Pitchfork: Spring JEE Support

Reference Documentation

Version 1.0-m5

22.07.2008
Rod Johnson, Costin Leau, Michael Chen

Copyright (c) 2006-2008 SpringSource (formerly Interface21)

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

1. Pitchfork: Spring JEE Support
1.1. Introduction.............

1.2. Bootstrapping
1.3. Specification support

1.3.1. EJB 3.0 deployment descriptors
1.3.2. EJB 3.0-style interception
1.3.3. EJB 3.0 style declarative transaction management
1.3.4. EJB 3.0 styleinjection

1.4. Architecture.............
1.4.1. Metadata.......

1.4.2. ComponentContributor
1.4.3. Metadata Processors
1.4.4. Metadata PostProcessors
1.4.5. MetadataValidation

PitchforkVersion 1.0-m5

Chapter 1. Pitchfork: Spring JEE Support

1.1. Introduction

EJB 3.0 (JSR 220), adong with Common Annotations for the Java Platform (JSR 250), define a basic set of
annotations for resource injection and interception, as part of the Java EE 5.0 specification release. Java EE 5.0
supports alimited subset of Dependency Injection (DI) called Resource injection which provide allows
injection of objects from the INDI environment, such as other Java EE components.

Pitchfork is an Apache License open source project developed collaboratively by Interface21 and BEA
Systems, as an add-on for Spring.

The aims of the Pitchfork project are twofold:

e To provide a basis for implementation of these new features in Java EE 5.0 in existing application servers,
on the basis of Spring's powerful, extensible DI and AOP functionality. An important advantage for users of
containers that take this route is that they can easily make use of Spring features that add value beyond the
present state of the Java EE specification: examples include DI features such as constructor injection,
injection of primitive and complex types; access to existing Spring configurations; ability to work easily
with code that does not include Java EE 5.0 annotations; and access to afar more powerful and el egant
AOP model.

» To support Java EE 5.0 annotations inside the Spring container, allowing classes authored to the EJB 3 and
Java EE programming model to be reused with minimal changes (if any) inside Spring-managed
applications. It is also possible to mix and match these elements of the Java EE 5.0 programming model
with the richer and more powerful capabilities offered by Spring.

This project allows elements of the Java EE 5.0 programming model to be used in Spring; it is not a full

implementation of the Java EE 5.0 specifications, nor isthat its goal. It is possible that further annotations will

be supported in future releases (depending on user feedback); however, while Java EE 5.0 servers may use this
project in their implementation of the Java EE specifications, Pitchfork itself will not become a full JEE
application server.

This support is used internally in WebL ogic Server (since May, 2006) to implement resource injection across
Java EE components, and resource injection and interception in EJB 3.0 and components. It is also usable
outside the WebL ogic platform, as a simple add-on to Spring, with no dependencies besides Spring itself. This
project requires the version of Spring JAR it ships with, or Spring 2.0 RC1 or above.

To understand how this support works, consider the following @Resour ce annotation:

public class SonmeBean {
privat e Dat aSource nyDB

@Resour ce(nane="j dbc/ myCust onDB")
public void set MyDB(Dat aSour ce nyDB)
{

}

this.nyDB = nyDB;

This corresponds to an implicit (or explicit) Spring bean definition like this:

<beans>

PitchforkVersion 1.0-m5 1

Pitchfork: Spring JEE Support

<bean i d="nyBean" cl ass="...SoneBean">
<property name="nyCQ her DB" >
<j ee:jndi -l ookup jndi - nane="j dbc/ myCust onDB" />
</ property>
</ bean>

</ beans>

At the moment, Spring JEE support understands the following annotations, which are part of the JSR 250 and
JSR 220:

JSR 250 injection annotations (javax.annotation): @PostCostruct, @PreDestroy and @Resource

EJB3 interception annotations (javax.interceptor): @Aroundinvoke, @ExcludeClassl nterceptors,
@ExcludeDefaultlnterceptors, @l nterceptors, @lnvocation

EJB3 transaction annotations (javax.gjb): @Stateless, @A pplicationException and @T ransactionAttribute

EJB3 injection annotation (javax.gjb): @EJB (since M2)

In short, Spring can understand Java EE 5.0 injection, interception and transactional metadata.

1.2. Bootstrapping

There are several ways to activate the Pitchfork Java EE 5.0 programming model support in Spring:

Through specific PostProcessors:

<beans>

<bean cl ass="org. spri ngfranmework. j ee. confi g. JeeBeanFact or yPost Processor "/ >
<bean id="bean" class="org.springframework.jee.inject.|nterceptedBean"/>

</ beans>

The JeeBeanFactoryPostProcessor will analyze all the beans declared by the bean factory in which itis
declared and will add the appropriate injections and/or interceptions. Simply adding this post processor will
change the behaviour of the Spring container overall and it is the recommended way to use Pitchfork. This
is acommon extension point that should be familiar to Spring users.

Pitchfork M2 adds JeeEjbBeanFactoryPostProcessor which extends JeeBeanFactoryPostProcessor and
adds support for @EJB annotations:

<beans>

<!-- ejb post processor -->
<bean cl ass="org. springframework. jee. ejb.config. JeeE bBeanFact or yPost Processor"/ >

</ beans>

By using Bootstrap or EjbBootstrap classes:

Boot strap bootstrap = new Bootstrap();
Appl i cati onCont ext appl i cati onContext = bootstrap. depl oy();
Bean nyBean = (Bean) applicationContext.get Bean(" nyBeanNane");

--0r --

PitchforkVersion 1.0-m5

Pitchfork: Spring JEE Support

Ej bBoot strap bootstrap = new E bBootstrap();
String[] springLocations = new String[] { "classpath:org/springframework/jeel/server/springExternal.xm" };
Conponent Contri butor contributor = new E bAnnot ati onConponent Contri but or (ej bCl ass)
Appl i cati onCont ext context = bootstrap. depl oy(springlLocati ons,
new Def aul t Resour ceLoader (), contributor, new Depl oynent Unit Met e

The Bootstrap classes are mainly used by containers that need control over the deploying process. They
offer several methods for specifying what locations, resource |oader (ex: classpath or filesystem based) and
what deploymentUnit metadata to be used.

This style of useis not primarily intended for developers using Spring, but for those embedding this
functionality within an existing container (such as WebL ogic Server).

The Depl oynent Uni t Met adat a represents a programmeatic way of specifing EJB3 descriptor properties like
default interceptors or application exceptions which complement the annotations. Applications that can
understand EJB3 XML files can plug thisinformation into the JEE support through this class.

Note: It is recommended that JeeBeanFactoryPostProcessor and JeeEjbBeanFactoryPostProcessors are
used since Pitchfork internals may change until afinal release.

1.3. Specification support

While JSR 250 is straight forward and it be used in al application types, EJB3-style interception and
transaction are just a part of the full JSR 220 that is usually implemented by application containers. Below are
listed the existing issues and limitations of the project:

1.3.1. EJB 3.0 deployment descriptors

EJB deployment descriptors (optional XML configuration containing information beyond Java annotations) are
not understood by default by Spring or this add-on project. Only annotation processing is performed out of the
box. Spring's own metadata is both simpler and far more powerful than the EJB 3 XML metadata, so there
would be little motivation for using this style of configuration in a Spring application.

However, through the Depl oynent Uni t Met adat a, third parties can add information about the default
interceptors or application exceptions. See the javadocs for more information on what properties can be set.
Note that XML descriptors contain alot of information which isimportant only to the application server and
irelevant to Spring (like resource-env).

1.3.2. EJB 3.0-style interception

Ptichfork allows the use of EJB 3.0 style interceptors (annotated with @\ ound! nvoke) to be used in a Spring
container. Note that the lifecyle of the interceptor istightly bound to that of the bean it intercepts. Spring will
fulfill this contract but will not support activate or passivate calls (specified by @PostActivate or
@PreDestroy). However, hooks are provided so that the outer container which manages the bean lifespan, can
inform Spring of these events. Default interceptors can be added programatically through the

Depl oyment Uni t Met adat a class.

It is possible to mix and match EJB 3 interception with both Spring AOP and Spring 2.0 @A spectJ style
functionality. However, in almost all cases either of the latter programming modelsis wholly superior.

PitchforkVersion 1.0-m5 3

Pitchfork: Spring JEE Support

We recommend the @AspectJ programming model in general with Soring 2.0 and above; it is both more
elegant and far more powerful than any interception style model. For example, it provides true pointcuts (the
core concept of AOP); does not effectively force the use of annotations across a codebase to be used in
conjuction with aspects; offersfar greater potential for reuse; and offers type safety and robust access to
parameters and return types through argument binding. Note that Spring 2.0 also offers an equivalent XML
concise namespace schema. For further details about the @AspectJ programming model and XML pointcut
expressions, see the AOP chapters of the Soring 2.0 Reference Manual.

1.3.3. EJB 3.0 style declarative transaction management

EJB3-style transactions are understood and applied using Spring transaction support. The application
exceptions are parsed at runtime and, based on their annotation (@A pplicationException), the transaction will
be commited or rolled back. Transactions are created for beans that are considered session beans: that is, which
contain the @Stateless and @Stateful annotations. Again, the Depl oynent Uni t Met adat a class can be used to
add more application exceptions besides the ones declared already through annotations. Because Spring's
transaction support is used under the covers, the EJB style transaction management model is thus supported in
any environment: not just a JTA environment.

Note that the functionality provided by the EJB 3 @TransactionAttribute annotation is a subset of that offered
by Soring's own Transactional annotation or other Spring metadata. In particular, the EJB 3.0 notion of
annotating an exception, rather than a use case, to convey rollback information, is arguably flawed. We do not
recommend that Spring users use this model by choice, but see it as a mechanism by which components that use
this annotation can benefit from superior Soring functionality.

Spring's own transaction annotation support carries more information than EJB transaction metadata and also
can support nested transactions on participating resource managers and per use case rollback rules.

1.3.4. EJB 3.0 style injection

Since M2, Pitchfork supports @EJB annotations: the object islooked inside INDI and falls back to Spring
applicationContext. However, remote interface lookups are not yet supported.

1.4. Architecture

The architecture is based on the new ability in Spring 2.0 to attach arbitrary metadata to Spring bean
definitions. This new extension point is combined with the existing extension point of a bean post processor
(an object that can react to the instantiation of each bean in a Spring context).

1.4.1. Metadata

At the core of the Spring JEE project are the metadata classes. All bean definitions contained by Spring bean
factory are passed through a chain of processors which, based on various information (usually annotations),
create specific metadata that is later on used for applying the injection, creating the interception or applying
transactional behavior:

PitchforkVersion 1.0-m5 4

Pitchfork: Spring JEE Support

Jer250Metadata

Jer250Mata data(da ploymantnitetadata | DaploymentlinitMetadata, name : Sting, compone ntClass - Class<?s)
T AV
—— R

ndinvokeMethod - Method . matchinghethod - Method)
ndin okeMethad - Methad)
a, aroundlnyoksMathod - Mathod)

Ejbh=tadata] TransactionalMetad ata

EjbMatadataldum : DeploymentUniMetadata, name : String, companentClass : Class<?> beanType : BeanType) TransactionalMstadsta(dum : Deploymentl nitMetadata, name : String, componentClass : Class<?s)

It isimportant to note that metadata is attached to a Spring bean definition as a custom attribute (a feature of
Spring 2.0). Each metadata class holds Java EE specific information regarding the bean definition it is attached
to, aswell as methods to apply it.

Jsr250Metadata is the base for the current metadata classes - it contains the injection and the lifecycle methods
for constructing and destroying the objects along with references to the loading application context, the bean
definition registry, the deployment unit metadata and the inspected bean class. It also contains hooks to invoke
lifecycle methods on a class instance and apply injection.

I ncerceptionMetadata extends the Jsr250Metadata and provides hooks for applying EJB3-style interception. It
can handle applying the default interceptors, super interceptors and exclusion of interceptors (based on the
inheritance algorithm specified in JSR 250). It also contains hooks for allowing custom interceptors to be added
in the weaving process.

I nter ceptor Metadata contains information about interceptor beans since they can also be subject to interception
and injection. InterceptorMetadata hold characteristics like being a default or class interceptor and are usually
part of an InterceptionMetadata class.

TransactionMetadata is used for holding transactional behavior, like declared application exceptions or
transactional methods and transactional attributes. It extends the Inter ceptionMetadata class only to add
transactional behavior (through Tr ansact i onl nt er cept or and a customized

NanmeMat chTr ansact i onAtt ri but eSour ce).

EjbMetadata is focused on EJB3 functionality but at this point, it is not yet used. (A WebL ogic-specific
subclass of Transact i onMet adat a is used internally in WebL ogic Server.)

1.4.2. ComponentContributor

However, metadata has to be created after the bean definitions have been read, and later on applied. Thisis
achieved through the JeeBeanFactoryPostProcessor which in return, relies on ComponentContributor to
extract the metadata. ComponentContributor interface defines the contract for adding Jee metadata to an
existing Spring context - by default, Bean DefinitionAnnotationComponentContributor is used. The process of
binding the discovered metadata to the bean definition is done through the Enricher class which also validates
the metadata (for example, verifiesthat statel ess beans contain a business interface).

PitchforkVersion 1.0-m5 5

Pitchfork: Spring JEE Support

airferfaces
ComponantC ontributor -
.!I'.'. Ennichar

|

| EnricherdeploymentContexl - ApplicationC entext, beanDefinitonR eqisiry | BeanDelmdionReqisiry)
| Enricher[daploymerC onte €t GenercApplicationd ontext)
|

|
Chained Proce ssorsComponentC anfributor

ChainedProce ssorsCompane nfContr bulan)

i \h-\"‘-\-\.__
-\-\.____\-_H-\-
—
e H-""'\-\.
Annnotation Compona ntCortributar EaanDafmitio ndnnaotation ompon entContributor
AnnatationComponeniContributor(classes : Class<>[]) BeanD efi ntisnAnnatationCompaone MG orribule f{deploymentUnitMetadata ; Deployrme niUnitMetadata)

1.4.3. Metadata Processors

The discovery metadata process executes several processors which create a chain.

cinterfaces
MetadataProcessor

i
TR
-
-~ | h
- | "
&~
- s
7 ' ~
Inta reaptionP ' -
(i i .

nigrceplionrocassor Jsr250Pracessor TransachionProcessar
IntarcaplionFrocassar(Jar250Pro ca sson) TransactionProcassor()
InterceplionProcessor(jsi280Procassor | Jsi280Pracessar) - - : -

At the moment, there are three metadata processors available out of the box:

1. Jsr250Processor - which inspects the classes for the injection and lifecycle annotations defined by JSR 250

2. InterceptionProcessor - which handles the EJB3 interception annotations. Since the interceptors resulted
can also have JSR 250 annotations, the InterceptionProcess uses internally a Jsr250Processor to inspect
them.

3. TransactionProcessor - which is aware of the EJB3 @Stateful and @Statel ess annotations as well as the
transaction attributes.

These three processors are chained inside ChainedProcessor Contributor and form the default processing chain.
It is possible however, to pass a customized chain through setMetadataProcessor s(List< MetadataProcessor>
processors) method. The resulting metadatas are attached to the bean definition by the enricher and later
processed.

1.4.4. Metadata PostProcessors

M etadata PostProcessors are used for trandating the Jee metadata into injection, interceptors or transaction
definitions:

PitchforkVersion 1.0-m5 6

Pitchfork: Spring JEE Support

Maladatalirv enBe anFog FrocassarSupp o

Mztadatalriv enBe @nFo stFro o ssoeSu ppo it sttibutablamea © Sirng)

i

Jer2ElMetadataBaanPosiProcessor

Ju25lbeta dalaBeanPostFrocessaor()

i}

InlerceplionhMatad Mmabeant ostFrocessor

IrfemcaptiondatadataBeanPostProcesson)

Jsr250MetadataBeanPostProcessor extracts Jsr250Metadata object from each bean definition and applies
injection and hooks for construction and destruction, while I nter ceptionMetadataBeanPostProcessor takes care
of interception. It is recommended that third parties, even when using composition, reuse the
MetadataDrivenBeanPostProcessor Support as a base class for reading bean definition metadata.
TransactionMetadata does not require a special metadata PostProcessor since it is a subclass of

Inter ceptionMetadata which is already has a M etadata PostProcessor.

1.4.5. Metadata Validation

Pitchfork defines an extensible mechanism for validation, meaning enforcement of rulesin the relevant Java EE
5.0 specifications. Thisis designed to allow the addition and autodetection of specification rules and error
messages unique to a particular host environment, such as an application server.

To execute metadata validation, the current package provides two interfaces:

Jer2S0Rules wintarfacas cinterface s
SpecilicabanH ule WalidahonSars ice
[=
Jsr250Rules()
[~ v 1 s N
| s
| & \
IntarceptionRules 1 S ,
| i)
= m AtafractSpecification Ruwle Autodetectvalid stionService Reflective RuleBasedValidationService
IntercaptionBules])
Abstract SpecificationRule () AutodetectValidation Service() ReflectiveRuleBasedValidationSarvice])

7

|

AnnotatadMetho dSpeaficationRuls

AnnotatedMethodSpecilicationRule(ammotationType | Class=>_annctation : Objed, mathod : Mathod, indance = Tbject)

1. VadidationService - which defines element that can execute validation and

2. SpecificationRule - which defines a validation rule and its relationship to the JSR specifications.

PitchforkVersion 1.0-m5

Pitchfork: Spring JEE Support

By default, the boostrap classes will use the AutodetectValidationService which looks for @SpecificationRules
annotations which marks a component as avalidation rule. Internally, ReflectiveRuleBasedValidationServiceis
used to execute the validation method from the detected SpecificationRule. See the InterceptionRules and
Jsr250Rules as examples for extending the out-of-the-box validation rules.

PitchforkVersion 1.0-m5

	Pitchfork: Spring JEE Support
	Chapter 1. Pitchfork: Spring JEE Support
	1.1. Introduction
	1.2. Bootstrapping
	1.3. Specification support
	1.3.1. EJB 3.0 deployment descriptors
	1.3.2. EJB 3.0-style interception
	1.3.3. EJB 3.0 style declarative transaction management
	1.3.4. EJB 3.0 style injection

	1.4. Architecture
	1.4.1. Metadata
	1.4.2. ComponentContributor
	1.4.3. Metadata Processors
	1.4.4. Metadata PostProcessors
	1.4.5. Metadata Validation

