints, like Service Activators
and Transformers, are suitable for use within aMessageHandl er Chai n.

Configuring Chain

The <chain> element provides an i nput - channel attribute, and if the last element in the chain is
capable of producing reply messages (optional), it also supports an out put - channel attribute. The
sub-elements are then filters, transformers, splitters, and service-activators. The last element may also
be arouter.

<i nt:chain input-channel ="i nput" out put-channel ="out put">
<int:filter ref="sonmeSel ector" throw exception-on-rejection="true"/>
<i nt: header-enricher>
<i nt:header nane="foo" val ue="bar"/>
</int: header-enricher>
<int:service-activator ref="soneService" nethod="sonmeMethod"/>
</int:chain>

The <header-enricher> element used in the above example will set a message header named "foo" with
avaue of "bar" on the message. A header enricher is a specidization of Tr ansf or mer that touches
only header values. Y ou could obtain the same result by implementing a MessageHandler that did the
header modifications and wiring that as a bean, but the header-enricher is obviously a simpler option.

Sometimes you need to make anested call to another chain from within a chain and then come back and
continue execution within the original chain. To accomplish this you can utilize a Messaging Gateway
by including a <gateway> element. For example:

<i nt:chain i d="nmi n-chai n" input-channel ="in" output-channel ="out">
<i nt: header -enri cher>
<i nt: header nanme="nanme" val ue="Many" />
</int:header-enricher>
<int:service-activator>
<bean cl ass="org. f 0oo. Sanpl eServi ce" />

Spring Integration
2.1.0.M2 Reference Manual 64

Spring Integration

</int:service-activator>
<int:gateway request-channel ="i nput A"/ >
</int:chai n>

<int:chain id="nested-chai n-a" input-channel ="i nput A" >
<i nt: header -enricher>
<i nt: header nane="nane" val ue="Moe" />
</int: header-enricher>
<i nt:gateway request-channel ="i nputB"/>
<int:service-activator>
<bean cl ass="org. f 0o. Sanpl eServi ce" />
</int:service-activator>
</int:chain>

<int:chain id="nested-chain-b" input-channel ="i nputB">
<i nt: header-enricher>
<i nt: header nanme="nanme" val ue="Jack" />
</int:header-enricher>
<int:service-activator>
<bean cl ass="org. f 0o. Sanpl eServi ce" />
</int:service-activator>
</int:chai n>

In the above example the nested-chain-a will be called at the end of main-chain processing by the
‘gateway’ element configured there. While in nested-chain-a a call to a nested-chain-b will be made
after header enrichment and then it will come back to finish execution in nested-chain-b. Finally the
flow returns to the main-chain. When the nested version of a<gateway> element isdefined in the chain,
it does not require the ser vi ce-i nt er f ace attribute. Instead, it simple takes the message in its
current state and places it on the channel defined via the r equest - channel attribute. When the
downstream flow initiated by that gateway completes, aMessage will be returned to the gateway and
continue its journey within the current chain.

Spring Integration
2.1.0.M2 Reference Manual 65

Spring Integration

6. Message Transformation

6.1 Transformer

Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers
and Message Consumers. Rather than requiring every Message-producing component to know what
typeis expected by the next consumer, Transformers can be added between those components. Generic
transformers, such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model [http://www.eai patterns.com/
Canonical DataModel.html], but Spring Integration’'s general philosophy is not to require any particular
format. Rather, for maximum flexibility, Spring Integration aimsto provide the simplest possible model
for extension. As with the other endpoint types, the use of declarative configuration in XML and/
or Annotations enables simple POJOs to be adapted for the role of Message Transformers. These
configuration options will be described below.

Note

For the same reason of maximizing flexibility, Spring does not require XML-based M essage
payloads. Nevertheless, the framework does provide some convenient Transformers for
dealing with XML -based payloads if that is indeed the right choice for your application. For
more information on those transformers, see Chapter 27, XML Support - Dealing with XML
Payloads.

Configuring Transformer

Configuring Transformer with XML

The <transformer> element is used to create a Message-transforming endpoint. In addition to "input-
channel" and "output-channel” attributes, it requiresa”ref". The"ref" may either point to an Object that
contains the @Transformer annotation on a single method (see below) or it may be combined with an
explicit method name value provided viathe "method" attribute.

<int:transfornmer id="testTransformer" ref="testTransfornerBean" input-channel ="i nChannel "
met hod="t ransf orm' out put - channel =" out Channel "/ >
<beans: bean i d="t est Transf or ner Bean" cl ass="org. f0o. Test Transformer" />

Using a "ref" attribute is generally recommended if the custom transformer handler implementation
can be reused in other <t r ansf or mer > definitions. However if the custom transformer handler
implementation should be scoped to a single definition of the <t r ansf or mer >, you can define an
inner bean definition:

<int:transfornmer id="testTransformer" input-channel ="i nChannel" nethod="transf ornt
out put - channel =" out Channel ">
<beans: bean cl ass="org. foo. Test Transformer"/>
</ transf ormer>

Spring Integration
2.1.0.M2 Reference Manual 66

http://www.eaipatterns.com/CanonicalDataModel.html
http://www.eaipatterns.com/CanonicalDataModel.html
http://www.eaipatterns.com/CanonicalDataModel.html

Spring Integration

Note

Using both the "ref" attribute and an inner handler definition in the same <t r ansf or ner >
configuration is not alowed, as it creates an ambiguous condition and will result in an
Exception being thrown.

The method that is used for transformation may expect either the Message type or the payload type
of inbound Messages. It may also accept M essage header values either individually or as afull map by
using the @Header and @Header s parameter annotationsrespectively. Thereturn value of the method
can be any type. If the return value isitself aMessage, that will be passed along to the transformer's
output channel.

As of Spring Integration 2.0, a Message Transformer's transformation method can no longer return
nul | . Returning nul | will result in an exception since a Message Transformer should always be
expected to transform each source Message into a valid target Message. In other words, a Message
Transformer should not be used as a Message Filter since there is a dedicated <filter> option for that.
However, if you do need thistype of behavior (where acomponent might return NULL and that should
not be considered an error), a service-activator could be used. Itsr equi r es-r epl y valueisFALSE
by default, but that can be set to TRUE in order to have Exceptions thrown for NULL return values
as with the transformer.

Transformers and Soring Expression Language (SpEL)

Just like Routers, Aggregators and other components, as of Spring Integration 2.0 Transformers
can aso benefit from SpEL support (http://static.springsource.org/spring/docs/3.0.x/spring-framework-
reference/html/expressions.html) whenever transformation logic isrelatively simple.

<int:transfornmer input-channel ="inChannel"
out put - channel =" out Channel "
expressi on="payl oad. t oUpper Case() + '- [' + T(java.lang.Systenm).currentTimeMIlis() +']'"/>

In the above configuration we are achieving asimple transformation of the payload with asimple SpEL
expression and without writing a custom transformer. Our payload (assuming String) will be upper-
cased and concatenated with the current timestamp with some simple formatting.

Common Transformers

There are also a few Transformer implementations available out of the box. Because, it is fairly
common to use the t oString() representation of an Object, Spring Integration provides an
Cbj ect ToSt ri ngTr ansf or mer whose output is a Message with a String payload. That String is
the result of invoking the toString() operation on the inbound M essage's payload.

<int:object-to-string-transforner input-channel="in" output-channel ="out"/>

A potential examplefor thiswould be sending some arbitrary object to the ‘outbound-channel -adapter' in
thefile namespace. Whereasthat Channel Adapter only supports String, byte-array, orj ava. i o. Fil e
payloads by default, adding this transformer immediately before the adapter will handle the necessary
conversion. Of course, that works fine aslong as the result of thet oSt ri ng() call iswhat you want
to be written to the File. Otherwise, you can just provide a custom POJO-based Transformer via the
generic 'transformer' element shown previoudly.

Spring Integration
2.1.0.M2 Reference Manual 67

Spring Integration

Tip

When debugging, this transformer is not typically necessary since the 'logging-channel-
adapter' is capable of logging the Message payload. Refer to the section called “Wire Tap”
for more detail.

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring
Integration provides symmetrical serialization transformers. These will use standard Java serialization
by default, but you can provide an implementation of Spring 3.0's Seriaizer or Deserializer strategies
viathe 'serializer' and 'deserializer' attributes, respectively.

<i nt:payl oad-seri al i zi ng-transfornmer input-channel ="objectsln" output-channel ="bytesQut"/>

<i nt: payl oad- deseri al i zi ng-transforner input-channel ="bytesln" output-channel ="objectsCut"/>

Object-to-Map Transformer

Spring Integration also provides Object-to-Map and Map-to-Object transformers which utilize the
Spring Expression Language (SpEL) to serialize and de-serialize the object graphs. The object hierarchy
isintrospected to the most primitive types (String, int, etc.). The path to thistypeis described via SpEL,
which becomes the key in the transformed Map. The primitive type becomes the value.

For example:

public class Parent{
private Child child;
private String nane;
/| setters and getters are onitted

}

public class Chil d{
private String nane;
private List<String> ni ckNanes;
/] setters and getters are onitted

will be transformed to a Map which looks like this. {person. nane=Geor ge,
person. chi | d. nanme=Jenna, person.child. nickNanes[0]=Binbo . . . etc}

The SpEL-based Map alows you to describe the object structure without sharing the actual types
allowing you to restore/rebuild the object graph into a differently typed Object graph as long as you
maintain the structure.

For example: The above structure could be easily restored back to the following Object graph via the
M ap-to-Object transformer:

public class Father {
private Kid child;
private String nane;
/| setters and getters are onitted

}

public class Kid {
private String nane;
private List<String> ni ckNanes;

Spring Integration
2.1.0.M2 Reference Manual 68

Spring Integration

/| setters and getters are onmitted

To configure these transformers, Spring Integration provides namespace support Object-to-Map:

<i nt:object-to-map-transformer input-channel ="directlnput" output-channel ="out put"/>

Map-to-Object

<i nt: map-to-obj ect-transformer input-channel ="input"
out put - channel =" out put "
type="org. f oo. Person"/>

or

<i nt: map-to-obj ect-transfornmer input-channel ="i nputA"
out put - channel =" out put A"
ref ="person"/>
<bean i d="person" class="org.foo.Person" scope="prototype"/>

Note

NOTE: 'ref' and 'type' attributesare mutually exclusive. Y ou canonly useone. Also, if using the
'ref' attribute, you must point to a'prototype’ scoped bean, otherwise a BeanCreationException
will be thrown.

Configuring a Transformer with Annotations

The@r ansf or ner annotation can also be added to methods that expect either the Message typeor
the message payload type. The return value will be handled in the exact same way as described above
in the section describing the <transformer> element.

@r ansf or ner
Order generateOrder(String productld) {
return new O der(productld);

}

Transformer methods may also accept the @Header and @Headers annotations that is documented in
Section B.5, “ Annotation Support”

@r ansf or ner
Order generateOrder(String productld, @deader("custonmerNane") String custoner) {
return new Order(productld, customer);

}

Header Filter

Some times your transformation use case might be as simple as removing afew headers. For such ause
case, Spring Integration provides aHeader Filter which allowsyou to specify certain header names that
should be removed from the output Message (e.g. for security reasons or a value that was only needed
temporarily). Basically the Header Filter isthe opposite of the Header Enricher. The latter is discussed
in the section called “Header Enricher”

<int:header-filter input-channel ="inputChannel"
out put - channel =" out put Channel * header - nanes="1 ast Nane, state"/>

Spring Integration
2.1.0.M2 Reference Manual 69

Spring Integration

Asyou can see, configuration of aHeader Filter isquitesimple. Itisatypical endpoint with input/output
channelsand aheader - nanes attribute. That attribute accepts the names of the header(s) (delimited
by commasiif there are multiple) that need to be removed. So, in the above example the headers named
'lastName' and 'state’ will not be present on the outbound Message.

6.2 Content Enricher

Introduction

At timesyou may have arequirement to enhance arequest with more information than was provided by
the target system. The Content Enricher pattern describes various scenarios as well as the component
(Enricher), which allows you to address such requirements.

Header Enricher

If you only need to add headersto aMessage, and they are not dynamically determined by the Message
content, then referencing a custom implementation of a Transformer may be overkill. For that reason,
Spring Integration provides support for the Header Enricher pattern. It is exposed viathe <header -
enri cher > element.

<i nt:header-enricher input-channel ="in" output-channel ="out">
<i nt:header nane="foo" val ue="123"/>
<i nt: header nanme="bar" ref="someBean"/>
</int:header-enricher>

The Header Enricher also provides helpful sub-elementsto set well-known header names.

<i nt:header-enricher input-channel ="in" output-channel ="out">
<int:error-channel ref="applicationErrorChannel"/>
<int:reply-channel ref="quoteRepl yChannel"/>
<int:correlation-id val ue="123"/>
<int:priority val ue="H GHEST"/ >
<int:header nanme="bar" ref="sonmeBean"/>
</int:header-enricher>

In the above configuration you can clearly see that for well-known headers such aser r or Channel
correlationld, priority, repl yChannel etc., instead of using generic <header> sub-
elements where you would have to provide both header 'name’ and 'value', you can use convenient sub-
elements to set those values directly.

POJO Support

Often a header value cannot be defined statically and has to be determined dynamically based on some
content in the Message. That iswhy Header Enricher allowsyou to also specify abean 'ref' and 'method'
that will calculate the header value. Let's look at the following configuration:

<i nt: header - enricher input-channel ="in" output-channel ="out">
<i nt: header nanme="foo" nethod="conputeVal ue" ref="nyBean"/>
</int:header-enricher>

<bean i d="nyBean" cl ass="fo0o0. bar. MyBean"/>

Spring Integration
2.1.0.M2 Reference Manual 70

Spring Integration

public class MyBean {
public String conputeVal ue(String payl oad) {
return payl oad. t oUpper Case() + "_US";
}

Y ou can aso configure your POJO as inner bean

<i nt: header-enricher input-channel="input Channel" out put-channel =" out put Channel ">
<i nt: header nanme="sonme_header" >
<bean cl ass="org. MyEnri cher"/>
</int:header>
</i nt: header-enricher>

aswell as point to a Groovy script

<i nt: header-enricher input-channel ="input Channel" out put-channel =" out put Channel ">
<i nt:header nane="sone_header">
<i nt-groovy:script |ocation="org/ Sanpl eG oovyHeader Enri cher. groovy"/>
</int: header>
</int:header-enricher>

SoEL Support

In Spring Integration 2.0 we have introduced the convenience of the Spring Expression Language
(SpEL) to help configure many different components. The Header Enricher is one of them. Looking
again at the POJO example above, you can see that the computation logic to determine the header value
is actually pretty simple. A natural question would be: "is there a simpler way to accomplish this?".
That iswhere SpEL shows its true power.

<i nt:header-enricher input-channel ="in" output-channel ="out">
<i nt: header name="foo0" expression="payl oad.toUpperCase() + '_US "/>
</i nt: header-enricher>

As you can see, by using SpEL for such simple cases, we no longer have to provide a separate class
and configure it in the application context. All we need is the expression attribute configured with a
valid SpEL expression. The 'payload' and 'headers variables are bound to the SpEL Evaluation Context,
giving you full access to the incoming Message.

Adapter specific Header Enrichers

As you go through the manual, you will see that as an added convenience, Spring Integration also
provides adapter specific Header Enrichers (e.g., MAIL, XMPP, etc.)

6.3 Claim Check

Introduction

In the earlier sections we've covered several Content Enricher type components that help you deal with
situationswhere amessage ismissing a piece of data. We a so discussed Content Filtering which letsyou
remove dataitemsfrom amessage. However there are timeswhen we want to hide datatemporarily. For
example, in adistributed system we may receive aMessage with avery large payload. Someintermittent

Spring Integration
2.1.0.M2 Reference Manual 71

Spring Integration

message processing steps may hot heed access to this payload and some may only need to access certain
headers, so carrying the large Message payload through each processing step may cause performance
degradation, may produce a security risk, and may make debugging more difficult.

The Claim Check pattern describes a mechanism that allows you to store data in a well known place
while only maintaining a pointer (Claim Check) to where that data is |ocated. Y ou can pass that pointer
around as a payload of a new Message thereby allowing any component within the message flow to get
the actual data as soon asit needsit. This approach is very similar to the Certified Mail process where
you'll get a Claim Check in your mailbox and would have to go to the Post Office to claim your actual
package. Of courseit's also the same idea as baggage-claim on aflight or in ahotel.

Spring Integration provides two types of Claim Check transformers: Incoming Claim Check
Transformer and Outgoing Claim Check Transformer. Convenient namespace-based mechanisms are
available to configure them.

Incoming Claim Check Transformer

An Incoming Claim Check Transformer will transform anincoming Message by storing it inthe Message
Store identified by itsnmessage- st or e attribute.

<int:claimcheck-in id="checkin"
i nput - channel =" checki nChannel "
message- st ore="t est MessageSt or e"
out put - channel =" out put "/ >

In the above configuration the Message that is received on thei nput - channel will be persisted to
the Message Store identified with thenessage- st or e attribute and indexed with generated ID. That
ID is the Claim Check for that Message. The Claim Check will also become the payload of the new
(transformed) Message that will be sent to the out put - channel .

Now, lets assume that at some point you do need access to the actual Message. Y ou can of course access
the Message Store manually and get the contents of the Message, or you can use the same approach
as before except now you will be transforming the Claim Check to the actua Message by using an
Outgoing Claim Check Transformer.

Outgoing Claim Check Transformer

An Outgoing Claim Check Transformer allowsyou to transform aM essage with a Claim Check payload
into a Message with the original content as its payload.

<int:clai mcheck-out id="checkout"
i nput - channel =" checkout Channel "
nmessage- st ore="t est MessageSt ore"
out put - channel =" out put "/ >

In the above configuration, the Message that isreceived on thei nput - channel should haveaClaim
Check asits payload and the Outgoing Claim Check Transformer will transform it into a Message with
the original payload by simply querying the Message store for a Message identified by the provided
Claim Check. It then sends the newly checked-out Message to the out put - channel .

Claim Once

Spring Integration
2.1.0.M2 Reference Manual 72

Spring Integration

There are scenarios when a particular message must be claimed only once. As an analogy, consider the
airplane luggage check-in/out process. Checking-in your luggage on the departure and and then claiming
it on the arrival is a classic example of such a scenario. Once the luggage was claimed it can not be
claimed again without first checking it back in. To accommodate such casesweintroduced ar enove-

nmessage boolean attribute on the cl ai m check- out transformer. This attributeisset to f al se
by default. However if settot r ue, the claimed Message will aso be removed from the M essageStore
so that it can no longer be claimed again. Thisis aso something to consider in terms of storage space,
especially in the case of the in-memory Map-based Si npl eMessageSt or e wherefailing to remove
the Messages could ultimately lead to an Cut OF Menor yExcept i on. If you don't expect multiple
claimsto be made, it's recommended that you set ther enove- nessage attribute'svalueto f al se.

<i nt:clai mcheck-out id="checkout"
i nput - channel =" checkout Channel "
message- st ore="t est MessageSt ore"
out put - channel =" out put "
renove- nessage="true"/ >

Although we rarely care about the details of the claim checks as long as they work, it is still worth
knowing that the current implementation of the actual Claim Check (the pointer) in Spring Integration
isaUUID to ensure uniqueness.

A word on Message Store

org.springframework. integration.store. MessageSt or e is a strategy interface for
storing and retrieving messages. Spring Integration provides two convenient implementations of it.
Si mpl eMessageSt or e: an in-memory, Map-based implementation (the default, good for testing)
and JdbcMessagesSt or e: animplementation that uses arelational database via JDBC.

Spring Integration
2.1.0.M2 Reference Manual 73

Spring Integration

7. Messaging Endpoints

7.1 Message Endpoints

Thefirst part of thischapter covers some background theory and reveal s quite abit about the underlying
API that drives Spring Integration's various messaging components. This information can be helpful if
you want to really understand what's going on behind the scenes. However, if you want to get up and
running with the simplified namespace-based configuration of the various elements, feel free to skip
ahead to the section called “ Namespace Support” for now.

Asmentioned in the overview, M essage Endpoints are responsible for connecting the various messaging
components to channels. Over the next several chapters, you will see anumber of different components
that consume Messages. Some of these are al so capabl e of sending reply Messages. Sending Messagesis
quite straightforward. As shown above in Section 3.1, “Message Channels’, it's easy to send a Message
to aMessage Channel. However, receiving is a bit more complicated. The main reason isthat there are
two types of consumers. Polling Consumers [http://www.eai patterns.com/PollingConsumer.html] and
Event Driven Consumers [http://www.eai patterns.com/EventDrivenConsumer.html].

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially just listenerswith acallback method. When connecting to one
of Spring Integration's subscribable M essage Channels, this simple option works great. However, when
connecting to abuffering, pollable Message Channel, some component has to schedule and manage the
polling thread(s). Spring Integration provides two different endpoint implementations to accommodate
these two types of consumers. Therefore, the consumers themselves can simply implement the callback
interface. When polling is required, the endpoint acts as a "container" for the consumer instance.
The benefit is similar to that of using a container for hosting Message Driven Beans, but since these
consumers are simply Spring-managed Objects running within an ApplicationContext, it more closely
resembles Spring's own Messagel istener containers.

Message Handler

Spring Integration's MessageHand| er interface isimplemented by many of the components within
the framework. In other words, thisis not part of the public API, and a developer would not typically
implement MessageHandl er directly. Nevertheless, it is used by a Message Consumer for actually
handling the consumed Messages, and so being aware of this strategy interface does help in terms of
understanding the overal role of aconsumer. The interface is defined as follows:

public interface MessageHandl er {
voi d handl eMessage(Message<?> nessage) ;

}
Despite its simplicity, this provides the foundation for most of the components that will be covered
in the following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc).
Those components each perform very different functionality with the Messages they handle, but the
requirements for actually receiving a Message are the same, and the choice between polling and event-

Spring Integration
2.1.0.M2 Reference Manual 74

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

Spring Integration

driven behavior is also the same. Spring I ntegration provides two endpoint implementations that "host"
these callback-based handlers and allow them to be connected to M essage Channels.

Event Driven Consumer

Because it is the simpler of the two, we will cover the Event Driven Consumer endpoint first.
You may recall that the Subscri babl eChannel interface provides a subscri be() method
and that the method accepts a MessageHandl er parameter (as shown in the section called
“ SubscribableChannel”):

subscri babl eChannel . subscri be(messageHandl er) ;

Since a handler that is subscribed to a channel does not have to actively poll that channel, this
is an Event Driven Consumer, and the implementation provided by Spring Integration accepts a a
Subscri babl eChannel andaMessageHandl er:

Subscri babl eChannel channel = context. get Bean("subscri babl eChannel ", Subscri babl eChannel . cl ass);

Event Dri venConsuner consuner = new Event Dri venConsuner (channel, exanpl eHandl er);

Polling Consumer

Spring Integration also provides a Pol | i ngConsuner, and it can be instantiated in the same way
except that the channel must implement Pol | abl eChannel :

Pol | abl eChannel channel = context. getBean("pol | abl eChannel ", Pol | abl eChannel . cl ass);

Pol | i ngConsuner consuner = new Pol | i ngConsuner (channel , exanpl eHandl er);

There are many other configuration options for the Polling Consumer. For example, the trigger is a
required property:

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);

consuner. set Tri gger (new | nterval Tri gger (30, Ti meUnit.SECONDS));

Spring Integration currently provides two implementations of the Tri gger interface:
Interval Tri gger and CronTri gger. The I nt erval Tri gger is typicaly defined with a
simpleinterval (in milliseconds), but also supports an 'initialDelay’ property and a boolean 'fixedRate
property (the default isfalse, i.e. fixed delay):

Interval Trigger trigger = new Interval Trigger (1000);
trigger.setlnitial Del ay(5000);
trigger. setFi xedRate(true);

TheCronTri gger simply requires avalid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger(“*/10 * * * * MON-FRI");

In addition to the trigger, severa other polling-related configuration properties may be specified:

Spring Integration
2.1.0.M2 Reference Manual 75

Spring Integration

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);
consuner . set MaxMessagesPer Pol | (10);

consuner . set Recei veTi meout (5000)

The 'maxM essagesPerPoll’ property specifies the maximum number of messages to receive within a
given poll operation. This means that the poller will continue calling receive() without waiting until
either nul | isreturned or that max is reached. For example, if apoller hasa 10 second interval trigger
and a'maxM essagesPerPoll' setting of 25, and it is polling achannel that has 100 messagesin its queue,
all 100 messages can be retrieved within 40 seconds. It grabs 25, waits 10 seconds, grabs the next 25,
and so on.

The 'receiveTimeout' property specifies the amount of time the poller should wait if no messages are
available when it invokes the receive operation. For example, consider two options that seem similar
on the surface but are actually quite different: the first has an interval trigger of 5 seconds and areceive
timeout of 50 milliseconds while the second has an interval trigger of 50 milliseconds and a receive
timeout of 5 seconds. The first one may receive a message up to 4950 milliseconds later than it arrived
on the channel (if that message arrived immediately after one of its poll calls returned). On the other
hand, the second configuration will never miss a message by more than 50 milliseconds. The difference
isthat the second option requires athread to wait, but asaresult it is able to respond much more quickly
to arriving messages. This technique, known as "long polling”, can be used to emulate event-driven
behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecut or, and it can be configured to
participate in Spring-managed transactions. The following example shows the configuration of both:

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);

TaskExecut or taskExecutor = context.getBean("exanpl eExecutor", TaskExecutor. cl ass);
consuner . set TaskExecut or (t askExecut or) ;

Pl at f or milr ansact i onManager txManager = context. get Bean("exanpl eTxManager", Pl atforniransati onManager. cl ass)
consuner. set Transact i onManager (t xManager) ;

The exampl es above show dependency lookups, but keep in mind that these consumers will most often
be configured as Spring bean definitions. Infact, Spring Integration also providesaFact or yBean that
creates the appropriate consumer type based on the type of channel, and there is full XML namespace
support to even further hide those details. The namespace-based configuration will be featured as each
component typeisintroduced.

Note

Many of the MessageHand| er implementations are also capable of generating reply
Messages. As mentioned above, sending Messages is trivial when compared to the Message
reception. Nevertheless, when and how many reply Messages are sent depends on the handler
type. For example, an Aggregator waits for a number of Messages to arrive and is often
configured as a downstream consumer for a Splitter which may generate multiple replies for
each Message it handles. When using the namespace configuration, you do not strictly need
to know all of the details, but it still might be worth knowing that several of these components

Spring Integration
2.1.0.M2 Reference Manual 76

Spring Integration

share a common base class, the Abst r act Repl yPr oduci ngMessageHandl er, and it
providesaset Qut put Channel (..) method.

Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint
elements, such as router, transformer, service-activator, and so on. Most of these will support
an "input-channel" attribute and many will support an "output-channel” attribute. After being
parsed, these endpoint elements produce an instance of either the Pol | i ngConsuner or the
Event Dri venConsuner depending on the type of the "input-channel" that is referenced:
Pol | abl eChannel or Subscri babl eChannel respectively. When the channel is pollable, then
the polling behavior is determined based on the endpoint element's "poller" sub-element and its
attributes. For example, a simple interval-based poller with a 1-second interval would be configured
likethis:

<int:transformer input-channel ="pollable"
ref ="transfornmer"
out put - channel =" out put " >
<int:poller fixed-rate="1000"/>
</int:transfornmer>

As an alternative to 'fixed-rate' you can also use the 'fixed-delay' attribute.

For a poller based on a Cron expression, use the "cron" attribute instead:

<int:transformer input-channel="poll able"
ref ="transforner"
out put - channel =" out put " >
<int:poller cron="*/10 * * * * MON-FRI"/>
</int:transforner>

If the input channel isa Pol | abl eChannel , then the poller configuration is required. Specificaly,
as mentioned above, the 'trigger' is arequired property of the PollingConsumer class. Therefore, if you
omit the "poller" sub-element for a Polling Consumer endpoint's configuration, an Exception may be
thrown. The exception will aso be thrown if you attempt to configure a poller on the element that is
connected to a non-pollable channel.

It isalso possible to create top-level pollersin which case only a"ref" is required:

<int:poller id="weekdayPoller" cron="*/10 * * * * MONNFRI"/>

<int:transformer input-channel="poll able"
ref="transforner"
out put - channel =" out put ">
<int:poller ref="weekdayPoller"/>
</int:transformer>

Note

The "ref" attribute is only alowed on the inner-poller definitions. Defining this attribute on
atop-level poller will result in a configuration exception thrown during initialization of the
Application Context.

Spring Integration
2.1.0.M2 Reference Manual 77

Spring Integration

In fact, to simplify the configuration even further, you can define a global default poller. A single top-
level poller within an ApplicationContext may have the def aul t attribute with a value of "true". In
that case, any endpoint with a PollableChannel for its input-channel that is defined within the same
ApplicationContext and has no explicitly configured 'poller' sub-element will use that default.

<int:poller id="defaultPoller" default="true" max-nmessages-per-poll="5" fixed-rate="3000"/>

<I-- No <poller/> sub-elenment is necessary since there is a default -->
<int:transformer input-channel="poll able"

ref ="transformer"

out put - channel =" out put "/ >

Spring Integration aso provides transaction support for the pollers so that each receive-and-forward
operation can be performed as an atomic unit-of-work. To configure transactions for a poller, simply
add the <transactional/> sub-element. The attributes for this element should be familiar to anyone who
has experience with Spring's Transaction management:

<int:poller fixed-delay="1000">
<int:transactional transacti on-manager="t xManager"
pr opagat i on=" REQUI RED"
i sol at i on=" REPEATABLE_READ"
ti meout ="10000"
read-onl y="fal se"/>
</int:poller>

AOP Advice chains

Since Spring transaction support depends on the Proxy mechanism with
Transacti onl nt er cept or (AOP Advice) handling transactional behavior of the message flow
initiated by the poler, sometimesthere is aneed to provide extra Advice(s) to handle other cross cutting
behavior associated with the poller. For that poller defines an "advice-chain' element allowing you to
add more advices - classthat implements Met hodl nt er cept or interface..

<int:service-activator id="advicedSa" input-channel ="goodl nput WthAdvi ce" ref="testBean"
met hod="good" out put - channel =" out put ">
<int:poller max-nessages-per-poll="1" fixed-rate="10000">
<int:transactional transaction-manager="txManager" />
<i nt: advi ce- chai n>
<ref bean="advi ceA" />
<beans: bean cl ass="org. bar. Sanpl eAdvi ce"/ >
</int:advi ce-chai n>
</int:poller>
</int:service-activator>

For more information on how to implement Methodlnterceptor please refer to AOP sections of Spring
reference manual (section 7 and 8). Advice chain can aso be applied on the poller that does not have
any transaction configuration essentially allowing you to enhance the behavior of the message flow
initiated by the poller.

The polling threads may be executed by any instance of Spring's TaskExecut or abstraction. This
enables concurrency for an endpoint or group of endpoints. Asof Spring 3.0, thereisa"task" namespace
in the core Spring Framework, and its <executor/> element supports the creation of asimple thread pool
executor. That element accepts attributesfor common concurrency settings such as pool-size and queue-
capacity. Configuring a thread-pooling executor can make a substantial difference in how the endpoint

Spring Integration
2.1.0.M2 Reference Manual 78

Spring Integration

performs under load. These settings are available per-endpoint since the performance of an endpoint is
one of the major factors to consider (the other major factor being the expected volume on the channel
to which the endpoint subscribes). To enable concurrency for a polling endpoint that is configured with
the XML namespace support, provide the 'task-executor' reference on its <poller/> element and then
provide one or more of the properties shown below:

<int:poller task-executor="pool" fixed-rate="1000"/>

<t ask: execut or i d="pool "
pool - si ze="5- 25"
queue- capaci t y="20"
keep-al i ve="120"/>

If no 'task-executor' is provided, the consumer's handler will be invoked in the caller's thread. Note
that the "caller" is usualy the default TaskSchedul er (see Section B.3, “Configuring the Task
Scheduler™). Also, keep in mind that the 'task-executor' attribute can provide a reference to any
implementation of Spring's TaskExecut or interface by specifying the bean name. The "executor"
element above is simply provided for convenience.

Asmentioned in the background section for Polling Consumers above, you can also configure a Polling
Consumer in such away as to emulate event-driven behavior. With along receive-timeout and a short
interval-trigger, you can ensure a very timely reaction to arriving messages even on a polled message
source. Note that this will only apply to sources that have a blocking wait call with a timeout. For
example, the File poller does not block, each receive() call returnsimmediately and either contains new
filesor not. Therefore, evenif apoller contains along receive-timeout, that value would never be usable
in such a scenario. On the other hand when using Spring Integration's own gqueue-based channels, the
timeout value does have a chance to participate. The following example demonstrates how a Polling
Consumer will receive Messages nearly instantaneously.

<int:service-activator input-channel ="soneQueueChannel "
out put - channel =" out put " >
<int:poller receive-tineout="30000" fixed-rate="10"/>

</int:service-activator>

Using this approach does not carry much overhead sinceinternally it is nothing more then a timed-wait
thread which does not require nearly as much CPU resource usage as a thrashing, infinite while loop
for example.

Payload Type Conversion

Throughout the reference manual, you will also see specific configuration and implementation examples
of various endpoints which can accept a Message or any arbitrary Object as an input parameter. In the
case of an Object, such a parameter will be mapped to a Message payload or part of the payload or
header (when using the Spring Expression Language). However there are times when the type of input
parameter of the endpoint method does not match the type of the payload or its part. In this scenario
we need to perform type conversion. Spring Integration provides a convenient way for registering type
converters(using the Spring 3.x ConversionService) withinitsowninstance of aconversion service bean
named integrationConversionService. That bean is automatically created as soon as the first converter
is defined using the Spring Integration namespace support. To register a Converter all you need isto

Spring Integration
2.1.0.M2 Reference Manual 79

Spring Integration

implement or g. spri ngf ramewor k. core. convert. converter. Convert er and defineit
via convenient namespace support:

<int:converter ref="sanpl eConverter"/>

<bean i d="sanpl eConverter" cl ass="foo. bar. Test Converter"/>

or as an inner bean:

<i nt:converter>
<bean cl ass="org. spri ngframework. i ntegration.config.xm .ConverterParserTest s$Test Converter3"/>
</int:converter>

Asynchronous polling

If you want the polling to be asynchronous, a Poller can optionally specify a 'task-executor' attribute
pointing to an existing instance of any TaskExecut or bean (Spring 3.0 provides a convenient
namespace configuration via the t ask namespace). However, there are certain things you must
understand when configuring a Poller with a TaskExecutor.

The problem is that there are two configurations in place. The Poller and the TaskExecutor, and they
both have to be in tune with each other otherwise you might end up creating an artificial memory leak.

Let'slook at the following configuration provided by one of the users on the Spring Integration forum
(http://forum.springsource.org/showthread.php?=94519):

<int:service-activator input-channel ="publishChannel" ref="myService">
<int:poller receive-tineout="5000" task-executor="taskExecutor" fixed-rate="50"/>
</int:service-activator>

<t ask: executor id="taskExecutor" pool -size="20" queue-capacity="20"/>

The above configuration demonstrates one of those out of tune configurations.

The poller keeps scheduling new tasks even though all the threads are blocked waiting for either anew
message to arrive, or the timeout to expire. Given that there are 20 threads executing tasks with a 5
second timeout, they will be executed at arate of 4 per second (5000/20 = 250ms). But, new tasks are
being scheduled at arate of 20 per second, so theinternal queuein the task executor will grow at arate
of 16 per second (while the processisidle), so we essentially have amemory leak.

One of the ways to handle this is to set the queue- capaci ty attribute of the Task Executor to O.
Y ou can also manage it by specifying what to do with messages that can not be queued by setting the
rej ection-pol i cy attributeof the Task Executor (e.g., DISCARD). In other wordstherearecertain
details you must understand with regard to configuring the TaskExecutor. Please refer to - Section 25 -
Task Execution and Scheduling of the Spring reference manual for more detail on the subject.

7.2 Inbound Messaging Gateways

GatewayProxyFactoryBean

Working with Objectsinstead of Messagesisan improvement. However, it would be even better to have
no dependency on the Spring Integration API at all - including the gateway class. For that reason, Spring

Spring Integration
2.1.0.M2 Reference Manual 80

Spring Integration

Integration also provides a Gat eway Pr oxyFact or yBean that generates a proxy for any interface
and internally invokes the gateway methods shown below.

package org.cafeteria
public interface Cafe {

voi d pl aceOrder (Order order);

}

Namespace support is also provided which allows you to configure such an interface as a service as
demonstrated by the following example.

<int:gateway id="cafeService"
service-interface="org.cafeteria. Cafe"
def aul t -request - channel ="r equest Channel "
def aul t -repl y- channel ="r epl yChannel "/ >

With this configuration defined, the "cafeService" can now be injected into other beans, and the code
that invokes the methods on that proxied instance of the Cafe interface has no awareness of the Spring
Integration API. The general approach is similar to that of Spring Remoting (RMI, Httplnvoker, etc.).
See the "Samples' Appendix for an example that uses this "gateway" element (in the Cafe demo).

! I mportant

' Typicaly you don't have to specify thedef aul t - r epl y- channel since a Gateway will
auto-create atemporary, anonymous reply channel whereit will listen for the reply. However,
there are some cases which may prompt you to define adef aul t - repl y- channel (or
repl y- channel with adapter gateways such asHTTP, JMS, etc.). For some background,
we'll quickly discuss some of the inner-workings of the Gateway. A Gateway will create a
temporary point-to-point reply channel which is anonymous and is added to the Message
Headers with the name r epl yChannel . When providing an explicit def aul t - r epl y-
channel (repl y- channel with remote adapter gateways), you have the option to point
to a publish-subscribe channel, which is so named because you can add more than one
subscriber to it. Internally Spring Integration will create a Bridge between the temporary
r epl yChannel andthe explicitly defined def aul t - r epl y- channel . Solet's say you
want your reply to go not only to the gateway, but also to some other consumer. In this case
you would want two things: a) a named channel you can subscribe to and b) that channel is
a publish-subscribe-channel. The default strategy used by the gateway will not satisfy those
needs, because the reply channel added to the header is anonymous and point-to-point. This
means that no other subscriber can get a handle to it and even if it could, the channel has
point-to-point behavior such that only one subscriber would get the Message. So by defining a
def aul t -repl y- channel you can point to achannel of your choosing whichinthiscase
would beapubl i sh- subscri be- channel . The Gateway would create a bridge from it
tothetemporary, anonymousreply channel that isstored in the header. Another casewhereyou
might want to provide areply channel explicitly isfor monitoring or auditing viaan interceptor
(e.g., wiretap). Y ou need a named channel in order to configure a Channel Interceptor.

Spring Integration
2.1.0.M2 Reference Manual 81

Spring Integration

The reason that the attributes on the 'gateway' element are named 'default-request-channel’ and 'default-

reply-channel’ is that you may also provide per-method channel references by using the @Gateway
annotation.

public interface Cafe {

@zat eway(request Channel =" or der s")
voi d pl aceOrder (Order order);

}

Y ou may alternatively provide such content in net hod sub-elementsif you prefer XML configuration
(see the next paragraph).

Itisalso possibleto passvaluesto beinterpreted as M essage headers on the Message that is created and
sent to the request channel by using the @Header annotation:

public interface FileWiter {

@zat eway(r equest Channel ="fil esCut")
void wite(byte[] content, @ieader(FileHeaders. FI LENAMVE) String fil enane);

If you prefer the XML approach of configuring Gateway methods, you can provide method sub-elements
to the gateway configuration.

<int:gateway id="nyGateway" service-interface="org.foo.bar. Test Gat eway"

def aul t - request - channel ="i nput C' >
<i nt: method name="echo" request-channel ="i nput A" reply-timeout="2" request-ti meout="200"/>
<i nt: method name="echoUpper Case" request-channel ="i nputB"/>

<i nt: met hod nanme="echoVi aDefaul t"/>
</int: gat eway>

You can aso provide individual headers per method invocation via XML. This could be very useful
if the headers you want to set are static in nature and you don't want to embed them in the gateway's
method signature via @Header annotations. For example, in the Loan Broker example we want to
influence how aggregation of the Loan quotes will be done based on what type of request was initiated
(single quote or al quotes). Determining the type of the request by evaluating what gateway method
was invoked, although possible would violate the separation of concerns paradigm (the method is a
java artifact), but expressing your intention (meta information) via Message headers is natural in a
Messaging architecture.

<i nt:gateway i d="|oanBroker Gat eway"
service-interface="org. springframework.integration.| oanbroker.LoanBroker Gat enay" >
<i nt: method name="get LoanQuot e" request-channel ="| oanBr oker PreProcessi ngChannel ">
<i nt: header name="RESPONSE TYPE" val ue="BEST"/ >
</int: method>
<i nt: method name="get Al | LoanQuot es" request -channel ="| oanBr oker Pr ePr ocessi ngChannel ">
<i nt: header nanme="RESPONSE _TYPE" val ue="ALL"/>
</int: method>
</int: gat eway>

In the above case you can clearly see how a different value will be set for the 'RESPONSE_TY PE'
header based on the gateway's method.

Spring Integration
2.1.0.M2 Reference Manual 82

Spring Integration

Of course, the Gateway invocation might result in errors. By default any error that has occurred
downstream will be re-thrown as a MessagingException (RuntimeException) upon the Gateway's
method invocation. However there are times when you may want to simply log the error rather than
propagating it, or you may want to treat an Exception as a valid reply, by mapping it to a Message
that will conform to some "error message" contract that the caller understands. To accomplish this,
our Gateway provides support for a Message Channel dedicated to the errors via the error-channel
attribute. In the example below, you can see that a 'transformer’ is used to create a reply Message from
the Exception.

<i nt:gateway i d="sanpl eGat eway"
def aul t - r equest - channel =" gat ewayChannel "
servi ce-interface="fo0o0. bar. Si npl eGat enay"
error-channel ="excepti onTransf or mati onChannel "/ >

<int:transfornmer input-channel ="exceptionTransformati onChannel "
ref ="exceptionTransformer" method="createErrorResponse"/>

The exceptionTransformer could be asimple POJO that knows how to create the expected error response
objects. That would then be the payload that is sent back to the caller. Obviously, you could do
many more elaborate things in such an "error flow" if necessary. It might involve routers (including
Spring Integration’s ErrorM essageExceptionTypeRouter), filters, and so on. Most of the time, asimple
‘transformer’ should be sufficient, however.

Alternatively, you might want to only log the Exception (or send it somewhere asynchronoudly). If you
provide a one-way flow, then nothing would be sent back to the caller. In the case that you want to
completely suppress Exceptions, you can provide a reference to the global "nullChannel™ (essentially
a /dev/null approach). Finally, as mentioned above, if no "error-channel” is defined at all, then the
Exceptions will propagate as usual.

! I mportant
Exposing the messaging system via simple POJI Gateways obviously provides benefits, but
"hiding" the reality of the underlying messaging system does come at a price so there are
certain things you should consider. We want our Java method to return as quickly as possible
and not hang for an indefinite amount of time while the caller iswaiting on it to return (void,
return value, or a thrown Exception). When regular methods are used as a proxies in front
of the Messaging system, we have to take into account the potentially asynchronous nature
of the underlying messaging. This means that there might be a chance that a Message that
was initiated by a Gateway could be dropped by a Filter, thus never reaching a component
that is responsible for producing a reply. Some Service Activator method might result in
an Exception, thus providing no reply (as we don't generate Null messages). So as you
can see there are multiple scenarios where a reply message might not be coming. That is
perfectly natural in messaging systems. However think about the implication on the gateway
method. The Gateway's method input arguments were incorporated into a Message and
sent downstream. The reply Message would be converted to a return value of the Gateway's
method. So you might want to ensure that for each Gateway call there will always be areply
Message. Otherwise, your Gateway method might never return and will hang indefinitely. One
of the ways of handling this situation is viaan Asynchronous Gateway (explained later in this
section). Another way of handling it isto explicitly set the reply-timeout attribute. That way,

Spring Integration
2.1.0.M2 Reference Manual 83

Spring Integration

the gateway will not hang any longer than the time specified by the reply-timeout and will
return 'null’ if that timeout does el apse. Finally, you might want to consider setting downstream
flags such as 'requires-reply’ on a service-activator or 'throw-exceptions-on-rejection’ on a
filter. These options will be discussed in more detail in the final section of this chapter.

Asynchronous Gateway

As a pattern the Messaging Gateway is a very nice way to hide messaging-specific code
while still exposing the full capabilities of the messaging system. As youve seen, the
Gat ewayPr oxyFact or yBean providesaconvenient way to expose aProxy over aservice-interface
thus giving you POJO-based access to a messaging system (based on objects in your own domain, or
primitives/Strings, etc). But when a gateway is exposed via simple POJO methods which return values
it does imply that for each Request message (generated when the method is invoked) there must be
a Reply message (generated when the method has returned). Since Messaging systems naturally are
asynchronous you may not always be able to guarantee the contract where "for each request there will
always be be a reply". With Spring Integration 2.0 we are introducing support for an Asynchronous
Gateway which is a convenient way to initiate flows where you may not know if areply is expected or
how long will it take for repliesto arrive.

A natural way to handle these types of scenarios in Java would be relying upon
java.util.concurrent.Future instances, and that is exactly what Spring Integration uses to support an
Asynchronous Gateway.

From the XML configuration, there is nothing different and you still define Asynchronous Gateway the
same way as aregular Gateway.

<i nt:gateway id="mathService"
servi ce-interface="org.springfranmework.integration. sanpl e. gat eway. f ut ures. Mat hSer vi ceGat eway"
def aul t -request - channel ="r equest Channel "/ >

However the Gateway Interface (service-interface) is abit different.

public interface MathServiceGateway {
Future<integer> multiplyByTwo(int i);

}

As you can see from the example above the return type for the gateway method is a Fut ur e. When
Gat ewayPr oxyFact or yBean sees that the return type of the gateway method is a Fut ur e, it
immediately switches to the async mode by utilizing an AsyncTaskExecut or . That isall. The call
to such amethod always returns immediately with a Fut ur e instance. Then, you can interact with the
Fut ur e at your own pace to get the result, cancel, etc. And, as with any other use of Future instances,
calling get() may reveal atimeout, an execution exception, and so on.

Mat hServi ceGat eway mat hServi ce = ac. get Bean(" mat hServi ce", MathServi ceGat eway. cl ass) ;
Future<lnteger> result = mathService. nul tiplyByTwo(numnber);

/1 do sonething el se here since the reply m ght take a nmoment

int final Result = result.get (1000, Ti meUnit.SECONDS);

For a more detailed example, please refer to the async-gateway sample distributed within the Spring
Integration samples.

Spring Integration
2.1.0.M2 Reference Manual 84

Spring Integration

Gateway behavior when no response arrives

As it was explained earlier, the Gateway provides a convenient way of interacting with a Messaging
system via POJO method invocations, but realizing that atypical method invocation, which isgenerally
expected to aways return (even with an Exception), might not always map one-to-one to message
exchanges (e.g., areply message might not arrive - which is equivalent to a method not returning). It is
important to go over several scenarios especialy in the Sync Gateway case and understand the default
behavior of the Gateway and how to deal with these scenariosto make the Sync Gateway behavior more
predictable regardless of the outcome of the message flow that was initialed from such Gateway.

There are certain attributes that could be configured to make Sync Gateway behavior more predictable,
but some of them might not aways work as you might have expected. One of them is reply-timeout.
So, lets look at the reply-timeout attribute and see how it can/can't influence the behavior of the Sync
Gateway in various scenarios. We will ook at single-threaded scenario (all components downstream
are connected via Direct Channel) and multi-threaded scenarios (e.g., somewhere downstream you may
have Pollable or Executor Channel which breaks single-thread boundary)

Long running process downstream

Sync Gateway - single-threaded. If acomponent downstream isstill running (e.g., infinite loop or avery
slow service), then setting areply-timeout has no effect and the Gateway method call will not return until
such downstream service exits (viareturn or exception). Sync Gateway - multi-threaded. If acomponent
downstream is still running (e.g., infinite loop or avery slow service), in amulti-threaded message flow
setting the reply-timeout will have an effect by allowing gateway method invocation to return once the
timeout has been reached, since the Gat ewayPr oxyFact or yBean will smply poll on the reply
channel waiting for a message until the timeout expires. However it could result in a'null’ return from
the Gateway method if the timeout has been reached before the actual reply was produced. It is also
important to understand that the reply message (if produced) will be sent to a reply channel after the
Gateway method invocation might have returned, so you must be aware of that and design your flow
with thisin mind.

Downstream component returns 'null’

Sync Gateway - single-threaded. If a component downstream returns 'null* and no reply-timeout has
been configured, the Gateway method call will hang indefinitely unless: @) a reply-timeout has been
configured or b) the requires-reply attribute has been set on the downstream component (e.g., service-
activator) that might return 'null’. In this case, an Exception would be thrown and propagated to the
Gateway. Sync Gateway - multi-threaded. Behavior is the same as above.

Downstream component return signatureis 'void' while Gateway method signature is non-void

Sync Gateway - single-threaded. If a component downstream returns 'void' and no reply-timeout has
been configured, the Gateway method call will hang indefinitely unless a reply-timeout has been
configured Sync Gateway - multi-threaded Behavior is the same as above.

Downstream component results in Runtime Exception (regardless of the method signature)

Spring Integration
2.1.0.M2 Reference Manual 85

Spring Integration

Sync Gateway - single-threaded. If a component downstream throws a Runtime Exception, such
exception will be propagated via an Error Message back to the gateway and re-thrown. Sync Gateway
- multi-threaded Behavior is the same as above.

! Important

' It is also important to understand that by default reply-timeout is unbounded* which means
that if not explicitly set there are several scenarios (described above) where your Gateway
method invocation might hang indefinitely. So, make sure you analyze your flow and if there
is even aremote possibility of one of these scenarios to occur, set the reply-timeout attribute
to a'safe’ value or, even better, set the requires-reply attribute of the downstream component
to 'true’ to ensure a timely response as produced by the throwing of an Exception as soon as
that downstream component does return null internally. But also, realize that there are some
scenarios (see the very first one) where reply-timeout will not help. That means it is also
important to analyze your message flow and decide when to use a Sync Gateway vsan Async
Gateway. As you've seen the latter case is simply a matter of defining Gateway methods that
return Future instances. Then, you are guaranteed to receive that return value, and you will
have more granular control over the results of the invocation.

Also, when dealing with a Router you should remember that setting the resolution-required
attributeto 'true’ will result in an Exception thrown by therouter if it can not resolve aparticul ar
channel. Likewise, when dealing with a Filter, you can set the throw-exception-on-rejection
attribute. In both of these cases, the resulting flow will behave like that containing a service-
activator with the 'requires-reply' attribute. In other words, it will help to ensure a timely
response from the Gateway method invocation.

Note

* reply-timeout is unbounded for <gateway/> elements (created by the
GatewayProxyFactoryBean). Inbound gateways for external integration (ws, http,
etc.) share many characteristics and attributes with these gateways. However, for
thoseinbound gateways, the default reply-timeout is 1000 milliseconds (1 second). If
adownstream async handoff is made to another thread, you may need to increasethis
attribute to allow enough time for the flow to complete before the gateway times out.

7.3 Service Activator

Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input
channel so that it may play therole of aservice. If the service produces output, it may also be connected
to an output channel. Alternatively, an output producing service may belocated at the end of aprocessing
pipeline or message flow in which case, the inbound M essage's"replyChannel” header can be used. This
is the default behavior if no output channel is defined, and as with most of the configuration options
you'll see here, the same behavior actually applies for most of the other components we have seen.

Spring Integration
2.1.0.M2 Reference Manual 86

Spring Integration

Configuring Service Activator

To create a Service Activator, use the 'service-activator' element with the 'input-channel' and 'ref’
attributes:

<int:service-activator input-channel ="exanpl eChannel" ref="exanpl eHandl er"/>

The configuration above assumesthat "exampleHandler" either contains a single method annotated with
the @ServiceActivator annotation or that it contains only one public method at all. To delegate to an
explicitly defined method of any object, simply add the "method" attribute.

<int:service-activator input-channel ="exanpl eChannel " ref="sonmePoj 0" nethod="sonmeMet hod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the
reply message to an appropriate reply channel. To determine the reply channel, it will first check if an
"output-channel" was provided in the endpoint configuration:

<int:service-activator input-channel ="exanpl eChannel " out put-channel ="repl yChannel "
ref ="somePoj 0" met hod="soneMet hod"/ >

If no "output-channel" is available, it will then check the Message'sr epl yChannel header vaue. If
that value is available, it will then check itstype. If it isaMessageChannel , the reply message will
be sent to that channel. If itisa St r i ng, then the endpoint will attempt to resolve the channel nameto a
channel instance. If the channel cannot be resolved, then a Channel Resol uti onExcepti on will
be thrown. It it can be resolved, the Message will be sent there. This is the technique used for Request
Reply messaging in Spring Integration, and it is aso an example of the Return Address pattern.

The argument in the service method could be either a Message or an arbitrary type. If the latter, then
it will be assumed that it is a Message payload, which will be extracted from the message and injected
into such service method. This is generally the recommended approach as it follows and promotes a
POJO model when working with Spring Integration. Arguments may also have @Header or @Headers
annotations as described in Section B.5, “ Annotation Support”

Note

The service method is not required to have any arguments at all, which means you can
implement event-style Service Activators, where al you care about is an invocation of the
service method, not worrying about the contents of the message. Think of it asaNULL JMS
message. An example use-case for such an implementation could be a simple counter/monitor
of messages deposited on the input channel.

Using a "ref* attribute is generally recommended if the custom Service Activator handler
implementation can be reused in other <ser vi ce- act i vat or > definitions. However if the custom
Service Activator handler implementation is only used within a single definition of the <ser vi ce-
acti vat or >, you can provide an inner bean definition:

<int:service-activator id="exanpl eServiceActivator" input-channel ="i nChannel "
out put - channel = "out Channel " net hod="fo00">
<beans: bean cl ass="org. f 0oo. Exanpl eServi ceActivator"/>
</int:service-activator>

Spring Integration
2.1.0.M2 Reference Manual 87

Spring Integration

Note

Using both the "ref" attribute and an inner handler definition in the same <ser vi ce-
acti vat or > configuration is not alowed, as it creates an ambiguous condition and will
result in an Exception being thrown.

Service Activators and the Spring Expression Language (SoEL)

Since Spring Integration 2.0, Service Activators can aso benefit from SpEL (http://
static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html).

For example, you may now invoke any bean method without pointing to the bean viaar ef attribute
or including it as an inner bean definition. For example:

<int:service-activator input-channel="in" output-channel ="out"
expr essi on="@ccount Servi ce. processAccount (payl oad, headers.accountld)"/>

<bean i d="account Servi ce" cl ass="f o0o. bar. Account"/>

In the above configuration instead of injecting ‘accountService' using ar ef or asan inner bean, we are
simply using SpEL's @eanl d notation and invoking a method which takes a type compatible with
Message payload. We are also passing a header value. As you can see, any valid SpEL expression can
be evaluated against any content in the Message. For simple scenarios your Service Activators do not
even have to reference a bean if all logic can be encapsulated by such an expression.

<i nt:service-activator input-channel="in" output-channel ="out" expressi on="payl oad * 2"/>

In the above configuration our service logic is to simply multiply the payload value by 2, and SpEL
letsus handle it relatively easy.

7.4 Delayer

Introduction

A Delayer isasimple endpoint that allows a Message flow to be delayed by a certain interval. When a
Message is delayed, the original sender will not block. Instead, the delayed M essages will be scheduled
withaninstanceof j ava. uti | . concurrent. Schedul edExecut or Ser vi ce to besent tothe
output channel after the delay has passed. This approach is scalable even for rather long delays, since
it does not result in alarge number of blocked sender Threads. On the contrary, in the typical case a
thread pool will be used for the actual execution of releasing the Messages. Below you will find severa
examples of configuring a Delayer.

Configuring Delayer

The <delayer> element is used to delay the Message flow between two Message Channels. Aswith the
other endpoints, you can provide the "input-channel" and "output-channel" attributes, but the delayer
also requires at least the 'default-delay" attribute with the number of milliseconds that each Message
should be delayed.

<i nt:del ayer input-channel ="input" default-del ay="3000" out put-channel ="out put"/>

Spring Integration
2.1.0.M2 Reference Manual 88

Spring Integration

If you need per-Message determination of the delay, then you can also provide the name of a header
within the 'delay-header-name’ attribute:

<int:del ayer input-channel ="input" output-channel ="out put"
def aul t - del ay="3000" del ay- header - nane="del ay"/>

In the example above the 3 second delay would only apply in the case that the header value isnot present
for agiveninbound Message. If you only want to apply adelay to Messagesthat have an explicit header
value, then you can set the 'default-delay’ to 0. For any Message that has a delay of 0 (or less), the
Message will be sent directly. In fact, if thereis not apositive delay value for aMessage, it will be sent
to the output channel on the calling Thread.

Tip

The delay handler actually supports header values that represent an interval in milliseconds
(any Object whoset oSt ri ng() method produces a value that can be parsed into a Long)
aswell asj ava. uti | . Dat e instances representing an absolute time. In the former case,
the milliseconds will be counted from the current time (e.g. a value of 5000 would delay the
Message for at least 5 seconds from the time it is received by the Delayer). In the latter case,
with an actual Date instance, the Message will not be released until that Date occurs. In either
case, avalue that equates to a non-positive delay, or a Date in the past, will not result in any
delay. Instead, it will be sent directly to the output channel in the original sender's Thread.

The delayer delegates to an instance of Spring's TaskSchedul er abstraction. The default scheduler
used by the delayer isaThr eadPool TaskSchedul er instance with apool size of 1. If you want to
delegate to a different scheduler, you can provide a reference through the delayer element's 'schedul er'
attribute:

<i nt:del ayer input-channel ="input" out put-channel =" out put"”
def aul t - del ay="0" del ay- header - name="del ay"
schedul er =" exanpl eTaskSchedul er "/ >

<t ask: schedul er id="exanpl eTaskSchedul er" pool -size="3"/>

7.5 Scripting support

With Spring Integration 2.1 we've added support for the JSR223 Scripting for Java specification [http://
jcp.org/aboutJavalcommunityprocess/pr/jsr223/], introduced in Java version 6. This allows you to use
scripts written in any supported language including Ruby/JRuby, Javascript and Groovy to provide the
logic for various integration components similar to the way the Spring Expression Language (SpEL)
is used in Spring Integration. For more information about JSR223 please refer to the documentation
[http://java.sun.com/devel oper/technical Articles/ J2SE/Desktop/scripting/]

I mportant

Note that this feature requires Java 6 or higher. Sun developed a JSR223 reference
implementation which works with Java 5 but it is not officially supported and we have not
tested it with Spring Integration.

In order to use aJVM scripting language, a JSR223 implementation for that language must be included
in your class path. Java 6 natively supports Javascript. The Groovy [http://groovy.codehaus.org] and

Spring Integration
2.1.0.M2 Reference Manual 89

http://jcp.org/aboutJava/communityprocess/pr/jsr223/
http://jcp.org/aboutJava/communityprocess/pr/jsr223/
http://jcp.org/aboutJava/communityprocess/pr/jsr223/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://groovy.codehaus.org
http://groovy.codehaus.org

Spring Integration

JRuby [http://jruby.org/] projects provide JSR233 support in their standard distribution. Other language
implementations may be available or under development. Please refer to the appropriate project website
for more information.

! I mportant
' Various JSR223 |anguage implementations have been developed by third parties. A particular
implementation's compatibility with Spring Integration depends on how well it conforms to
the specification and/or the implementer's interpretation of the specification.

Tip

If you plan to use Groovy as your scripting language, we recommended you use Section 7.6,
“Groovy support” as it offers additional features specific to Groovy. However you will find
this section relevant as well.

Script configuration

Depending on the complexity of your integration requirements scripts may be provided inline as
CDATA in XML configuration or as a reference to a Spring resource containing the script. To enable
scripting support Spring Integration definesaScr i pt Execut i ngMessagePr ocessor whichwill
bind the Message Payload to a variable named payl oad and the Message Headers to a header s
variable, both accessible within the script execution context. All that isleft for you to do iswrite ascript
that uses these variables. Below are a couple of sample configurations:

Filter

<int:filter input-channel ="referencedScriptlnput">
<int-script:script |ang="ruby" |ocation="sone/path/to/ruby/script/RubyFilterTests.rb"/>
<fint:filter>

<int:filter input-channel="inlineScriptlnput">
<int-script:script |ang="groovy"><![CDATA]
return payl oad == ' good

]1></int-script:script>
<fint:filter>

Here, you see that the script can be included inline or can reference a resource location via the
| ocat i on attribute. Additionally the | ang attribute corresponds to the language name (or JSR223
alias)

Other Spring Integration endpoint elements which support scripting include router, service-activator,
transformer, and splitter. The scripting configuration in each case would be identical to the above
(besides the endpoint element).

Another useful feature of Scripting support is the ability to update (reload) scripts without having to
restart the Application Context. To accomplish this, specify the r ef r esh- check- del ay attribute
on the script el ement:

<int-script:script location="..." refresh-check-del ay="5000"/>
In the above example, the script location will be checked for updates every 5 seconds. If the script is

updated, any invocation that occurs later than 5 seconds since the update will result in execution of the
new script.

Spring Integration
2.1.0.M2 Reference Manual 90

http://jruby.org/
http://jruby.org/

Spring Integration

<int-script:script location="..." refresh-check-del ay="0"/>

In the above example the context will be updated with any script modifications as soon as such
modification occurs, providing a simple mechanism for 'real-time' configuration. Any negative number
value means the script will not be reloaded after initialization of the application context. This is the
default behavior.

I mportant
Inline scripts can not be reloaded.

<int-script:script location="..." refresh-check-del ay="-1"/>

Script variable bindings

Variable bindings are required to enable the script to reference variables externally provided to the
script's execution context. Aswe have seen, payl oad and header s are used as binding variables by
default. Y ou can bind additional variablesto ascript via<var i abl e> sub-elements:

<script:script lang="js" |ocation="foo/bar/MScript.js">
<script:variabl e name="fo0" val ue="fo00"/>
<script:variabl e name="bar" val ue="bar"/>
<script:variabl e name="date" ref="date"/>
</script:script>
As shown in the above example, you can bind a script variable either to a scalar value or a Spring bean

reference. Note that pay| oad and header s will still be included as binding variables.

If you need more control over how variables are generated, you can implement your own Java class
usingthe Scri pt Vari abl eGener at or strategy:

public interface ScriptVariabl eGenerator {
Map<String, Object> generateScriptVariabl es(Message<?> nessage) ;

}
This interface requires you to implement the method gener at eScr i pt Vari abl es(Message) .
The Message argument allows you to access any data available in the Message payload and
headers and the return value is the Map of bound variables. This method will be called every
time the script is executed for a Message. All you need to do is provide an implementation
of Scri pt Vari abl eGener at or and reference it with the scri pt - vari abl e- gener at or
attribute:

<int-script:script |ocation="foo/bar/MScript.groovy"
script-vari abl e-generat or="vari abl eGenerator"/>

<bean i d="vari abl eGenerator" cl ass="foo. bar. M/Scri pt Vari abl eGenerator"/>

1 I mportant
' You cannot provide both the script-variabl e-generator attribute and
<vari abl e> sub-element(s) asthey are mutually exclusive. Also, custom variable bindings
cannot be used with an inline script.

Spring Integration
2.1.0.M2 Reference Manual 91

Spring Integration

7.6 Groovy support

In Spring Integration 2.0 we added Groovy support allowing you to use the Groovy scripting languageto
providethelogic for variousintegration components similar to the way the Spring Expression Language
(SpEL) is supported for routing, transformation and other integration concerns. For more information
about Groovy please refer to the Groovy documentation which you can find on the project website
[http://groovy.codehaus.org]

Groovy configuration

With Spring Integration 2.1, Groovy Support's configuration namespace is an extension
of Spring Integration's Scripting Support and shares the core configuration and
behavior described in detail in the Section 7.5, *“Scripting support” section. Even
though Groovy scripts are well supported by generic Scripting Support, Groovy
Support provides the Groovy configuration namespace which is backed by the Spring
Framework's or g. spri ngf ramewor k. scri pti ng. groovy. G oovyScri pt Fact ory and
related components, offering extended capabilities for using Groovy. Below are a couple of sample
configurations:

Filter

<int:filter input-channel ="referencedScriptlnput">
<i nt-groovy:script |ocation="some/path/to/groovy/filelGoovyFilterTests.groovy"/>
<fint:filter>

<int:filter input-channel="inlineScriptlnput">
<i nt-groovy: scri pt ><! [CDATA[
return payl oad == ' good'
]1></int-groovy: script>
<fint:filter>

As the above examples show, the configuration looks identical to the general Scripting Support
configuration. The only difference is the use of the Groovy namespace as indicated in the examples by
the int-groovy namespace prefix. Also note that the | ang attribute on the <scri pt > tagis not valid
in this namespace.

Groovy object customization

If you need to customize the Groovy object itself, beyond setting variables, you can reference abean that
implements or g. spri ngf ranmewor k. scri pting. groovy. G oovyQbj ect Cust om zer
viathecust om zer attribute. For example, this might be useful if you want to implement a domain-
specific language (DSL) by modifying the MetaClass and registering functions to be available within
the script:

<int:service-activator input-channel ="groovyChannel ">
<i nt-groovy:script |ocation="foo/ SoneScri pt.groovy" custom zer="groovyCustoni zer"/>
</int:service-activator>

<beans: bean i d="groovyCust om zer" class="org.foo. MyG oovyhj ect Cust oni zer"/>

Spring Integration
2.1.0.M2 Reference Manual 92

http://groovy.codehaus.org
http://groovy.codehaus.org

Spring Integration

Setting a custom GroovyObjectCustomizer isnot mutually exclusive with <var i abl e> sub-elements
orthescri pt-vari abl e- gener at or attribute. It can also be provided when defining an inline
script.

Control Bus

As described in (EIP [http://www.eaipatterns.com/Control Bus.html]), the idea behind the Control Bus
isthat the same messaging system can be used for monitoring and managing the components within the
framework asisused for "application-level" messaging. In Spring I ntegration we build upon the adapters
described above so that it's possible to send M essages as a means of invoking exposed operations. One
option for those operationsis Groovy scripts.

<i nt-groovy: control -bus input-channel =" operati onChannel "/ >

The Control Bus has an input channel that can be accessed for invoking operations on the beans in the
application context.

The Groovy Control Bus executes messages on the input channel as Groovy scripts. It takes a
message, compiles the body to a Script, customizes it with a G- oovyObj ect Cust oni zer, and
then executes it. The Control Bus customizer exposes al the beans in the application context
that are annotated with @vanagedResour ce, implement Spring's Li f ecycl einterface or extend
Spring's Cust oni zabl eThr eadCr eat or base class (e.g. severa of the TaskExecut or and
TaskSchedul er implementations).

If you need to further customize the Groovy objects, you can also provide a reference to a bean that
implements or g. spri ngfranewor k. scri pting. groovy. G oovy(Qbj ect Cust om zer
viathecust oni zer attribute.

<i nt - groovy: control -bus input-channel ="i nput"
out put - channel =" out put "
cust om zer ="groovyCust om zer"/ >

<beans: bean i d="groovyCustom zer" cl ass="org.foo. MyG oovybj ect Cust om zer"/>

Spring Integration
2.1.0.M2 Reference Manual 93

http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/ControlBus.html

Spring Integration

8. System Management

8.1 JMX Support

Spring Integration provides Channel Adapters for receiving and publishing JIMX Notifications. There
isalso an inbound Channel Adapter for polling IMX MBean attribute values, and an outbound Channel
Adapter for invoking IMX MBean operations.

Notification Listening Channel Adapter

The Notification-listening Channel Adapter requires a JM X ObjectName for the MBean that publishes
Notifications to which this listener should be registered. A very simple configuration might look like
this:

<int-jmx:notification-Ilistening-channel -adapter id="adapter"
channel ="channel "
obj ect - nane="exanpl e. domai n: nane=publ i sher"/ >

Tip

The notification-listening-channel-adapter registers with an MBeanServer at startup, and the
default bean nameis"mbeanServer" which happensto be the same bean name generated when
using Spring's <context:mbean-server/> element. If you need to use a different name be sure
to include the "mbean-server" attribute.

The adapter can also accept areferenceto a NotificationFilter and a"handback" Object to provide some
context that is passed back with each Notification. Both of those attributes are optional. Extending the
above exampleto include those attributes aswell as an explicit MBeanServer bean name would produce
the following:

<int-jm:notification-Ilistening-channel -adapter id="adapter"
channel =" channel "
nbean- server ="sonmeSer ver"
obj ect - nane="exanpl e. donai n: nanme=sonePubl i sher"
notification-filter="notificationFilter"
handback="myHandback"/ >

Since the notification-listening adapter is registered with the MBeanServer directly, it is event-driven
and does not require any poller configuration.

Notification Publishing Channel Adapter

The Notification-publishing Channel Adapter isrelatively simple. It only requires a IMX ObjectName
in its configuration as shown below.

<cont ext : nbean: export/>

<int-jnmx:notification-publishing-channel-adapter id="adapter"
channel ="channel "
obj ect - nane="exanpl e. domai n: nane=publ i sher"/>
It does also require that an M BeanExporter be present in the context. That is why the <context:mbean-

export/> element is shown above as well.

Spring Integration
2.1.0.M2 Reference Manual 9

Spring Integration

When Messages are sent to the channel for this adapter, the Notification is created from the Message
content. If the payload isa String it will be passed as the "message" text for the Notification. Any other
payload type will be passed as the "userData" of the Notification.

JMX Notifications also have a "type", and it should be a dot-delimited String. There are two ways
to provide the type. Precedence will always be given to a Message header value associated with the
JmxHeaders.NOTIFICATION_TYPE key. On the other hand, you can rely on a fallback "default-
notification-type" attribute provided in the configuration.

<cont ext : nbean: export/>

<int-jnmx:notification-publishing-channel -adapter id="adapter"
channel ="channel "
obj ect - nane="exanpl e. donai n: nane=publ i sher"
defaul t-notification-type="sone.default.type"/>

Attribute Polling Channel Adapter

The attribute polling adapter is useful when you have arequirement to periodically check on somevalue
that is available through an MBean as a managed attribute. The poller can be configured in the same
way as any other polling adapter in Spring Integration (or it's possible to rely on the default poller).
The"object-name" and "attribute-name" arerequired. An MBeanServer referenceisalso required, but it
will automatically check for abean named "mbeanServer" by default just like the notification-listening-
channel-adapter described above.

<int-jnx:attribute-polling-channel-adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. donai n: nane=soneSer vi ce"
attri but e- name="1nvocati onCount" >
<int:poller max-nessages-per-poll="1" fixed-rate="5000"/>
</int-jm:attribute-polling-channel -adapter>

Operation Invoking Channel Adapter

The oper ation-invoking-channel-adapter enables M essage-driven invocation of any managed operation
exposed by an MBean. Each invocation requires the operation name to be invoked and the ObjectName
of the target MBean. Both of these must be explicitly provided via adapter configuration:

<int-jnx:operation-invoki ng-channel -adapter id="adapter"
obj ect - nane="exanpl e. domai n: name=Test Bean"
oper ati on- nane="pi ng"/ >
Then the adapter only needs to be able to discover the "mbeanServer" bean. If adifferent bean nameis
required, then provide the "mbean-server" attribute with areference.

The payload of the Message will be mapped to the parameters of the operation, if any. A Map-typed
payload with String keys is treated as name/value pairs whereas a List or array would be passed as a
simple argument list (with no explicit parameter names). If the operation requires a single parameter
value, then the payload can represent that single value, and if the operation requires no parameters, then
the payload would be ignored.

Spring Integration
2.1.0.M2 Reference Manual 95

Spring Integration

If you want to expose a channel for a single common operation to be invoked by Messages that need
not contain headers, then that option works well.

Operation Invoking outbound Gateway

Similar to operation-invoking-channel-adapter Spring Integration also provides operation-invoking-
outbound-gateway which could be used when dealing with non-void operations and return value is
required. Such return value will be sent as message payload to the 'reply-channel’ specified by this
Gateway.

<i nt-jnx: operation-invoki ng- out bound- gat eway request-channel ="request Channel "
repl y- channel ="r epl yChannel "
obj ect - nane="or g. spri ngf ramewor k. i nt egrati on. j mx. confi g: t ype=Test Bean, name=t est BeanGat eway"
operation-nanme="test WthReturn"/>

Another way of provideing the 'reply-channel’ is by setting MessageHeader s. REPLY_CHANNEL
M essage Header

MBean Exporter

Spring Integration components themselves may be exposed as MBeans when
the Integrati onMBeanExporter is configured. To create an instance of the
I nt egr ati onMBeanExport er, define a bean and provide a reference to an MBeanServer and
a domain name (if desired). The domain can be left out in which case the default domain is
"org.springframework.integration”.

<i nt -j mx: nbean- exporter default-donmai n="my. conpany. domai n" server="nbeanServer"/>
<bean i d="nbeanServer" cl ass="org. spri ngfranmework.j nmx. support.MeanServer Fact or yBean" >

<property nanme="| ocat eExi sti ngServer|fPossi bl e" val ue="true"/>
</ bean>

Once the exporter is defined start up your application with

- Dcom sun. managenent . j nxr enot e
- Dcom sun. nanagenent . j nxr enot e. port =6969
- Dcom sun. nanagenent . j nxr enot e. ssl =f al se
- Dcom sun. managenent . j nxr enot e. aut hent i cat e=f al se

Then start JConsole (free with the JDK), and connect to the local process on | ocal host : 6969 to
get a look at the management endpoints exposed. (The port and client are just examples to get you
started quickly, there are other IMX clients available and some offer more sophisticated features than
JConsole.)

The MBean exporter is orthogonal to the one provided in Spring core - it registers message channels
and message handlers, but not itself. Y ou can expose the exporter itself, and certain other componentsin
Spring Integration, using the standard <cont ext : mbean- expor t / > tag. The exporter hasacouple
of useful metrics attached to it, for instance a count of the number of active handlers and the number of
gueued messages (these would both be important if you wanted to shutdown the context without losing

any messages).

Spring Integration
2.1.0.M2 Reference Manual 96

Spring Integration

MBean ObjectNames

All the MessageChannel, M essageHandler and M essageSource instancesin the application are wrapped
by the MBean exporter to provide management and monitoring features. For example, MessageChannel
send The generated IMX object names for each component type are listed in the table below

Table 8.1.
Component Type ObjectName
M essageChannel org.springframework.integration:type=M essageChannel ,name=<cl
M essageSource org.springframework.integration:type=M essageSource,name=<ch:
MessageHandler org.springframework.integration:type=M essageSource,name=<chs

The "bean" attribute in the object names for sources and handlers takes one of the values in the table
below

Table 8.2.
Bean Value Description
endpoint The bean name of the enclosing endpoint (e.g.
<service-activator>) if thereisone
anonymous An indication that the enclosing endpoint didn't
have a user-specified bean name, so the IMX
name isthe input channel name
internal For well-known Spring Integration default
components
handler None of the above: fallback tothet oSt ri ng()

of the object being monitored (handler or source)

MessageChannel MBean Features

Message channels report metrics according to their concrete type. If you are looking at a
Di rect Channel you will see statistics for the send operation. If it isa QueueChannel you will
also see statistics for the receive operation. In both cases there are some metrics that are simple counters
(message count and error count), and some that are estimates of averages of interesting quantities. The
algorithms used to calcul ate these estimates are described briefly in the table below:

Table 8.3.
Metric Type Example Algorithm
Count Send Count Simple incrementer. Increase by
one when an event occurs.
Duration Send Duration (method Exponential Moving Average
execution timein milliseconds) with decay factor 10. Average

Spring Integration
2.1.0.M2 Reference Manual 97

Spring Integration

Metric Type Example Algorithm

of the method execution time
over roughly the last 10

measurements.
Rate Send Rate (number of operations Inverse of Exponential Moving
per second) Average of the interval between

events with decay in time
(lapsing over 60 seconds)
and per measurement (last 10

events).
Ratio Send Error Ratio (ratio of errors Estimate the success ratio as the
to total sends) Exponential Moving Average

of the series composed of
values 1 for success and O
for failure (decaying as per the
rate measurement over time and
events). Error ratiois 1 - success
ratio.

A feature of the time-based average estimates is that they decay with time if no new measurements
arrive. To help interpret the behaviour over time, the time (in seconds) since the last measurement is
also exposed as ametric.

There are two basic exponential models: decay per measurement (appropriate for duration and anything
where the number of measurements is part of the metric), and decay per time unit (more suitable for
rate measurements where the time in between measurements is part of the metric). Both models depend
on the fact that

‘S(n) = sun(i=0,i=n) w(i) x(i)
has aspecial formwhenw(i) = r”i,withr =const ant:

‘S(n) = x(n) +r S(n-1)

(soyou only haveto store S(n- 1) , not thewhole seriesx (i) , to generate a new metric estimate from
thelast measurement). The agorithmsused in the duration metricsuser =exp(- 1/ M withM=10. The
net effect isthat the estimate S(n) ismore heavily weighted to recent measurements and is composed
roughly of the last Mmeasurements. So Mis the "window" or lapse rate of the estimate In the case of
the vanillamoving average, i isacounter over the number of measurements. In the case of the rate we
interpret i as the elapsed time, or a combination of elapsed time and a counter (so the metric estimate
contains contributions roughly from the last Mmeasurements and the last T seconds).

8.2 Message History

The key benefit of a messaging architecture is loose coupling where participating components do not
maintain any awareness about one another. This fact alone makes your application extremely flexible,

Spring Integration
2.1.0.M2 Reference Manual 98

Spring Integration

allowing you to change components without affecting the rest of the flow, change messaging routes,
message consuming styles (polling vs event driven), and so on. However, this unassuming style of

architecture could prove to be difficult when things go wrong. When debugging, you would probably

like to get as much information about the message as you can (its origin, channelsit has traversed, etc.)

Message History is one of those patterns that helps by giving you an option to maintain some level
of awareness of a message path either for debugging purposes or to maintain an audit trail. Spring
integration provides a ssimple way to configure your message flows to maintain the Message History
by adding a header to the Message and updating that header every time a message passes through a
tracked component.

Message History Configuration

To enable Message History all you need is to define the nessage- hi story element in your
configuration.

<i nt: message- hi story/>

Now every named component (component that has an 'id' defined) will be tracked. The framework will
set the history' header in your Message. Itsvalueisvery simple- Li st <Properti es>.

<i nt:gateway id="sanpl eGat eway"
service-interface="org. springframework.integration. history. sanpl e. Sanpl eGat eway"
def aul t -request - channel =" bri dgel nChannel "/ >

<int:chain id="sanpl eChai n" input-channel ="chai nChannel " out put - channel ="fi |l t er Channel ">
<i nt: header-enricher>
<i nt:header nane="baz" val ue="baz"/>
</int: header-enricher>
</int: chai n>

The above configuration will produce avery simple Message History structure;

[{nane=sanpl eGat eway, type=gateway, tinestanp=1283281668091},
{nane=sanpl eChai n, type=chain, tinestanp=1283281668094}]

To get access to Message History all you need is access the MessageHistory header. For example:

Iterator<Properties> historylterator =
message. get Header s() . get (MessageHi st ory. HEADER NAME, MessageHi story. class).iterator();
assert True(hi storylterator. hasNext())
Properties gatewayH story = historylterator.next();
assert Equal s("sanpl eGat eway", gatewayHi story. get("nanme"));
assert True(hi storylterator. hasNext())
Properties chainHi story = historylterator. next();
assert Equal s("sanpl eChai n", chai nH story. get ("nane"));

Y ou might not want to track al of the components. To limit the history to certain components based
on their names, all you need is provide thet r acked- conponent s attribute and specify a comma-
delimited list of component names and/or patterns that match the components you want to track.

<i nt: message- hi story tracked-conponent s="*Gat eway, sanple*, foo"/>

In the above example, Message History will only be maintained for all of the components that end with
'‘Gateway', start with 'sasmpl€’, or match the name 'foo' exactly.

Spring Integration
2.1.0.M2 Reference Manual 99

Spring Integration

Note

Remember that by definition the Message History header is immutable (you can't re-write
history, although sometry). Therefore, when writing Message History values, the components
are either creating brand new M essages (when the component isan origin), or they are copying
the history from arequest Message, modifying it and setting the new list on areply Message. In
either case, the values can be appended evenif the M essageitself is crossing thread boundaries.
That meansthat the history values can greatly simplify debugging in an asynchronous message
flow.

8.3 Control Bus

As described in (EIP), the idea behind the Control Bus is that the same messaging system can be used
for monitoring and managing the components within the framework as is used for "application-level"
messaging. |n Spring Integration we build upon the adapters described above so that it's possible to send
M essages as a means of invoking exposed operations.

<i nt:control -bus input-channel ="operati onChannel "/ >

The Control Bus has an input channel that can be accessed for invoking operations on the beans in the
application context. It also has all the common properties of a service activating endpoint, e.g. you can
specify an output channel if the result of the operation has a return value that you want to send on to
a downstream channel.

The Control Bus executes messages on the input channel as Spring Expression Language expressions. It
takesamessage, compilesthe body to an expression, adds some context, and then executesit. Thedefault
context supportsany method that has been annotated with @M anagedA ttribute or @M anagedOperation.
It also supports the methods on Spring's Lifecycle interface, and it supports methods that are used to
configure several of Spring's TaskExecutor and TaskScheduler implementations. The simplest way to
ensure that your own methods are available to the Control Busis to use the @M anagedAttribute and/
or @M anagedOperation annotations. Since those are also used for exposing methods to a IMX MBean
registry, it's a convenient by-product (often the same types of operations you want to expose to the
Control Bus would be reasonable for exposing via IMS). Resolution of any particular instance within
the application context is achieved in the typical SpEL syntax. Simply provide the bean name with the
SpEL prefix for beans (@). For example, to execute a method on a Spring Bean a client could send a
message to the operation channel as follows:

Message operation = MessageBui | der. wi t hPayl oad(" @rySer vi ceBean. shut down()"). bui I d();
oper at i onChannel . send(oper at i on)

Theroot of the context for the expression isthe Message itself, so you a so have accessto the 'payload'
and 'headers asvariableswithin your expression. Thisis consistent with all the other expression support
in Spring Integration endpoints.

Spring Integration
2.1.0.M2 Reference Manual 100

Part IV. Integration Adapters

This section covers the various Channel Adapters and Messaging Gateways provided by Spring
Integration to support Message-based communication with external systems.

Spring Integration

9. AMQP Support

9.1 Introduction

Spring Integration provides Channel Adapters for receiving and sending messages using the Advanced
M essage Queuing Protocol (AMQP). The following adapters are available:

* Inbound Channel Adapter
» Outbound Channel Adapter
* Inbound Gateway

» Outbound Gateway

Spring Integration also provides a point-to-point Message Channel as well as a publish/subscribe
Message Channel backed by AMQP Exchanges and Queues.

In order to provide AMQP support, Spring Integration relies on Spring AMQP (http://
WwWWw.springsource.org/spring-amap) which "applies core Spring concepts to the development
of AMQP-based messaging solutions’. Spring AMQP provides similar semantics as
Spring IM S (http://.../spring-framework-reference.html#ms [http://stati c.springsource.org/spring/docs/
current/spring-framework-reference/htmlsingle/spring-framework-reference.ntml#mg]).

Whereas the provided AMQP Channel Adapters are intended for unidirectional Messaging (send or
receive) only, Spring Integration also provides inbound and outbound AMQP Gateways for request/
reply operations.

Tip
Please familiarize yourself with the reference documentation of the Spring AMQP project as

well. It provides much more in-depth information regarding Spring's integration with AMQP
in general and RabbitMQ in particular.

You can find the documentation at: http://static.springsource.org/spring-amgp/docs/1.0.x/
reference/html/ [http://static.springsource.org/spring-amgp/docs/1.0.x/reference/htmi/]

9.2 Inbound Channel Adapter

A configuration sample for an AMQP Inbound Channel Adapter is shown below with al available
parameters.

<i nt - amgp: i nbound- channel - adapt er i d="i nboundAmgp" O
channel ="i nboundChannel "
queue- nanmes="si . test. queue"
acknow edge- node="AUTO'
advi ce-chai n=""01
channel -transact ed=""0
concurrent-consunmers=""01

connection-factory=""0

Spring Integration
2.1.0.M2 Reference Manual 102

http://www.springsource.org/spring-amqp
http://www.springsource.org/spring-amqp
http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#jms
http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#jms
http://static.springsource.org/spring/docs/current/spring-framework-reference/htmlsingle/spring-framework-reference.html#jms
http://static.springsource.org/spring-amqp/docs/1.0.x/reference/html/
http://static.springsource.org/spring-amqp/docs/1.0.x/reference/html/
http://static.springsource.org/spring-amqp/docs/1.0.x/reference/html/

Spring Integration

O 0o d

~H -
R E

~l -~
EEE

error-channel =""[

expose- | i stener-channel ="" 0O
header - mapper =""

i stener-contai ner=""H4

nessage- converter=""[§

message- properti es-converter=""
phase=""|§

pref et ch- count =" "
recei ve-ti meout =""

recovery-interval =""g
shut down-ti meout ="" &l

t ask-execut or =""Ed
transaction-attribute=""
transacti on- manager =""g4

tx-size=""HEl >

Unique ID for this adapter. Optional.

Message Channel to which converted Messages should be sent. Required.

Names of the AM QP Queues from which Messages should be consumed (comma-separated list).
Required.

Acknowledge Mode for the MessageL istenerContainer. Optional (Defaults to AUTO).

Extra AOP Advice(s) to handle cross cutting behavior associated with this Inbound Channel
Adapter. Optional.

Flag to indicate that channels created by this component will be transactional. Ff true, tells the
framework to use atransactional channel and to end all operations (send or receive) with acommit
or rollback depending on the outcome, with an exception signalling arollback. Optional (Defaults
to false).

Specify the number of concurrent consumers to create. Default is 1. Raising the number of
concurrent consumers is recommended in order to scale the consumption of messages coming in
from a queue. However, note that any ordering guarantees are lost once multiple consumers are
registered. In general, stick with 1 consumer for low-volume queues. Optional.

Bean reference to the RabbitM Q ConnectionFactory. Optional (Defaults to ‘connectionFactory’).
Message Channel to which error Messages should be sent. Optional.

Shall the listener channel (com.rabbitmg.client.Channel) be exposed to a registered
Channel AwareM essagel istener. Optional (Defaults to true).

HeaderMapper to use when receiving AM QP Messages. Optional.

Reference to the SimpleM essagel istenerContainer to use for receiving AMQP Messages. If this
attributeis provided, then no other attributerel ated to the listener container configuration should be
provided. In other words, by setting this reference, you must take full responsibility of the listener
container configuration. The only exception is the MessagelL istener itself. Since that is actually
the core responsibility of this Channel Adapter implementation, the referenced listener container
must NOT aready have its own MessagelL istener configured. Optional.

The MessageConverter to use when receiving AMQP Messages. Optional.

The MessagePropertiesConverter to use when receiving AMQP Messages. Optional.

Specify the phase in which the underlying SimpleM essageL istenerContainer should be started and
stopped. The startup order proceeds from lowest to highest, and the shutdown order isthe reverse
of that. By default thisvalueis Integer. MAX_VALUE meaning that this container starts aslate as
possible and stops as soon as possible. Optional.

Spring Integration

2.1.0.M2 Reference Manual 103

Spring Integration

Tells the AMQP broker how many messages to send to each consumer in a single request. Often
thiscan be set quite high to improvethroughput. It should be greater than or equal to thetransaction
size (see attribute "tx-size"). Optional (Defaultsto 1).

Receive timeout in milliseconds. Optional (Defaults to 1000).

Specifies the interva between recovery attempts of the underlying
SimpleM essagelistenerContainer (in milliseconds). Optional (Defaults to 5000).

The time to wat for workers in milliseconds after the underlying
SimpleM essagelistenerContainer is stopped, and beforethe AMQP connectionisforced closed. If
any workers are active when the shutdown signal comes they will be allowed to finish processing
as long as they can finish within this timeout. Otherwise the connection is closed and messages
remain unacked (if the channel istransactional). Defaultsto 5000 milliseconds. Optional (Defaults
to 5000).

By default, the underlying SimpleMessageL istenerContainer uses a SimpleAsyncTaskExecutor
implementation, that fires up anew Thread for each task, executing it asynchronously. By defaullt,
the number of concurrent threadsisunlimited. NOTE: Thisimplementation does not reuse threads.
Consider athread-pooling TaskExecutor implementation as an alternative. Optional (Defaults to
SmpleAsyncTaskExecutor).

By default the underlying SimpleMessagel istenerContainer creates a new instance of the
DefaultTransactionAttribute (takes the EJB approach to rolling back on runtime, but not checked
exceptions. Optional (Defaults to DefaultTransactionAttribute).

Sets a Bean reference to an externa PlatformTransactionManager on the underlying
SimpleMessageListenerContainer. The transaction manager works in conjunction with the
"channel-transacted” attribute. If there is already a transaction in progress when the framework
is sending or receiving a message, and the channel Transacted flag is true, then the commit or
rollback of the messaging transaction will be deferred until the end of the current transaction. If the
channel Transacted flag is false, then no transaction semantics apply to the messaging operation
(it is auto-acked). For further information see chapter 1.9 of the Spring AMQP reference guide:
http://static.springsource.org/spring-amap/docs/1.0.x/reference/html/#d0e525 Optional.

Tellsthe SimpleM essageL i stenerContainer how many messages to process in asingle transaction
(if the channel istransactional). For best resultsit should be less than or equal to the set "prefetch-
count". Optional (Defaultsto 1).

| mportant

Even though the Spring Integration IMS and AMQP support is very similar, important
differences exist. The IMS Inbound Channel Adapter is using a JmsDestinationPollingSource
under the covers and expects a configured Poller. The AMQP Inbound Channel Adapter on
the other side uses a SimpleM essageL.istenerContainer and is message driven. In that regard
it ismore similar to the IMS Message Driven Channel Adapter.

9.3 Outbound Channel Adapter

A configuration sample for an AMQP Outbound Channel Adapter is shown below with all available
parameters.

<i nt - angp: out bound- channel - adapt er i d="out boundAngp" O

Spring Integration

2.1.0.M2 Reference Manual 104

Spring Integration

channel =" out boundChannel " O

anqgp-t enpl at e="nyAngpTenpl at e" O
exchange- name="""[0
order="1"0

routi ng- key-expressi on=""0/>

Unique ID for this adapter. Optional.

M essage Channel to which Messages should be sent in order to have them converted and published
to an AMQP Exchange. Required.

Bean Reference to the configured AMQP Template Optional (Defaults to "amgpTemplate™).

The name of the AMQP Exchange to which Messages should be sent. If not provided, Messages
will be sent to the default, no-name Exchange. Optional.

The order for this consumer when multiple consumers are registered thereby enabling
load- balancing and/or failover. Optional (Defaults to Ordered. LOWEST PRECEDENCE
[=Integer . MAX_VALUE]).

The fixed routing-key to use when sending Messages. By default, this will be an empty String.
Optional.

The routing-key to use when sending Messages evaluated as an expression on the message (e.g.
'payload.key"). By default, thiswill be an empty String. Optional.

9.4 Inbound Gateway

A configuration sample for an AMQP Inbound Gateway is shown below with all available parameters.

|

<i nt - angp: i nbound- gat eway i d="i nboundGat eway" O

request - channel =" nyRequest Channel " O
queue- nanmes="si . test. queue"

advi ce-chai n=""0
concurrent-consuners="1"0

connecti on-factory="connecti onFactory"[
repl y- channel =" myRepl yChannel " 0O/ >

Unique ID for this adapter. Optional.

Message Channel to which converted Messages should be sent. Required.

Names of the AMQP Queues from which Messages should be consumed (comma-separated list).
Required.

Extra AOP Advice(s) to handle cross cutting behavior associated with this Inbound Gateway.
Optional.

Specify the number of concurrent consumers to create. Default is 1. Raising the number of
concurrent consumers is recommended in order to scale the consumption of messages coming in
from a queue. However, note that any ordering guarantees are lost once multiple consumers are
registered. In general, stick with 1 consumer for low-volume queues. Optional (Defaultsto 1).
Bean reference to the RabbitMQ ConnectionFactory. Optional (Defaults to 'connectionFactory').
Message Channel where reply Messages will be expected. Optional.

Spring Integration

2.1.0.M2 Reference Manual 105

Spring Integration

9.5 Outbound Gateway

A configuration samplefor an AMQP Outbound Gateway is shown below with all available parameters.

<i nt - angp: out bound- gat eway i d="i nboundGat eway" [
request - channel =" nyRequest Channel " [
anmgp-tenpl ate=""01
exchange- name=""0
order="1"0
repl y-channel ="" 0O
routing-key=""0
routing- key- expressi on=""0/>

00 Unique D for this adapter. Optional.

[0 Message Channel to which Messages should be sent in order to have them converted and published
to an AMQP Exchange. Required.

[0 Bean Reference to the configured AMQP Template Optional (Defaultsto "amgpTemplate™).

00 The name of the AMQP Exchange to which Messages should be sent. If not provided, Messages
will be sent to the default, no-name Exchange. Optional.

O The order for this consumer when multiple consumers are registered thereby enabling
load- balancing and/or failover. Optional (Defaults to Ordered. LOWEST PRECEDENCE
[=Integer . MAX_VALUE]).

0 Message Channel to which replies should be sent after being received from an AQMP Queue and
converted. Optional.

[0 Therouting-key to use when sending Messages. By default, thiswill be an empty String. Optional.

0 Therouting-key to use when sending Messages eveal uated as an expression on the message (e.g.
'‘payload.key"). By default, thiswill be an empty String. Optional.

9.6 AMQP Backed Message Channels

There are two Message Channel implementations available. One is point-to-point, and the other is
publish/subscribe. Both of these channels provide a wide range of configuration attributes for the
underlying AmgpTemplate and SimpleMessagel istenerContainer as you have seen on the Channel
Adapters and Gateways. However, the examples well show here are going to have minimal
configuration. Explore the XML schemato view the available attributes.

A point-to-point channel would look like this:

<i nt - angp: channel id="p2pChannel "/>

Under the covers a Queue named "si.p2pChannel” would be declared, and this channel will send to that
Queue (technically by sending to the no-name Direct Exchange with a routing key that matches this
Queue's name). This channel will also register aconsumer on that Queue. If for some reason, you want
the Queue to be "pollable” instead of message-driven, then simply provide the "message-driven” flag
with avalue of false:

<i nt - angp: channel id="p2pPol | abl eChannel " message-driven="fal se"/>

Spring Integration
2.1.0.M2 Reference Manual 106

Spring Integration

A publish/subscribe channel would look like this:

<i nt - angp: publ i sh-subscri be- channel i d="pubSubChannel "/>

Under the covers a Fanout Exchange named "si.fanout.pubSubChannel” would be declared, and this
channel will send to that Fanout Exchange. This channel will also declare a server-named exclusive,
autodelete, non-durable Queue and bind that to the Fanout Exchange while registering a consumer on
that Queue to receive Messages. Thereis no "pollable” option for a publish-subscribe-channel; it must
be message-driven.

9.7 AMQP Samples

To experiment with the AMQP adapters, check out the samples available in the Spring Integration
Samples Git repository at:

* https://github.com/spring-integration-samples/basic/amgp [https://github.com/spring-integration-
samples/basic/lamqp]

Currently thereisone sampleavailablethat demonstratesthe basi c functionality of the Spring Integration
AMQP Adapter using an Outbound Channel Adapter and an Inbound Channel Adapter. As AMQP
Broker implementation the sample uses RabbitMQ (http://www.rabbitmg.com/).

Note

In order to run the example you will need arunning instance of RabbitMQ. A local installation
with just the basic defaults will be sufficient. For detailed RabbitMQ installation procedures
please visit: http://www.rabbitmg.com/install.html [http://www.rabbitmg.com/install.html]

Once the sample application is started, you enter some text on the command prompt and a message
containing that entered text is dispatched to the AMQP queue. In return that message is retrieved via
Spring Integration and then printed to the console.

The image belows illustrates the basic set of Sprign Integration components used in this sample.

consaleDut

— —

] =] =]

consoleln toRabbit fromRabbit
e —— “ H

loggingChannel

The Spring Integration graph of the AMQP sample

Spring Integration
2.1.0.M2 Reference Manual 107

https://github.com/spring-integration-samples/basic/amqp
https://github.com/spring-integration-samples/basic/amqp
https://github.com/spring-integration-samples/basic/amqp
http://www.rabbitmq.com/
http://www.rabbitmq.com/install.html
http://www.rabbitmq.com/install.html

Spring Integration

10. Spring ApplicationEvent Support

Spring Integration provides support for inbound and outbound Appl i cati onEvent s as defined
by the underlying Spring Framework. For more information about Spring's support for events
and listeners, refer to the Spring Reference Manual [http://static.springsource.org/spring/docs/2.5.x/
reference/beans.html#context-functionality-events].

10.1 Receiving Spring ApplicationEvents

To receive events and send them to a channel, simply define an instance of Spring Integration's
Appl i cati onEvent Li st eni ngMessagePr oducer. This class is an implementation of
Spring's Appl i cati onLi st ener interface. By default it will pass all received events as Spring
Integration Messages. To limit based on the type of event, configure thelist of event typesthat you want
to receive with the 'eventTypes property. If areceived event has a Message instance asits 'source’, then
that will be passed as-is. Otherwise, if a SpEL-based " payloadExpression” has been provided, that will
be evaluated agai nst the ApplicationEvent instance. If the event's sourceisnot aMessageinstance and no
"payloadExpression” has been provided, then the ApplicationEvent itself will be passed as the payload.

For convenience namespace support is provided to configure an
Appl i cati onEvent Li st eni ngMessagePr oducer viatheinbound-channel-adapter element.

<i nt - event: i nbound- channel - adapt er channel =" event Channel "
error-channel =" event Err or Channel "
event -t ypes="exanpl e. FooEvent, exanpl e. Bar Event"/>

<i nt: publish-subscribe-channel id="eventChannel"/>

In the above example, al Application Context events that match one of the types specified by the
‘event-types (optional) attribute will be ddivered as Spring Integration Messages to the Message
Channel named 'eventChannel’. If adownstream component throws an exception, aM essagingException
containing the failed message and exception will be sent to the channel named ‘eventErrorChannel'. If
no "error-channel” is specified and the downstream channels are synchronous, the Exception will be
propagated to the caller.

10.2 Sending Spring ApplicationEvents

To send Spring Appl i cationEvents, create an instance of the
Appl i cati onEvent Publ i shi ngMessageHandl er and register it within an endpoint.
This implementation of the MessageHandl er interface aso implements Spring's
Appl i cat i onEvent Publ i sher Awar e interface and thus acts as a bridge between Spring
Integration Messages and Appl i cat i onEvent s.

For convenience namespace support is provided to configure an
Appl i cati onEvent Publ i shi ngMessageHandl er via the outbound-channel-adapter
element.

<i nt:channel id="event Channel"/>

Spring Integration
2.1.0.M2 Reference Manual 108

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

Spring Integration

<i nt - event : out bound- channel - adapt er channel =" event Channel "/ >

If you are using a PollableChannel (e.g., Queue), you can also provide poller as a sub-element of the
outbound-channel-adapter element. Y ou can also optionally provide a task-executor reference for that
poller. The following example demonstrates both.

<int:channel id="event Channel ">
<i nt:queue/ >
</i nt:channel >

<i nt - event: out bound- channel - adapt er channel =" event Channel ">
<int:poller max-nmessages-per-poll="1" task-executor="executor" fixed-rate="100"/>

</int-event: out bound- channel - adapt er >

<t ask: execut or id="executor" pool -size="5"/>

In the above example, all messages sent to the 'eventChannel’ channel will be published as
ApplicationEvents to any relevant ApplicationListener instances that are registered within the same
Spring ApplicationContext. If the payload of the Message is an ApplicationEvent, it will be passed as-
is. Otherwise the Message itself will be wrapped in a MessagingEvent instance.

Spring Integration
2.1.0.M2 Reference Manual 109

Spring Integration

11. Feed Adapter

Spring Integration provides support for Syndication via Feed Adapters

11.1 Introduction

Web syndication is a form of publishing material such as news stories, press releases, blog posts, and
other items typically available on a website but also made available in a feed format such as RSS or
ATOM.

Spring integration provides support for Web Syndication viaits 'feed’ adapter and provides convenient
namespace-based configuration for it. To configurethe ‘feed' namespace, includethefollowing elements
within the headers of your XML configuration file:

xm ns:int-feed="http://wwm. springframework. org/ schema/integration/feed"
Xsi : schemaLocati on="htt p://ww. spri ngfranmework. org/ schema/i nt egration/feed
http://ww. springframework. org/ schema/ i ntegration/feed/spring-integration-feed-2.0.xsd"

11.2 Feed Inbound Channel Adapter

The only adapter that is really needed to provide support for retrieving feeds is an inbound channel
adapter. This allows you to subscribe to a particular URL. Below is an example configuration:

<i nt - feed: i nbound- channel - adapt er i d="feedAdapter"
channel =" f eedChannel "
url ="http://feeds. bbci.co. uk/news/rss.xm ">
<int:poller fixed-rate="10000" max-nessages- per-poll="100" />
</int-feed:inbound-channel - adapt er >

In the above configuration, we are subscribing to a URL identified by theur | attribute.

As news items are retrieved they will be converted to Messages and sent to a
channel identified by the channel attribute. The payload of each message will be a
com sun. syndi cati on. f eed. synd. SyndEnt ry instance. That encapsulates various data
about a news item (content, dates, authors, etc.).

You can aso see that the Inbound Feed Channel Adapter is a Polling Consumer. That means
you have to provide a poller configuration. However, one important thing you must understand
with regard to Feeds is that its inner-workings are dightly different then most other poling
consumers. When an Inbound Feed adapter is started, it does the first poll and receives
a com sun. syndi cati on. f eed. synd. SyndEnt r yFeed instance. That is an object that
contains multiple SyndEnt r y objects. Each entry is stored in the local entry queue and is released
based on the valuein the max- nessages- per - pol | attribute such that each Message will contain
asingle entry. If during retrieval of the entries from the entry queue the queue had become empty, the
adapter will attempt to update the Feed thereby populating the queue with more entries (SyndEntry
instances) if available. Otherwise the next attempt to poll for a feed will be determined by the trigger
of the poller (e.g., every 10 seconds in the above configuration).

Duplicate Entries

Spring Integration
2.1.0.M2 Reference Manual 110

Spring Integration

Polling for aFeed might result in entriesthat have already been processed ("I already read that newsitem,
why areyou showing it to meagain?'). Spring Integration providesaconvenient mechanismto eliminate
the need to worry about duplicate entries. Each feed entry will have a published date field. Every time
a new Message is generated and sent, Spring Integration will store the value of the latest published
date in an instance of the or g. spri ngf ranewor k. i nt egrati on. st ore. Met adat aSt ore
strategy. The MetadataStore interface is designed to store various types of generic meta-data (e.g.,
published date of the last feed entry that has been processed) to help components such as this Feed
adapter deal with duplicates.

The default rule for locating this metadata store is as follows: Spring Integration will look for
a bean of type org. springfranework.integration. store. Met adat aSt ore in the
ApplicationContext. If one is found then it will be used, otherwise it will create a new instance of
Si mpl eMet adat aSt or e which is an in-memory implementation that will only persist metadata
within the lifecycle of the currently running Application Context. This means that upon restart you may
end up with duplicate entries. If you need to persist metadata between Application Context restarts,
you may use the Pr operti esPersi stingMet adat aSt or e which is backed by a properties
file and a properties-persister. Alternatively, you could provide your own implementation of the
Met adat aSt or e interface (e.g. JdbcMetadataStore) and configure it as bean in the Application
Context.

<bean i d="net adat aSt ore"
cl ass="org. spri ngframework.integration.store. PropertiesPersistingMetadataStore"/>

Spring Integration
2.1.0.M2 Reference Manual 111

Spring Integration

12. File Support

12.1 Introduction

Spring Integration's File support extends the Spring I ntegration Core with adedicated vocabulary to deal
with reading, writing, and transforming files. It provides a namespace that enables elements defining
Channel Adapters dedicated to files and support for Transformersthat can read file contentsinto strings
or byte arrays.

This section will explain the workings of Fil eReadi ngMessageSource and
Fil eWitingMessageHandl er and how to configure them as beans. Also the support for dealing
with files through file specific implementations of Tr ansf or mer will be discussed. Finaly the file
specific namespace will be explained.

12.2 Reading Files

A Fi | eReadi ngMessageSour ce can be used to consume files from the filesystem. This is an
implementation of MessageSour ce that creates messages from afile system directory.

<bean i d="pol | abl eFi | eSour ce"
cl ass="org. springframework.integration.file.FileReadi ngMessageSource"
p:inputDirectory="${input.directory}"/>

To prevent creating messages for certain files, you may supply aFi | eLi st Fi | t er . By default, an
Accept OnceFi | eLi st Fi | t er isused. Thisfilter ensures files are picked up only once from the
directory.

<bean i d="pol | abl eFi | eSour ce"
class="org. springframework.integration.file.FileReadi ngMessageSource"
p:inputDirectory="${input.directory}"
p:filter-ref="custonFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default
Accept OnceFi | eLi st Fi | t er doesnot prevent this. In most cases, thiscan be prevented if thefile-
writing process renames each file as soon asit isready for reading. A filename-pattern or filename-regex
filter that accepts only files that are ready (e.g. based on a known suffix), composed with the default
Accept OnceFi | eLi st Fi | t er allowsforthis. TheConposi t eFi | eLi st Fi | t er enablesthe
composition.

<bean i d="pol | abl eFi | eSour ce"
cl ass="org. springframework.integration.file.FileReadi ngMessageSour ce"
p:inputDirectory="${input.directory}"”
p:filter-ref="conpositeFilter"/>
<bean i d="conpositeFilter"
class="org.springframework.integration.file.filters. ConpositeFileListFilter">
<constructor-arg>
<list>
<bean cl ass="org. springframework.integration.file.filters.AcceptOnceFileListFilter"/>
<bean cl ass="org.springframework.integration.file.filters. RegexPatternFileListFilter">
<constructor-arg val ue=""test.*$"/>
</ bean>

Spring Integration
2.1.0.M2 Reference Manual 112

Spring Integration

</list>
</ constructor-arg>
</ bean>

The configuration can be simplified using the file specific namespace. To do this use the following
template.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww. springfranmework. org/ schema/integration"
xmns:int-file="http://ww. springfranmework. org/schema/integration/file"
Xsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration-2.0.xsd
http://ww. springfranewor k. org/ schema/integration/file
http://ww. springfranmework. org/schema/integration/file/spring-integration-file-2.0.xsd">
</ beans>

Within this namespace you can reduce the FileReadingMessageSource and wrap it in an inbound
Channel Adapter like this:

<int-file:inbound-channel -adapter id="fileslnl"
directory="file:${input.directory}" prevent-duplicates="true"/>

<int-file:inbound-channel -adapter id="filesln2"
directory="file: ${input.directory}"
filter="custonFilterBean" />

<int-file:inbound-channel -adapter id="filesln3"
directory="file: ${input.directory}"
fil ename-pattern="test*" />

<int-file:inbound-channel -adapter id="filesln4"
directory="file:${input.directory}"
filenane-regex="test[0-9]+\ .txt" />

The first channel adapter is relying on the default filter that just prevents duplication, the second is
using a custom filter, the third is using the filename-pattern attribute to add an Ant Pat hMat cher
based filter, and the fourth is using the filename-regex attribute to add a regular expression Pattern based
filter to the Fi | eReadi ngMessageSour ce. The filename-pattern and filename-regex attributes
are each mutually exclusive with the regular filter reference attribute. However, you can use the filter
attribute to reference an instance of Conposi t eFi | eLi st Fi | t er that combines any number of
filters, including one or more pattern based filters to fit your particular needs.

When multiple processes are reading from the same directory it can be desirable to lock filesto prevent
them from being picked up concurrently. To do thisyou can usea Fi | eLocker . Thereisajavanio
based implementation available out of the box, but it is also possible to implement your own locking
scheme. The nio locker can be injected as follows

<int-file:inbound-channel -adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true">
<int-file:nio-|locker/>
</int-file:inbound-channel -adapter>

Spring Integration
2.1.0.M2 Reference Manual 113

Spring Integration

A custom locker you can configure like this:

<int-file:inbound-channel -adapter id="filesln"
directory="file:${input.directory}" prevent-duplicates="true">
<int-file:locker ref="custonlLocker"/>
</int-file:inbound-channel -adapter>

Note

When afileinbound adapter isconfigured with alocker, it will take the responsibility to acquire
alock beforethefileisalowedto bereceived. It will not assumetheresponsibility to unlock
the file. If you have processed the file and keeping the locks hanging around you have a
memory leak. If thisis a problem in your case you should call FileLocker.unlock(File file)
yourself at the appropriate time.

When filtering and locking files is not enough it might be needed to control the way files
are listed entirely. To implement this type of requirement you can use an implementation of
Di r ect or yScanner . This scanner alows you to determine entirely what files are listed each poll.
This is also the interface that Spring Integration uses internally to wire FileListFilters FileLocker to
the FileReadingM essageSource. A custom DirectoryScanner can be injected into the <int-filezinbound-
channel-adapter/> on the scanner attribute.

<int-file:inbound-channel-adapter id="filesln" directory="file:${input.directory}"
prevent - dupl i cat es="true" scanner="custonDi rect oryScanner"/>

This gives you full freedom to choose the ordering, listing and locking strategies.

12.3 Writing files

To write messages to the file system you can use a Fil eWitingMessageHandl er.
This class can deal with File, String, or byte array payloads. In its simplest form the
FileWitingMessageHandl er only requires a destination directory for writing the files.
The name of the file to be written is determined by the handler's Fi | eNanmeGener at or. The
default implementation looks for a Message header whose key matches the constant defined as
Fi | eHeader s. FI LENAME.

Additionally, you can configurethe encoding and the charset that will be used in case of a String payload.

Tomakethingseasier you can configure the FileWritingM essageHandl er as part of an outbound channel
adapter using the namespace.

<int-file:outbound-channel -adapter id="filesQut" directory="${input.directory.property}"/>

The namespace based configuration also supports a del et e- sour ce-fi | es attribute. If set to
t r ue, it will trigger deletion of the original source files after writing to a destination. The default value
for that flag isf al se.

<int-file:outbound-channel -adapter id="filesQut"
directory="${output.directory}"
del ete-source-fil es="true"/>

Spring Integration
2.1.0.M2 Reference Manual 114

Spring Integration

Note

Thedel et e- sour ce-fi | es attributewill only have an effect if theinbound Message has
aFilepayload or if theFi | eHeader s. ORI G NAL_FI LE header value contains either the
source File instance or a String representing the original file path.

In cases where you want to continue processing messages based on the written File you can use the
out bound- gat eway instead. It playsavery similar role asthe out bound- channel - adapt er .
However after writing the File, it will also send it to the reply channel as the payload of a Message.

<int-file:outbound-gateway id="nover" request-channel ="novel nput"
repl y- channel =" out put "
directory="${output.directory}"
del ete-source-fil es="true"/>

Note

The 'outbound-gateway' works well in cases where you want to first move a file and then
send it through a processing pipeline. In such cases, you may connect the file namespace's
‘inbound-channel -adapter’ element to the 'outbound-gateway' and then connect that gateway's
reply-channel to the beginning of the pipeline.

If you have more elaborate requirements or need to support additional payload types as input to be
converted to file content you could extend the FileWritingM essageHandler, but a much better option
istorely onaTr ansf or ner .

12.4 File Transformers

To transform data read from the file system to objects and the other way around you
need to do some work. Contrary to Fi | eReadi ngMessageSource and to a lesser extent
FileWitingMessageHandl er, it is very likely that you will need your own mechanism
to get the job done. For this you can implement the Tr ansf or mer interface. Or extend the
Abstract Fi | ePayl oadTr ansf or mer for inbound messages. Some obvious implementations
have been provided.

Fi | eToByt eArrayTransf or mer transformsFilesinto byte[]susing Spring'sFi | eCopyUti | s.
It is often better to use a sequence of transformers than to put all transformations in a single class. In
that case the Fileto byte[] conversion might be alogical first step.

Fil eToSt ri ngTransf or mer will convert Files to Strings as the name suggests. If nothing else,
this can be useful for debugging (consider using with aWire Tap).

To configure File specific transformers you can use the appropriate elements from the file namespace.

<int-file:file-to-bytes-transformer input-channel="input" output-channel ="out put"
delete-files="true"/>

<int-file:file-to-string-transformer input-channel="input" output-channel ="out put"
del ete-files="true" charset="UTF-8"/>

The delete-files option signas to the transformer that it should delete the inbound File
after the transformation is complete. This is in no way a replacement for using the

Spring Integration
2.1.0.M2 Reference Manual 115

Spring Integration

Accept OnceFi | eLi st Fi | t er when the FileReadingMessageSource is being used in a multi-
threaded environment (e.g. Spring Integration in general).

Spring Integration
2.1.0.M2 Reference Manual 116

Spring Integration

13. FTP/FTPS Adapters

Spring Integration provides support for file transfer operations via FTP and FTPS.

13.1 Introduction

TheFileTransfer Protocol (FTP) isasimple network protocol which allowsyouto transfer files between
two computers on the Internet.

There are two actors when it comes to FTP communication: client and server. To transfer files with
FTP/FTPS, you use a client which initiates a connection to a remote computer that is running an FTP
server. After the connection is established, the client can choose to send and/or receive copies of files.

Spring Integration supports sending and receiving files over FTP/FTPS by providing three client side
endpoints: Inbound Channel Adapter, Outbound Channel Adapter, and Outbound Gateway. It also
provides convenient namespace-based configuration options for defining these client components.

To use the FTP namespace, add the following to the header of your XML file:

xmns:int-ftp="http://ww.springframework. org/schenma/integration/ftp"
xsi : schemaLocati on="http://ww. spri ngframewor k. org/ schena/ i ntegration/ftp
http://ww. springframework. org/ schema/integration/ftp/spring-integration-ftp-2.0.xsd"

13.2 FTP Session Factory

Before configuring FTP adapters you must configure an FTP Session Factory. You can configure
the FTP Session Factory with a regular bean definition where the implementation class is
org. springframework.integration.ftp.session. DefaultFtpSessi onFactory:
Below is abasic configuration:

<bean id="ftpCientFactory"
cl ass="org. springframework.integration.ftp.session. Defaul tFtpSessi onFactory">
<property name="host" val ue="I| ocal host"/>
<property name="port" val ue="22"/>
<property nanme="usernane" val ue="kermt"/>
<property nanme="password" val ue="frog"/>
<property nanme="cli ent Mode" val ue="0"/>
<property name="fil eType" val ue="2"/>
<property name="bufferSize" val ue="100000"/>
</ bean>

For FTPS connections all you need to do is use
org. springframework.integration.ftp.session. DefaultFt psSessi onFactory
instead. Below is the compl ete configuration sample:

<bean id="ftpCdientFactory"
cl ass="org. springframework.integration.ftp.client.DefaultFtpsdientFactory">
<property name="host" val ue="I| ocal host"/>
<property name="port" val ue="22"/>
<property nanme="usernane" val ue="ol eg"/>
<property nanme="password" val ue="password"/>

<property nanme="cli ent Mode" val ue="1"/>

Spring Integration
2.1.0.M2 Reference Manual 117

Spring Integration

<property name="fil eType" val ue="2"/>
<property nanme="useC i ent Mode" val ue="true"/>
<property nanme="ci pherSuites" value="a, b.c"/>
<property nanme="keyManager" ref="keyManager"/>
<property name="protocol" val ue="SSL"/>
<property nanme="trust Manager" ref="trust Manager"/>
<property name="prot" val ue="P"/>
<property nanme="needC i ent Auth" val ue="true"/>
<property nanme="aut hVal ue" val ue="ol eg"/>
<property nanme="sessi onCreation" val ue="true"/>
<property nanme="protocol s" val ue="SSL, TLS"'/>
<property name="inplicit" value="true"/>

</ bean>

Every time an adapter requests a session object from its Sessi onFact or y the session is returned
from a session pool maintained by a caching wrapper around the factory. A Session in the session pool
might go stale (if it has been disconnected by the server due to inactivity) so the Sessi onFact ory
will perform validation to make sure that it never returns a stale session to the adapter. If astale session
was encountered, it will be removed from the pool, and a new one will be created.

Note

If you experience connectivity problems and would like to trace Session creation as well as
see which Sessions are polled you may enable it by setting the logger to TRACE level (e.g.,
log4j .category.org.springframework.integration.file=TRACE)

Now all you need to do isinject these session factories into your adapters. Obviously the protocol (FTP
or FTPS) that an adapter will use depends on the type of session factory that has been injected into
the adapter.

Note

A more practical way to provide values for FTP/FTPS Session Factories is by using
Spring's property placeholder support (See: http://static.springsource.org/spring/docs/3.0.x/
spring-framework-reference/html/beans.html#beans-factory-placehol derconfigurer).

13.3 FTP Inbound Channel Adapter

The FTP Inbound Channel Adapter is a specia listener that will connect to the FTP server and will
listen for the remote directory events (e.g., new file created) at which point it will initiate afile transfer.

<int-ftp:inbound-channel -adapter id="ftplnbound"
channel ="ft pChannel "
sessi on-factory="ft pSessi onFact ory"
char set =" UTF- 8"
aut o-create-local -directory="true"
del ete-renote-files="true"
fil ename-pattern="*.txt"
renot e-di rect ory="some/ r enot e/ pat h"
remote-fil e-separator="/"
| ocal -directory=".">
<int:poller fixed-rate="1000"/>
</int-ftp:inbound-channel - adapt er >

Asyou can see from the configuration above you can configure an FTP Inbound Channel Adapter via
thei nbound- channel - adapt er element whilealso providing valuesfor various attributes such as

Spring Integration
2.1.0.M2 Reference Manual 118

Spring Integration

| ocal -directory,fil enanme- patt er n (whichisbased onsimple pattern matching, not regular
expressions), and of course the referenceto asessi on-factory.

Some times file filtering based on the simple pattern specified viafi | enane- patt er n attribute
might not be sufficient. If thisis the case, you can usethef i | ename- r egex attribute to specify a
Regular Expression (e.g. fi | enanme-regex=".*\.test $"). And of courseif you need complete
control you can use fil ter attribute and provide a reference to any custom implementation of
theor g. springframework.integration.file.filters.FileListFilter,astrategy
interface for filtering alist of files.

Note

As of Spring Integration 2.0.2, we have added a 'remote-file-separator' attribute. That alows
you to configure a file separator character to use if the default '/' is not applicable for your
particular environment.

Please refer to the schemafor more details on these attributes.

It is aso important to understand that the FTP Inbound Channel Adapter is a Polling Consumer and
therefore you must configure a poller (either via a global default or alocal sub-element). Once afile
has been transferred, a Message with aj ava. i 0. Fi | e asits payload will be generated and sent to
the channel identified by the channel attribute.

More on File Filtering and Large Files

Some times the file that just appeared in the monitored (remote) directory is not complete. Typically
such afile will be written with temporary extension (e.g., foo.txt.writing) and then renamed after the
writing process finished. As a user in most cases you are only interested in files that are complete and
would like to filter only files that are complete. To handle these scenarios you can use the filtering
support provided by thef i | enanme-pattern,fil enane-regex andfil ter attributes. Hereis
an example that uses a custom Filter implementation.

<int-ftp:inbound-channel - adapt er
channel ="ft pChannel "
session-factory="ftpSessi onFact ory"
filter="custonFilter"
local -directory="file:/ny_transfers">
renot e- di r ect or y="son®/ r enot e/ pat h"
<int:poller fixed-rate="1000"/>
</int-ftp:inbound-channel - adapt er >

<bean id="custonFilter" class="org.exanple.CustonFilter"/>

Paller configuration notes for the inbound FTP adapter

Thejob of theinbound FTP adapter consists of two tasks: 1) Communicate with a remote server in order
to transfer files from a remote directory to a local directory. 2) For each transferred file, generate a
Message with that file as a payload and send it to the channel identified by the 'channel attribute. That
iswhy they are called 'channel-adapters' rather than just 'adapters. The main job of such an adapter is
to generate a Message to be sent to a Message Channel. Essentially, the second task mentioned above
takes precedence in such away that *IF* your local directory already has one or more filesit will first

Spring Integration
2.1.0.M2 Reference Manual 119

Spring Integration

generate Messages from those, and *ONLY* when all local files have been processed, will it initiate
the remote communication to retrieve more files.

Also, when configuring atrigger on the poller you should pay close attention to the max- nessages-

per - pol | attribute. Its default value is 1 for al Sour cePol | i ngChannel Adapt er instances
(including FTP). This means that as soon as one file is processed, it will wait for the next execution
time as determined by your trigger configuration. If you happened to have one or more files sitting in
thel ocal - di rect ory, it would process those files before it would initiate communication with the
remote FTP server. And, if the max- messages- per - pol | were set to 1 (default), then it would
be processing only one file at a time with intervals as defined by your trigger, essentially working as
one-poll = one-file.

For typical file-transfer use cases, you most likely want the opposite behavior: to process al the files
you can for each poll and only then wait for the next poll. If that isthe case, set max- nessages- per -
pol | to-1. Then, on each poll, the adapter will attempt to generate as many Messages as it possibly
can. In other words, it will process everything in the local directory, and then it will connect to the
remote directory to transfer everything that is available there to be processed locally. Only then is the
poll operation considered complete, and the poller will wait for the next execution time.

You can aternatively set the 'max-messages-per-poll’ value to a positive value indicating the upward
limit of Messages to be created from fileswith each poll. For example, avalue of 10 meansthat on each
poll it will attempt to process no more than 10 files.

13.4 FTP Outbound Channel Adapter

The FTP Outbound Channel Adapter relies upon a MessageHandl er implementation that will
connect to the FTP server and initiate an FTP transfer for every file it receives in the payload of
incoming Messages. It also supports several representations of the File so you are not limited only to
javaio.File typed payloads. The FTP Outbound Channel Adapter supports the following payloads: 1)
java.io. Fi | e -theactual fileobject; 2) byt e[] - abytearray that representsthe file contents; and
3)j ava. |l ang. Stri ng - text that represents the file contents.

<int-ftp:outbound-channel - adapter id="ftpQutbound"
channel ="ft pChannel "
sessi on-factory="ft pSessi onFact ory"
char set =" UTF- 8"
remote-fil e-separator="/"
fil ename-generator="fil eNaneGenerator"/>

As you can see from the configuration above you can configure an FTP Outbound
Channel Adapter via the out bound-channel - adapter eement while aso providing
values for various attributes such as fil ename- generator (an implementation of the
org.springframework. i ntegration.file.FileNameGenerator strategy interface), a
referenceto acli ent - fact ory, as well as other attributes. Please refer to the schema for more
details on the available attributes.

Note

By default Spring Integration will use
org.springframework.integration.file.DefaultFileNaneGenerator

Spring Integration
2.1.0.M2 Reference Manual 120

Spring Integration

if none is specified. Def aul t Fi | eNameGener at or will determine the file name based
onthevalueof thef i | e_nane header (if it exists) in the MessageHeaders, or if the payload
of the Messageisdready aj ava. i 0. Fi | e, thenit will usethe original name of that file.

! I mportant
' Defining certain values (e.g., remote-directory) might be platform/ftp server dependent. For
example as it was reported on this forum http://forum.springsource.org/showthread.php?
p=333478& posted=1#post333478 on some platforms you must add slash to the end of the
directory definition (e.g., remote-directory="/foo/bar/" instead of remote-directory="/foo/
bar")

13.5 FTP Outbound Gateway

The FTP Outbound Gateway provides a limited set of commands to interact with aremote FTP/FTPS
server.

Commands supported are:

o Is(list files)

* get (retrievefile(s))

* rm (removefile(s))

Is supports the following options:

o -1-justretrievealist of filenames, default isto retrieve alist of Fi | el nf o objects.
e -a-includeall files (including those starting with '.")

» -f-donot sort thelist

» -dirs- include directories (excluded by default)

* -links - include symboalic links (excluded by default)

In addition, filenamefiltering is provided, in the same manner asthei nbound- channel - adapt er .

The message payload resulting from an s operationisalist of filenames, or alist of Fi | el nf o objects.
These abjects provide information such as modified time, permissions etc.

The remote directory that the Is command acted on is provided inthefi |l e_renoteDirectory
header.

get supports the following option:
» -P- preserve the timestamp of the remote file

The message payload resulting from a get operationisaFi | e object representing the retrieved file.

Spring Integration
2.1.0.M2 Reference Manual 121

Spring Integration

The remote directory is provided in the fil e_renot eDi rect ory header, and the filename is
providedinthefi | e_r enot eFi | e header.

The rm command has no options.

Note
Filters are not supported with the rm command.

The message payload resulting from an rm operation is Boolean. TRUE if the remove was successful,
Boolean.FALSE otherwise. The remote directory is provided in the fil e_renoteDirectory
header, and the filenameis provided inthef i | e_r enot eFi | e header.

In each case, the PATH that these commands act on is provided by the 'expression’ property of the
gateway.

Here is an example of a gateway configured for an Is command...

<i nt-ftp:out bound-gat eway i d="gat ewayl"
session-factory="ft pSessi onFact ory"
request - channel ="i nbound1"
command="1s"
comand- opti ons="-1"
expr essi on="payl oad"
repl y-channel ="toSplitter"/>

Thepayload of the message sent to thetoSplitter channel isalist of String objectscontaining thefilename
of eachfile. If theconmmand- opt i ons wasomitted, it would bealist of Fi | el nf o objects. Options
are provided space-delimited, e.g. command- opti ons="-1 -dirs -links".

13.6 FTP Session Caching

One of the optimizationsimplemented by the FTP adaptersis session caching. Similar to JDBC pooling
of Connections, the FTP Adapters maintain apool of Sessionsby default. However there are timeswhen
this behavior is not desired (e.g., security etc.). To disable session caching you can set the cache-
sessi ons attributeto f al se (the default valueist r ue).

<int-ftp:inbound-channel -adapter id="ftpl nbound"
channel ="ft pChannel "

cache- sessi ons="f al se"

</int-ftp:inbound-channel - adapt er >

The same attribute can also be used with Outbound Channel Adapters.

Spring Integration
2.1.0.M2 Reference Manual 122

Spring Integration

14. GemFire Support

Spring Integration provides support for VMWare vFabric GemFire

14.1 Introduction

VMWare vFabric GemFire (GemFire) is a distributed data management platform
providing a key-value data grid aong with advanced distributed system features such
as event processing, continuous querying, and remote function execution. This guide
assumes some familiarity with GemFire [http://www.gemstone.com/docs/6.6.RC/product/docs/html/
user_guide/UserGuide GemFire.ntml#Getting%20Started%20with%20Gemfire] and its API [http://
www.gemstone.com/docs/6.6.RC/product/docs/japi/index.html].

Spring integration provides support for GemFire by providing inbound adapters for entry and
continuous query events, an outbound adapter to write entries to the cache, and MessageSt or e and
MessageG oupSt or e implementations. Spring integration leverages the Spring Gemfire [http://
WWW.Springsource.org/spring-gemfire] project, providing athin wrapper over its components.

To configure the 'int-gfe' namespace, include the following elements within the headers of your XML
configuration file:

xm ns:int-gfe="http://ww.springframework. org/schema/integration/genfire"
Xsi : schemaLocati on="htt p://ww. spri ngfranmework. org/ schema/i ntegration/genfire
http://ww. springframework. org/ schema/integration/genfire/spring-integration-genfire-2.1.xsd"

14.2 Inbound Channel Adapter

Theinbound-channel-adapter produces messages on achannel triggered by aGemFireEnt r yEvent .
GemFire generates events whenever an entry is CREATED, UPDATED, DESTROYED, or
INVALIDATED in the associated region. The inbound channel adapter allows you to filter on a subset
of these events. For example, you may want to only produce messages in response to an entry being
CREATED. In addition, the inbound channel adapter can evaluate a SpEL expression if, for example,
you want your message payload to contain an event property such as the new entry value.

<gf e: cache/ >
<gfe:replicated-region id="region"/>
<i nt - gf e: i nbound- channel - adapt er i d="i nput Channel " regi on="regi on"
cache- event s=" CREATED"' expressi on="newal ue"/ >

In the above configuration, we are creating a GemFire Cache and Regi on using Spring GemFire's
'gfe’ namespace. Theinbound-channel-adapter requires a reference to the GemFire region for which the
adapter will be listening for events. Optional attributes include cache- event s which can contain a
comma separated list of event types for which a message will be produced on the input channel. By
default CREATED and UPDATED are enabled. Note that this adapter conforms to Spring integration
conventions. If no channel attribute is provided, the channel will be created from the i d attribute.
Thisadapter also supportsaner r or - channel . If expr essi on isnot provided the message payload
will beaGemFire Ent r yEvent

Spring Integration
2.1.0.M2 Reference Manual 123

http://www.gemstone.com/docs/6.6.RC/product/docs/html/user_guide/UserGuide_GemFire.html#Getting%20Started%20with%20Gemfire
http://www.gemstone.com/docs/6.6.RC/product/docs/html/user_guide/UserGuide_GemFire.html#Getting%20Started%20with%20Gemfire
http://www.gemstone.com/docs/6.6.RC/product/docs/html/user_guide/UserGuide_GemFire.html#Getting%20Started%20with%20Gemfire
http://www.gemstone.com/docs/6.6.RC/product/docs/japi/index.html
http://www.gemstone.com/docs/6.6.RC/product/docs/japi/index.html
http://www.gemstone.com/docs/6.6.RC/product/docs/japi/index.html
http://www.springsource.org/spring-gemfire
http://www.springsource.org/spring-gemfire
http://www.springsource.org/spring-gemfire

Spring Integration

14.3 Continuous Query Inbound Channel Adapter

The cg-inbound-channel-adapter produces messages a channdl triggered by a GemFire continuous
query or CgEvent event. Spring GemFireintroduced continuous query supportinrelease 1.1, including
aConti nuousQuer yLi st ener Cont ai ner which provides a nice abstraction over the GemFire
native API. This adapter requires a reference to a ContinuousQueryListenerContainer, and creates a
listener for a given quer y and executes the query. The continuous query acts as an event source that
will fire whenever its result set changes state.

Note

GemFire queries are written in OQL and are scoped to the entire cache
(not just one region). Additionally, continuous queries require a remote (i.e,
running in a separate process or remote host) cache server. Please consult
the GemFire documentation [http://www.gemstone.com/docs/6.6.RC/product/docs/html/
user_guide/UserGuide_GemFire.html#Continuous%20Querying] for more information on
implementing continuous queries.

<gf e: cache id="client-cache"/>

<gf e: pool id="client-pool" subscription-enabl ed="true" >
<!--configure server or locator here required to address the cache server -->
</ gf e: pool >

<gfe:client-region id="test" cache-ref="client-cache" pool -name="client-pool "/>

<gfe:cqg-listener-container id="queryListenerContainer" cache="client-cache"
pool - nane="cl i ent - pool "/ >

<i nt - gf e: cq-i nbound- channel - adapt er i d="i nput Channel "
cg-|istener-container="queryLi st ener Cont ai ner"
query="select * from/test"/>

In the above configuration, we are creating a GemFire client cache (recall a cache server isrequired for
this implementation and its address is configured as a sub-element of the pool), a client region and a
Cont i nuousQuer yLi st ener Cont ai ner using Spring GemFire. The continuous query inbound
channel adapter requires a cq-1 i st ener - cont ai ner attribute which contains a reference to
the Cont i nuousQuer yLi st ener Cont ai ner . Optionally, it accepts an expr essi on attribute
which uses SpEL to transform the CqEvent or extract an individual property as needed. The cg-
inbound-channel-adapter provides a quer y- event s attribute, containing a comma separated list
of event types for which a message will be produced on the input channel. Available event types
are CREATED, UPDATED, DESTROYED, REGION_DESTROYED, REGION_INVALIDATED.
CREATED and UPDATED are enabled by default. Additional optional attributes include, quer y-
name which provides an optional query name, and expr essi on which works as described in the
above section, and dur abl e - aboolean valueindicating if the query isdurable (false by default). Note
that this adapter conforms to Spring integration conventions. If no channel attribute is provided, the
channel will be created from thei d attribute. This adapter also supportsan er r or - channel

Spring Integration
2.1.0.M2 Reference Manual 124

http://www.gemstone.com/docs/6.6.RC/product/docs/html/user_guide/UserGuide_GemFire.html#Continuous%20Querying
http://www.gemstone.com/docs/6.6.RC/product/docs/html/user_guide/UserGuide_GemFire.html#Continuous%20Querying
http://www.gemstone.com/docs/6.6.RC/product/docs/html/user_guide/UserGuide_GemFire.html#Continuous%20Querying

Spring Integration

14.4 Outbound Channel Adapter

The outbound-channel -adapter writes cache entries mapped from the message payload. In its simplest
form, it expectsapayload of typej ava. ut i | . Map and putsthe map entriesintoitsconfigured region.

<i nt - gf e: out bound- channel - adapt er i d="cacheChannel " regi on="regi on"/>

Given the above configuration, an exception will be thrown if the payload is not a Map. Additionally,
the outbound channel adapter can be configured to create a map of cache entries using SpEL of course.

<i nt - gf e: out bound- channel - adapt er i d="cacheChannel " regi on="regi on">
<i nt-gfe:cache-entries>
<entry key="payl oad. t oUpper Case()" val ue="payl oad. t oLower Case()"/>
<entry key="'foo'" value="'bar'"/>
</int-gfe:cache-entries>
</i nt - gf e: out bound- channel - adapt er >

In the above configuration, the inner element cache- ent ri es is semantically equivalent to Spring
'map' element. The adapter interprets the key and val ue attributes as SpEL expressions with the
message as the eval uation context. Note that this contain arbitrary cache entries (not only those derived
from the message) and that literal values must be enclosed in single quotes. In the above example,
if the message sent to cacheChannel has a String payload with a value "Hello", two entries
[HELLO hel | o, foo: bar] will bewritten (created or updated) in the cache region. This adapter
also supportsthe or der attribute which may be useful if it is bound to a PublishSubscribeChannel.

Spring Integration
2.1.0.M2 Reference Manual 125

Spring Integration

15. HTTP Support

15.1 Introduction

The HTTP support allows for the execution of HTTP requests and the processing of inbound HTTP
regquests. Because interaction over HTTP is always synchronous, even if al that is returned is a 200
status code, the HTTP support consists of two gateway implementations: Ht t pl nboundEndpoi nt
and Ht t pRequest Execut i ngMessageHandl er .

15.2 Http Inbound Gateway

To receive messages over HTTP you need to use an HTTP inbound Channel Adapter or Gateway. In
common with the Httpl nvoker support the HT TP inbound adapters need to be deployed within a serviet
container. The easiest way to do this is to provide a servlet definition in web.xml, see ??? for further
details. Below is an example bean definition for asimple HTTP inbound endpoint.

<bean i d="htt pl nbound"
cl ass="org. springframework.integration. http.inbound. H t pRequest Handl i ngMessagi ngGat eway" >

<property nanme="request Channel " ref="httpRequest Channel " />
<property name="repl yChannel " ref="httpRepl yChannel " />
</ bean>

TheHt t pRequest Handl i ngMessagi ngGat eway acceptsalist of Ht t pMessageConvert er
instances or else relies on a default list. The converters allow customization of the mapping from
Ht t pSer vl et Request to Message. The default converters encapsulate simple strategies, which
for example will create a String message for a POST request where the content type starts with "text",
see the Javadoc for full details.

Starting with this release MultiPart File support was implemented. If the request has been wrapped
as a MultipartHttpServietRequest, when using the default converters, that request will be converted
to a Message payload that is a MultiValueMap containing values that may be byte arrays, Strings, or
instances of Spring'sMul ti part Fi | e depending on the content type of the individual parts.

Note

The HTTP inbound Endpoint will locate a MultipartResolver in the context if one exists with
the bean name "multipartResolver" (the same name expected by Spring's DispatcherServlet).
If it does in fact locate that bean, then the support for MultipartFiles will be enabled on the
inbound request mapper. Otherwise, it will fail when trying to map a multipart-file request
to a Spring Integration Message. For more on Spring's support for MultipartResolvers, refer
to the Spring Reference Manual [http://static.springsource.org/spring/docs/2.5.x/reference/
mvc.html#mvc-multipart].

In sending aresponse to the client there are anumber of ways to customize the behavior of the gateway.
By default the gateway will simply acknowledge that the request was received by sending a 200 status
code back. It is possible to customize this response by providing a 'viewName' to be resolved by the
Spring MV C Vi ewResol ver . Inthe casethat the gateway should expect areply tothe Message then
setting the expectReply flag (constructor argument) will cause the gateway to wait for areply Message

Spring Integration
2.1.0.M2 Reference Manual 126

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart
http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart
http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

Spring Integration

before creating an HTTP response. Below is an example of a gateway configured to serve as a Spring
MV C Controller with aview name. Because of the constructor arg value of TRUE, it wait for areply.
This aso shows how to customize the HTTP methods accepted by the gateway, which are POST and
GET by default.

<bean i d="htt pl nbound"
cl ass="org. springframework.integration. http.inbound. H t pRequest Handl i ngControl | er">
<constructor-arg value="true" /> <l-- indicates that a reply is expected -->
<property name="request Channel " ref="httpRequest Channel " />
<property nanme="repl yChannel " ref="httpRepl yChannel " />
<property name="vi emNane" val ue="jsonView' />
<property name="supportedMet hodNanes" >
<list>
<val ue>GET</ val ue>
<val ue>DELETE</ val ue>
</list>
</ property>
</ bean>

Thereply message will be availablein the Model map. The key that isused for that map entry by default
is'reply’, but this can be overridden by setting the ‘replyKey' property on the endpoint's configuration.

15.3 Http Outbound Gateway

To configurethe Ht t pRequest Execut i ngMessageHandl| er write abean definition like this:

<bean i d="htt pQut bound"
cl ass="org. spri ngframework.integration. http.outbound. Ht t pRequest Execut i ngMessageHand| er " >
<constructor-arg val ue="http://1 ocal host: 8080/ exanpl e" />
<property nanme="out put Channel " ref="responseChannel " />

</ bean>

This bean definition will execute HTTP requests by delegating to aRest Tenpl at e. That templatein
turn delegatesto alist of HttpM essageConverters to generate the HT TP request body from the Message
payload. Y ou can configure those converters as well as the ClientHttpRequestFactory instance to use:

<bean i d="htt pCQut bound"
cl ass="org. springframework.integration. http. outbound. H t pRequest Execut i ngMessageHand| er " >
<constructor-arg val ue="http://I ocal host: 8080/ exanpl e" />
<property nanme="out put Channel " ref="responseChannel " />
<property name="nessageConverters" ref="nmessageConverterlList" />
<property nanme="request Factory" ref="custonRequest Factory" />
</ bean>

By default the HTTP request will be generated wusing an instance of
Simpl eCl i ent Ht t pRequest Factory which uses the JDK Htt pURLConnecti on.
Use of the Apache Commons HTTP Client is also supported through the provided
CommonsC i ent Ht t pRequest Fact or y which can be injected as shown above.

Note

In the case of the Outbound Gateway, the reply message produced by the gateway will contain
all Message Headers present in the request message.

Spring Integration
2.1.0.M2 Reference Manual 127

Spring Integration

15.4 HTTP Namespace Support

Spring Integration provides an "http" namespace and schema definition. To include it in
your configuration, simply provide the following URI within a namespace declaration: 'http://
www.springframework.org/schema/integration/http’. The schema location should then map to 'http://
www.springframework.org/schema/integrati on/http/spring-integrati on-http.xsd'.

To configure an inbound http channel adapter which is an instance of Ht t pl nboundEndpoi nt
configured not to expect a response.

<i nt-http:inbound-channel - adapter id="httpChannel Adapter" channel ="requests"
support ed- net hods="PUT, DELETE"/>

To configure an inbound http gateway which expects a response.

<i nt-http:inbound-gateway id="i nboundGat eway"
request - channel ="r equest s"
repl y-channel ="responses"/ >

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration options for an outbound Http gateway. Most importantly,
notice that the 'http-method' and 'expected-response-type’ are provided. Those are two of the most
commonly configured values. The default http-method is POST, and the default response type is null.
With a null response type, the payload of the reply Message would only contain the status code (e.g.
200) as long asit's a successful status (non-successful status codes will throw Exceptions). If you are
expecting a different type, such asa St ri ng, then provide that fully-qualified class name as shown
below.

<int-http: out bound- gat eway i d="exanpl e"
request - channel ="r equest s"
url ="http://local host/test"
ht t p- net hod=" POST"
extract -request - payl oad="f al se"
expect ed-response-type="java. |l ang. Stri ng"
char set =" UTF- 8"
request - fact ory="request Fact ory"
request -ti meout =" 1234"
repl y-channel ="replies"/>

If your outbound adapter is to be used in a unidirectional way, then you can use an outbound-
channel-adapter instead. This meansthat a successful response will simply execute without sending any
Messages to a reply channel. In the case of any non-successful response status code, it will throw an
exception. The configuration looks very similar to the gateway:

<i nt - htt p: out bound- channel - adapt er i d="exanpl e"
url ="http://I ocal host/exanpl e"
ht t p- net hod=" GET"
channel ="r equest s"
char set =" UTF- 8"
extract - payl oad="f al se"
expect ed-response-type="java. |l ang. Stri ng"
request - f act or y="sonmeRequest Fact ory"

Spring Integration
2.1.0.M2 Reference Manual 128

Spring Integration

aut o-startup="fal se"/>

Mapping URI variables

If your URL contains URI variables you can map them using ur i - var i abl e sub element in Http
Outbound Gateway configuration.

<i nt-http:outbound-gateway id="trafficGateway"
url ="http://1ocal.yahooapis.comtrafficData?appi d=YdnDeno&anp; zi p={zi pCode}"
request - channel ="traf fi cChannel "
ht t p- net hod=" GeT"
expect ed-response-type="java. |l ang. Stri ng">
<int-http:uri-variabl e name="zi pCode" expressi on="payl oad. getZip()"/>
</int-http:outbound- gat enay>

Theuri - vari abl e definestwo attributesexpr essi on andval ue. You generally usetheval ue
attribute for literal values, but if the value you are trying to inject is dynamic and requires access to
M essage datayou can usea SpEL expressionviatheexpr essi on attribute. Inthe above configuration
the get Zi p() method will be invoked on the payload object of the Message and the result of that
method will be used as the value for URI variable named 'zipCode'.

15.5 HTTP Proxy configuration

If you are behind a proxy and need to configure proxy settings for HTTP outbound adapters and/or
gateways, you can apply one of two approaches. In most cases, you can rely on the standard Java System
Properties that control the proxy settings. Otherwise, you can explicitly configure a Spring bean for the
HTTP client request factory instance.

Sandard Java Proxy configuration

There are 3 System Properties you can set to configure the proxy settings that will be used by theHTTP
protocol handler:

* http.proxyHost - the host name of the proxy server.
* http.proxyPort - the port number, the default value being 80.

* http.nonProxyHosts - alist of hoststhat should be reached directly, bypassing the proxy. Thisisalist
of patterns separated by '|'. The patterns may start or end with a**' for wildcards. Any host matching
one of these patterns will be reached through a direct connection instead of through a proxy.

And for HTTPS:

* https.proxyHost - the host name of the proxy server.

* https.proxyPort - the port number, the default value being 80.
For more information please refer to this document: http://download.oracle.com/javase/6/docs/
technotes/guides/net/proxies.html

Soring's SmpleClientHttpRequestFactory

If for any reason, you need more explicit control over the proxy configuration, you can use Spring's
Si mpl eCl i ent Ht t pRequest Fact or y and configure its 'proxy' property as such:

Spring Integration
2.1.0.M2 Reference Manual 129

Spring Integration

<bean i d="request Factory"
cl ass="org. springframework. http.client.SinpleCdientHtpRequestFactory">
<property name="proxy">
<bean i d="proxy" class="java. net.Proxy">
<constructor-arg>
<util:constant static-field="java.net.Proxy. Type. HTTP"/>
</ constructor-arg>
<constructor-arg>
<bean cl ass="j ava. net. | net Socket Addr ess" >
<constructor-arg val ue="123.0.0.1"/>
<constructor-arg val ue="8080"/>
</ bean>
</ constructor-arg>
</ bean>
</ property>
</ bean>

15.6 HTTP Header Mappings

Spring Integration provides support for Http Header mapping for both HTTP Request and HTTP
Responses.

By default al standard Http Headers as defined here http://en.wikipedia.org/wiki/
List of HTTP header fields will be mapped from the message to HTTP request/response headers
without further configuration. However if you do need further customization you may provide additional
configuration via convenient namespace support. You can provide a comma-separated list of header
names, and you can aso include simple patterns with the ™' character acting as a wildcard. If you do
provide such values, it will override the default behavior. Basically, it assumes you are in complete
control at that point. However, if you do want to include all of the standard HTTP headers, you can
use the shortcut patterns: HTTP_REQUEST HEADERS and HTTP_RESPONSE HEADERS. Here
are some examples:

<i nt-http:outbound-gateway i d="httpGat enay"
url ="http://local host/test2"
mapped- r equest - header s="f o0, bar"
mapped- r esponse- header s="X-*, HITP_RESPONSE_HEADERS"
channel =" sonmeChannel "/ >

<i nt-http:outbound- channel - adapter id="httpAdapter"
url ="http://local host/test2"
mapped- r equest - header s="f oo, bar, HITP_REQUEST_HEADERS"
channel ="someChannel "/ >

The adapters and gateways will use the Def aul t Ht t pHeader Mapper which now provides two
static factory methods for "inbound" and "outbound" adapters so that the proper direction can be applied
(mapping HTTP requests/responses IN/OUT as appropriate).

If further customization is required you can also configure a Def aul t Ht t pHeader Mapper
independently and inject it into the adapter viathe header - mapper attribute.

<i nt-http:outbound- gat eway i d="htt pGat enay"
url="http://|ocal host/test2"
header - mapper =" header Mapper "
channel =" someChannel "/ >

Spring Integration
2.1.0.M2 Reference Manual 130

Spring Integration

<bean i d="header Mapper" cl ass="org. springframework.integration. http.support.DefaultHttpHeader Mapper">
<property nanme="i nboundHeader Nanes" val ue="foo*, *bar, baz"/>
<property nanme="out boundHeader Nanes" val ue="a*b, d"/>

</ bean>

Of course, you can even implement the HeaderM apper strategy interfacedirectly and provide areference
to that if you need to do something other than what the Def aul t Ht t pHeader Mapper supports.

15.7 HTTP Samples

Multipart HTTP request - RestTemplate (client) and Http Inbound
Gateway (server)

Thisexampledemonstrates how simpleitisto send aMultipart HT TP request via Spring's Rest Templ ate
and receive it with a Spring Integration HTTP Inbound Adapter. All we are doing is creating a
Mul ti Val ueMap and populating it with multi-part data. The Rest Tenpl at e will take care of the
rest (no pun intended) by converting ittoaMul ti part Ht t pSer vl et Request . This particular
client will send amultipart HTTP Request which contains the name of the company aswell asanimage
file with the company logo.

Rest Tenpl ate tenpl ate = new Rest Tenpl ate();
String uri = "http://local host: 8080/ nultipart-http/inboundAdapt er. ht ni’
Resource s2logo =
new Cl assPat hResour ce("or g/ spri ngfranmewor k/ sanpl es/ nul ti part/spring09_I ogo. png");
Ml ti Val ueMap map = new Li nkedMul ti Val ueMap();
map. add(" conpany", "SpringSource");
map. add(" conpany- | ogo", s2l 0go);
Ht t pHeader s headers = new Htt pHeaders();
header s. set Cont ent Type(new Medi aType("nultipart”, "formdata"));
HtpEntity request = new HttpEntity(nmap, headers);
ResponseEnti ty<?> httpResponse = tenpl ate. exchange(uri, HttpMethod. PCST, request, null);

That isall for the client.

On the server side we have the following configuration:

<i nt-http:inbound-channel - adapter id="httplnboundAdapter"
channel ="r ecei veChannel "
name="/i nboundAdapt er. ht n{
support ed- net hods="GET, POST" />

<int:channel id="receiveChannel"/>
<int:service-activator input-channel ="recei veChannel ">
<bean cl ass="org. spri ngframework.integration.sanples.nmultipart.MltipartReceiver"/>

</int:service-activator>

<bean id="nul ti part Resol ver"
cl ass="org. spri ngframewor k. web. mul ti part.comons. ConmonsMuil ti part Resol ver"/>

The 'httplnboundAdapter' will receive the request, convert it to a Message with a payload that is
aLi nkedMul t i Val ueMap. Wethen are parsing that in the 'multipartReceiver' service-activator;

public void receive(LinkedMul ti Val ueMap<String, Object> nultipartRequest)

Spring Integration
2.1.0.M2 Reference Manual 131

Spring Integration

System out . println("### Successfully received nmultipart request ###");
for (String el ementNanme : nul ti part Request. keySet()) {
i f (el ement Nane. equal s("conpany")){
Systemout.printIn("\t" + elenentNane + " - " +
((String[]) nultipartRequest.getFirst("conpany"))[0]);
}
el se if (el ement Nane. equal s("conpany-10go")){
Systemout.println("\t" + elementName + " - as Upl oadedMul tipartFile

getOriginal Fil enane());

((Upl oadedMul tipartFile) nultipartRequest.getFirst("conmpany-|ogo")).

Y ou should see the following output:

Successfully received nultipart request
conpany - SpringSource
conpany-1logo - as Upl oadedMul tipartFile: spring09_| ogo. png

Spring Integration
2.1.0.M2 Reference Manual

132

Spring Integration

16. TCP and UDP Support

Spring Integration provides Channel Adapters for receiving and sending messages over internet
protocols. Both UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) adapters are
provided. Each adapter provides for one-way communication over the underlying protocol. In addition,
simpleinbound and outbound tcp gateways are provided. These are used when two-way communication
is needed.

16.1 Introduction

Two flavors each of UDP inbound and outbound channel adapters are
provided Uni cast Sendi ngMessageHandl er sends a datagram packet to a single
degtination. Uni cast Recei vi ngChannel Adapt er receives incoming datagram packets.
Mul ti cast Sendi ngMessageHandl er sends (broadcasts) datagram packets to a multicast
address. Mul ti cast Recei vi ngChannel Adapt er receives incoming datagram packets by
joining to a multicast address.

TCP inbound and outbound channel adapters are provided TcpSendi ngMessageHandl er sends
messages over TCP. TcpRecei vi ngChannel Adapt er receives messages over TCP.

An inbound TCP gateway is provided; this allows for simple request/response processing. While the
gateway can support any number of connections, each connection can only process serialy. The thread
that reads from the socket waits for, and sends, the response before reading again. If the connection
factory is configured for single use connections, the connection is closed after the socket times out.

An outbound TCP gateway is provided; this alows for simple request/response processing. If the
associated connection factory isconfigured for single use connections, anew connection isimmediately
created for each new request. Otherwise, if the connection is in use, the calling thread blocks on the
connection until either aresponseisreceived or atimeout or 1/O error occurs.

The TCP and UDP inbound channel adapters, and the TCP inbound gateway, support the "error-
channel" attribute. This provides the same basic functionality as described in the section called
“ GatewayProxyFactoryBean”.

16.2 UDP Adapters

<i nt-ip:udp-out bound- channel - adapt er id="udpQut"
host =" sonehost "
port="11111"
mul ti cast="fal se"
channel =" exanpl eChannel " />

A simple UDP outbound channel adapter.
Tip
When setting multicast to true, provide the multicast address in the host attribute.

UDP is an efficient, but unreliable protocol. Two attributes are added to improve reliability. When
check-length is set to true, the adapter precedes the message datawith alength field (4 bytesin network

Spring Integration
2.1.0.M2 Reference Manual 133

Spring Integration

byte order). This enables the receiving side to verify the length of the packet received. If a receiving
system uses a buffer that is too short the contain the packet, the packet can be truncated. The length
header provides a mechanism to detect this.

<i nt-ip: udp-out bound- channel - adapt er id="udpQut"
host =" sonehost "
port="11111"
mul ti cast="fal se"
check-1 engt h="true"
channel =" exanpl eChannel " />

An outbound channel adapter that adds length checking to the datagram packets.

Tip
Therecipient of the packet must al so be configured to expect alength to precede the actual data.
For a Spring Integration UDP inbound channel adapter, set itscheck- | engt h attribute.

The second reliability improvement allows an application-level acknowledgment protocol to be used.
The receiver must send an acknowledgment to the sender within a specified time.

<i nt-i p: udp- out bound- channel - adapt er i d="udpQut"
host =" sonehost "
port="11111"
mul ti cast="fal se"
check-1 engt h="true"
acknow edge="true"
ack- host ="t hi shost"
ack- port="22222"
ack-ti meout =" 10000"
channel =" exanpl eChannel * />

An outbound channel adapter that adds length checking to the datagram packets and waits for an
acknowledgment.

- Tip

1
Setting acknowledge to true implies the recipient of the packet can interpret the header added
to the packet containing acknowledgment data (host and port). Most likely, the recipient will
be a Spring Integration inbound channel adapter.

: Ti

i P

When multicast is true, an additional attribute min-acks-for-success specifies how many
acknowledgments must be received within the ack-timeout.

For even more reliable networking, TCP can be used.

<i nt-i p: udp-i nbound- channel - adapt er i d="udpRecei ver"
channel =" udpQut Channel "
port="11111"
recei ve- buf f er - si ze="500"
mul ti cast="fal se"
check-1engt h="true" />

A basic unicast inbound udp channel adapter.

<int-ip:udp-inbound-channel - adapter id="udpReceiver"

Spring Integration
2.1.0.M2 Reference Manual 134

Spring Integration

channel =" udpQut Channel "
port="11111"

recei ve- buf f er - si ze="500"

mul ticast="true"

mul ti cast - address="225.6.7. 8"
check-1engt h="true" />

A basic multicast inbound udp channel adapter.

By default, reverse DNS lookups are done on inbound packets to convert 1P addresses to hosthames
for use in message headers. In environments where DNS is not configured, this can cause delays. This
default behavior can be overridden by setting thel ookup- host attribute to "false".

16.3 TCP Connection Factories

For TCP, the configuration of the underlying connection is provided using a Connection Factory. Two
types of connection factory are provided; a client connection factory and a server connection factory.
Client connection factories are used to establish outgoing connections; Server connection factorieslisten
for incoming connections.

A client connection factory isused by an outbound channel adapter but areferenceto aclient connection
factory can also be provided to an inbound channel adapter and that adapter will receive any incoming
messages received on connections created by the outbound adapter.

A server connection factory is used by an inbound channel adapter or gateway (in fact the connection
factory will not function without one). A reference to a server connection factory can also be provided
to an outbound adapter; that adapter can then be used to send replies to incoming messages to the same
connection.

: Ti

i P
Reply messages will only be routed to the connection if the reply contains the header
ip_connection_id that was inserted into the original message by the connection factory.

: Ti

i P

This is the extent of message correlation performed when sharing connection factories
between inbound and outbound adapters. Such sharing allows for asynchronous two-way
communication over TCP. Only payload information is transferred using TCP; therefore any
message correlation must be performed by downstream components such as aggregators or
other endpoints. For more information refer to Section 16.7, “ TCP Message Correlation”.

A maximum of one adapter of each type may be given areference to a connection factory.

Connectionfactoriesusingj ava. net . Socket andj ava. ni o. channel . Socket Channel are
provided.

<int-ip:tcp-connection-factory id="server"
type="server"
port="1234"

/>

Spring Integration
2.1.0.M2 Reference Manual 135

Spring Integration

A simple server connection factory that usesj ava. net . Socket connections.

<int-ip:tcp-connection-factory id="server"
type="server"
port="1234"
usi ng- ni o="true"

/>

A simple server connection factory that usesj ava. ni 0. channel . Socket Channel connections.

<int-ip:tcp-connection-factory id="client"
type="client"
host ="1 ocal host "
port="1234"
si ngl e-use="true"
so-ti meout =" 10000"
/>

A client connection factory that usesj ava. net . Socket connections and creates a new connection
for each message.

<int-ip:tcp-connection-factory id="client"
type="client"
host ="1 ocal host"
port="1234"
si ngl e-use="true"
so-ti meout =" 10000"
usi ng- ni o=true
/>

A client connection factory that usesj ava. ni 0. channel . Socket connections and creates a new
connection for each message.

TCPisastreaming protocol; this means that some structure has to be provided to data transported over
TCP, so the receiver can demarcate the datainto discrete messages. Connection factories are configured
to use (de)seriaizers to convert between the message payload and the bits that are sent over TCP.
This is accomplished by providing a deserializer and serializer for inbound and outbound messages
respectively. A number of standard (de)serializers are provided.

TheByt eArrayCrl f Seri al i zer, converts abyte array to astream of bytes followed by carriage
return and linefeed characters (\r\n). This is the default (de)serializer and can be used with telnet as a
client, for example.

The Byt eArraySt xEt xSeri al i zer, converts a byte array to a stream of bytes preceded by an
STX (0x02) and followed by an ETX (0x03).

TheByt eArrayLengt hHeader Seri al i zer, converts abyte array to a stream of bytes preceded
by abinary length in network byte order (big endian). This avery efficient deserializer because it does
not haveto parse every bytelooking for atermination character sequence. It can a so be used for payloads
containing binary data; the above serializers only support text in the payload. The default size of the
length header is 4 bytes (Integer), allowing for messages up to 2**31-1 bytes. However, the length
header can be a single byte (unsigned) for messages up to 255 bytes, or an unsigned short (2 bytes) for

Spring Integration
2.1.0.M2 Reference Manual 136

Spring Integration

messages up to 2** 16 bytes. If you need any other format for the header, you can subclassthis classand
provide implementations for the readHeader and writeHeader methods. The absolute maximum data
size supported is 2** 31-1 bytes.

TheByt eArrayRawSeri al i zer, converts abyte array to astream of bytes and adds no additional
message demarcation data; with this (de)serializer, the end of amessageisindicated by theclient closing
the socket in an orderly fashion. When using this serializer, message reception will hang until the client
closes the socket, or a timeout occurs; atimeout will NOT result in a message. When this serializer is
being used, and the client is a Spring Integration application, the client must use a connection factory
that is configured with single-use=true - this causes the adapter to close the socket after sending the
message; the serializer will not, itself, close the connection. This seriaizer should only be used with
connection factories used by channel adapters (not gateways), and the connection factories should be
used by either an inbound or outbound adapter, and not both.

Each of these is a subclass of AbstractByteArraySerializer which
implements both org. springframework. core.serializer.Serializer and
org.springframework. core. serializer.Deserializer.Forbackwardscompatibility,
connections using any subclass of Abstract Byt eArraySeri al i zer for serialization will also
accept a String which will be converted to a byte array first. Each of these (de)serializers converts an
input stream containing the corresponding format to a byte array payload.

To avoid memory exhaustion due to a badly behaved client (one that does not adhere to the protocol
of the configured serializer), these serializers impose a maximum message size. If the size is exceeded
by an incoming message, an exception will be thrown. The default maximum message size is 2048
bytes, and can be increased by setting the maxMessageSi ze property. If you are using the default
(de)serializer and wish to increase the maximum message size, you must declare it as an explicit bean
with the property set and configure the connection factory to use that bean.

The final standard serializer is
org.springframework. core.serializer.Defaul tSerializer which can be
used to convert Seridizable objects using java serialization.

org. springframework. core. serializer.Defaul tDeserializer is provided for
inbound deserialization of streams containing Serializable objects.

To implement a custom (de)serializer pair, implement the
org. springframework. core. serializer.Deserializer and
org. springframework. core.serializer.Serializer interfaces.

If you do not wish to usethe default (de)serializer (Byt eArrayCr Lf Seri al i zer), youmust supply
serializer anddeseri al i zer attributes on the connection factory (example below).

<bean id="javaSerializer"

cl ass="org. springframework. core. serializer.Defaul tSerializer" />
<bean id="javaDeseri alizer"

cl ass="org. springframework. core. serializer.DefaultDeserializer" />

<int-ip:tcp-connection-factory id="server"
type="server"
port="1234"

Spring Integration
2.1.0.M2 Reference Manual 137

Spring Integration

deserial i zer="j avaDeseri al i zer"
serializer="javaSerializer"
/>

A server connection factory that usesj ava. net . Socket connections and uses Java serialization on
the wire.

For full details of the attributes available on connection factories, see the reference at the end of this
section.

By default, reverse DNS lookups are done on inbound packets to convert 1P addresses to hosthames
for use in message headers. In environments where DNS is not configured, this can cause connection
delays. This default behavior can be overridden by setting thel ookup- host attribute to "false".

16.4 Tcp Connection Interceptors

Connection factories can be configured with a reference to a
TcpConnecti onl nt er cept or Fact or yChai n. Interceptors can be used to add behavior to
connections, such as negotiation, security, and other setup. No interceptors are currently provided by the
framework but, for an example, seethe | nt er cept edShar edConnect i onTest s in the source
repository.

TheHel | oWor | dI nt er cept or used in the test case works as follows:

When configured with aclient connection factory, when the first message is sent over a connection that
is intercepted, the interceptor sends 'Hello' over the connection, and expects to receive ‘world!'. When
that occurs, the negotiation is complete and the original message is sent; further messages that use the
same connection are sent without any additional negotiation.

When configured with a server connection factory, theinterceptor requiresthefirst messageto be'Hello'
and, if it is, returns'world!". Otherwise it throws an exception causing the connection to be closed.

All TcpConnect i on methods are intercepted. Interceptor instances are created for each connection
by an interceptor factory. If an interceptor is stateful, the factory should create a new instance
for each connection. Interceptor factories are added to the configuration of an interceptor
factory chain, which is provided to a connection factory using the i nt erceptor-factory
attribute. Interceptors must implement the TcpConnect i onl nt er cept or interface; factories
must implement the TcpConnect i onl nt er cept or Fact ory interface. A convenience class
Abstract TcpConnecti onl nt er cept or is provided with passthrough methods; by extending
this class, you only need to implement those methods you wish to intercept.

<bean i d="hel | oWr| dl nt er cept or Fact ory"

<property nanme="interceptors">
<array>

</ array>
</ property>
</ bean>

<int-ip:tcp-connection-factory id="server"
type="server"

Spring Integration
2.1.0.M2 Reference Manual 138

cl ass="org. springframework.integration.ip.tcp.connection. TcpConnecti onl ntercept or Fact or yChai n" >

<bean cl ass="org. springframework.integration.ip.tcp.connection.Hell oWrldlnterceptorFactory"/>

Spring Integration

port="12345"
usi ng- ni o="true"
si ngl e-use="true"

/>

<int-ip:tcp-connection-factory id="client"
type="client"
host ="1 ocal host "
port ="12345"
si ngl e-use="true"
so-ti meout ="100000"
usi ng-ni o="true"

/>

i nterceptor-factory-chai n="hel | oWr| dl nt er cept or Fact ory"

i nterceptor-factory-chai n="hel | oWr | dl nt er cept or Fact or y"

Configuring a connection interceptor factory chain.

16.5 TCP Adapters

TCP inbound and outbound channel adapters that utilize the above connection factories are provided.
These adapters have just 2 attributes connect i on-f act ory and channel . The channel attribute
specifies the channel on which messages arrive at an outbound adapter and on which messages are
placed by an inbound adapter. The connection-factory attribute indicates which connection factory is
to be used to manage connections for the adapter. While both inbound and outbound adapters can
share a connection factory, server connection factories are always ‘owned' by an inbound adapter; client
connection factories are always 'owned' by an outbound adapter. One, and only one, adapter of each

type may get areference to a connection factory.

<bean id="javaSerializer"

<bean i d="javaDeseri alizer"

<int-ip:tcp-connection-factory id="server"
type="server"
port="1234"
deserial i zer="j avaDeseri al i zer"
serializer="javaSerializer"
usi ng- ni o="true"
si ngl e-use="t rue"

/>

<int-ip:tcp-connection-factory id="client"
type="client"
host ="1 ocal host "
port="#{server.port}"
si ngl e-use="true"
so-ti meout =" 10000"
deserial i zer="j avaDeseri al i zer"
serializer="javaSerializer"
/>

<int:channel id="input" />

<i nt:channel id="replies">
<i nt:queue/ >

class="org. springframework. core.serializer.DefaultSerializer" />

cl ass="org. springframework. core. serializer. Defaul t Deserializer" />

Spring Integration
2.1.0.M2 Reference Manual

139

Spring Integration

</i nt:channel >

<int-ip:tcp-outbound-channel -adapter id="outboundC ient"
channel ="i nput "
connection-factory="client"/>

<i nt-ip:tcp-inbound-channel -adapter id="i nboundd ient"
channel ="replies"
connection-factory="client"/>

<int-ip:tcp-inbound-channel -adapter id="inboundServer"
channel =" oop"
connection-factory="server"/>

<i nt-ip:tcp-outbound-channel - adapt er i d="out boundServer"
channel =" oop"

connection-factory="server"/>

<i nt:channel id="Ioop" />

In this configuration, messages arriving in channel 'input' are serialized over connections created
by ‘client' received at the server and placed on channel 'loop’. Since 'loop' is the input channel
for 'outboundServer' the message is simply looped back over the same connection and received by
‘inboundClient’ and deposited in channel 'replies. Java serialization is used on the wire.

16.6 TCP Gateways

The inbound TCP gateway TcplnboundGateway and outbound TCP gateway
TcpQut boundGat eway use aserver and client connection factory respectively. Each connection can
process a single request/response at atime.

The inbound gateway, after constructing a message with the incoming payload and sending it to the
requestChannel, waits for a response and sends the payload from the response message by writing it
to the connection.

The outbound gateway, after sending amessage over the connection, waitsfor aresponse and constructs
aresponse message and puts in on the reply channel. Communications over the connections are single-
threaded. Users should be aware that only one message can be handled at atime and, if another thread
attemptsto send amessage before the current response has been received, it will block until any previous
requests are complete (or time out). If, however, the client connection factory is configured for single-
use connections each new request gets its own connection and is processed immediately.

<int-ip:tcp-inbound-gateway id="inGateway"
request - channel ="t cpChannel "
repl y- channel ="r epl yChannel "
connection-factory="cf Server"
reply-ti meout ="10000"
/>

A simple inbound TCP gateway; if a connection factory configured with the default (de)serializer is
used, messages will be\r\n delimited data and the gateway can be used by asimple client such astelnet.

<int-ip:tcp-outbound-gateway id="out Gateway"

Spring Integration
2.1.0.M2 Reference Manual 140

Spring Integration

request - channel ="t cpChannel "
repl y- channel ="r epl yChannel "
connection-factory="cfdient"
request - ti meout =" 10000"

repl y-ti neout =" 10000"

/>

A simple outbound TCP gateway.

16.7 TCP Message Correlation

Overview

One goal of the IP Endpoints is to provide communication with systems other than another Spring
Integration application. For this reason, only message payloads are sent and received. No message
correlation is provided by the framework, except when using the gateways, or collaborating channel
adapters on the server side. In the paragraphs below we discuss the various correlation techniques
availableto applications. In most cases, this requires specific application-level correlation of messages,
even when message payloads contain some natural correlation data (such as an order number).

Gateways

The gateways will automatically correlate messages. However, an outbound gateway should only be
used for relatively low-volume use. When the connection factory is configured for a single shared
connection to be used for all message pairs (‘single-use="false""), only one message can be processed at
atime. A new message will haveto wait until thereply to the previous message has been received. When
aconnection factory is configured for each new message to use a new connection ('single-use="true""),
the above restriction does not apply. While this may give higher throughput than a shared connection
environment, it comeswith the overhead of opening and closing anew connection for each message pair.

Therefore, for high-volume messages, consider using acollaborating pair of channel adapters. However,
you will need to provide collaboration logic.

Collaborating Outbound and Inbound Channel Adapters

To achieve high-volume throughput (avoiding the pitfalls of using gateways as mentioned above) you
may consider configuring apair of collaborating outbound and inbound channel adapters. On the server
side, message correlation is automatically handled by the adapters because the inbound adapter adds a
header allowing the outbound adapter to determine which connection to use to send the reply message.
On the client side, however, the application will have to provide its own correlation logic. This can be
done in anumber of ways.

If the message payload has some natural correlation data, such as a transaction id or an order number,
AND there is no need to retain any information (such as a reply channel header) from the original
outbound message, the correlation is simple and would done at the application level in any case.

It the message payl oad has some natural correlation data, such asatransactionid or an order number, but
there is a need to retain some information (such as a reply channel header) from the original outbound
message, you may need to retain a copy of the original outbound message (perhaps by using a publish-
subscribe channel) and use an aggregator to recombine the necessary data.

Spring Integration
2.1.0.M2 Reference Manual 141

Spring Integration

For either of the previous two paragraphs, if the payload has no natural correlation data, you may need
to provide a transformer upstream of the outbound channel adapter to enhance the payload with such
data. Such atransformer may transform the original payload to anew object containing both the original
payload and some subset of the message headers. Of course, live objects (such as reply channels) from
the headers can not be included in the transformed payload.

If such a strategy is chosen you will need to ensure the connection factory has an appropriate
seridizer/deserializer pair to handle such a payload, such as the Defaul t Serializer/
Deseri al i zer which use java seridization, or a custom seriadlizer and deseriaizer. The
Byt eArray*Seri al i zer options mentioned in Section 16.3, “TCP Connection Factories’,
including the default Byt eArrayCr Lf Seri al i zer, do not support such payloads, unless the
transformed payloadisaStri ng or byt e[],

Note

When a client connection factory is used by collaborating channel adapters, the so-timeout
attribute defaults to the default reply timeout (10 seconds). This means that if no data are
received by the inbound adapter for this period of time, the socket will be closed.

This may not be appropriate in atruly asynch environment, or if you expect the server to take
morethan 10 secondsto respond in arequest/reply environment. The timeout can beincreased
by setting the so-timeout attribute on the connection factory.

It is not currently possible to set this to an infinite value (0); the maximum value can be set
using a SpEL expression as follows.

so-ti meout ="#{T(j ava.l ang. | nt eger). MAX_VALUE} "

16.8 A Note About NIO

Using NIO (seeusi ng- ni o in Section 16.9, “1P Configuration Attributes”) avoids dedicating athread
to read from each socket. For asmall number of sockets, you will likely find that not using NIO, together
with an async handoff (e.g. to aQueueChannel), will perform aswell as, or better than, using NIO.

Consider using NIO when handling a large number of connections. However, the use of NIO has
some other ramifications. A pool of threads (in the task executor) is shared across al the sockets;
each incoming message is assembled and sent to the configured channel as a separate unit of work
on a thread selected from that pool. Two sequential messages arriving on the same socket might be
processed by different threads. This meansthat the order in which the messages are sent to the channel
isindeterminate; the strict ordering of the messages arriving on the socket is not maintained.

For some applications, thisis not an issue; for othersit is. If strict ordering is required, consider setting
usi ng- ni o to false and using async handoff.

Alternatively, you may choose to insert aresequencer downstream of the inbound endpoint to return the
messages to their proper sequence. Set apply-sequence to true on the connection factory, and messages

Spring Integration
2.1.0.M2 Reference Manual 142

Spring Integration

arriving onaTCP connection will have sequenceNumber and correlationld headers set. The resequencer
uses these headers to return the messages to their proper sequence.

16.9 IP Configuration Attributes

Table 16.1. Connection Factory Attributes

Attribute Name |Client? Server? Allowed Values Attribute Description

type Y Y client, server Determines whether the connection
factory isaclient or server.

host Y N The host name or ip address of the
destination.

port Y Y The port.

serializer Y Y An implementation of Seri ali zer

used to serialize the payload. Defaults to
Byt eArrayCrLfSerializer

deserializer Y Y Animplementation of Deseri al i zer
used to deserialize the payload. Defaults
toByt eArrayCrLf Serializer

using-nio Y Y true fase Whether or not connection uses NIO.
Refer to the java.nio package for more
information. See Section 16.8, “A Note
About NIO”. Default false.

using-direct- Y N true, false When using NIO, whether or not
buffers the connection uses direct buffers.
Refer to java. ni o. ByteBuffer
documentation for more information.
Must be falseif using-nio isfalse.

apply-sequence Y Y true fase When using NIO, it may be necessary
to resequence messages. When this
attribute is set to true, correlationld and
sequenceNumber headers will be added
to received messages. See Section 16.8,
“A Note About NIO”. Default false.

so-timeout Y Y Defaults to 0 (infinity), except
when the connection factory s
used by collaborating adapters, where
it defaults to the default reply
timeout (10 seconds). See the
section about collaborating adapters

Spring Integration
2.1.0.M2 Reference Manual 143

Spring Integration

Attribute Name

Client? Server? Allowed Values

Attribute Description

so-send-buffer-size
so-receive-buffer-
size

so-keep-alive

so-linger

so-tcp-no-delay

true, false

true, false

above and | ava.net. Socket.
set SoTi neout ().

See j ava. net . Socket .
set SendBufferSi ze().

See j ava. net . Socket .
set Recei veBufferSi ze().

See j ava. net . Socket .
set KeepAlive().

Sets linger to true with supplied
vaue. See java.net. Socket.
set SoLi nger ().

See j ava. net . Socket .
set TcpNoDel ay() .

so-traffic-class

See j ava. net . Socket .
set Trafficd ass().

|ocal-address

On a multi-homed system, specifies an
|P address for the interface to which the
socket will be bound.

task-executor

Specifies a specific Executor to be used
for socket handling. If not supplied, an
internal pooled executor will be used.
Needed on some platforms that require
the use of specific task executors such as
aWorkManagerTaskExecutor. See pool-
size for thread requirements, depending
on other options.

single-use

pool-size

Y Y

true, false

Specifies whether a connection can be
used for multiple messages. If true, a
new connection will be used for each

message.

Specifies the concurrency. For tcp,
not using nio, specifies the number
of concurrent connections supported
by the adapter. For tcp, using nio,
specifies the number of tcp fragments
that are concurrently reassembled into
complete messages. It only appliesinthis
sense if task-executor is not configured.

2.1.0.M2

Spring Integration
Reference Manual

144

Spring Integration

Attribute Name |Client? Server? Allowed Values Attribute Description

lookup-host Y Y

However, pool-size is aso used for
the server socket backlog, regardless of
whether an external task executor isused.
Defaultsto 5.

Specifies whether reverse lookups are
done on IP addresses to convert to host
names for use in message headers. If
false, the IP address is used instead.
Defaultsto true.

interceptor- Y Y
factory-chain

See Section 16.4, “Tcp Connection
Interceptors’

Table 16.2. UDP Inbound Channel Adapter Attributes

Attribute Name Allowed Values
port
multicast true, false

multi cast-address

pool-size

task-executor

recelve-buffer-size

Attribute Description
The port on which the adapter listens.
Whether or not the udp adapter uses multicast.

When multicast is true, the multicast address to
which the adapter joins.

Specifies the concurrency. Specifies how many
packets can be handled concurrently. It only
appliesif task-executor isnot configured. Defaults
to 5.

Specifies aspecific Executor to be used for socket
handling. If not supplied, an internal pooled
executor will be used. Needed on some platforms
that require the use of specific task executors such
as a WorkManager TaskExecutor. See pool-size
for thread requirements.

The size of the buffer used to receive
DatagramPackets. Usually set tothe MTU size. If
a smaller buffer is used than the size of the sent
packet, truncation can occur. This can be detected
by means of the check-length attribute..

check-length true, false

So-timeout

Whether or not audp adapter expectsadatalength
field in the packet received. Used to detect packet
truncation.

See j ava. net . Dat agr anSocket
setSoTimeout() methods for more information.

2.1.0.M2

Spring Integration
Reference Manual 145

Spring Integration

Attribute Name Allowed Values

Attribute Description

so-send-buffer-size

so-receive-buffer- size

|ocal-address

error-channel

Used for udp acknowledgment
packets. See j ava. net. Dat agr anSocket
setSendBufferSize() methods for more
information.

See j ava. net . Dat agr anSocket
setReceiveBufferSize() for more information.

On amulti-homed system, specifiesan |P address
for theinterface to which the socket will be bound.

If an Exception is thrown by a downstream
component, the MessagingException message
containing the exception and failed message is
sent to this channel.

lookup-host true, false

Specifies whether reverse lookups are done on
IP addresses to convert to host names for use in
message headers. If false, the IP address is used
instead. Defaults to true.

Table 16.3. UDP Outbound Channel Adapter Attributes

Attribute Name Allowed Values

Attribute Description

host

Thehost name or ip address of the destination. For
multicast udp adapters, the multicast address.

port

The port on the destination.

multicast true, false

Whether or not the udp adapter uses multicast.

acknowledge true, false

ack-host

Whether or not a udp adapter requires an
acknowledgment from the destination. when
enabled, requires setting the following 4
attributes.

When acknowledge is true, indicates the host or
ip address to which the acknowledgment should
be sent. Usually the current host, but may be
different, for example when Network Address
Transaction (NAT) is being used.

ack-port

When acknowledge is true, indicates the port to
which the acknowledgment should be sent. The
adapter listens on this port for acknowledgments.

ack-timeout

When acknowledge is true, indicates the time
in milliseconds that the adapter will wait for

Spring Integration
2.1.0.M2 Reference Manual 146

Spring Integration

Attribute Name Allowed Values

Attribute Description

min-acks-for- success

check-length true, false

time-to-live

an acknowledgment. If an acknowledgment is
not received in time, the adapter will throw an
exception.

Defaults to 1. For multicast adapters, you can set
thisto alarger value, requiring acknowledgments
from multiple destinations.

Whether or not a udp adapter includes a data
length field in the packet sent to the destination.

For multicast adapters, specifies the time to live
atribute for the Mul t i cast Socket ; controls
the scope of the multicasts. Refer to the Java API
documentation for more information.

So-timeout

so-send-buffer-size

so-receive-buffer- size

See j ava. net . Dat agr anSocket
setSoTimeout() methods for more information.

See j ava. net . Dat agr anSocket
setSendBufferSize() methods for more
information.

Used for udp acknowledgment
packets. See j ava. net . Dat agr anSocket
setReceiveBufferSize() methods for more
information.

|ocal-address

task-executor

On a multi-homed system, for the UDP adapter,
specifies an | P address for the interface to which
the socket will be bound for reply messages. For
a multicast adapter it is also used to determine
which interface the multicast packets will be sent
over.

Specifies a specific Executor to be used for
acknowledgment handling. If not supplied, an
internal single threaded executor will be used.
Needed on some platforms that require the
use of specific task executors such as a
WorkManagerTaskExecutor. One thread will be
dedicated to handling acknowledgments (if the
acknowledge option istrue).

Spring Integration
2.1.0.M2 Reference Manual 147

Spring Integration

Table 16.4. TCP Inbound Channel Adapter Attributes

Attribute Name Allowed Values
channel

connection-
factory

Attribute Description
The channel to which inbound messages will be sent.

If the connection factory has a type 'server', the factory is
‘owned' by this adapter. If it has atype 'client’, it is 'owned'
by an outbound channel adapter and this adapter will receive
any incoming messages on the connection created by the
outbound adapter.

error-channel

If an Exception is thrown by a downstream component, the
M essagingException message containing the exception and
failed message is sent to this channel.

Table 16.5. TCP Outbound Channel Adapter Attributes

Attribute Name Allowed Values

Attribute Description

channel

connection-
factory

The channel on which outbound messages arrive.

If the connection factory has a type ‘client’, the factory is
‘owned' by this adapter. If it has atype 'server', it is'owned'
by an inbound channel adapter and this adapter will attempt
to correlate messages to the connection on which an original
inbound message was received.

Table 16.6. TCP Inbound Gateway Attributes

Attribute Name Allowed Values

Attribute Description

connection- The connection factory must be of type server.

factory

reguest-channel The channel to which incoming messages will be sent.

reply-channel The channel on which reply messages may arrive. Usually
replieswill arrive on atemporary reply channel added to the
inbound message header

reply-timeout Thetimein millisecondsfor which the gateway will wait for
areply. Default 1000 (1 second).

error-channel If an Exception is thrown by a downstream component, the
M essagingException message containing the exception and
failed message is sent to this channel; any reply from that
flow will then be returned as a response by the gateway.
Spring Integration

2.1.0.M2 Reference Manual 148

Spring Integration

Table 16.7. TCP Outbound Gateway Attributes

Attribute Name Allowed Values Attribute Description

connection- The connection factory must be of type client.

factory

request-channel The channel on which outgoing messages will arrive.

reply-channel Optional. The channel to which reply messages may be sent
if the original outbound message did not contain a reply
channel header.

reply-timeout Thetimein milliseconds for which the gateway will wait for

areply. Default: 10000 (10 seconds).

reguest-timeout If asingle-use connection factory isnot being used, Thetime
in millisecondsfor which the gateway will wait to get access
to the shared connection.

Spring Integration
2.1.0.M2 Reference Manual 149

Spring Integration

17. JDBC Support

Spring Integration provides Channel Adaptersfor receiving and sending messages via database queries.

17.1 Inbound Channel Adapter

The main function of an inbound Channel Adapter is to execute a SQL SELECT query and turn the
result set as amessage. The message payload isthe wholeresult set, expressed asali st , and thetypes
of theitemsinthelist depend on the row-mapping strategy that is used. The default strategy isageneric
mapper that just returnsaMap for each row in the query result. Optionally, thiscan be changed by adding
a reference to a Rowivapper instance (see the Spring JDBC [http://static.springsource.org/spring/
docs/3.0.x/spring-framework-reference/html/jdbc.html] documentation for more detailed information
about row mapping).

Note

If you want to convert rows in the SELECT query result to individual messages you can use
a downstream splitter.

Theinbound adapter also requiresareferenceto either aJdbcTenpl at e instance or aDat aSour ce.

As well as the SELECT statement to generate the messages, the adapter above also has an UPDATE
statement that is being used to mark the records as processed so that they don't show up in the next
poll. The update can be parameterized by thelist of ids from the original select. Thisis done through a
naming convention by default (a column in the input result set called "id" istranslated into alist in the
parameter map for the update called "id"). The following example defines an inbound Channel Adapter
with an update query and a Dat aSour ce reference.

<int-jdbc:inbound-channel -adapter query="select * fromitem where status=2"
channel ="t arget" dat a- sour ce="dat aSour ce"
updat e="update item set status=10 where id in (:id)" />

Note

The parameters in the update query are specified with a colon (;) prefix to the name of
a parameter (which in this case is an expression to be applied to each of the rows in the
polled result set). Thisis a standard feature of the named parameter JDBC support in Spring
JDBC combined with a convention (projection onto the polled result list) adopted in Spring
Integration. The underlying Spring JDBC features limit the available expressions (e.g. most
special characters other than period are disallowed), but since the target is usually alist of or
an individual object addressable by simple bean paths thisisn't unduly restrictive.

To change the parameter generation strategy you caninject aSql Par anet er Sour ceFact or y into
the adapter to override the default behavior (the adapter hasasql - par anet er - sour ce-f actory
attribute).

Spring Integration
2.1.0.M2 Reference Manual 150

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html

Spring Integration

Polling and Transactions

The inbound adapter accepts a regular Spring Integration poller as a sub element, so for instance the
frequency of the polling can be controlled. A very important feature of the poller for JIDBC usageisthe
option to wrap the poll operation in atransaction, for example:

<i nt-jdbc:inbound-channel - adapter query="..."
channel ="target" dat a-source="dat aSource" update="...">
<int:poller fixed-rate="1000">
<int:transactional />
</int:poller>
</int-jdbc:inbound-channel - adapt er >

Note
If a poller is not explicitly specified, a default value will be used (and as per normal with
Spring Integration can be defined as atop level bean).

In this example the database is polled every 1000 milliseconds, and the update and select queries are
both executed in the same transaction. The transaction manager configuration is not shown, but aslong
asit isaware of the data source then the poll istransactional. A common use caseis for the downstream
channels to be direct channels (the default), so that the endpoints are invoked in the same thread, and
hence the same transaction. Then if any of them fail, the transaction rolls back and the input data is
reverted to itsoriginal state.

17.2 Outbound Channel Adapter

The outbound Channel Adapter isthe inverse of the inbound: itsrole is to handle a message and use it
to execute a SQL query. The message payload and headers are available by default as input parameters
to the query, for instance:

<i nt -j dbc: out bound- channel - adapt er
query="insert into foos (id, status, nane) values (:headers[id], 0, :payload[foo])"
dat a- sour ce="dat aSour ce"
channel ="i nput"/>

In the exampl e above, messages arriving on the channel "input" have apayload of a map with key "foo",
sothe[] operator dereferences that value from the map. The headers are a so accessed as a map.

Note

The parameters in the query above are bean property expressions on the incoming message
(not Spring EL expressions). This behavior is part of the Sql Par anet er Sour ce whichis
the default source created by the outbound adapter. Other behavior is possible in the adapter,
and requires the user to inject adifferent Sql Par anet er Sour ceFact ory.

The outbound adapter requires areference to either a DataSource or a JdbcTemplate. It can also have a
Sql Par anmet er Sour ceFact or y injected to control the binding of incoming message to the query.

If the input channel is a direct channel then the outbound adapter runsits query in the same thread, and
therefore the same transaction (if there is one) as the sender of the message.

Spring Integration
2.1.0.M2 Reference Manual 151

Spring Integration

17.3 Outbound Gateway

The outbound Gateway islike acombination of the outbound and inbound adapters: itsroleisto handlea
message and use it to execute a SQL query and then respond with the result sending it to areply channel.
The message payload and headers are available by default asinput parametersto the query, for instance:

<i nt-j dbc: out bound- gat enay
update="insert into foos (id, status, nane) values (:headers[id], 0, :payload[foo])"
request - channel ="i nput" reply-channel ="out put" dat a-source="dat aSource" />

The result of the above would be to insert a record into the "foos" table and return a message to the
output channel indicating the number of rows affected (the payload isamap: { UPDATED=1}).

If the update query is an insert with auto-generated keys, the reply message can be populated with the
generated keys by adding keys- gener at ed="t r ue" to the above example (thisis not the default
because it is not supported by some database platforms). For example:

<i nt -j dbc: out bound- gat eway
update="insert into foos (status, nane) values (0, :payload[foo])"
request - channel ="i nput" reply-channel ="out put" dat a-sour ce="dat aSour ce"
keys- gener at ed="true"/>

Instead of the update count or the generated keys, you can also provide a select query to execute and
generate areply message from the result (like the inbound adapter), e.g:

<i nt -j dbc: out bound- gat eway
update="insert into foos (id, status, nane) values (:headers[id], O, :payload[foo])"
query="sel ect * fromfoos where id=: headers[$id]"
request - channel ="i nput" reply-channel ="out put" dat a- sour ce="dat aSour ce"/>

As with the channel adapters, there is also the option to provide Sql Par anet er Sour ceFact ory
instances for request and reply. The default is the same as for the outbound adapter, so the request
messageisavailableastheroot of an expression. If keys-generated="true" then theroot of the expression
isthe generated keys (amap if thereis only one or alist of mapsif multi-valued).

The outbound gateway requires areference to either a DataSource or a JdbcTemplate. It can also have
aSql Par anmet er Sour ceFact or y injected to control the binding of the incoming message to the

query.

17.4 Message Store

The JDBC module providesanimplementation of the Spring Integration Message St or e (importantin
the Claim Check pattern) and MessageG oupSt or e (important in stateful patterns like Aggregator)
backed by a database. Both interfaces are implemented by the JdbcMessageStore, and there is also
support for configuring store instancesin XML. For example:

<int-jdbc: nessage-store i d="nessageStore" data-source="dat aSource"/>

A JdbcTenpl at e can be specified instead of aDat aSour ce.

Other optional attributes are show in the next example:

Spring Integration
2.1.0.M2 Reference Manual 152

Spring Integration

<int-jdbc: nessage-store i d="nessageStore" data-source="dat aSource"
| ob- handl er ="1 obHandl er" tabl e-prefix="MY_I NT_"/>
Herewe have specified aLobHandl er for dealing with messages aslarge objects (e.g. often necessary
if using Oracle) and a prefix for the table names in the queries generated by the store. The table name
prefix defaultsto "INT_".

Initializing the Database

Spring Integration ships with some sample scripts that can be used to initidlize
a database. In the spring-integration-jdbc JAR file you will find scripts in the
org. springframework.integration.jdbc package: there is a create and a drop script
example for a range of common database platforms. A common way to use these scripts is to
referencethem in a Spring JDBC datasourceinitializer [http://static.springsource.org/spring/docs/3.0.x/
spring-framework-reference/html/jdbc.html#d0e24182]. Note that the scripts are provided as samples
or specifications of the the required table and column names. Y ou may find that you need to enhance
them for production use (e.g. with index declarations).

Partitioning a Message Store

It is common to use aJdbcMessageSt or e as agloba store for a group of applications, or nodes
in the same application. To provide some protection against name clashes, and to give control over the
database meta-data configuration, the message store allows the tables to be partitioned in two ways. One
is to use separate table names, by changing the prefix as described above, and the other is to specify
a "region" name for partitioning data within a single table. An important use case for this is when
the MessageStore is managing persistent queues backing a Spring Integration Message Channdl. The
message data for a persistent channel is keyed in the store on the channel name, so if the channel names
are not globally unique then there is the danger of channels picking up data that was not intended for
them. To avoid this, the message store region can be used to keep data separate for different physical
channels that happen to have the same logical name.

17.5 Stored Procedures

Spring Integration provides 3 components for stored procedures support:
 Stored Procedures Inbound Channel Adapter

» Stored Procedures Outbound Channel Adapter

 Stored Procedures Outbound Gateway
Common Configuration Parameters

Supported Parameters

The Store procedures components use the
org. springframework. j dbc. core. sinpl e. Si npl eJdbcCal | class to facilitate Stored
Procedure support. The following databases are fully supported for executing Stored procedures:

Spring Integration
2.1.0.M2 Reference Manual 153

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jdbc.html#d0e24182

Spring Integration

» Apache Derby

 DB2

- MySQL

» Microsoft SQL Server

» Oracle

» PostgreSQL

» Sybase

The following databases are fully supported for executing Sql functions:

« MySQL

Microsoft SQL Server

* Oracle

PostgreSQL
Note

Even though your particular database may not be fully supported, chances are that you can
use the Stored Procedures Spring I ntegration components quite successfully anyway, provided
your RDBMSS supports Stored Procedures or Functions.

Asamatter of fact, some of the provided integration tests use the the H2 database. Nevertheless
it isvery important to thouroughly test those usasge scenarios.

Defining Parameter Sources

TBD

Stored Procedures Inbound Channel Adapter

<i nt-jdbc: stored-proc-inbound-channel - adapt er

channel =""

st or ed- pr ocedur e- nane=""

dat a- source=""

aut o-startup="true"

id=""

i gnor e- col um- net a- dat a="f al se"

i s-function="fal se"

max- r ows- per - pol | =""
updat e=""

OOo0o0oooooog

Spring Integration
2.1.0.M2 Reference Manual 154

Spring Integration

[I I A

EEEC OO

[N
B

MR EEE
EEEREEE

</int-jdbc:stored-proc-inbound-channel - adapt er >

updat e- per-row="f al se"
updat e- sql - par anet er - sour ce-fact ory="">
<int:poller/>
<int-jdbc:sql-paranmeter-definition name="" direction="IN'
t ype="1 NTEGER"
scal e="10"/>
<int-jdbc:paraneter nane="" type="" val ue=""/>
<int-jdbc: paranmeter nane="" expression=""/>
<int-jdbc:returning-resul tset name="" row mapper="" />

EEEEEEERE -

Channel to which polled messages will be send. If the stored procedure or function does not return
any data, the payload of the Message will be Null. Required.

The name of the stored procedure. If the "is-function" attribute is "true", this attributes specifies
the function name. Required.

Reference to a data source to use to access the database. Required.

Optional.

Optional.

Optional.

If "true", a SQL Function iscalled. In that case the "stored-procedure-name” attribute defines the
name of the called function. Defaults to false. Optional.

Optional.

Optional.

Optional.

Optional.

Optional.

Specifies the direction of the Sql parameter definition. Defaults to 'IN'. If your procedure is
returning ResultSets, please use the 'returning-resultset’ element. Optional.

The Sql type used for this Sl parameter defintion. Will tranglate into the integer value as defined
by java.sgl.Types. Alternatively you can provide the integer value as well. If this attribute is not
explicitly set, then it will default to 'VARCHAR'.Optional.

The scale of the Sgl parameter. Only used for numeric and decimal parameters. Optional.
Optional.

Optional.

Optional.

Optional.

Stored Procedures Outbound Channel Adapter

<i nt-j dbc: st or ed- proc- out bound- channel - adapt er channel =""

st or ed- pr ocedur e- nane=""
dat a- source=""

aut o-startup="true"
i d=""

i gnor e- col unm- net a- dat a="f al se"

O0Oo0ooOooooQg

Spring Integration

2.1.0.M2 Reference Manual 155

Spring Integration

return-val ue-required="fal se" O
sql - paranet er-source-factory=""> [
<int:poller fixed-rate=""/>
<int-jdbc:sql-paraneter-definition name=""/>
<int-jdbc: paraneter nane=""/>

</int-jdbc: stored- proc-out bound- channel - adapt er >

0 Required.

|

The name of the stored procedure. If the "is-function” attribute is "true", this attributes specifies
the function name. Required.

Reference to a data source to use to access the database. Required.

Optional.

Optional.

Optional.

Optional.

Optional.

Optional.

O0Oo0Ooo0oo0oaogoadd

Stored Procedures Outbound Gateway

<i nt-jdbc: stored-proc-out bound- gat eway request-channel ="" O
st or ed- procedur e- name="" O
dat a- source="" 0
auto-startup="true" O
id="" O
i gnor e- col um- net a- dat a="f al se" O
i s-function="fal se" O
order="" O
repl y-channel ="" 0
request-ti neout ="" O
return-val ue-required="fal se"
sql - par anet er - sour ce-factory="">
<int-jdbc:sql-paranmeter-definition name="" direction="IN'
type=""
scal e="10"/>
<int-jdbc:sql-paraneter-definition name=""/>
<int-jdbc:paraneter nane="" type="" val ue=""/>
<int-jdbc: paraneter name="" expression=""/>
<int-jdbc:returning-resultset name="" row mapper="" />
0 Required.

[0 Thename of the stored procedure. If the "is-function" attribute is "true", this attributes specifies
the function name. Required.

0 Referenceto adata source to use to access the database. Required.

Optional.

0 Optional.

O

Spring Integration
2.1.0.M2 Reference Manual 156

Spring Integration

|

Optional.

If "true”, a SQL Function iscalled. In that case the "stored-procedure-name” attribute defines the
name of the called function. Defaults to false. Optional.
Optional.

Optional.

Optional.

Optional.

Optional.

Optional.

Optional.

Optional.

Optional.

Optional.

O

~rH-H-~N-H-H -l
EEEEEEE -~ C

Spring Integration
2.1.0.M2 Reference Manual 157

Spring Integration

18. JMS Support

Spring Integration provides Channel Adapters for receiving and sending JIMS messages. There are
actually two JM S-based inbound Channel Adapters. The first uses Spring's Jns Tenpl at e to receive
based on a polling period. The second is "message-driven” and relies upon a Spring MessageListener
container. There is also an outbound Channel Adapter which uses the Jnrs Tenpl at e to convert and
send a JMS Message on demand.

As you can see from above by using JnsTenpl at e and MessagelLi st ener container Spring
Integration relies on Spring's JIMS support. This is important to understand since most of the
attributes exposed on these adapters will configure the underlying Spring's Jns Tenpl at e and/or
Messageli st ener container. For more details about Jms Tenpl at e and Messagel.i st ener
container please refer to Spring IMS documentation [http://static.springsource.org/spring/docs/3.0.x/
spring-framework-reference/html/jms.html].

Whereas the IMS Channel Adapters are intended for unidirectional Messaging (send-only or receive-
only), Spring Integration also provides inbound and outbound JMS Gateways for request/reply
operations. Theinbound gateway relies on one of Spring's Messagel istener container implementations
for Message-driven reception that is also capable of sending areturn value to the "reply-to" Destination
as provided by the received Message. The outbound Gateway sends a JIMS Message to a "request-
destination” and then receivesareply Message. The"reply-destination” reference (or "reply-destination-
name") can be configured explicitly or else the outbound gateway will use aJJM S TemporaryQueue.

18.1 Inbound Channel Adapter

The inbound Channel Adapter requires a reference to either a single Jrs Tenpl at e instance or
both Connecti onFactory and Desti nati on (a 'destinationName' can be provided in place
of the 'destination’ reference). The following example defines an inbound Channel Adapter with a
Desti nat i on reference.

<i nt-j nms: i nbound-channel - adapter id="jnsln" destinati on="i nQueue" channel =" exanpl eChannel ">
<int:poller fixed-rate="30000"/>
</int-jms:inbound-channel - adapt er >

Tip

Notice from the configuration that the inbound-channel-adapter is a Polling Consumer. That
means that it invokes receive() when triggered. This should only be used in situations where
polling isdonerelatively infrequently and timelinessisnot important. For al other situations(a
vast majority of JM S-based use-cases), the message-driven-channel-adapter described below
is a better option.

Note

All of the IMS adapters that require a reference to the ConnectionFactory will automatically
look for a bean named "connectionFactory" by default. That is why you don't see
a "connection-factory" attribute in many of the examples. However, if your JMS
ConnectionFactory has a different bean name, then you will need to provide that attribute.

Spring Integration
2.1.0.M2 Reference Manual 158

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jms.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jms.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jms.html

Spring Integration

If 'extract-payload' is set to true (which is the default), the received IMS Message will be passed
through the MessageConverter. When relying on the default SimpleM essageConverter, this means that
the resulting Spring Integration Message will have the IMS Message's body as its payload. A IMS
TextMessage will produce a String-based payload, a IMS BytesMessage will produce a byte array
payload, and aJM S ObjectM essage's Serializabl einstance will becomethe Spring Integration M essage's
payload. If instead you prefer to havetheraw JM S M essage asthe Spring | ntegration M essage's payl oad,
then set 'extract-payload' to false.

<i nt-j nms: i nbound- channel - adapter id="jnsln"
desti nati on="i nQueue"
channel =" exanpl eChannel "
extract - payl oad="fal se"/ >
<int:poller fixed-rate="30000"/>
</int-jms:inbound-channel - adapt er >

18.2 Message-Driven Channel Adapter

The "message-driven-channel-adapter” requires a reference to either an instance of a Spring
Messagel istener container (any subclass of Abst ract MessagelLi st ener Cont ai ner) or both
Connecti onFact ory and Desti nati on (a 'destinationName' can be provided in place of the
'destination’ reference). The following example defines a message-driven Channel Adapter with a
Desti nat i on reference.

<i nt-jms: nessage-driven-channel -adapter id="jnmsln" destinati on="inQueue" channel ="exanpl eChannel "/ >

Note

The Message-Driven adapter also accepts severa properties that pertain to the
Messagel istener container. These values are only considered if you do not provide an
actual 'container' reference. In that case, an instance of DefaultMessagel istenerContainer
will be created and configured based on these properties. For example, you can specify
the "transaction-manager” reference, the "concurrent-consumers’ value, and several other
property references and values. Refer to the JavaDoc and Spring Integration's IMS Schema
(spring-integration-jms-2.0.xsd) for more detail.

The 'extract-payload' property has the same effect as described above, and once again its default value
is'true. The poller sub-element is not applicable for a message-driven Channel Adapter, as it will be
actively invoked. For most usage scenarios, the message-driven approach is better since the Messages
will be passed along to the MessageChannel assoon asthey are received from the underlying IMS
consumer.

Finally, the <message-driven-channel -adapter> al so accepts the 'error-channel’ attribute. This provides
the same basic functionality as described in the section called “ GatewayProxyFactoryBean”.

<i nt-jnms: nessage-driven-channel -adapter id="jnsln" destinati on="i nQueue"
channel =" exanpl eChannel "
error-channel =" exanpl eErr or Channel "/ >

When comparing this to the generic gateway configuration, or the JMS 'inbound-gateway' that will

be discussed below, the key difference here is that we are in a one-way flow since thisis a 'channel-
adapter', not a gateway. Therefore, the flow downstream from the 'error-channel’ should also be one-

Spring Integration
2.1.0.M2 Reference Manual 159

Spring Integration

way. For example, it could simply send to alogging handler, or it could be connected to adifferent IMS
<outbound-channel -adapter> element.

18.3 Outbound Channel Adapter

The Jnms Sendi ngMessageHandl er implements the MessageHandl er interface and is capable
of converting Spring Integration Messages to JMS messages and then sending to a IM S destination.
It requires either a 'jmsTemplate’ reference or both ‘connectionFactory’ and 'destination’ references
(again, the 'destinationName’ may be provided in place of the 'destination’). As with the inbound
Channel Adapter, the easiest way to configure this adapter is with the namespace support. The
following configuration will produce an adapter that receives Spring Integration Messages from the
"exampleChannd" and then converts those into IM'S M essages and sends them to the IM S Destination
reference whose bean name is "outQueue".

<i nt -j ms: out bound- channel - adapter id="jnmsCQut" destinati on="out Queue" channel ="exanpl eChannel "/>

As with the inbound Channel Adapters, there is an 'extract-payload' property. However, the meaning
is reversed for the outbound adapter. Rather than applying to the IMS Message, the boolean property
applies to the Spring Integration Message payload. In other words, the decision is whether to pass the
Spring Integration Message itself as the IMS Message body or whether to pass the Spring Integration
Message's payload as the IMS Message body. The default value is once again 'true’. Therefore, if you
pass a Spring Integration Message whose payload is a String, a IMS TextMessage will be created. If
on the other hand you want to send the actual Spring Integration Message to another system via JMS,
then simply set thisto false'.

Note

Regardless of the boolean value for payload extraction, the Spring Integration
M essageHeaderswill map to IM S propertiesaslong asyou arerelying on the default converter
or provide a reference to another instance of HeaderMappingM essageConverter (the same
holds true for 'inbound' adapters except that in those cases, it's the IMS properties mapping
to Spring Integration M essageHeaders).

18.4 Inbound Gateway

Spring Integration's message-driven JMS inbound-gateway delegates to a Messageli st ener
container, supports dynamically adjusting concurrent consumers, and can aso handle replies. The
inbound gateway requires referencesto aConnect i onFact ory, and arequest Dest i nati on (or
'requestDestinationName’). Thefollowing example definesaJM S "inbound-gateway" that receivesfrom
the IMS queue referenced by the bean id "inQueue" and sends to the Spring Integration channel named
"exampleChannel".

<i nt-jns:inbound-gateway id="jnslnGat enay"
request - desti nati on="i nQueue"
r equest - channel =" exanpl eChannel "/ >

Since the gateways provide request/reply behavior instead of unidirectional send or receive, they also
have two distinct properties for the " payload extraction" (as discussed above for the Channel Adapters

Spring Integration
2.1.0.M2 Reference Manual 160

Spring Integration

‘extract-payload' setting). For an inbound-gateway, the 'extract-request-payload' property determines
whether thereceived IM S M essage body will be extracted. If 'false', the IMS Messageitself will become
the Spring Integration Message payload. The default is 'true'.

Similarly, for an inbound-gateway the 'extract-reply-payload' property appliesto the Spring Integration
Message that is going to be converted into areply IMS Message. If you want to pass the whole Spring
Integration Message (as the body of a JIMS ObjectMessage) then set thisto false’. By default, it isalso
'true’ such that the Spring Integration Message payload will be converted into a IMS Message (e.g.
String payload becomes a IMS TextM essage).

Aswith anything else, Gateway invocation might result in error. By default Producer will not be notified
of the errors that might have occurred on the consumer side and will time out waiting for the reply.
However there might be times when you want to communicate an error condition back to the consumer,
in other words treat the Exception as avalid reply by mapping it to aMessage. To accomplishthisIMS
Inbound Gateway provides support for a Message Channel to which errors can be sent for processing,
potentially resulting in areply Message payload that conforms to some contract defining what a caller
may expect as an "error" reply. Such a channel can be configured viathe error-channel attribute.

<i nt-jms:inbound-gateway request-destinati on="request Queue"
request - channel ="j nsi nput channel "
error-channel ="error Tr ansf or nat i onChannel "/ >

<int:transfornmer input-channel ="exceptionTransformati onChannel "
ref ="exceptionTransformer" method="createErrorResponse"/>

You might notice that this example looks very similar to that included within the section called
“GatewayProxyFactoryBean”. The sameideaapplieshere: The exceptionTransformer could beasimple
POJO that creates error response objects, you could reference the "nullChannel” to suppress the errors,
or you could leave 'error-channel’ out to let the Exception propagate.

18.5 Outbound Gateway

The outbound Gateway creates IMS Messages from Spring Integration Messages and then sends to a
'request-destination'. It will then handle the IMS reply Message either by using a selector to receive
from the 'reply-destination’ that you configure, or if no 'reply-destination’ is provided, it will create IMS
TemporaryQueues. Natice that the "reply-channel" is also provided.

<i nt-j ms: out bound- gat eway i d="j nsCQut Gat eway"
request - desti nati on="out Queue"
r equest - channel =" out boundJnsRequest s"
repl y-channel ="j msRepl i es"/ >

The 'outbound-gateway' payload extraction properties are inversely related to those of the 'inbound-
gateway' (seethediscussion above). That meansthat the 'extract-request-payload' property value applies
to the Spring Integration Message that is being converted into a IMS Message to be sent as a request,
and the 'extract-reply-payload' property value applies to the IMS Message that is received as a reply
and then converted into a Spring Integration Message to be subsequently sent to the 'reply-channel’ as
shown in the example configuration above.

Spring Integration
2.1.0.M2 Reference Manual 161

Spring Integration

18.6 Mapping Message Headers to/from JMS Message

JM S Message can contain meta-information such as IMS API headers aswell as simple properties. Y ou
can map those to/from Spring Integration M essage Headersusing Jnms Header Mapper . The IMS API
headers are passed to the appropriate setter methods (e.g. setJM SReplyTo) whereas other headers will
be copied to the general properties of the IMS Message. IM S Outbound Gateway is bootstrapped with
the default implementation of Jnrs Header Mapper whichwill map standard IMS APl Headersaswell
as primitive/String Message Headers. Custom header mapper could also be provided via header -

mapper attribute of inbound and outbound gateways.

18.7 Message Conversion, Marshalling and
Unmarshalling

If you need to convert the message, al JMS adapters and gateways, alow you to provide
a MessageConverter via message-converter attribute. Simply provide the bean name of
an instance of MessageConverter that is available within the same ApplicationContext.
Also, to provide some consistency with Marshaller and Unmarshaller interfaces Spring provides
Mar shal | i ngMessageConvert er which you can configure with your own custom Marshallers
and Unmarshallers

<i nt-jns:inbound-gateway request-destinati on="request Queue"
request - channel ="i nbound- gat eway- channel "
nessage- converter="marshal | i ngMessageConverter"/>

<bean i d="nmarshal | i ngMessageConverter"
cl ass="org. springframework.jns. support.converter.Mrshal | i ngMessageConverter">
<constructor-arg>
<bean cl ass="org. bar. Sanpl eMarshal | er"/ >
</ constructor-arg>
<constructor-arg>
<bean cl ass="org. bar. Sanpl eUnnar shal | er"/>
</ constructor-arg>
</ bean>

Note

Note, however, that when you provide your own MessageConverter instance, it will still
be wrapped within the HeaderMappingMessageConverter. This means that the 'extract-
request-payload’ and 'extract-reply-payload' properties may affect what actual objects are
passed to your converter. The HeaderM appingM essageConverter itself simply delegatesto a
target MessageConverter while also mapping the Spring Integration MessageHeadersto JIMS
M essage properties and vice-versa.

18.8 JMS Backed Message Channels

The Channel Adapters and Gateways featured above are all intended for applicationsthat areintegrating
with other external systems. The inbound options assume that some other system is sending IMS
M essages to the IM S Destination and the outbound options assume that some other system isreceiving

Spring Integration
2.1.0.M2 Reference Manual 162

Spring Integration

from the Destination. The other system may or may not be a Spring Integration application. Of course,
when sending the Spring Integration Message instance as the body of the IMS Message itself (with the
‘extract-payload' value set to false), it is assumed that the other system is based on Spring Integration.
However, that is by no means arequirement. That flexibility is one of the benefits of using a Message-
based integration option with the abstraction of "channels' or Destinations in the case of IMS.

There are cases where both the producer and consumer for a given IM S Destination are intended to be
part of the same application, running within the same process. This could be accomplished by using a
pair of inbound and outbound Channel Adapters. The problem with that approach is that two adapters
are required even though conceptually the goal is to have a single Message Channel. A better option
is supported as of Spring Integration version 2.0. Now it is possible to define a single "channel" when
using the IMS namespace.

<int-jns:channel id="jnsChannel" queue="exanpl eQueue"/>

The channel in the above example will behave much like a norma <channel/> element from the
main Spring Integration namespace. It can be referenced by both "input-channel™ and " output-channel™
attributes of any endpoint. The difference is that this channel is backed by a IMS Queue instance
named "exampleQueue". This means that asynchronous messaging is possible between the producing
and consuming endpoints, but unlike the simpler asynchronous Message Channels created by adding
a <queue/> sub-element within a non-JM S <channel/> element, the Messages are not just stored in an
in-memory queue. Instead those Messages are passed within a JM'S Message body, and the full power
of the underlying JM S provider isthen available for that channel. Probably the most common rationale
for using this alternative would be to take advantage of the persistence made available by the store
and forward approach of JIMS messaging. If configured properly, the IM S-backed Message Channel
also supports transactions. In other words, a producer would not actually write to atransactiona IMS-
backed channel if its send operation is part of atransaction that rolls back. Likewise, aconsumer would
not physically remove a IMS Message from the channel if the reception of that Message is part of a
transaction that rolls back. Note that the producer and consumer transactions are separate in such a
scenario. Thisissignificantly different than the propagation of atransactional context across the simple,
synchronous <channel/> element that has no <queue/> sub-element.

Since the example above is referencing a IMS Queue instance, it will act as a point-to-point channel.
If on the other hand, publish/subscribe behavior is needed, then a separate element can be used, and a
JMS Topic can be referenced instead.

<i nt-jms: publish-subscribe-channel id="jmsChannel" topic="exanpl eTopic"/>

For either type of IMS-backed channel, the name of the destination may be provided instead of a
reference.

<i nt-jns:channel id="jnmsQueueChannel" queue-nanme="exanpl eQueueNane"/>
<j ms: publ i sh-subscri be-channel id="jnsTopi cChannel" topi c-nane="exanpl eTopi cNanme"/>
In the examples above, the Destinaion names would be resolved by Spring's

default Dynani cDesti nati onResol ver implementation, but any implementation of the
Desti nati onResol ver interface could be provided. Also, the IMS Connect i onFact ory isa

Spring Integration
2.1.0.M2 Reference Manual 163

Spring Integration

required property of the channel, but by default the expected bean name would be " connectionFactory".
The example below provides both a custom instance for resolution of the JM S Destination names and
adifferent name for the ConnectionFactory.

<int-jms:channel id="jnsChannel" queue-nane="exanpl eQueueNane"
destination-resol ver="custonDesti nati onResol ver"
connecti on-factory="cust onConnecti onFact ory"/ >

18.9 JMS Samples

To experiment with these IMS adapters, check out IMS samples available in our new Samples Git
repository available here: http://git.springsource.org/+spring-integration/spring-integration/samples .
There are two samplesincluded. One provides inbound and outbound Channel Adapters, and the other
provides inbound and outbound Gateways. They are configured to run with an embedded ActiveMQ
process, but the "common.xml" file can easily be modified to support either a different IMS provider
or a standalone ActiveMQ process. In other words, you can split the configuration so that the inbound
and outbound adapters are running in separate JVMs. If you have ActiveMQ installed, simply modify
the "brokerURL" property within the configuration to use "tcp://localhost:61616" for example (instead
of "vm://localhost"). Both of the samples accept input via stdin and then echo back to stdout. Look at
the configuration to see how these messages are routed over JIMS.

Spring Integration
2.1.0.M2 Reference Manual 164

Spring Integration

19. Mail Support

19.1 Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the Mai | Sendi ngMessageHandl er .
It delegates to a configured instance of Spring'sJavaMai | Sender :

JavaMai | Sender nmai | Sender = context. get Bean("mail Sender", JavaMail Sender. cl ass);

Mai | Sendi ngMessageHandl er mai | Sendi ngHandl er = new Mai | Sendi ngMessageHandl er (mai | Sender) ;

Mai | Sendi ngMessageHandl er hasvarious mapping strategies that use Spring's Mai | Message
abstraction. If the received Message's payload is adready a Mai | Message instance, it will be sent
directly. Therefore, it is generally recommended to precede this consumer with a Transformer for non-
trivial MailM essage construction requirements. However, afew simple M essage mapping strategies are
supported out-of -the-box. For example, if the message payload is abyte array, then that will be mapped
to an attachment. For simple text-based emails, you can provide a String-based Message payload. In
that case, a MailMessage will be created with that String as the text content. If you are working with
a Message payload type whose toString() method returns appropriate mail text content, then consider
adding Spring Integration’'s ObjectToStringTransformer prior to the outbound Mail adapter (see the
example within the section called “ Configuring Transformer with XML” for more detail).

The outbound MailMessage may also be configured with certain values from the MessageHeader s.
If available, values will be mapped to the outbound mail's properties, such as the recipients (TO, CC,
and BCC), the from/reply-to, and the subject. The header names are defined by the following constants:

Mai | Header s. SUBJECT
Mai | Headers. TO

Mai | Headers. CC

Mai | Header s. BCC

Mai | Header s. FROM

Mai | Header s. REPLY_TO

Note

Mai | Header s also alows you to override corresponding Mai | Message values. For
example: If Mai | Message. t o is set to 'foo@bar.com' and Mai | Header s. TO Message
header is provided it will take precedence and override the corresponding value in
Mai | Message

19.2 Mail-Receiving Channel Adapter

Spring Integration aso provides support for inbound email with the
Mai | Recei vi ngMessageSour ce. It delegates to a configured instance of Spring Integration's
own Mai | Recei ver interface, and there are two implementations: Pop3Mai | Recei ver and
| mapMai | Recei ver . The easiest way to instantiate either of these is by passing the 'uri' for a Mail
store to the receiver's constructor. For example:

Mai | Recei ver receiver = new Pop3Mai | Recei ver (" pop3://usr: pwd@ ocal host/ | NBOX") ;

Spring Integration
2.1.0.M2 Reference Manual 165

Spring Integration

Another option for receiving mail is the IMAP "idle" command (if supported by the mail server you
are using). Spring Integration providesthe | mapl dl eChannel Adapt er whichisitself aMessage-
producing endpoint. It delegatesto an instance of thel mapMai | Recei ver but enables asynchronous
reception of Mail Messages. There are examplesin the next section of configuring both types of inbound
Channel Adapter with Spring Integration’'s namespace support in the 'mail’ schema.

19.3 Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the
following schemalocations.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:int-mail="http://ww.springframework. org/schema/integration/mail"
xsi : schemaLocat i on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ i ntegrati on/ nai
http://ww. springfranmework. org/ schema/integration/ mail/spring-integration-mil-2.0.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the MailSender:

<i nt-mai | : out bound- channel - adapt er channel =" out boundMai | *
mai | - sender =" nai | Sender "/ >

Alternatively, provide the host, username, and password:

<i nt-mai | : out bound- channel - adapt er channel =" out boundMai | "
host =" sonehost" user name="soneuser" password="somepassword"/>

Note

Keep in mind, as with any outbound Channel Adapter, if the referenced channd is a
PollableChannel, a <poller> sub-element should be provided with either an interval-trigger or
cron-trigger.

To configure an Inbound Channel Adapter, you have the choice between polling or event-driven
(assuming your mail server supports IMAP IDLE - if not, then polling is the only option). A polling
Channel Adapter simply requires the store URI and the channel to send inbound Messagesto. The URI
may begin with "pop3" or "imap":

<int-mail:inbound-channel -adapter id="i mapAdapter"
store-uri="imaps://[usernane]:[password] @ map. gnai | . com | NBOX"
java-nmai |l - properti es="javaMai | Properties"
channel ="r eci eveChannel "
shoul d- del et e- nessages="t rue"
shoul d- mar k- mressages- as-read="true"
aut o-startup="true">
<int:poller max-nmessages-per-poll="1" fixed-rate="5000"/>
</int-mail:inbound-channel - adapter>

If you do have IMAP idle support, then you may want to configure the "imap-idle-channel-adapter"
element instead. Since the "idle" command enables event-driven notifications, no poller is necessary

Spring Integration
2.1.0.M2 Reference Manual 166

Spring Integration

for this adapter. It will send a Message to the specified channel as soon as it receives the notification
that new mail is available:

<int-mail:imp-idle-channel -adapter id="customAdapter"
store-uri="imaps://[usernane]:[password] @ map. gnai | . com | NBOX"
channel ="r eci eveChannel "
aut o-startup="true"
shoul d- del et e- ressages="f al se"
shoul d- mar k- mressages- as-read="true"
java-nui |l - properties="javaMnil Properties"/>

where javaMailProperties could be provided by creating and populating a regular
java. utils. Properti es object. For example via util namespace provided by Spring.

I mportant

If your username contains the ‘@' character use '%40' instead of '@’ to avoid parsing errors
from the underlying JavaMail API.

<util:properties id="javaMil Properties">
<prop key="mail.imap. socket Factory. cl ass">j avax. net. ssl . SSLSocket Fact or y</ pr op>
<prop key="mail .imap.socket Factory. fal |l back">f al se</ prop>
<prop key="mail . store.protocol "> maps</ prop>
<prop key="mail . debug">fal se</ prop>
</util:properties>

IMAP IDLE and lost connection

When using IMAP IDLE channel adapter there might be situations where connection to the server may
be lost (e.g., network failure) and since Java Mail documentation explicitly states that the actual IMAP
API isEXPERIMENTAL it isimportant to understand the differencesin the APl and how to deal with
them when configuring IMAP IDLE adapters. Currently Spring Integration Mail adapters was tested
with JavaMail 1.4.1 and JavaMail 1.4.3 and depending on which oneis used specia attention must be
payed to some of the java mail properties that needs to be set with regard to auto-reconnect.

The following behavior was observed with GMAIL but should provide you with some tips on how to
solve re-connect issue with other providers, however feedback is always welcome. Again, below notes
are based on GMAIL.

With Java Mail 1.4.1 if mai | . i naps. ti meout property is set for a relatively short period of
time (e.g., ~ 5 min) then | MAPFol der . i dl e() will throw Fol der Cl osedExcept i on after this
timeout. However if this property is not set (should be indefinite) the behavior that was observed is that
| MAPFol der . i dl e() method never returns nor it throws an exception. It will however reconnect
automatically if connection was lost for a short period of time (e.g., under 10 min), but if connection
was lost for a long period of time (e.g., over 10 min), then | MAPFol der . i dl e() will not throw
Fol der O osedExcept i on nor it will re-establish connection and will remain in the blocked state
indefinitely, thusleaving you no possihility to reconnect without restarting the adapter. So the only way
to make re-connect to work with JavaMail 1.4.1istosetmai | . i maps. ti meout property explicitly
to some value, but it also means that such value shoudl be relatively short (under 10 min) and the
connection should be re-estabished relatively quickly. Again, it may be different with other providers.
With JavaMail 1.4.3 there was significant improvementsto the API ensuring that there will alwaysbea
conditionwhichwill forcel MAPFol der . i dl e() methodtoreturnviaSt or eCl osedExcepti on

Spring Integration
2.1.0.M2 Reference Manual 167

Spring Integration

or Fol der Cl osedExcept i on or simply return, thus allowing us to proceed with auto-reconnect.
Currently auto-reconnect will run infinitely making attempts to reconnect every 10 sec.

I mportant
In both configurations channel and shoul d- del et e- messages are the REQUIRED
attributes. The important thing to understand is why shoul d- del et e- nessages is
required. Theissue is with the POP3 protocol, which does NOT have any knowledge of
messages that were READ. It can only know what's been read within a single session.
This means that when your POP3 mail adapter is running, emails are successfully consumed
as as they become available during each poll and no single email message will be delivered
more then once. However, as soon as you restart your adapter and begin anew session all
the email messages that might have been retrieved in the previous session will be retrieved
again. That isthe nature of POP3. Some might argue that shoul d- del et e- nessages
should be TRUE by default. In other words, there are two valid and mutually exclusive use
cases which makeit very hard to pick asingle "best" default. Y ou may want to configure
your adapter as the only email receiver in which case you want to be able to restart such
adapter without fear that messages that were delivered before will not be redelivered again.
In this case setting shoul d- del et e- nressages to TRUE would make most sense.
However, you may have another use case where you may want to have multiple adapters
that simply monitor email servers and their content. In other words you just want to 'peek
but not touch'. Then setting shoul d- del et e- messages to FALSE would be much
more appropriate. So since it is hard to choose what should be the right default value for
the shoul d- del et e- nessages attribute, we simply made it a required attribute, to be
set by the user. Leaving it up to the user also means, you will be less likely to end up with
unintended behavior.

Note

When configuring apolling email adapter's should-mark-messages-as-read attribute, be aware
of the protocol you are configuring to retrieve messages. For example POP3 does not support
this flag which means setting it to either value will have no effect as messages will NOT be
marked as read.

When using the namespace support, a header-enricher Message Transformer is also available. This
simplifies the application of the headers mentioned above to any Message prior to sending to the Mail-
sending Channel Adapter.

<i nt-mail: header-enricher subject="Exanple Mil"
to="t o@xanpl e. or g"
cc="cc@xanpl e. org"
bcc="bcc@xanpl e. or g"
from="fromaxanpl e. org"
repl y-to="repl yTo@xanpl e. or g"
overwite="fal se"/>

Finally, the <imap-idle-channel-adapter/> also accepts the 'error-channel® attribute. If a downstream
exception is thrown and an 'error-channel’ is specified, a MessagingException message containing
the failed message and original exception, will be sent to this channel. Otherwise, if the downstream
channelsare synchronous, any such exceptionwill simply belogged asawarning by the channel adapter.

Spring Integration
2.1.0.M2 Reference Manual 168

Spring Integration

19.4 Email Message Filtering

Very often you may encounter a requirement to filter incoming messages (e.g., You want to only
read emails that have 'Spring Integration' in the Subject line). This could be easily accomplished by
connecting Inbound Mail adapter with an expression-based Filter. Although it would work, there is a
downside to this approach. Since messages would be filtered after going through inbound mail adapter
all such messages would be marked as read (SEEN) or Un-read (depending on the value of shoul d-

mar k- messages- as- r ead attribute). However in reality what would be more useful is to mark
messages as SEEN only if they passed the filtering criteria. Thisisvery similar to looking at your email
client while scrolling through all the messagesin the preview pane, but only flagging messages as SEEN
that were actually opened and read.

In Spring Integration 2.0.4 we've introduced mai | - fi | t er - expr essi on attribute oni nbound-
channel - adapt er andi map-i dl e- channel - adapt er . This attribute allows you to provide
an expression which is a combination of SpEL and Regular Expression. For example if you would
like to read only emails that contain 'Spring Integration' in the Subject line, you would configure
mai | -filter-expression attributelikethisthis:nai | -filter-expressi on="subj ect
mat ches ' (?i).*Spring Integration.*"

Sincej avax. mai | . i nternet. M neMessage is the root context of SpEL Evaluation Context,
you can filter on any value available through MimeM essage including the actual body of the message.
Thisoneis particularly important since reading the body of the message would typically result in such
message to be marked as SEEN by default, but since we now setting PEAK flag of every incomming
message to 'true’, only messages that were explicitly marked as SEEN will be seen asread.

Sointhebelow example only messagesthat match thefilter expression will be output by thisadapter and
only those messageswill be marked as SEEN. Inthiscasebasedontherai | - fi |l t er - expressi on
only messages that contain 'Spring Integration' in the subject line will be produced by this adapter.

<int-mail:imp-idle-channel -adapter id="customAdapter"
store-uri="i maps://sonme_googl e_address: ${ passwor d} @ nmap. gmai | . conml | NBOX"
channel ="r ecei veChannel "

shoul d- mar k- nressages- as-read="t rue"
java-nuil - properties="javaMnil Properties"
mai | -filter-expression="subject matches '(?i).*Spring Integration.*""/>

Another reasonabl e question is what happens on the next poll, or idle event, or what happens when such
adapter is restarted. Will there be a potential duplication of massages to be filtered? In other words if
on the last retrieval where you had 5 new messages and only 1 passed the filter what would happen
with the other 4. Would they go through the filtering logic again on the next poll or idle? After all they
were not marked as SEEN. The actual answer is no. They would not be subject of duplicate processing
due to another flag (RECENT) that is set by the Email server and is used by Spring Integration mail
search filter. Folder implementations set this flag to indicate that this message is new to thisfolder, that
is, it has arrived since the last time this folder was opened. In other while our adapter may peek at the
email it also lets the email server know that such email was touched and therefore will be marked as
RECENT by the email server.

Spring Integration
2.1.0.M2 Reference Manual 169

Spring Integration

20. MongoDb Support

As of version 2.1 Spring Integration introduces support for MongoDB [http://www.mongodb.org/]: a
"high-performance, open source, document-oriented database”. This support comes in the form of a
MongoDB-based MessageStore.

20.1 Introduction

To download, install, and run MongoDB please refer to the MongoDB documentation [http:/
www.mongodb.org/downloads] .

20.2 Connecting to MongoDb

To begin interacting with MongoDB you first need to connect to it. Spring Integration builds on
the support provided by another Spring project, Spring Data MongoDB [http://www.springsource.org/
spring-data/lmongodb], which provides a factory class called MongoDbFact ory that simplifies
integration with the MongoDB Client API.

MongoDbFactory

To connect to MongoDB you can use an implementation of the MongoDbFact or y interface:

public interface MongoDbFactory {

/**

* Creates a default {@ink DB} instance.
*

* @eturn the DB instance

* @hrows DataAccessException

*/

DB get Db() throws DataAccessException;

| **

* Creates a {@ink DB} instance to access the database with the given nane.
*

@ar am dbNane nmust not be {@iteral null} or empty.

*

*

* @eturn the DB instance

* @hrows DataAccessException

*

/
DB get Db(String dbName) throws DataAccessExcepti on;

}

The example below shows Si npl eMongoDbFact or y, the out-of-the-box implementation:

In Java

‘ MongoDbFact ory nobngoDbFactory = new Si npl eMongoDbFact ory(new Mongo(), "test");

Or in Spring's XML configuration:

‘ <bean i d="nongoDbFactory" cl ass="org. spri ngfranmework. dat a. rongodb. cor e. Si npl eMongoDbFact ory" >

Spring Integration
2.1.0.M2 Reference Manual 170

http://www.mongodb.org/
http://www.mongodb.org/
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://www.springsource.org/spring-data/mongodb
http://www.springsource.org/spring-data/mongodb
http://www.springsource.org/spring-data/mongodb

Spring Integration

<constructor-arg>
<bean cl ass="com nongodb. Mongo"/ >
</ constructor-arg>
<constructor-arg val ue="test"/>
</ bean>

As you can see Si npl eMongoDbFact ory takes two arguments. 1) a Mongo instance and 2) a
String specifying the name of the database. If you need to configure properties such as host , port,
etc, you can pass those using one of the constructors provided by the underlying Mongo class. For
more information on how to configure MongoDB, please refer to the Spring-Data-Document [http://
static.gpringsource.org/spring-data/data-document/docs/current/reference/html/] reference.

20.3 MongoDB Message Store

As described in EIP, a Message Store [http://www.eai patterns.com/M essageStore.html] allows you
to persist Messages. This can be very useful when dealing with components that have a capability
to buffer messages (QueueChannel, Aggregator, Resequencer, etc.) if reliability is a concern. In
Spring Integration, the MessageStore strategy also provides the foundation for the ClaimCheck [http://
www.eai patterns.com/Storel nLibrary.html] pattern, which is described in EIP as well.

Spring Integration's MongoDB module provides the MongoDbMessageSt ore which is an
implementation of both the MessageSt or e strategy (mainly used by the QueueChannel and
ClaimCheck patterns) and the Message& oupSt or e strategy (mainly used by the Aggregator and
Resequencer patterns).

<bean i d="npngoDbMessageSt ore" cl ass="org. spri ngfranmework. i ntegration. nongodb. st ore. MongoDbMessageSt or e" >
<constructor-arg ref="nongoDbFactory"/>
</ bean>

<int:channel id="sonePersistentQeueChannel ">
<i nt:queue nessage- st ore="nongoDbMessageStore"/ >
<i nt: channel >

<i nt:aggregator input-channel ="inputChannel" out put-channel =" out put Channel "
message- st or e=" nongoDbMessageSt ore"/ >

Aboveisasample MongoDbMessageSt or e configuration that shows its usage by a QueueChannel
and an Aggregator. As you can see it is a simple bean configuration, and it expects a
MongoDbFact or y asaconstructor argument.

Spring Integration
2.1.0.M2 Reference Manual 171

http://static.springsource.org/spring-data/data-document/docs/current/reference/html/
http://static.springsource.org/spring-data/data-document/docs/current/reference/html/
http://static.springsource.org/spring-data/data-document/docs/current/reference/html/
http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html
http://www.eaipatterns.com/StoreInLibrary.html
http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration

21. Redis Support

Since version 2.1 Spring Integration introduces support for Redis [http://redis.io/]: "an open source
advanced key-value store". This support comesin the form of a Redis-based MessageStore as well as
Publish-Subscribe Messaging adapters that are supported by Redisviaits PUBLISH, SUBSCRIBE and
UNSUBSCRIBE [http://redis.io/topics/pubsub] commands.

21.1 Introduction

To download, install and run Redis please refer to the Redis documentation [http://redis.io/download].

21.2 Connecting to Redis

To begin interacting with Redis you first need to connect to it. Spring Integration uses support
provided by another Spring project, Spring Data Redis [https://github.com/SpringSource/spring-data-
redis], which provides typical Spring constructs. Connect i onFact ory and Tenpl at e. Those
abstractions simplify integration with several Redis-client Java APIs. Currently Spring-Data-Redis
supports jedis [https://github.com/xetorthio/jedis], jredis [http://code.google.com/p/jredis/] and rjc
[https://github.com/e-mzungu/rjc]

RedisConnectionFactory

To connect to Redis you would use one of the implementations of the Redi sConnect i onFact ory
interface:

public interface Redi sConnecti onFactory extends PersistenceExceptionTranslator {

/**

* Provides a suitable connection for interacting with Redis.
*
* @eturn connection for interacting with Redis.
*/
Redi sConnecti on get Connection();

}

The example below shows how to create aJedi sConnecti onFact ory.

In Java

Jedi sConnecti onFactory jcf = new Jedi sConnecti onFactory();
jcf.afterPropertiesSet();

Or in Spring's XML configuration:

<bean i d="redi sConnectionFactory" class="org. springfranmework. data. redis. connection.jedis.Jedi sConnecti onFact
<property nanme="port" val ue="7379" />
</ bean>

The implementations of RedisConnectionFactory provide a set of properties such as port and host that
can be set if needed. Once an instance of RedisConnectionFactory is created, you can create an instance
of RedisTemplate and inject it with the RedisConnectionFactory.

Spring Integration
2.1.0.M2 Reference Manual 172

http://redis.io/
http://redis.io/
http://redis.io/topics/pubsub
http://redis.io/topics/pubsub
http://redis.io/topics/pubsub
http://redis.io/download
http://redis.io/download
https://github.com/SpringSource/spring-data-redis
https://github.com/SpringSource/spring-data-redis
https://github.com/SpringSource/spring-data-redis
https://github.com/xetorthio/jedis
https://github.com/xetorthio/jedis
http://code.google.com/p/jredis/
http://code.google.com/p/jredis/
https://github.com/e-mzungu/rjc
https://github.com/e-mzungu/rjc

Spring Integration

RedisTemplate

Aswith other template classesin Spring (e.g., JdbcTenpl at e, Ins Tenpl at e) Redi sTenpl ate
isahelper class that simplifies Redis data access code. For more information about Redi sTenpl at e
and its variations (eg., StringRedi sTenpl ate) please refer to the Spring-Data-Redis
documentation [http://static.springsource.org/spring-data/data-redis/docs/current/reference/]

The code below shows how to create an instance of Redi sTenpl at e:

In Java

Redi sTenpl ate rt = new Redi sTenpl ate<String, Object>();
rt.set Connecti onFact ory(redi sConnecti onFactory);

Or in Spring's XML configuration::

<bean i d="redi sTenpl ate" cl ass="org. spri ngfranmewor k. dat a. redi s. core. Redi sTenpl ate" >
<property nanme="connectionFactory" ref="redi sConnecti onFactory"/>
</ bean>

21.3 Messaging with Redis

As mentioned in the introduction Redis provides support for Publish-Subscribe messaging via its
PUBLISH, SUBSCRIBE and UNSUBSCRIBE commands. Aswith IMSand AMQP, Spring Integration
provides Message Channels and adapters for sending and receiving messages via Redis.

Redis Publish/Subscribe channel

Similar to the IMS there are cases where both the producer and consumer are intended to be part of
the same application, running within the same process. This could be accomplished by using a pair of
inbound and outbound Channel Adapters, however just like with Spring Integration's JM S support, there
isasimpler approach to address this use case.

<int-redis: publish-subscribe-channel id="redi sChannel" topic-name="si.test.topic"/>

The publish-subscribe-channel (above) will behave much like a normal <publ i sh- subscri be-

channel / > element from the main Spring Integration namespace. It can be referenced by both
i nput - channel and out put - channel attributes of any endpoint. The difference is that this
channel is backed by a Redis topic name - a String value specified by the t opi c- nane attribute.
However unlike JM S this topic doesn't have to be created in advance or even auto-created by Redis. In
Redistopics are simple String values that play the role of an address, and all the producer and consumer
need to do to communicate is use the same String value as their topic name. A simple subscription
to this channel means that asynchronous pub-sub messaging is possible between the producing and
consuming endpoints, but unlike the asynchronous Message Channels created by addinga <queue/

> sub-element within a simple Spring Integration <channel / > element, the Messages are not just
stored in an in-memory queue. Instead those Messages are passed through Redis allowing you to rely
on itssupport for persistence and clustering aswell asitsinteroperability with other non-javaplatforms.

Spring Integration
2.1.0.M2 Reference Manual 173

http://static.springsource.org/spring-data/data-redis/docs/current/reference/
http://static.springsource.org/spring-data/data-redis/docs/current/reference/
http://static.springsource.org/spring-data/data-redis/docs/current/reference/

Spring Integration

Redis Inbound Channel Adapter

The Redis-based Inbound Channel Adapter adapts incoming Redis messages into Spring Integration
Messages in the same way as other inbound adapters. It receives platform-specific messages (Redis in
this case) and converts them to Spring Integration Messages using aMessageConvert er strategy.

<i nt-redis:inbound-channel -adapter id="redi sAdapter"
topi cs="foo, bar"
channel ="r ecei veChannel "
error-channel ="t est Err or Channel "
message- converter="t est Converter" />

<bean i d="redi sConnectionFactory" class="org.springfranework. data.redis.connection.jedis.Jedi sConnecti onFact
<property name="port" val ue="7379" />

</ bean>

<bean i d="test Converter" class="foo. bar. Sanpl eMessageConverter" />

Aboveisasimple but complete configuration of a Redis Inbound Channel Adapter. Note that the above
configuration relies on the familiar Spring paradigm of auto-discovering certain beans. In this case the
r edi sConnecti onFact ory isimplicitly injected into the adapter. You can of course specify it
explicitly using theconnect i on- f act ory attribute instead.

Also, note that the above configuration injects the adapter with a custom MessageConvert er. The
approachissimilar to IMSwhereMessageConvert er s areused to convert between Redis M essages
and the Spring Integration Message payloads. The default isa Si npl eMessageConverter.

Inbound adapters can subscribe to multiple topic names hence the comma-delimited set of valuesin the
t opi cs attribute.

Redis Outbound Channel Adapter

The Redis-based Outbound Channel Adapter adapts outgoing Spring Integration messages into Redis
messages in the same way as other outbound adapters. It receives Spring Integration messages and
converts them to platform-specific messages (Redis in this case) using a MessageConvert er

strategy.

<i nt-redis: out bound- channel - adapt er i d="out boundAdapt er"
channel =" sendChannel "
topi c="f 00"
nessage- converter="test Converter"/>

<bean i d="redi sConnectionFactory" class="org.springfranework. data.redis.connection.jedis.Jedi sConnectionFac
<property name="port" val ue="7379"/>

</ bean>

<bean i d="testConverter" class="fo0o0.bar. Sanpl eMessageConverter" />

As you can see the configuration is similar to the Redis Inbound Channel Adapter. The
adapter is implicitly injected with a Redi sConnecti onFact ory which was defined with
'r edi sConnecti onFact ory' as its bean name. This example also includes the optional, custom
MessageConvert er (the't est Convert er ' bean).

Spring Integration
2.1.0.M2 Reference Manual 174

Spring Integration

21.4 Redis Message Store

As described in EIP, a Message Store [http://www.eai patterns.com/M essageStore.html] allows you
to persist Messages. This can be very useful when dealing with components that have a capability
to buffer messages (QueueChannel, Aggregator, Resequencer, etc.) if reliability is a concern. In
Spring Integration, the MessageStore strategy also provides the foundation for the ClaimCheck [http://
www.eai patterns.com/Storel nLibrary.html] pattern, which is described in EIP as well.

Spring Integration's Redis module provides the Redi sMessageSt or e which is an implementation
of boththethe MessageSt or e strategy (mainly used by the QueueChannel and ClaimCheck patterns)
and the MessageG oupSt or e strategy (mainly used by the Aggregator and Resequencer patterns).

<bean i d="redi sMessageSt ore" class="org.springfranework.integration.redis.store.Redi sMessageStore">
<constructor-arg ref="redi sConnecti onFactory"/>
</ bean>

<int:channel id="sonePersistentQeueChannel ">
<i nt:queue message-store="redi sMessageStore"/ >
<i nt: channel >

<i nt:aggregator input-channel ="inputChannel" out put-channel ="out put Channel "
message- st ore="r edi sMessageSt ore"/ >

Above is a sample Redi sMessageSt or e configuration that shows its usage by a QueueChannel
and an Aggregator. As you can see it is a simple bean configuration, and it expects a
Redi sConnect i onFact ory asaconstructor argument.

By default the Redi sMessageSt or e will use Java seriaization to serialize the Message. However
if you want to use a different serialization technigque (e.g., JSON), you can provide your own serializer
viatheval ueSeri al i zer property of the Redi sMessageSt or e.

Spring Integration
2.1.0.M2 Reference Manual 175

http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/MessageStore.html
http://www.eaipatterns.com/StoreInLibrary.html
http://www.eaipatterns.com/StoreInLibrary.html
http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration

22. RMI Support

22.1 Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over multiple
JVMs. The first section will deal with sending messages over RMI. The second section shows how to
receive messages over RMI. The last section shows how to define rmi channel adapters through the
namespace support.

22.2 Outbound RMI

To send messages from achannel over RMI, simply definean Rmi Qut boundGat eway . Thisgateway
will use Spring's RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that
to invoke a remote interface that doesn't use Spring Integration you should use a service activator in
combination with Spring's RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

<bean id="rm Qut Gat eway" cl ass=org.spf.integration.rm .Rm QutboundGat enay>
<constructor-arg value="rm://host"/>
<property name="repl yChannel " val ue="replies"/>

</ bean>

22.3 Inbound RMI

To receive messages over RMI you need to use a Rmi | nboundGat eway. This gateway can be
configured like this

<bean id="rm Qut Gat eway" cl ass=org.spf.integration.rm .Rnm | nboundGat eway>
<property nanme="request Channel " val ue="requests"/>
</ bean>

22.4 RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The following
code snippet shows the different configuration options that are supported.

<int-rm:inbound-gateway id="gatewayWthDefaults" request-channel ="test Channel "/>

<int-rm:inbound-gateway id="gatewayWthCustonProperti es" request-channel ="t est Channel "
expect-repl y="fal se" request-timeout="123" reply-tinmeout="456"/>

<int-rm:inbound-gateway id="gatewayWthHost" request-channel ="t est Channel "
regi stry-host="1ocal host"/>

<int-rm:inbound-gateway id="gatewayWthPort" request-channel ="t est Channel "
regi stry-port="1234"/>

Spring Integration
2.1.0.M2 Reference Manual 176

Spring Integration

<int-rm:inbound-gateway id="gatewayWthExecutorRef" request-channel ="t est Channel "
renot e- i nvocat i on- execut or ="i nvocat i onExecutor"/ >

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound rmi gateway.

<i nt-rm:out bound- gateway i d="gat eway"
r equest - channel ="| ocal Channel "
renot e- channel ="t est Channel "
host ="1 ocal host"/>

Spring Integration
2.1.0.M2 Reference Manual 177

Spring Integration

23. SFTP Adapters

Spring Integration provides support for file transfer operations via SFTP.

23.1 Introduction

The Secure File Transfer Protocol (SFTP) is a network protocol which allows you to transfer files
between two computers on the Internet over any reliable stream.

The SFTP protocol requires a secure channel, such as SSH, as well as visibility to a client's identity
throughout the SFTP session.

Spring Integration supports sending and receiving files over SFTP by providing three client side
endpoints: Inbound Channel Adapter, Outbound Channel Adapter, and Outbound Gateway It also
provides convenient namespace configuration to define these client components.

xm ns:int-sftp="http://ww. springfranmework. org/schema/integration/sftp"
Xxsi : schemaLocati on="htt p://ww. spri ngfranework. org/ schema/i ntegration/sftp
http://ww. springframework. org/ schema/integration/sftp/spring-integration-sftp-2.0.xsd"

23.2 SFTP Session Factory

Before configuring SFTP adapters you must configure an SFTP Session Factory. Y ou can configure the
SFTP Session Factory viaaregular bean definition: Below is a basic configuration:

<beans: bean i d="sft pSessi onFactory" class="org. springframework.integration.sftp.session.DefaultSftpSessionF
<beans: property name="host" val ue="I ocl ahost"/>
<beans: property name="privateKey" val ue="cl asspat h: META- | NF/ keys/ sft pTest"/>
<beans: property name="privat eKeyPassphrase" val ue="springlntegration"/>
<beans: property name="port" val ue="22"/>
<beans: property name="user" val ue="kermt"/>
</ beans: bean>

Every time an adapter requests a session object from its Sessi onFact or y the session is returned
from a session pool maintained by a caching wrapper around the factory. A Session in the session pool
might go stale (if it has been disconnected by the server due to inactivity) so the Sessi onFact ory
will perform validation to make sure that it never returns a stale session to the adapter. If astale session
was encountered, it will be removed from the pool, and a new one will be created.

Note

If you experience connectivity problems and would like to trace Session creation as well as
see which Sessions are polled you may enable it by setting the logger to TRACE level (e.g.,
log4j.category.org.springframework.integration.file=TRACE)

Now all you need to do isinject this SFTP Session Factory into your adapters.

Spring Integration
2.1.0.M2 Reference Manual 178

Spring Integration

Note

A more practical way to provide values for the SFTP Session Factory would be via
Spring's property placeholder support (http://static.springsource.org/spring/docs/3.0.x/spring-
framework-reference/html/beans.html#beans-factory-placehol derconfigurer)

23.3 SFTP Inbound Channel Adapter

The SFTP Inbound Channel Adapter is a specia listener that will connect to the server and listen for
the remote directory events (e.g., new file created) at which point it will initiate afile transfer.

<i nt-sftp:inbound-channel - adapt er i d="sftpAdapter Aut oCr eat e"
sessi on-fact ory="sft pSessi onFact ory"
channel ="r equest Channel "
filenanme-pattern="*.txt"
renot e-di rect ory="/f oo/ bar"
| ocal -directory="file:target/foo"
aut o-create-local -directory="true"
del ete-renonte-fil es="fal se">
<int:poller fixed-rate="1000"/>
</int-sftp:inbound-channel - adapt er >

Asyou can see from the configuration above you can configure the SFTP Inbound Channel Adapter via
thei nbound- channel - adapt er element while also providing values for various attributes such
asl ocal -di rect ory - where files are going to be transferred TO and r enot e-di rectory -
the remote source directory where files are going to be transferred FROM - as well as other attributes
including asessi on- f act or y reference to the bean we configured earlier.

Some times file filtering based on the smple pattern specified viafi | ename- pat t er n attribute
might not be sufficient. If thisis the case, you can usethef i | ename- r egex attribute to specify a
Regular Expression (e.g. fi | enanme-regex=".*\.test $"). And of courseif you need complete
control you can usethefi | t er attribute to provide a reference to a custom implementation of the
org.springframework.integration.file.filters.FileListFilter - a strategy
interface for filtering alist of files.

Please refer to the schema for more detail on these attributes.

It is aso important to understand that SFTP Inbound Channel Adapter is a Polling Consumer and
therefore you must configure a poller (either a global default or a local sub-element). Once the file
has been transferred to alocal directory, a Message with j ava. i 0. Fi | e asits payload type will be
generated and sent to the channel identified by the channel attribute.

More on File Filtering and Large Files

Sometimesafilethat just appeared in the monitored (remote) directory is not complete. Typically such
afile will be written with some temporary extension (e.g., foo.txt.writing) and then renamed after the
writing process completes. As a user in most cases you are only interested in files that are complete
and would like to filter only those files. To handle these scenarios, use filtering support provided via
thefil enane-pattern,fil enane-regex andfilter attributes. If you need a custom filter
implementation simply include areference in your adapter viathefi | t er attribute.

<i nt-sftp:inbound-channel -adapter id="sftplnbondAdapter"

Spring Integration
2.1.0.M2 Reference Manual 179

Spring Integration

channel ="r ecei veChannel "
sessi on-factory="sftpSessi onFact ory"
filter="custonFilter"
local -directory="file:/local -test-dir"
renpte-directory="/renote-test-dir">
<int:poller fixed-rate="1000" max-nessages-per-pol | ="10" task-executor="executor"/>
</int-sftp:inbound-channel - adapt er >

<bean id="custonFilter" class="org.foo.CustonFilter"/>

23.4 SFTP Outbound Channel Adapter

The SFTP Outbound Channel Adapteris a special MessageHandl er that will connect to the remote
directory and will initiate a file transfer for every file it will receive as the payload of an incoming
Message. It also supports several representations of the File so you are not limited to the File object.
Similar to the FTP outbound adapter, the S-TP Outbound Channel Adapter supports the following
payloads: 1) j ava. i 0. Fi | e - the actual file object; 2) byt e[] - byte array that represents the file
contents; 3) j ava. | ang. St ri ng - text that represents the file contents.

<i nt - sft p: out bound- channel - adapt er i d="sftpQut boundAdapt er"
sessi on-factory="sftpSessi onFact ory"
channel ="i nput Channel "
char set =" UTF- 8"
renot e- di r ect or y="f oo/ bar "
renot e-fil ename- gener at or - expr essi on="payl oad. get Name() + '-foo'"/>

Asyou can see from the configuration above you can configure the SFTP Outbound Channel Adapter
viatheout bound- channel - adapt er element. Pleaserefer to the schemafor more detail on these
attributes.

SEL and the SFTP Outbound Adapter

As with many other components in Spring Integration, you can benefit from the Spring Expression
Language (SpEL) support when configuring an SFTP Outbound Channel Adapter, by specifying
two attributes r enot e- di rect ory- expressi on and renote-fil enane- gener at or -
expr essi on (see above). The expression evaluation context will have the Message asits root object,
thus allowing you to provide expressions which can dynamically compute the file name or the existing
directory path based on the datain the M essage (either from 'payload’ or 'headers). Inthe example above
we are defining ther enot e- f i | enane- gener at or - expr essi on attribute with an expression
value that computes the file name based on its original name while also appending a suffix: '-foo'.

23.5 SFTP Outbound Gateway

The SFTP Outbound Gateway providesalimited set of commandsto interact with aremote SFTP server.
Commands supported are:
o Is(listfiles)

et (retrievefile(s))

Spring Integration
2.1.0.M2 Reference Manual 180

Spring Integration

* rm (removefile(s))

Is supports the following options:

» -1-justretrieve alist of filenames, default isto retrieve alist of Fi | el nf o objects.
» -a-includeadl files (including those starting with '.")

» -f-donot sort thelist

 -dirs- include directories (excluded by default)

-links - include symbolic links (excluded by default)
In addition, filenamefiltering isprovided, in the same manner asthei nbound- channel - adapt er .

The message payload resulting from anIsoperationisalist of filenames, or alist of Fi | el nf o objects.
These abjects provide information such as modified time, permissions etc.

The remote directory that the Is command acted on is provided inthefi |l e_renot eDi rectory
header.

get supports the following option:
» -P- preserve the timestamp of the remote file
The message payload resulting from a get operationisaFi | e object representing the retrieved file.

The remote directory is provided in the fil e_renot eDi rect ory header, and the filename is
providedinthefil e_renot eFi | e header.

The rm command has no options.

Note
Filters are not supported with the rm command.

The message payload resulting from an rm operation is Boolean. TRUE if the remove was successful,
Boolean.FALSE otherwise. The remote directory is provided in the fil e_renoteDirectory
header, and the filenameis provided inthef i | e_r enot eFi | e header.

In each case, the PATH that these commands act on is provided by the 'expression’ property of the
gateway.

Here is an example of a gateway configured for an Is command...

<i nt-ftp:outbound-gateway i d="gatewayl"
sessi on-factory="ft pSessi onFact ory"
r equest - channel ="i nbound1"
comand="|s"
command- opt i ons="-1"
expr essi on="payl oad"

Spring Integration
2.1.0.M2 Reference Manual 181

Spring Integration

repl y-channel ="toSplitter"/>

The payload of the message sent to the toSplitter channel isalist of String objectscontaining thefilename
of eachfile. If thecommand- opt i ons wasomitted, it would bealist of Fi | el nf o objects. Options
are provided space-delimited, e.g. command- opti ons="-1 -dirs -links".

23.6 SFTP/JSCH Logging

Since we use JSch libraries (http://www.jcraft.com/jsch/) to provide SFTP support, at times you may
require more information from the JSch API itself, especially if something is not working properly (e.g.,
Authentication exceptions). Unfortunately JSch does not use commons-logging but instead relies on
custom implementations of their com j craft.j sch. Logger interface. As of Spring Integration
2.0.1, we have implemented this interface. So, now al you need to do to enable JSch logging is to
configure your logger theway you usually do. For example, hereisvalid configuration of alogger using
Log4J.

| 0og4j . cat egory. com jcraft.jsch=DEBUG

23.7 SFTP Session Caching

One of the optimizationsimplemented by the SFTP adaptersis session caching. Similar to JDBC pooling
of Connections, the SFTP Adapters maintain a pool of Sessions by default. However there are times
whenthisbehavior isnot desired (e.g., security etc.). To disable session caching you can setthecache-
sessi ons attributeto f al se (the default valueist r ue).

<i nt-sftp:inbound-channel -adapter id="ftpl nbound"
channel =" sft pChannel "

cache- sessi ons="f al se"

</int-sftp:inbound-channel - adapt er>

The same attribute can also be used with Outbound Channel Adapters.

Spring Integration
2.1.0.M2 Reference Manual 182

Spring Integration

24. Stream Support

24.1 Introduction

In many cases application data is obtained from a stream. It is not recommended to send a reference to
a Stream as a message payload to a consumer. Instead messages are created from datathat is read from
an input stream and message payloads are written to an output stream one by one.

24.2 Reading from streams

Spring Integration provides two adapters for streams. Both
Byt eSt r eanReadi ngMessageSour ce and Char act er St r eanReadi ngMessageSour ce
implement MessageSour ce. By configuring one of these within a channel-adapter element, the
polling period can be configured, and the M essage Bus can automatically detect and schedulethem. The
byte stream version requires an | nput St r eam and the character stream version requires a Reader

as the single constructor argument. The Byt eSt r eamReadi ngMessageSour ce aso accepts the
'bytesPerMessage’ property to determine how many bytes it will attempt to read into each Message.
The default value is 1024

<bean cl ass="org. springframework.integration.stream Byt eStreanReadi ngMessageSour ce" >
<constructor-arg ref="somel nput St reani/>
<property nanme="byt esPer Message" val ue="2048"/>

</ bean>

<bean cl ass="org. spri ngframewor k. i nt egration. stream Char act er St r eanReadi ngMessageSour ce" >
<constructor-arg ref="someReader"/>
</ bean>

24.3 Writing to streams

For target streams, there are also two implementations: Byt eSt r eanW i t i ngMessageHandl er
andChar act er StreamW i t i ngMessageHand! er . Each requiresasingle constructor argument
- Qut put Stream for byte streams or Witer for character streams, and each provides a
second constructor that adds the optional 'bufferSize’. Since both of these ultimately implement
the MessageHandl| er interface, they can be referenced from a channel-adapter configuration as
described in more detail in Section 3.2, “Channel Adapter”.

<bean cl ass="org. spri ngframework.integration.stream ByteStreanmWiti ngMessageHand! er" >
<constructor-arg ref="someQut put Streant'/>
<constructor-arg val ue="1024"/>

</ bean>

<bean cl ass="org. spri ngframework. i ntegration. stream CharacterStreamitingMessageHandl er">
<constructor-arg ref="someWiter"/>
</ bean>

Spring Integration
2.1.0.M2 Reference Manual 183

Spring Integration

24.4 Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace defined.
The following schema locations are needed to use it.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns:int-streans"http://ww:. springfranmework. org/schema/integration/streant
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: beans="htt p: //ww. spri ngfranewor k. or g/ schena/ beans"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ i ntegration/stream
http://ww. springfranmework. org/ schema/ i ntegration/streanispring-integration-stream 2.0.xsd">

To configure the inbound channel adapter the following code snippet shows the different configuration
options that are supported.

<i nt - stream st di n-channel - adapt er i d="adapt er Wt hDef aul t Charset"/>
<i nt -stream st di n-channel - adapt er i d="adapt er Wt hProvi dedCharset" charset="UTF-8"/>

To configure the outbound channel adapter you can use the namespace support as well. The following
code snippet shows the different configuration for an outbound channel adapters.

<i nt - stream st dout - channel - adapt er i d="st dout Adapt er Wt hDef aul t Charset" channel ="t est Channel "/ >
<i nt - stream st dout - channel - adapt er i d="stdout Adapt er Wt hProvi dedCharset" charset="UTF-8" channel ="t est Chann
<i nt-stream stderr-channel -adapter id="stderrAdapter" channel ="t est Channel "/ >

<i nt - stream st dout - channel - adapt er i d="new i neAdapter" append-new i ne="true" channel ="t est Channel "/>

Spring Integration
2.1.0.M2 Reference Manual 184

Spring Integration

25. Twitter Adapter

Spring Integration provides support for interacting with Twitter. With the Twitter adaptersyou can both
receive and send Twitter messages. Y ou can aso perform a Twitter search based on a schedule and
publish the search results within Messages.

25.1 Introduction

Twitter is a social networking and micro-blogging service that enables its users to send and read
messages known as tweets. Tweets are text-based posts of up to 140 characters displayed on the author's
profile page and delivered to the author's subscribers who are known as followers.

! I mportant
' Previous versions of Spring Integration were dependent upon the Twitter4dJ API, but with the
release of Spring Social 1.0 GA, Spring Integration, as of version 2.1, now buildsdirectly upon
Spring Social's Twitter support, instead of Twitter4J.

Spring Integration provides a convenient namespace configuration to define Twitter artifacts. You can
enableit by adding the following within your XML header.

xmns:int-twitter="http://ww. springfranework. org/schema/integration/twitter"
xsi : schemaLocati on="http: //wmv spri ngfranmewor k. org/ schema/integration/tw tter
http://ww. springfranmework. org/ schema/integration/twitter/spring-integration-twitter-2.1.xsd"

25.2 Twitter OAuth Configuration

The Twitter API allows for both authenticated and anonymous operations. For authenticated operations
Twitter uses OAuth - an authentication protocol that allows users to approve an application to act on
their behalf without sharing their password. More information can be found at http://oauth.net/ or in this
article http://hueniverse.com/oauth/ from Hueniverse. Please al so see OAuth FAQ for moreinformation
about OAuth and Twitter.

In order to use OAuth authentication/authorization with Twitter you must create a new Application on
the Twitter Devel operssite. Follow the directions bel ow to create anew application and obtain consumer
keys and an access token:

» Go to http://dev.twitter.com/

» Click on the Regi ster an app link and fill out all required fields on the form provided; set
Application Typetod i ent and depending onthe nature of your application select Def aul t
Access Type asRead & Write or Read-only and Submit theform. If everything is successful you'll
be presented withthe Consuner Key and Consuner Secr et . Copy both valuesin a safe place.

* Onthe same page you should seeaMy Access Token button on the side bar (right). Click on it
and you'll be presented with two more values: Access Token and Access Token Secret.
Copy these values in a safe place as well.

Spring Integration
2.1.0.M2 Reference Manual 185

Spring Integration

25.3 Twitter Template

As mentioned above, Spring Integration relies upon Spring Socidl,
and that library provides an implementation of the template pattern,
org.springframework. social.twitter.api.inpl.Twi tterTenplate to interact
with Twitter. For anonymous operations (e.g., search), you don't have to define an instance of
Twi t t er Tenpl at e explicitly, since adefault instance will be created and injected into the endpoint.
However, for authenticated operations (update status, send direct message, etc.), you must configure
aTwi tt er Tenpl at e asabean and inject it explicitly into the endpoint, because the authentication
configuration is required. Below is a sample configuration of TwitterTemplate:

<bean id="twi tterTenpl ate" class="org.springframework.social.twitter.api.inpl.Tw tterTenplate">
<constructor-arg val ue="4XzBPacJxyBzzzH"/ >
<constructor-arg val ue="AbRxUAvyCt qQ vxFK8wsZM M 20KFhB60" / >
<constructor-arg val ue="21691649- 4YZY5i JECf z2A9qCFd9Sj BRGb3HLmM nmdHNE" / >
<constructor-arg val ue=" AbRxUAVYNCt qQ¢ xFK8ws5ZM M 20KFhB60" / >
</ bean>

Note
The values above are not real.

As you can see from the configuration above, all we need to do is to provide OAuth att ri but es
as constructor arguments. The values would be those you obtained in the previous step. The order
of constructor arguments is. 1) consuner Key, 2) consuner Secr et , 3) accessToken, and 4)
accessTokenSecret.

A more practical way to manage OAuth connection attributeswould be via Spring's property placehol der
support by simply creating a property file (e.g., cauth.properties):

twi tter.oauth. consunmer Key=4XzBPacJQxyBzzzH

twi tter.oauth. consuner Secr et =AbRxUAvyCt qQ vxFK8wsZM M 20KFhB60

tw tter.oauth. accessToken=21691649- 4YZY5i JECf z2A9qCFd9S] BRGh3HLmM miHNE
twi tter.oauth. accessTokenSecr et =AbRxUAvyNCt qQt X FK8wW5ZM M 20KFhB60

Then, you can configureapr opert y- pl acehol der to point to the above property file:

<cont ext: property- pl acehol der
| ocati on="cl asspat h: oaut h. properties"/>

<bean id="twi tterTenpl ate" class="org.springframework.social.twitter.api.inpl.Tw tterTenpl ate">
<constructor-arg val ue="${tw tter.oauth. consuner Key}"/>
<constructor-arg val ue="${twi tter.oauth. consumer Secret}"/>
<constructor-arg val ue="${twi tter.oauth. accessToken}"/>
<constructor-arg val ue="${tw tter. oaut h. accessTokenSecret}"/>
</ bean>

25.4 Twitter Inbound Adapters

Twitter inbound adapters allow you to receive Twitter Messages. There are severa types of twitter
messages, or tweets

Spring Integration
2.1.0.M2 Reference Manual 186

Spring Integration

The current release of Spring Integration provides support for receiving tweets as Timeline Updates,
Direct Messages, Mention Messages as well as Search Results.

Every Inbound Twitter Channel Adapter is a Polling Consumer which means you have to provide a
poller configuration. However, there is one important thing you must understand about Twitter since
itsinner-workings are slightly different than other polling consumers. Twitter defines a concept of Rate
Limiting. Y ou can read more about it here: Rate Limiting. Inanutshell, Rate Limiting istheway Twitter
manages how often an application can poll for updates. You should consider this when setting your
poller intervals, but we are also doing a few things to limit excessively aggressive polling within our
adapters.

Another issue that we need to worry about is handling duplicate Tweets. The same adapter (e.g.,
Search or Timeline Update) while polling on Twitter may receive the same values more than
once. For example if you keep searching on Twitter with the same search criteria you'll end up
with the same set of tweets unless some other new tweet that matches your search criteria was
posted in between your searches. In that situation you'll get al the tweets you had before plus
the new one. But what you realy want is only the new tweet(s). Spring Integration provides
an elegant mechanism for handling these situations. The latest Tweet timestamp will be stored
in an instance of the org.springfranmework.integration.store. Met adataStore
which is a drategy interface designed for storing various types of metadata (e.g.,
last retrieved tweet in this case). That strategy helps components such as these
Twitter adapters avoid duplicates. By default, Spring Integration will look for a
bean of type org.springfranework.integration. store. MetadataStore in the
ApplicationContext. If one is found then it will be used, otherwise it will create a new instance
of Si npl eMet adat aSt or e which is a simple in-memory implementation that will only persist
metadata within the lifecycle of the currently running application context. That means upon restart
you may end up with duplicate entries. If you need to persist metadata between Application Context
restarts, you may use the Properti esPersi sti ngMet adat aSt ore (which is backed by a
properties file, and a persister strategy), or you may create your own custom implementation of the
Met adat aSt or e interface (e.g., JdbcMetadatStore) and configure it as a bean named 'metadataStore
within the Application Context.

<bean i d="net adat aSt ore" cl ass="org. spri ngframework.integration.store.PropertiesPersistingMetadataStore"/>

The Poller that is configured as part of any Inbound Twitter Adapter (see below) will simply poll from
this MetadataStore to determine the latest tweet received.

Inbound Message Channel Adapter

This adapter alows you to receive updates from everyone you follow. It's essentially the "Timeline
Update" adapter.

<int-tw tter:inbound-channel - adapter

twitter-tenplate="twi tterTenpl ate"

channel ="i nChannel " >

<int:poller fixed-rate="5000" max-nessages-per-poll="3"/>
</int-tw tter:inbound-channel -adapter>

Spring Integration
2.1.0.M2 Reference Manual 187

Spring Integration

Direct Inbound Message Channel Adapter

This adapter allows you to receive Direct Messages that were sent to you from other Twitter users.

<int-tw tter:dminbound-channel - adapt er

twitter-tenpl ate="twiter Tenpl ate"

channel ="i nboundDnChannel " >

<int-poller fixed-rate="5000" max-nessages-per-poll="3"/>
</int-tw tter:dminbound-channel - adapt er>

Mentions Inbound Message Channel Adapter

This adapter allows you to receive Twitter Messages that Mention you via @user syntax.

<int-tw tter: mentions-inbound-channel - adapt er
twitter-tenpl ate="twi ter Tenpl at e"
channel ="i nboundMent i onsChannel ">
<int:poller fixed-rate="5000" max-nessages-per-poll="3"/>
</int-twitter: mentions-inbound-channel - adapt er >

Search Inbound Message Channel Adapter

Thisadapter allowsyou to perform searches. Asyou can seeit isnot necessary to definetwitter-template
since a search can be performed anonymously, however you must define a search query.

<int-tw tter:search-i nbound-channel - adapt er
quer y="#spri ngi nt egration"
channel ="i nboundMent i onsChannel ">
<int:poller fixed-rate="5000" max-nessages-per-poll="3"/>
</int-tw tter:search-inbound-channel - adapt er>

Hereisalink that will help you learn more about Twitter queries: http://search.twitter.com/operators

As you can see the configuration of all of these adapters is very similar to other inbound
adapters with one exception. Some may need to be injected with thet wi tt er - t enpl at e. Once
received each Twitter Message would be encapsulated in a Spring Integration Message and sent
to the channel specified by the channel attribute. Currently the Payload type of any Message is
org.springframework.integration.twitter.core. Tweet whichisvery similar to the
object with the same namein Spring Social. Aswe migrate to Spring Social we'll be depending on their
APl and some of the artifacts that are currently in use will be obsolete, however we've aready made
sure that the impact of such migration is minimal by aligning our API with the current state (at the time
of writing) of Spring Social.

To get the text from the org. spri ngframewor k. soci al.twitter.api. Tweet smply
invoketheget Text () method.

25.5 Twitter Outbound Adapter

Twitter outbound channel adapters allow you to send Twitter Messages, or tweets.

The current release of Spring Integration supports sending Satus Update Messages and Direct
Messages. Twitter outbound channel adapters will take the Message payload and send it as a Twitter

Spring Integration
2.1.0.M2 Reference Manual 188

Spring Integration

message. Currently the only supported payload type is St ri ng, so consider adding a transformer if
the payload of the incoming message is not a String.

Twitter Outbound Update Channel Adapter

This adapter alows you to send regular status updates by simply sending a Message to the channel
identified by thechannel attribute.

<int-tw tter: outbound-channel - adapt er
twitter-tenplate="twi tterTenpl ate"
channel ="tw tt er Channel "/ >

The only extra configuration that is required for this adapter isthet wi t t er - t enpl at e reference.

Twitter Outbound Direct Message Channel Adapter

This adapter allows you to send Direct Twitter Messages (i.e., @user) by simply sending a Message to
the channel identified by thechannel attribute.

<int-tw tter:dm out bound- channel - adapt er
twitter-tenpl ate="tw tterTenpl ate"
channel ="t wi tt er Channel "/ >

The only extra configuration that is required for this adapter isthet wi t t er - t enpl at e reference.

When it comesto Twitter Direct Messages, you must specify who you are sending the message to - the
target userid. The Twitter Outbound Direct Message Channel Adapter will look for a target userid in
the Message headers under the namet wi tt er _dnilar get User | d which is also identified by the
following constant: Twi t t er Header s. DM TARGET_USER | D. So when creating a Message all
you need to do is add a value for that header.

Message nmessage = MessageBuil der. w t hPayl oad("hel | 0")
. set Header (Twi t t er Header s. DM TARGET_USER | D, "z_ol eg"). bui I d();

The above approach works well if you are creating the Message programmatically. However it's more
common to provide the header value within amessaging flow. Thevalue can be provided by an upstream
<header-enricher>.

<i nt: header - enricher input-channel ="in" output-channel ="out">
<i nt:header name="tw tter_dmrarget Userld" val ue="z ol eg"/>
</int:header-enricher>

It's quite common that the value must be determined dynamically. For those cases you can take
advantage of SpEL support within the <header-enricher>.

<i nt: header -enricher input-channel ="in" output-channel ="out">
<i nt:header name="tw tter_dmrarget User|d" expression="@w tterldService.| ookup(headers. usernane)"/>
</int:header-enricher>

I mportant

Twitter does not allow you to post duplicate Messages. This is a common problem during
testing when the same code works the first time but does not work the second time. So, make

Spring Integration
2.1.0.M2 Reference Manual 189

Spring Integration

sure to change the content of the M essage each time. Another thing that workswell for testing
isto append atimestamp to the end of each message.

Spring Integration
2.1.0.M2 Reference Manual 190

Spring Integration

26. Web Services Support

26.1 Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both of which
build upon the Spring Web Services [http://static.springframework.org/spring-ws/sites/1.5/] project:
Si mpl eWebSer vi ceQut boundGat eway and
Mar shal | i ngWebSer vi ceQut boundGat eway. The former will accept either a Stri ng or
javax. xm . transf orm Sour ce as the message payload. The latter provides support for any
implementation of the Mar shal | er and Unmar shal | er interfaces. Both require a Spring Web
ServicesDest i nat i onPr ovi der for determining the URI of the Web Service to be called.

si npl eGat eway = new Si npl eWebSer vi ceQut boundGat eway(desti nati onProvi der);

mar shal | i ngGat eway = new Marshal | i ngWebSer vi ceCQut boundGat eway(desti nati onProvi der, marshaller);

Note

When using the namespace support described below, you will only need to set a URI.
Internally, the parser will configure afixed URI DestinationProvider implementation. If you
do need dynamic resolution of the URI at runtime, however, then the DestinationProvider
can provide such behavior as looking up the URI from a registry. See the Spring Web
Services javadoc [http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html] for
more information about the DestinationProvider strategy.

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering
client access [http://static.springframework.org/spring-ws/site/reference/html/client.html] as well as
the chapter covering Object/ XML mapping [http://static.springframework.org/spring-ws/site/reference/
html/oxm.html].

26.2 Inbound Web Service Gateways

To send a message to a channd upon receiving a Web Service
invocation, there are two options again: Sinpl eWebServi cel nboundGat eway
and Marshal | i ngWebServi cel nboundGat eway. The former will extract a
javax. xm . transf orm Sour ce from the WebSer vi ceMessage and set it as the message
payload. The latter provides support for implementation of the Mar shal | er and Unmar shal | er
interfaces. If the incoming web service message is a SOAP message the SOAP Action header will be
added to the headers of the Message that is forwarded onto the request channel.

si npl eGat eway = new Si npl eWebSer vi cel nboundGat eway() ;
si npl eGat eway. set Request Channel (f or war dOnt oThi sChannel) ;
si npl eGat eway. set Repl yChannel (| i st enFor ResponseHere); //Opti onal

mar shal | i ngGat eway = new Marshal | i ngWebSer vi cel nboundGat eway(mar shal | er) ;
//set request and optionally reply channel

Spring Integration
2.1.0.M2 Reference Manual 191

http://static.springframework.org/spring-ws/sites/1.5/
http://static.springframework.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Spring Integration

Both gateways implement the Spring Web Services MessageEndpoi nt interface, so they can
be configured with a MessageDi spat cher Servl et as per standard Spring Web Services
configuration.

For more detail on how to use these components, see the Spring Web Services reference guide's chapter
covering creating a Web Service [http://static.springframework.org/spring-ws/sites/1.5/reference/html/
server.html]. The chapter covering Object/XML mapping [http://static.springframework.org/spring-ws/
site/reference/html/oxm.html] is also applicable again.

26.3 Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway" element from the "ws'
namespace:

<i nt - ws: out bound- gat eway i d="si npl eGat enway"
request - channel ="i nput Channel "
uri="http://exanple.org"/>

Note

Noticethat thisexample does not provide a'reply-channel’. If the Web Serviceweretoreturna
non-empty response, the Message containing that response would be sent to the reply channel
provided in the request Message's REPLY CHANNEL header, and if that were not available
a channel resolution Exception would be thrown. If you want to send the reply to another
channel instead, then provide a 'reply-channel’ attribute on the 'outbound-gateway' element.

Tip

When invoking a Web Service that returns an empty response after using a String payload
for the request Message, no reply Message will be sent by default. Therefore you don't need
to set a 'reply-channel’ or have a REPLY _CHANNEL header in the request Message. If for
any reason you actually do want to receive the empty response as a M essage, then provide the
'ignore-empty-responses’ attribute with avalue of false (this only applies for Strings, because
using a Source or Document object simply leadsto aNULL response and will therefore never

generate areply Message).
To set up an inbound Web Service Gateway, use the "inbound-gateway":

<i nt-ws: i nbound- gat eway i d="si npl eGat enay"
request - channel ="i nput Channel "/ >

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references. For outbound:

<i nt-ws: out bound- gat eway i d="marshal | i ngGat enay"
request - channel ="r equest Channel "
uri="http://exanple.org"
mar shal | er ="soneMar shal | er "
unnmar shal | er ="someUnmar shal | er"/ >

And for inbound:

<i nt-ws: i nbound- gat eway i d="narshal | i ngGat eway"
r equest - channel ="r equest Channel "

Spring Integration
2.1.0.M2 Reference Manual 192

http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Spring Integration

mar shal | er =" soneMar shal | er"
unmar shal | er ="someUnmar shal | er"/ >

Note

Most Mar shal | er implementations also implement the Unmar shal | er interface. When
using such aMar shal | er, only the "marshaller" attribute is necessary. Even when using a
Mar shal | er, you may also provide areference for the "request-callback" on the outbound
gateways.

For either outbound gateway type, a "destination-provider” attribute can be specified instead of
the "uri" (exactly one of them is required). You can then reference any Spring Web Services
DestinationProvider implementation (e.g. to lookup the URI at runtime from aregistry).

For either outbound gateway type, the "message-factory” attribute can also be configured with a
reference to any Spring Web Services\WebSer vi ceMessageFact or y implementation.

For the simple inbound gateway type, the "extract-payload" attribute can be set to false to forward the
entire WebSer vi ceMessage instead of just its payload as aMessage to the request channel. This
might be useful, for example, when a custom Transformer works against the WebSer vi ceMessage
directly.

Spring Integration
2.1.0.M2 Reference Manual 193

Spring Integration

27. XML Support - Dealing with XML Payloads

27.1 Introduction

Spring Integration's XML support extends the Spring Integration Core with implementations of
splitter, transformer, selector and router designed to make working with xml messages in Spring
Integration simple. The provided messaging components are designed to work with xml represented in
arange of formats including instances of j ava. | ang. Stri ng, org. w3c. dom Docunent and
j avax. xm . transf orm Sour ce. It should be noted however that where a DOM representation
is required, for example in order to evaluate an XPath expression, the Stri ng payload will be
converted into the required type and then converted back again to St r i ng. Components that require
an instance of Document Bui | der will create a namespace aware instance if one is not provided.
Where greater control of the document being created is required an appropriately configured instance
of Docunent Bui | der should be provided.

27.2 Transforming xml payloads

This section will explan the workings of UnmarshallingTransforner,
Mar shal | i ngTr ansf orner, XsltPayl oadTransformer and how to configure them
as beans. All of the provided xml transformers extend Abstract Transformer or
Abst ract Payl oadTr ansf or mer and therefore implement Tr ansf or mer . When configuring
xml transformers as beans in Spring Integration you would normally configure the
transformer in conjunction with either a MessageTr ansf or m ngChannel | nt ercept or or a
MessageTr ansf or mi ngHandl er . This allows the transformer to be used as either an interceptor,
which transforms the message as it is sent or received to the channel, or as an endpoint. Finally the
namespace support will be discussed which allows for the simple configuration of the transformers as
elementsin XML.

Unmar shal | i ngTr ansf or ner alowsan xml Sour ce to be unmarshalled using implementations
of Spring OXM Unmar shal | er. Spring OXM provides several implementations supporting
marshalling and unmarshalling using JAXB, Castor and JiBX amongst others. Since the unmarshaller
requires an instance of Sour ce where the message payload is not currently an instance of Sour ce,
conversion will be attempted. Currently Stri ng and or g. w3c. dom Docunent payloads are
supported. Custom conversion to a Sour ce is also supported by injecting an implementation of
Sour ceFact ory.

<bean i d="unmarshal | i ngTr ansf or mer"
cl ass="org. spri ngframework.integration.xm .transformnmer.Unmarshal | i ngTransf or mer">
<constructor-arg>
<bean cl ass="org. spri ngframewor k. oxm j axb. Jaxb2Mar shal | er" >
<property nanme="cont ext Path" val ue="org. exanple" />
</ bean>
</ constructor-arg>
</ bean>

The Mar shal | i ngTr ansf or mer allows an abject graph to be converted into xml using a Spring
OXM Mar shal | er. By default the Mar shal | i ngTr ansf or mer will return a DonResul t .

Spring Integration
2.1.0.M2 Reference Manual 194

Spring Integration

However the type of result can be controlled by configuring an alternative Resul t Fact ory such as
StringResul t Fact ory. Inmany casesit will be more convenient to transform the payload into an
aternative xml format. To achievethisconfigureaResul t Tr ansf or mer . Two implementationsare
provided, one which convertsto St r i ng and another which convertsto Docunent .

<bean i d="marshal | i ngTr ansf or ner"
cl ass="org. springframework.integration.xm .transforner.Marshal | i ngTransf or mer" >
<constructor-arg>
<bean cl ass="org. spri ngframewor k. oxm j axb. Jaxb2Mar shal | er" >
<property name="contextPath" val ue="org. exanple" />
</ bean>
</ constructor-arg>
<constructor-arg>
<bean cl ass="org. spri ngframework.integration.xm .transformer.Resul t ToDocunent Transformer" />
</ constructor-arg>
</ bean>

By default, the Mar shal | i ngTr ansf or mer will pass the payload Object to the Mar shal | er,
but if itsboolean ext r act Payl| oad property issetto f al se, the entire Message instance will be
passed to the Mar shal | er instead. That may be useful for certain custom implementations of the
Mar shal | er interface, but typically the payload isthe appropriate source Object for marshalling when
delegating to any of the various out-of-the-box Mar shal | er implementations.

Xsl t Payl oadTr ansf or mer transforms xml payloads using xdl. The transformer requires an
instance of either Resour ce or Tenpl at es. Passing in a Tenpl at es instance allows for greater
configuration of the Tr ansf or mer Fact or y used to create the template instance. As in the case of
Xm Payl oadMar shal | i ngTr ansf or ner by default Xsl t Payl oadTr ansf or ner will create
amessage with aResul t payload. This can be customised by providing aResul t Fact ory and/or
aResul t Tr ansf or ner .

<bean i d="xslt Payl oadTr ansf or ner"
cl ass="org. springframework.integration.xm .transforner. XsltPayl oadTr ansf or ner" >
<constructor-arg val ue="cl asspat h: or g/ exanpl e/ xsl /transform xsl " />
<constructor-arg>
<bean cl ass="org. spri ngframework. i ntegration.xm .transformer.Resul t ToDocunent Transformer" />
</ constructor-arg>
</ bean>

27.3 Namespace support for xml transformers

Namespace support for all xml transformers is provided in the Spring Integration xml namespace, a
template for which can be seen below. The namespace support for transformers creates an instance of
either Event Dri venConsurmer or Pol | i ngConsuner according to thetype of the provided input
channel. The namespace support is designed to reduce the amount of xml configuration by allowing the
creation of an endpoint and transformer using one element.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://wwm. springfranmework. org/ schema/integration"
xm ns:int-xm ="http://ww. springfranmework. org/ schema/integration/xm"
Xsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd

Spring Integration
2.1.0.M2 Reference Manual 195

Spring Integration

http://ww. springframework. org/ scherma/ i nt egrati on

http://ww. spri ngfranewor k. org/ schema/ i ntegration/spring-integration-2.0.xsd

http://ww. springframework. org/ schema/ i nt egrati on/ xm

http://ww. springframework. org/ schema/integration/xm /spring-integration-xm-2.0.xsd">
</ beans>

The namespace support for Unmar shal | i ngTr ansf or mer is shown below. Since the namespace
is now creating an endpoint instance rather than a transformer, a poller can aso be nested within the
element to control the polling of the input channel.

<int-xm :unmarshal | i ng-transforner id="defaultUnmarshaller"
i nput - channel ="i nput "
out put - channel =" out put "
unmar shal | er ="unmar shal | er"/ >

<i nt-xm :unmarshal | i ng-transfornmer id="unnarshallerWthPoller"
i nput - channel ="i nput "
out put - channel =" out put "
unmar shal | er ="unmar shal | er">
<int:poller fixed-rate="2000"/>
<int-xm :unmarshal | i ng-transformer/>

The namespace support for the marshalling transformer requires an input channel, output channel and
areference to a marshaller. The optional r esul t - t ype attribute can be used to control the type of
result created, valid values are StringResult or DomResult (the default). Where the provided result
types are not sufficient a reference to a custom implementation of Resul t Fact or y can be provided
as an alternative to setting ther esul t - t ype attribute using ther esul t - f act or y attribute. An
optiona r esul t -t r ansf or mer can aso be specified in order to convert the created Resul t after
marshalling.

<int-xm: marshal | ing-transformner
i nput - channel =" mar shal | i ngTr ansf or mer St ri ngResul t Fact ory"
out put - channel =" out put "
mar shal | er="nmarshal | er"
result-type="StringResult" />

<int-xm: marshal | ing-transformner
i nput - channel =" mar shal | i ngTr ansf or mer Wt hResul t Tr ansf or ner "
out put - channel =" out put "
mar shal | er="nmarshal | er "
resul t-transformer="resultTransformer" />

<bean id="result Transfornmer"
cl ass="org. springframework.integration.xm .transfornmer.Resul t ToStringTransfornmer"/>

Namespace support for the Xsl t Payl oadTr ansf or ner alows either a resource to be passed in
in order to create the Tenpl at es instance or aternatively a precreated Tenpl at es instance can
be passed in as areference. In common with the marshalling transformer the type of the result output
can be controlled by specifying either the result-factory or r esul t -t ype attribute. A resul t -
t ransf oner attribute can also be used to reference an implementation of Resul t Tr ansf oner
where conversion of the result is required before sending.

<int-xm:xslt-transformer id="xsltTransformerWthResource"
i nput - channel ="w t hResour cel n"
out put - channel =" out put "

Spring Integration
2.1.0.M2 Reference Manual 196

Spring Integration

xsl -resource="or g/ spri ngfranework/integration/xm/config/test.xsl"/>
<int-xm:xslt-transformer id="xsltTransfornmerWthTenpl at esAndResul t Tr ansf or mer"

i nput - channel ="wi t hTenpl at esAndResul t Tr ansf or mer | n*

out put - channel =" out put "

xsl -tenpl at es="t enpl at es"

result-transformer="resultTransformer"/>

Very often to assist with transformation you may need to have access to Message data (e.g., Message
Headers). For example; you may need to get access to certain Message Headers and pass them on
as parameters to a transformer (e.g., transformer.setParameter(..)). Spring Integration provides two
convenient ways to accomplish this. Just look at the following XML snippet.

<int-xm:xslt-transforner id="parantHeadersConbo"
i nput - channel =" par anHeader sConboChannel "
out put - channel =" out put "
xsl -resource="cl asspat h: transformer. xsl t"
xsl t - param headers="test P*, *foo, bar, baz">

<int-xm:xslt-param nanme="hel | oPar aneter" val ue="hel | 0"/ >
<int-xm:xslt-param name="first Name" expressi on="headers. f name"/>
</int-xm:xslt-transformer>

If message header names match 1:1 to parameter names, you can simply use xslt - param
header s attribute. There you can also use wildcards for simple pattern matching which supports the
following simple pattern styles: "xxx*", "*xxx", "*xxx*" and "Xxx*yyy".

You can aso configure individual xslt parameters via <xdlt-param/> sub element. There you can
use expressi on or val ue attribute. The expr essi on attribute should be any valid SpEL
expression with M essage being the root obj ect of the expression evaluation context. Theval ue attribute
just like any val ue in Spring beans alows you to specify simple scalar vallue. YOu can aso use
property placeholders (e.g., ${ some.value}) So as you can see, with the expr essi on and val ue
attribute xdlt parameters could now be mapped to any accessible part of the Message as well as any
literal value.

27.4 Splitting xml messages

XPat hMessageSpl i tter supports messages with either St ri ng or Docurrent payloads. The
splitter uses the provided X Path expression to split the payload into a number of nodes. By default this
will result in each Node instance becoming the payload of a new message. Where it is preferred that
each message be a Document the cr eat eDocunent s flag can be set. Wherea St ri ng payload is
passed in the payload will be converted then split before being converted back to a number of String
messages. The XPath splitter implements MessageHandl er and should therefore be configured in
conjunction with an appropriate endpoint (see the namespace support below for asimpler configuration
aternative).

<bean id="splittingEndpoint"
cl ass="org. springframework. i ntegrati on. endpoi nt. Event Dri venConsuner " >
<constructor-arg ref="order Channel " />
<constructor-arg>
<bean cl ass="org. springframework.integration.xm .splitter.XPathMessageSplitter">

<constructor-arg val ue="/order/itens" />
<property name="docunent Bui | der" ref="custom sedDocunment Bui | der" />
<property nanme="out put Channel " ref="orderltensChannel " />

Spring Integration
2.1.0.M2 Reference Manual 197

Spring Integration

</ bean>
</ constructor-arg>
</ bean>

27.5 Routing xml messages using XPath

Similar to SpEL -based routers, Spring Integration provides support for routing messages based on the
XPath expressions allowing you to create a Message Endpoint with an input channel but no output
channel since the output channel(s) is determined dynamically.

<i nt-xm : xpath-router id="orderTypeRouter" i nput-channel ="order Channel ">
<si -xml : xpat h- expr essi on expressi on="/order/type"/>
</int-xm :xpath-router>

Internally XPath expression will be evaluated as NODESET type and converted toalLi st <Stri ng>
representing channel names. Typically such list will contain a single channel name. However, based
on the result of an XPath Expression XPath router can also take on the characteristics of the Recipient
List Router if XPath Expression returns more then one value, thus resulting in the Li st <Stri ng>
containing more then one channel name. In that case Message will be sent to all channels in the list.
So assuming that the xml file passed to the router configured below contains many r esponder sub-
elements representing channel names, the message will be sent to all of those channels.

<l-- route the order to all responders-->

<int-xm:xpath-router id="responderRouter" input-channel ="orderChannel ">
<i nt-xmnl : xpat h- expr essi on expressi on="/request/responders"/>

</int-xm:xpath-router>

If the returned values do not represent the channel names additional mapping could be specified.
For example if the / r equest / r esponder s expression results in two values r esponder A and
r esponder B but you don't want to couple the responder names to channel names you may provide
additional mapping as such:

<l-- route the order to all responders-->

<i nt-xm : xpath-router id="responderRouter" input-channel ="orderChannel ">
<i nt-xm : xpat h- expr essi on expressi on="/request/responders"/>
<int-xm : mappi ng val ue="responder A" channel ="channel A"/ >
<i nt-xm : mappi ng val ue="r esponderB" channel ="channel B"/ >

</int-xm:xpath-router>

Aswe already said the default evaluation type for X Path expressionsis NODESET which is converted
toaList<String> of channel names, thus handling single channel scenariosaswell asmultiple. However
certain XPath expressions may evaluate as String type from the very beginning (e.g., 'name(./node&())’
- which will return the name of the root node) thus resulting in the exception if default evaluation type
(NODESET) is used. For these scenarious you may useeval uat e- as- st ri ng attribute which will
alow you to manage the evaluation type. It is FALSE by default, however if set to TRUE, the String
evaluation type will be used. For example if we want to route based on the name of the root node we
can have use the following configuration:

<int-xm:xpath-router id="xpathRouterAsString"
i nput - channel =" xpat hSt ri ngChannel "
eval uate-as-string="true">

Spring Integration
2.1.0.M2 Reference Manual 198

Spring Integration

<i nt-xm : xpat h- expr essi on expressi on="nanme(./node())"/>
</int-xm :xpath-router>

The XPath Router does support custom implementations of the XmlPayloadConverter strategy, and
when configuring an 'xpath-router' element in XML, a reference to such an implementation may
be provided via the 'converter' attribute. However, the DefaultXmlPayloadConverter is used if this
reference is not provided, and it should be sufficient in most cases since it can convert from Node,
Document, Source, File, and String typed payloads. If you need to extend beyond the capabilities of
that default implementation, then an upstream Transformer is probably a better option than providing a
reference to a custom implementation of this strategy here.

27.6 Selecting xml messages using XPath

Two MessageSel ect or implementations are provided,
Bool eanTest XPat hMessageSel ect or and
StringVal ueTest XPat hMessageSel ect or. Bool eanTest XPat hMessageSel ect or
requires an X PathExpression which evaluates to a boolean, for example boolean(/one/two) which will
only select messages which have an element named two which is a child of aroot element named one.
StringVal ueTest XPat hMessageSel ect or evaluates any XPath expressionasaSt ri ng and
compares the result with the provided value.

<I-- Interceptor which rejects messages that do not have a root elenent order -->
<bean i d="order Sel ectingl nterceptor"
class="org. springframework.integration.channel.interceptor. MessageSel ecti nglnterceptor">
<constructor-arg>

<constructor-arg val ue="bool ean(/order)" />

</ bean>
</ constructor-arg>
</ bean>
<l-- Interceptor which rejects nmessages that are not version one orders -->

<bean i d="versi onOneOrder Sel ecti ngl nterceptor"
cl ass="org. spri ngframewor k. i ntegration.channel .interceptor. MessageSel ecti nglnterceptor">
<constructor-arg>

<constructor-arg val ue="/order/ @ersion" index="0"/>
<constructor-arg val ue="1" i ndex="1"/>
</ bean>
</ constructor-arg>
</ bean>

27.7 Transforming xml messages using XPath

When it comes to message transformation X Path is a great way to transform Messages that have XML
payloads by defining X Path transformers via <xpath-transformer/> element.

Smple XPath transformation

Let'slook at the following transformer configuration:

<int-xm:xpath-transfornmer input-channel ="input Channel" out put-channel =" out put Channel "

Spring Integration
2.1.0.M2 Reference Manual 199

<bean cl ass="org. springframework.integration.xml .sel ector.Bool eanTest XPat hMessageSel ect or" >

<bean cl ass="org. spri ngframework.integration.xm .selector. StringVal ueTest XPat hMessageSel ect or">

Spring Integration

‘ xpat h- expr essi on="/ per son/ @ane" />

... and Message

Message<?> nessage =
MessageBui | der. wi t hPayl oad(" <per son nane='John Doe' age='42" married="true'/>").build();

After sending this message to the 'inputChannel’ the X Path transformer configured above will transform
this XML Message to a smple Message with payload of 'John Doe' all based on the simple XPath
Expression specified in the xpat h- expr essi on attribute.

XPath also has capability to perform simple conversion of extracted elements to a desired type. Valid
return types are defined in XPat hConst ant s and follows the conversion rules specified by the
XPat h.

The following constants are defined by the XPathConstants: BOOLEAN,
DOM_OBJECT_MODEL, NODE, NODESET, NUMBER, STRING

You can configure the desired type by simply using eval uati on-t ype attribute of the <xpath-
transformer/> element.

<i nt-xm : xpat h-transforner input-channel ="nunberl|nput" xpath-expression="/person/ @ge"
eval uati on-type="NUVBER_RESULT" out put - channel =" out put"/>

<i nt-xm : xpat h-transforner input-channel ="bool eanl nput" xpath-expressi on="/person/ @uarried = '"true'"
eval uati on-type="BOOLEAN RESULT" out put - channel =" out put"/>

Node Mappers

If you need to provide custom mapping for the node extracted by the X Path expression simply provide
areference to the implementation of the or g. spri ngf ramewor k. xnmd . xpat h. NodeMapper -
an interface used by XPat hQper at i ons implementations for mapping Node objects on a per-node
basis. To provide areference to aNodeMapper simply use node- mapper attribute:

<i nt-xm : xpat h-transforner input-channel ="nodeMapper | nput" xpat h- expressi on="/ per son/ @ge"
node- mapper ="t est NodeMapper" out put - channel =" out put "/ >

.. and Sample NodeM apper implementation:

cl ass Test NodeMapper inpl ements NodeMapper {
public Obj ect mapNode(Node node, int nodeNum) throws DOVException {
return node. get Text Content () + "-mapped"”

}

}

XML Payload Converter

You can also use an implementation of the
org. springframework. integration.xm .Xn Payl oadConverter to provide more
granular transformation:

<i nt-xml : xpat h-transforner input-channel ="custonConverterl|nput" xpath-expressi on="/test/ @ype"
converter="test Xm Payl oadConverter" output-channel ="output"/>

... and Sample XmlPayloadConverter implementation:

Spring Integration
2.1.0.M2 Reference Manual 200

Spring Integration

cl ass Test Xm Payl oadConverter inplenents Xm Payl oadConverter {
publ i c Source convert ToSour ce(Obj ect object) {
t hrow new Unsupport edOper at i onException();
}
/1
publ i c Node convert ToNode(Obj ect object) {
try {
return Docunent Bui | der Fact ory. newl nst ance() . newDocunent Bui | der () . par se(
new | nput Sour ce(new Stri ngReader ("<test type='custonm/>")));
}
catch (Exception e) {
throw new I | | egal St at eException(e);
}

}
11

publ i ¢ Docunent convert ToDocument (Obj ect object) {
t hrow new Unsupport edOper at i onException();
}
}

The DefaultXmlPayloadConverter is used if thisreferenceis not provided, and it should be sufficient in
most cases since it can convert from Node, Document, Source, File, and String typed payloads. If you
need to extend beyond the capabilities of that default implementation, then an upstream Transformer is
probably a better option than providing a reference to a custom implementation of this strategy here.

Combination of SpEL and XPath expressions

You can also combine Spring Expression Language (SpEL) expressions with XPath expression and
configure them using expr essi on attribute:

i nt-xm : xpat h-expressi on i d="test Expressi on" expressi on="/person/ @ge * 2"/>

Inthe above casethe overall result of the expression will bethe result of the X Path expression multiplied
by 2.

27.8 XPath components namespace support

All XPath based components have namespace support allowing them to be configured as Message
Endpoints with the exception of the XPath selectors which are not designed to act as endpoints. Each
component alows the XPath to either be referenced at the top level or configured via a nested <xpath-
expression/> element. So the following configurations of an xpath-selector are all valid and represent
the general form of XPath namespace support. All forms of XPath expression result in the creation of
an XPat hExpr essi on using the Spring XPat hExpr essi onFact ory

<i nt-xm : xpat h-sel ector id="xpat hRef Sel ect or"
xpat h- expr essi on="r ef ToXpat hExpr essi on"
eval uati on-resul t-type="bool ean" />

<int-xm:xpath-sel ector id="sel ector WthNoNS" eval uati on-resul t-type="bool ean" >
<i nt-xml : xpat h- expressi on expressi on="/nanme"/ >
</int-xm:xpath-sel ector>

<i nt-xm : xpath-sel ector id="sel ectorWthOneNS" eval uation-result-type="bool ean" >
<i nt-xm : xpat h- expr essi on expressi on="/nsl: nane"
ns-prefix="ns1l" ns-uri="ww. exanpl e.org" />

Spring Integration
2.1.0.M2 Reference Manual 201

Spring Integration

</int-xm:xpath-sel ector>

<i nt-xm : xpath-sel ector id="sel ectorWthTwoNS" eval uation-result-type="bool ean" >
<i nt-xm : xpat h- expressi on expressi on="/nsl: nane/ ns2: type">
<n‘ap>
<entry key="ns1" val ue="www. exanpl e. or g/ one" />
<entry key="ns2" val ue="ww. exanpl e. or g/ two" />
</ map>
</int-xm :xpat h- expressi on>
</int-xm:xpath-sel ector>

<i nt-xm : xpat h-sel ector id="sel ector WthNanespaceMapRef" eval uati on-result-type="bool ean" >
<i nt-xm : xpat h- expr essi on expressi on="/nsl: name/ ns2: t ype"
nanespace- map="def aul t Namespaces"/ >
</int-xm:xpath-sel ector>

<util:map id="defaul t Namespaces" >
<util:entry key="nsl1" val ue="www. exanpl e. or g/ one" />
<util:entry key="ns2" val ue="ww. exanpl e. org/two" />
</util:map>

XPath splitter namespace support allows the creation of a Message Endpoint with an input channel and
output channel.

<I-- Split the order into itens creating a new nessage for each item node -->
<int-xm:xpath-splitter id="orderltenSplitter"
i nput - channel =" or der Channel "
out put - channel =" or der | t emsChannel " >
<int-xml : xpat h- expressi on expressi on="/order/itens"/>
</int-xm:xpath-splitter>

<!-- Split the order into itens creating a new docunent for each item->
<int-xm:xpath-splitter id="orderltenDocunentSplitter"
i nput - channel =" or der Channel "
out put - channel =" order | t ensChannel "
creat e-docunment s="true">
<i nt-xm : xpat h- expr essi on expressi on="/order/itens"/>
<int:poller fixed-rate="2000"/>
</int-xm:xpath-splitter>

Spring Integration
2.1.0.M2 Reference Manual 202

Spring Integration

28. XMPP Support

Spring Integration provides Channel Adapters for XM PP [http://www.xmpp.org].

28.1 Introduction

XM PP describes away for multiple agents to communicate with each other in adistributed system. The
canonical use caseisto send and receive chat messages, though XMPP can be, and is, used for far more
applications. XMPP is used to describe a network of actors. Within that network, actors may address
each other directly, aswell as broadcast status changes (e.g. "presence”).

XMPP provides the messaging fabric that underlies some of the biggest Instant Messaging networksin
the world, including Google Talk (GTak) - which is also available from within GMail - and Facebook
Chat. There are many good open-source XMPP servers available. Two popular implementations are
Openfire [http://www.igniterealtime.org/projects/openfire/] and ejabberd [http://www.ejabberd.im]

Spring integration provides support for XM PP via X M PP adapters which support sending and receiving
both XMPP chat messages and presence changes from other entries in your roster. As with other
adapters, the XMPP adapters come with support for a convenient namespace-based configuration.
To configure the XMPP namespace, include the following elements in the headers of your XML
configuration file:

xm ns:int-xnmpp="http://ww. springfranmework. org/schema/integration/ xnmpp"
Xsi : schemaLocati on="htt p: //ww. spri ngfranework. or g/ schema/ i nt egrati on/ xnpp
htt p: // ww. spri ngf ranewor k. or g/ schena/ i nt egr at i on/ xnpp/ spri ng-i nt egr ati on- xnpp- 2. 0. xsd"

28.2 XMPP Connection

Before using inbound or outbound XM PP adapters to participate in the XM PP network, an actor must
establish its XM PP connection. This connection object could be shared by all XM PP adapters connected
to a particular account. Typically this requires - at a minimum - user, passwor d, and host . To
create a basic XM PP connection, you can utilize the convenience of the namespace.

<i nt - xmpp: XMpp- connect i on
i d="nyConnecti on"
user ="user"
passwor d=" passwor d"
host =" host "
port="port"
resour ce="t heNameOf TheResour ce"
subscri ption-node="accept _al | "/>

Note

For added convenience you can rely on the default naming convention and omit the i d
attribute. The default name xmppConnection will be used for this connection bean.

Spring Integration
2.1.0.M2 Reference Manual 203

http://www.xmpp.org
http://www.xmpp.org
http://www.igniterealtime.org/projects/openfire/
http://www.igniterealtime.org/projects/openfire/
http://www.ejabberd.im
http://www.ejabberd.im

Spring Integration

If the XMPP Connection goes stale, reconnection attempts will be made with an automatic
login as long as the previous connection state was logged (authenticated). We also register a
Connect i onLi st ener which will log connection eventsif the DEBUG logging level is enabled.

28.3 XMPP Messages

Inbound Message Channel Adapter

The Spring Integration adapters support receiving chat messages from other users in the system.
To do this, the Inbound Message Channel Adapter "logs in" as a user on your behalf and
receives the messages sent to that user. Those messages are then forwarded to your Spring
Integration client. The payload of the inbound Spring Integration message may be of the raw type
org.jivesoftware. snmack. packet. Message, or of thetypej ava. | ang. Stri ng if you
set the ext r act - payl oad attribute's value to 'true’ when configuring an adapter. Configuration
support for the XM PP Inbound Message Channel Adapter is provided viathei nbound- channel -
adapt er element.

<i nt - xmpp: i nbound- channel - adapt er i d="xnmppl nboundAdapt er"
channel =" xnppl nbound"

Xnmpp- connect i on="t est Connecti on"

extract - payl oad="f al se"

aut o-startup="true"/>

As you can see amongst the usual attributes this adapter also requires a reference to an XMPP
Connection.

It is aso important to mention that the XMPP inbound adapter is an event driven adapter and a
Li f ecycl e implementation. When started it will register a Packet Li st ener that will listen for
incoming XMPP Chat Messages. It forwards any received messages to the underlying adapter which
will convert them to Spring Integration Messages and send them to the specified channel . It will
unregister the Packet Li st ener whenit is stopped.

Outbound Message Channel Adapter

You may also send chat messages to other users on XMPP using the Outbound Message Channel
Adapter. Configuration support for the XM PP Outbound Message Channel Adapter is provided viathe
out bound- channel - adapt er eement.

<i nt - xmpp: out bound- channel - adapt er i d="out boundEvent Adapt er"
channel =" out boundEvent Channel "
Xxnmpp- connecti on="t est Connecti on"/ >

The adapter expectsasitsinput - at aminimum - apayload of typej ava. | ang. St ri ng, and aheader
valuefor XmppHeader s. CHAT_TOthat specifiesto which user the Message should be sent. To create
amessage you might use the following Java code:

Message<Stri ng> xnppCQut boundMsg = MessageBui | der. wi t hPayl oad("Hel | o, XWPP!")
. set Header (XnppHeader s. CHAT_TO, "user handl e")
Cbuild();

Another mechanism of setting the header is by using the XMPP header-enricher support. Here is an
example.

Spring Integration
2.1.0.M2 Reference Manual 204

Spring Integration

<i nt - xmpp: header - enri cher i nput-channel ="i nput" out put - channel =" out put ">
<i nt-xnpp: chat-to val ue="t est 1@xanpl e. org"/ >
</i nt - xmpp: header - enri cher >

28.4 XMPP Presence

XMPP also supports broadcasting state. Y ou can use this capability to let people who have you on their
roster see your state changes. This happens all the time with your IM clients; you change your away
status, and then set an away message, and everybody who has you on their roster sees your icon or
username change to reflect this new state, and additionally might see your new "away" message. If you
would like to receive notification, or notify others, of state changes, you can use Spring Integration's
"presence” adapters.

Inbound Presence Message Channel Adapter

Spring Integration provides an Inbound Presence Message Channel Adapter which supports receiving
Presence events from other users in the system who happen to be on your Roster. To do this,
the adapter "logs in" as a user on your behalf, registers a Rost er Li st ener and forwards
received Presence update events as Messages to the channel identified by the channel attribute.
The payload of the Message will be a org.jivesoftware. smack. packet. Presence
object (see http://www.igniterealtime.org/builds/smack/docs/3.1.0/javadoc/org/jivesoftware/smack/
packet/Presence.html).

Configuration support for the XMPP Inbound Presence Message Channel Adapter is provided via the
pr esence- i nbound- channel - adapt er element.

<i nt - xnpp: presence-i nbound- channel - adapt er channel =" out Channel "
xnpp- connect i on="t est Connecti on" auto-startup="false"/>
As you can see amongst the usual attributes this adapter also requires a reference to an XMPP
Connection. It is also important to mention that this adapter is an event driven adapter and a
Li f ecycl e implementation. It will register a Rost er Li st ener when started and will unregister
that Rost er Li st ener when stopped.

Outbound Presence Message Channel Adapter

Spring Integration also supports sending Presence events to be seen by other users in the
network who happen to have you on their Roster. When you send a Message to the
Outbound Presence Message Channel Adapter it extracts the payload, which is expected to be
of type org.jivesoftware. smack. packet. Presence (see http://www.igniterealtime.org/
builds/smack/docs/3.1.0/javadoc/org/jivesoftware/smack/packet/Presence.ntml) and sends it to the
XMPP Connection, thus advertising your presence events to the rest of the network.

Configuration support for the XM PP Outbound Presence Message Channel Adapter is provided viathe
pr esence- out bound- channel - adapt er element.

<i nt - xmpp: pr esence- out bound- channel - adapt er i d="event Qut boundPr esenceChannel "
Xmpp- connect i on="t est Connecti on"/ >

Spring Integration
2.1.0.M2 Reference Manual 205

Spring Integration

It can also be a Polling Consumer (if it receives Messages from a Pollable Channel) in which case you
would need to register a Poller.

<i nt - xnpp: pr esence- out bound- channel - adapt er i d="pol | i ngQut boundPr esenceAdapt er"
Xnmpp- connecti on="t est Connect i on"
channel =" pol | i ngChannel ">

</i nt - xnpp: pr esence- out bound- channel - adapt er >

Like itsinbound counterpart, it requires areference to an XM PP Connection.

Note

If you are relying on the default naming convention for an XM PP Connection bean (described
earlier), and you have only one XMPP Connection bean configured in your Application
Context, you may omit the xnpp- connect i on attribute. In that case, the bean with the
name xmppConnection will be located and injected into the adapter.

28.5 Appendices

Since Spring Integration XM PP support is based on the Smack 3.1 API (http://www.igniterealtime.org/
downloads/index.jsp), it is important to know a few details related to more complex configuration of
the XM PP Connection object.

As stated earlier the xnpp- connecti on namespace support is designed to simplify basic
connection configuration and only supports a few common configuration attributes. However, the
org.jivesoftware. smack. Connecti onConfi gur ati on object definesabout 20 attributes,
and there is no real value of adding namespace support for al of them. So, for more complex
connection configurations, simply configure an instance of our XmppConnect i onFact or yBean
asaregular bean, and inject aorg. j i vesof t war e. smack. Connecti onConfi gurati on as
a constructor argument to that FactoryBean. Every property you need, can be specified directly on that
ConnectionConfiguration instance (a bean definition with the 'p' namespace would work well). This
way SSL, or any other attributes, could be set directly. Here's an example:

<bean id="xnmppConnection" class="org. springframework.integration.xnmpp. XmppConnecti onFact or yBean" >
<const ruct or - ar g>

<bean cl ass="org.jivesoftware. smack. Connecti onConfi gurati on">

<constructor-arg val ue="nyServi ceNane"/ >

<property name="truststorePath" value="..."/>
<property nanme="socket Factory" ref="..."/>
</ bean>

</ constructor-arg>

</ bean>

<i nt:channel id="outboundEvent Channel"/>

<i nt - xnmpp: out bound- channel - adapt er i d="out boundEvent Adapt er"
channel =" out boundEvent Channel "
xnpp- connect i on="xnmppConnecti on"/>

Another important aspect of the Smack API is static initializers. For more complex cases (e.g.,
registering a SASL Mechanism), you may need to execute certain static initializers. One of those static
initializers is SASLAut hent i cat i on, which alows you to register supported SASL mechanismes.
For that level of complexity, we would recommend Spring JavaConfig-style of the XMPP Connection

Spring Integration
2.1.0.M2 Reference Manual 206

Spring Integration

configuration. Then, you can configure the entire component through Java code and execute al other
necessary Java code including static initializers at the appropriate time.

@confi guration
public class CustonConnectionConfiguration {
@ean
publ i ¢ XMPPConnecti on xnppConnection() {
SASLAut hent i cati on. support SASLMechani sn("EXTERNAL", 0); // static initializer

ConnectionConfiguration config = new Connecti onConfiguration("l ocal host", 5223);
config.setTrustorePath("path_to _truststore.jks");

confi g. set SecurityEnabl ed(true);

confi g. set Socket Fact or y(SSLSocket Fact ory. get Defaul t());

return new XMPPConnecti on(config);

}

}

For more information on the JavaConfig style of Application Context configuration, refer to the
following section in the Spring Reference Manual: http://static.springsource.org/spring/docs/3.0.x/
spring-framework-reference/html/beans.html#beans-java

Spring Integration
2.1.0.M2 Reference Manual 207

Part V. Appendices

Advanced Topics and Additional Resources

Spring Integration

29. Message Publishing

The AOP Message Publishing feature allows you to construct and send a message as a by-product
of a method invocation. For example, imagine you have a component and every time the state of
this component changes you would like to be notified via a Message. The easiest way to send such
notifications would be to send a message to a dedicated channel, but how would you connect the
method invocation that changes the state of the object to amessage sending process, and how should the
notification Message be structured? The AOP M essage Publishing feature handles these responsibilities
with a configuration-driven approach.

29.1 Message Publishing Configuration
Spring Integration provides two approaches. XML and Annotation-driven.

Annotation-driven approach via @Publisher annotation

The annotation-driven approach allows you to annotate any method with the @Publ i sher annotation,
specifying a 'channdl’ attribute. The Message will be constructed from the return value of the method
invocation and sent to a channd specified by the 'channel' attribute. To further manage message
structure, you can aso use a combination of both @Pay| oad and @Header annotations.

Internally this message publishing feature of Spring Integration uses both Spring AOP by defining
Publ i sher Annot at i onAdvi sor and Spring 3.0's Expression Language (SpEL) support, giving
you considerable flexibility and control over the structure of the Message it will publish.

ThePubl i sher Annot at i onAdvi sor defines and binds the following variables:

 #return - will bind to a return value allowing you to reference it or its attributes (e.g., #return.foo
where 'foo' is an attribute of the object bound to #return)

* #exception - will bind to an exception if one isthrown by the method invocation.

 #args - will bind to method arguments, so individual arguments could be extracted by name (e.g.,
#args.fname as in the above method)

Let'slook at a couple of examples:

@ubl i sher
public String defaultPayload(String fname, String |nanme) {
return fname + " " + | naneg;

}

In the above example the Message will be constructed with the following structure:
» Message payload - will be the return type and value of the method. Thisis the default.

» A newly constructed messagewill be sent to adefault publisher channel configured with an annotation
post processor (see the end of this section).

@Publ i sher (channel ="t est Channel ")

Spring Integration
2.1.0.M2 Reference Manual 209

Spring Integration

public String defaultPayl oad(String fname, @ieader("last”) String |nanme) {
return fname + " " + | nane;

}

In this example everything is the same as above, except that we are not using a default publishing
channel. Instead we are specifying the publishing channel viathe ‘channel’ attribute of the @Publisher
annotation. We are aso adding a @Header annotation which results in the Message header named
last' having the same value as the 'Iname’ method parameter. That header will be added to the newly
constructed Message.

@Publ i sher (channel ="t est Channel ")

@ay| oad
public String defaul tPayl oadBut ExplicitAnnotation(String fname, @deader String |nanme) {
return fname + " " + | nane;

}

The above exampleisalmost identical to the previous one. The only difference here isthat we are using
a @Payload annotation on the method, thus explicitly specifying that the return value of the method
should be used as the payload of the Message.

@Publ i sher (channel ="t est Channel ")

@rayl oad("#return + #args. | name")

public String setNane(String fnane, String | nane, @deader("x") int num {
return fname + " " + | naneg;

}

Here we are expanding on the previous configuration by using the Spring Expression Language in the
@Payload annotation to further instruct the framework how the message should be constructed. In this
particular case the message will be a concatenation of the return value of the method invocation and the
'Iname’ input argument. The M essage header named X' will have its value determined by the 'num'’ input
argument. That header will be added to the newly constructed M essage.

@Publ i sher (channel ="t est Channel ")
public String argunent AsPayl oad(@ayl oad String fnane, @iader String | nane) {
return fname + " " + | naneg;

}

In the above example you see another usage of the @Payload annotation. Here we are annotating a
method argument which will become the payload of the newly constructed message.

As with most other annotation-driven features in Spring, you will need to register a post-processor
(Publ i sher Annot at i onBeanPost Pr ocessor).

<bean cl ass="org. spri ngframewor k. i ntegration. aop. Publ i sher Annot at i onBeanPost Processor"/>

Y ou can instead use hamespace support for a more concise configuration:

<i nt:annotation-config default-publisher-channel ="defaul t Channel "/>

Similar to other Spring annotations (@Component, @Scheduled, etc.), @ubl i sher canaso be used
as a meta-annotation. That means you can define your own annotations that will be treated in the same
way asthe @ubl i sher itsalf.

Spring Integration
2.1.0.M2 Reference Manual 210

Spring Integration

@rar get ({ El enent Type. METHOD, El enent Type. TYPE})
@Ret enti on(Ret enti onPol i cy. RUNTI VE)

@Publ i sher (channel =" audi t Channel ")

public @nterface Audit {

}

Here we defined the @\udi t annotation which itself is annotated with @Publ i sher . Also note that
you can define achannel attribute on the meta-annotation thus encapsulating the behavior of where
messages will be sent inside of this annotation. Now you can annotate any method:

@\udi t
public String test() {
return "foo";

}

In the above example every invocation of thet est () method will result in a Message with a payload
created from itsreturn value. Each Message will be sent to the channel named auditChannel. One of the
benefits of thistechniqueisthat you can avoid the duplication of the same channel name across multiple
annotations. Y ou also can provide alevel of indirection between your own, potentially domain-specific
annotations and those provided by the framework.

Y ou can aso annotate the class which would mean that the properties of this annotation will be applied
on every public method of that class.

@\udi t
static class Banki ngOperationsl mpl inplements Banki ngOperations {

public String debit(String amount) {
}

public String credit(String amount) {

}

}

XML-based approach via the <publishing-interceptor> element

The XML-based approach adlows you to configure the same AOP-based
Message Publishing functionality with simple namespace-based configuration of a
MessagePubl i shi ngl nt er cept or . It certainly has some benefits over the annotation-driven
approach since it alows you to use AOP pointcut expressions, thus possibly intercepting multiple
methods at once or intercepting and publishing methods to which you don't have the source code.

To configure Message Publishing via XML, you only need to do the following two things:

* Provide configuration for MessagePubl i shi ngl nt erceptor via the <publi shi ng-
i nt er cept or > XML element.

» Provide AOP configuration to apply the MessagePubl i shi ngl nt er cept or to managed
objects.

<aop: confi g>
<aop: advi sor advice-ref="interceptor" pointcut="bean(testBean)" />

Spring Integration
2.1.0.M2 Reference Manual 211

Spring Integration

</ aop: confi g>
<publishing-interceptor id="interceptor" default-channel ="defaul t Channel ">

<nmet hod pattern="echo" payl oad="'Echoi ng: ' + #return" channel ="echoChannel ">
<header nane="foo" val ue="bar"/>

</ met hod>

<nmet hod pattern="repl *" payl oad="'Echoing: ' + #return" channel ="echoChannel ">
<header nane="foo" expression=""'bar'.toUpperCase()"/>

</ met hod>

<met hod pattern="echoDef*" payl oad="#return"/>
</ publ i shi ng-interceptor>

As you can see the <publ i shi ng-i nter cept or> configuration looks rather similar to the
Annotation-based approach, and it aso utilizes the power of the Spring 3.0 Expression Language.

In the above example the execution of the echo method of at est Bean will render a Message with
the following structure:

* The Message payload will be of type String with the content "Echoing: [value]” whereval ue isthe
value returned by an executed method.

» The Message will have a header with the name "foo" and value "bar".
* The Message will be sent to echoChannel .

The second method is very similar to the first. Here every method that begins with ‘repl® will render a
Message with the following structure:

* The Message payload will be the same asin the above sample

» The Message will have a header named "foo" whose value is the result of the SpEL expression
"bar'.toUpper Case() .

* The Message will be sent to echoChannel .

The second method, mapping the execution of any method that begins with echoDef of t est Bean,
will produce a Message with the following structure.

» The Message payload will be the value returned by an executed method.

» Since the channel attribute is not provided explicitly, the Message will be sent to the
def aul t Channel defined by the publisher.

For simple mapping rules you can rely on the publisher defaults. For example:

<publ i shi ng-interceptor id="anotherlnterceptor"/>

This will map the return value of every method that matches the pointcut expression to a payload and
will be sent to a default-channel. If the defaultChannelis not specified (as above) the messages will be
sent to the global nullChannel.

Async Publishing

Spring Integration
2.1.0.M2 Reference Manual 212

Spring Integration

One important thing to understand is that publishing occurs in the same thread as your component's
execution. So by default inis synchronous. This meansthat the entire message flow would have to wait
until the publisher'sflow completes. However, quite often you want the compl ete opposite and that isto
use this Message publishing feature to initiate asynchronous sub-flows. For example, you might host a
service (HTTP, WS etc.) which receives aremote request.Y ou may want to send this request internally
into a process that might take a while. However you may also want to reply to the user right away. So,
instead of sending inbound requests for processing via the output channel (the conventional way), you
can simply use 'output-channel’ or a 'replyChannel' header to send a simple acknowledgment-like reply
back to the caller while using the Message publisher feature to initiate a complex flow.

EXAMPLE: Hereisthe simple service that receives a complex payload, which needs to be sent further
for processing, but it also needs to reply to the caller with a simple acknowledgment.

public String echo(Object conpl exPayl oad) {
return "ACK";

}
So instead of hooking up the complex flow to the output channel we use the M essage publishing feature
instead. We configureit to create anew Message using theinput argument of the service method (above)
and send that to the 'local ProcessChannel'. And to make sure this sub-flow is asynchronous al we need
to do issend it to any type of asynchronous channel (ExecutorChannel in this example).

<int:service-activator input-channel ="inputChannel" output-channel ="out put Channel " ref="sanpl eservice"/>
<bean i d="sanpl eservi ce" cl ass="test. Sanpl eService"/>

<aop: confi g>
<aop: advi sor advice-ref="interceptor" pointcut="bean(sanpl eservice)" />
</ aop: confi g>

<int:publishing-interceptor id="interceptor" >
<int: method pattern="echo" payl oad="#args[0]" channel ="| ocal ProcessChannel ">
<i nt: header nanme="sanpl e_header" expression="'sone sanpl e value'"/>
</int: method>
</int:publishing-interceptor>

<i nt:channel id="Iocal ProcessChannel ">
<i nt:di spatcher task-executor="executor"/>
</int: channel >

<t ask: execut or id="executor" pool -size="5"/>

Another way of handling this type of scenario iswith awire-tap.
Producing and publishing messages based on a scheduled trigger

Inthe above sectionswelooked at the M essage publishing feature of Spring Integration which constructs
and publishes messages as by-products of Method invocations. However in those cases, you are still
responsible for invoking the method. In Spring Integration 2.0 we've added another related useful
feature: support for scheduled Message producers/publishers via the new "expression” attribute on the
'inbound-channel-adapter' element. Scheduling could be based on several triggers, any one of which
may be configured on the 'poller' sub-element. Currently we support cr on, fi xed-rat e, fi xed-

del ay aswell asany custom trigger implemented by you and referenced by the'trigger' attribute value.

Spring Integration
2.1.0.M2 Reference Manual 213

Spring Integration

Asmentioned above, support for scheduled producers/publishersis provided viathe <inbound-channel -
adapter> xml element. Let'slook at couple of examples:

<i nt:inbound-channel - adapter id="fixedDel ayProducer"
expressi on=""fi xedDel ayTest"' "
channel ="fi xedDel ayChannel ">
<int:poller fixed-delay="1000"/>
</int:inbound-channel - adapt er >

In the above example an inbound Channel Adapter will be created which will construct a Message with
its payload being the result of the expression defined in the expr essi on attribute. Such messages
will be created and sent every time the delay specified by thef i xed- del ay attribute occurs.

<i nt:inbound- channel - adapter id="fi xedRateProducer"
expressi on=""fi xedRat eTest "' "
channel ="fi xedRat eChannel " >
<int:poller fixed-rate="1000"/>
</int:inbound-channel - adapt er >

This example is very similar to the previous one, except that we are using thef i xed- r at e attribute
which will allow us to send messages at a fixed rate (measuring from the start time of each task).

<i nt:i nbound- channel - adapt er id="cronProducer"
expressi on=""'cronTest"'"
channel =" cr onChannel ">
<int:poller cron="7 6 54 3 ?"/>
</int:inbound-channel - adapt er >

This example demonstrates how you can apply a Cron trigger with a value specified in the cr on
attribute.

<i nt:inbound- channel - adapt er i d="header Expressi onsProducer"
expr essi on=""' header Expr essi onsTest"' "
channel =" header Expr essi onsChannel "
aut o-startup="fal se">
<int:poller fixed-delay="5000"/>
<i nt: header name="foo0" expression="6 * 7"/>

<i nt:header nane="bar" val ue="x"/>
</int:inbound-channel - adapt er >

Here you can see that in away very similar to the Message publishing feature we are enriching a newly
constructed M essage with extraM essage headerswhich cantake scalar valuesor theresults of evaluating
Spring expressions.

If you need to implement your own custom trigger you can use the trigger
attribute to provide a reference to any spring configured bean which implements the
org. springframewor k. schedul i ng. Tri gger interface.

<i nt:inbound- channel - adapter id="triggerRef Producer"
expressi on=""triggerRef Test'" channel ="tri gger Ref Channel ">
<int:poller trigger="customlrigger"/>
</int:inbound-channel - adapt er >

<beans: bean i d="custonirigger" class="org.springfranmework. schedul i ng. support. Periodi cTrigger">
<beans: constructor-arg val ue="9999"/>
</ beans: bean>

Spring Integration
2.1.0.M2 Reference Manual 214

Spring Integration

30. Transaction Support

30.1 Understanding Transactions in Message flows

Spring Integration exposes several hooks to address transactiona needs of you message flows. But to
better understand these hooks and how you can benefit from them we must first revisit the 6 mechanisms
that could be used to initiate Message flows and see how transactional needs of these flows could be
addressed within each of these mechanisms.

Here are the 6 mechanisms to initiate a Message flow and their short summary (details for each are
provided throughout this manual):

» Gateway Proxy - Y our basic Messaging Gateway
» MessageChannel - Direct interactions with MessageChannel methods (e.g., channel.send(message))

» Message Publisher - the way to initiate message flow as the by-product of method invocations on
Spring beans

* Inbound Channel Adapters/Gateways - the way to initiate message flow based on connecting
third-party system with Spring Integration messaging system(e.g., [JmsMessage] -> Jms Inbound
Adapter[SI Message] -> SI Channel)

» Scheduler - the way to initiate message flow based on scheduling events distributed by a pre-
configured Scheduler

» Poller - similar to the Scheduler and is the way to initiate message flow based on scheduling or
interval-based events distributed by a pre-configured Poller

These 6 could be split in 2 general categories:

» Message flowsinitiated by a USER process - Example scenariosin this category would be invoking a
Gateway method or explicitly sending aM essage to aM essageChannel. In other words, these message
flows depend on a third party process (e.g., some code that we wrote) to be initiated.

» Message flows initiated by a DAEMON process - Example scenarios in this category would be a
Poller polling aM essage queueto initiate anew Message flow with the polled M essage or a Scheduler
scheduling the process by creating anew Message and initiating a message flow at a predefined time.

Clearly the Gateway Proxy, MessageChannel.send(..) and MessagePublisher al belong to the 1st
category and Inbound AdapterGateways, Scheduler and Poller belong to the 2nd.

So, how do we address transactional needs in various scenarios within each category and is there a
need for Spring Integration to provide something explicitly with regard to transactions for a particular
scenario? Or, can Spring's Transaction Support be leveraged instead?.

The first and most obvious goal is NOT to re-invent something that has already been invented unless
you can provide a better solution. In our case Spring itself provides first class support for transaction

Spring Integration
2.1.0.M2 Reference Manual 215

Spring Integration

management. So our goal hereis not to provide something new but rather del egate/use Spring to benefit
from the existing support for transactions. In other words as a framework we must expose hooks to the
Transaction management functionality provided by Spring. But since Spring Integration configuration
is based on Spring Configuration it is not always necessary to expose these hooks as they are aready
exposed via Spring natively. Remember every Spring Integration component is a Spring Bean after all.

With this goal in mind let'slook at the two scenarios.

If you think about it, Message flowsthat are initiated by the USER process (Category 1) and obviously
configured in a Spring Application Context, are subject to transactional configuration of such processes
and therefore don't need to be explicitly configured by Spring Integration to support transactions.
The transaction could and should be initiated through standard Transaction support provided by
Spring. The Spring Integration message flow will honor the transactional semantics of the components
naturally becauseit is Spring configured. For example, a Gateway or ServiceActivator method could be
annotated with @' ansact i onal or Transacti onl nt er cept or could be defined in an XML
configuration with a point-cut expression pointing to specific methods that should be transactional. The
bottom lineisthat you havefull control over transaction configuration and boundariesin these scenarios.

However, things are a bit different when it comes to Message flows initiated by the DAEMON process
(Category 2). Although configured by the developer these flows do not directly involve a human
or some other process to be initiated. These are trigger-based flows that are initiated by a trigger
process (DAEMON process) based on the configuration of such process. For example, we could have a
Scheduler initiating a message flow every Friday night of every week. We can also configure a trigger
that initiates a Message flow every second, etc. So, we obviously need away to let these trigger-based
processes know of our intention to make the resulting M essage flows transactional so that a Transaction
context could be created whenever a new Message flow isinitiated. In other words we need to expose
some Transaction configuration, but ONLY enough to delegate to Transaction support already provided
by Spring (as we do in other scenarios).

Spring Integration provides transactional support for Pollers. Pollers are a special type of component
because we can call receive() within that poller task against a resource that is itself transactiona thus
including receive() call in the the boundaries of the Transaction alowing it to be rolled back in case
of atask failure. If we were to add the same support for channels, the added transactions would affect
al downstream components starting with that send() cal. That is providing a rather wide scope for
transaction demarcation without any strong reason especially when Spring aready provides severa
ways to address the transactional needs of any component downstream. However the receive() method
being included in atransaction boundary is the "strong reason” for pollers.

Poller Transaction Support

Any time you configure a Poller you can provide transactional configuration viathe transactional sub-
element and its attributes:

<int:poller max-nessages-per-poll="1" fixed-rate="1000">
<transactional transaction-nmanager="txManager"
i sol ati on="DEFAULT"
pr opagat i on=" REQUI RED"
read-onl y="true"

Spring Integration
2.1.0.M2 Reference Manual 216

Spring Integration

ti meout ="1000"/>
</ pol | er>

As you can see this configuration looks very similar to native Spring transaction configuration. Y ou
must still provide a reference to a Transaction manager and specify transaction attributes or rely on
defaults (e.g., if the 'transaction-manager' attribute is not specified, it will default to the bean with the
name 'transactionManager'). Internally the process would be wrapped in Spring's native Transaction
where Tr ansact i onl nt er cept or isresponsible for handling transactions. For more information
on how to configure a Transaction Manager, the types of Transaction Managers (e.g., JTA, Datasource
etc.) and other details related to transaction configuration please refer to Spring's Reference manual
(Chapter 10 - Transaction Management).

With the above configuration all Message flows initiated by this poller will be transactional. For more
information and details on a Poller's transactional configuration please refer to section - 21.1.1. Polling
and Transactions.

Along with transactions, several more cross cutting concerns might need to be addressed when running
a Poller. To help with that, the Poller element accepts an <advice-chain> sub-element which allows
you to define a custom chain of Advice instances to be applied on the Poller. (see section 4.4 for more
details) In Spring Integration 2.0, the Poller went through the a refactoring effort and is how using
a proxy mechanism to address transactional concerns as well as other cross cutting concerns. One of
the significant changes evolving from this effort is that we made <transactional> and <advice-chain>
elements mutually exclusive. The rationale behind this is that if you need more than one advice, and
one of them is Transaction advice, then you can simply include it in the <advice-chain> with the same
convenience as before but with much more control since you now have an option to position any advice
in the desired order.

<int:poller max-nmessages-per-poll="1" fixed-rate="10000">
<advi ce- chai n>
<ref bean="t xAdvi ce"/>
<ref bean="soneAot her Advi ceBean" />
<beans: bean cl ass="f 0o. bar. Sanpl eAdvi ce"/>
</ advi ce- chai n>
</ pol | er>

<t x:advi ce id="txAdvi ce" transacti on- manager ="t xManager" >
<tx:attributes>
<t x: met hod name="get*" read-only="true"/>

</[tx:attributes>
</t x: advi ce>

As yo can see from the example above, we have provided a very basic XML-based configuration of
Spring Transaction advice - "txAdvice" and included it within the <advice-chain> defined by the
Poller. If you only need to address transactional concerns of the Poller, then you can still use the
<transactional> element as a convinience.

30.2 Transaction Boundaries

Another important factor isthe boundaries of Transactionswithin aMessage flow. When atransactionis
started, the transaction context is bound to the current thread. So regardless of how many endpoints and
channels you have in your Message flow your transaction context will be preserved aslong as you are

Spring Integration
2.1.0.M2 Reference Manual 217

Spring Integration

ensuring that the flow continues on the same thread. As soon as you break it by introducing a Pollable
Channel or Executor Channel or initiate a new thread manually in some service, the Transactional
boundary will be broken as well. Essentially the Transaction will END right there, and if a successful
handoff has transpired between the threads, the flow would be considered a success and a COMMIT
signal would be sent even though the flow will continue and might still result in an Exception somewhere
downstream. If such aflow were synchronous, that Exception could be thrown back to theinitiator of the
Message flow who is also the initiator of the transactional context and the transaction would result in a
ROLLBACK. The middle ground is to use transactional channels at any point where athread boundary
is being broken. For example, you can use a Queue-backed Channel that delegates to a transactional
MessageStore strategy, or you could use a JM S-backed channel.

Spring Integration
2.1.0.M2 Reference Manual 218

Spring Integration

31. Security in Spring Integration

31.1 Introduction

Spring Integration builds upon the Spring Security project [http://static.springframework.org/spring-
security/site/] to enablerole based security checksto be applied to channel send and receiveinvocations.

31.2 Securing channels

Spring Integration provides the interceptor Channel Securityl nt er cept or, which extends
Abstract Securityl nterceptor and intercepts send and receive calls on the channel. Access
decisions are then made with referenceto aChannel Securi t yMet adat aSour ce which provides
the metadata describing the send and receive access policies for certain channels. The interceptor
requiresthat avalid Secur i t yCont ext hasbeen established by authenticating with Spring Security.
See the Spring Security reference documentation for details.

Namespace support is provided to alow easy configuration of security constraints. This consists
of the secured channels tag which allows definition of one or more channel name patterns in
conjunction with a definition of the security configuration for send and receive. The pattern is a
java. util.regexp. Pattern.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns:int="http://ww. springframework. org/schema/integration”
xm ns:int-security="http://ww.springframework. org/schema/integration/security"
xm ns: beans="ht t p: // ww. spri ngf ramewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: security="http://ww. springframework. org/ schema/ security"
xsi : schemalLocat i on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://ww. spri ngfranmewor k. org/ schema/ security
http://ww. springfranmework. org/ schema/ security/spring-security-2.0.xsd
http://ww. springframework. org/ schema/ i nt egrati on
http: //ww. spri ngfranmewor k. or g/ schema/ i ntegration/spring-integration-2.0.xsd
http://ww. springfranmework. org/ schema/integration/security
http://ww. springframework. org/ schema/integration/security/spring-integration-security-2.0.xsd">

<int-security:secured-channel s>
<int-security:access-policy pattern="adm n.*" send-access="ROLE_ADM N'/ >
<int-security:access-policy pattern="user.*" recei ve-access="ROLE_USER'/ >
</int-security:secured-channel s>

By default the secured-channels namespace element expects a bean named authenticationManager
which implements Aut hent i cat i onManager and a bean named accessDecisionManager which
implements AccessDeci si onManager . Where this is not the case references to the appropriate
beans can be configured as attributes of the secured-channels element as below.

<i nt-security: secured-channel s access-deci si on- manager =" cust omAccessDeci si onManager "
aut henti cat i on- nanager =" cust omAut hent i cat i onManager " >
<int-security:access-policy pattern="adm n.*" send-access="ROLE_ADM N'/ >
<int-security:access-policy pattern="user.*" receive-access="ROLE USER'/ >
</int-security:secured-channel s>

Spring Integration
2.1.0.M2 Reference Manual 219

http://static.springframework.org/spring-security/site/
http://static.springframework.org/spring-security/site/
http://static.springframework.org/spring-security/site/

Spring Integration

Appendix A. Spring Integration
Samples

A.1l Introduction

Asof Spring Integration 2.0, the samples are no longer included with the Spring I ntegration distribution.
Instead we have switched to amuch simpler collaborative model that should promote better community
participation and, ideally, more contributions. Samples now have a dedicated Git repository and a
dedicated JRA Issue Tracking system. Sample development will also have its own lifecycle which is
not dependent on the lifecycle of the framework releases athough the repository will still be tagged
with each major release for compatibility reasons.

The great benefit to the community is that we can now add more samples and make them available to
you right away without waiting for the next release. Having its own JIRA that is not tied to the the actual
framework is also a great benefit. Y ou now have a dedicated place to suggest samples as well as report
issues with existing samples. Or, you may want to submit a sample to us as an attachment through the
JRA or, better, through the collaborative model that Git promotes. If we believeyour sample addsval ue,
we would be more then glad to add it to the 'samples' repository, properly crediting you as the author.

A.2 Where to get Samples

To monitor samples development and to get more information on the repository you can visit the
following URL.: http://git.springsource.org/spring-integration/samples Since we are using Git as the
SCM, we should use the proper terminology as well when it comes to the tasks you need to perform to
make samples available locally on your machine. For more information on Git SCM please visit their
website: http://git-scm.com/

CLONE samples repository. (For those unfamiliar with Git, this is somewhat the equivaent of a
checkout.)

This is the first step you should go through. Y ou must have Git installed on your machine. There are
many GUI-based products available for many platforms. A simple Google search will help you find
them. To clone the Spring Integration samples repository, issue the following at the command line:

> nkdir spring-integration-sanples
> cd spring-integration-sanples
> git clone git://git.springsource.org/spring-integration/sanples.git

That is all you need to do. Now you have cloned the entire samples repository. Since the samples
repository is alive repository, you might want to perform periodic "pulls' to get new samples as well
as updates to the existing samples. To get the updates use the git PULL command:

> git pull

Submit samples or sample requests

Spring Integration
2.1.0.M2 Reference Manual 220

Spring Integration

As mentioned earlier, Spring Integration samples have a dedicated JIRA Issue tracking system. To
submit new sample requests or to submit an actual sample (as an attachment), please visit our JJRA
Issue Tracking system: https.//jira.springframework.org/browse/INTSAMPLES.

A.3 Samples Structure

Thestructure of the sampleschanged aswell. With plansfor more sampleswerealized that some samples
have different goalsthan others. Whilethey al share the common goal of showing you how to apply and
work with the Spring Integration framework, they also differ in areas where some samples are meant to
concentrate on atechnical use case while others focus on a business use case, and some samples are all
about showcasing various techniques that could be applied to address certain scenarios (both technical
and business). The new categorization of samples will allow us to better organize them based on the
problem each sample addresses while giving you a simpler way of finding the right sample for your
needs.

Currently there are 4 categories. Within the samples repository each category has its own directory
which is named after the category name:

BASI C (samples/basic)

This is a good place to get started. The samples here are technically motivated and demonstrate the
bare minimum with regard to configuration and code. These should help you to get started quickly by
introducing you to the basic concepts, API and configuration of Spring Integration aswell as Enterprise
Integration Patterns (EIP). For example, if you are looking for an answer on how to implement and
wire a Service Activator to a Message Channel or how to use a Messaging Gateway as a facade to your
message exchange, or how to get started with using MAIL or TCP/UDP modules etc., thiswould be the
right place to find a good sample. The bottom lineis thisisagood place to get started.

INTERMEDIATE (samples/inter mediate)

This category targets developers who are aready familiar with the Spring Integration framework (past
getting started), but need some more guidance while resolving the more advanced technical problems
one might deal with after switching to a Messaging architecture. For example, if you are looking for an
answer on how to handle errors in various message exchange scenarios or how to properly configure
the Aggregator for the situations where some messages might not ever arrive for aggregation, or any
other issue that goes beyond a basic implementation and configuration of a particular component and
addresses what el se types of problems, this would be the right place to find these type of samples.

ADVANCED (samples/advanced)

This category targets developers who are very familiar with the Spring Integration framework but
are looking to extend it to address a specific custom need by using Spring Integration's public API.
For example, if you are looking for samples showing you how to implement a custom Channel or
Consumer (event-based or polling-based), or you are trying to figure out what is the most appropriate
way to implement a custom Bean parser on top of the Spring Integration Bean parser hierarchy when
implementing your own namespace and schema for a custom component, this would be the right place
tolook. Hereyou can also find samplesthat will help you with Adapter devel opment. Spring Integration

Spring Integration
2.1.0.M2 Reference Manual 221

https://jira.springframework.org/browse/INTSAMPLES

Spring Integration

comes with an extensive library of adapters to allow you to connect remote systems with the Spring
I ntegration messaging framework. However you might have aneed to integrate with asystem for which
the core framework does not provide an adapter. So, you may decide to implement your own (and
potentially contribute it). This category would include samples showing you how.

APPLICATIONS (samples/applications)

This category targets developers and architects who have a good understanding of Message-driven
architecture and EIP, and an above average understanding of Spring and Spring Integration who are
looking for samples that address a particular business problem. In other words the emphasis of samples
in this category is business use cases and how they can be solved with a Message-Driven Architecture
and Spring Integration in particular. For example, if you are interested to see how a Loan Broker or
Travel Agent process could be implemented and automated via Spring Integration, this would be the
right place to find these types of samples.

! I mportant
' Remember: Spring Integration is a community driven framework, therefore community
participationisIMPORTANT. That includes Samples; so, if you can't find what you arelooking
for, let us know!

A.4 Samples

Currently Spring Integration comes with quite a few samples and you can only expect more. To help
you better navigate through them, each sample comes with its own r eadne. t xt file which covers
severa details about the sample (e.g., what EIP patternsit addresses, what problem it istrying to solve,
how to run sample etc.). However, certain samples require a more detailed and sometimes graphical
explanation. In this section you'll find details on samples that we believe require special attention.

Loan Broker

In this section, we will review the Loan Broker sample application that is included in the Spring
Integration samples. Thissampleisinspired by one of the samplesfeatured in Gregor Hohpe and Bobby
Woolf's book, Enterprise Integration Patterns [http://www.eai patterns.com].

The diagram below represents the entire process

Spring Integration
2.1.0.M2 Reference Manual 222

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

preProcessChain

B
._} -_“ i ﬂﬁ L O — e ._|
| i v il el | ! -- -
@ E 3 L |
Ll CeareSer .
loanBrokerGat... loanBrokerPre preProcessCh... credisScoreser... | bankRoute
h.' /preProcessChain
. B Bank Channels "
l—.l I |
auto-reply channel
ln
—
L -
@

]
quotesAggreg... QUOTESAQGreg... |

Now letslook at this processin more detail

At the core of an EIP architecture are the very simple yet powerful concepts of Pipes and Filters, and
of course: Messages. Endpoints (Filters) are connected with one another via Channels (Pipes). The
producing endpoint sends Message to the Channel, and the Message is retrieved by the Consuming
endpoint. This architecture is meant to define various mechanisms that describe HOW information
is exchanged between the endpoints, without any awareness of WHAT those endpoints are or what
information they are exchanging. Thus, it providesfor avery loosely coupled and flexible collaboration
model while also decoupling Integration concernsfrom Business concerns. EIP extendsthisarchitecture
by further defining:

» Thetypes of pipes (Point-to-Point Channel, Publish-Subscribe Channel, Channel Adapter, etc.)

» Thecorefiltersand patterns around how filters collaborate with pipes (M essage Router, Splitters and
Aggregators, various Message Transformation patterns, etc.)

The details and variations of this use case are very nicely described in Chapter 9 of the EIP Book, but
here is the brief summary; A Consumer while shopping for the best Loan Quote(s) subscribes to the
services of aLoan Broker, which handles details such as:

e Consumer pre-screening (e.g., obtain and review the consumer's Credit history)

» Determine the most appropriate Banks (e.g., based on consumer's credit history/score)

Send a L oan quote request to each selected Bank

Collect responses from each Bank

Filter responses and determine the best quote(s), based on consumer's requirements.

Spring Integration
2.1.0.M2 Reference Manual 223

Spring Integration

 Passthe Loan quote(s) back to the consumer.

Obviously the real process of obtaining aloan quote is abit more complex, but since our goal hereisto
demonstrate how Enterprise Integration Patterns are realized and implemented within Sl, the use case
has been simplified to concentrate only on the Integration aspects of the process. It is not an attempt to
give you an advice in consumer finances.

Asyou can see, by hiring aLoan Broker, the consumer isisolated from the details of the Loan Broker's
operations, and each Loan Broker's operations may defer from one another to maintain competitive
advantage, so whatever we assemble/implement must be flexible so any changes could be introduced
quickly and painlessly. Speaking of change, the Loan Broker sample does not actually talk to any
‘imaginary' Banks or Credit bureaus. Those services are stubbed out. Our goal here is to assemble,
orchestrate and test the integration aspect of the process as a whole. Only then can we start thinking
about wiring such process to the real services. At that time the assembled process and its configuration
will not change regardless of the number of Banks a particular Loan Broker is dealing with, or the type
of communication media (or protocols) used (JMS, WS, TCP, etc.) to communicate with these Banks.

DESGN

As you anayze the 6 requirements above you'll quickly see that they al fall into the category of
Integration concerns. For example, in the consumer pre-screening step we need to gather additional
information about the consumer and the consumer's desires and enrich the loan request with additional
meta information. We then have to filter such information to select the most appropriate list of Banks,
and so on. Enrich, filter, select — these are all integration concerns for which EIP defines a solution in
the form of patterns. Sl provides an implementation of these patterns.

Messaging Gateway

—

The Messaging Gateway pattern provides a simple mechanism to access messaging systems, including
our Loan Broker. In Sl you define the Gateway as a Plain Old Java Interface (no need to provide an
implementation), configure it via the XML <gateway> element or via annotation and use it as any
other Spring bean. S| will take care of delegating and mapping method invocations to the Messaging
infrastructure by generating a Message (payload is mapped to an input parameter of the method) and
sending it to the designated channel.

<int:gateway id="|oanBroker Gat enay"
def aul t -request - channel =" | oanBr oker Pr ePr ocessi ngChannel "
service-interface="org. springframework.integrati on.sanpl es.| oanbr oker. LoanBr oker Gat enway" >
<i nt: met hod name="get Best LoanQuot e" >
<i nt: header name="RESPONSE TYPE" val ue="BEST"/>
</i nt: et hod>
</int: gat eway>

Spring Integration
2.1.0.M2 Reference Manual 224

Spring Integration

Our current Gateway provides two methods that could be invoked. One that will return the best single
guote and another one that will return all quotes. Somehow downstream we need to know what type
of reply the caler is looking for. The best way to achieve this in Messaging architecture is to enrich
the content of the message with some meta-data describing your intentions. Content Enricher is one of
the patterns that addresses this and although Spring Integration does provide a separate configuration
element to enrich Message Headers with arbitrary data (well see it later), as a convenience, since
Gateway element is responsible to construct the initial Message it provides embedded capability to
enrich the newly created Message with arbitrary Message Header s. In our example we are adding header
RESPONSE_TYPE with value 'BEST" whenever the getBestQuote() method is invoked. For other
method we are not adding any header. Now we can check downstream for an existence of this header
and based on its presence and its value we can determine what type of reply the caler islooking for.

Based on the use case we also know there are some pre-screening steps that needs to be performed such
as getting and evaluating the consumer's credit score, simply because some premiere Banks will only
typically accept quote requests from consumers that meet a minimum credit score requirement. So it
would be nice if the Message would be enriched with such information before it is forwarded to the
Banks. It would also be nice if when several processes needs to be completed to provide such meta-
information, those processes could be grouped in a single unit. In our use case we need to determine
credit score and based on the credit score and some rule select a list of Message Channels (Bank
Channels) we will sent quote request to.

Composed Message Processor

The Composed Message Processor pattern describes rules around building endpoints that maintain
control over message flow which consists of multiple message processors. In Sprig Integration
Composed Message Processor pattern isimplemented via <chain> element.

preProcessChain

L] -

Y |

creditScoreSer ... hankRouter

preProcessCh..

IpreProcessChain

Asyou can see from the above configuration we have a chain with inner header-enricher element which
will further enrich the content of the Message with the header CREDIT_SCORE and value that will be
determined by the call to a credit service (smple POJO spring bean identified by 'creditBureau’ name)
and then it will delegate to the Message Router

Message Router

Spring Integration
2.1.0.M2 Reference Manual 225

Spring Integration

o

bankRouter

There are several implementations of the Message Routing pattern availablein Spring Integration. Here
we are using a router that will determine alist of channels based on evaluating an expression (Spring
Expression Language) which will look at the credit score that was determined is the previous step and
will select thelist of channelsfrom the Map bean with id 'banks whose valuesare'premier’ or 'secondary’
based o the value of credit score. Once the list of Channels is selected, the Message will be routed to
those Channels.

Now, one last thing the Loan Broker needsto to is to receive the loan quotes form the banks, aggregate
them by consumer (we don't want to show quotes from one consumer to another), assembl e the response
based on the consumer's selection criteria (single best quote or all quotes) and reply back to the
consumer.

Message Aggregator

(]
0—>0

L] 9

guotesAggreg...

An Aggregator pattern describes an endpoint which groups related Messages into a single Message.
Criteria and rules can be provided to determine an aggregation and correlation strategy. Sl provides
several implementations of the Aggregator pattern as well as a convenient name-space based
configuration.

<i nt:aggregat or id="quotesAggregator"
i nput - channel =" quot esAggr egat i onChannel "
net hod="aggr egat eQuot es" >
<beans: bean cl ass="org. spri ngfranmework. i nt egrati on. sanpl es. | oanbr oker. LoanQuot eAggr egat or "/ >
</int:aggregator>

Our Loan Broker defines a 'quotesAggregator' bean via the <aggregator> element which provides a
default aggregation and correlation strategy. The default correlation strategy correl ates messages based
onthecorrel ati onl d header (see Correlation |dentifier pattern). What'sinteresting isthat we never
provided the value for this header. It was set earlier by the router automatically, when it generated a
separate Message for each Bank channel.

Spring Integration
2.1.0.M2 Reference Manual 226

Spring Integration

Once the Messages are correlated they are released to the actual Aggregator implementation. Although
default Aggregator is provided by Sl, its strategy (gather the list of payloads from all Messages and
construct a new Message with this List as payload) does not satisfy our requirement. The reason is that
our consumer might require asingle best quote or all quotes. To communicate the consumer'sintention,
earlier in the process we set the RESPONSE_TY PE header. Now we have to evaluate this header and
return either al the quotes (the default aggregation strategy would work) or the best quote (the default
aggregation strategy will not work because we have to determine which loan quote is the best).

Obviously selecting the best quote could be based on complex criteria and would influence the
complexity of the aggregator implementation and configuration, but for now we are making it smple.
If consumer wants the best quote we will select aquote with the lowest interest rate. To accomplish that
the LoanQuoteAggregator.javawill sort all the quotesand return thefirst one. TheLoanQuot e. j ava
implements Conpar abl e which compares quotes based on the rate attribute. Once the response
Messageiscreated it is sent to the default-reply-channel of the Messaging Gateway (thus the consumer)
which started the process. Our consumer got the Loan Quote!

Conclusion

As you can see arather complex process was assembled based on POJO (read existing, legacy), light
weight, embeddable messaging framework (Spring Integration) with a loosely coupled programming
model intended to simplify integration of heterogeneous systems without requiring a heavy-weight
ESB-like engine or proprietary development and deployment environment, because as a developer you
should not be porting your Swing or console-based application to an ESB-like server or implementing
proprietary interfaces just because you have an integration concern.

This and other samples in this section are built on top of Enterprise Integration Patterns and can
be considered "building blocks" for YOUR solution; they are not intended to be complete solutions.
Integration concerns exist in all types of application (whether server based or not). It should not require
change in design, testing and deployment strategy if such applications need to be integrated.

The Cafe Sample

In this section, we will review a Cafe sample application that is included in the Spring Integration
samples. This sample is inspired by another sample featured in Gregor Hohpe's Ramblings [http://
www.eal patterns.com/ramblings.htmi].

The domain isthat of a Cafe, and the basic flow is depicted in the following diagram:

Spring Integration
2.1.0.M2 Reference Manual 227

http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html

Spring Integration

.

P L] I
— ol ? | —>0 ‘
! Ml —-
3 L] 3 @
cafe | orders orderSplitter drinks
‘ P, J | — _
v < |l g r =0 L
————— _ -\
] @ |\
./. coldDrinks coldDrinksSer._. \
-) '\ || — : = \ _,—>| |
@ L @ ILg
drinksRouter ',u" L ;
; preparedDrinks orderAggregat.. deliveries
5 —) . . .
-, —)‘—)- b !
"\ e » o
Y] @
hotDrinks hotDrinksServi...

The Or der abject may contain multiple Or der | t errs. Once the order is placed, a Splitter will break
the composite order message into asingle message per drink. Each of theseisthen processed by aRouter
that determines whether the drink is hot or cold (checking the Or der | t emobject's ‘isiced' property).
The Bar i st a prepares each drink, but hot and cold drink preparation are handled by two distinct
methods: 'prepareHotDrink' and 'prepareColdDrink'. The prepared drinks are then sent to the Waiter
where they are aggregated into aDel i ver y object.

Hereisthe XML configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns:int="http://wwmv springfranmework. org/ schema/integration"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: beans="htt p: //ww. spri ngfranewor k. or g/ schenma/ beans"

xm ns:int-stream="http://ww. springframewor k. org/ schema/ i nt egrati on/ streant

xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ scherma/ beans/ spri ng- beans- 3. 0. xsd
http: // ww. spri ngfranmewor k. org/ schema/ i ntegration
http://ww. springfranmework. org/ schema/integration/spring-integration-2.0.xsd
http://ww. springframework. org/ schema/ i ntegration/stream
http: //wwv spri ngfranmewor k. org/ schema/ i ntegration/streani spring-integration-stream 2.0.xsd">

<int:gateway id="cafe" service-interface="org.springfranework.integration.sanples.cafe.Cafe"/>

<int:channel id="orders"/>
<int:splitter input-channel="orders" ref="orderSplitter" method="split" output-channel ="drinks"/>

<int:channel id="drinks"/>
<int:router input-channel ="drinks" ref="drinkRouter" method="resol veOrderltenChannel"/>

<int:channel id="col dDrinks">
<i nt:queue capacity="10"/>
</i nt: channel >
<int:service-activator input-channel ="col dDrinks" ref="barista"
met hod=" pr epar eCol dDr i nk" out put - channel =" pr epar edDr i nks"/ >

<i nt:channel id="hotDrinks">
<i nt:queue capacity="10"/>
</int: channel >

Spring Integration
2.1.0.M2 Reference Manual 228

Spring Integration

<int:service-activator input-channel ="hotDrinks" ref="barista"
net hod="pr epar eHot Dri nk" out put - channel =" prepar edDri nks"/ >

<i nt:channel id="preparedDrinks"/>
<i nt:aggregator input-channel ="preparedDrinks" ref="waiter"
met hod="pr epar eDel i very" out put -channel ="del i veri es"/ >

<int-stream stdout-channel -adapter id="deliveries"/>

<beans: bean i d="orderSplitter"
cl ass="org. springframework.integration.sanpl es.cafe.xm .OderSplitter"/>

<beans: bean id="dri nkRouter"
cl ass="org. springframework.integration.sanpl es.cafe.xm .DrinkRouter"/>

<beans: bean i d="barista" class="org.springframework.integration.sanpl es.cafe.xm .Barista"/>
<beans: bean i d="waiter" class="org.springframework.integration.sanples.cafe.xm.Witer"/>
<int:poller id="poller" default="true" fixed-rate="1000"/>

</ beans: beans>

As you can see, each Message Endpoint is connected to input and/or output channels. Each endpoint
will manage its own Lifecycle (by default endpoints start automatically upon initialization - to prevent
that add the "auto-startup” attribute with a value of "false"). Most importantly, notice that the objects
are simple POJOs with strongly typed method arguments. For example, here isthe Splitter:

public class OrderSplitter {

public List<Orderltenr split(Order order) {
return order.getltemnms();

}
}

In the case of the Router, the return value does not haveto beaMessageChannel instance (although
it can be). Asyou seein this example, a String-val ue representing the channel name is returned instead.

public class DrinkRouter {

public String resol veOrderltentChannel (Orderltemorderltem) {
return (orderltemislced()) ? "coldDrinks" : "hotDrinks";

}

Now turning back to the XML, you see that there are two <service-activator> elements. Each
of these is delegating to the same Bar i st a instance but different methods: 'prepareHotDrink’ or
‘prepareColdDrink’ corresponding to the two channels where order items have been routed.

public class Barista {

private |ong hotDrinkDel ay = 5000;
private |ong col dDrinkDel ay = 1000;

private Atom clnteger hotDrinkCounter = new Atoniclnteger();
private Atom cl nteger coldDri nkCounter = new Atom clnteger();

public void setHotDrinkDel ay(l ong hot Dri nkDel ay) {
this. hotDri nkDel ay = hot Dri nkDel ay;

Spring Integration
2.1.0.M2 Reference Manual 229

Spring Integration

}

public void set Col dDri nkDel ay(l ong col dDri nkDel ay) {
this. col dDri nkDel ay = col dDri nkDel ay;
}

public Drink prepareHotDrink(Orderltemorderltem {
try {
Thread. sl eep(t hi s. hot Dri nkDel ay) ;
System out. printl n(Thread. current Thread() . get Name()
+ " prepared hot drink #' + hotDrinkCounter.increnmentAndGet ()
+ " for order #" + orderltemgetOrder().getNunber() + ": " + orderltem;
return new Drink(orderltem get Order().getNunber(), orderltem getDrinkType(),
orderltemislced(), orderltem getShots());
}
catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

}

public Drink prepareCol dDri nk(Orderltemorderltem {
try {
Thr ead. sl eep(t hi s. col dDri nkDel ay) ;
System out. printl n(Thread. current Thread() . get Name()
+ " prepared cold drink #' + col dDri nkCounter.increnment AndGet ()
+ " for order #" + orderltemgetOrder().getNunber() + ": " + orderltem;
return new Drink(orderltem get Order().getNunber(), orderltem getDrinkType(),
orderltemislced(), orderltem getShots());
}
catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

Asyou can see from the code excerpt above, the barista methods have different delays (the hot drinks
take 5 times as long to prepare). This ssimulates work being completed at different rates. When the
Caf eDenp 'main' method runs, it will loop 100 times sending asingle hot drink and asingle cold drink
each time. It actually sends the messages by invoking the 'placeOrder' method on the Cafe interface.
Above, you will see that the <gateway> element is specified in the configuration file. This triggers
the creation of a proxy that implements the given 'service-interface’ and connects it to a channel. The
channel nameis provided on the @Gateway annotation of the Caf e interface.

public interface Cafe {

@zat eway (r equest Channel =" or ders")
voi d pl aceOrder (Order order);

}
Finally, have alook at the mai n() method of the Caf eDenp itself.

public static void main(String[] args) {
Abst ract Appl i cati onCont ext context = null;
if (args.length > 0) {
context = new Fil eSystenXm Appl i cati onCont ext (args);

Spring Integration
2.1.0.M2 Reference Manual 230

Spring Integration

}
el se {
context = new O assPat hXm Appl i cati onCont ext (" caf eDeno. xm ", Caf eDenp. cl ass);
}
Cafe cafe = context.getBean("cafe", Cafe.class);
for (int i =1; i <= 100; i++) {
Order order = new Order(i);
order. addl tem(Dri nkType. LATTE, 2, false);
order. addl tenm(Dri nkType. MOCHA, 3, true);
caf e. pl aceOrder (order);
}
}
] Tip

To run this sample as well as 8 others, refer to the READVE. t xt within the "samples’
directory of the main distribution as described at the beginning of this chapter.

When you run cafeDemo, you will seethat the cold drinks areinitially prepared more quickly than the
hot drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of the hot
drink preparation. Thisisto be expected based on their respective delays of 1000 and 5000 milliseconds.
However, by configuring a poller with a concurrent task executor, you can dramatically change the
results. For example, you could use athread pool executor with 5 workersfor the hot drink baristawhile
keeping the cold drink baristaasit is:

<int:service-activator input-channel="hotDrinks"
ref="bari sta"
met hod=" pr epar eHot Dri nk"
out put - channel =" pr epar edDr i nks"/ >

<int:service-activator input-channel="hotDrinks"
ref ="barista"
met hod=" pr epar eHot Dr i nk"
out put - channel =" pr epar edDr i nks" >
<int:poller task-executor="pool" fixed-rate="1000"/>

</int:service-activator>

<t ask: executor id="pool" pool-size="5"/>

Also, notice that the worker thread name is displayed with each invocation. Y ou will see that the hot
drinks are prepared by the task-executor threads. If you provide a much shorter poller interval (such
as 100 milliseconds), then you will notice that occasiondly it throttles the input by forcing the task-
scheduler (the caller) to invoke the operation.

Note

In addition to experimenting with the poller's concurrency settings, you can also add the
'transactional’ sub-element and then refer to any PlatformTransactionManager instance within
the context.

The XML Messaging Sample

The xml messaging sample in the org.springframework.integration.samples.xml illustrates how to use
some of the provided components which deal with xml payloads. The sample usestheideaof processing
an order for books represented as xml.

Spring Integration
2.1.0.M2 Reference Manual 231

Spring Integration

First the order is split into a number of messages, each one representing a single order item using the
XPath splitter component.

<int-xm:xpath-splitter id="orderltenSplitter" input-channel ="ordersChannel"
out put - channel =" st ockChecker Channel " creat e-docunents="true">
<i nt-xm : xpat h- expr essi on expressi on="/order Ns: order/ orderNs: order|tent

nanespace- map="or der NanespaceMap" />
</int-xm:xpath-splitter>

A serviceactivator isthen used to passthe messageinto astock checker POJO. The order item document
is enriched with information from the stock checker about order item stock level. This enriched order
item message is then used to route the message. I n the case where the order item isin stock the message
is routed to the warehouse. The XPath router makes use of the default Channel Resol ver strategy
which maps the X Path evaluation result to a channel referencein the Appl i cat i onCont ext .

<i nt-xm : xpath-router id="instockRouter" channel -resol ver ="mapChannel Resol ver"
i nput - channel =" or der Rout i ngChannel " resol ution-required="true">
<int-xml : xpat h- expressi on expressi on="/orderNs: order|tenm @ n-stock"

namespace- map="or der NamespaceMvap" />
</si-xm : xpat h-rout er >

Where the order item is not in stock the message is transformed using xslt into a format suitable for
sending to the supplier.

<int-xm:xslt-transformer input-channel ="out O St ockChannel "
out put - channel ="r esuppl yOr der Channel "

xsl -resource="cl asspat h: or g/ spri ngf ramewor k/ i nt egr ati on/ sanpl es/ xm / bi gBooksSuppl i er Tr ansf or ner. xsl "/ >

Spring Integration
2.1.0.M2 Reference Manual 232

Spring Integration

Appendix B. Configuration

B.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon
your particular needs and at what level you prefer to work. As with the Spring framework in general,
it is also possible to mix and match the various techniques according to the particular problem at hand.
For example, you may choose the X SD-based namespace for the magjority of configuration combined
with a handful of objects that are configured with annotations. As much as possible, the two provide
consistent naming. XML elements defined by the XSD schema will match the names of annotations,
and the attributes of those XML elements will match the names of annotation properties. Direct usage
of the API is of course aways an option, but we expect that most users will choose one of the higher-
level options, or a combination of the namespace-based and annotation-driven configuration.

B.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the
terminology and concepts of enterprise integration. In many cases, the element names match those of
the Enterprise Integration Patterns [http://www.eai patterns.com).

To enable Spring Integration's core namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xm ns="http://wmn springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww.springframework. org/schena/integration"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schenma/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. spri ngfranmewor k. org/ schema/ i ntegration/spring-integration-2.0.xsd">

You can choose any name after "xmlns:"; int is used here for clarity, but you might prefer a shorter
abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of
auto-completion may convince you to keep the longer name for clarity. Alternatively, you can create
configuration files that use the Spring Integration schema as the primary namespace:

<beans: beans xm ns="http://wmv springfranmewor k. org/ schema/ i ntegration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="htt p: //ww. spri ngfranewor k. or g/ schena/ beans"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schenma/ beans
http://ww. springframework. or g/ scherma/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ scherma/ i nt egrati on
http://ww. spri ngfranmewor k. org/ schema/ i ntegration/spring-integration-2.0.xsd">

When using thisalternative, no prefix isnecessary for the Spring | ntegration elements. On the other hand,
if you want to define a generic Spring "bean" within the same configuration file, then a prefix would
be required for the bean element (<beans:bean ... />). Sinceit is generally a good idea to modularize
the configuration files themselves based on responsibility and/or architectural layer, you may find it
appropriate to use the latter approach in the integration-focused configuration files, since generic beans

Spring Integration
2.1.0.M2 Reference Manual 233

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

are seldom necessary within those same files. For purposes of this documentation, we will assume the
"integration" namespace is primary.

Many other namespaces are provided within the Spring Integration distribution. In fact, each adapter
type (IMS, File, etc.) that provides namespace support defines its elements within a separate schema.
In order to use these elements, simply add the necessary namespaces with an "xmins" entry and the
corresponding "schemal ocation" mapping. For example, the following root element shows severa of
these namespace declarations:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns:int="http://ww.springframework. org/schema/integration”
xmns:int-file="http://ww. springframework. org/schema/integration/file"
xm ns:int-jms="http://ww.springframework. org/schema/integration/jns"
xm ns:int-mail ="http://ww.springfranework. org/schema/integration/mail"
xmns:int-rm ="http://ww. springfranmework. org/schema/integration/rm"
xm ns:int-ws="http://ww.springfranework. org/schema/integration/ws"

xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. or g/ scherma/ i nt egrati on
http://ww. springframework. org/ schema/i ntegration/spring-integration-2.0.xsd
http://ww. springfranmework. org/schema/integration/file
http://ww. springframework. org/ schema/integration/file/spring-integration-file-2.0.xsd
http://ww. springframework. org/ schema/integration/jns
http://ww. springfranmework. org/ schema/integration/jmns/spring-integration-jmnms-2.0.xsd
http://ww. springframework. org/ schema/i ntegration/ mail
http://ww. springframework. org/ schema/integrati on/mail/spring-integration-mail-2.0.xsd
http://ww. springfranmework. org/ schema/integration/rm
http://ww. springframework. org/ schema/integration/rmi/spring-integration-rm-2.0.xsd
http://ww. springframework. org/ schema/i ntegration/ws
http://ww. springfranmework. org/ schema/ i ntegration/ws/spring-integration-ws-2.0.xsd">

</ beans>

The reference manual provides specific examples of the various elements in their corresponding
chapters. Here, the main thing to recognize is the consistency of the naming for each namespace URI
and schema location.

B.3 Configuring the Task Scheduler

In Spring Integration, the ApplicationContext playsthe central role of aMessage Bus, and thereareonly
a couple configuration options to consider. First, you may want to control the central TaskScheduler
instance. Y ou can do so by providing a single bean with the name "taskScheduler”. Thisis also defined
as a constant:

I nt egrat i onCont ext Uti | s. TASK_SCHEDULER BEAN NAME

By default Spring Integration relies on an instance of ThreadPool TaskScheduler as described in
the Task Execution and Scheduling [http://static.springsource.org/spring/docs/3.0.x/spring-framework-
reference/html/scheduling.html] section of the Spring Framework reference manual. That default
TaskScheduler will startup automaticaly with a pool of 10 threads. If you provide your own
TaskScheduler instance instead, you can set the "autoStartup' property to false, and/or you can provide
your own pool size value.

Spring Integration
2.1.0.M2 Reference Manual 234

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html

Spring Integration

When Polling Consumers provide an explicit task-executor reference in their configuration, the
invocation of the handler methods will happen within that executor's thread pool and not the main
scheduler pool. However, when no task-executor is provided for an endpoint's poller, it will be invoked
by one of the main scheduler's threads.

Note

An endpoint isaPolling Consumer if itsinput channel isone of the queue-based (i.e. pollable)
channels. On the other hand, Event Driven Consumers are those whose input channels have
dispatchers instead of queues (i.e. they are subscribable). Such endpoints have no poller
configuration since their handlers will be invoked directly.

The next section will describe what happens if Exceptions occur within the asynchronous invocations.

B.4 Error Handling

Asdescribed in the overview at the very beginning of this manual, one of the main motivations behind a
Message-oriented framework like Spring I ntegration isto promote | oose-coupling between components.
The Message Channel plays an important role in that producers and consumers do not have to know
about each other. However, the advantages also have some drawbacks. Some things become more
complicated in avery loosely coupled environment, and one example is error handling.

When sending a M essage to a channel, the component that ultimately handles that M essage may or may
not be operating within the same thread as the sender. If using a simple default DirectChannel (with
the <channel> element that has no <queue> sub-element and no ‘task-executor' attribute), the M essage-
handling will occur in the same thread asthe Message-sending. In that case, if an Exception isthrown, it
can be caught by the sender (or it may propagate past the sender if it isan uncaught RuntimeException).
So far, everything is fine. This is the same behavior as an Exception-throwing operation in a normal
call stack. However, when adding the asynchronous aspect, things become much more complicated. For
instance, if the ‘channel’ element does provide a 'queue’ sub-element, then the component that handles
the Message will be operating in a different thread than the sender. The sender may have dropped the
Message into the channel and moved on to other things. Thereis no way for the Exception to be thrown
directly back to that sender using standard Exception throwing techniques. Instead, to handle errors for
asynchronous processes requires an asynchronous error-handling mechanism as well.

Spring Integration supports error handling for its components by publishing errors to a Message
Channel. Specifically, the Exception will become the payload of a Spring Integration Message.
That Message will then be sent to a Message Channd that is resolved in a way that is similar
to the 'replyChannel’ resolution. First, if the request Message being handled at the time the
Exception occurred contains an 'errorChannel’ header (the header name is defined in the constant:
MessageHeaders. ERROR_CHANNEL), the ErrorMessage will be sent to that channel. Otherwise, the
error handler will send to a"global” channel whose bean name is "errorChannel” (thisis also defined
as a constant: IntegrationContextUtilsERROR_CHANNEL_BEAN_NAME).

Whenever relying on Spring Integration's XML namespace support, a default "errorChannel” bean will
be created behind the scenes. However, you can just as easily define your own if you want to control
the settings.

Spring Integration
2.1.0.M2 Reference Manual 235

Spring Integration

<int:channel id="errorChannel ">
<i nt:queue capacity="500"/>
</i nt:channel >

Note
The default "errorChannel” is a PublishSubscribeChannel.

The most important thing to understand here is that the messaging-based error handling will only apply
to Exceptionsthat are thrown by a Spring Integration task that is executing within a TaskExecutor. This
does not apply to Exceptions thrown by a handler that is operating within the same thread as the sender
(e.g. through a DirectChannel as described above).

Note

When Exceptions occur in a scheduled poller task's execution, those exceptions will be
wrapped in Er r or Messages and sent to the 'errorChannel’ as well.

To enable global error handling, simply register a handler on that channel. For example, you can
configure Spring Integration's Er r or MessageExcept i onTypeRout er as the handler of an
endpoint that is subscribed to the 'errorChannel’. That router can then spread the error messages across
multiple channels based on Except i on type.

B.5 Annotation Support

In addition to the XML namespace support for configuring M essage Endpoints, it isalso possibleto use
annotations. First, Spring Integration provides the class-level @/essageEndpoi nt as a stereotype
annotation, meaning that it isitself annotated with Spring's @onponent annotation and is therefore
recognized automatically as a bean definition when using Spring component-scanning.

Even more important are the various method-level annotations that indicate the annotated method is
capable of handling a message. The following example demonstrates both:

@kessageEndpoi nt
public class FooService {

@ser vi ceAct i vat or
public void processMessage(Message nmessage) {

}
}

Exactly what it means for the method to "handle" the Message depends on the particular annotation.
The following annotations are available in Spring Integration:

* @Aggregator

@Channel Adapter

@Filter

@Router

* @ServiceActivator

Spring Integration
2.1.0.M2 Reference Manual 236

Spring Integration

o @Splitter
* @Transformer

The behavior of each is described in its own chapter or section within this reference.

Note

If you are using XML configuration in combination with annotations, the
@/kssageEndpoi nt annotationis not required. If you want to configure a POJO reference
fromthe"ref" attribute of a<service-activator/> element, it is sufficient to provide the method-
level annotations. In that case, the annotation prevents ambiguity even when no "method"
attribute exists on the <service-activator/> element.

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message's payload type.

public class FooService {

@ver vi ceAct i vat or
public void bar(Foo foo) {

}

When the method parameter should be mapped from avalueinthe MessageHeader s, another option
is to use the parameter-level @Header annotation. In general, methods annotated with the Spring
Integration annotations can either accept the Message itself, the message payload, or a header value
(with @Header) as the parameter. In fact, the method can accept a combination, such as:

public class FooService {

@er vi ceActi vat or
public void bar(String payl oad, @iader("x") int valueX @dader("y") int valueY) {

}

}
Thereis also a @Headers annotation that provides all of the Message headers as a Map:

public class FooService {

@ser vi ceAct i vat or
public void bar(String payl oad, @eaders Map<String, bject> headerMap) {

}

Note
The value of the annotation can also be a SpEL expression (e.g., 'payload.getCustomerld()")
which is quite useful when the name of the header has to be dynamically computed. It also

Spring Integration
2.1.0.M2 Reference Manual 237

Spring Integration

provides an optional 'required’ property which specifies whether the attribute value must be
available within the header. The default value for 'required' ist r ue.

For several of these annotations, when a Message-handling method returns a non-null value, the
endpoint will attempt to send areply. Thisis consistent across both configuration options (namespace
and annotations) in that such an endpoint's output channel will be used if available, and the
REPLY_CHANNEL message header value will be used as a fallback.

Tip

The combination of output channels on endpoints and the reply channel message header
enabl es a pipeline approach where multiple components have an output channel, and the final
component simply allowsthereply messageto beforwarded to thereply channel as specifiedin
the original request message. In other words, the final component depends on the information
provided by the original sender and can dynamically support any number of clients asaresult.
Thisis an example of Return Address [http://eai patterns.com/ReturnAddress.html].

In addition to the examples shown here, these annotations al so support inputChannel and outputChannel
properties.

public class FooService {

@ber vi ceActi vat or (i nput Channel ="i nput”, out put Channel =" out put")
public void bar(String payl oad, @eaders Map<String, bject> headerMap) {

}

}

That provides a pure annotation-driven aternative to the XML configuration. However, it is generally
recommended to use XML for theendpoints, sinceit iseasier to keep track of theoverall configurationin
asingle, external location (and besides the namespace-based XML configuration isnot very verbose). If
you do prefer to provide channel swith the annotations however, you just need to enablea Sl Annotations
BeanPostProcessor. The following element should be added:

<i nt:annotation-config/>

Note

When configuring the "inputChannel” and "outputChannel" with annotations, the
"inputChannel” must be a reference to a Subscri babl eChannel instance. Otherwise, it
would be necessary to also provide the full poller configuration via annotations, and those
settings (e.g. the trigger for scheduling the poller) should be externalized rather than hard-
coded within an annotation. If the input channel that you want to receive Messages from
isindeed a Pol | abl eChannel instance, one option to consider is the Messaging Bridge.
Spring Integration's "bridge" element can be used to connect a PollableChannel directly to a
SubscribableChannel. Then, the polling metadata is externally configured, but the annotation
option is still available. For more detail see Section 3.3, “Messaging Bridge”.

Spring Integration
2.1.0.M2 Reference Manual 238

http://eaipatterns.com/ReturnAddress.html
http://eaipatterns.com/ReturnAddress.html

Spring Integration

B.6 Message Mapping rules and conventions

Spring Integration implements a flexible facility to map Messages to Methods and their arguments
without providing extra configuration by relying on some default rules as well as defining certain
conventions.

Simple Scenarios

Sngleun-annotated parameter (object or primitive) whichisnot a Map/Propertieswith non-void return
type;

public String foo(Object o0);
Details:

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an
attempt will be made to convert it using Conversion Service provided by Spring 3.0. The return value
will be incorporated as a Payload of the returned Message

Sngle un-annotated parameter (object or primitive) which isnot a Map/Propertieswith Messagereturn
type;

public Message foo(Object 0);

Details;

Input parameter is Message Payload. If parameter type is not compatible with Message Payload an
attempt will be made to convert it using Conversion Service provided by Spring 3.0. The return value
isanewly constructed Message that will be sent to the next destination.

Sngle parameter which is a Message or its subclass with arbitrary object/primitive return type;

public int foo(Message nsgQ);

Details;

Input parameter is Message itself. The return value will become a payload of the Message that will be
sent to the next destination.

Sngle parameter which is a Message or its subclass with Message or its subclass as a return type;

public Message foo(Message nsg);

Details:

Input parameter is Message itself. The return value is a newly constructed Message that will be sent
to the next destination.

Sngle parameter which is of type Map or Properties with Message as a return type;

public Message foo(Map nm);

Spring Integration
2.1.0.M2 Reference Manual 239

Spring Integration

Details:

This one is abit interesting. Although at first it might seem like an easy mapping straight to Message
Headers, the preference is always given to a Message Payload. This means that if Message Payload is
of type Map, thisinput argument will represent Message Payload. However if Message Payload is not
of type Map, then no conversion via Conversion Service will be attempted and the input argument will
be mapped to Message Headers.

Two parameters where one of them is arbitrary non-Map/Properties type object/primitive and another
is Map/Properties type object (regardless of the return)

public Message foo(Map h, <T> t);

Details;

This combination contains two input parameters where one of them is of type Map. Naturally the non-
Map parameters (regardless of the order) will be mapped to a M essage Payload and the Map/Properties
(regardless of the order) will be mapped to Message Headers giving you anice POJO way of interacting
with Message structure.

No parameters (regardless of the return)

public String foo();

Details;

This Message Handler method will be invoked based on the Message sent to the input channel this
handler is hooked up to, however no Message data will be mapped, thus making Message act as event/
trigger to invoke such handlerThe output will be mapped according to the rules above

No parameters, void return

public void foo();

Details:
Same as above, but no output
Annotation based mappings

Annotation based mapping is the safest and least ambiguous approach to map Messages to Methods.
There wil be many pointers to annotation based mapping throughout this manual, however here are
couple of examples:

public String foo(@ayl oad String s, @deader("foo") String b)

Very simple and explicit way of mapping Messages to method. As you'll see later on, without an
annotation this signature would result in an ambiguous condition. However by explicitly mapping the
first argument to a Message Payload and the second argument to a value of the 'foo' Message Header,
we have avoided any ambiguity.

Spring Integration
2.1.0.M2 Reference Manual 240

Spring Integration

public String foo(@ayl oad String s, @equestParanm("foo") String b)

Looks almost identical to the previous example, however @RequestM apping or any other non-Spring
Integration mapping annotation isirrelevant and therefore will be ignored leaving the second parameter
unmapped. Although the second parameter could easily be mapped to a Payload, there can only be one
Payload. Therefore this method mapping is ambiguous.

public String foo(String s, @eader("foo") String b)

The sameasabove. Theonly differenceisthat thefirst argument will be mapped to the M essage Payload
implicitly.

public String foo(@aders Map m @Header("foo")Nap f, @Header("bar") String bar)

Y et another signature that would definitely be treated as ambiguous without annotations because it has
more than 2 arguments. Furthermore, two of them are Maps. However, with annotation-based mapping,
theambiguity iseasily avoided. In thisexamplethefirst argument is mapped to all the M essage Headers,
while the second and third argument map to the values of Message Headers 'foo' and 'bar'. The payload
is not being mapped to any argument.

Complex Scenarios
Multiple parameters.

Multiple parameters could create a lot of ambiguity with regards to determining the appropriate
mappings. The general adviceisto annotate your method parameters with @Payload and/or @Header/
@Headers Below are some of the examples of ambiguous conditionswhich result in an Exception being
raised.

public String foo(String s, int i)

- the two parameters are equal in weight, therefore there is no way to determine which one is a payload.

public String foo(String s, Map m String b)

- amost the same as above. Although the Map could be easily mapped to M essage Headers, thereis no
way to determine what to do with the two Strings.

public String foo(Map m Map f)

- athough one might argue that one Map could be mapped to Message Payload and another one to
M essage Headers, it would be unreasonable to rely on the order (e.g., first is Payload, second Headers)

Tip

Basically any method signature with more than one method argument whichisnot (Map, <T>),
and those parameters are not annotated, will result in an ambiguous condition thus triggering
an Exception.

Multiple methods:

Spring Integration
2.1.0.M2 Reference Manual 241

Spring Integration

M essage Handlers with multiple methods are mapped based on the same rules that are described above,
however some scenarios might still look confusing.

Multiple methods (same or different name) with legal (mappable) signatures:

public class Foo {
public String foo(String str, Map m;

public String foo(Map m;
}

As you can see, the Message could be mapped to either method. The first method would be invoked
where Message Payload could be mapped to 'str' and Message Headers could be mapped to 'm'. The
second method could easily also be acandidate where only Message Headers are mapped to 'm'. To make
meters worse both methods have the same name which at first might look very ambiguous considering
the following configuration:

<int:service-activator input-channel ="input" output-channel ="output" method="foo0">
<bean cl ass="org. bar. Foo"/ >
</int:service-activator>

At this point it would be important to understand Spring I ntegration mapping Conventions where at the
very core, mappings are based on Payload first and everything else next. In other words the method
whose argument could be mapped to a Payload will take precedence over al other methods.

On the other hand let'slook at dlightly different example:

public class Foo {
public String foo(String str, Map m;

public String foo(String str);
}

If you look at it you can probably see a truly ambiguous condition. In this example since both methods
have signatures that could be mapped to a Message Payload. They also have the same name. Such
handler methods will trigger an Exception. However if the method names were different you could
influence the mapping with a 'method" attribute (see below):

public class Foo {
public String foo(String str, Map m;

public String bar(String str);
}

<int:service-activator input-channel="input" output-channel ="out put" nethod="bar">
<bean cl ass="org. bar. Foo"/ >
</int:service-activator>

Now there is no ambiguity since the configuration explicitly maps to the 'bar' method which has no
name conflicts.

Spring Integration
2.1.0.M2 Reference Manual 242

Spring Integration

Appendix C. Additional Resources

C.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home [http://
WWW.Springsource.org/spring-integration] at http://www.springsource.org. That site serves as a hub of
information and is the best place to find up-to-date announcements about the project as well aslinks to
articles, blogs, and new sample applications.

Spring Integration
2.1.0.M2 Reference Manual 243

http://www.springsource.org/spring-integration
http://www.springsource.org/spring-integration
http://www.springsource.org/spring-integration
http://www.springsource.org

