SpringSource dm Server™
Programmer Guide

Ramnivas Laddad
Colin Yates
Sam Brannen
Rob Harrop
Christian Dupuis
Andy Wilkinson

&) spring

u r c

2.0.4.RELEASE

Copyright © SpringSource Inc., 2008

Table of Contents

PIEFACE ... bbbttt a b e renre s %
L. PrEF@QUISITES ...o.eieeeeieiieie ettt sttt sttt e st b e bbbt st e e e e e s et e saennenre s 1
1.1. RUNEIME ENVIFONMENT ..ottt 1
1.2, REFEIEINCES ...ttt ettt st bbbttt et b et e b 1
2. INtrodUCtioN tO OM SEIVEN ..ot 3
2.1 OVEIVIBI .ottt bbb bbb bbbt bt st e et e b et e nbenbenreas 3
2.2. What isthe SpringSource dm SEIVEI? ..o 3
2.3. Why the SpringSource dim SEIVEI? ..o 5
3. Deployment ATCIITECTUIEc..eiuiriieeeeeies ettt 7
3.1. Supported Deployment FOIMELSccoeverirerieieniese e 7
3.2. DEPENENCY TYPES ...eeviieiirieeiiete ettt sttt sttt be sttt e et seesae e 12
3.3. A guideto forming BUNAIES ..o 13
4. DevelOping APPIICALIONScc.oiiiiiiriiieie ettt b 17
4.1. Anatomy Of abUNAIEcooiiee e 17
4.2. Creating PARS @NU WARS ..o 18
4.3. Creating PlanScc.ooiiieieeeses ettt 20
4.4. Creating and Using Configuration Artifactsc.ccoeverenenieninienese e 25
4.5. Programmatic Access to Personality-Specific Featurescccoovvvvenencrennenn 27
4.6. AULOMEALTIC IMPOITSooveeiieieiesie ettt s 28
4.7. Working With dependenCisc.cooireriiieiieere e 29
v AN o) o] 1Yoz (0] 0 1 r='o =SS UT T P R 33
4.9. APPlICALION VEFSIONINGeoueerieieiesiesiesiesieseeee ettt sbe s se e e e see b seesne e 33
5. MIgrating t0 OSGiccuevuerueriirieriieiieieie sttt si et e et sb e be st st e e e e e s e sbesbesbenreas 35
5.1. Migrating Web ApPpPliCaLIONSccoiiriiirerireeee e 35
5.2. Migrating to aPlan OF APAR ... 36
6. Migrating FOIM TAOScoueririeieieiie ettt st sb e b e 39
6.1. Overview of the Form Tags Sample Applicationc.ccocvereriiienenenenereene 41
6.2. FOrM TGS WAR ...t 41
6.3. Form Tags Shared LibrarieSWAR ..o 43
6.4. Form Tags Shared SerViCES WAR ..o s 44
6.5. FOrM TAgS PAR ...t 52
6.6. Summary of the FOrm TagS Migrationccccccevereneneneneneeeeee e 54
6.7. FOrM TagS @S @Plalncceeueeiiiiieie ettt 55
8 oo 1 oo USRS 57
7.1 INSEAHTELION ...ttt b 57
7.2. Running a SpringSource dm Server instance within Eclipse ..., 57
7.3. Bundle and Library ProviSioningccoccoeeerieiiiene e 59
7.4. Setting UP ECHIPSE PrOJECES ..o 60
7.5. Developing OSGi BUNIEScooiiiiiiiieeeee e s 62
7.6. Deploying APPIICALIONScoouiiiiriiriesierieeeee e 65
8. COMMON LIBIariES ..ottt e 67
8.1. Working With HIDEIMELEccooiiiiiieee e 67
8.2. WOrking With DELASOUICESoouiriiriirieriesieseeee et s 67
8.3. Weaving and INSruMENTaiONccooeiirerereeierie e 67

2.0.4.RELEASE

8.4. ISP Tag LIDIaITES ..ottt e 68

O. KNOWN ISSUES ...ttt sttt b et et n e e e be e b e nanenreenneennens 69
9.1. JPA ENLItY SCANNING ...vovveriiriiiieieitesie sttt st st sbe e sne e 69
9.2. ClassNotFoundError When Creating @ ProXycccooevevenenesesiesienie e 69
9.3. Creating proxies with CGLIB for package-protected typescccceverereriennenn 69
9.4. TOMCAL RESIICHIONSvoveiiriieiieieieesie et 69

v Programmer Guide

Preface \Y

Preface

Increasing complexity in modern enterprise applicationsis afact of life. You not only haveto
deal with complex business logic, but also amyriad of other concerns such as security, auditing,
exposing business functionality to external applications, and managing the evolution of that
functionality and technologies. The Spring Framework and Spring Portfolio products address
these needs by offering a Plain-Old Java Object (POJO) based solution that lets you focus on
your businesslogic.

Complex applications pose problems that go beyond using the right set of technologies. Y ou
need to take into account other considerations such as a simplified development process, easy
deployment, monitoring deployed applications, and managing changes in response to changing
business needs. Thisiswhere the SpringSource Application Platform comesinto play. It offersa
simple yet comprehensive platform to develop, deploy, and service enterprise applications. In
this Programmer Guide, we explore the runtime portion of the SpringSource Application
Platform, the SpringSource dm Server, and learn how to develop applications to benefit from its
capabilities.

2.0.4.RELEASE %

Vi

Vi

Programmer Guide

Preface

Prerequisites

1. Prerequisites

1.1 Runtime Environment

The SpringSource dm Server requires Java SE 6 or later to be installed. Javais available from
Sun and elsewhere.

1.2 References

To make effective use of the SpringSource dm Server, you should also refer to the following
guides:

» SpringSource dm Server User Guide

» Spring Dynamic Modules Reference Guide

* Spring Framework Reference Guide

2.0.4.RELEASE

http://java.sun.com/javase/downloads/index.jsp
../../user-guide/html/index.html
http://static.springframework.org/osgi/docs/current/reference/html/
http://static.springframework.org/spring/docs/2.5.x/reference/index.html

Programmer Guide

Prerequisites

Introduction to dm Server 3

2. Introduction to the SpringSource dm
Server

2.1 Overview

In this chapter, we provide an overview of the SpringSource dm Server focusing on what it is,
what benefits it provides to devel opers and administrators, and why you should useit.

2.2 What is the SpringSource dm Server?

The SpringSource dm Server, or dm Server for short, is the runtime portion of the SpringSource
Application Platform. It is alightweight, modular, OSGi-based runtime that provides a complete
packaged solution for developing, deploying, and managing enterprise applications. By
leveraging severa best-of-breed technol ogies and improving upon them, the dm Server offersa
compelling solution to develop and deploy enterprise applications.

What makes up the SpringSource dm Server?
The SpringSource dm Server is built on top of the following core technologies:

* Spring Framework, obviously!

» Tomcat asthe web container.
* OSGi R4.1.
» Equinox asthe OSGi implementation.

* Spring Dynamic Modules for OSGi for working with OSGi in a Spring application.

» SpringSource Tool Suite for developing applications.

 Spring Application Management Suite for monitoring the SpringSource dm Server and the
applications that have been deployed to it.

Note, however, that the SpringSource dm Server isn't just a combination of these technologies.
Rather, it integrates and extends these technologies to provide many features essential for
developing, deploying, and managing today’ s enterprise Java applications.

The following diagram presents a high-level overview of the dm Server’s architecture.

2.0.4.RELEASE 3

http://www.springframework.org/
http://tomcat.apache.org/
http://www.osgi.org/Specifications/HomePage
http://www.eclipse.org/equinox/
http://www.springframework.org/osgi/
http://www.springsource.com/products/sts
http://www.springsource.com/web/guest/products/suite/ams

4 Programmer Guide

At the heart of the SpringSource dm Server is the SpringSource Dynamic Module Kernel
(DMK). The DMK is an OSGi-based kernel that takes full advantage of the modularity and
versioning of the OSGi platform. The DMK builds on Equinox and extends its capabilities for
provisioning and library management, as well as providing core functionality for the dm Server.

To maintain aminimal runtime footprint, OSGi bundles are installed on demand by the DMK
provisioning subsystem. This allows for an application to be installed into a running dm Server
and for its dependencies to be satisfied from an external repository. Not only does this remove
the need to manually install all your application dependencies, which would be tedious, but it
also keeps memory usage to a minimum.

As shown in the figure, SpringSource DMK runs on top of Equinox within a standard Java
Virtual Machine. Above the DMK isalayer of subsystems which contribute functionality to the
dm Server. Subsystems are configured to run for various profiles and typically provide additional
services to the basic OSGi container such as serviceability, management, and
personality-specific deployment.

In the SpringSource dm Server, applications are modular and each module has a personality that

describes what kind of moduleit is: web, batch, web service, etc. The dm Server deploys
modules of each personality in a personality-specific manner. For example, web modules are

4 Introduction to dm Server

Introduction to dm Server 5

configured in Tomcat with web context. Each module in the application can be updated
independently of the other modules whilst retaining the identity of being part of the larger
application. Whatever kind of application you are building, the programming model remains
standard Spring and Spring DM.

Version 2.0.4.RELEASE of the SpringSource dm Server supports the bundle, web, and WAR
personalities, which enable you to build sophisticated web applications. The WAR personality
includes support for standard Java EE WARS, "shared library” WARs, and "shared services'
WARS, each of which will be covered in greater detail in Chapter 3, Deployment Architecture.
Future releases will include support for more personalities such as batch, web services, etc.

2.3 Why the SpringSource dm Server?

Y ou could deploy aweb application in a stand-alone servlet engine or application server. Or you
could even deploy directly in an OSGi container such as Equinox. However, deploying in the
SpringSource dm Server offers a number of key benefits that make it both more appealing and
more suitable for enterprise application devel opment.

Deployment options and migration paths

While many applications deployed in the SpringSource dm Server will take advantage of OSGi
capabilities, not all applications need such sophistication. For example, development teams may
initially choose to continue packaging existing web applications as standard WAR files and then
gradually migrate toward a fully OSGi-based packaging and deployment model. The
SpringSource dm Server makes such migrations easy for developers by supporting multiple
packaging and deployment formats. These formats and migration strategies are discussed in
greater detail in Chapter 5, Migrating to OSGi and Chapter 6, Case study: Migrating the Form
Tags sample application.

Simplified development and deployment of OSGi-based
applications

Prior to the release of the SpringSource dm Server, devel oping and deploying OSGi applications
involved inherent complexity such as.

» Obtaining OSGi bundles for popular Java libraries: For optimal benefits, every technology
you use in an OSGi application must be packaged as OSGi bundles. Currently, thisinvolves
manually converting JAR files into bundles and making sure that any libraries needed by those
bundles are also available as OSGi bundles.

» Package management complexity: OSGi bundles use other bundles through
| mpor t - Package manifest headers. Many applications use a set of common technologies
(e.g., an ORM solution, aweb framework, etc.). Combining these two characteristics leads to
duplicated configuration in the form of repeated and verbose | npor t - Package statements.

2.0.4.RELEASE 5

6 Programmer Guide

* Lack of application-level isolation: In OSGi everything is a bundle, and all bundles share the
same OSGi Service Registry. To highlight how conflicts can arise between applications and
their servicesin this shared service registry, consider the following scenarios.

» Application Aiscomprised of bundles B and C. In a standard OSGi environment, if you
attempt to install two instances of the same version of application A (i.e., two sets of
bundles B and C), a clash will occur, because you cannot deploy multiple bundles with the
same Bundl e- Synbol i cNane and Bundl e- Ver si on combination.

» Application Al iscomprised of bundles B1 and C1. Similarly, application A2 is comprised
of bundles B2 and C2. Each bundle has a unique combination of
Bundl e- Synbol i cNanme and Bundl e- Ver si on. Bundles B1 and B2 both export
service S which isimported by both C1 and C2. In contrast to the previous example, there
is no conflict resulting from duplicate Bundl e- Synbol i cNane/Bundl e- Ver si on
combinations; however, there is a clash for the exported service S. Which service S will
bundles C1 and C2 end up using once they are installed? Assuming bundles B1 and C1 are
intended to work together, you would not want bundle C1 to get areferenceto service S
from bundle B2, because it isinstalled in a different logical application. On the contrary,
you typically want bundle C1 to get areference to service S exported by bundle B1, but in a
standard OSGi environment this may not be the case.

Furthermore, since standard OSGi does not define a notion of an application as a set of bundles,
you cannot deploy or undeploy an application and its constituent bundles as a single unit.

The SpringSource dm Server introduces a number of features to solve these issues:

* A full set of OSGi bundlesfor many popular Javalibraries to get you started quickly with
creating OSGi applications.

* An OSGi library concept that obviates the need to duplicate verbose | npor t - Package
statements.

» The PAR packaging format which offers application-level isolation and deployment.

» The concept of aplan, which isan XML file that lists a collection of bundles that
SpringSource dm Server should load together as a single application. Conceptually, plans are
very like PARs, except that a plan describes the contents of the application rather than a PAR
that actually contains them.

Enhanced diagnostics during deployment and in production

Identifying why an application won’t deploy or which particular library dependencies are
unsatisfied is the cause of many headaches! Similarly, production time errors that don’t identify
the root cause are al too familiar to Java developers. The dm Server was designed from the
ground up to enable tracing and First Failure Data Capture (FFDC) that empower developers
with precise information at the point of failure to fix the problem quickly.

6 Introduction to dm Server

Deployment Architecture 7

3. Deployment Architecture

The SpringSource dm Server offers several choices when it comes to deploying applications.
Each choice offers certain advantages, and it isimportant to understand those in order to make
the right choice for your application. In this chapter, we take a closer ook at the choices offered,
compare them, and provide guidelines in choosing the right one based on your specific needs.

The dm Server supports standard self-contained WAR files thus allowing you to use the
SpringSource dm Server as an enhanced web server. The dm Server also supports the Shared
Libraries WAR format which allows for slimmer WAR files that depend on OSGi bundles
instead of including JAR filesinside the WAR. The Shared Services WAR format allows
developers to further reduce the complexity of standard WARs by deploying services and
infrastructure bundles alongside the WAR. A shared services WAR will then consume the
services published by those bundles. To complete the picture, the dm Server supports the new
OSGi-standard Web Bundle deployment format for web applications that builds on the benefits
provided by a shared services WAR. In addition to this dm Server provides additional
conveniences for devel oping and deploying Spring MV C-based web applications.

For applications consisting of multiple bundles and web applications, plans and the PAR format

are the primary deployment models that take advantage of OSGi capabilities. We will explore all
of these formats and their suitability later in this guide.

3.1 Supported Deployment Formats

The SpringSource dm Server supports applications packaged in the following formats:

1. Raw OSGi Bundles

2. Java EE WAR
3. Web Bundles
4. PAR
5. Plans

When you deploy an application to the dm Server, each deployment artifact (e.g., asingle
bundle, WAR, PAR, or plan) passes through a deployment pipeline. This deployment pipeline
supports the notion of personality-specific deployers which are responsible for processing an
application with a certain personality (i.e., application type). The 2.0.4.RELEASE release of the
dm Server natively supports personality-specific deployers analogous to each of the

af orementioned packaging options. Furthermore, the deployment pipeline can be extended with
additional personality deployers, and future releases of the dm Server will provide support for
personalities such as Batch, Web Services, etc.

Let’stake acloser look now at each of the supported deployment and packaging optionsto

2.0.4.RELEASE 7

8 Programmer Guide

explore which oneis best suited for your applications.

Raw OSGi Bundles

At its core, the SpringSource dm Server is an OSGi container. Thus any OSGi-compliant bundle
can be deployed directly on the dm Server unmodified. You'll typically deploy an application as
asingle bundle or a set of stand-alone bundlesif you'd like to publish or consume services
globally within the container viathe OSGi Service Registry.

WAR Deployment Formats

For Web Application Archives (WAR), the SpringSource dm Server provides support for the
following three formats.

1. Standard WAR

2. Shared Libraries WAR

3. Shared Services WAR

Each of these formats plays a distinct role in the incremental migration path from a standard Java
EE WAR to an OSGi-ified web application.

Standard WAR

Standard WAR files are supported directly in the dm Server. At deployment time, the WAR file
istransformed into an OSGi bundle and installed into Tomcat. All the standard WAR contracts
are honored, and your existing WAR files should just drop in and deploy without change.
Support for standard, unmodified WAR files allows you to try out the SpringSource dm Server
on your existing web applications and then gradually migrate toward the Shared Libraries WAR
and Shared Services WAR formats.

In addition to the standard support for WARSs that you would expect from Tomcat, the dm Server
also enables the following features:

1. Spring-driven load-time weaving (see Section 6.8.4, “L oad-time weaving with AspectJin the
Spring Framework").

2. Diagnostic information such as FFDC (first failure data capture)

The main benefit of this application style is familiarity -- everyone knows how to create aWAR
file! You can take advantage of the dm Server’s added feature set without modifying the
application. The application can also be deployed on other Servlet containers or Java EE
application servers.

Y ou may choose this application style if the application isfairly smple and small. Y ou may also

8 Deployment Architecture

Deployment Architecture 9

prefer this style even for large and complex applications as a starting point and migrate to the
other styles over time as discussed in Chapter 5, Migrating to OSGi .

Shared Libraries WAR

If you have experience with devel oping and packaging web applications using the standard
WAR format, you’re certainly familiar with the pains of library bloat. So, unless you're
installing shared libraries in acommon library folder for your Servlet container, you have to pack
all JARsrequired by your web applicationin/ VEB- | NF/ | i b. Prior to the release of the
SpringSource dm Server, such library bloat has essentially been the norm for web applications,
but now thereis a better solution! The Shared Libraries WAR format reduces your application’s
deployment footprint and eradicates library bloat by allowing you to declare dependencies on
libraries via standard OSGi manifest headers such as| nport - Package and

Requi r e- Bundl e . The dm Server provides additional support for simplifying dependency
management viathe |l nport - Li brary and | nport - Bundl e manifest headers which are
essentially macros that get expanded into OSGi-compliant | npor t - Package statements.

Tip

For detailed information on which libraries are already available, check out the
SpringSource Enterprise Bundle Repository .

Shared Services WAR

Once you'’ ve begun taking advantage of declarative dependency management with a Shared
Libraries WAR, you'll likely find yourself wanting to take the next step toward reaping further
benefits of an OSGi container: sharing services between your OSGi-compliant bundles and your
web applications. By building on the power and simplicity of Spring-DM, the Shared Services
WAR format puts the OSGi Service Registry at your finger tips. As a best practice you'll
typically publish services from your domain, service, and infrastructure bundles via

<osgi : service ... />andthenconsumethem inyour web application’s
ApplicationContext via<osgi : ref erence ... />.Doing so promotes programming to
interfaces and allows you to completely decouple your web-specific deployment artifacts from
your domain model, service layer, etc., and that’s certainly a step in the right direction. Of the
three supported WAR deployment formats, the Shared Services WAR is by far the most
attractive in terms of modularity and reduced overall footprint of your web applications.

WARs and the OSGi Web Container (RFC66)

SpringSource dm Server fully supports the OSGi Web Container (RFC66) standard. In fact, the
reference implementation for RFC66 was developed by SpringSource from an offshoot of the dm
Server codebase. ThisRI isnow fully integrated in dm Server as the basis of the WAR
deployment support.

The Web Container specification introduces the concept of aweb bundle, whichisaWAR that is
also abundle. The specification defines how WAR files are transformed into bundles

2.0.4.RELEASE 9

http://www.springsource.com/repository

10 Programmer Guide

automatically as needed.

The Web Container specification is not yet publicly available, but you can find an introduction to
the Web Container in blog entries written by the dm Server team here and here.

Extensions to the Web Container

SpringSource dm Server provides a variety of extensions to the Web Container that allow you to
construct sophisticated applications. The table below, summarizes the extensions that are
available or in development.

Table 3.1.

Feature Description

Auto-import of system packages All packages exported by the system bundle
are automatically imported by web bundles

Instrumentable ClassL oaders All web bundle ClassL oaders are
instrumentable by Spring’ s load-time weaving
infrastructure.

Support for exploded bundles'WARs Bundles’'WARs in directory form can be
deployed as web bundles

Support for scanning TLDs in dependencies As per the Web Container specification, all
TLDs located inside aweb bundle are located
using the rules defined in the JISP 2.1
specification. In dm Server, the dependencies
of aweb bundle are also scanned for TLDs
following the rules outlined in JSP 2.1

Web Modules

Web Modules have been removed in favor of war files and web bundles following the OSGi
Web Container specification. We believe our users will benefit more from a standard model than
one that is dm Server-specific.

PAR

A PAR isastandard JAR which contains all of the modules of your application (e.g., service,
domain, and infrastructure bundles as well asaWAR or web module for web applications) in a
single deployment unit. This allows you to deploy, refresh, and undeploy your entire application
asasingle entity. If you are familiar with Java EE, it is worth noting that a PAR can be
considered areplacement for an EAR (Enterprise Archive) within the context of an OSGi
container. As an added bonus, modules within a PAR can be refreshed independently and
on-the-fly, for example via the SpringSource dm Server Tool Suite (see Chapter 7, Tooling).

10 Deployment Architecture

http://blog.springsource.com/2009/05/27/introduction-to-the-osgi-web-container/
http://blog.springsource.com/2009/06/01/what-the-osgi-web-container-means-for-dm-server/

Deployment Architecture 11

Many of the benefits of the PAR format are due to the underlying OSGi infrastructure, including:

» Fundamentally modularized applications: instead of relying on fuzzy boundaries between
logical modules in a monolithic application, this style promotes physically separated modules
in the form of OSGi bundles. Then each module may be devel oped separately, promoting
parallel development and |oose coupling.

* Robust versioning of various modules: the versioning capability offered by OSGi is much
more comprehensive than any alternatives. Each module can specify aversion range for each
of its dependencies. Bundles are isolated from each other in such away that multiple versions
of abundle may be used simultaneously in an application.

» Improved serviceability: each bundle may be deployed or undeployed in arunning application.
This allows modifying the existing application to fix bugs, improve performance, and even to
add new features without having to restart the application.

Furthermore, PARSs scope the modules of your application within the dm Server. Scoping
provides both a physical and logical application boundary, effectively shielding the internals of
your application from other PARs deployed within the dm Server. This means your application
doesn’t have to worry about clashing with other running applications (e.g., in the OSGi Service
Registry). Y ou get support for |oad-time weaving, classpath scanning, context class loading, etc.,
and the dm Server does the heavy lifting for you to make all this work seamlessly in an OSGi
environment. If you want to take full advantage of all that the SpringSource dm Server and OSGi
have to offer, packaging and deploying your applications as a PAR isagood choice, although
plans are an even better one, as described in the next section.

OSGi '=multiple JARs

Note that while physically separated modules can, in theory, be implemented simply
using multiple JARs, complex versioning requirements often make thisimpractical.
For example, consider the situation depicted in the diagram below.

» Bundle A depends on version 1.0.0 of bundle B and version 2.0.0 of bundie C.

» Bundle B depends on version 1.0.0 of bundle C.

Suppose that versions 1.0.0 and 2.0.0 of bundle C are neither backward nor forward
compatible. Traditional monolithic applications cannot handle such situations: either
bundle A or bundle B would need reworking which undermines truly independent
development. OSGi’ s versioning scheme enables this scenario to be implemented in a
robust manner. If it is desirable to rework the application to share a single version of
C, then this can be planned in and is not forced.

2.0.4.RELEASE 11

12 Programmer Guide

Plans

A planissimilar to aPAR in that it encapsulates all of the artifacts of your application inasingle
deployment unit. The main difference, however, isthat aplanissimply an XML file that lists the
artifacts of your application; a PAR, by contrast, is an actual JAR file that physically contains the
artifacts. Just like a PAR, you deploy, refresh, and undeploy a plan as a single entity.
SpringSource highly recommends the use of plans for creating applications.

When you create a plan, you can specify that the included bundles and services are in a scope
that isolates them from the rest of SpringSource dm Server and its deployments. This scoping
ensures that the bundles wire to each other and see each other’s services in preference to services
from outside the scope. Scoping also prevents application code from leaking into the global
scope or scope of another application. In addition, a plan can link the lifecycle of agroup of
bundles together atomically, which ensures that install, start, stop, and uninstall eventson a
single artifact in the plan are escalated to al artifactsin the plan. Y ou can, however, disable both
of these features by simply updating an attribute in the plan.

The general benefits of using plans are similar to those of using PARS; see PAR for details. Plans
offer added benefits, however, such as the ability to control the deployment order of your
application: the order in which you list artifactsin the plan’s XML file is the order in which dm
Server deploys them. Additionally, because plans specify the artifacts that make up an
application by reference, it is easier to share content between plans as well as update individual
parts of a plan without having to physically repackage (re-JAR) it.

3.2 Dependency Types

12 Deployment Architecture

Deployment Architecture 13

In an OSGi environment, there are two kinds of dependencies between various bundles: type
dependency and service dependency.

» Typedependency: A bundle may depend on atype exported by another bundle thus creating
atype dependency. Type dependencies are managed through | nport - Package and
Export - Package directivesin the OSGi manifest. This kind of dependency issimilar to a
JAR file using typesin other JAR files from the classpath. However, as we' ve seen earlier,
there are significant differences.

» Service dependency: A bundle may also publish services (preferably using Spring-DM), and
other bundles may consume those services. If two bundles depend on the same service, both
will be communicating effectively to the same object. More specifically, any state for that
service will be shared between al the clients of that service. Thiskind of arrangement is
similar to the commonly seen client-server interaction through mechanisms such as RMI or
Web Services.

3.3 A guide to forming bundles

So what makes a good application suitable for deployment on the SpringSource dm Server?
Since OSGi is at the heart of the dm Server, modular applications consisting of bundles, which
each represent distinct functionality and well-defined boundaries, can take maximum advantage
of the OSGi container’ s capabilities. The core ideas behind forming bundles require following
good software engineering practices. separation of concerns, minimum coupling, and
communication through clear interfaces. In this section, we look at a few approaches that you
may use to create modular applications for SpringSource dm Server deployment. Please consider
the following discussion as guidelines and not as rules.

Bundles can be formed along horizontal slices of layering and vertical slices of function. The
objective isto enable independent development of each bundle and minimize the skills required
to develop each bundle.

For example, an application could have the following bundles: infrastructure, domain,
repository, service, and web as shown in the following diagram.

2.0.4.RELEASE 13

14 Programmer Guide

Each bundle consists of types appropriate for that layer and exports packages and services to be
used by other layers. Let’s examine each bundle in more detail:

Table 3.2. Bundles across layers

Bundles Imported Packages Exported Consumed Published
Packages Services Services

Infrastructure Third-party libraries Infrastructure None None
interfaces

Domain Depends: for example, if JPA Public domain None None

isused to annotate persistent types
types, then JPA packages.

Web | Domain, Service | None | Service beans | None

Service Domain, Infrastructure, Service Repository Service beans

14 Deployment Architecture

Deployment Architecture 15

Bundles Imported Packages Exported Consumed Published
Packages Services Services
Repository interfaces beans
Repository Domain, Third-party libraries, Repository DataSources, Repository
ORM bundles, etc. interfaces ORM beans
session/entity
managers, etc.

Within each layer, you may create bundles for each subsystem representing a vertical slice of
business functionality. For example, as shown in the following figure, the service layer is divided
into two bundles each representing separate business functionalities.

Y ou can similarly separate the repositories, domain classes, and web controllers based on the
businessrole they play.

2.04.RELEASE 15

16

16

Programmer Guide

Deployment Architecture

Developing Applications 17

4. Developing Applications

Applications that take advantage of the OSGi capabilities of the SpringSource dm Server are
typically comprised of multiple bundles. Each bundle may have dependencies on other bundles.
Furthermore, each bundle exposes only certain packages and services. In this chapter, we look at
how to create bundles, import and export appropriate functionality, and create artifacts to deploy
web applications on the SpringSource dm Server.

4.1 Anatomy of a bundle
Tip

Thisis an abbreviated introduction to OSGi bundles. Please refer to the Spring
Dynamic Modules for OSGi documentation for full details.

An OSGi bundleissimply ajar file with metadata that describe additional characteristics such as
version and imported and exported packages.

A bundle exports types and publishes services to be used by other bundles:

» Types. viathe OSGi Export - Package directive,

» Services: viaSpring-DM’s<servi ce ... /> XML namespace element.
A bundle may import types and services exported by other bundles:

» Types. viathe OSGi | nport - Package directive,

e Services: viaSpring-DM’s<r ef erence ... /> XML namespace element.

Let’s see an example from the PetClinic sample application. The following listing shows the
MANI FEST. MF filefor the
org. springframework. petclinic.infrastructure. hsql db bundle.

Mani fest-Version: 1.0

Bundl e- Mani f est Versi on: 2

Bundl e- Name: Petd inic HSQL Dat abase |nfrastructure

Bundl e- Synbol i cNane: org. springfranework. petclinic.infrastructure. hsql db

Bundl e- Version: 1.0

Bundl e- Vendor: SpringSource Inc.

I nport-Library: org.springfranework. spring;version="[2.5,2.6]"

I nport-Bundl e: com springsource. org. apache. commons. dbcp; versi on="[1. 2. 2. osgi, 1.2.2.0sgi]",
com springsource. org. hsql db; version="[1.8.0.9,1.8.0.9]"

I nport - Package: javax. sql

Export - Package: org. springfranework. petclinic.infrastructure

Theor g. spri ngframewor k. petclinic.infrastructure. hsqgl db bundle
expresses its dependencies on thej avax. sql package, the Commons DBCP and HSQLDB
bundles, and the Spring library (we will examine the details of the library artifact in the section

2.0.4.RELEASE 17

http://static.springframework.org/osgi/docs/current/reference/html/
http://static.springframework.org/osgi/docs/current/reference/html/

18 Programmer Guide

called “Defining libraries’). The Commons DBCP bundle isimported at aversion of exactly
1.2.2.0sgi and the HSQL DB bundleisimported at a version of exactly 1.8.0.9. The Spring
library isimported at a version between 2.5 inclusive and 2.6 exclusive.

Note that you do not specify the bundle that will provide the imported packages. The
SpringSource dm Server will examine the available bundles and satisfy the required
dependencies.

Thefollowing osgi - cont ext . xni file from the PetClinic sample's
org. springframewor k. petclinic.repository.jdbc bundledeclaresaservice
published by the bundle and references a service published by another bundle.
<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://wwm. springfranmework. org/ schema/ osgi "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="http://ww. spri ngframewor k. or g/ schema/ beans"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ osg
http://ww. springfranework. org/ schena/ osgi / spri ng-osgi . xsd
http://ww. spri ngfranework. or g/ schena/ beans
http://ww. springfranework. or g/ schena/ beans/ spri ng- beans. xsd" >

<service id="osgiCinic" ref="clinic" interface="org.springframework.petclinic.repository.Clinic" />
<reference id="dataSource" interface="javax.sql.DataSource"/>

</ beans: beans>

Theser vi ce element publishesthecl i ni ¢ bean (aregular Spring bean declared in the
nodul e- cont ext . xm file) and specifies

org. spri ngframework. petclinic.repository. dinic asthetypeof the
published service.

Ther ef er ence elementsdefineadat aSour ce bean that references a service published by
another bundle with aan interface type of j avax. sql . Dat aSour ce.

4.2 Creating PARs and WARs

The SpringSource dm Server supports two OSGi-oriented ways of packaging applications. the
PAR format and application modules (including personality-specific modules). The dm Server
also supports three distinct WAR deployment and packaging formats: standard Java EE WAR,
Shared Libraries WAR, Shared Services WAR.

The dm Server also supports plans as away to describe an application. This method is similar to
aPAR inthat it encapsulates all the artifacts of an application as a single unit, but differsin that
aplan simply liststhe bundlesin an XML file rather than packaging all the bundlesin asingle

JAR file. The use of plans offers additional benefits to using PARs; for this reason, SpringSource
recommends their use. For details, see Creating Plans.

PARs

An OSGi application is packaged as a JAR file, with extension . par . A PAR artifact offers
severa benefits:

* A PAR file has an application name, version, symbolic name, and description.

18 Developing Applications

Developing Applications 19

» The modules of a PAR file are scoped so that they cannot be shared accidentally by other
applications. The scope forms a boundary for automatic propagation of load time weaving and
bundle refresh.

» The modules of a PAR have their exported packages imported by the synthetic context bundle
which is used for thread context class loading. So, for example, hibernate will be able to load
classes of any of the exported packages of the modulesin aPAR file using
Cl ass. f or Nane() (or equivalent).

» The PARfileisvisible to management interfaces.
» The PAR file can be undeployed and redeployed as a unit.

A PAR includes one or more application bundles and its manifest specifies the following
manifest headers:

Table 4.1. PARfile headers

Header Description

Appl i cation- Synbol i cNanme Identifier for the application which, in combination with
Application-Version, uniquely identifies an application

Appl i cati on- Nane Human readable name of the application

Appl i cati on- Versi on Version of the application

Appl i cation-Description Short description of the application

The following code shows an example MANIFEST.MF in a PAR file:

Appl i cation-Synbol i cNane: com exanpl e. shop

Application-Version: 1.0

Appl i cation-Name: Online Shop

Appl i cation-Description: Exanple.coms Online Shopping Application

Web Modules

Asdiscussed earlier, Web Modules are no longer supported in dm Server. Instead, we
recommend that you use Shared Service WARs or Web Bundles that are compliant with the
OSGi Web Container specification.

Migrating to a Web Bundle from a Web Module

To move from a Web Module to a Web Container-compliant Web Bundle you need to follow
these four steps:

1. Removethe Modul e- Type manifest header

2.0.4.RELEASE 19

20 Programmer Guide

2. Replace any Web- Di spat cher Ser vl et Ur | Pat t er ns header with the corresponding
servlet entriesin web. xm

3. Replaceany Web- Fi | t er Mappi ngs header with the corresponding filter entriesin
web. xm

4. Move al content in MODULE- | NF to the root of the WAR

Removing Web- Di spat cher Servl et Url Patt erns

Toremove aWeb- Di spat cher Ser vl et Ur | Pat t er ns header such as
Web- Di spat cher Servl et Url Patterns: *. htm start by declaring a
Di spat cher Servl et inweb. xm :
<servl et>

<servl et - nanme>di spat cher. nyapp</ ser vl et - name>

<servl et-cl ass>or g. spri ngf ramewor k. web. servl et . Di spat cher Servl et </ servl et -cl ass>
</ servlet>

For every mapping inthe Di spat cher Ser vl et Ur | Pat t er ns header, create the
corresponding ser vl et - mappi ng:
<servl et - mappi ng>

<servl et - name>di spat cher. nyapp</ servl et - nane>

<url-pattern>* htnm</url-pattern>
</ servl et - mappi ng>

Removing Web- Fi | t er Mappi ngs

ToremoveaWeb- Fi | t er Mappi ngs header such as\Web- Fi | t er Mappi ngs:
nmyfilter;url-patterns:="*.htni,start by declaring Del egat i ngFi | t er Pr oxy
inweb. xm for each filter listed:

<filter>
<filter-name>nyfilter</filter-nane>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

For every mapping listed for the filter create the corresponding fi | t er - mappi ng:

<filter-mappi ng>
<filter-name>nyfilter</filter-name>
<url-pattern>* htnx/url-pattern>
</filter-mappi ng>

4.3 Creating Plans

Plans are similar to PARs in that they encapsulate the artifacts of an application as a single unit.
As aconsequence, they have similar benefits; for details of the benefits common to PARs and
plans, see PARSs.

Plans have the following additional benefits, which is why SpringSource recommends that you
use plans rather than PARs when defining an application:

20 Developing Applications

Developing Applications 21

» SpringSource dm Server deploys the artifacts in the plan in the order in which they are listed
in the XML file, which gives you complete control over deployment order. With a PAR, the
order of deployment of the included artifacts is not guaranteed.

» Plans describe their contents by reference (using an XML file) as opposed to PARs that are
JAR files that physically contain the included artifacts. For thisreason, it is easier to share
content between plans as well as update individual parts of a plan without having to physically
repackage (re-JAR) it.

* You can enable or disable whether a plan is scoped or atomic; PARs are always scoped and
atomic.

Plans always get their dependencies from the dm Server repository. This means, for example,
that if you drop one of the plan’s dependenciesin the pi ckup directory rather than adding it to
the repository, the plan will fail to deploy because it will not find the dependency.

Creating the Plan XML File

Plansare XML filesthat havea. pl an fileextension, suchasmul ti-arti fact. pl an. The
structure of the XML fileis simple: the root element is <pl an> with attributes specifying the
name of the plan, the version, atomicity, and scoping. Then, for each artifact that makes up your
application, you add a<ar t i f act > element, using its attributes to specify the type of artifact
and its name and version. The following is a simple example of aplan’s XML file:
<?xm version="1,0" encodi ng="UTF-8"?>
<plan nanme="mul ti-artifact.plan" version="1.0.0" scoped="true" atomi c="true"
xm ns="http://ww. springsource. org/ schema/ dm server/ pl an"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="
http://ww. springsource. or g/ schema/ dm server/ pl an
http://ww. springsource. or g/ schema/ dm server/ pl an/ spri ngsour ce-dm ser ver - pl an. xsd" >

<artifact type="configuration" nane="app-properties" version="1.0.0"/>
<artifact type="bundl e" nanme="com springsource. exciting.app" version="[2.0.0, 3.1.0)"/>

</ pl an>

In the preceding example, the name of theplanismul ti-artifact. pl an anditsversionis
1. 0. 0. The plan is both scoped and atomic. The plan contains two artifacts: one is abundle
calledcom spri ngsour ce. exci ti ng. app and the other isa configuration file called
app- properties.

The following table describes the attributes of the <pl an> element.

Table 4.2. Attributes of the <plan> Element

Attribute Description Required?
name Specifies the name of this plan. SpringSource dm Server Yes.

uses the name as one component of the unique identifier

of this plan.
versi on Specifies the version of this plan. Y ou must use OSGi Yes.

version specification syntax, suchas?2. 1. 0.

2.0.4.RELEASE 21

22

Programmer Guide

Attribute

scoped

Description Required?

SpringSource dm Server uses the version as one
component of the unique identifier of this plan.

Specifies whether SpringSource dm Server should Yes.
install the artifacts into plan-specific scope so that only

the application described by this plan has access to the
artifacts. If you disable scoping, then SpringSource dm

Server installs the artifacts into the global scope, which

means they are then available for access by all other

deployed artifacts. Set the attributeto t r ue to enable

scoping or f al se to disableit.

atom c

Specifies whether you want to tie together the lifecycle Yes.
of the artifacts in this plan. Making a plan atomic means

that if you install, start, stop, or uninstall asingle artifact

in the plan, SpringSource dm Server escalates the event

to al artifactsin the plan. Also, in an atomic plan,
SpringSource dm Server prevents artifacts from being in
inconsistent states. For example, if one artifact should

fail to start, then SpringSource dm Server stops all

artifacts in the plan. Set this attribute to t r ue to enable
atomicity or f al se to disableit.

The following table describes the attributes of the<ar ti f act > element.

Table 4.3. Attributes of the <artifact> Element

Attribute

Description Required?

type

namnme

Specifies the type of the artifact. Valid values are: Yes.

* bundl e: Specifiesan OSGi bundle. Use this artifact
type for WAR files.

» confi gurati on: Specifiesthat the artifact isa
configuration file. Configuration files contain
name/value pairs that set initial values for
configuration properties of abundle.

» pl an: Specifies that the artifact is a plan.

* par : Specifiesthat the artifact isa PAR.

Specifies the name of the artifact. Yes.

See Artifact Names for guidelines for determining the
name of an artifact.

22

Developing Applications

Developing Applications 23

Attribute Description Required?

version Specifies the version or range of versions of thisartifact No. If not
that dm Server should ook up in its repositories and specified,
then install and deploy. Y ou must use OSGi version defaultsto O,
specification syntax, suchas[1. 0. 0, 2.0.0). which in OSGi
means O to
infinity, or any
version.

Artifact Names

When you create a plan, you use the nane attribute of the<ar t i f act > element to specify the
name of al the plan’s dependencies. This section describes how to determine the name of an
artifact, which is not always obvious.

Use the following guidelines to determine the name of an artifact:

* Bundle: In this context, a bundle refers to a standard OSGi bundle as well asaWeb
application WAR file. The name of abundleisthe value of the Bundl e- Synbol i cNane
header in the VETA- | NF/ MANI FEST. MF fileof the*. j ar or *. war file. Thefollowing
MANI FEST. MF snippet shows a bundle with name
com springsource. exci ting. app:

Bundl e- Synbol i cNane: com spri ngsource. exci ting. app

If the bundle does not contain a META- | NF/ MANI FEST. MF file, then the name of the
bundleisitsfilename minusthe. j ar or. war extension.

» Configuration File: The name of a configuration file isits filename minus the
. properti es extension.

* Plan: The name of aplanisthe value of the required nane attribute of the <pl an> element
in the plan’s XML file. In the following XML snippet, the plan nameis
mul ti-artifact. pl an:

<?xm version="1.0" encodi ng="UTF-8"?>
<plan nanme="nul ti-artifact.plan" version="1.0.0" scoped="true" atom c="true"
xm ns="http://ww. springsource. org/ schema/ dm server/ pl an"

* PAR: The name of a PAR isthe value of the Appl i cat i on- Synbol i cNane header in the
META- | NF/ MANI FEST. MF file of the* . par file. Thefollowing MANI FEST. MF snippet
shows a PAR withnamecom spri ngsour ce. ny. par:

Appl i cati on- Synbol i cName: com spri ngsource. ny. par

If the PAR does not contain a META- | NF/ MANI FEST. MF file, then the name of the PAR is
its filename minus the . par extension.

2.0.4.RELEASE 23

24 Programmer Guide

Using the Plan

Because aplanisalist of artifacts, rather than a physical file that contains the artifacts, there are
afew additional stepsyou must perform before you deploy it to dm Server.

1. Copy the artifacts that make up the plan to the usr repository, which by default isthe
$DVS_HOVE/ r eposi t ory/ usr directory, where $DMS_HOVE refers to the top-level
installation directory of dm Server. Note that you might have configured the server
differently; in which case, copy the artifacts to your custom repository directory.

2. Restart dm Server.

3. After the server has started, either use the Admin Console to deploy the plan, or manually
deploy it by copying the plan’s XML file into the $DMS_HOVE/ pi ckup directory.

Thisresultsin dm Server deploying the plan with the same semantics as a PAR file.

4. To undeploy the plan, use the Admin Console, or simply delete it from the
$DVS_HOVE/ pi ckup directory.

Plans and Scoping

As described in previous sections, you can specify that a plan be scoped. This means that
SpringSource dm Server installs the artifacts that make up the plan into a plan-specific scope so
that only the application described by the plan has access to the artifacts. If you disable scoping,
then SpringSource dm Server installs the artifacts into the global scope, which means they are
available for access by all other deployed artifacts. This section describes scoping in a bit more
detail. It also describes how you can change the default behavior of scoping, with respect to
services, so that a service that isin a scope can be made globally available.

If abundle in a given scope imports a package and a bundle in the same scope exports the
package, then the import may only be satisfied by the bundle in the scope, and not by any
bundles outside the scope, including the global scope. Similarly, package exports from bundles
in ascope are not visible to bundlesin the global scope.

If abundle in a scope uses Spring DM (or the blueprint service) to obtain a service reference and
abundle in the same scope uses Spring DM (or the blueprint service) to publish a matching
service, then the service reference may only bind to the service published in the scope (and not to
any services outside the scope). Services published by bundlesin a scope are not visible to
bundlesin the global scope.

However, sometimesit is useful to make a service in a scope globally available to artifacts
outside the scope. To do this, publish the service with the

com springsource. servi ce. scope service property set to gl obal . Usethe
<servi ce- properti es> child element of <ser vi ce>, as shown in the following
example:

24 Developing Applications

Developing Applications 25

<service id="publishlntod obal" interface="java.lang. Char Sequence">
<servi ce-properties>
<beans: entry key="com springsource. servi ce.scope" val ue="gl obal" />
</ servi ce-properti es>
<beans: bean cl ass="java.lang. String">
<beans: constructor-arg val ue="foo0"/>
</ beans: bean>
</ service>

4.4 Creating and Using Configuration Artifacts

Applications typically include some sort of configuration data that might change depending on
the environment in which the application is deployed. For example, if an application connects to
a database server using JDBC, the configuration data would include the JDBC URL of the
database server, the JDBC drvier, and the username and password that the application usesto
connect to the database server. Thisinformation often changes as the application is deployed to
different computers or the application moves from the testing phase to the production phase.

SpringSource dm Server provides a feature called configuration artifacts that makes it very easy
for you to manage this configuration data. A configuration artifact is simply a properties file that
ismade available at runtime using the OSGi Conf i gur at i onAdmni n service. When you
create this properties file, you set the values of the properties for the specific environment in
which you are going to deploy your application, and then update the metadata of your Spring
application to use the properties file. Y ou then deploy the application and properties file together,
typically as a plan. SpringSource dm Server automatically creates a configuration artifact from
the properties file, and you can manage the lifecycle of this configuration artifact in the same
way you manage the lifecycle of PARs, bundles, and plans, using both the dm Shell and Admin
Console. Additionally, dm Server subscribes your application for notification of any refresh of
the configuration artifact and the application can then adapt accordingly, which means you can
easily change the configuration of your application without redeploying it.

In sum, configuration artifacts, especially when combined with plans, provide an excellent
mechanism for managing external configuration data for your applications.

The following sections describe the format of the configuration artifact, how to update the Spring
application context file of your application so that it knows about the configuration artifact, and
finally how to include it in a plan alongside your application.

As an example to illustrate the configuration artifact feature, assume that you have a Spring bean
called Properti esCont rol | er whose constructor requires that four property values be
passed to it, as shown in the following snippet of Java code:

@ontroll er
public class PropertiesController {

private final String driverC assNane;
private final String url;

private final String usernane
private final String password

public PropertiesController(String driverC assNanme, String url, String usernanme, String password) {
this.driverC assNane = driverC assNane
this.url = url;

tﬂis.usernane = username

t

i s.password = password

2.0.4.RELEASE 25

26 Programmer Guide

In the preceding example, the Pr oper t i esCont r ol | er constructor requires four property
values: dri ver O assNane, ur | , user nane, and passwor d. Note that the example shows
just one way that a class might require property values; your application may code it another

way.

Additionally, assume that the following snippet of the associated Spring application context
XML file shows how the Pr operti esCont rol | er beanisconfigured:
<bean cl ass="com springsource. configuration. properties.PropertiesController">

<constructor-arg value="${dri verd assNane}"/>

<constructor-arg value="${url}"/>

<constructor-arg val ue="${usernane}"/>

<constructor-arg val ue="${password}"/>
</ bean>

Therest of this section describes how the bean can get these property values using a
configuration artifact.

Creating the Properties File

To create a properties file that in turn will become a configuration artifact when deployed to dm
Server from which a Spring bean, such asthe Pr oper ti esCont r ol | er bean, will get the
actual property values, follow these guidelines:

» Create atext file in which each property islisted as a name/value pair, one pair per line.
Precede comments with a#. For example:

Properties for the com springsource.configuration.properties sanple

driver Cl assNane
url

user nane
passwor d

org.w3. Driver

http://ww. springsource.com
j oe

secret

The example shows four properties whose name correspond to the constructor arguments of
thePr operti esControl | er Spring bean.

» Namethe file anything you want, aslong asit hasa. pr operti es extension, such as
app- properties. properties.

Updating Your Application

To update your application so that it "knows" about the configuration artifact, you update the
application's Spring application context XML file, typically located in the WEB- | NF directory.

You usethe<cont ext : property- pl acehol der > element to specify that you want to use
the dm Server mechanism for substituting values into bean properties. The pr operti es-r ef
attribute of this element pointsto a<osgi - conpendi um cn pr operti es> element which
you use to specify the configuration artifact that contains the property values. Y ou set the value
of theper si st ent - i d attribute of this element equal to the name of the configuration artifact,
which isthe name of the propertiesfile minusthe . pr operti es extension.

26 Developing Applications

Developing Applications 27

The following sample Spring application context XMI file shows everything wired together; only
relevant parts of the file are shown:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="htt p://ww. spri ngf ramewor k. or g/ schema/ cont ext "
xm ns: osgi - conpendi une" ht t p: / / www. spri ngf r amewor k. or g/ schenma/ osgi - conpendi unt
xsi :schemalocation="http://ww. springfranework. or g/ schema/ osg
http://ww. springfranmewor k. or g/ schema/ osgi / spring-osgi - 1. 2. xsd
http://ww. springfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springfranmework. or g/ schema/ cont ext/spring-context-2.5.xsd
http://wwm. springfranmewor k. or g/ schema/ osgi - conpendi um
http://ww. springfranmework. or g/ schema/ osgi - conpendi uni spri ng- osgi - conpendi um 1. 2. xsd" >

<bean cl ass="com springsource. configuration. properties.PropertiesController">
<constructor-arg val ue="${dri verd assNane}"/>
<constructor-arg value="${url}"/>
<constructor-arg val ue="${usernane}"/>
<constructor-arg val ue="${password}"/>
</ bean>
<cont ext: property-pl acehol der properties-ref="confi gAdm nProperties"/>

<osgi - conpendi um cm properties id="confi gAdm nProperties" persistent-id="app-properties"/>
</ beans>

The preceding example shows how theid conf i gAdm nPr operi t es wiresthe

<cont ext : property- pl acehol der > and <osgi - conpendi um cm properties>
elements together. Based on the value of the per si st ent - i d attribute, you must also deploy
apropertiesfile called app- properti es. properti es whichdm Server installsasa
configuration artifact.

Adding the Configuration Artifact to a Plan

Although you can always deploy your application and associated configuration artifact using the
pi ckup directory, SpringSource recommends that you group the two together in a plan, add the
two artifacts to the repository, and then deploy the plan using the pi ckup directory. The
following sample plan includes the two artifacts:

<?xm version="1.0" encodi ng="UTF-8"?>
<pl an name="mul ti-artifact.plan" version="1.0.0"
scoped="fal se" atom c="fal se"
xm ns="http://ww. springsource. org/ schema/ dm server/ pl an"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
http://ww:. springsource. org/ schena/ dm server/ pl an
http://ww. springsource. org/ schema/ dm server/ pl an/ spri ngsour ce-dm server - pl an. xsd" >

<artifact type="configuration" name="app-properties" version="0"/>
<artifact type="bundle" name="com springsource.configuration.properties" version="1.0.0"/>
</ pl an>

For additional information about plans, see Creating Plans.

4.5 Programmatic Access to Personality-specific
Features

2.0.4.RELEASE 27

28 Programmer Guide

Module personalities typically provide automatic access to features specific to the personality via
custom manifest headers or other configuration mechanisms. There may be situations, however,
for which programmatic access to such features is desirable or necessary. This section describes
how to programmatically access personality-specific features from application code in a module.

Programmatic Access to Web Personality Features

Programmatic Access to the WebApplicationContext

The SpringSource dm Server automatically createsaWebAppl i cat i onCont ext for Web
Bundles and WAR files. When used in conjuction with an an auto-configured Spring MV C

Di spat cher Ser vl et , thereis generally no need to access the

WebAppl i cat i onCont ext programmaticaly, since all components of the web application
are configured within the scope of the WebAppl i cat i onCont ext itself. However, if you
wish to accessthe WebAppl i cat i onCont ext you can do so viathe web application’s

Ser vl et Cont ext . The Web Personality subsystem stores the bundle’s

VebAppl i cat i onCont ext inthe ServletContext under the attribute name

"BSN- Appl i cati onCont ext ", where BSNisthe Bundl e- Synbol i cNane of your WAR
or Web Bundle.

Alternatively, since the Web Personality subsystem also stores the

VebAppl i cat i onCont ext under the attribute name with the value of the

WebAppl i cati onCont ext . ROOT_WEB_APPL| CATI ON_CONTEXT_ATTRI BUTE
constant, you may choose to use Spring MV C’s WebA pplicationContextUtils

get WebAppl i cati onCont ext (servl et Cont ext) or

get Requi redWebAppl i cati onCont ext (ser vl et Cont ext) methods to accessthe
VWebAppl i cat i onCont ext without providing an explicit attribute name.

Programmatic Access to the BundleContext
Asrequired by the OSGi Web Container specification, you can access the Bundl eCont ext of

your WAR or Web Bundle viathe web application’s Ser vl et Cont ext . The bundle context is
stored inthe Ser vl et Cont ext under the attribute name osgi - bundl econt ext .

4.6 Automatic Imports

The SpringSource dm Server generates automatic package imports (i.e., viathe
| mpor t - Package manifest header) for various module personalities. This section lists which
packages are automatically generated for each personality.

Automatic Imports for the Web Personality

Asrequired by the OSGi Web Container specification all WARs and Web Bundles will
automatically import the following packages.

28 Developing Applications

Developing Applications 29

j avax. servl et ; versi on="2. 5"

j avax. servlet. http; versi on="2.5"

j avax. servlet.jsp";version="2.1"

j avax.servlet.jsp.el;version="2. 1"

j avax. servl et.jsp.tagext;version="2. 1"
* javax.el";version="1.0"

In addition to the above-described imports, dm Server will also generate automatic imports for
all of the packages that are exported by the system bundle, unless an import for the package
already exists in the artifact’s manifest, or the artifact contains the package, i.e. within

VEB- | NF/ cl asses, orinajar filein \EB- | NF/ | i b. When animport is generated, it is
versioned such that it exactly matches the version or versions of the package that are exported
from the system bundle. For example, a package that’s exported only at version 1. 0. 0 will
generate an import withaversionof [1. 0. 0, 1. 0. 0] , and a package that’ s exported at
verson 1. 0. 0 and version 2. 0. O will generate an import with a version of
[1.0.0,2.0.0].

System Bundle Package Exports

For further details on which packages are exported by the OSGi system bundle,
consult thej ava6- server . profi |l e filelocated inthe SERVER HOVE/ | i b
directory.

4.7 Working with dependencies

Complex enterprise frameworks such a Spring and Hibernate are typically divided into many,
many different packages. Traditionally, if an OSGi bundle wished to make extensive use of such
aframework its manifest would have to import a huge number of different packages. This can be
an error-prone and tedious process. Furthermore, application developers are used to thinking in
terms of their application using a framework, such as Spring, as awhole, rather than along list of
all the different packages that comprise the framework.

The following figure provides a simpleillustration of the complexity of only using
| mport - Package:

2.0.4.RELEASE 29

30 Programmer Guide

M Import-Package [l Export-Package

The SpringSource dm Server reduces the need for long lists of imported packages by introducing
two new manifest headers; | npor t - Bundl e and | nport - Li br ary. Thefollowing figure
provides an illustration of the simplification that these new headers offer:

M Import-Library [Export-Package
O Import-Bundle

Asyou can see, useof | nport - Bundl e and | nport - Li brary canleadto adramatic
reduction in the number of imports that you need to include in an application bundle’ s manifest.
Furthermore, | nport - Bundl e and | nport - Li br ary aresimply aiasesfor

| nport - Package; at deployment timel nport - Bundl e and | nport - Li br ary header
entries are automatically expanded into numerous | npor t - Package entries. This means that
you retain the exact same semantics of using | npor t - Package, without having to go through
the labourious process of doing so.

30 Developing Applications

Developing Applications 31

Importing libraries

A bundle in an application can declare a dependency on alibrary by using the SpringSource dm
Server-specific | mport - Li br ary header. This header specifies acomma-separated list of
library symbolic names and version ranges that determine which libraries are imported. By
default a dependency on alibrary is mandatory but this can be controlled through use of the
resolution directive in exactly the same way asit can with | npor t - Package.

I mport-Library: org.springfranework. spring;version="[2.5.4, 3.0)"
org. aspectj;version="[1.6.0,1.6.0]"; resolution:="optional"

Thisexample | nport - Li br ar y header declares a mandatory dependency on the Spring
library at aversion from 2.5.4 inclusive to 3.0 exclusive. It also declares an optional dependency
on the AspectJ library at exactly 1.6.0.

Importing bundles

A bundle in an application can declare a dependency on a bundle by using the SpringSource dm
Server-specific | mport - Bundl e header. The header specifies a comma-separated list of
bundle symbolic names, version ranges, and scope declarmations that determine which bundles
are imported and the scope of their dependency. By default a dependency on abundleis
mandatory but this can be controlled through use of the resolution directive in exactly the same
way asit can with | nport - Package.

I nport-Bundl e: com springsource. org. apache. conmons. dbcp; versi on="[1. 2. 2. osgi, 1.2.2.0sgi]"

Thisexample | nport - Bundl e header declares a mandatory dependency on the Apache
Commons DBCP bundle at exactly 1.2.2.0sgi.

Scoping Bundles in an Application

When working with a scoped application, such as a PAR file or a plan, you might runinto a
situation where one of the bundlesin the application (cal it bundl eA) depends on another
bundle (bundl eB) that performs a runtime task (such as class generation) that a third bundle
(bundl eC) might need to know about, although bundl eC does not explicitly depend on
bundl| eB.

For example, Hibernate uses CGL 1B (code generation library) at runtime to generate proxies for
persistent classes. Assume that a domain bundle in your application uses Hibernate for its
persistent objects, and thusits| npor t - Bundl e manifest header includes the Hibernate
bundle. Further assume that a separate Web bundle uses reflection in its data-binding code, and
thus needs to reflect on the persistent classes generated by Hibernate at runtime. The Web bundle
now has an indirect dependency on the Hibernate bundle because of these dynamically generated
classes, although the Web bundle does not typically care about the details of how these classes

2.0.4.RELEASE 31

32 Programmer Guide

are persisted. One way to solve this dependency problem isto explicitly add the Hibernate
bundleto thel npor t - Bundl e header of the Web bundle; however, this type of
explicit-specified dependency breaks the modularity of the application and is not a programming
best practice.

A better way to solve this problem is to specify that SpringSource dm Server itself dynamically
import the bundle (Hibernate in the example above) to all bundles in the application at runtime.
You do thisby adding thei nport - scope: =appl i cat i on directive to the

| mpor t - Bundl e header of the bundle that has the direct dependency (the domain bundiein
our example). At runtime, although the Web bundle does not explicitly import the Hibernate
bundle, SpringSource dm Server implicitly importsit and thus its classes are available to the
Web bundle. This mechanism allows you to declare the dependencies you need to make your
application run, without having to make changes to your application that might limit its
flexibility.

The following example shows how to usethei npor t - scope directive with the
| npor t - Bundl e header:

| nport - Bundl e: com springsource. or g. hi bernat e; versi on="[3.2.6.ga, 3.2.6.ga]";inport-scope: =appl i cation

You can aso set thei npor t - scope directive to the (default) value bundl e; in this case, the
scope of the bundleisjust the bundle itself and thus SpringSource dm Server does not perform
any implicit importing into other bundles of the application.

Note that use of thei nport - scope: =appl i cat i on directive of thel nport - Bundl e
header only makes sense when the bundle is part of a scoped application (PAR or plan); if the
bundle is not part of a scoped application, then this directive has no effect.

Finally, becausei nport - scope: =appl i cat i on implicitly adds a bundle import to each
bundle of the PAR or plan, the impact of subsequently refreshing the imported bundleis, in
general, broader than it would have been if you had not used

i mport-scope: =appl i cati on. Thismay well affect the performance of refresh.

Defining libraries

Libraries are defined in asimpletext file, typicaly witha. | i bd suffix. Thisfile identifies the
library and lists all of its constituent bundles. For example, the following is the library definition
for Spring 2.5.4:

Li brary- Synbol i cNane: org. springfranework. spring
Li brary-Version: 2.5.4

Li brary-Nane: Spring Franework

I nport-Bundl e: org. springframework. core; version="[2.5.4,2.5.5)"
org. springfranmewor k. beans; version="[2.5.4,2.5.5)"

or g. springframewor k. context'version:"[2.5.4,2.5.5V'

org. springfranmewor k. aop; version="[2.5.4,2.5.5)"

or g. springframewor k. web; ver si on= [2.5.4,2.5.5)

or g. springfranmewor k. web. servl et ; verS|on [2.5.4,2.5.5)

org. springfranmework. j dbc; verS|on [2.5.4,2.5.5)

or g. springfranewor k. orm ver si on= [2.5.4,2.5.5)

org. springfranmework. transaction; versi on=" [2.5.4,2.5.5r'

org. springfranmewor k. cont ext. support;version="[2.5.4,2.5.5)"
org. springfranmewor k. aspects; version="[2.5.4,2.5.5)"

com springsource. org. aopal | i ance; version="1. 0"

32 Developing Applications

Developing Applications 33

The following table lists al of the headers that may be used in alibrary definition:

Table 4.4. Library definition headers

Header Description
Library-SymbolicName Identifier for the library

Library-Version Version number for the library

Import-Bundle A comma separated list of bundle symbolic names. Each entry may
optionally specify aversion (using thever si on= directive) and
the scope of the import (using thei nport - scope directive).

Library-Name Optional. The human-readable name of the library
Library-Description Optional. A human-readable description of the library

Installing dependencies

Rather than encouraging the packaging of all an application’s dependencies within the
application itself, SpringSource dm Server uses alocal provisioning repository of bundles and
libraries upon which an application can depend. When the SpringSource dm Server encounters
an application with a particular dependency, it will automatically provide, from its provisioning
repository, the appropriate bundle or library.

Making a dependency available for provisioning is ssmply a matter of copying it to the
appropriate location in the dm Server’slocal provisioning repository. By default thisis
SERVER_HOME/ r eposi t ory/ bundl es/ usr for bundles, and

SERVER HOME/ repository/libraries/usr forlibraries. A more detailed discussion of
the provisioning repository can be found in the User Guide.

4.8 Application trace

As described in the User Guide SpringSource dm Server provides support for per-application
trace. SpringSource dm Server provides SLF4Jwith Logback logging for Event Logging and
Tracing. Application traceis configured intheser vi ceabi | i ty. xm file. Seethe User
Guide for more details.

4.9 Application versioning

In much the same way that individual OSGi bundles can be versioned, SpringSource dm Server
allows applications to be versioned. How exactly you do this depends on how you have packaged
the application:

2.0.4.RELEASE 33

../../user-guide/html/index.html
../../user-guide/html/index.html
../../user-guide/html/index.html
../../user-guide/html/index.html

34 Programmer Guide

* If you package your application using a PAR, you version the application by using the
Appl i cati on- Ver si on header in the MANI FEST. MF file of the PAR file.

* If you use a plan to describe the artifacts that make up your application, you version it by
using thever si on attribute of the <pl an> root element of the plan’s XML file.

* If your application consists of asingle bundle, you version it in the standard OSGi way: by
using the Bundl e- Ver si on header of the MANI FEST. MF file of the bundle.

SpringSource dm Server uses an application’ s version to prevent clashes when multiple versions
of the same application are deployed at the same time. For example, the application trace support
described in Section 4.8, “ Application trace”, includes the application’s name and version in the
file path. This ensures that each version of the same application has its own trace or logging file.

34 Developing Applications

Migrating to OSGi 35

5. Migrating to OSGi

Taking on anew technology such as OSGi may seem a bit daunting at first, but a proven set of
migration steps can help ease the journey. Teams wishing to migrate existing applications to run
on the SpringSource dm Server will find that their applications typically fall into one of the
following categories.

* Web Application: for web applications, this chapter provides an overview of the steps
required to migrate from a Standard WAR to a Shared Services WAR. Furthermore, the
following chapter provides a detailed case study involving the migration of the Spring 2.0
Form Tags show case application.

» Anything else: for any other type of application, you will typically either deploy your
application as multiple individual bundles, as asingle PAR file, or as a plan, which isthe
recommended approach for deploying applications on the SpringSource dm Server. See
Section 5.2, “Migrating to aPlan or a PAR” for details.

5.1 Migrating Web Applications

Many applications may start with the standard WAR format for web applications and gradually
migrate to a more OSGi-oriented architecture. Since the SpringSource dm Server offers several
benefits to all supported deployment formats, it provides a smooth migration path. Of course,
depending on your application’s complexity and your experience with OSGi, you may choose to
start immediately with an OSGi-based architecture.

Standard WAR

If you are not yet familiar with OSGi or simply want to deploy an existing web application on
the SpringSource dm Server, you can deploy a standard WAR and leverage the dm Server with a
minimal learning curve. In fact reading the SpringSource dm Server User Guide is pretty much
all that you need to do to get started. Furthermore, you will gain familiarity with the
SpringSource dm Server, while preparing to take advantage of the other formats.

Shared Libraries WAR

The Shared Libraries WAR format is the first step to reaping the benefits of OSGi. In this phase,
you dip your toes into OSGi-based dependency management by removing JAR files from the
WAR and declaring dependencies on corresponding OSGi bundles.

Shared Services WAR

In this phase, you take the next step toward a fully OSGi-based architecture by separating your
web artifacts (e.g., Servlets, Controllers, etc.) from the services they depend on.

2.0.4.RELEASE 35

../../user-guide/html/index.html

36 Programmer Guide

Web Migration Summary

The following diagram graphically depicts the migration path from a Standard WAR to a Shared
Services WAR. Asyou can see, the libraries (libs) move from within the deployment artifact to
the Bundle Repository. Similarly, the services move from within the WAR to external bundles
and are accessed viathe OSGi Service Registry. In addition, the overall footprint of the
deployment artifact decreases as you move towards a Shared Services WAR.

05Gi
Service
Reqgistry

Bundle
Repository

5.2 Migrating to a Plan or a PAR

The first stepsto migrating an existing application to a plan or a PAR are the same: deciding on
the bundles that make up the application and ensuring that their | nport - Package,

| mport-Library,andl nport - Bundl e manifest headers are correct. Once you have the
list of bundles that make up your application, you then decide whether you want to JAR them all
into asingle application file (PAR) or create a plan that simply lists the bundles by reference.
Creating a plan is the recommend way to create an application, although PARs aso have benefits
that might suit your needs better, as described in the section called “Plan or PAR?".

Creating the Application Bundles

36 Migrating to OSGi

Migrating to OSGi 37

When migrating an existing application to the PAR packaging and deployment format or a plan,
you consider modularity as the prime objective. Following the ideas discussed in Section 3.3, “A
guide to forming bundles’, you refactor the application into multiple bundles. Y ou may start
conservatively with a small number of bundles and then further refactor those bundles.

If the original codeis crafted following good software practices such as separation of concerns
and use of well-defined interfaces, migration may involve modifying only configuration and
packaging. In other words, your Java sources will remain unchanged. Even configuration is
likely to change only dlightly.

For example, the following diagram depicts atypica web application that has been refactored
and packaged as a PAR. The blue elements within the Application box constitute the bundles of
the application. Each of these bundles imports types from other bundles within the PAR using

| mport - Package. The green elementsin the left column represent librariesinstalled on the
dm Server. The PAR’s bundles reference these librariesusing | nport - Li br ary. The purple
element in the left column represents a bundle within the dm Server’s bundle repository which is
imported by the DAO bundleusing | npor t - Bundl e. In contrast to atraditional, monolithic
WAR deployment, the PAR format provides both alogical and physical application boundary
and simultaneously allows the application to benefit from both the OSGi container and the
SpringSource dm Server.

Application

Import-Library Import-Package

Plan or PAR?

Once you have refactored your existing application into separate OSGi bundles, you then must
decide whether to package the bundlesinto asingle PAR file or create a plan that lists the
bundles by reference. As described in more detail in preceding sections of this guides, PARs and

2.0.4.RELEASE 37

38 Programmer Guide

plans have similar benefits, such as:

» Scoping

» Atomicity, or the ability to deploy and control the bundles as a single unit
* Versioning

* Improved serviceability

Plans, the method most recommended by SpringSource to create your application, has the
following added benefits:

» Guaranteed order of deployment, based on the order in which they are listed in the plan’s
XML file

» Ease of sharing content between plans and updating individual plans without having to
physically repackage, due to the artifacts being listed by reference.

 Ability to disable scoping and atomicity, if desired.

The main benefit of PARS is that, because they physically contain all the required artifacts, you
know exactly what bundles are deployed when you deploy the PAR file, in contrast to plans that
allow content to be substituted or lost.

For details about creating plans and PARS, see Section 4.3, “ Creating Plans’ and Section 4.2,
“Creating PARs and WARS’, respectively.

38 Migrating to OSGi

Migrating Form Tags 39

6. Case study: Migrating the Form Tags
sample application

In this chapter we will walk through the steps needed to migrate the Form Tags sample
application from a standard Java EE WAR to afully OSGi compliant Shared Services WAR
within aPAR. The migration involves four packaging and deployment formats:

1. Standard WAR

2. Shared Libraries WAR

3. Shared Services WAR

4. PAR with a shared services WAR

Each of these migration steps will produce a web application that can be deployed and run on the
dm Server.

After summarising the process, an example pl an is shown which is another way of packaging
and deploying the application.

The following image displays the directory structure you should have after installing the Form
Tags sample. Note however that the release tag will typically resemble 2. 0. 0. RELEASE.

2.0.4.RELEASE 39

40 Programmer Guide

v [dist
*r formtags-par-1.0.0.BUILD-20080509155958. par
=r formtags-shared-libs-1.0.0.BUILD-20080509155958.war
*r formtags-shared-services-service-1.0.0.BUILD-20080509155958.jar
*r formtags-shared-services-war-1.0.0.BUILD-20080509155958.war
*r formtags-war-1.0.0.BUILD-20080509155958.war
v projects
» [build-formtags
2| build.properties
[build.versions
v [l par
» [org.springframework.showcase.formtags
» [org.springframework.showcase.formtags.domain
“y org.springframework. showcase.formrags. service
» org.springframewark. showcase.formtags.web
README. TXT
v [shared-libs
2 Dfnrmtagf.—shared—lihs
README. TXT
v [shared-services
» [build-shared-services
» [formtags-shared-services-service
» formtags-shared-services-war
» spring-build
v Ewar
» [formtags-war
README. TXT

Thedi st directory contains the distributables, and the pr oj ect s directory contains the source
code and build scripts.

For ssimplicity, this chapter will focus on the distributables—which are built using
Spring-Build—rather than on configuring a project in an IDE.

Tip

1 Pre-packaged distributables are made available inthe di st directory; however, if
you would like to modify the samples or build them from scratch, you may do so
using Spring-Build. Take alook at the READVE. TXT filein each of the folders under
the pr oj ect s directory inthedm ser ver - f or nt ags samples directories for
instructions.

40

Migrating Form Tags

Migrating Form Tags 41

6.1 Overview of the Form Tags Sample Application

The sample that we will be using is the Form Tags show case sample which was provided with
Spring 2.0. The Form Tags application has been removed from the official Spring 2.5.x
distributions; however, sinceit isrelatively simple but still contains enough ingredientsto
demonstrate the various considerations required during a migration, we have chosen to use it for
these exampl es.

The purpose of the Form Tags show case sample was to demonstrate how the Spring specific

f orm tags, released in Spring 2.0, make view development with JSPs and tag libraries easier.
The Form Tags application consists of asingle User Ser vi ce which returnsalist of User s.
Furthermore, the application demonstrates how to list, view, and edit User s in asimple Spring
MYV C based web application using JSP and JSTL.

6.2 Form Tags WAR

We begin with a standard WAR deployment.

Note

The SpringSource dm Server supports the standard Java EE WAR packaging and
deployment format as a first-class citizen, and there are many benefits to deploying a
standard WAR file on the dm Server including, but not limited to: tooling support,
runtime error diagnostics, FFDC (first failure data capture), etc. In addition, support
for standard WAR deployment provides an easy on-ramp for trying out the
SpringSource dm Server with existing web applications.

The following screen shot displays the directory structure of the Form Tags application using the
standard WAR format. As you can see, there is no deviation from the standard structure and
layout, and as you would expect, all of the web application’s third-party dependencies (for
example, Spring. Commons Logging) are packaged as JARSIin VEB- | NF/ | i b.

2.0.4.RELEASE 41

42 Programmer Guide

MName -
[I:] €55
A~ favicon.ico
2 index.jsp
v [META-INF
(| MANIFEST.MF
v [WEB-INF
2 applicationContext.xml
v I:] classes
2 [18n_en GB.properties
2| [18n.properties
> I:] org
2 formtags-serviet.xml
v [jsp
-]

about.jsp
2 form.jsp
2 list.jsp

*r commons-logging.jar
=7]Jstl.jar
*r servlet-api.jar
=/ spring.jar
*s standard.jar
2 web.xml

To deploy this application, simply copy di st/ f or nt ags-war - 2. 0. 0. *. war tothe
SERVER _HOVE/ pi ckup directory for hot deployment.

Y ou should then see the dm Server produce console output similar to the following:
Note

The console output has been reformatted to fit this document.

[2009- 07- 01 14:54:45.135] fs-watcher

<SPDE0048I > Processi ng ' CREATED event for file 'forntags-war-2.0.0. RELEASE. war' .
[2009- 07- 01 14:54:45.797] fs-watcher

<SPDE0010I > Depl oynent of 'forntags-war-2.0.0. RELEASE. war' version '0' conpleted.
[2009- 07- 01 14:54:45.797] Thread- 20

<SPWEO00OI > Starting web bundle '/forntags-war-2.0.0. RELEASE .
[2009-07- 01 14:54: 46.380] Thr ead- 20

<SPWE0001l > Started web bundl e '/forntags-war-2.0.0. RELEASE .

42 Migrating Form Tags

Migrating Form Tags 43

Navigatetohtt p: / /| ocal host : 8080/ plusthe web application context path, which in the
above caseisf or nt ags-war - 2. 0. 0. RELEASE. Thus navigating to

http://1 ocal host: 8080/ f ornt ags-war - 2. 0. 0. RELEASE should render the
sample application’ s welcome page, as displayed in the screen shot below.

: Tip

L For WARSs, the default web context path is the name of the WAR file without the
.war extension. Y ou can optionally specify a context path using the
Web- Cont ext Pat h bundle manifest header, which will be described in further
detail later.

Spring 2.0 form tag showcase application [=]

SpringSource Spring home | Spring forum Dzone.com | Infoq.com

spring2.0 form tags

Potter, Harry
Syt Welcome to this Spring 2.0 showcase application that demonstrates the use of new JSP tags for

Granger, Hermione creating form elements.

New JSP tags in Spring 2.0 Choose an apprentice magician on the left-hand side to continue.

make building forms with
Spring MVC much easier

About

I
Done OG0 @ wNowsunny,20°C Tue:22°C Wed:20°C .y

6.3 Form Tags Shared Libraries WAR

As mentioned above, a standard WAR file typically packages of all its required dependenciesin
VEB- | NF/ | i b. The servlet container will then add all of the JARsin VEB- | NF/ | i b to the
application’ s classpath.

Thefirst step of the migration towards benefiting from an OSGi container isto retrieve the
dependencies from the dm Server’s bundle repository at runtime. This can significantly reduce
the time it takes to build and deploy the application. It also enables the enforcement of policies
regarding the use of third-party libraries.

The way in which dependencies are declared in an OSGi environment is via manifest headersin
abundle’s/ META- | NF/ MANI FEST. MF. As mentioned in Chapter 4, Developing Applications,
there are three ways of expressing dependencies: | npor t - Package, | nport - Bundl e and

| nport-Library.

The Form Tags application uses JSTL standard tag libraries. Thus, you need to choose a JSTL
provider, for example the Apache implementation which comes with the dm Server. To use the
Apache implementation of JSTL, you need to express your dependency as outlined in the

2.0.4.RELEASE 43

44 Programmer Guide

following manifest listing. Becauseit isasingle bundle, | npor t - Bundl e isthe simplest and
therefore preferred manifest header to use.

The Form Tags application requires commons-logging and Spring. It would be very painful to
haveto list all the Spring packages one by one. Equally, considering the number of bundles that
make up the Spring framework, it would be verbose to list each bundle. Therefore

| mport - Li brary isthe preferred approach for expressing the dependency on the Spring
framework.

Tip

How do you determine the name of alibrary definition provided by the SpringSource
dm Server? Use the SpringSource Enterprise Bundle Repository.

Examinethe/ META- | NF/ MANI FEST. MFin/ di st/ f or nt ags- shared- 1| i bs-*. war:

Mani f est-Version: 1.0

Ant - Versi on: Apache Ant 1.

Created-By: 1.5.0_13-119 (Apple Inc.)

Bundl e- Mani f est Ver si on:

Bundl e- Synbol i cNane: org. sprlngfranemork.shomcase.forntags-shared-libs
Bundl e- Vendor: SpringSource |nc.

I nport-Library: org.springfranework. spring;version="[2.5.4,3.1.0)"

I nport-Bundl e: com springsource. org. apache. tagl i bs. st andard; versi on="1
.12

You canseethel nport - Li brary and|l nport - Bundl e directives that instruct the dm
Server to add the appropriate package imports to the bundle classpath used by this WAR file.

Deploying the shared libraries WAR onto the dm Server should result in console output similar
to the following:

Note

The console output has been reformatted to fit this document.

[2009- 07- 01 15: 00: 14. 953] fs-wat cher

<SPDE0048| > Processi ng ' CREATED event for file 'forntags-shared-|ibs-2.0.0. RELEASE. war' .
[2009-07- 01 15: 00: 15. 363] fs-wat cher

<SPDE0010l > Depl oynent of org sprlngfranemork showcase. fornmtags_shared_l i bs' version '2' conpleted.
[2009- 07- 01 15: 00: 15. 364] Thr ead-

<SPWEO00OI > Starting web bundle / forntags-shared-1ibs-2.0.0. RELEASE' .
[2009- 07- 01 15:00: 15. 816] Thread- 20

<SPWEO001l > Started web bundl e '/forntags-shared-1ibs-2.0.0. RELEASE .

Navigatingtoht t p: / /| ocal host : 8080/ f or nt ags- shar ed- | i bs- BUI LDTAG
should render the welcome page. Note that for the pre-packaged distributable, the BUI LDTAG
should be similar to 2. 0. 0. RELEASE; whereas, for alocal build the - BUl LDTAGmay be
completely omitted. Please consult the console output, web-based admin console, or log to
determine the exact context path under which the web application has been deployed.

6.4 Form Tags Shared Services WAR

44 Migrating Form Tags

http://www.springsource.com/repository

Migrating Form Tags

The next step in the migration is to deploy the services as a separate OSGi bundle which the
WAR then references. The Form Tags sample has asingle service User Manager .

This scenario has two separate deployables, the ser vi ce bundle and the WAR file. The
following image shows the two separate source trees:

2.0.4.RELEASE

45

45

46

Programmer Guide

(%~ = 0O)

b 2 G @
ormtags-shared-services

v E;-EFormtags.—s.hared—s.ervice—service
¥ # src/main/java
| Lﬁ arg.springframework.showcase. formtags.domain
| ﬁ arg.springframework.showcase formtags.service
[ﬁ arg.springframework.showcase. formtags.service.nternal
v = src/main/resources
¥ [= META-INF
¥ [= spring
|E| module-context.aml
EI asgi-contextaml
MANIFEST.MF
= srcftest/java
= sreftest/resources
b = Bundle Dependencies [SpringSource AP v1.0]
b B JRE System Library [JVM 1.5.0 (MacOS X Default)]
B = settings
b = src
B = target
|E| «classpath
EI project
springBeans
£ build.xml
@ iyl
v E.EE formtags-shared-service-war
¥ & src/main/java
[ﬁ arg.springframework.showcase.formtags.validation
[ﬁ org.springframework.showcase. formtags.web
> srcfmain/resources
= sreftestjjava
= srcftest/resources
¥ [src/main/webapp
¥ (= META-INF
B = spring
MANIFEST.MF
¥ [= WEB-INF
B = jsp
> lib
> = tid
@ applicationContextxml
@ formtags-servietxml
@ web.soml

laln(

46

Migrating Form Tags

Migrating Form Tags 47

Note
Note that the WAR does not contain the. domai n or . ser vi ce packages as these
will be imported from the separate service bundle.

The Service Bundle

The responsibility of the first bundle (f or nt ags- shar ed- servi ces- servi ce)isto
provide the API of the formtags service. Thisincludes both the domain and the service API. In
the same way that imports are defined in the/ META- | NF/ MANI FEST. MF, so are exports. The
following isthe/ META- | NF/ MANI FEST. MF listing from the service bundle.

Mani f est-Version: 1.0

Ant - Ver si on: Apache Ant 1.7.0

Created-By: 1.5.0_13-119 (Apple Inc.)

Bundl e- Mani f est Ver si on: 2

Bundl e- Nane: FornTags Service (and inplenentation)

Bundl e- Synbol i cNane: org. spri ngfranewor k. showcase. f or nt ags. servi ce-sha
red-services

Bundl e- Vendor: SpringSource |nc.

Export - Package: org. springfranewor k. showcase. f ornt ags. servi ce, org. spri
ngf ramewor k. showcase. f or nt ags. domai n

I nport-Library: org.springfranework. spring;version="[2.5.4,3.1.0)"

The symbolic name of thisbundleis

or g. spri ngframewor k. showcase. f or nt ags. servi ce-shar ed- servi ces.
Note that the name of the bundle typically describes the package that the bundle primarily
exports. If you take alook at ther eposi t or y/ bundl es/ ext inthedm Server directory,
you'll seethat names are amost always indicative of the contents of the bundle. For this
example, however, we have also appended "- shar ed- ser vi ces" in order to avoid possible
clashes with other bundle symbolic names. Y ou will see later that the PAR also contains a
service bundle.

Note

In OSGi, the combination of Bundl e- Synbol i cNanme and Bundl e- Ver si on is
used to uniquely identify a bundle within the OSGi container. Furthermore, when you
deploy abundle to the SpringSource dm Server, for example viathe pi ckup
directory, abundle’ sfilename is also used to uniquely identify it for the purpose of
supporting hot deployment viathe file system.

Aswell as exporting types (i.e. the domain classes and service API), the service bundle also
publishes an implementation of the User Manager . The actual implementation is
St ubUser Manager ; however, that should remain an implementation detail of this bundle.

The fact that this bundle publishes a service is not captured in the

/ META- 1 NF/ MANI FEST. MF, asitisa Spring-DM concept. The following image is of
src/ mai n/ resour ces/ spring.

2.0.4.RELEASE 47

48 Programmer Guide

o Name .

2| build.xml
g ivy.xml
v [l src
v [main
[E java
v [resources
v [META-INF
|| MANIFEST.MF
v E spring
€] module-context.xml|
¥ osgi-context.xml

[E test
. > E target

-
Y

Asyou can see there are two Spring configuration files: nodul e- cont ext . xnl and
osgi -cont ext . xm .

Tip

These names are abitrary; however, they follow an informal convention:

nodul e- cont ext . xm typically bootstraps the Spring context (usually delegating
to smaller fine grained context files inside another directory), whilst

osgi - cont ext . xm contains al the OSGi service exports and references.

Thefollowing isalisting of nodul e- cont ext. xmi .

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xml ns="http://ww. spri ngframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
http://ww. springfranmewor k. or g/ schema/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd" >

<bean id="user Manager"))
cl ass="org. spri ngfranewor k. showcase. f or nt ags. servi ce. i nt ernal . St ubUser Manager "/ >

</ beans>

Asyou can see, this simply defines abean called user Manager . Thefollowing isalisting of
osgi - cont ext . xnl .

48 Migrating Form Tags

Migrating Form Tags 49

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans
xm ns="http://ww. springframework. org/ schema/ osgi "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="http://ww. spri ngframewor k. or g/ schema/ beans"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ osg
http://ww. spri ngfranework. org/ schena/ osgi / spri ng-osgi . xsd
http://ww. spri ngfranework. or g/ schema/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd" >

<servi ce ref="user Manager")
interface="org. springfranmework. showcase. f ornt ags. servi ce. User Manager "/ >

</ beans: beans>

This single bean definition exportsthe user Manager defined in nodul e- cont ext . xm to
the OSGi service registry and makes it available under the public
org. springfranmewor k. showcase. f or nt ags. servi ce. User Manager API.

The service bundle should now be ready to deploy on the dm Server. So copy
[di st/ forntags-shared-services-servi ces* tothe SERVER _HOVE/ pi ckup
directory. Output similar to the following should appear in the dm Server’s console:

Note

The console output has been reformatted to fit this document.

[2009- 07- 01 15: 05: 03.511] fs-watcher
<SPDE0048| > Processing ' CREATED event for file 'forntags-shared-services-service-2.0.0. RELEASE. jar'
[2009- 07- 01 15: 05: 03. 688] fs-watcher
<SPDE0010l > Depl oynment of 'org.springframework. showcase. f ornt ags. servi ce_shared_services' version '2.0.0. RELEASE co

Accessing the Service and Types from the WAR

The WAR file now needs to access the types and service exported by the service bundle. The
following listing isthe WAR’s/ META- | NF/ MANI FEST. M- which imports the types exported
by the service bundle. Thel nport - Bundl e statement has also been extended to import

or g. spri ngframewor k. osgi . cor e, which is hecessary in order to load an OSGi-enabled
WebAppl i cat i onCont ext .

Mani fest-Version: 1.0

Ant - Ver si on: Apache Ant 1.7.0

Created-By: 1.5.0_13-119 (Apple Inc.)

Bundl e- Mani f est Versi on: 2

Bundl e- Synbol i cName: org. spri ngfranmewor k. showcase. f or nt ags. web- shar ed-
services

Bundl e- Vendor: SpringSource |nc

I nport - Package: org. springfranework. showcase. f ornt ags. donai n, org. sprin
gf ramewor k. showcase. f or nt ags. servi ce, com springsource. server.web. dmversion="[1.0,2.1)"
I nport-Library: org.springfranework. spring;version="[2.5.4,3.1.0)"

I nport-Bundl e: com springsource. org. apache. t agl i bs. st andar d; ver si on="1
.1. 2", org. springfranework. osgi . core

In addition to importing the exported types of the service bundle, the WAR must also obtain a
reference to the User Manager published by the service bundle. The following image shows
the directory structure of the Shared Services WAR.

2.0.4.RELEASE 49

50 Programmer Guide

Mamme L
2| build.xmil
2 jyy.xml

v [l src
v [main
> [:Ijava
v [resources
2 j18n_en_GB.properties
2 j18n.properties
v [:Iwel:-app
» [l css
favicon.ico
g index.jsp
v [META-INF
|| MANIFEST.MF
v [0 WEB-INF
2 applicationContext.xml
g formtags-servlet.xml

» Bl jsp
2 web.xml
[2 [:I test

Asyou can see in the above image, the Form Tags Shared Services WAR’s

[VEEB- | NF/ web. xm directory contains a standard web. xm deployment descriptor,
appl i cati onCont ext . xm which defines the configuration for the root

WebAppl i cati onCont ext,andf or nt ags- ser vl et. xm which definesthe
configuration specific to the configured formtags Di spat cher Ser vl et .

Asistypical for Spring MV C based web applications, you configure a

Cont ext Loader Li st ener inweb. xm toload your root WebAppl i cat i onCont ext ;
however, to enable your WebAppl i cat i onCont ext to be ableto reference services from the
OSGi Service Registry, you must explicitly set the cont ext Cl ass Servlet context parameter
to the fully qualified class name of aConf i gur abl eWebAppl i cat i onCont ext whichis
OSGi-enabled. When deploying Shared Services WARSs to the SpringSource dm Server, you
should use

com springsource. server.web. dm Ser ver Osgi Bundl exXm WebAppl i cat i onCont ext .
Thiswill then enable the use of Spring-DM’s<r ef erence ... /> withinyour root
WebAppl i cati onCont ext (i.e,inappl i cati onCont ext. xmnl). Thefollowing listing
isan excerpt from/ VEB- | NF/ web. xm .

<cont ext - par anp
<par am nane>cont ext C ass</ par am name>

<param val ue>com springsour ce. server.webh. dm Ser ver Gsgi Bundl eXm WebAppl i cati onCont ext </ par am val ue>
</ cont ext - par an®>

<l i stener>

50 Migrating Form Tags

Migrating Form Tags 51

<l istener-class>org. springframework. web. cont ext. Cont ext Loader Li stener</|istener-class>
</l|istener>

The Form Tags Shared Services WAR containsa/ V.EB- | NF/ appl i cat i onCont ext . xm
file which isthe default configuration location used to create the root
WebAppl i cat i onCont ext for Spring MVC’'s Cont ext Loader Li st ener.

Note

As aready mentioned, in the OSGi world, bundle configuration takes place in the
root / META- | NF/ directory. Typicaly Spring-DM powered configuration files will
livethereaswell (e.g.,in/ META- 1 NF/ spri ng/ *. xm). InaWAR, however, the
root WebAppl i cat i onCont ext loaded by Cont ext Loader Li st ener and
the Di spat cher Ser vl et’ s application context typically livein/ V\EB- | NF/ .

The following isthe listing of the WAR’s/ V\EB- | NF/ appl i cat i onCont ext . xmi .

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans
xm ns="http://ww. springframework. org/ schena/ osgi "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="http://ww. spri ngframewor k. or g/ schema/ beans"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ osgi
http://ww. spri ngfranework. or g/ schena/ osgi / spri ng- osgi . xsd
http://ww. springframewor k. or g/ schema/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd" >

<reference id="user Manager"
interface="org. springfranmework. showcase. f ornt ags. servi ce. User Manager "/ >

</ beans: beans>

The single bean declaration is retrieving a service that implements the
org. spri ngframewor k. showcase. f or nt ags. servi ce. User Manager API from
the OSGi Service Registry.

Tip

Y ou might have been expecting a reference to the service bundle, but that isn’t how
OSGi works. OSGi provides a service registry, and this bean definition is accessing a
servicein that registry that meets the specified restriction (i.e. implements the
specified interface). Thisleads to avery loosely coupled programming model: the
WAR really doesn’t care where the implementation comes from.

Tip

What happensif there is no service at runtime? What if there are multiple services
that match the criteria? Spring-DM provides alot of configuration options, including
whether or not the reference is mandatory, how long to wait for a service reference,
etc. Please consult the Spring Dynamic Modules for OSGi home page for further
information.

One of the benefits of programming to interfaces is that you are decoupled from the actual
implementation; Spring-DM provides a proxy. This has enormous benefits including the ability
to dynamically refresh individual bundles without cascading that refresh to unrelated bundles.

To deploy the WAR, copy / di st/ f or nt ags- shar ed- servi ces-war * tothe

2.0.4.RELEASE 51

http://www.springframework.org/osgi/

52 Programmer Guide

SERVER _HOME/ pi ckup directory. Y ou should then see console output similar to the
following:

Note

The console output has been reformatted to fit this document.

[2009- 07-01 15:09: 19. 819] fs-wat cher

<SPDE0048I > Processing ' CREATED event for file 'forntags-shared-services-war-2.0.0. RELEASE. war' .
[2009- 07- 01 15:09: 20. 167] fs-wat cher

<SPDE0010I > Depl oynent of 'org.springfranmework. showcase. f or nt ags. web_shared_servi ces' version '2' conpleted.
[2009- 07- 01 15:09: 20. 168] Thread- 20

<SPWEO00OI > Starting web bundl e '/forntags-shared-services-war-2.0.0. RELEASE' .
[2009- 07- 01 15: 09: 20. 647] Thread- 20

<SPWE0001l > Started web bundl e '/forntags-shared-services-war-2.0.0. RELEASE .

Navigating to the appropriate link should render the welcome page.

6.5 Form Tags PAR

The final step in the migration isthat of afull blown OSGi application with web support. The
SpringSource dm Server introduces a new packaging and deployment format: the PAR. A PAR
isastandard JAR with a". par " file extension which contains all of the modules of your
application (e.g., service, domain, and infrastructure bundles as well asaWAR for web
applications) in a single deployment unit. Moreover, a PAR defines both a physical and logical
application boundary.

The PAR sampleis comprised of four directories, as shown below.

ol —

% Package Explorer &3 Tg Hierarchﬂ = g | = {~1=’=[h:>| ¢ ~ — O
formtags-par

[‘,:% formtags-par

[2 T::Ea- org.springframework.showcase formtags.domain
[2 T:jE org.springframework.showcase formtags.service
[2 T:js org.springframework.showcase formtags.web

Thef or nt ags- par directory isabuild project that understands how to create the PAR from
its constituent bundles.

52 Migrating Form Tags

Migrating Form Tags 53

Granularity of the PAR

Achieving the appropriate level of granularity for your OSGi application is more of an art than a
science. It helpsto look at the different requirements:

Table 6.1. Granularity drivers

Requirement Description

Domain/Technical Layering Applications can be split either by domain (i.e., by use
case or vertically) or by their technical layers (i.e.,
horizontally). Since the Form Tags application
essentialy has only a single use case, the bundles are
split by technical layering (i.e., domain, service, and
web).

Refreshability A major benefit of OSGi is that of refreshability: if one
bundle is changed, only bundles that have a dependency
upon the exported types need to be refreshed. Thishasa
high impact on development time costs as well as
production costs. However, this can lead to lots of
smaller, fine grained bundles. An example of this
granularity would be to separate out the service APl and
implementation into two different bundles. This means
that a change in the implementation wouldn't require
any other bundles to be refreshed.

Ultimately the right level of granularity will depend upon your particular application and team.
Note

Thistopic will be revisited in greater detail later in the Programmer Guidein a
chapter covering how to build a PAR from scratch.

Domain and Service Bundles

The service bundleisidentical (except for the Bundl e- Synbol i cNane) to that in the
shared-services variation of the sample. The PAR has aso separated out the domain classes into
their own bundle. When layering by technical considerations, it is again somewhat of an
unofficial convention to havea. domai n bundle.

Constructing the PAR

Finally we need to construct the PAR itself. The following are the contents of the exploded PAR.

2.0.4.RELEASE 53

54 Programmer Guide

v || META-INF
[INDEX.LIST
(| MANIFEST.MF
% org.springframework.showcase.formtags.domain-2.0.0.RELEASE. jar
% org.springframework.showcase.formtags.service-2.0.0.RELEASE. jar
% org.springframework.showcase.formtags.web-2.0.0.RELEASE. war

Y ou can see that the PAR itself doesn’'t contain any resources or Java classes: it ssimply packages
together arelated set of bundles asasingle, logical unit.

The PAR does however, containitsown/ META- | NF/ MANI FEST. MF.

Mani fest-Version: 1.0

Appl i cation- Synbol i cName: org. spri ngframewor k. showcase. f or nt ags- par
Application-Version: 1.0.0

Appl i cation- Name: ForniTags Showcase Application (PAR)

For more information on the contents of the PAR’s/ META- | NF/ MANI FEST. MF, please
consult Chapter 4, Developing Applications.

Y ou can now deploy the PAR on the dm Server, for example by copying
[di st/ forntags-par*. par tothedm Server’spi ckup directory. You should then see
console output similar to the following:

Note

The console output has been reformatted to fit this document.

[2009-07-01 15:13:43.306] fs-watcher

<SPDE0048I > Processing ' CREATED event for file 'forntags-par-2.0.0. RELEASE. par'.
[2009- 07- 01 15:13:44.060] fs-watcher

<SPDE0010I > Depl oynent of 'forntags-par' version '2.0.0. RELEASE conpl eted.
[2009- 07- 01 15:13: 44.068] Thread- 20

<SPWEO00OI > Starting web bundle '/forntags-par'.
[2009- 07- 01 15:13:45.212] Thread-20

<SPWEO001l > Started web bundl e '/forntags-par'.

Navigate to http://|ocalhost:8080/formtags-par to see the welcome page.

: Tip

1 Note that the web application’s context path is explicitly defined viathe
Web- Cont ext Pat h manifest header in/ META- | NF/ MANI FEST. MF of the web
module within the PAR.

6.6 Summary of the Form Tags Migration

54 Migrating Form Tags

http://localhost:8080/formtags-par

Migrating Form Tags 55

The SpringSource dm Server provides out-of-the-box support for deploying standard Java EE
WAR files. In addition support for Shared Libraries and Shared Services WAR formats provides
alogical migration path away from standard, monolithic WARs toward OSGi-enable Web
applications. The PAR packaging and deployment format enables truly fine-grained,
loosely-coupled, and efficient application development. In general, the migration steps presented
in this chapter are fairly straightforward, but developers should set aside time for some up-front
design of the bundles themselves.

It is recommended that you take another sample application or indeed your own small
application and go through this migration process yourself. Thiswill help you better understand
the concepts and principles at work. In addition, it is highly recommended that you familiarize
yourself with the Eclipse-based SpringSource dm Server Tools support which is discussed in
Chapter 7, Tooling.

6.7 Form Tags as a plan

Plans (see Section 4.3, “Creating Plans’) allow us to package and deploy the Form Tags
application in amore flexible way. Instead of packaging all the bundles of the application into a
single PAR file, each bundle can be placed in the repository and referred to in a plan.

The bundles to be placed in arepository in the chain (for example, r eposi t ory/ usr) are:

or g. springfranmewor k. showcase. f or nt ags. domai n- 2. 0. 0. RELEASE. j ar
or g. spri ngframewor k. showcase. f or nt ags. servi ce-2. 0. 0. RELEASE. j ar
org. springframewor k. showcase. f or nt ags. web- 2. 0. 0. RELEASE. war

which are just those files which were part of the PAR.

Hereis the contents of a suitable plan file for the Form Tags example:

<?xm version="1.0" encodi ng="UTF-8"7?>
<pl an nane="forntags. pl an" version="2.0.0" scoped="true" atom c="true"
xm ns="http://ww. springsource. org/ schema/ dm server/ pl an"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="
http://ww. springsource. or g/ schena/ dm server/ pl an
http://ww. springsource. or g/ schena/ dm server/ pl an/ spri ngsour ce- dm server - pl an. xsd" >
<artifact type="bundl e" nanme="org. springfranmework. showcase. f or nt ags. domai n_par" version="[2.0,2.1)"/>
<artifact type="bundle" nane="org. springfranmework. showcase. f ornt ags. servi ce_par" version="[2.0,2.1)"/>
<artifact type="war" nanme="org. springfranmework. showcase. f ornt ags. web_par" version="[2.0,2.1)"/>

</ pl an>

where we have chosen to use any of the artifactsin the version range [2.0,2.1). Thisplan (asa
file called, for example, f or nt ags. pl an) can be deployed in any of the normal ways (for
example, dropped in the pi ckup directory).

When the plan is deployed, the artifacts it references are installed from the repository and

deployed in the order given in the plan file. Because this plan is scoped and atomic, the
collection is given an application scope and is started and stopped as a single unit.

2.0.4.RELEASE 55

56

56

Programmer Guide

Migrating Form Tags

Tooling 57

7. Tooling

SpringSource provides a set of plug-ins for the Eclipse IDE that streamline the development
lifecycle of OSGi bundles and PAR applications. The SpringSource dm Server Tools build on
top of the Eclipse Web Tools Project (WTP) and Spring IDE, the open-source Spring
development tool set.

The SpringSource dm Server Tools support the creation of new OSGi bundle and PAR projects

within Eclipse, and the conversion of existing projects into OSGi bundle projects. Projects can
then be deployed and debugged on arunning dm Server from within Eclipse.

7.1 Installation

Currently the Tools support Eclipse 3.3 and Eclipse 3.4 with the corresponding version of WTP.
Downloading and unzipping the Eclipse IDE for Java EE Developersisthe easiest way to start.

Execute the following steps to install the Tools into your Eclipse environment.

1. Install Spring IDE 2.1.0 from http://springide.org/updatesite/ using the Eclipse Update
Manager.

Note

Don't try to install the "Spring IDE Dependencies (only for Eclipse 3.2.x)" from
the "Dependency” category on Eclipse 3.3. Thisfeature isintended only for
Eclipse 3.2 and is to keep Spring I DE backward-compatible. Y ou will not be able
to continue with the installation if you select this feature on Eclipse 3.3.

2. Install the Tools from http://static.springsource.com/projects/sts-dm-server/update/ using the
Eclipse Update Manager.

7.2 Running a SpringSource dm Server instance
within Eclipse

After installing the Tools from the update site outlined in the previous section, you will be able
to configure an instance of the dm Server inside Eclipse.

To do so bring up the WTP Serversview (i.e., Window — Show View - Other - Server —
Servers). You can now right-click in the view and select "New — Server". Thiswill bring up a
"New Server" dialog. Select " SpringSource dm Server v1.0 Server" in the " SpringSource”
category and click "Next".

2.0.4.RELEASE 57

http://www.eclipse.org/downloads/
http://springide.org/updatesite/
http://static.springsource.com/projects/sts-dm-server/update/

58 Programmer Guide

a0 m MNew Server

Define a New Server

Choose the type of server to create

Server's host name: | localhost

Download additional server adapters

Select the server type:

' type filter text

[== IBM
= JBoss
= ObjectWeb
== Oracle
= SpringSource
L SpringSource dm Server vw1.0

Launches an instance of the SpringSource dm Server v1.0

Server name: SpringSource dm Server v1.0 at localhost

(< Back W'tr Mext = WI| (Cancel 3

Within the "New Server Wizard" point to the installation directory of the SpringSource dm
Server and finish the wizard. After finishing the wizard you should see a SpringSource dm
Server entry in the Serversview.

To start, stop, and debug the created SpringSource dm Server instance use the toolbar or the
context menu actions of the Serversview.

58 Tooling

Tooling 59

[2! Problems (@ Javadoc (@ Declaration (E Console &3 | w b & & | = .| R ¥ 50
SpringSource dm Server v1.0 at localhost [SpringSource dm Server] /System/Library/Frameworks /JavaVM.framework /Versions/1.5.0/Home/bin/java (Sep 9, 2008 11:11:04 AM)
[2002-080-89 11:11:84.698] main <SPKE@@PLI> Server starting.
[2088-89-89 11:11:85.291] main <SPOF@BA1T> 0SG1i telnet console available on port 2481.
[2008-080-89 11:11:87.742] main <SPKE@@PAI> Boot subsystems installed.
[2008-99-89 11:11:08.645] main <SPKE@PA1I~ Bose subsystems installed.
[2008-080-89 11:11:89.674] server-dm-2 <SPPMO@AAI> Installing profile 'web'.
[20028-080-09 11:11:18.452] server-dm-2 <SPPMOBOLI> Installed profile 'web'.
[20088-89-89 11:11:18.583] server-dm-8 <SPSCABA1T> Creating HTTP/1.1 connector with scheme http on port 8888.
[2002-080-89 11:11:18.537] server-dm-8 <SPSCOBPLI> Creating HTTP/1.1 connector with scheme https on port 8443,
[2008-99-89 11:11:18.551] server-dm-8 <SPSCAPALI> Creating AJP/1.3 connector with scheme http on port 8089,
[2002-080-09 11:11:18.576] server-dm-8 <SPSCOBPAI- Starting ServlietContainer.
[20028-80-89 11:11:11.138] server-dm-5 <SPPMOBB2I> Server open for business with profile 'web'.
[2088-89-89 11:11:11.148] fs-watcher <SPOE@B4BT> Processing "INITIAL' event for file 'server.admin.web-1.8.8.BUILD-280889891¢
[2008-80-89 11:11:11.917] fs-watcher <SPSC180AI> Creating web application 'fadmin'.
[2008-99-89 11:11:12.326] async-delivery-thread-1 <SPS5C18@1I- Starting web applicotion 'sadmin'.
[2008-80-89 11:11:12.725] fs-watcher <SPDE@@1AI> Deployment of 'server.admin.web-1.08.0 BUILD-20020909180248.jar' version '@’
[2008-80-89 11:11:12.727] fs-watcher <SPDE@@48I> Processing "INITIAL' event for file 'server.aodmin.splash-1.8.8.BUILD-208889¢
[2002-09-09 11:11:13.168] fs-watcher <SPSC1BBAI~ Creating web applicaotion '/'.
[2008-80-89 11:11:13.175] async-delivery-thread-1 <SPSC1881I~ Starting web application '/'.
[2008-99-89 11:11:13.385] fs-watcher <SPDE@@1AI> Deployment of 'server.admin.splash-1.0.8.BUILD-2008009091908248.war"' version '
A e
4h servers B3 % 0 & i =8
Server 4 | State Status
‘ SpringSource dm Server v1.0 at localhost EL Started Synchronized

7.3 Bundle and Library Provisioning

After successful configuration of an instance of the SpringSource dm Server in Eclipse you can
use the Repository Browser to very easily install bundles and libraries from the remote
SpringSource Enterprise Bundle Repository.

To open the Repository Browser double-click a SpringSource dm Server instance in the Servers
view and select the "Repository" tab in the server editor. Please note that opening of the Editor
may take a few seconds as the contents of the local repository needs to be indexed before
opening.

2.0.4.RELEASE 59

60 Programmer Guide

‘ SpringSource dm Server v1.0 at localhost &2 =0
€} Bundle Repository Browser
Search for Bundles and Libraries Installed Bundles and Libraries
Search for bundles and libraries by names, symbolic names, classes or packages. The following bundles and libraries are currently installed in the SpringSource dm
Wildcards such as * and 7 are supported. Bundles and Libraries that appear in gray color ~ Server.
are already installed.
& Bundles - repository /bundles fext A Refresh
org.spring™.acp.config Search @ Coogle Collections Library - com.springsource -
@ Backport Util Concurrent - com.springsource.e =
’:‘ *{7 Bundles @ Java Activation API - Com.springsource javax.ac il s
’:‘ *{7 Spring AOP - org.springframework.aop (2.5.3.4 SEreH “{7 Java Common Annotations APl - com.springsol.._
O & Spring ADP - arg.springframework.aop (2.5.4.4 @ Java EJB API - com.springsource.javax.ejb (3.0.0
’:‘ = LEAET L “{7 Java Expression Language APl - com.springsou SnenNsniesy
’:‘ = Libraries %Jn\fal\n‘lessaging Systemn APl - com.springsource
& Java Mail - com.springsource javax.mail (1.4.0)
Analyse @ Java Persistence APl - com.springsource.javax.p
*{7 Java Servlet APl - com.springsource. javax.servle
View License @ Java Servlet APl - com.springsource.javax.servle
"{7 Java JSP APl - com.springsource javax.serviet.js|
& Java 5P Standard Tag Library - com.springsour
Download "{7 Java Transaction APl - com.springsource. javax.
«C Y ’:'BJ:wa)dML Binding APl - com.springsource javax.
. ’:'BJnvaXML RPC APl - com.springsource javax.xml
Download source jars from repository & Java SOAP API - com.springsource javax.xml.so
The repository is also available for browsing at http:/ fwww.springsource.com/repositor ~{7 Java XML Stream APl - com.springsource javax. .
Update local bundle and library repository index. (Last update: July 25, 2008) 3 lawa Weh Services APl - cam snrinnsnurce iavay b
Firewall and proxy should be appropriately configured. <C 8 =
Overview[Repositor\(]
4k Servers 2 Qg mEe— 0
Server 4 | State Status
‘ SpringSource dm Server v1.0 at localhost "f‘p. Started Synchronized

The left section of the Repository Browser alows the user to run searches against the
SpringSource Enterprise Bundle Repository and displays matching results. The search can take
parts of bundle symbolic names, class or package names and allows wildcards such as*? and
‘*’ By selecting the checkbox |eft to a matching bundle and/or library and clicking the
"Download" button it is very easy to install new bundlesin the SpringSource dm Server. For
your convenience JARs containing the bundle source code can be automatically downloaded as
well.

Clicking the "Download" button will trigger an Eclipse background job that will download the
selected repository artifacts and -- if desired -- the source JARs one after another.

The section on the right displays the currently installed bundles and libraries. Bundles with
available sources are visually marked. Y ou can very easily download missing source JARS by
using the "Install Sources' button.

7.4 Setting up Eclipse Projects

The SpringSource dm Server supports different deployment units as discussed earlier in this
guide. The Tools define specific project types to support the development of OSGi and PAR
projects.

Creating New Projects

60 Tooling

Tooling 61

There are two New Project Wizards available within Eclipse that allow for creating new OSGi
bundle and PAR projects. The projects created by the wizards are deployable to the integrated
dm Server instance without requiring any additional steps.

800

Select a wizard

Create a new O5Gi bundle project

Wizards:

== Server

= Spring

.= SpringSource dm Server
—|a Bundle Project
4 PAR Project

= 5QL Development

(= SVWN

= Tasks

=+ User Assistance

(_ Mext = -‘ll "r Cancel ﬁ"

Those wizards create the required MANI FEST. MF file and appropriate manifest headers.

Migrating existing Java Projects

To migrate an existing Java Project to be used with the dm Server, the Tools provide a migration
action that adds the required meta data to the project. The migration will not change your

2.0.4.RELEASE 61

62 Programmer Guide

project’ s source layout.

Use the context menu action of a project in the Package or Project Explorer and select " Spring
Tools —» Convert to OSGi bundle project”.

7.5 Developing OSGi Bundles

The Tools provide functionality that makes developing OSGi bundles, especialy the editing of
MANIFEST.MF files, easier.

Resolving Bundle Dependencies

While working with OSGi bundles, one of the most interesting and challenging aspectsis
defining the package, bundle, and library imports in the manifest and then keeping thisin sync
with your compile classpath either in Ant and Maven or Eclipse. In most cases you would
typically be required to manually set up the Eclipse classpath. Ultimately, the Eclipse compile
classpath is still different from the bundle runtime classpath, as normally an entire JAR fileis
being made available on the Eclipse classpath but not necessarily at runtime due to the explicit
visibility rulesdefined in | nmpor t - Package headers.

The Tools address this problem by providing an Eclipse classpath container that uses an
SpringSource dm Server-specific dependency resolution mechanism. This classpath container
makes resolved dependencies available on the project’ s classpath but allows only access to those
package that are imported explicitly (e.g., vial npor t - Package) or implicitly by using

| nport-Libraryorlnmport-Bundl e.

To use the automatic dependency resolution, an OSGi bundle or PAR project needs to be
targeted to a configured SpringSource dm Server instance. This can be done from the project’s
preferences by selecting the runtime on the "Targeted Runtimes' preference page.

Note
In most scenariosit is sufficient to target the PAR project to a runtime. The nested
bundles will then automatically inherit this setting.

62 Tooling

Tooling 63

fFE Package Explorer 23 'Eg Hierarchy\l ‘L= MNavigator | |— ‘:ﬁ}| v =)
:.L;E org.springframework.petclinic.infrastructure.hsgldb "

8 src/main/java

:'_5 srofmain/fresources .

B JRE System Library [JWM 1.5.0 (MacO5 X Default)]

B Bundle Dependencies [SpringSource dm Server (Runtime) v1.0]
@: com.springsource.org.aopalliance-1.0.0jar - fopt/springsour
Eﬁ: com.springsource.org.apache.commons.dbcp-1.2.2.05gi.jar -
S com.springsource.org.hsgldb-1.8.0.9 jar - fopt/springsource
@: org.springframework.aop-2.5.5.A jar - fopt/springsource-drr
@: org.springframework.aspects-2.5.5.4 jar - Jopt/springsource
@: org.springframework.beans-2.5.5.A jar - fopt/springsource-c
@: org.springframework.context-2.5.5.A jar - Jopt/springsource
@: org.springframework.context.support-2.5.5.A jar - fopt/sprin
@: org.springframework.core-2.5.5.A jar - jopt/springsource-dr
@: org.springframework.jdbc-2.5.5.A jar - fopt/springsource-dn
@: org.springframework.jms-2.5.5.A jar - fopt/springsource-dm
@: org.springframework.orm-2.5.5.A jar - fopt/springsource-dmn
@: org.springframewark.transaction-2.5.5.A jar - fopt/springsoL
@: org.springframework.web-2.5.5.A jar - fopt/springsource-dem
@: org.springframework.web.serviet-2.5.5.A jar - jopt/springsou

E‘;E SFC

[target

£ build.xml

(X| ivyeml v

af 3 I .

After targeting the project or PAR you will see a"Bundle Dependencies’ classpath container in
your Java project. It is now safe to remove any manually configured classpath entries.

The classpath container will automatically attach Java source code to the classpath entries by
looking for source JARS next to the binary JARs in the SpringSource dm Server’ s repository.

Y ou can a'so manually override the source code attachment by using the properties dialog on a
single JAR entry. This manual attachment will always override the convention-based attachment.

Editing the Manifest

2.0.4.RELEASE 63

64 Programmer Guide

The Tools provide a Bundle Manifest Editor that assists the developer to create and edit
MANIFEST.MF files. The editor understands the SpringSource dm Server specific headerslike
| mport-Library andl nport - Bundl e and provides content assist features while editing
source code. Furthermore a Eclipse Form-based Ul is also available.

To open the Bundle Manifest Editor right click a MANIFEST.MF file and select "Bundle
Manifest Editor" from the "Open With" menu.

Note

Please note that the SpringSource dm Server specific manifest headers appear in
green color to distinguish them from those headers defined in the OSGi specification.
This also makes navigating much easier.

éﬁ‘;"org.sprirlgframmrk.petcIinic.infrastruclure.hsqldb &3 =8 EE Outline £3 El Task L\sq - Spring Exploreq =08
Manifest-Version: 1.0 <'=:Dlaz -
Ant-Version: Apache Ant 1.7.@ -
Created-By: 1.5.8_13-119 (Apple Inc.) ® Manifest-Version
Bundle-ManifestVersion: 2 ® Ant-Version
Bundle-Name: PetClinic HSQL Database Infrastructure @ Created-By

Bundle-SymbolicName: org.springframework.petclinic.infrastructure.hsgldb @ Bundle-Manifestversion
Bundle-Version: 1.8

Bundle-Vendor: SpringSource Inc. @ Bundle-Name

Import-Library: org.springframework.spring;version="[2.5,2.6]" ® Bundle-SymbolicName
Import-Bundle: org., com.springsource.org.apache.commons.dbecp;version="[1.2.2.0sgi,1.2.2.0s @ Bundle-Version
com.springsource.g § org.eclipse.osgi.services s @ Bundle-Vendor
Import-Package: jav *{7 org.springframework.aop ¥ @ Import-Library
Export-Package: org & springf ke ts % org.springframewark.sprin
org.springframework.aspec ./ org.spring pring
*{7 org.springframework.beans ¥ @ Import-Bundle
@ org.springframework.context @ org.
*{7 org.springframework.context.support *{7 com.springsource.org.apache.commons.dbcp
‘17 org.springframework.core ‘17 com.springsource.org.hsgldb
@ org.springframeworkjdbe ¥ @ Import-Package
*17 org.springframeworljms E}jav:{x.sql
‘17 org.springframework.orm ¥ @ Export-Package
@ org.springframework.osgi.core X 1 ora.springframework.petclinic.infrastructure
)
4F s] (3
Dverwew|DEpendEnciEs|Runtime mNIFEST,MF]
i Servers B3 0 =g
| Server A State Status

‘ SpringSource dm Server v1.0 at localhost fb Stopped

The content assist proposals in the source tab as well asin the Ul-based tabs are resolved from
the bundle and library repository of an installed and configured SpringSource dm Server.
Therefore it isimportant to target the project or PAR to a specific dm Server instance to indicate
to the tooling which bundle repository to use.

Note

If a OSGi bundle project is not targeted to adm Server instance, either directory or
indirectly viaa PAR project’ s targetting, the manifest editor will not be ableto
provide content assist for importing packages, bundles, and libraries.

64 Tooling

Tooling 65

4 Dependencies
Import Package Import Bundle
Specify packages on which this bundle depends without explicitly Specify the list of bundles required for the operation of this bundle.
identifying their originating bundle.
- ‘:9 com.springsource.org.apache.commons.dbep [
B javax.sal Add... & com.springsource.org.hsgldb [1.8.0.9,1.8.0.9]
Remove
Remove
Properties...
Properties...
il - J ok Total: 2
Import Library
Specify the list of libraries required for the operation of this bundle.
EI org.springframework.spring [2.5,2.6] Add...
Remove
Properties...
Total: 1 Total: 1
Owverview | Dependencies Runtimel MANIFEST.MF
4 Servers E3 ﬁ 5 m =g
| Server State | Status
‘ SpringSource dm Server w1.0 at localhost E‘@ Stopped

The Dependencies tab of the Bundle Manifest Editor enables the user to easily download and
install bundles and libraries from the SpringSource Enterprise Bundle Repository by using the
"Download..." buttons next to the "Import Bundle" and "Import Library" sections.

7.6 Deploying Applications

Currently the Tools support direct deployment of WTP Dynamic Web Projects, OSGi bundle and
PAR projectsto the dm Server from directly within Eclipse.

To deploy an application to the SpringSource dm Server just bring up the context menu on the

configured dm Server runtime in the Servers view and choose "Add or Remove Projects...”. In
the dialog, select the desired project and add it to the list of "Configured projects’.

2.0.4.RELEASE 65

66 Programmer Guide

4tk Servers E3] =8
| Server ¥ State Status
v ‘ SpringSource dm Server v1.0 at localhost f_a Stopped

v "}0 org.springframework.petclinic.jdbc
*:ﬁ‘, org.springframework.petclinic.web
fﬁ; org.springframework.petclinic.repository jdbc
éﬁ; org.springframework.petclinic.repository
‘Eﬁ‘, org.springframework.petclinic.infrastructure.hsgldb
*:ﬁ‘, org.springframeworlk.petclinic.domain

Note

Deploying and undeploying an application from the dm Server certainly works while
the SpringSource dm Server is running, but you can also add or remove projectsif the
dm Server is not running.

Once an application is deployed on the SpringSource dm Server the tooling support will
automatically pick up any change to source files -- for example, Javaand XML context files --
and refresh the deployed application on the dm Server.

The wait time between a change and the actual refresh can be configured in the configuration
editor of the runtime. To bring up that editor, double-click on the configured SpringSource dm
Server instance in the Serversview.

66 Tooling

Common Libraries 67

8. Working with Common Enterprise
Libraries

8.1 Working with Hibernate

Importing Hibernate

Hibernate uses CGLIB to dynamically create subclasses of your entity types at runtime. To
guarantee that Hibernate and CGLIB can correctly see the types, you must add an

| nport - Library orl nport - Bundl e for the Hibernate library or bundle into any bundle
that uses Hibernate directly.

Additionally, if other bundles in your application contain types to be persisted by Hibernate, then
be sure to specify thei nport - scope directive of thel npor t - Bundl e header in the bundle
that uses Hibernate directly. Thei nport - scope directive tells SpringSource dm Server to
implicitly import the bundle into al other bundles that make up the application; this ensures that
bundles that indirectly depend on the generated Hibernate classes have access to them, but you
do not have to explicitly update their | npor t - Bundl e header, ensuring modularity. For
example:

| nport-Bundl e: com springsource. org. hi bernate; version="[3.2.6.ga,3.2.6.ga]";inport-scope: =application

Thei nport - scope directive works only for the bundlesin a scoped application (PARs or
plans.)

8.2 Working with DataSources

Many Dat aSour ce implementations usethe Dr i ver Manager class which isincompatible
with typical OSGi class loading semantics. To get around this, use aDat aSour ce
implementation that does not rely on Dr i ver Manager . Versions of the following

Dat aSour ces that are known to work in an OSGi environment are available in the
SpringSource Enterprise Bundle Repository.

+ Apache Commons DBCP

» SimpleDriverDataSource available in Spring JDBC 2.5.5 and later

8.3 Weaving and Instrumentation

When using alibrary that performs bytecode weaving or instrumentation, such as AspectJ,

2.0.4.RELEASE 67

http://www.springsource.com/repository
http://www.springsource.com/repository/app/bundle/detail?name=com.springsource.org.apache.commons.dbcp
http://www.springsource.com/repository/app/bundle/detail?name=org.springframework.jdbc

68 Programmer Guide

OpenJPA or EclipseLink, any types that are woven must be able to see the library doing the
weaving. Thisisaccomplished by adding an | nport - Li br ary for the weaving library into all
bundles that are to be woven.

Weaving is often used by JPA implementations to transform persisted types. When using a JPA
provider that uses load-time weaving, an | nport - Li br ary for the provider is needed in the
bundles containing the persisted types.

8.4 JSP Tag Libraries

When using tag libraries within aWAR or Web Bundle, be sure to include an

| mport - Bundl e or |l nport - Li brary for thetag library bundle(s). Thiswill ensure that
your module can see the TLD definition and implementing types. For example, to use the
Apache implementation of JSTL, add the following to your bundle's

/ META- | NF/ MANI FEST. MF:

I nport-Bundl e: com springsource. org. apache. t agl i bs. st andar d; versi on="1. 1. 2"

68 Common Libraries

K nown Issues 69

9. Known Issues

9.1 JPA Entity Scanning

Classpath scanning for JPA entities annotated with @nt i t y does not work. Describing entities
with @nt i ty will work, but the entities need to be listed explicitly.

9.2 C assNot FoundEr r or When Creating a Proxy

When creating proxies at runtime, there are circumstances where Cl assNot FoundEr r or s
can be generated. These errors happen because the proxy creating bundle does not have visibility
into every type on the interface of the proxy. Y ou can either put in import statements for all the
relevant types or add use a service (with visibility of all pertinent types) to create the proxy.
Please see this blog entry for more details.

9.3 Creating proxies with CGLIB for
package-protected types

In traditional Java EE applications user types are loaded by the same Cl assLoader as CGLIB.
Thisalows CGLIB to proxy package-protected types. In OSGi environments, user types and
CGLIB will most likely be packaged in separate bundles. This results in the user types and
CGLIB being loaded by different Cl assLoader s. This prevents CGLIB from proxying any
package-protected types.

The workaround for thisissue isto make all types that require proxying public.

9.4 Tomcat Restrictions

The following Tomcat features are not supported.

+ <Cont ext > elements.

2.0.4.RELEASE 69

http://www.osgi.org/blog/2008/08/classy-solutions-to-tricky-proxies.html

70

70

Programmer Guide

Known Issues

	SpringSource dm Server™ Programmer Guide
	Table of Contents
	Preface
	1. Prerequisites
	1.1 Runtime Environment
	1.2 References

	2. Introduction to the SpringSource dm Server
	2.1 Overview
	2.2 What is the SpringSource dm Server?
	What makes up the SpringSource dm Server?

	2.3 Why the SpringSource dm Server?
	Deployment options and migration paths
	Simplified development and deployment of OSGi-based applications
	Enhanced diagnostics during deployment and in production

	3. Deployment Architecture
	3.1 Supported Deployment Formats
	Raw OSGi Bundles
	WAR Deployment Formats
	Standard WAR
	Shared Libraries WAR
	Shared Services WAR
	WARs and the OSGi Web Container (RFC66)
	Extensions to the Web Container

	Web Modules
	PAR
	Plans

	3.2 Dependency Types
	3.3 A guide to forming bundles

	4. Developing Applications
	4.1 Anatomy of a bundle
	4.2 Creating PARs and WARs
	PARs
	Web Modules
	Migrating to a Web Bundle from a Web Module
	Removing Web-DispatcherServletUrlPatterns
	Removing Web-FilterMappings

	4.3 Creating Plans
	Creating the Plan XML File
	Artifact Names
	Using the Plan
	Plans and Scoping

	4.4 Creating and Using Configuration Artifacts
	Creating the Properties File
	Updating Your Application
	Adding the Configuration Artifact to a Plan

	4.5 Programmatic Access to Personality-specific Features
	Programmatic Access to Web Personality Features
	Programmatic Access to the WebApplicationContext
	Programmatic Access to the BundleContext

	4.6 Automatic Imports
	Automatic Imports for the Web Personality

	4.7 Working with dependencies
	Importing libraries
	Importing bundles
	Scoping Bundles in an Application
	Defining libraries
	Installing dependencies

	4.8 Application trace
	4.9 Application versioning

	5. Migrating to OSGi
	5.1 Migrating Web Applications
	Standard WAR
	Shared Libraries WAR
	Shared Services WAR
	Web Migration Summary

	5.2 Migrating to a Plan or a PAR
	Creating the Application Bundles
	Plan or PAR?

	6. Case study: Migrating the Form Tags sample application
	6.1 Overview of the Form Tags Sample Application
	6.2 Form Tags WAR
	6.3 Form Tags Shared Libraries WAR
	6.4 Form Tags Shared Services WAR
	The Service Bundle
	Accessing the Service and Types from the WAR

	6.5 Form Tags PAR
	Granularity of the PAR
	Domain and Service Bundles
	Constructing the PAR

	6.6 Summary of the Form Tags Migration
	6.7 Form Tags as a plan

	7. Tooling
	7.1 Installation
	7.2 Running a SpringSource dm Server instance within Eclipse
	7.3 Bundle and Library Provisioning
	7.4 Setting up Eclipse Projects
	Creating New Projects
	Migrating existing Java Projects

	7.5 Developing OSGi Bundles
	Resolving Bundle Dependencies
	Editing the Manifest

	7.6 Deploying Applications

	8. Working with Common Enterprise Libraries
	8.1 Working with Hibernate
	Importing Hibernate

	8.2 Working with DataSources
	8.3 Weaving and Instrumentation
	8.4 JSP Tag Libraries

	9. Known Issues
	9.1 JPA Entity Scanning
	9.2 ClassNotFoundError When Creating a Proxy
	9.3 Creating proxies with CGLIB for package-protected types
	9.4 Tomcat Restrictions

