Spring Framework Reference Documentation

4.0.5.RELEASE

Rod Johnson , Juergen Hoeller , Keith Donald , Colin Sampaleanu , Rob Harrop , Thomas Risberg , Alef
Arendsen , Darren Davison , Dmitriy Kopylenko , Mark Pollack , Thierry Templier , Erwin Vervaet , Portia
Tung , Ben Hale , Adrian Colyer , John Lewis , Costin Leau , Mark Fisher , Sam Brannen , Ramnivas
Laddad , Arjen Poutsma , Chris Beams , Tareq Abedrabbo , Andy Clement , Dave Syer , Oliver Gierke ,
Rossen Stoyanchev , Phillip Webb , Rob Winch , Brian Clozel , Stephane Nicoll , Sebastien Deleuze

Copyright © 2004-2014

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Framework

Table of Contents

[. Overview Of SPring FrameEWOTKiiiiiiiiii e et e e 1
1. Getting Started With SPIiNGo.oiiiiii e e e s 2
2. Introduction t0 SPring FrameEWOrKcc.. i 3

2.1. Dependency Injection and Inversion of CONrolcociiieiiiiiiiiii e 3
2.2, MOGUIES ...ttt e et e 3
(0] (=R Ofo] o] =11 =7 S PP 4
Data ACCESS/INTEGIAtiONcieeiiieiiiiie ettt eaanns 4

L= o TP P PP SUSPPPPPPPPIN 5
AOP and INStrUMENTAtIONiiiiiiiii i e e e e e 5
L= S PP PTPTPTPIPRN 5

ARG T B LT Vo [T To7 Y o = 4 o S 5
Dependency Management and Naming Conventionsccooceuveeineiiineieineeeinnnes 9
Spring Dependencies and Depending 0N SPringccccoevveviiineeiiiiineeeeiinnnen. 9

Maven Dependency Managementcoovuuieiiieiiiieiiie e ee e e e 10

Maven "Bill Of Materials" Dependencycccoviiiuiiiiiiiiiiiieieee e 10

Gradle Dependency Managementcooeveuuriiieiineeiiii e 11

Ivy Dependency ManagemeNntc.uiiiiiiieiinieiiiiee i ee e e e e eaanns 11
Distribution Zip FlESccuniii e 12

(oo o |1 o PSPPI PP 12

Not Using CommoNSs LOGQING ..uuevvneiiiiieii e e e e e e e e 12

USING SLFA et 13

USING LOGAT .t 14

[I. What's New in SPring FramMeWOIK 4.Xiiiuieiii e e e e e e e e e e e e s e e e e eens 16

3. New Features and Enhancements in Spring Framework 4.0coooiiiiiiiiiiiiiiiiiieeies 17
3.1. Improved Getting Started EXPErENCEccouuiiiiiiiiiiiiiiii e 17
3.2. Removed Deprecated Packages and Methodsc.cceveviiiiiiiiccin v 17
3.3.Java 8 (S Well @S 6 @Nd 7) .oeuniieiiiiiii e 17
3.4.JaVa EE 6 @Nd 7 .oooiiiiii e 18
3.5. Groovy Bean Definition DSLooiiiiiiiiicii e 18
3.6. Core Container IMProVEMENTSiiutiiiiii et e e e e eeens 19
3.7. General Web IMProVEMENTSiiiiiii it 19
3.8. WebSocket, SockJS, and STOMP MESSAQINGcvvvueiirieiiieeiiieeiiiieeieeeiieeaieeeennas 19
3.9. Testing IMPrOVEMENLS ...ttt et e et e et e e eaaaean s 20

1[I Oo] (= K =Tod T gTo] (o] o [T PP UUPT 21

4, THE 10C CONTAINET ...ciiiieiiiiii ettt et e ettt e e e e e e e nrb e 22
4.1. Introduction to the Spring I0C container and beanscccooiiiiiiiiiiiine, 22
A O] a1 = U L= 0 Y= 1= P 22

Configuration metadatalcoovuiiiiiiiii e 23
InStantiating @ CONTAINETiii e e e e e e 24
Composing XML-based configuration metadatacccovevineviiniiinnnnennnn. 25

USING the CONTAINET ...ovuiiiii e e e e e eaen 26

4.3, BEAN OVEIVIEW ...uiiitiiit ettt ettt ettt e et e et e e et e e et e e e ta e e aa e e et e e et aeanaenes 27
NaMING DEANSeiiii e 28
Aliasing a bean outside the bean definitioncccoooiiiiiiii e, 28
Instantiating DEANScoei i 29
Instantiation with @ CONSIIUCTOrovvviiiiii e 29
Instantiation with a static factory methodccoeiiii i, 30

Spring Framework
4.0.5.RELEASE Reference Documentation ii

Spring Framework

Instantiation using an instance factory methodcc..cccoviiiiiiiiienne, 30
N B LT o1 oo [T o (o =T PP PT PP 32
Dependency INJECHIONc.uuiiiiii et e e e 32
Constructor-based dependency iNjeCtioncccovvueveiiiieviiiiein e 32
Setter-based dependency INJECHIONcccuiiiiiiiiiiiiiii e, 34
Dependency reSOIUtiON PrOCESSivveiuiueiiiii et e e 35
Examples of dependency inJeCtIONcouieiiiiiiiiieie e 36
Dependencies and configuration in detailocooiiiiiiiiiiii e 39
Straight values (primitives, Strings, and SO ON)cccovvviiiieiiiieeiieeieeeis 39
References to other beans (collaborators)c.ccceveviiiiiiiiieiiince e, 40
INNEI DBANS ..o e 41
L0] {1 Tox 1T0] o 1< 42
Null and empty String ValUESccoviiiiiiii e e e e 44
XML shortcut with the p-NameSPACEccuviiiiiiiiii e 44
XML shortcut with the c-Nnamespaceccooveviiiiiiiiiiiii e 46
Compound PropPerty NAMESuveeunieeiieeie e e e e e e e e e e e eannns 46
USING DEPENAS-0N ...ttt ettt et e e e et e e e e eaes a7
Lazy-initialized DEANSc.uuiiiii e 47
P01 (o)VY/ T g To IR eTo] | F=T o To] = L o) = 48
Limitations and disadvantages of autoOWiringccoovveviiiiineiiinniii e 49
Excluding a bean from autoOWiringcoooiiuiiiiiiiiiii e 50
/=1 1 g To To BT o =3 1 o P 50
Lookup mMethod INJECLIONc.uuiiiieii e 51
Arbitrary method replacementoooiiiiiiiii 53
4.5, BAN SCOPES ..uueuiuitiii ittt ettt ettt ettt ettt aaas 54
The SINGIEION SCOPEeuiiiiie et 55
THE ProtOLYPE SCOPE ...euieiiii ettt e et e e s 55
Singleton beans with prototype-bean dependenciesccccoovviiviiiveiiieviineennnnn, 56
Request, session, and global SeSSIoN SCOPESocovviiiiiiiiiiiiiiiec e 56
Initial web configurationcoooiiii i 57
REQUEST SCOPE ..t 57
SESSION SCOPE ..ttt ee ittt et e e et et e e ta e e et et e et e e e e e 58
GlObal SESSION SCOPE ...cvvtieiiiii ettt e 58
Scoped beans as dependenCIESco.uveviiiiiii i 58
CUSEOIM SCOPES ...ienitieite ittt et e et et et et e ea e e e e e e et e et e et e et e enaeenns 60
Creating & CUSLOM SCOPE ...ccvvuniiiiitieeietii ettt ettt et e e et e e eaa e eeaanns 60
USING @ CUSTIOM SCOPE ..unieiniiiiieeiieeei e e e e e e e e e e e e et e e et e e e e e aa e e eanaeaan s 61
4.6. Customizing the nature of a bean ... 62
Lifecycle CallDackscoouuiiiiii e 62
Initialization CallDACKSooiiiiiiiiei 63
Destruction Callbackscoou i 64
Default initialization and destroy methodscciiiiiiiiiniiiiin e 64
Combining lifecycle mechanismscooveiiiiiiciii e 65
Startup and shutdown callbackscocoiiiiiiiiiii 66

Shutting down the Spring 10C container gracefully in non-web applications
... 68
ApplicationContextAware and BeanNameAWarecc.ovveuiiiiiieeiineiiieeiieeeenne 68
Other AWare INEIfACESiiieiei e e aans 69
4.7. Bean definition INNertanCeoouiiiiiiiiii e 70
4.8. Container EXteNSION POINESc.uiiiiiiiii e 72

Spring Framework

4.0.5.RELEASE Reference Documentation iii

Spring Framework

Customizing beans using a BeanPOStPrOCESSOrccuuveiuiiiiiiieiiieeeiiierineeaineens 72
Example: Hello World, BeanPostProcessor-styleccoooeiiiiiiiiiiiniiinn. 73
Example: The RequiredAnnotationBeanPosStProcessorcccvevvvvevevnenennn. 75

Customizing configuration metadata with a BeanFactoryPostProcessor 75
Example: the Class name substitution PropertyPlaceholderConfigurer 76
Example: the PropertyOverrideConfigurercccoovevviiiieiiiin e 77

Customizing instantiation logic with a FactoryBeanc..ccoevvvvveiiiieviineennnnn. 78

4.9. Annotation-based container configurationcoovieiriiiiiiiiiie e 79

L@V =T o [T =T o P 80

@AULOWITEA ...t e e e et e e e et n e e e e aa s 80

Fine-tuning annotation-based autowiring with qualifiersc.cccooviiiiinn. 83

Using generics as autowiring qualifierscooooveiiiiniiiiin e 89

CUStOMAULOWITECONFIQUIET ...eveiiiie e e e e e e e e e eees 90

(@ ST 0 LU o a0

@PostConstruct and @PreDESIIOYuuiieeiiiiieiie e e 92

4.10. Classpath scanning and managed COMPONENLSoevvueriiiieiiieeiieriineenneennns 92

@Component and further stereotype annotationsc.cocoeviiiiiniiiiieiiiieeineeenn. 93

[T = = Vg T] = LT o PP 93

Automatically detecting classes and registering bean definitions 94

Using filters to CUStOMIZE SCANNING .. .c.uuiiitiiiieie e 95

Defining bean metadata within COMPONENtSoooiiiiiiiiiiiiiii e, 96

Naming autodetected COMPONENTSuiiieniiiiieeie e e e e e 97

Providing a scope for autodetected COMPONENLSccovuiiiiiiiiiiiiiiiiiieeeeeeeen, 98

Providing qualifier metadata with annotationsc.ccooeeiiiiiiiiiin i, 99

4.11. Using JSR 330 Standard ANNOLAtiONScccuuiviinieiiiieiiie e e e e e eeenas 99

Dependency Injection with @Inject and @Namedccooeeiiiiiiiiiiineiieeenn. 100

@Named: a standard equivalent to the @Component annotation 100

Limitations of the standard approachcccooiiiiiiiiin e 101

4.12. Java-based container configurationcooiiiiiiiiiiii e 102

Basic concepts: @Bean and @Configurationc.cccoeviiiiiiiiieii e 102

Instantiating the Spring container using AnnotationConfigApplicationContext 103
SIMPIE CONSIIUCTION ..oeuiiiiiiii e e 103
Building the container programmatically using register(Class<?>...) 104
Enabling component scanning with scan(String...)cccooeveveviiiiiieeiineen, 104
Support for web applications with AnnotationConfigWebApplicationContext
... 105

Using the @Bean annotationcoeuiiiiiiiiiiiiei e ee e e e e e 106
Declaring @ Dean ... 107
Receiving lifecycle callbackscooiiiiiiiiiiiii e, 107
SpPecifying DEAN SCOPE ...vuiiiiiii e 108
Customizing bean NaMINGcouuiiiiiiii e 109
Bean aliaSinNgcuuuiiiiiiiieiiii e 109
Bean deSCIPLION ...iiii e 110

Using the @Configuration annotationcc.iviiuiiiiiiiiiiie e 110
Injecting inter-bean dependenciescooviiiiiiiiiiiiii 110
Lookup mMethod INJECHIONivee e e e e e 111
Further information about how Java-based configuration works internally.... 111

Composing Java-based configurationsccoeuiiiiiiiiiiniii e 112
Using the @Import annotationccceuveiiiiiiiin e e 112
Conditionally including @Configuration classes or @Beans 116

Spring Framework
4.0.5.RELEASE Reference Documentation iv

Spring Framework

Combining Java and XML configurationcccoeeeiiiiiiiiiiineiii e 117

4.13. Bean definition profiles and environment abstractionccooocoiiiiiiiiiiinennnn. 120
4.14. PropertySource ADSIFACTIONcoouuuiiiiiiiii et 120
4.15. Registering a LoadTIMEWEAVETccuuiiiiieiiiiei e e e e e e e e e e eaens 120
4.16. Additional Capabilities of the ApplicationContextcccovvveiiiiiiiniiiineiieeennnn. 120
Internationalization uUSINg MESSAgESOUICEviiiiiiiiiiiiiii e 121
Standard and CUSIOM EVENLSoouuiiiiiiiiiiiii e e 124
Convenient access to [ow-level reSOUICEScooouviiiiiiiiiiiieee e 127
Convenient ApplicationContext instantiation for web applications 128
Deploying a Spring ApplicationContext as a J2EE RARfilec.c.ccovvviiieinns 128
4.17. The BEANFACIONYuniii ittt ettt e e e eenns 129
BeanFactory or ApplicatioNCONIEXE?viiiiiiiieiiiii e 129

Glue code and the evil SINGIETONccvuiiiiiiii e 130

5. RESOUICES ...ttt ettt ettt et et e e e e et e e enns 132
S0 I |11 o o 11 o3 1T o I PP 132
5.2. The ReSOUICe INEITACEcciiiiiiiiiiii e 132
5.3. Built-in Resource implementationsovieuiiiiiiiii e 133
| =TT 11] o= 133
ClasSPatRESOUICEoiiiiiiiiiiii e 133
FIleSYSIEMRESOUITE ...ttt et e e e 134
ServVIEtCONEXIRESOUICEiivuiiiiieii et e et e e e e e eeens 134
INPUESTIEAMRESOUITE ...ivniieiiiei et e e e e e e e e e e e e e e eaneanaeannes 134
BYIEAITAYRESOUITE ...t e e eans 134

5.4, The RESOUICELOAUET .. oovuiiiiiii et e 134
5.5. The ResourceLoaderAware iNtErfacecoovoviuiiiieiiiiiii e 135
5.6. Resources as dependenCiesco.uiiiuiiiiiieii e 136
5.7. Application contexts and Resource pathsccooovviiiiiiiiiiiiiieeci e 137
Constructing application CONEXLS ...vuvuiiiniiiii e e e e e 137
Constructing ClassPathXmlApplicationContext instances - shortcuts 137

Wildcards in application context constructor resource pathsccccoeveeeiiiinees 138
ANE-SEYIE PAtterNS ...ovvniiei e e 138

The Classpath*: portability classpath®: prefixccoovoiiiiiiiiiiiis 139

Other notes relating to WIldCardscovviiiiiiiiiiiii e 139
FileSYyStEMRESOUICE CAVEALSuiviieieiieieiie e e e e e e e e e e et e e eannas 140

6. Validation, Data Binding, and Type CONVEISIONccuiviiuiiiiiiiiiiieeiieeeee e 141
LS00 I [0 o o 11 o3 1T o I PP 141
6.2. Validation using Spring’s Validator interfacec.cccoeveviiiiiiiivii e 141
6.3. Resolving COdES tO EIrrOr MESSAUES ...c.uietueieieiii it e et e e e e e e e e eaaes 143
6.4. Bean manipulation and the BeanWrapperc..oveveiiiiieiiiiiiieeeeie e 144
Setting and getting basic and nested propertiescccoevveiiiiiie i, 144
Built-in PropertyEditor implementationscccooviiiiiiiiiiic e 146
Registering additional custom PropertyEditorscccoovevvviinieiiiiineeiininnnn. 149

6.5. SPring TYPE CONVEISION ...cvvuiiiiiieiiieeee et e e e e e e e e e e e e e e e e e e et e e eean s 152
CONVEIEE SPI L. e et e e e 152
CONVEIEIFACIONY ...ttt 153

LT gLt ol Ofe] V=T o =T ST PPPRTPN 153
ConditionalGeNEriCCONVEITETccuuiiiiieiii e 154
CONVEISIONSEIVICE AP ..o e 154
Configuring @ CONVEISIONSEIVICEcvuuiiiiiieeieeei e et e e e e e e e e e e e e eens 155
Using a ConversionService programmaticallyc.ocoiviiiiiiiiniiiniieee, 156

Spring Framework
4.0.5.RELEASE Reference Documentation Y

Spring Framework

6.6. Spring Field FOrMattingoiiiuiiiiie e e e e e e eees 156
FOrMAatter SPI ... 157
Annotation-driven FOrMAattingoooeuuiiiiiiiiieiii e 158

Format ANNOLAtioN APcooiiiiiiiie e 159
FOrmatterREQISIIY SPI ... e 160
FOrmatterRegISIIar SPI e 160
Configuring Formatting in Spring MVCcooiiiiiiie e 160

6.7. Configuring a global date & time formatcoooiiiiiiiiiii e, 162

6.8. SPriNg Validationiiiiiiiiiii e 164
Overview of the JSR-303 Bean Validation APlc.iiiiiiiiiiiiiiiii e 164
Configuring a Bean Validation Providerccooooiiiiiiiiiie e 165

Injecting @ Validator 165

Configuring Custom CONSLraiNtSoevviiiiiiiieiii e e e e 165

Spring-driven Method Validationccoooiiiiiiiiii e 166

Additional Configuration OPLiONSuiviiiiiiiiiiiiii e 166
Configuring @ DataBiNGerccuuiiiii e e 166
Spring MVC 3 Validationooiiiiiii e 167

Triggering @Controller Input Validationcccoooeiiiiniiiiiiineec, 167

Configuring a Validator for use by Spring MVCccccoiveviiiiiiniii e, 167

Configuring a JSR-303/JSR-349 Validator for use by Spring MVC 168

7. Spring Expression Language (SPEL) ... 170

4% T [1o Yo [U T 1 o] o ISP 170

7.2. FEAUIE OVEIVIEWiiiiiiieieiii ettt ettt ettt et e e e e e e e ennans 170

7.3. Expression Evaluation using Spring’s Expression Interfacecccooovveviiiinnenenn. 171
The EvaluationContext iNterfacCeouuviiiiiiiiiiiiii e 173

TYPE CONVEISION ..ttt ettt et e e e et e e e et e e et e eanaaees 173

7.4. Expression support for defining bean definitionscccoooiviiiiiii, 174
XML based configurationcocouuiiiiiiiiiii e e 174
Annotation-based configurationoii i 175

7.5. Language REfErENCEccouuiiiiiii e 176
Literal EXPrESSIONS ...vuuniiii i e 176
Properties, Arrays, Lists, Maps, INAEXErScc.coiiiiiiiiiiiii e 176
] T T 1] P 177
F N g VA oo) 153 1 U] 1 o IR 177
MEENOOS ... et 178
10 01T 1= 1 (0] £ TP UPTPPTR 178

Relational OPEratorsocveuiiiiiiei e e 178

LOGICAl OPEIALOIS ...ttt e e e e 179

MathematiCal OPEIatOrSiiiiiiiiiieiiii e 179
ST T [.41 o 180
[/ 8L T PP UPTPPPPPR 180
LO70] 0111 B o1 (0] £ PSP 181
VAITADIES ..o 181

The #this and #root variablesccoooiiiii 181
L] o3 T 1PN 182
BeAN FEfEIENCES ... 182
Ternary Operator (If-Then-EIS€)cou i 182
THE EIVIS OPEIALONeiiiiiii ettt ettt e et e e eeeaa e 183
Safe Navigation OPEIatOrcc.uiiiii i e e e e e e e eanaeee 183
COllECtION SEIECHON ... cceveiiieeiie e 184

Spring Framework
4.0.5.RELEASE Reference Documentation vi

Spring Framework

100] {1 Tox 1To] o T = o] =T 1o) o [N 184
EXPression templatingooeeioii e 185

7.6. Classes used in the eXamPpPlesiiiiiiiiii e 185
8. Aspect Oriented Programming With SPringcccooiiiiii i 189
S0 I [1 oo [Fod 1 o] o R PP PP 189
F Y@] oo] (o1 =T o] £ PP 189
Spring AOP capabilities and goalscooceuiiiiiiiiii e 191
AOP PIOXIES ..ottt ettt ettt et a e 192

8.2. @ASPECET SUPPOIT ...ttt ettt e e e et eeena e e enaas 192
Enabling @ASPECI SUPPOIT ...covniiii e e e e e e e 192
Enabling @AspectJ Support with Java configurationc.c.cccoiveennnen. 192

Enabling @AspectJ Support with XML configurationcc...ccoivvinenen. 193

DeClaring @an @SPECTcvuviiiii e 193
Declaring @ POINTCULuiii i e e eees 194
Supported PointCut DESIGNALOIScceuuuiiiiiiieiieii e e 194
Combining poiNtCUt EXPrESSIONSvvveiiieii i e e e e e e e e e eaes 196

Sharing common pointcut definitioNscooeiiiiiiiiiii e 196

EXAMPIES o 198

VA% 11T e [o Lo I oo 1 (o 0 | £ 200

DeClaring @0VICEcoeuuiiiiieii e 201
BefOre @0VICEoiieeieii e 201

AFter returning adViCecooviiiiiiei e 202

After throwing @0VICEccuuiiiiiii e 202

After (finally) AdVICE i 203

F Y (o1 aTo =T Y o R PRSPPI 204

AdVICE PArAMELEIS ...ttt e e e ees 205

ACVICE OFAEIING .eevtneieiii ettt e et e e e e e eees 208
INEFOAUCLIONS .eei et e et e e e e eae e eees 208
Aspect instantiation MOAEISco.uiiiiiiiii 209

B XA e e e 210

8.3. Schema-based AOP SUPPOIT ...couuuiieieee et ee e e e e e e e e e e e ean e eees 211
DecClaring @n @SPECLc.uuiiiiiei et 212
Declarng @ POINTCULiiiiiiee ettt e e et e e e eeees 212
1= Tod b= T TV =T AV o = 214
BefOre @0VICEoieeiiiiei e 214

AFter returning @0VICEuiiiiiiii e 214

After throwing @dVICEccevniiiii i e e e 215

After (finally) 0VICEo.uiiii i 216

Y o 10T o =T L o - PN 216

AdVICE PArAMELEIS .uuiiiiiciiii e e e e e e e e aen 217

AAVICE OFEIING ..ttt ettt e e e e eans 218

T 10T [0 T 1o] 1P 219
Aspect instantiation MOAEISuiiiiiiiii 219
AGVISOIS ettt et e e e e ea 219

B XA e e e 220

8.4. Choosing which AOP declaration style t0 US€ccoveiiiiiiiiiiiiii e, 222
Spring AOP 0OF fUll ASPECEI? ... 222
@Aspectd or XML for SPring AOP? ... 223

T T T o J= 1] o 1o £ o = P 224
8.6. Proxying MeECNANISIMSiiiiiiii ettt e e e e ea e eaes 224

Spring Framework
4.0.5.RELEASE Reference Documentation Vii

Spring Framework

Understanding AOP PrOXIESvuuuiieinieiieeeiieeie et e e e e e e e e e e e e aeans 225

8.7. Programmatic creation of @ASPECtI PrOXi€Scc.uiiiiuiiiiiiiiiiieeieeei e 227
8.8. Using AspectJ with Spring appliCationsooveiiiiiiiiiiiii e 227
Using AspectJ to dependency inject domain objects with Spring 228

Unit testing @Configurable ObJECtSoiiiiiiiiiii e 230

Working with multiple application CONEXISccuviiiiiiiiiiiiiiiie e, 230

Other Spring aspects for ASPECLIccuuiiiiiiiiii e e 231
Configuring Aspectd aspects using Spring 10Coooiiiiiiiiiiiee e, 231
Load-time weaving with AspectJ in the Spring Frameworkccccooveveviinnenes 232

A FirSt @XamMPIE .oeiee e 233

F] oo £ TP PP 236
META-INF/AOD.XIMI c.ouiii e 236

Required libraries (JARS) ..o e 236

Spring CconfigUIAtioNoiiiii e 237
Environment-specific configurationcocoiiiiiiiiiiiii e 239

8.9. FUIMNEr RESOUICES ...t e et e e e e eanes 241
9. SPIING AOP APIS . et 242
LS 0 I [o o [o3 1T o I PP 242
S I oo (oW AN o BT TS o] o 242
1000] g [o7=T o] (= T PP UPTTPTN 242
Operations 0N POINTCULSuiiiiei ittt ettt e e eeaaes 243
ASpect] eXpression POINLCULScvveciieieiei e e er e e e e e e e e e e e eeees 243
Convenience pointcut implementationsc.ooviiiiiiinii e 243
StAtiC POINICULS ...oeitiieiiii e 243

DYNaMIC POINTCULS .ivvniiieiii e e e e e et e e e e e e e e e e eanaees 244

POINTCUL SUPEICIASSES ...t 245
CUSEOM POINICULS ...eeetiei ettt e e e et e e e eaa s 245

9.3. AAVICE APL N SPIiNG ..oieiiiiiie e e e e 245
AVICE lIFECYCIES ..o e 245
AQVICE LYPES IN SPIING .eeeeiiiieiiiii ettt eeaaens 246
Interception around AdVICEcc.iiviiieiiiie e 246

BefOre @0VICEoieeiiiiei e 246

LI LTS T= Lo 1Y T S 247

After REtUrNiNg adVICEocvvuiiiieii e e e e 248
INErOUCEION AAVICE ...t e 249

9.4, AAVISOr APL N SPIING .euniiiiiiieti et e 251
9.5. Using the ProxyFactoryBean to create AOP ProXi€Sccovvvvvieviiieeiiieiiinieninnennn, 252
B CS .ttt e 252
JavaBeaNn PrOPEITIESc.vuuiiiiiii et e e e e et 252
JDK- and CGLIB-based PrOXIEScccuuieiiiieeiieiiiieeeie e ee e e e e e e ean e eeen 253
Proxying INTEITACESc.uuiiii e 254
PrOXYING ClASSES . .oviiiiiiiiiii e 256
UsiNg global @dVISOIScveeiiii i 257

9.6. Concise proxy definitioNS ... 257
9.7. Creating AOP proxies programmatically with the ProxyFactoryc..ccooo. 258
9.8. Manipulating advised ObJECEScvvuiiii i 259
9.9. Using the "auto-proxy"” facilityc..ooeiuiiiiiiii e 260
Autoproxy bean definitionNsoiiiiiiiiii 260
BeanNameAUtOPIOXYCIEALONcuuiieieiiiei e et e e e e e e 261
DefaultAdViSOrAUtOPIOXYCIEALONuiieiiiiii e 261

Spring Framework
4.0.5.RELEASE Reference Documentation viii

Spring Framework

AbstractAdViSOrAUtOPTOXYCIEALON .. ccvvueveiieiieeeieee e e e e e e e e 262

Using metadata-driven auto-proXyingc..eceeieeeueeeieaeieeie e e eeieeeennns 262
9.10. USING TAIgEISOUICESiiitinieiiiiiieeeeti e ettt e et e et e et e e e et eeeae s 264
Hot swappable target SOUIMCESovviiiiiii i 264
P00IING tArget SOUICES ...c..uiiiiiiiie e et e e e eaa e ees 265
Prototype target SOUICESccvuiiiiiiiii e e 266
ThreadLocal target SOUICEScvvuiriii i e e e e e eaeas 267
9.11. Defining NeW AQVICE LYPES .. cuuiiii et 267
.12, FUMNEI TESOUICES ...ietiieiiiieii ettt ettt e e e e e e e et e e e e et e e e e eenaeaeen 267
L0 TR 1= 1T 268
10.1. Introduction tO0 SPriNg TESHNGccuuiirniiiii e 268
O O o 1 O =T 1] o PP PPPPT 268
YT Yo Q@ o =T o1 P 268
ENVIFONMENT ...ttt e e e e e eens 268

B | ST 268

SEIVIEE AP oo 268

POrtlet AP L. e 269

Unit Testing SUPPOIT CIASSESiiiiiiieiiiiiie ettt 269
General ULIILIES ...o.uuiiiiii e e 269

SPIING MVC . e 269

10.3. INtegration TESHNGuu it 269
OVEIVIEW ...ttt ettt e e ettt e e e e ettt e e ettt e e e e e atreeeett e e e eentnaaaaes 269
Goals of INtegration TESHNGcieuuiiiieei e 270
Context management and Cachingc.oooeeuiiiiiiiiiiieiiii e 270
Dependency Injection of test fiXtUresc.coveveiiiiiiiiiii e, 270
Transaction MAaNAQEMENTccuu i e e e e e eaaas 271

Support classes for integration teStiNgoovvveviiiiiiiiiie e 271

N[=@ =TS 1] o ST U o] o L] o fF P 272

PN g1 g 0] £= 1[0] o LS ST 272
Spring Testing ANNOLALIONSuiiiiiiiieiii e 272

Standard AnNotation SUPPOIceeeeiiiiieiee e e e e e 277

Spring JUnit Testing ANNOLALIONSviiuiiiiiiaiie e 278
Meta-Annotation Support for TESINGc..iviiiiiiiiiiiiie e 279

Spring TestContexXt FrameWOrKcooiuiiiiiiiiii e e 280

KeY @DSIraCiONSceiiiii e 281

Context MANAGEMENTiiiiiii e eae e 282
Dependency injection of test fiXtUrescccoevviiiiiii i, 299

Testing request and session scoped beanscccovvviiiiiiiiiii i 301
Transaction MaNAgEMENTcocuuuieiiiiie et 303
TestContext Framework SUPPOrt ClasSEScvevuvveviieiiiiieii e 306

Spring MVC Test Framework ... 308
SEIVEI-SIUE TOSES 1uuiiiiiiiiiii et e e e e e e e e e aens 308
Client-Side REST TESS ..iiiiuiuieiiiiiieeiii et e eeaens 314

PetCliniC EXAMPIE ... et 314
10.4. FUINEI RESOUICES ...cvuiciiieeiiee ettt e e e e et s e e e e e e et s e eaneeeanes 316
[V, DAEA ACCESS ..etueiiieitt ettt ettt et et et ettt e ettt et et et et et e e e e e 317
11. Transaction MaNAGEIMENTc.uuiiii ittt et e e e et e e et e e e eeans 318
11.1. Introduction to Spring Framework transaction managementccccceveveennnn. 318
11.2. Advantages of the Spring Framework’s transaction support model 318
Global trANSACHIONS ... ettt et et eaans 318

Spring Framework
4.0.5.RELEASE Reference Documentation 4

Spring Framework

o o= L (=T g ST Tor £ o] o PP 319
Spring Framework’s consistent programming modelcooviiiiiiiniiinneen. 319
11.3. Understanding the Spring Framework transaction abstractioncc........... 320
11.4. Synchronizing resources with transactionsccccceivevii i, 324
High-level synchronization approach ... 324
Low-level synchronization approachcccoeiiiiiiiiiiiiiiie e 324
TransactionAWareDataSOUICEPTOXYc.uuiiireieeiieiiiieeei e e e e s e e e e e eeaneeeanaees 325
11.5. Declarative transaction Managementoceuuiiiiiiiiiieii e e 325
Understanding the Spring Framework’s declarative transaction implementation... 326
Example of declarative transaction implementationcccocceveviiiiiiieeiinnen, 327
Rolling back a declarative tranSactionccoviiiiiiiiiiii e 331
Configuring different transactional semantics for different beans 332
<EX:AAVICE/> SEHINGS ovniiiiiiiii e e e e e e 334
USING @TranSACIONAIoiieiiiie et e eees 336
@Transactional SEtiNGSovuuiiiiiei e e 340
Multiple Transaction Managers with @Transactionalccccocvivevnnns 341
Custom shortcut anNOtatiONScoeuuiiiiiiiie e 342
Transaction ProPagatioNceeuueieeiriiie et e e et e e e 342
=0 11T =o P 343
REQUITESINEW ..o e e a e 343
[N TS (T P 344
Advising transactional OPEratioNSccuuieiiieiiiieeiieeeiee e e e eaans 344
Using @Transactional With ASPECEJoiiiiiiiiii i 347
11.6. Programmatic transaction managementcoeuuuieieriiieiiiiine e eenieeeennnns 348
Using the TransactionTemplatecoovuiiiiiiiiiie e e 348
Specifying transaction SEttNQScc.uiiiiiiiiiei e 350
Using the PlatformTransactionManagerccoouuiveiiiiiieeiiiiieeeie e 350
11.7. Choosing between programmatic and declarative transaction management 351
11.8. Application server-specific INtEGrationccoociuiiiiiiiiiii e 351
IBM WEDSPRNEIE ..o e 352
Oracle WEDLOGIC SEIVELuiiiiiiii ettt e e e e e e e aanas 352
11.9. Solutions to cOMMON ProbIEMSiiiii e 352
Use of the wrong transaction manager for a specific DataSource 352
11.20. FUIhEr RESOUICES ...ciiitiieeiiiie ettt e et e e b 352
D B) N @ (U o] o [o] ¢ TP PTPPT 353
2 I 0 T [T o) o P 353
12.2. Consistent exception hierarChyooiiiiiiiiiiii e 353
12.3. Annotations used for configuring DAO or Repository classesccoceeevnveennnn. 354
13. Data acCess WIth JDBCiiiiiieiiiieiii ettt et e e e e e et e e e e et e eaneeeees 356
13.1. Introduction to Spring Framework JDBCcccviiiiiieiiiieciieeee e eeee e e 356
Choosing an approach for JDBC database acCesscccovvivuiiiiiiiiiniiiieeennns 356
Package hierarChy ..o 357
13.2. Using the JDBC core classes to control basic JDBC processing and error
NANAIING e e 358
JADCTEMPIALE ..o ettt 358
Examples of JdbcTemplate class usagecccoevvvviiiiiiieiiii i 358
JdbcTemplate best PractiCesoocuviiiiiiiiiii e 360
NamedParameterJdbCTempPlatevviiiiiiiiiiii e 362
Y@] S Cot=T o) i o] g I =10] = L (o P 364
EXECULING STAEMENTS ...ttt e e eeens 366

Spring Framework
4.0.5.RELEASE Reference Documentation X

Spring Framework

[0] T o e 18 1= = 366
Updating the database ... 367
Retrieving auto-generated KeYSccooiuiiiiiiiiiiiii e 368
13.3. Controlling database CONNECLIONScc..iiviiiiiiiieiii e e e e 368
DAABSOUICE ...ttt ettt et e e et et e e e e e 368

(D= U= o 10] £ ot 1] PP 370
SMANDAASOUICEiiiiteii ettt et eees 370
ADSITACIDAIASOUITEiiiiiieeie ettt ettt et e e et e e e e e aa e 370
SingleConNectioNDAataASOUICEviiiiiiiiiiiii e e 370
DriverManagerDataSOUICEcccuueiunieriiieeiiieeeieeete e e e et e e et e e et ae e e eaneeeens 370
TransactionAWwareDataSOUrCEPTOXYviiuuiiiiiiiiiie et 371
DataSourceTranSactioNMAaNAGETcccuuuieiiiiiieeeiii et e e e e 371
NAtVEJADCEXIFACION ..oevviiiiiiii e et e e e e eeeans 371
13.4. JDBC DatCh OPEratiONScceuuiiiiieiiiiei e e e e e 372
Basic batch operations with the JdbcTemplatecooiiiiiiiiii 372
Batch operations with a List of 0bJECtSccoovviviiiiiii e, 373
Batch operations with multiple batches ..., 374
13.5. Simplifying JDBC operations with the SimpleJdbc classesccoovvvvievinnnnee. 375
Inserting data using SiIMpIeJdbCINSErtooviiiiiiii e 375
Retrieving auto-generated keys using SimpleJdbclnsertc.oocoiviiiiiiinnennnn. 376
Specifying columns for a SimpleJdbcInsert ..o, 377
Using SqlParameterSource to provide parameter valuescccoeevvviveennneennnn. 377
Calling a stored procedure with SimpleJddbcCallccooooiiiiiiiiii, 378
Explicitly declaring parameters to use for a SimpleJddbcCallccceviieinnnnn. 380

How to define SOIParametersco.voiviiiiiii e 381
Calling a stored function using SimpleJdbcCallccoooiiiiiiiiien, 382
Returning ResultSet/REF Cursor from a SimpleJdbcCallc.ooooiiiiiiinnnnnn. 382
13.6. Modeling JDBC operations as Java 0bJecCtSccoviviiiiiiiiieiieci e 383
SOIQUETY e ettt et 384
MapPINGSGIQUETYuniiiii ettt e e e e e 384
SIUPAALE ..oeniiii e e 385
SEOrEAPTOCEUUIE ...ttt e e et e e e ae s 386
13.7. Common problems with parameter and data value handlingc.....ccenee.. 389
Providing SQL type information for parametersccccceveviiiiiiiiieiii e 390
Handling BLOB and CLOB ODJECLSoiiiiiiiiiiiiiiie e 390
Passing in lists of values for IN Clauseccooooiiiiiiiiiii e 391
Handling complex types for stored procedure callscoovvvviveiiiiiiinieineeenn. 392
13.8. Embedded database SUPPOITc.uuiiiiiii e 393
Why use an embedded database?cooviiiiiiiiiiiii 393
Creating an embedded database instance using Spring XMLcccooevvvnn. 393
Creating an embedded database instance programmaticallyccccoeevnneeann. 393
Extending the embedded database SUPPOITcooeviiiiiiiiiiiiiiiiee e 394

L LS o R T 394
USING H2 ettt et e e e e 394
USING DEIDY .ottt ettt e e e e e e een 394
Testing data access logic with an embedded databaseccccoeveiiiiiiinnnns 394
13.9. Initializing @ DAtASOUICEoieiiiiiiae et eeens 395
Initializing a database instance using Spring XMLcccviiiiiiiinniiiiiinecin 395
Initialization of Other Components that Depend on the Database 396

14. Object Relational Mapping (ORM) Data ACCESSccuueiiniiiiieiiieeii e e e eeens 398

Spring Framework
4.0.5.RELEASE Reference Documentation Xi

Spring Framework

14.1. Introduction to ORM With SPringccevviiiiii e 398
14.2. General ORM integration coONSIAerationsooceuureeineiiiiieiieee e e 399
Resource and transaction Managementcc.uuuveiiiineeeii e 399
EXCEePLioN transSIationoiiiiiiiii e 400
14.3. HIDEINALE ..ot et e e 400
SessionFactory setup in a Spring CONTAINETuuiiiiiiiiieiiiine e 401
Implementing DAOs based on plain Hibernate 3 APlccoovvviveiiiiiiicceee, 401
Declarative transaction demarCationccovieuiiiiiiiiii e 403
Programmatic transaction demarcationccoovviiiiiniiiiiinn e 405
Transaction management Strategi€sSocvvvveiririiierii e e r e 406
Comparing container-managed and locally defined resourcesccoccueeennnn. 408
Spurious application server warnings with Hibernatecccooooiiinnnnn. 409
I S | L O UPPPTRPPR 410
PersistenceManagerFactory SEIUDcouuoieuiiii e 410
Implementing DAOs based on the plain JDO APl ..o 411
Transaction MaNAGEMENTciiueiiii e e e e e e e e e e e e eaaeeees 413

N [o (0] D= 1= ot A PSPPI TRPPRPIN 414
LA D, JP A i e et a s 415
Three options for JPA setup in a Spring environMentcocceeveveiieeiievenneennn. 415
LocalEntityManagerFactoryBeancc..viiiiiiiiiiiiiieii e 415

Obtaining an EntityManagerFactory from INDIcccooviiiiiniiiiiiineeiinnn. 416
LocalContainerEntityManagerFactoryBeancccooevvveieiiiieiiiieeiineeniees 416

Dealing with multiple persistence UNItsccoooiiiiiiiiiiiic e 418
Implementing DAOs based on plain JPA ... 419
Transaction ManagemMENTuuiiiii e e e e e e e e e eeees 421
JPADHAIECT ...t e 422

15. Marshalling XML uSIiNg O/X MaAPPEISuuiiiiiiiiitiiieee ettt 424
L 700 O [1o To [o 1T o I PP 424
Ease of CONFIQUIAtIONoouuiiiiiii e e 424
1070] g L1 1S (=T 0| A] (= 5 = T = U 424
Consistent EXception HIErarChycooiiiiiiiiii e 424
15.2. Marshaller and Unmarshaller ... 424
= V] = = 424
UNMArSNAIIEE ... e e 425
XMIMAPPINGEXCEPLION ...t e e 426
15.3. Using Marshaller and Unmarshaller ..o 426
15.4. XML Schema-based Configurationccoeveiiiiiiiiiiii e 428
15,5, JAXB ittt et a e aanan 428
JaXD2MArSNAIIEE i 429
XML Schema-based Configurationcccoveviiiiiiiiiiiiiiee e 429

N T OF- L] (o] PP UPTUPT 430
CaStOrMArSNAllEriiiiei e 430
= o 01T P 430
XML Schema-based Configurationcocoeiiiiiiiiiiiiiiiie e 430

15.7. XIMLBEANS ...ceiiiiiii e e 431
XMIBEANSMAISNAIIETiieiiiieee e 431
XML Schema-based Configurationcocoeiiiiiiiiiiiiiiiie e 431

LS TN 11) G USRS 432
JIDXMAISNAIIET ...t 432
XML Schema-based Configurationcocoeiiiiiiiiiiiiiiiie e 432

Spring Framework
4.0.5.RELEASE Reference Documentation Xii

Spring Framework

15,9, XSIIAIM .vuiiii ittt ettt ettt e et et e e e e e et e e e e e e ees 433
XStreamMarshaller ... 433
LY I 4TIV = o PP 435
16. WeD MVC fraAMEWOTIKuiiiiiii ettt e e e e eaanas 436
16.1. Introduction to Spring Web MVC framework ..o, 436
Features of Spring Web MVC ... 437
Pluggability of other MVC implementationsccccoeieiiiieiiiiiii e 438
16.2. The DISPatCherSErVIELcoou i e 438
Special Bean Types In the WebApplicationContextcccoevviiiiiiiiiiineeinene. 441
Default DispatcherServliet Configurationcccoveviiiiiiiieii e, 442
DispatcherServlet Processing SEQUENCEoieuuiiiiiiiiiiaiii et 443
16.3. Implementing CONIOIEIScoouuiiiiiii e 444
Defining a controller with @CONtrolleroovviiiiii e 445
Mapping Requests With @RequestMappinNgcc..oveeuirieiiiiiiiieeiieeeeeeieeeeaen 445
@Control I er's and AOP ProXyingcccuureeiiuiineeieiiineeieieeeeiine e 447
New Support Classes for @RequestMapping methods in Spring MVC 3.1. 447
URI Template Patterns ... e 448
URI Template Patterns with Regular EXpressionscccooovvevivineeiinnnnnn. 449
Path Patternsooooeiiiiii e 450
Patterns with Placeholders ... 450
MatriX Variablesoooeuiiii e 450
Consumable Media TYPES ...cvvvuieeeiieeiiee et e e e e e e e eees 451
Producible Media TYPES ... 452
Request Parameters and Header Valuesc.oovviiiiiiiieiiiieiiiineeeeis 452
Defining @RequestMapping handler methodscccoveviiiiiiiiii e, 453
Supported method argument tyPesScoeu i 453
Supported method return tYPEScoouuiiiiiii e 455
Binding request parameters to method parameters with @RequestParam.. 456
Mapping the request body with the @RequestBody annotation 457
Mapping the response body with the @ResponseBody annotation 458
Creating REST Controllers with the @RestController annotation 459
USING HEPENTILY ..o e 459
Using @ModelAttribute on a methodcooooiviiiiiii e, 459
Using @ModelAttribute on a method argumentccooeeiiiiiiiiineeeeee, 460
Using @SessionAttributes to store model attributes in the HTTP session
DEtWEEN TEQUESTS ..oove i 462
Specifying redirect and flash attributesccoooeii i 462
Working with "application/x-www-form-urlencoded" datac........ 463
Mapping cookie values with the @CookieValue annotation 464
Mapping request header attributes with the @RequestHeader annotation.. 464
Method Parameters And Type CONVErSIONcouueieiniiiinneiiiieiineeiieeennn 465
Customizing WebDataBinder initializationccccooiviiiiiiniiiiineeci, 465
Support for the Last-Modified Response Header To Facilitate Content
CaACRING e 466
Advising controllers with the @ont r ol | er Advi ce annotation 466
Asynchronous ReqUEst PrOCESSING .. .c.uvvuuiiiiieiii i ieeiie e et e e e e e e eanns 467
Exception Handling for ASync REQUESLESc..iiiiuiiiiiiiiiiieeiecei e 468
Intercepting ASYNC REQUESLEScovviiiiiiiiieciei et 469
Configuration for Async Request ProCessingccccuuvvveuveiiieiiiieeiineeninnnns 469
TeStiNg CONLIOIEISeeneeeee et 470

Spring Framework
4.0.5.RELEASE Reference Documentation Xiii

Spring Framework

16.4. Handler MapPingSueeeeniiei e ee e e e e e e e e e s e e e e e e e e e aans 471
Intercepting requests with a HandlerInterceptorccoocoiviiiniiiiniiiiineiiees 471
16.5. RESOIVING VIEWS ...ttt ettt e e et e e s 473
Resolving views with the ViewResolver interfacecccoovvviiiiiiviiin e, 473
Chaining VIEWRESOIVEISuuiiii e 475
REdIreCting t0 VIEWSuuiiiiiii et enees 476
REAINECIVIEW ..vieiei e 476

The redireCt: PrefiX ... e 477

The forward: PrefiX ... 477
ContentNegotiatingVIEWRESOIVEToiviiiiiiiii e 477
16.6. Using flash attribDULESoiiiii e 480
16.7. BUIIAING URIS oot 481
16.8. Building URIs to Controllers and methodscccoveiiiiiiii i, 482
16.9. USING [0CAIES ... e 482
Obtaining Time Zone INfOrmationoooeuuiiiiiiiinie e 483
AcceptHeaderLoCalERESOIVESocvuiiiii e e 483
COOKIELOCAIERESOIVET ... 483
SESSIONLOCAIERESOIVET ... e e e 483

(o Tor-11=T0d g =T aTo 1] [€= (ot=] o] (o] 484
16.10. USING ThEIMES ...ttt e e e e e e e e e ees 484
OVEINVIEW Of tNEIMES .oiiiiiiii e e e een 484
DefiNiNg theMES ...oei i e e 484
TREME FESOIVEIS ..ot et eaa s 485
16.11. Spring’s multipart (file upload) SUPPOITuiiiiiiiiiii e 485
INEFOTUCTION .ot e e e et e et e e et e e e eatn e eaees 485
Using a MultipartResolver with Commons FileUploadc.ccoiiiiiiiiiiiiinnn, 486
Using a MultipartResolver with Servlet 3.0ooiiiiiiiiii 486
Handling a file upload in @ formcooiiiiiiii 486
Handling a file upload request from programmatic clientsccc.ccoevieineennn. 488
16.12. Handling E@XCEPLIONSiiiiiiieieiiii ettt e et eeea e eees 488
HandIErEXCEPLIONRESOIVETciiiiiii e e e 488
@EXCePtONHANAIETiiii e 489
Handling Standard Spring MVC EXCEPLIONScccevuiiiiiiiiiieiiiiiieeceii e 490
Annotating Business Exceptions With @ResponseStatuscccccevveviievennnnne. 491
Customizing the Default Servlet Container Error Pagecoooveviiiiiiiiiiineennns 491
16.13. Convention over configuration SUPPOITvvieieniiiiiiieeiei e 491
The Controller ControllerClassNameHandlerMappingcccooevvvieveiiieriineennnenns 492

The Model ModelMap (ModelANdVIEW)oeiuiiiiiiiiiiiee e 493

The View - RequestToViewNameTranslatorcovovveiiiiniiiiiineiieeceiennn 494
G = Vo = 0 o] oo 495
16.15. Code-based Servlet container initializationc.ccoiiiiiiiiiniieeee, 496
16.16. Configuring SPring MVC ... oo 498
Enabling the MVC Java Config or the MVC XML Namespaceccceeevvnnnnne. 498
Customizing the Provided Configurationc.cocouiiiiiiiiiiii e 499
Configuring INTEICEPLOISvuniiiiii et e 500
Configuring Content Negotiationcc.uiiiiiiiiiiiicie e e e 501
Configuring View CONEIOIEIScoouuiiiiiiiei e 502
Configuring Serving of RESOUICEScoiiuiiiiiiiiiieec e 502
Configuring Path MatChingoovuiiiiiii e e e e 505
mvc:default-serviet-handler ... 506

Spring Framework
4.0.5.RELEASE Reference Documentation Xiv

Spring Framework

More Spring Web MVC RESOUICEScvuuuiiiiiieiiieeiieeeee s e e e et e e e e eeens 507
Advanced Customizations with MVC Java Configccceeeeiiiiiiiiiiiniiiieies 507
Advanced Customizations with the MVC Namespaceccccoeveeeiiiiieeeeiinneeens 508
V=TV (o o g To] (o T = 509
A I [10T [DT i To] o I PP 509
N] /N S Y I TSP 509
VIBW TESOIVEIS ...ttt e e e e e e et e e e b 509
Plain-old JSPS VEISUS JSTL ..iitiiiiiiiiiiiee et a e 510
Additional tags facilitating developmentooooiiiiiiin e 510
Using Spring’s form tag librarycoooiiiiiii e 510
CONFIQUIALION ...t et e e e ea e 510

THE FOIM TG .. ieiiiiiee e e 510

B L=] 101 0 =V 512

The CheCKDOX Tag .. cceuniiiii e 512

The CheCKDOXES tAGiieviiiiiiii e 514

The radiobUttoN tAgovvveieiiiee e 515

The radioDULIONS A0uivernieiiiiei e e 515

THE PASSWOIT TAG oevvnieiiiiie e 515

THE SEIECE TAQ .uvvviiiei e e 516

THE OPLION TAG - .evniiiie i ea s 516

THE OPLONS TAG wevtueiiitiiee it eaaans 517

LI o) =T (== U - T 517

The hidden tagooeenii e 518

TRHE EITOIS LAY iivtniiiiii et 518

HTTP Method CONVEISIONuiiiiiiiieiiiii e 520

L YT 1= o PP 521

0 T (1= TS SSUPPPPRRTN 521
[1= T 01T o[- g o] 1 521

HOW t0 INtEQrate TIlESuniii i e e e 522
UrIBasedViIiEeWRESOIVEToieiiiiieie e 522
ResourceBundleVIEWRESOIVETiiiiiiiiiiiiis e 523
SimpleSpringPreparerFactory and SpringBeanPreparerFactory 523

17.4. VeloCity & FrEEMAIKETcouuuiiiiiii it 524
[1= T 01T o[- g o] 1 524
Context CoNfIQUIALIONcoui e 524
Creating tEMPIALEScoouii e 525
Advanced conNfIgUIatioNcoovuuiiriiir e e 525
VEIOCILY.PIrOPEITIES ...ttt 526

L LT 1Y = T =] PN 526

Bind support and form handlingcccooiiriiiiiii 526

The DiNd MACIOSouiiii e 527

SiImple DINAING ..o 527

Form input generation MAaCIOSocvuuieeiiieeiiiie e e e e e ean s 528

HTML escaping and XHTML complianCecccceviiiiiiiiiiiiiiiniiineeieeenn, 531

ST] R PP RRSUPPPPRPN 532
Y T £ Ao o £ 532
Bean definitioNS ..o e 532

Standard MVC controller COAeociiiiiiiiiiiiiiie e 532

Convert the model data to XMLc.uiiiiiiiiiiii e 533

Defining the VIEW Propertiescc.viiiiiiiiiii e 534

Spring Framework
4.0.5.RELEASE Reference Documentation XV

Spring Framework

Document transformMationooouuiiiiiiiiiii e 534
SUMIMIBITY ettt ettt et ettt et e et e et e e e e e e et e et e et eenaaennas 534
17.6. Document VIEWS (PDF/EXCEI)ciiiiiiiiiiiie et 535
T To [N Tl 1o o ER OO 535
Configuration and SELUPceuuiiii i 535
Document view definitionNsooveuiiiiiii e 535
100]1170]|1=Y oo o [PPSR 536
Subclassing for EXCEl VIEWSoiouiiiiiiii e 536
Subclassing fOr PDF VIEWScceuuiiiiiiiiee et 538
N - T o= T oL £ 538
DEPENUENCIES ...ttt et et e e e et e e e eaa s 538
CONFIGUIALION oottt 539
Configuring the VIEWRESOIVETccoiiiiiiiii e 539
Configuring the VIBWS i 539
ADOUL REPOIt FIlES ..o e 539
Using JasperReportsSMUItiFOrMatVieWccocvuviviniiiiiieiie e eeeeeees 540
Populating the MOdelANAVIBWcoouiiiiiiiiiiie e 540
Working With SUD-REPOISccoouiiiiiiiiii e 541
Configuring SUb-Report FIleSocvviiiiii e 541
Configuring Sub-Report Data SOUICEScc.uiiiiiiiiiiiii e 542
Configuring EXporter PArametersooieuuiiieiiiiieeei et 542
17.8. FEEA VIBWS ...ttt ettt e e et e e et e e enaes 543
17.9. XML Marshalling VIBWcouuiiiiiiii et e 544
17.20. JSON MaAPPING VIBW ...uiiiiiiiieieiii ettt ettt ettt e e e e e e e abi e eenees 544
18. Integrating with other web framewWorksoovvuiiiiiii i 545
18.1. INTFOAUCTION ..iei ettt et e e et et e et e e e e eaaas 545
18.2. CommON CONFIGUIALIONciiiiiieiiii et e e ees 546
18.3. JAVASEIVElr FACES 1.2 ..ottt et et 547
SpringBeanFacesELRESOIVEr (JSF 1.24) ..o 547
FaCeSCONEXIULIIS ...t e e 547
18.4. APACNE STIULS 2.X .uuiiiiiiiiii i e e e e e e e e e e e e et e e e e anaee 548
18,5, TAPESIIY DX ettt e e aa e 548
18.6. FUINEI RESOUICES ...ccvuiiiiieeiii ettt et e e e e e e e et s e ean e e ean s 548
19. Portlet MVC FrameEWOrIKooiiiiiiiiiiii e e e 549
TR I [10T [U Tox i o] I PP 549
Controllers - The C in MVC ... e 550
VIEWS - The V IN IMVC oo e 550
WED-SCOPEA DBANS ... e 550
19.2. The DispatCherPOrtelui i 550
19.3. The VIEWRENAEIEerSErVIETuiiiiiiiiie e 552
19.4. CONMIOIBIS ..o ettt eaa s 553
AbstractController and PortletContentGeneratorcovvvveieiiviiiiiinieeiiineeeenn, 554
Other SIMple CONLIOIIEIScoveiie e e e 555
Command CONLIOIEISuuiie e e e e 555
PortletWrappingCoNtrollEroi i 556
19.5. HandIer MapPinNgSuueeeeniiiiieeiiee e e et e e e e e e e e e e e et e e e e aaan 556
PortletModeHaNdIerMappingcc.. e 557
ParameterHandlerMappingc..uu oo 557
PortletModeParameterHandlerMappingcc.oveveuiieieiieiiiieeie e e e 558
Adding HandlerINterCePLOrso.u i e 558
Spring Framework
4.0.5.RELEASE Reference Documentation XVi

Spring Framework

HandlerinterceptorAdapLerivii e e e e 559
ParameterMappingINterCePIOrc.u it e 559
19.6. Views and resolving them ... 559
19.7. Multipart (file upload) SUPPOITcveeieei e 560
Using the PortletMultipartReSOIVEroiiiiiiiii e 560
Handling a file upload in @ form ..o 561
SRS I o =Yg o [T g To T3t =Y o] 1o g 564
19.9. Annotation-based controller configurationcccoooiiiiiiiii e 564
Setting up the dispatcher for annotation SUPPOItc..uuvviiiiiiiiiiiiiineeeiieeeene, 564
Defining a controller with @CoONtrollercoovviiiiii e 565
Mapping requests with @RequesStMapPINgcc.uvrieuiiiiiiiie e 566
Supported handler method argumentsooveiiiiiiiiiiii e 567
Binding request parameters to method parameters with @RequestParam 569
Providing a link to data from the model with @ModelAttributecccs 569
Specifying attributes to store in a Session with @SessionAttributes 570
Customizing WebDataBinder initializationcccooveviiiiiiiin e, 570
Customizing data binding with @InitBindercccooeiiiiiiiiiiinieee, 571
Configuring a custom WebBindinglnitializercccooooiviiiiiiin, 571

19.10. Portlet application deploymentooiiiiiiiiiii e 571
20. WeEDSOCKEE SUPPOIT ...ttt e et e e eeens 573
b0 5 T [o1 o o (U] 1T o I PP 573
WebSocket Fallback OPtioNScc..oiiiiiiiiiiic e e 573

A Messaging ArChItECIUIEcoeuiiii e 574
Sub-Protocol Support in WebDSOCKELooiiiiiiiiiiiiie e 574
Should | Use WEDSOCKEL?coveiiiiiii e 574
20.2. WEDSOCKEL AP ...eiiieiiii ettt et e e e e e e 575
Create and Configure a WebSocketHandlerccooooiiiiiiiiiiii, 575
Customizing the WebSocket Handshakeccooooviiiiiiiiiie e, 576
WebSocketHandler DECOIrationooceuuiieuiiiiiiieeie e 577
Deployment CONSIAEIAtIONSc..uuiiiiiiieiiiii et 577
Configuring the WebSocket ENQINEco.uviiiiiiiiiii e 579
20.3. S0ckJS Fallback OPLIONSc..uiiiiiiii e 581
OVENVIEW Of SOCKJIS ... e e e e een 581
ENADIE SOCKIS ... 582
HTTP Streaming in IE 8, 9: Ajax/XHR VS IFramecccooiiiiiiiiiiiiiiieeeiees 582
Heartheat MESSAUESuu ittt 584
Serviet 3 ASYNC REQUESES ...ovvuiiiiiicii e e e e e e e e ees 584
CORS Headers for SOCKJIS ... e 584
20.4. STOMP Over WebSocket Messaging Architectureccoooevveiiieeiiiinineieninnnn. 585
OVEIVIEW OFf STOMP ...ttt e e et e eeees 585
Enable STOMP over WebS0oCKetoooouiiiiiiiii e 586
FIOW Of MESSAUES ...ceviiiiiiiii ettt e e 588
Annotation Message Handlingcouuveiiioiiiiie e e 589
SENAING MESSAGES -..ceuiiiiiiit ettt ettt et e e et e e et e e e e e 590
SIMPIE BIOKET ...t et e e 591
Full-Featured BroKeriiiiiiii e 591
Connections To Full-Featured BroKerc.ooiiiuiiiiiiiiiieeeee e 592

Y0 11 0 T=T o o= o T o PRSI 593
USEr DESHNALIONS ..oovuiiiiiiiiiieeei e e e e 593
AppPlicatioNCONtEXt EVENLSuiiiiiiiee et ea e 594

Spring Framework
4.0.5.RELEASE Reference Documentation XVii

Spring Framework

Configuration and PerformancCecoovuiiiiiiiicii e 595
Testing Annotated Controller Methodscooooiiiiiii e, 597
Y B 101 (Yo = 11T o O PP OPPTTR 598
21. Remoting and web Services USING SPriNgc.ueveeiiiiiiei e e e 599
b0 T [o o (U Tod 1o o PP UUPTRUPTRN 599
21.2. Exposing services USING RMIiiiiiiiiiii e 600
Exporting the service using the RmiServiceEXporterccooovvveeviiviiiievineennnn, 600
Linking in the service at the client ... 601
21.3. Using Hessian or Burlap to remotely call services via HTTPcccviiiiiiinnnnnn. 601
Wiring up the DispatcherServlet for Hessian and €O.cccovvviiiviiiviiieeeiee, 601
Exposing your beans by using the HessianServiceExporterccoooeviieinns 602
Linking in the service on the Client ... 603
L LS o 0 =04 = o 603
Applying HTTP basic authentication to a service exposed through Hessian or
210 =T o SO SOPPPTOUTPPPPTRPPINt 603
21.4. Exposing services using HTTP INVOKEIScc.uveiuiiiiiiiieii e e eee e e 604
EXposing the Service ODJECToiiui i 604
Linking in the service at the ClIeNt ..., 605
21.5. WED SEIVICES ...t 605
Exposing servlet-based web services using JAX-WS ..o 606
Exporting standalone web services using JAX-WS ... 607
Exporting web services using the JAX-WS RI's Spring SUpportcccoeeevvnneeen. 607
Accessing web services using JAX-WS ... 608
206, IV ittt e e e e e e et a e e e e eeearrans 609
Server-side ConfigUrationoiiiiiiiiiic e 609
Client-side confiQUIatioNc.uiiiiiiii e 610
207, AMQIP et 611
21.8. Auto-detection is not implemented for remote interfacesccooeeviveviieennnnn. 611
21.9. Considerations when choosing a technologyccoovviiiiiiiiiiiiie e, 611
21.10. Accessing RESTTful services on the Clientc.oooeiiiiiiiiinieiiii e, 612
TS f =T 0] o] = L= 612
Working With the URI ... 615
Dealing with request and response headersccovvveiveiiiieiiiieiineeeiees 615
HTTP MeSSage CONVEISION ...uvuiiiiiiiieiiieiieee et e e e e e e e e e et e e e aeeanaeees 616
StringHIPMESSAgECONVEITETiiiiiiiiiieei e 616
FOrmHttpMessSageCONVEITErccvuiiiiii e 617
ByteArrayHttpMessageCONVEITErvvuiiieiie e e 617
MarshallingHttpMesSSageCONVEITETceeuniiiiiiii e 617
MappingJackson2HttpMessageConverter (or
MappingJacksonHttpMessageConverter with Jackson 1.X)ccccoeevvnen. 617
SourceHttpMesSageCONVEITENciuiiiiei e 617
BufferedimageHttpMessageCoNVErterocovuuiieeiiiiiiieiiiieeeeei e 617
ASYNC RESITEMPIALE ...oovuiiiiieii e e e e e e 617
22. Enterprise JavaBeans (EJB) iNtEGrationocoouiiiiiiiiiiiiiiee e 619
205 T [o1 o o (U] 1T o I PP 619
22.2. ACCESSING EJBS ..ouiiiiiiiiii it 619
1000] g [o7=T o] (= T PP UPTPPTN 619
ACCESSING 10CAI SLSBS ...couiiiiiiiiiiieiei e 619
ACCESSING FEMOLE SLSBS ...iiuiiiiiiiiii e e e e e e e e e e e e e e e e eanaeees 621
Accessing EJB 2.x SLSBs versus EJB 3 SLSBScociiiiiiiiiiie, 621

Spring Framework

4.0.5.RELEASE Reference Documentation XViii

Spring Framework

22.3. Using Spring’s EJB implementation support Classescccovvvvveviiiviiiievineennnn, 622
EJB 3 INJECLION INTEICEPLONuietiieie et e e 622

23. IMS (JAVA MESSAQJE SEIVICE) ..eevuiiiiitieieiiii ettt ettt e e et e e et e e ettt e e e eat e e eentnaaaees 623
P22 0 I 1o o [T 1 o] o PRSP 623
23.2. USING SPriNg JMS ..o 623
JMSTEMPIALE .ottt e s 623

1070]] o= 1 o] o - PSP 624
Caching Messaging RESOUICESccuuiiiiiiiiiiiiii e eae e 624
SingleConNNECHIONFACIONYcoouuuiiiiiiii e 624
CachingConNeCtiONFACIONYiveiiiiii i e e e 625
Destination ManagemMENtiiuuiiii i 625
Message LisStener CONTAINEISviiiiiiieiiiiiie et e e 626
SimpleMessageListenerCOoNntaiNerc..cveviiiiiieeie e 626
DefaultMessageListenerCONtaINeruuviiuiiiiieeiieec e 626
Transaction MaNAGEMENTcouuuuiiiiii et et e e 626
23.3. SENAING @ MESSATE ...cevueiiieiiiieieii e et e et e e e et e e e e et e e e e et e e eanns 627
USING MESSAJE CONVEITEIS . ..uuiitiiiii et e ettt ettt e et e e e et e e ea e eanas 628
SessionCallback and ProducerCallbackcccooiiiiiiiiiiiiiiiiiici e 629
23.4. RECEIVING @ MESSAQE .vuuiirueiinieiiieeei e ettt e et e e e e e et e e et e e et e e e e e e e et e e eeannas 629
SYNChrONOUS RECEPLIONuniiiiiiii et e e e e 629
Asynchronous Reception - Message-Driven POJOSccoovviviviiiiiiiniiiiiieeieeeenn, 629

the SessionAwareMessageListener interfacecccocevvviiiiiii i, 630

the MesSageLiStenNerAdAPLEr 631
Processing messages within transactionscccovvveiiiieiiiii e 633
23.5. Support for JCA Message ENdPointsoeveeiiiiiiiiiiieii e 633
23.6. IMS NAMESPACE SUPPOIT ..cunieiieieeie ettt et e e et e en e eenns 635
F N Y S PRTTTRP 639
P22 I 1 oo o [T 1 o] o S PPP 639
24.2. Exporting your beans t0 JMX ... 639
Creating an MBEANSEIVEcouuuiiiiiiiii et 641
Reusing an existing MBEANSEIVETciiiuieiiiieiiie e e e e e e e e e e e e eanees 641
Lazy-initialized MBEANSoouuiiiiiiii e 642
Automatic registration of MBEANSc.iiiiiiiiiiiiii e 642
Controlling the registration behaviorccooviiiiiii e 642
24.3. Controlling the management interface of your beanscccoooviiiiiiiiineennnn. 644
the MBeanInfoAssembler Interfacecovvviiiiiiiiii i 644
Using Source-Level Metadata (JDK 5.0 annotations)ccccoeevevevenieiineinnenne, 644
Source-Level Metadata TYPES ...ccuuiiiiiiii it 646

the AutodetectCapableMBeanIinfoAssembler interfacecccooeivviiiiiiinnnnn.o. 647
Defining management interfaces using Java interfacescccocceevevinevinennnnn. 648
Using MethodNameBasedMBeanInfoAssemblerc.cooviiiiiiiiiiiiiiinees 650
24.4. Controlling the ObjectNames for your beanscccoiiiiiiiii e, 650
Reading ObjectNames from Properti€scccovevuiieiiiiieiiiieiii e e e e e 650
Using the MetadataNamingStrategyooveuieeiiiiiieiiee e 651
Configuring annotation based MBean exportccoooiveiiiiiniiiiiinie e, 652
24.5. JSR-160 CONNECIOIScitiieiiietii et ettt et e et et et et e et n e e e eeneees 653
Server-sSide CONNECLOISiiuuiiii i e et et e e e e e e aa e 653
Client-Side CONNECLOISuiieeieiie et e e e e e e e e a e e eee 654
JMX over Burlap/HeSSIan/SOAPcoouiie it e e 654
24.6. Accessing MBeans Via PrOXIESccuuiiiuiiiiiiiiiieii et 654

Spring Framework
4.0.5.RELEASE Reference Documentation Xix

Spring Framework

P2 G\ (o] 1 To%= Vi o o PP 655
Registering Listeners for NOtIfiCatioNsSocoeuiiiiiiiiiiiii e 655
Publishing NOIfICAtIONSccuuuiiiiii e e 659

24.8. FUMNEI RESOUICESuiiiiiiiiee ittt e e e e b 661

25, JCA CCl ittt ettt 662

b2 0 T [o1 o o (U] 1T o I PP 662

PSR ©1o] 1o 11] o T O O 662
ConNector CONFIQUIALIONieuuiiii e e e e e 662
ConnectionFactory configuration in SPringccoeveeuiieiiiiinie e 663
Configuring CCl CONNECHIONSivveieie e e e e e e aan s 663
Using a single CCl CONNECTIONuiiuiiiiiieii e 664

25.3. Using Spring’s CCl aCCESS SUPPOITuiieriiieiiiiie ettt 665
[Ry=Tolo] £ Iedo] 11Y7=T =1 (o] o NPT 665
the CCITEMPIALE ... e 666
(DY@ U] o] e o ST 667
Automatic output record generationcocc.uieviiiiiiiie e 668
SUMIMIBITY ettt et et et e et et e et e et e e e e e e et e et e et eenaennnas 668
Using a CCI Connection and Interaction direCtlycccooveviiiiiiiiiiiniiiiinnenes 669
Example for CciTemplate USAgEcceuiiiiiiiiiiiiei e e e e 670

25.4. Modeling CCI access as operation ODJECEScc.uiiiiiiiiiiiiiiiee e 672
MappingRECOrdOPEIALIONiiiiiiiiei et 672
MappingCommMAIEaOPErAtIONc.uiiiiieiii e e e e e e e e e e e aeeees 673
Automatic output record generationco.uoeeeiiieiie i 674
SUMMETY .ottt ettt et e e e et r et e e e e e et e e en e eena e 674
Example for MappingRecordOperation USAQEcc..veveeiereiieeiieeiieeeineeeineanenns 674
Example for MappingCommAreaOperation USAJEc.coeeeuuieeuneeeinieeiiaeennaaennn 676

25.5. TraNSACHONS ..ieuuiiii it e et e e e e e e e e 678

26. EMAIL .o e aee 680

26.1. INEFOTUCTIONiieee et et e e et et e e et eaea e eeanas 680

26.2. USBOE ..oeiiiiiiiiii et 680
Basic MailSender and SimpleMailMessage USageccoevvveveieeiinieeinieeinnennnn 681
Using the JavaMailSender and the MimeMessagePreparatorccccocevunen. 682

26.3. Using the JavaMail MimeMessageHelper ..o, 683
Sending attachments and inline reSOUICEScccuuiviiiieiiiieiie e 683

AMACHMENTS . e 683

ININE FESOUICES ..ivviiiii ettt e e e e e e e et e e e e eannas 684

Creating email content using a templating libraryc.occooiiiiiiiiiinee, 684

A Velocity-based example ... 684

27. Task Execution and SChedulingooiiiiiiiiiiiii e 688

P2 A S 1o o [T 1 o o PRSP 688

27.2. The Spring TaskExecutor abStractioncooeeuiiiiiiiiiiiiiiee e 688
TASKEXECULOT TYPES ...eiiiiieiiiii ettt et e et ettt e ettt e e e et e e e e ena e eeens 688
USING @ TASKEXECULOL . ..uuiiieiii et e e e e e e e e e e e e e et e e eaeeeees 689

27.3. The Spring TaskScheduler abstractioncooooiiiiiiiiiii e 690
the Trigger INErfACEo.ui i e 691
Trigger implementationsScouuiieii i 691
TaskScheduler Implementationscoooii i 692

27.4. Annotation Support for Scheduling and Asynchronous Execution 692
Enable scheduling annotationscocoviiiiiiiiii i 692
The @Scheduled ANNOLALIONiuiiiiii e ens 693

Spring Framework
4.0.5.RELEASE Reference Documentation XX

Spring Framework

The @ASYNC ANNOLALIONiieeiii e e e e e e e aaaees 694
Executor qualification With @ASYNCiiiuiiiiei e 695
27.5. The Task NAMESPACEccuuuiiiiiiiiieiiii et 695
The scheduler eIEMENLcoiiiii e 695
The eXeCutor ElemMENT ... e 696
The scheduled-tasks €lementoooiiiiii e 697
27.6. Using the Quartz SCheAUIETccuuiiiiiei e 697
Using the JObDetailBeanooouiiiiiiiiie e 697
Using the MethodInvokingJobDetailFactoryBeanccccoevviiiiiiiiiiiiinneeenn, 698
Wiring up jobs using triggers and the SchedulerFactoryBeanc.c.cccuveen. 699
28. Dynamic 1angUAQgE SUPPOIT «.....ieun ittt ettt e et et et e et e e et e e et e e e e eanaeeeen 701
b= 20 T [o o (U] 1T o I PP 701
28.2. A IrSt @XAMPIE et 701
28.3. Defining beans that are backed by dynamic languagescccoccoiviiiiniinnnn. 703
107e] 10114 [o] s [oTe] g [o1=T o] £ NP P PPN 703
The <lang:language/> elementcoooeuiiiiiiii e 704
Refreshable beans ... 704
Inline dynamic language source files ... 706
Understanding Constructor Injection in the context of dynamic-language-
backed DEANS ... 707
JRUDY DEANS ..o 708
GrOOVY DEANS ...iiiiiii e 710
Customizing Groovy objects via a callbackcco.ooiiiiii 711
BeanShell DEANSoiii i 712
P o= o - 1o 1 PSPPSR 713
Scripted Spring MVC Controllerscooouiiiiiii e 713
Scripted ValIdAtOrSuuiiiiiiiiei e 714
28.5. Bits @nd DODScoiiiiii 715
AOP - advising scripted DEANSoiiiiiiiiiiii e 715
S Telo] o] [o H PSP TUPPTTR 715
28.6. FUIMNEIr RESOUICESuiieiiiiiiee ittt e e 716
AS R 02 T o [Y o i = Toi 1 o] o HR PRSP 717
b2 5 T [o1 o o (U] 1T o I PP 717
29.2. Understanding the cache abstractionc.cccoiviiii i, 717
29.3. Declarative annotation-based cachingc.cocoiiiiiiiiiiin e, 718
@Cacheable anNNOTALIONcceiiiiiie e 718
Default Key GeNEerationoieeuiiiiiiieiii e e e e e e e e e 718
Custom Key Generation Declarationccoooeuiiiiiiiiiiiiieeeeei 719
Conditional CACNING ...c.vuniiiiii e 719
Available caching SpEL evaluation contextccceveviiiieiiieeiiiieeieeeieeen 720
(@] Or=To] g1 V) =1] 4 10] =110] o NN 721
@CaCheEVICt anNNOtALIONcviviiiiie e e 721
(@2 @%=Tod o TaTo =TT aTo] ¢= L1 o o IR 722
Enable caching annotations ... 722
USiNg CUSTOM @NNOTALIONS ... cieeviieiiiiii e 724
29.4. Declarative XML-based cachingccoooviiiiiiiiiiii e 724
29.5. Configuring the cache Storagecooiuiiiiiiiiiii e 725
JDK ConcurrentMap-based Cacheccooiiiiiiiiiii e 725
EhCache-based Cachecoooiiiiiiiiiii e 726
GemFire-based CaChe ... 726
Spring Framework
4.0.5.RELEASE Reference Documentation XXi

Spring Framework

Dealing with caches without a backing storeccccooveviviiiiiiiiie e, 726
29.6. Plugging-in different back-end Cachescoooiiiiiiiiiii e 727
29.7. How can | set the TTL/TTI/Eviction policy/XXX feature?ccccooveviiiiieiiiiinnnnnnns 727

RV LY o o 1T Lo [T =P 728
30. Migrating to Spring FrameWwork 4.0c.uiiiuiiiie e 729
31. ClaSSIC SPrNG USAQE ...cevuuiiiitinieeiiit ettt e ettt e ettt e ettt e e e eab e et eat e e e eat e eeentnaeaeens 730

31.1. ClaSSIC ORM USAQJE ...ccvuuiiiueiiiieiieeeiee e e e e e e s e e e et e et e e et e e et s e eaaeeaneeaens 730
HIDEINALE ..o e 730

the HibernateTemplate ... 730
Implementing Spring-based DAOs without callbacksc.cccoevvviieennnnns 731

N 5 1O TP PP P TR P UUPPPPPPTTIN 732
JdoTemplate and JAODAOSUPPOIrt ..oovveniiiiiiieiiiii e 732

TP A e 733
JpaTemplate and JpabDaoSUPPOTr T ..ooeeeiiiiiiiiieee e 734

31.2. ClassSiC SPriNg MVC ...t 735
30 IR FEN 11 T U= Vo [735

JMSTEMPIALE ... e e eeaa e ees 736

Asynchronous Message RECEPLIONviiiiiiiiiiiiiiieicei e 736

1070]] o= 1 o] o - PSP 736

Transaction ManageMENTc...iiuii i e eees 736

32. ClassiC SPring AOP USAQJEcceuuuiiiiiiii ittt e 737
32.1. POINtCUt APL iN SPIING covvneiii e e e e e e e e e e e e e e eaneeeaes 737

1000] g [o7=T o] (= T PP UPTTPTN 737

Operations 0N POINTCULSuiiiiei ittt ettt e e eeaaes 738

ASpect] eXpression POINTCULScvveciiei it ee e er e e e e e e e e e e eees 738

Convenience pointcut implementationscooviiiiiinii e 738

StAtiC POINICULS ...oeitiieiiii e 738
DYNaMIC POINTCULS .ivvniiieiii e e e e e et e e e e e e e e e e eanaees 739

POINTCUL SUPEICIASSES ...t 740

CUSEOM POINICULS ...eeetiei ettt e e e et e e e eaa s 740
32.2. AAVICE APL N SPIING .uuiirniiii e e e e e e 740

AVICE lIfFECYCIES ..o et e 740

ACVICE TYPES IN SPIING .eneieiiiiieieii et et aaens 741

Interception around AdVICEcc.iiviiieiiiie e 741
BefOre @0VICEoieeiiiiei e 741
LI LTS T= Lo 1Y T S 742
After REtUrNiNg adVICEccvvviiii i e e e 743
INErOUCEION AAVICE ...t e 744
32.3. AAVISOr API N SPIING oeitiiiiiiiiee et e e e 746
32.4. Using the ProxyFactoryBean to create AOP ProXi€scccoveveveeeineeeiniernnnennnn 747

B CS ittt e eaas 747

JavaBeaNn PrOPEITIESc.vuuiiiiiii et e e e 747

JDK- and CGLIB-based PrOXIEScccuuiiiiiiieiieiiii e e ee e e e e e ean e een 748

Proxying INTEITACESc.uuiiii e e 749

PrOXYING ClASSES . .oviiiiiiiiiii e 751

UsiNg global @dVISOIScveeiiii i 752
32.5. Concise proxy definitioNSc..oiiiuiiiiii e 752
32.6. Creating AOP proxies programmatically with the ProxyFactoryccc.cc...... 753
32.7. Manipulating advised ODJECESocvuuiiii i 754
32.8. Using the "autoproxy” facilityoooeiiiiuiiiii e 755

Spring Framework
4.0.5.RELEASE Reference Documentation XXii

Spring Framework

Autoproxy bean definitioNsoooviiiiiii 755
BeanNameAUtOPIOXYCIEaALOrc.uiiuiii e eaes 756
DefaultAdViSOrAUtOPIOXYCIEALONcevvuineeieiiiieeeeii et e e e e e e 756
AbstractAdViSOrAUtOPIOXYCIEALON .. cvvvueviiieiieeiiieee e e e e e e e e e 757

Using metadata-driven auto-proXyingc.eeeereeueeiieei e eei e eeieeeennns 757

32.9. USING TAIgEISOUICESciitiiieiiiii ettt ettt e et ettt e e et e e e s 759

Hot swappable target SOUIMCESovviiiiiii i 760

P00IING tArget SOUICES ...c..uiiiiiiiie e et e e e eaa e ees 760

Prototype target SOUICESccuuiiiiiiii e 761

ThreadLocal target SOUICEScvvunieeii it e e e e e e 762

32.10. DefiniNg NEW AAVICE TYPESeuniiiiieiiiee et e e e e eens 762
32.11. FUIMNEE FESOUICES ...civuiiiiieeee ettt ettt e e e e et s e et e e et e e e e e eennas 762
33. XML Schema-based configurationcoceeiiiiiiiiiii e 764
I3 T I [o1 o To [FTod 1o o PP UUPTRUPTRN 764
33.2. XML Schema-based configurationccooeiiiiiiiiiiiiniii e 764

Referencing the SChEMASccovviiiiiiii e 764

the ULl SChEMA ... e 765
SULICONSTANT/> .o 766
<ULl Property-path/> ... 767
SULLPIOPEITIES/> ..ot e e 769
ST 1 B 1S3 7 PP 770
ST 1] 0= o 770
SULILSEL/> e e e 771

the JEE SCREMIA ..eui i e 772
<jee:indi-lookup/> (SIMPIE) ...cvveei e 772
<jee:jndi-lookup/> (with single JNDI environment setting)ccceeveunnees 773
<jee:jndi-lookup/> (with multiple JNDI environment settings) 773
<jee:jndi-lookup/> (COMPIEX) ..ueeenieii e 773
<jee:local-sIsh/> (SIMPIE) ...ccvnie 774
<jee:local-sISh/> (COMPIEX) ...cieieiiiii e 774
<JEEIrEMOLE-SISH/> oo 774

the 1ang SCheMA e 775

the JMS SCREMA ... e 775

the tx (transaction) SChEM@ccouiiiii e 776

the 0P SCREMA ... e 776

the CONtEXE SCREMA . .ouiiii e e e 777
<property-placeholder/> ... 777
<aNNOtatioN-CoNfIQ/> ... 777
<COMPONENT-SCAN/S .oeiiiiiieii et e e e e een s 778
<I0Ad-tIME-WEAVEI>oiiiiiii e 778
<SPriNG-CONfIQUIEA/> ... e 778
<MBEAN-EXPOM/> ..oiiiiii e 778

the 100l SCNEMAiiii e e 778

the JADC SChEMA ... e 778

the CaChe SChEMAcoieii e e 778

the Deans SChEM@A i e 779

34. Extensible XML @QUtNOIINGoiiinii e e e e 780
K T [o1 o o [] 1T o I PP 780
34.2. AUthoring the SChEMAcoviii e 780
34.3. Coding a NamespaceHaNdIErc.. i 781

Spring Framework
4.0.5.RELEASE Reference Documentation XXiii

Spring Framework

34.4. BeanDefiNitiONParSEIccouuiiiiiiii e 782
34.5. Registering the handler and the schema ... 783
META-INF/SPring.handlers ..o 783
META-INF/SPrNG.SChEMASccviiiiiiiei e e 784
34.6. Using a custom extension in your Spring XML configurationcc..cc.eeee. 784
34.7. Me@tier EXAMPIES ...uu it 784
Nesting custom tags within CUSIOM tagSovvvniiiiiiiiiiicc e 785
Custom attributes on normal elementsc.oveeuiiiiiiiiiii e 789
34.8. FUMNEr RESOUICESuuiiiiiieiiee ettt e e e e e e et e e e n e e e e an e eeeen 792
RG] o 1 o [793
T I [o1 o o [FTod 1o o PP UP PP UUPTRUPTRN 793
35.2. the DINA T8G .oevveiiieii e 793
35.3. the €SCaAPEBOAY A . ..cvuiieiieii i 794
35.4. the hasSBINAEITOIS TAgcceuiiiiiiiii e 794
35.5. the htMIESCAPE TAG .evvuiiiiiiiiiieiii et 794
35.6. the MESSATE TAQ ...evvvnieiii it e e e e e e e 795
35.7. the NestedPath tagccuu i 796
35.8. the themME T80 .oovvni i e 796
35.9. the transform tagco.viii i 797
35.10. the Ul T8G .. e 797
35.11. the @VAI LT8G .evvtniiiiiiiei e 798
36. SPriNG-TOrMLEIA ...ooiee e e e 799
36.1. INIFOTUCTION ...ttt et e e et e e e et eaea e eeanas 799
36.2. the CheCKDOX Tag ...ccvviiiiii e e 799
36.3. the CheCKbOXES taQ ...uovvvniiei i e 800
36.4. The EITOIS TAG ..uieeieiiiie ittt e e e e e ees 802
36.5. the fOMM LAY oevvniieiii e 803
1T T (g (ST T Lo =Y o T = Vo [P 804
36.7. the INPUL TAG . .ieenieieie et e e s 804
36.8. the aDEI TAG ..vvn e 806
1T I (T T o] o 1T o T - T [807
36.10. the OPLIONS LAY ...eevniiiieiii ettt e et e et e e e aaeeeanns 808
36.11. the PASSWOIT TAG .evvueiiiii ettt et e et e e 809
36.12. the radiobUON TAQovveiii e 810
36.13. the radioDUIONS TAG .. .cevuiiiiiiie e e e e 811
36.14. the SEIECT LAY .eevvneiiiiii e 813
36.15. the tEXIArEA TAQ . .vvvuiiereieii i e e e e 814

Spring Framework
4.0.5.RELEASE Reference Documentation XXV

Part |I. Overview of Spring Framework

The Spring Framework is a lightweight solution and a potential one-stop-shop for building your
enterprise-ready applications. However, Spring is modular, allowing you to use only those parts that you
need, without having to bring in the rest. You can use the loC container, with any web framework on
top, but you can also use only the Hibernate integration code or the JDBC abstraction layer. The Spring
Framework supports declarative transaction management, remote access to your logic through RMI or
web services, and various options for persisting your data. It offers a full-featured MVC framework, and
enables you to integrate AOP transparently into your software.

Spring is designed to be non-intrusive, meaning that your domain logic code generally has no
dependencies on the framework itself. In your integration layer (such as the data access layer), some
dependencies on the data access technology and the Spring libraries will exist. However, it should be
easy to isolate these dependencies from the rest of your code base.

This document is a reference guide to Spring Framework features. If you have any requests, comments,
or questions on this document, please post them on the user mailing list or on the support forums at
http://forum.spring.io/.

http://forum.spring.io/

Spring Framework

1. Getting Started With Spring

This reference guide provides detailed information about the Spring Framework. It provides
comprehensive documentation for all features, as well as some background about the underlying
concepts (such as "Dependency Injection™) that Spring has embraced.

If you are just getting started with Spring, you may want to begin with the lighter "Getting Started" guides
that are available from http://spring.io. As well as being easier to digest, these guide are very task
focused. They also cover other projects from the Spring portfolio that you might want to consider when

solving a particular problem.

Getting Started Building a RESTful Web Service would be an excellent first choice to get your feet wet.

Spring Framework
4.0.5.RELEASE Reference Documentation

https://spring.io/guides
http://spring.io
https://spring.io/guides/gs/rest-service/

Spring Framework

2. Introduction to Spring Framework

Spring Framework is a Java platform that provides comprehensive infrastructure support for developing
Java applications. Spring handles the infrastructure so you can focus on your application.

Spring enables you to build applications from "plain old Java objects" (POJOs) and to apply enterprise
services non-invasively to POJOs. This capability applies to the Java SE programming model and to
full and partial Java EE.

Examples of how you, as an application developer, can use the Spring platform advantage:

» Make a Java method execute in a database transaction without having to deal with transaction APIs.
* Make a local Java method a remote procedure without having to deal with remote APIs.

» Make a local Java method a management operation without having to deal with IMX APIs.

* Make a local Java method a message handler without having to deal with IMS APIs.

2.1 Dependency Injection and Inversion of Control

Background

"The question is, what aspect of control are [they] inverting?" Martin Fowler posed this question
about Inversion of Control (IoC) on his site in 2004. Fowler suggested renaming the principle to
make it more self-explanatory and came up with Dependency Injection.

For insightinto loC and DI, refer to Fowler’s article at http://martinfowler.com/articles/injection.html.

Java applications —a loose term that runs the gamut from constrained applets to n-tier server-side
enterprise applications — typically consist of objects that collaborate to form the application proper. Thus
the objects in an application have dependencies on each other.

Although the Java platform provides a wealth of application development functionality, it lacks the
means to organize the basic building blocks into a coherent whole, leaving that task to architects and
developers. True, you can use design patterns such as Factory, Abstract Factory, Builder, Decorator,
and Service Locator to compose the various classes and object instances that make up an application.
However, these patterns are simply that: best practices given a name, with a description of what the
pattern does, where to apply it, the problems it addresses, and so forth. Patterns are formalized best
practices that you must implement yourself in your application.

The Spring Framework Inversion of Control (IloC) component addresses this concern by providing a
formalized means of composing disparate components into a fully working application ready for use.
The Spring Framework codifies formalized design patterns as first-class objects that you can integrate
into your own application(s). Numerous organizations and institutions use the Spring Framework in this
manner to engineer robust, maintainable applications.

2.2 Modules

The Spring Framework consists of features organized into about 20 modules. These modules are
grouped into Core Container, Data Access/Integration, Web, AOP (Aspect Oriented Programming),
Instrumentation, and Test, as shown in the following diagram.

Spring Framework
4.0.5.RELEASE Reference Documentation 3

http://martinfowler.com/articles/injection.html

Spring Framework

;{' Spring Framework Runtime

Data Access/Integration Web

JDBEC ORM WebSocket Serviet

OXM JMS

_ Portlet
Transactions

Core Container

Core Context

Figure 2.1. Overview of the Spring Framework
Core Container

The Core Container consists of the Core, Beans, Context, and Expression Language modules.

The Core and Beans modules provide the fundamental parts of the framework, including the IoC and
Dependency Injection features. The BeanFact ory is a sophisticated implementation of the factory
pattern. It removes the need for programmatic singletons and allows you to decouple the configuration
and specification of dependencies from your actual program logic.

The Context module builds on the solid base provided by the Core and Beans modules: it is a means
to access objects in a framework-style manner that is similar to a JNDI registry. The Context module
inherits its features from the Beans module and adds support for internationalization (using, for example,
resource bundles), event-propagation, resource-loading, and the transparent creation of contexts by,
for example, a servlet container. The Context module also supports Java EE features such as EJB,
JMX ,and basic remoting. The Appl i cat i onCont ext interface is the focal point of the Context module.

The Expression Language module provides a powerful expression language for querying and
manipulating an object graph at runtime. It is an extension of the unified expression language (unified
EL) as specified in the JSP 2.1 specification. The language supports setting and getting property values,
property assignment, method invocation, accessing the context of arrays, collections and indexers,
logical and arithmetic operators, named variables, and retrieval of objects by name from Spring’s loC
container. It also supports list projection and selection as well as common list aggregations.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS and Transaction modules.

Spring Framework
4.0.5.RELEASE Reference Documentation 4

Spring Framework

The JDBC module provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding
and parsing of database-vendor specific error codes.

The ORM module provides integration layers for popular object-relational mapping APIs, including JPA,
JDO, and Hibernate. Using the ORM package you can use all of these O/R-mapping framewaorks in
combination with all of the other features Spring offers, such as the simple declarative transaction
management feature mentioned previously.

The OXM module provides an abstraction layer that supports Object/XML mapping implementations for
JAXB, Castor, XMLBeans, JiBX and XStream.

The Java Messaging Service (JMS) module contains features for producing and consuming messages.

The Transaction module supports programmatic and declarative transaction management for classes
that implement special interfaces and for all your POJOs (plain old Java objects).

Web

The Web layer consists of the Web, Web-Servlet, WebSocket and Web-Portlet modules.

Spring’s Web module provides basic web-oriented integration features such as multipart file-upload
functionality and the initialization of the IoC container using servlet listeners and a web-oriented
application context. It also contains the web-related parts of Spring’s remoting support.

The Web-Servlet module contains Spring’s model-view-controller (MVC) implementation for web
applications. Spring’s MVC framework provides a clean separation between domain model code and
web forms, and integrates with all the other features of the Spring Framework.

The Web-Portlet module provides the MVC implementation to be used in a portlet environment and
mirrors the functionality of Web-Servlet module.

AOP and Instrumentation

Spring’s AOP module provides an AOP Alliance-compliant aspect-oriented programming
implementation allowing you to define, for example, method-interceptors and pointcuts to cleanly
decouple code that implements functionality that should be separated. Using source-level metadata
functionality, you can also incorporate behavioral information into your code, in a manner similar to that
of .NET attributes.

The separate Aspects module provides integration with AspectJ.

The Instrumentation module provides class instrumentation support and classloader implementations
to be used in certain application servers.

Test

The Test module supports the testing of Spring components with JUnit or TestNG. It provides consistent
loading of Spring ApplicationContexts and caching of those contexts. It also provides mock objects that
you can use to test your code in isolation.

2.3 Usage scenarios

The building blocks described previously make Spring a logical choice in many scenarios, from applets
to full-fledged enterprise applications that use Spring’s transaction management functionality and web
framework integration.

Spring Framework
4.0.5.RELEASE Reference Documentation 5

Spring Framework

L | | | | Integration
Form Multipart Dynamic with JSP
Binding to
Controllers Resolver Domain Model Velocity, SLT.
| | . PDF, Excel
WebApplication Context
Sending Remote
Email Aocsea
Custom domain logic
Declarative Transactions
for POJOs
ORM Mappings
Tomcat Servlet Container | Custom DAO/Repositories

Figure 2.2. Typical full-fledged Spring web application

Spring’s declarative transaction management features make the web application fully transactional, just
as it would be if you used EJB container-managed transactions. All your custom business logic can be
implemented with simple POJOs and managed by Spring’s IoC container. Additional services include
support for sending email and validation that is independent of the web layer, which lets you choose
where to execute validation rules. Spring’s ORM support is integrated with JPA, Hibernate and and
JDO; for example, when using Hibernate, you can continue to use your existing mapping files and
standard Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the web-
layer with the domain model, removing the need for Act i onFor s or other classes that transform HTTP
parameters to values for your domain model.

Spring Framework
4.0.5.RELEASE Reference Documentation 6

Spring Framework

Web frontend using
Struts or Tapestry

WebApplication Context

Custom domain logic

Declarative Transactions
for POJOs

ORM Mappings
Tomcat Servlet Container Custom DAO/Repositories

Figure 2.3. Spring middle-tier using a third-party web framework

Sometimes circumstances do not allow you to completely switch to a different framework. The Spring
Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built with Struts, Tapestry, JSF or other Ul frameworks can be integrated with a Spring-
based middle-tier, which allows you to use Spring transaction features. You simply need to wire up your
business logic using an Appl i cati onCont ext and use a WebAppl i cati onCont ext to integrate
your web layer.

Spring Framework
4.0.5.RELEASE Reference Documentation 7

Spring Framework

JAX RPC Client Hessian Client Burlap Client RMI Client

Transparent Remote Access

Custom domain logic

Tomcat Serviet Container

Figure 2.4. Remoting usage scenario

When you need to access existing code through web services, you can use Spring’s Hessi an-,
Bur | ap-, Rm - or JaxRpcPr oxyFact ory classes. Enabling remote access to existing applications
is not difficult.

EJB Access Layer
(using Sisbinvokers)

Spring-managed EJBs
(using AbstractEnterpriseBean)

Application Server (e.g. WebSphere, WeblLogic, JBoss)

Figure 2.5. EJBs - Wrapping existing POJOs

The Spring Framework also provides an access and abstraction layer for Enterprise JavaBeans,
enabling you to reuse your existing POJOs and wrap them in stateless session beans for use in scalable,
fail-safe web applications that might need declarative security.

Spring Framework
4.0.5.RELEASE Reference Documentation 8

Spring Framework

Dependency Management and Naming Conventions

Dependency management and dependency injection are different things. To get those nice features of
Spring into your application (like dependency injection) you need to assemble all the libraries needed (jar
files) and get them onto your classpath at runtime, and possibly at compile time. These dependencies
are not virtual components that are injected, but physical resources in a file system (typically). The
process of dependency management involves locating those resources, storing them and adding them
to classpaths. Dependencies can be direct (e.g. my application depends on Spring at runtime), or indirect
(e.g. my application depends on conmons- dbcp which depends on conmons- pool). The indirect
dependencies are also known as "transitive" and it is those dependencies that are hardest to identify
and manage.

If you are going to use Spring you need to get a copy of the jar libraries that comprise the pieces of
Spring that you need. To make this easier Spring is packaged as a set of modules that separate the
dependencies as much as possible, so for example if you don’'t want to write a web application you
don't need the spring-web modules. To refer to Spring library modules in this guide we use a shorthand
naming convention spri ng-* or spri ng-*.j ar, where * represents the short name for the module
(e.g. spring-core, spring-webnmvc, spring-j ns, etc.). The actual jar file name that you use is
normally the module name concatenated with the version number (e.g. spring-core-4.0.5.RELEASE .jar).

Each release of the Spring Framework will publish artifacts to the following places:

» Maven Central, which is the default repository that Maven queries, and does not require any special
configuration to use. Many of the common libraries that Spring depends on also are available
from Maven Central and a large section of the Spring community uses Maven for dependency
management, so this is convenient for them. The names of the jars here are in the form spri ng- *-
<versi on>. j ar and the Maven groupld is or g. spri ngf r amewor k.

* In a public Maven repository hosted specifically for Spring. In addition to the final GA releases, this
repository also hosts development snapshots and milestones. The jar file names are in the same form
as Maven Central, so this is a useful place to get development versions of Spring to use with other
libraries deployed in Maven Central. This repository also contains a bundle distribution zip file that
contains all Spring jars bundled together for easy download.

So the first thing you need to decide is how to manage your dependencies: we generally recommend the
use of an automated system like Maven, Gradle or lvy, but you can also do it manually by downloading
all the jars yourself. We provide detailed instructions later in this chapter.

Spring Dependencies and Depending on Spring

Although Spring provides integration and support for a huge range of enterprise and other external tools,
it intentionally keeps its mandatory dependencies to an absolute minimum: you shouldn’t have to locate
and download (even automatically) a large number of jar libraries in order to use Spring for simple use
cases. For basic dependency injection there is only one mandatory external dependency, and that is
for logging (see below for a more detailed description of logging options).

Next we outline the basic steps needed to configure an application that depends on Spring, first with
Maven and then with Gradle and finally using lvy. In all cases, if anything is unclear, refer to the
documentation of your dependency management system, or look at some sample code - Spring itself
uses Gradle to manage dependencies when it is building, and our samples mostly use Gradle or Maven.

Spring Framework
4.0.5.RELEASE Reference Documentation 9

Spring Framework

Maven Dependency Management

If you are using Maven for dependency management you don’t even need to supply the logging
dependency explicitly. For example, to create an application context and use dependency injection to
configure an application, your Maven dependencies will look like this:

<dependenci es>
<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<ver si on>4. 0. 5. RELEASE</ ver si on>
<scope>runt i ne</ scope>
</ dependency>
</ dependenci es>

That's it. Note the scope can be declared as runtime if you don’t need to compile against Spring APls,
which is typically the case for basic dependency injection use cases.

The example above works with the Maven Central repository. To use the Spring Maven repository
(e.g. for milestones or developer snapshots), you need to specify the repository location in your Maven
configuration. For full releases:

<repositories>
<reposi tory>
<i d>i 0. spri ng. repo. maven. rel ease</i d>
<url>http://repo.spring.iolrelease/</url>
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

For milestones:

<repositories>
<reposi tory>
<i d>i 0. spring. repo. maven. n | est one</ i d>
<url >http://repo.spring.io/mlestone/</url>
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

And for snapshots:

<repositories>
<reposi tory>
<i d>i 0. spri ng. repo. maven. snapshot </ i d>
<url >http://repo.spring.iolsnapshot/</url>
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
</repositories>

Maven "Bill Of Materials" Dependency

It is possible to accidentally mix different versions of Spring JARs when using Maven. For example,
you may find that a third-party library, or another Spring project, pulls in a transitive dependency to an
older release. If you forget to explicitly declare a direct dependency yourself, all sorts of unexpected
issues can arise.

Spring Framework
4.0.5.RELEASE Reference Documentation 10

http://maven.apache.org/

Spring Framework

To overcome such problems Maven supports the concept of a "bill of materials" (BOM) dependency.
You can import the spri ng- f r amewor k- bomin your dependencyManagenent section to ensure
that all spring dependencies (both direct and transitive) are at the same version.

<dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>org. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-framework-bom</artifactld>
<versi on>4. 0. 5. RELEASE</ ver si on>
<t ype>ponx/type>
<scope>i nmport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

An added benefit of using the BOM is that you no longer need to specify the <ver si on> attribute when
depending on Spring Framework artifacts:

<dependenci es>
<dependency>
<groupl d>org. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-web</artifactld>
</ dependency>
<dependenci es>

Gradle Dependency Management

To use the Spring repository with the Gradle build system, include the appropriate URL in the
repositories section:

repositories {
mavenCentral ()
/1 and optionally..
maven { url "http://repo.spring.iol/release" }

You can change the repositories URL from /rel ease to /m | estone or /snapshot as
appropriate. Once a repository has been configured, you can declare dependencies in the usual Gradle
way:

dependenci es {
conpi | e("org. springfranmework: spring-context:4.0.5. RELEASE")
t est Conpi | e("org. spri ngframework: spring-test:4.0.5. RELEASE")
Ivy Dependency Management

If you prefer to use lvy to manage dependencies then there are similar configuration options.

To configure Ivy to point to the Spring repository add the following resolver to your i vysetti ngs. xm :

Spring Framework
4.0.5.RELEASE Reference Documentation 11

http://www.gradle.org/
http://ant.apache.org/ivy

Spring Framework

<resol ver s>
<i bi bl'i o nane="i 0. spring.repo. naven. rel ease"
n2conpati bl e="true"
root="http://repo.spring.iolrel ease/"/>
</resol vers>

You can change the r oot URL from/r el ease/ to/ ni | est one/ or/snapshot/ as appropriate.

Once configured, you can add dependencies in the usual way. For example (ini vy. xm):

<dependency org="org. springfranmework"
nane="spring-core" rev="4.0.5. RELEASE" conf="conpile->runtinme"/>

Distribution Zip Files

Although using a build system that supports dependency management is the recommended way to
obtain the Spring Framework, it is still possible to download a distribution zip file.

Distribution zips are published to the Spring Maven Repository (this is just for our convenience, you
don’t need Maven or any other build system in order to download them).

To download a distribution zip open a web browser to http://repo.spring.io/release/org/springframework/
spring and select the appropriate subfolder for the version that you want. Distribution files end -
di st . zi p, for example spri ng-franmewor k- 4. 0. 5. RELEASE- RELEASE- di st . zi p. Distributions
are also published for milestones and snapshots.

Logging

Logging is a very important dependency for Spring because a) it is the only mandatory external
dependency, b) everyone likes to see some output from the tools they are using, and c) Spring integrates
with lots of other tools all of which have also made a choice of logging dependency. One of the goals
of an application developer is often to have unified logging configured in a central place for the whole
application, including all external components. This is more difficult than it might have been since there
are so many choices of logging framework.

The mandatory logging dependency in Spring is the Jakarta Commons Logging API (JCL). We compile
against JCL and we also make JCL Log objects visible for classes that extend the Spring Framework.
It's important to users that all versions of Spring use the same logging library: migration is easy because
backwards compatibility is preserved even with applications that extend Spring. The way we do this
is to make one of the modules in Spring depend explicitly on conmons- | oggi ng (the canonical
implementation of JCL), and then make all the other modules depend on that at compile time. If you are
using Maven for example, and wondering where you picked up the dependency on commons- | oggi ng,
then it is from Spring and specifically from the central module called spri ng- cor e.

The nice thing about conmons- | oggi ng is that you don’t need anything else to make your application
work. It has a runtime discovery algorithm that looks for other logging frameworks in well known places
on the classpath and uses one that it thinks is appropriate (or you can tell it which one if you need to).
If nothing else is available you get pretty nice looking logs just from the JDK (java.util.logging or JUL
for short). You should find that your Spring application works and logs happily to the console out of the
box in most situations, and that's important.

Not Using Commons Logging

Unfortunately, the runtime discovery algorithm in conmons- | oggi ng, while convenient for the end-
user, is problematic. If we could turn back the clock and start Spring now as a new project it would use

Spring Framework
4.0.5.RELEASE Reference Documentation 12

http://repo.spring.io/release/org/springframework/spring
http://repo.spring.io/release/org/springframework/spring
http://repo.spring.io/milestone/org/springframework/spring
http://repo.spring.io/snapshot/org/springframework/spring

Spring Framework

a different logging dependency. The first choice would probably be the Simple Logging Facade for Java
(SLF4J), which is also used by a lot of other tools that people use with Spring inside their applications.

There are basically two ways to switch off cormons- | oggi ng:

1. Exclude the dependency from the spri ng- core module (as it is the only module that explicitly
depends on commons- | oggi ng)

2. Depend on a special conmons- | oggi ng dependency that replaces the library with an empty jar
(more details can be found in the SLF4J FAQ)

To exclude commons-logging, add the following to your dependencyManagenent section:

<dependenci es>
<dependency>
<groupl d>org. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<versi on>4. 0. 5. RELEASE</ ver si on>
<excl usi ons>
<excl usi on>
<groupl d>conmons- | oggi ng</ gr oupl d>
<artifact!|d>comons-|oggi ng</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

Now this application is probably broken because there is no implementation of the JCL API on the
classpath, so to fix it a new one has to be provided. In the next section we show you how to provide an
alternative implementation of JCL using SLF4J as an example.

Using SLF4J

SLF4J is a cleaner dependency and more efficient at runtime than conmons- | oggi ng because it uses
compile-time bindings instead of runtime discovery of the other logging frameworks it integrates. This
also means that you have to be more explicit about what you want to happen at runtime, and declare it
or configure it accordingly. SLF4J provides bindings to many common logging frameworks, so you can
usually choose one that you already use, and bind to that for configuration and management.

SLF4J provides bindings to many common logging frameworks, including JCL, and it also does the
reverse: bridges between other logging frameworks and itself. So to use SLF4J with Spring you need
to replace the commons- | oggi ng dependency with the SLF4J-JCL bridge. Once you have done that
then logging calls from within Spring will be translated into logging calls to the SLF4J API, so if other
libraries in your application use that API, then you have a single place to configure and manage logging.

A common choice might be to bridge Spring to SLF4J, and then provide explicit binding from SLF4J to
Log4J. You need to supply 4 dependencies (and exclude the existing conmons- | oggi ng): the bridge,
the SLF4J API, the binding to Log4J, and the Log4J implementation itself. In Maven you would do that
like this

Spring Framework
4.0.5.RELEASE Reference Documentation 13

http://www.slf4j.org
http://slf4j.org/faq.html#excludingJCL

Spring Framework

<dependenci es>

<dependency>
<groupl d>org. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<versi on>4. 0. 5. RELEASE</ ver si on>
<excl usi ons>

<excl usi on>
<groupl d>conmons- | oggi ng</ gr oupl d>
<artifact!|d>commons-|oggi ng</artifactld>
</ excl usi on>

</ excl usi ons>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>jcl-over-slf4j</artifactld>
<versi on>1. 5. 8</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-api</artifactld>
<versi on>1. 5. 8</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1o0g4j12</artifactld>
<versi on>1. 5. 8</ ver si on>

</ dependency>

<dependency>
<gr oupl d>| og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<version>1. 2. 14</ ver si on>

</ dependency>

</ dependenci es>

That might seem like a lot of dependencies just to get some logging. Well it is, but it is optional, and it
should behave better than the vanilla conmons- | oggi ng with respect to classloader issues, notably if
you are in a strict container like an OSGi platform. Allegedly there is also a performance benefit because
the bindings are at compile-time not runtime.

A more common choice amongst SLF4J users, which uses fewer steps and generates fewer
dependencies, is to bind directly to Logback. This removes the extra binding step because Logback
implements SLF4J directly, so you only need to depend on two libraries not four (j cl - over - sl f 4] and
| ogback). If you do that you might also need to exclude the sif4j-api dependency from other external
dependencies (not Spring), because you only want one version of that API on the classpath.

Using Log4J

Many people use Log4j as a logging framework for configuration and management purposes. It's efficient
and well-established, and in fact it's what we use at runtime when we build and test Spring. Spring
also provides some utilities for configuring and initializing Log4j, so it has an optional compile-time
dependency on Log4j in some modules.

To make Log4j work with the default JCL dependency (cormons- | oggi ng) all you need to do is put
Log4j on the classpath, and provide it with a configuration file (1 og4j . properti es orl og4j . xnl in
the root of the classpath). So for Maven users this is your dependency declaration:

Spring Framework
4.0.5.RELEASE Reference Documentation 14

http://logback.qos.ch
http://logging.apache.org/log4j

Spring Framework

<dependenci es>
<dependency>
<groupl d>org. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<versi on>4. 0. 5. RELEASE</ ver si on>
</ dependency>
<dependency>
<gr oupl d>| og4j </ gr oupl d>
<artifactld>log4j</artifactld>
<version>1. 2. 14</ ver si on>
</ dependency>
</ dependenci es>

And here’s a sample log4j.properties for logging to the console:

| og4j . r oot Cat egor y=I NFO, st dout

| og4j . appender. st dout =or g. apache. | og4j . Consol eAppender

| og4j . appender. st dout . | ayout =or g. apache. | og4j . Pat t er nLayout

| 0g4j . appender . st dout . | ayout . Conver si onPatt er n=%d{ ABSOLUTE} %p % %{2}:% - %dMm

| og4j . cat egory. org. spri ngf ramewor k. beans. f act or y=DEBUG

Runtime Containers with Native JCL

Many people run their Spring applications in a container that itself provides an implementation
of JCL. IBM Websphere Application Server (WAS) is the archetype. This often causes problems,
and unfortunately there is no silver bullet solution; simply excluding conmons- | oggi ng from your
application is not enough in most situations.

To be clear about this: the problems reported are usually not with JCL per se, or even with conmons-
| oggi ng: rather they are to do with binding conmons- | oggi ng to another framework (often Log4J).
This can fail because commons- | oggi ng changed the way they do the runtime discovery in between
the older versions (1.0) found in some containers and the modern versions that most people use now
(1.1). Spring does not use any unusual parts of the JCL API, so nothing breaks there, but as soon as
Spring or your application tries to do any logging you can find that the bindings to Log4J are not working.

In such cases with WAS the easiest thing to do is to invert the class loader hierarchy (IBM calls it "parent
last") so that the application controls the JCL dependency, not the container. That option isn't always
open, but there are plenty of other suggestions in the public domain for alternative approaches, and
your mileage may vary depending on the exact version and feature set of the container.

Spring Framework
4.0.5.RELEASE Reference Documentation 15

Part Il. What’s New In
Spring Framework 4.x

Spring Framework

3. New Features and Enhancements in Spring
Framework 4.0

The Spring Framework was first released in 2004; since then there have been significant major revisions:
Spring 2.0 provided XML namespaces and AspectJ support; Spring 2.5 embraced annotation-driven
configuration; Spring 3.0 introduced a strong Java 5+ foundation across the framework codebase, and
features such as the Java-based @onf i gur ati on model.

Version 4.0 is the latest major release of the Spring Framework and the first to fully support Java 8
features. You can still use Spring with older versions of Java, however, the minimum requirement has
now been raised to Java SE 6. We have also taken the opportunity of a major release to remove many
deprecated classes and methods.

A migration guide for upgrading to Spring 4.0 is available on the Spring Framework GitHub Wiki.

3.1 Improved Getting Started Experience

The new spring.io website provides a whole series of "Getting Started" guides to help you learn Spring.
You can read more about the guides in the Chapter 1, Getting Started With Spring section in this
document. The new website also provides a comprehensive overview of the many additional projects
that are released under the Spring umbrella.

If you are a Maven user you may also be interested in the helpful bill of materials POM file that is now
published with each Spring Framework release.

3.2 Removed Deprecated Packages and Methods

All deprecated packages, and many deprecated classes and methods have been removed with version
4.0. If you are upgrading from a previous release of Spring, you should ensure that you have fixed any
deprecated calls that you were making to outdated APIs.

For a complete set of changes, check out the API Differences Report.

Note that optional third-party dependencies have been raised to a 2010/2011 minimum (i.e. Spring 4
generally only supports versions released in late 2010 or later now): notably, Hibernate 3.6+, EhCache
2.1+, Quartz 1.8+, Groovy 1.8+, and Joda-Time 2.0+. As an exception to the rule, Spring 4 requires the
recent Hibernate Validator 4.3+, and support for Jackson has been focused on 2.0+ now (with Jackson
1.8/1.9 support retained for the time being where Spring 3.2 had it; now just in deprecated form).

3.3 Java 8 (as well as 6 and 7)

Spring Framework 4.0 provides support for several Java 8 features. You can make use of lambda
expressions and method references with Spring’s callback interfaces. There is first-class support for
j ava. ti me (JSR-310), and several existing annotations have been retrofitted as @Repeat abl e. You
can also use Java 8's parameter name discovery (based on the - par anet er s compiler flag) as an
alternative to compiling your code with debug information enabled.

Spring remains compatible with older versions of Java and the JDK: concretely, Java SE 6 (specifically,
a minimum level equivalent to JDK 6 update 18, as released in January 2010) and above are still fully
supported. However, for newly started development projects based on Spring 4, we recommend the
use of Java 7 or 8.

Spring Framework
4.0.5.RELEASE Reference Documentation 17

https://github.com/spring-projects/spring-framework/wiki/Migrating-from-earlier-versions-of-the-spring-framework
https://github.com/spring-projects/spring-framework/wiki
http://spring.io
http://spring.io/guides
http://docs.spring.io/spring-framework/docs/3.2.4.RELEASE_to_4.0.0.RELEASE/
http://jcp.org/en/jsr/detail?id=310

Spring Framework

Note that the Java 8 bytecode level (-t ar get 1. 8, asrequired by - sour ce 1. 8)isonly fully supported
as of Spring Framework 4.0. In particular, Spring 3.2 based applications need to be compiled with a
maximum of Java 7 as the target, even if they happen to be deployed onto a Java 8 runtime. Please
upgrade to Spring 4 for Java 8 based applications.

3.4JavaEE6 and 7

Java EE version 6 or above is now considered the baseline for Spring Framework 4, with the JPA 2.0
and Servlet 3.0 specifications being of particular relevance. In order to remain compatible with Google
App Engine and older application servers, it is possible to deploy a Spring 4 application into a Servlet
2.5 environment. However, Servlet 3.0+ is strongly recommended and a prerequisite in Spring’s test
and mock packages for test setups in development environments.

© Note

If you are a WebSphere 7 user, be sure to install the JPA 2.0 feature pack. On WebLogic 10.3.4
or higher, install the JPA 2.0 patch that comes with it. This turns both of those server generations
into Spring 4 compatible deployment environments.

On a more forward-looking note, Spring Framework 4.0 supports the Java EE 7 level of applicable
specifications now: in particular, JMS 2.0, JTA 1.2, JPA 2.1, Bean Validation 1.1, and JSR-236
Concurrency Utilities. As usual, this support focuses on individual use of those specifications, e.g. on
Tomcat or in standalone environments. However, it works equally well when a Spring application is
deployed to a Java EE 7 server.

Note that Hibernate 4.3 is a JPA 2.1 provider and therefore only supported as of Spring Framework 4.0.
The same applies to Hibernate Validator 5.0 as a Bean Validation 1.1 provider. Neither of the two are
officially supported with Spring Framework 3.2.

3.5 Groovy Bean Definition DSL

With Spring Framework 4.0 it is now possible to define external bean configuration using a Groovy DSL.
This is similar in concept to using XML bean definitions, but allows for a more concise syntax. Using
Groovy also allows you to easily embed bean definitions directly in your bootstrap code. For example:

def reader = new GroovyBeanDefinitionReader (myApplicationContext)
reader . beans {
dat aSour ce(Basi cDat aSour ce) {
driverC assNanme = "org. hsql db. jdbcDri ver"

url = "jdbc: hsqgl db: mem grai | sDB"
usernane = "sa"

password = ""

settings = [mynew "setting"]

}
sessi onFact ory(Sessi onFactory) {
dat aSour ce = dat aSour ce
}
myServi ce(MyServi ce) {
nest edBean = { Anot her Bean bean ->
dat aSour ce = dat aSource

}
}

For more information consult the G- oovyBeanDef i ni t i onReader javadocs.

Spring Framework
4.0.5.RELEASE Reference Documentation 18

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/groovy/GroovyBeanDefinitionReader.html

Spring Framework

3.6 Core Container Improvements

There have been several general improvements to the core container:

» Spring now treats generic types as a form of qualifier when injecting Beans. For example, if you are
using a Spring Data Reposi t or y you can now easily inject a specific implementation: @\ut owi r ed
Reposi t or y<Cust omer > cust ormer Repository.

« If you use Spring’s meta-annotation support, you can now develop custom annotations that expose
specific attributes from the source annotation.

» Beans can now be ordered when they are autowired into lists and arrays. Both the @b der ed
annotation and Or der ed interface are supported.

» The @azy annotation can now be used on injection points, as well as on @ean definitions.

» The @escri pti on annotation has been introduced for developers using Java-based configuration.

» A generalized model for conditionally filtering beans has been added via the @Conditi onal
annotation. This is similar to @r of i | e support but allows for user-defined strategies to be developed
programmatically.

» CGLIB-based proxy classes no longer require a default constructor. Support is provided via the
objenesis library which is repackaged inline and distributed as part of the Spring Framework. With
this strategy, no constructor at all is being invoked for proxy instances anymore.

e There is managed time zone support across the framework now, e.g. on Local eCont ext .

3.7 General Web Improvements

Deployment to Servlet 2.5 servers remains an option, but Spring Framework 4.0 is now focused primarily
on Servlet 3.0+ environments. If you are using the Spring MVC Test Framework you will need to ensure
that a Servlet 3.0 compatible JAR is in your test classpath.

In addition to the WebSocket support mentioned later, the following general improvements have been
made to Spring’s Web modules:

* You can use the new @Rest Cont r ol | er annotation with Spring MVC applications, removing the
need to add @esponseBody to each of your @Request Mappi ng methods.

* The AsyncRest Tenpl at e class has been added, allowing non-blocking asynchronous support
when developing REST clients.

» Spring now offers comprehensive timezone support when developing Spring MVC applications.

3.8 WebSocket, SockJS, and STOMP Messaging

A new spri ng- websocket module provides comprehensive support for WebSocket-based, two-way
communication between client and server in web applications. It is compatible with JSR-356, the Java
WebSocket API, and in addition provides SockJS-based fallback options (i.e. WebSocket emulation)
for use in browsers that don't yet support the WebSocket protocol (e.g. Internet Explorer < 10).

Anew spring- nessagi hg module adds support for STOMP as the WebSocket sub-protocol to use in
applications along with an annotation programming model for routing and processing STOMP messages

Spring Framework
4.0.5.RELEASE Reference Documentation 19

http://code.google.com/p/objenesis/
http://jcp.org/en/jsr/detail?id=356

Spring Framework

from WebSocket clients. As a result an @ont r ol | er can now contain both @equest Mappi ng and
@kssageMappi ng methods for handling HTTP requests and messages from WebSocket-connected
clients. The new spri ng- messagi ng module also contains key abstractions formerly from the Spring
Integration project such as Message, MessageChannel , MessageHandl| er, and others to serve as
a foundation for messaging-based applications.

For further details, including a more thorough introduction, see the Chapter 20, WebSocket Support
section.

3.9 Testing Improvements

In addition to pruning of deprecated code within the spri ng-test module, Spring Framework 4.0
introduces several new features for use in unit and integration testing.

* Almost all annotations in the spring-test module (e.g., @ontext Configuration,
@\ebAppConfi guration, @ont ext H erarchy, @\ctiveProfiles, etc.) can now be used
as meta-annotations to create custom composed annotations and reduce configuration duplication
across a test suite.

» Active bean definition profiles can now be resolved programmatically, simply by implementing
a custom ActiveProfil esResol ver and registering it via the resolver attribute of
@\ctiveProfiles.

« Anew Socket Ut i | s class has been introduced in the spri ng- cor e module which enables you to
scan for free TCP and UDP server ports on localhost. This functionality is not specific to testing but
can prove very useful when writing integration tests that require the use of sockets, for example tests
that start an in-memory SMTP server, FTP server, Servlet container, etc.

e As of Spring 4.0, the set of mocks in the org. springframework. nock. web package is
now based on the Servlet 3.0 API. Furthermore, several of the Servlet APl mocks (e.g.,
MockHt t pSer vl et Request, MockSer vl et Cont ext, etc.) have been updated with minor
enhancements and improved configurability.

Spring Framework
4.0.5.RELEASE Reference Documentation 20

http://projects.spring.io/spring-integration/
http://projects.spring.io/spring-integration/

Part Ill. Core Technologies

This part of the reference documentation covers all of those technologies that are absolutely integral
to the Spring Framework.

Foremost amongst these is the Spring Framework’s Inversion of Control (I1oC) container. A thorough
treatment of the Spring Framework’s 10C container is closely followed by comprehensive coverage of
Spring’s Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP
framework, which is conceptually easy to understand, and which successfully addresses the 80% sweet
spot of AOP requirements in Java enterprise programming.

Coverage of Spring’s integration with AspectJ (currently the richest - in terms of features - and certainly
most mature AOP implementation in the Java enterprise space) is also provided.

Finally, the adoption of the test-driven-development (TDD) approach to software development is
certainly advocated by the Spring team, and so coverage of Spring’s support for integration testing is
covered (alongside best practices for unit testing). The Spring team has found that the correct use of
loC certainly does make both unit and integration testing easier (in that the presence of setter methods
and appropriate constructors on classes makes them easier to wire together in a test without having
to set up service locator registries and suchlike)... the chapter dedicated solely to testing will hopefully
convince you of this as well.

» Chapter 4, The IoC container

» Chapter 5, Resources

» Chapter 6, Validation, Data Binding, and Type Conversion
» Chapter 7, Spring Expression Language (SpEL)

» Chapter 8, Aspect Oriented Programming with Spring

» Chapter 9, Spring AOP APIs

» Chapter 10, Testing

Spring Framework

4. The loC container

4.1 Introduction to the Spring loC container and beans

This chapter covers the Spring Framework implementation of the Inversion of Control (IoC) ! principle.
loC is also known as dependency injection (DI). It is a process whereby objects define their
dependencies, that is, the other objects they work with, only through constructor arguments, arguments
to a factory method, or properties that are set on the object instance after it is constructed or returned
from a factory method. The container then injects those dependencies when it creates the bean. This
process is fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself
controlling the instantiation or location of its dependencies by using direct construction of classes, or a
mechanism such as the Service Locator pattern.

The org. spri ngf ranewor k. beans and or g. spri ngframewor k. cont ext packages are the
basis for Spring Framework’s 10C container. The BeanFact ory interface provides an advanced
configuration mechanism capable of managing any type of object. Appl i cati onCont ext is a sub-
interface of BeanFact ory. It adds easier integration with Spring’s AOP features; message resource
handling (for use in internationalization), event publication; and application-layer specific contexts such
as the WebAppl i cat i onCont ext for use in web applications.

In short, the BeanFact ory provides the configuration framework and basic functionality, and the
Appl i cati onCont ext adds more enterprise-specific functionality. The Appl i cati onCont ext is
a complete superset of the BeanFact ory, and is used exclusively in this chapter in descriptions
of Spring’s 1oC container. For more information on using the BeanFactory instead of the
Appl i cati onCont ext, referto Section 4.17, “The BeanFactory”.

In Spring, the objects that form the backbone of your application and that are managed by the Spring loC
container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed
by a Spring loC container. Otherwise, a bean is simply one of many objects in your application. Beans,
and the dependencies among them, are reflected in the configuration metadata used by a container.

4.2 Container overview

The interface or g. spri ngf r amewor k. cont ext . Appl i cat i onCont ext represents the Spring 1oC
container and is responsible for instantiating, configuring, and assembling the aforementioned beans.
The container gets its instructions on what objects to instantiate, configure, and assemble by reading
configuration metadata. The configuration metadata is represented in XML, Java annotations, or Java
code. It allows you to express the objects that compose your application and the rich interdependencies
between such objects.

Several implementations of the ApplicationContext interface are supplied out-of-the-
box with Spring. In standalone applications it is common to create an instance of
Cl assPat hXm Appl i cati onCont ext orFi | eSyst emXm Appl i cati onCont ext . While XML has
been the traditional format for defining configuration metadata you can instruct the container to use
Java annotations or code as the metadata format by providing a small amount of XML configuration to
declaratively enable support for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more instances
of a Spring 1oC container. For example, in a web application scenario, a simple eight (or so) lines

'see Background

Spring Framework
4.0.5.RELEASE Reference Documentation 22

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/BeanFactory.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/ApplicationContext.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/support/ClassPathXmlApplicationContext.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/support/FileSystemXmlApplicationContext.html

Spring Framework

of boilerplate web descriptor XML in the web. xmi file of the application will typically suffice (see the
section called “Convenient ApplicationContext instantiation for web applications”). If you are using the
SpringSource Tool Suite Eclipse-powered development environment this boilerplate configuration can
be easily created with few mouse clicks or keystrokes.

The following diagram is a high-level view of how Spring works. Your application classes are combined
with configuration metadata so that after the Appl i cat i onCont ext is created and initialized, you have
a fully configured and executable system or application.

Your Business Objects (POJOs)

The Sprin
Configuration Cuntapinerg
Metadata
produces

Fully configures

Ready for Use _

Figure 4.1. The Spring loC container

Configuration metadata

As the preceding diagram shows, the Spring I0C container consumes a form of configuration metadata;
this configuration metadata represents how you as an application developer tell the Spring container to
instantiate, configure, and assemble the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is what most
of this chapter uses to convey key concepts and features of the Spring loC container.

© Note

XML-based metadata is not the only allowed form of configuration metadata. The Spring 10C
container itself is totally decoupled from the format in which this configuration metadata is
actually written. These days many developers choose Java-based configuration for their Spring
applications.

For information about using other forms of metadata with the Spring container, see:

» Annotation-based configuration: Spring 2.5 introduced support for annotation-based configuration
metadata.

» Java-based configuration: Starting with Spring 3.0, many features provided by the Spring JavaConfig
project became part of the core Spring Framework. Thus you can define beans external to your
application classes by using Java rather than XML files. To use these new features, see the
@confi gurati on, @ean, @ nport and @ependsOn annotations.

Spring configuration consists of at least one and typically more than one bean definition that the
container must manage. XML-based configuration metadata shows these beans configured as <bean/
> elements inside a top-level <beans/ > element. Java configuration typically uses @ean annotated
methods within a @Conf i gur at i on class.

Spring Framework
4.0.5.RELEASE Reference Documentation 23

http://spring.io/tools/sts

Spring Framework

These bean definitions correspond to the actual objects that make up your application. Typically you
define service layer objects, data access objects (DAOS), presentation objects such as Struts Act i on
instances, infrastructure objects such as Hibernate Sessi onFact ori es, JMS Queues, and so forth.
Typically one does not configure fine-grained domain objects in the container, because it is usually the
responsibility of DAOs and business logic to create and load domain objects. However, you can use
Spring’s integration with AspectJ to configure objects that have been created outside the control of an
loC container. See Using AspectJ to dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
htt p: // ww. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">
<!-- collaborators and configuration for this bean go here -->
</ bean>
<!-- nore bean definitions go here -->
</ beans>

The i d attribute is a string that you use to identify the individual bean definition. The cl ass attribute
defines the type of the bean and uses the fully qualified classname. The value of the id attribute refers
to collaborating objects. The XML for referring to collaborating objects is not shown in this example; see
Dependencies for more information.

Instantiating a container

Instantiating a Spring loC container is straightforward. The location path or paths supplied to an
Appl i cati onCont ext constructor are actually resource strings that allow the container to load
configuration metadata from a variety of external resources such as the local file system, from the Java
CLASSPATH, and so on.

Appl i cati onCont ext context =
new C assPat hXm Appl i cati onCont ext (new String[] {"services.xm", "daos.xm"});

@ Note

After you learn about Spring’s 1oC container, you may want to know more about Spring’'s
Resour ce abstraction, as described in Chapter 5, Resources, which provides a convenient
mechanism for reading an InputStream from locations defined in a URI syntax. In particular,
Resour ce paths are used to construct applications contexts as described in Section 5.7,
“Application contexts and Resource paths”.

The following example shows the service layer objects (ser vi ces. xm) configuration file:

Spring Framework
4.0.5.RELEASE Reference Documentation 24

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<l-- services -->
<bean i d="pet Store" class="org.springframework. sanpl es. | petstore.services. Pet StoreServicel npl ">

<property nanme="account Dao" ref="account Dao"/ >
<property nanme="itenDao" ref="itenDao"/>

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<l-- nore bean definitions for services go here -->
</ beans>

The following example shows the data access objects daos. xm file:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean i d="account Dao"

cl ass="org. spri ngframewor k. sanpl es. j pet st or e. dao. j pa. JpaAccount Dao" >

<l-- additional collaborators and configuration for this bean go here -->
</ bean>

<bean id="itenDao" class="org.springframework. sanpl es. j petstore. dao.jpa.JapltenDao" >

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<l-- nore bean definitions for data access objects go here -->
</ beans>

In the preceding example, the service layer consists of the class Pet St or eSer vi cel npl , and two data
access objects of the type JpaAccount Dao and Jpal t enDao (based on the JPA Object/Relational
mapping standard). The property nane element refers to the name of the JavaBean property,
and the r ef element refers to the name of another bean definition. This linkage between i d and
ref elements expresses the dependency between collaborating objects. For details of configuring an
object’s dependencies, see Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individual XML configuration
file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML fragments.
This constructor takes multiple Resour ce locations, as was shown in the previous section. Alternatively,
use one or more occurrences of the <i nport /> element to load bean definitions from another file or
files. For example:

Spring Framework
4.0.5.RELEASE Reference Documentation 25

Spring Framework

<beans>
<i nport resource="services.xn"/>
<i mport resource="resources/ messageSource. xm "/ >
<i nmport resource="/resources/theneSource.xm"/>

<bean i d="beanl" class="..."/>
<bean i d="bean2" class="..."/>
</ beans>

In the preceding example, external bean definitions are loaded from three files, servi ces. xm ,
nmessageSour ce. xm , and t hemeSour ce. xnl . All location paths are relative to the definition file
doing the importing, so ser vi ces. xm must be in the same directory or classpath location as the file
doing the importing, while messageSour ce. xm and t heneSour ce. xnl must be in a r esour ces
location below the location of the importing file. As you can see, a leading slash is ignored, but given
that these paths are relative, it is better form not to use the slash at all. The contents of the files being
imported, including the top level <beans/ > element, must be valid XML bean definitions according to
the Spring Schema.

© Note

It is possible, but not recommended, to reference files in parent directories using a relative
".I" path. Doing so creates a dependency on a file that is outside the current application. In
particular, this reference is not recommended for "classpath:" URLs (for example, "classpath:../
services.xml"), where the runtime resolution process chooses the "nearest" classpath root and
then looks into its parent directory. Classpath configuration changes may lead to the choice of
a different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for example,
"file:C:/config/services.xml" or "classpath:/config/services.xml". However, be aware that you are
coupling your application’s configuration to specific absolute locations. It is generally preferable
to keep an indirection for such absolute locations, for example, through "${...}" placeholders that
are resolved against JVM system properties at runtime.

Using the container

The Appl i cati onCont ext is the interface for an advanced factory capable of maintaining a registry
of different beans and their dependencies. Using the method T get Bean(Stri ng name, C ass<T>
requi redType) you can retrieve instances of your beans.

The Appl i cat i onCont ext enables you to read bean definitions and access them as follows:

/'l create and configure beans
Appl i cati onCont ext context =
new Cl assPat hXm Appl i cati onCont ext (new String[] {"services.xm", "daos.xm"});

/'l retrieve configured instance
Pet St or eServi ce service = context.getBean("pet Store", PetStoreService.class)

/1 use configured instance
Li st<String> userList = service.getUsernaneList();

You use get Bean() to retrieve instances of your beans. The Appl i cat i onCont ext interface has a
few other methods for retrieving beans, but ideally your application code should never use them. Indeed,
your application code should have no calls to the get Bean() method at all, and thus no dependency

Spring Framework
4.0.5.RELEASE Reference Documentation 26

Spring Framework

on Spring APIs at all. For example, Spring’s integration with web frameworks provides for dependency
injection for various web framework classes such as controllers and JSF-managed beans.

4.3 Bean overview

A Spring loC container manages one or more beans. These beans are created with the configuration
metadata that you supply to the container, for example, in the form of XML <bean/ > definitions.

Within the container itself, these bean definitions are represented as BeanDef i ni t i on objects, which
contain (among other information) the following metadata:

» A package-qualified class name: typically the actual implementation class of the bean being defined.

» Bean behavioral configuration elements, which state how the bean should behave in the container
(scope, lifecycle callbacks, and so forth).

» References to other beans that are needed for the bean to do its work; these references are also
called collaborators or dependencies.

« Other configuration settings to set in the newly created object, for example, the number of connections
to use in a bean that manages a connection pool, or the size limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

Table 4.1. The bean definition

Property Explained in...

class the section called “Instantiating beans”
name the section called “Naming beans”

scope Section 4.5, “Bean scopes”

constructor arguments the section called “Dependency injection”
properties the section called “Dependency injection”
autowiring mode the section called “Autowiring collaborators”
lazy-initialization mode the section called “Lazy-initialized beans”
initialization method the section called “Initialization callbacks”
destruction method the section called “Destruction callbacks”

In addition to bean definitions that contain information on how to create a specific bean, the
Appl i cati onCont ext implementations also permit the registration of existing objects that are
created outside the container, by users. This is done by accessing the ApplicationContext's
BeanFactory via the method get BeanFact ory() which returns the BeanFactory implementation
Def aul t Li st abl eBeanFact ory. Def aul t Li st abl eBeanFact ory supports this registration
through the methods r egi st er Si ngl eton(..) and regi st erBeanDefinition(..). However,
typical applications work solely with beans defined through metadata bean definitions.

Spring Framework
4.0.5.RELEASE Reference Documentation 27

Spring Framework

Naming beans

Every bean has one or more identifiers. These identifiers must be unique within the container that hosts
the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can
be considered aliases.

In XML-based configuration metadata, you use the i d and/or nane attributes to specify the bean
identifier(s). The i d attribute allows you to specify exactly one id. Conventionally these names are
alphanumeric (myBean, fooService, etc.), but may contain special characters as well. If you want to
introduce other aliases to the bean, you can also specify them in the name attribute, separated by a
comma (,), semicolon (;), or white space. As a historical note, in versions prior to Spring 3.1, thei d
attribute was defined as an xsd: | Dtype, which constrained possible characters. As of 3.1, it is defined
as an xsd: stri ng type. Note that bean i d uniqueness is still enforced by the container, though no
longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied explicitly, the container
generates a unique name for that bean. However, if you want to refer to that bean by name, through the
use of the r ef element or Service Locator style lookup, you must provide a name. Motivations for not
supplying a name are related to using inner beans and autowiring collaborators.

Bean Naming Conventions

The convention is to use the standard Java convention for instance field names when naming
beans. That is, bean names start with a lowercase letter, and are camel-cased from then on.
Examples of such names would be (without quotes) ' account Manager' ,' account Servi ce',
"userDao', 'l ogi nController',and so forth.

Naming beans consistently makes your configuration easier to read and understand, and if you
are using Spring AOP it helps a lot when applying advice to a set of beans related by name.

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a combination
of up to one name specified by the i d attribute, and any number of other names in the nane attribute.
These names can be equivalent aliases to the same bean, and are useful for some situations, such as
allowing each component in an application to refer to a common dependency by using a bean name
that is specific to that component itself.

Specifying all aliases where the bean is actually defined is not always adequate, however. It is
sometimes desirable to introduce an alias for a bean that is defined elsewhere. This is commonly the
case in large systems where configuration is split amongst each subsystem, each subsystem having its
own set of object definitions. In XML-based configuration metadata, you can use the <al i as/ > element
to accomplish this.

<al i as name="fromNane" alias="toNane"/>

In this case, a bean in the same container which is named f r onName, may also, after the use of this
alias definition, be referred to as t oNane.

For example, the configuration metadata for subsystem A may refer to a DataSource via the name
subsyst emA- dat aSour ce. The configuration metadata for subsystem B may refer to a DataSource
via the name subsyst enB- dat aSour ce. When composing the main application that uses both these
subsystems the main application refers to the DataSource via the name my App- dat aSour ce. To have

Spring Framework
4.0.5.RELEASE Reference Documentation 28

Spring Framework

all three names refer to the same object you add to the MyApp configuration metadata the following
aliases definitions:

<al i as name="subsyst emA- dat aSour ce" al i as="subsyst enB- dat aSour ce"/ >
<al i as name="subsyst emA- dat aSour ce" al i as="nyApp- dat aSource" />

Now each component and the main application can refer to the dataSource through a name that is
unigue and guaranteed not to clash with any other definition (effectively creating a namespace), yet
they refer to the same bean.

Java-configuration

If you are using Java-configuration, the @ean annotation can be used to provide aliases see the
section called “Using the @Bean annotation” for details.

Instantiating beans

A bean definition essentially is a recipe for creating one or more objects. The container looks at the
recipe for a named bean when asked, and uses the configuration metadata encapsulated by that bean
definition to create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be
instantiated in the cl ass attribute of the <bean/ > element. This cl ass attribute, which internally is a
Cl ass property onaBeanDef i ni t i on instance, is usually mandatory. (For exceptions, see the section
called “Instantiation using an instance factory method” and Section 4.7, “Bean definition inheritance”.)
You use the Cl ass property in one of two ways:

» Typically, to specify the bean class to be constructed in the case where the container itself directly
creates the bean by calling its constructor reflectively, somewhat equivalent to Java code using the
new operator.

» To specify the actual class containing the st at i ¢ factory method that will be invoked to create the
object, in the less common case where the container invokes a st at i ¢, factory method on a class
to create the bean. The object type returned from the invocation of the st at i ¢ factory method may
be the same class or another class entirely.

Inner class names. If you want to configure a bean definition for a st at i ¢ nested class, you
have to use the binary name of the inner class.

For example, if you have a class called Foo in the com exanpl e package, and this Foo class
has a st ati ¢ inner class called Bar, the value of the ' cl ass' attribute on a bean definition
would be...

com exanpl e. Foo$Bar

Notice the use of the $ character in the name to separate the inner class name from the outer
class name.

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and compatible
with Spring. That is, the class being developed does not need to implement any specific interfaces or

Spring Framework
4.0.5.RELEASE Reference Documentation 29

Spring Framework

to be coded in a specific fashion. Simply specifying the bean class should suffice. However, depending
on what type of 1oC you use for that specific bean, you may need a default (empty) constructor.

The Spring 10C container can manage virtually any class you want it to manage; it is not limited to
managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument)
constructor and appropriate setters and getters modeled after the properties in the container. You can
also have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy
connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it
as well.

With XML-based configuration metadata you can specify your bean class as follows:
<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/ >

<bean name="anot her Exanpl e" cl ass="exanpl es. Exanpl eBeanTwo"/ >

For details about the mechanism for supplying arguments to the constructor (if required) and setting
object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the cl ass attribute to specify
the class containing the st at i ¢ factory method and an attribute named f act or y- net hod to specify
the name of the factory method itself. You should be able to call this method (with optional arguments as
described later) and return a live object, which subsequently is treated as if it had been created through
a constructor. One use for such a bean definition is to call st at i ¢ factories in legacy code.

The following bean definition specifies that the bean will be created by calling a factory-method. The
definition does not specify the type (class) of the returned object, only the class containing the factory
method. In this example, the cr eat el nst ance() method must be a static method.

<bean id="client Service"
cl ass="exanpl es. d i ent Servi ce"
factory-net hod="cr eat el nst ance"/ >

public class dientService {
private static CientService clientService = new dientService();
private CientService() {}

public static CientService createlnstance() {
return clientService;

}

For details about the mechanism for supplying (optional) arguments to the factory method and
setting object instance properties after the object is returned from the factory, see Dependencies and
configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory method
invokes a non-static method of an existing bean from the container to create a new bean. To use this
mechanism, leave the cl ass attribute empty, and inthe f act or y- bean attribute, specify the name of a
bean in the current (or parent/ancestor) container that contains the instance method that is to be invoked
to create the object. Set the name of the factory method itself with the f act or y- et hod attribute.

Spring Framework
4.0.5.RELEASE Reference Documentation 30

Spring Framework

<l-- the factory bean, which contains a nethod called createl nstance() -->
<bean i d="servicelLocator" class="exanpl es. Def aul t Servi ceLocat or" >
<l-- inject any dependencies required by this |locator bean -->
</ bean>
<l-- the bean to be created via the factory bean -->

<bean i d="client Service"
factory-bean="servi ceLocator"
factory-nethod="createC i ent Servi cel nstance"/ >

public class DefaultServiceLocator {

private static CientService clientService = new CientServicelnpl();
private DefaultServiceLocator() {}

public CientService createCientServicel nstance() ({
return clientService;

One factory class can also hold more than one factory method as shown here:

<bean i d="serviceLocator" class="exanpl es. Def aul t Servi ceLocat or">
<l-- inject any dependencies required by this |ocator bean -->
</ bean>

<bean i d="client Service"
factory-bean="servi ceLocator"
factory-nethod="creat eC i ent Servi cel nstance"/ >

<bean i d="account Servi ce"
factory-bean="servi ceLocator"
fact ory-net hod="cr eat eAccount Ser vi cel nst ance"/ >

public class DefaultServiceLocator {

private static CientService clientService = new CientServicel npl();
private static Account Service account Servi ce = new Account Servi cel npl () ;

private DefaultServiceLocator() {}
public dientService createdientServicelnstance() {

return clientService;

publ i c Account Servi ce createAccount Servi cel nstance() {
return account Servi ce;

This approach shows that the factory bean itself can be managed and configured through dependency
injection (D). See Dependencies and configuration in detail.

© Note

In Spring documentation, factory bean refers to a bean that is configured in the Spring container
that will create objects through an instance or static factory method. By contrast, Fact or yBean
(notice the capitalization) refers to a Spring-specific Fact or yBean.

Spring Framework
4.0.5.RELEASE Reference Documentation 31

Spring Framework

4.4 Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance). Even
the simplest application has a few objects that work together to present what the end-user sees as a
coherent application. This next section explains how you go from defining a number of bean definitions
that stand alone to a fully realized application where objects collaborate to achieve a goal.

Dependency injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other
objects they work with, only through constructor arguments, arguments to a factory method, or properties
that are set on the object instance after it is constructed or returned from a factory method. The container
then injects those dependencies when it creates the bean. This process is fundamentally the inverse,
hence the name Inversion of Control (10C), of the bean itself controlling the instantiation or location of
its dependencies on its own by using direct construction of classes, or the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are provided with
their dependencies. The object does not look up its dependencies, and does not know the location
or class of the dependencies. As such, your classes become easier to test, in particular when the
dependencies are on interfaces or abstract base classes, which allow for stub or mock implementations
to be used in unit tests.

DI exists in two major variants, Constructor-based dependency injection and Setter-based dependency
injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of
arguments, each representing a dependency. Calling a st at i ¢ factory method with specific arguments
to construct the bean is nearly equivalent, and this discussion treats arguments to a constructor and to
ast at i ¢ factory method similarly. The following example shows a class that can only be dependency-
injected with constructor injection. Notice that there is nothing special about this class, it is a POJO that
has no dependencies on container specific interfaces, base classes or annotations.

public class SinpleMyvieLister {

/'l the SinpleMvielLister has a dependency on a Myvi eFi nder
private MovieFi nder novi eFi nder;

/'l a constructor so that the Spring container can inject a MvieFi nder
publ i c Si nmpl eMovi eLi st er (Movi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

/] business |logic that actually uses the injected MvieFinder is omtted...

Constructor argument resolution

Constructor argument resolution matching occurs using the argument’s type. If no potential ambiguity
exists in the constructor arguments of a bean definition, then the order in which the constructor
arguments are defined in a bean definition is the order in which those arguments are supplied to the
appropriate constructor when the bean is being instantiated. Consider the following class:

Spring Framework
4.0.5.RELEASE Reference Documentation 32

Spring Framework

package Xx.y;
public class Foo {
public Foo(Bar bar, Baz baz) {

11
}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by inheritance. Thus
the following configuration works fine, and you do not need to specify the constructor argument indexes
and/or types explicitly in the <const r uct or - ar g/ > element.

<beans>
<bean id="foo" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
</ bean>

<bean id="bar" class="x.y.Bar"/>

<bean id="baz" class="x.y.Baz"/>
</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with
the preceding example). When a simple type is used, such as <val ue>t r ue</ val ue>, Spring cannot
determine the type of the value, and so cannot match by type without help. Consider the following class:

package exanpl es
public class Exanpl eBean {

/1 Number of years to calculate the Utinate Answer
private int years;

/'l The Answer to Life, the Universe, and Everything
private String ultinmateAnswer;

publ i ¢ Exanpl eBean(int years, String ultinmteAnswer) {
this.years = years
this.ultimteAnswer = ul tinmat eAnswer;

In the preceding scenario, the container can use type matching with simple types if you explicitly specify
the type of the constructor argument using the t ype attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.lang. String" val ue="42"/>
</ bean>

Use the i ndex attribute to specify explicitly the index of constructor arguments. For example:

Spring Framework
4.0.5.RELEASE Reference Documentation 33

Spring Framework

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg i ndex="0" val ue="7500000"/>
<constructor-arg i ndex="1" val ue="42"/>

</ bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves ambiguity
where a constructor has two arguments of the same type. Note that the index is 0 based.

You can also use the constructor parameter name for value disambiguation:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg nane="years" val ue="7500000"/>
<constructor-arg nane="ul ti mat eanswer" val ue="42"/>
</ bean>

Keep in mind that to make this work out of the box your code must be compiled with the debug flag
enabled so that Spring can look up the parameter name from the constructor. If you can’t compile your
code with debug flag (or don’t want to) you can use @ConstructorProperties JDK annotation to explicitly
name your constructor arguments. The sample class would then have to look as follows:

package exanpl es

public class Exanpl eBean {
/'l Fields omtted
@Constructor Properties({"years", "ultinmteAnswer"})
publ i ¢ Exanpl eBean(int years, String ultinmteAnswer) {

this.years = years
this.ultimteAnswer = ulti mateAnswer;

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after invoking a
no-argument constructor or no-argument st at i ¢ factory method to instantiate your bean.

The following example shows a class that can only be dependency-injected using pure setter injection.
This class is conventional Java. It is a POJO that has no dependencies on container specific interfaces,
base classes or annotations.

public class SinpleMvieLister {

/1 the SinpleMvielLister has a dependency on the MovieFi nder
private Movi eFi nder novi eFi nder

/] a setter method so that the Spring container can inject a MyvieFinder

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder

/'l business |ogic that actually uses the injected MyvieFinder is omtted..

Spring Framework
4.0.5.RELEASE Reference Documentation 34

http://download.oracle.com/javase/6/docs/api/java/beans/ConstructorProperties.html

Spring Framework

The Appl i cat i onCont ext supports constructor-based and setter-based DI for the beans it manages.
It also supports setter-based DI after some dependencies have already been injected through the
constructor approach. You configure the dependencies in the form of a BeanDefi ni ti on, which
you use in conjunction with Propert yEdi t or instances to convert properties from one format to
another. However, most Spring users do not work with these classes directly (i.e., programmatically) but
rather with XML bean definitions, annotated components (i.e., classes annotated with @onponent ,
@control | er, etc.), or @ean methods in Java-based @onf i gur at i on classes. These sources are
then converted internally into instances of BeanDef i ni ti on and used to load an entire Spring 1oC
container instance.

Constructor-based or setter-based DI?

Since you can mix constructor-based and setter-based DI, it is a good rule of thumb to use
constructors for mandatory dependencies and setter methods or configuration methods for
optional dependencies. Note that use of the @Required annotation on a setter method can be
used to make the property a required dependency.

The Spring team generally advocates constructor injection as it enables one to implement
application components as immutable objects and to ensure that required dependencies are not
nul | . Furthermore constructor-injected components are always returned to client (calling) code
in a fully initialized state. As a side note, a large number of constructor arguments is a bad code
smell, implying that the class likely has too many responsibilities and should be refactored to better
address proper separation of concerns.

Setter injection should primarily only be used for optional dependencies that can be assigned
reasonable default values within the class. Otherwise, not-null checks must be performed
everywhere the code uses the dependency. One benefit of setter injection is that setter methods
make objects of that class amenable to reconfiguration or re-injection later. Management through
JMX MBeans is therefore a compelling use case for setter injection.

Use the DI style that makes the most sense for a particular class. Sometimes, when dealing with
third-party classes for which you do not have the source, the choice is made for you. For example,
if a third-party class does not expose any setter methods, then constructor injection may be the
only available form of DI.

Dependency resolution process
The container performs bean dependency resolution as follows:

* The Appl i cati onCont ext is created and initialized with configuration metadata that describes all
the beans. Configuration metadata can be specified via XML, Java code, or annotations.

» For each bean, its dependencies are expressed in the form of properties, constructor arguments, or
arguments to the static-factory method if you are using that instead of a normal constructor. These
dependencies are provided to the bean, when the bean is actually created.

» Each property or constructor argument is an actual definition of the value to set, or a reference to
another bean in the container.

» Each property or constructor argument which is a value is converted from its specified format to the
actual type of that property or constructor argument. By default Spring can convert a value supplied
in string format to all built-in types, such asi nt, | ong, St ri ng, bool ean, etc.

Spring Framework
4.0.5.RELEASE Reference Documentation 35

Spring Framework

The Spring container validates the configuration of each bean as the container is created. However,
the bean properties themselves are not set until the bean is actually created. Beans that are singleton-
scoped and set to be pre-instantiated (the default) are created when the container is created. Scopes
are defined in Section 4.5, “Bean scopes”. Otherwise, the bean is created only when it is requested.
Creation of a bean potentially causes a graph of beans to be created, as the bean’s dependencies and
its dependencies' dependencies (and so on) are created and assigned. Note that resolution mismatches
among those dependencies may show up late, i.e. on first creation of the affected bean.

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable circular
dependency scenario.

For example: Class A requires an instance of class B through constructor injection, and class B
requires an instance of class A through constructor injection. If you configure beans for classes
A and B to be injected into each other, the Spring 1oC container detects this circular reference at
runtime, and throws a BeanCurrent | yl nCr eat i onExcepti on.

One possible solution is to edit the source code of some classes to be configured by setters
rather than constructors. Alternatively, avoid constructor injection and use setter injection only. In
other words, although it is not recommended, you can configure circular dependencies with setter
injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean A
and bean B forces one of the beans to be injected into the other prior to being fully initialized itself
(a classic chicken/egg scenario).

You can generally trust Spring to do the right thing. It detects configuration problems, such as references
to non-existent beans and circular dependencies, at container load-time. Spring sets properties and
resolves dependencies as late as possible, when the bean is actually created. This means that a Spring
container which has loaded correctly can later generate an exception when you request an object if there
is a problem creating that object or one of its dependencies. For example, the bean throws an exception
as aresult of a missing or invalid property. This potentially delayed visibility of some configuration issues
is why Appl i cat i onCont ext implementations by default pre-instantiate singleton beans. At the cost
of some upfront time and memory to create these beans before they are actually needed, you discover
configuration issues when the Appl i cati onCont ext is created, not later. You can still override this
default behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a
dependent bean, each collaborating bean is totally configured prior to being injected into the dependent
bean. This means that if bean A has a dependency on bean B, the Spring loC container completely
configures bean B prior to invoking the setter method on bean A. In other words, the bean is instantiated
(if not a pre-instantiated singleton), its dependencies are set, and the relevant lifecycle methods (such
as a configured init method or the InitializingBean callback method) are invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of a
Spring XML configuration file specifies some bean definitions:

Spring Framework
4.0.5.RELEASE Reference Documentation 36

Spring Framework

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<I-- setter injection using the nested <ref/> el enent -->
<property nanme="beanOne">
<ref bean="anot her Exanpl eBean"/ >
</ property>

<I-- setter injection using the neater ref attribute -->
<property nane="beanTwo" ref="yet Anot her Bean"/ >
<property nane="integerProperty" val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

public voi d set BeanOne(Anot her Bean beanOne) ({

thi s. beanOne = beanOne;

public void set BeanTwo(Yet Anot her Bean beanTwo) {
this. beanTwo = beanTwo;

public void setlntegerProperty(int i) {
this.i =i;

In the preceding example, setters are declared to match against the properties specified in the XML file.
The following example uses constructor-based DI:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<I-- constructor injection using the nested <ref/> elenent -->
<const ruct or - ar g>
<ref bean="anot her Exanpl eBean"/ >
</ constructor-ar g>

<l-- constructor injection using the neater ref attribute -->
<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg type="int" val ue="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

Spring Framework
4.0.5.RELEASE Reference Documentation 37

Spring Framework

public class Exanpl eBean {

private Anot her Bean beanOne
private YetAnot her Bean beanTwo;
private int i;

publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
thi s. beanOne = anot her Bean
thi s. beanTwo = yet Anot her Bean
this.i =1i;

The constructor arguments specified in the bean definition will be used as arguments to the constructor
of the Exanpl eBean.

Now consider a variant of this example, where instead of using a constructor, Spring is told to call a
st ati c factory method to return an instance of the object:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" factory- net hod="cr eat el nstance">
<constructor-arg ref="anot her Exanpl eBean"/ >
<constructor-arg ref="yet Anot her Bean"/ >
<constructor-arg val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

/] a private constructor
private Exanpl eBean(...) {

/'l a static factory method; the arguments to this nmethod can be
/'l considered the dependencies of the bean that is returned
/'l regardl ess of how those argunments are actually used
public static Exanpl eBean creat el nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {

Exanpl eBean eb = new Exanpl eBean (...);
/| some other operations..
return eb

Arguments to the st at i ¢ factory method are supplied via <const r uct or - ar g/ > elements, exactly
the same as if a constructor had actually been used. The type of the class being returned by the factory
method does not have to be of the same type as the class that contains the st at i ¢ factory method,
although in this example it is. An instance (non-static) factory method would be used in an essentially
identical fashion (aside from the use of the f act or y- bean attribute instead of the cl ass attribute),
so details will not be discussed here.

Spring Framework
4.0.5.RELEASE Reference Documentation 38

Spring Framework

Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor arguments as
references to other managed beans (collaborators), or as values defined inline. Spring’s XML-based
configuration metadata supports sub-element types within its <pr operty/ > and <construct or -
ar g/ > elements for this purpose.

Straight values (primitives, Strings, and so on)

The val ue attribute of the <pr operty/ > element specifies a property or constructor argument as a
human-readable string representation. Spring’s conversion service is used to convert these values from
a St ri ng to the actual type of the property or argument.

<bean i d="nyDat aSour ce" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-
net hod="cl ose" >

<l-- results in a setDriverC assNane(String) call -->

<property nane="driverC assNanme" val ue="com nysql .jdbc.Driver"/>

<property nane="url" val ue="jdbc: nysql://| ocal host: 3306/ nydb"/ >

<property nane="usernane" val ue="root"/>

<property nane="password" val ue="masterkaoli"/>
</ bean>

The following example uses the p-namespace for even more succinct XML configuration.

<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranmewor k. or g/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean i d="nyDat aSour ce" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce"
destroy- nmet hod="cl ose"
p: dri ver G assNanme="com nysql . j dbc. Dri ver"
p: url="jdbc: nysql ://1ocal host: 3306/ mydb"
p: user nane="r oot "
p: passwor d="nast er kaol i "/ >

</ beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than design time,
unless you use an IDE such as IntelliJ IDEA or the SpringSource Tool Suite (STS) that support automatic
property completion when you create bean definitions. Such IDE assistance is highly recommended.

You can also configure aj ava. uti |l . Properti es instance as:

<bean i d="nmappi ngs"
cl ass="org. spri ngframewor k. beans. fact ory. confi g. PropertyPl acehol der Confi gurer">

<l-- typed as a java.util.Properties -->
<property name="properties">
<val ue>

jdbc. driver. cl assNane=com nysql . j dbc. Dri ver
jdbc. url =jdbc: mysql ://1 ocal host: 3306/ mydb
</ val ue>
</ property>
</ bean>

Spring Framework
4.0.5.RELEASE Reference Documentation 39

http://www.jetbrains.com/idea/
http://www.springsource.com/products/sts

Spring Framework

The Spring container converts the text inside the <val ue/ > elementintoaj ava. util. Properties
instance by using the JavaBeans Pr oper t yEdi t or mechanism. This is a nice shortcut, and is one of
a few places where the Spring team do favor the use of the nested <val ue/ > element over the val ue
attribute style.

The idref element

The i dr ef elementis simply an error-proof way to pass the id (string value - not a reference) of another
bean in the container to a <const r uct or - ar g/ > or <pr oper t y/ > element.

<bean i d="t heTarget Bean" class="..."/>

<bean id="thed ientBean" class="...">
<property nane="target Nane" >
<i dref bean="t heTar get Bean" />
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean i d="t heTar get Bean" class="..." />

<bean id="client" class="...">
<property nane="t arget Nane" val ue="t heTar get Bean" />
</ bean>

The first form is preferable to the second, because using the i dr ef tag allows the container to validate at
deployment time that the referenced, named bean actually exists. In the second variation, no validation
is performed on the value that is passed to the t ar get Nane property of the cl i ent bean. Typos are
only discovered (with most likely fatal results) when the cl i ent bean is actually instantiated. If the
cl i ent bean is a prototype bean, this typo and the resulting exception may only be discovered long
after the container is deployed.

Additionally, if the referenced bean is in the same XML unit, and the bean name is the bean id, you
can use the | ocal attribute, which allows the XML parser itself to validate the bean id earlier, at XML
document parse time.

<property nanme="t ar get Nane">

<I-- a bean with id theTarget Bean nust exist; otherw se an exception will be thrown --
>

<i dref bean="t heTar get Bean"/ >
</ property>

A common place (at least in versions earlier than Spring 2.0) where the <i dr ef / > element brings value
is in the configuration of AOP interceptors in a Pr oxyFact or yBean bean definition. Using <i dr ef / >
elements when you specify the interceptor names prevents you from misspelling an interceptor id.

References to other beans (collaborators)

The ref element is the final element inside a <const ruct or - ar g/ > or <pr operty/ > definition
element. Here you set the value of the specified property of a bean to be a reference to another
bean (a collaborator) managed by the container. The referenced bean is a dependency of the bean
whose property will be set, and it is initialized on demand as needed before the property is set. (If
the collaborator is a singleton bean, it may be initialized already by the container.) All references are
ultimately a reference to another object. Scoping and validation depend on whether you specify the id/
name of the other object through the bean, | ocal , or par ent attributes.

Spring Framework
4.0.5.RELEASE Reference Documentation 40

Spring Framework

Specifying the target bean through the bean attribute of the <r ef / > tag is the most general form, and
allows creation of a reference to any bean in the same container or parent container, regardless of
whether it is in the same XML file. The value of the bean attribute may be the same as the i d attribute
of the target bean, or as one of the values in the nane attribute of the target bean.

<ref bean="sonmeBean"/>

Specifying the target bean through the par ent attribute creates a reference to a bean that is in a parent
container of the current container. The value of the par ent attribute may be the same as either the i d
attribute of the target bean, or one of the values in the nane attribute of the target bean, and the target
bean must be in a parent container of the current one. You use this bean reference variant mainly when
you have a hierarchy of containers and you want to wrap an existing bean in a parent container with a
proxy that will have the same name as the parent bean.

<l-- in the parent context -->

<bean i d="account Servi ce" cl ass="com foo. Si npl eAccount Servi ce">
<l-- insert dependencies as required as here -->

</ bean>

<l-- in the child (descendant) context -->

<bean i d="account Servi ce" <-- bean nane is the sane as the parent bean -->
cl ass="org. spri ngframewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="target">

<ref parent="account Service"/> <!-- notice how we refer to the parent bean -->
</ property>
<l-- insert other configuration and dependencies as required here -->
</ bean>
© Note

The | ocal attribute on the r ef element is no longer supported in the 4.0 beans xsd since it
does not provide value over a regular bean reference anymore. Simply change your existing
ref | ocal referencestoref bean when upgrading to the 4.0 schema.

Inner beans

A <bean/ > elementinside the <pr opert y/ > or <const r uct or - ar g/ > elements defines a so-called
inner bean.

<bean id="outer" class="...">
<l-- instead of using a reference to a target bean, sinply define the target bean
inline -->
<property name="target">
<bean cl ass="com exanpl e. Person"> <!-- this is the inner bean -->

<property nane="nane" val ue="Fi ona Apple"/>
<property nane="age" val ue="25"/>
</ bean>
</ property>
</ bean>

An inner bean definition does not require a defined id or name; the container ignores these values. It also
ignores the scope flag. Inner beans are always anonymous and they are always created with the outer
bean. It is not possible to inject inner beans into collaborating beans other than into the enclosing bean.

Spring Framework
4.0.5.RELEASE Reference Documentation 41

Spring Framework

Collections

Inthe <li st/ >, <set/ >, <map/ >, and <pr ops/ > elements, you set the properties and arguments of
the Java Col | ecti on types Li st, Set, Map, and Pr operti es, respectively.

<bean i d="nor eConpl exoj ect" cl ass="exanpl e. Conpl exChj ect ">

<l-- results in a set Adm nEmail s(java.util.Properties) call -->
<property nane="adm nEmail s">
<pr ops>

<prop key="adm ni strator">adm ni strator @xanpl e. org</ prop>
<prop key="support">support @xanpl e. org</ prop>
<prop key="devel opnent" >devel opment @xanpl e. or g</ prop>

</ props>
</ property>
<l-- results in a setSoneList(java.util.List) call -->
<property nanme="soneList">

<list>

<value>a |list elenment followed by a reference</val ue>
<ref bean="nyDat aSource" />

</[list>
</ property>
<l-- results in a setSoneMap(java.util.Mp) call -->
<property name="soneMap">

<rrap>

<entry key="an entry" val ue="just sone string"/>
<entry key ="a ref" val ue-ref="nyDat aSource"/ >

</ map>
</ property>
<I-- results in a setSoneSet (java.util.Set) call -->
<property nane="soneSet">

<set >

<val ue>j ust sonme string</val ue>
<ref bean="nyDat aSource" />
</ set>
</ pr operty>
</ bean>

The value of a map key or value, or a set value, can also again be any of the following elements:

bean | ref | idref | list | set | map | props | value | null

Collection merging

The Spring container also supports the merging of collections. An application developer can define a
parent-style <l i st/ >, <map/ >, <set/ > or <pr ops/ > element, and have child-style <l i st/ >, <map/
>, <set /> or <pr ops/ > elements inherit and override values from the parent collection. That is, the
child collection’s values are the result of merging the elements of the parent and child collections, with
the child’s collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent
and child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

Spring Framework
4.0.5.RELEASE Reference Documentation 42

Spring Framework

<beans>
<bean id="parent" abstract="true" class="exanpl e. Conpl exChj ect">
<property nanme="adm nEmai | s" >
<pr ops>
<prop key="adnmi ni strator">adm ni strator @xanpl e. com</ prop>
<prop key="support">support @xanpl e. com</ prop>
</ props>
</ property>
</ bean>
<bean id="child" parent="parent">
<property nane="adm nEmail s">
<l-- the nmerge is specified on the child collection definition -->
<props nerge="true">
<prop key="sal es">sal es@xanpl e. com</ prop>
<prop key="support">support @xanpl e. co. uk</ prop>
</ props>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the admi nEmai | s property
of the chi | d bean definition. When the chi | d bean is resolved and instantiated by the container, the
resulting instance has an adm nEmai | s Properti es collection that contains the result of the merging
of the child’s adm nEnai | s collection with the parent’s adni nEmai | s collection.

admi ni strator=adm ni strator @xanpl e. com
sal es=sal es@xanpl e. com
support =suppor t @xanpl e. co. uk

The child Pr oper ti es collection’s value set inherits all property elements from the parent <pr ops/ >,
and the child’s value for the support value overrides the value in the parent collection.

This merging behavior applies similarly to the <l i st/ >, <map/ >, and <set / > collection types. In the
specific case of the <l i st/ > element, the semantics associated with the Li st collection type, that is,
the notion of an or der ed collection of values, is maintained; the parent’s values precede all of the child
list's values. In the case of the Map, Set , and Pr opert i es collection types, no ordering exists. Hence
no ordering semantics are in effect for the collection types that underlie the associated Map, Set , and
Properti es implementation types that the container uses internally.

Limitations of collection merging

You cannot merge different collection types (such as a Map and a Li st), and if you do attempt to do
S0 an appropriate Except i on is thrown. The ner ge attribute must be specified on the lower, inherited,
child definition; specifying the mer ge attribute on a parent collection definition is redundant and will not
result in the desired merging.

Strongly-typed collection

With the introduction of generic types in Java 5, you can use strongly typed collections. That is, it is
possible to declare a Col | ect i on type such that it can only contain St ri ng elements (for example).
If you are using Spring to dependency-inject a strongly-typed Col | ecti on into a bean, you can
take advantage of Spring’'s type-conversion support such that the elements of your strongly-typed
Col | ect i on instances are converted to the appropriate type prior to being added to the Col | ecti on.

Spring Framework
4.0.5.RELEASE Reference Documentation 43

Spring Framework

public class Foo {
private Map<String, Float> accounts
public void set Account s(Map<String, Float> accounts) {

thi s.accounts = accounts

}

<beans>
<bean i d="foo" class="x.y.Foo">
<property name="accounts">
<map>
<entry key="one" val ue="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" val ue="3.99"/>
</ map>
</ property>
</ bean>
</ beans>

When the account s property of the f oo bean is prepared for injection, the generics information about
the element type of the strongly-typed Map<St ri ng, Fl oat > is available by reflection. Thus Spring’s
type conversion infrastructure recognizes the various value elements as being of type Fl oat , and the
string values 9. 99, 2. 75, and 3. 99 are converted into an actual Fl oat type.

Null and empty string values

Spring treats empty arguments for properties and the like as empty St r i ngs. The following XML-based
configuration metadata snippet sets the email property to the empty St ri ng value (™).

<bean cl ass="Exanpl eBean" >
<property nanme="email" val ue=""/>
</ bean>

The preceding example is equivalent to the following Java code: exanpl eBean. set Emai | ("") . The
<nul | / > element handles nul | values. For example:

<bean cl ass="Exanpl eBean" >
<property nane="enmmil">
<nul | />
</ property>
</ bean>

The above configuration is equivalent to the following Java code: exanpl eBean. set Emai | (nul |).
XML shortcut with the p-namespace

The p-namespace enables you to use the bean element’s attributes, instead of nested <pr operty/ >
elements, to describe your property values and/or collaborating beans.

Spring supports extensible configuration formats with namespaces, which are based on an XML Schema
definition. The beans configuration format discussed in this chapter is defined in an XML Schema
document. However, the p-namespace is not defined in an XSD file and exists only in the core of Spring.

The following example shows two XML snippets that resolve to the same result: The first uses standard
XML format and the second uses the p-namespace.

Spring Framework
4.0.5.RELEASE Reference Documentation 44

Spring Framework

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springfranmework. or g/ schema/ p"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean nanme="cl assi c" cl ass="com exanpl e. Exanpl eBean" >
<property nane="enmil" val ue="foo@ar.cont/>
</ bean>

<bean nane="p-nanespace" cl ass="com exanpl e. Exanpl eBean"
p: emai | =" f oo@ar . cont'/ >
</ beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells Spring
to include a property declaration. As previously mentioned, the p-namespace does not have a schema
definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springfranmework. org/ schema/ p"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean nane="j ohn-cl assi c" cl ass="com exanpl e. Person" >
<property nanme="nane" val ue="John Doe"/>
<property nane="spouse" ref="jane"/>

</ bean>

<bean name="j ohn- noder n"
cl ass="com exanpl e. Per son"
p: nane="John Doe"
p: spouse-ref="jane"/>

<bean nane="j ane" cl ass="com exanpl e. Person" >
<property nanme="nane" val ue="Jane Doe"/>
</ bean>
</ beans>

As you can see, this example includes not only a property value using the p-namespace, but also uses
a special format to declare property references. Whereas the first bean definition uses <property
name="spouse" ref="jane"/ > to create a reference from bean j ohn to bean j ane, the second
bean definition uses p: spouse-ref ="j ane" as an attribute to do the exact same thing. In this case
spouse is the property name, whereas the - r ef partindicates that this is not a straight value but rather
a reference to another bean.

© Note

The p-namespace is not as flexible as the standard XML format. For example, the format for
declaring property references clashes with properties that end in Ref , whereas the standard XML
format does not. We recommend that you choose your approach carefully and communicate this
to your team members, to avoid producing XML documents that use all three approaches at the
same time.

Spring Framework
4.0.5.RELEASE Reference Documentation 45

Spring Framework

XML shortcut with the c-namespace

Similar to the the section called “XML shortcut with the p-namespace”, the c-namespace, newly
introduced in Spring 3.1, allows usage of inlined attributes for configuring the constructor arguments
rather then nested const r uct or - ar g elements.

Let's review the examples from the section called “Constructor-based dependency injection” with the
C: namespace:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xm ns: c="http://ww. springfranmework. org/ schema/c"
xsi : schemaLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ scherma/ beans/ spri ng- beans. xsd" >

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" class="x.y.Baz"/>

<!-- traditional declaration -->

<bean id="fo0" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
<constructor-arg val ue="foo@ar.con'/>

</ bean>

<l-- c-nanespace declaration -->

<bean id="foo0" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:emil ="foo@ar.conl/>
</ beans>

The c: namespace uses the same conventions as the p: one (trailing - r ef for bean references) for
setting the constructor arguments by their names. And just as well, it needs to be declared even though
it is not defined in an XSD schema (but it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode was
compiled without debugging information), one can use fallback to the argument indexes:

<l-- c-nanespace index declaration -->
<bean id="foo0" class="x.y.Foo" c:_O-ref="bar" c:_1-ref="baz"/>

© Note

Due to the XML grammar, the index notation requires the presence of the leading _ as XML
attribute names cannot start with a number (even though some IDE allow it).

In practice, the constructor resolution mechanism is quite efficient in matching arguments so unless one
really needs to, we recommend using the name notation through-out your configuration.

Compound property names

You can use compound or nested property names when you set bean properties, as long as all
components of the path except the final property name are not nul | . Consider the following bean
definition.

<bean i d="foo" class="foo.Bar">
<property nane="fred. bob. sammy" val ue="123" />
</ bean>

Spring Framework
4.0.5.RELEASE Reference Documentation 46

Spring Framework

The f oo beanhas af r ed property, which has a bob property, which has a samy property, and that final
sammy property is being set to the value 123. In order for this to work, the f r ed property of f 0o, and the
bob property of f r ed must not be nul | after the bean is constructed, or a Nul | Poi nt er Excepti on
is thrown.

Using depends-on

If a bean is a dependency of another that usually means that one bean is set as a property of another.
Typically you accomplish this with the <r ef / > element in XML-based configuration metadata. However,
sometimes dependencies between beans are less direct; for example, a static initializer in a class needs
to be triggered, such as database driver registration. The depends- on attribute can explicitly force one
or more beans to be initialized before the bean using this element is initialized. The following example
uses the depends- on attribute to express a dependency on a single bean:

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="manager"/ >
<bean i d="manager" cl ass="Manager Bean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the depends-
on attribute, with commas, whitespace and semicolons, used as valid delimiters:

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="manager, account Dao" >
<property nanme="manager" ref="nanager" />
</ bean>

<bean i d="nmanager" cl ass="ManagerBean" />
<bean i d="account Dao" cl ass="x.y.jdbc.JdbcAccount Dao" />

© Note

The depends-on attribute in the bean definition can specify both an initialization time
dependency and, in the case of singleton beans only, a corresponding destroy time dependency.
Dependent beans that define a depends- on relationship with a given bean are destroyed first,
prior to the given bean itself being destroyed. Thus depends- on can also control shutdown
order.

Lazy-initialized beans

By default, Appl i cati onCont ext implementations eagerly create and configure all singleton beans
as part of the initialization process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours or even
days later. When this behavior is not desirable, you can prevent pre-instantiation of a singleton bean by
marking the bean definition as lazy-initialized. A lazy-initialized bean tells the IoC container to create a
bean instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the | azy-i ni t attribute on the <bean/ > element; for example:

<bean id="lazy" class="com foo. Expensi veToCreat eBean" |azy-init="true"/>
<bean name="not.| azy" cl ass="com f 0o. Anot her Bean"/ >

When the preceding configuration is consumed by an Appl i cati onCont ext , the bean named | azy
is not eagerly pre-instantiated when the Appl i cat i onCont ext is starting up, whereas the not . | azy
bean is eagerly pre-instantiated.

Spring Framework
4.0.5.RELEASE Reference Documentation 47

Spring Framework

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-initialized,
the Appl i cati onCont ext creates the lazy-initialized bean at startup, because it must satisfy the
singleton’s dependencies. The lazy-initialized bean is injected into a singleton bean elsewhere that is
not lazy-initialized.

You can also control lazy-initialization at the container level by using the def aul t - | azy-i ni t attribute
on the <beans/ > element; for example:

<beans default-lazy-init="true">
<l-- no beans will be pre-instantiated... -->
</ beans>

Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. You can allow Spring
to resolve collaborators (other beans) automatically for your bean by inspecting the contents of the
Appl i cati onCont ext . Autowiring has the following advantages:

» Autowiring can significantly reduce the need to specify properties or constructor arguments. (Other
mechanisms such as a bean template discussed elsewhere in this chapter are also valuable in this
regard.)

» Autowiring can update a configuration as your objects evolve. For example, if you need to add a
dependency to a class, that dependency can be satisfied automatically without you needing to modify
the configuration. Thus autowiring can be especially useful during development, without negating the
option of switching to explicit wiring when the code base becomes more stable.

When using XML-based configuration metadata 10, you specify autowire mode for a bean definition
with the aut owi r e attribute of the <bean/ > element. The autowiring functionality has five modes. You
specify autowiring per bean and thus can choose which ones to autowire.

Table 4.2. Autowiring modes

Mode Explanation

no (Default) No autowiring. Bean references must
be defined via a r ef element. Changing the
default setting is not recommended for larger
deployments, because specifying collaborators
explicitly gives greater control and clarity. To
some extent, it documents the structure of a
system.

byName Autowiring by property name. Spring looks for
a bean with the same name as the property
that needs to be autowired. For example, if a
bean definition is set to autowire by name, and
it contains a master property (that is, it has a
setMaster(..) method), Spring looks for a bean
definition named nmast er, and uses it to set the

property.

%see the section called “Dependency injection”

Spring Framework
4.0.5.RELEASE Reference Documentation 48

Spring Framework

Mode Explanation

byType Allows a property to be autowired if exactly one
bean of the property type exists in the container.
If more than one exists, a fatal exception is
thrown, which indicates that you may not use
byType autowiring for that bean. If there are no
matching beans, nothing happens; the property
is not set.

constructor Analogous to byType, but applies to constructor
arguments. If there is not exactly one bean of
the constructor argument type in the container, a
fatal error is raised.

With byType or constructor autowiring mode, you can wire arrays and typed-collections. In such cases
all autowire candidates within the container that match the expected type are provided to satisfy the
dependency. You can autowire strongly-typed Maps if the expected key type is St ri ng. An autowired
Maps values will consist of all bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after autowiring
completes.

Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in general,
it might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

» Explicit dependencies in property and construct or - ar g settings always override autowiring.
You cannot autowire so-called simple properties such as primitives, St ri ngs, and C asses (and
arrays of such simple properties). This limitation is by-design.

» Autowiring is less exact than explicit wiring. Although, as noted in the above table, Spring is careful
to avoid guessing in case of ambiguity that might have unexpected results, the relationships between
your Spring-managed objects are no longer documented explicitly.

» Wiring information may not be available to tools that may generate documentation from a Spring
container.

» Multiple bean definitions within the container may match the type specified by the setter method
or constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily
a problem. However for dependencies that expect a single value, this ambiguity is not arbitrarily
resolved. If no unique bean definition is available, an exception is thrown.

In the latter scenario, you have several options:
« Abandon autowiring in favor of explicit wiring.

» Avoid autowiring for a bean definition by setting its aut owi r e- candi dat e attributes to f al se as
described in the next section.

Spring Framework
4.0.5.RELEASE Reference Documentation 49

Spring Framework

» Designate a single bean definition as the primary candidate by setting the pri mary attribute of its
<bean/ > elementtotrue.

* Implement the more fine-grained control available with annotation-based configuration, as described
in Section 4.9, “Annotation-based container configuration”.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring’s XML format, set the
aut owi r e- candi dat e attribute of the <bean/ > element to f al se; the container makes that specific
bean definition unavailable to the autowiring infrastructure (including annotation style configurations
such as @A\ut owi r ed).

You can also limit autowire candidates based on pattern-matching against bean names. The top-
level <beans/ > element accepts one or more patterns within its def aul t - aut owi r e- candi dat es
attribute. For example, to limit autowire candidate status to any bean whose name ends with Repository,
provide a value of *Repository. To provide multiple patterns, define them in a comma-separated list. An
explicit value of t r ue or f al se for a bean definitions aut owi r e- candi dat e attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by autowiring.
It does not mean that an excluded bean cannot itself be configured using autowiring. Rather, the bean
itself is not a candidate for autowiring other beans.

Method injection

In most application scenarios, most beans in the container are singletons. When a singleton bean needs
to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another
non-singleton bean, you typically handle the dependency by defining one bean as a property of the
other. A problem arises when the bean lifecycles are different. Suppose singleton bean A needs to use
non-singleton (prototype) bean B, perhaps on each method invocation on A. The container only creates
the singleton bean A once, and thus only gets one opportunity to set the properties. The container cannot
provide bean A with a new instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by
implementing the Appl i cati onCont ext Awar e interface, and by making a getBean("B") call to the
container ask for (a typically new) bean B instance every time bean A needs it. The following is an
example of this approach:

Spring Framework
4.0.5.RELEASE Reference Documentation 50

Spring Framework

/] a class that uses a stateful Conmand-style class to perform sone processing
package fiona. appl e;

/'l Spring-APl inports

i nport org.springfranework. beans. BeansExcept i on;

i nport org.springfranmework. context. ApplicationContext;

i mport org.springfranmework. cont ext. Appl i cati onCont ext Awar e;

public class CommandManager inplenents ApplicationContext Anare {
private ApplicationContext applicationContext;

public Object process(Map comrandState) {
/'l grab a new i nstance of the appropriate Command
Command conmand = creat eCommand() ;
/'l set the state on the (hopefully brand new) Conmand instance
command. set St at e(conmandSt at e) ;
return command. execute();

}

protected Command creat eCommand() {
/1 notice the Spring APl dependency!
return this.applicationContext.getBean("conmand", Conmand. cl ass);

}

public void setApplicationCont ext (
Appl i cati onCont ext applicationContext) throws BeansException {
thi s. applicationContext = applicationContext;

The preceding is not desirable, because the business code is aware of and coupled to the Spring
Framework. Method Injection, a somewhat advanced feature of the Spring loC container, allows this
use case to be handled in a clean fashion.

You can read more about the motivation for Method Injection in this blog entry.

Lookup method injection

Lookup method injection is the ability of the container to override methods on container managed beans,
to return the lookup result for another named bean in the container. The lookup typically involves a
prototype bean as in the scenario described in the preceding section. The Spring Framework implements
this method injection by using bytecode generation from the CGLIB library to generate dynamically a
subclass that overrides the method.

© Note

For this dynamic subclassing to work, the class that the Spring container will subclass cannot
be fi nal , and the method to be overridden cannot be f i nal either. Also, testing a class that
has an abst ract method requires you to subclass the class yourself and to supply a stub
implementation of the abst r act method. Finally, objects that have been the target of method
injection cannot be serialized. As of Spring 3.2 it is no longer necessary to add CGLIB to your
classpath, because CGLIB classes are repackaged under org.springframework and distributed
within the spring-core JAR. This is done both for convenience as well as to avoid potential
conflicts with other projects that use differing versions of CGLIB.

Spring Framework
4.0.5.RELEASE Reference Documentation 51

http://blog.springsource.com/2004/08/06/method-injection/

Spring Framework

Looking at the CommandManager class in the previous code snippet, you see that the Spring
container will dynamically override the implementation of the creat eConmand() method. Your
ConmandManager class will not have any Spring dependencies, as can be seen in the reworked
example:

package fiona. appl e
/1 no nmore Spring inmports
public abstract class CommandManager {

public Object process(Object conmandState) {
/'l grab a new instance of the appropriate Command interface
Command conmand = creat eCommand() ;
/'l set the state on the (hopefully brand new) Conmand i nstance
comand. set St at e(comrandSt at e) ;
return comrand. execute();

}

/] okay... but where is the inplenentation of this method?
protected abstract Conmand creat eConmand();

In the client class containing the method to be injected (the ConmandManager in this case), the method
to be injected requires a signature of the following form:

<public| protected> [abstract] <return-type> theMethodNanme(no-argunents);

If the method is abst r act, the dynamically-generated subclass implements the method. Otherwise,
the dynamically-generated subclass overrides the concrete method defined in the original class. For
example:

<l-- a stateful bean deployed as a prototype (non-singleton) -->

<bean i d="conmand" class="fi ona. appl e. AsyncConmand" scope="prototype">
<l-- inject dependencies here as required -->

</ bean>

<I'-- commandPr ocessor uses st at ef ul ConmandHel per -->

<bean i d="conmandManager" cl ass="fi ona. appl e. ConmandManager" >
<l ookup- et hod nane="cr eat eCommand" bean="conmand"/>
</ bean>

The bean identified as commandManager calls its own method cr eat eConmmand() whenever it needs
a new instance of the command bean. You must be careful to deploy the conmand bean as a prototype,
if that is actually what is needed. If it is deployed as a singleton, the same instance of the conmand
bean is returned each time.

Q Tip

The interested reader may also find the ServicelLocatorFactoryBean (in the
org. spri ngfranmewor k. beans. factory. confi g package) to be of use. The approach
used in ServiceLocatorFactoryBean is similar to that of another utility class,
oj ect Fact oryCr eati ngFact or yBean, but it allows you to specify your own lookup
interface as opposed to a Spring-specific lookup interface. Consult the javadocs of these classes
for additional information.

Spring Framework
4.0.5.RELEASE Reference Documentation 52

Spring Framework

Arbitrary method replacement

A less useful form of method injection than lookup method Injection is the ability to replace arbitrary
methods in a managed bean with another method implementation. Users may safely skip the rest of
this section until the functionality is actually needed.

With XML-based configuration metadata, you can use the r epl aced- net hod element to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with
a method computeValue, which we want to override:

public class MyVal ueCal cul ator {
public String conputeVal ue(String input) {
/'l some real code...

}

/'l some ot her nethods...

A class implementing the or g. spri ngf ranewor k. beans. f act ory. support. Met hodRepl acer
interface provides the new method definition.

/**

* meant to be used to override the existing conputeVal ue(String)
* inplementation in MyVal ueCal cul at or
*/
public class Repl acement Comput eVal ue i npl enents Met hodRepl acer {
public Object reinplenment(Object o, Method m Object[] args) throws Throwabl e {
/1 get the input value, work with it, and return a conputed result

String input = (String) args[O0];

return ...;

The bean definition to deploy the original class and specify the method override would look like this:

<bean i d="nyVal ueCal cul ator" class="x.y.z. MyVal ueCal cul ator" >
<l-- arbitrary method repl acenent -->
<repl aced- net hod nane="conput eVal ue" repl acer="repl acenent Conput eVal ue" >
<arg-type>String</arg-type>
</ repl aced- net hod>
</ bean>

<bean i d="repl acenent Conput eVal ue" cl ass="a. b. c. Repl acenent Conput eVal ue"/ >

You can use one or more contained <ar g-type/ > elements within the <r epl aced- net hod/ >
element to indicate the method signature of the method being overridden. The signature for the
arguments is necessary only if the method is overloaded and multiple variants exist within the class.
For convenience, the type string for an argument may be a substring of the fully qualified type name.
For example, the following all match j ava. | ang. Stri ng:

java.lang. String
String
Str

Spring Framework
4.0.5.RELEASE Reference Documentation 53

Spring Framework

Because the number of arguments is often enough to distinguish between each possible choice, this
shortcut can save a lot of typing, by allowing you to type only the shortest string that will match an
argument type.

4.5 Bean scopes

When you create a bean definition, you create a recipe for creating actual instances of the class defined
by that bean definition. The idea that a bean definition is a recipe is important, because it means that,
as with a class, you can create many object instances from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into
an object that is created from a particular bean definition, but also the scope of the objects created from
a particular bean definition. This approach is powerful and flexible in that you can choose the scope
of the objects you create through configuration instead of having to bake in the scope of an object at
the Java class level. Beans can be defined to be deployed in one of a humber of scopes: out of the
box, the Spring Framework supports five scopes, three of which are available only if you use a web-
aware Appl i cat i onCont ext .

The following scopes are supported out of the box. You can also create a custom scope.

Table 4.3. Bean scopesThread-scoped beans

Scope Description
singleton (Default) Scopes a single bean definition to a

single object instance per Spring 1oC container.

prototype Scopes a single bean definition to any number of
object instances.

request Scopes a single bean definition to the lifecycle
of a single HTTP request; that is, each HTTP
request has its own instance of a bean created
off the back of a single bean definition. Only
valid in the context of a web-aware Spring
Appl i cati onCont ext .

session Scopes a single bean definition to the lifecycle of
an HTTP Sessi on. Only valid in the context of a
web-aware Spring Appl i cat i onCont ext .

global session Scopes a single bean definition to the lifecycle
of a global HTTP Sessi on. Typically only
valid when used in a portlet context. Only
valid in the context of a web-aware Spring
Appl i cati onCont ext .

© Note

As of Spring 3.0, a thread scope is available, but is not registered by default. For more information,
see the documentation for Si npl eThr eadScope. For instructions on how to register this or any
other custom scope, see the section called “Using a custom scope”.

Spring Framework
4.0.5.RELEASE Reference Documentation 54

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/support/SimpleThreadScope.html

Spring Framework

The singleton scope

Only one shared instance of a singleton bean is managed, and all requests for beans with an id or
ids matching that bean definition result in that one specific bean instance being returned by the Spring
container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring loC
container creates exactly one instance of the object defined by that bean definition. This single instance
is stored in a cache of such singleton beans, and all subsequent requests and references for that named
bean return the cached object.

‘ Only one instance is ever created...

1

<bean id="accountDao" class="..." />

... and this same shared instance is injected into each collaborating object

Figure 4.2.

Spring’s concept of a singleton bean differs from the Singleton pattern as defined in the Gang of Four
(GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and only
one instance of a particular class is created per ClassLoader. The scope of the Spring singleton is best
described as per container and per bean. This means that if you define one bean for a particular class
in a single Spring container, then the Spring container creates one and only one instance of the class
defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as
a singleton in XML, you would write, for example:

<bean i d="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce"/ >

<l-- the following is equivalent, though redundant (singleton scope is the default) -->
<bean i d="account Servi ce" cl ass="com fo00. Def aul t Account Servi ce" scope="si ngl eton"/>

The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance
every time a request for that specific bean is made. That is, the bean is injected into another bean or
you request it through a get Bean() method call on the container. As a rule, use the prototype scope
for all stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not typically
configured as a prototype, because a typical DAO does not hold any conversational state; it was just
easier for this author to reuse the core of the singleton diagram.

Spring Framework
4.0.5.RELEASE Reference Documentation 55

Spring Framework

A brand new bean instance is created...

<bean ld="accountDao" class="..."
,{'; scope="prototype" />

... each and every time the prototype is referenced by collaborating beans

Figure 4.3.
The following example defines a bean as a prototype in XML:

<bean i d="account Servi ce" cl ass="com fo00. Def aul t Account Servi ce" scope="prototype"/>

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, and otherwise assembles a prototype object, and hands it to the client,
with no further record of that prototype instance. Thus, although initialization lifecycle callback methods
are called on all objects regardless of scope, in the case of prototypes, configured destruction lifecycle
callbacks are not called. The client code must clean up prototype-scoped objects and release expensive
resources that the prototype bean(s) are holding. To get the Spring container to release resources held
by prototype-scoped beans, try using a custom bean post-processor, which holds a reference to beans
that need to be cleaned up.

In some respects, the Spring container’s role in regard to a prototype-scoped bean is a replacement
for the Java new operator. All lifecycle management past that point must be handled by the client. (For
details on the lifecycle of a bean in the Spring container, see the section called “Lifecycle callbacks”.)

Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that
dependencies are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped bean
into a singleton-scoped bean, a new prototype bean is instantiated and then dependency-injected into
the singleton bean. The prototype instance is the sole instance that is ever supplied to the singleton-
scoped bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-
scoped bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into your
singleton bean, because that injection occurs only once, when the Spring container is instantiating the
singleton bean and resolving and injecting its dependencies. If you need a new instance of a prototype
bean at runtime more than once, see the section called “Method injection”

Request, session, and global session scopes

The request, sessi on, and gl obal sessi on scopes are only available if you use a web-aware
Spring Appl i cat i onCont ext implementation (such as Xm WebAppl i cat i onCont ext). If you use

Spring Framework
4.0.5.RELEASE Reference Documentation 56

Spring Framework

these scopes with regular Spring loC containers such as the Cl assPat hXnl Appl i cati onCont ext,
yougetanl || egal St at eExcept i on complaining about an unknown bean scope.

Initial web configuration

To support the scoping of beans atthe r equest , sessi on, and gl obal sessi on levels (web-scoped
beans), some minor initial configuration is required before you define your beans. (This initial setup is
not required for the standard scopes, singleton and prototype.)

How you accomplish this initial setup depends on your particular Servlet environment..

If you access scoped beans within Spring Web MVC, in effect, within a request that is processed
by the Spring Di spat cher Ser vl et, or Di spat cher Port | et, then no special setup is necessary:
Di spat cher Servl et and Di spat cher Port| et already expose all relevant state.

If you wuse a Servlet 2.5 web container, with requests processed outside of
Spring’s DispatcherServlet (for example, when using JSF or Struts), you need
to register the org. springframework. web. cont ext.request. Request Cont ext Li st ener
Servl et Request Li stener. For Servlet 3.0+, this can done programmatically via the
WebApplicationlnitializer interface. Alternatively, or for older containers, add the following
declaration to your web application’s web. xm file:

<web- app>

<listener>
<listener-class>
org. spri ngframewor k. web. cont ext . request . Request Cont ext Li st ener
</listener-class>
</listener>

</ web- app>

Alternatively, if there are issues with your listener setup, consider the provided
Request Context Fil ter. The filter mapping depends on the surrounding web application
configuration, so you have to change it as appropriate.

<web- app>

<filter>
<filter-nane>requestContextFilter</filter-nanme>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-nmppi ng>
<filter-nanme>requestContextFilter</filter-nane>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

</ web- app>

Di spat cher Servl et, Request Cont ext Li stener and Request Context Fi |l ter all do exactly
the same thing, namely bind the HTTP request object to the Thr ead that is servicing that request. This
makes beans that are request- and session-scoped available further down the call chain.

Request scope

Consider the following bean definition:

Spring Framework
4.0.5.RELEASE Reference Documentation 57

Spring Framework

<bean i d="I ogi nAction" class="com foo.Logi nAction" scope="request"/>

The Spring container creates a new instance of the Logi nAct i on bean by using the | ogi nAct i on
bean definition for each and every HTTP request. That is, the | ogi nActi on bean is scoped at the
HTTP request level. You can change the internal state of the instance that is created as much as you
want, because other instances created from the same | ogi nAct i on bean definition will not see these
changes in state; they are particular to an individual request. When the request completes processing,
the bean that is scoped to the request is discarded.

Session scope
Consider the following bean definition:

<bean i d="user Preferences" class="com foo. User Preferences" scope="session"/>

The Spring container creates a new instance of the User Preferences bean by using the
user Pr ef er ences bean definition for the lifetime of a single HTTP Sessi on. In other words, the
user Pr ef er ences bean is effectively scoped at the HTTP Sessi on level. As with r equest - scoped
beans, you can change the internal state of the instance that is created as much as you want,
knowing that other HTTP Sessi on instances that are also using instances created from the same
user Pr ef er ences bean definition do not see these changes in state, because they are particular to an
individual HTTP Sessi on. When the HTTP Sessi on is eventually discarded, the bean that is scoped
to that particular HTTP Sessi on is also discarded.

Global session scope

Consider the following bean definition:

<bean i d="user Preferences" class="com foo. User Preferences" scope="gl obal Sessi on"/>

The gl obal sessi on scope is similar to the standard HTTP Sessi on scope (described above), and
applies only in the context of portlet-based web applications. The portlet specification defines the notion
of a global Sessi on that is shared among all portlets that make up a single portlet web application.
Beans defined at the gl obal sessi on scope are scoped (or bound) to the lifetime of the global portlet
Sessi on.

If you write a standard Servlet-based web application and you define one or more beans as having
gl obal sessi on scope, the standard HTTP Sessi on scope is used, and no error is raised.

Scoped beans as dependencies

The Spring loC container manages not only the instantiation of your objects (beans), but also the wiring
up of collaborators (or dependencies). If you want to inject (for example) an HTTP request scoped bean
into another bean, you must inject an AOP proxy in place of the scoped bean. That is, you need to inject
a proxy object that exposes the same public interface as the scoped object but that can also retrieve
the real, target object from the relevant scope (for example, an HTTP request) and delegate method
calls onto the real object.

© Note

You do not need to use the <aop: scoped- pr oxy/ > in conjunction with beans that are scoped
as si ngl et ons or pr ot ot ypes.

Spring Framework
4.0.5.RELEASE Reference Documentation 58

Spring Framework

The configuration in the following example is only one line, but it is important to understand the "why"
as well as the "how" behind it.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:aop="http://ww. spri ngframewor k. or g/ schena/ aop"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ aop
http://ww. spri ngfranewor k. or g/ schema/ aop/ spri ng- aop. xsd" >

<l-- an HITP Session-scoped bean exposed as a proxy -->
<bean i d="user Preferences" class="com foo. User Pref erences" scope="session">
<l-- instructs the container to proxy the surrounding bean -->
<aop: scoped- proxy/ >
</ bean>
<l-- a singleton-scoped bean injected with a proxy to the above bean -->
<bean i d="user Servi ce" class="com foo. Si npl eUser Servi ce">
<I-- a reference to the proxi ed userPreferences bean -->
<property nanme="user Preferences" ref="userPreferences"/>
</ bean>
</ beans>

To create such a proxy, you insert a child <aop: scoped- pr oxy/ > element into a scoped bean
definition. See the section called “Choosing the type of proxy to create” and Chapter 33, XML Schema-
based configuration.) Why do definitions of beans scoped at the r equest , sessi on, gl obal Sessi on
and custom-scope levels require the <aop: scoped- pr oxy/ > element ? Let's examine the following
singleton bean definition and contrast it with what you need to define for the aforementioned scopes.
(The following user Pr ef er ences bean definition as it stands is incomplete.)

<bean i d="user Preferences" class="com foo. User Preferences" scope="session"/>

<bean i d="user Manager" class="com fo0o. User Manager ">
<property nane="user Preferences" ref="userPreferences"/>
</ bean>

In the preceding example, the singleton bean user Manager is injected with a reference to the HTTP
Sessi on-scoped bean user Pr ef er ences. The salient point here is that the user Manager beanis a
singleton: it will be instantiated exactly once per container, and its dependencies (in this case only one,
the user Pr ef er ences bean) are also injected only once. This means that the user Manager bean
will only operate on the exact same user Pr ef er ences object, that is, the one that it was originally
injected with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-
lived scoped bean, for example injecting an HTTP Sessi on-scoped collaborating bean as a
dependency into singleton bean. Rather, you need a single user Manager object, and for the
lifetime of an HTTP Sessi on, you need a user Pr ef er ences object that is specific to said HTTP
Sessi on. Thus the container creates an object that exposes the exact same public interface as
the User Pr ef erences class (ideally an object that is a User Pr ef er ences instance) which can
fetch the real User Pr ef er ences object from the scoping mechanism (HTTP request, Sessi on,
etc.). The container injects this proxy object into the user Manager bean, which is unaware that this
User Pr ef er ences reference is a proxy. In this example, when a User Manager instance invokes
a method on the dependency-injected User Pr ef er ences object, it actually is invoking a method on

Spring Framework
4.0.5.RELEASE Reference Documentation 59

Spring Framework

the proxy. The proxy then fetches the real User Pr ef er ences object from (in this case) the HTTP
Sessi on, and delegates the method invocation onto the retrieved real User Pr ef er ences object.

Thus you need the following, correct and complete, configuration when injecting r equest - , sessi on-,
and gl obal Sessi on- scoped beans into collaborating objects:

<bean i d="user Preferences" class="com foo. User Preferences" scope="session">
<aop: scoped- proxy/ >

</ bean>

<bean i d="user Manager" cl ass="com f 0o. User Manager " >
<property nanme="user Preferences" ref="userPreferences"/>

</ bean>

Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with the
<aop: scoped- pr oxy/ > element, a CGLIB-based class proxy is created.

© Note

CGLIB proxies only intercept public method calls! Do not call non-public methods on such a
proxy; they will not be delegated to the scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based proxies
for such scoped beans, by specifying f al se for the value of the proxy-t ar get - cl ass attribute of
the <aop: scoped- pr oxy/ > element. Using JDK interface-based proxies means that you do not need
additional libraries in your application classpath to effect such proxying. However, it also means that the
class of the scoped bean must implement at least one interface, and that all collaborators into which the
scoped bean is injected must reference the bean through one of its interfaces.

<! -- Defaul tUserPreferences inplenments the UserPreferences interface -->

<bean i d="user Preferences" class="com foo. Defaul t User Pref erences" scope="sessi on">
<aop: scoped- proxy proxy-target-class="fal se"/>

</ bean>

<bean i d="user Manager" cl ass="com f 0o. User Manager " >
<property nane="user Preferences" ref="userPreferences"/>

</ bean>

For more detailed information about choosing class-based or interface-based proxying, see Section 8.6,
“Proxying mechanisms”.

Custom scopes

The bean scoping mechanism is extensible; You can define your own scopes, or even redefine existing
scopes, although the latter is considered bad practice and you cannot override the built-in si ngl et on
and pr ot ot ype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the
org. spri ngfranmewor k. beans. factory. confi g. Scope interface, which is described in this
section. For an idea of how to implement your own scopes, see the Scope implementations that are
supplied with the Spring Framework itself and the Scope javadocs, which explains the methods you
need to implement in more detail.

Spring Framework
4.0.5.RELEASE Reference Documentation 60

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/config/Scope.html

Spring Framework

The Scope interface has four methods to get objects from the scope, remove them from the scope,
and allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope implementation,
for example, returns the session-scoped bean (and if it does not exist, the method returns a new instance
of the bean, after having bound it to the session for future reference).

Obj ect get(String nane, ObjectFactory objectFactory)

The following method removes the object from the underlying scope. The session scope implementation
for example, removes the session-scoped bean from the underlying session. The object should be
returned, but you can return null if the object with the specified name is not found.

bj ect renove(String nane)

The following method registers the callbacks the scope should execute when it is destroyed or when
the specified object in the scope is destroyed. Refer to the javadocs or a Spring scope implementation
for more information on destruction callbacks.

voi d registerDestructionCall back(String name, Runnabl e destructionCall back)

The following method obtains the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session scoped implementation, this identifier can be the session
identifier.

String get Conversationld()

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make the Spring
container aware of your new scope(s). The following method is the central method to register a new
Scope with the Spring container:

voi d regi sterScope(String scopeNane, Scope scope);

This method is declared on the Conf i gur abl eBeanFact ory interface, which is available on most
of the concrete Appl i cati onCont ext implementations that ship with Spring via the BeanFactory

property.

The first argument to the regi st er Scope(..) method is the unigue name associated with a
scope; examples of such names in the Spring container itself are si ngl et on and pr ot ot ype. The
second argument to the regi st er Scope(..) method is an actual instance of the custom Scope
implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

© Note

The example below uses Si npl eThr eadScope which is included with Spring, but not registered
by default. The instructions would be the same for your own custom Scope implementations.

Scope threadScope = new Si npl eThr eadScope() ;
beanFactory. regi st er Scope("thread", threadScope);

You then create bean definitions that adhere to the scoping rules of your custom Scope:

Spring Framework
4.0.5.RELEASE Reference Documentation 61

Spring Framework

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope.
You can also do the Scope registration declaratively, using the Cust onScopeConf i gur er class:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:aop="http://ww. spri ngframewor k. or g/ schena/ aop"
xsi : schemalLocat i on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ aop
http://ww. springfranmewor k. or g/ schema/ aop/ spri ng- aop. xsd" >

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<r’rap>
<entry key="t hread">
<bean cl ass="org. spri ngframewor k. cont ext . support. Si npl eThr eadScope"/ >
</entry>
</ map>
</ property>
</ bean>

<bean id="bar" class="x.y.Bar" scope="thread">
<property nanme="nanme" val ue="Ri ck"/>
<aop: scoped- proxy/ >

</ bean>

<bean id="foo" class="x.y.Foo">
<property name="bar" ref="bar"/>

</ bean>
</ beans>
© Note

When you place <aop:scoped-proxy/> in a Fact or yBean implementation, it is the factory bean
itself that is scoped, not the object returned from get Chj ect () .

4.6 Customizing the nature of a bean

Lifecycle callbacks

To interact with the container's management of the bean lifecycle, you can implement
the Spring InitializingBean and Di sposabl eBean interfaces. The container calls
after PropertiesSet () for the former and dest roy() for the latter to allow the bean to perform
certain actions upon initialization and destruction of your beans.

Q@ Tip

The JSR-250 @Post Const ruct and @r eDest r oy annotations are generally considered best
practice for receiving lifecycle callbacks in a modern Spring application. Using these annotations
means that your beans are not coupled to Spring specific interfaces. For details see the section
called “@PostConstruct and @PreDestroy”.

Spring Framework
4.0.5.RELEASE Reference Documentation 62

Spring Framework

If you don’t want to use the JSR-250 annotations but you are still looking to remove coupling
consider the use of init-method and destroy-method object definition metadata.

Internally, the Spring Framework uses BeanPost Pr ocessor implementations to process any callback
interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle
behavior Spring does not offer out-of-the-box, you can implement a BeanPost Pr ocessor yourself.
For more information, see Section 4.8, “Container Extension Points”.

In addition to the initialization and destruction callbacks, Spring-managed objects may also implement
the Li f ecycl e interface so that those objects can participate in the startup and shutdown process as
driven by the container’s own lifecycle.

The lifecycle callback interfaces are described in this section.
Initialization callbacks

The org. spri ngframewor k. beans. factory. I nitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container.
The I nitializi ngBean interface specifies a single method:

void afterPropertiesSet() throws Exception

It is recommended that you do not use the | ni ti al i zi ngBean interface because it unnecessarily
couples the code to Spring. Alternatively, use the @Post Const r uct annotation or specify a POJO
initialization method. In the case of XML-based configuration metadata, you use the i ni t - met hod
attribute to specify the name of the method that has a void no-argument signature. For example, the
following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-method="init"/>

public class Exanpl eBean {

public void init() {
/1 do sone initialization work

}

...is exactly the same as...

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Anot her Exanpl eBean i npl enents InitializingBean {

public void afterPropertiesSet() {
/1 do sone initialization work

}

but does not couple the code to Spring.

Spring Framework
4.0.5.RELEASE Reference Documentation 63

Spring Framework

Destruction callbacks

Implementing the or g. spri ngf r anewor k. beans. f act ory. Di sposabl eBean interface allows a
bean to get a callback when the container containing it is destroyed. The Di sposabl eBean interface
specifies a single method:

voi d destroy() throws Exception

It is recommended that you do not use the Di sposabl eBean callback interface because it
unnecessarily couples the code to Spring. Alternatively, use the @ eDest r oy annotation or specify
a generic method that is supported by bean definitions. With XML-based configuration metadata, you
use the dest r oy- net hod attribute on the <bean/ >. For example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy-net hod="cl eanup"/ >

public class Exanpl eBean {

public void cleanup() {
/1 do sonme destruction work (like rel easing pool ed connecti ons)

}

is exactly the same as:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents Di sposabl eBean {

public void destroy() {
/1 do sone destruction work (like releasing pooled connections)

}

but does not couple the code to Spring.
Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific
InitializingBean and D sposabl eBean callback interfaces, you typically write methods with
namessuchasinit(),initialize(),dispose(),andso on.ldeally, the names of such lifecycle
callback methods are standardized across a project so that all developers use the same method names
and ensure consistency.

You can configure the Spring container to | ook for named initialization and destroy callback method
names on every bean. This means that you, as an application developer, can write your application
classes and use an initialization callback called i nit (), without having to configure an init-
nmet hod="init" attribute with each bean definition. The Spring 10C container calls that method
when the bean is created (and in accordance with the standard lifecycle callback contract described
previously). This feature also enforces a consistent naming convention for initialization and destroy
method callbacks.

Suppose that your initialization callback methods are named i ni t () and destroy callback methods are
named dest r oy() . Your class will resemble the class in the following example.

Spring Framework
4.0.5.RELEASE Reference Documentation 64

Spring Framework

public class DefaultBl ogService inplenents Bl ogService {
private Bl ogDao bl ogDao;

public void set Bl ogDao(Bl ogDao bl ogDao) {
thi s. bl ogDao = bl ogDao
}

/1 this is (unsurprisingly) the initialization callback nmethod
public void init() {
if (this.blogDao == null) {
throw new |11 egal St at eExcepti on("The [bl ogDao] property nust be set.");
}

<beans default-init-method="init">
<bean i d="bl ogServi ce" class="com foo. Def aul t Bl ogServi ce">
<property nane="bl ogDao" ref="bl ogDao" />

</ bean>

</ beans>

The presence of the def aul t -i ni t - met hod attribute on the top-level <beans/ > element attribute
causes the Spring IoC container to recognize a method called i ni t on beans as the initialization method
callback. When a bean is created and assembled, if the bean class has such a method, it is invoked
at the appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the def aul t - dest r oy-
nmet hod attribute on the top-level <beans/ > element.

Where existing bean classes already have callback methods that are named at variance with the
convention, you can override the default by specifying (in XML, that is) the method name using the
i ni t-nmethodand destroy-net hod attributes of the <bean/> itself.

The Spring container guarantees that a configured initialization callback is called immediately after
a bean is supplied with all dependencies. Thus the initialization callback is called on the raw bean
reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target
bean is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If the
target bean and the proxy are defined separately, your code can even interact with the raw target bean,
bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because
doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange
semantics when your code interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the I ni ti al i zi ngBean
and Di sposabl eBean callback interfaces; custom init() and destroy() methods; and the
@ost Const ruct _and @°r eDest r oy annotations. You can combine these mechanisms to control a
given bean.

Spring Framework
4.0.5.RELEASE Reference Documentation 65

Spring Framework

© Note

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is configured
with a different method name, then each configured method is executed in the order listed below.
However, if the same method name is configured - for example, i ni t () for an initialization
method - for more than one of these lifecycle mechanisms, that method is executed once, as
explained in the preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are
called as follows:

* Methods annotated with @Post Const r uct

- afterPropertiesSet() asdefinedbythelnitializingBean callback interface
» A custom configured i ni t () method

Destroy methods are called in the same order:

» Methods annotated with @°r eDest r oy

» destroy() as defined by the Di sposabl eBean callback interface

» A custom configured dest r oy() method

Startup and shutdown callbacks

The Li f ecycl e interface defines the essential methods for any object that has its own lifecycle
requirements (e.g. starts and stops some background process):

public interface Lifecycle {
void start();
voi d stop();

bool ean i sRunni ng();

Any Spring-managed object may implement that interface. Then, when the ApplicationContext itself
starts and stops, it will cascade those calls to all Lifecycle implementations defined within that context.
It does this by delegating to a Li f ecycl ePr ocessor:

public interface LifecycleProcessor extends Lifecycle {
voi d onRefresh();

voi d ond ose();

Notice that the Li f ecycl ePr ocessor is itself an extension of the Li f ecycl e interface. It also adds
two other methods for reacting to the context being refreshed and closed.

The order of startup and shutdown invocations can be important. If a "depends-on" relationship exists
between any two objects, the dependent side will start after its dependency, and it will stop before its

Spring Framework
4.0.5.RELEASE Reference Documentation 66

Spring Framework

dependency. However, at times the direct dependencies are unknown. You may only know that objects
of a certain type should start prior to objects of another type. In those cases, the Smart Li f ecycl e
interface defines another option, namely the get Phase() method as defined on its super-interface,
Phased.

public interface Phased {

i nt getPhase();

public interface SmartlLifecycle extends Lifecycle, Phased {
bool ean i sAutoStartup();

voi d stop(Runnabl e cal | back);

When starting, the objects with the lowest phase start first, and when stopping, the reverse order
is followed. Therefore, an object that implements Smart Li f ecycl e and whose getPhase() method
returns | nt eger . M N_VALUE would be among the first to start and the last to stop. At the other end of
the spectrum, a phase value of | nt eger . MAX_VALUE would indicate that the object should be started
last and stopped first (likely because it depends on other processes to be running). When considering
the phase value, it's also important to know that the default phase for any "normal" Li f ecycl e object
that does not implement Smart Li f ecycl e would be 0. Therefore, any negative phase value would
indicate that an object should start before those standard components (and stop after them), and vice
versa for any positive phase value.

As you can see the stop method defined by Smar t Li f ecycl e accepts a callback. Any implementation
must invoke that callback’s run() method after that implementation’s shutdown process is complete.
That enables asynchronous shutdown where necessary since the default implementation of the
Li f ecycl eProcessor interface, Def aul t Li f ecycl eProcessor, will wait up to its timeout value
for the group of objects within each phase to invoke that callback. The default per-phase timeout
is 30 seconds. You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the following
would be sufficient:

<bean id="1ifecycl eProcessor" class="org.springfranmework.context.support.DefaultlLifecycleProcessor">
<l-- timeout value in mlliseconds -->
<property nanme="ti neout Per Shut dowmnPhase" val ue="10000"/>

</ bean>

As mentioned, the Li f ecycl ePr ocessor interface defines callback methods for the refreshing and
closing of the context as well. The latter will simply drive the shutdown process as if stop() had been
called explicitly, but it will happen when the context is closing. The refresh callback on the other
hand enables another feature of Smart Li f ecycl e beans. When the context is refreshed (after all
objects have been instantiated and initialized), that callback will be invoked, and at that point the
default lifecycle processor will check the boolean value returned by each Snart Li f ecycl e object’s
i sAut oSt art up() method. If "true”, then that object will be started at that point rather than waiting for
an explicit invocation of the context's or its own start() method (unlike the context refresh, the context
start does not happen automatically for a standard context implementation). The "phase" value as well
as any "depends-on" relationships will determine the startup order in the same way as described above.

Spring Framework
4.0.5.RELEASE Reference Documentation 67

Spring Framework

Shutting down the Spring loC container gracefully in non-web applications

© Note

This section applies only to non-web applications. Spring’s web-based Appl i cat i onCont ext
implementations already have code in place to shut down the Spring I0C container gracefully
when the relevant web application is shut down.

If you are using Spring’s IoC container in a non-web application environment; for example, in a rich
client desktop environment; you register a shutdown hook with the JVM. Doing so ensures a graceful
shutdown and calls the relevant destroy methods on your singleton beans so that all resources are
released. Of course, you must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, you call the r egi st er Shut downHook () method that is declared on the
Abst ract Appl i cati onCont ext class:

i mport org.springframework. cont ext. support. Abstract Appl i cati onCont ext ;
i mport org. springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;

public final class Boot ({
public static void main(final String[] args) throws Exception {

Abstract Appl i cati onContext ctx = new O assPat hXm Appl i cati onCont ext (
new String []{"beans.xm"});

/'l add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

/'l app runs here...

/1 main nethod exits, hook is called prior to the app shutting down...

ApplicationContextAware and BeanNameAware

When an Appl i cat i onCont ext creates a class that implements the
org. spri ngfranmewor k. cont ext . Appl i cati onCont ext Awar e interface, the class is provided
with a reference to that Appl i cat i onCont ext .

public interface ApplicationContextAware {

voi d set Appl i cati onCont ext (Appl i cati onCont ext applicationContext) throws
BeansExcepti on;

Thus beans can manipulate programmatically the Appl i cat i onCont ext that created them, through
the Appl i cat i onCont ext interface, or by casting the reference to a known subclass of this interface,
such as Confi gurabl eAppl i cati onCont ext, which exposes additional functionality. One use
would be the programmatic retrieval of other beans. Sometimes this capability is useful; however, in
general you should avoid it, because it couples the code to Spring and does not follow the Inversion
of Control style, where collaborators are provided to beans as properties. Other methods of the
ApplicationContext provide access to file resources, publishing application events, and accessing a

Spring Framework
4.0.5.RELEASE Reference Documentation 68

Spring Framework

MessageSource. These additional features are described in Section 4.16, “Additional Capabilities of
the ApplicationContext”

As of Spring 2.5, autowiring is another alternative to obtain reference to the Appl i cati onCont ext .
The "traditional" construct or and byType autowiring modes (as described in the section called
“Autowiring collaborators”) can provide a dependency of type Appl i cat i onCont ext for a constructor
argument or setter method parameter, respectively. For more flexibility, including the ability to autowire
fields and multiple parameter methods, use the new annotation-based autowiring features. If you do,
the Appl i cati onCont ext is autowired into a field, constructor argument, or method parameter that
is expecting the Appl i cati onCont ext type if the field, constructor, or method in question carries the
@\ut owi r ed annotation. For more information, see the section called “@Autowired”.

When an ApplicationContext creates a class that implements the
or g. spri ngframewor k. beans. f act ory. BeanNaneAwar e interface, the class is provided with a
reference to the name defined in its associated object definition.

public interface BeanNaneAware {

voi d set BeanNane(string nane) throws BeansException;

The callback is invoked after population of normal bean properties but before an initialization callback
such as |l nitializi ngBean afterPropertiesSet or a custom init-method.

Other Aware interfaces

Besides Appl i cati onCont ext Awar e and BeanNaneAwar e discussed above, Spring offers a range
of Awar e interfaces that allow beans to indicate to the container that they require a certain infrastructure
dependency. The most important Awar e interfaces are summarized below - as a general rule, the name
is a good indication of the dependency type:

Table 4.4. Aware interfaces

Name Injected Dependency Explained in...
Appl i cati onCont ext Awar e | Declaring the section called
Appl i cati onCont ext “ApplicationContextAware and
BeanNameAware”

Appl i cati onEvent Publ i sher Bwanepublisher of the enclosing Section 4.16, “Additional
Appl i cati onCont ext Capabilities of the
ApplicationContext”

BeanCl assLoader Awar e Class loader used to load the the section called “Instantiating
bean classes. beans”

BeanFact or yAwar e Declaring BeanFact ory the section called
“ApplicationContextAware and
BeanNameAware”

BeanNanmeAwar e Name of the declaring bean the section called
“ApplicationContextAware and
BeanNameAware”

Spring Framework
4.0.5.RELEASE Reference Documentation 69

Spring Framework

Name

Injected Dependency

Explained in...

Boot st r apCont ext Awar e

LoadTi nreWeaver Awar e

MessageSour ceAwar e

Not i fi cati onPubl i sher Awar

Port| et Confi gAwar e

Resource adapter

Boot st r apCont ext the
container runs in. Typically
available only in JCA aware
Appl i cati onCont ext s

Defined weaver for processing
class definition at load time

Configured strategy for
resolving messages (with
support for parametrization and
internationalization)

8pring JMX natification
publisher

Current Port | et Confi g
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Chapter 25, JCA CCI

the section called “Load-time
weaving with AspectJ in the
Spring Framework”

Section 4.16, “Additional
Capabilities of the
ApplicationContext”

Section 24.7, “Notifications”

Chapter 19, Portlet MVC
Framework

Port | et Cont ext Awar e

Current Por t | et Cont ext
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Chapter 19, Portlet MVC
Framework

Resour ceLoader Awar e

Servl et Confi gAwar e

Ser vl et Cont ext Awar e

Configured loader for low-level
access to resources

Current Ser vl et Confi g
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Current Ser vl et Cont ext
the container runs in. Valid
only in a web-aware Spring
Appl i cat i onCont ext

Chapter 5, Resources

Chapter 16, Web MVC
framework

Chapter 16, Web MVC
framework

Note again that usage of these interfaces ties your code to the Spring API and does not follow
the Inversion of Control style. As such, they are recommended for infrastructure beans that require
programmatic access to the container.

4.7 Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments, property
values, and container-specific information such as initialization method, static factory method name,
and so on. A child bean definition inherits configuration data from a parent definition. The child definition

Spring Framework

4.0.5.RELEASE Reference Documentation 70

Spring Framework

can override some values, or add others, as needed. Using parent and child bean definitions can save
a lot of typing. Effectively, this is a form of templating.

If you work with an Appli cati onCont ext interface programmatically, child bean definitions
are represented by the ChildBeanDefinition class. Most users do not work with
them on this level, instead configuring bean definitions declaratively in something like the
Cl assPat hXm Appl i cati onCont ext. When you use XML-based configuration metadata, you
indicate a child bean definition by using the par ent attribute, specifying the parent bean as the value
of this attribute.

<bean id="inheritedTest Bean" abstract="true"
cl ass="org. spri ngframewor k. beans. Test Bean" >
<property nane="nane" val ue="parent"/>
<property nanme="age" val ue="1"/>
</ bean>

<bean id="inheritsWthbDifferentC ass"
cl ass="org. spri ngfranmewor k. beans. Deri vedTest Bean"
parent ="inheritedTest Bean" init-method="initialize">
<property nane="nane" val ue="override"/>
<l-- the age property value of 1 will be inherited fromparent -->
</ bean>

A child bean definition uses the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is, it must
accept the parent’s property values.

A child bean definition inherits constructor argument values, property values, and method overrides
from the parent, with the option to add new values. Any initialization method, destroy method, and/or
st ati c factory method settings that you specify will override the corresponding parent settings.

The remaining settings are always taken from the child definition: depends on, autowire mode,
dependency check, singleton, scope, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the abst r act
attribute. If the parent definition does not specify a class, explicitly marking the parent bean definition
as abstract is required, as follows:

<bean i d="inheritedTest BeanWt hout Cl ass" abstract="true">
<property nane="nane" val ue="parent"/>
<property nanme="age" val ue="1"/>

</ bean>

<bean id="inheritsWthd ass" class="org. spri ngfranework. beans. Deri vedTest Bean"
parent ="inheritedTest BeanWt hout Cl ass" init-nethod="initialize">
<property nane="nanme" val ue="override"/>
<l-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot be instantiated on its own because it is incomplete, and it is also explicitly
marked as abst ract. When a definition is abst r act like this, it is usable only as a pure template
bean definition that serves as a parent definition for child definitions. Trying to use such an
abstract parent bean on its own, by referring to it as a ref property of another bean or doing an
explicit get Bean() call with the parent bean id, returns an error. Similarly, the container’s internal
prel nstanti at eSi ngl et ons() method ignores bean definitions that are defined as abstract.

Spring Framework
4.0.5.RELEASE Reference Documentation 71

Spring Framework

© Note

Appl i cati onCont ext pre-instantiates all singletons by default. Therefore, it is important (at
least for singleton beans) that if you have a (parent) bean definition which you intend to use
only as a template, and this definition specifies a class, you must make sure to set the abstract
attribute to true, otherwise the application context will actually (attempt to) pre-instantiate the
abstract bean.

4.8 Container Extension Points

Typically, an application developer does not need to subclass Appl i cat i onCont ext implementation
classes. Instead, the Spring 1oC container can be extended by plugging in implementations of special
integration interfaces. The next few sections describe these integration interfaces.

Customizing beans using a BeanPostProcessor

The BeanPost Pr ocessor interface defines callback methods that you can implement to provide your
own (or override the container’'s default) instantiation logic, dependency-resolution logic, and so forth. If
you want to implement some custom logic after the Spring container finishes instantiating, configuring,
and initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

You can configure multiple BeanPost Processor instances, and you can control the order in
which these BeanPost Processors execute by setting the order property. You can set this
property only if the BeanPost Processor implements the Or der ed interface; if you write your own
BeanPost Processor you should consider implementing the Or der ed interface too. For further
details, consult the javadocs of the BeanPost Pr ocessor and Or der ed interfaces. See also the note
below on programmatic registration of BeanPost Pr ocessor s

© Note

BeanPost Pr ocessor s operate on bean (or object) instances; that is to say, the Spring 1oC
container instantiates a bean instance and then BeanPost Pr ocessor s do their work.

BeanPost Pr ocessor s are scoped per-container. This is only relevant if you are using container
hierarchies. If you define a BeanPost Pr ocessor in one container, it will only post-process the
beans in that container. In other words, beans that are defined in one container are not post-
processed by a BeanPost Pr ocessor defined in another container, even if both containers are
part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean), you instead
need to use a BeanFact or yPost Pr ocessor as described in the section called “Customizing
configuration metadata with a BeanFactoryPostProcessor”.

The or g. spri ngf ramewor k. beans. f act ory. confi g. BeanPost Pr ocessor interface consists
of exactly two callback methods. When such a class is registered as a post-processor with the container,
for each bean instance that is created by the container, the post-processor gets a callback from the
container both before container initialization methods (such as InitializingBean’s afterPropertiesSet()
and any declared init method) are called as well as after any bean initialization callbacks. The post-
processor can take any action with the bean instance, including ignoring the callback completely. A
bean post-processor typically checks for callback interfaces or may wrap a bean with a proxy. Some
Spring AOP infrastructure classes are implemented as bean post-processors in order to provide proxy-
wrapping logic.

Spring Framework
4.0.5.RELEASE Reference Documentation 72

Spring Framework

An Appl i cati onCont ext automatically detects any beans that are defined in the configuration
metadata which implement the BeanPost Pr ocessor interface. The Appl i cat i onCont ext registers
these beans as post-processors so that they can be called later upon bean creation. Bean post-
processors can be deployed in the container just like any other beans.

© Note

Programmatically registering BeanPostProcessors

While the recommended approach for BeanPost Processor registration is through
Appl i cationCont ext auto-detection (as described above), it is also possible to
register them programmatically against a Confi gurabl eBeanFactory using the
addBeanPost Processor method. This can be useful when needing to evaluate conditional
logic before registration, or even for copying bean post processors across contexts in a hierarchy.
Note however that BeanPost Pr ocessor s added programmatically do not respect the Or der ed
interface. Here it is the order of registration that dictates the order of execution. Note also
that BeanPost Processor s registered programmatically are always processed before those
registered through auto-detection, regardless of any explicit ordering.

© Note

BeanPostProcessors and AOP auto-proxying

Classes that implement the BeanPost Processor interface are special and are treated
differently by the container. All BeanPost Pr ocessor s and beans that they reference directly
are instantiated on startup, as part of the special startup phase of the Appl i cat i onCont ext .
Next, all BeanPost Processor s are registered in a sorted fashion and applied to all further
beans in the container. Because AOP auto-proxying is implemented as a BeanPost Pr ocessor
itself, neither BeanPost Pr ocessor s nor the beans they reference directly are eligible for auto-
proxying, and thus do not have aspects woven into them.

For any such bean, you should see an informational log message: "Bean foo is not eligible
for getting processed by all BeanPostProcessor interfaces (for example: not eligible for auto-

proxying)".

Note that if you have beans wired into your BeanPost Processor using autowiring or
@resour ce (which may fall back to autowiring), Spring might access unexpected beans when
searching for type-matching dependency candidates, and therefore make them ineligible for
auto-proxying or other kinds of bean post-processing. For example, if you have a dependency
annotated with @Resour ce where the field/setter name does not directly correspond to the
declared name of a bean and no name attribute is used, then Spring will access other beans
for matching them by type.

The following examples show how to write, register, and use BeanPost Processors in an
Appl i cati onCont ext .

Example: Hello World, BeanPostProcessor-style

This first example illustrates basic usage. The example shows a custom BeanPost Processor
implementation that invokes the t oSt ri ng() method of each bean as it is created by the container
and prints the resulting string to the system console.

Find below the custom BeanPost Pr ocessor implementation class definition:

Spring Framework
4.0.5.RELEASE Reference Documentation 73

Spring Framework

package scripting;

i mport org. springframework. beans. factory. confi g. BeanPost Processor ;
i mport org. springframework. beans. BeansExcepti on;

public class InstantiationTraci ngBeanPost Processor inpl enents BeanPost Processor {

/'l sinmply return the instantiated bean as-is
public Object postProcessBeforelnitializati on(Object bean,
String beanNanme) throws BeansException {
return bean; // we could potentially return any object reference here...

public Object postProcessAfterlnitialization(Object bean,
String beanNane) throws BeansException {
Systemout.println("Bean " + beanNane + " created : " + bean.toString());
return bean;

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: | ang="http://ww. spri ngfranework. or g/ schema/ | ang"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ | ang
http://ww. springframework. org/ schema/ | ang/ spri ng-| ang. xsd" >

<l ang: groovy i d="nessenger"
scri pt-source="cl asspat h: or g/ spri ngf ramewor k/ scri pti ng/ groovy/
Messenger . gr oovy" >
<l ang: property nane="nmessage" val ue="Fiona Apple Is Just So Dreany."/>
</l ang: gr oovy>

<[h==

when the above bean (nmessenger) is instantiated, this custom

BeanPost Processor inplenmentation will output the fact to the system consol e
-->

<bean cl ass="scripting.|InstantiationTraci ngBeanPost Processor"/>

</ beans>

Notice how the | nst anti ati onTr aci ngBeanPost Processor is simply defined. It does not even
have a name, and because it is a bean it can be dependency-injected just like any other bean. (The
preceding configuration also defines a bean that is backed by a Groovy script. The Spring dynamic
language support is detailed in the chapter entitled Chapter 28, Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

Spring Framework
4.0.5.RELEASE Reference Documentation 74

Spring Framework

i mport org.springfranmework. cont ext. Appl i cati onCont ext ;
i nport org.springfranmework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
i mport org.springframework. scripting. Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cati onContext ctx = new O assPat hXm Appli cati onContext ("scri pting/
beans. xm ") ;
Messenger nessenger = (Messenger) ctx.getBean("nmessenger");
System out. printl n(messenger);

The output of the preceding application resembles the following:

Bean nessenger created : org.springframework.scripting.groovy. GoovyMessenger @72961
org. springframework. scri pting.groovy. G oovyMessenger @72961

Example: The RequiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom BeanPost Processor
implementation is a common means of extending the Spring IoC container. An example is Spring’s
Requi r edAnnot at i onBeanPost Processor - a BeanPost Processor implementation that ships
with the Spring distribution which ensures that JavaBean properties on beans that are marked with an
(arbitrary) annotation are actually (configured to be) dependency-injected with a value.

Customizing configuration metadata with a BeanFactoryPostProcessor

The next extension point that we will look at is
the org.springfranework. beans. factory. confi g. BeanFact or yPost Processor. The
semantics of this interface are similar to those of the BeanPost Pr ocessor , with one major difference:
BeanFact or yPost Processor operates on the bean configuration metadata; that is, the Spring loC
container allows a BeanFact or yPost Pr ocessor to read the configuration metadata and potentially
change it before the container instantiates any beans other than BeanFact or yPost Pr ocessor s.

You can configure multiple BeanFact or yPost Processor s, and you can control the order in which
these BeanFact or yPost Pr ocessor s execute by setting the or der property. However, you can only
set this property if the BeanFact or yPost Pr ocessor implements the Or der ed interface. If you write
your own BeanFact or yPost Pr ocessor, you should consider implementing the Or der ed interface
too. Consult the javadocs of the BeanFact or yPost Processor and O der ed interfaces for more
details.

© Note

If you want to change the actual bean instances (i.e., the objects that are created from the
configuration metadata), then you instead need to use a BeanPost Processor (described
above in the section called “Customizing beans using a BeanPostProcessor”). While it is
technically possible to work with bean instances within a BeanFact or yPost Pr ocessor (e.g.,
using BeanFact ory. get Bean()), doing so causes premature bean instantiation, violating the
standard container lifecycle. This may cause negative side effects such as bypassing bean post
processing.

Spring Framework
4.0.5.RELEASE Reference Documentation 75

Spring Framework

Also, BeanFact or yPost Pr ocessor s are scoped per-container. This is only relevant if you are
using container hierarchies. If you define a BeanFact or yPost Pr ocessor in one container, it
will only be applied to the bean definitions in that container. Bean definitions in one container will
not be post-processed by BeanFact or yPost Pr ocessor s in another container, even if both
containers are part of the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an
ApplicationContext, in order to apply changes to the configuration metadata that
define the container. Spring includes a number of predefined bean factory post-processors,
such as PropertyQverri deConfigurer and PropertyPl acehol der Confi gurer. A custom
BeanFact or yPost Pr ocessor can also be used, for example, to register custom property editors.

An Appl i cat i onCont ext automatically detects any beans that are deployed into it that implement
the BeanFact or yPost Pr ocessor interface. It uses these beans as bean factory post-processors, at
the appropriate time. You can deploy these post-processor beans as you would any other bean.

© Note

As with BeanPostProcessors , you typically do not want to configure
BeanFact or yPost Processors for lazy initialization. If no other bean references a
Bean(Fact ory) Post Processor, that post-processor will not get instantiated at all. Thus,
marking it for lazy initialization will be ignored, and the Bean(Fact or y) Post Processor will
be instantiated eagerly even if you set the defaul t-1azy-init attribute to true on the
declaration of your <beans /> element.

Example: the Class name substitution PropertyPlaceholderConfigurer

You use the PropertyPl acehol der Confi gurer to externalize property values from a bean
definition in a separate file using the standard Java Pr oper ti es format. Doing so enables the person
deploying an application to customize environment-specific properties such as database URLs and
passwords, without the complexity or risk of modifying the main XML definition file or files for the
container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with
placeholder values is defined. The example shows properties configured from an external Pr operti es
file. At runtime, a Propert yPl acehol der Confi gur er is applied to the metadata that will replace
some properties of the DataSource. The values to replace are specified as placeholders of the form
${ property- nane} which follows the Ant/log4j/ JSP EL style.

<bean cl ass="org. spri ngframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property nane="| ocati ons" val ue="cl asspat h: conl f oo/ j dbc. properties"/>
</ bean>

<bean i d="dat aSource" destroy-nethod="cl ose"
cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >
<property nanme="driverd assNane" val ue="${j dbc. driverCl assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property nane="usernane" val ue="${j dbc. usernane}"/>
<property nane="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in the standard Java Pr oper ti es format:

Spring Framework
4.0.5.RELEASE Reference Documentation 76

Spring Framework

jdbc. driverd assNane=or g. hsql db. j dbcDri ver
jdbc. url =j dbc: hsql db: hsql : // product i on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

Therefore, the string ${j dbc. username} is replaced at runtime with the value sa, and
the same applies for other placeholder values that match keys in the properties file. The
Pr opert yPl acehol der Conf i gur er checks for placeholders in most properties and attributes of a
bean definition. Furthermore, the placeholder prefix and suffix can be customized.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property placeholders
with a dedicated configuration element. One or more locations can be provided as a comma-separated
listin the | ocat i on attribute.

<cont ext: property-pl acehol der | ocati on="cl asspat h: coni f oo/ j dbc. properties"/>

The Propert yPl acehol der Conf i gur er not only looks for properties in the Pr operti es file you
specify. By default it also checks against the Java Syst emproperties if it cannot find a property in the
specified properties files. You can customize this behavior by setting the syst enPr operti esMbde
property of the configurer with one of the following three supported integer values:

» never (0): Never check system properties

« fallback (1): Check system properties if not resolvable in the specified properties files. This is the
default.

» override (2): Check system properties first, before trying the specified properties files. This allows
system properties to override any other property source.

Consult the Pr opert yPl acehol der Conf i gur er javadocs for more information.
© Tip

You can use the PropertyPl acehol der Confi gur er to substitute class names, which is
sometimes useful when you have to pick a particular implementation class at runtime. For
example:

<bean cl ass="org. spri ngfranewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property nane="| ocati ons">
<val ue>cl asspat h: coni f oo/ strat egy. properti es</val ue>
</ property>
<property name="properties">
<val ue>cust om strat egy. cl ass=com f oo. Def aul t St r at egy</ val ue>
</ property>
</ bean>

<bean id="serviceStrategy" class="${custom strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean fails when
it is about to be created, which is during the pr el nstanti at eSi ngl et ons() phase of an
Appl i cati onCont ext for a non-lazy-init bean.

Example: the PropertyOverrideConfigurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
Pr opert yPl acehol der Conf i gur er, but unlike the latter, the original definitions can have default

Spring Framework
4.0.5.RELEASE Reference Documentation 77

Spring Framework

values or no values at all for bean properties. If an overriding Pr operti es file does not have an entry
for a certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious
from the XML definition file that the override configurer is being used. In case of multiple
PropertyOverri deConfi gurer instances that define different values for the same bean property,
the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

‘beanNane.propertyzvaIue

For example:

dat aSour ce. dri ver Cl assNane=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: nmysql : mydb

This example file can be used with a container definition that contains a bean called dataSource, which
has driver and url properties.

Compound property names are also supported, as long as every component of the path except the
final property being overridden is already non-null (presumably initialized by the constructors). In this
example...

‘foo.fred.bob.sanny:lzs

i. the sammy property of the bob property of the f r ed property of the f oo bean is set to the scalar
value 123.

© Note

Specified override values are always literal values; they are not translated into bean references.
This convention also applies when the original value in the XML bean definition specifies a bean
reference.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property overriding
with a dedicated configuration element:

<context: property-override | ocation="cl asspath: overri de. properties"/>

Customizing instantiation logic with a FactoryBean

Implement the or g. spri ngf ranewor k. beans. f act ory. Fact or yBean interface for objects that
are themselves factories.

The Fact or yBean interface is a point of pluggability into the Spring loC container’s instantiation logic.
If you have complex initialization code that is better expressed in Java as opposed to a (potentially)
verbose amount of XML, you can create your own Fact or yBean, write the complex initialization inside
that class, and then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

* (bj ect getbject(): returns an instance of the object this factory creates. The instance can
possibly be shared, depending on whether this factory returns singletons or prototypes.

Spring Framework
4.0.5.RELEASE Reference Documentation 78

Spring Framework

» bool ean i sSi ngl et on() :returnst r ue if this Fact or yBean returns singletons, f al se otherwise.

» Class get Obj ect Type() : returns the object type returned by the get Cbj ect () method or nul |
if the type is not known in advance.

The Fact or yBean concept and interface is used in a number of places within the Spring Framework;
more than 50 implementations of the Fact or yBean interface ship with Spring itself.

When you need to ask a container for an actual Fact or yBean instance itself instead of the bean
it produces, preface the bean’s id with the ampersand symbol (& when calling the get Bean()
method of the Appl i cat i onCont ext . So for a given Fact or yBean with an id of myBean, invoking
get Bean(" nyBean") on the container returns the product of the Fact or yBean; whereas, invoking
get Bean(" &ryBean") returns the Fact or yBean instance itself.

4.9 Annotation-based container configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configurations raised the question of whether this approach
is better than XML. The short answer is it depends. The long answer is that each approach has
its pros and cons, and usually it is up to the developer to decide which strategy suits them better.
Due to the way they are defined, annotations provide a lot of context in their declaration, leading
to shorter and more concise configuration. However, XML excels at wiring up components without
touching their source code or recompiling them. Some developers prefer having the wiring close
to the source while others argue that annotated classes are no longer POJOs and, furthermore,
that the configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It's worth
pointing out that through its JavaConfig option, Spring allows annotations to be used in a non-
invasive way, without touching the target components source code and that in terms of tooling, all
configuration styles are supported by the SpringSource Tool Suite.

An alternative to XML setups is provided by annotation-based configuration which rely on the bytecode
metadata for wiring up components instead of angle-bracket declarations. Instead of using XML to
describe a bean wiring, the developer moves the configuration into the component class itself by using
annotations on the relevant class, method, or field declaration. As mentioned in the section called
“Example: The RequiredAnnotationBeanPostProcessor”, using a BeanPost Pr ocessor in conjunction
with annotations is a common means of extending the Spring 10C container. For example, Spring
2.0 introduced the possibility of enforcing required properties with the @Required annotation. Spring
2.5 made it possible to follow that same general approach to drive Spring’'s dependency injection.
Essentially, the @\wut owi r ed annotation provides the same capabilities as described in the section
called “Autowiring collaborators” but with more fine-grained control and wider applicability. Spring 2.5
also added support for JSR-250 annotations such as @ost Const ruct, and @r eDest r oy. Spring
3.0 added support for JISR-330 (Dependency Injection for Java) annotations contained in the javax.inject
package such as @ nj ect and @Naned. Details about those annotations can be found in the relevant
section.

© Note

Annotation injection is performed before XML injection, thus the latter configuration will override
the former for properties wired through both approaches.

Spring Framework
4.0.5.RELEASE Reference Documentation 79

http://www.springsource.com/products/sts

Spring Framework

As always, you can register them as individual bean definitions, but they can also be implicitly registered
by including the following tag in an XML-based Spring configuration (notice the inclusion of the cont ext
namespace):

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="htt p://ww. spri ngfranewor k. or g/ schena/ cont ext "
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http: //wwv. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springframewor k. or g/ schema/ cont ext/ spri ng-cont ext . xsd" >

<cont ext: annot ati on- confi g/ >

</ beans>

(The implicitly registered post-processors include Aut owi r edAnnot at i onBeanPost Pr ocessor,
CommonAnnot at i onBeanPost Pr ocessor, Persi st enceAnnot at i onBeanPost Pr ocessor, as
well as the aforementioned Requi r edAnnot at i onBeanPost Pr ocessor .)

@ Note

<cont ext: annot ati on-confi g/ > only looks for annotations on beans in the same
application context in which it is defined. This means that, if you put <cont ext : annot at i on-
config/>in a WbAppl i cati onCont ext for a Di spat cher Servl et, it only checks for
@\ut owi red beans in your controllers, and not your services. See Section 16.2, “The
DispatcherServlet” for more information.

@Required

The @Requi r ed annotation applies to bean property setter methods, as in the following example:

public class SinpleMvieLister {
private Movi eFi nder novi eFi nder

@Requi red
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder

}

/'l

This annotation simply indicates that the affected bean property must be populated at configuration time,
through an explicit property value in a bean definition or through autowiring. The container throws an
exception if the affected bean property has not been populated; this allows for eager and explicit failure,
avoiding Nul | Poi nt er Except i ons or the like later on. It is still recommended that you put assertions
into the bean class itself, for example, into an init method. Doing so enforces those required references
and values even when you use the class outside of a container.

@Autowired

As expected, you can apply the @Aut owi r ed annotation to "traditional” setter methods:

Spring Framework
4.0.5.RELEASE Reference Documentation 80

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html

Spring Framework

public class SinpleMvieLister {
private MovieFi nder novi eFi nder;
@\ut owi r ed

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder;

/'l

© Note

JSR 330’s @Inject annotation can be used in place of Spring’'s @\ut owi r ed annotation in the
examples below. See here for more details

You can also apply the annotation to methods with arbitrary names and/or multiple arguments:

public class Myvi eRecommender {
private MovieCatal og novi eCat al og;
private CustomerPreferenceDao cust oner Pref er encebDao;
@\ut owi r ed
public void prepare(MyvieCatal og novi eCat al og,
Cust omer Pr ef erenceDao cust orer Pr ef er enceDao) {

thi s. movi eCat al og = novi eCat al og;
thi s. cust oner Pref erenceDao = cust oner Pr ef er enceDao;

/'l

You can apply @\ut owi r ed to constructors and fields:

public class Myvi eReconmender {

@\ut owi r ed
private Mvi eCatal og novi eCat al og;

private CustomerPreferenceDao cust oner Pref er encebDao;
@\ut owi r ed

publ i ¢ Movi eRecommender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
t hi s. cust oner Pref erencebDao = cust oner Pref er enceDao;

Il

It is also possible to provide all beans of a particular type from the Appl i cat i onCont ext by adding
the annotation to a field or method that expects an array of that type:

Spring Framework
4.0.5.RELEASE Reference Documentation 81

Spring Framework

public class Myvi eRecormender {

@\ut owi r ed
private Movi eCatal og[] novi eCat al ogs;

/1

The same applies for typed collections:

public class Myvi eRecommender {
private Set<Myvi eCatal og> novi eCat al ogs;
@\ut owi r ed
public voi d setMvieCat al ogs(Set <Movi eCat al og> novi eCat al ogs) {

t hi s. movi eCat al ogs = novi eCat al ogs;

}

/1

@ Tip

Your beans can implement the or g. spri ngf ranewor k. cor e. Or der ed interface or use the
the @ der ed annotation if you want items in the array or list to be sorted into a specific order.

Even typed Maps can be autowired as long as the expected key type is St ri ng. The Map values will
contain all beans of the expected type, and the keys will contain the corresponding bean names:

public class Myvi eReconmender {
private Map<String, MovieCatal og> novi eCat al ogs;
@\ut owi r ed

public void setMvieCatal ogs(Map<String, MovieCatal og> novi eCat al ogs) {
t hi s. novi eCat al ogs = novi eCat al ogs;

}

Il

By default, the autowiring fails whenever zero candidate beans are available; the default behavior is to
treat annotated methods, constructors, and fields as indicating required dependencies. This behavior
can be changed as demonstrated below.

Spring Framework
4.0.5.RELEASE Reference Documentation 82

Spring Framework

public class SinpleMvieLister {
private Movi eFi nder novi eFi nder
@\ut owi r ed(requi red=f al se)

public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
thi s. movi eFi nder = novi eFi nder

}

...

© Note

Only one annotated constructor per-class can be marked as required, but multiple non-required
constructors can be annotated. In that case, each is considered among the candidates and Spring
uses the greediest constructor whose dependencies can be satisfied, that is the constructor that
has the largest number of arguments.

@\t owi r ed's required attribute is recommended over the @Requi r ed annotation. The required
attribute indicates that the property is not required for autowiring purposes, the property is
ignored if it cannot be autowired. @equi r ed, on the other hand, is stronger in that it enforces
the property that was set by any means supported by the container. If no value is injected, a
corresponding exception is raised.

You <can also wuse @\utow red for interfaces that are well-known resolvable
dependencies: BeanFactory, ApplicationContext, Environnent, ResourcelLoader,
Appl i cationEvent Publ i sher, and MessageSource. These interfaces and their extended
interfaces, such as Confi gur abl eAppl i cati onCont ext or ResourcePatt er nResol ver, are
automatically resolved, with no special setup necessary.

public class Myvi eRecommender {

@\ut owi r ed
private ApplicationContext context;

publ i c Movi eRecommender () {
}

...

© Note

@\t owi red, @ nject, @esource, and @/al ue annotations are handled by a Spring
BeanPost Pr ocessor implementations which in turn means that you cannot apply these
annotations within your own BeanPost Pr ocessor or BeanFact or yPost Pr ocessor types (if
any). These types must be wired up explicitly via XML or using a Spring @ean method.

Fine-tuning annotation-based autowiring with qualifiers

Because autowiring by type may lead to multiple candidates, it is often necessary to have more control
over the selection process. One way to accomplish this is with Spring’s @al i f i er annotation. You

Spring Framework
4.0.5.RELEASE Reference Documentation 83

Spring Framework

can associate qualifier values with specific arguments, narrowing the set of type matches so that a
specific bean is chosen for each argument. In the simplest case, this can be a plain descriptive value:

public class Myvi eRecormmender {
@\ut owi r ed
@ualifier("min")
private Mvi eCatal og novi eCat al og;

/'l

The @ual i fi er annotation can also be specified on individual constructor arguments or method
parameters:

public class Myvi eRecommender {
private MovieCatal og novi eCat al og;
private CustomerPreferenceDao cust oner Pref er encebDao;
@\ut owi r ed
public void prepare(@ualifier("min")MvieCatal og novi eCat al og,
Cust omer Pr ef erenceDao cust oner Pr ef er enceDao) {

thi s. movi eCat al og = novi eCat al og;
thi s. cust oner Pref erenceDao = cust oner Pr ef er enceDao;

/'l

The corresponding bean definitions appear as follows. The bean with qualifier value "main" is wired with
the constructor argument that is qualified with the same value.

Spring Framework
4.0.5.RELEASE Reference Documentation 84

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schenma/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngfranewor k. or g/ schema/ cont ext/ spri ng- cont ext . xsd" >

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qual i fier value="main"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qual i fier value="action"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eReconmender" cl ass="exanpl e. Movi eReconmender "/ >

</ beans>

For a fallback match, the bean name is considered a default qualifier value. Thus you can define the bean
with an id "main" instead of the nested qualifier element, leading to the same matching result. However,
although you can use this convention to refer to specific beans by name, @\ut owi r ed is fundamentally
about type-driven injection with optional semantic qualifiers. This means that qualifier values, even with
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main" or "EMEA" or
"persistent", expressing characteristics of a specific component that are independent from the bean id,
which may be auto-generated in case of an anonymous bean definition like the one in the preceding
example.

Qualifiers also apply to typed collections, as discussed above, for example, to Set <Movi eCat al 0g>. In
this case, all matching beans according to the declared qualifiers are injected as a collection. This implies
that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For example, you
can define multiple Movi eCat al og beans with the same qualifier value "action"; all of which would be
injected into a Set <Movi eCat al og> annotated with @ual i fi er ("action").

@ Tip

If you intend to express annotation-driven injection by name, do not primarily use @\ut owi r ed,
even if is technically capable of referring to a bean name through @ual i fi er values. Instead,
use the JSR-250 @Resour ce annotation, which is semantically defined to identify a specific
target component by its unique name, with the declared type being irrelevant for the matching
process.

As a specific consequence of this semantic difference, beans that are themselves defined as a
collection or map type cannot be injected through @\wut owi r ed, because type matching is not
properly applicable to them. Use @Resour ce for such beans, referring to the specific collection
or map bean by unique name.

Spring Framework
4.0.5.RELEASE Reference Documentation 85

Spring Framework

@\ut owi r ed applies to fields, constructors, and multi-argument methods, allowing for narrowing
through qualifier annotations at the parameter level. By contrast, @Resour ce is supported only
for fields and bean property setter methods with a single argument. As a consequence, stick with
qualifiers if your injection target is a constructor or a multi-argument method.

You can create your own custom qualifier annotations. Simply define an annotation and provide the
@al i fi er annotation within your definition:

@arget ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret ent i onPol i cy. RUNTI MVE)

@ualifier

public @nterface Genre {

String val ue();

Then you can provide the custom qualifier on autowired fields and parameters:

public class Myvi eRecormender {

@\ut owi r ed

@zenre("Action")

private MovieCatal og actionCatal og;
private MovieCatal og conedyCat al og;

@\ut owi r ed
public voi d set ConedyCat al og(@enre(" Comedy") Movi eCat al og conmedyCat al og) {
t hi s. conedyCat al og = conedyCat al og;

}

...

Next, provide the information for the candidate bean definitions. You can add <qual i fi er/ > tags as
sub-elements of the <bean/ > tag and then specify the t ype and val ue to match your custom qualifier
annotations. The type is matched against the fully-qualified class name of the annotation. Or, as a
convenience if no risk of conflicting names exists, you can use the short class name. Both approaches
are demonstrated in the following example.

Spring Framework
4.0.5.RELEASE Reference Documentation 86

Spring Framework

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: context ="http://wwmv spri ngframework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngfranewor k. or g/ schema/ cont ext/ spri ng- cont ext . xsd" >

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qual i fier type="Genre" val ue="Action"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

_<qualifier type="exanple.Genre" val ue="Conedy"/>

<l-- inject any dependencies required by this bean -->
</ bean>

<bean i d="novi eReconmender" cl ass="exanpl e. Movi eReconmender "/ >

</ beans>

In Section 4.10, “Classpath scanning and managed components”, you will see an annotation-based
alternative to providing the qualifier metadata in XML. Specifically, see the section called “Providing
gualifier metadata with annotations”.

In some cases, it may be sufficient to use an annotation without a value. This may be useful when
the annotation serves a more generic purpose and can be applied across several different types of
dependencies. For example, you may provide an offline catalog that would be searched when no Internet
connection is available. First define the simple annotation:

@arget ({El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret enti on(Ret enti onPol i cy. RUNTI MVE)

@ualifier

public @nterface Ofline {

Then add the annotation to the field or property to be autowired:
public class Myvi eRecommender {

@\ut owi r ed

@xffline

private MovieCatal og of flineCatal og

/'l

Now the bean definition only needs a qualifier t ype:

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier type="Ofline"/>

<l-- inject any dependencies required by this bean -->
</ bean>

Spring Framework
4.0.5.RELEASE Reference Documentation 87

Spring Framework

You can also define custom qualifier annotations that accept named attributes in addition to or instead
of the simple val ue attribute. If multiple attribute values are then specified on a field or parameter
to be autowired, a bean definition must match all such attribute values to be considered an autowire
candidate. As an example, consider the following annotation definition:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@ret enti on(Ret ent i onPol i cy. RUNTI MVE)

@ualifier
public @nterface MvieQualifier {
String genre();

Format format();

In this case For mat is an enum:

public enum Format {
VHS, DVD, BLURAY

}

The fields to be autowired are annotated with the custom qualifier and include values for both attributes:
genre and f or mat .

public class Mvi eRecommender {

@\ut owi r ed
@bvi eQual i fier(format=Format.VHS, genre="Action")
private MovieCatal og actionVhsCat al og;

@\ut owi r ed
@mbvi eQual i fier (fornmat=Format.VHS, genre="Conedy")
private Mvi eCatal og conedyVhsCat al og;

@\ut owi r ed
@mbvi eQual i fier (fornat=Format.DVD, genre="Action")
private MovieCatal og acti onDvdCat al og;

@\ut owi r ed
@bvi eQual i fier(format=Format. BLURAY, genre="Conedy")
private MovieCatal og conedyBl uRayCat al og;

/1

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates
that bean meta attributes may be used instead of the <qual i f i er/ > sub-elements. If available, the
<qual i fier/> and its attributes take precedence, but the autowiring mechanism falls back on the
values provided within the <net a/ > tags if no such qualifier is present, as in the last two bean definitions
in the following example.

Spring Framework
4.0.5.RELEASE Reference Documentation 88

Spring Framework

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: context ="http://wwmv spri ngframework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngfranewor k. or g/ schema/ cont ext/ spri ng- cont ext . xsd" >

<cont ext : annot ati on- confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier type="MuvieQualifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" val ue="Action"/>
</qualifier>
<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qual ifier type="MyvieQalifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" val ue="Conedy"/>
</qualifier>
<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<neta key="format" val ue="DVD'/>

<neta key="genre" val ue="Action"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<neta key="format" val ue="BLURAY"/ >

<neta key="genre" val ue="Conedy"/>

<I-- inject any dependencies required by this bean -->
</ bean>

</ beans>

Using generics as autowiring qualifiers

In addition to the @ual i fi er annotation, it is also possible to use Java generic types as an implicit
form of qualification. For example, suppose you have the following configuration:

@Configuration
public class MyConfiguration {

@Bean
public StringStore stringStore() {
return new StringStore();

@ean
public IntegerStore integerStore() {
return new | nteger Store()

Spring Framework
4.0.5.RELEASE Reference Documentation 89

Spring Framework

Assuming that beans above implement a generic interface, i.e. Store<String> and
St or e<I nt eger >, you can @\ut owi r e the St or e interface and the generic will be used as a qualifier:

@\ut owi r ed
private Store<String> sl1; // <String> qualifier, injects the stringStore bean

@\ut owi r ed
private Store<lnteger> s2; // <Integer> qualifier, injects the integerStore bean

Generic qualifiers also apply when autowiring Lists, Maps and Arrays:

/1 Inject all Store beans as |long as they have an <Integer> generic
/] Store<String> beans will not appear in this |ist

@\ut owi r ed

private List<Store<lnteger>> s;

CustomAutowireConfigurer

The Cust omAut owi r eConfi gur er is a BeanFact or yPost Processor that enables you to register
your own custom qualifier annotation types even if they are not annotated with Spring’s @ual i fi er
annotation.

<bean i d="cust omAut owi r eConfi gurer"
cl ass="org. spri ngframewor k. beans. f act ory. annot at i on. Cust omAut owi r eConf i gurer" >
<property nane="custonfualifierTypes">
<set >
<val ue>exanpl e. Cust omQual i fi er </ val ue>
</ set >
</ property>
</ bean>

The Aut owi r eCandi dat eResol ver determines autowire candidates by:
 the aut owi r e- candi dat e value of each bean definition
» any def aul t - aut owi r e- candi dat es pattern(s) available on the <beans/ > element

» the presence of @ualifier annotations and any custom annotations registered with the
Cust omAut owi r eConf i gur er

When multiple beans qualify as autowire candidates, the determination of a "primary" is the following:
if exactly one bean definition among the candidates has a pri mary attribute set to t r ue, it will be
selected.

@Resource

Spring also supports injection using the JSR-250 @Resour ce annotation on fields or bean property
setter methods. This is a common pattern in Java EE 5 and 6, for example in JSF 1.2 managed beans
or JAX-WS 2.0 endpoints. Spring supports this pattern for Spring-managed objects as well.

@resour ce takes a name attribute, and by default Spring interprets that value as the bean name to be
injected. In other words, it follows by-name semantics, as demonstrated in this example:

Spring Framework
4.0.5.RELEASE Reference Documentation 90

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

Spring Framework

public class SinpleMvieLister {
private MovieFi nder novi eFi nder;

@Resour ce(name="nyMyvi eFi nder")
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. movi eFi nder = novi eFi nder;

}

If no name is specified explicitly, the default name is derived from the field name or setter method. In
case of a field, it takes the field name; in case of a setter method, it takes the bean property name. So
the following example is going to have the bean with name "movieFinder" injected into its setter method:

public class SinpleMvielLister {
private MvieFi nder novi eFi nder;

@Rresour ce

public voi d setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. nmovi eFi nder = novi eFi nder;

}

© Note

The name provided with the annotation is resolved as a bean name by the
Appl i cati onCont ext of which the CommpnAnnot at i onBeanPost Processor is aware.
The names can be resolved through JNDI if you configure Spring’s Si npl eJndi BeanFact ory
explicitly. However, it is recommended that you rely on the default behavior and simply use
Spring’s JNDI lookup capabilities to preserve the level of indirection.

In the exclusive case of @Resour ce usage with no explicit name specified, and similar to @A\ut owi r ed,
@resour ce finds a primary type match instead of a specific nhamed bean and resolves well-
known resolvable dependencies: the BeanFact ory, Appl i cati onCont ext, Resour ceLoader,
Appl i cati onEvent Publ i sher, and MessageSour ce interfaces.

Thus in the following example, the custoner PreferenceDao field first looks for a bean
named customerPreferenceDao, then falls back to a primary type match for the type
Cust omrer Pr ef er enceDao. The "context" field is injected based on the known resolvable dependency
type Appl i cati onCont ext .

Spring Framework
4.0.5.RELEASE Reference Documentation 91

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

Spring Framework

public class Myvi eRecormender {

@Resour ce
private CustomerPreferenceDao cust oner Pref er encebDao;

@Resour ce
private ApplicationContext context;

publ i c Movi eRecomender () {

}

...

@PostConstruct and @PreDestroy

The ConmonAnnot at i onBeanPost Processor not only recognizes the @Resour ce annotation
but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these
annotations offers yet another alternative to those described in initialization callbacks and destruction
callbacks. Provided that the CormonAnnot at i onBeanPost Pr ocessor is registered within the Spring
Appl i cati onCont ext , a method carrying one of these annotations is invoked at the same point in the
lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback method.
In the example below, the cache will be pre-populated upon initialization and cleared upon destruction.

public class Cachi ngMvi eLister {

@ost Const ruct
public voi d popul at eMovi eCache() {
/'l popul ates the novie cache upon initialization...

}

@r eDest r oy
public void clearMyvieCache() {
/] clears the novie cache upon destruction...

}

@ Note

For details about the effects of combining various lifecycle mechanisms, see the section called
“Combining lifecycle mechanisms”.

4.10 Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces each
BeanDef i ni ti on within the Spring container. The previous section (Section 4.9, “Annotation-based
container configuration”) demonstrates how to provide a lot of the configuration metadata through
source-level annotations. Even in those examples, however, the "base" bean definitions are explicitly
defined in the XML file, while the annotations only drive the dependency injection. This section describes
an option for implicitly detecting the candidate components by scanning the classpath. Candidate
components are classes that match against a filter criteria and have a corresponding bean definition
registered with the container. This removes the need to use XML to perform bean registration, instead

Spring Framework
4.0.5.RELEASE Reference Documentation 92

Spring Framework

you can use annotations (for example @Component), Aspect] type expressions, or your own custom
filter criteria to select which classes will have bean definitions registered with the container.

© Note

Starting with Spring 3.0, many features provided by the Spring JavaConfig project are part of
the core Spring Framework. This allows you to define beans using Java rather than using the
traditional XML files. Take a look at the @Conf i gur at i on, @ean, @ nport , and @ependsOn
annotations for examples of how to use these new features.

@Component and further stereotype annotations

The @Reposi t or y annotation is a marker for any class that fulfills the role or stereotype (also known as
Data Access Object or DAO) of a repository. Among the uses of this marker is the automatic translation
of exceptions as described in the section called “Exception translation”.

Spring provides further stereotype annotations: @onponent, @ervi ce, and @ontroller.
@conponent is a generic stereotype for any Spring-managed component. @Reposi t ory, @er vi ce,
and @ontrol | er are specializations of @onponent for more specific use cases, for example,
in the persistence, service, and presentation layers, respectively. Therefore, you can annotate your
component classes with @onponent, but by annotating them with @eposi t ory, @ervi ce, or
@ontrol | er instead, your classes are more properly suited for processing by tools or associating
with aspects. For example, these stereotype annotations make ideal targets for pointcuts. It is also
possible that @Reposi t ory, @er vi ce, and @ont rol | er may carry additional semantics in future
releases of the Spring Framework. Thus, if you are choosing between using @onponent or @er vi ce
for your service layer, @er vi ce is clearly the better choice. Similarly, as stated above, @Reposi t ory
is already supported as a marker for automatic exception translation in your persistence layer.

Meta-annotations

Many of the annotations provided by Spring can be used as "meta-annotations” in your own code. A
meta-annotation is simply an annotation, that can be applied to another annotation. For example, The
@ser vi ce annotation mentioned above is meta-annotated with with @onponent :

@rar get ({ El enent Type. TYPE})

@Ret enti on(Ret enti onPol i cy. RUNTI MVE)

@ocunent ed

@Conponent // Spring will see this and treat @ervice in the sane way as @onponent
public @nterface Service {

...

Meta-annotations can also be combined together to create composed annotations. For example,
the @Rest Control | er annotation from Spring MVC is composed of @ontroller and
@ResponseBody.

With the exception of val ue(), meta-annotated types may redeclare attributes from the source
annotation to allow user customization. This can be particularly useful when you want to only expose
a subset of the source annotation attributes. For example, here is a custom @cope annotation that
defines sessi on scope, but still allows customization of the pr oxyMbde.

Spring Framework
4.0.5.RELEASE Reference Documentation 93

Spring Framework

@rar get ({ El enent Type. TYPE})

@Ret enti on(Ret enti onPol i cy. RUNTI VE)
@ocumnent ed

@scope("session")

public @nterface SessionScope {

ScopedPr oxyMdde proxyMdde() default ScopedProxyMbde. DEFAULT

Automatically detecting classes and registering bean definitions

Spring can automatically detect stereotyped classes and register corresponding BeanDef i ni ti ons
with the Appli cati onCont ext. For example, the following two classes are eligible for such
autodetection:

@ervi ce
public class SinpleMvieLister {

private MovieFi nder novi eFi nder;

@\ut owi r ed
public Si npl eMovi eLi st er (Movi eFi nder novi eFi nder) {
thi s. nmovi eFi nder = novi eFi nder;

@Reposi tory
public class JpaMvi eFi nder inplements Myvi eFi nder {
/'l inmplenentation elided for clarity

}

To autodetect these classes and register the corresponding beans, you need to include the following
element in XML, where the base-package element is a common parent package for the two classes.
(Alternatively, you can specify a comma-separated list that includes the parent package of each class.)

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranmewor k. or g/ schena/ cont ext "
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext. xsd" >

<cont ext : conponent - scan base- package="or g. exanpl e"/ >

</ beans>

@ Tip

The wuse of <context:conponent-scan> implicity enables the functionality of
<cont ext:annotation-config> There is wusually no need to include the
<cont ext : annot at i on- conf i g> element when using <cont ext : conponent - scan>.

Spring Framework
4.0.5.RELEASE Reference Documentation 94

Spring Framework

© Note

The scanning of classpath packages requires the presence of corresponding directory entries
in the classpath. When you build JARs with Ant, make sure that you do not activate the files-
only switch of the JAR task. Also, classpath directories may not get exposed based on security
policies in some environments, e.g. standalone apps on JDK 1.7.0_45 and higher (which requires
Trusted-Library setup in your manifests; see http://stackoverflow.com/questions/19394570/java-
jre-7u45-breaks-classloader-getresources).

Furthermore, the Aut owi r edAnnot at i onBeanPost Processor and
ConmonAnnot at i onBeanPost Processor are both included implicitly when you use the component-
scan element. That means that the two components are autodetected and wired together - all without
any bean configuration metadata provided in XML.

© Note

You can disable the registration of Aut ow redAnnot ati onBeanPost Processor and
ConmonAnnot at i onBeanPost Processor by including the annotation-config attribute with a
value of false.

Using filters to customize scanning

By default, classes annotated with @onponent, @Repository, @ervi ce, @ontroller, or
a custom annotation that itself is annotated with @onponent are the only detected candidate
components. However, you can modify and extend this behavior simply by applying custom filters.
Add them as include-filter or exclude-filter sub-elements of the conponent - scan element. Each filter
element requires the t ype and expr essi on attributes. The following table describes the filtering
options.

Table 4.5. Filter Types

Filter Type Example Expression Description

annotation or g. exanpl e. SoneAnnot at i 0An annotation to be present
at the type level in target
components.

assignable or g. exanpl e. Soned ass A class (or interface) that

the target components
are assignable to (extend/

implement).

aspectj org. exanpl e.. *Service+ An Aspect] type expression
to be matched by the target
components.

regex org\.exanple\.Default.* A regex expression to be

matched by the target
components class names.

custom org. exanpl e. MyTypeFi | t er A custom implementation of the
org. springframework. core.type . TypeFi
interface.

Spring Framework
4.0.5.RELEASE Reference Documentation 95

http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources
http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources

Spring Framework

The following example shows the XML configuration ignoring all @Reposi t or y annotations and using
"stub” repositories instead.

<beans>
<cont ext : conponent - scan base- package="or g. exanpl e" >
<context:include-filter type="regex"
expressi on=". *St ub. *Reposi tory"/>
<cont ext : excl ude-filter type="annotation"
expressi on="org. spri ngf ramewor k. st er eot ype. Reposi tory"/>
</ cont ext : conponent - scan>
</ beans>

© Note

You can also disable the default filters by providing use-default-filters="false" as an attribute of the
<component-scan/> element. This will in effect disable automatic detection of classes annotated
with @onponent , @rReposi tory, @er vi ce, or @ontrol | er.

Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do this with the
same @ean annotation used to define bean metadata within @onf i gur at i on annotated classes.
Here is a simple example:

@Conponent
public class FactoryMethodConponent {

@ean
@ualifier("public")
publ i c TestBean publiclnstance() {
return new TestBean(" publicl nstance");

}

public void doWwrk() {
/| Component nethod inplenmentati on onmtted

}

This class is a Spring component that has application-specific code contained in its doWr k()
method. However, it also contributes a bean definition that has a factory method referring to the
method publ i cl nst ance(). The @ean annotation identifies the factory method and other bean
definition properties, such as a qualifier value through the @ual i f i er annotation. Other method level
annotations that can be specified are @cope, @Qazy, and custom qualifier annotations.

@ Tip

In addition to its role for component initialization, the @.azy annotation may also be placed on
injection points marked with @\ut owi r ed or @ nj ect . In this context, it leads to the injection
of a lazy-resolution proxy.

Autowired fields and methods are supported as previously discussed, with additional support for
autowiring of @ean methods:

Spring Framework
4.0.5.RELEASE Reference Documentation 96

Spring Framework

@onponent
public class FactoryMet hodConponent {

private static int i;

@ean
@ualifier("public")
publ i c Test Bean publiclnstance() {
return new Test Bean(" publicl nstance");

}

/'l use of a custom qualifier and autow ring of nethod paraneters

@ean
protected TestBean prot ect edl nst ance(

@ual i fier("public") TestBean spouse,

@/al ue("#{privatel nstance. age}") String country) {
TestBean tb = new Test Bean("prot ect edl nstance", 1);
tb. set Spouse(tb);
tb. set Country(country);
return tb;

}

@ean
@cope(BeanDef i ni ti on. SCOPE_SI NGLETON)
private TestBean privatel nstance() {
return new TestBean("privatel nstance", i++);

}

@ean
@cope(val ue = WebAppl i cati onCont ext. SCOPE_SESSI O\, proxyMde =
ScopedPr oxyMbde. TARGET_CLASS)
publ i c TestBean request Scopedl nstance() {
return new Test Bean("request Scopedl nst ance", 3);

}

The example autowires the St ri ng method parameter count ry to the value of the Age property on
another bean named pri vat el nst ance. A Spring Expression Language element defines the value
of the property through the notation #{ <expressi on> }. For @/al ue annotations, an expression
resolver is preconfigured to look for bean names when resolving expression text.

The @ean methods in a Spring component are processed differently than their counterparts inside
a Spring @onfi gurati on class. The difference is that @omnponent classes are not enhanced
with CGLIB to intercept the invocation of methods and fields. CGLIB proxying is the means by which
invoking methods or fields within @ean methods in @onf i gur at i on classes creates bean metadata
references to collaborating objects; such methods are not invoked with normal Java semantics. In
contrast, invoking a method or field in an @Bean method within a @onponent class has standard Java
semantics.

Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is generated by the
BeanNanmeGener at or strategy known to that scanner. By default, any Spring stereotype annotation (
@conponent , @Reposi tory, @er vi ce, and @ont r ol | er) that contains a narre value will thereby
provide that name to the corresponding bean definition.

Spring Framework
4.0.5.RELEASE Reference Documentation 97

Spring Framework

If such an annotation contains no nane value or for any other detected component (such as those
discovered by custom filters), the default bean name generator returns the uncapitalized non-qualified
class name. For example, if the following two components were detected, the names would be
myMovieLister and movieFinderimpl:

@er vi ce(" myMovi eLi ster")
public class SinpleMyvieLister {
...

}

@Reposi tory
public class MvieFinderlnpl inplenments MvieFinder {
1.

}

© Note

If you do not want to rely on the default bean-naming strategy, you can provide a custom bean-
naming strategy. First, implement the BeanNaneGener at or interface, and be sure to include
a default no-arg constructor. Then, provide the fully-qualified class name when configuring the
scanner:

<beans>
<cont ext: conponent - scan base- package="or g. exanpl e"
name- gener at or =" or g. exanpl e. MyNaneGenerator" />
</ beans>

As a general rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adequate whenever
the container is responsible for wiring.

Providing a scope for autodetected components

As with Spring-managed components in general, the default and most common scope for autodetected
components is singleton. However, sometimes you need other scopes, which Spring 2.5 provides with
a new @cope annotation. Simply provide the name of the scope within the annotation:

@scope(" prot ot ype")

@reposi tory

public class MyvieFinderlnpl inplenments MvieFinder {
...

}

© Note

To provide a custom strategy for scope resolution rather than relying on the annotation-based
approach, implement the ScopeMet adat aResol ver interface, and be sure to include a default
no-arg constructor. Then, provide the fully-qualified class name when configuring the scanner:

<beans>
<cont ext : conponent - scan base- package="or g. exanpl e"
scope-resol ver ="or g. exanpl e. M/yScopeResol ver" />
</ beans>

Spring Framework
4.0.5.RELEASE Reference Documentation 98

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/support/BeanNameGenerator.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/ScopeMetadataResolver.html

Spring Framework

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped
objects. The reasoning is described in the section called “Scoped beans as dependencies”. For this
purpose, a scoped-proxy attribute is available on the component-scan element. The three possible
values are: no, interfaces, and targetClass. For example, the following configuration will result in
standard JDK dynamic proxies:

<beans>
<cont ext : conponent - scan base- package="or g. exanpl e"
scoped- proxy="i nterfaces" />
</ beans>

Providing qualifier metadata with annotations

The @ualifier annotation is discussed in the section called “Fine-tuning annotation-based
autowiring with qualifiers”. The examples in that section demonstrate the use of the @ual i fi er
annotation and custom qualifier annotations to provide fine-grained control when you resolve autowire
candidates. Because those examples were based on XML bean definitions, the qualifier metadata was
provided on the candidate bean definitions using the qual i fi er or met a sub-elements of the bean
element in the XML. When relying upon classpath scanning for autodetection of components, you
provide the qualifier metadata with type-level annotations on the candidate class. The following three
examples demonstrate this technique:

@Conponent

@ualifier("Action")

public class ActionMyvieCatal og i npl enents Myvi eCat al og {
...

}

@Conponent

@enre("Action")

public class ActionMyvieCatal og i npl enents Mvi eCat al og {
...

}

@Conponent

@fline

public class Cachi ngMvi eCat al og i npl enents Mvi eCat al og {
...

}

@ Note

As with most annotation-based alternatives, keep in mind that the annotation metadata is bound
to the class definition itself, while the use of XML allows for multiple beans of the same type
to provide variations in their qualifier metadata, because that metadata is provided per-instance
rather than per-class.

4.11 Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency
Injection). Those annotations are scanned in the same way as the Spring annotations. You just need
to have the relevant jars in your classpath.

Spring Framework
4.0.5.RELEASE Reference Documentation 99

Spring Framework

© Note

If you are using Maven, the j avax. i nj ect artifact is available in the standard Maven
repository (http:/repol.maven.org/maven2/javax/inject/javax.inject/1/). You can add the
following dependency to your file pom.xmil:

<dependency>
<gr oupl d>j avax. i nj ect </ gr oupl d>
<artifactld>javax.inject</artifactld>
<ver si on>1</ ver si on>

</ dependency>

Dependency Injection with @Inject and @Named

Instead of @Aut owi r ed, @ avax. i nj ect. | nj ect may be used as follows:
i mport javax.inject.|nject;
public class SinpleMyvieLister {

private Movi eFi nder novi eFi nder

@ nj ect

public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
t hi s. nmovi eFi nder = novi eFi nder

}

...

As with @Aut owi r ed, it is possible to use @ nj ect at the class-level, field-level, method-level and
constructor-argument level. If you would like to use a qualified name for the dependency that should be
injected, you should use the @Nared annotation as follows:

i mport javax.inject.|nject;
i nport javax.inject.Naned

public class SinpleMvieLister {
private Movi eFi nder novi eFi nder
@ nj ect

public void setMvieFi nder (@aned("nai n") Mvi eFi nder novi eFi nder) {
thi s. movi eFi nder = novi eFi nder

}

...

@Named: a standard equivalent to the @Component annotation

Instead of @onponent , @ avax. i nj ect . Nanmed may be used as follows:

Spring Framework
4.0.5.RELEASE Reference Documentation 100

http://repo1.maven.org/maven2/javax/inject/javax.inject/1/

Spring Framework

i mport javax.inject.|nject;
i nport javax.inject.Naned

@Naned(" novi eLi st ener ")
public class SinpleMvielLister {

private Movi eFi nder novi eFi nder

@ nj ect
public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
thi s. novi eFi nder = novi eFi nder

}

Il

It is very common to use @onponent without specifying a name for the component. @Naned can be
used in a similar fashion:

i nport javax.inject.l|nject;
i mport javax.inject.Nanmed

@anmed
public class SinpleMvieLister {

private Movi eFi nder novi eFi nder

@ nj ect
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
thi s. movi eFi nder = novi eFi nder

}

/'l

When using @Naned, it is possible to use component-scanning in the exact same way as when using
Spring annotations:

<beans>
<cont ext: conponent - scan base- package="or g. exanpl e"/ >
</ beans>

Limitations of the standard approach

When working with standard annotations, it is important to know that some significant features are not
available as shown in the table below:

Table 4.6. Spring annotations vs. standard annotations

Spring javax.inject.* javax.inject restrictions /
comments

@Autowired @Inject @Inject has no required
attribute

@Component @Named -

Spring Framework
4.0.5.RELEASE Reference Documentation 101

Spring Framework

Spring javax.inject.* javax.inject restrictions /
comments
@Scope("singleton™) @Singleton The JSR-330 default scope

is like Spring’s pr ot ot ype.
However, in order to keep it
consistent with Spring’s general
defaults, a JSR-330 bean
declared in the Spring container
is a si ngl et on by default. In
order to use a scope other than
si ngl et on, you should use
Spring’s @cope annotation.

j avax. i nj ect also provides
a @Scope annotation.
Nevertheless, this one is only
intended to be used for creating
your own annotations.

@Qualifier @Named -

@Value - no equivalent
@Required - no equivalent
@Lazy - no equivalent

4.12 Java-based container configuration

Basic concepts: @Bean and @Configuration

The central artifacts in Spring’s new Java-configuration support are @onfi gur at i on-annotated
classes and @ean-annotated methods.

The @Bean annotation is used to indicate that a method instantiates, configures and initializes a
new object to be managed by the Spring IoC container. For those familiar with Spring’s <beans/ >
XML configuration the @ean annotation plays the same role as the <bean/ > element. You can use
@ean annotated methods with any Spring @onponent, however, they are most often used with
@confi gurati on beans.

Annotating a class with @onf i gur at i on indicates that its primary purpose is as a source of bean
definitions. Furthermore, @onf i gur at i on classes allow inter-bean dependencies to be defined by
simply calling other @Bean methods in the same class. The simplest possible @onf i gur at i on class
would read as follows:

Spring Framework
4.0.5.RELEASE Reference Documentation 102

http://download.oracle.com/javaee/6/api/javax/inject/Scope.html

Spring Framework

@Configuration
public class AppConfig {

@Bean
public MyService nyService() {
return new MyServicel npl ();

}
}

The AppConf i g class above would be equivalent to the following Spring <beans/ > XML:

<beans>
<bean i d="nyService" class="com acne. servi ces. MyServi cel npl "/ >
</ beans>

The @ean and @onf i gur at i on annotations will be discussed in depth in the sections below. First,
however, we'll cover the various ways of creating a spring container using Java-based configuration.

Full @Configuration vs lite @Beans mode?

When @ean methods are declared within classes that are not annotated with @onf i gur ati on
they are referred to as being processed in a lite mode. For example, bean methods declared in a
@Conponent or even in a plain old class will be considered lite.

Unlike full @onf i gur at i on, lite @ean methods cannot easily declare inter-bean dependencies.
Usually one @ean method should not invoke another @@ean method when operating in lite mode.

Only using @ean methods within @onf i gur ati on classes is a recommended approach of
ensuring that full mode is always used. This will prevent the same @ean method from accidentally
being invoked multiple times and helps to reduce subtle bugs that can be hard to track down when
operating in lite mode.

Instantiating the Spring container using
AnnotationConfigApplicationContext

The sections below document Spring’s Annot at i onConf i gAppl i cat i onCont ext, new in Spring
3.0. This versatile ApplicationContext implementation is capable of accepting not only
@confi gur ati on classes as input, but also plain @onponent classes and classes annotated with
JSR-330 metadata.

When @Conf i gur at i on classes are provided as input, the @onf i gur at i on class itself is registered
as a bean definition, and all declared @ean methods within the class are also registered as bean
definitions.

When @onponent and JSR-330 classes are provided, they are registered as bean definitions, and it
is assumed that DI metadata such as @\wut owi r ed or @ nj ect are used within those classes where
necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a
Cl assPat hXm Appl i cati onCont ext, @onfi gurati on classes may be used as input when
instantiating an Annot ati onConfi gAppl i cati onCont ext. This allows for completely XML-free
usage of the Spring container:

Spring Framework
4.0.5.RELEASE Reference Documentation 103

Spring Framework

public static void main(String[] args) {
Appl i cati onContext ctx = new Annot ati onConfi gAppl i cati onCont ext (AppConfi g. cl ass);
MyServi ce nyService = ctx.getBean(M/Servi ce. cl ass);
mySer vi ce. doSt uf f () ;

As mentioned above, Annot at i onConfi gAppl i cati onCont ext is not limited to working only with
@confi gurati on classes. Any @onponent or JSR-330 annotated class may be supplied as input
to the constructor. For example:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onContext(M/Servicel npl.class,
Dependencyl. cl ass, Dependency?2. cl ass);
MyServi ce nyService = ctx.getBean(M/Service. cl ass);
nmySer vi ce. doSt uf f () ;

The above assumes that MySer vi cel npl , Dependency1 and Dependency?2 use Spring dependency
injection annotations such as @\ut owi r ed.

Building the container programmatically using register(Class<?>...)

An Annot ati onConfi gAppl i cati onCont ext may be instantiated using a no-arg constructor
and then configured using the regi ster() method. This approach is particularly useful when
programmatically building an Annot at i onConf i gAppl i cati onCont ext .

public static void main(String[] args) {
Annot at i onConf i gAppl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onContext();
ctx. regi ster (AppConfig.class, OherConfig.class);
ctx. regi ster(Additional Config.class);
ctx.refresh();
MyServi ce nyService = ctx.getBean(M/Service. cl ass);
mySer vi ce. doSt uf f () ;

Enabling component scanning with scan(String...)

Experienced Spring users will be familiar with the following commonly-used XML declaration from
Spring’s cont ext : namespace

<beans>
<cont ext : conponent - scan base- package="com acne"/ >
</ beans>

In the example above, the com acne package will be scanned, looking for any @onponent -
annotated classes, and those classes will be registered as Spring bean definitions within the container.
Annot at i onConf i gAppl i cati onCont ext exposesthescan(Stri ng...) method to allow for the
same component-scanning functionality:

public static void main(String[] args) {
Annot at i onConf i gAppl i cati onContext ctx = new Annot ati onConfi gAppl i cati onCont ext () ;
ctx.scan("com acne");
ctx.refresh();
MyServi ce nyService = ctx.getBean(M/Service. cl ass);

Spring Framework
4.0.5.RELEASE Reference Documentation 104

Spring Framework

© Note

Remember that @onfi gurati on classes are meta-annotated with @onponent, so they
are candidates for component-scanning! In the example above, assuming that AppConfi g is
declared within the com acme package (or any package underneath), it will be picked up during
the calltoscan() ,anduponr ef r esh() allits @ean methods will be processed and registered
as bean definitions within the container.

Support for web applications with AnnotationConfigWebApplicationContext

A WebAppl i cati onCont ext variant of Annot ati onConfi gAppl i cati onCont ext is available
with Annot ati onConfi gWebAppl i cati onContext. This implementation may be used
when configuring the Spring Cont ext LoaderLi stener servlet listener, Spring MVC
Di spat cher Ser vl et , etc. What follows is a web. xm snippet that configures a typical Spring MVC
web application. Note the use of the cont ext Cl ass context-param and init-param:

Spring Framework
4.0.5.RELEASE Reference Documentation 105

Spring Framework

<web- app>

<I-- Configure ContextLoaderListener to use AnnotationConfi g\WebAppl i cati onCont ext
i nstead of the default Xm WebApplicationContext -->

<cont ext - par anp
<par am name>cont ext 0 ass</ par am nane>
<par am val ue>

org. spri ngf ramewor k. web. cont ext. support. Annot at i onConf i gWebAppl i cat i onCont ext

</ par am val ue>

</ cont ext - par an>

<I-- Configuration |ocations nust consist of one or nore commma- or space-delimnted
fully-qualified @onfiguration classes. Fully-qualified packages may al so be
speci fied for conponent-scanning -->

<cont ext - par anp
<par am name>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>com acmne. AppConf i g</ par am val ue>

</ cont ext - par an>

<I-- Bootstrap the root application context as usual using ContextLoaderlListener -->
<l'i stener>
<l i stener-class>org. springframewor k. web. cont ext. Cont ext Loader Li stener</|i stener -
cl ass>
</listener>

<I-- Declare a Spring M/C Di spatcherServl et as usual -->
<servl et>
<ser vl et - nane>di spat cher </ ser vl et - nane>
<servl et -cl ass>org. springfranmework. web. servl et. Di spat cher Servl et </ servl et-class>
<I-- Configure DispatcherServlet to use Annotati onConfi gWebAppl i cati onCont ext
i nstead of the default Xm WebApplicationContext -->
<init-paranp
<par am name>cont ext 0 ass</ par am nane>
<par am val ue>

or g. springfranmewor k. web. cont ext. support. Annot at i onConf i g\WWebAppl i cat i onCont ext

</ par am val ue>

</init-paranr

<I-- Again, config |ocations nust consist of one or nore commma- or space-delimted
and fully-qualified @onfiguration classes -->

<init-paranp
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>com acne. web. MrcConf i g</ par am val ue>

</init-paranr

</ servl et>

<I-- map all requests for /app/* to the dispatcher servliet -->
<servl et - mappi ng>
<ser vl et - nane>di spat cher </ ser vl et - nane>
<url -pattern>/app/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Using the @Bean annotation

@ean is a method-level annotation and a direct analog of the XML <bean/ > element. The annotation
supports some of the attributes offered by <bean/ >, such as: init-method, destroy-method, autowiring
and nane.

You can use the @ean annotation in a @onf i gur at i on-annotated or in a @onponent -annotated
class.

Spring Framework
4.0.5.RELEASE Reference Documentation 106

Spring Framework

Declaring a bean

To declare a bean, simply annotate a method with the @ean annotation. You use this method to register
a bean definition within an Appl i cat i onCont ext of the type specified as the method'’s return value.
By default, the bean name will be the same as the method name. The following is a simple example
of a @Bean method declaration:

@Configuration
public class AppConfig {

@ean
public TransferService transferService() {
return new TransferServicel npl ();

}

The preceding configuration is exactly equivalent to the following Spring XML.:

<beans>
<bean i d="transferService" class="com acne. Tr ansf er Servi cel npl "/ >
</ beans>

Both declarations make a bean named t r ansf er Ser vi ce available in the Appl i cat i onCont ext ,
bound to an object instance of type Tr ansf er Ser vi cel npl :

transferService -> com acne. Transf er Ser vi cel mp

Receiving lifecycle callbacks

Any classes defined with the @ean annotation support the regular lifecycle callbacks and can use the
@Post Const ruct and @r eDest r oy annotations from JSR-250, see JSR-250 annotations for further
details.

The regular Spring lifecycle callbacks are fully supported as well. If a bean implements
I nitializingBean, Di sposabl eBean, or Li f ecycl e, their respective methods are called by the
container.

The standard set of *Aware interfaces such as BeanFactoryAware, BeanNameAware,
MessageSourceAware, ApplicationContextAware, and so on are also fully supported.

The @ean annotation supports specifying arbitrary initialization and destruction callback methods,
much like Spring XML's i ni t - net hod and dest r oy- net hod attributes on the bean element;

Spring Framework
4.0.5.RELEASE Reference Documentation 107

Spring Framework

public class Foo {
public void init() {
/1 initialization |ogic
}
}

public class Bar {
public void cleanup() {
/| destruction |ogic
}
}

@onfiguration
public class AppConfig {

@ean(initMethod = "init")
public Foo foo() {
return new Foo();

}

@ean(destroyMet hod = "cl eanup")
public Bar bar() {
return new Bar ();

}

Of course, in the case of Foo above, it would be equally as valid to call the i ni t () method directly
during construction:

@onfi guration
public class AppConfig {
@ean
public Foo foo() {
Foo foo = new Foo();

foo.init();
return foo;
}
1.

@ Tip

When you work directly in Java, you can do anything you like with your objects and do not always
need to rely on the container lifecycle!

Specifying bean scope
Using the @Scope annotation

You can specify that your beans defined with the @ean annotation should have a specific scope. You
can use any of the standard scopes specified in the Bean Scopes section.

The default scope is si ngl et on, but you can override this with the @cope annotation:

Spring Framework
4.0.5.RELEASE Reference Documentation 108

Spring Framework

@Configuration
public class MyConfiguration {

@Bean

@cope(" prototype")

public Encryptor encryptor() {
...

}

@Scope and scoped-proxy

Spring offers a convenient way of working with scoped dependencies through scoped proxies. The
easiest way to create such a proxy when using the XML configuration is the <aop: scoped- pr oxy/
> element. Configuring your beans in Java with a @Scope annotation offers equivalent support with
the proxyMode attribute. The default is no proxy (ScopedPr oxyMode. NO), but you can specify
ScopedPr oxyMode. TARGET_CLASS or ScopedPr oxyMde. | NTERFACES.

If you port the scoped proxy example from the XML reference documentation (see preceding link) to
our @ean using Java, it would look like the following:

/] an HTTP Sessi on-scoped bean exposed as a proxy
@ean
@cope(val ue = "session", proxyMde = ScopedProxyMde. TARGET_CLASS)
publ i c UserPreferences userPreferences() {
return new User Preferences();

}

@ean

public Service userService() {
User Servi ce service = new Sinpl eUser Servi ce();
/'l a reference to the proxied userPreferences bean
servi ce. set User Pref erences(user Pref erences());
return service;

Customizing bean naming

By default, configuration classes use a @ean method’'s name as the name of the resulting bean. This
functionality can be overridden, however, with the namne attribute.

@Configuration
public class AppConfig {

@ean(nanme = "myFoo")
public Foo foo() {
return new Foo();

}

Bean aliasing

As discussed in the section called “Naming beans”, it is sometimes desirable to give a single bean
multiple names, otherwise known asbean aliasing. The namne attribute of the @ean annotation accepts
a String array for this purpose.

Spring Framework
4.0.5.RELEASE Reference Documentation 109

Spring Framework

@onfiguration
public class AppConfig {

@ean(nane = { "dataSource", "subsystemA-dataSource", "subsystenB-dataSource" })
publ i c Dat aSour ce dataSource() {
/'l instantiate, configure and return DataSource bean...

}

Bean description

Sometimes it is helpful to provide a more detailed textual description of a bean. This can be particularly
useful when beans are exposed (perhaps via JMX) for monitoring purposes.

To add a description to a @ean the @escr i pti on annotation can be used:

@Configuration
public class AppConfig {

@ean
@esci ption("Provides a basic exanple of a bean")

public Foo foo() {
return new Foo();

}

Using the @Configuration annotation

@confi gur ati on is a class-level annotation indicating that an object is a source of bean definitions.
@confi gurati on classes declare beans via public @ean annotated methods. Calls to @ean
methods on @onf i gur at i on classes can also be used to define inter-bean dependencies. See the
section called “Basic concepts: @Bean and @ Configuration” for a general introduction.

Injecting inter-bean dependencies

When @eans have dependencies on one another, expressing that dependency is as simple as having
one bean method call another:

@onfiguration
public class AppConfig {

@Bean
public Foo foo() {
return new Foo(bar());

}

@ean
public Bar bar() {
return new Bar ();

}

In the example above, the f 0o bean receives a reference to bar via constructor injection.

Spring Framework
4.0.5.RELEASE Reference Documentation 110

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Description.html

Spring Framework

© Note

This method of declaring inter-bean dependencies only works when the @ean method is
declared within a @onf i gur ati on class. You cannot declare inter-bean dependencies using
plain @onponent classes.

Lookup method injection

As noted earlier, lookup method injection is an advanced feature that you should use rarely. It is useful
in cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java
for this type of configuration provides a natural means for implementing this pattern.

public abstract class CommandManager {
public Object process(Cbject conmandState) {
/'l grab a new i nstance of the appropriate Conmand interface
Command conmand = creat eComrand() ;

/'l set the state on the (hopefully brand new) Conmand i nstance
comand. set St at e(comrandSt at e) ;
return comrand. execute();

}

/] okay... but where is the inplenentation of this method?
protected abstract Conmand creat eConmand();

Using Java-configuration support , you can create a subclass of CormandManager where the abstract
cr eat eCommand() method is overridden in such a way that it looks up a new (prototype) command
object:

@ean

@cope(" prot otype")

publ i c AsyncCommand asyncCommand() {
AsyncCommand conmand = new AsyncConmand() ;
/] inject dependencies here as required
return conmand,

@ean
publ i ¢ CommandManager commandManager () {
/] return new anonynous inplenmentati on of CommandManager with command() overridden
/1 to return a new prototype Comrand obj ect
return new CommandManager () {
protect ed Conmand creat eConmand() {
return asyncComrand() ;

}

Further information about how Java-based configuration works internally

The following example shows a @ean annotated method being called twice:

Spring Framework
4.0.5.RELEASE Reference Documentation 111

Spring Framework

@Configuration
public class AppConfig {

@Bean

public dientService clientServicel() {
ClientServicelnpl clientService = new CientServicelnpl();
clientService.setClientDao(clientDao());
return clientService;

}

@ean

public CientService clientService2() {
ClientServicelnmpl clientService = new CientServicel npl();
clientService.setCientDao(clientDao());
return clientService;

}

@ean
public CientDao clientDao() {
return new C i ent Daol npl ();

}

cli ent Dao() has been called onceincli ent Servi cel() andonceinclient Servi ce2() . Since
this method creates a new instance of C i ent Daol npl and returns it, you would normally expect
having 2 instances (one for each service). That definitely would be problematic: in Spring, instantiated
beans have a si ngl et on scope by default. This is where the magic comes in: All @onf i gurati on
classes are subclassed at startup-time with CGLI B. In the subclass, the child method checks the
container first for any cached (scoped) beans before it calls the parent method and creates a new
instance. Note that as of Spring 3.2, it is no longer necessary to add CGLIB to your classpath because
CGLIB classes have been repackaged under org.springframework and included directly within the
spring-core JAR.

© Note

The behavior could be different according to the scope of your bean. We are talking about
singletons here.

@ Note

There are a few restrictions due to the fact that CGLIB dynamically adds features at startup-time:
» Configuration classes should not be final

e They should have a constructor with no arguments
Composing Java-based configurations

Using the @Import annotation

Much as the <i npor t / > element is used within Spring XML files to aid in modularizing configurations,
the @ nport annotation allows for loading @ean definitions from another configuration class:

Spring Framework
4.0.5.RELEASE Reference Documentation 112

Spring Framework

@Configuration
public class ConfigA {

@Bean
public A a() {
return new A();

}
}

@Configuration
@ npor t (Confi gA. cl ass)
public class ConfigB {

@ean
public B b() {
return new B();

}

Now, rather than needing to specify both Conf i gA. cl ass and Confi gB. cl ass when instantiating
the context, only Conf i gB needs to be supplied explicitly:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onCont ext (Confi gB. cl ass);

/1l now both beans A and B will be avail able...
A a = ctx.getBean(A. class);
B b = ctx.get Bean(B. cl ass);

This approach simplifies container instantiation, as only one class needs to be dealt with, rather than
requiring the developer to remember a potentially large number of @onf i gur ati on classes during
construction.

Injecting dependencies on imported @Bean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have dependencies
on one another across configuration classes. When using XML, this is not an issue, per se, because
there is no compiler involved, and one can simply declare r ef =" sonmeBean" and trust that Spring will
work it out during container initialization. Of course, when using @onf i gur ati on classes, the Java
compiler places constraints on the configuration model, in that references to other beans must be valid
Java syntax.

Fortunately, solving this problem is simple. Remember that @onf i gur ati on classes are ultimately
just another bean in the container - this means that they can take advantage of @\ut owi r ed injection
metadata just like any other bean!

Let’s consider a more real-world scenario with several @onf i gur at i on classes, each depending on
beans declared in the others:

Spring Framework
4.0.5.RELEASE Reference Documentation 113

Spring Framework

@Configuration
public class ServiceConfig {

@\ut owi r ed
private Account Repository account Repository;

@Bean
public TransferService transferService() {
return new Transfer Servi cel npl (account Repository);

}

@Configuration
public class RepositoryConfig {

@\ut owi r ed
private DataSource dataSource;

@ean
publ i c Account Repository account Repository() {
return new JdbcAccount Reposit or y(dat aSource);

}

@onfiguration
@ nport ({Servi ceConfig.cl ass, RepositoryConfig.class})
public class SystenTest Config {

@Bean
publ i c Dat aSour ce dataSource() {
/'l return new Dat aSource

}
}

public static void main(String[] args) {
Appl i cationContext ctx = new
Annot at i onConf i gAppl i cati onCont ext (Syst enTTest Confi g. cl ass);
/'l everything wires up across configuration classes...
TransferService transferService = ctx. get Bean(Transf er Servi ce. cl ass) ;
transferService.transfer(100.00, "Al123", "C456");

In the scenario above, using @\ut owi red works well and provides the desired modularity, but
determining exactly where the autowired bean definitions are declared is still somewhat ambiguous. For
example, as a developer looking at Ser vi ceConf i g, how do you know exactly where the @\ut owi r ed
Account Reposi tory bean is declared? It's not explicit in the code, and this may be just fine.
Remember that the SpringSource Tool Suite provides tooling that can render graphs showing how
everything is wired up - that may be all you need. Also, your Java IDE can easily find all declarations
and uses of the Account Reposi t ory type, and will quickly show you the location of @ean methods
that return that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation from within
your IDE from one @Conf i gur ati on class to another, consider autowiring the configuration classes
themselves:

Spring Framework
4.0.5.RELEASE Reference Documentation 114

http://www.springsource.com/products/sts

Spring Framework

@onfiguration
public class ServiceConfig {

@\ut owi r ed
private RepositoryConfig repositoryConfig;

@ean
public TransferService transferService() {
/'l navigate through the config class to the @ean nethod!
return new Transfer Servicel npl (repositoryConfig.account Repository());

In the situation above, it is completely explicit where Account Reposi tory is defined. However,
Ser vi ceConfi g is now tightly coupled to Reposi t or yConf i g; that's the tradeoff. This tight coupling
can be somewhat mitigated by using interface-based or abstract class-based @Confi gurati on
classes. Consider the following:

Spring Framework
4.0.5.RELEASE Reference Documentation 115

Spring Framework

@Configuration
public class ServiceConfig {

@\ut owi r ed
private RepositoryConfig repositoryConfig;

@Bean
public TransferService transferService() {
return new Transfer Servicel npl (repositoryConfig.account Repository());
}
}

@Configuration
public interface RepositoryConfig {

@Bean
Account Reposi tory account Repository();

@onfiguration
public class DefaultRRepositoryConfig inplenments RepositoryConfig {

@ean
publ i ¢ Account Repository account Repository() {

return new JdbcAccount Repository(...);

}
}

@Configuration

@ npor t ({ Servi ceConfi g.cl ass, DefaultRepositoryConfig.class}) // inport the concrete
config!

public class SysteniestConfig {

@ean
publ i c DataSource dataSource() {
/'l return DataSource

}
}

public static void main(String[] args) {
Appl i cati onContext ctx = new
Annot at i onConf i gAppl i cati onCont ext (Syst enTTest Confi g. cl ass);
TransferServi ce transferService = ctx. getBean(TransferService. cl ass);
transfer Service. transfer(100. 00, "A123", "C456");

Now Ser vi ceConfi g is loosely coupled with respect to the concrete Def aul t Reposi t or yConfi g,
and built-in IDE tooling is still useful: it will be easy for the developer to get a type hierarchy of
Reposi t or yConf i g implementations. In this way, navigating @onf i gur ati on classes and their
dependencies becomes no different than the usual process of navigating interface-based code.

Conditionally including @Configuration classes or @Beans

Itis often useful to conditionally enable to disable a complete @onf i gur at i on class, or evenindividual
@ean methods, based on some arbitrary system state. One common example of this it to use the
@r of i | e annotation to active beans only when a specific profile has been enabled in the Spring
Envi ronnent (see Section 4.13, “Bean definition profiles and environment abstraction” for details).

Spring Framework
4.0.5.RELEASE Reference Documentation 116

Spring Framework

The @rrofile annotation is actually implemented using a much more flexible
annotation called @onditional. The @Conditional annotation indicates specific
or g. spri ngframewor k. cont ext. annot ati on. Condi ti on implementations that should be
consulted before a @ean is registered.

Implementations of the Condi t i on interface simply provide a mat ches(...) method that returns
true orf al se. For example, here is the actual Condi t i on implementation used for @r of i | e:

@verride
publ i c bool ean mat ches(Condi ti onCont ext context, AnnotatedTypeMetadata netadata) {
if (context.getEnvironnent() != null) {

// Read the @rofile annotation attributes
Mul ti Val ueMap<String, Object> attrs =
net adat a. get Al | Annot ati onAttri butes(Profile.class.getNanme());
if (attrs !'= null) {
for (Cbject value : attrs.get("value")) {
i f (context.getEnvironnent().acceptsProfiles(((String[]) value))) {
return true;
}
}
return fal se;
}
}

return true;

See the @ondi ti onal javadocs for more detail.

Combining Java and XML configuration

Spring’s @onf i gur at i on class support does not aim to be a 100% complete replacement for Spring
XML. Some facilities such as Spring XML namespaces remain an ideal way to configure the container.
In cases where XML is convenient or necessary, you have a choice: either instantiate the container in an
"XML-centric" way using, for example, Cl assPat hXml Appl i cat i onCont ext, or in a "Java-centric"
fashion using Annot at i onConf i gAppl i cati onCont ext and the @ npor t Resour ce annotation to
import XML as needed.

XML-centric use of @Configuration classes

It may be preferable to bootstrap the Spring container from XML and include @onf i gur at i on classes
in an ad-hoc fashion. For example, in a large existing codebase that uses Spring XML, it will be easier to
create @onf i gur at i on classes on an as-needed basis and include them from the existing XML files.
Below you'll find the options for using @onf i gur at i on classes in this kind of "XML-centric" situation.

Remember that @onf i gur at i on classes are ultimately just bean definitions in the container. In this
example, we create a @onf i gur at i on class named AppConf i g andinclude itwithinsyst em t est -
config.xm as a <bean/ > definition. Because <cont ext : annot ati on-confi g/ > is switched
on, the container will recognize the @onf i gur ati on annotation, and process the @ean methods
declared in AppConf i g properly.

Spring Framework
4.0.5.RELEASE Reference Documentation 117

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Conditional.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Conditional.html

Spring Framework

@onfiguration
public class AppConfig {

@\ut owi r ed
private DataSource dataSource

@ean
publ i ¢ Account Repository account Repository() {
return new JdbcAccount Reposi t or y(dat aSource) ;

}

@Bean
public TransferService transferService() {
return new Transfer Servi ce(account Repository());

}
}
systemtest-config.xm
<beans>
<l-- enabl e processing of annotations such as @wutow red and @onfiguration -->

<cont ext : annot ati on- confi g/ >
<cont ext: property-pl acehol der | ocati on="cl asspat h:/conf acne/j dbc. properties"/>

<bean cl ass="com acne. AppConfi g"/>

<bean cl ass="org. spri ngfranmework. jdbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property nane="user name" val ue="${j dbc. usernane}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

j dbc. properties

jdbc. url =jdbc: hsqgl db: hsql : //1 ocal host / xdb
j dbc. user nane=sa

j dbc. passwor d=

public static void main(String[] args) {

Appl i cationContext ctx = new C assPat hXml Appl i cati onCont ext ("cl asspat h: / conl acne/
systemtest-config.xm");

TransferService transferService = ctx. getBean(TransferService. cl ass);

/1

© Note

In systemtest-config.xn above, the AppConfi g<bean/ > does not declare an i d
element. While it would be acceptable to do so, it is unnecessary given that no other bean will
ever refer to it, and it is unlikely that it will be explicitly fetched from the container by name.
Likewise with the Dat aSour ce bean - it is only ever autowired by type, so an explicit bean id
is not strictly required.

Because @onfi guration is meta-annotated with @onponent, @Confi gur ati on-annotated
classes are automatically candidates for component scanning. Using the same scenario as above,
we can redefine systemt est -confi g. xnl to take advantage of component-scanning. Note that

Spring Framework
4.0.5.RELEASE Reference Documentation 118

Spring Framework

in this case, we don't need to explicitly declare <cont ext: annot ati on-confi g/ >, because
<cont ext : conponent - scan/ > enables all the same functionality.

systemtest-config.xm
<beans>
<!-- picks up and registers AppConfig as a bean definition -->
<cont ext : conponent - scan base- package="com acne"/ >
<cont ext : property-pl acehol der | ocati on="cl asspat h:/conif acne/j dbc. properties"/>

<bean cl ass="org. spri ngframework. jdbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property nane="usernane" val ue="${j dbc. usernane}"/>
<property nane="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

@Configuration class-centric use of XML with @ImportResource

In applications where @onfi gur ati on classes are the primary mechanism for configuring the
container, it will still likely be necessary to use at least some XML. In these scenarios, simply use
@ npor t Resour ce and define only as much XML as is needed. Doing so achieves a "Java-centric"
approach to configuring the container and keeps XML to a bare minimum.

@onfiguration
@ nmpor t Resour ce("cl asspat h: / com acne/ properti es-config.xm")
public class AppConfig {

@al ue("${jdbc.url}")
private String url;

@/al ue(" ${j dbc. user nane}")
private String usernanme

@/al ue(" ${j dbc. passwor d}")
private String password;

@ean
publ i c Dat aSour ce dataSource() {
return new Driver Manager Dat aSource(url, username, password);

properties-config.xm
<beans>

<cont ext: property-pl acehol der | ocati on="cl asspath:/conf acne/j dbc. properties"/>
</ beans>

j dbc. properties

jdbc. url =jdbc: hsqgl db: hsql : //1 ocal host / xdb
j dbc. user nane=sa

j dbc. passwor d=

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppl i cati onContext (AppConfig.class);
TransferService transferService = ctx. getBean(TransferService. cl ass);
I

Spring Framework
4.0.5.RELEASE Reference Documentation 119

Spring Framework

4.13 Bean definition profiles and environment abstraction

Bean definition profiles is a mechanism in the core container that allows for registration of different beans
in different environments. This feature can help with many use cases, including:

» working against an in-memory datasource in development vs looking up that same datasource from
JNDI when in QA or production

* registering monitoring infrastructure only when deploying an application into a performance
environment

* registering customized implementations of beans for customer A vs. customer B deployments

Find out more about Environment, XML Profiles and the @Profile annotation.

4.14 PropertySource Abstraction

Spring’s Environment abstraction provides search operations over a configurable hierarchy of property
sources.

You can find out more about Unified Property Management, the Pr opert ySour ce class and the
@Pr oper t ySour ce annotation.

4.15 Registering a LoadTimeWeaver

The LoadTi mreWeaver is used by Spring to dynamically transform classes as they are loaded into the
Java virtual machine (JVM).

To enable load-time weaving add the @nabl eLoadTi neWeavi ng to one of your @onfi gurati on
classes:

@onfiguration

@Enabl eLoadTi neWavi ng
public class AppConfig {
}

Alternatively for XML configuration use the cont ext : | oad-ti ne- weaver element:

<beans>
<cont ext: | oad-ti ne-weaver/>
</ beans>

Once configured for the Appli cati onCont ext. Any bean within that Appli cati onCont ext
may implement LoadTi meWeaver Awar e, thereby receiving a reference to the load-time
weaver instance. This is particularly useful in combination with Spring’s JPA support
where load-time weaving may be necessary for JPA class transformation. Consult the
Local Cont ai ner Enti t yManager Fact or yBean javadocs for more detail. For more on Aspect]
load-time weaving, see the section called “Load-time weaving with AspectJ in the Spring Framework”.

4.16 Additional Capabilities of the ApplicationContext

As was discussed in the chapter introduction, the or g. spr i ngf r anewor k. beans. f act or y package
provides basic functionality for managing and manipulating beans, including in a programmatic

Spring Framework
4.0.5.RELEASE Reference Documentation 120

http://spring.io/blog/2011/02/11/spring-framework-3-1-m1-released/
http://spring.io/blog/2011/02/14/spring-3-1-m1-introducing-profile/
http://spring.io/blog/2011/02/15/spring-3-1-m1-unified-property-management/
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/env/PropertySource.html
http://docs.spring.io/spring/docs/current/javadoc-apiorg/springframework/context/annotation/PropertySource.html

Spring Framework

way. The or g. spri ngfranmewor k. cont ext package adds the Appl i cati onCont ext interface,
which extends the BeanFact ory interface, in addition to extending other interfaces to provide
additional functionality in a more application framework-oriented style. Many people use the
Appl i cati onCont ext in a completely declarative fashion, not even creating it programmatically,
but instead relying on support classes such as Cont ext Loader to automatically instantiate an
Appl i cati onCont ext as part of the normal startup process of a J2EE web application.

To enhance BeanFact or y functionality in a more framework-oriented style the context package also
provides the following functionality:

» Access to messages in i18n-style, through the MessageSour ce interface.
» Access to resources, such as URLs and files, through the Resour ceLoader interface.

» Event publication to beans implementing the Appl i cat i onLi st ener interface, through the use of
the Appl i cati onEvent Publ i sher interface.

» Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, such
as the web layer of an application, through the Hi er ar chi cal BeanFact or y interface.

Internationalization using MessageSource

The ApplicationContext interface extends an interface called MessageSource, and
therefore provides internationalization (i18n) functionality. Spring also provides the interface
Hi er ar chi cal MessageSour ce, which can resolve messages hierarchically. Together these
interfaces provide the foundation upon which Spring effects message resolution. The methods defined
on these interfaces include:

e String getMessage(String code, Object[] args, String default, Locale |oc):
The basic method used to retrieve a message from the MessageSour ce. When no message is found
for the specified locale, the default message is used. Any arguments passed in become replacement
values, using the MessageFor nmat functionality provided by the standard library.

e String get Message(String code, Object[] args, Local e |oc): Essentially the same
as the previous method, but with one difference: no default message can be specified; if the message
cannot be found, a NoSuchMessageExcept i on is thrown.

« String getMessage(MessageSourceResol vable resolvable, Locale locale):
All properties used in the preceding methods are also wrapped in a class named
MessageSour ceResol vabl e, which you can use with this method.

When an Appl i cati onCont ext is loaded, it automatically searches for a MessageSour ce bean
defined in the context. The bean must have the name nmessageSour ce. If such a bean is found, all
calls to the preceding methods are delegated to the message source. If no message source is found,
the Appl i cat i onCont ext attempts to find a parent containing a bean with the same name. If it does,
it uses that bean as the MessageSour ce. If the Appl i cati onCont ext cannot find any source for
messages, an empty Del egat i ngMessageSour ce is instantiated in order to be able to accept calls
to the methods defined above.

Spring provides two MessageSour ce implementations, Resour ceBundl eMessageSour ce and
St ati cMessageSour ce. Both implement Hi er ar chi cal MessageSour ce in order to do nested
messaging. The St ati cMessageSour ce is rarely used but provides programmatic ways to add
messages to the source. The Resour ceBundl eMessageSour ce is shown in the following example:

Spring Framework
4.0.5.RELEASE Reference Documentation 121

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/ApplicationContext.html

Spring Framework

<beans>
<bean i d="nmessageSour ce"
cl ass="org. spri ngframewor k. cont ext. support. Resour ceBundl eMessageSour ce" >
<property nane="basenanes" >
<list>
<val ue>f or mat </ val ue>
<val ue>excepti ons</val ue>
<val ue>w ndows</ val ue>
</[list>
</ property>
</ bean>
</ beans>

In the example it is assumed you have three resource bundles defined in your classpath called f or mat ,
excepti ons and wi ndows. Any request to resolve a message will be handled in the JDK standard
way of resolving messages through ResourceBundles. For the purposes of the example, assume the
contents of two of the above resource bundle files are...

in format. properties
message=Al | i gators rock

in exceptions. properties
argunent . requi red=The {0} argunent is required

A program to execute the MessageSour ce functionality is shown in the next example. Remember that
all Appl i cati onCont ext implementations are also MessageSour ce implementations and so can be
cast to the MessageSour ce interface.

public static void main(String[] args) {
MessageSour ce resources = new Cl assPat hXm Appl i cati onCont ext ("beans. xm ");
String message = resources. get Message(" nmessage”, null, "Default", null)
System out . printl n(message) ;

The resulting output from the above program will be...

Al ligators rock

So to summarize, the MessageSour ce is defined in a file called beans. xm , which exists at the root of
your classpath. The nmessageSour ce bean definition refers to a number of resource bundles through
its basenanes property. The three files that are passed in the list to the basenanes property exist as
files at the root of your classpath and are called f or mat . properti es, excepti ons. properties,
and wi ndows. properti es respectively.

The next example shows arguments passed to the message lookup; these arguments will be converted
into Strings and inserted into placeholders in the lookup message.

Spring Framework
4.0.5.RELEASE Reference Documentation 122

Spring Framework

<beans>
<l-- this MessageSource is being used in a web application -->

<bean i d="nessageSource" class="org. springfranework. cont ext.support.ResourceBundl eMessageSour ce" >
<property nane="basenane" val ue="exceptions"/>
</ bean>

<l-- lets inject the above MessageSource into this PQIO -->
<bean i d="exanpl e" cl ass="com f 0o. Exanpl e" >

<property nane="messages" ref="nessageSource"/>
</ bean>

</ beans>

public class Exanple {
private MessageSource messages;

public void set Messages(MessageSour ce nessages) {
t hi s. messages = nessages;

public void execute() {
String message = this.nessages. get Message("argunent. required",
new Cbject [] {"userDao"}, "Required", null);
System out . println(message) ;

The resulting output from the invocation of the execut e() method will be...

The userDao argunent is required.

With regard to internationalization (i18n), Spring’s various MessageRe