
Spring Initializr Reference Guide

Stéphane Nicoll , Dave Syer

Copyright ©

Spring Initializr Reference Guide

please define title in your docbook file! ii

Table of Contents

1. Spring Initializr Documentation .. 1
1.1. About the documentation .. 1
1.2. Getting help ... 1

2. Metadata Format .. 2
2.1. Content .. 2

Project dependencies .. 6
Project types ... 7
Packaging ... 7
Java version ... 8
Languages .. 8
Boot version ... 8

2.2. Defaults ... 8
3. Using the Stubs .. 9

3.1. Using WireMock with Spring Boot ... 9
3.2. Names and Paths of Stubs ... 10

4. Configuration Format ... 11
4.1. Env section .. 11
4.2. Dependencies section .. 12

Dependency group .. 13
4.3. Other sections .. 13

Spring Initializr Reference Guide

please define title in your docbook file! 1

1. Spring Initializr Documentation

Spring Initializr provides an extensible API to generate quickstart projects. It also provides a configurable
service: you can see our default instance at start.spring.io. It provides a simple web UI to configure the
project to generate and endpoints that you can use via plain HTTP.

Spring Initializr also exposes an endpoint that serves its metadata in a well-known format to allow third-
party clients to provide the necessary assistance.

Finally, Initializr offers a configuration structure to define all the aspects related to the project to generate:
list of dependencies, supported java and boot versions, etc.

1.1 About the documentation

The Spring Initializr reference guide is available as html, pdf and epub documents. The latest copy is
available at docs.spring.io/initializr/docs/current/reference.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

1.2 Getting help

Having trouble with Spring Initializr, We’d like to help!

• Ask a question on Gitter.

• Report bugs with Spring Initializr at github.com/spring-io/initializr/issues.

Note

All of Spring Initializr is open source, including the documentation! If you find problems with the
docs; or if you just want to improve them, please get involved.

https://start.spring.io
http://docs.spring.io/initializr/docs/0.3.0.BUILD-SNAPSHOT/reference/html
http://docs.spring.io/initializr/docs/0.3.0.BUILD-SNAPSHOT/reference/pdf/spring-boot-reference.pdf
http://docs.spring.io/initializr/docs/0.3.0.BUILD-SNAPSHOT/reference/epub/spring-boot-reference.epub
http://docs.spring.io/initializr/docs/current/reference
https://gitter.im/spring-io/initializr
https://github.com/spring-io/initializr/issues
https://github.com/spring-io/initializr/tree/master

Spring Initializr Reference Guide

please define title in your docbook file! 2

2. Metadata Format

This section describes the hal/json structure of the metadata exposed by the initializr. Such metadata
can be used by third party clients to provide a list of options and default settings that can be used to
request the creation of a project.

Each third-party client is advised to set a User-Agent header for each request sent to the service.
A good structure for a user agent is clientId/clientVersion (i.e. foo/1.2.0 for the "foo" client
and version 1.2.0).

2.1 Content

Any third party client can retrieve the capabilities of the service by issuing a GET on the root URL using
the following Accept header: application/vnd.initializr.v2.1+json. Please note that the
metadata may evolve in a non backward compatible way in the future so adding this header ensures
the service returns the metadata format you expect.

This is an example output for a service running at start.spring.io:

request.

GET / HTTP/1.1

Accept: application/vnd.initializr.v2.1+json

Host: start.spring.io

response.

HTTP/1.1 200 OK

ETag: "1262473f5c28f970e1e42d107213b064"

Content-Type: application/vnd.initializr.v2.1+json

Cache-Control: max-age=604800

Content-Length: 4872

{

 "_links" : {

 "maven-build" : {

 "href" : "https://start.spring.io/pom.xml?type=maven-

build{&dependencies,packaging,javaVersion,language,bootVersion,groupId,artifactId,version,name,description,packageName}",

 "templated" : true

 },

 "maven-project" : {

 "href" : "https://start.spring.io/starter.zip?type=maven-

project{&dependencies,packaging,javaVersion,language,bootVersion,groupId,artifactId,version,name,description,packageName}",

 "templated" : true

 },

 "gradle-build" : {

 "href" : "https://start.spring.io/build.gradle?type=gradle-

build{&dependencies,packaging,javaVersion,language,bootVersion,groupId,artifactId,version,name,description,packageName}",

 "templated" : true

 },

 "gradle-project" : {

 "href" : "https://start.spring.io/starter.zip?type=gradle-

project{&dependencies,packaging,javaVersion,language,bootVersion,groupId,artifactId,version,name,description,packageName}",

 "templated" : true

 },

 "dependencies" : {

 "href" : "https://start.spring.io/dependencies{?bootVersion}",

 "templated" : true

 }

 },

 "dependencies" : {

 "type" : "hierarchical-multi-select",

 "values" : [{

https://start.spring.io

Spring Initializr Reference Guide

please define title in your docbook file! 3

 "name" : "Core",

 "values" : [{

 "id" : "web",

 "name" : "Web",

 "description" : "Web dependency description",

 "_links" : {

 "guide" : {

 "href" : "https://example.com/guide",

 "title" : "Building a RESTful Web Service"

 },

 "reference" : {

 "href" : "https://example.com/doc"

 }

 }

 }, {

 "id" : "security",

 "name" : "Security"

 }, {

 "id" : "data-jpa",

 "name" : "Data JPA"

 }]

 }, {

 "name" : "Other",

 "values" : [{

 "id" : "org.acme:foo",

 "name" : "Foo",

 "_links" : {

 "guide" : [{

 "href" : "https://example.com/guide1"

 }, {

 "href" : "https://example.com/guide2",

 "title" : "Some guide for foo"

 }],

 "reference" : {

 "href" : "https://example.com/{bootVersion}/doc",

 "templated" : true

 }

 }

 }, {

 "id" : "org.acme:bar",

 "name" : "Bar"

 }, {

 "id" : "org.acme:biz",

 "name" : "Biz",

 "versionRange" : "1.2.0.BUILD-SNAPSHOT"

 }, {

 "id" : "org.acme:bur",

 "name" : "Bur",

 "versionRange" : "[1.1.4.RELEASE,1.2.0.BUILD-SNAPSHOT)"

 }, {

 "id" : "my-api",

 "name" : "My API"

 }]

 }]

 },

 "type" : {

 "type" : "action",

 "default" : "maven-project",

 "values" : [{

 "id" : "maven-build",

 "name" : "Maven POM",

 "action" : "/pom.xml",

 "tags" : {

 "build" : "maven",

 "format" : "build"

 }

 }, {

 "id" : "maven-project",

 "name" : "Maven Project",

 "action" : "/starter.zip",

 "tags" : {

Spring Initializr Reference Guide

please define title in your docbook file! 4

 "build" : "maven",

 "format" : "project"

 }

 }, {

 "id" : "gradle-build",

 "name" : "Gradle Config",

 "action" : "/build.gradle",

 "tags" : {

 "build" : "gradle",

 "format" : "build"

 }

 }, {

 "id" : "gradle-project",

 "name" : "Gradle Project",

 "action" : "/starter.zip",

 "tags" : {

 "build" : "gradle",

 "format" : "project"

 }

 }]

 },

 "packaging" : {

 "type" : "single-select",

 "default" : "jar",

 "values" : [{

 "id" : "jar",

 "name" : "Jar"

 }, {

 "id" : "war",

 "name" : "War"

 }]

 },

 "javaVersion" : {

 "type" : "single-select",

 "default" : "1.8",

 "values" : [{

 "id" : "1.6",

 "name" : "1.6"

 }, {

 "id" : "1.7",

 "name" : "1.7"

 }, {

 "id" : "1.8",

 "name" : "1.8"

 }]

 },

 "language" : {

 "type" : "single-select",

 "default" : "java",

 "values" : [{

 "id" : "groovy",

 "name" : "Groovy"

 }, {

 "id" : "java",

 "name" : "Java"

 }, {

 "id" : "kotlin",

 "name" : "Kotlin"

 }]

 },

 "bootVersion" : {

 "type" : "single-select",

 "default" : "1.1.4.RELEASE",

 "values" : [{

 "id" : "1.2.0.BUILD-SNAPSHOT",

 "name" : "Latest SNAPSHOT"

 }, {

 "id" : "1.1.4.RELEASE",

 "name" : "1.1.4"

 }, {

 "id" : "1.0.2.RELEASE",

Spring Initializr Reference Guide

please define title in your docbook file! 5

 "name" : "1.0.2"

 }]

 },

 "groupId" : {

 "type" : "text",

 "default" : "com.example"

 },

 "artifactId" : {

 "type" : "text",

 "default" : "demo"

 },

 "version" : {

 "type" : "text",

 "default" : "0.0.1-SNAPSHOT"

 },

 "name" : {

 "type" : "text",

 "default" : "demo"

 },

 "description" : {

 "type" : "text",

 "default" : "Demo project for Spring Boot"

 },

 "packageName" : {

 "type" : "text",

 "default" : "com.example"

 }

}

The current capabilities are the following:

• Project dependencies: these are the starters really or actually any dependency that we might want
to add to the project.

• Project types: these define the action that can be invoked on this service and a description of what it
would produce (for instance a zip holding a pre-configured Maven project). Each type may have one
more tags that further define what it generates.

• Packaging: the kind of projects to generate. This merely gives a hint to the component responsible to
generate the project (for instance, generate an executable jar project).

• Java version: the supported java versions

• Language: the language to use (e.g. Java)

• Boot version: the Spring Boot version to use

• Additional basic information such as: groupId, artifactId, version, name, description and
packageName.

Each top-level attribute (i.e. capability) has a standard format:

• A type attribute that defines the semantic of the attribute (see below).

• A default attribute that defines either the default value or the reference to the default value.

• A values attribute that defines the set of acceptable values (if any). This can be hierarchical
(with values being held in values). Each item in a values array can have an id, name and
description).

The following attribute type are supported:

• text: defines a simple text value with no option.

Spring Initializr Reference Guide

please define title in your docbook file! 6

• single-select: defines a simple value to be chosen amongst the specified options.

• hierarchical-multi-select: defines a hierarchical set of values (values in values) with the
ability to select multiple values.

• action: a special type that defines the attribute defining the action to use.

Each action is defined as a HAL-compliant URL. For instance, the maven-project type templated
URL is defined as follows:

Type link example.

{

 "href" : "https://start.spring.io/starter.zip?type=maven-

project{&dependencies,packaging,javaVersion,language,bootVersion,groupId,artifactId,version,name,description,packageName}",

 "templated" : true

}

You can use Spring HATEOAS and the UriTemplate helper in particular to generate an URI from
template variables. Note that the variables match the name of top-level attribute in the metadata
document. If you can’t parse such URI, the action attribute of each type gives you the root action to
invoke on the server. This requires more manual handling on your end.

Project dependencies

A dependency is usually the coordinates of a starter module but it can be just as well be a regular
dependency. A typical dependency structure looks like this:

{

 "name": "Display name",

 "id": "org.acme.project:project-starter-foo",

 "description": "What starter foo does"

}

The name is used as a display name to be shown in whatever UI used by the remote client. The id can be
anything, really as the actual dependency definition is defined through configuration. If no id is defined,
a default one is built using the groupId and artifactId of the dependency. Note in particular that
the version is never used as part of an automatic id.

Each dependency belongs to a group. The idea of the group is to gather similar dependencies and order
them. Here is a value containing the core group to illustrates the feature:

Dependency group example.

{

 "name" : "Core",

 "values" : [{

 "id" : "web",

 "name" : "Web",

 "description" : "Web dependency description",

 "_links" : {

 "guide" : {

 "href" : "https://example.com/guide",

 "title" : "Building a RESTful Web Service"

 },

 "reference" : {

 "href" : "https://example.com/doc"

 }

 }

 }, {

 "id" : "security",

Spring Initializr Reference Guide

please define title in your docbook file! 7

 "name" : "Security"

 }, {

 "id" : "data-jpa",

 "name" : "Data JPA"

 }]

}

Each dependency can have links (in a HAL-compliant format). Links are grouped by "relations" that
provide a semantic to the link. A link can also have a title and its URI can be templated. At the moment,
the only valid parameter is bootVersion.

The official relations are:

• guide: link to an how-to or guide that explain how to get started

• reference: link to a section of a reference guide (documentation)

Project types

The type element defines what kind of project can be generated and how. For instance, if the service
exposes the capability to generate a Maven project, this would look like this:

Project type example.

{

 "id" : "maven-build",

 "name" : "Maven POM",

 "action" : "/pom.xml",

 "tags" : {

 "build" : "maven",

 "format" : "build"

 }

}

You should not rely on the output format depending that information. Always use the response headers
that define a Content-Type and also a Content-Disposition header.

Note that each id has a related HAL-compliant link that can be used to generate a proper URI based
on template variables. The top-level type has, as any other attribute, a default attribute that is a hint
to select what the service consider to be a good default.

The action attribute defines the endpoint the client should contact to actually generate a project of
that type if you can’t use the HAL-compliant url.

The tags object is used to categorize the project type and give hints to 3rd party client. For instance,
the build tag defines the build system the project is going to use and the format tag defines the format of
the generated content (i.e. here a complete project vs. a build file. Note that the Content-type header
of the reply provides additional metadata).

Packaging

The packaging element defines the kind of project that should be generated.

Packaging example.

{

 "id" : "jar",

 "name" : "Jar"

}

Spring Initializr Reference Guide

please define title in your docbook file! 8

The obvious values for this element are jar and war.

Java version

The javaVersion element provides a list of possible java versions for the project:

Java example.

{

 "id" : "1.6",

 "name" : "1.6"

}

Languages

The language element provides a list of possible languages for the project:

Language example.

{

 "id" : "groovy",

 "name" : "Groovy"

}

Boot version

The bootVersion element provides the list of available boot versions

Spring Boot version example.

{

 "id" : "1.2.0.BUILD-SNAPSHOT",

 "name" : "Latest SNAPSHOT"

}

2.2 Defaults

Each top-level element has a default attribute that should be used as a hint to provide the default
value in the relevant UI component.

Spring Initializr Reference Guide

please define title in your docbook file! 9

3. Using the Stubs

The Initializr project publishes WireMock stubs for all the JSON responses that are tested in the project.
If you are writing a client for the Initializr service, you can use these stubs to test your own code. You
can consume them with the raw Wiremock APIs, or via some features of Spring Cloud Contract.

WireMock is an embedded web server that analyses incoming requests and chooses stub responses
based on matching some rules (e.g. a specific header value). So if you send it a request which matches
one of its stubs, it will send you a response as if it was a real Initializr service, and you can use that to
do full stack integration testing of your client.

3.1 Using WireMock with Spring Boot

A convenient way to consume the stubs in your project is to add a test dependency:

<dependency>

 <groupId>io.spring.initializr</groupId>

 <artifactId>initializr-web</artifactId>

 <classifier>stubs</classifier>

 <version>{project-version}</version>

 <scope>test</scope>

</dependency>

and then pull the stubs from the classpath. In a Spring Boot application, using Spring Cloud Contract,
you can start a WireMock server and register all the stubs with it like this:

@RunWith(SpringRunner.class)

@SpringBootTest

@AutoConfigureWireMock(port = 0,

 stubs="classpath:META-INF/io.spring.initializr/initializr-web/0.3.0.BUILD-SNAPSHOT")

public class ClientApplicationTests {

 @Value("${wiremock.server.port}")

 private int port;

 ...

}

Alternatively you can configure the stub runner to look for the artifact. The example below will
automatically download, if necessary, the latest version of the initializr stubs:

@RunWith(SpringRunner.class)

@SpringBootTest(webEnvironment = WebEnvironment.NONE)

@AutoConfigureStubRunner(

 ids = "io.spring.initializr:initializr-web",

 workOffline = true)

public class InitializrIntegrationTests {

 @Autowired

 private StubFinder stubFinder;

 @Autowired

 private RestTemplate restTemplate;

 @Test

 public void testCurrentMetadata() throws IOException {

 RequestEntity<Void> request = RequestEntity.get(createUri("/"))

 .accept(MediaType.valueOf("application/vnd.initializr.v2.1+json"))

 .build();

 ResponseEntity<String> response = this.restTemplate

https://github.com/tomakehurst/wiremock
https://github.com/spring-cloud/spring-cloud-contract

Spring Initializr Reference Guide

please define title in your docbook file! 10

 .exchange(request, String.class);

 assertThat(response.getStatusCode()).isEqualTo(HttpStatus.OK);

 // other assertions here

 }

 private URI createUri(String path) {

 String url = this.stubFinder.findStubUrl("initializr-web").toString();

 return URI.create(url + path);

 }

 @TestConfiguration

 static class Config {

 @Bean

 public RestTemplate restTemplate(RestTemplateBuilder builder) {

 return builder.build();

 }

 }

}

Tip

If you want to test a specific version or validate your API against multiple versions you can define
the version to use in the annotation, something like

@AutoConfigureStubRunner(

 ids = "io.spring.initializr:initializr-web:0.3.0.BUILD-SNAPSHOT",

 workOffline = true)

public class InitializrIntegrationTests {

 ...

}

Then you have a server that returns the stub of the JSON
metadata (metadataWithCurrentAcceptHeader.json) when you send it a header
Accept:application/vnd.initializr.v2.1+json (as recommended).

3.2 Names and Paths of Stubs

The stubs are laid out in a jar file in a form (under "/mappings") that can be consumed by WireMock
just by setting its file source. The names of the individual stubs are the same as the method names
of the test cases that generated them in the Initializr project. So for example there is a test case
"metadataWithV2AcceptHeader" in MainControllerIntegrationTests that makes assertions
about the response when the accept header is application/vnd.initializr.v2.1+json. The
response is recorded in the stub, and it will match in WireMock if the same headers and request
parameters that were used in the Initializr test case and used in the client. The method name usually
summarizes what those values are.

Spring Initializr Reference Guide

please define title in your docbook file! 11

4. Configuration Format

This section describes the configuration structure that is used by the initializr. The metadata provided
through configuration are driving the options exposed by a particular instance and the project metadata
format.

Tip

A good way to get started with the configuration is to look at the configuration of the production
instance and check the end-result on start.spring.io

The configuration is split in several sections:

• An env section used to provide various global settings.

• A dependencies section lists the available dependencies. This is the most important section of the
service as it defines the "libraries" that the user can choose.

• The groupId, artifactId, version, name, description and packageName provide default
values for these project settings.

• The types, packagings, javaVersions, languages and bootVersions provide the list of
available option for each setting and which one is the default.

4.1 Env section

Tip

Check the code for a full list of the available configuration options.

The env element defines environment option that the service uses:

• artifactRepository: the URL of the (maven) repository that should be used to download the
Spring Boot CLI distribution bundle. This is only used by the /spring endpoint at the moment.

• springBootMetadataUrl the URL of the resource that provides the list of available Spring Boot
versions..

• forceSsl: a boolean flag that determines if we should use https even when browsing a resource
via http. This is enabled by default.

• fallbackApplicationName: the name of the default application. Application names are generated
based on the project’s name. However, some user input may result in an invalid identifier for a Java
class name for instance.

• invalidApplicationNames: a fixed list of invalid application names. If a project generation uses
one of these names, the fallback is used instead.

• invalidPackageNames: a fixed list of invalid package names. If a project generation uses one of
these names, the default is used instead.

• googleAnalyticsTrackingCode: the Google Analytics code to use. If this is set, Google analytics
is automatically enabled.

https://github.com/spring-io/initializr/tree/master/initializr-service/src/main/resources/application.yml
https://github.com/spring-io/initializr/tree/master/initializr-service/src/main/resources/application.yml
https://start.spring.io
https://github.com/spring-io/initializr/tree/master/initializr-generator/src/main/groovy/io/spring/initializr/metadata/InitializrConfiguration.groovy#L113

Spring Initializr Reference Guide

please define title in your docbook file! 12

• kotlin: kotlin-specific settings. For now, only the kotlin version to use can be configured.

• maven: maven-specified settings. A custom maven parent POM can be defined and whether or not
the spring-boot-dependencies BOM should be automatically added to the project.

If some of your dependencies require a custom Bill of Materials (BOM) and/or a custom repository, you
can add them here and use the id as a reference. For instance, let’s say that you want to integrate with
library foo and it requires a foo-bom and a foo-repo. You can configure things as follows:

initializr:

 env:

 boms:

 foo-bom:

 groupId: com.example

 artifactId: foo-bom

 version: 1.2.3

 repositories:

 foo-repo:

 name: foo-release-repo

 url: https://repo.example.com/foo

 snapshotsEnabled: false

You can then use the foo-bom and foo-repo in a "dependency" or "dependency group" section.

Note

The spring-milestones and spring-snapshots repositories are available by default.
Please note that these are just references and won’t impact the project unless you choose a
dependency that explicitly refer to a bom and/or repo by id. Check the example below for more
details.

4.2 Dependencies section

The dependencies section allows you define a list of groups, each group having one more
dependency. A group gather dependencies that share a common characteristics (i.e. all web-related
dependencies for instance).

A dependency has the following basic characteristics:

• A mandatory identifier. If no further information is provided, a Spring Boot starer with that id is
assumed.

• A name and description used in the generated meta-data and the web ui.

• A groupId and artifactId to define the coordinates of the dependency.

• A version if Spring Boot does not already provide a dependency management for that dependency.

• A scope (can be compile, runtime, provided or test).

• The reference to a bom or a repository that must be added to the project once that dependency
is added.

• A versionRange used to determine the Spring Boot versions that are compatible with the
dependency.

• Links to resources such as a guide or a reference doc section.

Spring Initializr Reference Guide

please define title in your docbook file! 13

Tip

Check the code for a full list of the available configuration options.

Here is the most basic dependency entry you could have

initializr:

 dependencies:

 - name: Core

 content:

 - id: security

 name: Security

 description: Secure your application via spring-security

Tip

The security dependency is held within a group called "Core".

This adds an option name Security with a tooltip showing the description above. If a project
is generated with that dependency, the org.springframework.boot:spring-boot-starter-
security dependency will be added to the project.

Let’s now add a custom dependency that is not managed by Spring Boot and that only work from Spring
Boot 1.2.0.RELEASE and onwards but should not be used in the 1.3 lines and further for some reason.

initializr:

 dependencies:

 - name: Core

 content:

 - id: my-lib-id

 name: My lib

 description: Secure your application via spring-security

 groupId: com.example.foo

 artifactId: foo-core

 bom: foo-bom

 repository: foo-repo

 versionRange: "[1.2.0.RELEASE,1.3.0.M1)"

If one selects this entry, the com.example.foo:foo-core} dependency will be added and the Bill of
Materials and repository for foo will be added automatically to the project as well (see the "Env section"
above for a reference to those identifiers). Because the bom provides a dependency management for
foo-core there is no need to hard code the version in the configuration.

The versionRange syntax follows some simple rules: a square bracket "[" or "]" denotes an inclusive
end of the range and a round bracket "(" or ")" denotes an exclusive end of the range. A range can also
be unbounded by defining a a single version. In the example above, the dependency will be available
as from 1.2.0.RELEASE up to, not included, 1.3.0.M1 (which is the first milestone of the 1.3 line).

Dependency group

A dependency group gather a set of dependencies as well as some common settings: bom,
repository and versionRange. If one of them is set, it is applied for all dependencies within that
group. It is still possible to override a particular value at the dependency level.

4.3 Other sections

The other section defines the default and the list of available options in the web UI. This also drives how
the meta-data for your instance are generated and tooling support is meant to react to that.

https://github.com/spring-io/initializr/tree/master/initializr-generator/src/main/groovy/io/spring/initializr/metadata/Dependency.groovy

Spring Initializr Reference Guide

please define title in your docbook file! 14

For instance, if you want your groupId to default to org.acme and the javaVersions to only be 1.7
and 1.8 you would write the following config:

initializr:

 groupId:

 value: org.acme

 javaVersions:

 - id: 1.8

 default: true

 - id: 1.7

 default: false

	Spring Initializr Reference Guide
	Table of Contents
	1. Spring Initializr Documentation
	1.1 About the documentation
	1.2 Getting help

	2. Metadata Format
	2.1 Content
	Project dependencies
	Project types
	Packaging
	Java version
	Languages
	Boot version

	2.2 Defaults

	3. Using the Stubs
	3.1 Using WireMock with Spring Boot
	3.2 Names and Paths of Stubs

	4. Configuration Format
	4.1 Env section
	4.2 Dependencies section
	Dependency group

	4.3 Other sections

