
Creating an application with dm Server

GreenPages: a demonstration
Christopher Frost

Ben Hale
Rob Harrop

Glyn Normington
Steve Powell

Andy Wilkinson

2.0.0.RC1
Abstract

Spring application programmers are introduced to SpringSource® dm Server™ by
installing dm Server and developing a small application called GreenPages. Despite its
simplicity, GreenPages is designed to demonstrate many different dm Server features
and to act as a template from which other modular applications can be built.

This version of the guide is based on the following software versions:

dm Server 2.0.0.M3
GreenPages 2.0.0.RELEASE
SpringSource Tools Suite 2.1.0.RC1
Apache Maven 2.0.9

Copyright 2009, SpringSource.

Licensed Under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance
with the License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 .

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License.

Trademarks. SpringSource and dm Server are trademarks or registered trademarks of SpringSource, Inc.

Java, Sun, and Sun Microsystems are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

OSGi is a trademark or a registered trademark of the OSGi Alliance in the United States, other countries, or both.

Eclipse is a trademark of Eclipse Foundation, Inc.

UNIX is a registered trademark of The Open Group.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Mac and Mac OS are trademarks of Apple Inc., registered in the U.S. and other countries.

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents
Preface ... v
1. Concepts .. 1

1.1. OSGi concepts ... 1
1.2. Spring DM concepts .. 6
1.3. dm Server concepts .. 7

2. Installation ... 9
2.1. Pre-requisites .. 9
2.2. Installing dm Server ... 9
2.3. Installing the SpringSource Tools Suite .. 10
2.4. Installing Apache Maven ... 12

3. Installing GreenPages ... 13
3.1. Introduction .. 13
3.2. Obtaining GreenPages ... 14
3.3. Building and installing GreenPages ... 15
3.4. Browsing the GreenPages application ... 17
3.5. Running GreenPages from Eclipse .. 19

4. The Web Module .. 25
4.1. Introduction .. 25
4.2. GreenPages set up .. 25
4.3. Creating a controller .. 27
4.4. Deploying a bundle .. 30
4.5. Creating a PAR .. 32
4.6. Referencing an OSGi Service .. 36
4.7. Publishing an OSGi Service ... 39

5. The Middle Tier .. 43
5.1. Introduction .. 43
5.2. Creating the DataSource project .. 44
5.3. Building the JPA module ... 50
5.4. Trying out the JPA middle tier ... 54
5.5. Applying best practices to the middle tier ... 56

6. Testing GreenPages .. 59
6.1. Introduction .. 59
6.2. Single bundle integration testing ... 59
6.3. Contributing OSGi sourced dependencies ... 60
6.4. Multi bundle integration testing ... 61

7. Automated Build ... 63
7.1. Introduction .. 63
7.2. Setting up for Automated Build ... 63
7.3. Create POM ... 64
7.4. Adding the par plugin .. 65
7.5. Adding the dependency plugin .. 66
7.6. Deploying the application .. 67

A. Further Resources .. 69
A.1. Projects .. 69

2.0.0.RC1 iii

A.2. Documentation .. 69

iv Creating GreenPages

Preface
This Guide explains how to install SpringSource® dm Server™ and the associated Eclipse™
tools and how to develop and test a small application.

It is intended for Spring application programmers and assumes little or no understanding of
OSGi™ or SpringSource dm Server.

Questions about dm Server and SpringSource Tools Suite (or this Guide) may be posted to the
dm Server Community Forums (http://forum.springframework.org/forumdisplay.php?f=53).

Preface v

2.0.0.RC1 v

http://forum.springframework.org/forumdisplay.php?f=53

vi Creating GreenPages

vi Preface

1. Concepts
SpringSource dm Server is a Java application server composed of a collection of modules which
supports applications which are also composed of a collection of modules. These may be
traditional Java web applications packaged as Web ARchive (.war) files as well as other
modular applications.

This chapter introduces concepts necessary for developing dm Server applications. These
concepts will become clearer as the GreenPages application is explored in later chapters.

1.1 OSGi concepts

Modules in dm Server are represented using a standard Java module system known as OSGi.
Modules consist of programs and resources organised by Java package together with metadata
which declares imported and exported packages. A module exports a package to make the
corresponding programs and resources available for use by other modules. A module imports a
package to use the corresponding programs and resources of another module.

Representing a program as a collection of modules makes it easier for the programmer to manage
it and modify it and for teams of programmers to divide responsibilities between themselves. A
module is similar to a Java class in this respect. Rules similar to those for organising data and
programs into classes can be applied to organising applications into modules.

An industry consortium known as the OSGi Alliance (see the appendix Projects) develops the
OSGi specification, reference implementation, and compliance tests. dm Server is built on the
Equinox OSGi framework which is also the reference implementation for OSGi.

Bundles

Modules in OSGi are known as bundles. Each bundle conforms to the JAR file format and can
contain Java classes, a manifest (in META-INF/MANIFEST.MF), and further resource files.

The OSGi framework enables bundles to be installed and run.

OSGi identifies bundles “by name” or “by identifier” (id).

The symbolic name and version of a bundle is an attribute of the bundle itself and uniquely
identifies that bundle (by name) in an OSGi framework. A bundle usually declares its symbolic
name and version in its manifest (a file called MANIFEST.MF) like this:

Bundle-SymbolicName: org.foo.bundle
Bundle-Version: 1.2.3.BUILD-2009-06-04

Additionally, the OSGi framework assigns a distinct number, known as a bundle id, to each
bundle as it is installed. Bundles may be referred to “by identifier” using this number. The OSGi
framework itself resides in a bundle with bundle id 0.

Concepts 1

2.0.0.RC1 1

The dependencies between bundles are expressed statically in terms of packages and
dynamically in terms of services. A package is familiar to Java programmers. For example, a
Java program may depend on a class org.foo.X, from package org.foo, and a bundle
containing that program would either need to contain org.foo.X or depend on the package
org.foo. Package dependencies are specified in the bundle manifest, for example:

Import-Package: org.foo

A bundle which provides a package for use by other bundles must export the package in its
manifest. For example:

Export-Package: org.foo

The OSGi framework ensures that a given bundle’s package dependencies can be satisfied before
the bundle runs. This process is known as resolution.

After a bundle is resolved, its classes and resources are available for loading. In OSGi, bundles
and their packages do not appear on the application classpath. Instead, each bundle has a class
loader which loads its own classes and loads classes belonging to each of its imported packages
by deferring to the bundle class loader that exported the package.

Life cycle

The OSGi framework manages the life cycle of each bundle. A bundle is first of all installed and
will be in the INSTALLED state. If a request is made to start the bundle, the OSGi framework
resolves the bundle and, if resolution was successful, will subsequently move the bundle to the
ACTIVE state. If a request is made to stop the bundle, the OSGi framework will move the
bundle back to the INSTALLED state. A request may then be made to uninstall the bundle.

While the bundle is INSTALLED or ACTIVE, it may be updated to pick up some changes.
These changes are not detected by bundles which were depending on the bundle before it was
updated. A “refresh packages” operation may be performed to ripple the changes out to those
bundles. (See Services concepts.)

The life cycle of a bundle can be summarised by a state transition diagram. This diagram shows
some more of the intermediate states of a bundle not described in the overview above:

2 Creating GreenPages

2 Concepts

Figure 1.1. Bundle life cycle

Services

Bundles may publish Java objects, known as services, to a registry managed by the OSGi
framework. Other bundles running in the same OSGi framework can then find and use those
services. Services are typically instances of some shared Java interface. A bundle which provides
a service need not export the package containing the implementation class of the service.

For example, a bundle could export a package containing the interface
org.bar.SomeInterface, thus:

Export-Package: org.bar

…implement the interface with a class SomeImpl:

package org.bar.impl;

class SomeImpl implements SomeInterface {
…

}

…create an instance of SomeImpl and then publish this instance (as an instance of the interface
SomeInterface).

OSGi publishes a number of standard services. For example, the Package Admin service
provides the “refresh packages” life cycle operation mentioned above.

OSGi provides an API which can be used to publish and find services, but it is much simpler to
use Spring DM to accomplish this. (See Spring DM concepts.)

Concepts 3

2.0.0.RC1 3

Versioning

OSGi allows different versions of bundles, packages, and several other entities, to co-exist and
provides some mechanisms for managing these versions.

Version numbers

An OSGi version number consists of up to three numeric components, or exactly three numeric
components followed by a string component. These components are separated by a period (“.”)
and are called the major, minor, micro, and qualifier components, respectively.

For example, the version 2.4.1.ga has major component 2, minor component 4, micro
component 1, and a qualifier component ga. (There are restrictions on the characters that can
appear in a qualifier. For example: letters, digits, underscores and hyphens are allowed; periods
and commas are not.)

Trailing components may be omitted along with their period (.). So, for example, the version
numbers 2, 2.0, and 2.0.0 all denote the same version. This example demonstrates that 0 is
assumed if a numeric component is omitted, and the empty string is assumed for an omitted
qualifier.

Version ranges

Dependencies on bundles and packages have an associated version range which is specified
using an interval notation: a square bracket “[” or “]” denotes an inclusive end of the range and
a round bracket “(” or “)” denotes an exclusive end of the range. Where one end of the range is
to be included and the other excluded, it is permitted to pair a round bracket with a square
bracket. The examples below make this clear.

If a single version number is used where a version range is required this does not indicate a
single version, but the range starting from that version and including all higher versions.

There are three common cases:

• A “strict” version range, such as [1.2,1.2], which denotes that version and only that
version.

• A “half-open” range, such as [1.2,2), which has an inclusive lower limit and an exclusive
upper limit, denoting version 1.2.0 and any version later than this, up to, but not including,
version 2.0.0.

• An “unbounded” version range, such as 1.2, which denotes version 1.2 and all later
versions.

Versioning policies

4 Creating GreenPages

4 Concepts

A versioning policy is a way of using version numbers to indicate compatible and incompatible
changes. OSGi does not mandate a particular versioning policy. Instead, a specific versioning
policy may be implemented using version ranges.

Strict and half-open version ranges are most useful in representing versioning policies.
Unbounded version ranges can lead to problems as they (unrealistically) assume that
compatibility will be preserved indefinitely.

For example, a conservative versioning policy might assume that any change, other than in the
qualifier component of a version, implies an incompatible change to the object. Such a policy
would employ version ranges such as [1.2.1.beta,1.2.2) which accept any version from
1.2.1.beta (inclusive) up to but not including 1.2.2 (exclusive).

Alternatively, a relaxed versioning policy might assume that only changes in the major
component of a version denote an incompatible change. Such a policy would employ version
ranges such as [1.2,2) to capture this.

Bundle version

Each bundle has a version. The bundle’s version may be specified in the manifest using a
Bundle-Version header:

Bundle-Version: 1.4.3.BUILD-20090302

If not specified the bundle version is assumed to be 0.

Package version

Each exported package has a version. The exported package’s version may be specified on the
Export-Package manifest header. For example

Export-Package: org.foo;version="2.9",org.bar;version="1"

exports two packages: org.foo, at version 2.9.0 and org.bar, at version 1.0.0.

If the version attribute is omitted the version is assumed to be 0.

Each package import has a version range. The package import version range may be specified on
the Import-Package manifest header. If interval notation is used, the version range must be
enclosed in double quotes, for example:

Import-Package: org.foo;version="[2,3)",org.bar;version="[1,1]"

seeks to import a package org.foo in the range [2.0.0,3.0.0) and a package org.bar
with the (exact) version 1.0.0.

Concepts 5

2.0.0.RC1 5

If a version range is not specified on an import, the range 0 is assumed, meaning that any version
of this package would satisfy the import.

Bundle manifest version

Bundle manifests have a version which is 1 by default, indicating OSGi Release 3 semantics. dm
Server is based on OSGi Release 4 and therefore expects bundle manifests to be at version 2,
indicating OSGi Release 4 semantics. (See the appendix Projects.) The bundle manifest’s version
should be specified on the Bundle-ManifestVersion manifest header, exactly as follows:

Bundle-ManifestVersion: 2

Manifest version

Manifests themselves also have a version which must be specified as 1.0. This is not an OSGi
definition but part of the JAR file specification
(http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html).

Manifest-Version: 1.0

1.2 Spring DM concepts

Spring DM is a project which enables services to be published and consumed using descriptions
written in XML. dm Server has Spring DM built-in.

The XML descriptions reside in files with extension .xml in the bundle’s META-INF/spring
sub-directory.

To publish a service, an <osgi:service> tag is used, specifying the implementation class of
the service and the interface class to be used. Spring DM constructs an instance of the
implementation class like any other Spring bean and then publishes that instance in the OSGi
service registry under the interface when the bundle is started.

To consume a service, an <osgi:reference> tag is used and the service may be passed into
other Spring beans using Spring’s dependency injection facilities.

Spring DM automatically creates proxies for OSGi services so that the actual service object may
come and go at runtime. If a service disappears, any proxies to the service will wait for the
service to re-appear. This effect is known as damping.

When a bundle is started, Spring DM builds the application contexts specified by the XML
descriptions, creates proxies for the specified services, and publishes the specified services to the
OSGi service registry.

6 Creating GreenPages

6 Concepts

http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html

When a bundle is stopped, Spring DM retracts any services it published on behalf of the bundle
and closes the bundle’s application contexts. dm Server turns off damping of a service proxy
while the proxy’s application context is being closed.

1.3 dm Server concepts

Several dm Server concepts are essential for developing an application.

PAR files

dm Server provides a way of grouping together a collection of OSGi bundles which comprise a
single application. These bundles are placed in a JAR file with extension “.par”. This is called
a PAR file.

All the bundles in a PAR file are resolved together and so mutual dependencies are permitted.

At runtime a PAR file provides a scope in the sense that bundles inside the PAR file may depend
on packages and services outside the PAR file, but bundles outside the PAR file may not depend
on packages and services provided by the PAR file.

Deployment

PAR files or individual bundles are deployed into dm Server by dropping them into a “pickup”
directory or using the Administration Console web application provided with dm Server. During
deployment, the bundle or bundles are installed into OSGi, resolved together, and then started
together.

Personalities

dm Server supports multiple application programming models known as personalities. Each
bundle of an application has a personality. For example, a bundle providing a servlet has the web
personality. Bundles which provide packages and services using the OSGi and Spring DM
programming models have the bundle personality.

When a bundle is deployed into dm Server, personality-specific transformations are applied to
the bundle’s contents, including its manifest, and the bundle is made available for use in a
personality-specific way. For example, a bundle with the web personality has some package
imports added to its manifest and its servlet is automatically made available for dispatching from
HTTP requests.

Concepts 7

2.0.0.RC1 7

8 Creating GreenPages

8 Concepts

2. Installation
Before developing an application with dm Server, it is essential to install dm Server, the Eclipse
Integrated Development Environment (IDE), the Eclipse-based SpringSource Tools Suite (STS),
and a build system integrated with Eclipse. The build system used here is Apache Maven.

STS is supplied as a fully configured Eclipse IDE, with dm Server Tools and Maven plugins
built-in.

2.1 Pre-requisites

Before proceeding, ensure that a Java™ Standard Edition Development Kit for Java 6 or later is
installed and that the JAVA_HOME environment variable is set to the correct value.

To verify this, issue the command "%JAVA_HOME%"\bin\java -version from a
command prompt on Windows or $JAVA_HOME/bin/java -version from a terminal
window on UNIX and ensure that the command completes successfully and reports a Java
version 1.6.x (denoting Java 6) or greater.

Also issue the command "%JAVA_HOME%"\bin\jar to ensure that there is a means of
extracting files from zip archives. If the jar command is unavailable, download and install a
suitable zip program such as 7zip, gzip, or WinZip. This is most relevant for Windows
operating systems where the inbuilt zip extraction utility may mishandle long pathnames.

2.2 Installing dm Server

Although the steps are similar, the details of installing dm Server depend on the operating
system.

Obtain the free Community Edition of dm Server from the dm Server download site
(http://www.springsource.org/dmserver). This guide is consistent with version 2.0.0.M3 of dm
Server.

Installing dm Server on Windows™ operating systems

Unzip the download of dm Server to the root directory of a drive (this will avoid possible
problems with long pathnames). Set an environment variable %DMS_HOME% to refer to the
unzipped folder…

prompt> cd C:\
prompt> "%JAVA_HOME%"\bin\jar xf \path\to\springsource-dm-server-2.0.0.M3.zip
prompt> set DMS_HOME=C:\springsource-dm-server-2.0.0.M3

To verify the installation, issue the command: "%DMS_HOME%"\bin\startup.bat and
ensure a message numbered UR0001I is displayed. You will see many other messages about

Installation 9

2.0.0.RC1 9

http://www.springsource.org/dmserver

starting and installing other required artifacts, but the UR0001I message indicates that the user
region is ready for your use. (Timestamps have been removed from this illustration, and thread
names and other messages may vary with different installations.)

system-artifacts <TC0000I> Starting Tomcat.
system-artifacts <TC0010I> Creating HTTP/1.1 connector with scheme http on port 8080.
system-artifacts <TC0010I> Creating HTTP/1.1 connector with scheme https on port 8443.
system-artifacts <TC0010I> Creating AJP/1.3 connector with scheme http on port 8009.
system-artifacts <TC0001I> Started Tomcat.
system-artifacts <DE0004I> Starting bundle 'com.springsource.server.web.core' version '2.0.0.M6'.
system-artifacts <DE0004I> Starting bundle 'com.springsource.server.web.dm' version '2.0.0.M6'.
start-signalling-1 <DE0005I> Started bundle 'com.springsource.server.web.dm' version '2.0.0.M6'.
system-artifacts <DE0005I> Started bundle 'com.springsource.server.web.tomcat' version '2.0.0.M6'.
start-signalling-1 <DE0005I> Started bundle 'com.springsource.osgi.webcontainer.tomcat' version '1.0.0.CI-102'.
start-signalling-1 <DE0005I> Started bundle 'com.springsource.server.web.core' version '2.0.0.M6'.
start-signalling-1 <DE0005I> Started plan 'com.springsource.server.web' version '2.0.0'.
Thread-2 <UR0001I> User region ready.

Shut down the server by pressing Ctrl-C.

Installing dm Server on UNIX™ operating systems

Unzip the download of dm Server to a suitable location on the file system, such as the home
directory. (If the download was automatically unzipped by the operating system, simply move
the unzipped directory to the chosen location.) Set an environment variable $DMS_HOME to refer
to the unzipped folder…

prompt$ mkdir /path/to/home/springsource
prompt$ cd /path/to/home/springsource
prompt$ unzip /path/to/springsource-dm-server-2.0.0.M3.zip
prompt$ export DMS_HOME=/path/to/home/springsource/springsource-dm-server-2.0.0.M3

To verify the installation, use a terminal window to issue the command:
$DMS_HOME/bin/startup.sh and ensure a message numbered UR0001I is displayed.
You will see many other messages about starting and installing other required artifacts, but the
UR0001I message indicates that the user region is ready for your use. (Timestamps have been
removed from this illustration, and thread names and other messages may vary with different
installations.)

system-artifacts <TC0000I> Starting Tomcat.
system-artifacts <TC0010I> Creating HTTP/1.1 connector with scheme http on port 8080.
system-artifacts <TC0010I> Creating HTTP/1.1 connector with scheme https on port 8443.
system-artifacts <TC0010I> Creating AJP/1.3 connector with scheme http on port 8009.
system-artifacts <TC0001I> Started Tomcat.
system-artifacts <DE0004I> Starting bundle 'com.springsource.server.web.core' version '2.0.0.M6'.
system-artifacts <DE0004I> Starting bundle 'com.springsource.server.web.dm' version '2.0.0.M6'.
start-signalling-1 <DE0005I> Started bundle 'com.springsource.server.web.dm' version '2.0.0.M6'.
system-artifacts <DE0005I> Started bundle 'com.springsource.server.web.tomcat' version '2.0.0.M6'.
start-signalling-1 <DE0005I> Started bundle 'com.springsource.osgi.webcontainer.tomcat' version '1.0.0.CI-102'.
start-signalling-1 <DE0005I> Started bundle 'com.springsource.server.web.core' version '2.0.0.M6'.
start-signalling-1 <DE0005I> Started plan 'com.springsource.server.web' version '2.0.0'.
Thread-2 <UR0001I> User region ready.

Shut down the server by pressing Ctrl-C.

2.3 Installing the SpringSource Tools Suite

The SpringSource Tools Suite (STS) is a development environment based on Eclipse that comes
configured with all the plugins needed to work with the dm Server and OSGi, this includes the
latest version of dm Server Tools, so no updates are necessary. Although the steps are similar,

10 Creating GreenPages

10 Installation

the details of installing STS depend on the operating system.

Go to the STS download site (http://www.springsource.com/products/sts) and download the
variant appropriate to the operating system being used. This guide is consistent with STS version
2.1.0.RC1. Previous versions may not work properly with the latest revision of GreenPages,
currently 2.0.0.RELEASE.

Installing STS on Windows™ operating systems

Unzip the download of STS to the root directory of a drive (this will avoid possible problems
with long pathnames).

prompt> cd C:\
prompt> "%JAVA_HOME%"\bin\jar xf \full…path…to\springsource-tool-suite-2.1.0.RC1-e3.4-win32.zip

To verify the installation, run the eclipse.exe executable in the unzipped directory and
check that STS displays a welcome panel. The first time there may be a short delay due to the
initial set-up of indexes.

Installing STS on UNIX™ operating systems

Unpack the download of STS to a suitable location on the file system, such as /opt or, if root
access is not available, the home directory. (If the download was automatically unpacked by the
operating system, simply move the unpacked directory to the chosen location.)

To verify the installation, run the STS executable (Eclipse.app on Mac OS X) in the
unpacked directory and check that STS displays a welcome panel. The first time there may be a
short delay due to the initial set-up of indexes.

Note about Java versions in STS

SpringSource Tools Suite runs on Eclipse using Java Version 1.5, and dm Server requires Java
Version 1.6. The GreenPages application built here requires Java Version 1.6. Alter the default
Java compiler settings in STS before proceeding.

1. In SpringSource Tools Suite, click Window > Preferences from the menu.

2. In the Preferences window, click Java > Compiler in the left panel.

3. In the right panel, set the Compiler compliance level to 1.6.

4. Click Apply. You will get a message asking if you want a full rebuild; click Yes. The rebuild
should take very little time to complete.

You might also see a message similar to the following on the settings panel: “When selecting
1.6 compliance, make sure to have a compatible JRE installed and activated (currently 1.5).”

Installation 11

2.0.0.RC1 11

http://www.springsource.com/products/sts

A link to Configure this will appear. Select this link to open the Java--Installed JREs panel. If
not already selected, choose a JRE suitable for Java Version 1.6.x (for example JVM
1.6.0).

5. Click OK.

2.4 Installing Apache Maven

Apache Maven, or Maven for short, is a software project management and comprehension tool
which uses a central Project Object Model (POM) to manage a project’s build, reporting and
documentation generation. The POM files (pom.xml) are included in the projects for
GreenPages.

To install Maven, visit the Maven website (http://maven.apache.org) and follow the download
instructions from there. This document has been written and tested with Maven version 2.0.9.
The rest of the document assumes that Maven commands (mvn …) are available from the
command line.

12 Creating GreenPages

12 Installation

http://maven.apache.org

3. Installing and exploring GreenPages

3.1 Introduction

GreenPages is a simple application that allows users to search an online email address directory.
Each listing in the directory details the relevant email addresses and the name of the owner.
GreenPages has only three screens: the search screen, the results screen and the listing detail
screen.

In the search screen, users can enter search criteria to be matched against the listings in the
directory. The result screen displays any listings that match the criteria entered by the user. The
listing detail screen shows all the data known about a given listing.

Despite its simplicity, GreenPages is designed to demonstrate many different dm Server features
and to act as a template from which other modular applications can be built. In particular,
GreenPages demonstrates:

• module dependencies with Import-Package,

• load-time weaving with JPA and AspectJ,

• bundle classpath scanning, and

• service export, lookup and injection.

In addition to demonstrating common dm Server features, GreenPages demonstrates integration
with:

• Spring Framework 3.0;

• FreeMarker 2.3;

• EclipseLink 1.0.0;

• H2 1.0.71; and

• Commons DBCP 1.2.2.

The GreenPages application is packaged as a PAR file containing four modules.

Installing GreenPages 13

2.0.0.RC1 13

The greenpages.db module provides access to an external database and publishes a
javax.sql.DataSource service.

The greenpages.app module exports a greenpages package containing Directory and
Listing interfaces.

The greenpages.jpa module imports the greenpages package and uses the
javax.sql.DataSource service to access the external database and publishes its contents
as a greenpages.Directory service.

The greenpages.web module imports the greenpages package and uses the
greenpages.Directory service to respond to web requests.

3.2 Obtaining GreenPages

This document provides step-by-step instructions for building the GreenPages application with
dm Server and the SpringSource Tools Suite. In addition, the complete application is available
and can be built and installed into dm Server.

To get the completed GreenPages application and the starter projects to build GreenPages by
steps:

1. download the latest ZIP file from

http://dist.springframework.org/release/DMSS/greenpages-2.0.0.RELEASE.zip

2. extract all the files from the ZIP file to a convenient directory (preserving the directory
structure).

To extract the files on Windows:

prompt> mkdir c:\springsource\samples
prompt> cd c:\springsource\samples
prompt> jar xf c:\path\to\greenpages-2.0.0.RELEASE.zip
prompt> set GREENPAGES_HOME=c:\springsource\samples\greenpages-2.0.0.RELEASE

14 Creating GreenPages

14 Installing GreenPages

To extract the files on Unix systems:

prompt$ mkdir -p /opt/springsource/samples
prompt$ cd /opt/springsource/samples
prompt$ unzip /path/to/greenpages-2.0.0.RELEASE.zip
prompt$ export GREENPAGES_HOME=/opt/springsource/samples/greenpages-2.0.0.RELEASE

The environment variable GREENPAGES_HOME set here is not used by the projects, but is used
as a shorthand in the instructions that follow.

The GreenPages zip file contains two main directories called solution and start. The
solution directory contains the completed application which can be built and tested (as
described in the next section). The start directory contains the initial skeleton of the
GreenPages application upon which the step-by-step creation instructions build.

To follow the step-by-step instructions read Chapter 4, The Web Module.

3.3 Building and installing GreenPages

Building with Apache Maven

GreenPages uses Apache Maven as its primary build system. Each module of the application can
be built separately and the entire application can built and assembled into a PAR file from a
single location. To build the PAR file:

1. Make $GREENPAGES_HOME/solution the current directory.

2. Run the command mvn package. The first time this is run several files will be downloaded
from Maven repositories and SpringSource repositories. Subsequent runs will not need to do
this.

3. Verify that the greenpages-2.0.0.RELEASE.par file exists in
$GREENPAGES_HOME/solution/greenpages/target.

Installing dependencies into dm Server

Unlike traditional Java EE applications, GreenPages does not package all of its dependencies
inside its deployment unit. Instead, it relies on the mechanisms of OSGi to locate its
dependencies at runtime. When running an OSGi application on dm Server, these dependencies
can be loaded into memory as needed, but first they must be made available to dm Server.

The Maven build included with GreenPages uses the dependency:copy-dependencies
plugin to gather all the artifacts that GreenPages depends on that are not supplied by the dm
Server runtime. These dependencies can then be installed into the dm Server repository.
Dependencies are gathered automatically during the package phase. These dependencies can
be found in $GREENPAGES_HOME/solution/greenpages/target/par-provided.

Installing GreenPages 15

2.0.0.RC1 15

To install dependencies simply copy all the bundles from this directory into
$DMS_HOME/repository/usr.

Installing dependencies on Windows:

prompt> cd %GREENPAGES_HOME%\solution\greenpages
prompt> copy target\par-provided* %DMS_HOME%\repository\usr

Installing Dependencies on UNIX:

prompt$ cd $GREENPAGES_HOME/solution/greenpages
prompt$ cp target/par-provided/* $DMS_HOME/repository/usr

Notice that dm Server will not necessarily see these dependencies unless its repository indexes
are rebuilt. Different repositories behave differently in this respect; the usr repository is passive.
The next time dm Server is started use the -clean option to re-scan the repository directories.
It is always safe to start dm Server with this option; it may take a little longer if the repositories
are large.

Starting and configuring the database

GreenPages uses the H2 database to store all its data. Before you can start the application, you
must start the database server and populate the database with data.

1. Change to the $GREENPAGES_HOME/db current directory. On Unix:

prompt$ cd $GREENPAGES_HOME/db

On Windows:

prompt> cd %GREENPAGES_HOME%\db

2. Run the database startup script appropriate to the operating system. For Unix, this is run.sh,
run in the background:

prompt$ sh run.sh &

Press Return to continue.

On Windows, run the run.bat command:

prompt> run

For both platforms, the command might invoke a browser window offering a connection to
the database; close this window.

3. Run the data population script appropriate to the operating system. For Unix, this is
data.sh:

prompt$ sh data.sh

On Windows, run the data.bat command:

16 Creating GreenPages

16 Installing GreenPages

prompt> data

You only to need run these commands once to start a database server for H2; the server will
continue to run in the background.

Installing and starting GreenPages PAR

To install the GreenPages PAR into dm Server and start it:

1. Copy the GreenPages PAR to the $DMS_HOME/pickup directory. On Unix:

prompt$ cd $DMS_HOME
prompt$ cp $GREENPAGES_HOME/solution/greenpages/target/greenpages-solution-2.0.0.RELEASE.par pickup/

On Windows:

prompt> cd %DMS_HOME%
prompt> copy %GREENPAGES_HOME%\solution\greenpages\target\greenpages-solution-2.0.0.RELEASE.par pickup\

2. Start dm Server with the -clean option. On Unix:

prompt$ $DMS_HOME/bin/startup.sh -clean

On Windows:

prompt> "%DMS_HOME%"\bin\startup.bat -clean

3. Verify that GreenPages starts correctly by checking in the dm Server output for the log
message:

<DE0005I> Started par 'greenpages' version '2.0.0.RELEASE'.

3.4 Browsing the GreenPages application

Once installed and started, the GreenPages application can be accessed with a web browser using
the address http://localhost:8080/greenpages.

From the home page, a search query can be entered into the search box:

Installing GreenPages 17

2.0.0.RC1 17

http://localhost:8080/greenpages

After entering a query into the search box, the results page shows all the matches from the
directory:

Clicking on view next to an entry in the search listing displays the full details for that listing
entry:

18 Creating GreenPages

18 Installing GreenPages

3.5 Running GreenPages from Eclipse

Using Eclipse and the dm Server tools, it is possible to run applications directly from the IDE.
As changes are made to the application in the IDE, they can be automatically applied to the
running application allowing for rapid feedback of changes in function.

Importing the GreenPages projects into Eclipse

Before you can start the GreenPages application from Eclipse, you must import the projects. To
import the projects into Eclipse:

1. Open the Import Wizard using File → Import.

2. From the Import Wizard select General → Existing Projects into Workspace and click Next:

Installing GreenPages 19

2.0.0.RC1 19

3. Click Browse… and select $GREENPAGES_HOME/solution as the root directory.

4. In the Import Projects window, select all the projects and click Finish:

5. Validate that the imported projects appear in Package Explorer:

20 Creating GreenPages

20 Installing GreenPages

There may be compilation errors at this stage.

Configuring dm Server target runtime

Projects for dm Server are associated with a dm Server runtime environment in Eclipse. This is
to allow launching and testing from within Eclipse, and also to allow classpath construction in
Eclipse to mirror the dynamic classpath in the dm Server runtime.

Compilation errors in the previous step will be resolved here.

To configure a dm Server runtime environment:

1. Open Window → Show View → Other….

2. In the Show View dialog choose Server → Servers to make the servers view visible:

3. Right-click in the Servers (which may not be empty) view and select New → Server.

4. In the New Server dialog, choose SpringSource → SpringSource dm Server v2.0 and click
Next.

5. Click Browse and select the $DMS_HOME directory. Ensure that a JRE is selected supporting
Java 1.6 or above. Click Finish to complete creation of the server:

Installing GreenPages 21

2.0.0.RC1 21

6. Select all projects (except Servers) in Package Explorer. Right-click on the projects and
choose Close Project and then Open Project.

It is possible that there remain spurious build errors from Eclipse (see the Problems view), in
which case a project clean build may clear the problems. Select Project → Clean… from the
main menu, and choose to Clean all projects. This process is known as the “Eclipse dance”. It
may be necessary to repeat this on a few projects.

Despite the dance steps outlined, there will remain some Warnings like this:

It is safe to ignore these.

Running GreenPages from within Eclipse

Now that GreenPages is successfully imported into Eclipse, you can now run the project directly
from within the IDE.

If you previously deployed the GreenPages PAR to dm Server by copying the PAR file to the
pickup directory, be sure you now remove it so that it does not conflict with the deployment of
the Eclipse project. On Unix:

prompt$ cd $DMS_HOME/pickup
prompt$ rm greenpages-solution-2.0.0.RELEASE.par

On Windows:

prompt> cd %DMS_HOME%\pickup
prompt> del greenpages-solution-2.0.0.RELEASE.par

22 Creating GreenPages

22 Installing GreenPages

Also, to prevent conflicts with the server configured in Eclipse, stop a currently-running dm
Server by typing Control-C in the console window from which you started the server.

To run GreenPages from within Eclipse:

1. Right click on the dm Server instance in the Servers view and select the Add and Remove…
menu item.

2. Add greenpages-solution (which is the containing project or PAR) to the server and finish.

3. To start dm Server from within Eclipse right-click on the dm Server node in the Servers
window and choose Start. The Servers view should now show the server and the added
project:

4. Verify that GreenPages is installed correctly by checking for <SPDE0010I> Deployment
of 'greenpages' version '2' completed. in the Console window.

Once installed and started GreenPages is again available from a web browser at the address
http://localhost:8080/greenpages.

Installing GreenPages 23

2.0.0.RC1 23

http://localhost:8080/greenpages

24 Creating GreenPages

24 Installing GreenPages

4. The Web Module

4.1 Introduction

In common with most Enterprise Java applications GreenPages uses a web-based interface for
user interactions. The following steps show how to create the controller for the application,
implement that controller using a service from the OSGi Service Registry, and deploy both
bundles to the dm Server instance.

It is assumed that the instructions in Chapter 2, Installation have been followed already and that
the GreenPages zip file has been downloaded and unzipped as described in Chapter 3, Installing
and exploring GreenPages. Rather than working with the fully completed application a skeleton
version of the projects (found in $GREENPAGES_HOME/start) is used to demonstrate how to
build the application in stages.

4.2 GreenPages set up

Before beginning development, configure the development environment to work with the
application. In the case of GreenPages this means Maven and Eclipse.

Setting up Eclipse (STS)

The following instructions are most easily followed using the Java perspective rather than the
Java EE perspective. If not already in the Java perspective, switch to the Java perspective in the
SpringSource Tools Suite using the Open Perspective menu:

In this step a reference to the dm Server instance is created in STS that the GreenPages
application will integrate with.

In STS open Preferences → Server → Runtime Environments. Select Add… to create a new
instance of the dm Server. In the dialog that opens, select the SpringSource dm Server runtime
environment (v2.0) and check the box to Create a new local server. When complete, press Next.

The Web Module 25

2.0.0.RC1 25

In the next dialog, set the SpringSource dm Server installation directory field to the value of
$DMS_HOME and check that the JRE: option is set to Java 1.6 or above, in case this is not the
workbench default. When complete, press Finish.

After returning to the Preferences window, press OK to return to Eclipse. The Servers view has
opened and now shows an instance of SpringSource dm Server in it.

26 Creating GreenPages

26 The Web Module

There will also be a Servers project created. Proceed to the next step.

4.3 Creating a controller

The GreenPages application uses Spring’s @MVC style of web application development. A
central type of this development style is the controller class.

Importing the greenpages.web project

The GreenPages application is divided up into a number of OSGi bundles that are represented as
Eclipse projects. In this step the starting version of the greenpages.web project is imported.

Right-click in the Package Explorer view and select Import…. In the dialog that opens, choose
General → Existing Projects into Workspace and select Next. In the following dialog set the root
directory field to the value of $GREENPAGES_HOME/start/greenpages.web and press
Finish.

Initially this project may have compile failures in it; this is to be expected particularly if the
Maven repository hasn’t yet been created. This will be corrected in the next step.

The Web Module 27

2.0.0.RC1 27

When Eclipse finishes importing the project, go to the next step.

Creating the controller class

Create a new class by right-clicking on the greenpages.web package in the
src/main/java source folder and selecting New → Class. (If Class is not offered on the
New menu, then the Java perspective may not be being used. Look for the Class option under
Other… in the Java section.) Name the new class GreenPagesController and press
Finish.

28 Creating GreenPages

28 The Web Module

Next add the following code to the GreenPagesController class.

@Controller
public class GreenPagesController {

@RequestMapping("/home.htm")
public void home() {
}

}

This will not compile because the annotations Controller and RequestMapping are not
visible in the class. Eclipse will offer (as a Quick Fix) to insert imports for Spring Framework
annotations Controller and RequestMapping (these should be accepted). After these
changes, save the file and go to the next step.

Enable component scanning

Once the controller is written, Spring needs to be told to instantiate a bean of the controller type.
In this step you enable Spring’s component scanning to detect the GreenPagesController
class.

Open the META-INF/spring/module-context.xml file in the src/main/webapp

The Web Module 29

2.0.0.RC1 29

folder. This not a source folder and can not be made in to one, navigate to the file starting at the
‘src’ folder. In this file add the following line.

<context:component-scan base-package="greenpages.web"/>

When this is complete save the file and go to the next step.

4.4 Deploying a bundle

During development time, it can be helpful to run an application inside of the deployment
container. In the case of GreenPages, this means deploying the greenpages.web bundle to
the SpringSource dm Server.

Deploying the greenpages.web bundle and starting the dm
Server

The dm Server can be used while working in Eclipse. In this step the greenpages.web
bundle is deployed and the dm Server instance is started.

Drag the greenpages.web project from the Package Explorer and drop it on the dm Server
instance in the Servers view. Because greenpages.web is a web bundle the server will start
automatically, and a browser window will open. Expand the dm Server instance and the bundle
will be listed as a child.

Eclipse will open its internal web browser as this is a web project. You can choose to use this or
just close it and stay with your browser of choice.

If deployment has gone successfully the console will contain the message <SPDE0010I>
Deployment of 'greenpages.web' version '2' completed. Either way, as
the project is a web project Eclipse will open its built in browser window and attempt to show
the first page of the application. If successful the URL will be redirected to
.../greenpages/app/home.htm.

Leave the server instance running and go to the next step.

Creating web module metadata

The dm Server has special knowledge of the web application bundles. In this step web bundle
metadata is added to the bundle and a web browser is used to navigate to it.

Open a web browser and navigate to http://localhost:8080/greenpages. The link is not currently

30 Creating GreenPages

30 The Web Module

http://localhost:8080/greenpages

served by any bundle in the dm Server so there will be an error displayed:

To fix this issue the greenpages.web bundle must be declared to be a web bundle and a
context path be defined.

Open the template.mf file (at the top level under the greenpages.web project) and add
(and save) the following entry (using the template.mf pane of the editor):

Web-ContextPath: greenpages

Be careful not to insert any blank lines or trailing spaces in this file.

Once added, right-click on the greenpages.web project and select Spring Tools → Run
incremental generation of MANIFEST.MF file. This will use a tool called Bundlor (included in
STS) to update the OSGi metadata in the MANIFEST.MF file. Once Bundlor has finished
running, open the META-INF/MANIFEST.MF file in the src/main/webapp folder. It
should look like the following:

Manifest-Version: 1.0
Import-Bundle: com.springsource.org.apache.taglibs.standard;version="[
1.1.2,1.3)"
Bundle-Vendor: SpringSource Inc.
Bundle-Classpath: .
Bundle-Version: 2.0
Tool: Bundlor 1.0.0.BUILD-20090616142719
Bundle-Name: GreenPages Web
Import-Library: org.springframework.spring;version="[3.0, 3.1)"
Bundle-ManifestVersion: 2
Bundle-SymbolicName: greenpages.web
Web-ContextPath: greenpages
Import-Package: com.springsource.server.web.dm;version="[2.0.0, 3.0.0)
",freemarker.cache;version="[2.3.15,2.3.15]",javax.servlet.jsp.jstl.c
ore;version="[1.1.2,1.2.0)",javax.sql,org.apache.commons.dbcp,org.spr
ingframework.core.io,org.springframework.web.con
text

By default, Bundlor generates Import-Package entries with no version range specified. In
the absence of a version range, the OSGi default (of any version) is used. While this is very
flexible it is generally a good idea to restrict an import by specifying a narrower range. This can
be achieved by providing Bundlor with some additional information in the manifest template.

Add and save the following entry to the template.mf file:

Import-Template:
org.springframework.*;version="[3.0.0, 3.1.0)"

(Again, be careful not to leave trailing spaces on lines or insert blank lines in this file.)

The Web Module 31

2.0.0.RC1 31

Re-run the MANIFEST.MF generation as described earlier. In the MANIFEST.MF file the
Import-Package entry should now have version ranges on each of its packages:

Import-Package: com.springsource.server.web.dm;version="[2.0.0, 3.0.0)
",freemarker.cache;version="[2.3.15,2.3.15]",javax.servlet.jsp.jstl.c
ore;version="[1.1.2,1.2.0)",javax.sql,org.apache.commons.dbcp,org.spr
ingframework.core.io;version="[3.0, 3.1)",org.springframework.web.con
text;version="[3.0, 3.1)"

Behind the scenes the dm Server Tools have refreshed the deployed bundle as changes were
made. Once again navigate to http://localhost:8080/greenpages. This page now displays an entry
field.

Put any characters into the entry field and press Submit. This should display a “404” page again,
similar to before. This is because there is no search page (search.htm) to process this request
yet. The next section will address this.

4.5 Creating a PAR

At the end of the previous step, the dm Server instance was started and the greenpages.web
bundle deployed. This bundle shows a static home page but a search value causes an error. This
error appears because the URL for that search was not serviced by the controller. The logic
behind the search request is not in the greenpages.web project but in another project called
greenpages.app. This section creates the greenpages.app project and then combines
the two projects into a PAR so as to be able to deploy them together as a single unit.

While executing these instructions it is not necessary to remove bundles from the dm Server
instance, nor to stop the instance. As changes are made the bundle will be refreshed (or
redeployed) and the server instance may report errors if the changes are incomplete. These may
safely be ignored. Alternatively, the greenpages.web bundle can be removed from the dm
Server instance, or the server can be stopped while these changes are made.

32 Creating GreenPages

32 The Web Module

http://localhost:8080/greenpages

Importing the greenpages.app project

In this step, the greenpages.app project is imported which contains the business interfaces
(and stub implementations of these interfaces).

In the same way that the starting greenpages.web project was imported (in section the
section called “Importing the greenpages.web project”) import the
$GREENPAGES_HOME/start/greenpages.app project.

When Eclipse finishes importing the project, go to the next step.

Adding the controller implementation

The controller implementation will depend on the Directory and Listing interfaces found
in the greenpages.app project. In this step, the implementation is added.

Open the GreenPagesController class. Add the following field and methods to the class:

@Autowired
private Directory directory;

@RequestMapping("/search.htm")

The Web Module 33

2.0.0.RC1 33

public List<Listing> search(@RequestParam("query") String query) {
return this.directory.search(query);

}

@RequestMapping("/entry.htm")
public Listing entry(@RequestParam("id") int id) {
return this.directory.findListing(id);

}

Add the (Quick Fix) suggested imports for the annotations Autowired and RequestParam,
and choose the import for List< > from java.util.List.

Eclipse will not be able to suggest import statements for the Listing and Directory types.
This is because the greenpages.web and greenpages.app projects are not linked
together and therefore cannot see each other’s types.

Proceed to the next step.

Creating a PAR project

In dm Server, applications consisting of multiple bundles can be packaged as part of a PAR. In
this step a PAR project containing the greenpages.web and greenpages.app bundles is
created and deployed to the server.

Right-click in the Package Explorer and select New → Project…. In the dialog that opens select
SpringSource dm Server → PAR Project and press Next:

In the New PAR Project dialog, ensure the Use default location option is unchecked, name the
project greenpages, set the location to $GREENPAGES_HOME/start/greenpages and
press Next.

34 Creating GreenPages

34 The Web Module

In the next dialog, some of the PAR properties are pre-populated. Ensure that the Target Runtime
is set to SpringSource dm Server (Runtime) v2.0 and press Next.

In the next dialog, select the greenpages.app and greenpages.web bundles so that they
are contained in the PAR and press Finish.

The Web Module 35

2.0.0.RC1 35

greenpages.web still has errors these are soon to be fixed.

The package explorer view will now show the following:

PAR project creation is complete, go to the next section.

4.6 Referencing an OSGi Service

In an OSGi-based application, the business logic behind a controller is typically accessed
through the OSGi Service Registry.

Exporting Packages

By default, Bundlor detects and exports all packages in a bundle. In this step Bundlor is told
what to export from the greenpages.app bundle and which types from those packages to use
in the greenpages.web bundle.

Add and save the following entry to the template.mf file in the greenpages.app project
and then run the MANIFEST.MF generation on the project as explained in the section called
“Creating web module metadata”.

36 Creating GreenPages

36 The Web Module

Excluded-Exports:
greenpages.internal

(As before, be careful not to leave trailing spaces on the ends of lines and not to add any blank
lines to the file.)

Check that the package is no longer exported in the greenpages.app MANIFEST.MF file
which should look like this:

Manifest-Version: 1.0
Export-Package: greenpages;version="2.0"
Bundle-Vendor: SpringSource Inc.
Bundle-Classpath: .
Bundle-Version: 2.0
Tool: Bundlor 1.0.0.BUILD-20090616142719
Bundle-Name: GreenPages Service
Bundle-ManifestVersion: 2
Bundle-SymbolicName: greenpages
Import-Package: org.springframework.stereotype;version="[3.0, 3.1)"

Once Bundlor has done this, go to the next step.

Referencing Projects and Packages

Now that the greenpages.app bundle exports the package that the Directory and
Listing interfaces reside in, the greenpages.web bundle must import it. In this step you
will update the Maven pom.xml file to depend on the greenpages.app bundle and import
the package.

Open the pom.xml file in the greenpages.web project. In this file add the following entry
(between the <dependencies> tags):

<dependency>
<groupId>com.springsource.dmserver</groupId>
<artifactId>greenpages.app</artifactId>
<version>${project.version}</version>

</dependency>

Open the GreenPagesController class and import the Listing and Directory types.
Eclipse should now offer these as a Quick Fix. The class should now compile cleanly.

The following imports should now have been added to the GreenPagesController class:

import greenpages.Directory;
import greenpages.Listing;

import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;

Add the following package clause to the Import-Template entry in the template.mf file
in the greenpages.web project. When added run the MANIFEST.MF generation on the
project as described in the section called “Creating web module metadata”.

greenpages.*;version="[2.0, 2.1)"

Be careful to include the “.*” in the package pattern.

The Web Module 37

2.0.0.RC1 37

Once Bundlor has finished, go to the next step.

Deploying a PAR

Currently the dm Server instance has a single web module bundle deployed. In this step, the
greenpages.web bundle is undeployed and greenpages PAR is deployed.

Right-click on the dm Server in the Servers view, and select Add and Remove Projects…. In the
dialog that opens, remove the greenpages.web bundle and add the greenpages PAR to
the server. When the configuration is complete, press Finish.

Eclipse automatically undeploys the greenpages.web bundle and deploys the greenpages
PAR. When this happens, the deployment fails with an error. One of the exceptions in the
exception list that is included is similar to:

Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException: No unique bean of type
[greenpages.Directory] is defined: Unsatisfied dependency of type [interface greenpages.Directory]:
expected at least 1 matching bean

This error is caused by there being no instance of Directory to inject into the controller. The
next section will supply one.

Referencing an OSGi Service

There is no instance of Directory to be injected into the controller. In the GreenPages
application, it is intended that this implementation is used through an interface in the OSGi

38 Creating GreenPages

38 The Web Module

Service Registry. Using a service in the Service Registry enables another bundle to provide an
implementation without revealing the implementation or the provider to all clients of the service.
dm Server supports the use of the Spring DM namespace for referencing elements in the OSGi
Service Registry. This step adds an OSGi Service Reference to an implementation of the
Directory interface.

In the webapp/META-INF/spring/applicationContext.xml file in the
greenpages.web projects add a reference to a greenpages.Directory instance in the
OSGi service registry using the <osgi:reference/> tag as follows:

<osgi:reference id="directory" interface="greenpages.Directory"/>

The tools will automatically redeploy the greenpages.web bundle when the change to the
bean definition has been saved. As the redploy happens, the following error will occur:

<SPCC0001W> Mandatory reference '&directory' in bundle
'greenpages-1-greenpages.web' version '2.0.0' is waiting for service with filter
'(&(objectClass=greenpages.Directory)(!(com.springsource.server.app.name=*)))'.

This error indicates that there is no provider of a greenpages.Directory in the Service
Registry. The next step will address this.

The error is re-issued as the dm Server instance waits for the service to be supplied. After about
five minutes the server will “time-out” and the deploy will be abandoned. This same error (and
time-out) will occur each time the PAR is redeployed as each change is made.

Stop the server instance by right-clicking on the server in the Servers view and selecting Stop.
This will avoid unnecessary delays as changes are made.

4.7 Publishing an OSGi Service

At the end of the previous step, a dependency was created on an OSGi Service Registry exposed
instance of greenpages.Directory. The application would not start because no other
bundle was contributing an instance of this service to the Service Registry.

Stop the server instance before proceeding.

Add Implementation

In this step Spring’s context scanning is added which will create an instance of the
DirectoryImpl class.

Open the greenpages.internal.DirectoryImpl class in the greenpages.app
project. Add the @Component annotation to the class:

@Component("directory")
public class DirectoryImpl implements Directory {
…

generating imports with Eclipse’s help if necessary.

The Web Module 39

2.0.0.RC1 39

Open the META-INF/spring/module-context.xml in the greenpages.app project.
Add component scanning to this file:

<context:component-scan base-package="greenpages.internal"/>

When complete, go to the next step.

Publish OSGi Service

In this step the DirectoryImpl instance is published to the OSGi Service Registry.

Open the META-INF/spring/osgi-context.xml file. Add the <osgi:service/>
tag to publish the directory bean with an interface of greenpages.Directory.

<osgi:service ref="directory" interface="greenpages.Directory"/>

A Working Web Application

Start (or restart) the dm Server instance from the Servers view. If the GreenPages PAR was
not removed before, it will be automatically deployed, otherwise deploy it as before. There
should be no errors reported. When GreenPages is deployed successfully, open a web browser
and navigate to http://localhost:8080/greenpages. On the home page type wilkinson into the
search field and press Submit. Unlike the previous attempt, this should return a list (of size 1) of
search results. From here, select view to get the “detailed” listing.

40 Creating GreenPages

40 The Web Module

http://localhost:8080/greenpages

This uses a stub implementation of the Directory interface which only knows about “Andy
Wilkinson”.

The web interface is complete enough. Go to the next chapter to see the middle tier
implementation.

The Web Module 41

2.0.0.RC1 41

42 Creating GreenPages

42 The Web Module

5. The Middle Tier

5.1 Introduction

GreenPages’ middle-tier provides implementations of the Directory and Listing interfaces
that can be used by the Web bundle. The implementation will use EclipseLink JPA to access a
database via a DataSource published in the OSGi service registry.

The database

The GreenPages application uses a very simple database that contains a single table. The table,
named LISTING, consists of four columns:

LISTING_NUMBER FIRST_NAME LAST_NAME EMAIL_ADDRESS

Scripts are provided with the sample source code (in $GREENPAGES_HOME/db) to start,
create, and populate the database. These will be used during the creation of the middle tier.

Using JPA

The middle tier will provide JPA-based implementations of the Directory and Listing
interfaces with the four attributes of a Listing (first name, last name, email address, and id)
being mapped to the corresponding columns in the LISTING. JPA will be used to implement the
queries that search the database and return Listings.

Structure

The middle tier consists of two bundles, greenpages.jpa that publishes a Directory
implementation for consumption by the Web bundle, and greenpages.db to configure and
publish the DataSource used to access the database.

The Middle Tier 43

2.0.0.RC1 43

5.2 Creating the DataSource project

This section describes how to use the bundle project creation wizard to create a new Bundle
Project. The project’s Spring bean definition files will also be created using the Spring bean
configuration file creation wizard.

Creating a new Bundle Project

Create a new project by right-clicking in the Package Explorer view and selecting New →
Project…. In the resulting dialog select SpringSource dm Server → Bundle Project and press
Next:

In the New Bundle Project dialog, name the project greenpages.db. Choose the create the
project from an existing source location and specify a location that will place the new
greenpages.db alongside the project skeletons that were imported into the workspace
earlier. If the start directory of the GreenPages sample is being used this will be
$GREENPAGES_HOME/start/greenpages.db. Click Next.

44 Creating GreenPages

44 The Middle Tier

In this page of the wizard, many of the Bundle Properties are already populated. The
Bundle-SymbolicName is the name of the project. The Bundle-Name is derived from the
Bundle-SymbolicName. The Bundle-Version is set, and there is no
Bundle-Description.

Change the Bundle-Name to “GreenPages DataSource” to more accurately describe the
bundle’s purpose. An option to select a ‘Bundle Classpath Container’ is already selected. It
should be de-selected, as a Maven Classpath container will be configured later. Lastly, check the
target runtime JVM version is appropriately configured; it should specify a JVM version of 1.6
or later. Click Finish.

The Middle Tier 45

2.0.0.RC1 45

The greenpages.db project appears in the Package Explorer view.

Configuring the project’s classpath container

Before a Maven Classpath Container can be added to the project, a pom.xml file must be
created. Create a new file in the root of the greenpages.db project named pom.xml and add
the following contents to it:

<?xml version="1.0" encoding="UTF-8"?>
<project

xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

<parent>
<groupId>com.springsource.dmserver</groupId>
<artifactId>greenpages.parent</artifactId>
<version>2.0.0.RELEASE</version>
<relativePath>../parent</relativePath>

</parent>

<modelVersion>4.0.0</modelVersion>
<groupId>com.springsource.dmserver</groupId>
<artifactId>greenpages.db</artifactId>
<name>greenpages.db</name>
<packaging>jar</packaging>

<dependencies>
</dependencies>

</project>

Save the file.

A Maven Classpath Container can now be added to the project. Right-click the
greenpages.db project in the Package Explorer and select Maven 2 → Use Maven
dependency management. Eclipse will perform some workspace building, and the
greenpages.db project will now be marked as a Maven project.

46 Creating GreenPages

46 The Middle Tier

Configuring the source folders

The last part of the setup of the project is to configure its source folders. Return to the Properties
dialog of the greenpages.db project (from the Package Explorer view). Select Java Build
Path on the left-hand side and the Source tab on the right-hand side. Remove both of the
pre-configured source folders by selecting them and clicking Remove.

Now click Add folder and then Create new folder…. Specify src/main/resources as the
folder name and click Finish, then OK and OK again.

The final change to be made is to drag the META-INF folder from src to
src/main/resources. Once these changes have been made the project will appear similar
to the following in the Package Explorer view:

Configuring the DataSource

The DataSource bundle’s main rôle is to configure and create a DataSource object and to
publish this to the OSGi service registry. This will be done by creating a handful of Spring
beans.

By default, Spring DM looks for application context files in a bundle’s META-INF/spring
directory. Create a new folder named spring in the greenpages.db project’s META-INF
folder. Having created the new folder, right-click it in the Package Explorer and select New →
Spring Bean Configuration File. This will open the wizard for creating Spring bean configuration
files.

In the wizard enter a File name of module-context.xml and click Next:

The Middle Tier 47

2.0.0.RC1 47

Add the p - http://www.springframework.org/schema/p namespace declaration to the pre-selected
beans declaration and then click Finish.

Update the newly-created file (which is opened by Eclipse) to declare a bean that defines the

48 Creating GreenPages

48 The Middle Tier

DataSource object that will be used to access the GreenPages database. Do this by adding the
following bean declaration:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"
p:driverClassName="org.h2.Driver" p:url="jdbc:h2:~/greenpages-db/greenpages"
p:username="greenpages" p:password="pass"
init-method="createDataSource" destroy-method="close" />

The new bean has introduced a dependency on Commons DBCP, which will cause an error to be
reported by Eclipse.

This dependency must be recorded in the project’s pom file. Open the pom file for
greenpages.db and add the following dependency between the <dependencies> tags:

<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>com.springsource.org.apache.commons.dbcp</artifactId>

</dependency>

Save the updated pom and then switch back to the editor for module-context.xml. Save the
updated file and observe that the previously reported problem has now been resolved as
Commons DBCP is available on the classpath. (If this is not resolved automatically, it may be
necessary to close and open the greenpages.db project in the Package Explorer pane.)

Now that the DataSource bean is available, it can be published into the OSGi service registry.

Right-click the spring folder and select New → Spring Bean Configuration File. This time
specify a name of osgi-context.xml, click Next, and add the osgi namespace declaration.
Click Finish and then add the following to the new file to publish the DataSource as a
service:

<!--
export the dataSource bean to the OSGi service registry under the
DataSource interface

-->
<osgi:service ref="dataSource" interface="javax.sql.DataSource" />

Configuring Bundlor’s manifest template

Bundlor uses a manifest template to control the contents of the generated manifest. Create a new
file named template.mf in the root of the greenpages.db project. Open the existing
MANIFEST.MF and switch to the MANIFEST.MF tab to view its source. Copy the contents.
Switch to the editor for template.mf, switch to the template.mf tab and paste the
contents from MANIFEST.MF. These entries will tell Bundlor what the resulting manifest’s
bundle symbolic name, bundle version, etc. should be. Save the updated template.

Still in the template.mf editor switch to the Overview tab and click Update MANIFEST.MF
which is under the “Bundle Actions” section.

At this point Bundlor will scan the project to determine its dependencies. It will scan both
module-context.xml and osgi-context.xml looking for references to classes. For
each class to which it finds a reference, an import for the class’s package will be added to the
resulting manifest.

In this case, Bundlor will generate imports for both javax.sql and
org.apache.commons.dbcp. The import for org.apache.commons.dbcp will result

The Middle Tier 49

2.0.0.RC1 49

in an error as the package cannot be resolved. (javax.sql may also be unresolved.) The
greenpages.db project needs to be associated with a dm Server instance which has the
Commons DBCP bundle in its repository. This is achieved in the next step by adding the
greenpages.db project to the GreenPages PAR, this will result in it inheriting the PAR
project’s targetted runtime configuration.

Double-click the MANIFEST.MF file in the greenpages project in the Package Explorer
view. Switch to the Dependencies tab and click Add…. Select greenpages.db and click
OK. Save the updated file. The problem concerning the org.apache.commons.dbcp
dependency should now be resolved (along with any other resolution errors) and (if the server is
running) the GreenPages application will be redeployed due to the addition of the
greenpages.db module. Start the server if it is not already running and observe that this
deployment fails.

The deployment will fail because the org.h2.Driver class that is referenced in the
DataSource bean’s definition in module-context.xml is not available to the bundle.
(Check for the exception
org.springframework.beans.factory.BeanCreationException with text:
“Error creating bean with name 'dataSource' defined in URL
[bundleentry://84/META-INF/spring/module-context.xml]: Invocation
of init method failed; nested exception is
org.apache.commons.dbcp.SQLNestedException: Cannot load JDBC
driver class 'org.h2.Driver'”.)

There are a few cases where Bundlor will not identify a dependency on a class and, at the
moment, this is one of them, although this is an area of Bundlor that is being improved all the
time. Thankfully it’s easy to add the required import by making a simple update to the template.

Open the editor for the template.mf file in the greenpages.db project and add the
following Import-Package header and save the updated manifest:

Import-Package: org.h2;version="[1.0.71,1.0.71]"

Saving the manifest will trigger a redeployment (or click on Update MANIFEST.MF as before)
which will fail if the H2 database is not available. (Refer to the section the section called
“Starting and configuring the database” in Chapter 3, Installing and exploring GreenPages to run
and configure the database.)

If the database is running the GreenPages application should correctly deploy. Although the
application web front-end will run, the database contents is not visible, of course, because we are
still running with the stub version of the search method on the controller. The implementation
of the Directory service needs to be changed to exploit the database.

5.3 Building the JPA module

In this section the JPA module in GreenPages is created, building upon an existing skeleton. JPA
and its metadata are configured, and a JPA-based Directory service implementation is published
which is then consumed by the application’s Web bundle.

50 Creating GreenPages

50 The Middle Tier

Completing the JPA-based Directory implementation

The greenpages.jpa starter project provides the beginnings of a JPA-based implementation
of Directory named JpaDirectory. Import the greenpages.jpa project from the
$GREENPAGES_HOME/start directory.

Open the JpaDirectory.java source file in the greenpages.jpa package of
greenpages.jpa project (under src/main/java).

The source file contains a Java Persistence Query Language (JPQL) search query that will be
used to retrieves listings from the database and empty implementations of the search and
findListing methods.

First add an EntityManager to it. Before the new field can be added, EntityManager
must be available on the classpath. Open the pom for greenpages.jpa and add the following
dependency:

<dependency>
<groupId>javax.persistence</groupId>
<artifactId>com.springsource.javax.persistence</artifactId>

</dependency>

Now return to JpaDirectory and add the following field to the class along with an import for
javax.persistence.EntityManager (which should be suggested by Eclipse):

private EntityManager em;

This EntityManager can now be used to implement the search and findListing
methods. Update the implementations of these two methods to match the following
implementations and then save the updated class:

public Listing findListing(int id) {
return em.find(JpaListing.class, id);

}

@SuppressWarnings("unchecked")
public List<Listing> search(String term) {

return em.createQuery(SEARCH_QUERY).setParameter("term",
"%" + term.toUpperCase() + "%").getResultList();

}

(Warnings from Eclipse should now be absent.)

The application context now needs to be updated to create JpaDirectory and to create an
EntityManager that can be injected into JpaDirectory.

Open module-context.xml in the META-INF/spring folder of the
greenpages.jpa. Add the following beans that will create JpaDirectory and an
EntityManager, enable load-time weaving that is required by JPA, and enable
annotation-based configuration that will allow the EntityManager to be injected into
JpaDirectory:

<!--
Activates a load-time weaver for the context. Any bean within the
context that implements LoadTimeWeaverAware (such as
LocalContainerEntityManagerFactoryBean) will receive a reference to
the autodetected load-time weaver.

-->

The Middle Tier 51

2.0.0.RC1 51

<context:load-time-weaver aspectj-weaving="on" />

<!-- JPA EntityManagerFactory -->
<bean id="entityManagerFactory"

class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"
p:dataSource-ref="dataSource">
<property name="jpaVendorAdapter">

<bean id="jpaVendorAdapter"
class="org.springframework.orm.jpa.vendor.EclipseLinkJpaVendorAdapter"
p:databasePlatform="org.eclipse.persistence.platform.database.HSQLPlatform"
p:showSql="true" />

</property>
</bean>

<!--
Activates various annotations to be detected in bean classes: Spring's
@Required and @Autowired, as well as JSR 250's @PostConstruct,
@PreDestroy and @Resource (if available) and JPA's @PersistenceContext
and @PersistenceUnit (if available).

-->
<context:annotation-config />

<bean id="directory" class="greenpages.jpa.JpaDirectory" />

The addition of the new beans to the context has introduced a new dependency upon Spring’s
ORM support and upon EclipseLink and its JPA implementation. Add the following
dependencies to the pom file for greenpages.jpa and save it:

<dependency>
<groupId>org.springframework</groupId>
<artifactId>org.springframework.spring-library</artifactId>
<type>libd</type>

</dependency>
<dependency>

<groupId>org.eclipse.persistence</groupId>
<artifactId>com.springsource.org.eclipse.persistence</artifactId>

</dependency>
<dependency>

<groupId>org.eclipse.persistence</groupId>
<artifactId>com.springsource.org.eclipse.persistence.jpa</artifactId>

</dependency>

Now switch back to module-context.xml for greenpages.jpa and observe that the
errors relating to Spring’s ORM types have now been resolved. Save module-context.xml.

The application context now contains a factory that will create an EntityManager and is
configured for annotation-based configuration. The last step in completing JpaDirectory is
to annotate the EntityManager field so that Spring will inject the EntityManager created
by the factory into the field.

Open JpaDirectory.java again and add an annotation @PersistenceContext to the
EntityManager field.

@PersistenceContext
private EntityManager em;

Eclipse will suggest an import for javax.persistence.PersistenceContext; accept
this and save the file.

Providing the JPA metadata

JPA uses a file named META-INF/persistence.xml to describe persistence units.
persistence.xml refers to a second file, typically named META-INF/orm.xml, to define
entity mappings. In the case of GreenPages the persistence.xml file specifies a single
persistence unit that points to the greenpages.JpaListing class. The specified mapping
file (META-INF/orm.xml) tells the JPA implementation how to map JpaListing to the

52 Creating GreenPages

52 The Middle Tier

LISTING database table described above. (For more information on JPA consult the
Documentation section in the appendix.)

Create a new file named persistence.xml in the META-INF folder of the
greenpages.jpa project. Add the following contents to the new file and then save it:

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

<persistence-unit name="GreenPages" transaction-type="RESOURCE_LOCAL">
<class>greenpages.jpa.JpaListing</class>

</persistence-unit>

</persistence>

Now create a new file named orm.xml also in the META-INF folder as persistence.xml.
Add the following contents to the new file and then save it:

<?xml version="1.0" encoding="UTF-8" ?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm

http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
version="1.0">
<package>greenpages.jpa</package>
<entity class="greenpages.jpa.JpaListing" name="Listing">

<table name="LISTING" />
<attributes>

<id name="listingNumber">
<column name="LISTING_NUMBER" />
<generated-value strategy="TABLE" />

</id>
<basic name="firstName">

<column name="FIRST_NAME" />
</basic>
<basic name="lastName">

<column name="LAST_NAME" />
</basic>
<basic name="emailAddress">

<column name="EMAIL_ADDRESS" />
</basic>

</attributes>
</entity>

</entity-mappings>

Consuming the DataSource from the service registry

The entityManagerFactory bean that was added earlier depends upon a bean named
dataSource which it will use to connect the EntityManager to the GreenPages database.
The greenpages.db module already publishes a DataSource to the service registry.
greenpages.jpa must now be updated to consume this dataSource.

Open osgi-context.xml in the META-INF/spring folder of the greenpages.jpa
project and add the following:

<!-- import the DataSource from OSGi -->
<osgi:reference id="dataSource" interface="javax.sql.DataSource" />

This will result in a bean being created in the application context that is named dataSource.
The bean will be of type javax.sql.DataSource and will be backed by a service found in
the OSGi service registry that implements the javax.sql.DataSource interface.

The Middle Tier 53

2.0.0.RC1 53

Publishing the Directory implementation to the service registry

To make the JPA-based Directory implementation available to GreenPages’ Web module it
must be “published” to the OSGi service registry.

Open osgi-context.xml in the META-INF/spring folder of the greenpages.jpa
project, add the following and then save the updated file:

<!-- export the directory bean to OSGi under the Directory interface -->
<osgi:service ref="directory" interface="greenpages.Directory" />

Generating greenpages.jpa’s manifest using Bundlor

Open the template.mf file in the root of the greenpages.jpa project and switch to the
template.mf tab. Add the following entries to the template and save it.

Import-Bundle: com.springsource.org.eclipse.persistence;version="[1.0.0,1.0.0]",
com.springsource.org.eclipse.persistence.jpa;version="[1.0.0,1.0.0]"
Import-Package: org.springframework.context.weaving;version="[3.0,3.1)",
org.springframework.transaction.aspectj;version="[3.0,3.1)"
Excluded-Exports: greenpages.jpa

The Excluded-Exports header tells Bundlor that the greenpages.jpa should not be
exported from the greenpages.jpa bundle.

The Import-Package entries for org.springframework.context.weaving and
org.springframework.transaction.aspectj are needed as Bundlor cannot, yet,
detect that these packages are required based on the contents of the bundle’s application context.

Lastly, the Import-Bundle entries for EclipseLink and its JPA implementation are needed as
Bundlor cannot, yet, detect that EclipseLink is the JPA implementation that is being used by
GreenPages.

Switch to the Overview tab and click Update MANIFEST.MF. As with greenpages.db
before, this update will result in some errors being reported in the manifest as the project is not
associated with a targetted runtime. Double-click the MANIFEST.MF file in the greenpages
project in the Package Explorer. Switch to the Dependencies tab and click Add…. Select
greenpages.jpa and click OK. Save the updated file. The problems in the manifest should
now be resolved and the GreenPages application should be redeployed due to the addition of the
greenpages.jpa module. This redeployment should succeed and it’s now time to try the
application again.

5.4 Trying out the JPA middle tier

Open a Web browser and navigate to http://localhost:8080/greenpages. Click the Submit button.
Unfortunately the search will not return any results as the Web bundle is still using the stub
Directory implementation provided by the greenpages.app module, rather than the
JPA-based implementation that is provided by greenpages.jpa. This can be confirmed by

54 Creating GreenPages

54 The Middle Tier

http://localhost:8080/greenpages

using the OSGi telnet console.

Open a command prompt and enter

telnet localhost 2401

At the resulting prompt, enter ‘ss’ (for short status) and press return. This will return a list of all
of the bundles currently running in dm Server. Something like this:

69 ACTIVE com.springsource.server.web.dm_2.0.0.M3
70 ACTIVE org.springframework.web.servlet_3.0.0
71 ACTIVE com.springsource.freemarker_2.3.12
72 ACTIVE com.springsource.org.apache.commons.fileupload_1.2.0
73 ACTIVE com.springsource.org.apache.commons.io_1.4.0
74 ACTIVE org.springframework.context.support_3.0.0
75 ACTIVE greenpages-1-greenpages-synthetic.context_2.0.0
76 ACTIVE greenpages-1-greenpages_2.0.0
77 ACTIVE greenpages-1-greenpages.db_2.0.0
78 ACTIVE greenpages-1-greenpages.jpa_2.0.0
79 ACTIVE greenpages-1-greenpages.web_2.0.0
80 ACTIVE com.springsource.org.h2_1.0.71
81 ACTIVE com.springsource.org.apache.commons.dbcp_1.2.2.osgi
82 ACTIVE org.springframework.aspects_3.0.0

The bundle that is of primary interest is the Web bundle
(greenpages-1-greenpages.web_1.0.0). In the example above this is bundle 79.
Enter a command of bundle <web-module-bundle-id>, that is bundle 79 for the
case above. There will be several lines of output.

Towards the top of the generated output will be details of the services which are being used by
the Web module:

Services in use:
{greenpages.Directory}={org.springframework.osgi.bean.name=directory,

Bundle-SymbolicName=greenpages-1-greenpages,
Bundle-Version=2.0, com.springsource.server.app.name=greenpages-1, service.id=129}

{org.osgi.service.packageadmin.PackageAdmin}={service.ranking=2147483647,
service.pid=0.com.springsource.server.osgi.framework.equinox.EquinoxOsgiFramework$LockEnforcingPackageAdmin,
service.vendor=Eclipse.org, service.id=1}

{org.xml.sax.EntityResolver}={service.id=32}
{org.springframework.beans.factory.xml.NamespaceHandlerResolver}={service.id=31}

As can be seen in this output the greenpages.Directory service is being provided by a
bundle with a symbolic name of greenpages-1-greenpages: the service is coming from
the greenpages.app bundle, rather than the greenpages.jpa bundle.

The service which is being used by the Web bundle can be changed at runtime without having to
restart the application or dm Server. This can be achieved changing greenpages.app so that
it no longer publishes its Directory implementation. As a result of this Directory service
no longer being available, the Web bundle will automatically switch to using the JPA-based
implementation.

Open the osgi-context.xml file in the META-INF/spring folder of the
greenpages.app project and comment out the publication of the directory service:

<!-- <osgi:service interface="greenpages.Directory" ref="directory"/> -->

Now save the updated file which will cause the application to be updated and refreshed on the
server. Switch back to the Web browser and click Submit again.

This time eight results should be returned. Clicking on any of the View links will display the

The Middle Tier 55

2.0.0.RC1 55

listing’s details. The application is now working. All that remains is to apply some best practices
to the middle tier.

5.5 Applying best practices to the middle tier

While the application middle tier now works as required, it does not observe a few Spring-related
best practices.

Using transactions

At the moment, the middle tier does not make any use of transactions. This isn’t a problem while
the database access methods are only running single queries, but could lead to problems in the
future if the application is made more complex. Thankfully, adding the use of transactions to the
middle tier is simple.

Open module-context.xml in the META-INF/spring folder of greenpages.jpa.
Add the following bean definition to create a transaction manager and associate it with the
context’s EntityManager:

<!--
Transaction manager for a single JPA EntityManagerFactory (alternative to JTA)

-->
<bean id="transactionManager" class="org.springframework.orm.jpa.JpaTransactionManager"

p:entityManagerFactory-ref="entityManagerFactory" />

(Save it, and the greenpages.jpa module will be refreshed.)

Next, Spring must be told to enable transaction management. In keeping with the use of
annotation-based configuration for the EntityManager, annotation-based transaction
configuration will also be used. Add the following to enable AspectJ-powered transaction
demarcation for appropriately annotated beans:

<!--
Instruct Spring to perform declarative transaction management
automatically on annotated classes.

-->
<tx:annotation-driven mode="aspectj" />

Save the updated file which will trigger (another) successful refresh of greenpages.jpa.

Lastly, JpaDirectory needs to be annotated so that it is identified as requiring Spring-based
transaction management. Open JpaDirectory.java in greenpages.jpa. Annotate the
class with @Transactional and add an import for
org.springframework.transaction.annotation.Transactional, which
Eclipse should suggest:

import org.springframework.transaction.annotation.Transactional;

@Transactional
final class JpaDirectory implements Directory {
…

Save the updated file triggering another successful refresh: JpaDirectory is now
transactional.

56 Creating GreenPages

56 The Middle Tier

Enabling exception translation

When using JPA, the standard exceptions are somewhat out of keeping with Spring’s exception
model. Spring provides support for automatically translating these exceptions into Spring’s
DataAccessException hierarchy.

Open module-context.xml for greenpages.jpa again and add the following bean
definition to add the exception translator to the application context:

<!--
Post-processor to perform exception translation on @Repository classes
(from native exceptions such as JPA PersistenceExceptions to
Spring’s DataAccessException hierarchy).

-->
<bean class="org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor" />

Save the updated file. The translation will only occur on classes that are annotated with Spring’s
@Repository stereotype annotation. JpaDirectory needs to have this annotation added to
it complete the enabling of the exception translation.

Open JpaDirectory.java again, annotate the class with @Repository and add an import
for org.springframework.stereotype.Repository:

import org.springframework.stereotype.Repository;

@Transactional
@Repository
final class JpaDirectory implements Directory {

Save the updated file.

At this point the redeploy of the GreenPages application may fail with an error similar to this:

<SPDE0100E> The class with name 'org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor',
referenced by bean 'org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor#0',
could not be loaded by class loader 'ServerBundleClassLoader: [bundle=greenpages-1-greenpages.jpa_2.0.0]':
…

which indicates that there is some package (org.springframework.dao.annotation)
which is not available to the “BundleClassLoader” for bundle
greenpages-1-greenpages.jpa_2.0.0. We should look in the MANIFEST.MF file for
this bundle, and see that this package is not imported (in the Import-Package header). Since
Bundlor generated this file (controlled by the template file template.mf) we should check
that the manifest was re-generated on our last change.

Open template.mf in greenpages.jpa and, in the Overview pane, click on Update
MANIFEST.MF in the Bundle Actions section. The MANIFEST.MF file is updated, and the
application is redeployed, this time successfully. It might be worthwhile checking the option
Automatically update MANIFEST.MF in the background on the template.mf Overview pane
so that the MANIFEST.MF is kept up to date as the project is changed.

Versioning imports

By default, Bundlor generates Import-Package entries with no version range specified. In

The Middle Tier 57

2.0.0.RC1 57

the absence of a version range, the OSGi default of “any version” is used. Whilst this is very
flexible it’s generally a good idea to restrict an import by specifying a narrower range. This can
be achieved by providing Bundlor with some additional information in the manifest template.

Open template.mf for greenpages.jpa and add the following Import-Template
header:

Import-Template: org.springframework.*;version="[3.0,3.1)",
greenpages;version="[2.0,2.1)",
javax.persistence;version="[1.0.0,1.0.0]"

This header tells Bundlor that all imports of org.springframework packages should be in
the range 3.0 inclusive to 3.1 exclusive, that an import of the greenpages package should
be in the range 2.0 inclusive to 2.1 exclusive, and that an import of javax.persistence
should be at exactly version 1.0.0.

Bundlor has also generated an import for the javax.sql package due to the
greenpages.jpa module’s use of javax.sql.DataSource. This class is provided by
the JRE and as such is generally considered to be unversioned, that is it has the default OSGi
version of zero. If version zero is precisely what is required then add the following to the
Import-Template header:

,javax.sql;version="[0,0]"

but if “any” version is acceptable add the following instead:

,javax.sql;version="0"

Either of these will successfully allow GreenPages to deploy and work correctly. The difference
is in the level of flexibility allowed with the external dependency, something which is probably
irrelevant in this case, but with other package sources might be important.

Congratulations!

The GreenPages middle tier is now complete and observes some “best practice” development
with Spring and OSGi.

58 Creating GreenPages

58 The Middle Tier

6. Testing GreenPages

6.1 Introduction

Testing is one of the most important aspects of software development. Without testing it would
be difficult to determine if a piece of code worked properly, changes would have undetected
consequences, and the quality of products would generally be lower.

There are two major categories of testing generally recognised today: unit testing and integration
testing. In the context of the GreenPages application, unit testing means testing a single class in
isolation from other application code. This type of testing does not change at all when
developing for dm Server.

In our application integration testing means testing an application or portion of an application
with other code. This kind of testing does look a bit different when developing for dm Server. In
most cases dm Server applications are made up of small bundles that consume services through
the OSGi registry. In the following steps a single bundle and the entire GreenPages application
will be integration tested outside the container.

6.2 Single bundle integration testing

One of the most common forms of integration testing is ensuring that the object relational
mapping in an application is working properly. This kind of testing typically uses a data access
object to retrieve data from a live database. In this step a test case for the JpaDirectory class
is created.

Open the greenpages.jpa.JpaDirectorySpringContextTests class in the
src/test/java source folder of the greenpages.jpa project. This class contains a
method that uses JUnit to test that a search completes correctly. Rather than instantiate this class
directly in the test, the Spring Test Framework is used to instantiate and inject a
JpaDirectory based on the META-INF/spring/module-context.xml file.

Add Spring Test Framework declarations to the test class. These declarations run the test with
the SpringJunit4ClassRunner and configure the test with the
classpath:/META-INF/spring/module-context.xml file:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = "classpath:/META-INF/spring/module-context.xml")
@TestExecutionListeners(value = DependencyInjectionTestExecutionListener.class)
public class JpaDirectorySpringContextTests {
…

Use Eclipse to suggest the necessary imports until there are no errors.

When this configuration is complete, click on the Run drop-down menu and select Run
Configurations…. In the the dialog that opens select JUnit → JpaDirectorySpringContextTests
and press Run.

Testing GreenPages 59

2.0.0.RC1 59

This test run will fail because there is no DataSource bean to be injected; it is typically
sourced from the OSGi service registry at runtime:

Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException:
No bean named 'dataSource' is defined

The next step will correct this error.

6.3 Contributing OSGi sourced dependencies

In the previous step the JpaDirectorySpringContextTests test failed because it did
not have a DataSource to be injected. In this step, you will instantiate an “in-process”
database for testing and populate it with data.

Open the test-context.xml file in the src/test/resources META-INF/spring
folder. In this file, define two beans; a DataSource and a TestDataPopulator. These two
beans will provide a test DataSource complete with test data.

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"
p:driverClassName="org.h2.Driver" p:url="jdbc:h2:.~/greenpages-db/greenpages"
p:username="greenpages" p:password="pass" init-method="createDataSource"
destroy-method="close" />

<bean class="greenpages.jpa.TestDataPopulator" init-method="populate">
<constructor-arg ref="dataSource" />
<constructor-arg value="file:../../db/db.sql" />

</bean>

60 Creating GreenPages

60 Testing GreenPages

Open the JpaDirectorySpringContextTests class and update the
ContextConfiguration annotation to point at both the module-context.xml file and
the test-context.xml file:

@ContextConfiguration(locations = {
"classpath:/META-INF/spring/module-context.xml",
"classpath:/META-INF/spring/test-context.xml" })

Once again use the JpaDirectorySpringContextTests JUnit profile to run the test
class. Now that there is a DataSource being contributed, the test will pass

Proceed to the next step.

6.4 Multi bundle integration testing

Earlier a single bundle was integration tested by providing a test implementation of its
DataSource dependency. When integration testing it is often a good idea to test the entire
application outside of the container. In this step you will create a test case for the entire
GreenPages application starting with the GreenPagesController class and descending all
the way to a database. It would be sensible to create this in a seperate test bundle but as one of
the bundles involved here is a web bundle the tests will have to go in there.

Since this project will be testing the GreenPages application as a whole, it needs to depend on the
bundles that make up the application. Open the pom.xml file for the greenpages.web
project and add a dependency declaration for the greenpages.jpa bundle:

<dependency>
<groupId>com.springsource.dmserver</groupId>
<artifactId>greenpages.jpa</artifactId>
<version>${project.version}</version>
<scope>test</scope>

</dependency>

Open the GreenPagesSpringContextTests class and add the Spring Test Framework
declarations. These declarations should run the test with the SpringJunit4ClassRunner
and configure the test with the
classpath*:/META-INF/spring/module-context.xml,
file:src/main/webapp/WEB-INF/greenpages-servlet.xml and
classpath:/META-INF/spring/test-context.xml files. Note the use of
classpath*: with respect to the module-context.xml path. This will cause Spring to
look for files that match that path in all of the bundles on the classpath meaning that all the
application beans will be instantiated. Also, as we do not want the WEB-INF folder on the
classpath we must reference the servlet context for GreenPages with a full file path.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {

"classpath*:/META-INF/spring/module-context.xml",
"file:src/main/webapp/WEB-INF/greenpages-servlet.xml",
"classpath:/META-INF/spring/test-context.xml" })

@TestExecutionListeners(value = DependencyInjectionTestExecutionListener.class)
public class GreenPagesSpringContextTests {
…

It may be necessary to update the MANIFEST.MF from the template overview pane, before
Eclipse will suggest all the right imports here.

Testing GreenPages 61

2.0.0.RC1 61

When this configuration is complete, click on the Run drop-down and select Run
Configurations…. In the the dialog that opens select JUnit → GreenPagesSpringContextTests
and press Run;

When this test is run, Spring creates an ApplicationContext that is built from the
module-context.xml configuration files from all of the bundles. Because of this all of the
internal dependencies are satisfied by the beans created directly by the bundles.

There are warnings output by this test concerning log4j:

log4j:WARN No appenders could be found for logger
(org.springframework.test.context.junit4.SpringJUnit4ClassRunner).

log4j:WARN Please initialize the log4j system properly.

These warnings are benign, and do not influence the tests in any way.

The next chapter constructs an automated build system that might be used to build GreenPages
(and run its tests) outside of an interactive development environment.

62 Creating GreenPages

62 Testing GreenPages

7. Automated Build

7.1 Introduction

One of the most important components in application development is the automated build. This
permits application artifacts to be created outside of the developer’s IDE. The application can be
created and tested in a variety of environments including continuous integration.

7.2 Setting up for Automated Build

Before building and deploying from the command line, it is important to clean up the artifacts
that Eclipse has deployed. In this section the GreenPages application will be undeployed within
Eclipse and all of the GreenPages bundles built from the command line.

Right-click on the greenpages application in the Servers view and select Remove. Once
this is complete close Eclipse: it is no longer needed.

Run the following command from a command prompt with the $GREENPAGES_HOME/start
as the current directory. This will build the individual bundles that make up the GreenPages
application:

mvn clean install

The first time this is run will cause Maven to download quite a few packages. It is likely also that
this does not build successfully on the first try, due to warnings from Bundlor. These warnings
are due to the lack of information regarding some of the packages required by
greenpages.db and greenpages.web. For example the following warnings may be
issued:

[WARNING] Bundlor Warnings:
[WARNING] <SB0001W>: The import of package javax.sql does not specify a version.
[WARNING] <SB0001W>: The import of package org.apache.commons.dbcp does not specify a version.
[INFO] --
[ERROR] BUILD ERROR
[INFO] --
[INFO] Bundle transformer returned warnings.

Please fix manifest template at '/opt/greenpages-2.0.0.RELEASE/start/greenpages.db/template.mf'
and try again.

Automated Build 63

2.0.0.RC1 63

which indicate that there is no information in the template.mf file in the greenpages.db
project to inform Bundlor what version of these packages to generate in the MANIFEST.MF for
that bundle.

To correct these problems add the following lines to the template.mf file for the
greenpages.db bundle:

Import-Template: javax.sql;version="0",
org.apache.commons.dbcp;version="[1.2.2.osgi, 1.2.2.osgi]"

When the mvn command returns successfully, go to the next step.

7.3 Create POM

All of the projects except the PAR project have Maven POM files for building. In this step an
initial POM file for the PAR is created.

Using a text editor create a file called
$GREENPAGES_HOME/start/greenpages/pom.xml. Open this file and add the
following skeleton to it.

<?xml version="1.0" encoding="UTF-8"?>
<project

xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

<parent>
<groupId>com.springsource.dmserver</groupId>
<artifactId>greenpages.parent</artifactId>
<version>2.0.0.RELEASE</version>
<relativePath>../parent</relativePath>

</parent>

<modelVersion>4.0.0</modelVersion>
<groupId>com.springsource.dmserver</groupId>
<artifactId>greenpages</artifactId>
<name>GreenPages PAR</name>
<packaging>par</packaging>

<dependencies>
</dependencies>

<build>
<plugins>
</plugins>

</build>

</project>

This skeleton defines a basic configuration with a parent POM. Notice that the packaging
type is par. When you have created this file execute the following command from the
$GREENPAGES_HOME/start/greenpages directory.

mvn clean package

This command returns an error indicating that Maven does not know how to build a PAR:

[INFO] --
[ERROR] BUILD ERROR
[INFO] --
[INFO] The plugin 'org.apache.maven.plugins:maven-par-plugin' does not exist
[INFO] or no valid version could be found
[INFO] --

64 Creating GreenPages

64 Automated Build

The next step will correct this.

7.4 Adding the par plugin

Thorsten Maus contributed a Maven plugin to SpringSource (see Section A.2, “Documentation”)
that builds a PAR file from a list of dependencies. In this step the Maven par plugin is added to
properly build a PAR artifact type.

In the <build><plugins>…</plugins></build> section, add a plugin declaration for
the par plugin.

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-par-plugin</artifactId>
<version>1.0.0.RELEASE</version>
<configuration>

<applicationSymbolicName>greenpages</applicationSymbolicName>
</configuration>

</plugin>

Declare the list of bundles to be packaged in the PAR as dependencies of the PAR project.

<dependency>
<groupId>com.springsource.dmserver</groupId>
<artifactId>greenpages.app</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>com.springsource.dmserver</groupId>
<artifactId>greenpages.jpa</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>com.springsource.dmserver</groupId>
<artifactId>greenpages.db</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>
<groupId>com.springsource.dmserver</groupId>
<artifactId>greenpages.web</artifactId>
<version>${project.version}</version>
<type>war</type>

</dependency>

Now, run the following command.

mvn clean package

This command will now complete successfully and build a PAR into target/. Proceed to the
next step.

[INFO] [par:par]
[INFO] assembling artifacts for par package
[INFO] greenpages
[INFO] artifact greenpages.app is copied with fully qualified name

com.springsource.dmserver.greenpages.app-2.0.0.RELEASE
[INFO] artifact greenpages.jpa is copied with fully qualified name

com.springsource.dmserver.greenpages.jpa-2.0.0.RELEASE
[INFO] artifact greenpages.db is copied with fully qualified name

com.springsource.dmserver.greenpages.db-2.0.0.RELEASE
[INFO] artifact greenpages.web is copied with fully qualified name

com.springsource.dmserver.greenpages.web-2.0.0.RELEASE
[INFO] added com.springsource.dmserver.greenpages.app-2.0.0.RELEASE.jar
[INFO] added com.springsource.dmserver.greenpages.db-2.0.0.RELEASE.jar
[INFO] added com.springsource.dmserver.greenpages.jpa-2.0.0.RELEASE.jar
[INFO] added com.springsource.dmserver.greenpages.web-2.0.0.RELEASE.jar

Automated Build 65

2.0.0.RC1 65

7.5 Adding the dependency plugin

Maven now successfully builds the PAR for your application. However, the dependecies of the
PAR are not apparent. In this step the Maven dependency plugin is added to collect the
transitive dependency graph for the PAR.

In the <build><plugins>…</plugins></build> section (after the par plugin
declaration), add a plugin declaration for the dependency plugin.

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<executions>

<execution>
<id>copy-dependencies</id>
<phase>package</phase>
<goals>
<goal>copy-dependencies</goal>

</goals>
<configuration>
<outputDirectory>${project.build.directory}/par-provided</outputDirectory>
<overWriteIfNewer>true</overWriteIfNewer>

<excludeGroupIds>com.springsource.dmserver,org.apache.log4j</excludeGroupIds>
</configuration>

</execution>
</executions>

</plugin>

A dependency on Freemarker needs to be added to the other dependancies. This is required to
ensure the Web bundle has the correct set of dependancies as well as the other bundles. Normally
they would simply be resolved transitively from the bundle projects but the ‘war’ project does
not pass on its dependancies, it expects them to be contained in its ‘lib’ directory. For this reason
its dependancies must be given explicitly.

<!-- Required for the web bundle as dependancies are not propagated up from war build types -->
<dependency>

<groupId>org.freemarker</groupId>
<artifactId>com.springsource.freemarker</artifactId>
<scope>provided</scope>

</dependency>

The next step is to stop the Web bundle including its dependancies in a lib directory as they will
be provided by the runtime enviroment. Add the following build section to the
greenpages.web POM file.

<build>
<plugins>

<plugin>
<artifactId>maven-war-plugin</artifactId>
<version>2.1-beta-1</version>
<configuration>

<packagingExcludes>WEB-INF/lib/**</packagingExcludes>
</configuration>

</plugin>
</plugins>

</build>

Run the following command.

mvn clean package

When the command has completed, it will have copied all of the PAR’s dependencies into the
target/par-provided directory. The output from Maven should include lines like these

66 Creating GreenPages

66 Automated Build

[INFO] [par:par]
[INFO] Assembling Artifacts for PAR '/Users/chrisfrost/Repos/GIT/greenpages/solution/

greenpages/target/greenpages-solution-2.0.0.SNAPSHOT.par'
[INFO] Added 'greenpages.app-solution.jar'
[INFO] Added 'greenpages.jpa-solution.jar'
[INFO] Added 'greenpages.db-solution.jar'
[INFO] Added 'greenpages.web-solution.war'

If the dependencies are produced, proceed to the next step.

7.6 Deploying the application

Maven can now build both the PAR application and the collection of dependencies required for
the application. In this step the PAR and dependencies are copied to the dm Server and the PAR
is started.

Copy the JARs in the target/par-provided directory into the
$DMS_HOME/repository/bundles/usr/ directory.

Copy the PAR (greenpages-2.0.0.RELEASE.par) in the target/ directory into the
$DMS_HOME/pickup directory.

Start the dm Server. You should see output like:

<SPDE0010I> Deployment of 'greenpages' version '2.0.0.RELEASE' completed.

Once deployment of the GreenPages application has completed, navigate to
http://localhost:8080/greenpages.

The GreenPages application has been built (and automatically tested) from the command line,
with a complete dependency set generated for independent deployment.

The automated build procedure is to run mvn clean install from the base directory,
generating the component bundles, and then to run mvn clean package from the
greenpages directory to generate the par and produce all its dependencies.

Automated Build 67

2.0.0.RC1 67

http://localhost:8080/greenpages

68 Creating GreenPages

68 Automated Build

Appendix A. Further Resources

A.1 Projects

a. SpringSource.org (http://www.springsource.org) — homepage for SpringSource dm Server
and Spring Framework.

b. OSGi (http://www.osgi.org) — homepage for OSGi.

c. H2 Database (http://www.h2database.com — homepage for the H2 database.

d. FreeMarker (http://freemarker.sourceforge.net) — homepage for FreeMarker templating
engine.

e. Commons DBCP (http://commons.apache.org/dbcp) — homepage for Commons DBCP.

f. Eclipse IDE (http://www.eclipse.org/eclipse) — homepage for Eclipse IDE.

g. EclipseLink (http://www.eclipse.org/eclipselink) — homepage for EclipseLink JPA.

A.2 Documentation

a. SpringSource dm Server User’s Guide
(http://static.springsource.org/s2-dmserver/2.0.x/user-guide/html/).

b. SpringSource dm Server Programmer’s Guide
(http://static.springsource.org/s2-dmserver/2.0.x/programmer-guide/html/).

c. Spring DM Reference Guide (http://static.springsource.org/osgi/docs/1.2.0/reference/html/).

d. Spring Framework 2.5 documentation
(http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/).

e. FreeMarker documentation (http://freemarker.sourceforge.net/docs).

f. Eclipse IDE documentation (http://www.eclipse.org/documentation).

g. EclipseLink documentation wiki (http://wiki.eclipse.org/EclipseLink/UserManual).

h. Maven PAR plugin (http://blog.springsource.com/2009/06/24/maven-par-plugin-100m1/).

http://www.springsource.org
http://www.osgi.org
http://www.h2database.com
http://freemarker.sourceforge.net
http://commons.apache.org/dbcp
http://www.eclipse.org/eclipse
http://www.eclipse.org/eclipselink
http://static.springsource.org/s2-dmserver/2.0.x/user-guide/html/
http://static.springsource.org/s2-dmserver/2.0.x/programmer-guide/html/
http://static.springsource.org/osgi/docs/1.2.0/reference/html/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/
http://freemarker.sourceforge.net/docs
http://www.eclipse.org/documentation
http://wiki.eclipse.org/EclipseLink/UserManual
http://blog.springsource.com/2009/06/24/maven-par-plugin-100m1/

	Creating an application with dm Server
	Table of Contents
	Preface
	1. Concepts
	1.1 OSGi concepts
	Bundles
	Life cycle
	Services
	Versioning
	Version numbers
	Version ranges
	Versioning policies
	Bundle version
	Package version
	Bundle manifest version
	Manifest version

	1.2 Spring DM concepts
	1.3 dm Server concepts
	PAR files
	Deployment
	Personalities

	2. Installation
	2.1 Pre-requisites
	2.2 Installing dm Server
	Installing dm Server on Windows operating systems
	Installing dm Server on UNIX operating systems

	2.3 Installing the SpringSource Tools Suite
	Installing STS on Windows operating systems
	Installing STS on UNIX operating systems
	Note about Java versions in STS

	2.4 Installing Apache Maven

	3. Installing and exploring GreenPages
	3.1 Introduction
	3.2 Obtaining GreenPages
	3.3 Building and installing GreenPages
	Building with Apache Maven
	Installing dependencies into dm Server
	Starting and configuring the database
	Installing and starting GreenPages PAR

	3.4 Browsing the GreenPages application
	3.5 Running GreenPages from Eclipse
	Importing the GreenPages projects into Eclipse
	Configuring dm Server target runtime
	Running GreenPages from within Eclipse

	4. The Web Module
	4.1 Introduction
	4.2 GreenPages set up
	Setting up Eclipse (STS)

	4.3 Creating a controller
	Importing the greenpages.web project
	Creating the controller class
	Enable component scanning

	4.4 Deploying a bundle
	Deploying the greenpages.web bundle and starting the dm Server
	Creating web module metadata

	4.5 Creating a PAR
	Importing the greenpages.app project
	Adding the controller implementation
	Creating a PAR project

	4.6 Referencing an OSGi Service
	Exporting Packages
	Referencing Projects and Packages
	Deploying a PAR
	Referencing an OSGi Service

	4.7 Publishing an OSGi Service
	Add Implementation
	Publish OSGi Service
	A Working Web Application

	5. The Middle Tier
	5.1 Introduction
	The database
	Using JPA
	Structure

	5.2 Creating the DataSource project
	Creating a new Bundle Project
	Configuring the project’s classpath container
	Configuring the source folders
	Configuring the DataSource
	Configuring Bundlor’s manifest template

	5.3 Building the JPA module
	Completing the JPA-based Directory implementation
	Providing the JPA metadata
	Consuming the DataSource from the service registry
	Publishing the Directory implementation to the service registry
	Generating greenpages.jpa’s manifest using Bundlor

	5.4 Trying out the JPA middle tier
	5.5 Applying best practices to the middle tier
	Using transactions
	Enabling exception translation
	Versioning imports
	Congratulations!

	6. Testing GreenPages
	6.1 Introduction
	6.2 Single bundle integration testing
	6.3 Contributing OSGi sourced dependencies
	6.4 Multi bundle integration testing

	7. Automated Build
	7.1 Introduction
	7.2 Setting up for Automated Build
	7.3 Create POM
	7.4 Adding the par plugin
	7.5 Adding the dependency plugin
	7.6 Deploying the application

	Appendix A. Further Resources
	A.1 Projects
	A.2 Documentation

