Uses of Interface
org.springframework.ai.embedding.EmbeddingModel
Packages that use EmbeddingModel
Package
Description
-
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.azure
Methods in org.springframework.ai.autoconfigure.vectorstore.azure with parameters of type EmbeddingModelModifier and TypeMethodDescriptionAzureVectorStoreAutoConfiguration.vectorStore(com.azure.search.documents.indexes.SearchIndexClient searchIndexClient, EmbeddingModel embeddingModel, AzureVectorStoreProperties properties, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.cassandra
Methods in org.springframework.ai.autoconfigure.vectorstore.cassandra with parameters of type EmbeddingModelModifier and TypeMethodDescriptionCassandraVectorStoreAutoConfiguration.vectorStore(EmbeddingModel embeddingModel, CassandraVectorStoreProperties properties, com.datastax.oss.driver.api.core.CqlSession cqlSession, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.chroma
Methods in org.springframework.ai.autoconfigure.vectorstore.chroma with parameters of type EmbeddingModelModifier and TypeMethodDescriptionChromaVectorStoreAutoConfiguration.vectorStore(EmbeddingModel embeddingModel, ChromaApi chromaApi, ChromaVectorStoreProperties storeProperties, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy chromaBatchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.cosmosdb
Methods in org.springframework.ai.autoconfigure.vectorstore.cosmosdb with parameters of type EmbeddingModelModifier and TypeMethodDescriptionCosmosDBVectorStoreAutoConfiguration.cosmosDBVectorStore(io.micrometer.observation.ObservationRegistry observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, CosmosDBVectorStoreProperties properties, com.azure.cosmos.CosmosAsyncClient cosmosAsyncClient, EmbeddingModel embeddingModel, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.gemfire
Methods in org.springframework.ai.autoconfigure.vectorstore.gemfire with parameters of type EmbeddingModelModifier and TypeMethodDescriptionGemFireVectorStoreAutoConfiguration.gemfireVectorStore(EmbeddingModel embeddingModel, GemFireVectorStoreProperties properties, GemFireConnectionDetails gemFireConnectionDetails, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.hanadb
Methods in org.springframework.ai.autoconfigure.vectorstore.hanadb with parameters of type EmbeddingModelModifier and TypeMethodDescriptionHanaCloudVectorStoreAutoConfiguration.vectorStore(HanaVectorRepository<? extends HanaVectorEntity> repository, EmbeddingModel embeddingModel, HanaCloudVectorStoreProperties properties, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.milvus
Methods in org.springframework.ai.autoconfigure.vectorstore.milvus with parameters of type EmbeddingModelModifier and TypeMethodDescriptionMilvusVectorStoreAutoConfiguration.vectorStore(io.milvus.client.MilvusServiceClient milvusClient, EmbeddingModel embeddingModel, MilvusVectorStoreProperties properties, BatchingStrategy batchingStrategy, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.neo4j
Methods in org.springframework.ai.autoconfigure.vectorstore.neo4j with parameters of type EmbeddingModelModifier and TypeMethodDescriptionNeo4jVectorStoreAutoConfiguration.vectorStore(org.neo4j.driver.Driver driver, EmbeddingModel embeddingModel, Neo4jVectorStoreProperties properties, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.oracle
Methods in org.springframework.ai.autoconfigure.vectorstore.oracle with parameters of type EmbeddingModelModifier and TypeMethodDescriptionOracleVectorStoreAutoConfiguration.vectorStore(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel, OracleVectorStoreProperties properties, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.pgvector
Methods in org.springframework.ai.autoconfigure.vectorstore.pgvector with parameters of type EmbeddingModelModifier and TypeMethodDescriptionPgVectorStoreAutoConfiguration.vectorStore(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel, PgVectorStoreProperties properties, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.pinecone
Methods in org.springframework.ai.autoconfigure.vectorstore.pinecone with parameters of type EmbeddingModelModifier and TypeMethodDescriptionPineconeVectorStoreAutoConfiguration.vectorStore(EmbeddingModel embeddingModel, PineconeVectorStoreProperties properties, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.qdrant
Methods in org.springframework.ai.autoconfigure.vectorstore.qdrant with parameters of type EmbeddingModelModifier and TypeMethodDescriptionQdrantVectorStoreAutoConfiguration.vectorStore(EmbeddingModel embeddingModel, QdrantVectorStoreProperties properties, io.qdrant.client.QdrantClient qdrantClient, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.redis
Methods in org.springframework.ai.autoconfigure.vectorstore.redis with parameters of type EmbeddingModelModifier and TypeMethodDescriptionRedisVectorStoreAutoConfiguration.vectorStore(EmbeddingModel embeddingModel, RedisVectorStoreProperties properties, org.springframework.data.redis.connection.jedis.JedisConnectionFactory jedisConnectionFactory, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.typesense
Methods in org.springframework.ai.autoconfigure.vectorstore.typesense with parameters of type EmbeddingModelModifier and TypeMethodDescriptionTypesenseVectorStoreAutoConfiguration.vectorStore(org.typesense.api.Client typesenseClient, EmbeddingModel embeddingModel, TypesenseVectorStoreProperties properties, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.autoconfigure.vectorstore.weaviate
Methods in org.springframework.ai.autoconfigure.vectorstore.weaviate with parameters of type EmbeddingModelModifier and TypeMethodDescriptionWeaviateVectorStoreAutoConfiguration.vectorStore(EmbeddingModel embeddingModel, io.weaviate.client.WeaviateClient weaviateClient, WeaviateVectorStoreProperties properties, org.springframework.beans.factory.ObjectProvider<io.micrometer.observation.ObservationRegistry> observationRegistry, org.springframework.beans.factory.ObjectProvider<VectorStoreObservationConvention> customObservationConvention, BatchingStrategy batchingStrategy) -
Uses of EmbeddingModel in org.springframework.ai.azure.openai
Classes in org.springframework.ai.azure.openai that implement EmbeddingModelModifier and TypeClassDescriptionclassAzure Open AI Embedding Model implementation. -
Uses of EmbeddingModel in org.springframework.ai.bedrock.cohere
Classes in org.springframework.ai.bedrock.cohere that implement EmbeddingModelModifier and TypeClassDescriptionclassEmbeddingModelimplementation that uses the Bedrock Cohere Embedding API. -
Uses of EmbeddingModel in org.springframework.ai.bedrock.titan
Classes in org.springframework.ai.bedrock.titan that implement EmbeddingModelModifier and TypeClassDescriptionclassEmbeddingModelimplementation that uses the Bedrock Titan Embedding API. -
Uses of EmbeddingModel in org.springframework.ai.embedding
Classes in org.springframework.ai.embedding that implement EmbeddingModelModifier and TypeClassDescriptionclassAbstract implementation of theEmbeddingModelinterface that provides dimensions calculation caching.Methods in org.springframework.ai.embedding with parameters of type EmbeddingModelModifier and TypeMethodDescriptionstatic intAbstractEmbeddingModel.dimensions(EmbeddingModel embeddingModel, String modelName, String dummyContent) Return the dimension of the requested embedding generative name. -
Uses of EmbeddingModel in org.springframework.ai.minimax
Classes in org.springframework.ai.minimax that implement EmbeddingModelModifier and TypeClassDescriptionclassMiniMax Embedding Model implementation. -
Uses of EmbeddingModel in org.springframework.ai.mistralai
Classes in org.springframework.ai.mistralai that implement EmbeddingModelModifier and TypeClassDescriptionclassProvides the Mistral AI Embedding Model. -
Uses of EmbeddingModel in org.springframework.ai.oci
Classes in org.springframework.ai.oci that implement EmbeddingModelModifier and TypeClassDescriptionclassEmbeddingModelimplementation that uses the OCI GenAI Embedding API. -
Uses of EmbeddingModel in org.springframework.ai.ollama
Classes in org.springframework.ai.ollama that implement EmbeddingModel -
Uses of EmbeddingModel in org.springframework.ai.openai
Classes in org.springframework.ai.openai that implement EmbeddingModelModifier and TypeClassDescriptionclassOpen AI Embedding Model implementation. -
Uses of EmbeddingModel in org.springframework.ai.postgresml
Classes in org.springframework.ai.postgresml that implement EmbeddingModel -
Uses of EmbeddingModel in org.springframework.ai.qianfan
Classes in org.springframework.ai.qianfan that implement EmbeddingModelModifier and TypeClassDescriptionclassQianFan Embedding Client implementation. -
Uses of EmbeddingModel in org.springframework.ai.transformers
Classes in org.springframework.ai.transformers that implement EmbeddingModelModifier and TypeClassDescriptionclassAn implementation of the AbstractEmbeddingModel that uses ONNX-based Transformer models for text embeddings. -
Uses of EmbeddingModel in org.springframework.ai.vectorstore
Fields in org.springframework.ai.vectorstore declared as EmbeddingModelConstructors in org.springframework.ai.vectorstore with parameters of type EmbeddingModelModifierConstructorDescriptionBuilder(EmbeddingModel embeddingModel, ChromaApi chromaApi) Builder(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel) CassandraVectorStore(CassandraVectorStoreConfig conf, EmbeddingModel embeddingModel) CassandraVectorStore(CassandraVectorStoreConfig conf, EmbeddingModel embeddingModel, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) ChromaVectorStore(EmbeddingModel embeddingModel, ChromaApi chromaApi, boolean initializeSchema) ChromaVectorStore(EmbeddingModel embeddingModel, ChromaApi chromaApi, String collectionName, boolean initializeSchema) ChromaVectorStore(EmbeddingModel embeddingModel, ChromaApi chromaApi, String collectionName, boolean initializeSchema, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) CoherenceVectorStore(EmbeddingModel embeddingModel, com.tangosol.net.Session session) CosmosDBVectorStore(io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, com.azure.cosmos.CosmosAsyncClient cosmosClient, CosmosDBVectorStoreConfig properties, EmbeddingModel embeddingModel) CosmosDBVectorStore(io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, com.azure.cosmos.CosmosAsyncClient cosmosClient, CosmosDBVectorStoreConfig properties, EmbeddingModel embeddingModel, BatchingStrategy batchingStrategy) ElasticsearchVectorStore(org.elasticsearch.client.RestClient restClient, EmbeddingModel embeddingModel, boolean initializeSchema) ElasticsearchVectorStore(ElasticsearchVectorStoreOptions options, org.elasticsearch.client.RestClient restClient, EmbeddingModel embeddingModel, boolean initializeSchema) ElasticsearchVectorStore(ElasticsearchVectorStoreOptions options, org.elasticsearch.client.RestClient restClient, EmbeddingModel embeddingModel, boolean initializeSchema, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) GemFireVectorStore(GemFireVectorStore.GemFireVectorStoreConfig config, EmbeddingModel embeddingModel, boolean initializeSchema) Configures and initializes a GemFireVectorStore instance based on the provided configuration.GemFireVectorStore(GemFireVectorStore.GemFireVectorStoreConfig config, EmbeddingModel embeddingModel, boolean initializeSchema, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) Configures and initializes a GemFireVectorStore instance based on the provided configuration.HanaCloudVectorStore(HanaVectorRepository<? extends HanaVectorEntity> repository, EmbeddingModel embeddingModel, HanaCloudVectorStoreConfig config) HanaCloudVectorStore(HanaVectorRepository<? extends HanaVectorEntity> repository, EmbeddingModel embeddingModel, HanaCloudVectorStoreConfig config, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention) MilvusVectorStore(io.milvus.client.MilvusServiceClient milvusClient, EmbeddingModel embeddingModel, boolean initializeSchema) MilvusVectorStore(io.milvus.client.MilvusServiceClient milvusClient, EmbeddingModel embeddingModel, boolean initializeSchema, BatchingStrategy batchingStrategy) MilvusVectorStore(io.milvus.client.MilvusServiceClient milvusClient, EmbeddingModel embeddingModel, MilvusVectorStore.MilvusVectorStoreConfig config, boolean initializeSchema, BatchingStrategy batchingStrategy) MilvusVectorStore(io.milvus.client.MilvusServiceClient milvusClient, EmbeddingModel embeddingModel, MilvusVectorStore.MilvusVectorStoreConfig config, boolean initializeSchema, BatchingStrategy batchingStrategy, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention) MongoDBAtlasVectorStore(org.springframework.data.mongodb.core.MongoTemplate mongoTemplate, EmbeddingModel embeddingModel, boolean initializeSchema) MongoDBAtlasVectorStore(org.springframework.data.mongodb.core.MongoTemplate mongoTemplate, EmbeddingModel embeddingModel, MongoDBAtlasVectorStore.MongoDBVectorStoreConfig config, boolean initializeSchema) MongoDBAtlasVectorStore(org.springframework.data.mongodb.core.MongoTemplate mongoTemplate, EmbeddingModel embeddingModel, MongoDBAtlasVectorStore.MongoDBVectorStoreConfig config, boolean initializeSchema, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) Neo4jVectorStore(org.neo4j.driver.Driver driver, EmbeddingModel embeddingModel, Neo4jVectorStore.Neo4jVectorStoreConfig config, boolean initializeSchema) Neo4jVectorStore(org.neo4j.driver.Driver driver, EmbeddingModel embeddingModel, Neo4jVectorStore.Neo4jVectorStoreConfig config, boolean initializeSchema, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) OpenSearchVectorStore(String index, org.opensearch.client.opensearch.OpenSearchClient openSearchClient, EmbeddingModel embeddingModel, String mappingJson, boolean initializeSchema) OpenSearchVectorStore(String index, org.opensearch.client.opensearch.OpenSearchClient openSearchClient, EmbeddingModel embeddingModel, String mappingJson, boolean initializeSchema, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) OpenSearchVectorStore(org.opensearch.client.opensearch.OpenSearchClient openSearchClient, EmbeddingModel embeddingModel, boolean initializeSchema) OpenSearchVectorStore(org.opensearch.client.opensearch.OpenSearchClient openSearchClient, EmbeddingModel embeddingModel, String mappingJson, boolean initializeSchema) OracleVectorStore(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel) OracleVectorStore(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel, boolean initializeSchema) OracleVectorStore(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel, String tableName, OracleVectorStore.OracleVectorStoreIndexType indexType, OracleVectorStore.OracleVectorStoreDistanceType distanceType, int dimensions, int searchAccuracy, boolean initializeSchema, boolean removeExistingVectorStoreTable, boolean forcedNormalization) OracleVectorStore(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel, String tableName, OracleVectorStore.OracleVectorStoreIndexType indexType, OracleVectorStore.OracleVectorStoreDistanceType distanceType, int dimensions, int searchAccuracy, boolean initializeSchema, boolean removeExistingVectorStoreTable, boolean forcedNormalization, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) PgVectorStore(String vectorTableName, org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel, int dimensions, PgVectorStore.PgDistanceType distanceType, boolean removeExistingVectorStoreTable, PgVectorStore.PgIndexType createIndexMethod, boolean initializeSchema) PgVectorStore(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel) PgVectorStore(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel, int dimensions) PgVectorStore(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel, int dimensions, PgVectorStore.PgDistanceType distanceType, boolean removeExistingVectorStoreTable, PgVectorStore.PgIndexType createIndexMethod, boolean initializeSchema) PineconeVectorStore(PineconeVectorStore.PineconeVectorStoreConfig config, EmbeddingModel embeddingModel) Constructs a new PineconeVectorStore.PineconeVectorStore(PineconeVectorStore.PineconeVectorStoreConfig config, EmbeddingModel embeddingModel, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) Constructs a new PineconeVectorStore.RedisVectorStore(RedisVectorStore.RedisVectorStoreConfig config, EmbeddingModel embeddingModel, redis.clients.jedis.JedisPooled jedis, boolean initializeSchema) RedisVectorStore(RedisVectorStore.RedisVectorStoreConfig config, EmbeddingModel embeddingModel, redis.clients.jedis.JedisPooled jedis, boolean initializeSchema, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) SimpleVectorStore(EmbeddingModel embeddingModel) SimpleVectorStore(EmbeddingModel embeddingModel, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention) TypesenseVectorStore(org.typesense.api.Client client, EmbeddingModel embeddingModel) TypesenseVectorStore(org.typesense.api.Client client, EmbeddingModel embeddingModel, TypesenseVectorStore.TypesenseVectorStoreConfig config, boolean initializeSchema) TypesenseVectorStore(org.typesense.api.Client client, EmbeddingModel embeddingModel, TypesenseVectorStore.TypesenseVectorStoreConfig config, boolean initializeSchema, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) WeaviateVectorStore(WeaviateVectorStore.WeaviateVectorStoreConfig vectorStoreConfig, EmbeddingModel embeddingModel, io.weaviate.client.WeaviateClient weaviateClient) Constructs a new WeaviateVectorStore.WeaviateVectorStore(WeaviateVectorStore.WeaviateVectorStoreConfig vectorStoreConfig, EmbeddingModel embeddingModel, io.weaviate.client.WeaviateClient weaviateClient, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) Constructs a new WeaviateVectorStore. -
Uses of EmbeddingModel in org.springframework.ai.vectorstore.azure
Constructors in org.springframework.ai.vectorstore.azure with parameters of type EmbeddingModelModifierConstructorDescriptionAzureVectorStore(com.azure.search.documents.indexes.SearchIndexClient searchIndexClient, EmbeddingModel embeddingModel, boolean initializeSchema) Constructs a new AzureCognitiveSearchVectorStore.AzureVectorStore(com.azure.search.documents.indexes.SearchIndexClient searchIndexClient, EmbeddingModel embeddingModel, boolean initializeSchema, List<AzureVectorStore.MetadataField> filterMetadataFields) Constructs a new AzureCognitiveSearchVectorStore.AzureVectorStore(com.azure.search.documents.indexes.SearchIndexClient searchIndexClient, EmbeddingModel embeddingModel, boolean initializeSchema, List<AzureVectorStore.MetadataField> filterMetadataFields, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) Constructs a new AzureCognitiveSearchVectorStore. -
Uses of EmbeddingModel in org.springframework.ai.vectorstore.qdrant
Constructors in org.springframework.ai.vectorstore.qdrant with parameters of type EmbeddingModelModifierConstructorDescriptionQdrantVectorStore(io.qdrant.client.QdrantClient qdrantClient, String collectionName, EmbeddingModel embeddingModel, boolean initializeSchema) Constructs a new QdrantVectorStore.QdrantVectorStore(io.qdrant.client.QdrantClient qdrantClient, String collectionName, EmbeddingModel embeddingModel, boolean initializeSchema, io.micrometer.observation.ObservationRegistry observationRegistry, VectorStoreObservationConvention customObservationConvention, BatchingStrategy batchingStrategy) Constructs a new QdrantVectorStore. -
Uses of EmbeddingModel in org.springframework.ai.vertexai.embedding.text
Classes in org.springframework.ai.vertexai.embedding.text that implement EmbeddingModelModifier and TypeClassDescriptionclassA class representing a Vertex AI Text Embedding Model. -
Uses of EmbeddingModel in org.springframework.ai.watsonx
Classes in org.springframework.ai.watsonx that implement EmbeddingModel -
Uses of EmbeddingModel in org.springframework.ai.zhipuai
Classes in org.springframework.ai.zhipuai that implement EmbeddingModelModifier and TypeClassDescriptionclassZhiPuAI Embedding Model implementation.