16. GemFire Support

Spring Integration provides support for VMWare vFabric GemFire

16.1 Introduction

VMWare vFabric GemFire (GemFire) is a distributed data management platform providing a key-value data grid along with advanced distributed system features such as event processing, continuous querying, and remote function execution. This guide assumes some familiarity with GemFire and its API.

Spring integration provides support for GemFire by providing inbound adapters for entry and continuous query events, an outbound adapter to write entries to the cache, and MessageStore and MessageGroupStore implementations. Spring integration leverages thehttp://www.springsource.org/spring-gemfire[Spring Gemfire] project, providing a thin wrapper over its components.

To configure the int-gfe namespace, include the following elements within the headers of your XML configuration file:


16.2 Inbound Channel Adapter

The inbound-channel-adapter produces messages on a channel triggered by a GemFire EntryEvent. GemFire generates events whenever an entry is CREATED, UPDATED, DESTROYED, or INVALIDATED in the associated region. The inbound channel adapter allows you to filter on a subset of these events. For example, you may want to only produce messages in response to an entry being CREATED. In addition, the inbound channel adapter can evaluate a SpEL expression if, for example, you want your message payload to contain an event property such as the new entry value.

<gfe:replicated-region id="region"/>
<int-gfe:inbound-channel-adapter id="inputChannel" region="region"
    cache-events="CREATED" expression="newValue"/>

In the above configuration, we are creating a GemFire Cache and Region using Spring GemFire’s gfe namespace. The inbound-channel-adapter requires a reference to the GemFire region for which the adapter will be listening for events. Optional attributes include cache-events which can contain a comma separated list of event types for which a message will be produced on the input channel. By default CREATED and UPDATED are enabled. Note that this adapter conforms to Spring integration conventions. If no channel attribute is provided, the channel will be created from the id attribute. This adapter also supports an error-channel. The GemFire EntryEvent is the #root object of the expression evaluation. Example:

expression="new foo.MyEvent(key, oldValue, newValue)"

If the expression attribute is not provided, the message payload will be the GemFire EntryEvent itself.

16.3 Continuous Query Inbound Channel Adapter

The cq-inbound-channel-adapter produces messages a channel triggered by a GemFire continuous query or CqEvent event. Spring GemFire introduced continuous query support in release 1.1, including a ContinuousQueryListenerContainer which provides a nice abstraction over the GemFire native API. This adapter requires a reference to a ContinuousQueryListenerContainer, and creates a listener for a given query and executes the query. The continuous query acts as an event source that will fire whenever its result set changes state.


GemFire queries are written in OQL and are scoped to the entire cache (not just one region). Additionally, continuous queries require a remote (i.e., running in a separate process or remote host) cache server. Please consult the GemFire documentation for more information on implementing continuous queries.

<gfe:client-cache id="client-cache" pool-name="client-pool"/>

<gfe:pool id="client-pool" subscription-enabled="true" >
    <!--configure server or locator here required to address the cache server -->

<gfe:client-region id="test" cache-ref="client-cache" pool-name="client-pool"/>

<gfe:cq-listener-container id="queryListenerContainer" cache="client-cache"

<int-gfe:cq-inbound-channel-adapter id="inputChannel"
    query="select * from /test"/>

In the above configuration, we are creating a GemFire client cache (recall a remote cache server is required for this implementation and its address is configured as a sub-element of the pool), a client region and a ContinuousQueryListenerContainer using Spring GemFire. The continuous query inbound channel adapter requires a cq-listener-container attribute which contains a reference to the ContinuousQueryListenerContainer. Optionally, it accepts an expression attribute which uses SpEL to transform the CqEvent or extract an individual property as needed. The cq-inbound-channel-adapter provides a query-events attribute, containing a comma separated list of event types for which a message will be produced on the input channel. Available event types are CREATED, UPDATED, DESTROYED, REGION_DESTROYED, REGION_INVALIDATED. CREATED and UPDATED are enabled by default. Additional optional attributes include, query-name which provides an optional query name, and expression which works as described in the above section, and durable - a boolean value indicating if the query is durable (false by default). Note that this adapter conforms to Spring integration conventions. If no channel attribute is provided, the channel will be created from the id attribute. This adapter also supports an error-channel

16.4 Outbound Channel Adapter

The outbound-channel-adapter writes cache entries mapped from the message payload. In its simplest form, it expects a payload of type java.util.Map and puts the map entries into its configured region.

<int-gfe:outbound-channel-adapter id="cacheChannel" region="region"/>

Given the above configuration, an exception will be thrown if the payload is not a Map. Additionally, the outbound channel adapter can be configured to create a map of cache entries using SpEL of course.

<int-gfe:outbound-channel-adapter id="cacheChannel" region="region">
        <entry key="payload.toUpperCase()" value="payload.toLowerCase()"/>
        <entry key="'foo'" value="'bar'"/>

In the above configuration, the inner element cache-entries is semantically equivalent to Spring map element. The adapter interprets the key and value attributes as SpEL expressions with the message as the evaluation context. Note that this contain arbitrary cache entries (not only those derived from the message) and that literal values must be enclosed in single quotes. In the above example, if the message sent to cacheChannel has a String payload with a value "Hello", two entries [HELLO:hello, foo:bar] will be written (created or updated) in the cache region. This adapter also supports the order attribute which may be useful if it is bound to a PublishSubscribeChannel.

16.5 Gemfire Message Store

As described in EIP, a Message Store allows you to persist Messages. This can be very useful when dealing with components that have a capability to buffer messages (QueueChannel, Aggregator, Resequencer, etc.) if reliability is a concern. In Spring Integration, the MessageStore strategy also provides the foundation for thehttp://www.eaipatterns.com/StoreInLibrary.html[ClaimCheck] pattern, which is described in EIP as well.

Spring Integration’s Gemfire module provides the GemfireMessageStore which is an implementation of both the the MessageStore strategy (mainly used by the QueueChannel and ClaimCheck patterns) and the MessageGroupStore strategy (mainly used by the Aggregator and Resequencer patterns).

<bean id="gemfireMessageStore" class="o.s.i.gemfire.store.GemfireMessageStore">
    <constructor-arg ref="myCache"/>

<bean id="myCache" class="org.springframework.data.gemfire.CacheFactoryBean"/>

<int:channel id="somePersistentQueueChannel">
    <int:queue message-store="gemfireMessageStore"/>

<int:aggregator input-channel="inputChannel" output-channel="outputChannel"

Above is a sample GemfireMessageStore configuration that shows its usage by a QueueChannel and an Aggregator. As you can see it is a normal Spring bean configuration. The simplest configuration requires a reference to a GemFireCache (created by CacheFactoryBean) as a constructor argument. If the cache is standalone, i.e., embedded in the same JVM, the MessageStore will create a message store region named "messageStoreRegion". If your application requires customization of the messageStore region, for example, multiple Gemfire message stores each with its own region, you can configure a region for each message store instance and use the Region as the constructor argument:

<bean id="gemfireMessageStore" class="o.s.i.gemfire.store.GemfireMessageStore">
    <constructor-arg ref="myRegion"/>


<gfe:replicated-region id="myRegion"/>

In the above examle, the cache and region are configured using the spring-gemfire namespace (not to be confused with the spring-integration-gemfire namespace). Often it is desirable for the message store to be maintained in one or more remote cache servers in a client-server configuration (See the GemFire product documentation for more details). In this case, you configure a client cache, client region, and client pool and inject the region into the MessageStore. Here is an example:

<bean id="gemfireMessageStore"
    <constructor-arg ref="myRegion"/>


<gfe:client-region id="myRegion" shortcut="PROXY" pool-name="messageStorePool"/>

<gfe:pool id="messageStorePool">
    <gfe:server host="localhost" port="40404" />

Note the pool element is configured with the address of a cache server (a locator may be substituted here). The region is configured as a PROXY so that no data will be stored locally. The region’s id corresponds to a region with the same name configured in the cache server.

16.6 Gemfire Lock Registry

Starting with version 4.0, the GemfireLockRegistry is available. Certain components (for example aggregator and resequencer) use a lock obtained from a LockRegistry instance to ensure that only one thread is manipulating a group at a time. The DefaultLockRegistry performs this function within a single component; you can now configure an external lock registry on these components. When used with a shared MessageGroupStore, the GemfireLockRegistry can be use to provide this functionality across multiple application instances, such that only one instance can manipulate the group at a time.


One of the GemfireLockRegistry constructors requires a Region as an argument; it is used to obtain a Lock via the getDistributedLock() method. This operation requires GLOBAL scope for the Region. Another constructor requires Cache and the Region will be created with GLOBAL scope and with the name LockRegistry.

16.7 Gemfire Metadata Store

As of Spring Integration 4.0, a new Gemfire-based MetadataStore (Section 9.5, “Metadata Store”) implementation is available. The GemfireMetadataStore can be used to maintain metadata state across application restarts. This new MetadataStore implementation can be used with adapters such as:

In order to instruct these adapters to use the new GemfireMetadataStore, simply declare a Spring bean using the bean name metadataStore. The Twitter Inbound Channel Adapter and the Feed Inbound Channel Adapter will both automatically pick up and use the declared GemfireMetadataStore.


The GemfireMetadataStore also implements ConcurrentMetadataStore, allowing it to be reliably shared across multiple application instances where only one instance will be allowed to store or modify a key’s value. These methods give various levels of concurrency guarantees based on the scope and data policy of the region. They are implemented in the peer cache and client/server cache but are disallowed in peer Regions having NORMAL or EMPTY data policies.