
SpringSource dm Server™ User Guide
Rob Harrop
Paul Kuzan

Sam Brannen
Damilola Senbanjo

Paul Harris
Christopher Frost

Ben Hale
Glyn Normington

Juliet Shackell

2.0.1.RELEASE

Copyright © SpringSource Inc., 2009

Table of Contents
1. Installing dm Server .. 1

1.1. Prerequisites ... 1
1.2. Installing from the ZIP Download ... 1
1.3. Post-installation steps .. 1

2. Starting and Stopping dm Server .. 11
2.1. Starting SpringSource dm Server ... 11
2.2. Starting in Clean Mode .. 11
2.3. Starting in Debug Mode ... 12
2.4. Starting with JMX Access Modifications .. 13
2.5. Starting With a Custom Configuration Directory .. 21
2.6. Stopping SpringSource dm Server ... 22
2.7. Starting SpringSource dm Server When the Operating System Starts 23

3. Overview of the dm Server Kernel and User Region ... 25
3.1. The dm Server Kernel .. 25
3.2. The dm Server User Region ... 26

4. The dm Shell ... 29
4.1. Using the dm Shell ... 29
4.2. dm Shell Command Reference .. 31

5. The Admin Console .. 49
5.1. Invoking the Admin Console ... 49
5.2. Typical Admin Console Use Cases .. 51

6. The Provisioning Repository .. 61
6.1. Overview of the Provisioning Repository .. 61
6.2. Finding and Downloading Bundles from the SpringSource Enterprise Bundle
Repository ... 63
6.3. Configuring the repository ... 64

7. Serviceability .. 65
7.1. Event log files .. 65
7.2. Trace (Logging) ... 65
7.3. Service Dumps ... 67

8. Working with Applications ... 69
8.1. Deploying Artifacts .. 69
8.2. Undeploying Artifacts .. 70

9. Configuring dm Server ... 73
9.1. Configuring the dm Kernel and User Region .. 73
9.2. Configuring Serviceability ... 78
9.3. Configuring the Embedded Tomcat Servlet Container .. 82
9.4. Configuring the Local Provisioning Repository .. 85
9.5. Configuring a Hosted Repository .. 91

A. Event log codes .. 95
A.1. Format of the event log codes ... 95

B. Known Issues ... 97
B.1. Timeout During Startup Due to Firewall Settings .. 97
B.2. OutOfMemoryError: PermGen space running on Sun VM 97

2.0.1.RELEASE iii

C. Further Reading .. 99

iv dm Server User Guide

1. Installing dm Server

1.1 Prerequisites

The SpringSource dm Server requires Java SE 6 or later to be installed. Java is available from
Sun and elsewhere.

1.2 Installing from the ZIP Download

Downloading the ZIP file

SpringSource dm Server is distributed as a ZIP file. This can be downloaded from here. Follow
the instructions to obtain a username and password.

Installing

Linux

To install the SpringSource dm Server on Linux, unzip the distribution package to the desired
installation directory. For example, to install into /opt:

prompt$ unzip springsource-dm-server-2.0.1.RELEASE.zip -d /opt

This creates a directory called springsource-dm-server-2.0.1.RELEASE under
/opt.

SpringSource dm Server requires write access to the installation directory, in this case
/opt/springsource-dm-server-2.0.1.RELEASE. Typically this means it must be
run as the user that installed it, or the installation directory’s ownership must be changed.

Microsoft Windows

To install the SpringSource dm Server on Windows, unzip the distribution package to the desired
installation directory. You should use a zip application such as 7zip, not the built-in folder
decompression. Note that both Windows and Java 5 have some issues with long file names and
file paths, so we recommend installing to the root directory of your chosen drive.

1.3 Post-installation steps

Installing dm Server 1

2.0.1.RELEASE 1

http://java.sun.com/javase/downloads/index.jsp
http://www.springsource.com/products/suite/applicationplatform

Set environment variable variables

JAVA_HOME

The SpringSource dm Server uses the JAVA_HOME environment variable to locate the java
executable. Configure this environment variable to point to the home directory of the Java 5 or
Java 6 installation on your computer.

SERVER_HOME

As a convenience it is recommended that you create an environment variable that points to the
SpringSource dm Server installation directory. Note that the SpringSource dm Server does not
require that such an environment variable has been set. This variable may have any name of your
choosing. The SpringSource dm Server’s documentation assumes that the variable is named
SERVER_HOME.

Linux

Edit the .profile file in your home directory to add the SERVER_HOME and JAVA_HOME
environment variables. For example, if you installed into /opt:

export SERVER_HOME=/opt/springsource-dm-server-2.0.1.RELEASE/
export JAVA_HOME=/user/java/jdk1.6.0_17
export PATH=$JAVA_HOME/bin:$PATH

Microsoft Windows

This section shows how to add SERVER_HOME as a system variable on Windows. Follow the
same procedure to add or update the JAVA_HOME environment variable.

From the Start menu, open the Control Panel and double-click on ‘System’.

2 dm Server User Guide

2 Installing dm Server

Click the ‘Advanced’ tab and select ‘Environment Variables’. Next, click the ‘Edit’ button in the
‘System Variables’ section.

Installing dm Server 3

2.0.1.RELEASE 3

This will display the ‘Edit System Variable’ window. Enter SERVER_HOME as the ‘Variable
name’ and the installation directory as the ‘Variable value’. Click OK.

4 dm Server User Guide

4 Installing dm Server

Microsoft Windows - Troubleshooting

When starting the SpringSource dm Server on some variants of Windows you might encounter a
problem with file permissions. The error looks like this.

C:\dev\springsource-dm-server-2.0.0.BUILD-20091208094124>bin\startup.bat
Error: Exception thrown by the agent : java.io.FileNotFoundException: C:\dev\...\config\

com.springsource.kernel.jmxremote.access.properties (Access is denied)

If the dm Server starts at this point you can skip this section and carry on. Otherwise, go to the
‘config’ directory of your install in Windows Explorer and you will be able to confirm the
problem, an incorrect file ownership.

Right click on the ‘com.springsource.kernel.jmxremote.access.properties’ file and view its
properties, then select the ‘Security’ tab.

Installing dm Server 5

2.0.1.RELEASE 5

Within the security page select the ‘Advanced’ options, view the owners and then select ‘Edit’.
From the list select the owner that you are trying to run the dm Server as.

6 dm Server User Guide

6 Installing dm Server

Once this is done select ‘OK’ and then ‘OK’ again to return to the ‘Security’ tab and now select
‘Edit’ on the list of groups and users that have permission to edit the file.

Installing dm Server 7

2.0.1.RELEASE 7

It is likely this list will be empty to start with. Select ‘Add’ and give it the same name you
selected from the list before. Clicking ‘Check Names’ will ensure you have entered an
acceptable name.

8 dm Server User Guide

8 Installing dm Server

Finally select ‘OK’ and then ‘Apply’ to apply the new setting and you will be back on the
security tab and be able to see the new settings.

Installing dm Server 9

2.0.1.RELEASE 9

Once all these steps are complete you can proceed to start the dm Server.

C:\dev\springsource-dm-server-2.0.0.BUILD-20091208094124>bin\tstartup.bat
[2009-12-08 13:09:09.545] startup-tracker <KE0001I> Kernel starting.

10 dm Server User Guide

10 Installing dm Server

2. Starting and Stopping SpringSource dm
Server

2.1 Starting SpringSource dm Server

To start SpringSource dm Server run the startup.sh (Linux) or startup.bat (Windows)
script. For both platforms, the script is located in the SERVER_HOME/bin directory.

Linux

To start SpringSource dm Server, open a terminal window and run startup.sh:

prompt$ cd $SERVER_HOME
prompt$ bin/startup.sh

Once SpringSource dm Server has started, the console will display a log message similar to the
one shown below, along with other status messages:

[2009-11-30 12:12:12.111] Thread-2 <UR0001I> User region ready.

The preceding message indicates that you can start using dm Server.

Microsoft Windows

To start SpringSource dm Server, open a command-window and run startup.bat:

prompt> cd %SERVER_HOME%
prompt> bin\startup.bat

Once SpringSource dm Server has started console will display a log message similar to the one
shown below:

[2009-11-30 12:12:12.111] Thread-2 <UR0001I> User region ready.

The preceding message indicates that you can start using dm Server.

2.2 Starting in Clean Mode

When you start dm Server in clean mode, the startup script removes the SERVER_HOME/work
directory (and hence all running applications) as well as all trace, log and dump files. It leaves
the SERVER_HOME/repository and SERVER_HOME/pickup directories untouched,
which means that any applications previously hot deployed will be automatically reinstalled.

Starting and Stopping dm
Server

11

2.0.1.RELEASE 11

Linux

To start SpringSource dm Server in clean mode, open a terminal window and run startup.sh
-clean:

prompt$ cd $SERVER_HOME
prompt$ bin/startup.sh -clean

Microsoft Windows

To start SpringSource dm Server in clean mode, open a command window and run
startup.bat -clean:

prompt> cd %SERVER_HOME%
prompt> bin\startup.bat -clean

2.3 Starting in Debug Mode

Linux

To start SpringSource dm Server in debug mode, run startup.sh passing in the -debug
argument:

prompt$ cd $SERVER_HOME
prompt$ bin/startup.sh -debug

This will start the debug agent listening on port 8000 which is the default remote debug port
used by Eclipse. To start in debug mode with a specific port number, pass this in as the value for
the -debug argument:

prompt$ cd $SERVER_HOME
prompt$ bin/startup.sh -debug 8001

This will start the debug agent listening on port 8001. To start in debug mode and suspend the
VM until a debugger attaches, pass in the -suspend argument along with the -debug
argument:

prompt$ cd $SERVER_HOME
prompt$ bin/startup.sh -debug -suspend

This starts the debug agent, but prevents SpringSource dm Server from actually starting until a
debugger attaches to the agent. This can be useful when trying to diagnose problems that occur
during startup.

Microsoft Windows

To start SpringSource dm Server in debug mode, run startup.bat passing in the -debug

12 dm Server User Guide

12
Starting and Stopping dm

Server

argument:

prompt> cd %SERVER_HOME%
prompt> bin\startup.bat -debug

This will start the debug agent listening on port 8000 which is the default remote debug port
used by Eclipse. To start in debug mode with a specific port number, pass this in as the value for
the -debug argument:

prompt> cd %SERVER_HOME%
prompt> bin\startup.bat -debug 8001

This will start the debug agent listening on port 8001. To start in debug mode and suspend the
VM until a debugger attaches, pass in the -suspend argument along with the -debug
argument:

prompt> cd %SERVER_HOME%
prompt> bin\startup.bat -debug -suspend

This starts the debug agent, but prevents SpringSource dm Server from actually starting until a
debugger attaches to the agent. This can be useful when trying to diagnose problems that occur
during startup.

2.4 Starting with JMX Access Modifications
The SpringSource dm Server always starts with JMX access enabled, allowing you to use a
management tool such as JConsole to attach to the dm Server instance. By default both local
access and remote access over SSL with username and password authentication are provided.
The default port for secure JMX access is 9875 and the default username and password are
admin and springsource.

Linux

To start SpringSource dm Server with default JMX access enabled, run startup.sh passing in
no arguments:

prompt$ cd $SERVER_HOME
prompt$ bin/startup.sh

To start JConsole, run the jconsole.sh script, located in the bin directory, as shown:

prompt$ cd $SERVER_HOME
prompt$ bin/jconsole.sh

The following image shows how to specify a local connection using JConsole.

Starting and Stopping dm
Server

13

2.0.1.RELEASE 13

The following image shows how to specify a remote connection in JConsole that uses SSL with
the default username/password (admin/springsource and default secure port of 9875).

14 dm Server User Guide

14
Starting and Stopping dm

Server

To start with the JMX remote access on a specific port number other than the default 9875, pass
this port number in as the value of the -jmxport argument:

prompt$ cd $SERVER_HOME
prompt$ bin/startup.sh -jmxport 9090

This will start the SpringSource dm Server with JMX enabled for remote connections on port
9090.

Starting and Stopping dm
Server

15

2.0.1.RELEASE 15

To start the JMX remote access with a custom username and password, update the
$SERVER_HOME/config/com.springsource.kernel.users.properties file.
First specify the custom username by changing the value of the role.admin property. Then
set the password of this new user by adding a new property called user.username, where
username refers to the actual name of the user. Finally, restart dm Server for the changes to
take effect.

For example, if you want change the JMX remote access username to custom-user with
password springsource1, change the file as follows:

##################
User definitions
##################
user.custom-user=springsource1

##################
Role definitions
##################
role.admin=custom-user

16 dm Server User Guide

16
Starting and Stopping dm

Server

Specify the custom username in JConsole as shown.

To start the JMX remote access using a custom SSL certificate, edit the file located at
$SERVER_HOME/config/keystore. If you wish to use a different keystore, pass this
filename in as the value for the -keystore argument and the keystore password in as the value
for the -keystorePassword argument:

prompt$ cd $SERVER_HOME
prompt$ bin/startup.sh -keystore customKeystore -keystorePassword customKeystorePassword

This will start the SpringSource dm Server with JMX enabled for remote connections using an
SSL certificate from customKeystore with a password of customKeystorePassword.

Microsoft Windows

Starting and Stopping dm
Server

17

2.0.1.RELEASE 17

To start SpringSource dm Server with default JMX access enabled, run startup.bat passing
in no arguments:

prompt> cd %SERVER_HOME%
prompt> bin\startup.bat

To start JConsole, run the jconsole.bat script, located in the bin directory, as shown:

prompt> cd %SERVER_HOME%
prompt> bin\jconsole.bat

The following image shows how to specify a local connection using JConsole.

The following image shows how to specify a remote connection in JConsole that uses SSL with
the default username/password (admin/springsource and default secure port of 9875).

18 dm Server User Guide

18
Starting and Stopping dm

Server

To start with the JMX remote access on a specific port number other than the default 9875, pass
this port number in as the value of the -jmxport argument:

prompt> cd %SERVER_HOME%
prompt> bin\startup.bat -jmxport 9090

This will start the SpringSource dm Server with JMX enabled for remote connections on port
9090.

Starting and Stopping dm
Server

19

2.0.1.RELEASE 19

To start the JMX remote access with a custom username and password, update the
%SERVER_HOME%\config\com.springsource.kernel.users.properties file.
First specify the custom username by changing the value of the role.admin property. Then
set the password of this new user by adding a new property called user.username, where
username refers to the actual name of the user. Finally, restart dm Server for the changes to
take effect.

For example, if you want change the JMX remote access username to custom-user with
password springsource1, change the file as follows:

##################
User definitions
##################
user.custom-user=springsource1

##################
Role definitions
##################
role.admin=custom-user

20 dm Server User Guide

20
Starting and Stopping dm

Server

Specify the custom username in JConsole as shown.

To start the JMX remote access using a custom SSL certificate, edit the file located at
%SERVER_HOME%\config\keystore. If you wish to use a different keystore, pass this
filename in as the value for the -keystore argument and the keystore password in as the value
for the -keystorePassword argument:

prompt> cd %SERVER_HOME%
prompt> bin\startup.bat -keystore customKeystore -keystorePassword customKeystorePassword

This will start the SpringSource dm Server with JMX enabled for remote attach using an SSL
certificate from customKeystore with a password of customKeystorePassword.

2.5 Starting With a Custom Configuration Directory

Starting and Stopping dm
Server

21

2.0.1.RELEASE 21

Use the -configDir option to specify an alternate config directory, different from the
default SERVER_HOME/config directory. This option allows you to use the same
SpringSource dm Server installation to run multiple instances of dm Server . Simply create a
config directory for each instance, specify unique port numbers, logging and tracing directories,
and so on. and then specify that directory when starting SpringSource dm Server.

If you specify a relative path for the -configDir parameter, the startup script interprets the
path as relative to the root of the SpringSource dm Server installation, and not relative to the
directory from which you execute the startup script.

Linux
To start SpringSource dm Server using a config directory of /config/node1:

prompt$ cd $SERVER_HOME
prompt$ bin/startup.sh -configDir /config/node1

Windows
To start SpringSource dm Server using a config directory of c:\config\node1:

prompt> cd %SERVER_HOME%
prompt> bin\startup.bat -configDir c:\config\node1

2.6 Stopping SpringSource dm Server

Linux

To stop a running instance of SpringSource dm Server, start a new terminal window and the run
shutdown.sh script:

prompt$ cd $SERVER_HOME
prompt$ bin/shutdown.sh

To stop a running instance of SpringSource dm Server immediately, bypassing normal shutdown
processing, run shutdown.sh with the -immediate option:

prompt$ cd $SERVER_HOME
prompt$ bin/shutdown.sh -immediate

If, when you started the dm Server instance, you used the -jmxport option to specify a
non-default JMX port number, then you must pass this port number to the -jmxport of the
shutdown.sh script to gracefully shut it down. For example, if you specified 9090 as the
JMX port, use the following to shut down the dm Server instance:

prompt$ cd $SERVER_HOME
prompt$ bin/shutdown.sh -jmxport 9090

22 dm Server User Guide

22
Starting and Stopping dm

Server

Microsoft Windows

To stop a running instance of SpringSource dm Server, start a new console window and run the
shutdown.bat script:

prompt> cd %SERVER_HOME%
prompt> bin\shutdown.bat

To stop a running instance of SpringSource dm Server immediately, bypassing normal shutdown
processing, run shutdown.bat with the -immediate option:

prompt> cd %SERVER_HOME%
prompt> bin\shutdown.bat -immediate

If, when you started the dm Server instance, you used the -jmxport option to specify a
non-default JMX port number, then you must pass this port number to the -jmxport of the
shutdown.bat script to gracefully shut it down. For example, if you specified 9090 as the
JMX port, use the following to shut down the dm Server instance:

prompt> cd %SERVER_HOME%
prompt> bin\shutdown.bat -jmxport 9090

2.7 Starting SpringSource dm Server When the
Operating System Starts

If you need SpringSource dm Server to start automatically when the operating system starts, you
should run SpringSource dm Server as a Windows service or a UNIX background process. You
can do this by using a service wrapper script provided with SpringSource dm Server.

The SERVER_HOME/bin/service directory contains a service wrapper script for each
supported operating system. Before running the appropriate script, you must either set the
SERVER_HOME environment variable to point to the SpringSource dm Server installation
directory or edit the file SERVER_HOME/bin/service/conf/wrapper.conf.

If you run the service wrapper script with no option, it will display the available options. The
most useful options are described in the following table.

Table 2.1. Service Wrapper Options

Option Description

console Starts SpringSource dm Server in the
foreground. Useful for validating that the
service wrapper is configured correctly.

install Windows only. Installs SpringSource dm
Server as a Windows service.

start Starts SpringSource dm Server in the

Starting and Stopping dm
Server

23

2.0.1.RELEASE 23

Option Description

background. On UNIX operating systems, you
may call the wrapper script with this option
during initialization, for example as part of
init.d processing. SpringSource dm Server
console output appears in
SERVER_HOME/wrapper.log.

stop Stops the SpringSource dm Server background
process. On UNIX operating systems, you
may call the wrapper script with this option
during termination, for example as part of
init.d processing.

remove Windows only. Removes SpringSource dm
Server as a Windows service.

24 dm Server User Guide

24
Starting and Stopping dm

Server

3. Overview of the dm Server Kernel and
User Region
Conceptually, dm Server can be divided into two separate subsystems, one of which actually
encompases the other:

• The kernel, which is the heart of dm Server. It makes up most of the dm Server, except for the
part that supports Web applications. In other words, the kernel provides full OSGi modular
support for your applications, as long as they are not Web-based.

See The dm Server Kernel for additional information.

• The user region is the subsystem that manages user applications. It deliberately isolates the
kernel from both your applications and those of the dm Server itself, such as the Admin
Console, making it much easier for you to administer dm Server.

See The dm Server User Region for additional information.

The following graphic shows how the kernel and user region make up dm Server:

When you download and install SpringSource dm Server you get both the kernel and a user
region. You can also download and use the kernel on its own if you do not plan on deploying
Web applications.

3.1 The dm Server Kernel

Overview of the dm Server
Kernel and User Region

25

2.0.1.RELEASE 25

http://www.springsource.com/download/community?project=SpringSource%20dm%20Kernel

The dm Kernel encapsulates almost all of dm Server except for the deployment of Web
applications. In sum, the kernel provides the following dm Server features:

• Deployment of non-Web artifacts, such as OSGi bundles, PARs, plans, and configuration
artifacts.

• Local and hosted repositories

• Scoping

• Hot deployment

• User region

• Auto-provisioning

• System and application tracing and dump support

• Spring beans and Spring DM support

See Configuring dm Server for details about configuring the default kernel to better suit your
environment.

3.2 The dm Server User Region

The user region isolates the kernel from deployed applications, including both your own user
applications and the user-oriented dm Server applications such as the Admin Console. This
means that the kernel is mostly invisible to applications and to application management. This is
because most of the kernel bundles are not installed in the user region (apart from a few needed
for region management). The necessary function to support the kernel runs in the OSGi
framework, but the user region applications cannot see it, except for the services that are
normally offered.

This way of implementing dm Server greatly simplifies the administration tasks you perform. In
particular, when you use the dm Shell or the Admin Console to manage dm Server, you do not
see the many bundles that are internal to the kernel. The only exceptions are the kernel bundles
that dm Server uses for region management, which are required to be installed in the user region.

This isolation has many other benefits. For example, it is no longer necessary for the kernel and
user applications to use the same version of the Spring Framework. In fact the kernel installs
only those parts of the Spring Framework that it needs. If you update the kernel, it is far less
likely that you will also need to upgrade or adjust the applications to accomodate a new version
of the kernel. The kernel implementation is therefore much more stable and resilient and
applications are much more likely to survive kernel upgrades between releases.

When you install dm Server, the kernel creates a single user region. The configuration of the user
region and the kernel is completely separate; see Configuring dm Server for details.

26 dm Server User Guide

26
Overview of the dm Server

Kernel and User Region

Finally, the isolation provided by the user region together with scoped applications and plans
solve common dependency problems that occur when using OSGi.

Overview of the dm Server
Kernel and User Region

27

2.0.1.RELEASE 27

28 dm Server User Guide

28
Overview of the dm Server

Kernel and User Region

4. The dm Shell
The dm Shell is a command line utility that allows you to examine artifacts currently installed to
a particular dm Server instance, manage the lifecycle of the installed artifacts, install new
artifacts, and shutdown the server. You can install, examine, and manage the lifecycle of the
following artifacts:

• Bundles

• Configuration Artifacts

• Exported packages

• PARs

• Plans

• Services installed in the OSGi registry

You can run the dm Shell locally or remotely by using ssh. The dm Shell is similar to the
Equinox shell, but with added features such as tab completion and command history. Tab
completion allows you to enter a partial command, and then press the Tab key and let the dm
Shell show you a list of possible commands. To get a command history, simply use the up and
down arrows.

4.1 Using the dm Shell

You invoke the dm Shell locally by passing the -shell flag to the startup.sh (Unix) or
startup.bat (Windows) command that starts up dm Server. For example, on Unix:

prompt$ SERVER_HOME/bin/startup.sh -shell

You will see status messages for the dm Kernel starting, and then the dm Shell commmand line
utility takes over. You can still view the console log messages by looking at the
$SERVER_HOME/serviceability/eventlogs/event.log file. After you get the dm
Shell splash screen, you can enter commands at the :> prompt. Enter help for a list of all
available commands. For example:

prompt$ cd $SERVER_HOME/bin
prompt$./startup.sh -shell

[2009-11-06 14:27:26.620] startup-tracker <KE0001I> Kernel starting.
[2009-11-06 14:27:31.873] startup-tracker <KE0002I> Kernel started.
[2009-11-06 14:27:32.155] system-artifacts <DE0056I> Installing plan 'com.springsource.server.web' version '2.0.0'.
[2009-11-06 14:27:32.659] Thread-2 <SH0001I> dm Kernel ssh shell available on port 2401.

@@@ ***
@@@ ***** .__. .__. .__. .__.

@@@@ ****** __| | _____ _____.| |__ ____ | | | |
@@@@@@ **** / __ | / \ / ___/| | \ ./ __ \ | | | |
@@@@@ *** / /_/ || Y Y \ ___ \ | Y \\ ___/ | |__| |__
@@@ *** ______||__|_|__/ /_____/ |___|__/ ____/ |____/|____/

Type 'help' to see the available commands.
:> help

The dm Shell 29

2.0.1.RELEASE 29

bundle - Management and examination of bundle artifacts
config - Management and examination of configuration artifacts
help
install - Install (deploy) an artifact to the server
package - Management and examination of exported packages
par - Management and examination of PAR artifacts
plan - Management and examination of plan artifacts
service - Examination of services
shutdown

:>

To invoke dm Shell remotely, use the ssh command with the following parameters:

• Use the -p shell.port option to pass the port number where the dm Shell listens; the
default value is 2401. You can change this port by editing the value of the shell.port
property in the $SERVER_HOME/conf/com.springsource.kernel.properties
configuration file.

• Use the user@host parameter to specify the administration user; you will be prompted for a
password. The default administration user/password is admin/springsource. You can
change the administration user by updating the role.admin value in the
$SERVER_HOME/conf/com.springsource.kernel.users.properties file.
Use the user.admin to change the administration user's password.

The following example shows how to invoke the dm Shell using ssh on the local computer
using the default port, user, and password:

prompt$ ssh -p 2401 admin@localhost
admin@localhost's password:

@@@ ***
@@@ ***** .__. .__. .__. .__.

@@@@ ****** __| | _____ _____.| |__ ____ | | | |
@@@@@@ **** / __ | / \ / ___/| | \ ./ __ \ | | | |
@@@@@ *** / /_/ || Y Y \ ___ \ | Y \\ ___/ | |__| |__
@@@ *** ______||__|_|__/ /_____/ |___|__/ ____/ |____/|____/

Type 'help' to see the available commands.
:>

Available dm Shell Commands

The following table lists the dm Shell commands; each command in turn has a variety of options
that you can specify, depending on what you want to do, such as start a bundle or refresh a plan.
The reference documentation about each command provides the full list of available options.

Table 4.1. dm Shell Commands

Command Description

exit Exit from the dm Shell session.

bundle Used to manage and display information about
bundle artifacts.

config Used to manage and display information about
configuration artifacts.

30 dm Server User Guide

30 The dm Shell

Command Description

package Used to manage and display information about
exported packages.

par Used to manage and display information about
PAR artifacts.

plan Used to manage and display information about
plan artifacts.

service Displays information about services in the
OSGi registry.

install Used to install an artifact to dm Server.

shutdown Shuts down the dm Server instance to which
the dm Shell is connected.

help Display help about the list of available
commands, as well as more detailed help
about individual commands.

4.2 dm Shell Command Reference

This section contains reference information about the following dm Shell commands:

• exit

• bundle

• config

• package

• par

• plan

• service

• install

• shutdown

• help

exit Command

The dm Shell 31

2.0.1.RELEASE 31

Use the exit command to exit from the dm Shell session.

The exit command does not have any options.

bundle Command

Use the bundle command to manage the lifecycle of bundles deployed to @dms@ and to
gather information about deployed bundles, such as diagnostic information, header information,
and so on.

The following table lists the options you can specify for this command.

Table 4.2. Options of the bundle Command

Option Descrption

list Displays the list of bundles that are currently
installed to the current dm Server instance.
With the exception of a few kernel bundles
and their services, which dm Server uses to
administer the user region, none of the kernel
is visible to user installed artifacts; rather, only
the bundles installed in the user region are
visible.

Each bundle is identified by an internal ID
which you can then use with the other
bundle commands that manage a particular
bundle, such as start id. The list
command also displays the version of the
bundle, along with its state, which is one of
the following standard OSGi lifecycle states:

• Installed: The bundle is installed but its
dependencies have not yet been resolved.

• Resolved: The bundle is resolved and you
can now start it.

• Uninstalled: The bundle is uninstalled and
you can not use it.

• Starting: The bundle is in the process of
starting.

• Active: The bundle is running and you can
now use it.

32 dm Server User Guide

32 The dm Shell

Option Descrption

• Stopping: The bundle is in the process of
stopping.

Use one of the other bundle command to
change the state of a bundle. For example, use
the bundle start id command to change
the state of a bundle from Installed to
Active.

examine id Displays detailed information about the
specified bundle. Use the bundle list
command to get the internal id of a particular
bundle.

In addition to the information provided by the
bundle list command (id, full name,
version, and state), the examine command
specifies whether the bundle includes a Spring
application context (or is Spring Powered) and
the exact physical location of the bundle JAR
file.

The examine also provides the full list of
packages that the bundle imports, as well as
the bundles that in turn export these imported
packages. Finally, the command displays the
packages that the current bundle exports, and
then in turn the list of other installed bundles
that are currently importing these exported
packages.

start id Starts the specified bundle. Use the bundle
list command to get the internal id of a
particular bundle.

To start a bundle, it must have already been
resolved by dm Server, or in other words, be
in the OSGi Resolved state. After dm
Server successfully starts the bundle, it is
listed in the Active state.

stop id Stops the specified bundle. Use the bundle
list command to get the internal id of a
particular bundle.

When you stop a bundle, it goes from the
OSGi Active state to the Resolved state,
and you must re-start it if you want to use the

The dm Shell 33

2.0.1.RELEASE 33

Option Descrption

application that the bundle contains.

refresh id Updates the contents of the specified bundle.
Use the bundle list command to get the
internal id of a particular bundle. Use this
command if you have changed the contents of
the bundle JAR file and you want to refresh
the artifact as installed in the OSGi
framework.

uninstall id Uninstalls the specified bundle from dm
Server. Use the bundle list command to
get the internal id of a particular bundle.

When the uninstall process is complete, the
bundle does not show up in the list of bundles
displayed by the bundle list command. If
you want to use the application in the bundle,
you must re-install it using the install
command.

diag id Provides diagnostic information about the
specified bundle. In particular, this command
displays information about the imported
packages that dm Server could not resolve.
Use the bundle list command to get the
internal id of a particular bundle.

headers id Displays the complete list of manifest headers
of the specified bundle. Use the bundle
list command to get the internal id of a
particular bundle.

The manifest headers include:
Import-Package, Module-Type,
Bundle-SymbolicName, and so on.

The following examples show how to use this command.

First, use the bundle list command to view all the installed bundles; note the last one that is
in a Resolved state (and many entries have been removed for simplicity):

:> bundle list

Id Name Version State

0 org.eclipse.osgi 3.5.1.R35x_v20091005 ACTIVE
1 com.springsource.region.user 0.0.0 ACTIVE
2 org.springframework.aop 3.0.0.RC1 RESOLVED
3 org.springframework.asm 3.0.0.RC1 RESOLVED

(entries removed...)

34 dm Server User Guide

34 The dm Shell

60 swf-booking-mvc.war 0.0.0 RESOLVED

Then use the bundle start to start the swf-booking-mvc.war bundle:

:> bundle start 60

bundle swf-booking-mvc.war:0.0.0 started successfully

The following example shows how to view the headers of the swf-booking-mvc.war
bundle (only the first few lines are shown):

:> bundle headers 60

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.0
Implementation-Title: swf-booking-mvc
Implementation-Version: 2.0.3.RELEASE
....

config Command

Use the config command to view and manage the configuration artifacts that have been
installed to dm Server. A configuration artifact is simply a properties file that is associated with
a user application that is contained in a bundle. Using configuration artifacts, you can manage
the configuration of a user application completely separately from the bundle that contains the
application.

The following table lists the options you can specify for this command.

Table 4.3. Options of the config Command

Option Descrption

list Lists the configuration artifacts that are
currently installed in dm Server.

The list command displays the full name of
each installed configuration artifact, its
version, and its current state. Configuration
artifacts have similar lifecycles to other OSGi
artifacts, such as bundles, and so the list of
states in which a configuration can be in is the
same as those of bundles; see the bundle
command for the list of possible states.

examine name [version] Displays information about the specified
configuration artifact. Although you must
specify the name of the configuration artifact,
its version is optional unless you have multiple
versions of the configuration artifact installed.
Use the config list command to view all
configuration artifacts and versions currently
installed in dm Server.

The dm Shell 35

2.0.1.RELEASE 35

Option Descrption

A configuration artifact must be active for you
to examine it; if it is not currently active, use
config start to start it and thus change
its state to Active.

The command first displays the factory pid of
the configuration artifact as well as the
complete location of the bundle to which the
configuration artifact is associated. The
command then lists all the properties that
make up the configuration, as well as their
current value.

start name [version] Starts the specified configuration artifact and
makes it visible to the internal configuration
sub-system of dm Server. Although you must
specify the name of the configuration artifact,
its version is optional unless you have multiple
versions of the configuration artifact installed.
Use the config list command to view all
configuration artifacts and versions currently
installed in dm Server.

Starting the configuration sets its state to
Active.

stop name [version] Stops the specified configuration artifact and
makes it invisible to the internal configuration
sub-system of dm Server. Although you must
specify the name of the configuration artifact,
its version is optional unless you have multiple
versions of the configuration artifact installed.
Use the config list command to view all
configuration artifacts and versions currently
installed in dm Server.

Stopping the configuration sets its state to
Resolved.

refresh name [version] Updates the contents of the specified
configuration artifact to the internal
configuration sub-system of dm Server.
Although you must specify the name of the
configuration artifact, its version is optional
unless you have multiple versions of the
configuration artifact installed. Use the
config list command to view all
configuration artifacts and versions currently

36 dm Server User Guide

36 The dm Shell

Option Descrption

installed in dm Server.

Use this command if you have changed the
contents of the configuration artifact, and you
want to make this information known to dm
Server and the associated bundle.

uninstall name [version] Uninstalls the specified configuration artifact
and make it completely unavailable to dm
Server. Although you must specify the name
of the configuration artifact, its version is
optional unless you have multiple versions of
the configuration artifact installed. Use the
config list command to view all
configuration artifacts and versions currently
installed in dm Server.

Stopping the configuration removes it from
dm Server's list of deployed artifacts and it
will not show up when you perform a
config list.

The following example shows how to use this command to list the installed configuration
artifacts.

:> config list

Name Version State
com.springsource.kernel 0.0.0 ACTIVE
com.springsource.kernel.jmxremote.access 0.0.0 ACTIVE
com.springsource.kernel.region 0.0.0 ACTIVE
com.springsource.kernel.users 0.0.0 ACTIVE
com.springsource.osgi.medic 0.0.0 ACTIVE
com.springsource.repository 0.0.0 ACTIVE
com.springsource.server.repository.hosted 0.0.0 ACTIVE

The next example shows how to refresh the configuration artifact
com.springsource.osgi.medic:

:> config refresh com.springsource.osgi.medic

configuration com.springsource.osgi.medic:0.0.0 refreshed successfully

Finally, to view the properties of a configuration artifact, and their current values, use config
examine:

:> config examine com.springsource.osgi.medic

Factory pid:
Bundle Location: file:lib/kernel/com.springsource.kernel.shell-2.0.0.D-20091107203259.jar

Properties:
dump.root.directory:

serviceability/dump
log.dump.bufferSize:

10000
log.dump.level:

DEBUG
log.dump.pattern:

The dm Shell 37

2.0.1.RELEASE 37

[%d{yyyy-MM-dd HH:mm:ss.SSS}] %-28.28thread %-64.64logger{64} %X{medic.eventCode} %msg %ex%n
log.wrapSysErr:

true
log.wrapSysOut:

true
service.pid:

com.springsource.osgi.medic

package Command

Use the package command to view the complete list of packages exported by all bundles
installed to dm Server, as well as examine a particular exported package in more detail.

The following table lists the options you can specify for this command.

Table 4.4. Options of the package Command

Option Descrption

list Displays all the exported packages for all
bundles in dm Server. In addition to the
package name, the command displays the
version of the exported package and the id of
the bundle that contains the exported package.
You can examine the bundle by using the
command bundle examine id.

examine name version Displays details about the exported bundle.
You must specify both the name of the
exported package and its version; use
package list to view the exact names and
version.

This command provides the following
additional information about the exported
package:

• The name and version of the bundle that
exports the package. This means that the
package name is explicitly listed in the
bundle's MANIFEST.MF file as part of the
Export-Package header.

• Any attributes that are part of the
Export-Package, in addition to
version.

• The directives that are part of the
Export-Package header. A typical
directive is uses, which declares up-front
constraints on a number of other packages.

38 dm Server User Guide

38 The dm Shell

Option Descrption

• The list of all bundles that import the
package.

The following example shows how to list all the exported packages for all bundles installed on
dm Server:

:> package list

Name Version Providing Bundle

com.springsource.kernel.agent.dm 2.0.0.D-20091110110152 6
com.springsource.kernel.artifact.bundle 2.0.0 1
com.springsource.kernel.artifact.library 2.0.0 1
com.springsource.kernel.core 2.0.0.D-20091110110152 1
com.springsource.kernel.deployer.app.spring 2.0.0.D-20091110110152 7
com.springsource.kernel.deployer.core 2.0.0.D-20091110110152 1
com.springsource.kernel.deployer.core.event 2.0.0.D-20091110110152 1
com.springsource.kernel.dmfragment 2.0.0.D-20091110110152 16
com.springsource.kernel.install.artifact 2.0.0.D-20091110110152 1
com.springsource.kernel.install.environment 2.0.0.D-20091110110152 1
...
[data removed for clarity]

The following example shows how to examine a particular exported package:

:> package examine org.springframework.web.servlet 3.0.0.RC1

Providing Bundle: org.springframework.web.servlet 3.0.0.RC1 [55]

Attributes:

Directives:
uses:

javax.servlet, javax.servlet.http, org.springframework.beans,
org.springframework.context, org.springframework.context.event,
org.springframework.context.i18n, org.springframework.ui,
org.springframework.ui.context, org.springframework.util,
org.springframework.web.context, org.springframework.web.multipart

x-equinox-ee:
-1

x-internal:
false

Imported By:
com.springsource.server.splash 2.0.0.D-20091110115520 [59] at [3.0.0, 3.1.0)
com.springsource.server.repository.hosted-2.0.0.D-20091109225604-com.springsource.server.repository.hosted.web 2.0.0.D-20091109225604 [56] at [2.5.6, 3.1.0)
org.springframework.js 2.0.8.RELEASE [54] at [2.5.6.SEC01, 3.1.0)
com.springsource.server.admin.web 2.0.0.D-20091110115520 [50] at [3.0.0, 3.1.0)

par Command

Use the par command to view all the PARs currently installed in dm Server, view details about
a particular PAR and manage its lifecycle, such as starting, stopping, refreshing, and uninstalling
it.

The following table lists the options you can specify for this command.

Table 4.5. Options of the par Command

Option Descrption

list Displays all the PARs that are currently
installed in dm Server.

The dm Shell 39

2.0.1.RELEASE 39

Option Descrption

The list command displays the full name of
each installed PAR, its version, and its current
state. PARs have similar lifecycles to other
OSGi artifacts, such as bundles, and so the list
of states in which a PAR can be in is the same
as those of bundles; see the bundle command
for the list of possible states.

examine name version Displays information about the specified PAR;
you are required to identify the PAR with both
its name and its version. Use the par list
command to view all installed PAR files and
their versions. The command displays the
following information:

• The current state of the PAR (see the bundle
command for the full list of possible states).

• Whether the PAR is scoped. Scoping
specifies whether dm Server should deploy
the members of the PAR in their own scope;
when scoping is disabled, dm Server
deploys the artifacts into the global scope
and they are accessible for access by all
other artifacts.

• Whether the PAR is atomic. When a PAR is
atomic, dm Server manages the lifecycle of
all its member artifacts as a single entity,
which means if one artifact member is
started, then dm Server starts all the PAR
artifacts. If one artifact fails to start, then
dm Server stops all other artifacts in the
PAR.

• The individual members, or children, of the
PAR. These could be other PARs, plans,
bundles, configuration artifacts, and so on.

start name version Starts the specified PAR. You must specify
both the full name of the PAR as well as the
version you want to start. Use the par list
command to get the list of PARs currently
installed in dm Server.

To start a PAR, it must have already been
resolved by dm Server, or in other words, be

40 dm Server User Guide

40 The dm Shell

Option Descrption

in the OSGi Resolved state. After dm
Server successfully starts the PAR, it is listed
in the Active state.

stop name version Stops the specified PAR. You must specify
both the full name of the PAR as well as the
version you want to stop. Use the par list
command to get the list of PARs currently
installed in dm Server.

When you stop a PAR, it goes from the OSGi
Active state to the Resolved state, and
you must re-start it if you want to use the
application that the PAR contains.

refresh name version Updates the contents of the specified PAR.
You must specify both the name and version
of the PAR you want to refresh. Use the par
list command to this information.

Use this command if you have changed the
contents of the PAR file and you want to
refresh the artifact as installed in the OSGi
framework.

uninstall name version Uninstalls the specified PAR. You must
specify both the name and version of the PAR
you want to refresh. Use the par list
command to this information.

When the uninstall process is complete, the
PAR will not show up in the list of PARs
displayed by the par list command. If you
want to use the application in the PAR, you
must re-install it using the install
command.

The following example shows how to list the PARs that have been installed in dm Server:

:> par list

Name Version State

com.springsource.server.repository.hosted 2.0.0.D-20091109225604 ACTIVE

The following example shows how to examine a particular PAR file:

:> par examine com.springsource.server.repository.hosted 2.0.0.D-20091109225604

State: ACTIVE
Scoped: true

The dm Shell 41

2.0.1.RELEASE 41

Atomic: true

Children:
bundle com.springsource.server.repository.hosted.core 2.0.0.D-20091109225604
bundle com.springsource.server.repository.hosted.web 2.0.0.D-20091109225604
bundle com.springsource.server.repository.hosted-synthetic.context 2.0.0.D-20091109225604

Finally, the following example shows how to refresh an installed PAR file:

:> par refresh my.exciting.par 1.2.0

par my.exciting.par 1.2.0 refreshed successfully

plan Command

Use the plan command to view all the plans currently installed in dm Server, view details about
a particular plan and manage its lifecycle, such as starting, stopping, refreshing, and uninstalling
it.

The following table lists the options you can specify for this command.

Table 4.6. Options of the plan Command

Option Descrption

list Displays all the plans that are currently
installed in dm Server.

The list command displays the full name of
each installed plan, its version, and its current
state. Plans have similar lifecycles to other
OSGi artifacts, such as bundles, and so the list
of states in which a plan can be in is the same
as those of bundles; see the bundle command
for the list of possible states.

examine name version Displays information about the specified plan;
you are required to identify the plan with both
its name and its version. Use the plan list
command to view all installed plans and their
versions. The command displays the following
information:

• The current state of the plan (see the bundle
command for the full list of possible states).

• Whether the plan is scoped. Scoping
specifies whether dm Server should deploy
the members of the plan in their own scope;
when scoping is disabled, dm Server
deploys the artifacts into the global scope
and they are accessible for access by all

42 dm Server User Guide

42 The dm Shell

Option Descrption

other artifacts.

• Whether the plan is atomic. When a plan is
atomic, dm Server manages the lifecycle of
all its member artifacts as a single entity,
which means if one artifact member is
started, then dm Server starts all the plan
artifacts. If one artifact fails to start, then
dm Server stops all other artifacts in the
plan.

• The individual members, or children, of the
plan. These could be other plans, PARs,
bundles, configuration artifacts, and so on.

start name version Starts the specified plan. You must specify
both the full name of the plan as well as the
version you want to start. Use the plan
list command to get the list of plans
currently installed in dm Server.

To start a plan, it must have already been
resolved by dm Server, or in other words, be
in the OSGi Resolved state. After dm
Server successfully starts the plan, it is listed
in the Active state.

stop name version Stops the specified plan. You must specify
both the full name of the plan as well as the
version you want to stop. Use the plan
list command to get the list of plans
currently installed in dm Server.

When you stop a plan, it goes from the OSGi
Active state to the Resolved state, and
you must re-start it if you want to use the
application that the plan contains.

refresh name version Updates the contents of the specified plan.
You must specify both the name and version
of the plan you want to refresh. Use the plan
list command to this information.

Use this command if you have changed the
contents of the plan file and you want to
refresh the artifact as installed in the OSGi
framework.

The dm Shell 43

2.0.1.RELEASE 43

Option Descrption

uninstall name version Uninstalls the specified plan. You must
specify both the name and version of the plan
you want to refresh. Use the plan list
command to this information.

When the uninstall process is complete, the
plan will not show up in the list of plans
displayed by the plan list command. If
you want to use the application in the plan,
you must re-install it using the install
command.

The following example shows how to list the plans that have been installed in dm Server:

:> plan list

Name Version State
com.springsource.kernel.region.springdm 2.0.0 ACTIVE
com.springsource.server.admin.plan 2.0.0 ACTIVE
com.springsource.server.web 2.0.0 ACTIVE

The following example shows how to examine a particular plan:

:> plan examine com.springsource.server.web 2.0.0

State: ACTIVE
Scoped: false
Atomic: false

Children:
bundle com.springsource.osgi.webcontainer.tomcat 1.0.0.CI-85
bundle com.springsource.osgi.webcontainer.core 1.0.0.CI-85
bundle com.springsource.server.web.tomcat 2.0.0.D-20091109223734
bundle com.springsource.server.web.core 2.0.0.D-20091109223734
bundle com.springsource.server.web.dm 2.0.0.D-20091109223734

The following example shows how to stop a currently Active plan:

:> plan stop com.springsource.server.web 2.0.0

plan com.springsource.server.web:2.0.0 stopped successfully

The following example shows how to start a plan:

:> plan start com.springsource.server.web 2.0.0

plan com.springsource.server.web:2.0.0 started successfully

service Command

Use the service command to view all the services that have been registered in the OSGi
service registry of dm Server. You can also examine specific services to discover its properties,
the bundle that publishes the service, and any bundles that might consume the service.

The following table lists the options you can specify for this command.

44 dm Server User Guide

44 The dm Shell

Table 4.7. Options of the service Command

Option Descrption

list Displays the list of services that are currently
registered in the OSGi service registry of dm
Server.

Each service is identified by an internal ID
which you can then use with the service
examine command to view the details about
a particular service. The list command also
displays the object class that implements the
service and the internal id of the bundle that
provides the service.

examine id Displays detailed information about the
specified service. Use the service list
command to get the internal id of a particular
service.

This command displays the properties of the
service, such as the object class that
implements the service, the name of the
bundle that publishes the service and any
bundles that consume the service.

The following example shows how to use list the services currently registered in the OSGi
service registry:

:> service list

Id Object Class(es) Providing Bundle

1 org.osgi.service.packageadmin.PackageAdmin 0
2 org.osgi.service.permissionadmin.PermissionAdmin, ... 0
3 org.osgi.service.startlevel.StartLevel 0
4 org.eclipse.osgi.service.debug.DebugOptions 0
5 java.lang.ClassLoader 0
6 org.eclipse.osgi.framework.log.FrameworkLog 0
7 org.eclipse.osgi.framework.log.FrameworkLog 0

... (entries removed)

65 com.springsource.osgi.webcontainer.core.spi.ServletContainer 35
66 com.springsource.osgi.webcontainer.core.WebContainer 34
67 com.springsource.server.web.core.WebApplicationRegistry 36
... (entries removed)

The following example shows how to examine a particular service:

:> service examine 38

Properties:
Bundle-SymbolicName:

com.springsource.kernel.services
Bundle-Version:

2.0.0.D-20091110110152
objectClass:

com.springsource.repository.Repository
org.springframework.osgi.bean.name:

The dm Shell 45

2.0.1.RELEASE 45

repository
service.id:

38

Publisher: com.springsource.region.user 0.0.0 [1]

Consumer(s):
com.springsource.kernel.userregion 2.0.0.D-20091110110152 [2]

install Command

Use the install command to deploy an artifact to dm Server. The artifact can be a bundle,
PAR, plan, or configuration artifact.

The install command takes a single parameter: the URI of the artifact you want to deploy.
For example, to deploy a bundle on the local computer, use the file scheme:

file://full-pathname-to-artifact

After you execute the install command, dm Server attempts to resolve the artifact's
dependencies, and if it is successful, puts it in the Resolved state. At that point, you must start
the artifact to be able to actually use it.

The following example shows how to install a bundle called swf-booking-mvc.war located
in the /home/apps directory of the computer on which the dm Shell is being run:

:> install file://home/apps/swf-booking-mvc.war

Artifact bundle swf-booking-mvc.war 0.0.0 installed

The following example shows how to use the bundle list command to ensure that the
bundle was indeed installed to dm Server; if you had installed a different kind of artifact, for
example a plan, then you would use the appropriate command (such as plan list):

:> bundle list

Id Name Version State

0 org.eclipse.osgi 3.5.1.R35x_v20091005 ACTIVE
1 com.springsource.region.user 0.0.0 ACTIVE

... (entries removed for clarity)

59 com.springsource.server.splash 2.0.0.D-20091110115520 ACTIVE
60 swf-booking-mvc.war 0.0.0 RESOLVED

Note that the swf-booking-mvc.war file is in the Resolved state. The following
examples start the bundle, and then examine it to ensure that it is in the Active state:

:> bundle start 60

bundle swf-booking-mvc.war:0.0.0 started successfully

:> bundle examine 60

Id: 60
Name: swf-booking-mvc.war
Version 0.0.0
State: ACTIVE
Spring Powered: true
Bundle Location: file:/home/juliet/dmServer2.0/springsource-dm-server-2.0.0.CI-468/work/com.springsource.kernel.deployer_2.0.0.D-20091110110152/deployer.staging/1642D0F2E664A7826F85ABC0DF360C81087D45F3/swf-booking-mvc.war/

Imported Packages:
javax.crypto.interfaces [0.0.0, 0.0.0]

exported by org.eclipse.osgi 3.5.1.R35x_v20091005 [0]

46 dm Server User Guide

46 The dm Shell

org.omg.CosNaming.NamingContextPackage [0.0.0, 0.0.0]
exported by org.eclipse.osgi 3.5.1.R35x_v20091005 [0]

org.omg.DynamicAny.DynAnyFactoryPackage [0.0.0, 0.0.0]
exported by org.eclipse.osgi 3.5.1.R35x_v20091005 [0]

...

shutdown Command

Use the shutdown command to shut down the dm Server instance to which you are connected.
When dm Server is shutdown, the shell returns you to the operating system prompt.

The shutdown command does not have any options.

The following example shows how to use this command.

:> shutdown

Shutdown MBean called
prompt$

help Command

Use the help command on its own to get a list of all available dm Shell commands. If you
specify a particular command to the help command, then you will get the list of options that
you can pass to the command.

For example:

:> help

bundle - Management and examination of bundle artifacts
config - Management and examination of configuration artifacts
help
install - Install (deploy) an artifact to the server
package - Management and examination of exported packages
par - Management and examination of PAR artifacts
plan - Management and examination of plan artifacts
service - Examination of services
shutdown

:> help bundle

bundle list - List all bundle artifacts that are
currently installed

bundle examine [id | name version] - Examine a bundle artifact
bundle start [id | name version] - Start a bundle artifact. Starting this

artifact starts it in the OSGi
framework.

bundle stop [id | name version] - Stop a bundle artifact. Stopping this
artifact stops it in the OSGi
framework.

bundle refresh [id | name version] - Refresh a bundle artifact. Refreshing
this artifact updates its contents in
the OSGi framework.

bundle uninstall [id | name version] - Uninstall a bundle artifact
bundle diag [id | name version] - Provide diagnostics for a bundle

artifact
bundle headers [id | name version] - Show the headers for a bundle artifact

The dm Shell 47

2.0.1.RELEASE 47

48 dm Server User Guide

48 The dm Shell

5. The Web Admin Console
The dm Server Admin Console is a Web application for managing a single instance of dm
Server. Using the Admin Console, you can:

• View an overview of the dm Server properties.

• View and manage the lifecycle of artifacts already deployed to the dm Server instance.
Artifacts include bundles, configuration files, PARs, and plans. Lifecycle management tasks
include starting, stopping, refreshing, and uninstalling the artifacts.

• Install new artifacts to dm Server. .

• View the properties of the configuration artifacts deployed to dm Server.

• View details of dump files that dm Server might have generated after encountering a problem.
This feature is particularly valuable if dm Server fails to install a new artifact due to resolution
failures; the dump inspector can help you discover the exact artifact causing the resolution
failure.

• View an overview and details of the OSGi State of dm Server, or in other words, a list of all
bundles currently installed in dm Server and their state. You can then then drill down into the
details of each bundle, such as its symbolic name, packages it imports and exports, services it
provides and consumes, and so on. You can also view the bundles that were deployed when an
exception that generated a dump occurred.

5.1 Invoking the Admin Console

To use the SpringSource Admin Console, start the SpringSource dm Server and then enter the
following URL in your browser of choice.

http://localhost:8080/admin

Replace localhost with the hostname of the computer on which the SpringSource dm Server
is running if it is not the same as the computer on which you are running your browser.

The Admin Console uses basic authentication, therefore you will need to enter the default
administration ID and password.

ID: admin
Password: springsource

The following graphic shows the main page of the Admin Console.

The Admin Console 49

2.0.1.RELEASE 49

Use the links at the top of the console to perform various tasks, such as viewing and managing
artifacts (Artifacts), viewing the properties of deployed configuration artifacts (Configuration),
viewing details of dumps (Dump Inspector), and viewing the OSGi state of the dm Server
instance (OSGi State).

You can always return to the main Admin Console page by clicking Information in the top
right-hand corner.

The Server Properties section provides information about dm Server itself, such as
details about the Java Virtual Machine (JVM), the operating system on which dm Server is
installed, the time zone configured for the computer, and the complete version of dm Server.

Changing the Admin User

To change the ID and password for the Admin Console, update the
SERVER_HOME/config/com.springsource.kernel.users.properties file.
First specify the administration username by changing the value of the role.admin property.
Then set the password of this new user by adding a new property called user.username,

50 dm Server User Guide

50 The Admin Console

where username refers to the actual name of the user. Finally, restart dm Server for the
changes to take effect.

For example, if you want change the administration username to juliet with password
capulet, change the file as follows:

##################
User definitions
##################
user.juliet=capulet

##################
Role definitions
##################
role.admin=juliet

The Admin Console always runs against the admin role.

5.2 Typical Admin Console Use Cases

The following use cases describe the typical tasks that can perform with the dm Server Admin
Console:

• View and Manage the Lifecycle of Deployed Artifacts

• Install a New Artifact

• View the Properties of Deployed Configuration Artifacts

• View Details of Dump Files

• View Overview and Details of the OSGi State

Viewing and Managing the Lifecycle of Deployed Artifacts

The following procedure describes how to view the list of artifacts that are currently deployed in
the user region of dm Server. It then describes how to stop, start, refresh, and uninstall the
deployed artifacts.

1. From the main Admin Console page, click the Artifacts link at the top.

In the lower part of the page, the console displays a tree structure that displays the four kinds
of artifacts that you can deploy to the user region of dm Server: bundles, configuration files,
PARs, and plans. When you first install dm Server, there will already be a number of artifacts
deployed related to the Admin console itself, the main splash screen, the repository, and so
on.

The following graphic shows an expanded tree that displays a few of the deployed artifacts:

The Admin Console 51

2.0.1.RELEASE 51

2. To view details of a particular artifact, click the "+" to the left of the artifact to expand the
tree. The following graphic shows an expanded
com.springsource.configuration.properties bundle:

52 dm Server User Guide

52 The Admin Console

The particular details that the Admin Console displays depends on the artifact. For example,
for all artifacts you can view their state and how it was installed (such as by a user using the
Admin Console or programmatically). The two most common states are Active (running and
ready to be used) and Resolved (all dependencies resolved but you must start it before you
can use it.) An artifact can also be in one of the transition states, such as Starting and
Stopping.

As shown in the preceding graphic, the Admin Console provides a link for Web modules that
you can click on to actually invoke the application
(com.springsource.server.web.contextPath:/config-properties in the
example above.)

For PARs and plans, the Admin Console also displays whether the artifact is:

• Scoped. Scoping specifies whether dm Server should deploy the members of the PAR/plan
in their own scope; when scoping is disabled, dm Server deploys the artifacts into the
global scope and they are accessible for access by all other artifacts.

• Atomic. When a PAR/plan is atomic, dm Server manages the lifecycle of all its member
artifacts as a single entity, which means if one artifact member is started, then dm Server
starts all the PAR/plan artifacts. If one artifact fails to start, then dm Server stops all other
artifacts in the PAR/plan.

The Admin Console 53

2.0.1.RELEASE 53

The following graphic shows details of a PAR, in particular that it is both scoped and atomic:

Finally, for bundles, PARs, and plans, you can see the list of bundles that they depend on; this
typically means the bundles that contain the packages that they import.

3. To manage the lifecycle of an artifact, click on its name in the expanded tree to enable the
lifecycle buttons. Then, depending on the current state of the artifact, you can:

• Start the artifact. All dependencies of the artifcat must have been resolved for you to start
it. After successfully starting the artifact, it is in the Active state and you can use the
application associated with the artifact.

• Stop the artifact. This moves the artifact from an Active to Resolved state, and you cannot
use the application associated with the artifact.

• Refresh the artifact. This action updates the physical contents of the artifact; use this button
when you have changed the artifact in some way and you want your changes to take effect.

• Uninstall the artifact. This action removes the artifact from dm Server and it does not show
up in the Admin Console anymore. To use the application associated with this artifact, you
must re-install the artifact.

Installing a New Artifact

The following procedure describes how to install a new artifact (bundle, PAR, plan, or
configuration file.) The procedure is similar for all types of artifacts; the procedure uses a WAR
file as an example.

1. From the main Admin Console page, click the Artifacts link at the top.

2. Click the Browse button to invoke the file loader application for your platform. Note that the
Browse button searches the computer that is running the browser in which you invoked the

54 dm Server User Guide

54 The Admin Console

Admin Console and not the computer on which dm Server is running, in the case where they
are different.

Use the file loader to find the artifact. This can be a WAR file bundle, a configuration artifact
that contains properties, an XML file that corresponds to a plan, or a PAR file.

3. Click Upload to actually upload the artifact to dm Server.

dm Server automatically attempts to resolve all dependencies, and then puts the artifact in an
Active state if possible. If all is successful, the message Artifact Deployed appears
next to the Artifact Console header. If there is an error, a message to that effect is display; to
get more details about the error, see the terminal window from which you started dm Server.

4. Expand the artifact tree to view your newly deployed artifact. If dm Server installed it without
errors, it should show up in the appropriate section and be in an Active state.

Viewing Properties of Deployed Configuration Artifacts

The following procedure describes how you can view the list of configuration artifacts that are
currently deployed to dm Server, and then view the specific properties that are defined for a
particular configuration artifact.

1. From the main Admin Console page, click the Configuration link at the top.

The Admin Console displays all the configuration artifacts that are currently deployed, as
shown in the following graphic:

The Admin Console 55

2.0.1.RELEASE 55

2. To view the properties defined for a particular configuration artifact click the arrow to the left
of its name.

Viewing the Details of Dump Files

The following procedure describes how to view the details of any service dumps that have
occurred in dm Server. Each time a dump is triggered for dm Server, the server creates a
directory in $SERVER_HOME/serviceability/dump with a name corresponding to the
time the dump occurred, and then the server populates the directory with detailed information.
Using the Admin Console, you can easily view this information.

A service dump is triggered when there is either a failure in the dm Server code or dm Server
detects a thread deadlock in either its own code or a user application. The service dump contains
a snapshot of all the important state from the running dm Server instance. NOTE: This snapshot
is not intended for end user consumption but is useful for service personnel.

1. From the main Admin Console page, click the Dump Inspector link at the top.

2. In the drop-down box on the left, select the dump you want to inspect based on its timestamp.

56 dm Server User Guide

56 The Admin Console

3. Click Select Dump.

4. In the right drop-down box, select the type of dump information you want to view.

For example, summary.txt provides a short summary of why the dump might have
occurred. The thread.txt option provides information about the state of the dm Server
threads at the time of the dump, including any that were deadlocked. The repository
options provide information about what was in the external and user repositories at the time of
the dump. The configurationAdmin.properties option provides a snapshot of the
complete configuration of dm Server, including the kernel and repositories.

5. Click Select Entry.

The Admin Console displays the information in the Dump Entry Viewer, as shown in the
following graphic:

Viewing Overview and Details of the OSGi State

The following procedure describes how you can view the OSGi state of the dm Server, either
currently or at the time that a particular service dump occurred. The OSGi state is a list of
bundles that are currently installed as well as a list of all the services that are provided by these
bundles.

The Admin Console 57

2.0.1.RELEASE 57

1. From the main Admin Console page, click the OSGi State link at the top.

By default, the Admin Console displays the complete list of bundles that are currently
installed in dm Server.

For each bundle, the console displays its internal ID, its symbolic name, its version, and its
current state (usually either Active or Resolved.)

2. To view the bundles that were installed at the time of a service dump, select it based on its
timestamp from the drop-down box on the right and click Go.

3. To view details about a particular bundle, click on its bundle ID. A full description of the
bundle is displayed, as shown in the following graphic:

The console displays again the symbolic name, version, and internal ID of the bundle. It then
displays whether the bundle is Spring powered and the exact physical location of the bundle
JAR file on the computer that hosts dm Server.

The console then displays the full list of packages that the bundle imports, as well as the

58 dm Server User Guide

58 The Admin Console

bundles that in turn export these imported packages. The console also displays the packages
that the current bundle exports, and then in turn the list of other installed bundles that are
currently importing these exported packages. For each package, you can drill down and view
details of the corresponding bundle.

Similarly, the console displays the consumed and provided OSGi services.

Finally, the console also displays information about the Spring context, if the bundle is Spring
powered.

4. To view the full list of OSGi services, click the Services Overview link from the main
OSGi state page

5. Typically, the list of bundles and services can be very long, making it difficult to find a
particular bundle. Use the Search box at the top right corner to narrow down the list of
displayed bundles.

The Admin Console 59

2.0.1.RELEASE 59

60 dm Server User Guide

60 The Admin Console

6. The Provisioning Repository

6.1 Overview of the Provisioning Repository

This section describes the provisioning repository feature of SpringSource dm Server, the
reasons for using it, and how to configure it.

In most use cases, your application has a dependency on one or more separate artifacts; these
artifacts might include OSGi bundles, configuration artifacts, third-party libraries, PARs or
plans. A typical example is a Spring application that depends on a third-party library such as
Spring Framework or Hibernate.

The way you express this dependency depends on the artifact. For example, a plan is by
definition a list of dependent bundles.

Libraries are another example. Some third-party dependencies consist of multiple bundles but are
logically one unit. To support this, the SpringSource dm Server introduces the concept of a
library. A library is a collection of related bundles that can be referenced as a whole. You
typically express the dependencies between your application and third-party libraries using the
Import-Package or Import-Library manifest header in the MANIFEST.MF file of your
application. The Import-Package header is standard to OSGi; Import-Library,
however, is specific to SpringSource dm Server.

For additional details about the creation and usage of libraries, as well as general information
about dependencies, see Programmer’s Guide.

In SpringSource dm Server, you store all third-party dependencies required by your applications,
such as Spring Framework and Hibernate, as artifacts in the provisioning repository. As
mentioned above, you can store the following types of artifacts in the repository:

• OSGi bundles

• Libraries

• PARs

• Plans

• Configuration Artifacts

When you deploy your application, SpringSource dm Server installs the bundle in which it is
packaged to the dm Server runtime; part of this internal installation procedure is to satisfy all the
application’s dependencies. If your application has a dependency that cannot be satisfied from
the bundles that you have already deployed (and dm Server has thus installed), the dm Server
searches the provisioning repository for an artifact that can satisfy that dependency.

The Provisioning Repository 61

2.0.1.RELEASE 61

../../programmer-guide/html/index.html

The provisioning repository for a particular instance of SpringSource dm Server can include
artifacts in the following general locations:

• Local: This means that artifacts have been physically installed in the provisioning repository
directory structure of the local SpringSource dm Server instance. The artifacts in a local
repository include installed third-party libraries, bundles supplied by dm Server, bundles
supplied by an end user, and internal bundles used only by dm Server. You can further
categorize this location into external directories that adhere to a specified search pattern
and are scanned by dm Server just at startup, or watched directories that point to a single
directory location and dm Server scans on a regular basis.

• Remote: This means that a local instance of SpringSource dm Server gets the artifact from a
remotely-hosted repository that is physically located on a remote SpringSource dm Server
instance.

You configure the provisioning repository using the
SERVER_HOME/config/com.springsource.repository.properties file.

As previously described, a particular instance of SpringSource dm Server can itself also act as a
repository host for remote server instances to use when satisfying the dependencies of the
applications deployed to it. In this case, you configure a hosted repository using the
SERVER_HOME/config/com.springsource.repository.hosted.properties
file. Typically, only remote clients use hosted repositories and their contents; the SpringSource
dm Server instance that actually hosts the repository does not typically use the artifacts in it.
Rather, it uses artifacts in its local repository.

Making a third-party dependency available to your application is simply a matter of adding its
artifact to the appropriate location in the provisioning repository. This could be either in the local
directories or the remote ones if you are getting artifacts from a remotely-hosted repository.

Local Repository Structure

When you first install SpringSource dm Server, the local provisioning repository is located at
$SERVER_HOME/repository by default and consists of two main directories: ext and
user. The ext directory contains bundles and libraries supplied with the SpringSource dm
Server and usr contains bundles and libraries installed by the end user.

Installing Artifacts to a Repository

To install an artifact into the default repository, simply copy it into the
$SERVER_HOME/repository/usr directory.

If you have configured additional watched or external repositories (additional, that is, to the
default ones already configured in a freshly-installed dm Server instance), you install the artifacts
in the same way: simply copy the files to the configured directories. You configure additional
watched or external repositories in the same file as the default repositories:
SERVER_HOME/config/com.springsource.repository.properties.

62 dm Server User Guide

62 The Provisioning Repository

When you install a plan or a library, you must ensure that all referenced bundles within the plan
or library have been installed as well.

Artifacts must have unique names so it is considered best practice to include the version number
in the file name, allowing for multiple versions of the artifact to be installed at the same time. For
example, a bundle file name might be my-exciting-bundle.2.1.0.jar.

In some cases the SpringSource dm Server manages to automatically detect changes in its
provisioning repository at runtime, thereby avoiding the need to restart the dm Server.

Of specific relevance during development is picking up changes to an application’s direct
dependencies during deployment of the application. For example, if you deploy an application
and receive a message that a dependency is missing, you can simply add the dependency to the
repository and then redeploy the application. The redeploy will cause the new dependency to be
picked up, allowing progress to be made without restarting the dm Server. For other changes
such as addition of indirect dependencies, the SpringSource dm Server must be restarted to pick
up any changes to the provisioning repository.

6.2 Finding and Downloading Bundles from the
SpringSource Enterprise Bundle Repository

The SpringSource Enterprise Bundle Repository is a public collection of open source libraries
commonly used for developing enterprise Java applications with the Spring Framework and dm
Server. It contains more than 400 of the most popular enterprise Java libraries made available for
general use in an OSGi-ready format. You can browse the collection and then download the
bundles that you need into your own local repository.

The SpringSource Enterprise Bundle Repository is located here.

The Provisioning Repository 63

2.0.1.RELEASE 63

http://www.springsource.com/repository

You can find bundles in the repository using a number of options. You use the ‘Search’ facility
by typing in a keyword. The matching criteria returned can be explored by name, symbolic
name, class, package or resource.

There is also the option of clicking on ‘Browse by Bundle’. This gives an alphabetical list of
bundles. You can select the desired bundle to see details and find the download link. Finally, you
can also choose to ‘Browse by Library’, which allows you to browse the alphabetical list of
libraries in the repository.

6.3 Configuring the repository

Details of how to configure a SpringSource dm Server installation’s provisioning repository can
be found in Configuring the Provisioning Repository. See Configuring a Hosted Repository for
details on how to configure a repository that remote clients can access, also called a hosted
repository.

The two configuration chapters describe the format of the repository properties files of
SpringSource dm Server, how to add new directories to the local repository, how to configure the
repository to get artifacts from a remote repository hosted on a remote dm Server, instance, and
how to configure the local dm Server instance to itself host a repository that other remote servers
access.

64 dm Server User Guide

64 The Provisioning Repository

7. Serviceability
Logging (both event logging and trace logging) in dm Server comes in two forms: application
logging and server logging. Both are configured together in the serviceability.xml file in
the config directory. This takes the form of a Logback configuration—dm Server uses a
Logback implementation behind the SLF4J logging interface.

What was previously referred to as Logging, is now referred to as Event Logging, and what was
previously referred to as Trace logging (or Tracing) is now simply Logging.

7.1 Event log files

Event log files are low-volume logs of important events in SpringSource dm Server. Each server
message written to an event log file is accompanied by a code enclosed in angle brackets. An
example is shown below:

[2009-08-25 15:04:57.044] server-dm-7 <OF0001I> OSGi telnet console available on port 2401.

(For a description of the log code syntax, see Appendix A, Event log codes.) The format of event
log messages from the server is fully configurable.

By default, event log messages are stored in
$SERVER_HOME/serviceability/eventlogs/eventlog_i.log and output to the
console. The index i varies from 1 to 4, at 10Mb boundaries. An examination of the Logback
configuration will show these defaults being set. They may be modified.

For a description of the syntax and facilities provided by this file see the Logback documentation
(referenced in Appendix C, Further Reading).

7.2 Trace (Logging)

The SpringSource dm Server’s logging (trace) support serves two main purposes:

• It provides global trace files that capture high-volume information regarding the SpringSource
dm Server’s internal events. The files are intended for use by support personnel to diagnose
runtime problems.

• It provides application trace files that contain application-generated output. This includes
output generated using popular logging and tracing APIs, as well as output generated by calls
to System.out and System.err. These files are intended for use by application
developers and system administrators.

By default, the dm Server trace file is called
$SERVER_HOME/serviceability/logs/dm-server/log_i.log, and, again by
default, the application trace files are called

Serviceability 65

2.0.1.RELEASE 65

application_name/log_i.log, where application_name is automatically set by dm Server for
each application artifact installed and run (it is a combination of the artifact name and the
version).

The index i varies from 1 to 4, on a rolling basis, as each log file exceeds 10Mb.

Entries in trace files are by default of the form <timestamp> <thread-name> <source> <level>
<entry-text>. For example:

[2008-05-15 09:09:46.940] server-dm-2 org.apache.coyote.http11.Http11Protocol I Initializing Coyote HTTP/1.1 on http-48080

although this format is completely determined by the Logback configuration file
serviceability.xml.

Application Output

SpringSource dm Server provides advanced support for capturing and tracing
application-generated output by automatically separating trace output on a per-application basis
and will also capture any System.out and System.err output.

Per-application trace

SpringSource dm Server uses SLF4J interfaces to Logback, and the root logger (by default)
captures all logging output and appends it to the application-specific trace files as described
above. To modify this, define application-specific loggers in the serviceability.xml file
in the normal way.

System.out and System.err

System.out and System.err output from applications is, by default, captured in the
application’s trace file. This happens because the output streams are intercepted and written to
the loggers named System.out and System.err respectively. Since there are no explicit
loggers defined with these names in the serviceability.xml file, this output is logged by
the root logger (which captures INFO level and above).

The capture of System.out and System.err output is configured in the
config/com.springsource.osgi.medic.properties file by the
log.wrapSysOut and log.wrapSysErr properties. By default the properties have a value
of true and capture is enabled. Capture can be disabled by configuring the properties with a
value of false.

The trace entries for System.out and System.err output are of the form:

[2008-05-16 09:28:45.874] server-tomcat-thread-1 System.out Hello world!
[2008-05-16 09:28:45.874] server-tomcat-thread-1 System.err Hello world!

The third column indicates where the output came from (System.out or System.err).

To over-ride this behaviour, simply define explicit loggers named System.out and/or

66 dm Server User Guide

66 Serviceability

System.err in the configuration file to send this output to an appender of your choice. Be
aware that all applications’ output streams will be caught by these loggers, and that a sifting
appender might be useful to separate them.

7.3 Service Dumps

A service dump is triggered when one of the following events occurs:

1. A failure is detected in the SpringSource dm Server code, or

2. a thread deadlock is detected.

A service dump contains a snapshot of all the important state from the running SpringSource dm
Server instance. This snapshot is not intended for end user consumption but is useful for service
personnel.

By default, service dumps are created in $SERVER_HOME/serviceability/dump.

Serviceability 67

2.0.1.RELEASE 67

68 dm Server User Guide

68 Serviceability

8. Working with Applications

8.1 Deploying Artifacts

In the context of SpringSource dm Server, deploying refers to installing an artifact to the server
and then starting it to make it available to users. Typically, when you install an artifact, dm
Server automatically starts it as long as the server is able to successfully resolve all its
dependencies. For this reason, the terms deploying and installing are often used interchangeably.

You deploy artifacts to SpringSource dm Server using either the hot-deploy directory on the file
system or by using the Admin Console. The artifacts that you can deploy to dm Server are:

• Bundles, including Web applications

• PARs

• Plans

• Configuration Files

Hot Deploy

To hot deploy an artifact, copy it into the pickup directory (by default
$SERVER_HOME/pickup):

prompt$ cd /home/applications
prompt$ cp helloWorld.war $SERVER_HOME/pickup

When the artifact is hot deployed, messages similar to the following appear in the log file:

[2009-12-10 06:41:01.021] fs-watcher <HD0001I> Hot deployer processing 'CREATED' event for file 'helloWorld.war'.
[2009-12-10 06:41:01.087] fs-watcher <DE0000I> Installing bundle 'helloWorld' version '0.0.0'.
[2009-12-10 06:41:01.274] fs-watcher <DE0001I> Installed bundle 'helloWorld' version '0.0.0'.
[2009-12-10 06:41:01.397] fs-watcher <DE0004I> Starting bundle 'helloWorld' version '0.0.0'.
[2009-12-10 06:41:01.414] Thread-3 <WE0000I> Starting web bundle 'helloWorld' version '0.0.0' with context path '/helloWorld'.
[2009-12-10 06:41:01.537] Thread-3 <WE0001I> Started web bundle 'helloWorld' version '0.0.0' with context path '/helloWorld'.
[2009-12-10 06:41:01.550] start-signalling-1 <DE0005I> Started bundle 'helloWorld' version '0.0.0'.

If there is a problem with the deployment, such as the server being unable to resolve all
dependencies, the console and log both show an error message to help you with troubleshooting.

If there are no problems, dm Server automatically starts the artifact so that it is immediately
available to users.

Deploying Using the Admin Console

The Admin Console allows you to upload a file, which will be deployed automatically, from
your local file system to the SpringSource dm Server. As soon as SpringSource dm Server

Working with Applications 69

2.0.1.RELEASE 69

deploys the artifact, it appears in the list of artifacts in the Admin Console. Note that the GUI for
uploading varies according to the browser and operating system you use.

See Installing a New Artifact for details about using the Admin Console to install (deploy) an
artifact. See The Web Admin Console for general informatin about the Admin Console.

What Happens When You Deploy

When you deploy an artifact, either using hot-deployment or the Admin Console, dm Server
copies the file to its work directory (SERVER_HOME/work) and registers it in its internal
registry. The server then checks any dependencies the artifact might have to see if deployment
can go ahead, and if all dependencies are resolved, SpringSource dm Server starts the artifact.
Because of all these additional internal activities, you should NOT simply copy the artifact into
the work directory and assume it will be deployed, because SpringSource dm Server will not do
so.

Deployment Ordering

When deploying bundles that have dependencies, it is important that you deploy them in the
correct order. SpringSource dm Server honors this ordering when it redeploys the artifacts on
startup.

If you use hot deployment to deploy your artifacts, be sure to copy the corresponding files into
the pickup directory one-by-one. Copying the files in one group, for example by using a single
cp command. provides no guarantees of ordering.

Restrictions

The SpringSource dm Server does not support deploying fragment bundles.

8.2 Undeploying Artifacts

You undeploy artifacts from SpringSource dm Server by using either the hot-deploy directory on
the file system, or the Admin Console.

Note: As with deploying, in this guide the terms undeploying and uninstalling are used
interchageably.

Hot Undeploy

To hot-undeploy an artifact, remove the corresponding file from the pickup directory (by default
$SERVER_HOME/pickup):

prompt$ cd $SERVER_HOME/pickup

70 dm Server User Guide

70 Working with Applications

prompt$ rm helloWorld.war

When SpringSource dm Server completes the undeployment of the artifact, messages similar to
the following appear in the log:

[2009-12-10 06:46:33.254] fs-watcher <HD0001I> Hot deployer processing 'DELETED' event for file 'helloWorld.war'.
[2009-12-10 06:46:33.259] Thread-3 <WE0002I> Stopping web bundle 'helloWorld' version '0.0.0' with context path '/helloWorld'.
[2009-12-10 06:46:33.285] Thread-3 <WE0003I> Stopped web bundle 'helloWorld' version '0.0.0' with context path '/helloWorld'.
[2009-12-10 06:46:33.290] fs-watcher <DE0010I> Stopping bundle 'helloWorld' version '0.0.0'.
[2009-12-10 06:46:33.295] fs-watcher <DE0011I> Stopped bundle 'helloWorld' version '0.0.0'.
[2009-12-10 06:46:33.302] fs-watcher <DE0013I> Uninstalling bundle 'helloWorld' version '0.0.0'.
[2009-12-10 06:46:33.319] fs-watcher <DE0014I> Uninstalled bundle 'helloWorld' version '0.0.0'.

Undeploying Using the Admin Console

You can undeploy only whole artifacts from the Admin Console, or in other words, you cannot
undeploy the separate modules or bundles that make up an artifact.

The only artifact that you cannot undeploy from the Admin Console is the Admin Console itself.
If you need to undeploy this application, you must remove it from the pickup directory (by
default SERVER_HOME/pickup); the name of the artifact is
com.springsource.server.admin-2.0.0.0.plan.

See Viewing and Managing the Lifecycle of Deployed Artifacts for details about uninstalling
(undeploying) an artifact using the Admin Console. The high-level steps are to highlight the
artifact in the artifact tree then click Uninstall.

Working with Applications 71

2.0.1.RELEASE 71

72 dm Server User Guide

72 Working with Applications

9. Configuring the SpringSource dm Server
You use configuration files in the SERVER_HOME/config directory to configure dm Server.
This section divides the configuration of the server into the following high-level tasks:

• Configuring the kernel and the user region.

• Configuring embedded Tomcat servlet container.

• Configuring serviceability.

• Configuring the local provisioning repository.

• Configuring the hosted repository.

9.1 Configuring the dm Kernel and User Region

This section provides information about configuring the dm Server kernel and the user region by
updating the following files in the SERVER_HOME/config directory:

Table 9.1. Kernel Configuration Files

Property File Description

com.springsource.kernel.propertiesConfigures kernel deployment and the dm
Shell of dm Server.

com.springsource.kernel.userregion.propertiesConfigures the user region of dm Server.

com.springsource.kernel.users.propertiesConfigures the users that are allowed to access
the dm Shell and Admin Console, and roles to
which they map.

com.springsource.kernel.jmxremote.access.propertiesConfigures the permissions for users that are
allowed to access the dm Shell and Admin
Console.

com.springsource.kernel.authentication.configConfigures the Java Authentication and
Authorization Service (JAAS) for the Tomcat
server users.

Configuring Deployment

You can configure three properties of deployment: the pickup directory into which you copy
applications for hot-deployment, the deployment timeout, and whether automatic cloning of
deployed bundles is enabled.

Configuring dm Server 73

2.0.1.RELEASE 73

To change any of these properties, edit the deployer.XXX properties of the
SERVER_HOME/config/com.springsource.kernel.properties file. The
following table describes these properties.

Table 9.2. Deployment Configuration Properties

Property Description

deployer.timeout Specifies the amount of time, in seconds, after
which dm Server times out while trying to
deploy a bundle, library, or plan. The default
value is 300. If you want to disable
deployment timeout, specify 0.

deployer.pickupDirectory Specifies the absolute or relative path to the
pickup directory to which you copy
applications for hot-deployment. Relative
paths are relative to SERVER_HOME. The
default value is ./target/pickup..

The following listing displays the default configuration distributed with the dm Server; only
relevant sections of the com.springsource.kernel.properties file are shown.

deployer.timeout=300
deployer.pickupDirectory=pickup

As the default configuration shows, the default pickup directory is SERVER_HOME/pickup
and the deployment timeout is 300 seconds.

Configuring the dm Shell

The dm Shell is a command line utility that allows you to examine artifacts currently installed to
a particular dm Server instance, manage the lifecycle of the installed artifacts, install new
artifacts, and shutdown the server. For complete documentation on the dm Shell, see Chapter 4,
The dm Shell.

You configure the dm Shell by updating the shell.XXX properties in the
SERVER_HOME/config/com.springsource.kernel.properties file, as described
in the following table:

Table 9.3. dm Shell Configuration Properties

Property Description

shell.enabled Specifies whether the dm Shell is enabled or
not. Valid values are true or false.

shell.port Defines the port on which you can remotely
access the dm Shell. If not set, the shell is only

74 dm Server User Guide

74 Configuring dm Server

Property Description

available from stdout of the dm Server
process.

The following example shows the default dm Shell configuration in a freshly-installed
com.springsource.kernel.properties file; only the relevant section of the file is
shown.

shell.enabled=true
shell.port=2401

The example shows that the dm Shell is enabled by default, and you connect to it remotely using
the port 2401.

Configuring the User Region

The user region is the subsystem of dm Server that supports deployed applications, both your
own user applications and those of the server itself, such as the Admin Console. The user region
is deliberately isolated from the kernel, which makes it much simpler for you to manage your
applications with the Admin Console or dm Shell because the internal server bundles are not
visible.

You configure the user region by updating properties in the
SERVER_HOME/config/com.springsource.kernel.userregion.properties
file; these properties are described in the following table.

WARNING: SpringSource strongly recommends that you update only the
initialArtifacts property; updating the other properties could cause dm Server to fail.
These properties are documented for your information only.

Table 9.4. User Region Configuration Properties

Property Description

baseBundles Specifies the hard-coded list of bundles that
dm Server installs directly into the user region.
SpringSource dm Server does not perform any
automatic dependency satisfaction for these
bundles; in other words, you only get the
bundles in the list and nothing more.

packageImports Specifies the packages that exist in the kernel
that dm Server imports into the user region so
that they are in turn available to be imported
by bundles in the user region. This property
supports a .* wildcard. For example,
com.springsource.util.* will import
all packages that start with

Configuring dm Server 75

2.0.1.RELEASE 75

Property Description

com.springsource.util.

serviceImports Specifies the services in the kernel that are
imported into the user region so that they're
available to bundles in the user region.

serviceExports Specifies the services in the user region that
are imported into the kernel so that they're
available to bundles in the kernel.

inheritedFrameworkProperties Specifies the framework properties,
configured in the
SERVER_HOME/lib/com.springsource.kernel.launch.properties
file, that will also be set on the user region's
nested framework.

initialArtifacts Specifies the artifacts that dm Server deploys
into the user region when the server starts.
SpringSource dm Server performs dependency
satisfaction when it deploys these artifacts.
This means that you only need to list the
top-level artifacts that you care about; dm
Server automatically installs any other
artifacts upon which they depend from the
repository.

You can use this property to convert a dm
Server into a dm Kernel by removing the
repository:plan/com.springsource.server.web
plan.

Configuring Authentication

SpringSource dm Server uses the Java Authentication and Authorization Service (JAAS)
framework to authenticate the administration user that connects to dm Servers using the Admin
Console or dm Shell. This section describes how the authentication mechanism is configured by
default, and the files that you need to update if you want to change the administration user,
change their password, and so on.

The
SERVER_HOME/config/com.springsource.kernel.authentication.config
file configures the underlying authentication technology for dm Server. The short file consists of
the following entry:

dm-kernel {
com.springsource.kernel.authentication.KernelLoginModule REQUIRED;

};

76 dm Server User Guide

76 Configuring dm Server

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

The entry is named dm-kernel. This name corresponds to the <Realm> element in the
SERVER_HOME/config/tomcat-server.xml file that configures the JAAS
authentication mechanism for the Catalina service of the Tomcat servlet container. The
dm-kernel entry specifies that the JAAS LoginModule that dm Server uses to authenticate
users is com.springsource.kernel.authentication.KernelLoginModule and
that this KernelLoginModule is required to "succeed" in order for authentication to be
considered successful. The KernelLoginModule succeeds only if the name and password
supplied by the user are the ones it expects. The default administration username/password pair
for dm Server is admin/springsource.

You configure the administration user in the
com.springsource.kernel.users.properties file. The default file for a freshly
installed dm Server is as follows:

##################
User definitions
##################
user.admin=springsource

##################
Role definitions
##################
role.admin=admin

The administration user that connect to the Admin Console and dm Shell must have the admin
role. The preceding file shows how, by default, the admin role is assigned the admin user with
password springsource.

If you want to change the administration user, update the
com.springsource.kernel.users.properties file. For example, if you want the
juliet user, with password supersecret, to be the new adminstration user, update the file
as shown:

##################
User definitions
##################
user.juliet=supersecret

##################
Role definitions
##################
role.admin=juliet

Be sure to restart dm Server after you make this change for it to take effect.

The final file involved in dm Server authentication is
SERVER_HOME/config/com.springsource.kernel.jmxremote.access.properties.
This file specifies the JMX access privileges that the administration user has; by default they are
read and write, as shown in the following listing:

admin=readwrite

The only other value you can enter is readonly, which means that the adminstration user
would only be able to view information using the Admin Console and dm Shell.

Configuring dm Server 77

2.0.1.RELEASE 77

9.2 Configuring Serviceability

The serviceability sub-system of dm Server allows you to gather and view data and information
that you can then use to diagnose problems and failures. Serviceability includes data from:

• Service dumps: Contain a snapshot of all the important state from the running dm Server
instance when an internal failure or thread deadlock is detected.
You configure service dumps for SpringSource dm Server using the
com.springsource.medic.properties file in the SERVER_HOME/config directory. This file
also includes some additional logging configuration.

• Event logs and server/application logging (previously called tracing): Logging support in dm
Server is based on Logback. This means that you now have complete control over the format
of log output and have the complete range of Logback's appenders available for your use.

You configure logging for SpringSource dm Server using the serviceability.xml file in the
SERVER_HOME/config directory. This file is essentially the Logback logback.xml (or
logback-test.xml) configuration file but renamed for dm Server.

For additional conceptual information about the serviceability subsystem, see Chapter 7,
Serviceability.

The com.springsource.medic.properties File

The SERVER_HOME/config/com.springsource.medic.properties file
configures dm Server service dumps and whether you want to capture System.out and
System.err output to your application's trace file.

The service dump support provides an in-memory buffer of log output. Whenever a dump is
triggered this in-memory buffer is written out as part of the dump.

The following table describes the properties you can include in the
SERVER_HOME/config/com.springsource.medic.properties file. This file
configures serviceability properties that dm Server includes in addition to those supplied by the
Logback, configured in the serviceability.xml file.

Table 9.5. Serviceability Properties

Property Description

dump.root.directory Specifies the directory to which dm Server
writes the service dumps. The directory name
is relative to SERVER_HOME.

log.wrapSysOut Specifies whether you want to capture
System.out output from your applications
to the application trace file. The output is
logged by dm Server's root logger, which

78 dm Server User Guide

78 Configuring dm Server

http://logback.qos.ch/

Property Description

captures INFO level and above.

Valid values for this property are true to
capture System.out output, or false to
disable the capture.

For more information, see System.out and
System.err.

log.wrapSysErr Specifies whether you want to capture
System.err output from your applications
to the application trace file. The output is
logged by dm Server's root logger, which
captures INFO level and above.

Valid values for this property are true to
capture System.err output, or false to
disable the capture.

For more information, see System.out and
System.err.

log.dump.level Specifies the log-level of the entries that are
captured in the in-memory buffer.

Valid values of this property are the same as
the log-levels offered by Logback: TRACE,
DEBUG, INFO, WARN and ERROR. For
more details about these levels, see Logback
Architecture.

log.dump.bufferSize Specifies the number of entries will be held in
the in-memory buffer. Once the buffer is full,
it wraps so that oldest entries start to be
overwritten by newer entries; in other words,
the buffer is circular.

log.dump.pattern Specifies the formatting of the entries when
they're written out as part of the service dump.
Use the same pattern layout as for Logback
logs; see Layouts in the Logback
documentation.

The following sample com.springsource.medic.properties is from a
freshly-installed dm Server:

dump.root.directory=serviceability/dump
log.wrapSysOut=true
log.wrapSysErr=true
log.dump.level=DEBUG

Configuring dm Server 79

2.0.1.RELEASE 79

http://logback.qos.ch/manual/architecture.html
http://logback.qos.ch/manual/architecture.html
http://logback.qos.ch/manual/layouts.html

log.dump.bufferSize=10000
log.dump.pattern=[%d{yyyy-MM-dd HH:mm:ss.SSS}] %-28.28thread %-64.64logger{64} %X{medic.eventCode} %msg %ex%n

The serviceability.xml File

Logging support in dm Server is based on Logback, which is a successor of the log4j project.
The Logback logging framework is faster, more reliable, and easier to use than log4j and other
logging systems.

You configure logging for SpringSource dm Server using the
SERVER_HOME/config/serviceability.xml file. This file is the standard Logback
logback.xml or logback-test.xml configuration file, but renamed for dm Server due to
internal requirements.

The following listing shows the default serviceability.xml file in a freshly-installed dm
Server; see the text after the listing for a brief overview of the file:

<configuration>

<appender name="SIFTED_LOG_FILE" class="ch.qos.logback.classic.sift.SiftingAppender">
<discriminator>

<Key>applicationName</Key>
<DefaultValue>dm-server</DefaultValue>

</discriminator>
<sift>

<appender name="${applicationName}_LOG_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>serviceability/logs/${applicationName}/log.log</file>
<rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">

<FileNamePattern>serviceability/logs/${applicationName}/log_%i.log</FileNamePattern>
<MinIndex>1</MinIndex>
<MaxIndex>4</MaxIndex>

</rollingPolicy>
<triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">

<MaxFileSize>10MB</MaxFileSize>
</triggeringPolicy>
<layout class="ch.qos.logback.classic.PatternLayout">

<Pattern>[%d{yyyy-MM-dd HH:mm:ss.SSS}] %-28.28thread %-64.64logger{64} %X{medic.eventCode} %msg %ex%n</Pattern>
</layout>

</appender>
</sift>

</appender>

<appender name="LOG_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>serviceability/logs/log.log</file>
<rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">

<FileNamePattern>serviceability/logs/log_%i.log</FileNamePattern>
<MinIndex>1</MinIndex>
<MaxIndex>4</MaxIndex>

</rollingPolicy>
<triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">

<MaxFileSize>10MB</MaxFileSize>
</triggeringPolicy>
<layout class="ch.qos.logback.classic.PatternLayout">

<Pattern>[%d{yyyy-MM-dd HH:mm:ss.SSS}] %-28.28thread %-64.64logger{64} %X{medic.eventCode} %msg %ex%n</Pattern>
</layout>

</appender>

<appender name="EVENT_LOG_STDOUT" class="com.springsource.osgi.medic.log.logback.ReroutingAwareConsoleAppender">
<layout class="ch.qos.logback.classic.PatternLayout">

<Pattern>[%d{yyyy-MM-dd HH:mm:ss.SSS}] %-28.28thread <%X{medic.eventCode}> %msg %ex%n</Pattern>
</layout>

</appender>

<appender name="EVENT_LOG_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>serviceability/eventlogs/eventlog.log</file>
<rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">

<FileNamePattern>serviceability/eventlogs/eventlog_%i.log</FileNamePattern>
<MinIndex>1</MinIndex>
<MaxIndex>4</MaxIndex>

</rollingPolicy>
<triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">

<MaxFileSize>10MB</MaxFileSize>
</triggeringPolicy>
<layout class="ch.qos.logback.classic.PatternLayout">

<Pattern>[%d{yyyy-MM-dd HH:mm:ss.SSS}] %-28.28thread <%X{medic.eventCode}> %msg %ex%n</Pattern>

80 dm Server User Guide

80 Configuring dm Server

http://logback.qos.ch/

</layout>
</appender>

<logger level="INFO" additivity="false" name="com.springsource.osgi.medic.eventlog.localized">
<appender-ref ref="EVENT_LOG_STDOUT" />
<appender-ref ref="EVENT_LOG_FILE" />

</logger>

<logger level="INFO" additivity="false" name="com.springsource.osgi.medic.eventlog.default">
<appender-ref ref="SIFTED_LOG_FILE" />
<appender-ref ref="LOG_FILE" />

</logger>

<root level="WARN">
<appender-ref ref="SIFTED_LOG_FILE" />
<appender-ref ref="LOG_FILE" />

</root>

</configuration>

Logback allows dm Server to use logger, appender, and layout objects to log messages according
to message type and level and to format these messages and define where they are written. The
default serviceability.xml file shown above includes four appenders and three loggers
(two user and one root.)

The main information to get from this file is that dm Server writes log messages to four different
locations that map to the four appenders:

• The SIFTED_LOG_FILE appender logs both global and application-specific messages to the
SERVER_HOME/serviceability/logs/applicationName/log.log file, where
applicationName refers to the name of the application. The log messages for the dm
Server itself are logged to the
SERVE_HOME/serviceability/logs/dm-server/log.log file. Because this
appender creates different log files for each application, it is called a sifting appender.

When dm Server creates the first log file, it calls it log.log; however, when this file reaches
a size of 10MB, dm Server creates a new log file called log_1.log, and so on up to 4. At
that point, the cycle starts again and dm Server overwrites the existing log.log. This is
called its rolling policy.

The <Pattern> element defines the format of each log message; messages include the
timestamp, the thread that generated the log message, the context-specific event code, and a
stack trace of the exception, if any. For example:

[2008-05-15 09:09:46.940] server-dm-2
org.apache.coyote.http11.Http11Protocol I Initializing Coyote
HTTP/1.1 on http-48080

• The LOG_FILE appender is very similar to the first one, but it logs all log messages to the
SERVER_HOME/serviceability/log/log.log file rather than sifting
application-specific messages to their own log file. The rolling policy and message format for
this appender is similar to that of the SIFTED_LOG_FILE appender.

• The EVENT_LOG_STDOUT appender does not log messages to a file, but rather to the console
window from which you started dm Server. The format of the messages is similar to that of the
preceding appenders, although with slightly less information. For example:

[2009-08-25 15:04:57.044] server-dm-7 <OF0001I> OSGi telnet

Configuring dm Server 81

2.0.1.RELEASE 81

console available on port 2401.

• The EVENT_LOG_FILE appender logs only important events to the
SERVER_HOME/serviceability/eventlogs/eventlog.log file, and thus the
volume of information is much lower than with the first two appenders. The rolling policy for
the event log is the same as with the first two appenders, but the format of the messages is
similar to that of the EVENT_LOG_STDOUT appender.

The loggers and root logger specify the level of log that is written for each of the referenced
appenders.

Typically, the default logging configuration as specified by the serviceability.xml file is
adequate for all dm Server environments. However, if you want to customize the logging
framework even further, you can edit this file as well as the
com.springsource.medic.properties.. See the logback documentation for detailed
information about the architecture and the configuration of Logback.

9.3 Configuring the Embedded Tomcat Servlet
Container

SpringSource dm Server embeds an OSGi-enhanced version of the Tomcat Servlet Container in
order to provide support for deploying Java EE WARs and Web Bundles. You configure the
embedded Servlet container using the standard Apache Tomcat configuration. The main
difference is that the configuration file is called tomcat-server.xml rather than
server.xml. As with the other dm Server configuration files, the tomcat-server.xml
file is located in the $SERVER_HOME/config directory.

The following listing displays the default configuration distributed with the dm Server; for
clarity, the listing does not include the standard Apache License.

<?xml version='1.0' encoding='utf-8'?>
<Server port="8005" shutdown="SHUTDOWN">

<Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" />
<Listener className="org.apache.catalina.core.JasperListener" />
<Listener className="org.apache.catalina.mbeans.ServerLifecycleListener" />
<Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener" />

<Listener className="com.springsource.server.web.tomcat.ServerLifecycleLoggingListener"/>

<Service name="Catalina">
<Connector port="8080" protocol="HTTP/1.1"

connectionTimeout="20000"
redirectPort="8443" />

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="config/keystore"
keystorePass="changeit"/>

<Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />

<Engine name="Catalina" defaultHost="localhost">

<Realm className="org.apache.catalina.realm.JAASRealm" appName="dm-kernel"
userClassNames="com.springsource.kernel.authentication.User"
roleClassNames="com.springsource.kernel.authentication.Role"/>

82 dm Server User Guide

82 Configuring dm Server

http://logback.qos.ch/manual/index.html
http://tomcat.apache.org/

<Host name="localhost" appBase="webapps"
unpackWARs="true" autoDeploy="true"
xmlValidation="false" xmlNamespaceAware="false">

<Valve className="org.apache.catalina.valves.AccessLogValve"
directory="serviceability/logs/access"
prefix="localhost_access_log." suffix=".txt" pattern="common"
resolveHosts="false"/>

<Valve className="com.springsource.server.web.tomcat.ApplicationNameTrackingValve"/>
</Host>

</Engine>
</Service>

</Server>

Description of the Default Apache Tomcat Configuration

The following bullets describe the main elements and attributes in the default
tomcat-server.xml file; for details about updating this file to further configure the
embedded Apache Tomcat server, see the Apache Tomcat Configuration Reference.

Relative paths

If the configured path to a directory or file does not represent an absolute path, dm
Server typically interprets it as a path relative to the SERVER_HOME directory.

• The root element of the tomcat-server.xml file is <Server>. The attributes of this
element represent the characteristics of the entire embedded Tomcat servlet container. The
shutdown attribute specifies the command string that the shutdown port number receives via
a TCP/IP connection in order to shut down the servlet container. The port attribute specifies
the TCP/IP port number that listens for a shutdown message.

• The <Listener> XML elements specify the list of lifecycle listeners that monitor and
manage the embedded Tomcat servlet container. Each listener class is a Java Management
Extensions (JMX) MBean that listens to a specific component of the servlet container and has
been programmed to do something at certain lifecycle events of the component, such as before
starting up, after stopping, and so on.

The first four <Listener> elements configure standard Tomcat lifecycle listeners. The
listener implemented by the
com.springsource.server.web.tomcat.ServerLifecycleLoggingListener
class is specific to SpringSource dm Server and manages server lifecycle logging.

• The <Service> XML element groups together one or more connectors and a single engine.
Connectors define a transport mechanism, such as HTTP, that clients use to to send and
receive messages to and from the associated service. There are many transports that a client
can use, which is why a <Service> element can have many <Connector> elements. The
engine then defines how these requests and responses that the connector receives and sends are
in turn handled by the servlet container; you can defined only a single <Engine> element for
any given <Service> element.

The sample tomcat-server.xml file above includes three <Connector> elements: one
for the HTTP transport, one for the HTTPS transport, and one for the AJP transport. The file

Configuring dm Server 83

2.0.1.RELEASE 83

http://tomcat.apache.org/tomcat-6.0-doc/config/index.html

also includes a single <Engine> element, as required.

• The first connector listens for HTTP requests at the 8080 TCP/IP port. The connector, after
accepting a connection from a client, waits for a maximum of 20000 milliseconds for a request
URI; if it does not receive one from the client by then, the connector times out. If this
connector receives a request from the client that requires the SSL transport, the servlet
container automatically redirects the request to port 8443.

• The second connector is for HTTPS requests. The TCP/IP port that users specify as the secure
connection port is 8443. Be sure that you set the value of the redirectPort attribute of
your non-SSL connectors to this value to ensure that users that require a secure connection are
redirected to the secure port, even if they initially start at the non-secure port. The
SSLEnabled attribute specifies that SSL is enabled for this connector. The secure
attribute ensures that a call to request.isSecure() from the connecting client always
returns true. The scheme attribute ensures that a call to request.getScheme() from
the connecting client always returns https when clients use this connector.

The maxThreads attribute specifies that the servlet container creates a maximum of 150
request processing threads, which determines the maximum number of simultaneous requests
that can be handled. The clientAuth attribute specifies that the servlet container does not
require a certificate chain unless the client requests a resource protected by a security
constraint that uses CLIENT-CERT authentication.

The keystoreFile attribute specifies the name of the file that contains the servlet
container’s private key and public certificate used in the SSL handshake, encryption, and
decryption. You use an alias and password to access this information. In the example, this file
is SERVER_HOME/config/keystore. The keystorePass attributes specify the
password used to access the keystore.

• The third AJP Connector element represents a Connector component that communicates with
a web connector via the AJP protocol.

• The engine has a logical name of Catalina; this is the name used in all log and error
messages so you can easily identify problems. The value of the defaultHost attribute
refers to the name of a <Host> child element of <Engine>; this host processes requests
directed to host names on this servlet container.

• The <Realm> child element of <Engine> represents a database of users, passwords, and
mapped roles used for authentication in this service. SpringSource dm Server uses an
implementation of the Tomcat 6 Realm interface that authenticates users through the Java
Authentication and Authorization Service (JAAS) framework which is provided as part of the
standard J2SE API.

With the JAASRealm, you can combine practically any conceivable security realm with
Tomcat's container managed authentication. For details, see Realm Configuration.

• The <Host> child element represents a virtual host, which is an association of a network
name for a server (such as www.mycompany.com) with the particular server on which
Catalina is running. The servlet container unpacks Web applications into a directory hierarchy

84 dm Server User Guide

84 Configuring dm Server

http://tomcat.apache.org/tomcat-6.0-doc/realm-howto.html

if they are deployed as WAR files. The xmlValidation attribute specifies that the servlet
container does not validate XML files when parsing them, or in other words, it accepts invalid
XML. The xmlNamespaceAware attribute specifies that the servlet container does not take
namespaces into account when reading XML files.

• Finally, the org.apache.catalina.valves.AccessLogValve valve creates log
files in the same format as those created by standard web servers. The servlet container creates
the log files in the SERVER_HOME/serviceability/logs/access directory. The log
files are prefixed with the string localhost_access_log., have a suffix of .txt, use a
standard format for identifying what should be logged, and do not include DNS lookups of the
IP address of the remote host.

Connector Configuration

The SpringSource dm Server supports the configuration of any connector supported by Apache
Tomcat. See the default configuration above for syntax examples, and for further details on the
configuration properties supported for various <Connector> implementations, consult the
official Tomcat HTTP Connector documentation.

Configuring SSL for Tomcat

The SpringSource dm Server distribution includes a preconfigured
SERVER_HOME/config/keystore file that contains a single self-signed SSL
Certificate. The password for this keystore file is changeit. This keystore
file is intended for testing purposes only. For detailed instructions on how to
configure Tomcat’s SSL support, consult the official Tomcat SSL Configuration
HOW-TO.

Cluster Configuration

SpringSource dm Server supports standard Apache Tomcat cluster configuration. By default,
clustering of the embedded servlet container is disabled, and the default configuration does not
include any clustering information. See Tomcat Clustering/Session Replication HOW-TO for
detailed information about enabling and configuring clustering.

9.4 Configuring the Local Provisioning Repository

You configure the locations that SpringSource dm Server includes in its provisioning repository
by editing the com.springsource.repository.properties file in the
$SERVER_HOME/config directory.

When you specify a property in the file, use the format
repository-name.property=value, where:

Configuring dm Server 85

2.0.1.RELEASE 85

http://tomcat.apache.org/tomcat-6.0-doc/config/http.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/cluster-howto.html

• repository-name refers to the name of the local repository.

• property refers to the name of a particular property.

• value refers to the value of the property.

For example, ext.type=external specifies that the type property of the repository with
name ext is external.

For each specific repository, you configure a number of properties, such as its type (external,
watched, or remote) and its searchpath, watched directory, or URI that specifies the actual
location of the artifacts (OSGi bundles, libraries, PARs, plans, or configuration files.) The
particular properties that configure these options are listed in the table after the example.

The chain property specifies the order in which SpringSource dm Server searches the
searchpaths when it looks for dependencies; the first path listed specifies the first actual directory
that SpringSource dm Server searches, until the last listed path. The chain property uses the
names of the searchpaths as specified in the individual repository properties; for example, in the
property ext.type=external, the name of the repository is ext.

The default repository configuration for a newly installed SpringSource dm Server is as follows:

ext.type=external
ext.searchPattern=repository/ext/{artifact}

usr.type=watched
usr.watchDirectory=repository/usr

chain=ext,usr

The default configuration shown above has two searchpaths corresponding to the two default
sub-directories of the SERVER_HOME/repository directory created when you first install
dm Server: ext and usr. SpringSource dm Server searches each of these searchpaths when
locating entries for inclusion in the repository.

The chain property shows the order in which SpringSource dm Server searches the
searchpaths: first ext and then usr.

The following table lists all the available properties that you can use to describe a named path
and the repository search chain in the com.springsource.repository.properties
file.

Table 9.6. Repository Properties in repository.properties

Property Description

repository-name.type
Specifies the type of path. You can set this
property to one of the following three valid
values:

• external: Specifies that this path points
to a number of directories that satisfy a

86 dm Server User Guide

86 Configuring dm Server

Property Description

given search pattern and are local to the
current SpringSource dm Server instance.
Use the searchPattern property to
specify the directory search pattern.

• watched: Specifies that this path points to
a single directory, local to the current
SpringSource dm Server instance.
SpringSource dm Server regularly scans
watched repositories so it automatically
picks up any changes to the artifacts in the
directory at runtime. Use the
watchDirectory property to specify the
watched directory and the
watchInterval property to specify how
often dm Server checks the directory.

• remote: Specifies that the path points to a
remotely-hosted repository, hosted by a
remote instance of SpringSource dm Server.
Use the uri property to specify the full
URI of the remote repository. You can also
specify the optional
indexRefreshInterval property.

See Watched or External Repository? for
additional information about when to
configure watched or external repositories for
your particular environment.

repository-name.searchPattern
Specifies the pattern that an external
repository uses when deciding which local
directories it should search when identifying
artifacts. Use this property together with
repository-name.type=external.
See Search Paths: Additional Information for
detailed information about specifying a search
pattern.

repository-name.watchDirectory
Specifies the single directory of a watched
repository. You can specify either an absolute
or relative pathname for the directory. If you
specify a relative pathname, it is relative to the
root of the dm Server installation
(SERVER_HOME). Use this property together

Configuring dm Server 87

2.0.1.RELEASE 87

Property Description

with
repository-name.type=watched.

repository-name.watchInterval
Specifies the interval in seconds between
checks of a watched directory by a watched
repository. This property is optional, if it is not
specified the default interval of 5 seconds is
used. Use this property together with
repository-name.type=watched.

repository-name.uri
Specifies the URI of the hosted repository to
which a remote repository connects. The value
of this property takes the following format:

http://host:port/com.springsource.server.repository/remote-repository-name

where:

• host refers to the computer on which the
remote dm Server instance hosts the remote
repository.

• port refers to Tomcat listen port of the
remote dm Server instance which hosts the
remote repository.

• remote-repository-name refers to
the name of the remote repository, as
specified in the
hostedRepository.properties file
of the remote dm Server instance.

Use this property together with
repository-name.type=remote.

repository-name.indexRefreshInterval
Specifies the interval in seconds between
checks by a remote repository that its local
copy of the hosted repository index is
up-to-date (a remote repository acts as a proxy
for a hosted repository and thus it holds a local
copy of the hosted repository’s index). This
property is optional, if it is not specified the
default interval of 5 seconds is used.

Use this property together with
repository-name.type=remote.

88 dm Server User Guide

88 Configuring dm Server

Property Description

Should I Configure a Watched or External Repository?

The main difference between a watched and an external repository is that SpringSource dm
Server regularly scans watched directories and automatically picks up any changed artifacts,
while dm Server scans external directories only at startup, and then only if there is no cached
index available. This means that dm Server always performs a scan of an external repository
when you start the server with the -clean (as this deletes the index) and only scans during a
normal startup if the index isn’t there because, for example, this is the first time you start the
server.

There is a performance cost associated with using a watched repository due to dm Server using
resources to scan the directory at the configured interval. The cost is small if the watched
repository contains just a few artifacts; however, the performance cost increases as the number of
artifacts increases.

For this reason, SpringSource recommends that you put most of your dependencies in external
repositories, even when in development mode. If you make any changes to the artifacts in the
external repositories, remember to restart dm Server with the -clean option so that the server
picks up any changes. Use watched directories for artifacts that you are prototyping, actively
updating, or when adding new dependencies so that dm Server quickly and easily picks them up.
To increase performance even during development, however, you can use an external repository
for most of your dependencies, in particular the ones that are fairly static.

In production environments, where dependencies should not change, SpringSource recommends
that you use only external repositories.

Search Paths: Additional Information

The repository-name.searchPattern and
repository-name.watchDirectory properties specify search paths for external and
watched repositories, respectively, that define a physical location that SpringSource dm Server
searches when looking for a library or bundle dependency. If a search path is relative, its location
is relative to the root of the installation, in other words, the SERVER_HOME directory.

Using Wildcards

Search paths specified with the repository-name.searchPattern property provide
support for wildcards. In the entries above, the path segments surrounded by curly braces, for
example {bundle} and {library}, are wildcards entries for a directory with any name.
Allowing wildcards to be named in this way is intended to improve the readability of search path
configuration.

In addition to supporting the above-described form of wildcards, SpringSource dm Server also

Configuring dm Server 89

2.0.1.RELEASE 89

supports Ant-style paths, that is * and ** can be used to represent any directory and any series
of directories, respectively. For example, repository/usr/{bundle} and
repository/usr/* are directly equivalent.

A common usage of the ** wildcard is to allow dependencies stored in a directory structure of
varying depth, such as a local Maven repository, to be provisioned by the SpringSource dm
Server.

Using System properties

You can use system properties when specifying the values of the
repository-name.searchPattern, repository-name.watchDirectory,
repository-name.watchInterval repository-name.uri, and
repository-name.indexRefreshInterval properties. You reference system
properties as ${system.property.name}; for example, a search path of
${user.home}/repository/bundles references the repository/bundles
directory in the user’s home directory.

Example repository configurations

The following examples provide sample configuration that could be used for some common use
cases.

Add an Ivy cache repository

The following example shows how to add an external repository whose location is actually an
Ivy cache.

ext.type=external
ext.searchPattern=repository/ext/{artifact}

usr.type=watched
usr.watchDirectory=repository/usr

ivy-repo.type=external
ivy-repo.searchPattern=${user.home}/.ivy2/cache/{org}/{name}/{version}/{bundle}.jar

chain=ext,usr,ivy-repo

Add a Maven local repository

The following example shows how to add an external repository whose location is actually a
Maven repository.

ext.type=external
ext.searchPattern=repository/ext/{artifact}

usr.type=watched
usr.watchDirectory=repository/usr

maven-repo.type=external
maven-repo.searchPattern=${user.home}/.m2/repository/**/{bundle}.jar

chain=ext,usr,maven-repo

90 dm Server User Guide

90 Configuring dm Server

Add remote and watched repositories

The following example shows the default
com.springsource.repository.properties file from a freshly-installed dm Server,
but then updated to include new remote and watched repositories. Both of these repositories are
part of the repository chain.

The remote repository is called remote-repo. The URI of the hosted repository from which
remote-repo gets its artifacts is
http://my-host:8080/com.springsource.server.repository/my-hosted-repo;
this means that there is a dm Server instance running on host my-host whose Tomcat server
listens at the default port, 8080, and this server instance hosts a repository called
my-hosted-repo, configured in the hostedRepository.properties file of the
remote server instance. The remote repository checks for changes in the hosted repository every
30 seconds.

The watched repository is called watched-repo and the directory that holds the artifacts is
repository/watched, relative to the installation directory of the dm Server instance. The
server checks for changes in this watched repository every 5 seconds.

ext.type=external
ext.searchPattern=repository/ext/{artifact}

usr.type=watched
usr.watchDirectory=repository/usr

remote-repo.type=remote
remote-repo.uri=http://my-host:8080/com.springsource.server.repository/my-hosted-repo
remote-repo.indexRefreshInterval=30

watched-repo.type=watched
watched-repo.watchedDirectory=repository/watched
watched-repo.watchedInterval=5

chain=ext,usr,remote-repo,watched-repo

9.5 Configuring a Hosted Repository

You configure a dm Server instance to host a repository by editing the
SERVER_HOME/config/com.springsource.repository.hosted.properties
file; remote clients can then access the artifacts in this hosted repository and use them locally.

When you specify a property in the file, use the format
repository-name.property=value, where:

• repository-name refers to the name of the hosted repository.

• property refers to the name of a particular property.

• value refers to the value of the property.

For example, my-hosted-repo.type=external specifies that the type property of the
my-hosted-repository repository is external.

Configuring dm Server 91

2.0.1.RELEASE 91

The following table lists the properties that you can include in the
hostedRepository.properties file.

Table 9.7. Hosted Repository Properties

Property Description

repository-name.type Specifies the type of path of the hosted
repository. All paths are local to the current
dm Server instance. You can set this property
to one of the following valid values:

• external: Specifies that this path points
to a number of directories that satisfy a
given search pattern. Use the
searchPattern property to specify the
directory search pattern.

• watched: Specifies that this path points to
a single directory. SpringSource dm Server
regularly scans watched repositories so it
automatically picks up any changes to the
artifacts in the directory at runtime. Use the
watchDirectory property to specify the
actual watched directory and the
watchInterval property to specify how
often dm Server checks the directory.

See Watched or External Repository? for
additional information about when to
configure watched or external repositories for
your particular environment.

repository-name.searchPattern
Specifies the pattern that an external hosted
repository uses when deciding which local
directories it should search when identifying
artifacts. Use this property when
repository-name.type=external.
See Search Paths: Additional Information for
detailed information about specifying a search
pattern.

repository-name.watchDirectory
Specifies the single directory of a watched
hosted repository. You can specify either an
absolute or relative pathname for the directory.
If you specify a relative pathname, it is
relative to the root of the dm Server
installation (SERVER_HOME). Use this

92 dm Server User Guide

92 Configuring dm Server

Property Description

property when
repository-name.type=watched.

repository-name.watchInterval
Specifies the interval in seconds between
checks of a watched directory by a watched
hosted repository. This property is optional.
Use this property when
repository-name.type=watched.

The following sample shows a
com.springsource.repository.hosted.properties file with a single external
repository called my-hosted-repo with search pattern
SERVER_HOME/repository/hosted/*.

my-hosted-repo.type=external
my-hosted-repo.searchPattern=repository/hosted/*

See Example of watched and remote repositories for details on how a local repository can
remotely access the artifacts in this hosted repository.

Configuring dm Server 93

2.0.1.RELEASE 93

94 dm Server User Guide

94 Configuring dm Server

Appendix A. Event log codes

A.1 Format of the event log codes

Event log codes issued by dm Server have the general syntax <XXnnnnL> where:

XX is a two-letter code (upper-case) identifying the region of the dm Server code
which issued the log message;

nnnn is a four-digit message number; and

L is a single-letter (upper-case) code identifying the level of the message.

The two-letter codes are (this list is not complete):

CC com.springsource.kernel.services.concurrent

DE com.springsource.kernel.deployer.core the Deployer

HD com.springsource.kernel.deployer.hot the Hot Deployer

KD com.springsource.kernel.dm

KE com.springsource.kernel.core the Kernel

OF com.springsource.kernel.osgi Osgi Framework

OP com.springsource.kernel.osgi.provisioning Osgi Provisioning

RP com.springsource.repository the Repository

The four-digit numbers identify the message text (with placeholders for inserted values). These
are not listed here, but can be discovered by examining the files called
EventLogMessages.properties, found in the relevant packages.

The single-digit level code is one of:

E Error level: enabled if level is ERROR.

W Warning level: enabled if level is WARNING or above.

I Info level: enabled if level is INFO or above.

D Debug level: enabled if level is DEBUG or above.

T Trace level: always enabled.

There are never two messages with the same prefix and number, but with different levels.

Appendix B. Known Issues
This section describes two known issues that you might run into, along with corresponding
workarounds.

For the full list of known issues, see the SpringSource Issue Tracker for the dm Server project.
The issues are organized by component as well as by release. You can also use the Issue Tracker
application to enter a new issue if you cannot find an existing issue that describes the problem
you are running into.

B.1 Timeout During Startup Due to Firewall Settings

The dm Server will fail to start correctly if it is prevented from connecting to needed ports by the
firewall. Typically this manifests as error SPPM0003E . Configuring the firewall to allow the
dm Server process to bind to the necessary ports will prevent this error from occurring.

B.2 OutOfMemoryError: PermGen space running on
Sun VM

As a result of Sun Java bug 4957990, the SpringSource dm Server may consume more PermGen
space than expected when running with the server HotSpot compiler. This problem may be
resolved by configuring the JAVA_OPTS environment variable to specify an increased
MaxPermSize, for example -XX:MaxPermSize=128M.

https://issuetracker.springsource.com/browse/DMS
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4957990

Appendix C. Further Reading
SpringSource dm Server Programmer Guide

Spring Framework Reference Guide

Spring Dynamic Modules Reference Guide

The Logback Manual

../../programmer-guide/html/index.html
http://static.springframework.org/spring/docs/2.5.x/reference/index.html
http://static.springframework.org/osgi/docs/current/reference/html/
http://logback.qos.ch/manual

	SpringSource dm Server™ User Guide
	Table of Contents
	1. Installing dm Server
	1.1 Prerequisites
	1.2 Installing from the ZIP Download
	Downloading the ZIP file
	Installing
	Linux
	Microsoft Windows

	1.3 Post-installation steps
	Set environment variable variables
	JAVA_HOME
	SERVER_HOME
	Linux
	Microsoft Windows

	Microsoft Windows - Troubleshooting

	2. Starting and Stopping SpringSource dm Server
	2.1 Starting SpringSource dm Server
	Linux
	Microsoft Windows

	2.2 Starting in Clean Mode
	Linux
	Microsoft Windows

	2.3 Starting in Debug Mode
	Linux
	Microsoft Windows

	2.4 Starting with JMX Access Modifications
	Linux
	Microsoft Windows

	2.5 Starting With a Custom Configuration Directory
	Linux
	Windows

	2.6 Stopping SpringSource dm Server
	Linux
	Microsoft Windows

	2.7 Starting SpringSource dm Server When the Operating System Starts

	3. Overview of the dm Server Kernel and User Region
	3.1 The dm Server Kernel
	3.2 The dm Server User Region

	4. The dm Shell
	4.1 Using the dm Shell
	Available dm Shell Commands

	4.2 dm Shell Command Reference
	exit Command
	bundle Command
	config Command
	package Command
	par Command
	plan Command
	service Command
	install Command
	shutdown Command
	help Command

	5. The Web Admin Console
	5.1 Invoking the Admin Console
	Changing the Admin User

	5.2 Typical Admin Console Use Cases
	Viewing and Managing the Lifecycle of Deployed Artifacts
	Installing a New Artifact
	Viewing Properties of Deployed Configuration Artifacts
	Viewing the Details of Dump Files
	Viewing Overview and Details of the OSGi State

	6. The Provisioning Repository
	6.1 Overview of the Provisioning Repository
	Local Repository Structure
	Installing Artifacts to a Repository

	6.2 Finding and Downloading Bundles from the SpringSource Enterprise Bundle Repository
	6.3 Configuring the repository

	7. Serviceability
	7.1 Event log files
	7.2 Trace (Logging)
	Application Output
	Per-application trace
	System.out and System.err

	7.3 Service Dumps

	8. Working with Applications
	8.1 Deploying Artifacts
	Hot Deploy
	Deploying Using the Admin Console
	What Happens When You Deploy
	Deployment Ordering
	Restrictions

	8.2 Undeploying Artifacts
	Hot Undeploy
	Undeploying Using the Admin Console

	9. Configuring the SpringSource dm Server
	9.1 Configuring the dm Kernel and User Region
	Configuring Deployment
	Configuring the dm Shell
	Configuring the User Region
	Configuring Authentication

	9.2 Configuring Serviceability
	The com.springsource.medic.properties File
	The serviceability.xml File

	9.3 Configuring the Embedded Tomcat Servlet Container
	Description of the Default Apache Tomcat Configuration
	Connector Configuration
	Cluster Configuration

	9.4 Configuring the Local Provisioning Repository
	Should I Configure a Watched or External Repository?
	Search Paths: Additional Information
	Using Wildcards

	Using System properties
	Example repository configurations
	Add an Ivy cache repository
	Add a Maven local repository
	Add remote and watched repositories

	9.5 Configuring a Hosted Repository

	Appendix A. Event log codes
	A.1 Format of the event log codes

	Appendix B. Known Issues
	B.1 Timeout During Startup Due to Firewall Settings
	B.2 OutOfMemoryError: PermGen space running on Sun VM

	Appendix C. Further Reading

