Spring Initializr Reference Guide
Table of Contents
	I. Spring Initializr Documentation	1. About the documentation
	2. Getting help

	II. User Guide	3. Getting Started	Advanced options
	Dependencies
	Tuning default values

	4. Command line support
	5. IDEs support
	6. Spring Boot CLI support

	III. Configuration Guide	7. Creating your own instance	Configuring basic settings
	Configuring available Spring Boot versions
	Configuring available project types
	Configuring dependencies	Availability (version range)
	Repository

	Configuring Bill of Materials	Map coordinates according to the Spring Boot version
	Aliases
	Facets
	Links
	Improve search results

	8. ‘How-to’ guides	Add a new dependency
	Override the version of a dependency
	Link a Boot version to a version of your dependency
	Configure a snapshot repository
	Make sure a regular dependency brings the base starter
	Share common dependency settings in a group

	9. Advanced configuration	Caching configuration

	IV. API Guide	10. Metadata Format	Content	Project dependencies
	Project types
	Packaging
	Java version
	Languages
	Boot version

	Defaults

	11. Using the Stubs	Using WireMock with Spring Boot	Loading Stubs from the Classpath
	Using the Stub Runner

	Names and Paths of Stubs

Spring Initializr Reference Guide

Stéphane Nicoll

Dave Syer

Part I. Spring Initializr Documentation

This section provides a brief overview of the Spring Initializr reference documentation:
think of it as map for the rest of the document. Some sections are targeted to a specific
audience so this reference guide is not meant to be read in a linear fashion.

Spring Initializr provides a simple web UI to configure the project to generate and
endpoints that you can use via plain HTTP: you can see our default instance at
start.spring.io. The service allows you to customize the project to generate: the
build system and its coordinates, the language and version, the packaging and finally the
dependencies to add to the project. The latter is a core concept: based on the chosen
Spring Boot version, a set of dependencies can be chosen, usually Spring Boot starters,
that will have a concrete impact on your application. More details in the
Part II, “User Guide” section.
You can easily create your own instance of the Initializr, by using the jars as libraries
in your own app. There is minimal code involved and the service has a very rich
configuration structure, allowing you to define not only the values of various project
attributes but also the list of dependencies and the constraints to apply to them. If that
sounds interesting, then Part III, “Configuration Guide” has all the
details you need. You might only want to modify an existing instance of the Initializr,
e.g. to add a new dependency type, or update the version of an existing
one. For those and other simple and common use cases check out
Chapter 8, ‘How-to’ guides.
The Initializr also provides an extensible API to generate quickstart projects, and to
inspect the metadata used to generate projects, for instance to list the available
dependencies and versions. The API can be used standalone or embedded in other tools
(e.g. it is used in Spring Tool Suite, and in the IntelliJ IDEA and Netbeans plugins for
Spring Boot). These features are covered in Part IV, “API Guide”.

Chapter 1. About the documentation

The Spring Initializr reference guide is available as
html. The
latest copy is available at docs.spring.io/initializr/docs/current/reference.
Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for such copies and
further provided that each copy contains this Copyright Notice, whether distributed
in print or electronically.
Chapter 2. Getting help

Having trouble with Spring Initializr, We’d like to help!
	Ask a question on Gitter.
	Report bugs with Spring Initializr at github.com/spring-io/initializr/issues.

	[image: [Note]]	Note
	All of Spring Initializr is open source, including the documentation! If you
find problems with the docs; or if you just want to improve them, please
get involved.

Part II. User Guide

If you’re wondering how to use start.spring.io or what features are available,
this section is for you! You’ll find the various way you can interact with the service and
get a better insight at what you can do with it.

Chapter 3. Getting Started

Let’s create a first project and discover the various options that you can use to tune it.
Go to start.spring.io, change the Group field from "com.example" to "org.acme"
and put the focus in the Dependencies field on the right hand side. If you type "web",
you will see a list of matching choices with that simple criteria. Use the mouse or the
arrow keys and Enter to select the "Web" starter.
Your browser should now be in this state:
[image: Browser]

	[image: [Note]]	Note
	The Spring Boot version above probably doesn’t match the one you have. As we will
see later, start.spring.io is continuously updated as new Spring Boot versions are
published and the service uses the latest version by default.

Click on Generate Project, this downloads a zip file containing a Maven project with
the following structure:
mvnw
mvnw.cmd
pom.xml
src
├── main
│ ├── java
│ │ └── org
│ │ └── acme
│ │ └── DemoApplication.java
│ └── resources
│ ├── application.properties
│ ├── static
│ └── templates
└── test
 └── java
 └── org
 └── acme
 └── DemoApplicationTests.java
A typical project generated by Spring Initializr contains a Spring Boot application
(DemoApplication), a test and an empty configuration. If you run the main method
of DemoApplication, you’ll see an "empty" spring boot app starting on localhost:8080.
Because Spring Initializr has detected it is a web application, a static and templates
directories have been created to hold your static resources and ui templates.
Also, a Maven wrapper is automatically included so that you don’t have to install Maven to
run this project (you can build it with ./mvnw install). If you prefer, you can select
Gradle instead in the first drop down list at the top of the screen. This will generate a
Gradle-based project instead that also contains a wrapper if you don’t have Gradle
installed (build it with ./gradlew build).
Advanced options

Next to the Generate Project you’ll find a "Switch to the full version" link. If you
click on that, you’ll see all the available options. Let’s browse through them quickly:
	Group: project coordinates (id of the project’s group, as referred by the groupId
attribute in Apache Maven). Also infers the root package name to use.
	Artifact: project coordinates (id of the artifact, as referred by the artifactId
attribute in Apache Maven). Also infers the name of the project
	Name: display name of the project that also determines the name of your Spring Boot
application. For instance, if the name of your project is my-app, the generated project
will have a MyAppApplication class
	Description: description of the project
	Package Name: root package of the project. If not specified, the value of the Group
attribute is used
	Packaging: project packaging (as referred by the concept of the same name in Apache
Maven). start.spring.io can generate jar or war projects
	Java Version: the Java version to use
	Language: the programming language to use

If you keep on scrolling, you’ll discover all the dependencies that you can find using the
search box on the right. You’ll probably notice that some dependencies are greyed out in
the UI, meaning that they aren’t available because they require a specific Spring Boot
version. We’ll tackle that in the next section.
Dependencies

The UI allows you to select the Spring Boot version you want to use. You may want to be
conservative and keep the default which corresponds at all times to the latest stable
release. Or you may want to chose a milestone or snapshot of the next major
version. Either way, you’ll notice that certain dependencies become available and others
aren’t anymore when you change the version.
If you are searching for a dependency that you know to be available and you get no result,
it’s worth looking in the advanced section if that dependency is available in the Spring
Boot version that is currently selected.
You may find it is not the case with a message that looks like the following:
requires Spring Boot >=1.0.0.RELEASE and <1.5.0.RC1
Concretely, this defines a "version range" that states the dependency is deprecated and is
no longer available as of Spring Boot 1.5. You may want to check the release notes of the
related project to understand what your migration path can be. Alternatively, the message
could be:
requires Spring Boot >=2.0.0.RELEASE
That version range means the dependency is not available with the current Spring Boot
generation. Obviously, if you select Spring Boot 2.0 (or later if available), you’ll be
able to select that dependency.
Tuning default values

The Initializr service is configured to offer default values so that you can generate a
new project with minimum fuss. Maybe you are a Kotlin fan? Or a Gradle fan? Currently
start.spring.io defaults to Java and Maven but it also allows you to tune these defaults
easily.
You can share or bookmark URLs that will automatically customize form inputs. For
instance, the following URL changes the default to use Kotlin and Gradle:
https://start.spring.io/#!language=kotlin&type=gradle-project
The following attributes are supported:
	Programming language: language (java, groovy or kotlin)
	Java version: javaVersion (1.6, 1.7, 1.8)
	Project type: type (maven-project, gradle-project)
	Packaging: packaging (jar, war)
	Group: groupId
	Artifact: artifactId
	Name: name
	Description: description
	Package Name: packageName

	[image: [Tip]]	Tip
	The same default rules will apply if a property is overridden. For instance, if the
Group is customized, it will automatically customize the root package as well.

	[image: [Note]]	Note
	The Spring Boot version and the list of dependencies cannot be customized that way
as they evolve quite frequently.

Chapter 4. Command line support

You can also generate a project in a shell using cURL or HTTPie. To discover the
available options of a particular instance, simply "curl it", i.e. if you have curl
installed invoke curl start.spring.io on the command-line (or alternatively
http start.spring.io if you prefer to use HTTPie).
The result is a textual representation of the capabilities of the service that are split
in three sections:
First, a table that describes the available project’s types. On the default instance,
you’ll find the maven-project and gradle-project we’ve discussed above but you’ll
also be able to generate only a build script rather than an entire project.
Then, a table that describes the available parameters. For the most part, these are the
same options as the ones available in the web UI. There are, however, a few additional
ones:
	applicationName can be used to define the name of the application, disabling the
algorithm that infer it based on the name parameter
	baseDir can be used to create a base directory in the archive so that you can extract
the generated zip without creating a directory for it first

Finally, the list of dependencies are defined. Each entry provides the identifier that
you’ll have to use if you want to select the dependency, a description and the Spring Boot
version range, if any.
Alongside the capabilities of the service, you’ll also find a few examples that help you
understand how you can generate a project. These are obviously tailored to the client that
you are using.
Let’s assume that you want to generate a "my-project.zip" project based on Spring Boot
1.5.2.RELEASE, using the web and devtools dependencies (remember, those two ids are
displayed in the capabilities of the service):
$ curl https://start.spring.io/starter.zip -d dependencies=web,devtools \
 -d bootVersion=1.5.2.RELEASE -o my-project.zip
If you extract my-project.zip, you’ll notice a few differences compared to what happens
with the web UI:
	The project will be extracted in the current directory (the web UI adds a base directory
automatically with the same name as the one of the project)
	The name of the project is not my-project (the -o parameter has no impact on the
name of the project)

The exact same project can be generated using the http command as well:
$ http https://start.spring.io/starter.zip dependencies==web,devtools \
 bootVersion==1.5.1.RELEASE -d
	[image: [Note]]	Note
	HTTPie reads the same hint as the browser so it will store a demo.zip file in
the current directory, with the same differences discussed above.

Chapter 5. IDEs support

Spring Initializr is also integrated in all major Java IDEs and allows you to create and
import a new project without having to leave the IDE for the command-line or the web UI.
The following IDEs have dedicated support:
	Eclipse/STS
	IntelliJ IDEA (Ultimate Edition)
	NetBeans (using the NB SpringBoot plugin)

Refer to the documentation of your favorite IDE for more details.
Chapter 6. Spring Boot CLI support

The spring command line tool defines an init command that allows you to create a
project using Spring Initializr.
Check the documentation for more details.
Part III. Configuration Guide

This section describes how you can create your own instance of the service and tune it for
your needs, and also how you can configure an existing instance. You’ll also find some
advanced tips to make sure the available options are consistent with the chosen Spring
Boot generation.

Chapter 7. Creating your own instance

Spring Initializr is split across three main modules:
	initializr-generator: standalone project generation library that can be reused in
many environments (including embedded in your own project)
	initializr-web: API endpoints and web interface
	initializr-actuator: optional module to provide statistics and metrics on project
generation

Because it contains several auto-configurations, creating your own instance is quite easy,
actually you could get started using Spring Initializr itself to generate a starting point!
Create a new project with the web dependency and add the following dependency:
<dependency>
 <groupId>io.spring.initializr</groupId>
 <artifactId>initializr-web</artifactId>
 <version>0.5.0.RELEASE</version>
</dependency>
Or if you are using Gradle:
compile("io.spring.initializr:initializr-web:0.5.0.RELEASE")
If you start the application, you’ll see the familiar interface but none of the drop down
lists have values (except the one for the Spring Boot version, we will
come back to that later). In the rest of this section,
we will configure those basic settings.
	[image: [Tip]]	Tip
	Most of the settings are configured via application.properties using the initializr
namespace. Because the configuration is highly hierarchical, we recommend using the yaml
format that is more readable for such structure. If you agree, go ahead and rename
application.properties to application.yml.

Configuring basic settings

Most of the drop-down lists are configured via a simple list-based structure where each
entry has an id, a name and whether that entry is the default or not. If no name is
provided, the id is used instead.
Let’s configure the languages and the Java versions we want to support:
initializr:
 javaVersions:
 - id: 9
 default: false
 - id: 1.8
 default: true
 languages:
 - name: Java
 id: java
 default: true
 - name: Kotlin
 id: kotlin
 default: false
If you click on the "Switch to the full version" link, the two drop down lists now offer
the options and default values defined above.
Spring Initializr supports java, groovy and kotlin and additional languages can be
added in your own customization.
The available packagings are also configurable that way:
initializr:
 packagings:
 - name: Jar
 id: jar
 default: true
 - name: War
 id: war
 default: false
These two packaging types are the only one explicitly supported at the moment.
Configuring available Spring Boot versions

If you look at the project home page for Spring
Boot, the latest versions are displayed. And you’ve probably noticed that they match the
drop down list that you automatically get with a default instance of the Initializr. The
reason for that is that Spring Initializr calls an API on spring.io to retrieve the
latest versions automatically. This makes sure that you always get the latest available
versions.
If you are behind a proxy, or need to customize the RestTemplate that is used behind the
scenes, you can define a RestTemplateCustomizer bean in your configuration. For more
details, check the
documentation.
If you don’t want the version to be upgraded automatically, you need to override the
InitializrMetadataProvider bean to provide your own metadata for the service. For
instance, you could swap to an implementation that always returns the contents of static
application.yml:
@Bean
public InitializrMetadataProvider initializrMetadataProvider(
 InitializrProperties properties) {
 InitializrMetadata metadata = InitializrMetadataBuilder
 .fromInitializrProperties(properties).build();
 return new SimpleInitializrMetadataProvider(metadata);
}
The thing to remember is that, by default, you don’t have to worry about upgrading your
instance when a new Spring Boot version is released. However, you may need to
configure caching to avoid requesting that
service too often.
Configuring available project types

The available project types mostly define the structure of the generated project and its
build system. Once a project type is selected, the related action is invoked to generate
the project.
By default, Spring Initializr exposes the following resources (all accessed via HTTP GET):
	/pom.xml generate a Maven pom.xml
	/build.gradle generate a Gradle build
	/starter.zip generate a complete project structure archived in a zip
	/starter.tgz generate a complete project structure archived in a tgz

Each type also defines one or more tags that provides additional metadata entries to
qualify the entry. The following standard tags exist:
	build: the name of the build system to use (e.g. maven, gradle)
	format: the format of the project (e.g. project for a full project, build for just
a build file).

By default, the HTML UI filters all the available types to only display the ones that have
a format tag with value project.
You can of course implement additional endpoints that generate whatever project structure
you need but, for now, we’ll simply configure our instance to generate a Gradle or a Maven
project:
initializr:
 types:
 - name: Maven Project
 id: maven-project
 description: Generate a Maven based project archive
 tags:
 build: maven
 format: project
 default: true
 action: /starter.zip
 - name: Gradle Project
 id: gradle-project
 description: Generate a Gradle based project archive
 tags:
 build: gradle
 format: project
 default: false
 action: /starter.zip
	[image: [Note]]	Note
	If you intend to build a custom client against your service, you can add as many
tags as you want, and process them in the client in a way that makes sense for your users.

For instance, the spring boot CLI uses them as a shortcut to the full type id. So rather
than having to create a Gradle project as follows:
$ spring init --type=gradle-project my-project.zip
You can simply define a more convenient build parameter:
$ spring init --build=gradle my-project.zip
With that configuration, you should be able to generate your first project,
congratulations! Let’s now add dependencies so that you can start searching for them.
Configuring dependencies

The most basic dependency is composed of:
	An id used in clients to refer to it
	The full maven coordinates of the dependency (groupId and artifactId)
	A display name (used in the UI and the search results)
	A description can (and should) be added to provide more information about the
dependency

Spring Initializr automatically considers that a dependency without maven coordinates
defines an official Spring Boot starter. In such a case, the id is used to infer the
artifactId.
For instance, the following configures the spring-boot-starter-web Starter:
initializr:
 dependencies:
 - name: Web
 content:
 - name: Web
 id: web
 description: Full-stack web development with Tomcat and Spring MVC
Each dependency is contained in a group that gathers dependencies sharing a common
surface area or any other form of grouping. In the example above, a Web group holds our
unique dependency. A group can also provide default values for various settings, see the
dedicated how-to for more details.
In our spring-boot-starter-web example above, the dependency is managed by Spring
Boot so there is no need to provide a version attribute for it. You’ll surely need to
define additional dependencies that are not provided by Spring Boot and we strongly
recommend you to use a Bill Of Materials (or BOM).
If no BOM is available you can specify a version directly:
initializr:
 dependencies:
 - name: Tech
 content:
 - name: Acme
 id: acme
 groupId: com.example.acme
 artifactId: acme
 version: 1.2.0.RELEASE
 description: A solid description for this dependency
If you add this configuration and search for "acme" (or "solid"), you’ll find this extra
entry; generating a maven project with it should add the following to the pom:
<dependency>
 <groupId>com.example.acme</groupId>
 <artifactId>acme</artifactId>
 <version>1.2.0.RELEASE</version>
</dependency>
The rest of this section will detail the other configuration options.
Availability (version range)

By default, a dependency is available regardless of the Spring Boot version you have
selected. If you need to restrict a dependency to a certain Spring Boot generation you
can add a versionRange attribute to its definition. A version range is a range of
versions of Spring Boot which are valid in combination with it. The versions are not
applied to the dependency itself, but rather used to filter out the dependency, or modify
it, when different versions of Spring Boot are selected for the generated project.
A typical version is composed of four parts: a major revision, a minor revision, a patch
revision and a qualifier. Qualifiers are ordered as follows:
	M for milestones (e.g. 2.0.0.M1 is the first milestone of the upcoming 2.0.0
release): can be seen as "beta" release
	RC for release candidates (e.g. 2.0.0.RC2 is the second release candidate of
upcoming 2.0.0 release)
	RELEASE for general availability (e.g. 2.0.0.RELEASE is 2.0.0 proper)
	BUILD-SNAPSHOT for development build (2.1.0.BUILD-SNAPSHOT represents the latest
available development build of the upcoming 2.1.0 release).

	[image: [Tip]]	Tip
	snapshots are in a bit special in that scheme as they always represents the "latest
state" of a release. M1 represents the most oldest version for a given major, minor and
patch revisions.

A version range has a lower and an upper bound, and if the bound is inclusive it is
denoted as a square bracket ([or]), otherwise it is exclusive and denoted by a
parenthesis ((or)). For instance [1.1.6.RELEASE,1.3.0.M1) means from all versions
from 1.1.6.RELEASE up to but not including 1.3.0.M1 (concretely no including the
1.3.x line and after).
A version range can be a single value, e.g. 1.2.0.RELEASE, which is short for "this
version or greater". It is an inclusive lower bound with an implied infinite upper bound.
If you need to specify "the latest release" in a given line, you can use a x rather than
an hard-coded version. For instance, 1.4.x.BUILD-SNAPSHOT is the latest snapshot build
of the 1.4.x line. For instance, if you want to restrict a dependency from 1.1.0.RELEASE
to the latest stable release of the 1.3.x line, you’d use [1.1.0.RELEASE,1.3.x.RELEASE].
Snapshots are naturally ordered higher than released versions, so if you are looking to
match a dependency to only the latest snapshots of Spring Boot, you could use a version
range of 1.5.x.BUILD-SNAPSHOT (assuming 1.5 was the latest).
	[image: [Tip]]	Tip
	Remember to quote the values of a version range in YAML configuration files (with
double quotes "").

See below in the section on linking versions for more examples
and idioms.
Repository

If the dependency is not available on Maven Central (or whatever default repository that
is configured on your end), you can also add a reference to a repository. A repository is
declared at the top level (under env) and given an id via the key in the configuration:
initializr:
 env:
 repositories:
 my-api-repo-1:
 name: repo1
 url: http://example.com/repo1
Once defined, the repository can then be referred back to in a dependency
initializr:
 dependencies:
 - name: Other
 content:
 - name: Foo
 groupId: org.acme
 artifactId: foo
 version: 1.3.5
 repository: my-api-repo-1
It is usually preferable to have a BOM for every dependency, and attach the repository to
the BOM instead.
	[image: [Tip]]	Tip
	The snapshots and milestones repositories on repo.spring.io are automatically
available with the spring-snapshots and spring-milestones identifiers respectively.

Configuring Bill of Materials

A Bill of Materials (BOM) is a special pom.xml, deployed to a Maven repository, and used
to control dependency management for a set of related artifacts. In the Spring Boot
ecosystem we usually use the suffix -dependencies on the artifact id of a BOM. In other
projects we see -bom. It is recommended that all dependencies are included in a BOM of
some sort, since they provide nice high level features for users of the dependency. It is
also important that 2 BOMs used in a project do not contain conflicting versions for the
same dependency, so the best practice is to look at the existing BOMs in the Initializr
before you add a new one, and make sure that you aren’t adding a conflict.
In the Initializr a BOM is declared at the env level, and given an id through the
configuration key. Example:
initializr:
 env:
 boms:
 my-api-bom:
 groupId: org.acme
 artifactId: my-api-dependencies
 version: 1.0.0.RELEASE
 repositories: my-api-repo-1
If a BOM requires a special, non-default repository, then it can be referred to here,
instead of having to explicitly list the repository again for each dependency. A
dependency, or a dependency group, can declare that it requires the use of one or more
BOMs by referring to the id:
initializr:
 dependencies:
 - name: Other
 content:
 - name: My API
 id : my-api
 groupId: org.acme
 artifactId: my-api
 bom: my-api-bom
Map coordinates according to the Spring Boot version

In addition to a Spring Boot version range for the dependency or a BOM, you can configure
the version relationships at a finer grained level using version mappings. A dependency or
BOM has a list of "mappings", each of which consists of a version range, and a set of one
or more dependency properties to override for those versions of Spring Boot. You can use a
mapping to switch the version of a dependency, or (better) the BOM, or to change its
artifact id (if the project changed its packaging) for instance.
Here’s an example of a BOM with mappings:
initializr:
 env:
 boms:
 cloud-bom:
 groupId: com.example.foo
 artifactId: acme-foo-dependencies
 mappings:
 - versionRange: "[1.2.3.RELEASE,1.3.0.RELEASE)"
 version: Arcturus.SR6
 - versionRange: "[1.3.0.RELEASE,1.4.0.RELEASE)"
 version: Botein.SR7
 - versionRange: "[1.4.0.RELEASE,1.5.x.RELEASE)"
 version: Castor.SR6
 - versionRange: "[1.5.0.RELEASE,1.5.x.BUILD-SNAPSHOT)"
 version: Diadem.RC1
 repositories: spring-milestones
 - versionRange: "1.5.x.BUILD-SNAPSHOT"
 version: Diadem.BUILD-SNAPSHOT
 repositories: spring-snapshots,spring-milestones
The primary use case here is to map Spring Boot versions to the preferred or supported
versions of the Foo project. You can also see that for the milestone and snapshot BOMs,
additional repositories are declared because those artifacts are not in the default
repository.
	[image: [Tip]]	Tip
	We also use the x trick in version ranges to avoid updating the range every time
a new Spring Boot 1.5 bug fix release is available

See below in the section on linking versions for more examples.
Aliases

A dependency has an id (e.g. "web-services"), but it could be necessary to provide a new
id and still be able to serve request from client using the now deprecated id. To do so,
an alias can be defined for ths dependency;
initializr:
 dependencies:
 - name: Other
 content:
 - name: Web Services
 id: web-services
 aliases:
 - ws
The same project can now be generated with dependencies=ws or
dependencies=web-services.
Facets

A "facet" is a label on a dependency which is used to drive a code modification in the
generated project. In the standard Initializr generator, there is only one facet that is
actually used (web), but custom installations might choose to use it for their own
purposes. The web facet is used to drive the inclusion of spring-boot-starter-web if
any other dependency with that facet is included. The value of the "facets" property of a
dependency is a list of strings.
Links

Links can be used to provide descriptive and hyperlink data to guide to user on how to
learn more about a dependency. A dependency has a "links" property which is a list of
Link. Each link has a rel label to identify it, an href and an optional (but
recommended) description.
The following rel value are currently officially supported:
	guide: the link points to a guide describing how to use the related dependency. It
can be a tutorial, a how-to or typically a guide available on spring.io/guides
	reference: the link points to a section of a developer guide typically or any page that
documents how to use the dependency

The url can be templated if its actual value can change according to the environment. An
URL parameter is specified with curly braces, something like
example.com/doc/{bootVersion}/section defines a bootVersion parameter.
The following attributes are currently supported:
	bootVersion: the Spring Boot version that is currently active

Here is an example that adds two links to the acme dependency:
initializr:
 dependencies:
 - name: Tech
 content:
 - name: Acme
 id: acme
 groupId: com.example.acme
 artifactId: acme
 version: 1.2.0.RELEASE
 description: A solid description for this dependency
 links:
 - rel: guide
 href: https://com.example/guides/acme/
 description: Getting started with Acme
 - rel: reference
 href: http://docs.example.com/acme/html
Improve search results

Each dependency can have a weight (a number >=0) and also keywords (list of string)
that are used to prioritize them in the search feature in the web UI. If you type one of
the keywords into the "Dependencies" box in the UI, those dependencies will be listed
below, in order of decreasing weight, if they have one (unweighted dependencies come
last).
Chapter 8. ‘How-to’ guides

This section provides answers to some common ‘how do I do that…​’ type of questions
that often arise when configuring Spring Initializr.
Add a new dependency

To add a new dependency, first identify the Maven co-ordinates of the dependency you want
to add (groupId:artifactId:version) and then check which versions of Spring Boot it works
with. If there are multiple versions that work with different versions of Spring Boot,
then that’s fine too.
	If there is a published BOM that manages the version of you dependency, then add that
first, in the env section (see the section called “Configuring Bill of Materials”).
	Then configure the dependency, fitting it into an existing group if you can, otherwise
creating a new group.
	If there is a BOM then omit the version.
	If there is a Spring Boot version range (or min or max) that you need for this
dependency, add that as a linked version.

Override the version of a dependency

Sometimes it happens that the BOM that normally manages your dependency version is in
conflict with the newest version. Or maybe this is the case for only a range of Spring
Boot versions. Or maybe there just is no BOM, or it’s not worth creating one for just one
dependency. In these cases you can specify the version manually for a dependency either
at the top level, or in a
version mapping. At the top level it looks like this (just
a version property in a dependency):
initializr:
 dependencies:
 - name: Tech
 content:
 - name: Acme
 id: acme
 groupId: com.example.acme
 artifactId: acme
 version: 1.2.0.RELEASE
 description: A solid description for this dependency
Link a Boot version to a version of your dependency

If your dependency requires a specific version of Spring Boot, ot different versions of
Spring Boot require different versions of your dependency there are a couple of mechanisms
to configure that.
The simplest is to put a versionRange in the dependency declaration. This is a range of
versions of Spring Boot, not of your dependency. For example:
initializr:
 dependencies:
 - name: Stuff
 content:
 - name: Foo
 id: foo
 ...
 versionRange: 1.2.0.M1
 - name: Bar
 id: bar
 ...
 versionRange: "[1.5.0.RC1,2.0.0.M1)"
In this example Foo is available for Spring Boot 1.2.0 (or any milestone of 1.2.0) or
greater, and Bar is available for Spring Boot 1.5.0 up to, but not including 2.0.0.
If different versions of your dependency work with different versions of Spring Boot,
that’s when you need the mappings property. A mapping is a combination of a
versionRange and some or all of the other properties of the dependency, overriding
the values defined at the top level. For example:
initializr:
 dependencies:
 - name: Stuff
 content:
 - name: Foo
 id: foo
 groupId: org.acme.foo
 artifactId: foo-spring-boot-starter
 versionRange: 1.3.0.RELEASE
 bom: cloud-task-bom
 mappings:
 - versionRange: "[1.3.0.RELEASE,1.3.x.RELEASE]"
 artifactId: foo-starter
 - versionRange: "1.4.0.RELEASE"
In this example, The artifact of foo was changed to foo-spring-boot-starter as of the
version that is compatible with Spring Boot 1.4. This mapping instruct that if Spring Boot
1.3.x is selected, the artifact Id should be set to foo-starter.
A mapping can also be applied to a BOM declaration. For example:
initializr:
 env:
 boms:
 my-api-bom:
 groupId: org.acme
 artifactId: my-api-bom
 additionalBoms: ['my-api-dependencies-bom']
 mappings:
 - versionRange: "[1.0.0.RELEASE,1.1.6.RELEASE)"
 version: 1.0.0.RELEASE
 repositories: my-api-repo-1
 - versionRange: "1.2.1.RELEASE"
 version: 2.0.0.RELEASE
 repositories: my-api-repo-2
In this example Spring Boot versions up to 1.1.6 select version 1.0.0 of the BOM, and set
a different repository. Spring Boot versions 1.2.1 and above select 2.0.0 of the BOM and
yet another repository.
Configure a snapshot repository

A dependency, or a BOM, might require the use of a specific repository, if the default one
(usually Maven Central) does not contain the artifacts. Normally, the best place to
declare that is in the BOM configuration, but if there isn’t a BOM then you can put it in
the dependency itself. You can also use a Spring Boot version mapping to override the default repository for a dependency or BOM.
Make sure a regular dependency brings the base starter

If a dependency does not stand on its own (and specifically if it does not depend on an
existing Spring Boot starter) you can flag it as a "non starter":
initializr:
 dependencies:
 - name: Stuff
 content:
 - name: Lib
 id: lib
 groupId: com.acme
 artifactId: lib
 starter:false
When a project is generated that only has dependencies with this flag set, then the base
Spring Boot starter is added as well.
Share common dependency settings in a group

A dependency group is a hint for user interface implementations, to group things together
for users when they are selecting dependencies. It is also a convenient way to share
settings between dependencies because every dependency inherits all the settings. The most
common settings in a group are the groupId, versionRange and bom:
initializr:
 dependencies:
 - name: Stuff
 bom: stuff-bom
 versionRange: "[1.3.0.RELEASE,2.0.0.M1)"
 content:
...
These dependencies, by default, will be available only for Spring Boot versions 1.3 up to
2.0 (excluded) and will bring in the stuff-bom BOM.
Chapter 9. Advanced configuration

Caching configuration

If you use the service, you’ll notice that the logs have lots of entries with the message
Fetching boot metadata from spring.io/project_metadata/spring-boot. To avoid
checking for the latest Spring Boot versions too often, you should enable caching on your
service. Spring Initializr has some auto-configuration to apply the proper caches if you
are willing to use a JCache (JSR-107) implementation.
Add the javax.cache:cache-api and your favorite JCache implementation and simply enable
caching by adding @EnableCaching to your @SpringBootApplication. For instance, you
could use ehcache by adding the following:
<dependency>
 <groupId>javax.cache</groupId>
 <artifactId>cache-api</artifactId>
</dependency>
<dependency>
 <groupId>org.ehcache</groupId>
 <artifactId>ehcache</artifactId>
</dependency>
Or if you are using Gradle:
compile("javax.cache:cache-api")
compile("org.ehcache:ehcache")
You’ll notice that the log entry is much more rare. If you do not want to use JSR-107, you
should configure the cache yourselves. Here are the caches used by the application (each
one will require some configuration to get it working):
Table 9.1. Cache configuration
	cache name	Description
	initializr.metadata
	Cache the full metadata of the service. When the metadata expires, it is fully resolved
again (including a check on spring.io for the latest Spring Boot versions). Adapt the
expiration settings accordingly.

	initializr.dependency-metadata
	Cache dependency-specific metadata.

	initializr.project-resources
	Cache resources that are used to generate projects.

Part IV. API Guide

Chapter 10. Metadata Format

This section describes the hal/json structure of the metadata exposed by the
initializr. Such metadata can be used by third party clients to provide a list of
options and default settings that can be used to request the creation of a project.
A third-party client is advised to set a User-Agent header for each request
sent to the service. A good structure for a user agent is clientId/clientVersion
(i.e. foo/1.2.0 for the "foo" client and version 1.2.0).
Content

Any third party client can retrieve the capabilities of the service by issuing a
GET on the root URL using the following Accept header:
application/vnd.initializr.v2.1+json. Please note that the metadata may evolve in a
non backward compatible way in the future so adding this header ensures the service
returns the metadata format you expect.
This is an example output for a service running at start.spring.io:
request.

GET / HTTP/1.1
Accept: application/vnd.initializr.v2.1+json
Host: start.spring.io

response.

HTTP/1.1 200 OK
ETag: "2261bfaff49aaf3a507b1ad69da659da"
Content-Type: application/vnd.initializr.v2.1+json
Cache-Control: max-age=604800
Content-Length: 4877

{
 "_links" : {
 "maven-build" : {
 "href" : "https://start.spring.io/pom.xml?type=maven-build{&dependencies,packaging,javaVersion,language,bootVersion,groupId,artifactId,version,name,description,packageName}",
 "templated" : true
 },
 "maven-project" : {
 "href" : "https://start.spring.io/starter.zip?type=maven-project{&dependencies,packaging,javaVersion,language,bootVersion,groupId,artifactId,version,name,description,packageName}",
 "templated" : true
 },
 "gradle-build" : {
 "href" : "https://start.spring.io/build.gradle?type=gradle-build{&dependencies,packaging,javaVersion,language,bootVersion,groupId,artifactId,version,name,description,packageName}",
 "templated" : true
 },
 "gradle-project" : {
 "href" : "https://start.spring.io/starter.zip?type=gradle-project{&dependencies,packaging,javaVersion,language,bootVersion,groupId,artifactId,version,name,description,packageName}",
 "templated" : true
 },
 "dependencies" : {
 "href" : "https://start.spring.io/dependencies{?bootVersion}",
 "templated" : true
 }
 },
 "dependencies" : {
 "type" : "hierarchical-multi-select",
 "values" : [{
 "name" : "Core",
 "values" : [{
 "id" : "web",
 "name" : "Web",
 "description" : "Web dependency description",
 "_links" : {
 "guide" : {
 "href" : "https://example.com/guide",
 "title" : "Building a RESTful Web Service"
 },
 "reference" : {
 "href" : "https://example.com/doc"
 }
 }
 }, {
 "id" : "security",
 "name" : "Security"
 }, {
 "id" : "data-jpa",
 "name" : "Data JPA"
 }]
 }, {
 "name" : "Other",
 "values" : [{
 "id" : "org.acme:foo",
 "name" : "Foo",
 "_links" : {
 "guide" : [{
 "href" : "https://example.com/guide1"
 }, {
 "href" : "https://example.com/guide2",
 "title" : "Some guide for foo"
 }],
 "reference" : {
 "href" : "https://example.com/{bootVersion}/doc",
 "templated" : true
 }
 }
 }, {
 "id" : "org.acme:bar",
 "name" : "Bar"
 }, {
 "id" : "org.acme:biz",
 "name" : "Biz",
 "versionRange" : "1.2.0.BUILD-SNAPSHOT"
 }, {
 "id" : "org.acme:bur",
 "name" : "Bur",
 "versionRange" : "[1.1.4.RELEASE,1.2.0.BUILD-SNAPSHOT)"
 }, {
 "id" : "my-api",
 "name" : "My API"
 }]
 }]
 },
 "type" : {
 "type" : "action",
 "default" : "maven-project",
 "values" : [{
 "id" : "maven-build",
 "name" : "Maven POM",
 "action" : "/pom.xml",
 "tags" : {
 "build" : "maven",
 "format" : "build"
 }
 }, {
 "id" : "maven-project",
 "name" : "Maven Project",
 "action" : "/starter.zip",
 "tags" : {
 "build" : "maven",
 "format" : "project"
 }
 }, {
 "id" : "gradle-build",
 "name" : "Gradle Config",
 "action" : "/build.gradle",
 "tags" : {
 "build" : "gradle",
 "format" : "build"
 }
 }, {
 "id" : "gradle-project",
 "name" : "Gradle Project",
 "action" : "/starter.zip",
 "tags" : {
 "build" : "gradle",
 "format" : "project"
 }
 }]
 },
 "packaging" : {
 "type" : "single-select",
 "default" : "jar",
 "values" : [{
 "id" : "jar",
 "name" : "Jar"
 }, {
 "id" : "war",
 "name" : "War"
 }]
 },
 "javaVersion" : {
 "type" : "single-select",
 "default" : "1.8",
 "values" : [{
 "id" : "1.6",
 "name" : "1.6"
 }, {
 "id" : "1.7",
 "name" : "1.7"
 }, {
 "id" : "1.8",
 "name" : "1.8"
 }]
 },
 "language" : {
 "type" : "single-select",
 "default" : "java",
 "values" : [{
 "id" : "groovy",
 "name" : "Groovy"
 }, {
 "id" : "java",
 "name" : "Java"
 }, {
 "id" : "kotlin",
 "name" : "Kotlin"
 }]
 },
 "bootVersion" : {
 "type" : "single-select",
 "default" : "1.1.4.RELEASE",
 "values" : [{
 "id" : "1.2.0.BUILD-SNAPSHOT",
 "name" : "Latest SNAPSHOT"
 }, {
 "id" : "1.1.4.RELEASE",
 "name" : "1.1.4"
 }, {
 "id" : "1.0.2.RELEASE",
 "name" : "1.0.2"
 }]
 },
 "groupId" : {
 "type" : "text",
 "default" : "com.example"
 },
 "artifactId" : {
 "type" : "text",
 "default" : "demo"
 },
 "version" : {
 "type" : "text",
 "default" : "0.0.1-SNAPSHOT"
 },
 "name" : {
 "type" : "text",
 "default" : "demo"
 },
 "description" : {
 "type" : "text",
 "default" : "Demo project for Spring Boot"
 },
 "packageName" : {
 "type" : "text",
 "default" : "com.example.demo"
 }
}

The current capabilities are the following:
	Project dependencies: these are the starters really or actually any dependency
that we might want to add to the project.
	Project types: these define the action that can be invoked on this service and a
description of what it would produce (for instance a zip holding a pre-configured
Maven project). Each type may have one more tags that further define what it
generates.
	Packaging: the kind of projects to generate. This merely gives a hint to the
component responsible to generate the project (for instance, generate an executable
jar project).
	Java version: the supported java versions
	Language: the language to use (e.g. Java)
	Boot version: the Spring Boot version to use
	Additional basic information such as: groupId, artifactId, version, name,
description and packageName.

Each top-level attribute (i.e. capability) has a standard format:
	A type attribute that defines the semantic of the attribute (see below).
	A default attribute that defines either the default value or the reference to
the default value.
	A values attribute that defines the set of acceptable values (if any). This can
be hierarchical (with values being held in values). Each item in a values array
can have an id, name and description).

The following attribute type are supported:
	text: defines a simple text value with no option.
	single-select: defines a simple value to be chosen amongst the specified options.
	hierarchical-multi-select: defines a hierarchical set of values (values in
values) with the ability to select multiple values.
	action: a special type that defines the attribute defining the action to use.

Each action is defined as a HAL-compliant URL. For instance, the maven-project type
templated URL is defined as follows:
Type link example.

{
 "href" : "https://start.spring.io/starter.zip?type=maven-project{&dependencies,packaging,javaVersion,language,bootVersion,groupId,artifactId,version,name,description,packageName}",
 "templated" : true
}

You can use Spring HATEOAS and the UriTemplate helper in particular to generate an
URI from template variables. Note that the variables match the name of top-level
attribute in the metadata document. If you can’t parse such URI, the action
attribute of each type gives you the root action to invoke on the server. This
requires more manual handling on your end.
Project dependencies

A dependency is usually the coordinates of a starter module but it can be just a regular
dependency. A typical dependency structure looks like this:
{
 "name": "Display name",
 "id": "org.acme.project:project-starter-foo",
 "description": "What starter foo does"
}
The name is used as a display name to be shown in whatever UI used by the remote
client. The id can be anything, really as the actual dependency definition is
defined through configuration. If no id is defined, a default one is built using the
groupId and artifactId of the dependency. Note in particular that the version is
never used as part of an automatic id.
Each dependency belongs to a group. The idea of the group is to gather similar
dependencies and order them. Here is a value containing the core group to
illustrates the feature:
Dependency group example.

{
 "name" : "Core",
 "values" : [{
 "id" : "web",
 "name" : "Web",
 "description" : "Web dependency description",
 "_links" : {
 "guide" : {
 "href" : "https://example.com/guide",
 "title" : "Building a RESTful Web Service"
 },
 "reference" : {
 "href" : "https://example.com/doc"
 }
 }
 }, {
 "id" : "security",
 "name" : "Security"
 }, {
 "id" : "data-jpa",
 "name" : "Data JPA"
 }]
}

Each dependency can have links (in a HAL-compliant format). Links are grouped by
"relations" that provide a semantic to the link. A link can also have a title and
its URI can be templated. At the moment, the only valid parameter is bootVersion.
The official relations are:
	guide: link to an how-to or guide that explain how to get started
	reference: link to a section of a reference guide (documentation)

Project types

The type element defines what kind of project can be generated and how. For
instance, if the service exposes the capability to generate a Maven project, this
would look like this:
Project type example.

{
 "id" : "maven-build",
 "name" : "Maven POM",
 "action" : "/pom.xml",
 "tags" : {
 "build" : "maven",
 "format" : "build"
 }
}

You should not rely on the output format depending that information. Always use the
response headers that define a Content-Type and also a Content-Disposition
header.
Note that each id has a related HAL-compliant link that can be used to generate a
proper URI based on template variables. The top-level type has, as any other
attribute, a default attribute that is a hint to select what the service consider
to be a good default.
The action attribute defines the endpoint the client should contact to actually
generate a project of that type if you can’t use the HAL-compliant url.
The tags object is used to categorize the project type and give hints to 3rd
party client. For instance, the build tag defines the build system the project is
going to use and the format tag defines the format of the generated content (i.e.
here a complete project vs. a build file. Note that the Content-type header of the
reply provides additional metadata).
Packaging

The packaging element defines the kind of project that should be generated.
Packaging example.

{
 "id" : "jar",
 "name" : "Jar"
}

The obvious values for this element are jar and war.
Java version

The javaVersion element provides a list of possible java versions for the project:
Java example.

{
 "id" : "1.6",
 "name" : "1.6"
}

Languages

The language element provides a list of possible languages for the project:
Language example.

{
 "id" : "groovy",
 "name" : "Groovy"
}

Boot version

The bootVersion element provides the list of available boot versions
Spring Boot version example.

{
 "id" : "1.2.0.BUILD-SNAPSHOT",
 "name" : "Latest SNAPSHOT"
}

Defaults

Each top-level element has a default attribute that should be used as a hint to
provide the default value in the relevant UI component.
Chapter 11. Using the Stubs

The Initializr project publishes
WireMock stubs for all the JSON responses
that are tested in the project. If you are writing a client for the Initializr
service, you can use these stubs to test your own code. You can consume them with the
raw Wiremock APIs, or via some features of
Spring Cloud Contract.
	[image: [Tip]]	Tip
	WireMock is an embedded web server that analyses incoming requests and chooses stub
responses based on matching some rules (e.g. a specific header value). So if you send
it a request which matches one of its stubs, it will send you a response as if it was
a real Initializr service, and you can use that to do full stack integration testing
of your client.

Using WireMock with Spring Boot

Loading Stubs from the Classpath

A convenient way to consume the stubs in your project is to add a test dependency:
<dependency>
 <groupId>io.spring.initializr</groupId>
 <artifactId>initializr-web</artifactId>
 <classifier>stubs</classifier>
 <version>{project-version}</version>
 <scope>test</scope>
</dependency>
and then pull the stubs from the classpath. In a Spring Boot application, using
Spring Cloud Contract, you can start a WireMock server and register all the stubs
with it like this:
@RunWith(SpringRunner.class)
@SpringBootTest
@AutoConfigureWireMock(port = 0,
 stubs="classpath:META-INF/io.spring.initializr/initializr-web/0.5.0.RELEASE")
public class ClientApplicationTests {

 @Value("${wiremock.server.port}")
 private int port;

 ...

}
The Wiremock features come with Spring Cloud Contract Wiremock:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-wiremock</artifactId>
 <scope>test</scope>
</dependency>
	[image: [Tip]]	Tip
	This dependency is managed by the spring-cloud-contract-dependencies BOM.

Using the Stub Runner

Alternatively you can configure the stub runner to look for the artifact, using a
different Spring Cloud Contract dependency:
spring-cloud-starter-contract-stub-runner. The example below will automatically
download, if necessary, the defined version of the initializr stubs (so you don’t need the
stubs declared as a dependency):
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-stubrunner</artifactId>
 <scope>test</scope>
</dependency>
The test should use @AutoConfigureStubRunner instead:
@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.NONE)
@AutoConfigureStubRunner(
 ids = "io.spring.initializr:initializr-web:0.5.0.RELEASE",
 repositoryRoot = "https://repo.spring.io/snapshot")
public class ClientApplicationTests {

 @Autowired
 private StubFinder stubFinder;

 ...

}
Here is an example of a test that retrieves the metadata of the service. The assertions
do not matter much here but it illustrates how you could integrate that in the test suite
of a custom client:
public class ClientApplicationTests {

	@Autowired
	private StubFinder stubFinder;

	@Autowired
	private RestTemplate restTemplate;

	@Test
	public void testCurrentMetadata() {
		RequestEntity<Void> request = RequestEntity.get(createUri("/"))
				.accept(MediaType.valueOf("application/vnd.initializr.v2.1+json"))
				.build();

		ResponseEntity<String> response = this.restTemplate
				.exchange(request, String.class);
		assertThat(response.getStatusCode()).isEqualTo(HttpStatus.OK);
		// other assertions here
	}

	private URI createUri(String path) {
		String url = this.stubFinder.findStubUrl("initializr-web").toString();
		return URI.create(url + path);
	}

	@TestConfiguration
	static class Config {

		@Bean
		public RestTemplate restTemplate(RestTemplateBuilder builder) {
			return builder.build();
		}

	}

}
Then you have a server that returns the stub of the JSON metadata
(metadataWithCurrentAcceptHeader.json) when you send it a header
Accept:application/vnd.initializr.v2.1+json (as recommended).
Names and Paths of Stubs

The stubs are laid out in a jar file in a form (under "**/mappings") that can be consumed
by WireMock just by setting its file source. The names of the individual stubs are the
same as the method names of the test cases that generated them in the Initializr
project. So for example there is a test case "metadataWithV2AcceptHeader" in
MainControllerIntegrationTests that makes assertions about the response when the accept
header is application/vnd.initializr.v2.1+json. The response is recorded in the stub,
and it will match in WireMock if the same headers and request parameters that were used in
the Initializr test case and used in the client. The method name usually summarizes what
those values are.
The stub runner, and the @AutoConfigureWireMock in the examples above loads all the
stubs into WireMock, so you don’t necessarily need to know the names of the stubs. You can
also register stubs one by one, though, in which case it would help to scan the stubs jar
and compare the file names with the test methods. For instance, if you look in the stubs
jar, you will see a file called metadataWithV2AcceptHeader.json and, in the
initializr-web project, a test method called metadataWithV2AcceptHeader which generated
it.
