
Reactor Netty Reference Guide
Stephane Maldini,Violeta Georgieva

Version 1.2.0-M2, 2024-05-14

Table of Contents
1. About the Documentation . 1

2. Getting Started . 2

3. TCP Server . 8

4. TCP Client . 32

5. HTTP Server. 68

6. HTTP Client . 112

7. UDP Server. 165

8. UDP Client . 182

9. Appendices . 199

Chapter 1. About the Documentation
Stephane Maldini <@smaldini>; Violeta Georgieva <@violeta_g_g> Version 1.2.0-M2

This section provides a brief overview of Reactor Netty reference documentation. You do not need
to read this guide in a linear fashion. Each piece stands on its own, though they often refer to other
pieces.

Latest Version and Copyright Notice
The Reactor Netty reference guide is available as HTML documents. The latest copy is available at
projectreactor.io/docs/netty/release/reference/index.html

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Contributing to the Documentation
The reference guide is written in Asciidoc using Antora, and you can find its sources at github.com/
reactor/reactor-netty/tree/main/docs.

If you have an improvement, we will be happy to get a pull request from you!

We recommend that you check out a local copy of the repository so that you can generate the
documentation by using the asciidoctor Gradle task and checking the rendering. Some of the
sections rely on included files, so GitHub rendering is not always complete.



To facilitate documentation edits, you can edit the current page from the Edit this
Page link located in the upper right corner sidebar. The link opens an edit UI
directly on GitHub for the main source file for the current page. These links are
only present in the HTML5 version of this reference guide. They look like the
following link: Edit this Page to About the Documentation.

Getting Help
There are several ways to reach out for help with Reactor Netty. You can:

• Get in touch with the community on Gitter.

• Ask a question on stackoverflow.com at reactor-netty.

• Report bugs in Github issues. The repository is the following: reactor-netty.

 All of Reactor Netty is open source, including this documentation.

1

https://twitter.com/smaldini
https://twitter.com/violeta_g_g
https://projectreactor.io/docs/netty/release/reference/index.html
https://asciidoctor.org/docs/asciidoc-writers-guide/
https://docs.antora.org/antora/latest/
https://github.com/reactor/reactor-netty/tree/main/docs
https://github.com/reactor/reactor-netty/tree/main/docs
https://github.com/reactor/reactor-netty/edit/main/docs/modules/ROOT/pages/about-doc.adoc
https://gitter.im/reactor/reactor-netty
https://stackoverflow.com/tags/reactor-netty
https://github.com/reactor/reactor-netty/issues
https://github.com/reactor/reactor-netty/tree/main/docs

Chapter 2. Getting Started
This section contains information that should help you get going with Reactor Netty. It includes the
following information:

• Introducing Reactor Netty

• Prerequisites

• Understanding the BOM and versioning scheme

• Getting Reactor Netty

Introducing Reactor Netty
Suited for Microservices Architecture, Reactor Netty offers backpressure-ready network engines for
HTTP (including Websockets), TCP, and UDP.

Prerequisites
Reactor Netty runs on Java 8 and above.

It has transitive dependencies on:

• Reactive Streams v1.0.4

• Reactor Core v3.x

• Netty v4.1.x

Understanding the BOM and versioning scheme
Reactor Netty is part of the Project Reactor BOM (since the Aluminium release train). This curated list
groups artifacts that are meant to work well together, providing the relevant versions despite
potentially divergent versioning schemes in these artifacts.


The versioning scheme has changed between 0.9.x and 1.0.x (Dysprosium and
Europium).

Artifacts follow a versioning scheme of MAJOR.MINOR.PATCH-QUALIFIER while the BOM is versioned
using a CalVer inspired scheme of YYYY.MINOR.PATCH-QUALIFIER, where:

• MAJOR is the current generation of Reactor, where each new generation can bring fundamental
changes to the structure of the project (which might imply a more significant migration effort)

• YYYY is the year of the first GA release in a given release cycle (like 1.0.0 for 1.0.x)

• .MINOR is a 0-based number incrementing with each new release cycle

◦ in the case of projects, it generally reflects wider changes and can indicate a moderate
migration effort

◦ in the case of the BOM it allows discerning between release cycles in case two get first

2

released the same year

• .PATCH is a 0-based number incrementing with each service release

• -QUALIFIER is a textual qualifier, which is omitted in the case of GA releases (see below)

The first release cycle to follow that convention is thus 2020.0.x, codename Europium. The scheme
uses the following qualifiers (note the use of dash separator), in order:

• -M1..-M9: milestones (we don’t expect more than 9 per service release)

• -RC1..-RC9: release candidates (we don’t expect more than 9 per service release)

• -SNAPSHOT: snapshots

• no qualifier for GA releases



Snapshots appear higher in the order above because, conceptually, they’re always
"the freshest pre-release" of any given PATCH. Even though the first deployed
artifact of a PATCH cycle will always be a -SNAPSHOT, a similarly named but more
up-to-date snapshot would also get released after eg. a milestone or between
release candidates.

Each release cycle is also given a codename, in continuity with the previous codename-based
scheme, which can be used to reference it more informally (like in discussions, blog posts, etc…).
The codenames represent what would traditionally be the MAJOR.MINOR number. They (mostly)
come from the Periodic Table of Elements, in increasing alphabetical order.



Up until Dysprosium, the BOM was versioned using a release train scheme with a
codename followed by a qualifier, and the qualifiers were slightly different. For
example: Aluminium-RELEASE (first GA release, would now be something like
YYYY.0.0), Bismuth-M1, Californium-SR1 (service release would now be something
like YYYY.0.1), Dysprosium-RC1, Dysprosium-BUILD-SNAPSHOT (after each patch,
we’d go back to the same snapshot version. would now be something like YYYY.0.X-
SNAPSHOT so we get 1 snapshot per PATCH)

Getting Reactor Netty
As mentioned earlier, the easiest way to use Reactor Netty in your core is to use the BOM and add the
relevant dependencies to your project. Note that, when adding such a dependency, you must omit
the version so that the version gets picked up from the BOM.

However, if you want to force the use of a specific artifact’s version, you can specify it when adding
your dependency as you usually would. You can also forego the BOM entirely and specify
dependencies by their artifact versions.

Maven Installation

The BOM concept is natively supported by Maven. First, you need to import the BOM by adding the
following snippet to your pom.xml. If the top section (dependencyManagement) already exists in your
pom, add only the contents.

3

https://en.wikipedia.org/wiki/Periodic_table#Overview

<dependencyManagement> ①
 <dependencies>
 <dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-bom</artifactId>
 <version>2024.0.0-M2</version> ②
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

① Notice the dependencyManagement tag. This is in addition to the regular dependencies section.

② As of this writing, 2024.0.0-M2 is the latest version of the BOM. Check for updates at github.com/
reactor/reactor/releases.

Next, add your dependencies to the relevant reactor projects, as usual (except without a <version>).
The following listing shows how to do so:

<dependencies>
 <dependency>
 <groupId>io.projectreactor.netty</groupId>
 <artifactId>reactor-netty-core</artifactId> ①
②
 </dependency>
</dependencies>
<dependencies>
 <dependency>
 <groupId>io.projectreactor.netty</groupId>
 <artifactId>reactor-netty-http</artifactId>
 </dependency>
</dependencies>

① Dependency on Reactor Netty

② No version tag here

Gradle Installation

The BOM concept is supported in Gradle since version 5. The following listing shows how to import
the BOM and add a dependency to Reactor Netty:

dependencies {
 // import a BOM
 implementation platform('io.projectreactor:reactor-bom:2024.0.0-M2') ①

 // define dependencies without versions
 implementation 'io.projectreactor.netty:reactor-netty-core' ②

4

https://github.com/reactor/reactor/releases
https://github.com/reactor/reactor/releases

 implementation 'io.projectreactor.netty:reactor-netty-http'
}

① As of this writing, 2024.0.0-M2 is the latest version of the BOM. Check for updates at github.com/
reactor/reactor/releases.

② There is no third : separated section for the version. It is taken from the BOM.

Milestones and Snapshots

Milestones and developer previews are distributed through the Spring Milestones repository rather
than Maven Central. To add it to your build configuration file, use the following snippet:

Milestones in Maven

<repositories>
 <repository>
 <id>spring-milestones</id>
 <name>Spring Milestones Repository</name>
 <url>https://repo.spring.io/milestone</url>
 </repository>
</repositories>

For Gradle, use the following snippet:

Milestones in Gradle

repositories {
 maven { url 'https://repo.spring.io/milestone' }
 mavenCentral()
}

Similarly, snapshots are also available in a separate dedicated repository (for both Maven and
Gradle):

-SNAPSHOTs in Maven

<repositories>
 <repository>
 <id>spring-snapshots</id>
 <name>Spring Snapshot Repository</name>
 <url>https://repo.spring.io/snapshot</url>
 </repository>
</repositories>

-SNAPSHOTs in Gradle

repositories {
 maven { url 'https://repo.spring.io/snapshot' }
 mavenCentral()

5

https://github.com/reactor/reactor/releases
https://github.com/reactor/reactor/releases

}

Support and policies
The entries below are mirroring github.com/reactor/.github/blob/main/SUPPORT.adoc

Do you have a question?

 Search Stack Overflow first; discuss if necessary

If you’re unsure why something isn’t working or wondering if there is a better way of doing it
please check on Stack Overflow first and if necessary start a discussion. Use relevant tags among
the ones we monitor for that purpose:

• reactor-netty for specific reactor-netty questions

• project-reactor for generic reactor questions

If you prefer real-time discussion, we also have a few Gitter channels:

• reactor is the historic most active one, where most of the community can help

• reactor-core is intended for more advanced pinpointed discussions around the inner workings
of the library

• reactor-netty is intended for netty-specific questions

Refer to each project’s README for potential other sources of information.

We generally discourage opening GitHub issues for questions, in favor of the two channels above.

Our policy on deprecations

When dealing with deprecations, given a version A.B.C, we’ll ensure that:

• deprecations introduced in version A.B.0 will be removed no sooner than version A.B+1.0

• deprecations introduced in version A.B.1+ will be removed no sooner than version A.B+2.0

• we’ll strive to mention the following in the deprecation javadoc:

◦ target minimum version for removal

◦ pointers to replacements for the deprecated method

◦ version in which method was deprecated


This policy is officially in effect as of January 2021, for all modules in 2020.0 BOMs
and newer release trains, as well as Dysprosium releases after Dysprosium-SR15.


Deprecation removal targets are not a hard commitment, and the deprecated
methods could live on further than these minimum target GA versions (ie. only

6

https://github.com/reactor/.github/blob/main/SUPPORT.adoc
https://stackoverflow.com/questions/tagged/reactor-netty
https://stackoverflow.com/questions/tagged/project-reactor
https://gitter.im/reactor/reactor
https://gitter.im/reactor/reactor-core
https://gitter.im/reactor/reactor-netty

the most problematic deprecated methods will be removed aggressively).



That said, deprecated code that has outlived its minimum removal target version
may be removed in any subsequent release (including patch releases, aka service
releases) without further notice. So users should still strive to update their code as
early as possible.

7

Chapter 3. TCP Server
Reactor Netty provides an easy to use and configure TcpServer. It hides most of the Netty
functionality that is needed to create a TCP server and adds Reactive Streams backpressure.

Starting and Stopping
To start a TCP server, you must create and configure a TcpServer instance. By default, the host is
configured for any local address, and the system picks up an ephemeral port when the bind
operation is invoked. The following example shows how to create and configure a TcpServer
instance:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/create/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create() ①
 .bindNow(); ②

 server.onDispose()
 .block();
 }
}

① Creates a TcpServer instance that is ready for configuring.

② Starts the server in a blocking fashion and waits for it to finish initializing.

The returned DisposableServer offers a simple server API, including disposeNow(), which shuts the
server down in a blocking fashion.

Host and Port

To serve on a specific host and port, you can apply the following configuration to the TCP server:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/address/Application.java

8

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/tcp/TcpServer.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/tcp/TcpServer.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/create/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/create/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/tcp/TcpServer.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/DisposableServer.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/DisposableChannel.html#disposeNow-java.time.Duration-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/address/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/address/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create()
 .host("localhost") ①
 .port(8080) ②
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Configures the TCP server host

② Configures the TCP server port

To serve on multiple addresses, after having configured the TcpServer you can bind it multiple
times to obtain separate DisposableServer`s. All created servers will share resources such as
`LoopResources because they use the same configuration instance under the hood.

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/address/MultiAddressApplication.java

9

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/address/MultiAddressApplication.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/address/MultiAddressApplication.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class MultiAddressApplication {

 public static void main(String[] args) {
 TcpServer tcpServer = TcpServer.create();
 DisposableServer server1 = tcpServer
 .host("localhost") ①
 .port(8080) ②
 .bindNow();

 DisposableServer server2 = tcpServer
 .host("0.0.0.0") ③
 .port(8081) ④
 .bindNow();

 Mono.when(server1.onDispose(), server2.onDispose())
 .block();
 }
}

① Configures the first TCP server host

② Configures the first TCP server port

③ Configures the second TCP server host

④ Configures the second TCP server port

Eager Initialization
By default, the initialization of the TcpServer resources happens on demand. This means that the
bind operation absorbs the extra time needed to initialize and load:

• the event loop groups

• the native transport libraries (when native transport is used)

• the native libraries for the security (in case of OpenSsl)

When you need to preload these resources, you can configure the TcpServer as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/warmup/Application.java

10

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/warmup/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/warmup/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

 public static void main(String[] args) {
 TcpServer tcpServer =
 TcpServer.create()
 .handle((inbound, outbound) -> inbound.receive().then());

 tcpServer.warmup() ①
 .block();

 DisposableServer server = tcpServer.bindNow();

 server.onDispose()
 .block();
 }
}

① Initialize and load the event loop groups, the native transport libraries and the native libraries
for the security

Writing Data
In order to send data to a connected client, you must attach an I/O handler. The I/O handler has
access to NettyOutbound to be able to write data. The following example shows how to attach an I/O
handler:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/send/Application.java

11

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/NettyOutbound.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/send/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/send/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create()
 .handle((inbound, outbound) -> outbound.sendString(Mono.just
("hello"))) ①
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Sends hello string to the connected clients

Consuming Data
In order to receive data from a connected client, you must attach an I/O handler. The I/O handler
has access to NettyInbound to be able to read data. The following example shows how to use it:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/read/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create()
 .handle((inbound, outbound) -> inbound.receive().then()) ①
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Receives data from the connected clients

12

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/NettyInbound.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/read/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/read/Application.java

Lifecycle Callbacks
The following lifecycle callbacks are provided to let you extend the TcpServer:

Callback Description

doOnBind Invoked when the server channel is about to
bind.

doOnBound Invoked when the server channel is bound.

doOnChannelInit Invoked when initializing the channel.

doOnConnection Invoked when a remote client is connected

doOnUnbound Invoked when the server channel is unbound.

The following example uses the doOnConnection and doOnChannelInit callbacks:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/lifecycle/Application.java

import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.ReadTimeoutHandler;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
import java.util.concurrent.TimeUnit;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create()
 .doOnConnection(conn ->
 conn.addHandlerFirst(new ReadTimeoutHandler(10, TimeUnit
.SECONDS))) ①
 .doOnChannelInit((observer, channel, remoteAddress) ->
 channel.pipeline()
 .addFirst(new LoggingHandler
("reactor.netty.examples"))) ②
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Netty pipeline is extended with ReadTimeoutHandler when a remote client is connected.

② Netty pipeline is extended with LoggingHandler when initializing the channel.

13

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/lifecycle/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/lifecycle/Application.java

TCP-level Configurations
This section describes three kinds of configuration that you can use at the TCP level:

• Setting Channel Options

• Wire Logger

• Event Loop Group

Setting Channel Options

By default, the TCP server is configured with the following options:

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/tcp/
TcpServerBind.java

 TcpServerBind() {
 Map<ChannelOption<?>, Boolean> childOptions = new HashMap<>(MapUtils
.calculateInitialCapacity(2));
 childOptions.put(ChannelOption.AUTO_READ, false);
 childOptions.put(ChannelOption.TCP_NODELAY, true);
 this.config = new TcpServerConfig(
 Collections.singletonMap(ChannelOption.SO_REUSEADDR, true),
 childOptions,
 () -> new InetSocketAddress(DEFAULT_PORT));
 }

If additional options are necessary or changes to the current options are needed, you can apply the
following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/channeloptions/Application.java

14

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/tcp/TcpServerBind.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/tcp/TcpServerBind.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/channeloptions/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/channeloptions/Application.java

import io.netty.channel.ChannelOption;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create()
 .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
 .bindNow();

 server.onDispose()
 .block();
 }
}

You can find more about Netty channel options at the following links:

• Common ChannelOption

• Epoll ChannelOption

• KQueue ChannelOption

• Socket Options

Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers needs to be inspected.
By default, wire logging is disabled. To enable it, you must set the logger
reactor.netty.tcp.TcpServer level to DEBUG and apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/wiretap/Application.java

15

https://netty.io/4.1/api/io/netty/channel/ChannelOption.html
https://netty.io/4.1/api/io/netty/channel/epoll/EpollChannelOption.html
https://netty.io/4.1/api/io/netty/channel/kqueue/KQueueChannelOption.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/wiretap/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/wiretap/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create()
 .wiretap(true) ①
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Enables the wire logging

Wire Logger formatters

Reactor Netty supports 3 different formatters:

• AdvancedByteBufFormat#HEX_DUMP - the default

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

16

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in hex format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] REGISTERED
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] ACTIVE
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] READ: 145B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 50 4f 53 54 20 2f 74 65 73 74 2f 57 6f 72 6c 64 |POST /test/World|
 * |00000010| 20 48 54 54 50 2f 31 2e 31 0d 0a 43 6f 6e 74 65 | HTTP/1.1..Conte|
 * |00000020| 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 70 6c |nt-Type: text/pl|
 * |00000030| 61 69 6e 0d 0a 75 73 65 72 2d 61 67 65 6e 74 3a |ain..user-agent:|
 * |00000040| 20 52 65 61 63 74 6f 72 4e 65 74 74 79 2f 64 65 | ReactorNetty/de|
 * ...
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] WRITE: 38B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d |HTTP/1.1 200 OK.|
 * |00000010| 0a 63 6f 6e 74 65 6e 74 2d 6c 65 6e 67 74 68 3a |.content-length:|
 * |00000020| 20 30 0d 0a 0d 0a | 0.... |
 * +--------+---+----------------+
 * }
 * </pre>
 */

• AdvancedByteBufFormat#SIMPLE

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

17

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, only the events will be logged.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] REGISTERED
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] ACTIVE
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] READ: 145B
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] WRITE: 38B
 * }
 * </pre>
 */

• AdvancedByteBufFormat#TEXTUAL

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in plain text format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] REGISTERED
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] ACTIVE
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] READ: 145B POST /test/World HTTP/1.1
 * Content-Type: text/plain
 * user-agent: ReactorNetty/dev
 * ...
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] WRITE: 38B HTTP/1.1 200 OK
 * content-length: 0
 * }
 * </pre>
 */

When you need to change the default formatter you can configure it as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/

18

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/wiretap/custom/Application.java

examples/documentation/tcp/server/wiretap/custom/Application.java

import io.netty.handler.logging.LogLevel;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
import reactor.netty.transport.logging.AdvancedByteBufFormat;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create()
 .wiretap("logger-name", LogLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL) ①
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the content.

Event Loop Group

By default Reactor Netty uses an “Event Loop Group”, where the number of the worker threads
equals the number of processors available to the runtime on initialization (but with a minimum
value of 4). When you need a different configuration, you can use one of the LoopResources#create
methods.

The following listing shows the default configuration for the Event Loop Group:

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
ReactorNetty.java

19

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/wiretap/custom/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

 /**
 * Default worker thread count, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String IO_WORKER_COUNT = "reactor.netty.ioWorkerCount";
 /**
 * Default selector thread count, fallback to -1 (no selector thread)
 * <p>Note: In most use cases using a worker thread also as a
selector thread works well.
 * A possible use case for specifying a separate selector thread might be when the
worker threads are too busy
 * and connections cannot be accepted fast enough.
 * <p>Note: Although more than 1 can be configured as a selector
thread count, in reality
 * only 1 thread will be used as a selector thread.
 */
 public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
 /**
 * Default worker thread count for UDP, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String UDP_IO_THREAD_COUNT =
"reactor.netty.udp.ioThreadCount";
 /**
 * Default quiet period that guarantees that the disposal of the underlying
LoopResources
 * will not happen, fallback to 2 seconds.
 */
 public static final String SHUTDOWN_QUIET_PERIOD =
"reactor.netty.ioShutdownQuietPeriod";
 /**
 * Default maximum amount of time to wait until the disposal of the underlying
LoopResources
 * regardless if a task was submitted during the quiet period, fallback to 15
seconds.
 */
 public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";

 /**
 * Default value whether the native transport (epoll, kqueue) will be preferred,
 * fallback it will be preferred when available.
 */
 public static final String NATIVE = "reactor.netty.native";

If you need changes to these settings, you can apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/eventloop/Application.java

20

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/eventloop/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/eventloop/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.resources.LoopResources;
import reactor.netty.tcp.TcpServer;

public class Application {

 public static void main(String[] args) {
 LoopResources loop = LoopResources.create("event-loop", 1, 4, true);

 DisposableServer server =
 TcpServer.create()
 .runOn(loop)
 .bindNow();

 server.onDispose()
 .block();
 }
}

Disposing Event Loop Group

• If you use the default Event Loop Group provided by Reactor Netty, invoke
HttpResources#disposeLoopsAndConnections/#disposeLoopsAndConnectionsLater method.


Disposing HttpResources means that every server/client that is using it, will not be
able to use it anymore!

• If you use custom LoopResources, invoke LoopResources#dispose/#disposeLater method.


Disposing the custom LoopResources means that every server/client that is
configured to use it, will not be able to use it anymore!

SSL and TLS
When you need SSL or TLS, you can apply the configuration shown in the next listing. By default, if
OpenSSL is available, SslProvider.OPENSSL provider is used as a provider. Otherwise SslProvider.JDK
is used. Switching the provider can be done through SslContextBuilder or by setting
-Dio.netty.handler.ssl.noOpenSsl=true.

The following example uses SslContextBuilder:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/security/Application.java

21

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/HttpResources.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#OPENSSL
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#JDK
https://netty.io/4.1/api/io/netty/handler/ssl/SslContextBuilder.html#sslProvider-io.netty.handler.ssl.SslProvider-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/security/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/security/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;
import reactor.netty.tcp.TcpSslContextSpec;

import java.io.File;

public class Application {

 public static void main(String[] args) {
 File cert = new File("certificate.crt");
 File key = new File("private.key");

 TcpSslContextSpec tcpSslContextSpec = TcpSslContextSpec.forServer(cert, key);

 DisposableServer server =
 TcpServer.create()
 .secure(spec -> spec.sslContext(tcpSslContextSpec))
 .bindNow();

 server.onDispose()
 .block();
 }
}

Server Name Indication

You can configure the TCP server with multiple SslContext mapped to a specific domain. An exact
domain name or a domain name containing a wildcard can be used when configuring the SNI
mapping.

The following example uses a domain name containing a wildcard:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/sni/Application.java

22

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/sni/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/sni/Application.java

import io.netty.handler.ssl.SslContext;
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

import java.io.File;

public class Application {

 public static void main(String[] args) throws Exception {
 File defaultCert = new File("default_certificate.crt");
 File defaultKey = new File("default_private.key");

 File testDomainCert = new File("default_certificate.crt");
 File testDomainKey = new File("default_private.key");

 SslContext defaultSslContext = SslContextBuilder.forServer(defaultCert,
defaultKey).build();
 SslContext testDomainSslContext = SslContextBuilder.forServer(testDomainCert,
testDomainKey).build();

 DisposableServer server =
 TcpServer.create()
 .secure(spec -> spec.sslContext(defaultSslContext)
 .addSniMapping("*.test.com",
 testDomainSpec -> testDomainSpec
.sslContext(testDomainSslContext)))
 .bindNow();

 server.onDispose()
 .block();
 }
}

Metrics
The TCP server supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.tcp.server.

The following table provides information for the TCP server metrics:

metric name type description

reactor.netty.tcp.server.connect
ions.total

Gauge The number of all opened
connections. See Connections
Total

reactor.netty.tcp.server.data.rec
eived

DistributionSummary Amount of the data received, in
bytes. See Data Received

23

https://micrometer.io/
observability.pdf#observability-metrics-connections-total
observability.pdf#observability-metrics-connections-total
observability.pdf#observability-metrics-data-received

metric name type description

reactor.netty.tcp.server.data.se
nt

DistributionSummary Amount of the data sent, in
bytes. See Data Sent

reactor.netty.tcp.server.errors Counter Number of errors that occurred.
See Errors Count

reactor.netty.tcp.server.tls.hand
shake.time

Timer Time spent for TLS handshake.
See Tls Handshake Time

These additional metrics are also available:

ByteBufAllocator metrics

metric name type description

reactor.netty.bytebuf.allocator.
used.heap.memory

Gauge The number of bytes reserved
by heap buffer allocator. See
Used Heap Memory

reactor.netty.bytebuf.allocator.
used.direct.memory

Gauge The number of bytes reserved
by direct buffer allocator. See
Used Direct Memory

reactor.netty.bytebuf.allocator.
heap.arenas

Gauge The number of heap arenas
(when PooledByteBufAllocator).
See Heap Arenas

reactor.netty.bytebuf.allocator.
direct.arenas

Gauge The number of direct arenas
(when PooledByteBufAllocator).
See Direct Arenas

reactor.netty.bytebuf.allocator.t
hreadlocal.caches

Gauge The number of thread local
caches (when
PooledByteBufAllocator). See
Thread Local Caches

reactor.netty.bytebuf.allocator.s
mall.cache.size

Gauge The size of the small cache
(when PooledByteBufAllocator).
See Small Cache Size

reactor.netty.bytebuf.allocator.
normal.cache.size

Gauge The size of the normal cache
(when PooledByteBufAllocator).
See Normal Cache Size

reactor.netty.bytebuf.allocator.c
hunk.size

Gauge The chunk size for an arena
(when PooledByteBufAllocator).
See Chunk Size

reactor.netty.bytebuf.allocator.
active.heap.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
heap buffer pools (when
PooledByteBufAllocator). See
Active Heap Memory

24

observability.pdf#observability-metrics-data-sent
observability.pdf#observability-metrics-errors-count
observability.pdf#observability-metrics-tls-handshake-time
observability.pdf#observability-metrics-used-heap-memory
observability.pdf#observability-metrics-used-direct-memory
observability.pdf#observability-metrics-heap-arenas
observability.pdf#observability-metrics-direct-arenas
observability.pdf#observability-metrics-thread-local-caches
observability.pdf#observability-metrics-small-cache-size
observability.pdf#observability-metrics-normal-cache-size
observability.pdf#observability-metrics-chunk-size
observability.pdf#observability-metrics-active-heap-memory

metric name type description

reactor.netty.bytebuf.allocator.
active.direct.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
direct buffer pools (when
PooledByteBufAllocator). See
Active Direct Memory

EventLoop metrics

metric name type description

reactor.netty.eventloop.pending
.tasks

Gauge The number of tasks that are
pending for processing on an
event loop. See Pending Tasks

The following example enables that integration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/metrics/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create()
 .metrics(true) ①
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Enables the built-in integration with Micrometer

When TCP server metrics are needed for an integration with a system other than Micrometer or you
want to provide your own integration with Micrometer, you can provide your own metrics recorder,
as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/metrics/custom/Application.java

25

observability.pdf#observability-metrics-active-direct-memory
observability.pdf#observability-metrics-pending-tasks
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/metrics/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/metrics/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/metrics/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/metrics/custom/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.tcp.TcpServer;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create()
 .metrics(true, CustomChannelMetricsRecorder::new) ①
 .bindNow();

 server.onDispose()
 .block();
 }

① Enables TCP server metrics and provides ChannelMetricsRecorder implementation.

Tracing
The TCP server supports built-in integration with Micrometer Tracing.

The following table provides information for the TCP server spans:

contextual name description

tls handshake Information and time spent for TLS handshake.
See Tls Handshake Span.

The following example enables that integration. This concrete example uses Brave and reports the
information to Zipkin. See the Micrometer Tracing documentation for OpenTelemetry setup.

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/tracing/Application.java

import brave.Tracing;
import brave.propagation.StrictCurrentTraceContext;
import brave.sampler.Sampler;
import io.micrometer.tracing.CurrentTraceContext;
import io.micrometer.tracing.Tracer;
import io.micrometer.tracing.brave.bridge.BraveBaggageManager;
import io.micrometer.tracing.brave.bridge.BraveCurrentTraceContext;
import io.micrometer.tracing.brave.bridge.BraveTracer;
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.observability.ReactorNettyTracingObservationHandler;

26

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/channel/ChannelMetricsRecorder.html
https://micrometer.io/docs/tracing
observability.pdf#observability-spans-tls-handshake-span
https://micrometer.io/docs/tracing#_micrometer_tracing_opentelemetry_setup
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/tracing/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/tracing/Application.java

import reactor.netty.tcp.TcpServer;
import zipkin2.reporter.brave.AsyncZipkinSpanHandler;
import zipkin2.reporter.urlconnection.URLConnectionSender;

import static reactor.netty.Metrics.OBSERVATION_REGISTRY;

public class Application {

 public static void main(String[] args) {
 init(); ①

 DisposableServer server =
 TcpServer.create()
 .metrics(true) ②
 .handle((inbound, outbound) -> outbound.sendString(Mono.just
("hello")))
 .bindNow();

 server.onDispose()
 .block();
 }

 /**
 * This setup is based on
 * Micrometer
Tracing Brave Setup.
 */
 static void init() {
 AsyncZipkinSpanHandler spanHandler = AsyncZipkinSpanHandler
 .create(URLConnectionSender.create
("http://localhost:9411/api/v2/spans"));

 StrictCurrentTraceContext braveCurrentTraceContext =
StrictCurrentTraceContext.create();

 CurrentTraceContext bridgeContext = new BraveCurrentTraceContext
(braveCurrentTraceContext);

 Tracing tracing =
 Tracing.newBuilder()
 .currentTraceContext(braveCurrentTraceContext)
 .supportsJoin(false)
 .traceId128Bit(true)
 .sampler(Sampler.ALWAYS_SAMPLE)
 .addSpanHandler(spanHandler)
 .localServiceName("reactor-netty-examples")
 .build();

 brave.Tracer braveTracer = tracing.tracer();

27

 Tracer tracer = new BraveTracer(braveTracer, bridgeContext, new
BraveBaggageManager());

 OBSERVATION_REGISTRY.observationConfig()
 .observationHandler(new
ReactorNettyTracingObservationHandler(tracer));
 }
}

① Initializes Brave, Zipkin, and the Observation registry.

② Enables the built-in integration with Micrometer.

The result in Zipkin looks like:

Access Current Observation

Project Micrometer provides a library that assists with context propagation across different types
of context mechanisms such as ThreadLocal, Reactor Context and others.

The following example shows how to use this library in a custom ChannelHandler:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/tracing/custom/Application.java

import brave.Tracing;
import brave.propagation.StrictCurrentTraceContext;
import brave.sampler.Sampler;
import io.micrometer.context.ContextSnapshot;
import io.micrometer.context.ContextSnapshotFactory;

28

https://micrometer.io/docs/contextPropagation
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/tracing/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/tracing/custom/Application.java

import io.micrometer.tracing.CurrentTraceContext;
import io.micrometer.tracing.Tracer;
import io.micrometer.tracing.brave.bridge.BraveBaggageManager;
import io.micrometer.tracing.brave.bridge.BraveCurrentTraceContext;
import io.micrometer.tracing.brave.bridge.BraveTracer;
import io.netty.channel.ChannelHandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter;
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.NettyPipeline;
import reactor.netty.observability.ReactorNettyTracingObservationHandler;
import reactor.netty.tcp.TcpServer;
import reactor.netty.tcp.TcpSslContextSpec;
import zipkin2.reporter.brave.AsyncZipkinSpanHandler;
import zipkin2.reporter.urlconnection.URLConnectionSender;

import java.io.File;

import static reactor.netty.Metrics.OBSERVATION_REGISTRY;

public class Application {

 public static void main(String[] args) {
 init(); ①

 File cert = new File("certificate.crt");
 File key = new File("private.key");

 TcpSslContextSpec tcpSslContextSpec = TcpSslContextSpec.forServer(cert, key);

 DisposableServer server =
 TcpServer.create()
 .metrics(true) ②
 .doOnChannelInit((observer, channel, address) -> channel
.pipeline().addAfter(
 NettyPipeline.SslHandler, "custom-channel-handler",
CustomChannelInboundHandler.INSTANCE)) ③
 .secure(spec -> spec.sslContext(tcpSslContextSpec))
 .handle((inbound, outbound) -> outbound.sendString(Mono.just
("hello")))
 .bindNow();

 server.onDispose()
 .block();
 }

 static final class CustomChannelInboundHandler extends
ChannelInboundHandlerAdapter {

 static final ChannelHandler INSTANCE = new CustomChannelInboundHandler();

29

 @Override
 @SuppressWarnings("try")
 public void channelActive(ChannelHandlerContext ctx) {
 try (ContextSnapshot.Scope scope = ContextSnapshotFactory.builder().
build().setThreadLocalsFrom(ctx.channel())) {
 System.out.println("Current Observation in Scope: " +
OBSERVATION_REGISTRY.getCurrentObservation());
 ctx.fireChannelActive();
 }
 System.out.println("Current Observation: " + OBSERVATION_REGISTRY
.getCurrentObservation());
 }

 @Override
 public boolean isSharable() {
 return true;
 }
 }

① Initializes Brave, Zipkin, and the Observation registry.

② Enables the built-in integration with Micrometer.

③ Custom ChannelHandler that uses context propagation library. This concrete example overrides
only ChannelInboundHandlerAdapter#channelActive, if it is needed, the same logic can be used for
the rest of the methods. Also, this concrete example sets all ThreadLocal values for which there is
a value in the given Channel, if another behaviour is needed please check context propagation
library API. For example, you may want to set only some of the ThreadLocal values.



When you enable Reactor Netty tracing within a framework, you may need to let
Reactor Netty use the ObservationRegistry created by this framework. For this
purpose you need to invoke reactor.netty.Metrics#observationRegistry. You may
also need to configure the Reactor Netty ObservationHandlers using the API
provided by the framework.

Unix Domain Sockets
The TCP server supports Unix Domain Sockets (UDS) when native transport is in use.

The following example shows how to use UDS support:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/server/uds/Application.java

30

https://micrometer.io/docs/contextPropagation
https://micrometer.io/docs/contextPropagation
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Metrics.html#observationRegistry-io.micrometer.observation.ObservationRegistry-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/uds/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/server/uds/Application.java

import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.DisposableServer;
import reactor.netty.tcp.TcpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 TcpServer.create()
 .bindAddress(() -> new DomainSocketAddress("/tmp/test.sock"))
①
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Specifies DomainSocketAddress that will be used

31

Chapter 4. TCP Client
Reactor Netty provides the easy-to-use and easy-to-configure TcpClient. It hides most of the Netty
functionality that is needed in order to create a TCP client and adds Reactive Streams backpressure.

Connect and Disconnect
To connect the TCP client to a given endpoint, you must create and configure a TcpClient instance.
By default, the host is localhost and the port is 12012. The following example shows how to create a
TcpClient:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/create/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create() ①
 .connectNow(); ②

 connection.onDispose()
 .block();
 }
}

① Creates a TcpClient instance that is ready for configuring.

② Connects the client in a blocking fashion and waits for it to finish initializing.

The returned Connection offers a simple connection API, including disposeNow(), which shuts the
client down in a blocking fashion.

Host and Port

To connect to a specific host and port, you can apply the following configuration to the TCP client.
The following example shows how to do so:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/address/Application.java

32

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/tcp/TcpClient.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/tcp/TcpClient.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/create/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/create/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/tcp/TcpClient.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Connection.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/DisposableChannel.html#disposeNow-java.time.Duration-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/address/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/address/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com") ①
 .port(80) ②
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Configures the TCP host

② Configures the TCP port

 The port can be specified also with PORT environment variable.

Eager Initialization
By default, the initialization of the TcpClient resources happens on demand. This means that the
connect operation absorbs the extra time needed to initialize and load:

• the event loop group

• the host name resolver

• the native transport libraries (when native transport is used)

• the native libraries for the security (in case of OpenSsl)

When you need to preload these resources, you can configure the TcpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/warmup/Application.java

33

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/warmup/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/warmup/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 TcpClient tcpClient =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .handle((inbound, outbound) -> outbound.sendString(Mono.just
("hello")));

 tcpClient.warmup() ①
 .block();

 Connection connection = tcpClient.connectNow(); ②

 connection.onDispose()
 .block();
 }
}

① Initialize and load the event loop group, the host name resolver, the native transport libraries
and the native libraries for the security

② Host name resolution happens when connecting to the remote peer

Writing Data
To send data to a given endpoint, you must attach an I/O handler. The I/O handler has access to
NettyOutbound to be able to write data.

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/send/Application.java

34

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/NettyOutbound.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/send/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/send/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .handle((inbound, outbound) -> outbound.sendString(Mono.just
("hello"))) ①
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Sends hello string to the endpoint.

When you need more control over the writing process, as an alternative for I/O handler you may
use Connection#outbound. As opposed to I/O handler where the connection is closed when the
provided Publisher finishes (in case of finite Publisher), when using Connection#outbound, you have
to invoke explicitly Connection#dispose in order to close the connection.

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/send/connection/Application.java

35

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Connection.html#outbound--
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Connection.html#outbound--
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/send/connection/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/send/connection/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .connectNow();

 connection.outbound()
 .sendString(Mono.just("hello 1")) ①
 .then()
 .subscribe();

 connection.outbound()
 .sendString(Mono.just("hello 2")) ②
 .then()
 .subscribe(null, null, connection::dispose); ③

 connection.onDispose()
 .block();
 }
}

① Sends hello 1 string to the endpoint.

② Sends hello 2 string to the endpoint.

③ Closes the connection once the message is sent to the endpoint.

Consuming Data
To receive data from a given endpoint, you must attach an I/O handler. The I/O handler has access
to NettyInbound to be able to read data. The following example shows how to do so:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/read/Application.java

36

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/NettyInbound.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/read/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/read/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .handle((inbound, outbound) -> inbound.receive().then()) ①
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Receives data from a given endpoint

When you need more control over the reading process, as an alternative for I/O handler you may
use Connection#inbound. As opposed to I/O handler where the connection is closed when the
provided Publisher finishes (in case of finite Publisher), when using Connection#inbound, you have to
invoke explicitly Connection#dispose in order to close the connection.

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/read/connection/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .connectNow();

 connection.inbound()
 .receive() ①
 .then()
 .subscribe();

 connection.onDispose()
 .block();
 }
}

37

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Connection.html#inbound--
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Connection.html#inbound--
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/read/connection/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/read/connection/Application.java

① Receives data from a given endpoint.

Lifecycle Callbacks
The following lifecycle callbacks are provided to let you extend the TcpClient.

Callback Description

doAfterResolve Invoked after the remote address has been
resolved successfully.

doOnChannelInit Invoked when initializing the channel.

doOnConnect Invoked when the channel is about to connect.

doOnConnected Invoked after the channel has been connected.

doOnDisconnected Invoked after the channel has been
disconnected.

doOnResolve Invoked when the remote address is about to be
resolved.

doOnResolveError Invoked in case the remote address hasn’t been
resolved successfully.

The following example uses the doOnConnected and doOnChannelInit callbacks:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/lifecycle/Application.java

38

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/lifecycle/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/lifecycle/Application.java

import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.ReadTimeoutHandler;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
import java.util.concurrent.TimeUnit;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .doOnConnected(conn ->
 conn.addHandlerFirst(new ReadTimeoutHandler(10, TimeUnit
.SECONDS))) ①
 .doOnChannelInit((observer, channel, remoteAddress) ->
 channel.pipeline()
 .addFirst(new LoggingHandler
("reactor.netty.examples"))) ②
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Netty pipeline is extended with ReadTimeoutHandler when the channel has been connected.

② Netty pipeline is extended with LoggingHandler when initializing the channel.

TCP-level Configurations
This section describes three kinds of configuration that you can use at the TCP level:

• Channel Options

• Wire Logger

• Event Loop Group

Channel Options

By default, the TCP client is configured with the following options:

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/tcp/
TcpClientConnect.java

 TcpClientConnect(ConnectionProvider provider) {
 this.config = new TcpClientConfig(

39

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/tcp/TcpClientConnect.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/tcp/TcpClientConnect.java

 provider,
 Collections.singletonMap(ChannelOption.AUTO_READ, false),
 () -> AddressUtils.createUnresolved(NetUtil.LOCALHOST.
getHostAddress(), DEFAULT_PORT));
 }

If additional options are necessary or changes to the current options are needed, you can apply the
following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/channeloptions/Application.java

import io.netty.channel.ChannelOption;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
 .connectNow();

 connection.onDispose()
 .block();
 }
}

You can find more about Netty channel options at the following links:

• Common ChannelOption

• Epoll ChannelOption

• KQueue ChannelOption

• Socket Options

Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers needs to be inspected.
By default, wire logging is disabled. To enable it, you must set the logger
reactor.netty.tcp.TcpClient level to DEBUG and apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/wiretap/Application.java

40

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/channeloptions/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/channeloptions/Application.java
https://netty.io/4.1/api/io/netty/channel/ChannelOption.html
https://netty.io/4.1/api/io/netty/channel/epoll/EpollChannelOption.html
https://netty.io/4.1/api/io/netty/channel/kqueue/KQueueChannelOption.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/wiretap/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/wiretap/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .wiretap(true) ①
 .host("example.com")
 .port(80)
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Enables the wire logging

Wire Logger formatters

Reactor Netty supports 3 different formatters:

• AdvancedByteBufFormat#HEX_DUMP - the default

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

41

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in hex format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] REGISTERED
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] ACTIVE
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] READ: 145B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 50 4f 53 54 20 2f 74 65 73 74 2f 57 6f 72 6c 64 |POST /test/World|
 * |00000010| 20 48 54 54 50 2f 31 2e 31 0d 0a 43 6f 6e 74 65 | HTTP/1.1..Conte|
 * |00000020| 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 70 6c |nt-Type: text/pl|
 * |00000030| 61 69 6e 0d 0a 75 73 65 72 2d 61 67 65 6e 74 3a |ain..user-agent:|
 * |00000040| 20 52 65 61 63 74 6f 72 4e 65 74 74 79 2f 64 65 | ReactorNetty/de|
 * ...
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] WRITE: 38B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d |HTTP/1.1 200 OK.|
 * |00000010| 0a 63 6f 6e 74 65 6e 74 2d 6c 65 6e 67 74 68 3a |.content-length:|
 * |00000020| 20 30 0d 0a 0d 0a | 0.... |
 * +--------+---+----------------+
 * }
 * </pre>
 */

• AdvancedByteBufFormat#SIMPLE

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

42

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, only the events will be logged.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] REGISTERED
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] ACTIVE
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] READ: 145B
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] WRITE: 38B
 * }
 * </pre>
 */

• AdvancedByteBufFormat#TEXTUAL

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in plain text format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] REGISTERED
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] ACTIVE
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] READ: 145B POST /test/World HTTP/1.1
 * Content-Type: text/plain
 * user-agent: ReactorNetty/dev
 * ...
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] WRITE: 38B HTTP/1.1 200 OK
 * content-length: 0
 * }
 * </pre>
 */

When you need to change the default formatter you can configure it as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/

43

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/wiretap/custom/Application.java

examples/documentation/tcp/client/wiretap/custom/Application.java

import io.netty.handler.logging.LogLevel;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
import reactor.netty.transport.logging.AdvancedByteBufFormat;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .wiretap("logger-name", LogLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL) ①
 .host("example.com")
 .port(80)
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the content.

Event Loop Group

By default Reactor Netty uses an “Event Loop Group”, where the number of the worker threads
equals the number of processors available to the runtime on initialization (but with a minimum
value of 4). When you need a different configuration, you can use one of the LoopResources#create
methods.

The following listing shows the default configuration for the Event Loop Group:

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
ReactorNetty.java

44

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/wiretap/custom/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

 /**
 * Default worker thread count, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String IO_WORKER_COUNT = "reactor.netty.ioWorkerCount";
 /**
 * Default selector thread count, fallback to -1 (no selector thread)
 * <p>Note: In most use cases using a worker thread also as a
selector thread works well.
 * A possible use case for specifying a separate selector thread might be when the
worker threads are too busy
 * and connections cannot be accepted fast enough.
 * <p>Note: Although more than 1 can be configured as a selector
thread count, in reality
 * only 1 thread will be used as a selector thread.
 */
 public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
 /**
 * Default worker thread count for UDP, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String UDP_IO_THREAD_COUNT =
"reactor.netty.udp.ioThreadCount";
 /**
 * Default quiet period that guarantees that the disposal of the underlying
LoopResources
 * will not happen, fallback to 2 seconds.
 */
 public static final String SHUTDOWN_QUIET_PERIOD =
"reactor.netty.ioShutdownQuietPeriod";
 /**
 * Default maximum amount of time to wait until the disposal of the underlying
LoopResources
 * regardless if a task was submitted during the quiet period, fallback to 15
seconds.
 */
 public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";

 /**
 * Default value whether the native transport (epoll, kqueue) will be preferred,
 * fallback it will be preferred when available.
 */
 public static final String NATIVE = "reactor.netty.native";

If you need changes to these settings, you can apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/eventloop/Application.java

45

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/eventloop/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/eventloop/Application.java

import reactor.netty.Connection;
import reactor.netty.resources.LoopResources;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 LoopResources loop = LoopResources.create("event-loop", 1, 4, true);

 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .runOn(loop)
 .connectNow();

 connection.onDispose()
 .block();
 }
}

Disposing Event Loop Group

• If you use the default Event Loop Group provided by Reactor Netty, invoke
HttpResources#disposeLoopsAndConnections/#disposeLoopsAndConnectionsLater method.


Disposing HttpResources means that every server/client that is using it, will not be
able to use it anymore!

• If you use custom LoopResources, invoke LoopResources#dispose/#disposeLater method.


Disposing the custom LoopResources means that every server/client that is
configured to use it, will not be able to use it anymore!

Connection Pool
By default, TcpClient uses a “fixed” connection pool with 500 as the maximum number of active
channels and 1000 as the maximum number of further channel acquisition attempts allowed to be
kept in a pending state (for the rest of the configurations check the system properties or the builder
configurations below). This means that the implementation creates a new channel if someone tries
to acquire a channel as long as less than 500 have been created and are managed by the pool. When
the maximum number of channels in the pool is reached, up to 1000 new attempts to acquire a
channel are delayed (pending) until a channel is closed (and thus a slot is free and a new
connection can be opened), and further attempts are declined with an error.


Connections used by the TcpClient are never returned to the pool, but closed.
When a connection is closed, a slot is freed in the pool and thus a new connection

46

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/HttpResources.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html

can be opened when needed. This behaviour is specific only for TcpClient and is
intentional because only the user/framework knows if the actual protocol is
compatible with reusing connections. (opposed to HttpClient where the protocol is
known and Reactor Netty can return the connection to the pool when this is
possible)

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
ReactorNetty.java

 /**
 * Default max connections. Fallback to
 * 2 * available number of processors (but with a minimum value of 16)
 */
 public static final String POOL_MAX_CONNECTIONS =
"reactor.netty.pool.maxConnections";
 /**
 * Default acquisition timeout (milliseconds) before error. If -1 will never wait
to
 * acquire before opening a new
 * connection in an unbounded fashion. Fallback 45 seconds
 */
 public static final String POOL_ACQUIRE_TIMEOUT =
"reactor.netty.pool.acquireTimeout";

When you need to change the default settings, you can configure the ConnectionProvider as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/pool/config/Application.java

47

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/pool/config/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/pool/config/Application.java

import reactor.netty.Connection;
import reactor.netty.resources.ConnectionProvider;
import reactor.netty.tcp.TcpClient;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 ConnectionProvider provider =
 ConnectionProvider.builder("fixed")
 .maxConnections(50)
 .pendingAcquireTimeout(Duration.ofSeconds(60)) ①
 .build();

 Connection connection =
 TcpClient.create(provider)
 .host("example.com")
 .port(80)
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Configures the maximum time for the pending acquire operation to 60 seconds.

The following listing shows the available configurations:

Configuration name Description

disposeInactivePoolsInBackground When this option is enabled, connection pools
are regularly checked in the background, and
those that are empty and been inactive for a
specified time become eligible for disposal. By
default, this background disposal of inactive
pools is disabled.

48

Configuration name Description

disposeTimeout When ConnectionProvider#dispose() or
ConnectionProvider#disposeLater() is called,
trigger a graceful shutdown for the connection
pools, with this grace period timeout. From
there on, all calls for acquiring a connection will
fail fast with an exception. However, for the
provided Duration, pending acquires will get a
chance to be served. Note: The rejection of new
acquires and the grace timer start immediately,
irrespective of subscription to the Mono returned
by ConnectionProvider#disposeLater().
Subsequent calls return the same Mono,
effectively getting notifications from the first
graceful shutdown call and ignoring
subsequently provided timeouts. By default,
dispose timeout is not specified.

maxConnections The maximum number of connections (per
connection pool) before start pending. Default to
2 * available number of processors (but with a
minimum value of 16).

metrics Enables/disables built-in integration with
Micrometer. ConnectionProvider.MeterRegistrar
can be provided for integration with another
metrics system. By default, metrics are not
enabled.

pendingAcquireMaxCount The maximum number of extra attempts at
acquiring a connection to keep in a pending
queue. If -1 is specified, the pending queue does
not have upper limit. Default to 2 * max
connections.

pendingAcquireTimeout The maximum time before which a pending
acquire must complete, or a TimeoutException is
thrown (resolution: ms). If -1 is specified, no
such timeout is applied. Default: 45 seconds.

If you need to disable the connection pool, you can apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/pool/Application.java

49

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/pool/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/pool/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.newConnection()
 .host("example.com")
 .port(80)
 .connectNow();

 connection.onDispose()
 .block();
 }
}

Disposing Connection Pool

• If you use the default ConnectionProvider provided by Reactor Netty, invoke
HttpResources#disposeLoopsAndConnections/#disposeLoopsAndConnectionsLater method.


Disposing HttpResources means that every client that is using it, will not be able to
use it anymore!

• If you use custom ConnectionProvider, invoke ConnectionProvider#dispose/#disposeLater
/#disposeWhen method.


Disposing the custom ConnectionProvider means that every client that is configured
to use it, will not be able to use it anymore!

Metrics

The pooled ConnectionProvider supports built-in integration with Micrometer. It exposes all metrics
with a prefix of reactor.netty.connection.provider.

Pooled ConnectionProvider metrics

metric name type description

reactor.netty.connection.provid
er.total.connections

Gauge The number of all connections,
active or idle. See Total
Connections

reactor.netty.connection.provid
er.active.connections

Gauge The number of the connections
that have been successfully
acquired and are in active use.
See Active Connections

50

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/HttpResources.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/ConnectionProvider.html
https://micrometer.io/
observability.pdf#observability-metrics-total-connections
observability.pdf#observability-metrics-total-connections
observability.pdf#observability-metrics-active-connections

metric name type description

reactor.netty.connection.provid
er.max.connections

Gauge The maximum number of
active connections that are
allowed. See Max Connections

reactor.netty.connection.provid
er.idle.connections

Gauge The number of the idle
connections. See Idle
Connections

reactor.netty.connection.provid
er.pending.connections

Gauge The number of requests that
are waiting for a connection.
See Pending Connections

reactor.netty.connection.provid
er.pending.connections.time

Timer Time spent in pending acquire
a connection from the
connection pool. See Pending
Connections Time

reactor.netty.connection.provid
er.max.pending.connections

Gauge The maximum number of
requests that will be queued
while waiting for a ready
connection. See Max Pending
Connections

The following example enables that integration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/pool/metrics/Application.java

51

observability.pdf#observability-metrics-max-connections
observability.pdf#observability-metrics-idle-connections
observability.pdf#observability-metrics-idle-connections
observability.pdf#observability-metrics-pending-connections
observability.pdf#observability-metrics-pending-connections-time
observability.pdf#observability-metrics-pending-connections-time
observability.pdf#observability-metrics-max-pending-connections
observability.pdf#observability-metrics-max-pending-connections
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/pool/metrics/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/pool/metrics/Application.java

import reactor.netty.Connection;
import reactor.netty.resources.ConnectionProvider;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 ConnectionProvider provider =
 ConnectionProvider.builder("fixed")
 .maxConnections(50)
 .metrics(true) ①
 .build();

 Connection connection =
 TcpClient.create(provider)
 .host("example.com")
 .port(80)
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Enables the built-in integration with Micrometer

SSL and TLS
When you need SSL or TLS, you can apply the following configuration. By default, if OpenSSL is
available, the SslProvider.OPENSSL provider is used as a provider. Otherwise, the provider is
SslProvider.JDK. You can switch the provider by using SslContextBuilder or by setting
-Dio.netty.handler.ssl.noOpenSsl=true.

The following example uses SslContextBuilder:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/security/Application.java

52

https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#OPENSSL
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#JDK
https://netty.io/4.1/api/io/netty/handler/ssl/SslContextBuilder.html#sslProvider-io.netty.handler.ssl.SslProvider-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/security/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/security/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;
import reactor.netty.tcp.TcpSslContextSpec;

public class Application {

 public static void main(String[] args) {
 TcpSslContextSpec tcpSslContextSpec = TcpSslContextSpec.forClient();

 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(443)
 .secure(spec -> spec.sslContext(tcpSslContextSpec))
 .connectNow();

 connection.onDispose()
 .block();
 }
}

Server Name Indication

By default, the TCP client sends the remote host name as SNI server name. When you need to change
this default setting, you can configure the TCP client as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/sni/Application.java

53

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/sni/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/sni/Application.java

import io.netty.handler.ssl.SslContext;
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

import javax.net.ssl.SNIHostName;

public class Application {

 public static void main(String[] args) throws Exception {
 SslContext sslContext = SslContextBuilder.forClient().build();

 Connection connection =
 TcpClient.create()
 .host("127.0.0.1")
 .port(8080)
 .secure(spec -> spec.sslContext(sslContext)
 .serverNames(new SNIHostName(
"test.com")))
 .connectNow();

 connection.onDispose()
 .block();
 }
}

Proxy Support
Reactor Netty supports the proxy functionality provided by Netty and provides a way to specify non
proxy hosts through the ProxyProvider builder.

Netty’s HTTP proxy support always uses CONNECT method in order to establish a tunnel to the
specified proxy regardless of the scheme that is used http or https. (More information: Netty
enforce HTTP proxy to support HTTP CONNECT method). Some proxies might not support CONNECT
method when the scheme is http or might need to be configured in order to support this way of
communication. Sometimes this might be the reason for not being able to connect to the proxy.
Consider checking the proxy documentation whether it supports or needs an additional
configuration in order to support CONNECT method.

The following example uses ProxyProvider:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/proxy/Application.java

54

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/tcp/ProxyProvider.html
https://github.com/netty/netty/issues/10475
https://github.com/netty/netty/issues/10475
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/proxy/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/proxy/Application.java

import reactor.netty.Connection;
import reactor.netty.transport.ProxyProvider;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .proxy(spec -> spec.type(ProxyProvider.Proxy.SOCKS4)
 .host("proxy")
 .port(8080)
 .nonProxyHosts("localhost")
 .connectTimeoutMillis(20_000)) ①
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Configures the connection establishment timeout to 20 seconds.

Metrics
The TCP client supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.tcp.client.

The following table provides information for the TCP client metrics:

metric name type description

reactor.netty.tcp.client.data.rec
eived

DistributionSummary Amount of the data received, in
bytes. See Data Received

reactor.netty.tcp.client.data.sent DistributionSummary Amount of the data sent, in
bytes. See Data Sent

reactor.netty.tcp.client.errors Counter Number of errors that occurred.
See Errors Count

reactor.netty.tcp.client.tls.hands
hake.time

Timer Time spent for TLS handshake.
See Tls Handshake Time

reactor.netty.tcp.client.connect.t
ime

Timer Time spent for connecting to
the remote address. See
Connect Time

55

https://micrometer.io/
observability.pdf#observability-metrics-data-received
observability.pdf#observability-metrics-data-sent
observability.pdf#observability-metrics-errors-count
observability.pdf#observability-metrics-tls-handshake-time
observability.pdf#observability-metrics-connect-time

metric name type description

reactor.netty.tcp.client.address.
resolver

Timer Time spent for resolving the
address. See Hostname
Resolution Time

These additional metrics are also available:

Pooled ConnectionProvider metrics

metric name type description

reactor.netty.connection.provid
er.total.connections

Gauge The number of all connections,
active or idle. See Total
Connections

reactor.netty.connection.provid
er.active.connections

Gauge The number of the connections
that have been successfully
acquired and are in active use.
See Active Connections

reactor.netty.connection.provid
er.max.connections

Gauge The maximum number of
active connections that are
allowed. See Max Connections

reactor.netty.connection.provid
er.idle.connections

Gauge The number of the idle
connections. See Idle
Connections

reactor.netty.connection.provid
er.pending.connections

Gauge The number of requests that
are waiting for a connection.
See Pending Connections

reactor.netty.connection.provid
er.pending.connections.time

Timer Time spent in pending acquire
a connection from the
connection pool. See Pending
Connections Time

reactor.netty.connection.provid
er.max.pending.connections

Gauge The maximum number of
requests that will be queued
while waiting for a ready
connection. See Max Pending
Connections

ByteBufAllocator metrics

metric name type description

reactor.netty.bytebuf.allocator.
used.heap.memory

Gauge The number of bytes reserved
by heap buffer allocator. See
Used Heap Memory

56

observability.pdf#observability-metrics-hostname-resolution-time
observability.pdf#observability-metrics-hostname-resolution-time
observability.pdf#observability-metrics-total-connections
observability.pdf#observability-metrics-total-connections
observability.pdf#observability-metrics-active-connections
observability.pdf#observability-metrics-max-connections
observability.pdf#observability-metrics-idle-connections
observability.pdf#observability-metrics-idle-connections
observability.pdf#observability-metrics-pending-connections
observability.pdf#observability-metrics-pending-connections-time
observability.pdf#observability-metrics-pending-connections-time
observability.pdf#observability-metrics-max-pending-connections
observability.pdf#observability-metrics-max-pending-connections
observability.pdf#observability-metrics-used-heap-memory

metric name type description

reactor.netty.bytebuf.allocator.
used.direct.memory

Gauge The number of bytes reserved
by direct buffer allocator. See
Used Direct Memory

reactor.netty.bytebuf.allocator.
heap.arenas

Gauge The number of heap arenas
(when PooledByteBufAllocator).
See Heap Arenas

reactor.netty.bytebuf.allocator.
direct.arenas

Gauge The number of direct arenas
(when PooledByteBufAllocator).
See Direct Arenas

reactor.netty.bytebuf.allocator.t
hreadlocal.caches

Gauge The number of thread local
caches (when
PooledByteBufAllocator). See
Thread Local Caches

reactor.netty.bytebuf.allocator.s
mall.cache.size

Gauge The size of the small cache
(when PooledByteBufAllocator).
See Small Cache Size

reactor.netty.bytebuf.allocator.
normal.cache.size

Gauge The size of the normal cache
(when PooledByteBufAllocator).
See Normal Cache Size

reactor.netty.bytebuf.allocator.c
hunk.size

Gauge The chunk size for an arena
(when PooledByteBufAllocator).
See Chunk Size

reactor.netty.bytebuf.allocator.
active.heap.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
heap buffer pools (when
PooledByteBufAllocator). See
Active Heap Memory

reactor.netty.bytebuf.allocator.
active.direct.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
direct buffer pools (when
PooledByteBufAllocator). See
Active Direct Memory

EventLoop metrics

metric name type description

reactor.netty.eventloop.pending
.tasks

Gauge The number of tasks that are
pending for processing on an
event loop. See Pending Tasks

The following example enables that integration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/

57

observability.pdf#observability-metrics-used-direct-memory
observability.pdf#observability-metrics-heap-arenas
observability.pdf#observability-metrics-direct-arenas
observability.pdf#observability-metrics-thread-local-caches
observability.pdf#observability-metrics-small-cache-size
observability.pdf#observability-metrics-normal-cache-size
observability.pdf#observability-metrics-chunk-size
observability.pdf#observability-metrics-active-heap-memory
observability.pdf#observability-metrics-active-direct-memory
observability.pdf#observability-metrics-pending-tasks
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/metrics/Application.java

examples/documentation/tcp/client/metrics/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .metrics(true) ①
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Enables the built-in integration with Micrometer

When TCP client metrics are needed for an integration with a system other than Micrometer or you
want to provide your own integration with Micrometer, you can provide your own metrics recorder,
as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/metrics/custom/Application.java

import reactor.netty.Connection;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.tcp.TcpClient;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .metrics(true, CustomChannelMetricsRecorder::new) ①
 .connectNow();

 connection.onDispose()
 .block();
 }

58

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/metrics/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/metrics/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/metrics/custom/Application.java

① Enables TCP client metrics and provides ChannelMetricsRecorder implementation.

Tracing
The TCP client supports built-in integration with Micrometer Tracing.

The following table provides information for the TCP client spans:

contextual name description

hostname resolution Information and time spent for resolving the
address. See Hostname Resolution Span.

connect Information and time spent for connecting to
the remote address. See Connect Span.

tls handshake Information and time spent for TLS handshake.
See Tls Handshake Span.

The following example enables that integration. This concrete example uses Brave and reports the
information to Zipkin. See the Micrometer Tracing documentation for OpenTelemetry setup.

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/tracing/Application.java

import brave.Tracing;
import brave.propagation.StrictCurrentTraceContext;
import brave.sampler.Sampler;
import io.micrometer.tracing.CurrentTraceContext;
import io.micrometer.tracing.Tracer;
import io.micrometer.tracing.brave.bridge.BraveBaggageManager;
import io.micrometer.tracing.brave.bridge.BraveCurrentTraceContext;
import io.micrometer.tracing.brave.bridge.BraveTracer;
import reactor.netty.Connection;
import reactor.netty.observability.ReactorNettyTracingObservationHandler;
import reactor.netty.tcp.TcpClient;
import zipkin2.reporter.brave.AsyncZipkinSpanHandler;
import zipkin2.reporter.urlconnection.URLConnectionSender;

import static reactor.netty.Metrics.OBSERVATION_REGISTRY;

public class Application {

 public static void main(String[] args) {
 init(); ①

 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .metrics(true) ②

59

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/channel/ChannelMetricsRecorder.html
https://micrometer.io/docs/tracing
observability.pdf#observability-spans-hostname-resolution-span
observability.pdf#observability-spans-connect-span
observability.pdf#observability-spans-tls-handshake-span
https://micrometer.io/docs/tracing#_micrometer_tracing_opentelemetry_setup
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/tracing/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/tracing/Application.java

 .connectNow();

 connection.onDispose()
 .block();
 }

 /**
 * This setup is based on
 * Micrometer
Tracing Brave Setup.
 */
 static void init() {
 AsyncZipkinSpanHandler spanHandler = AsyncZipkinSpanHandler
 .create(URLConnectionSender.create
("http://localhost:9411/api/v2/spans"));

 StrictCurrentTraceContext braveCurrentTraceContext =
StrictCurrentTraceContext.create();

 CurrentTraceContext bridgeContext = new BraveCurrentTraceContext
(braveCurrentTraceContext);

 Tracing tracing =
 Tracing.newBuilder()
 .currentTraceContext(braveCurrentTraceContext)
 .supportsJoin(false)
 .traceId128Bit(true)
 .sampler(Sampler.ALWAYS_SAMPLE)
 .addSpanHandler(spanHandler)
 .localServiceName("reactor-netty-examples")
 .build();

 brave.Tracer braveTracer = tracing.tracer();

 Tracer tracer = new BraveTracer(braveTracer, bridgeContext, new
BraveBaggageManager());

 OBSERVATION_REGISTRY.observationConfig()
 .observationHandler(new
ReactorNettyTracingObservationHandler(tracer));
 }
}

① Initializes Brave, Zipkin, and the Observation registry.

② Enables the built-in integration with Micrometer.

The result in Zipkin looks like:

60

Access Current Observation

Project Micrometer provides a library that assists with context propagation across different types
of context mechanisms such as ThreadLocal, Reactor Context and others.

The following example shows how to use this library in a custom ChannelHandler:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/tracing/custom/Application.java

import brave.Tracing;
import brave.propagation.StrictCurrentTraceContext;
import brave.sampler.Sampler;
import io.micrometer.context.ContextSnapshot;
import io.micrometer.context.ContextSnapshotFactory;
import io.micrometer.tracing.CurrentTraceContext;
import io.micrometer.tracing.Tracer;
import io.micrometer.tracing.brave.bridge.BraveBaggageManager;
import io.micrometer.tracing.brave.bridge.BraveCurrentTraceContext;
import io.micrometer.tracing.brave.bridge.BraveTracer;
import io.netty.channel.ChannelHandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelOutboundHandlerAdapter;
import io.netty.channel.ChannelPromise;
import reactor.netty.Connection;
import reactor.netty.observability.ReactorNettyTracingObservationHandler;
import reactor.netty.tcp.TcpClient;
import zipkin2.reporter.brave.AsyncZipkinSpanHandler;
import zipkin2.reporter.urlconnection.URLConnectionSender;

61

https://micrometer.io/docs/contextPropagation
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/tracing/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/tracing/custom/Application.java

import java.net.SocketAddress;

import static reactor.netty.Metrics.OBSERVATION_REGISTRY;

public class Application {

 public static void main(String[] args) {
 init(); ①

 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .metrics(true) ②
 .doOnChannelInit((observer, channel, address) -> channel
.pipeline().addFirst(
 "custom-channel-handler",
CustomChannelOutboundHandler.INSTANCE)) ③
 .connectNow();

 connection.onDispose()
 .block();
 }

 static final class CustomChannelOutboundHandler extends
ChannelOutboundHandlerAdapter {

 static final ChannelHandler INSTANCE = new CustomChannelOutboundHandler();

 @Override
 public boolean isSharable() {
 return true;
 }

 @Override
 @SuppressWarnings({"FutureReturnValueIgnored", "try"})
 public void connect(ChannelHandlerContext ctx, SocketAddress remoteAddress,
SocketAddress localAddress, ChannelPromise promise) {
 try (ContextSnapshot.Scope scope = ContextSnapshotFactory.builder().
build().setThreadLocalsFrom(ctx.channel())) {
 System.out.println("Current Observation in Scope: " +
OBSERVATION_REGISTRY.getCurrentObservation());
 //"FutureReturnValueIgnored" this is deliberate
 ctx.connect(remoteAddress, localAddress, promise);
 }
 System.out.println("Current Observation: " + OBSERVATION_REGISTRY
.getCurrentObservation());
 }
 }

62

① Initializes Brave, Zipkin, and the Observation registry.

② Enables the built-in integration with Micrometer.

③ Custom ChannelHandler that uses context propagation library. This concrete example overrides
only ChannelOutboundHandlerAdapter#connect, if it is needed, the same logic can be used for the
rest of the methods. Also, this concrete example sets all ThreadLocal values for which there is a
value in the given Channel, if another behaviour is needed please check context propagation
library API. For example, you may want to set only some of the ThreadLocal values.



When you enable Reactor Netty tracing within a framework, you may need to let
Reactor Netty use the ObservationRegistry created by this framework. For this
purpose you need to invoke reactor.netty.Metrics#observationRegistry. You may
also need to configure the Reactor Netty ObservationHandlers using the API
provided by the framework.

Unix Domain Sockets
The TCP client supports Unix Domain Sockets (UDS) when native transport is in use.

The following example shows how to use UDS support:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/uds/Application.java

import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .remoteAddress(() -> new DomainSocketAddress(
"/tmp/test.sock")) ①
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Specifies DomainSocketAddress that will be used

Host Name Resolution
By default, the TcpClient uses Netty’s domain name lookup mechanism that resolves a domain
name asynchronously. This is as an alternative of the JVM’s built-in blocking resolver.

63

https://micrometer.io/docs/contextPropagation
https://micrometer.io/docs/contextPropagation
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Metrics.html#observationRegistry-io.micrometer.observation.ObservationRegistry-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/uds/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/uds/Application.java

When you need to change the default settings, you can configure the TcpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/resolver/Application.java

import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .resolver(spec -> spec.queryTimeout(Duration.ofMillis(500)))
①
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① The timeout of each DNS query performed by this resolver will be 500ms.

The following listing shows the available configurations. Additionally, TCP fallback is enabled by
default.

Configuration name Description

bindAddressSupplier The supplier of the local address to bind to.

cacheMaxTimeToLive The max time to live of the cached DNS resource
records (resolution: seconds). If the time to live
of the DNS resource record returned by the DNS
server is greater than this max time to live, this
resolver ignores the time to live from the DNS
server and uses use this max time to live.
Default to Integer.MAX_VALUE.

cacheMinTimeToLive The min time to live of the cached DNS resource
records (resolution: seconds). If the time to live
of the DNS resource record returned by the DNS
server is less than this min time to live, this
resolver ignores the time to live from the DNS
server and uses this min time to live. Default: 0.

64

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/resolver/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/resolver/Application.java
https://tools.ietf.org/html/rfc7766

Configuration name Description

cacheNegativeTimeToLive The time to live of the cache for the failed DNS
queries (resolution: seconds). Default: 0.

completeOncePreferredResolved When this setting is enabled, the resolver
notifies as soon as all queries for the preferred
address type are complete. When this setting is
disabled, the resolver notifies when all possible
address types are complete. This configuration is
applicable for
DnsNameResolver#resolveAll(String). By default,
this setting is enabled.

disableOptionalRecord Disables the automatic inclusion of an optional
record that tries to give a hint to the remote DNS
server about how much data the resolver can
read per response. By default, this setting is
enabled.

disableRecursionDesired Specifies whether this resolver has to send a
DNS query with the recursion desired (RD) flag
set. By default, this setting is enabled.

dnsAddressResolverGroupProvider Sets a custom function to create a
DnsAddressResolverGroup given a
DnsNameResolverBuilder

hostsFileEntriesResolver Sets a custom HostsFileEntriesResolver to be
used for hosts file entries. Default:
DefaultHostsFileEntriesResolver.

maxPayloadSize Sets the capacity of the datagram packet buffer
(in bytes). Default: 4096.

maxQueriesPerResolve Sets the maximum allowed number of DNS
queries to send when resolving a host name.
Default: 16.

ndots Sets the number of dots that must appear in a
name before an initial absolute query is made.
Default: -1 (to determine the value from the OS
on Unix or use a value of 1 otherwise).

queryTimeout Sets the timeout of each DNS query performed
by this resolver (resolution: milliseconds).
Default: 5000.

resolveCache The cache to use to store resolved DNS entries.

resolvedAddressTypes The list of the protocol families of the resolved
address.

65

https://netty.io/4.1/api/io/netty/resolver/HostsFileEntriesResolver.html
https://netty.io/4.1/api/io/netty/resolver/DefaultHostsFileEntriesResolver.html

Configuration name Description

retryTcpOnTimeout Specifies whether this resolver will also fallback
to TCP if a timeout is detected. By default, the
resolver will only try to use TCP if the response
is marked as truncated.

roundRobinSelection Enables an AddressResolverGroup of
DnsNameResolver that supports random selection
of destination addresses if multiple are provided
by the nameserver. See
RoundRobinDnsAddressResolverGroup. Default:
DnsAddressResolverGroup

runOn Performs the communication with the DNS
servers on the given LoopResources. By default,
the LoopResources specified on the client level
are used.

searchDomains The list of search domains of the resolver. By
default, the effective search domain list is
populated by using the system DNS search
domains.

trace A specific logger and log level to be used by this
resolver when generating detailed trace
information in case of resolution failure.

Sometimes, you may want to switch to the JVM built-in resolver. To do so, you can configure the
TcpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/tcp/client/resolver/custom/Application.java

66

https://netty.io/4.1/api/io/netty/resolver/AddressResolverGroup.html
https://netty.io/4.1/api/io/netty/resolver/dns/DnsNameResolver.html
https://netty.io/4.1/api/io/netty/resolver/dns/RoundRobinDnsAddressResolverGroup.html
https://netty.io/4.1/api/io/netty/resolver/dns/DnsAddressResolverGroup.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/resolver/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/tcp/client/resolver/custom/Application.java

import io.netty.resolver.DefaultAddressResolverGroup;
import reactor.netty.Connection;
import reactor.netty.tcp.TcpClient;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 TcpClient.create()
 .host("example.com")
 .port(80)
 .resolver(DefaultAddressResolverGroup.INSTANCE) ①
 .connectNow();

 connection.onDispose()
 .block();
 }
}

① Sets the JVM built-in resolver.

67

Chapter 5. HTTP Server
Reactor Netty provides the easy-to-use and easy-to-configure HttpServer class. It hides most of the
Netty functionality that is needed in order to create a HTTP server and adds Reactive Streams
backpressure.

Starting and Stopping
To start an HTTP server, you must create and configure a HttpServer instance. By default, the host
is configured for any local address, and the system picks up an ephemeral port when the bind
operation is invoked. The following example shows how to create an HttpServer instance:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/create/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create() ①
 .bindNow(); ②

 server.onDispose()
 .block();
 }
}

① Creates an HttpServer instance ready for configuring.

② Starts the server in a blocking fashion and waits for it to finish initializing.

The returned DisposableServer offers a simple server API, including disposeNow(), which shuts the
server down in a blocking fashion.

Host and Port

To serve on a specific host and port, you can apply the following configuration to the HTTP server:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/address/Application.java

68

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServer.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServer.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/create/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/create/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServer.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/DisposableServer.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/DisposableChannel.html#disposeNow-java.time.Duration-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/address/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/address/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .host("localhost") ①
 .port(8080) ②
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Configures the HTTP server host

② Configures the HTTP server port

To serve on multiple addresses, after having configured the HttpServer you can bind it multiple
times to obtain separate DisposableServer`s. All created servers will share resources such as
`LoopResources because they use the same configuration instance under the hood.

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/address/MultiAddressApplication.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class MultiAddressApplication {
 public static void main(String[] args) {
 HttpServer httpServer = HttpServer.create();
 DisposableServer server1 = httpServer
 .host("localhost") ①
 .port(8080) ②
 .bindNow();

 DisposableServer server2 = httpServer
 .host("0.0.0.0") ③
 .port(8081) ④
 .bindNow();

 Mono.when(server1.onDispose(), server2.onDispose())
 .block();
 }
}

69

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/address/MultiAddressApplication.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/address/MultiAddressApplication.java

① Configures the first HTTP server host

② Configures the first HTTP server port

③ Configures the second HTTP server host

④ Configures the second HTTP server port

Eager Initialization
By default, the initialization of the HttpServer resources happens on demand. This means that the
bind operation absorbs the extra time needed to initialize and load:

• the event loop groups

• the native transport libraries (when native transport is used)

• the native libraries for the security (in case of OpenSsl)

When you need to preload these resources, you can configure the HttpServer as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/warmup/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 HttpServer httpServer =
 HttpServer.create()
 .handle((request, response) -> request.receive().then());

 httpServer.warmup() ①
 .block();

 DisposableServer server = httpServer.bindNow();

 server.onDispose()
 .block();
 }
}

① Initialize and load the event loop groups, the native transport libraries and the native libraries
for the security

Routing HTTP
Defining routes for the HTTP server requires configuring the provided HttpServerRoutes builder. The
following example shows how to do so:

70

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/warmup/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/warmup/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServerRoutes.html

github.com/reactor/reactor-netty/tree/main/reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/server/routing/
Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .route(routes ->
 routes.get("/hello", ①
 (request, response) -> response.sendString
(Mono.just("Hello World!")))
 .post("/echo", ②
 (request, response) -> response.send(request
.receive().retain()))
 .get("/path/{param}", ③
 (request, response) -> response.sendString
(Mono.just(request.param("param"))))
 .ws("/ws", ④
 (wsInbound, wsOutbound) -> wsOutbound.send
(wsInbound.receive().retain())))
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Serves a GET request to /hello and returns Hello World!

② Serves a POST request to /echo and returns the received request body as a response.

③ Serves a GET request to /path/{param} and returns the value of the path parameter.

④ Serves websocket to /ws and returns the received incoming data as outgoing data.


The server routes are unique and only the first matching in order of declaration is
invoked.

SSE

The following code shows how you can configure the HTTP server to serve Server-Sent Events:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/sse/Application.java

71

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/routing/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/routing/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/routing/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/routing/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/sse/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/sse/Application.java

import com.fasterxml.jackson.databind.ObjectMapper;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import org.reactivestreams.Publisher;
import reactor.core.publisher.Flux;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.http.server.HttpServerRequest;
import reactor.netty.http.server.HttpServerResponse;

import java.io.ByteArrayOutputStream;
import java.nio.charset.Charset;
import java.time.Duration;
import java.util.function.BiFunction;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .route(routes -> routes.get("/sse", serveSse()))
 .bindNow();

 server.onDispose()
 .block();
 }

 /**
 * Prepares SSE response.
 * The "Content-Type" is "text/event-stream".
 * The flushing strategy is "flush after every element" emitted by the provided
Publisher.
 */
 private static BiFunction<HttpServerRequest, HttpServerResponse, Publisher<Void>>
serveSse() {
 Flux<Long> flux = Flux.interval(Duration.ofSeconds(10));
 return (request, response) ->
 response.sse()
 .send(flux.map(Application::toByteBuf), b -> true);
 }

 /**
 * Transforms the Object to ByteBuf following the expected SSE format.
 */
 private static ByteBuf toByteBuf(Object any) {
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 try {
 out.write("data: ".getBytes(Charset.defaultCharset()));
 MAPPER.writeValue(out, any);
 out.write("\n\n".getBytes(Charset.defaultCharset()));

72

 }
 catch (Exception e) {
 throw new RuntimeException(e);
 }
 return ByteBufAllocator.DEFAULT
 .buffer()
 .writeBytes(out.toByteArray());
 }

 private static final ObjectMapper MAPPER = new ObjectMapper();
}

Static Resources

The following code shows how you can configure the HTTP server to serve static resources:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/staticresources/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

import java.net.URISyntaxException;
import java.nio.file.Path;
import java.nio.file.Paths;

public class Application {

 public static void main(String[] args) throws URISyntaxException {
 Path file = Paths.get(Application.class.getResource("/logback.xml").toURI());
 DisposableServer server =
 HttpServer.create()
 .route(routes -> routes.file("/index.html", file))
 .bindNow();

 server.onDispose()
 .block();
 }
}

Writing Data
To send data to a connected client, you must attach an I/O handler by using either handle(…) or
route(…). The I/O handler has access to HttpServerResponse, to be able to write data. The following
example uses the handle(…) method:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/send/Application.java

73

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/staticresources/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/staticresources/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServer.html#handle-java.util.function.BiFunction-
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServer.html#route-java.util.function.Consumer-
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServerResponse.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/send/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/send/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .handle((request, response) -> response.sendString(Mono.
just("hello"))) ①
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Sends hello string to the connected clients

Adding Headers and Other Metadata

When you send data to the connected clients, you may need to send additional headers, cookies,
status code, and other metadata. You can provide this additional metadata by using
HttpServerResponse. The following example shows how to do so:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/send/headers/Application.java

74

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServerResponse.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/send/headers/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/send/headers/Application.java

import io.netty.handler.codec.http.HttpHeaderNames;
import io.netty.handler.codec.http.HttpResponseStatus;
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .route(routes ->
 routes.get("/hello",
 (request, response) ->
 response.status(HttpResponseStatus.OK)
 .header(HttpHeaderNames.CONTENT_LENGTH,
"12")
 .sendString(Mono.just("Hello World!"))))
 .bindNow();

 server.onDispose()
 .block();
 }
}

Compression

You can configure the HTTP server to send a compressed response, depending on the request header
Accept-Encoding.

Reactor Netty provides three different strategies for compressing the outgoing data:

• compress(boolean): Depending on the boolean that is provided, the compression is enabled (true)
or disabled (false).

• compress(int): The compression is performed once the response size exceeds the given value (in
bytes).

• compress(BiPredicate<HttpServerRequest, HttpServerResponse>): The compression is performed
if the predicate returns true.

The following example uses the compress method (set to true) to enable compression:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/compression/Application.java

75

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/compression/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/compression/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

import java.net.URISyntaxException;
import java.nio.file.Path;
import java.nio.file.Paths;

public class Application {

 public static void main(String[] args) throws URISyntaxException {
 Path file = Paths.get(Application.class.getResource("/logback.xml").toURI());
 DisposableServer server =
 HttpServer.create()
 .compress(true)
 .route(routes -> routes.file("/index.html", file))
 .bindNow();

 server.onDispose()
 .block();
 }
}

Consuming Data
To receive data from a connected client, you must attach an I/O handler by using either handle(…)
or route(…). The I/O handler has access to HttpServerRequest, to be able to read data.

The following example uses the handle(…) method:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/read/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .handle((request, response) -> request.receive().then()) ①
 .bindNow();

 server.onDispose()
 .block();
 }
}

76

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServer.html#handle-java.util.function.BiFunction-
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServer.html#route-java.util.function.Consumer-
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServerRequest.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/read/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/read/Application.java

① Receives data from the connected clients

Reading Headers, URI Params, and other Metadata

When you receive data from the connected clients, you might need to check request headers,
parameters, and other metadata. You can obtain this additional metadata by using
HttpServerRequest. The following example shows how to do so:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/read/headers/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .route(routes ->
 routes.get("/{param}",
 (request, response) -> {
 if (request.requestHeaders().contains("Some-
Header")) {
 return response.sendString(Mono.just(
request.param("param")));
 }
 return response.sendNotFound();
 }))
 .bindNow();

 server.onDispose()
 .block();
 }
}

Reading Post Form or Multipart Data

When you receive data from the connected clients, you might want to access POST form
(application/x-www-form-urlencoded) or multipart (multipart/form-data) data. You can obtain this
data by using HttpServerRequest.

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/multipart/Application.java

77

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServerRequest.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/read/headers/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/read/headers/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServerRequest.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/multipart/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/multipart/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .route(routes ->
 routes.post("/multipart", (request, response) ->
response.sendString(
 request.receiveForm() ①
 .flatMap(data -> Mono.just('[' + data
.getName() + ']')))))
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Receives POST form/multipart data.

When you need to change the default settings, you can configure the HttpServer or you can provide
a configuration per request:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/multipart/custom/Application.java

78

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/multipart/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/multipart/custom/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .httpFormDecoder(builder -> builder.maxInMemorySize(0))
①
 .route(routes ->
 routes.post("/multipart", (request, response) ->
response.sendString(
 request.receiveForm(builder -> builder
.maxInMemorySize(256)) ②
 .flatMap(data -> Mono.just('[' + data
.getName() + ']')))))
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Configuration on the HttpServer that specifies that the data is stored on disk only.

② Configuration per request that specifies that if the data size exceed the specified size, the data is
stored on the disk.

The following listing shows the available configurations:

Configuration name Description

baseDirectory Configures the directory where to store the data
on the disk. Default to generated temp directory.

charset Configures the Charset for the data. Default to
StandardCharsets#UTF_8.

maxInMemorySize Configures the maximum in-memory size per
data i.e. the data is written on disk if the size is
greater than maxInMemorySize, else it is in
memory. If set to -1 the entire contents is stored
in memory. If set to 0 the entire contents is
stored on disk. Default to 16kb.

maxSize Configures the maximum size per data. When
the limit is reached, an exception is raised. If set
to -1 this means no limitation. Default to -1 -
unlimited.

79

Configuration name Description

scheduler Configures the scheduler to be used for
offloading disk operations in the decoding
phase. Default to Schedulers#boundedElastic()

streaming When set to true, the data is streamed directly
from the parsed input buffer stream, which
means it is not stored either in memory or file.
When false, parts are backed by in-memory
and/or file storage. Default to false. NOTE that
with streaming enabled, the provided data
might not be in a complete state i.e.
HttpData#isCompleted() has to be checked. Also
note that enabling this property effectively
ignores maxInMemorySize, baseDirectory, and
scheduler.

Obtaining the Remote (Client) Address

In addition to the metadata that you can obtain from the request, you can also receive the host
(server) address, the remote (client) address and the scheme. Depending on the chosen factory
method, you can retrieve the information directly from the channel or by using the Forwarded or X-
Forwarded-* HTTP request headers. The following example shows how to do so:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/clientaddress/Application.java

80

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/clientaddress/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/clientaddress/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .forwarded(true) ①
 .route(routes ->
 routes.get("/clientip",
 (request, response) ->
 response.sendString(Mono.just(request
.remoteAddress() ②

.getHostString()))))
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Specifies that the information about the connection is to be obtained from the Forwarded and X-
Forwarded-* HTTP request headers, if possible.

② Returns the address of the remote (client) peer.

It is also possible to customize the behavior of the Forwarded or X-Forwarded-* header handler. The
following example shows how to do so:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/clientaddress/
CustomForwardedHeaderHandlerApplication.java

81

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/clientaddress/CustomForwardedHeaderHandlerApplication.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/clientaddress/CustomForwardedHeaderHandlerApplication.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/clientaddress/CustomForwardedHeaderHandlerApplication.java

import java.net.InetSocketAddress;

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.transport.AddressUtils;

public class CustomForwardedHeaderHandlerApplication {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .forwarded((connectionInfo, request) -> { ①
 String hostHeader = request.headers().get("X-Forwarded-
Host");
 if (hostHeader != null) {
 String[] hosts = hostHeader.split(",", 2);
 InetSocketAddress hostAddress = AddressUtils
.createUnresolved(
 hosts[hosts.length - 1].trim(),
 connectionInfo.getHostAddress().getPort());
 connectionInfo = connectionInfo.withHostAddress
(hostAddress);
 }
 return connectionInfo;
 })
 .route(routes ->
 routes.get("/clientip",
 (request, response) ->
 response.sendString(Mono.just(request
.remoteAddress() ②

.getHostString()))))
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Add a custom header handler.

② Returns the address of the remote (client) peer.

HTTP Request Decoder

By default, Netty configures some restrictions for the incoming requests, such as:

• The maximum length of the initial line.

• The maximum length of all headers.

82

• The maximum length of the content or each chunk.

For more information, see HttpRequestDecoder and HttpServerUpgradeHandler

By default, the HTTP server is configured with the following settings:

github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/
HttpDecoderSpec.java

 public static final int DEFAULT_MAX_INITIAL_LINE_LENGTH = 4096;
 public static final int DEFAULT_MAX_HEADER_SIZE = 8192;
 /**
 * Default max chunk size.
 *
 * @deprecated as of 1.1.0. This will be removed in 2.0.0 as Netty 5 does not
support this configuration.
 */
 @Deprecated
 public static final int DEFAULT_MAX_CHUNK_SIZE = 8192;
 public static final boolean DEFAULT_VALIDATE_HEADERS = true;
 public static final int DEFAULT_INITIAL_BUFFER_SIZE = 128;
 public static final boolean DEFAULT_ALLOW_DUPLICATE_CONTENT_LENGTHS = false;

github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/
server/HttpRequestDecoderSpec.java

 /**
 * The maximum length of the content of the HTTP/2.0 clear-text upgrade request.
 * By default, the server will reject an upgrade request with non-empty content,
 * because the upgrade request is most likely a GET request.
 */
 public static final int DEFAULT_H2C_MAX_CONTENT_LENGTH = 0;

When you need to change these default settings, you can configure the HTTP server as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/requestdecoder/Application.java

83

https://netty.io/4.1/api/io/netty/handler/codec/http/HttpRequestDecoder.html
https://netty.io/4.1/api/io/netty/handler/codec/http/HttpServerUpgradeHandler.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/HttpDecoderSpec.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/HttpDecoderSpec.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/server/HttpRequestDecoderSpec.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/server/HttpRequestDecoderSpec.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/requestdecoder/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/requestdecoder/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .httpRequestDecoder(spec -> spec.maxHeaderSize(16384)) ①
 .handle((request, response) -> response.sendString(Mono.
just("hello")))
 .bindNow();

 server.onDispose()
 .block();
 }
}

① The maximum length of all headers will be 16384. When this value is exceeded, a
TooLongFrameException is raised.

Lifecycle Callbacks
The following lifecycle callbacks are provided to let you extend the HttpServer:

Callback Description

doOnBind Invoked when the server channel is about to
bind.

doOnBound Invoked when the server channel is bound.

doOnChannelInit Invoked when initializing the channel.

doOnConnection Invoked when a remote client is connected

doOnUnbound Invoked when the server channel is unbound.

The following example uses the doOnConnection and doOnChannelInit callbacks:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/lifecycle/Application.java

84

https://netty.io/4.1/api/io/netty/handler/codec/TooLongFrameException.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/lifecycle/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/lifecycle/Application.java

import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.ReadTimeoutHandler;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import java.util.concurrent.TimeUnit;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .doOnConnection(conn ->
 conn.addHandlerFirst(new ReadTimeoutHandler(10,
TimeUnit.SECONDS))) ①
 .doOnChannelInit((observer, channel, remoteAddress) ->
 channel.pipeline()
 .addFirst(new LoggingHandler
("reactor.netty.examples"))) ②
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Netty pipeline is extended with ReadTimeoutHandler when a remote client is connected.

② Netty pipeline is extended with LoggingHandler when initializing the channel.

TCP-level Configuration
When you need to change configuration on the TCP level, you can use the following snippet to
extend the default TCP server configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/channeloptions/Application.java

85

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/channeloptions/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/channeloptions/Application.java

import io.netty.channel.ChannelOption;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
 .bindNow();

 server.onDispose()
 .block();
 }
}

See TCP Server for more detail about TCP-level configuration.

Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers needs to be inspected.
By default, wire logging is disabled. To enable it, you must set the logger
reactor.netty.http.server.HttpServer level to DEBUG and apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/wiretap/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .wiretap(true) ①
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Enables the wire logging

86

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/wiretap/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/wiretap/Application.java

Wire Logger formatters

Reactor Netty supports 3 different formatters:

• AdvancedByteBufFormat#HEX_DUMP - the default

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in hex format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] REGISTERED
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] ACTIVE
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] READ: 145B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 50 4f 53 54 20 2f 74 65 73 74 2f 57 6f 72 6c 64 |POST /test/World|
 * |00000010| 20 48 54 54 50 2f 31 2e 31 0d 0a 43 6f 6e 74 65 | HTTP/1.1..Conte|
 * |00000020| 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 70 6c |nt-Type: text/pl|
 * |00000030| 61 69 6e 0d 0a 75 73 65 72 2d 61 67 65 6e 74 3a |ain..user-agent:|
 * |00000040| 20 52 65 61 63 74 6f 72 4e 65 74 74 79 2f 64 65 | ReactorNetty/de|
 * ...
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] WRITE: 38B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d |HTTP/1.1 200 OK.|
 * |00000010| 0a 63 6f 6e 74 65 6e 74 2d 6c 65 6e 67 74 68 3a |.content-length:|
 * |00000020| 20 30 0d 0a 0d 0a | 0.... |
 * +--------+---+----------------+
 * }
 * </pre>
 */

• AdvancedByteBufFormat#SIMPLE

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

87

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, only the events will be logged.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] REGISTERED
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] ACTIVE
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] READ: 145B
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] WRITE: 38B
 * }
 * </pre>
 */

• AdvancedByteBufFormat#TEXTUAL

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in plain text format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] REGISTERED
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] ACTIVE
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] READ: 145B POST /test/World HTTP/1.1
 * Content-Type: text/plain
 * user-agent: ReactorNetty/dev
 * ...
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] WRITE: 38B HTTP/1.1 200 OK
 * content-length: 0
 * }
 * </pre>
 */

When you need to change the default formatter you can configure it as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/

88

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/wiretap/custom/Application.java

examples/documentation/http/server/wiretap/custom/Application.java

import io.netty.handler.logging.LogLevel;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.transport.logging.AdvancedByteBufFormat;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .wiretap("logger-name", LogLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL) ①
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the content.

Event Loop Group

By default Reactor Netty uses an “Event Loop Group”, where the number of the worker threads
equals the number of processors available to the runtime on initialization (but with a minimum
value of 4). When you need a different configuration, you can use one of the LoopResources#create
methods.

The following listing shows the default configuration for the Event Loop Group:

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
ReactorNetty.java

89

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/wiretap/custom/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

 /**
 * Default worker thread count, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String IO_WORKER_COUNT = "reactor.netty.ioWorkerCount";
 /**
 * Default selector thread count, fallback to -1 (no selector thread)
 * <p>Note: In most use cases using a worker thread also as a
selector thread works well.
 * A possible use case for specifying a separate selector thread might be when the
worker threads are too busy
 * and connections cannot be accepted fast enough.
 * <p>Note: Although more than 1 can be configured as a selector
thread count, in reality
 * only 1 thread will be used as a selector thread.
 */
 public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
 /**
 * Default worker thread count for UDP, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String UDP_IO_THREAD_COUNT =
"reactor.netty.udp.ioThreadCount";
 /**
 * Default quiet period that guarantees that the disposal of the underlying
LoopResources
 * will not happen, fallback to 2 seconds.
 */
 public static final String SHUTDOWN_QUIET_PERIOD =
"reactor.netty.ioShutdownQuietPeriod";
 /**
 * Default maximum amount of time to wait until the disposal of the underlying
LoopResources
 * regardless if a task was submitted during the quiet period, fallback to 15
seconds.
 */
 public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";

 /**
 * Default value whether the native transport (epoll, kqueue) will be preferred,
 * fallback it will be preferred when available.
 */
 public static final String NATIVE = "reactor.netty.native";

If you need changes to these settings, you can apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/eventloop/Application.java

90

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/eventloop/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/eventloop/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.resources.LoopResources;

public class Application {

 public static void main(String[] args) {
 LoopResources loop = LoopResources.create("event-loop", 1, 4, true);

 DisposableServer server =
 HttpServer.create()
 .runOn(loop)
 .bindNow();

 server.onDispose()
 .block();
 }
}

Disposing Event Loop Group

• If you use the default Event Loop Group provided by Reactor Netty, invoke
HttpResources#disposeLoopsAndConnections/#disposeLoopsAndConnectionsLater method.


Disposing HttpResources means that every server/client that is using it, will not be
able to use it anymore!

• If you use custom LoopResources, invoke LoopResources#dispose/#disposeLater method.


Disposing the custom LoopResources means that every server/client that is
configured to use it, will not be able to use it anymore!

SSL and TLS
When you need SSL or TLS, you can apply the configuration shown in the next example. By default,
if OpenSSL is available, SslProvider.OPENSSL provider is used as a provider. Otherwise
SslProvider.JDK is used. You can switch the provider by using SslContextBuilder or by setting
-Dio.netty.handler.ssl.noOpenSsl=true.

The following example uses SslContextBuilder:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/security/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.Http11SslContextSpec;
import reactor.netty.http.server.HttpServer;

91

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/HttpResources.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#OPENSSL
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#JDK
https://netty.io/4.1/api/io/netty/handler/ssl/SslContextBuilder.html#sslProvider-io.netty.handler.ssl.SslProvider-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/security/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/security/Application.java

import java.io.File;

public class Application {

 public static void main(String[] args) {
 File cert = new File("certificate.crt");
 File key = new File("private.key");

 Http11SslContextSpec http11SslContextSpec = Http11SslContextSpec.forServer
(cert, key);

 DisposableServer server =
 HttpServer.create()
 .secure(spec -> spec.sslContext(http11SslContextSpec))
 .bindNow();

 server.onDispose()
 .block();
 }
}

Server Name Indication

You can configure the HTTP server with multiple SslContext mapped to a specific domain. An exact
domain name or a domain name containing a wildcard can be used when configuring the SNI
mapping.

The following example uses a domain name containing a wildcard:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/sni/Application.java

import io.netty.handler.ssl.SslContext;
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

import java.io.File;

public class Application {

 public static void main(String[] args) throws Exception {
 File defaultCert = new File("default_certificate.crt");
 File defaultKey = new File("default_private.key");

 File testDomainCert = new File("default_certificate.crt");
 File testDomainKey = new File("default_private.key");

 SslContext defaultSslContext = SslContextBuilder.forServer(defaultCert,
defaultKey).build();

92

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/sni/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/sni/Application.java

 SslContext testDomainSslContext = SslContextBuilder.forServer(testDomainCert,
testDomainKey).build();

 DisposableServer server =
 HttpServer.create()
 .secure(spec -> spec.sslContext(defaultSslContext)
 .addSniMapping("*.test.com",
 testDomainSpec ->
testDomainSpec.sslContext(testDomainSslContext)))
 .bindNow();

 server.onDispose()
 .block();
 }
}

HTTP Access Log
You can enable the HTTP access log either programmatically or by configuration. By default, it is
disabled.

You can use -Dreactor.netty.http.server.accessLogEnabled=true to enable the HTTP access log by
configuration.

You can use the following configuration (for Logback or similar logging frameworks) to have a
separate HTTP access log file:

<appender name="accessLog" class="ch.qos.logback.core.FileAppender">
 <file>access_log.log</file>
 <encoder>
 <pattern>%msg%n</pattern>
 </encoder>
</appender>
<appender name="async" class="ch.qos.logback.classic.AsyncAppender">
 <appender-ref ref="accessLog" />
</appender>

<logger name="reactor.netty.http.server.AccessLog" level="INFO" additivity="false">
 <appender-ref ref="async"/>
</logger>

The following example enables it programmatically:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/accessLog/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

93

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/Application.java

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .accessLog(true)
 .bindNow();

 server.onDispose()
 .block();
 }
}

Calling this method takes precedence over the system property configuration.

By default, the logging format is Common Log Format, but you can specify a custom one as a
parameter, as in the following example:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/accessLog/CustomLogAccessFormatApplication.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.http.server.logging.AccessLog;

public class CustomLogAccessFormatApplication {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .accessLog(true, x -> AccessLog.create("method={}, uri={}",
x.method(), x.uri()))
 .bindNow();

 server.onDispose()
 .block();
 }
}

You can also filter HTTP access logs by using the AccessLogFactory#createFilter method, as in the
following example:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/accessLog/FilterLogAccessApplication.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.http.server.logging.AccessLogFactory;

94

https://en.wikipedia.org/wiki/Common_Log_Format
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/CustomLogAccessFormatApplication.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/CustomLogAccessFormatApplication.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/FilterLogAccessApplication.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/FilterLogAccessApplication.java

public class FilterLogAccessApplication {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .accessLog(true, AccessLogFactory.createFilter(p -> !String
.valueOf(p.uri()).startsWith("/health/")))
 .bindNow();

 server.onDispose()
 .block();
 }
}

Note that this method can take a custom format parameter too, as in this example:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/accessLog/
CustomFormatAndFilterAccessLogApplication.java.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.http.server.logging.AccessLog;
import reactor.netty.http.server.logging.AccessLogFactory;

public class CustomFormatAndFilterAccessLogApplication {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .accessLog(true, AccessLogFactory.createFilter(p -> !String
.valueOf(p.uri()).startsWith("/health/"), ①
 x -> AccessLog.create("method={}, uri={}", x.
method(), x.uri()))) ②
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Specifies the filter predicate to use

② Specifies the custom format to apply

HTTP/2
By default, the HTTP server supports HTTP/1.1. If you need HTTP/2, you can get it through

95

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/CustomFormatAndFilterAccessLogApplication.java.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/CustomFormatAndFilterAccessLogApplication.java.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/accessLog/CustomFormatAndFilterAccessLogApplication.java.java

configuration. In addition to the protocol configuration, if you need H2 but not H2C (cleartext), you
must also configure SSL.



As Application-Layer Protocol Negotiation (ALPN) is not supported “out-of-the-box”
by JDK8 (although some vendors backported ALPN to JDK8), you need an
additional dependency to a native library that supports it — for example, netty-
tcnative-boringssl-static.

The following listing presents a simple H2 example:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/http2/H2Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.Http2SslContextSpec;
import reactor.netty.http.HttpProtocol;
import reactor.netty.http.server.HttpServer;
import java.io.File;

public class H2Application {

 public static void main(String[] args) {
 File cert = new File("certificate.crt");
 File key = new File("private.key");

 Http2SslContextSpec http2SslContextSpec = Http2SslContextSpec.forServer(cert,
key);

 DisposableServer server =
 HttpServer.create()
 .port(8080)
 .protocol(HttpProtocol.H2) ①
 .secure(spec -> spec.sslContext(http2SslContextSpec)) ②
 .handle((request, response) -> response.sendString(Mono.
just("hello")))
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Configures the server to support only HTTP/2

② Configures SSL

The application should now behave as follows:

$ curl --http2 https://localhost:8080 -i

96

https://netty.io/wiki/forked-tomcat-native.html
https://netty.io/wiki/forked-tomcat-native.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/http2/H2Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/http2/H2Application.java

HTTP/2 200

hello

The following listing presents a simple H2C example:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/http2/H2CApplication.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.HttpProtocol;
import reactor.netty.http.server.HttpServer;

public class H2CApplication {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .port(8080)
 .protocol(HttpProtocol.H2C)
 .handle((request, response) -> response.sendString(Mono.
just("hello")))
 .bindNow();

 server.onDispose()
 .block();
 }
}

The application should now behave as follows:

$ curl --http2-prior-knowledge http://localhost:8080 -i
HTTP/2 200

hello

Protocol Selection

github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/
HttpProtocol.java

 * @author Stephane Maldini
 */
public enum HttpProtocol {

 /**

97

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/http2/H2CApplication.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/http2/H2CApplication.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/HttpProtocol.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/HttpProtocol.java

 * The default supported HTTP protocol by HttpServer and HttpClient.
 */
 HTTP11,

 /**
 * HTTP/2.0 support with TLS
 * <p>If used along with HTTP/1.1 protocol, HTTP/2.0 will be the preferred
protocol.
 * While negotiating the application level protocol, HTTP/2.0 or HTTP/1.1 can be
chosen.
 * <p>If used without HTTP/1.1 protocol, HTTP/2.0 will always be offered as a
protocol
 * for communication with no fallback to HTTP/1.1.
 */
 H2,

 /**
 * HTTP/2.0 support with clear-text.
 * <p>If used along with HTTP/1.1 protocol, will support H2C "upgrade":
 * Request or consume requests as HTTP/1.1 first, looking for HTTP/2.0 headers
 * and {@literal Connection: Upgrade}. A server will typically reply a successful
 * 101 status if upgrade is successful or a fallback HTTP/1.1 response. When
 * successful the client will start sending HTTP/2.0 traffic.
 * <p>If used without HTTP/1.1 protocol, will support H2C "prior-knowledge":
Doesn't
 * require {@literal Connection: Upgrade} handshake between a client and server
but
 * fallback to HTTP/1.1 will not be supported.
 */
 H2C,

 /**
 * HTTP/3.0 support.
 * @since 1.2.0
 */

HTTP/3
By default, the HTTP server supports HTTP/1.1. If you need HTTP/3, you can get it through
configuration. In addition to the protocol configuration, you need to add dependency to
io.netty.incubator:netty-incubator-codec-http3.

The following listing presents a simple HTTP3 example:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/http3/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;

98

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/http3/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/http3/Application.java

import reactor.netty.http.Http3SslContextSpec;
import reactor.netty.http.HttpProtocol;
import reactor.netty.http.server.HttpServer;

import java.io.File;
import java.time.Duration;

public class Application {

 public static void main(String[] args) throws Exception {
 File certChainFile = new File("certificate chain file");
 File keyFile = new File("private key file");

 Http3SslContextSpec serverCtx = Http3SslContextSpec.forServer(keyFile, null,
certChainFile);

 DisposableServer server =
 HttpServer.create()
 .port(8080)
 .protocol(HttpProtocol.HTTP3) ①
 .secure(spec -> spec.sslContext(serverCtx)) ②
 .idleTimeout(Duration.ofSeconds(5))
 .http3Settings(spec -> spec.maxData(10000000) ③
 .maxStreamDataBidirectionalLocal
(1000000)
 .
maxStreamDataBidirectionalRemote(1000000)
 .maxStreamsBidirectional(100))
 .handle((request, response) -> response.header("server",
"reactor-netty")
 .sendString(Mono.
just("hello")))
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Configures the server to support only HTTP/3

② Configures SSL

③ Configures HTTP/3 settings

The application should now behave as follows:

$ curl --http3 https://localhost:8080 -i
HTTP/3 200
server: reactor-netty
content-length: 5

99

hello

Metrics
The HTTP server supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.http.server.

The following table provides information for the HTTP server metrics:

metric name type description

reactor.netty.http.server.stream
s.active

Gauge The number of active HTTP/2
streams. See Streams Active

reactor.netty.http.server.connec
tions.active

Gauge The number of http connections
currently processing requests.
See Connections Active

reactor.netty.http.server.connec
tions.total

Gauge The number of all opened
connections. See Connections
Total

reactor.netty.http.server.data.re
ceived

DistributionSummary Amount of the data received, in
bytes. See Data Received

reactor.netty.http.server.data.se
nt

DistributionSummary Amount of the data sent, in
bytes. See Data Sent

reactor.netty.http.server.errors Counter Number of errors that occurred.
See Errors Count

reactor.netty.http.server.data.re
ceived.time

Timer Time spent in consuming
incoming data. See Http Server
Data Received Time

reactor.netty.http.server.data.se
nt.time

Timer Time spent in sending outgoing
data. See Http Server Data Sent
Time

reactor.netty.http.server.respon
se.time

Timer Total time for the
request/response See Http
Server Response Time

These additional metrics are also available:

ByteBufAllocator metrics

metric name type description

reactor.netty.bytebuf.allocator.
used.heap.memory

Gauge The number of bytes reserved
by heap buffer allocator. See
Used Heap Memory

100

https://micrometer.io/
observability.pdf#observability-metrics-streams-active
observability.pdf#observability-metrics-connections-active
observability.pdf#observability-metrics-connections-total
observability.pdf#observability-metrics-connections-total
observability.pdf#observability-metrics-data-received
observability.pdf#observability-metrics-data-sent
observability.pdf#observability-metrics-errors-count
observability.pdf#observability-metrics-http-server-data-received-time
observability.pdf#observability-metrics-http-server-data-received-time
observability.pdf#observability-metrics-http-server-data-sent-time
observability.pdf#observability-metrics-http-server-data-sent-time
observability.pdf#observability-metrics-http-server-response-time
observability.pdf#observability-metrics-http-server-response-time
observability.pdf#observability-metrics-used-heap-memory

metric name type description

reactor.netty.bytebuf.allocator.
used.direct.memory

Gauge The number of bytes reserved
by direct buffer allocator. See
Used Direct Memory

reactor.netty.bytebuf.allocator.
heap.arenas

Gauge The number of heap arenas
(when PooledByteBufAllocator).
See Heap Arenas

reactor.netty.bytebuf.allocator.
direct.arenas

Gauge The number of direct arenas
(when PooledByteBufAllocator).
See Direct Arenas

reactor.netty.bytebuf.allocator.t
hreadlocal.caches

Gauge The number of thread local
caches (when
PooledByteBufAllocator). See
Thread Local Caches

reactor.netty.bytebuf.allocator.s
mall.cache.size

Gauge The size of the small cache
(when PooledByteBufAllocator).
See Small Cache Size

reactor.netty.bytebuf.allocator.
normal.cache.size

Gauge The size of the normal cache
(when PooledByteBufAllocator).
See Normal Cache Size

reactor.netty.bytebuf.allocator.c
hunk.size

Gauge The chunk size for an arena
(when PooledByteBufAllocator).
See Chunk Size

reactor.netty.bytebuf.allocator.
active.heap.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
heap buffer pools (when
PooledByteBufAllocator). See
Active Heap Memory

reactor.netty.bytebuf.allocator.
active.direct.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
direct buffer pools (when
PooledByteBufAllocator). See
Active Direct Memory

EventLoop metrics

metric name type description

reactor.netty.eventloop.pending
.tasks

Gauge The number of tasks that are
pending for processing on an
event loop. See Pending Tasks

The following example enables that integration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/

101

observability.pdf#observability-metrics-used-direct-memory
observability.pdf#observability-metrics-heap-arenas
observability.pdf#observability-metrics-direct-arenas
observability.pdf#observability-metrics-thread-local-caches
observability.pdf#observability-metrics-small-cache-size
observability.pdf#observability-metrics-normal-cache-size
observability.pdf#observability-metrics-chunk-size
observability.pdf#observability-metrics-active-heap-memory
observability.pdf#observability-metrics-active-direct-memory
observability.pdf#observability-metrics-pending-tasks
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/metrics/Application.java

examples/documentation/http/server/metrics/Application.java

import io.micrometer.core.instrument.Metrics;
import io.micrometer.core.instrument.config.MeterFilter;
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 Metrics.globalRegistry ①
 .config()
 .meterFilter(MeterFilter.maximumAllowableTags
("reactor.netty.http.server", "URI", 100, MeterFilter.deny()));

 DisposableServer server =
 HttpServer.create()
 .metrics(true, s -> {
 if (s.startsWith("/stream/")) { ②
 return "/stream/{n}";
 }
 else if (s.startsWith("/bytes/")) {
 return "/bytes/{n}";
 }
 return s;
 }) ③
 .route(r ->
 r.get("/stream/{n}",
 (req, res) -> res.sendString(Mono.just(req.param
("n"))))
 .get("/bytes/{n}",
 (req, res) -> res.sendString(Mono.just(req.param
("n")))))
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Applies upper limit for the meters with URI tag

② Templated URIs will be used as an URI tag value when possible

③ Enables the built-in integration with Micrometer



In order to avoid a memory and CPU overhead of the enabled metrics, it is
important to convert the real URIs to templated URIs when possible. Without a
conversion to a template-like form, each distinct URI leads to the creation of a
distinct tag, which takes a lot of memory for the metrics.

102

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/metrics/Application.java


Always apply an upper limit for the meters with URI tags. Configuring an upper
limit on the number of meters can help in cases when the real URIs cannot be
templated. You can find more information at maximumAllowableTags.

When HTTP server metrics are needed for an integration with a system other than Micrometer or
you want to provide your own integration with Micrometer, you can provide your own metrics
recorder, as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/metrics/custom/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;
import reactor.netty.http.server.HttpServerMetricsRecorder;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .metrics(true, CustomHttpServerMetricsRecorder::new) ①
 .route(r ->
 r.get("/stream/{n}",
 (req, res) -> res.sendString(Mono.just(req.param
("n"))))
 .get("/bytes/{n}",
 (req, res) -> res.sendString(Mono.just(req.param
("n")))))
 .bindNow();

 server.onDispose()
 .block();
 }

① Enables HTTP server metrics and provides HttpServerMetricsRecorder implementation.

Tracing
The HTTP server supports built-in integration with Micrometer Tracing.

The following table provides information for the HTTP server spans:

103

https://micrometer.io/docs/concepts#_denyaccept_meters
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/metrics/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/metrics/custom/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServerMetricsRecorder.html
https://micrometer.io/docs/tracing

contextual name description

<HTTP METHOD>_<URI> Information and total time for the request. See
Http Server Response Span.

The following example enables that integration. This concrete example uses Brave and reports the
information to Zipkin. See the Micrometer Tracing documentation for OpenTelemetry setup.

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/tracing/Application.java

import brave.Tracing;
import brave.propagation.StrictCurrentTraceContext;
import brave.sampler.Sampler;
import io.micrometer.tracing.CurrentTraceContext;
import io.micrometer.tracing.Tracer;
import io.micrometer.tracing.brave.bridge.BraveBaggageManager;
import io.micrometer.tracing.brave.bridge.BraveCurrentTraceContext;
import io.micrometer.tracing.brave.bridge.BravePropagator;
import io.micrometer.tracing.brave.bridge.BraveTracer;
import io.micrometer.tracing.propagation.Propagator;
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import
reactor.netty.http.observability.ReactorNettyPropagatingReceiverTracingObservationHand
ler;
import reactor.netty.http.server.HttpServer;
import zipkin2.reporter.brave.AsyncZipkinSpanHandler;
import zipkin2.reporter.urlconnection.URLConnectionSender;

import static reactor.netty.Metrics.OBSERVATION_REGISTRY;

public class Application {

 public static void main(String[] args) {
 init(); ①

 DisposableServer server =
 HttpServer.create()
 .metrics(true, s -> {
 if (s.startsWith("/stream/")) { ②
 return "/stream/{n}";
 }
 return s;
 }) ③
 .route(r -> r.get("/stream/{n}",
 (req, res) -> res.sendString(Mono.just(req.param(
"n")))))
 .bindNow();

104

observability.pdf#observability-spans-http-server-response-span
https://micrometer.io/docs/tracing#_micrometer_tracing_opentelemetry_setup
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/tracing/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/tracing/Application.java

 server.onDispose()
 .block();
 }

 /**
 * This setup is based on
 * Micrometer
Tracing Brave Setup.
 */
 static void init() {
 AsyncZipkinSpanHandler spanHandler = AsyncZipkinSpanHandler
 .create(URLConnectionSender.create
("http://localhost:9411/api/v2/spans"));

 StrictCurrentTraceContext braveCurrentTraceContext =
StrictCurrentTraceContext.create();

 CurrentTraceContext bridgeContext = new BraveCurrentTraceContext
(braveCurrentTraceContext);

 Tracing tracing =
 Tracing.newBuilder()
 .currentTraceContext(braveCurrentTraceContext)
 .supportsJoin(false)
 .traceId128Bit(true)
 .sampler(Sampler.ALWAYS_SAMPLE)
 .addSpanHandler(spanHandler)
 .localServiceName("reactor-netty-examples")
 .build();

 brave.Tracer braveTracer = tracing.tracer();

 Tracer tracer = new BraveTracer(braveTracer, bridgeContext, new
BraveBaggageManager());

 Propagator propagator = new BravePropagator(tracing);

 OBSERVATION_REGISTRY.observationConfig()
 .observationHandler(new
ReactorNettyPropagatingReceiverTracingObservationHandler(tracer, propagator));
 }
}

① Initializes Brave, Zipkin, and the Observation registry.

② Templated URIs are used as an URI tag value when possible.

③ Enables the built-in integration with Micrometer.

The result in Zipkin looks like:

105

Access Current Observation

Project Micrometer provides a library that assists with context propagation across different types
of context mechanisms such as ThreadLocal, Reactor Context and others.

The following example shows how to use this library in a custom ChannelHandler:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/tracing/custom/Application.java

import brave.Tracing;
import brave.propagation.StrictCurrentTraceContext;
import brave.sampler.Sampler;
import io.micrometer.context.ContextSnapshot;
import io.micrometer.context.ContextSnapshotFactory;
import io.micrometer.tracing.CurrentTraceContext;
import io.micrometer.tracing.Tracer;
import io.micrometer.tracing.brave.bridge.BraveBaggageManager;
import io.micrometer.tracing.brave.bridge.BraveCurrentTraceContext;
import io.micrometer.tracing.brave.bridge.BravePropagator;
import io.micrometer.tracing.brave.bridge.BraveTracer;
import io.micrometer.tracing.propagation.Propagator;
import io.netty.channel.ChannelHandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelOutboundHandlerAdapter;
import io.netty.channel.ChannelPromise;
import reactor.core.publisher.Mono;
import reactor.netty.DisposableServer;
import

106

https://micrometer.io/docs/contextPropagation
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/tracing/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/tracing/custom/Application.java

reactor.netty.http.observability.ReactorNettyPropagatingReceiverTracingObservationHand
ler;
import reactor.netty.http.server.HttpServer;
import zipkin2.reporter.brave.AsyncZipkinSpanHandler;
import zipkin2.reporter.urlconnection.URLConnectionSender;

import static reactor.netty.Metrics.OBSERVATION_REGISTRY;

public class Application {

 public static void main(String[] args) {
 init(); ①

 DisposableServer server =
 HttpServer.create()
 .metrics(true, s -> {
 if (s.startsWith("/stream/")) { ②
 return "/stream/{n}";
 }
 return s;
 }) ③
 .doOnConnection(conn -> conn.addHandlerLast
(CustomChannelOutboundHandler.INSTANCE)) ④
 .route(r -> r.get("/stream/{n}",
 (req, res) -> res.sendString(Mono.just(req.param(
"n")))))
 .bindNow();

 server.onDispose()
 .block();
 }

 static final class CustomChannelOutboundHandler extends
ChannelOutboundHandlerAdapter {

 static final ChannelHandler INSTANCE = new CustomChannelOutboundHandler();

 @Override
 public boolean isSharable() {
 return true;
 }

 @Override
 @SuppressWarnings({"FutureReturnValueIgnored", "try"})
 public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise
promise) {
 try (ContextSnapshot.Scope scope = ContextSnapshotFactory.builder().
build().setThreadLocalsFrom(ctx.channel())) {
 System.out.println("Current Observation in Scope: " +
OBSERVATION_REGISTRY.getCurrentObservation());
 //"FutureReturnValueIgnored" this is deliberate

107

 ctx.write(msg, promise);
 }
 System.out.println("Current Observation: " + OBSERVATION_REGISTRY
.getCurrentObservation());
 }
 }

① Initializes Brave, Zipkin, and the Observation registry.

② Templated URIs are used as an URI tag value when possible.

③ Enables the built-in integration with Micrometer.

④ Custom ChannelHandler that uses context propagation library. This concrete example overrides
only ChannelOutboundHandlerAdapter#write, if it is needed, the same logic can be used for the rest
of the methods. Also, this concrete example sets all ThreadLocal values for which there is a value
in the given Channel, if another behaviour is needed please check context propagation library
API. For example, you may want to set only some of the ThreadLocal values.



When you enable Reactor Netty tracing within a framework, you may need to let
Reactor Netty use the ObservationRegistry created by this framework. For this
purpose you need to invoke reactor.netty.Metrics#observationRegistry. You may
also need to configure the Reactor Netty ObservationHandlers using the API
provided by the framework.

Unix Domain Sockets
The HTTP server supports Unix Domain Sockets (UDS) when native transport is in use.

The following example shows how to use UDS support:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/uds/Application.java

import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .bindAddress(() -> new DomainSocketAddress(
"/tmp/test.sock")) ①
 .bindNow();

 server.onDispose()
 .block();
 }

108

https://micrometer.io/docs/contextPropagation
https://micrometer.io/docs/contextPropagation
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Metrics.html#observationRegistry-io.micrometer.observation.ObservationRegistry-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/uds/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/uds/Application.java

}

① Specifies DomainSocketAddress that will be used

Timeout Configuration
This section describes various timeout configuration options that can be used in HttpServer.
Configuring a proper timeout may improve or solve issues in the communication process. The
configuration options can be grouped as follows:

• Request Timeout

• Connection Timeout

• SSL/TLS Timeout

Request Timeout

The following listing shows all available request timeout configuration options.

• readTimeout - the maximum time between each network-level read operation while reading a
given request content (resolution: ms)

• requestTimeout - the maximum time for reading a given request content (resolution: ms).

 It is always a good practice to configure a read/request timeout.

To customize the default settings, you can configure HttpServer as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/read/timeout/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .readTimeout(Duration.ofSeconds(5)) ①
 .requestTimeout(Duration.ofSeconds(30)) ②
 .handle((request, response) -> request.receive().then())
 .bindNow();

 server.onDispose()
 .block();
 }

109

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/read/timeout/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/read/timeout/Application.java

}

① Configures the read timeout to 5 second.

② Configures the request timeout to 30 second.

Connection Timeout

The following listing shows all available connection timeout configuration options.

• idleTimeout - The maximum time (resolution: ms) that this connection stays opened and waits
for HTTP request. Once the timeout is reached, the connection is closed. By default, idleTimeout
is not specified, this indicates no timeout (i.e. infinite), which means the connection is closed
only if one of the peers decides to close it explicitly.

 It is always a good practice to configure an idle timeout.

To customize the default settings, you can configure HttpServer as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/idle/timeout/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.server.HttpServer;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 DisposableServer server =
 HttpServer.create()
 .idleTimeout(Duration.ofSeconds(1)) ①
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Configures the default idle timeout to 1 second.

SSL/TLS Timeout

HttpServer supports the SSL/TLS functionality provided by Netty.

The following list describes the available timeout configuration options:

• handshakeTimeout - Use this option to configure the SSL handshake timeout (resolution: ms).
Default: 10s.

110

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/server/HttpServer.html#idleTimeout-java.time.Duration-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/idle/timeout/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/idle/timeout/Application.java


You should consider increasing the SSL handshake timeout when expecting slow
network connections.

• closeNotifyFlushTimeout - Use this option to configure the SSL close_notify flush timeout
(resolution: ms). Default: 3s.

• closeNotifyReadTimeout - Use this option to configure the SSL close_notify read timeout
(resolution: ms). Default: 0s.

To customize the default settings, you can configure HttpServer as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/server/security/custom/Application.java

import reactor.netty.DisposableServer;
import reactor.netty.http.Http11SslContextSpec;
import reactor.netty.http.server.HttpServer;

import java.io.File;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 File cert = new File("certificate.crt");
 File key = new File("private.key");

 Http11SslContextSpec http11SslContextSpec = Http11SslContextSpec.forServer
(cert, key);

 DisposableServer server =
 HttpServer.create()
 .secure(spec -> spec.sslContext(http11SslContextSpec)
 .handshakeTimeout(Duration.ofSeconds(
30)) ①
 .closeNotifyFlushTimeout(Duration
.ofSeconds(10)) ②
 .closeNotifyReadTimeout(Duration
.ofSeconds(10))) ③
 .bindNow();

 server.onDispose()
 .block();
 }
}

① Configures the SSL handshake timeout to 30 seconds.

② Configures the SSL close_notify flush timeout to 10 seconds.

③ Configures the SSL close_notify read timeout to 10 seconds.

111

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/security/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/server/security/custom/Application.java

Chapter 6. HTTP Client
Reactor Netty provides the easy-to-use and easy-to-configure HttpClient. It hides most of the Netty
functionality that is required to create an HTTP client and adds Reactive Streams backpressure.

Connect
To connect the HTTP client to a given HTTP endpoint, you must create and configure a HttpClient
instance. By default, the host is configured for localhost and the port is 80. The following example
shows how to do so:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/connect/Application.java

import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client = HttpClient.create(); ①

 client.get() ②
 .uri("https://example.com/") ③
 .response() ④
 .block();
 }
}

① Creates a HttpClient instance ready for configuring.

② Specifies that GET method will be used.

③ Specifies the path.

④ Obtains the response HttpClientResponse

The following example uses WebSocket:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/websocket/Application.java

112

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/client/HttpClient.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/client/HttpClient.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/connect/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/connect/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/client/HttpClient.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/client/HttpClientResponse.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/websocket/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/websocket/Application.java

import io.netty.buffer.Unpooled;
import io.netty.util.CharsetUtil;
import reactor.core.publisher.Flux;
import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client = HttpClient.create();

 client.websocket()
 .uri("wss://echo.websocket.org")
 .handle((inbound, outbound) -> {
 inbound.receive()
 .asString()
 .take(1)
 .subscribe(System.out::println);

 final byte[] msgBytes = "hello".getBytes(CharsetUtil.ISO_8859_1);
 return outbound.send(Flux.just(Unpooled.wrappedBuffer(msgBytes),
Unpooled.wrappedBuffer(msgBytes)))
 .neverComplete();
 })
 .blockLast();
 }
}

Host and Port

In order to connect to a specific host and port, you can apply the following configuration to the HTTP
client:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/address/Application.java

113

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/address/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/address/Application.java

import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .host("example.com") ①
 .port(80); ②

 client.get()
 .uri("/")
 .response()
 .block();
 }
}

① Configures the HTTP host

② Configures the HTTP port

 The port can be specified also with PORT environment variable.

Eager Initialization
By default, the initialization of the HttpClient resources happens on demand. This means that the
first request absorbs the extra time needed to initialize and load:

• the event loop group

• the host name resolver

• the native transport libraries (when native transport is used)

• the native libraries for the security (in case of OpenSsl)

When you need to preload these resources, you can configure the HttpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/warmup/Application.java

114

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/warmup/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/warmup/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.ByteBufFlux;
import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client = HttpClient.create();

 client.warmup() ①
 .block();

 client.post()
 .uri("https://example.com/")
 .send(ByteBufFlux.fromString(Mono.just("hello")))
 .response()
 .block(); ②
 }
}

① Initialize and load the event loop group, the host name resolver, the native transport libraries
and the native libraries for the security

② Host name resolution happens with the first request. In this example, a connection pool is used,
so with the first request the connection to the URL is established, the subsequent requests to the
same URL reuse the connections from the pool.

Writing Data
To send data to a given HTTP endpoint, you can provide a Publisher by using the send(Publisher)
method. By default, Transfer-Encoding: chunked is applied for those HTTP methods for which a
request body is expected. Content-Length provided through request headers disables Transfer-
Encoding: chunked, if necessary. The following example sends hello:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/send/Application.java

115

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/client/HttpClient.RequestSender.html#send-org.reactivestreams.Publisher-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/send/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/send/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.ByteBufFlux;
import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client = HttpClient.create();

 client.post()
 .uri("https://example.com/")
 .send(ByteBufFlux.fromString(Mono.just("hello"))) ①
 .response()
 .block();
 }
}

① Sends a hello string to the given HTTP endpoint

Adding Headers and Other Metadata

When sending data to a given HTTP endpoint, you may need to send additional headers, cookies and
other metadata. You can use the following configuration to do so:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/send/headers/Application.java

import io.netty.handler.codec.http.HttpHeaderNames;
import reactor.core.publisher.Mono;
import reactor.netty.ByteBufFlux;
import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .headers(h -> h.set(HttpHeaderNames.CONTENT_LENGTH, 5)); ①

 client.post()
 .uri("https://example.com/")
 .send(ByteBufFlux.fromString(Mono.just("hello")))
 .response()
 .block();
 }
}

① Disables Transfer-Encoding: chunked and provides Content-Length header.

116

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/send/headers/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/send/headers/Application.java

Compression

You can enable compression on the HTTP client, which means the request header Accept-Encoding is
added to the request headers. The following example shows how to do so:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/compression/Application.java

import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .compress(true);

 client.get()
 .uri("https://example.com/")
 .response()
 .block();
 }
}

Auto-Redirect Support

You can configure the HTTP client to enable auto-redirect support.

Reactor Netty provides two different strategies for auto-redirect support:

• followRedirect(boolean): Specifies whether HTTP auto-redirect support is enabled for statuses
301|302|303|307|308. When it is 303 status code, GET method is used for the redirect.

• followRedirect(BiPredicate<HttpClientRequest, HttpClientResponse>): Enables auto-redirect
support if the supplied predicate matches.

The following example uses followRedirect(true):

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/redirect/Application.java

117

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/compression/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/compression/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/redirect/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/redirect/Application.java

import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .followRedirect(true);

 client.get()
 .uri("https://example.com/")
 .response()
 .block();
 }
}

Consuming Data
To receive data from a given HTTP endpoint, you can use one of the methods from
HttpClient.ResponseReceiver. The following example uses the responseContent method:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/read/Application.java

import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client = HttpClient.create();

 client.get()
 .uri("https://example.com/")
 .responseContent() ①
 .aggregate() ②
 .asString() ③
 .block();
 }
}

① Receives data from a given HTTP endpoint

② Aggregates the data

③ Transforms the data as string

Reading Headers and Other Metadata

When receiving data from a given HTTP endpoint, you can check response headers, status code, and

118

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/client/HttpClient.ResponseReceiver.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/read/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/read/Application.java

other metadata. You can obtain this additional metadata by using HttpClientResponse. The following
example shows how to do so.

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/read/status/Application.java

import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client = HttpClient.create();

 client.get()
 .uri("https://example.com/")
 .responseSingle((resp, bytes) -> {
 System.out.println(resp.status()); ①
 return bytes.asString();
 })
 .block();
 }
}

① Obtains the status code.

HTTP Response Decoder

By default, Netty configures some restrictions for the incoming responses, such as:

• The maximum length of the initial line.

• The maximum length of all headers.

• The maximum length of the content or each chunk.

For more information, see HttpResponseDecoder

By default, the HTTP client is configured with the following settings:

github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/
HttpDecoderSpec.java

119

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/client/HttpClientResponse.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/read/status/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/read/status/Application.java
https://netty.io/4.1/api/io/netty/handler/codec/http/HttpResponseDecoder.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/HttpDecoderSpec.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/HttpDecoderSpec.java

 public static final int DEFAULT_MAX_INITIAL_LINE_LENGTH = 4096;
 public static final int DEFAULT_MAX_HEADER_SIZE = 8192;
 /**
 * Default max chunk size.
 *
 * @deprecated as of 1.1.0. This will be removed in 2.0.0 as Netty 5 does not
support this configuration.
 */
 @Deprecated
 public static final int DEFAULT_MAX_CHUNK_SIZE = 8192;
 public static final boolean DEFAULT_VALIDATE_HEADERS = true;
 public static final int DEFAULT_INITIAL_BUFFER_SIZE = 128;
 public static final boolean DEFAULT_ALLOW_DUPLICATE_CONTENT_LENGTHS = false;

github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/
client/HttpResponseDecoderSpec.java

 /**
 * The maximum length of the content of the HTTP/2.0 clear-text upgrade request.
 * By default, the client will allow an upgrade request with up to 65536 as
 * the maximum length of the aggregated content.
 */
 public static final int DEFAULT_H2C_MAX_CONTENT_LENGTH = 65536;

 boolean failOnMissingResponse = DEFAULT_FAIL_ON_MISSING_RESPONSE;

When you need to change these default settings, you can configure the HTTP client as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/responsedecoder/Application.java

120

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/client/HttpResponseDecoderSpec.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/client/HttpResponseDecoderSpec.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/responsedecoder/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/responsedecoder/Application.java

import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .httpResponseDecoder(spec -> spec.maxHeaderSize(16384)); ①

 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();
 }
}

① The maximum length of all headers will be 16384. When this value is exceeded, a
TooLongFrameException is raised.

Lifecycle Callbacks
The following lifecycle callbacks are provided to let you extend the HttpClient.

Callback Description

doAfterRequest Invoked when the request has been sent.

doAfterResolve Invoked after the remote address has been
resolved successfully.

doAfterResponseSuccess Invoked after the response has been fully
received.

doOnChannelInit Invoked when initializing the channel.

doOnConnect Invoked when the channel is about to connect.

doOnConnected Invoked after the channel has been connected.

doOnDisconnected Invoked after the channel has been
disconnected.

doOnError Invoked when the request has not been sent and
when the response has not been fully received.

doOnRedirect Invoked when the response headers have been
received, and the request is about to be
redirected.

doOnRequest Invoked when the request is about to be sent.

doOnRequestError Invoked when the request has not been sent.

121

https://netty.io/4.1/api/io/netty/handler/codec/TooLongFrameException.html

Callback Description

doOnResolve Invoked when the remote address is about to be
resolved.

doOnResolveError Invoked in case the remote address hasn’t been
resolved successfully.

doOnResponse Invoked after the response headers have been
received.

doOnResponseError Invoked when the response has not been fully
received.

The following example uses the doOnConnected and doOnChannelInit callbacks:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/lifecycle/Application.java

import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.timeout.ReadTimeoutHandler;
import reactor.netty.http.client.HttpClient;
import java.util.concurrent.TimeUnit;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .doOnConnected(conn ->
 conn.addHandlerFirst(new ReadTimeoutHandler(10,
TimeUnit.SECONDS))) ①
 .doOnChannelInit((observer, channel, remoteAddress) ->
 channel.pipeline()
 .addFirst(new LoggingHandler
("reactor.netty.examples"))); ②

 client.get()
 .uri("https://example.com/")
 .response()
 .block();
 }
}

① Netty pipeline is extended with ReadTimeoutHandler when the channel has been connected.

② Netty pipeline is extended with LoggingHandler when initializing the channel.

TCP-level Configuration
When you need configurations on a TCP level, you can use the following snippet to extend the
default TCP client configuration (add an option, bind address etc.):

122

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/lifecycle/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/lifecycle/Application.java

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/channeloptions/Application.java

import io.netty.channel.ChannelOption;
import io.netty.channel.epoll.EpollChannelOption;
//import io.netty.channel.socket.nio.NioChannelOption;
//import jdk.net.ExtendedSocketOptions;
import reactor.netty.http.client.HttpClient;
import java.net.InetSocketAddress;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .bindAddress(() -> new InetSocketAddress("host", 1234))
 .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000) ①
 .option(ChannelOption.SO_KEEPALIVE, true) ②
 // The options below are available only when NIO transport
(Java 11) is used
 // on Mac or Linux (Java does not currently support these
extended options on Windows)
 // https://bugs.openjdk.java.net/browse/JDK-8194298

//.option(NioChannelOption.of(ExtendedSocketOptions.TCP_KEEPIDLE), 300)

//.option(NioChannelOption.of(ExtendedSocketOptions.TCP_KEEPINTERVAL), 60)

//.option(NioChannelOption.of(ExtendedSocketOptions.TCP_KEEPCOUNT), 8);
 // The options below are available only when Epoll transport
is used
 .option(EpollChannelOption.TCP_KEEPIDLE, 300) ③
 .option(EpollChannelOption.TCP_KEEPINTVL, 60) ④
 .option(EpollChannelOption.TCP_KEEPCNT, 8); ⑤

 String response =
 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);
 }
}

① Configures the connection establishment timeout to 10 seconds.

② Enables TCP keepalive. This means that TCP starts sending keepalive probes when a connection

123

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/channeloptions/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/channeloptions/Application.java

is idle for some time.

③ The connection needs to remain idle for 5 minutes before TCP starts sending keepalive probes.

④ Configures the time between individual keepalive probes to 1 minute.

⑤ Configures the maximum number of TCP keepalive probes to 8.

See TCP Client for more about TCP level configurations.

Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers needs to be inspected.
By default, wire logging is disabled. To enable it, you must set the logger
reactor.netty.http.client.HttpClient level to DEBUG and apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/wiretap/Application.java

import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .wiretap(true); ①

 client.get()
 .uri("https://example.com/")
 .response()
 .block();
 }
}

① Enables the wire logging

Wire Logger formatters

Reactor Netty supports 3 different formatters:

• AdvancedByteBufFormat#HEX_DUMP - the default

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

124

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/wiretap/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/wiretap/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in hex format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] REGISTERED
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] ACTIVE
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] READ: 145B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 50 4f 53 54 20 2f 74 65 73 74 2f 57 6f 72 6c 64 |POST /test/World|
 * |00000010| 20 48 54 54 50 2f 31 2e 31 0d 0a 43 6f 6e 74 65 | HTTP/1.1..Conte|
 * |00000020| 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 70 6c |nt-Type: text/pl|
 * |00000030| 61 69 6e 0d 0a 75 73 65 72 2d 61 67 65 6e 74 3a |ain..user-agent:|
 * |00000040| 20 52 65 61 63 74 6f 72 4e 65 74 74 79 2f 64 65 | ReactorNetty/de|
 * ...
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] WRITE: 38B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d |HTTP/1.1 200 OK.|
 * |00000010| 0a 63 6f 6e 74 65 6e 74 2d 6c 65 6e 67 74 68 3a |.content-length:|
 * |00000020| 20 30 0d 0a 0d 0a | 0.... |
 * +--------+---+----------------+
 * }
 * </pre>
 */

• AdvancedByteBufFormat#SIMPLE

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

125

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, only the events will be logged.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] REGISTERED
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] ACTIVE
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] READ: 145B
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] WRITE: 38B
 * }
 * </pre>
 */

• AdvancedByteBufFormat#TEXTUAL

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in plain text format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] REGISTERED
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] ACTIVE
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] READ: 145B POST /test/World HTTP/1.1
 * Content-Type: text/plain
 * user-agent: ReactorNetty/dev
 * ...
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] WRITE: 38B HTTP/1.1 200 OK
 * content-length: 0
 * }
 * </pre>
 */

When you need to change the default formatter you can configure it as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/

126

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/wiretap/custom/Application.java

examples/documentation/http/client/wiretap/custom/Application.java

import io.netty.handler.logging.LogLevel;
import reactor.netty.http.client.HttpClient;
import reactor.netty.transport.logging.AdvancedByteBufFormat;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .wiretap("logger-name", LogLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL); ①

 client.get()
 .uri("https://example.com/")
 .response()
 .block();
 }
}

① Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the content.

Event Loop Group

By default Reactor Netty uses an “Event Loop Group”, where the number of the worker threads
equals the number of processors available to the runtime on initialization (but with a minimum
value of 4). When you need a different configuration, you can use one of the LoopResources#create
methods.

The following listing shows the default configuration for the Event Loop Group:

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
ReactorNetty.java

127

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/wiretap/custom/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

 /**
 * Default worker thread count, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String IO_WORKER_COUNT = "reactor.netty.ioWorkerCount";
 /**
 * Default selector thread count, fallback to -1 (no selector thread)
 * <p>Note: In most use cases using a worker thread also as a
selector thread works well.
 * A possible use case for specifying a separate selector thread might be when the
worker threads are too busy
 * and connections cannot be accepted fast enough.
 * <p>Note: Although more than 1 can be configured as a selector
thread count, in reality
 * only 1 thread will be used as a selector thread.
 */
 public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
 /**
 * Default worker thread count for UDP, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String UDP_IO_THREAD_COUNT =
"reactor.netty.udp.ioThreadCount";
 /**
 * Default quiet period that guarantees that the disposal of the underlying
LoopResources
 * will not happen, fallback to 2 seconds.
 */
 public static final String SHUTDOWN_QUIET_PERIOD =
"reactor.netty.ioShutdownQuietPeriod";
 /**
 * Default maximum amount of time to wait until the disposal of the underlying
LoopResources
 * regardless if a task was submitted during the quiet period, fallback to 15
seconds.
 */
 public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";

 /**
 * Default value whether the native transport (epoll, kqueue) will be preferred,
 * fallback it will be preferred when available.
 */
 public static final String NATIVE = "reactor.netty.native";

If you need changes to these settings, you can apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/eventloop/Application.java

128

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/eventloop/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/eventloop/Application.java

import reactor.netty.http.client.HttpClient;
import reactor.netty.resources.LoopResources;

public class Application {

 public static void main(String[] args) {
 LoopResources loop = LoopResources.create("event-loop", 1, 4, true);
 HttpClient client =
 HttpClient.create()
 .runOn(loop);

 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();
 }
}

Disposing Event Loop Group

• If you use the default Event Loop Group provided by Reactor Netty, invoke
HttpResources#disposeLoopsAndConnections/#disposeLoopsAndConnectionsLater method.


Disposing HttpResources means that every server/client that is using it, will not be
able to use it anymore!

• If you use custom LoopResources, invoke LoopResources#dispose/#disposeLater method.


Disposing the custom LoopResources means that every server/client that is
configured to use it, will not be able to use it anymore!

Connection Pool
By default, HttpClient uses a “fixed” connection pool with 500 as the maximum number of active
channels and 1000 as the maximum number of further channel acquisition attempts allowed to be
kept in a pending state (for the rest of the configurations check the system properties or the builder
configurations below). This means that the implementation creates a new channel if someone tries
to acquire a channel as long as less than 500 have been created and are managed by the pool. When
the maximum number of channels in the pool is reached, up to 1000 new attempts to acquire a
channel are delayed (pending) until a channel is returned to the pool again, and further attempts
are declined with an error.

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
ReactorNetty.java

129

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/HttpResources.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

 /**
 * Default max connections. Fallback to
 * 2 * available number of processors (but with a minimum value of 16)
 */
 public static final String POOL_MAX_CONNECTIONS =
"reactor.netty.pool.maxConnections";
 /**
 * Default acquisition timeout (milliseconds) before error. If -1 will never wait
to
 * acquire before opening a new
 * connection in an unbounded fashion. Fallback 45 seconds
 */
 public static final String POOL_ACQUIRE_TIMEOUT =
"reactor.netty.pool.acquireTimeout";
 /**
 * Default max idle time, fallback - max idle time is not specified.
 * <p>Note: This configuration is not applicable for {@link
reactor.netty.tcp.TcpClient}.
 * A TCP connection is always closed and never returned to the pool.
 */
 public static final String POOL_MAX_IDLE_TIME = "reactor.netty.pool.maxIdleTime";
 /**
 * Default max life time, fallback - max life time is not specified.
 * <p>Note: This configuration is not applicable for {@link
reactor.netty.tcp.TcpClient}.
 * A TCP connection is always closed and never returned to the pool.
 */
 public static final String POOL_MAX_LIFE_TIME = "reactor.netty.pool.maxLifeTime";
 /**
 * Default leasing strategy (fifo, lifo), fallback to fifo.
 *
 * fifo - The connection selection is first in, first out
 * lifo - The connection selection is last in, first out
 *
 * <p>Note: This configuration is not applicable for {@link
reactor.netty.tcp.TcpClient}.
 * A TCP connection is always closed and never returned to the pool.
 */
 public static final String POOL_LEASING_STRATEGY =
"reactor.netty.pool.leasingStrategy";
 /**
 * Default {@code getPermitsSamplingRate} (between 0d and 1d (percentage))
 * to be used with a {@link SamplingAllocationStrategy}.
 * This strategy wraps a {@link PoolBuilder#sizeBetween(int, int) sizeBetween}
{@link AllocationStrategy}
 * and samples calls to {@link AllocationStrategy#getPermits(int)}.
 * Fallback - sampling is not enabled.
 */
 public static final String POOL_GET_PERMITS_SAMPLING_RATE =
"reactor.netty.pool.getPermitsSamplingRate";

130

 /**
 * Default {@code returnPermitsSamplingRate} (between 0d and 1d (percentage))
 * to be used with a {@link SamplingAllocationStrategy}.
 * This strategy wraps a {@link PoolBuilder#sizeBetween(int, int) sizeBetween}
{@link AllocationStrategy}
 * and samples calls to {@link AllocationStrategy#returnPermits(int)}.
 * Fallback - sampling is not enabled.
 */
 public static final String POOL_RETURN_PERMITS_SAMPLING_RATE =
"reactor.netty.pool.returnPermitsSamplingRate";

When you need to change the default settings, you can configure the ConnectionProvider as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/pool/config/Application.java

import reactor.netty.http.client.HttpClient;
import reactor.netty.resources.ConnectionProvider;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 ConnectionProvider provider =
 ConnectionProvider.builder("custom")
 .maxConnections(50)
 .maxIdleTime(Duration.ofSeconds(20)) ①
 .maxLifeTime(Duration.ofSeconds(60)) ②
 .pendingAcquireTimeout(Duration.ofSeconds(60)) ③
 .evictInBackground(Duration.ofSeconds(120)) ④
 .build();

 HttpClient client = HttpClient.create(provider);

 String response =
 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);

 provider.disposeLater()
 .block();
 }
}

131

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/pool/config/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/pool/config/Application.java

① Configures the maximum time for a connection to stay idle to 20 seconds.

② Configures the maximum time for a connection to stay alive to 60 seconds.

③ Configures the maximum time for the pending acquire operation to 60 seconds.

④ Every two minutes, the connection pool is regularly checked for connections that are applicable
for removal.



Notice that only the default HttpClient (HttpClient.create()) uses 500 as the
maximum number of active channels. In the example above, when instantiating a
custom ConnectionProvider, we are changing this value to 50 using maxConnections.
Also, if you don’t set this parameter the default maxConnections is used (2 *
available number of processors).

The following listing shows the available configurations:

Configuration name Description

disposeInactivePoolsInBackground When this option is enabled, connection pools
are regularly checked in the background, and
those that are empty and been inactive for a
specified time become eligible for disposal.
Connection pool is considered empty when
there are no active connections, idle connections
and pending acquisitions. By default, this
background disposal of inactive pools is
disabled.

disposeTimeout When ConnectionProvider#dispose() or
ConnectionProvider#disposeLater() is called,
trigger a graceful shutdown for the connection
pools, with this grace period timeout. From
there on, all calls for acquiring a connection will
fail fast with an exception. However, for the
provided Duration, pending acquires will get a
chance to be served. Note: The rejection of new
acquires and the grace timer start immediately,
irrespective of subscription to the Mono returned
by ConnectionProvider#disposeLater().
Subsequent calls return the same Mono,
effectively getting notifications from the first
graceful shutdown call and ignoring
subsequently provided timeouts. By default,
dispose timeout is not specified.

evictInBackground When this option is enabled, each connection
pool regularly checks for connections that are
eligible for removal according to eviction
criteria like maxIdleTime. By default, this
background eviction is disabled.

132

Configuration name Description

fifo Configure the connection pool so that if there
are idle connections (i.e. pool is under-utilized),
the next acquire operation will get the Least
Recently Used connection (LRU, i.e. the
connection that was released first among the
current idle connections). Default leasing
strategy.

lifo Configure the connection pool so that if there
are idle connections (i.e. pool is under-utilized),
the next acquire operation will get the Most
Recently Used connection (MRU, i.e. the
connection that was released last among the
current idle connections).

maxConnections The maximum number of connections (per
connection pool) before start pending. Default to
2 * available number of processors (but with a
minimum value of 16).

maxIdleTime The time after which the channel is eligible to be
closed when idle (resolution: ms). Default: max
idle time is not specified.

maxLifeTime The total life time after which the channel is
eligible to be closed (resolution: ms). Default:
max life time is not specified.

metrics Enables/disables built-in integration with
Micrometer. ConnectionProvider.MeterRegistrar
can be provided for integration with another
metrics system. By default, metrics are not
enabled.

pendingAcquireMaxCount The maximum number of extra attempts at
acquiring a connection to keep in a pending
queue. If -1 is specified, the pending queue does
not have upper limit. Default to 2 * max
connections.

pendingAcquireTimeout The maximum time before which a pending
acquire must complete, or a TimeoutException is
thrown (resolution: ms). If -1 is specified, no
such timeout is applied. Default: 45 seconds.



When you expect a high load, be cautious with a connection pool with a very high
value for maximum connections. You might experience
reactor.netty.http.client.PrematureCloseException exception with a root cause
"Connect Timeout" due to too many concurrent connections opened/acquired.

133

If you need to disable the connection pool, you can apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/pool/Application.java

import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.newConnection()
 .doOnConnected(conn -> System.out.println("Connection " +
conn.channel()));

 String response =
 // A new connection is established for every request
 client.get()
 .uri("https://httpbin.org/get")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);

 response =
 // A new connection is established for every request
 client.post()
 .uri("https://httpbin.org/post")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);
 }
}

Disposing Connection Pool

• If you use the default ConnectionProvider provided by Reactor Netty, invoke
HttpResources#disposeLoopsAndConnections/#disposeLoopsAndConnectionsLater method.


Disposing HttpResources means that every client that is using it, will not be able to
use it anymore!

• If you use custom ConnectionProvider, invoke ConnectionProvider#dispose/#disposeLater
/#disposeWhen method.

134

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/pool/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/pool/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/HttpResources.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/ConnectionProvider.html


Disposing the custom ConnectionProvider means that every client that is configured
to use it, will not be able to use it anymore!

Metrics

The pooled ConnectionProvider supports built-in integration with Micrometer. It exposes all metrics
with a prefix of reactor.netty.connection.provider.

Pooled ConnectionProvider metrics

metric name type description

reactor.netty.connection.provid
er.total.connections

Gauge The number of all connections,
active or idle. See Total
Connections

reactor.netty.connection.provid
er.active.connections

Gauge The number of the connections
that have been successfully
acquired and are in active use.
See Active Connections

reactor.netty.connection.provid
er.max.connections

Gauge The maximum number of
active connections that are
allowed. See Max Connections

reactor.netty.connection.provid
er.idle.connections

Gauge The number of the idle
connections. See Idle
Connections

reactor.netty.connection.provid
er.pending.connections

Gauge The number of requests that
are waiting for a connection.
See Pending Connections

reactor.netty.connection.provid
er.pending.connections.time

Timer Time spent in pending acquire
a connection from the
connection pool. See Pending
Connections Time

reactor.netty.connection.provid
er.max.pending.connections

Gauge The maximum number of
requests that will be queued
while waiting for a ready
connection. See Max Pending
Connections

The following table provides information for the HTTP client metrics when it is configured to serve
HTTP/2 traffic:

metric name type description

reactor.netty.connection.provid
er.active.streams

Gauge The number of the active
HTTP/2 streams. See Active
Streams

135

https://micrometer.io/
observability.pdf#observability-metrics-total-connections
observability.pdf#observability-metrics-total-connections
observability.pdf#observability-metrics-active-connections
observability.pdf#observability-metrics-max-connections
observability.pdf#observability-metrics-idle-connections
observability.pdf#observability-metrics-idle-connections
observability.pdf#observability-metrics-pending-connections
observability.pdf#observability-metrics-pending-connections-time
observability.pdf#observability-metrics-pending-connections-time
observability.pdf#observability-metrics-max-pending-connections
observability.pdf#observability-metrics-max-pending-connections
observability.pdf#observability-metrics-active-streams
observability.pdf#observability-metrics-active-streams

metric name type description

reactor.netty.connection.provid
er.pending.streams

Gauge The number of requests that
are waiting for opening HTTP/2
stream. See Pending Streams

The following example enables that integration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/pool/metrics/Application.java

import reactor.netty.http.client.HttpClient;
import reactor.netty.resources.ConnectionProvider;

public class Application {

 public static void main(String[] args) {
 ConnectionProvider provider =
 ConnectionProvider.builder("custom")
 .maxConnections(50)
 .metrics(true) ①
 .build();

 HttpClient client = HttpClient.create(provider);

 String response =
 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);

 provider.disposeLater()
 .block();
 }
}

① Enables the built-in integration with Micrometer

SSL and TLS
When you need SSL or TLS, you can apply the configuration shown in the next example. By default,
if OpenSSL is available, a SslProvider.OPENSSL provider is used as a provider. Otherwise, a
SslProvider.JDK provider is used You can switch the provider by using SslContextBuilder or by
setting -Dio.netty.handler.ssl.noOpenSsl=true. The following example uses SslContextBuilder:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/

136

observability.pdf#observability-metrics-pending-streams
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/pool/metrics/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/pool/metrics/Application.java
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#OPENSSL
https://netty.io/4.1/api/io/netty/handler/ssl/SslProvider.html#JDK
https://netty.io/4.1/api/io/netty/handler/ssl/SslContextBuilder.html#sslProvider-io.netty.handler.ssl.SslProvider-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/security/Application.java

examples/documentation/http/client/security/Application.java

import reactor.netty.http.Http11SslContextSpec;
import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 Http11SslContextSpec http11SslContextSpec = Http11SslContextSpec.forClient();

 HttpClient client =
 HttpClient.create()
 .secure(spec -> spec.sslContext(http11SslContextSpec));

 client.get()
 .uri("https://example.com/")
 .response()
 .block();
 }
}

Server Name Indication

By default, the HTTP client sends the remote host name as SNI server name. When you need to
change this default setting, you can configure the HTTP client as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/sni/Application.java

137

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/security/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/sni/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/sni/Application.java

import io.netty.handler.ssl.SslContext;
import io.netty.handler.ssl.SslContextBuilder;
import reactor.netty.http.client.HttpClient;

import javax.net.ssl.SNIHostName;

public class Application {

 public static void main(String[] args) throws Exception {
 SslContext sslContext = SslContextBuilder.forClient().build();

 HttpClient client =
 HttpClient.create()
 .secure(spec -> spec.sslContext(sslContext)
 .serverNames(new SNIHostName(
"test.com")));

 client.get()
 .uri("https://127.0.0.1:8080/")
 .response()
 .block();
 }
}

Retry Strategies
By default, the HTTP client retries the request once if it was aborted on the TCP level.

HTTP/2
By default, the HTTP client supports HTTP/1.1. If you need HTTP/2, you can get it through
configuration. In addition to the protocol configuration, if you need H2 but not H2C (cleartext), you
must also configure SSL.



As Application-Layer Protocol Negotiation (ALPN) is not supported “out-of-the-box”
by JDK8 (although some vendors backported ALPN to JDK8), you need an
additional dependency to a native library that supports it — for example, netty-
tcnative-boringssl-static.

The following listing presents a simple H2 example:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/http2/H2Application.java

138

https://netty.io/wiki/forked-tomcat-native.html
https://netty.io/wiki/forked-tomcat-native.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/http2/H2Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/http2/H2Application.java

import io.netty.handler.codec.http.HttpHeaders;
import reactor.core.publisher.Mono;
import reactor.netty.http.HttpProtocol;
import reactor.netty.http.client.HttpClient;
import reactor.util.function.Tuple2;

public class H2Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .protocol(HttpProtocol.H2) ①
 .secure(); ②

 Tuple2<String, HttpHeaders> response =
 client.get()
 .uri("https://example.com/")
 .responseSingle((res, bytes) -> bytes.asString()
 .zipWith(Mono.just(res
.responseHeaders())))
 .block();

 System.out.println("Used stream ID: " + response.getT2().get("x-http2-stream-
id"));
 System.out.println("Response: " + response.getT1());
 }
}

① Configures the client to support only HTTP/2

② Configures SSL

The following listing presents a simple H2C example:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/http2/H2CApplication.java

139

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/http2/H2CApplication.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/http2/H2CApplication.java

import io.netty.handler.codec.http.HttpHeaders;
import reactor.core.publisher.Mono;
import reactor.netty.http.HttpProtocol;
import reactor.netty.http.client.HttpClient;
import reactor.util.function.Tuple2;

public class H2CApplication {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .protocol(HttpProtocol.H2C);

 Tuple2<String, HttpHeaders> response =
 client.get()
 .uri("http://localhost:8080/")
 .responseSingle((res, bytes) -> bytes.asString()
 .zipWith(Mono.just(res
.responseHeaders())))
 .block();

 System.out.println("Used stream ID: " + response.getT2().get("x-http2-stream-
id"));
 System.out.println("Response: " + response.getT1());
 }
}

Protocol Selection

github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/
HttpProtocol.java

140

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/HttpProtocol.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-http/src/main/java/reactor/netty/http/HttpProtocol.java

 * @author Stephane Maldini
 */
public enum HttpProtocol {

 /**
 * The default supported HTTP protocol by HttpServer and HttpClient.
 */
 HTTP11,

 /**
 * HTTP/2.0 support with TLS
 * <p>If used along with HTTP/1.1 protocol, HTTP/2.0 will be the preferred
protocol.
 * While negotiating the application level protocol, HTTP/2.0 or HTTP/1.1 can be
chosen.
 * <p>If used without HTTP/1.1 protocol, HTTP/2.0 will always be offered as a
protocol
 * for communication with no fallback to HTTP/1.1.
 */
 H2,

 /**
 * HTTP/2.0 support with clear-text.
 * <p>If used along with HTTP/1.1 protocol, will support H2C "upgrade":
 * Request or consume requests as HTTP/1.1 first, looking for HTTP/2.0 headers
 * and {@literal Connection: Upgrade}. A server will typically reply a successful
 * 101 status if upgrade is successful or a fallback HTTP/1.1 response. When
 * successful the client will start sending HTTP/2.0 traffic.
 * <p>If used without HTTP/1.1 protocol, will support H2C "prior-knowledge":
Doesn't
 * require {@literal Connection: Upgrade} handshake between a client and server
but
 * fallback to HTTP/1.1 will not be supported.
 */
 H2C,

 /**
 * HTTP/3.0 support.
 * @since 1.2.0
 */

Proxy Support
Reactor Netty supports the proxy functionality provided by Netty and provides a way to specify non
proxy hosts through the ProxyProvider builder.

Netty’s HTTP proxy support always uses CONNECT method in order to establish a tunnel to the
specified proxy regardless of the scheme that is used http or https. (More information: Netty
enforce HTTP proxy to support HTTP CONNECT method). Some proxies might not support CONNECT

141

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/tcp/ProxyProvider.html
https://github.com/netty/netty/issues/10475
https://github.com/netty/netty/issues/10475

method when the scheme is http or might need to be configured in order to support this way of
communication. Sometimes this might be the reason for not being able to connect to the proxy.
Consider checking the proxy documentation whether it supports or needs an additional
configuration in order to support CONNECT method.

The following example uses ProxyProvider:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/proxy/Application.java

import reactor.netty.http.client.HttpClient;
import reactor.netty.transport.ProxyProvider;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .proxy(spec -> spec.type(ProxyProvider.Proxy.HTTP)
 .host("proxy")
 .port(8080)
 .nonProxyHosts("localhost")
 .connectTimeoutMillis(20_000)); ①

 String response =
 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);
 }
}

① Configures the connection establishment timeout to 20 seconds.

Metrics
The HTTP client supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.http.client.

The following table provides information for the HTTP client metrics:

metric name type description

reactor.netty.http.client.data.rec
eived

DistributionSummary Amount of the data received, in
bytes. See Data Received

142

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/proxy/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/proxy/Application.java
https://micrometer.io/
observability.pdf#observability-metrics-data-received

metric name type description

reactor.netty.http.client.data.se
nt

DistributionSummary Amount of the data sent, in
bytes. See Data Sent

reactor.netty.http.client.errors Counter Number of errors that occurred.
See Errors Count

reactor.netty.http.client.tls.hand
shake.time

Timer Time spent for TLS handshake.
See Tls Handshake Time

reactor.netty.http.client.connect
.time

Timer Time spent for connecting to
the remote address. See
Connect Time

reactor.netty.http.client.address
.resolver

Timer Time spent for resolving the
address. See Hostname
Resolution Time

reactor.netty.http.client.data.rec
eived.time

Timer Time spent in consuming
incoming data. See Http Client
Data Received Time

reactor.netty.http.client.data.se
nt.time

Timer Time spent in sending outgoing
data. See Http Client Data Sent
Time

reactor.netty.http.client.respons
e.time

Timer Total time for the
request/response See Http
Client Response Time

These additional metrics are also available:

Pooled ConnectionProvider metrics

metric name type description

reactor.netty.connection.provid
er.total.connections

Gauge The number of all connections,
active or idle. See Total
Connections

reactor.netty.connection.provid
er.active.connections

Gauge The number of the connections
that have been successfully
acquired and are in active use.
See Active Connections

reactor.netty.connection.provid
er.max.connections

Gauge The maximum number of
active connections that are
allowed. See Max Connections

reactor.netty.connection.provid
er.idle.connections

Gauge The number of the idle
connections. See Idle
Connections

143

observability.pdf#observability-metrics-data-sent
observability.pdf#observability-metrics-errors-count
observability.pdf#observability-metrics-tls-handshake-time
observability.pdf#observability-metrics-connect-time
observability.pdf#observability-metrics-hostname-resolution-time
observability.pdf#observability-metrics-hostname-resolution-time
observability.pdf#observability-metrics-http-client-data-received-time
observability.pdf#observability-metrics-http-client-data-received-time
observability.pdf#observability-metrics-http-client-data-sent-time
observability.pdf#observability-metrics-http-client-data-sent-time
observability.pdf#observability-metrics-http-client-response-time
observability.pdf#observability-metrics-http-client-response-time
observability.pdf#observability-metrics-total-connections
observability.pdf#observability-metrics-total-connections
observability.pdf#observability-metrics-active-connections
observability.pdf#observability-metrics-max-connections
observability.pdf#observability-metrics-idle-connections
observability.pdf#observability-metrics-idle-connections

metric name type description

reactor.netty.connection.provid
er.pending.connections

Gauge The number of requests that
are waiting for a connection.
See Pending Connections

reactor.netty.connection.provid
er.pending.connections.time

Timer Time spent in pending acquire
a connection from the
connection pool. See Pending
Connections Time

reactor.netty.connection.provid
er.max.pending.connections

Gauge The maximum number of
requests that will be queued
while waiting for a ready
connection. See Max Pending
Connections

The following table provides information for the HTTP client metrics when it is configured to serve
HTTP/2 traffic:

metric name type description

reactor.netty.connection.provid
er.active.streams

Gauge The number of the active
HTTP/2 streams. See Active
Streams

reactor.netty.connection.provid
er.pending.streams

Gauge The number of requests that
are waiting for opening HTTP/2
stream. See Pending Streams

ByteBufAllocator metrics

metric name type description

reactor.netty.bytebuf.allocator.
used.heap.memory

Gauge The number of bytes reserved
by heap buffer allocator. See
Used Heap Memory

reactor.netty.bytebuf.allocator.
used.direct.memory

Gauge The number of bytes reserved
by direct buffer allocator. See
Used Direct Memory

reactor.netty.bytebuf.allocator.
heap.arenas

Gauge The number of heap arenas
(when PooledByteBufAllocator).
See Heap Arenas

reactor.netty.bytebuf.allocator.
direct.arenas

Gauge The number of direct arenas
(when PooledByteBufAllocator).
See Direct Arenas

reactor.netty.bytebuf.allocator.t
hreadlocal.caches

Gauge The number of thread local
caches (when
PooledByteBufAllocator). See
Thread Local Caches

144

observability.pdf#observability-metrics-pending-connections
observability.pdf#observability-metrics-pending-connections-time
observability.pdf#observability-metrics-pending-connections-time
observability.pdf#observability-metrics-max-pending-connections
observability.pdf#observability-metrics-max-pending-connections
observability.pdf#observability-metrics-active-streams
observability.pdf#observability-metrics-active-streams
observability.pdf#observability-metrics-pending-streams
observability.pdf#observability-metrics-used-heap-memory
observability.pdf#observability-metrics-used-direct-memory
observability.pdf#observability-metrics-heap-arenas
observability.pdf#observability-metrics-direct-arenas
observability.pdf#observability-metrics-thread-local-caches

metric name type description

reactor.netty.bytebuf.allocator.s
mall.cache.size

Gauge The size of the small cache
(when PooledByteBufAllocator).
See Small Cache Size

reactor.netty.bytebuf.allocator.
normal.cache.size

Gauge The size of the normal cache
(when PooledByteBufAllocator).
See Normal Cache Size

reactor.netty.bytebuf.allocator.c
hunk.size

Gauge The chunk size for an arena
(when PooledByteBufAllocator).
See Chunk Size

reactor.netty.bytebuf.allocator.
active.heap.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
heap buffer pools (when
PooledByteBufAllocator). See
Active Heap Memory

reactor.netty.bytebuf.allocator.
active.direct.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
direct buffer pools (when
PooledByteBufAllocator). See
Active Direct Memory

EventLoop metrics

metric name type description

reactor.netty.eventloop.pending
.tasks

Gauge The number of tasks that are
pending for processing on an
event loop. See Pending Tasks

The following example enables that integration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/metrics/Application.java

145

observability.pdf#observability-metrics-small-cache-size
observability.pdf#observability-metrics-normal-cache-size
observability.pdf#observability-metrics-chunk-size
observability.pdf#observability-metrics-active-heap-memory
observability.pdf#observability-metrics-active-direct-memory
observability.pdf#observability-metrics-pending-tasks
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/metrics/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/metrics/Application.java

import io.micrometer.core.instrument.Metrics;
import io.micrometer.core.instrument.config.MeterFilter;
import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 Metrics.globalRegistry ①
 .config()
 .meterFilter(MeterFilter.maximumAllowableTags
("reactor.netty.http.client", "URI", 100, MeterFilter.deny()));

 HttpClient client =
 HttpClient.create()
 .metrics(true, s -> {
 if (s.startsWith("/stream/")) { ②
 return "/stream/{n}";
 }
 else if (s.startsWith("/bytes/")) {
 return "/bytes/{n}";
 }
 return s;
 }); ③

 client.get()
 .uri("https://httpbin.org/stream/2")
 .responseContent()
 .blockLast();

 client.get()
 .uri("https://httpbin.org/bytes/1024")
 .responseContent()
 .blockLast();
 }
}

① Applies upper limit for the meters with URI tag

② Templated URIs will be used as a URI tag value when possible

③ Enables the built-in integration with Micrometer



In order to avoid a memory and CPU overhead of the enabled metrics, it is
important to convert the real URIs to templated URIs when possible. Without a
conversion to a template-like form, each distinct URI leads to the creation of a
distinct tag, which takes a lot of memory for the metrics.


Always apply an upper limit for the meters with URI tags. Configuring an upper
limit on the number of meters can help in cases when the real URIs cannot be
templated. You can find more information at maximumAllowableTags.

146

https://micrometer.io/docs/concepts#_denyaccept_meters

When HTTP client metrics are needed for an integration with a system other than Micrometer or you
want to provide your own integration with Micrometer, you can provide your own metrics recorder,
as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/metrics/custom/Application.java

import reactor.netty.http.client.HttpClient;
import reactor.netty.http.client.HttpClientMetricsRecorder;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .metrics(true, CustomHttpClientMetricsRecorder::new); ①

 client.get()
 .uri("https://httpbin.org/stream/2")
 .response()
 .block();
 }

① Enables HTTP client metrics and provides HttpClientMetricsRecorder implementation.

Tracing
The HTTP client supports built-in integration with Micrometer Tracing.

The following table provides information for the HTTP client spans:

contextual name description

HTTP <HTTP METHOD> Information and total time for the request. See
Http Client Response Span.

hostname resolution Information and time spent for resolving the
address. See Hostname Resolution Span.

connect Information and time spent for connecting to
the remote address. See Connect Span.

tls handshake Information and time spent for TLS handshake.
See Tls Handshake Span.

The following example enables that integration. This concrete example uses Brave and reports the
information to Zipkin. See the Micrometer Tracing documentation for OpenTelemetry setup.

147

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/metrics/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/metrics/custom/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/client/HttpClientMetricsRecorder.html
https://micrometer.io/docs/tracing
observability.pdf#observability-spans-http-client-response-span
observability.pdf#observability-spans-hostname-resolution-span
observability.pdf#observability-spans-connect-span
observability.pdf#observability-spans-tls-handshake-span
https://micrometer.io/docs/tracing#_micrometer_tracing_opentelemetry_setup

github.com/reactor/reactor-netty/tree/main/reactor-netty-
examples/src/main/java/reactor/netty/examples/documentation/http/client/tracing/Application.java

import brave.Tracing;
import brave.propagation.StrictCurrentTraceContext;
import brave.sampler.Sampler;
import io.micrometer.tracing.CurrentTraceContext;
import io.micrometer.tracing.Tracer;
import io.micrometer.tracing.brave.bridge.BraveBaggageManager;
import io.micrometer.tracing.brave.bridge.BraveCurrentTraceContext;
import io.micrometer.tracing.brave.bridge.BravePropagator;
import io.micrometer.tracing.brave.bridge.BraveTracer;
import io.micrometer.tracing.propagation.Propagator;
import reactor.netty.http.client.HttpClient;
import
reactor.netty.http.observability.ReactorNettyPropagatingSenderTracingObservationHandle
r;
import reactor.netty.observability.ReactorNettyTracingObservationHandler;
import zipkin2.reporter.brave.AsyncZipkinSpanHandler;
import zipkin2.reporter.urlconnection.URLConnectionSender;

import static reactor.netty.Metrics.OBSERVATION_REGISTRY;

public class Application {

 public static void main(String[] args) {
 init(); ①

 HttpClient client =
 HttpClient.create()
 .metrics(true, s -> {
 if (s.startsWith("/stream/")) { ②
 return "/stream/{n}";
 }
 return s;
 }); ③

 client.get()
 .uri("https://httpbin.org/stream/3")
 .responseContent()
 .blockLast();
 }

 /**
 * This setup is based on
 * Micrometer
Tracing Brave Setup.
 */
 static void init() {

148

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/tracing/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/tracing/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/tracing/Application.java

 AsyncZipkinSpanHandler spanHandler = AsyncZipkinSpanHandler
 .create(URLConnectionSender.create
("http://localhost:9411/api/v2/spans"));

 StrictCurrentTraceContext braveCurrentTraceContext =
StrictCurrentTraceContext.create();

 CurrentTraceContext bridgeContext = new BraveCurrentTraceContext
(braveCurrentTraceContext);

 Tracing tracing =
 Tracing.newBuilder()
 .currentTraceContext(braveCurrentTraceContext)
 .supportsJoin(false)
 .traceId128Bit(true)
 .sampler(Sampler.ALWAYS_SAMPLE)
 .addSpanHandler(spanHandler)
 .localServiceName("reactor-netty-examples")
 .build();

 brave.Tracer braveTracer = tracing.tracer();

 Tracer tracer = new BraveTracer(braveTracer, bridgeContext, new
BraveBaggageManager());

 Propagator propagator = new BravePropagator(tracing);

 OBSERVATION_REGISTRY.observationConfig()
 .observationHandler(new
ReactorNettyPropagatingSenderTracingObservationHandler(tracer, propagator))
 .observationHandler(new
ReactorNettyTracingObservationHandler(tracer));
 }
}

① Initializes Brave, Zipkin, and the Observation registry.

② Templated URIs are used as an URI tag value when possible.

③ Enables the built-in integration with Micrometer.

The result in Zipkin looks like:

149

Access Current Observation

Project Micrometer provides a library that assists with context propagation across different types
of context mechanisms such as ThreadLocal, Reactor Context and others.

The following example shows how to use this library in a custom ChannelHandler:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/tracing/custom/Application.java

import brave.Tracing;
import brave.propagation.StrictCurrentTraceContext;
import brave.sampler.Sampler;
import io.micrometer.context.ContextSnapshot;
import io.micrometer.context.ContextSnapshotFactory;
import io.micrometer.tracing.CurrentTraceContext;
import io.micrometer.tracing.Tracer;
import io.micrometer.tracing.brave.bridge.BraveBaggageManager;
import io.micrometer.tracing.brave.bridge.BraveCurrentTraceContext;
import io.micrometer.tracing.brave.bridge.BravePropagator;
import io.micrometer.tracing.brave.bridge.BraveTracer;
import io.micrometer.tracing.propagation.Propagator;
import io.netty.channel.ChannelHandler;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelOutboundHandlerAdapter;
import io.netty.channel.ChannelPromise;
import reactor.netty.NettyPipeline;
import reactor.netty.http.client.HttpClient;
import

150

https://micrometer.io/docs/contextPropagation
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/tracing/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/tracing/custom/Application.java

reactor.netty.http.observability.ReactorNettyPropagatingSenderTracingObservationHandle
r;
import reactor.netty.observability.ReactorNettyTracingObservationHandler;
import zipkin2.reporter.brave.AsyncZipkinSpanHandler;
import zipkin2.reporter.urlconnection.URLConnectionSender;

import static reactor.netty.Metrics.OBSERVATION_REGISTRY;

public class Application {

 public static void main(String[] args) {
 init(); ①

 HttpClient client =
 HttpClient.create()
 .metrics(true, s -> {
 if (s.startsWith("/stream/")) { ②
 return "/stream/{n}";
 }
 return s;
 }) ③
 .doOnConnected(conn -> conn.channel().pipeline().addAfter
(NettyPipeline.HttpCodec,
 "custom-channel-handler",
CustomChannelOutboundHandler.INSTANCE)); ④

 client.get()
 .uri("https://httpbin.org/stream/3")
 .responseContent()
 .blockLast();
 }

 static final class CustomChannelOutboundHandler extends
ChannelOutboundHandlerAdapter {

 static final ChannelHandler INSTANCE = new CustomChannelOutboundHandler();

 @Override
 public boolean isSharable() {
 return true;
 }

 @Override
 @SuppressWarnings({"FutureReturnValueIgnored", "try"})
 public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise
promise) {
 try (ContextSnapshot.Scope scope = ContextSnapshotFactory.builder().
build().setThreadLocalsFrom(ctx.channel())) {
 System.out.println("Current Observation in Scope: " +
OBSERVATION_REGISTRY.getCurrentObservation());
 //"FutureReturnValueIgnored" this is deliberate

151

 ctx.write(msg, promise);
 }
 System.out.println("Current Observation: " + OBSERVATION_REGISTRY
.getCurrentObservation());
 }
 }

① Initializes Brave, Zipkin, and the Observation registry.

② Templated URIs are used as an URI tag value when possible.

③ Enables the built-in integration with Micrometer.

④ Custom ChannelHandler that uses context propagation library. This concrete example overrides
only ChannelOutboundHandlerAdapter#write, if it is needed, the same logic can be used for the rest
of the methods. Also, this concrete example sets all ThreadLocal values for which there is a value
in the given Channel, if another behaviour is needed please check context propagation library
API. For example, you may want to set only some of the ThreadLocal values.



When you enable Reactor Netty tracing within a framework, you may need to let
Reactor Netty use the ObservationRegistry created by this framework. For this
purpose you need to invoke reactor.netty.Metrics#observationRegistry. You may
also need to configure the Reactor Netty ObservationHandlers using the API
provided by the framework.

Unix Domain Sockets
The HTTP client supports Unix Domain Sockets (UDS) when native transport is in use.

The following example shows how to use UDS support:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/uds/Application.java

import io.netty.channel.unix.DomainSocketAddress;
import reactor.netty.http.client.HttpClient;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .remoteAddress(() -> new DomainSocketAddress
("/tmp/test.sock")); ①

 client.get()
 .uri("/")
 .response()
 .block();
 }

152

https://micrometer.io/docs/contextPropagation
https://micrometer.io/docs/contextPropagation
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Metrics.html#observationRegistry-io.micrometer.observation.ObservationRegistry-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/uds/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/uds/Application.java

}

① Specifies DomainSocketAddress that will be used

Host Name Resolution
By default, the HttpClient uses Netty’s domain name lookup mechanism that resolves a domain
name asynchronously. This is as an alternative of the JVM’s built-in blocking resolver.

When you need to change the default settings, you can configure the HttpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/resolver/Application.java

import reactor.netty.http.client.HttpClient;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .resolver(spec -> spec.queryTimeout(Duration.ofMillis(
500))); ①

 String response =
 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);
 }
}

① The timeout of each DNS query performed by this resolver will be 500ms.

The following listing shows the available configurations. Additionally, TCP fallback is enabled by
default.

Configuration name Description

bindAddressSupplier The supplier of the local address to bind to.

153

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/resolver/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/resolver/Application.java
https://tools.ietf.org/html/rfc7766

Configuration name Description

cacheMaxTimeToLive The max time to live of the cached DNS resource
records (resolution: seconds). If the time to live
of the DNS resource record returned by the DNS
server is greater than this max time to live, this
resolver ignores the time to live from the DNS
server and uses this max time to live. Default to
Integer.MAX_VALUE.

cacheMinTimeToLive The min time to live of the cached DNS resource
records (resolution: seconds). If the time to live
of the DNS resource record returned by the DNS
server is less than this min time to live, this
resolver ignores the time to live from the DNS
server and uses this min time to live. Default: 0.

cacheNegativeTimeToLive The time to live of the cache for the failed DNS
queries (resolution: seconds). Default: 0.

completeOncePreferredResolved When this setting is enabled, the resolver
notifies as soon as all queries for the preferred
address type are complete. When this setting is
disabled, the resolver notifies when all possible
address types are complete. This configuration is
applicable for
DnsNameResolver#resolveAll(String). By default,
this setting is enabled.

disableOptionalRecord Disables the automatic inclusion of an optional
record that tries to give a hint to the remote DNS
server about how much data the resolver can
read per response. By default, this setting is
enabled.

disableRecursionDesired Specifies whether this resolver has to send a
DNS query with the recursion desired (RD) flag
set. By default, this setting is enabled.

dnsAddressResolverGroupProvider Sets a custom function to create a
DnsAddressResolverGroup given a
DnsNameResolverBuilder

hostsFileEntriesResolver Sets a custom HostsFileEntriesResolver to be
used for hosts file entries. Default:
DefaultHostsFileEntriesResolver.

maxPayloadSize Sets the capacity of the datagram packet buffer
(in bytes). Default: 4096.

maxQueriesPerResolve Sets the maximum allowed number of DNS
queries to send when resolving a host name.
Default: 16.

154

https://netty.io/4.1/api/io/netty/resolver/HostsFileEntriesResolver.html
https://netty.io/4.1/api/io/netty/resolver/DefaultHostsFileEntriesResolver.html

Configuration name Description

ndots Sets the number of dots that must appear in a
name before an initial absolute query is made.
Default: -1 (to determine the value from the OS
on Unix or use a value of 1 otherwise).

queryTimeout Sets the timeout of each DNS query performed
by this resolver (resolution: milliseconds).
Default: 5000.

resolveCache The cache to use to store resolved DNS entries.

resolvedAddressTypes The list of the protocol families of the resolved
address.

retryTcpOnTimeout Specifies whether this resolver will also fallback
to TCP if a timeout is detected. By default, the
resolver will only try to use TCP if the response
is marked as truncated.

roundRobinSelection Enables an AddressResolverGroup of
DnsNameResolver that supports random selection
of destination addresses if multiple are provided
by the nameserver. See
RoundRobinDnsAddressResolverGroup. Default:
DnsAddressResolverGroup

runOn Performs the communication with the DNS
servers on the given LoopResources. By default,
the LoopResources specified on the client level
are used.

searchDomains The list of search domains of the resolver. By
default, the effective search domain list is
populated by using the system DNS search
domains.

trace A specific logger and log level to be used by this
resolver when generating detailed trace
information in case of resolution failure.

Sometimes, you may want to switch to the JVM built-in resolver. To do so, you can configure the
HttpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/resolver/custom/Application.java

import io.netty.resolver.DefaultAddressResolverGroup;
import reactor.netty.http.client.HttpClient;

public class Application {

155

https://netty.io/4.1/api/io/netty/resolver/AddressResolverGroup.html
https://netty.io/4.1/api/io/netty/resolver/dns/DnsNameResolver.html
https://netty.io/4.1/api/io/netty/resolver/dns/RoundRobinDnsAddressResolverGroup.html
https://netty.io/4.1/api/io/netty/resolver/dns/DnsAddressResolverGroup.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/resolver/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/resolver/custom/Application.java

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .resolver(DefaultAddressResolverGroup.INSTANCE); ①

 String response =
 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);
 }
}

① Sets the JVM built-in resolver.

Timeout Configuration
This section describes various timeout configuration options that can be used in HttpClient.
Configuring a proper timeout may improve or solve issues in the communication process. The
configuration options can be grouped as follows:

• Connection Pool Timeout

• HttpClient Timeout

◦ Response Timeout

◦ Connection Timeout

◦ SSL/TLS Timeout

◦ Proxy Timeout

◦ Host Name Resolution Timeout

Connection Pool Timeout

By default, HttpClient uses a connection pool. When a request is completed successfully and if the
connection is not scheduled for closing, the connection is returned to the connection pool and can
thus be reused for processing another request. The connection may be reused immediately for
another request or may stay idle in the connection pool for some time.

The following list describes the available timeout configuration options:

• maxIdleTime - The maximum time (resolution: ms) that this connection stays idle in the
connection pool. By default, maxIdleTime is not specified.


When you configure maxIdleTime, you should consider the idle timeout
configuration on the target server. Choose a configuration that is equal to or less

156

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/ConnectionProvider.ConnectionPoolSpec.html#maxIdleTime-java.time.Duration-

than the one on the target server. By doing so, you can reduce the I/O issues caused
by a connection closed by the target server.

• maxLifeTime - The maximum time (resolution: ms) that this connection stays alive. By default,
maxLifeTime is not specified.

• pendingAcquireTimeout - The maximum time (resolution: ms) after which a pending acquire
operation must complete, or a PoolAcquireTimeoutException is thrown. Default: 45s.

By default, these timeouts are checked on connection release or acquire operations and, if some
timeout is reached, the connection is closed and removed from the connection pool. However, you
can also configure the connection pool, by setting evictInBackground, to perform periodic checks on
connections.

To customize the default settings, you can configure HttpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/pool/Application.java

import reactor.netty.http.client.HttpClient;
import reactor.netty.resources.ConnectionProvider;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 ConnectionProvider provider =
 ConnectionProvider.builder("custom")
 .maxConnections(50)
 .maxIdleTime(Duration.ofSeconds(20)) ①
 .maxLifeTime(Duration.ofSeconds(60)) ②
 .pendingAcquireTimeout(Duration.ofSeconds(60)) ③
 .evictInBackground(Duration.ofSeconds(120)) ④
 .build();

 HttpClient client = HttpClient.create(provider);

 String response =
 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);

 provider.disposeLater()
 .block();
 }

157

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/ConnectionProvider.ConnectionPoolSpec.html#maxLifeTime-java.time.Duration-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/pool/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/pool/Application.java

}

① Configures the maximum time for a connection to stay idle to 20 seconds.

② Configures the maximum time for a connection to stay alive to 60 seconds.

③ Configures the maximum time for the pending acquire operation to 60 seconds.

④ Every two minutes, the connection pool is regularly checked for connections that are applicable
for removal.

HttpClient Timeout

This section provides information for the various timeout configuration options at the HttpClient
level.



Reactor Netty uses Reactor Core as its Reactive Streams implementation, and you
may want to use the timeout operator that Mono and Flux provide. Keep in mind,
however, that it is better to use the more specific timeout configuration options
available in Reactor Netty, since they provide more control for a specific purpose
and use case. By contrast, the timeout operator can only apply to the operation as a
whole, from establishing the connection to the remote peer to receiving the
response.

Response Timeout

HttpClient provides an API for configuring a default response timeout for all requests. You can
change this default response timeout through an API for a specific request. By default,
responseTimeout is not specified.

 It is always a good practice to configure a response timeout.

To customize the default settings, you can configure HttpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/read/timeout/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.http.client.HttpClient;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .responseTimeout(Duration.ofSeconds(1)); ①

 String response1 =

158

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/client/HttpClient.html#responseTimeout-java.time.Duration-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/read/timeout/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/read/timeout/Application.java

 client.post()
 .uri("https://example.com/")
 .send((req, out) -> {
 req.responseTimeout(Duration.ofSeconds(2)); ②
 return out.sendString(Mono.just("body1"));
 })
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response1);

 String response2 =
 client.post()
 .uri("https://example.com/")
 .send((req, out) -> out.sendString(Mono.just("body2")))
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response2);
 }
}

① Configures the default response timeout to 1 second.

② Configures a response timeout for a specific request to 2 seconds.

Connection Timeout

The following listing shows all available connection timeout configuration options, but some of
them may apply only to a specific transport.

• CONNECT_TIMEOUT_MILLIS - If the connection establishment attempt to the remote peer does not
finish within the configured connect timeout (resolution: ms), the connection establishment
attempt fails. Default: 30s.

• SO_KEEPALIVE - When the connection stays idle for some time (the time is implementation
dependent, but the default is typically two hours), TCP automatically sends a keepalive probe to
the remote peer. By default, SO_KEEPALIVE is not enabled. When you run with Epoll/NIO (since
Java 11 on Mac or Linux) transport, you may also configure:

◦ TCP_KEEPIDLE - The maximum time (resolution: seconds) that this connection stays idle before
TCP starts sending keepalive probes, if SO_KEEPALIVE has been set. The maximum time is
implementation dependent, but the default is typically two hours.

◦ TCP_KEEPINTVL (Epoll)/TCP_KEEPINTERVAL (NIO) - The time (resolution: seconds) between
individual keepalive probes.

◦ TCP_KEEPCNT (Epoll)/TCP_KEEPCOUNT (NIO) - The maximum number of keepalive probes TCP
should send before dropping the connection.

159

https://docs.oracle.com/javase/8/docs/api/java/net/SocketOptions.html#SO_KEEPALIVE
https://bugs.openjdk.java.net/browse/JDK-8194298
https://bugs.openjdk.java.net/browse/JDK-8194298
https://bugs.openjdk.java.net/browse/JDK-8194298
https://bugs.openjdk.java.net/browse/JDK-8194298



Sometimes, between the client and the server, you may have a network
component that silently drops the idle connections without sending a response.
From the Reactor Netty point of view, in this use case, the remote peer just does
not respond. To be able to handle such a use case you may consider configuring
SO_KEEPALIVE.

To customize the default settings, you can configure HttpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/channeloptions/Application.java

import io.netty.channel.ChannelOption;
import io.netty.channel.epoll.EpollChannelOption;
//import io.netty.channel.socket.nio.NioChannelOption;
//import jdk.net.ExtendedSocketOptions;
import reactor.netty.http.client.HttpClient;
import java.net.InetSocketAddress;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .bindAddress(() -> new InetSocketAddress("host", 1234))
 .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000) ①
 .option(ChannelOption.SO_KEEPALIVE, true) ②
 // The options below are available only when NIO transport
(Java 11) is used
 // on Mac or Linux (Java does not currently support these
extended options on Windows)
 // https://bugs.openjdk.java.net/browse/JDK-8194298

//.option(NioChannelOption.of(ExtendedSocketOptions.TCP_KEEPIDLE), 300)

//.option(NioChannelOption.of(ExtendedSocketOptions.TCP_KEEPINTERVAL), 60)

//.option(NioChannelOption.of(ExtendedSocketOptions.TCP_KEEPCOUNT), 8);
 // The options below are available only when Epoll transport
is used
 .option(EpollChannelOption.TCP_KEEPIDLE, 300) ③
 .option(EpollChannelOption.TCP_KEEPINTVL, 60) ④
 .option(EpollChannelOption.TCP_KEEPCNT, 8); ⑤

 String response =
 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

160

https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/channeloptions/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/channeloptions/Application.java

 System.out.println("Response " + response);
 }
}

① Configures the connection establishment timeout to 10 seconds.

② Enables TCP keepalive. This means that TCP starts sending keepalive probes when a connection
is idle for some time.

③ The connection needs to remain idle for 5 minutes before TCP starts sending keepalive probes.

④ Configures the time between individual keepalive probes to 1 minute.

⑤ Configures the maximum number of TCP keepalive probes to 8.

SSL/TLS Timeout

HttpClient supports the SSL/TLS functionality provided by Netty.

The following list describes the available timeout configuration options:

• handshakeTimeout - Use this option to configure the SSL handshake timeout (resolution: ms).
Default: 10s.


You should consider increasing the SSL handshake timeout when expecting slow
network connections.

• closeNotifyFlushTimeout - Use this option to configure the SSL close_notify flush timeout
(resolution: ms). Default: 3s.

• closeNotifyReadTimeout - Use this option to configure the SSL close_notify read timeout
(resolution: ms). Default: 0s.

To customize the default settings, you can configure HttpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/security/custom/Application.java

import reactor.netty.http.Http11SslContextSpec;
import reactor.netty.http.client.HttpClient;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Http11SslContextSpec http11SslContextSpec = Http11SslContextSpec.forClient();

 HttpClient client =
 HttpClient.create()
 .secure(spec -> spec.sslContext(http11SslContextSpec)
 .handshakeTimeout(Duration.ofSeconds(

161

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/security/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/security/custom/Application.java

30)) ①
 .closeNotifyFlushTimeout(Duration
.ofSeconds(10)) ②
 .closeNotifyReadTimeout(Duration
.ofSeconds(10))); ③

 String response =
 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);
 }
}

① Configures the SSL handshake timeout to 30 seconds.

② Configures the SSL close_notify flush timeout to 10 seconds.

③ Configures the SSL close_notify read timeout to 10 seconds.

Proxy Timeout

HttpClient supports the proxy functionality provided by Netty and provides a way to specify the
connection establishment timeout. If the connection establishment attempt to the remote peer does
not finish within the timeout, the connection establishment attempt fails. Default: 10s.

To customize the default settings, you can configure HttpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/proxy/Application.java

import reactor.netty.http.client.HttpClient;
import reactor.netty.transport.ProxyProvider;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .proxy(spec -> spec.type(ProxyProvider.Proxy.HTTP)
 .host("proxy")
 .port(8080)
 .nonProxyHosts("localhost")
 .connectTimeoutMillis(20_000)); ①

 String response =
 client.get()

162

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/ProxyProvider.Builder.html#connectTimeoutMillis-long-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/proxy/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/proxy/Application.java

 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);
 }
}

① Configures the connection establishment timeout to 20 seconds.

Host Name Resolution Timeout

By default, the HttpClient uses Netty’s domain name lookup mechanism to resolve a domain name
asynchronously.

The following list describes the available timeout configuration options:

• cacheMaxTimeToLive - The maximum time to live of the cached DNS resource records (resolution:
seconds). If the time to live of the DNS resource record returned by the DNS server is greater
than this maximum time to live, this resolver ignores the time to live from the DNS server and
uses this maximum time to live. Default: Integer.MAX_VALUE.

• cacheMinTimeToLive - The minimum time to live of the cached DNS resource records (resolution:
seconds). If the time to live of the DNS resource record returned by the DNS server is less than
this minimum time to live, this resolver ignores the time to live from the DNS server and uses
this minimum time to live. Default: 0s.

• cacheNegativeTimeToLive - The time to live of the cache for the failed DNS queries (resolution:
seconds). Default: 0s.

• queryTimeout - Sets the timeout of each DNS query performed by this resolver (resolution:
milliseconds). Default: 5s.

To customize the default settings, you can configure HttpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/http/client/resolver/Application.java

import reactor.netty.http.client.HttpClient;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 HttpClient client =
 HttpClient.create()
 .resolver(spec -> spec.queryTimeout(Duration.ofMillis(
500))); ①

163

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/resolver/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/http/client/resolver/Application.java

 String response =
 client.get()
 .uri("https://example.com/")
 .responseContent()
 .aggregate()
 .asString()
 .block();

 System.out.println("Response " + response);
 }
}

① The timeout of each DNS query performed by this resolver will be 500ms.

164

Chapter 7. UDP Server
Reactor Netty provides the easy-to-use and easy-to-configure UdpServer. It hides most of the Netty
functionality that is required to create a UDP server and adds Reactive Streams backpressure.

Starting and Stopping
To start a UDP server, a UdpServer instance has to be created and configured. By default, the host is
configured to be localhost and the port is 12012. The following example shows how to create and
start a UDP server:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/create/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create() ①
 .bindNow(Duration.ofSeconds(30)); ②

 server.onDispose()
 .block();
 }
}

① Creates a UdpServer instance that is ready for configuring.

② Starts the server in a blocking fashion and waits for it to finish initializing.

The returned Connection offers a simple server API, including disposeNow(), which shuts the server
down in a blocking fashion.

Host and Port

In order to serve on a specific host and port, you can apply the following configuration to the UDP
server:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/address/Application.java

165

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/udp/UdpServer.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/udp/UdpServer.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/create/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/create/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/udp/UdpServer.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Connection.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/DisposableChannel.html#disposeNow-java.time.Duration-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/address/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/address/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create()
 .host("localhost") ①
 .port(8080) ②
 .bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }
}

① Configures the UDP server host

② Configures the UDP server port

 The port can be specified also with PORT environment variable.

Eager Initialization
By default, the initialization of the UdpServer resources happens on demand. This means that the
bind operation absorbs the extra time needed to initialize and load:

• the event loop group

• the native transport libraries (when native transport is used)

When you need to preload these resources, you can configure the UdpServer as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/warmup/Application.java

166

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/warmup/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/warmup/Application.java

import io.netty.channel.socket.DatagramPacket;
import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 UdpServer udpServer =
 UdpServer.create()
 .handle((in, out) ->
 out.sendObject(
 in.receiveObject()
 .map(o -> {
 if (o instanceof DatagramPacket) {
 DatagramPacket p = (DatagramPacket) o;
 return new DatagramPacket(p.content
().retain(), p.sender());
 }
 else {
 return Mono.error(new Exception("Unexpected
type of the message: " + o));
 }
 })));

 udpServer.warmup() ①
 .block();

 Connection server = udpServer.bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }
}

① Initialize and load the event loop group and the native transport libraries

Writing Data
To send data to the remote peer, you must attach an I/O handler. The I/O handler has access to
UdpOutbound, to be able to write data. The following example shows how to send hello:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/send/Application.java

167

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/udp/UdpOutbound.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/send/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/send/Application.java

import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.socket.DatagramPacket;
import io.netty.util.CharsetUtil;
import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create()
 .handle((in, out) ->
 out.sendObject(
 in.receiveObject()
 .map(o -> {
 if (o instanceof DatagramPacket) {
 DatagramPacket p = (DatagramPacket) o;
 ByteBuf buf = Unpooled.copiedBuffer(
"hello", CharsetUtil.UTF_8);
 return new DatagramPacket(buf, p.sender());
①
 }
 else {
 return Mono.error(new Exception("Unexpected
type of the message: " + o));
 }
 })))
 .bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }
}

① Sends a hello string to the remote peer

Consuming Data
To receive data from a remote peer, you must attach an I/O handler. The I/O handler has access to
UdpInbound, to be able to read data. The following example shows how to consume data:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/read/Application.java

168

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/udp/UdpInbound.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/read/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/read/Application.java

import io.netty.channel.socket.DatagramPacket;
import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create()
 .handle((in, out) ->
 out.sendObject(
 in.receiveObject()
 .map(o -> {
 if (o instanceof DatagramPacket) {
 DatagramPacket p = (DatagramPacket) o;
 return new DatagramPacket(p.content
().retain(), p.sender()); ①
 }
 else {
 return Mono.error(new Exception("Unexpected
type of the message: " + o));
 }
 })))
 .bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }
}

① Receives data from the remote peer

Lifecycle Callbacks
The following lifecycle callbacks are provided to let you extend the UdpServer:

Callback Description

doOnBind Invoked when the server channel is about to
bind.

doOnBound Invoked when the server channel is bound.

doOnChannelInit Invoked when initializing the channel.

doOnUnbound Invoked when the server channel is unbound.

The following example uses the doOnBound and doOnChannelInit callbacks:

169

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/lifecycle/Application.java

import io.netty.handler.codec.LineBasedFrameDecoder;
import io.netty.handler.logging.LoggingHandler;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create()
 .doOnBound(conn -> conn.addHandlerLast(new
LineBasedFrameDecoder(8192))) ①
 .doOnChannelInit((observer, channel, remoteAddress) ->
 channel.pipeline()
 .addFirst(new LoggingHandler
("reactor.netty.examples"))) ②
 .bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }
}

① Netty pipeline is extended with LineBasedFrameDecoder when the server channel is bound.

② Netty pipeline is extended with LoggingHandler when initializing the channel.

Connection Configuration
This section describes three kinds of configuration that you can use at the UDP level:

• Channel Options

• Wire Logger

• Event Loop Group

Channel Options

By default, the UDP server is configured with the following options:

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/udp/
UdpServerBind.java

170

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/lifecycle/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/lifecycle/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/udp/UdpServerBind.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/udp/UdpServerBind.java

 UdpServerBind() {
 this.config = new UdpServerConfig(
 Collections.singletonMap(ChannelOption.AUTO_READ, false),
 () -> new InetSocketAddress(NetUtil.LOCALHOST, DEFAULT_PORT));
 }

If you need additional options or need to change the current options, you can apply the following
configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/channeloptions/Application.java

import io.netty.channel.ChannelOption;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create()
 .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
 .bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }
}

For more information about Netty channel options, see the following links:

• Common ChannelOption

• Epoll ChannelOption

• KQueue ChannelOption

• Socket Options

Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers needs to be inspected.
By default, wire logging is disabled. To enable it, you must set the logger
reactor.netty.udp.UdpServer level to DEBUG and apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/wiretap/Application.java

171

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/channeloptions/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/channeloptions/Application.java
https://netty.io/4.1/api/io/netty/channel/ChannelOption.html
https://netty.io/4.1/api/io/netty/channel/epoll/EpollChannelOption.html
https://netty.io/4.1/api/io/netty/channel/kqueue/KQueueChannelOption.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/wiretap/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/wiretap/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create()
 .wiretap(true) ①
 .bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }
}

① Enables the wire logging

Wire Logger formatters

Reactor Netty supports 3 different formatters:

• AdvancedByteBufFormat#HEX_DUMP - the default

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

172

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in hex format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] REGISTERED
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] ACTIVE
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] READ: 145B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 50 4f 53 54 20 2f 74 65 73 74 2f 57 6f 72 6c 64 |POST /test/World|
 * |00000010| 20 48 54 54 50 2f 31 2e 31 0d 0a 43 6f 6e 74 65 | HTTP/1.1..Conte|
 * |00000020| 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 70 6c |nt-Type: text/pl|
 * |00000030| 61 69 6e 0d 0a 75 73 65 72 2d 61 67 65 6e 74 3a |ain..user-agent:|
 * |00000040| 20 52 65 61 63 74 6f 72 4e 65 74 74 79 2f 64 65 | ReactorNetty/de|
 * ...
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] WRITE: 38B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d |HTTP/1.1 200 OK.|
 * |00000010| 0a 63 6f 6e 74 65 6e 74 2d 6c 65 6e 67 74 68 3a |.content-length:|
 * |00000020| 20 30 0d 0a 0d 0a | 0.... |
 * +--------+---+----------------+
 * }
 * </pre>
 */

• AdvancedByteBufFormat#SIMPLE

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

173

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, only the events will be logged.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] REGISTERED
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] ACTIVE
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] READ: 145B
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] WRITE: 38B
 * }
 * </pre>
 */

• AdvancedByteBufFormat#TEXTUAL

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in plain text format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] REGISTERED
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] ACTIVE
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] READ: 145B POST /test/World HTTP/1.1
 * Content-Type: text/plain
 * user-agent: ReactorNetty/dev
 * ...
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] WRITE: 38B HTTP/1.1 200 OK
 * content-length: 0
 * }
 * </pre>
 */

When you need to change the default formatter you can configure it as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/

174

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/wiretap/custom/Application.java

examples/documentation/udp/server/wiretap/custom/Application.java

import io.netty.handler.logging.LogLevel;
import reactor.netty.Connection;
import reactor.netty.transport.logging.AdvancedByteBufFormat;
import reactor.netty.udp.UdpServer;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create()
 .wiretap("logger-name", LogLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL) ①
 .bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }
}

① Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the content.

Event Loop Group

By default Reactor Netty uses an “Event Loop Group”, where the number of the worker threads
equals the number of processors available to the runtime on initialization (but with a minimum
value of 4). When you need a different configuration, you can use one of the LoopResources#create
methods.

The following listing shows the default configuration for the Event Loop Group:

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
ReactorNetty.java

175

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/wiretap/custom/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

 /**
 * Default worker thread count, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String IO_WORKER_COUNT = "reactor.netty.ioWorkerCount";
 /**
 * Default selector thread count, fallback to -1 (no selector thread)
 * <p>Note: In most use cases using a worker thread also as a
selector thread works well.
 * A possible use case for specifying a separate selector thread might be when the
worker threads are too busy
 * and connections cannot be accepted fast enough.
 * <p>Note: Although more than 1 can be configured as a selector
thread count, in reality
 * only 1 thread will be used as a selector thread.
 */
 public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
 /**
 * Default worker thread count for UDP, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String UDP_IO_THREAD_COUNT =
"reactor.netty.udp.ioThreadCount";
 /**
 * Default quiet period that guarantees that the disposal of the underlying
LoopResources
 * will not happen, fallback to 2 seconds.
 */
 public static final String SHUTDOWN_QUIET_PERIOD =
"reactor.netty.ioShutdownQuietPeriod";
 /**
 * Default maximum amount of time to wait until the disposal of the underlying
LoopResources
 * regardless if a task was submitted during the quiet period, fallback to 15
seconds.
 */
 public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";

 /**
 * Default value whether the native transport (epoll, kqueue) will be preferred,
 * fallback it will be preferred when available.
 */
 public static final String NATIVE = "reactor.netty.native";

If you need changes to these settings, you can apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/eventloop/Application.java

176

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/eventloop/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/eventloop/Application.java

import reactor.netty.Connection;
import reactor.netty.resources.LoopResources;
import reactor.netty.udp.UdpServer;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 LoopResources loop = LoopResources.create("event-loop", 1, 4, true);

 Connection server =
 UdpServer.create()
 .runOn(loop)
 .bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }
}

Disposing Event Loop Group

• If you use the default Event Loop Group provided by Reactor Netty, invoke
HttpResources#disposeLoopsAndConnections/#disposeLoopsAndConnectionsLater method.


Disposing HttpResources means that every server/client that is using it, will not be
able to use it anymore!

• If you use custom LoopResources, invoke LoopResources#dispose/#disposeLater method.


Disposing the custom LoopResources means that every server/client that is
configured to use it, will not be able to use it anymore!

Metrics
The UDP server supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.udp.server.

The following table provides information for the UDP server metrics:

metric name type description

reactor.netty.udp.server.data.re
ceived

DistributionSummary Amount of the data received, in
bytes. See Data Received

reactor.netty.udp.server.data.se
nt

DistributionSummary Amount of the data sent, in
bytes. See Data Sent

177

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/HttpResources.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://micrometer.io/
observability.pdf#observability-metrics-data-received
observability.pdf#observability-metrics-data-sent

metric name type description

reactor.netty.udp.server.errors Counter Number of errors that occurred.
See Errors Count

These additional metrics are also available:

ByteBufAllocator metrics

metric name type description

reactor.netty.bytebuf.allocator.
used.heap.memory

Gauge The number of bytes reserved
by heap buffer allocator. See
Used Heap Memory

reactor.netty.bytebuf.allocator.
used.direct.memory

Gauge The number of bytes reserved
by direct buffer allocator. See
Used Direct Memory

reactor.netty.bytebuf.allocator.
heap.arenas

Gauge The number of heap arenas
(when PooledByteBufAllocator).
See Heap Arenas

reactor.netty.bytebuf.allocator.
direct.arenas

Gauge The number of direct arenas
(when PooledByteBufAllocator).
See Direct Arenas

reactor.netty.bytebuf.allocator.t
hreadlocal.caches

Gauge The number of thread local
caches (when
PooledByteBufAllocator). See
Thread Local Caches

reactor.netty.bytebuf.allocator.s
mall.cache.size

Gauge The size of the small cache
(when PooledByteBufAllocator).
See Small Cache Size

reactor.netty.bytebuf.allocator.
normal.cache.size

Gauge The size of the normal cache
(when PooledByteBufAllocator).
See Normal Cache Size

reactor.netty.bytebuf.allocator.c
hunk.size

Gauge The chunk size for an arena
(when PooledByteBufAllocator).
See Chunk Size

reactor.netty.bytebuf.allocator.
active.heap.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
heap buffer pools (when
PooledByteBufAllocator). See
Active Heap Memory

178

observability.pdf#observability-metrics-errors-count
observability.pdf#observability-metrics-used-heap-memory
observability.pdf#observability-metrics-used-direct-memory
observability.pdf#observability-metrics-heap-arenas
observability.pdf#observability-metrics-direct-arenas
observability.pdf#observability-metrics-thread-local-caches
observability.pdf#observability-metrics-small-cache-size
observability.pdf#observability-metrics-normal-cache-size
observability.pdf#observability-metrics-chunk-size
observability.pdf#observability-metrics-active-heap-memory

metric name type description

reactor.netty.bytebuf.allocator.
active.direct.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
direct buffer pools (when
PooledByteBufAllocator). See
Active Direct Memory

EventLoop metrics

metric name type description

reactor.netty.eventloop.pending
.tasks

Gauge The number of tasks that are
pending for processing on an
event loop. See Pending Tasks

The following example enables that integration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/metrics/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create()
 .metrics(true) ①
 .bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }
}

① Enables the built-in integration with Micrometer

When UDP server metrics are needed for an integration with a system other than Micrometer or you
want to provide your own integration with Micrometer, you can provide your own metrics recorder,
as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/metrics/custom/Application.java

179

observability.pdf#observability-metrics-active-direct-memory
observability.pdf#observability-metrics-pending-tasks
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/metrics/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/metrics/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/metrics/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/metrics/custom/Application.java

import reactor.netty.Connection;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.udp.UdpServer;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create()
 .metrics(true, CustomChannelMetricsRecorder::new) ①
 .bindNow(Duration.ofSeconds(30));

 server.onDispose()
 .block();
 }

① Enables UDP server metrics and provides ChannelMetricsRecorder implementation.

Unix Domain Sockets
The UdpServer supports Unix Domain Datagram Sockets (UDS) when native transport is in use.

The following example shows how to use UDS support:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/server/uds/Application.java

180

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/channel/ChannelMetricsRecorder.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/uds/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/server/uds/Application.java

import io.netty.channel.unix.DomainDatagramPacket;
import io.netty.channel.unix.DomainSocketAddress;
import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpServer;

import java.io.File;

public class Application {

 public static void main(String[] args) {
 Connection server =
 UdpServer.create()
 .bindAddress(Application::newDomainSocketAddress) ①
 .handle((in, out) ->
 out.sendObject(
 in.receiveObject()
 .map(o -> {
 if (o instanceof DomainDatagramPacket) {
 DomainDatagramPacket p =
(DomainDatagramPacket) o;
 return new DomainDatagramPacket(p.
content().retain(), p.sender());
 }
 else {
 return Mono.error(new Exception("Unexpected
type of the message: " + o));
 }
 })))
 .bindNow();

 server.onDispose()
 .block();
 }

① Specifies DomainSocketAddress that will be used

181

Chapter 8. UDP Client
Reactor Netty provides the easy-to-use and easy-to-configure UdpClient. It hides most of the Netty
functionality that is required to create a UDP client and adds Reactive Streams backpressure.

Connecting and Disconnecting
To connect the UDP client to a given endpoint, you must create and configure a UdpClient instance.
By default, the host is configured for localhost and the port is 12012. The following example shows
how to create and connect a UDP client:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/create/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create() ①
 .connectNow(Duration.ofSeconds(30)); ②

 connection.onDispose()
 .block();
 }
}

① Creates a UdpClient instance that is ready for configuring.

② Connects the client in a blocking fashion and waits for it to finish initializing.

The returned Connection offers a simple connection API, including disposeNow(), which shuts the
client down in a blocking fashion.

Host and Port

To connect to a specific host and port, you can apply the following configuration to the UDP client:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/address/Application.java

182

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/udp/UdpClient.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/udp/UdpClient.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/create/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/create/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/udp/UdpClient.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/Connection.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/DisposableChannel.html#disposeNow-java.time.Duration-
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/address/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/address/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create()
 .host("example.com") ①
 .port(80) ②
 .connectNow(Duration.ofSeconds(30));

 connection.onDispose()
 .block();
 }
}

① Configures the host to which this client should connect

② Configures the port to which this client should connect

 The port can be specified also with PORT environment variable.

Eager Initialization
By default, the initialization of the UdpClient resources happens on demand. This means that the
connect operation absorbs the extra time needed to initialize and load:

• the event loop group

• the host name resolver

• the native transport libraries (when native transport is used)

When you need to preload these resources, you can configure the UdpClient as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/warmup/Application.java

183

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/warmup/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/warmup/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 UdpClient udpClient = UdpClient.create()
 .host("example.com")
 .port(80)
 .handle((udpInbound, udpOutbound) ->
udpOutbound.sendString(Mono.just("hello")));

 udpClient.warmup() ①
 .block();

 Connection connection = udpClient.connectNow(Duration.ofSeconds(30)); ②

 connection.onDispose()
 .block();
 }
}

① Initialize and load the event loop group, the host name resolver, and the native transport
libraries

② Host name resolution happens when connecting to the remote peer

Writing Data
To send data to a given peer, you must attach an I/O handler. The I/O handler has access to
UdpOutbound, to be able to write data.

The following example shows how to send hello:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/send/Application.java

184

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/udp/UdpOutbound.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/send/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/send/Application.java

import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create()
 .host("example.com")
 .port(80)
 .handle((udpInbound, udpOutbound) -> udpOutbound.sendString
(Mono.just("hello"))) ①
 .connectNow(Duration.ofSeconds(30));

 connection.onDispose()
 .block();
 }
}

① Sends hello string to the remote peer.

Consuming Data
To receive data from a given peer, you must attach an I/O handler. The I/O handler has access to
UdpInbound, to be able to read data. The following example shows how to consume data:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/read/Application.java

185

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/udp/UdpInbound.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/read/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/read/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create()
 .host("example.com")
 .port(80)
 .handle((udpInbound, udpOutbound) -> udpInbound.receive
().then()) ①
 .connectNow(Duration.ofSeconds(30));

 connection.onDispose()
 .block();
 }
}

① Receives data from a given peer

Lifecycle Callbacks
The following lifecycle callbacks are provided to let you extend the UdpClient:

Callback Description

doAfterResolve Invoked after the remote address has been
resolved successfully.

doOnChannelInit Invoked when initializing the channel.

doOnConnect Invoked when the channel is about to connect.

doOnConnected Invoked after the channel has been connected.

doOnDisconnected Invoked after the channel has been
disconnected.

doOnResolve Invoked when the remote address is about to be
resolved.

doOnResolveError Invoked in case the remote address hasn’t been
resolved successfully.

The following example uses the doOnConnected and doOnChannelInit callbacks:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/lifecycle/Application.java

186

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/lifecycle/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/lifecycle/Application.java

import io.netty.handler.codec.LineBasedFrameDecoder;
import io.netty.handler.logging.LoggingHandler;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create()
 .host("example.com")
 .port(80)
 .doOnConnected(conn -> conn.addHandlerLast(new
LineBasedFrameDecoder(8192))) ①
 .doOnChannelInit((observer, channel, remoteAddress) ->
 channel.pipeline()
 .addFirst(new LoggingHandler
("reactor.netty.examples"))) ②
 .connectNow(Duration.ofSeconds(30));

 connection.onDispose()
 .block();
 }
}

① Netty pipeline is extended with LineBasedFrameDecoder when the channel has been connected.

② Netty pipeline is extended with LoggingHandler when initializing the channel.

Connection Configuration
This section describes three kinds of configuration that you can use at the UDP level:

• Channel Options

• Wire Logger

• Event Loop Group

Channel Options

By default, the UDP client is configured with the following options:

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/udp/
UdpClientConnect.java

187

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/udp/UdpClientConnect.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/udp/UdpClientConnect.java

 UdpClientConnect() {
 this.config = new UdpClientConfig(
 ConnectionProvider.newConnection(),
 Collections.singletonMap(ChannelOption.AUTO_READ, false),
 () -> new InetSocketAddress(NetUtil.LOCALHOST, DEFAULT_PORT));
 }

If you need additional options or need to change the current options, you can apply the following
configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/channeloptions/Application.java

import io.netty.channel.ChannelOption;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create()
 .host("example.com")
 .port(80)
 .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000)
 .connectNow(Duration.ofSeconds(30));

 connection.onDispose()
 .block();
 }
}

You can find more about Netty channel options at the following links:

• Common ChannelOption

• Epoll ChannelOption

• KQueue ChannelOption

• Socket Options

Wire Logger

Reactor Netty provides wire logging for when the traffic between the peers needs to be inspected.
By default, wire logging is disabled. To enable it, you must set the logger
reactor.netty.udp.UdpClient level to DEBUG and apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/

188

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/channeloptions/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/channeloptions/Application.java
https://netty.io/4.1/api/io/netty/channel/ChannelOption.html
https://netty.io/4.1/api/io/netty/channel/epoll/EpollChannelOption.html
https://netty.io/4.1/api/io/netty/channel/kqueue/KQueueChannelOption.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/socketOpt.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/wiretap/Application.java

examples/documentation/udp/client/wiretap/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create()
 .host("example.com")
 .port(80)
 .wiretap(true) ①
 .connectNow(Duration.ofSeconds(30));

 connection.onDispose()
 .block();
 }
}

① Enables the wire logging

Wire Logger formatters

Reactor Netty supports 3 different formatters:

• AdvancedByteBufFormat#HEX_DUMP - the default

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

189

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/wiretap/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#HEX_DUMP
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in hex format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] REGISTERED
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] ACTIVE
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] READ: 145B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 50 4f 53 54 20 2f 74 65 73 74 2f 57 6f 72 6c 64 |POST /test/World|
 * |00000010| 20 48 54 54 50 2f 31 2e 31 0d 0a 43 6f 6e 74 65 | HTTP/1.1..Conte|
 * |00000020| 6e 74 2d 54 79 70 65 3a 20 74 65 78 74 2f 70 6c |nt-Type: text/pl|
 * |00000030| 61 69 6e 0d 0a 75 73 65 72 2d 61 67 65 6e 74 3a |ain..user-agent:|
 * |00000040| 20 52 65 61 63 74 6f 72 4e 65 74 74 79 2f 64 65 | ReactorNetty/de|
 * ...
 * reactor.netty.http.HttpTests - [d5230a14, L:/0:0:0:0:0:0:0:1:60267 -
R:/0:0:0:0:0:0:0:1:60269] WRITE: 38B
 * +---+
 * | 0 1 2 3 4 5 6 7 8 9 a b c d e f |
 * +--------+---+----------------+
 * |00000000| 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d |HTTP/1.1 200 OK.|
 * |00000010| 0a 63 6f 6e 74 65 6e 74 2d 6c 65 6e 67 74 68 3a |.content-length:|
 * |00000020| 20 30 0d 0a 0d 0a | 0.... |
 * +--------+---+----------------+
 * }
 * </pre>
 */

• AdvancedByteBufFormat#SIMPLE

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

190

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#SIMPLE
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, only the events will be logged.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] REGISTERED
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] ACTIVE
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] READ: 145B
 * reactor.netty.http.HttpTests - [230d3686, L:/0:0:0:0:0:0:0:1:60241 -
R:/0:0:0:0:0:0:0:1:60245] WRITE: 38B
 * }
 * </pre>
 */

• AdvancedByteBufFormat#TEXTUAL

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
transport/logging/AdvancedByteBufFormat.java

 /**
 * When wire logging is enabled with this format, both events and content will be
logged.
 * The content will be in plain text format.
 * <p>Examples:</p>
 * <pre>
 * {@code
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] REGISTERED
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] ACTIVE
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] READ: 145B POST /test/World HTTP/1.1
 * Content-Type: text/plain
 * user-agent: ReactorNetty/dev
 * ...
 * reactor.netty.http.HttpTests - [02c3db6c, L:/0:0:0:0:0:0:0:1:60317 -
R:/0:0:0:0:0:0:0:1:60319] WRITE: 38B HTTP/1.1 200 OK
 * content-length: 0
 * }
 * </pre>
 */

When you need to change the default formatter you can configure it as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/

191

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/transport/logging/AdvancedByteBufFormat.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/wiretap/custom/Application.java

examples/documentation/udp/client/wiretap/custom/Application.java

import io.netty.handler.logging.LogLevel;
import reactor.netty.Connection;
import reactor.netty.transport.logging.AdvancedByteBufFormat;
import reactor.netty.udp.UdpClient;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create()
 .host("example.com")
 .port(80)
 .wiretap("logger-name", LogLevel.DEBUG,
AdvancedByteBufFormat.TEXTUAL) ①
 .connectNow(Duration.ofSeconds(30));

 connection.onDispose()
 .block();
 }
}

① Enables the wire logging, AdvancedByteBufFormat#TEXTUAL is used for printing the content.

Event Loop Group

By default Reactor Netty uses an “Event Loop Group”, where the number of the worker threads
equals the number of processors available to the runtime on initialization (but with a minimum
value of 4). When you need a different configuration, you can use one of the LoopResources#create
methods.

The following listing shows the default configuration for the Event Loop Group:

github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/
ReactorNetty.java

192

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/wiretap/custom/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/transport/logging/AdvancedByteBufFormat.html#TEXTUAL
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-core/src/main/java/reactor/netty/ReactorNetty.java

 /**
 * Default worker thread count, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String IO_WORKER_COUNT = "reactor.netty.ioWorkerCount";
 /**
 * Default selector thread count, fallback to -1 (no selector thread)
 * <p>Note: In most use cases using a worker thread also as a
selector thread works well.
 * A possible use case for specifying a separate selector thread might be when the
worker threads are too busy
 * and connections cannot be accepted fast enough.
 * <p>Note: Although more than 1 can be configured as a selector
thread count, in reality
 * only 1 thread will be used as a selector thread.
 */
 public static final String IO_SELECT_COUNT = "reactor.netty.ioSelectCount";
 /**
 * Default worker thread count for UDP, fallback to available processor
 * (but with a minimum value of 4).
 */
 public static final String UDP_IO_THREAD_COUNT =
"reactor.netty.udp.ioThreadCount";
 /**
 * Default quiet period that guarantees that the disposal of the underlying
LoopResources
 * will not happen, fallback to 2 seconds.
 */
 public static final String SHUTDOWN_QUIET_PERIOD =
"reactor.netty.ioShutdownQuietPeriod";
 /**
 * Default maximum amount of time to wait until the disposal of the underlying
LoopResources
 * regardless if a task was submitted during the quiet period, fallback to 15
seconds.
 */
 public static final String SHUTDOWN_TIMEOUT = "reactor.netty.ioShutdownTimeout";

 /**
 * Default value whether the native transport (epoll, kqueue) will be preferred,
 * fallback it will be preferred when available.
 */
 public static final String NATIVE = "reactor.netty.native";

If you need changes to these settings, you can apply the following configuration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/eventloop/Application.java

193

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/eventloop/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/eventloop/Application.java

import reactor.netty.Connection;
import reactor.netty.resources.LoopResources;
import reactor.netty.udp.UdpClient;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 LoopResources loop = LoopResources.create("event-loop", 1, 4, true);

 Connection connection =
 UdpClient.create()
 .host("example.com")
 .port(80)
 .runOn(loop)
 .connectNow(Duration.ofSeconds(30));

 connection.onDispose()
 .block();
 }
}

Disposing Event Loop Group

• If you use the default Event Loop Group provided by Reactor Netty, invoke
HttpResources#disposeLoopsAndConnections/#disposeLoopsAndConnectionsLater method.


Disposing HttpResources means that every server/client that is using it, will not be
able to use it anymore!

• If you use custom LoopResources, invoke LoopResources#dispose/#disposeLater method.


Disposing the custom LoopResources means that every server/client that is
configured to use it, will not be able to use it anymore!

Metrics
The UDP client supports built-in integration with Micrometer. It exposes all metrics with a prefix of
reactor.netty.udp.client.

The following table provides information for the UDP client metrics:

metric name type description

reactor.netty.udp.client.data.rec
eived

DistributionSummary Amount of the data received, in
bytes. See Data Received

reactor.netty.udp.client.data.se
nt

DistributionSummary Amount of the data sent, in
bytes. See Data Sent

194

https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/http/HttpResources.html
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/resources/LoopResources.html
https://micrometer.io/
observability.pdf#observability-metrics-data-received
observability.pdf#observability-metrics-data-sent

metric name type description

reactor.netty.udp.client.errors Counter Number of errors that occurred.
See Errors Count

reactor.netty.udp.client.connect
.time

Timer Time spent for connecting to
the remote address. See
Connect Time

reactor.netty.udp.client.address
.resolver

Timer Time spent for resolving the
address. See Hostname
Resolution Time

These additional metrics are also available:

ByteBufAllocator metrics

metric name type description

reactor.netty.bytebuf.allocator.
used.heap.memory

Gauge The number of bytes reserved
by heap buffer allocator. See
Used Heap Memory

reactor.netty.bytebuf.allocator.
used.direct.memory

Gauge The number of bytes reserved
by direct buffer allocator. See
Used Direct Memory

reactor.netty.bytebuf.allocator.
heap.arenas

Gauge The number of heap arenas
(when PooledByteBufAllocator).
See Heap Arenas

reactor.netty.bytebuf.allocator.
direct.arenas

Gauge The number of direct arenas
(when PooledByteBufAllocator).
See Direct Arenas

reactor.netty.bytebuf.allocator.t
hreadlocal.caches

Gauge The number of thread local
caches (when
PooledByteBufAllocator). See
Thread Local Caches

reactor.netty.bytebuf.allocator.s
mall.cache.size

Gauge The size of the small cache
(when PooledByteBufAllocator).
See Small Cache Size

reactor.netty.bytebuf.allocator.
normal.cache.size

Gauge The size of the normal cache
(when PooledByteBufAllocator).
See Normal Cache Size

reactor.netty.bytebuf.allocator.c
hunk.size

Gauge The chunk size for an arena
(when PooledByteBufAllocator).
See Chunk Size

195

observability.pdf#observability-metrics-errors-count
observability.pdf#observability-metrics-connect-time
observability.pdf#observability-metrics-hostname-resolution-time
observability.pdf#observability-metrics-hostname-resolution-time
observability.pdf#observability-metrics-used-heap-memory
observability.pdf#observability-metrics-used-direct-memory
observability.pdf#observability-metrics-heap-arenas
observability.pdf#observability-metrics-direct-arenas
observability.pdf#observability-metrics-thread-local-caches
observability.pdf#observability-metrics-small-cache-size
observability.pdf#observability-metrics-normal-cache-size
observability.pdf#observability-metrics-chunk-size

metric name type description

reactor.netty.bytebuf.allocator.
active.heap.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
heap buffer pools (when
PooledByteBufAllocator). See
Active Heap Memory

reactor.netty.bytebuf.allocator.
active.direct.memory

Gauge The actual bytes consumed by
in-use buffers allocated from
direct buffer pools (when
PooledByteBufAllocator). See
Active Direct Memory

EventLoop metrics

metric name type description

reactor.netty.eventloop.pending
.tasks

Gauge The number of tasks that are
pending for processing on an
event loop. See Pending Tasks

The following example enables that integration:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/metrics/Application.java

import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;

import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create()
 .host("example.com")
 .port(80)
 .metrics(true) ①
 .connectNow(Duration.ofSeconds(30));

 connection.onDispose()
 .block();
 }
}

① Enables the built-in integration with Micrometer

When UDP client metrics are needed for an integration with a system other than Micrometer or you
want to provide your own integration with Micrometer, you can provide your own metrics recorder,

196

observability.pdf#observability-metrics-active-heap-memory
observability.pdf#observability-metrics-active-direct-memory
observability.pdf#observability-metrics-pending-tasks
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/metrics/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/metrics/Application.java

as follows:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/metrics/custom/Application.java

import reactor.netty.Connection;
import reactor.netty.channel.ChannelMetricsRecorder;
import reactor.netty.udp.UdpClient;

import java.net.SocketAddress;
import java.time.Duration;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create()
 .host("example.com")
 .port(80)
 .metrics(true, CustomChannelMetricsRecorder::new) ①
 .connectNow(Duration.ofSeconds(30));

 connection.onDispose()
 .block();
 }

① Enables UDP client metrics and provides ChannelMetricsRecorder implementation.

Unix Domain Sockets
The UdpClient supports Unix Domain Datagram Sockets (UDS) when native transport is in use.

The following example shows how to use UDS support:

github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/
examples/documentation/udp/client/uds/Application.java

197

https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/metrics/custom/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/metrics/custom/Application.java
https://projectreactor.io/docs/netty/1.2.0-M2/api/reactor/netty/channel/ChannelMetricsRecorder.html
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/uds/Application.java
https://github.com/reactor/reactor-netty/tree/main/reactor-netty-examples/src/main/java/reactor/netty/examples/documentation/udp/client/uds/Application.java

import io.netty.channel.unix.DomainSocketAddress;
import reactor.core.publisher.Mono;
import reactor.netty.Connection;
import reactor.netty.udp.UdpClient;

import java.io.File;

public class Application {

 public static void main(String[] args) {
 Connection connection =
 UdpClient.create()
 .bindAddress(Application::newDomainSocketAddress)
 .remoteAddress(() -> new DomainSocketAddress("/tmp/test-
server.sock")) ①
 .handle((in, out) ->
 out.sendString(Mono.just("hello"))
 .then(in.receive()
 .asString()
 .doOnNext(System.out::println)
 .then()))
 .connectNow();

 connection.onDispose()
 .block();
 }

① Specifies DomainSocketAddress that will be used

198

Chapter 9. Appendices

Frequently Asked Questions

Connection to the proxy cannot be established

Netty’s HTTP proxy support always uses CONNECT method in order to establish a tunnel to the
specified proxy regardless of the scheme that is used http or https. (More information: Netty
enforce HTTP proxy to support HTTP CONNECT method). Some proxies might not support CONNECT
method when the scheme is http or might need to be configured in order to support this way of
communication. Sometimes this might be the reason for not being able to connect to the proxy.
Consider checking the proxy documentation whether it supports or needs an additional
configuration in order to support CONNECT method.

What is the meaning of the information that is prepended to every log
record?

Reactor Netty adds information for the connection at the beginning of every log record (when this
is possible). There is a slight difference in the details for the connection when you use TCP, UDP,
HTTP/1.1 or HTTP/2.

TCP and UDP

In case of TCP and UDP, the following is added at the beginning of every log record: the id of the
underlying connection, local and remote addresses.

Examples
[a1566d55, L:/[0:0:0:0:0:0:0:1]:53446 - R:/[0:0:0:0:0:0:0:1]:53444]
[a1566d55, L:/[0:0:0:0:0:0:0:1]:53446 ! R:/[0:0:0:0:0:0:0:1]:53444]

Format
[<CONNECTION_ID>, L:<LOCAL_ADDRESS> <CONNECTION_OPENED_CLOSED> R:<REMOTE_ADDRESS>]
<CONNECTION_ID>: a1566d55
<LOCAL_ADDRESS>: [0:0:0:0:0:0:0:1]:53446
<CONNECTION_OPENED_CLOSED>: - (connection opened)
 ! (connection closed)
<REMOTE_ADDRESS>: [0:0:0:0:0:0:0:1]:53444

HTTP/1.1

In case of HTTP/1.1, the following is added at the beginning of every log record: the id of the
underlying connection, the serial number of the request received on that connection, local and
remote addresses.

Examples
[a1566d55-5, L:/[0:0:0:0:0:0:0:1]:53446 - R:/[0:0:0:0:0:0:0:1]:53444]

199

https://github.com/netty/netty/issues/10475
https://github.com/netty/netty/issues/10475

[a1566d55-5, L:/[0:0:0:0:0:0:0:1]:53446 ! R:/[0:0:0:0:0:0:0:1]:53444]

Format
[<CONNECTION_ID>-<REQUEST_NUMBER>, L:<LOCAL_ADDRESS> <CONNECTION_OPENED_CLOSED>
R:<REMOTE_ADDRESS>]
<CONNECTION_ID>: a1566d55
<REQUEST_NUMBER>: 5
<LOCAL_ADDRESS>: [0:0:0:0:0:0:0:1]:53446
<CONNECTION_OPENED_CLOSED>: - (connection opened)
 ! (connection closed)
<REMOTE_ADDRESS>: [0:0:0:0:0:0:0:1]:53444

HTTP/2

In case of HTTP/2, the following is added at the beginning of every log record: the id of the
underlying connection, local and remote addresses, the id of the stream received on that
connection.

Examples
[a1566d55, L:/[0:0:0:0:0:0:0:1]:53446 - R:/[0:0:0:0:0:0:0:1]:53444](H2 - 5)
[a1566d55, L:/[0:0:0:0:0:0:0:1]:53446 ! R:/[0:0:0:0:0:0:0:1]:53444](H2 - 5)

Format
[<CONNECTION_ID>, L:<LOCAL_ADDRESS> <CONNECTION_OPENED_CLOSED>
R:<REMOTE_ADDRESS>]<STREAM_ID>
<CONNECTION_ID>: a1566d55
<LOCAL_ADDRESS>: [0:0:0:0:0:0:0:1]:53446
<CONNECTION_OPENED_CLOSED>: - (connection opened)
 ! (connection closed)
<REMOTE_ADDRESS>: [0:0:0:0:0:0:0:1]:53444
<STREAM_ID>: (H2 - 5)

How can I extract all log records for a particular HTTP request?

Reactor Netty adds information for the connection at the beginning of every log record (when this
is possible). Use the id of the connection in order to extract all log records for a particular HTTP
request. For more information see What is the meaning of the information that is prepended to
every log record?

How can I debug a memory leak?

By default, Reactor Netty uses direct memory as this is more performant when there are many
native I/O operations (working with sockets), as this can remove the copying operations. As
allocation and deallocation are expensive operations, Reactor Netty also uses pooled buffers by
default. For more information, see Reference Counted Objects.

To be able to debug memory issues with the direct memory and the pooled buffers, Netty provides
a special memory leak detection mechanism. Follow the instructions for Troubleshooting Buffer

200

faq.pdf#faq.logging-prefix
faq.pdf#faq.logging-prefix
https://github.com/netty/netty/wiki/Reference-counted-objects
https://github.com/netty/netty/wiki/Reference-counted-objects#troubleshooting-buffer-leaks

Leaks to enable this mechanism. In addition to the instructions provided by Netty, Reactor Netty
provides a special logger (_reactor.netty.channel.LeakDetection) that helps to identify where the
memory leak might be located inside Reactor Netty or whether Reactor Netty already forwarded
the ownership of the buffers to the application/framework. By default, this logger is disabled. To
enable it, increase the log level to DEBUG.

Another way to detect memory leaks is to monitor
reactor.netty.bytebuf.allocator.active.heap.memory and
reactor.netty.bytebuf.allocator.active.direct.memory meters:

• The reactor.netty.bytebuf.allocator.active.heap.memory provides the actual bytes consumed by
in-use buffers allocated from heap buffer pools

• The reactor.netty.bytebuf.allocator.active.direct.memory provides the actual bytes consumed
by in-use buffers allocated from direct buffer pools

If the above meters are constantly growing, then it’s likely that there is a buffer memory leak.


Consider reducing the used memory when debugging memory leak issues (e.g
-XX:MaxDirectMemorySize, -Xms, -Xmx). The less memory the application has, the
sooner the memory leak will happen.

How can I debug "Connection prematurely closed BEFORE response"?

By default, Reactor Netty clients use connection pooling. When a connection is acquired from the
connection pool, it is checked to see whether it is still open. However, the connection can be closed
at any time after the acquisition. There are many reasons that can cause a connection to be closed.
In most cases, the client might not send directly to the server. Instead, there might be other network
components (proxies, load balancers, and so on) between them.

If, on the client side, you observe Connection prematurely closed BEFORE response, perform the
following checks to identify the reason for the connection being closed:

• Obtain a TCP dump and check which peer sends a FIN/RST signal.

• Check your network connection.

• Check your Firewall and VPN.

• Check for any proxies and load balancers.

◦ Do they have some kind of idle timeout configuration (the connection is closed when there is
no incoming data for a certain period of time)?

◦ Do they silently drop the idle connections without sending any signal? In order to verify
whether this might be the issue, you can enable the TCP keep-alive as described in the
section Connection Timeout. Issues related to TCP keep-alive configuration on various load
balancers were reported in the past.

▪ github.com/reactor/reactor-netty/issues/764#issuecomment-1011373248

▪ github.com/reactor/reactor-netty/issues/1510

▪ github.com/reactor/reactor-netty/issues/1843

201

https://github.com/netty/netty/wiki/Reference-counted-objects#troubleshooting-buffer-leaks
https://en.wikipedia.org/wiki/Tcpdump
https://github.com/reactor/reactor-netty/issues/764#issuecomment-1011373248
https://github.com/reactor/reactor-netty/issues/1510
https://github.com/reactor/reactor-netty/issues/1843

• Check the target server.

◦ Are there configurations related to any of the following?

▪ idle timeout (the connection is closed when there is no incoming data for a certain
period of time)

▪ limit for buffering data in memory

▪ multipart exceeds the max file size limit

▪ bad request

▪ max keep alive requests (the connection is closed when the requests reach the
configured maximum number)

▪ rate limit configuration

◦ Is the target server in a shutting down state?

Consider checking Timeout Configuration. The section describes various timeout configuration
options that are available for Reactor Netty clients. Configuring a proper timeout may improve or
solve issues in the communication process.

Observability

Observability metadata

Observability - Metrics

Below you can find a list of all metrics declared by this project.

Active Connections

The number of the connections in the connection pool that have been
successfully acquired and are in active use.

Metric name reactor.netty.connection.provider.active.connections. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class
reactor.netty.http.client.Http2ConnectionProviderMeters.

Table 1. Low cardinality Keys

Name Description

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

202

Active Connections

The number of the connections in the connection pool that have been
successfully acquired and are in active use.

Metric name reactor.netty.connection.provider.active.connections. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.resources.ConnectionProviderMeters.

Table 2. Low cardinality Keys

Name Description

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

Active Direct Memory

The actual bytes consumed by in-use buffers allocated from direct buffer
pools.

Metric name reactor.netty.bytebuf.allocator.active.direct.memory. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.transport.ByteBufAllocatorMeters.

Table 3. Low cardinality Keys

Name Description

id (required) ID.

type (required) TYPE.

Active Heap Memory

The actual bytes consumed by in-use buffers allocated from heap buffer
pools.

Metric name reactor.netty.bytebuf.allocator.active.heap.memory. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

203

Fully qualified name of the enclosing class reactor.netty.transport.ByteBufAllocatorMeters.

Table 4. Low cardinality Keys

Name Description

id (required) ID.

type (required) TYPE.

Active Streams

The number of the active HTTP/2 streams.

Metric name reactor.netty.connection.provider.active.streams. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class
reactor.netty.http.client.Http2ConnectionProviderMeters.

Table 5. Low cardinality Keys

Name Description

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

Chunk Size

The chunk size for an arena.

Metric name reactor.netty.bytebuf.allocator.chunk.size. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.transport.ByteBufAllocatorMeters.

Table 6. Low cardinality Keys

Name Description

id (required) ID.

type (required) TYPE.

Connections Active

The number of http connections, on the server, currently processing

204

requests.

Metric name reactor.netty.http.server.connections.active. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.http.server.HttpServerMeters.

Table 7. Low cardinality Keys

Name Description

local.address (required) Local address.

uri (required) URI.

Connections Total

The number of all opened connections on the server.

Metric name %s - since it contains %s, the name is dynamic and will be resolved at runtime. Type
gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.channel.ChannelMeters.

Table 8. Low cardinality Keys

Name Description

local.address (required) Local address.

uri (required) URI.

Connect Time

Connect metric.

Metric name %s - since it contains %s, the name is dynamic and will be resolved at runtime. Type
timer.

Metric name %s.active - since it contains %s, the name is dynamic and will be resolved at runtime.
Type long task timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

 Micrometer internally uses nanoseconds for the baseunit. However, each backend

205

determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class reactor.netty.channel.ConnectObservations.

Table 9. Low cardinality Keys

Name Description

proxy.address (required) Proxy address, when there is a proxy
configured.

remote.address (required) Remote address.

status (required) STATUS.

Table 10. High cardinality Keys

Name Description

net.peer.name (required) Net peer name.

net.peer.port (required) Net peer port.

reactor.netty.protocol (required) Reactor Netty protocol (tcp/http etc.).

reactor.netty.status (required) Reactor Netty status.

reactor.netty.type (required) Reactor Netty type (always client).

Data Received

Amount of the data received, in bytes.

Metric name %s - since it contains %s, the name is dynamic and will be resolved at runtime. Type
distribution summary and base unit bytes.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.channel.ChannelMeters.

Table 11. Low cardinality Keys

Name Description

proxy.address (required) Proxy address, when there is a proxy
configured.

remote.address (required) Remote address.

uri (required) URI.

Data Sent

Amount of the data sent, in bytes.

206

Metric name %s - since it contains %s, the name is dynamic and will be resolved at runtime. Type
distribution summary and base unit bytes.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.channel.ChannelMeters.

Table 12. Low cardinality Keys

Name Description

proxy.address (required) Proxy address, when there is a proxy
configured.

remote.address (required) Remote address.

uri (required) URI.

Direct Arenas

The number of direct arenas.

Metric name reactor.netty.bytebuf.allocator.direct.arenas. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.transport.ByteBufAllocatorMeters.

Table 13. Low cardinality Keys

Name Description

id (required) ID.

type (required) TYPE.

Errors Count

Number of errors that occurred.

Metric name %s - since it contains %s, the name is dynamic and will be resolved at runtime. Type
counter.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.channel.ChannelMeters.

Table 14. Low cardinality Keys

Name Description

207

proxy.address (required) Proxy address, when there is a proxy
configured.

remote.address (required) Remote address.

uri (required) URI.

Heap Arenas

The number of heap arenas.

Metric name reactor.netty.bytebuf.allocator.heap.arenas. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.transport.ByteBufAllocatorMeters.

Table 15. Low cardinality Keys

Name Description

id (required) ID.

type (required) TYPE.

Hostname Resolution Time

Hostname resolution metric.

Metric name %s - since it contains %s, the name is dynamic and will be resolved at runtime. Type
timer.

Metric name %s.active - since it contains %s, the name is dynamic and will be resolved at runtime.
Type long task timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.


Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class
reactor.netty.transport.HostnameResolutionObservations.

Table 16. Low cardinality Keys

Name Description

remote.address (required) Remote address.

status (required) STATUS.

208

Table 17. High cardinality Keys

Name Description

net.peer.name (required) Net peer name.

net.peer.port (required) Net peer port.

reactor.netty.protocol (required) Reactor Netty protocol (tcp/http etc.).

reactor.netty.status (required) Reactor Netty status.

reactor.netty.type (required) Reactor Netty type (always client).

Http Client Data Received Time

Time spent in consuming incoming data on the client.

Metric name reactor.netty.http.client.data.received.time. Type timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.


Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class reactor.netty.http.client.HttpClientMeters.

Table 18. Low cardinality Keys

Name Description

method (required) METHOD.

proxy.address (required) Proxy address, when there is a proxy
configured.

remote.address (required) Remote address.

status (required) STATUS.

uri (required) URI.

Http Client Data Sent Time

Time spent in sending outgoing data from the client.

Metric name reactor.netty.http.client.data.sent.time. Type timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.


Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

209

Fully qualified name of the enclosing class reactor.netty.http.client.HttpClientMeters.

Table 19. Low cardinality Keys

Name Description

method (required) METHOD.

proxy.address (required) Proxy address, when there is a proxy
configured.

remote.address (required) Remote address.

uri (required) URI.

Http Client Response Time

Response metric.

Metric name reactor.netty.http.client.response.time. Type timer.

Metric name reactor.netty.http.client.response.time.active. Type long task timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.


Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class reactor.netty.http.client.HttpClientObservations.

Table 20. Low cardinality Keys

Name Description

method (required) METHOD.

proxy.address (required) Proxy address, when there is a proxy
configured.

remote.address (required) Remote address.

status (required) STATUS.

uri (required) URI.

Table 21. High cardinality Keys

Name Description

http.status_code (required) Status code.

http.url (required) URL.

net.peer.name (required) Net peer name.

net.peer.port (required) Net peer port.

210

reactor.netty.type (required) Reactor Netty type (always client).

Http Server Data Received

Amount of the data received, in bytes.

Metric name %s - since it contains %s, the name is dynamic and will be resolved at runtime. Type
distribution summary and base unit bytes.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.http.server.HttpServerMeters.

Table 22. Low cardinality Keys

Name Description

uri (required) URI.

Http Server Data Received Time

Time spent in consuming incoming data on the server.

Metric name reactor.netty.http.server.data.received.time. Type timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.


Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class reactor.netty.http.server.HttpServerMeters.

Table 23. Low cardinality Keys

Name Description

method (required) METHOD.

uri (required) URI.

Http Server Data Sent

Amount of the data sent, in bytes.

Metric name %s - since it contains %s, the name is dynamic and will be resolved at runtime. Type
distribution summary and base unit bytes.

 KeyValues that are added after starting the Observation might be missing from the

211

*.active metrics.

Fully qualified name of the enclosing class reactor.netty.http.server.HttpServerMeters.

Table 24. Low cardinality Keys

Name Description

uri (required) URI.

Http Server Data Sent Time

Time spent in sending outgoing data from the server.

Metric name reactor.netty.http.server.data.sent.time. Type timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.


Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class reactor.netty.http.server.HttpServerMeters.

Table 25. Low cardinality Keys

Name Description

method (required) METHOD.

status (required) STATUS.

uri (required) URI.

Http Server Errors Count

Number of errors that occurred.

Metric name %s - since it contains %s, the name is dynamic and will be resolved at runtime. Type
counter.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.http.server.HttpServerMeters.

Table 26. Low cardinality Keys

Name Description

uri (required) URI.

212

Http Server Response Time

Response metric.

Metric name reactor.netty.http.server.response.time. Type timer.

Metric name reactor.netty.http.server.response.time.active. Type long task timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.


Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class reactor.netty.http.server.HttpServerObservations.

Table 27. Low cardinality Keys

Name Description

method (required) METHOD.

status (required) STATUS.

uri (required) URI.

Table 28. High cardinality Keys

Name Description

http.scheme (required) HTTP scheme.

http.status_code (required) Status code.

net.host.name (required) Net host name.

net.host.port (required) Net host port.

reactor.netty.type (required) Reactor Netty type (always server).

Idle Connections

The number of the idle connections in the connection pool.

Metric name reactor.netty.connection.provider.idle.connections. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class
reactor.netty.http.client.Http2ConnectionProviderMeters.

Table 29. Low cardinality Keys

Name Description

213

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

Idle Connections

The number of the idle connections in the connection pool.

Metric name reactor.netty.connection.provider.idle.connections. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.resources.ConnectionProviderMeters.

Table 30. Low cardinality Keys

Name Description

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

Max Connections

The maximum number of active connections that are allowed in the
connection pool.

Metric name reactor.netty.connection.provider.max.connections. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.resources.ConnectionProviderMeters.

Table 31. Low cardinality Keys

Name Description

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

Max Pending Connections

The maximum number of requests that will be queued while waiting for a
ready connection from the connection pool.

214

Metric name reactor.netty.connection.provider.max.pending.connections. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.resources.ConnectionProviderMeters.

Table 32. Low cardinality Keys

Name Description

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

Normal Cache Size

The size of the normal cache.

Metric name reactor.netty.bytebuf.allocator.normal.cache.size. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.transport.ByteBufAllocatorMeters.

Table 33. Low cardinality Keys

Name Description

id (required) ID.

type (required) TYPE.

Pending Connections

The number of the request, that are pending acquire a connection from the
connection pool.

Metric name reactor.netty.connection.provider.pending.connections. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.resources.ConnectionProviderMeters.

Table 34. Low cardinality Keys

Name Description

id (required) ID.

215

name (required) NAME.

remote.address (required) Remote address.

Pending Connections Time

Time spent in pending acquire a connection from the connection pool.

Metric name reactor.netty.connection.provider.pending.connections.time. Type timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.


Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class reactor.netty.resources.ConnectionProviderMeters.

Table 35. Low cardinality Keys

Name Description

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

status (required) STATUS.

Pending Streams

The number of requests that are waiting for opening HTTP/2 stream.

Metric name reactor.netty.connection.provider.pending.streams. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class
reactor.netty.http.client.Http2ConnectionProviderMeters.

Table 36. Low cardinality Keys

Name Description

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

216

Pending Streams Time

Time spent in pending acquire a stream from the connection pool.

Metric name reactor.netty.connection.provider.pending.streams.time. Type timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.


Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class
reactor.netty.http.client.Http2ConnectionProviderMeters.

Table 37. Low cardinality Keys

Name Description

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

status (required) STATUS.

Pending Tasks

Event loop pending scheduled tasks.

Metric name reactor.netty.eventloop.pending.tasks. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.transport.EventLoopMeters.

Table 38. Low cardinality Keys

Name Description

name (required) NAME.

Small Cache Size

The size of the small cache.

Metric name reactor.netty.bytebuf.allocator.small.cache.size. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

217

Fully qualified name of the enclosing class reactor.netty.transport.ByteBufAllocatorMeters.

Table 39. Low cardinality Keys

Name Description

id (required) ID.

type (required) TYPE.

Streams Active

The number of HTTP/2 streams currently active on the server.

Metric name reactor.netty.http.server.streams.active. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.http.server.HttpServerMeters.

Table 40. Low cardinality Keys

Name Description

local.address (required) Local address.

uri (required) URI.

Thread Local Caches

The number of thread local caches.

Metric name reactor.netty.bytebuf.allocator.threadlocal.caches. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.transport.ByteBufAllocatorMeters.

Table 41. Low cardinality Keys

Name Description

id (required) ID.

type (required) TYPE.

Tls Handshake Time

TLS handshake metric.

Metric name %s - since it contains %s, the name is dynamic and will be resolved at runtime. Type

218

timer.

Metric name %s.active - since it contains %s, the name is dynamic and will be resolved at runtime.
Type long task timer.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.


Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class reactor.netty.tcp.TlsHandshakeObservations.

Table 42. Low cardinality Keys

Name Description

proxy.address (required) Proxy address, when there is a proxy
configured.

remote.address (required) Remote address.

status (required) STATUS.

Table 43. High cardinality Keys

Name Description

reactor.netty.protocol (required) Reactor Netty protocol (tcp/http etc.).

reactor.netty.status (required) Reactor Netty status.

reactor.netty.type (required) Reactor Netty type (client/server).

Total Connections

The number of all connections in the connection pool, active or idle.

Metric name reactor.netty.connection.provider.total.connections. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.resources.ConnectionProviderMeters.

Table 44. Low cardinality Keys

Name Description

id (required) ID.

name (required) NAME.

remote.address (required) Remote address.

219

Used Direct Memory

The number of bytes reserved by direct buffer allocator.

Metric name reactor.netty.bytebuf.allocator.used.direct.memory. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.transport.ByteBufAllocatorMeters.

Table 45. Low cardinality Keys

Name Description

id (required) ID.

type (required) TYPE.

Used Heap Memory

The number of bytes reserved by heap buffer allocator.

Metric name reactor.netty.bytebuf.allocator.used.heap.memory. Type gauge.


KeyValues that are added after starting the Observation might be missing from the
*.active metrics.

Fully qualified name of the enclosing class reactor.netty.transport.ByteBufAllocatorMeters.

Table 46. Low cardinality Keys

Name Description

id (required) ID.

type (required) TYPE.

Observability - Spans

Below you can find a list of all spans declared by this project.

Connect Span

Connect Span.

Span name %s - since it contains %s, the name is dynamic and will be resolved at runtime.

Fully qualified name of the enclosing class reactor.netty.channel.ConnectSpans.

Table 47. Tag Keys

Name Description

220

net.peer.name (required) Net peer name.

net.peer.port (required) Net peer port.

reactor.netty.protocol (required) Reactor Netty protocol (tcp/http etc.).

reactor.netty.status (required) Reactor Netty status.

reactor.netty.type (required) Reactor Netty type (always client).

Hostname Resolution Span

Hostname Resolution Span.

Span name %s - since it contains %s, the name is dynamic and will be resolved at runtime.

Fully qualified name of the enclosing class reactor.netty.transport.HostnameResolutionSpans.

Table 48. Tag Keys

Name Description

net.peer.name (required) Net peer name.

net.peer.port (required) Net peer port.

reactor.netty.protocol (required) Reactor Netty protocol (tcp/http etc.).

reactor.netty.status (required) Reactor Netty status.

reactor.netty.type (required) Reactor Netty type (always client).

Http Client Response Span

Response Span.

Span name %s - since it contains %s, the name is dynamic and will be resolved at runtime.

Fully qualified name of the enclosing class reactor.netty.http.client.HttpClientSpans.

Table 49. Tag Keys

Name Description

http.status_code (required) Status code.

http.url (required) URL.

net.peer.name (required) Net peer name.

net.peer.port (required) Net peer port.

reactor.netty.type (required) Reactor Netty type (always client).

Http Server Response Span

Response Span.

221

Span name %s - since it contains %s, the name is dynamic and will be resolved at runtime.

Fully qualified name of the enclosing class reactor.netty.http.server.HttpServerSpans.

Table 50. Tag Keys

Name Description

http.scheme (required) HTTP scheme.

http.status_code (required) Status code.

net.host.name (required) Net host name.

net.host.port (required) Net host port.

reactor.netty.type (required) Reactor Netty type (always server).

Tls Handshake Span

TLS Handshake Span.

Span name %s - since it contains %s, the name is dynamic and will be resolved at runtime.

Fully qualified name of the enclosing class reactor.netty.tcp.TlsHandshakeSpans.

Table 51. Tag Keys

Name Description

reactor.netty.protocol (required) Reactor Netty protocol (tcp/http etc.).

reactor.netty.status (required) Reactor Netty status.

reactor.netty.type (required) Reactor Netty type (client/server).

remote.address (required) Remote address.

222

	Reactor Netty Reference Guide
	Table of Contents
	Chapter 1. About the Documentation
	Chapter 2. Getting Started
	Chapter 3. TCP Server
	Chapter 4. TCP Client
	Chapter 5. HTTP Server
	Chapter 6. HTTP Client
	Chapter 7. UDP Server
	Chapter 8. UDP Client
	Chapter 9. Appendices

