Class MariaDBVectorStore
java.lang.Object
org.springframework.ai.vectorstore.observation.AbstractObservationVectorStore
org.springframework.ai.vectorstore.mariadb.MariaDBVectorStore
- All Implemented Interfaces:
Consumer<List<Document>>,DocumentWriter,VectorStore,org.springframework.beans.factory.InitializingBean
public class MariaDBVectorStore
extends AbstractObservationVectorStore
implements org.springframework.beans.factory.InitializingBean
MariaDB-based vector store implementation using MariaDB's vector search capabilities.
The store uses MariaDB's vector search functionality to persist and query vector embeddings along with their associated document content and metadata. The implementation leverages MariaDB's vector index for efficient k-NN search operations.
Features:
- Automatic schema initialization with configurable index creation
- Support for multiple distance functions: Cosine and Euclidean
- Metadata filtering using JSON path expressions
- Configurable similarity thresholds for search results
- Batch processing support with configurable strategies
- Observation and metrics support through Micrometer
Basic usage example:
MariaDBVectorStore vectorStore = MariaDBVectorStore.builder(jdbcTemplate, embeddingModel)
.initializeSchema(true)
.build();
// Add documents
vectorStore.add(List.of(
new Document("content1", Map.of("key1", "value1")),
new Document("content2", Map.of("key2", "value2"))
));
// Search with filters
List<Document> results = vectorStore.similaritySearch(
SearchRequest.query("search text")
.withTopK(5)
.withSimilarityThreshold(0.7)
.withFilterExpression("key1 == 'value1'")
);
Advanced configuration example:
MariaDBVectorStore vectorStore = MariaDBVectorStore.builder(jdbcTemplate, embeddingModel)
.schemaName("mydb")
.distanceType(MariaDBDistanceType.COSINE)
.dimensions(1536)
.vectorTableName("custom_vectors")
.contentFieldName("text")
.embeddingFieldName("embedding")
.idFieldName("doc_id")
.metadataFieldName("meta")
.initializeSchema(true)
.batchingStrategy(new TokenCountBatchingStrategy())
.build();
Requirements:
- MariaDB 11.3.0 or later
- Table schema with id (UUID), text (TEXT), metadata (JSON), and embedding (VECTOR) properties
Distance Functions:
- cosine: Default, suitable for most use cases. Measures cosine similarity between vectors.
- euclidean: Euclidean distance between vectors. Lower values indicate higher similarity.
- Since:
- 1.0.0
- Author:
- Diego Dupin, Ilayaperumal Gopinathan, Soby Chacko
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic final classBuilder for creating instances ofMariaDBVectorStore.static enumstatic final recordThe representation ofDocumentalong with its embedding.Nested classes/interfaces inherited from interface org.springframework.ai.vectorstore.VectorStore
VectorStore.Builder<T extends VectorStore.Builder<T>> -
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final Stringstatic final Stringstatic final Stringstatic final Stringstatic final booleanstatic final Stringstatic final intstatic final intstatic final intFields inherited from class org.springframework.ai.vectorstore.observation.AbstractObservationVectorStore
batchingStrategy, embeddingModel -
Constructor Summary
ConstructorsModifierConstructorDescriptionprotectedProtected constructor for creating a MariaDBVectorStore instance using the builder pattern. -
Method Summary
Modifier and TypeMethodDescriptionvoidbuilder(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel) Creates a new MariaDBBuilder instance.createObservationContextBuilder(String operationName) Create a newVectorStoreObservationContext.Builderinstance.voidPerform the actual add operation.voidPerform the actual delete operation.protected voiddoDelete(Filter.Expression filterExpression) Template method for concrete implementations to provide filter-based deletion logic.doSimilaritySearch(SearchRequest request) Perform the actual similarity search operation.<T> Optional<T>Returns the native client if available in this vector store implementation.Methods inherited from class org.springframework.ai.vectorstore.observation.AbstractObservationVectorStore
add, delete, delete, similaritySearchMethods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.springframework.ai.document.DocumentWriter
writeMethods inherited from interface org.springframework.ai.vectorstore.VectorStore
accept, delete, getName, similaritySearch
-
Field Details
-
OPENAI_EMBEDDING_DIMENSION_SIZE
public static final int OPENAI_EMBEDDING_DIMENSION_SIZE- See Also:
-
INVALID_EMBEDDING_DIMENSION
public static final int INVALID_EMBEDDING_DIMENSION- See Also:
-
DEFAULT_SCHEMA_VALIDATION
public static final boolean DEFAULT_SCHEMA_VALIDATION- See Also:
-
MAX_DOCUMENT_BATCH_SIZE
public static final int MAX_DOCUMENT_BATCH_SIZE- See Also:
-
DEFAULT_TABLE_NAME
- See Also:
-
DEFAULT_COLUMN_EMBEDDING
- See Also:
-
DEFAULT_COLUMN_METADATA
- See Also:
-
DEFAULT_COLUMN_ID
- See Also:
-
DEFAULT_COLUMN_CONTENT
- See Also:
-
filterExpressionConverter
-
-
Constructor Details
-
MariaDBVectorStore
Protected constructor for creating a MariaDBVectorStore instance using the builder pattern.- Parameters:
builder- theMariaDBVectorStore.MariaDBBuildercontaining all configuration settings- Throws:
IllegalArgumentException- if required parameters are missing or invalid- Since:
- 1.0.0
- See Also:
-
-
Method Details
-
builder
public static MariaDBVectorStore.MariaDBBuilder builder(org.springframework.jdbc.core.JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel) Creates a new MariaDBBuilder instance. This is the recommended way to instantiate a MariaDBVectorStore.- Returns:
- a new MariaDBBuilder instance
-
getDistanceType
-
doAdd
Description copied from class:AbstractObservationVectorStorePerform the actual add operation.- Specified by:
doAddin classAbstractObservationVectorStore- Parameters:
documents- the documents to add
-
doDelete
Description copied from class:AbstractObservationVectorStorePerform the actual delete operation.- Specified by:
doDeletein classAbstractObservationVectorStore- Parameters:
idList- the list of document IDs to delete
-
doDelete
Description copied from class:AbstractObservationVectorStoreTemplate method for concrete implementations to provide filter-based deletion logic.- Overrides:
doDeletein classAbstractObservationVectorStore- Parameters:
filterExpression- Filter expression to identify documents to delete
-
doSimilaritySearch
Description copied from class:AbstractObservationVectorStorePerform the actual similarity search operation.- Specified by:
doSimilaritySearchin classAbstractObservationVectorStore- Parameters:
request- the search request- Returns:
- the list of documents that match the query request conditions
-
afterPropertiesSet
public void afterPropertiesSet()- Specified by:
afterPropertiesSetin interfaceorg.springframework.beans.factory.InitializingBean
-
createObservationContextBuilder
Description copied from class:AbstractObservationVectorStoreCreate a newVectorStoreObservationContext.Builderinstance.- Specified by:
createObservationContextBuilderin classAbstractObservationVectorStore- Parameters:
operationName- the operation name- Returns:
- the observation context builder
-
getNativeClient
Description copied from interface:VectorStoreReturns the native client if available in this vector store implementation. Note on usage: 1. Returns empty Optional when no native client is available 2. Due to Java type erasure, runtime type checking is not possible Example usage: When working with implementation with known native client: Optionalclient = vectorStore.getNativeClient(); Note: Using Optional<?> will return the native client if one exists, rather than an empty Optional. For type safety, prefer using the specific client type. - Specified by:
getNativeClientin interfaceVectorStore- Type Parameters:
T- The type of the native client- Returns:
- Optional containing native client if available, empty Optional otherwise
-