2.0.0.M2
Copyright © 2016-2017 Pivotal Software Inc.
Table of Contents
The Spring for Apache Kafka project applies core Spring concepts to the development of Kafka-based messaging solutions. We provide a "template" as a high-level abstraction for sending messages. We also provide support for Message-driven POJOs.
KafkaTemplate
now supports API to add records with timestamps.
New KafkaHeaders
have been introduced regarding timestamp
support.
Also new KafkaConditions.timestamp()
and KafkaMatchers.hasTimestamp()
testing utilities have been added.
See the section called “KafkaTemplate”, the section called “@KafkaListener Annotation” and Section 4.3, “Testing Applications” for more details.
You can now configure a KafkaListenerErrorHandler
to handle exceptions.
See Section 4.1.5, “Handling Exceptions” for more information.
You can now annotate @KafkaListener
methods (and classes, and @KafkaHandler
methods) with @SendTo
.
If the method returns a result, it is forwarded to the specified topic.
See the section called “Forwarding Listener Results using @SendTo” for more information.
Message listeners can now be aware of the Consumer
object.
See the section called “Message Listeners” for more information.
Rebalance listeners can now access the Consumer
object during rebalance notifications.
See the section called “Rebalance Listeners” for more information.
For convenience a test class level @EmbeddedKafka
annotation is provided with the purpose to register KafkaEmbedded
as a bean.
See Section 4.3, “Testing Applications” for more information.
Support for configuring Kerberos is now provided. See Section 4.1.6, “Kerberos” for more information.
This first part of the reference documentation is a high-level overview of Spring for Apache Kafka and the underlying concepts and some code snippets that will get you up and running as quickly as possible.
This is the 5 minute tour to get started with Spring Kafka.
Prerequisites: install and run Apache Kafka Then grab the spring-kafka JAR and all of its dependencies - the easiest way to do that is to declare a dependency in your build tool, e.g. for Maven:
<dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> <version>2.0.0.M2</version> </dependency>
And for Gradle:
compile 'org.springframework.kafka:spring-kafka:2.0.0.M2'
Using plain Java to send and receive a message:
@Test public void testAutoCommit() throws Exception { logger.info("Start auto"); ContainerProperties containerProps = new ContainerProperties("topic1", "topic2"); final CountDownLatch latch = new CountDownLatch(4); containerProps.setMessageListener(new MessageListener<Integer, String>() { @Override public void onMessage(ConsumerRecord<Integer, String> message) { logger.info("received: " + message); latch.countDown(); } }); KafkaMessageListenerContainer<Integer, String> container = createContainer(containerProps); container.setBeanName("testAuto"); container.start(); Thread.sleep(1000); // wait a bit for the container to start KafkaTemplate<Integer, String> template = createTemplate(); template.setDefaultTopic(topic1); template.sendDefault(0, "foo"); template.sendDefault(2, "bar"); template.sendDefault(0, "baz"); template.sendDefault(2, "qux"); template.flush(); assertTrue(latch.await(60, TimeUnit.SECONDS)); container.stop(); logger.info("Stop auto"); }
private KafkaMessageListenerContainer<Integer, String> createContainer( ContainerProperties containerProps) { Map<String, Object> props = consumerProps(); DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<Integer, String>(props); KafkaMessageListenerContainer<Integer, String> container = new KafkaMessageListenerContainer<>(cf, containerProps); return container; } private KafkaTemplate<Integer, String> createTemplate() { Map<String, Object> senderProps = senderProps(); ProducerFactory<Integer, String> pf = new DefaultKafkaProducerFactory<Integer, String>(senderProps); KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf); return template; } private Map<String, Object> consumerProps() { Map<String, Object> props = new HashMap<>(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); props.put(ConsumerConfig.GROUP_ID_CONFIG, group); props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true); props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100"); props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000"); props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); return props; } private Map<String, Object> senderProps() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); props.put(ProducerConfig.RETRIES_CONFIG, 0); props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384); props.put(ProducerConfig.LINGER_MS_CONFIG, 1); props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class); return props; }
A similar example but with Spring configuration in Java:
@Autowired private Listener listener; @Autowired private KafkaTemplate<Integer, String> template; @Test public void testSimple() throws Exception { template.send("annotated1", 0, "foo"); template.flush(); assertTrue(this.listener.latch1.await(10, TimeUnit.SECONDS)); } @Configuration @EnableKafka public class Config { @Bean ConcurrentKafkaListenerContainerFactory<Integer, String> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); return factory; } @Bean public ConsumerFactory<Integer, String> consumerFactory() { return new DefaultKafkaConsumerFactory<>(consumerConfigs()); } @Bean public Map<String, Object> consumerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString()); ... return props; } @Bean public Listener listener() { return new Listener(); } @Bean public ProducerFactory<Integer, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } @Bean public Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString()); ... return props; } @Bean public KafkaTemplate<Integer, String> kafkaTemplate() { return new KafkaTemplate<Integer, String>(producerFactory()); } }
public class Listener { private final CountDownLatch latch1 = new CountDownLatch(1); @KafkaListener(id = "foo", topics = "annotated1") public void listen1(String foo) { this.latch1.countDown(); } }
The following Spring Boot application sends 3 messages to a topic, receives them, and stops.
Application.
@SpringBootApplication public class Application implements CommandLineRunner { public static Logger logger = LoggerFactory.getLogger(Application.class); public static void main(String[] args) { SpringApplication.run(Application.class, args).close(); } @Autowired private KafkaTemplate<String, String> template; private final CountDownLatch latch = new CountDownLatch(3); @Override public void run(String... args) throws Exception { this.template.send("myTopic", "foo1"); this.template.send("myTopic", "foo2"); this.template.send("myTopic", "foo3"); latch.await(60, TimeUnit.SECONDS); logger.info("All received"); } @KafkaListener(topics = "myTopic") public void listen(ConsumerRecord<?, ?> cr) throws Exception { logger.info(cr.toString()); latch.countDown(); } }
Boot takes care of most of the configuration; when using a local broker, the only properties we need are:
application.properties.
spring.kafka.consumer.group-id=foo spring.kafka.consumer.auto-offset-reset=earliest
The first because we are using group management to assign topic partitions to consumers so we need a group, the second to ensure the new consumer group will get the messages we just sent, because the container might start after the sends have completed.
This part of the reference documentation details the various components that comprise Spring for Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.
The KafkaTemplate
wraps a producer and provides convenience methods to send data to kafka topics.
Both asynchronous and synchronous methods are provided, with the async methods returning a Future
.
ListenableFuture<SendResult<K, V>> sendDefault(V data); ListenableFuture<SendResult<K, V>> sendDefault(K key, V data); ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, K key, V data); ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, Long timestamp, K key, V data); ListenableFuture<SendResult<K, V>> send(String topic, V data); ListenableFuture<SendResult<K, V>> send(String topic, K key, V data); ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, K key, V data); ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, Long timestamp, K key, V data); ListenableFuture<SendResult<K, V>> send(Message<?> message); Map<MetricName, ? extends Metric> metrics(); List<PartitionInfo> partitionsFor(String topic); <T> T execute(ProducerCallback<K, V, T> callback); // Flush the producer. void flush(); interface ProducerCallback<K, V, T> { T doInKafka(Producer<K, V> producer); }
The sendDefault
API requires that a default topic has been provided to the template.
The API which take in a timestamp
as a parameter will store this timestamp in the record.
The behavior of the user provided timestamp is stored is dependent on the timestamp type configured on the Kafka topic.
If the topic is configured to use CREATE_TIME
then the user specified timestamp will be recorded or generated if not specified.
If the topic is configured to use LOG_APPEND_TIME
then the user specified timestamp will be ignored and broker will add in the local broker time.
The metrics
and partitionsFor
methods simply delegate to the same methods on the underlying Producer
.
The execute
method provides direct access to the underlying Producer
.
To use the template, configure a producer factory and provide it in the template’s constructor:
@Bean public ProducerFactory<Integer, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } @Bean public Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); ... return props; } @Bean public KafkaTemplate<Integer, String> kafkaTemplate() { return new KafkaTemplate<Integer, String>(producerFactory()); }
The template can also be configured using standard <bean/>
definitions.
Then, to use the template, simply invoke one of its methods.
When using the methods with a Message<?>
parameter, topic, partition and key information is provided in a message
header:
KafkaHeaders.TOPIC
KafkaHeaders.PARTITION_ID
KafkaHeaders.MESSAGE_KEY
KafkaHeaders.TIMESTAMP
with the message payload being the data.
Optionally, you can configure the KafkaTemplate
with a ProducerListener
to get an async callback with the
results of the send (success or failure) instead of waiting for the Future
to complete.
public interface ProducerListener<K, V> { void onSuccess(String topic, Integer partition, K key, V value, RecordMetadata recordMetadata); void onError(String topic, Integer partition, K key, V value, Exception exception); boolean isInterestedInSuccess(); }
By default, the template is configured with a LoggingProducerListener
which logs errors and does nothing when the
send is successful.
onSuccess
is only called if isInterestedInSuccess
returns true
.
For convenience, the abstract ProducerListenerAdapter
is provided in case you only want to implement one of the
methods.
It returns false
for isInterestedInSuccess
.
Notice that the send methods return a ListenableFuture<SendResult>
.
You can register a callback with the listener to receive the result of the send asynchronously.
ListenableFuture<SendResult<Integer, String>> future = template.send("foo"); future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() { @Override public void onSuccess(SendResult<Integer, String> result) { ... } @Override public void onFailure(Throwable ex) { ... } });
The SendResult
has two properties, a ProducerRecord
and RecordMetadata
; refer to the Kafka API documentation
for information about those objects.
If you wish to block the sending thread, to await the result, you can invoke the future’s get()
method.
You may wish to invoke flush()
before waiting or, for convenience, the template has a constructor with an autoFlush
parameter which will cause the template to flush()
on each send.
Note, however that flushing will likely significantly reduce performance.
Messages can be received by configuring a MessageListenerContainer
and providing a Message Listener, or by
using the @KafkaListener
annotation.
When using a Message Listener Container you must provide a listener to receive data. There are currently eight supported interfaces for message listeners:
public interface MessageListener<K, V> { void onMessage(ConsumerRecord<K, V> data); } public interface AcknowledgingMessageListener<K, V> { void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment); } public interface ConsumerAwareMessageListener<K, V> extends MessageListener<K, V> { void onMessage(ConsumerRecord<K, V> data, Consumer<?, ?> consumer); } public interface AcknowledgingConsumerAwareMessageListener<K, V> extends MessageListener<K, V> { void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment, Consumer<?, ?> consumer); } public interface BatchMessageListener<K, V> { void onMessage(List<ConsumerRecord<K, V>> data); } public interface BatchAcknowledgingMessageListener<K, V> { void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment); } public interface BatchConsumerAwareMessageListener<K, V> extends BatchMessageListener<K, V> { void onMessage(List<ConsumerRecord<K, V>> data, Consumer<?, ?> consumer); } public interface BatchAcknowledgingConsumerAwareMessageListener<K, V> extends BatchMessageListener<K, V> { void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment, Consumer<?, ?> consumer); }
Use this for processing individual | |
Use this for processing individual | |
Use this for processing individual | |
Use this for processing individual | |
Use this for processing all | |
Use this for processing all | |
Use this for processing all | |
Use this for processing all |
Important | |
---|---|
The |
Two MessageListenerContainer
implementations are provided:
KafkaMessageListenerContainer
ConcurrentMessageListenerContainer
The KafkaMessageListenerContainer
receives all message from all topics/partitions on a single thread.
The ConcurrentMessageListenerContainer
delegates to 1 or more KafkaMessageListenerContainer
s to provide
multi-threaded consumption.
The following constructors are available.
public KafkaMessageListenerContainer(ConsumerFactory<K, V> consumerFactory, ContainerProperties containerProperties) public KafkaMessageListenerContainer(ConsumerFactory<K, V> consumerFactory, ContainerProperties containerProperties, TopicPartitionInitialOffset... topicPartitions)
Each takes a ConsumerFactory
and information about topics and partitions, as well as other configuration in a ContainerProperties
object.
The second constructor is used by the ConcurrentMessageListenerContainer
(see below) to distribute TopicPartitionInitialOffset
across the consumer instances.
ContainerProperties
has the following constructors:
public ContainerProperties(TopicPartitionInitialOffset... topicPartitions) public ContainerProperties(String... topics) public ContainerProperties(Pattern topicPattern)
The first takes an array of TopicPartitionInitialOffset
arguments to explicitly instruct the container which partitions to use
(using the consumer assign()
method), and with an optional initial offset: a positive value is an absolute offset by default; a negative value is relative to the current last offset within a partition by default.
A constructor for TopicPartitionInitialOffset
is provided that takes an additional boolean
argument.
If this is true
, the initial offsets (positive or negative) are relative to the current position for this consumer.
The offsets are applied when the container is started.
The second takes an array of topics and Kafka allocates the partitions based on the group.id
property - distributing
partitions across the group.
The third uses a regex Pattern
to select the topics.
To assign a MessageListener
to a container, use the ContainerProps.setMessageListener
method when creating the Container:
ContainerProperties containerProps = new ContainerProperties("topic1", "topic2"); containerProps.setMessageListener(new MessageListener<Integer, String>() { ... }); DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<Integer, String>(consumerProps()); KafkaMessageListenerContainer<Integer, String> container = new KafkaMessageListenerContainer<>(cf, containerProps); return container;
Refer to the JavaDocs for ContainerProperties
for more information about the various properties that can be set.
The single constructor is similar to the first KafkaListenerContainer
constructor:
public ConcurrentMessageListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)
It also has a property concurrency
, e.g. container.setConcurrency(3)
will create 3 KafkaMessageListenerContainer
s.
For the first constructor, kafka will distribute the partitions across the consumers.
For the second constructor, the ConcurrentMessageListenerContainer
distributes the TopicPartition
s across the
delegate KafkaMessageListenerContainer
s.
If, say, 6 TopicPartition
s are provided and the concurrency
is 3; each container will get 2 partitions.
For 5 TopicPartition
s, 2 containers will get 2 partitions and the third will get 1.
If the concurrency
is greater than the number of TopicPartitions
, the concurrency
will be adjusted down such that
each container will get one partition.
Several options are provided for committing offsets.
If the enable.auto.commit
consumer property is true, kafka will auto-commit the offsets according to its
configuration.
If it is false, the containers support the following AckMode
s.
The consumer poll()
method will return one or more ConsumerRecords
; the MessageListener
is called for each record;
the following describes the action taken by the container for each AckMode
:
poll()
have been processed.
poll()
have been processed as long as the ackTime
since the last commit has been exceeded.
poll()
have been processed as long as ackCount
records have been received since the last commit.
acknowledge()
the Acknowledgment
;
after which, the same semantics as BATCH
are applied.
Acknowledgment.acknowledge()
method is called by the
listener.
Note | |
---|---|
|
The commitSync()
or commitAsync()
method on the consumer is used, depending on the syncCommits
container property.
The Acknowledgment
has this method:
public interface Acknowledgment { void acknowledge(); }
This gives the listener control over when offsets are committed.
The @KafkaListener
annotation provides a mechanism for simple POJO listeners:
public class Listener { @KafkaListener(id = "foo", topics = "myTopic") public void listen(String data) { ... } }
This mechanism requires an @EnableKafka
annotation on one of your @Configuration
classes and a listener container factory, which is used to configure the underlying
ConcurrentMessageListenerContainer
: by default, a bean with name kafkaListenerContainerFactory
is expected.
@Configuration @EnableKafka public class KafkaConfig { @Bean KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setConcurrency(3); factory.getContainerProperties().setPollTimeout(3000); return factory; } @Bean public ConsumerFactory<Integer, String> consumerFactory() { return new DefaultKafkaConsumerFactory<>(consumerConfigs()); } @Bean public Map<String, Object> consumerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString()); ... return props; } }
Notice that to set container properties, you must use the getContainerProperties()
method on the factory.
It is used as a template for the actual properties injected into the container.
You can also configure POJO listeners with explicit topics and partitions (and, optionally, their initial offsets):
@KafkaListener(id = "bar", topicPartitions = { @TopicPartition(topic = "topic1", partitions = { "0", "1" }), @TopicPartition(topic = "topic2", partitions = "0", partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100")) }) public void listen(ConsumerRecord<?, ?> record) { ... }
Each partition can be specified in the partitions
or partitionOffsets
attribute, but not both.
When using manual AckMode
, the listener can also be provided with the Acknowledgment
; this example also shows
how to use a different container factory.
@KafkaListener(id = "baz", topics = "myTopic", containerFactory = "kafkaManualAckListenerContainerFactory") public void listen(String data, Acknowledgment ack) { ... ack.acknowledge(); }
Finally, metadata about the message is available from message headers, the following header names can be used for retrieving the headers of the message:
KafkaHeaders.RECEIVED_MESSAGE_KEY
KafkaHeaders.RECEIVED_TOPIC
KafkaHeaders.RECEIVED_PARTITION_ID
KafkaHeaders.RECEIVED_MESSAGE_KEY
KafkaHeaders.RECEIVED_TIMESTAMP
KafkaHeaders.TIMESTAMP_TYPE
@KafkaListener(id = "qux", topicPattern = "myTopic1") public void listen(@Payload String foo, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) Integer key, @Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition, @Header(KafkaHeaders.RECEIVED_TOPIC) String topic, @Header(KafkaHeaders.RECEIVED_TIMESTAMP) long ts ) { ... }
Starting with version 1.1, @KafkaListener
methods can be configured to receive the entire batch of consumer records received from the consumer poll.
To configure the listener container factory to create batch listeners, set the batchListener
property:
@Bean public KafkaListenerContainerFactory<?> batchFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setBatchListener(true); // <<<<<<<<<<<<<<<<<<<<<<<<< return factory; }
To receive a simple list of payloads:
@KafkaListener(id = "list", topics = "myTopic", containerFactory = "batchFactory") public void listen(List<String> list) { ... }
The topic, partition, offset etc are available in headers which parallel the payloads:
@KafkaListener(id = "list", topics = "myTopic", containerFactory = "batchFactory") public void listen(List<String> list, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) List<Integer> keys, @Header(KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions, @Header(KafkaHeaders.RECEIVED_TOPIC) List<String> topics, @Header(KafkaHeaders.OFFSET) List<Long> offsets) { ... }
Alternatively you can receive a List of Message<?>
objects with each offset, etc in each message, but it must be the only parameter (aside from an optional Acknowledgment
when using manual commits) defined on the method:
@KafkaListener(id = "listMsg", topics = "myTopic", containerFactory = "batchFactory") public void listen14(List<Message<?>> list) { ... } @KafkaListener(id = "listMsgAck", topics = "myTopic", containerFactory = "batchFactory") public void listen15(List<Message<?>> list, Acknowledgment ack) { ... }
You can also receive a list of ConsumerRecord<?, ?>
objects but it must be the only parameter (aside from an optional Acknowledgment
when using manual commits) defined on the method:
@KafkaListener(id = "listCRs", topics = "myTopic", containerFactory = "batchFactory") public void listen(List<ConsumerRecord<Integer, String>> list) { ... } @KafkaListener(id = "listCRsAck", topics = "myTopic", containerFactory = "batchFactory") public void listen(List<ConsumerRecord<Integer, String>> list, Acknowledgment ack) { ... }
Listener containers currently use two task executors, one to invoke the consumer and another which will be used to invoke the listener, when the kafka consumer property enable.auto.commit
is false
.
You can provide custom executors by setting the consumerExecutor
and listenerExecutor
properties of the container’s ContainerProperties
.
When using pooled executors, be sure that enough threads are available to handle the concurrency across all the containers in which they are used.
When using the ConcurrentMessageListenerContainer
, a thread from each is used for each consumer (concurrency
).
If you don’t provide a consumer executor, a SimpleAsyncTaskExecutor
is used; this executor creates threads with names <beanName>-C-1
(consumer thread).
For the ConcurrentMessageListenerContainer
, the <beanName>
part of the thread name becomes <beanName>-m
, where m
represents the consumer instance.
n
increments each time the container is started.
So, with a bean name of container
, threads in this container will be named container-0-C-1
, container-1-C-1
etc., after the container is started the first time; container-0-C-2
, container-1-C-2
etc., after a stop/start.
When using @KafkaListener
at the class-level, you specify @KafkaHandler
at the method level.
When messages are delivered, the converted message payload type is used to determine which method to call.
@KafkaListener(id = "multi", topics = "myTopic") static class MultiListenerBean { @KafkaHandler public void listen(String foo) { ... } @KafkaHandler public void listen(Integer bar) { ... } }
ContainerProperties
has a property consumerRebalanceListener
which takes an implementation of the Kafka client’s consumerRebalanceListener
interface.
If this property is not provided, the container will configure a simple logging listener that logs rebalance events under the INFO
level.
The framework also adds a sub-interface ConsumerAwareRebalanceListener
:
public interface ConsumerAwareRebalanceListener extends ConsumerRebalanceListener { void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer, Collection<TopicPartition> partitions); void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer, Collection<TopicPartition> partitions); void onPartitionsAssigned(Consumer<?, ?> consumer, Collection<TopicPartition> partitions); }
Notice that there are two callbacks when partitions are revoked: the first is called immediately; the second is called after any pending offsets are committed. This is useful if you wish to maintain offsets in some external repository; for example:
containerProperties.setConsumerRebalanceListener(new ConsumerAwareRebalanceListener() { @Override public void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer, Collection<TopicPartition> partitions) { // acknowledge any pending Acknowledgments (if using manual acks) } @Override public void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer, Collection<TopicPartition> partitions) { // ... store(consumer.position(partition)); // ... } @Override public void onPartitionsAssigned(Collection<TopicPartition> partitions) { // ... consumer.seek(partition, offsetTracker.getOffset() + 1); // ... } });
Starting with version 2.0, if you also annotate a @KafkaListener
with a @SendTo
annotation and the method invocation returns a result, the result will be forwared to the topic specified by the @SendTo
.
The @SendTo
value can have several forms:
@SendTo("someTopic")
routes to the literal topic
@SendTo("#{someExpression}")
routes to the topic determined by evaluating the expression once during application context initialization.
@SendTo("!{someExpression}")
routes to the topic determined by evaluating the expression at runtime.
The #root
object for the evaluation has 3 properties:
ConsumerRecord
(or ConsumerRecords
object for a batch listener))
org.springframework.messaging.Message<?>
converted from the request
.
The result of the expression evaluation must be a String
representing the topic name.
@KafkaListener(topics = "annotated21") @SendTo("!{request.value()}") // runtime SpEL public String replyingListener(String in) { ... } @KafkaListener(topics = "annotated22") @SendTo("#{myBean.replyTopic}") // config time SpEL public Collection<String> replyingBatchListener(List<String> in) { ... } @KafkaListener(topics = "annotated23") @SendTo("annotated23reply") // static reply topic definition public String replyingListenerWithErrorHandler(String in) { ... } ... @KafkaListener(topics = "annotated25") @SendTo("annotated25reply1") public class MultiListenerSendTo { @KafkaHandler public String foo(String in) { ... } @KafkaHandler @SendTo("!{'annotated25reply2'}") public String bar(@Payload(required = false) KafkaNull nul, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) { ... } }
When using @SendTo
, the ConcurrentKafkaListenerContainerFactory
must be configured with a KafkaTemplate
in its replyTemplate
property, to perform the send.
Note: only the simple send(topic, value)
method is used, so you may wish to create a subclass to generate the partition and/or key…
@Bean public KafkaTemplate<String, String> myReplyingTemplate() { return new KafkaTemplate<Integer, String>(producerFactory()) { @Override public ListenableFuture<SendResult<String, String>> send(String topic, String data) { return super.send(topic, partitionForData(data), keyForData(data), data); } ... }; }
In certain scenarios, such as rebalancing, a message may be redelivered that has already been processed. The framework cannot know whether such a message has been processed or not, that is an application-level function. This is known as the Idempotent Receiver pattern and Spring Integration provides an implementation thereof.
The Spring for Apache Kafka project also provides some assistance by means of the FilteringMessageListenerAdapter
class, which can wrap your MessageListener
.
This class takes an implementation of RecordFilterStrategy
where you implement the filter
method to signal
that a message is a duplicate and should be discarded.
A FilteringAcknowledgingMessageListenerAdapter
is also provided for wrapping an AcknowledgingMessageListener
.
This has an additional property ackDiscarded
which indicates whether the adapter should acknowledge the discarded record; it is true
by default.
When using @KafkaListener
, set the RecordFilterStrategy
(and optionally ackDiscarded
) on the container factory and the listener will be wrapped in the appropriate filtering adapter.
Finally, FilteringBatchMessageListenerAdapter
and FilteringBatchAcknowledgingMessageListenerAdapter
are provided, for when using a batch message listener.
If your listener throws an exception, the default behavior is to invoke the ErrorHandler
, if configured, or logged otherwise.
Note | |
---|---|
Two error handler interfaces are provided |
To retry deliveries, convenient listener adapters - RetryingMessageListenerAdapter
and RetryingAcknowledgingMessageListenerAdapter
are provided, depending on whether you are using a MessageListener
or an AcknowledgingMessageListener
.
These can be configured with a RetryTemplate
and RecoveryCallback<Void>
- see the spring-retry
project for information about these components.
If a recovery callback is not provided, the exception is thrown to the container after retries are exhausted.
In that case, the ErrorHandler
will be invoked, if configured, or logged otherwise.
When using @KafkaListener
, set the RetryTemplate
(and optionally recoveryCallback
) on the container factory and the listener will be wrapped in the appropriate retrying adapter.
A retry adapter is not provided for any of the batch message listeners because the framework has no knowledge of where, in a batch, the failure occurred.
Users wishing retry capabilities, when using a batch listener, are advised to use a RetryTemplate
within the listener itself.
While efficient, one problem with asynchronous consumers is detecting when they are idle - users might want to take some action if no messages arrive for some period of time.
You can configure the listener container to publish a ListenerContainerIdleEvent
when some time passes with no message delivery.
While the container is idle, an event will be published every idleEventInterval
milliseconds.
To configure this feature, set the idleEventInterval
on the container:
@Bean public KafKaMessageListenerContainer(ConnectionFactory connectionFactory) { ContainerProperties containerProps = new ContainerProperties("topic1", "topic2"); ... containerProps.setIdleEventInterval(60000L); ... KafKaMessageListenerContainer<String, String> container = new KafKaMessageListenerContainer<>(...); return container; }
Or, for a @KafkaListener
…
@Bean public ConcurrentKafkaListenerContainerFactory kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); ... factory.getContainerProperties().setIdleEventInterval(60000L); ... return factory; }
In each of these cases, an event will be published once per minute while the container is idle.
You can capture these events by implementing ApplicationListener
- either a general listener, or one narrowed to only receive this specific event.
You can also use @EventListener
, introduced in Spring Framework 4.2.
The following example combines the @KafkaListener
and @EventListener
into a single class.
It’s important to understand that the application listener will get events for all containers so you may need to
check the listener id if you want to take specific action based on which container is idle.
You can also use the @EventListener
condition
for this purpose.
The events have 4 properties:
source
- the listener container instance
id
- the listener id (or container bean name)
idleTime
- the time the container had been idle when the event was published
topicPartitions
- the topics/partitions that the container was assigned at the time the event was generated
public class Listener { @KafkaListener(id = "qux", topics = "annotated") public void listen4(@Payload String foo, Acknowledgment ack) { ... } @EventListener(condition = "event.listenerId.startsWith('qux-')") public void eventHandler(ListenerContainerIdleEvent event) { ... } }
Important | |
---|---|
Event listeners will see events for all containers; so, in the example above, we narrow the events received based on the listener ID.
Since containers created for the |
Caution | |
---|---|
If you wish to use the idle event to stop the lister container, you should not call |
Note that you can obtain the current positions when idle is detected by implementing ConsumerSeekAware
in your listener; see onIdleContainer()
in `the section called “Seeking to a Specific Offset”.
There are several ways to set the initial offset for a partition.
When manually assigning partitions, simply set the initial offset (if desired) in the configured TopicPartitionInitialOffset
arguments (see the section called “Message Listener Containers”).
You can also seek to a specific offset at any time.
When using group management where the broker assigns partitions:
group.id
, the initial offset is determined by the auto.offset.reset
consumer property (earliest
or latest
).
In order to seek, your listener must implement ConsumerSeekAware
which has the following methods:
void registerSeekCallback(ConsumerSeekCallback callback); void onPartitionsAssigned(Map<TopicPartition, Long> assignments, ConsumerSeekCallback callback); void onIdleContainer(Map<TopicPartition, Long> assignments, ConsumerSeekCallback callback);
The first is called when the container is started; this callback should be used when seeking at some arbitrary time after initialization.
You should save a reference to the callback; if you are using the same listener in multiple containers (or in a ConcurrentMessageListenerContainer
) you should store the callback in a ThreadLocal
or some other structure keyed by the listener Thread
.
When using group management, the second method is called when assignments change.
You can use this method, for example, for setting initial offsets for the partitions, by calling the callback; you must use the callback argument, not the one passed into registerSeekCallback
.
This method will never be called if you explicitly assign partitions yourself; use the TopicPartitionInitialOffset
in that case.
The callback has these methods:
void seek(String topic, int partition, long offset); void seekToBeginning(String topic, int partition); void seekToEnd(String topic, int partition);
You can also perform seek operations from onIdleContainer()
when an idle container is detected; see the section called “Detecting Idle Asynchronous Consumers” for how to enable idle container detection.
To arbitrarily seek at runtime, use the callback reference from the registerSeekCallback
for the appropriate thread.
Apache Kafka provides a high-level API for serializing/deserializing record values as well as their keys.
It is present with the org.apache.kafka.common.serialization.Serializer<T>
and
org.apache.kafka.common.serialization.Deserializer<T>
abstractions with some built-in implementations.
Meanwhile we can specify simple (de)serializer classes using Producer and/or Consumer configuration properties, e.g.:
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); ... props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
for more complex or particular cases, the KafkaConsumer
, and therefore KafkaProducer
, provides overloaded
constructors to accept (De)Serializer
instances for keys
and/or values
, respectively.
To meet this API, the DefaultKafkaProducerFactory
and DefaultKafkaConsumerFactory
also provide properties to allow
to inject a custom (De)Serializer
to target Producer
/Consumer
.
For this purpose, Spring for Apache Kafka also provides JsonSerializer
/JsonDeserializer
implementations based on the
Jackson JSON object mapper.
The JsonSerializer
is quite simple and just allows writing any Java object as a JSON byte[]
, the JsonDeserializer
requires an additional Class<?> targetType
argument to allow the deserialization of a consumed byte[]
to the proper target
object.
JsonDeserializer<Bar> barDeserializer = new JsonDeserializer<>(Bar.class);
Both JsonSerializer
and JsonDeserializer
can be customized with an ObjectMapper
.
You can also extend them to implement some particular configuration logic in the
configure(Map<String, ?> configs, boolean isKey)
method.
Although the Serializer
/Deserializer
API is quite simple and flexible from the low-level Kafka Consumer
and
Producer
perspective, you might need more flexibility at the Spring Messaging level, either when using @KafkaListener
or Spring Integration.
To easily convert to/from org.springframework.messaging.Message
, Spring for Apache Kafka provides a MessageConverter
abstraction with the MessagingMessageConverter
implementation and its StringJsonMessageConverter
customization.
The MessageConverter
can be injected into KafkaTemplate
instance directly and via
AbstractKafkaListenerContainerFactory
bean definition for the @KafkaListener.containerFactory()
property:
@Bean public KafkaListenerContainerFactory<?> kafkaJsonListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setMessageConverter(new StringJsonMessageConverter()); return factory; } ... @KafkaListener(topics = "jsonData", containerFactory = "kafkaJsonListenerContainerFactory") public void jsonListener(Foo foo) { ... }
When using a @KafkaListener
, the parameter type is provided to the message converter to assist with the conversion.
Note | |
---|---|
When using the |
When using Log Compaction, it is possible to send and receive messages with null
payloads which identifies the deletion of a key.
Starting with version 1.0.3, this is now fully supported.
To send a null
payload using the KafkaTemplate
simply pass null into the value argument of the send()
methods.
One exception to this is the send(Message<?> message)
variant.
Since spring-messaging
Message<?>
cannot have a null
payload, a special payload type KafkaNull
is used and the framework will send null
.
For convenience, the static KafkaNull.INSTANCE
is provided.
When using a message listener container, the received ConsumerRecord
will have a null
value()
.
To configure the @KafkaListener
to handle null
payloads, you must use the @Payload
annotation with required = false
; you will usually also need the key so your application knows which key was "deleted":
@KafkaListener(id = "deletableListener", topics = "myTopic") public void listen(@Payload(required = false) String value, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) String key) { // value == null represents key deletion }
When using a class-level @KafkaListener
, some additional configuration is needed - a @KafkaHandler
method with a KafkaNull
payload:
@KafkaListener(id = "multi", topics = "myTopic") static class MultiListenerBean { @KafkaHandler public void listen(String foo) { ... } @KafkaHandler public void listen(Integer bar) { ... } @KafkaHandler public void delete(@Payload(required = false) KafkaNull nul, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) { ... } }
By default, if an annotated listener method throws an exception, it is thrown to the container, and the message will handled according to the container configuration. Nothing is returned to the sender.
Starting with version 2.0, the @KafkaListener
annotation has a new attribute: errorHandler
.
This attribute is not configured by default.
Use the errorHandler
to provide the bean name of a KafkaListenerErrorHandler
implementation.
This functional interface has one method:
@FunctionalInterface public interface KafkaListenerErrorHandler { Object handleError(Message<?> message, ListenerExecutionFailedException exception) throws Exception; }
As you can see, you have access to the spring-messaging Message<?>
object produced by the message converter and the exception that was thrown by the listener, wrapped in a ListenerExecutionFailedException
.
The error handler can throw the original or a new exception which will be thrown to the container. Anything returned by the error handler is ignored.
Starting with version 2.0 a KafkaJaasLoginModuleInitializer
class has been added to assist with Kerberos configuration.
Simply add this bean, with the desired configuration, to your application context.
@Bean public KafkaJaasLoginModuleInitializer jaasConfig() throws IOException { KafkaJaasLoginModuleInitializer jaasConfig = new KafkaJaasLoginModuleInitializer(); jaasConfig.setControlFlag("REQUIRED"); Map<String, String> options = new HashMap<>(); options.put("useKeyTab", "true"); options.put("storeKey", "true"); options.put("keyTab", "/etc/security/keytabs/kafka_client.keytab"); options.put("principal", "[email protected]"); jaasConfig.setOptions(options); return jaasConfig; }
Starting with version 1.1.4, Spring for Apache Kafka provides first class support for Kafka Streams.
For using it from a Spring application, the kafka-streams
jar must be present on classpath.
It is an optional dependency of the spring-kafka
project and isn’t downloaded transitively.
The reference Apache Kafka Streams documentation suggests this way of using the API:
// Use the builders to define the actual processing topology, e.g. to specify // from which input topics to read, which stream operations (filter, map, etc.) // should be called, and so on. KStreamBuilder builder = ...; // when using the Kafka Streams DSL // // OR // TopologyBuilder builder = ...; // when using the Processor API // Use the configuration to tell your application where the Kafka cluster is, // which serializers/deserializers to use by default, to specify security settings, // and so on. StreamsConfig config = ...; KafkaStreams streams = new KafkaStreams(builder, config); // Start the Kafka Streams instance streams.start(); // Stop the Kafka Streams instance streams.close();
So, we have two main components: KStreamBuilder
(which extends TopologyBuilder
as well) with an API to build KStream
(or KTable
) instances and KafkaStreams
to manage their lifecycle.
Note: all KStream
instances exposed to a KafkaStreams
instance by a single KStreamBuilder
will be started and stopped at the same time, even if they have a fully different logic.
In other words all our streams defined by a KStreamBuilder
are tied with a single lifecycle control.
Once a KafkaStreams
instance has been closed via streams.close()
it cannot be restarted, and a new KafkaStreams
instance to restart stream processing must be created instead.
To simplify the usage of Kafka Streams from the Spring application context perspective and utilize the lifecycle management via container, the Spring for Apache Kafka introduces KStreamBuilderFactoryBean
.
This is an AbstractFactoryBean
implementation to expose a KStreamBuilder
singleton instance as a bean:
@Bean public FactoryBean<KStreamBuilder> myKStreamBuilder(StreamsConfig streamsConfig) { return new KStreamBuilderFactoryBean(streamsConfig); }
The KStreamBuilderFactoryBean
also implements SmartLifecycle
to manage lifecycle of an internal KafkaStreams
instance.
Similar to the Kafka Streams API, the KStream
instances must be defined before starting the KafkaStreams
, and that also applies for the Spring API for Kafka Streams.
Therefore we have to declare KStream
s on the KStreamBuilder
before the application context is refreshed, when we use default autoStartup = true
on the KStreamBuilderFactoryBean
.
For example, KStream
can be just as a regular bean definition, meanwhile the Kafka Streams API is used without any impacts:
@Bean public KStream<?, ?> kStream(KStreamBuilder kStreamBuilder) { KStream<Integer, String> stream = kStreamBuilder.stream(STREAMING_TOPIC1); // Fluent KStream API return stream; }
If you would like to control lifecycle manually (e.g. stop and start by some condition), you can reference the KStreamBuilderFactoryBean
bean directly using factory bean (&
) prefix.
Since KStreamBuilderFactoryBean
utilize its internal KafkaStreams
instance, it is safe to stop and restart it again - a new KafkaStreams
is created on each start()
.
Also consider using different KStreamBuilderFactoryBean
s, if you would like to control lifecycles for KStream
instances separately.
You can specify KafkaStreams.StateListener
and Thread.UncaughtExceptionHandler
options on the KStreamBuilderFactoryBean
which are delegated to the internal KafkaStreams
instance.
That internal KafkaStreams
instance can be accessed via KStreamBuilderFactoryBean.getKafkaStreams()
if you need to perform some KafkaStreams
operations directly.
For serializing and deserializing data when reading or writing to topics or state stores in JSON format, Spring Kafka provides a JsonSerde
implementation using JSON, delegating to the JsonSerializer
and JsonDeserializer
described in the serialization/deserialization section.
The JsonSerde
provides the same configuration options via its constructor (target type and/or ObjectMapper
).
In the following example we use the JsonSerde
to serialize and deserialize the Foo
payload of a Kafka stream - the JsonSerde
can be used in a similar fashion wherever an instance is required.
stream.through(Serdes.Integer(), new JsonSerde<>(Foo.class), "foos");
To configure the Kafka Streams environment, the KStreamBuilderFactoryBean
requires a Map
of particular properties or a StreamsConfig
instance.
See Apache Kafka documentation for all possible options.
To avoid boilerplate code for most cases, especially when you develop micro services, Spring for Apache Kafka provides the @EnableKafkaStreams
annotation, which should be placed alongside with @Configuration
.
Only you need is to declare StreamsConfig
bean with the defaultKafkaStreamsConfig
name.
A KStreamBuilder
bean with the defaultKStreamBuilder
name will be declare in the application context automatically.
Any additional KStreamBuilderFactoryBean
beans can be declared and used as well.
Putting it all together:
@Configuration @EnableKafka @EnableKafkaStreams public static class KafkaStreamsConfiguration { @Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME) public StreamsConfig kStreamsConfigs() { Map<String, Object> props = new HashMap<>(); props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams"); props.put(StreamsConfig.KEY_SERDE_CLASS_CONFIG, Serdes.Integer().getClass().getName()); props.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName()); props.put(StreamsConfig.TIMESTAMP_EXTRACTOR_CLASS_CONFIG, WallclockTimestampExtractor.class.getName()); return new StreamsConfig(props); } @Bean public KStream<Integer, String> kStream(KStreamBuilder kStreamBuilder) { KStream<Integer, String> stream = kStreamBuilder.stream("streamingTopic1"); stream .mapValues(String::toUpperCase) .groupByKey() .reduce((String value1, String value2) -> value1 + value2, TimeWindows.of(1000), "windowStore") .toStream() .map((windowedId, value) -> new KeyValue<>(windowedId.key(), value)) .filter((i, s) -> s.length() > 40) .to("streamingTopic2"); stream.print(); return stream; } }
The spring-kafka-test
jar contains some useful utilities to assist with testing your applications.
o.s.kafka.test.utils.KafkaUtils
provides some static methods to set up producer and consumer properties:
/** * Set up test properties for an {@code <Integer, String>} consumer. * @param group the group id. * @param autoCommit the auto commit. * @param embeddedKafka a {@link KafkaEmbedded} instance. * @return the properties. */ public static Map<String, Object> consumerProps(String group, String autoCommit, KafkaEmbedded embeddedKafka) { ... } /** * Set up test properties for an {@code <Integer, String>} producer. * @param embeddedKafka a {@link KafkaEmbedded} instance. * @return the properties. */ public static Map<String, Object> senderProps(KafkaEmbedded embeddedKafka) { ... }
A JUnit @Rule
is provided that creates an embedded kafka server.
/** * Create embedded Kafka brokers. * @param count the number of brokers. * @param controlledShutdown passed into TestUtils.createBrokerConfig. * @param topics the topics to create (2 partitions per). */ public KafkaEmbedded(int count, boolean controlledShutdown, String... topics) { ... } /** * * Create embedded Kafka brokers. * @param count the number of brokers. * @param controlledShutdown passed into TestUtils.createBrokerConfig. * @param partitions partitions per topic. * @param topics the topics to create. */ public KafkaEmbedded(int count, boolean controlledShutdown, int partitions, String... topics) { ... }
The embedded kafka class has a utility method allowing you to consume for all the topics it created:
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false", embeddedKafka); DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<Integer, String>( consumerProps); Consumer<Integer, String> consumer = cf.createConsumer(); embeddedKafka.consumeFromAllEmbeddedTopics(consumer);
The KafkaTestUtils
has some utility methods to fetch results from the consumer:
/** * Poll the consumer, expecting a single record for the specified topic. * @param consumer the consumer. * @param topic the topic. * @return the record. * @throws org.junit.ComparisonFailure if exactly one record is not received. */ public static <K, V> ConsumerRecord<K, V> getSingleRecord(Consumer<K, V> consumer, String topic) { ... } /** * Poll the consumer for records. * @param consumer the consumer. * @return the records. */ public static <K, V> ConsumerRecords<K, V> getRecords(Consumer<K, V> consumer) { ... }
Usage:
... template.sendDefault(0, 2, "bar"); ConsumerRecord<Integer, String> received = KafkaTestUtils.getSingleRecord(consumer, "topic"); ...
When the embedded server is started by JUnit, it sets a system property spring.embedded.kafka.brokers
to the address of the broker(s).
A convenient constant KafkaEmbedded.SPRING_EMBEDDED_KAFKA_BROKERS
is provided for this property.
It is generally recommended to use the rule as a @ClassRule
to avoid starting/stopping the broker between tests (and use a different topic for each test).
Starting with version 2.0, if you are using Spring’s test application context caching, you can also declare a KafkaEmbedded
bean, so a single broker can be used across multiple test classes.
The JUnit ExternalResource
before()/after()
lifecycle is wrapped to the afterPropertiesSet()
and destroy()
Spring infrastructure hooks.
For convenience a test class level @EmbeddedKafka
annotation is provided with the purpose to register KafkaEmbedded
bean:
@RunWith(SpringRunner.class) @DirtiesContext @EmbeddedKafka(partitions = 1, topics = { KafkaStreamsTests.STREAMING_TOPIC1, KafkaStreamsTests.STREAMING_TOPIC2 }) public class KafkaStreamsTests { @Autowired private KafkaEmbedded kafkaEmbedded; @Test public void someTest() { Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testGroup", "true", this.kafkaEmbedded); consumerProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest"); ConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<>(consumerProps); Consumer<Integer, String> consumer = cf.createConsumer(); this.embeddedKafka.consumeFromAnEmbeddedTopic(consumer, KafkaStreamsTests.STREAMING_TOPIC2); ConsumerRecords<Integer, String> replies = KafkaTestUtils.getRecords(consumer); assertThat(replies.count()).isGreaterThanOrEqualTo(1); } @Configuration @EnableKafkaStreams public static class KafkaStreamsConfiguration { @Value("${" + KafkaEmbedded.SPRING_EMBEDDED_KAFKA_BROKERS + "}") private String brokerAddresses; @Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME) public StreamsConfig kStreamsConfigs() { Map<String, Object> props = new HashMap<>(); props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams"); props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddresses); return new StreamsConfig(props); } } }
The o.s.kafka.test.hamcrest.KafkaMatchers
provides the following matchers:
/** * @param key the key * @param <K> the type. * @return a Matcher that matches the key in a consumer record. */ public static <K> Matcher<ConsumerRecord<K, ?>> hasKey(K key) { ... } /** * @param value the value. * @param <V> the type. * @return a Matcher that matches the value in a consumer record. */ public static <V> Matcher<ConsumerRecord<?, V>> hasValue(V value) { ... } /** * @param partition the partition. * @return a Matcher that matches the partition in a consumer record. */ public static Matcher<ConsumerRecord<?, ?>> hasPartition(int partition) { ... } /** * Matcher testing the timestamp of a {@link ConsumerRecord} asssuming the topic has been set with * {@link org.apache.kafka.common.record.TimestampType#CREATE_TIME CreateTime}. * * @param ts timestamp of the consumer record. * @return a Matcher that matches the timestamp in a consumer record. */ public static Matcher<ConsumerRecord<?, ?>> hasTimestamp(long ts) { return hasTimestamp(TimestampType.CREATE_TIME, ts); } /** * Matcher testing the timestamp of a {@link ConsumerRecord} * @param type timestamp type of the record * @param ts timestamp of the consumer record. * @return a Matcher that matches the timestamp in a consumer record. */ public static Matcher<ConsumerRecord<?, ?>> hasTimestamp(TimestampType type, long ts) { return new ConsumerRecordTimestampMatcher(type, ts); }
/** * @param key the key * @param <K> the type. * @return a Condition that matches the key in a consumer record. */ public static <K> Condition<ConsumerRecord<K, ?>> key(K key) { ... } /** * @param value the value. * @param <V> the type. * @return a Condition that matches the value in a consumer record. */ public static <V> Condition<ConsumerRecord<?, V>> value(V value) { ... } /** * @param partition the partition. * @return a Condition that matches the partition in a consumer record. */ public static Condition<ConsumerRecord<?, ?>> partition(int partition) { ... } /** * @param value the timestamp. * @return a Condition that matches the timestamp value in a consumer record. */ public static Condition<ConsumerRecord<?, ?>> timestamp(long value) { return new ConsumerRecordTimestampCondition(TimestampType.CREATE_TIME, value); } /** * @param type the type of timestamp * @param value the timestamp. * @return a Condition that matches the timestamp value in a consumer record. */ public static Condition<ConsumerRecord<?, ?>> timestamp(TimestampType type, long value) { return new ConsumerRecordTimestampCondition(type, value); }
Putting it all together:
public class KafkaTemplateTests { private static final String TEMPLATE_TOPIC = "templateTopic"; @ClassRule public static KafkaEmbedded embeddedKafka = new KafkaEmbedded(1, true, TEMPLATE_TOPIC); @Test public void testTemplate() throws Exception { Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false", embeddedKafka); DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<Integer, String>(consumerProps); ContainerProperties containerProperties = new ContainerProperties(TEMPLATE_TOPIC); KafkaMessageListenerContainer<Integer, String> container = new KafkaMessageListenerContainer<>(cf, containerProperties); final BlockingQueue<ConsumerRecord<Integer, String>> records = new LinkedBlockingQueue<>(); container.setupMessageListener(new MessageListener<Integer, String>() { @Override public void onMessage(ConsumerRecord<Integer, String> record) { System.out.println(record); records.add(record); } }); container.setBeanName("templateTests"); container.start(); ContainerTestUtils.waitForAssignment(container, embeddedKafka.getPartitionsPerTopic()); Map<String, Object> senderProps = KafkaTestUtils.senderProps(embeddedKafka.getBrokersAsString()); ProducerFactory<Integer, String> pf = new DefaultKafkaProducerFactory<Integer, String>(senderProps); KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf); template.setDefaultTopic(TEMPLATE_TOPIC); template.sendDefault("foo"); assertThat(records.poll(10, TimeUnit.SECONDS), hasValue("foo")); template.sendDefault(0, 2, "bar"); ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS); assertThat(received, hasKey(2)); assertThat(received, hasPartition(0)); assertThat(received, hasValue("bar")); template.send(TEMPLATE_TOPIC, 0, 2, "baz"); received = records.poll(10, TimeUnit.SECONDS); assertThat(received, hasKey(2)); assertThat(received, hasPartition(0)); assertThat(received, hasValue("baz")); } }
The above uses the hamcrest matchers; with AssertJ
, the final part looks like this…
... assertThat(records.poll(10, TimeUnit.SECONDS)).has(value("foo")); template.sendDefault(0, 2, "bar"); ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS); assertThat(received).has(key(2)); assertThat(received).has(partition(0)); assertThat(received).has(value("bar")); template.send(TEMPLATE_TOPIC, 0, 2, "baz"); received = records.poll(10, TimeUnit.SECONDS); assertThat(received).has(key(2)); assertThat(received).has(partition(0)); assertThat(received).has(value("baz")); } }
This part of the reference shows how to use the spring-integration-kafka
module of Spring Integration.
This documentation pertains to versions 2.0.0 and above; for documentation for earlier releases, see the 1.3.x README.
Spring Integration Kafka is now based on the Spring for Apache Kafka project. It provides the following components:
These are discussed in the following sections.
The Outbound channel adapter is used to publish messages from a Spring Integration channel to Kafka topics.
The channel is defined in the application context and then wired into the application that sends messages to Kafka.
Sender applications can publish to Kafka via Spring Integration messages, which are internally converted
to Kafka messages by the outbound channel adapter, as follows: the payload of the Spring Integration message will be
used to populate the payload of the Kafka message, and (by default) the kafka_messageKey
header of the Spring
Integration message will be used to populate the key of the Kafka message.
The target topic and partition for publishing the message can be customized through the kafka_topic
and kafka_partitionId
headers, respectively.
In addition, the <int-kafka:outbound-channel-adapter>
provides the ability to extract the key, target topic, and
target partition by applying SpEL expressions on the outbound message. To that end, it supports the mutually exclusive
pairs of attributes topic
/topic-expression
, message-key
/message-key-expression
, and
partition-id
/partition-id-expression
, to allow the specification of topic
,message-key
and partition-id
respectively as static values on the adapter, or to dynamically evaluate their values at runtime against
the request message.
Important | |
---|---|
The |
NOTE : If the adapter is configured with a topic or message key (either with a constant or expression), those are used and the corresponding header is ignored. If you wish the header to override the configuration, you need to configure it in an expression, such as:
topic-expression="headers['topic'] != null ? headers['topic'] : 'myTopic'"
.
The adapter requires a KafkaTemplate
.
Here is an example of how the Kafka outbound channel adapter is configured with XML:
<int-kafka:outbound-channel-adapter id="kafkaOutboundChannelAdapter" kafka-template="template" auto-startup="false" channel="inputToKafka" topic="foo" message-key-expression="'bar'" partition-id-expression="2"> </int-kafka:outbound-channel-adapter> <bean id="template" class="org.springframework.kafka.core.KafkaTemplate"> <constructor-arg> <bean class="org.springframework.kafka.core.DefaultKafkaProducerFactory"> <constructor-arg> <map> <entry key="bootstrap.servers" value="localhost:9092" /> ... <!-- more producer properties --> </map> </constructor-arg> </bean> </constructor-arg> </bean>
As you can see, the adapter requires a KafkaTemplate
which, in turn, requires a suitably configured KafkaProducerFactory
.
When using Java Configuration:
@Bean @ServiceActivator(inputChannel = "toKafka") public MessageHandler handler() throws Exception { KafkaProducerMessageHandler<String, String> handler = new KafkaProducerMessageHandler<>(kafkaTemplate()); handler.setTopicExpression(new LiteralExpression("someTopic")); handler.setMessageKeyExpression(new LiteralExpression("someKey")); return handler; } @Bean public KafkaTemplate<String, String> kafkaTemplate() { return new KafkaTemplate<>(producerFactory()); } @Bean public ProducerFactory<String, String> producerFactory() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress); // set more properties return new DefaultKafkaProducerFactory<>(props); }
The KafkaMessageDrivenChannelAdapter
(<int-kafka:message-driven-channel-adapter>
) uses a spring-kafka
KafkaMessageListenerContainer
or ConcurrentListenerContainer
.
Starting with spring-integration-kafka version 2.1, the mode
attribute is available (record
or batch
, default record
).
For record
mode, each message payload is converted from a single ConsumerRecord
; for mode batch
the payload is a list of objects which are converted from all the ConsumerRecord
s returned by the consumer poll.
As with the batched @KafkaListener
, the KafkaHeaders.RECEIVED_MESSAGE_KEY
, KafkaHeaders.RECEIVED_PARTITION_ID
, KafkaHeaders.RECEIVED_TOPIC
and KafkaHeaders.OFFSET
headers are also lists with, positions corresponding to the position in the payload.
An example of xml configuration variant is shown here:
<int-kafka:message-driven-channel-adapter id="kafkaListener" listener-container="container1" auto-startup="false" phase="100" send-timeout="5000" mode="record" channel="nullChannel" error-channel="errorChannel" /> <bean id="container1" class="org.springframework.kafka.listener.KafkaMessageListenerContainer"> <constructor-arg> <bean class="org.springframework.kafka.core.DefaultKafkaConsumerFactory"> <constructor-arg> <map> <entry key="bootstrap.servers" value="localhost:9092" /> ... </map> </constructor-arg> </bean> </constructor-arg> <constructor-arg> <bean class="org.springframework.kafka.listener.config.ContainerProperties"> <constructor-arg name="topics" value="foo" /> </bean> </constructor-arg> </bean>
When using Java Configuration:
@Bean public KafkaMessageDrivenChannelAdapter<String, String> adapter(KafkaMessageListenerContainer<String, String> container) { KafkaMessageDrivenChannelAdapter<String, String> kafkaMessageDrivenChannelAdapter = new KafkaMessageDrivenChannelAdapter<>(container, ListenerMode.record); kafkaMessageDrivenChannelAdapter.setOutputChannel(received()); return kafkaMessageDrivenChannelAdapter; } @Bean public KafkaMessageListenerContainer<String, String> container() throws Exception { ContainerProperties properties = new ContainerProperties(this.topic); // set more properties return new KafkaMessageListenerContainer<>(consumerFactory(), properties); } @Bean public ConsumerFactory<String, String> consumerFactory() { Map<String, Object> props = new HashMap<>(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress); // set more properties return new DefaultKafkaConsumerFactory<>(props); }
Received messages will have certain headers populated.
Refer to the KafkaHeaders
class for more information.
Important | |
---|---|
The |
A StringJsonMessageConverter
is provided, see Section 4.1.3, “Serialization/Deserialization and Message Conversion” for more information.
When using this converter with a message-driven channel adapter, you can specify the type to which you want the incoming payload to be converted.
This is achieved by setting the payload-type
attribute (payloadType
property) on the adapter.
<int-kafka:message-driven-channel-adapter id="kafkaListener" listener-container="container1" auto-startup="false" phase="100" send-timeout="5000" channel="nullChannel" message-converter="messageConverter" payload-type="com.example.Foo" error-channel="errorChannel" /> <bean id="messageConverter" class="org.springframework.kafka.support.converter.MessagingMessageConverter"/>
@Bean public KafkaMessageDrivenChannelAdapter<String, String> adapter(KafkaMessageListenerContainer<String, String> container) { KafkaMessageDrivenChannelAdapter<String, String> kafkaMessageDrivenChannelAdapter = new KafkaMessageDrivenChannelAdapter<>(container, ListenerMode.record); kafkaMessageDrivenChannelAdapter.setOutputChannel(received()); kafkaMessageDrivenChannelAdapter.setMessageConverter(converter()); kafkaMessageDrivenChannelAdapter.setPayloadType(Foo.class); return kafkaMessageDrivenChannelAdapter; }
In addition to this reference documentation, there exist a number of other resources that may help you learn about Spring and Apache Kafka.
Listeners can be configured to receive the entire batch of messages returned by the consumer.poll()
operation, rather than one at a time.
When explicitly assigning partitions, you can now configure the initial offset relative to the current position for the consumer group, rather than absolute or relative to the current end.
You can now seek the position of each topic/partition. This can be used to set the initial position during initialization when group management is in use and Kafka assigns the partitions. You can also seek when an idle container is detected, or at any arbitrary point in your application’s execution. See the section called “Seeking to a Specific Offset” for more information.