Spring AMQP - Reference
Documentation

Mark Pollack
Mark Fisher
Oleg Zhurakousky
Dave Syer
Gary Russell
Gunnar Hillert

Spring AMQP - Reference Documentation
by Mark Pollack, Mark Fisher, Oleg Zhurakousky, Dave Syer, Gary Russell, and Gunnar Hillert

1.1.3.RELEASE

© SpringSource Inc., 2012

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies
and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring AMQP

Table of Contents

= = o= SRS %

[gL T [¥ o1 o o TSP PPTPPR 1

1. Quick Tour for the IMPatiENTcoeiiii e e e e e e e 2

00 1 11T [o1 o o PP OPPPRRRTR 2

V= Y 4= 4 [Lo 2

With XML CONFIQUIBLIONeeiiiiiiiieeiiiee et 2

With Java CONFIQUIATIONeieiiiiiiee et e e 3

= = = o SR PUPREPR 4

2.USIiNG SPHNG AMQP ...t e e e e e e e a e e e e e e e aanes 5

2.1 AMQP ADSITACLIONScooeeeeeieeeeeeeeeeeeeee 5

2.2. Connection and Resource ManagemeNtuuuueuereurrermrmmmnmnennnenmnrnrmrm.. 8

2.3 AMOPTEMPIELE ... e e e 10

2.4, SENUING MESSAOESvveeeeiiiieiee ettt e e ettt e e e sttt e e s e e e e e sbe e e e s abae e e e s annbeeeeeanbeeeeeanns 11

2.5. RECEIVING IMESSAGESvvveieiiiiiieeeitieee e sttt e e st e e s sbbe e e e st e e e e snbee e e s sbbe e e e s annneeas 12

2.6. MESSAGE CONVEITEISiiiiieeeiiiiii ettt et e e e et e e e e e e e rb e s 14

2.7. ReqUES/REPIY MESSAGINGcvvviiiiiieeee ittt e e e e e e e e s e e e e e e e e e nnnenees 16

2.8. Configuring the broker ... 17

Federated EXCRANGEScooiiiiiiiiiiiiie et 21

2.9. EXCEPLiON HANAIING ...eeoiiiiiiieiiiiie e 21

2.10. TraNSACHIONSeiiieeeiee e e e e et e e e e e e r e e e e e s e st e e e e e e e s anataaareeaaeeeseansnrnnees 21

A note on Rollback of Received MESSAESccceeeviicvviiiiiieee et 23

Using the RabbitTransactionManagerceeeeiiiiiiiiiieiee e 23

2.11. Message Listener Container Configurationcccccvvvvvvviiiiiiiiiieeeecceeeeeeeeeee, 24

2.12. Resilience: Recovering from Errors and Broker Failures.............cccccovviieeeninnnn. 26

Automatic Declaration of Exchanges, Queues and Bindings...........c.ccccveevviiveeeene 26

Failures in Synchronous Operations and Options for Retrycccooeveeeiiiieenenns 27

Message Listeners and the Asynchronous Caseueeeeveeeeviiiciiieeeeeeeeeeeeiiinnn 27

I = (= g To IR 11 (=0 = o o PSRRI 29

1300 I 1 10T [o 1 o o S 29

3.2. Communicating With Erlang proCESSEScuvviiiiiiiiieiiiieee e 29

EXECULING RPC ...ttt et e e 29

ErTangCONVEITEScoiiiiie i 30

3.3, EXCEPLIONS ...vveiiiieeee ittt et e e e e e e e e e e e e e e et e e e e e e e e e et rrraaaeeaaa 30

4, SaMPIE APPIICALIONSevviiieiiee e e e e e e e e s e aas 31

v I 1 g oo 1o o) o PP 31

N o T 1o YA o o o SRR 31

Synchronous EXAMPIEcooiiiiiiiee e 31

ASYNChIroNOUS EXAMPIEoviiiiiiiiieiiiie et 32

Z G TS (oo QN I -] oo [P USRS PPEPR 34

[11. Spring INtegration - REFEIENCEuuviiiie e e e e e e e e e 37

5. Spring Integration AMQP SUPPOITcooeeeeieeeeeeeee 38

L300 R 1 1o [o 1 o o S 38

5.2. Inbound Channel AaDLENcooiiiiiiiiiiie e 38
Spring AMQP -

1.1.3.RELEASE Reference Documentation i

Spring AMQP

5.3. Outbound Channel Adaptercoiieiiiiiiiiieeee e 38

5.4. INDOUNA GALEWAYccoi ittt e e e e e e s e et e e e e s 38

5.5. OUtbouNd GaLEWEYccccoieiiiiiiiiicici s 38

V. ONEN RESOUICESeeiieieeeeiiiiee et e e e s ettt e e e e et e ettt e e e e e e e e e ntbeeeeeeaee e s s e nneseeeeeaaeeeaaansnneeens 40
6. FUINEr REAAINGeeiiiiiiiiii ettt e as 41
BibliOgrapny ... 42

Spring AMQP -
1.1.3.RELEASE Reference Documentation iv

Spring AMQP

Preface

The Spring AMQP project applies core Spring conceptsto the devel opment of AM QP-based messaging
solutions. We provide a "template" as a high-level abstraction for sending and receiving messages.
We also provide support for Message-driven POJOs. These libraries facilitate management of AMQP
resources while promoting the use of dependency injection and declarative configuration. In all of these
cases, you will see similaritiesto the JIM S support in the Spring Framework. The project consists of both
Javaand .NET versions. This manual is dedicated to the Java version. For links to the .NET version's
manual or any other project-related information visit the Spring AM QP project homepage.

Spring AMQP -
1.1.3.RELEASE Reference Documentation Y

http://springsource.org/spring-amqp

Part I. Introduction

This first part of the reference documentation is a high-level overview of Spring AMQP and the
underlying concepts and some code snippets that will get you up and running as quickly as possible.

Spring AMQP

1. Quick Tour for the impatient

1.1 Introduction

Thisisthe 5 minute tour to get started with Spring AMQP.

Prerequisites: install and run the RabbitMQ broker (http://www.rabbitmg.com/download.html). Then
grab the spring-rabbit JAR and all its dependencies - the easiest way to do that isto declare adependency
in your build tool, e.g. for Maven:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. angp</ gr oupl d>
<artifactld>spring-rabbit</artifactld>
<versi on>1. 0. 0. RELEASE</ ver si on>

</ dependency>

Very, Very Quick

Using plain, imperative Java to send and receive a message:

Connecti onFactory connecti onFactory = new Cachi ngConnecti onFactory();

AngpAdmi n admi n = new Rabbit Adm n(connecti onFactory);
admi n. decl ar eQueue(new Queue(" nyqueue"));

AngpTenpl ate tenpl ate = new Rabbi t Tenpl at e(connecti onFact ory);
tenpl at e. convert AndSend(" myqueue", "foo");

String foo = (String) tenpl ate.recei veAndConvert (" nmyqueue");

Note that thereisa Connect i onFact or y in the native Java Rabbit client as well. We are using the
Spring abstraction in the code above. We are relying on the default exchange in the broker (since none
is specified in the send), and the default binding of al queues to the default exchange by their name
(hence we can use the queue name as a routing key in the send). Those behaviours are defined in the
AMQP specification.

With XML Configuration

The same exampl e as above, but externalizing the resource configuration to XML.:

Appl i cati onCont ext context = new GenericXm Applicati onContext ("cl asspath:/rabbit-context.xm");
AngpTenpl ate tenpl ate = context. get Bean(AngpTenpl at e. cl ass) ;

tenpl at e. convert AndSend(" myqueue", "foo");

String foo = (String) tenpl ate.recei veAndConvert (" nmyqueue");

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: rabbit="http://wwmv. springfranmework. org/ schema/ rabbit"
xsi : schemalLocati on="http://ww. spri ngframewor k. or g/ schena/ r abbi t
http://ww. springframework. org/ schema/ rabbi t/spring-rabbit-1.0.xsd
http://ww. spri ngfranewor k. or g/ schenma/ beans

Spring AMQP -
1.1.3.RELEASE Reference Documentation 2

http://www.rabbitmq.com/download.html

Spring AMQP

http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd" >
<rabbi t: connection-factory id="connectionFactory"/>
<rabbit:tenplate i d="angpTenpl ate" connecti on-factory="connecti onFactory"/>
<rabbi t:adm n connecti on-factory="connectionFactory"/>
<rabbi t: queue nane="nmyqueue"/>

</ beans>

The <r abbi t: adni n/ > declaration by default automatically looks for beans of type Queue,
Exchange and Bi ndi ng and declares them to the broker on behalf of the user, hence there is no
need to use that bean explicitly in the simple Java driver. There are plenty of options to configure the
properties of the components in the XML schema - you can use auto-complete features of your XML
editor to explore them and look at their documentation.

With Java Configuration

The same example again with the external configuration in Java:

Appl i cati onCont ext context = new Annot ati onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AmgpTenpl ate tenpl ate = context. get Bean(AngpTenpl at e. cl ass) ;

tenpl at e. convert AndSend(" myqueue", "foo");

String foo = (String) tenplate.recei veAndConvert (" myqueue");

@Configuration
public class Rabbit Configuration {

@ean

publ i c Connecti onFactory connectionFactory() {
Cachi ngConnecti onFact ory connecti onFactory = new Cachi ngConnecti onFactory("| ocal host");
return connectionFactory;

}

@ean
publ i ¢ AmgpAdmi n angpAdmi n() {
return new Rabbi t Adm n(connectionFactory());

}

@Bean
publ i ¢ Rabbit Tenpl ate rabbitTenplate() {
return new Rabbit Tenpl at e(connecti onFactory());

}

@Bean
public Queue nyQueue() {
return new Queue("nyqueue");

}

Spring AMQP -
1.1.3.RELEASE Reference Documentation 3

Part Il. Reference

This part of the reference documentation details the various components that comprise Spring AMQP.
The main chapter covers the core classes to develop an AMQP application. This part also includes a
chapter on integration with Erlang and a chapter about the sample applications.

Spring AMQP

2. Using Spring AMQP

Inthischapter, wewill exploretheinterfacesand classesthat arethe essential componentsfor devel oping
applications with Spring AMQP.

2.1 AMQP Abstractions

Spring AMQP consists of a handful of modules, each represented by a JAR in the distribution. These
modules are: spring-amap, spring-rabbit and spring-erlang. The 'spring-amgp’ module contains the
org. springframewor k. angp. cor e package. Within that package, you will find the classes that
represent the core AMQP "model". Our intentionisto provide generic abstractionsthat do not rely onany
particular AMQP broker implementation or client library. End user code will be more portable across
vendor implementations asit can be devel oped against the abstraction layer only. These abstractionsare
then used implemented by broker-specific modules, such as 'spring-rabbit'. For the 1.0 release there is
only a RabbitMQ implementation however the abstractions have been validated in .NET using Apache
Qpid in addition to RabbitM Q. Since AMQP operates at the protocol level in principle the RabbitMQ
client can be used with any broker that supports the same protocol version, but we do not test any other
brokers at present.

The overview here assumes that you are aready familiar with the basics of the AMQP specification
aready. If you are not, then have alook at the resourceslisted in Part IV, “ Other Resources’

Message

The 0-8 and 0-9-1 AMQP specifications do not define a Message class or interface. Instead, when
performing an operation such as' basi cPubl i sh ', the content is passed as a byte-array argument
and additional properties are passed in as separate arguments. Spring AMQP defines a Message class
as part of a more general AMQP domain model representation. The purpose of the Message class is
to simply encapsulate the body and properties within a single instance so that the API can in turn be
simpler. The Message class definition is quite straightforward.

public class Message {
private final MessageProperties messageProperties
private final byte[] body;

public Message(byte[] body, MessageProperties nessageProperties) {
t hi s. body = body;
t hi s. messageProperti es = messageProperties

}

public byte[] getBody() ({
return this. body;
}

publ i ¢ MessageProperties get MessageProperties() {
return this.nessageProperties

Spring AMQP -
1.1.3.RELEASE Reference Documentation 5

Spring AMQP

The MessagePr operti es interface defines several common properties such as 'messageld,
'timestamp’, ‘contentType', and several more. Those properties can also be extended with user-defined
'headers by callingtheset Header (St ri ng key, Object val ue) method.

Exchange

The Exchange interface represents an AMQP Exchange, which is what a M essage Producer sendsto.
Each Exchangewithin avirtual host of abroker will haveaunique nameaswell asafew other properties:

public interface Exchange {
String getNane();
String get ExchangeType();
bool ean i sDurabl e();
bool ean i sAutoDel ete();
Map<String, Object> get Arguments();

}

Asyou can see, an Exchange also has a 'type' represented by constants defined in ExchangeTypes.
The basic types are: Di r ect, Topi ¢, Fanout , Header s and Feder at ed. In the core package
you will find implementations of the Exchange interface for each of those types. The behavior varies
across these Exchange types in terms of how they handle bindings to Queues. For example, a Direct
exchange allows for a Queue to be bound by a fixed routing key (often the Queue's name). A Topic
exchange supports bindings with routing patterns that may include the *' and '# wildcards for ‘exactly-
one' and 'zero-or-mor€', respectively. The Fanout exchange publishes to all Queues that are bound to
it without taking any routing key into consideration. For much more information about these and the
other Exchange types, check out Part IV, “ Other Resources’.

Note

The AMQP specification also requires that any broker provide a "default” Direct Exchange
that has no name. All Queues that are declared will be bound to that default Exchange with
their names as routing keys. Y ou will learn more about the default Exchange's usage within
Spring AMQP in Section 2.3, “AmgpTemplate”.

Queue

The Queue class represents the component from which a Message Consumer receives Messages. Like
the various Exchange classes, our implementation is intended to be an abstract representation of this
core AMQP type.

public class Queue {
private final String nane;

private vol atile bool ean durabl e;

private vol atile bool ean excl usi ve;

Spring AMQP -
1.1.3.RELEASE Reference Documentation 6

Spring AMQP

private vol atile bool ean autoDel et e;

private volatile Map<String, Object> arguments;

/**
* The queue is durable, non-exclusive and non auto-delete.
*
* @aram nane the nane of the queue.
*/
public Queue(String nane) {
thi s(nane, true, false, false);

}

/] Getters and Setters omitted for brevity

Noticethat the constructor takesthe Queue name. Depending on theimplementation, the admin template
may provide methods for generating a uniquely named Queue. Such Queues can be useful as a'"reply-
to" address or other temporary situations. For that reason, the ‘exclusive’ and 'autoDelete' properties of
an auto-generated Queue would both be set to 'true'.

Note
See the section on queues in Section 2.8, “Configuring the broker” for information about
declaring queues using namespace support, including queue arguments.

Binding

Given that a producer sends to an Exchange and a consumer receives from a Queue, the bindings that
connect Queuesto Exchanges are critical for connecting those producers and consumers via messaging.
In Spring AMQP, we define a Bi ndi ng class to represent those connections. Let's review the basic
options for binding Queues to Exchanges.

Y ou can bind a Queue to a DirectExchange with afixed routing key.

new Bi ndi ng(sonmeQueue, soneDi rect Exchange, "foo.bar")

Y ou can bind a Queue to a TopicExchange with arouting pattern.

new Bi ndi ng(someQueue, soneTopi cExchange, "foo.*")

Y ou can bind a Queue to a FanoutExchange with no routing key.

new Bi ndi ng(someQueue, soneFanout Exchange)

We aso provideaBi ndi ngBui | der to facilitate a"fluent API" style.

‘ Bi ndi ng b = Bi ndi ngBui | der. bi nd(sonmeQueue) .t o(sonmeTopi cExchange).wi th("foo.*");

Note

The BindingBuilder class is shown above for clarity, but this style works well when using a
static import for the 'bind()' method.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 7

Spring AMQP

By itself, an instance of the Binding classis just holding the data about a connection. In other words, it
isnot an "active" component. However, as you will see later in Section 2.8, “Configuring the broker”,
Binding instances can be used by the AngpAdm n class to actually trigger the binding actions on the
broker. Also, as you will seein that same section, the Binding instances can be defined using Spring's
@Bean-style within @onf i gur at i on classes. There is also a convenient base class which further
simplifies that approach for generating AMQP-related bean definitions and recognizes the Queues,
Exchanges, and Bindings so that they will all be declared on the AMQP broker upon application startup.

The AmgpTenpl at e is aso defined within the core package. As one of the main components
involved in actual AMQP messaging, it is discussed in detail in its own section (see Section 2.3,
“AmagpTemplate”).

2.2 Connection and Resource Management

Whereas the AMQP model we described in the previous section is generic and applicable to all
implementations, when we get into the management of resources, the details are specific to the broker
implementation. Therefore, in this section, we will be focusing on code that exists only within our
"spring-rabbit" module since at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ
broker is the Connect i onFact ory interface. The responsibility of
a Connecti onFactory implementation is to provide an instance of
org. spri ngfranmewor k. angp. r abbi t. connecti on. Connecti on which is a wrapper
for com rabbi t ng. cl i ent. Connecti on. The only concrete implementation we provide is
Cachi ngConnect i onFact or y which establishes a single connection proxy that can be shared by
the application. Sharing of the connection is possible sincethe "unit of work" for messaging with AMQP
is actually a "channel" (in some ways, this is similar to the relationship between a Connection and a
Session in IMS). As you can imagine, the connection instance provides acr eat eChannel method.
The Cachi ngConnect i onFact ory implementation supports caching of those channels, and it
maintains separate caches for channels based on whether they are transactional or not. When creating
an instance of Cachi ngConnect i onFact or y, the 'hostname' can be provided via the constructor.
The 'username’ and 'password' properties should be provided aswell. If you would like to configure the
size of the channel cache (the default is 1), you could call the set Channel CacheSi ze() method
here aswell.

Cachi ngConnecti onFact ory connecti onFactory = new Cachi ngConnecti onFact ory("sonmehost");
connecti onFact ory. set User nane(" guest")
connecti onFact ory. set Passwor d("guest");

Connection connection = connectionFactory. createConnection()

When using XML, the configuration might look like this:

<bean i d="connectionFactory"
cl ass="org. spri ngframewor k. angp. r abbi t. connecti on. Cachi ngConnect i onFact ory" >
<constructor-arg val ue="sonehost"/>
<property name="usernane" val ue="guest"/>
<property name="password" val ue="guest"/>
</ bean>

Spring AMQP -
1.1.3.RELEASE Reference Documentation 8

Spring AMQP

Note

Thereisaso aSi ngl eConnect i onFact or y implementation which is only available in
the unit test code of the framework. It is simpler than Cachi ngConnect i onFact ory
since it does not cache channels, but it is not intended for practical usage outside of simple
tests due to its lack of performance and resilience. If you find a need to implement your own
Connect i onFact ory for some reason, the Abst ract Connecti onFact ory base
class may provide a nice starting point.

A Connect i onFact ory can be created quickly and conveniently using the rabbit namespace:

<rabbi t: connection-factory
i d="connecti onFactory"/>

In most cases this will be preferable since the framework can choose the best defaults for you. The
created instance will beaCachi ngConnect i onFact or y. Keep in mind that the default cache size
for channelsis 1. If you want more channels to be cached set alarger value via the 'channel CacheSize
property. In XML it would look like this:

<bean i d="connecti onFact ory"
cl ass="org. spri ngframewor k. angp. r abbi t . connecti on. Cachi ngConnecti onFact ory" >
<constructor-arg val ue="sonmehost"/>
<property name="usernane" val ue="guest"/>
<property nanme="password" val ue="guest"/>
<property nanme="channel CacheSi ze" val ue="25"/>
</ bean>

And with the namespace you can just add the 'channel-cache-size' attribute:

<rabbi t: connection-factory
i d="connecti onFact ory" channel -cache-si ze="25"/>

Host and port attributes can be provided using the namespace

<r abbi t: connection-factory
i d="connectionFact ory" host="sonehost" port="5672" />

Alternatively, if running in a clustered environment, use the addresses attribute.

<r abbi t: connection-factory
i d="connectionFactory" addresses="host 1: 5672, host 2: 5672" />

Publisher Confirms and Returns

Confirmed and returned messages are supported by setting the Cachi ngConnecti onFactory's
publ i sher Confi rns and publ i sher Ret ur ns propertiesto 'true' respectively.

When these options are set, Channel s created by the factory are wrapped in an
Publ i sher Cal | backChannel which is used to facilitate the callbacks. When such a channel is
obtained, the client canregister aPubl i sher Cal | backChannel . Li st ener withtheChannel .
ThePubl i sher Cal | backChannel implementation containslogic to route a confirm/return to the
appropriate listener.

These features are explained further in the following sections.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 9

Spring AMQP

Tip
For some more background information, please see the following blog post by the RabbitMQ
team titled Introducing Publisher Confirms.

2.3 AmgpTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects,
Spring AMQP provides a "template" that plays a central role. The interface that defines the main
operations is called AngpTenpl at e. Those operations cover the general behavior for sending and
receiving Messages. |n other words, they are not unique to any implementation, hence the"AMQP" in
the name. On the other hand, there are implementations of that interface that aretied to implementations
of the AMQP protocol. Unlike IMS, which is an interface-level API itself, AMQP is a wire-level
protocol. Theimplementationsof that protocol providetheir own client libraries, so eachimplementation
of the template interface will depend on a particular client library. Currently, there is only a single
implementation: Rabbi t Tenpl at e. In the examples that follow, you will often see usage of an
"AmgpTemplate”, but when you look at the configuration examples, or any code excerpts where
the template is instantiated and/or setters are invoked, you will see the implementation type (e.g.
"RabbitTemplate").

As mentioned above, the AngpTenpl at e interface defines all of the basic operations for sending and
receiving Messages. We will explore Message sending and reception, respectively, in the two sections
that follow.

Publisher Confirms and Returns

The Rabbi t Tenpl at e implementation of AngpTenpl at e supports Publisher Confirms and
Returns.

For returned messages, the template's nandat or y property must be set to 'true’, and it requires a
Cachi ngConnect i onFact ory that has its publ i sher Ret ur ns property set to true. Returns
are sent to to the client by it registering a Rabbi t Tenpl at e. Ret urnCal | back by calling
set ReturnCal | back(ReturnCal | back cal |l back). The calback must implement this
method:

voi d returnedMessage(Message nessage, int replyCode, String replyText,
String exchange, String routingKey);

Only one Ret ur nCal | back is supported by each Rabbi t Tenpl at e.

For Publisher Confirms (aka Publisher Acknowledgements), the template requires a
Cachi ngConnect i onFact ory that hasitspubl i sher Conf i r s property set to true. Confirms
are sent to to the client by it registering a Rabbi t Tenpl at e. Confi r ntCal | back by calling
set Confi rmCal | back(ConfirntCal | back cal | back). The callback must implement this
method:

void confirm(Correl ati onData correl ati onData, bool ean ack);

Spring AMQP -
1.1.3.RELEASE Reference Documentation 10

http://www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms/

Spring AMQP

TheCorr el ati onDat a isan object supplied by the client when sending the original message. This
is described further in the next section.

Only one Confi r nCal | back issupported by aRabbi t Tenpl at e.

2.4 Sending messages

When sending a Message, one can use any of the following methods:

voi d send(Message nmessage) throws AngpExcepti on;

void send(String routingKey, Message nessage) throws AngpException;

voi d send(String exchange, String routingKey, Message nessage) throws AngpExcepti on;
We can begin our discussion with the last method listed above since it is actually the most explicit. It
allows an AM QP Exchange nameto be provided at runtime along with arouting key. Thelast parameter

isthe callback that is responsible for actual creating of the Message instance. An example of using this
method to send a Message might look thisthis:

anmgpTenpl at e. send(" mar ket Dat a. t opi c*, "quot es. nasdag. FOO', new Message("12.34". getBytes(), soneProperties)):

The "exchange" property can be set on the template itself if you plan to use that template instance to
send to the same exchange most or all of the time. In such cases, the second method listed above may
be used instead. The following example is functionally equivalent to the previous one:

anmgpTenpl at e. set Exchange(" mar ket Dat a. t opi c") ;
amgpTenpl at e. send(" quot es. nasdaqg. FOO', new Message("12. 34". get Bytes(), soneProperties));

If both the "exchange" and "routingKey" properties are set on the template, then the method accepting
only the Message may be used:

anmgpTenpl at e. set Exchange(" mar ket Dat a. t opi c") ;
amgpTenpl at e. set Rout i ngKey(" quot es. nasdaq. FOO') ;
anmgpTenpl at e. send(new Message("12. 34". getBytes(), sonmeProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method
parameters will always override the template's default values. In fact, even if you do not explicitly set
those properties on the template, there are always default values in place. In both cases, the default is
an empty String, but that is actualy a sensible default. As far as the routing key is concerned, it's not
always necessary in thefirst place (e.g. a Fanout Exchange). Furthermore, a Queue may be bound to an
Exchange with an empty String. Those are both legitimate scenarios for reliance on the default empty
String value for the routing key property of the template. Asfar asthe Exchange name is concerned, the
empty String is quite commonly used because the AMQP specification defines the "default Exchange”
as having no name. Since all Queues are automatically bound to that default Exchange (whichisaDirect
Exchange) using their name as the binding value, that second method above can be used for simple
point-to-point Messaging to any Queue through the default Exchange. Simply provide the queue name
asthe "routingKey" - either by providing the method parameter at runtime;

Spring AMQP -
1.1.3.RELEASE Reference Documentation 11

Spring AMQP

Rabbi t Tenpl ate tenpl ate = new Rabbit Tenplate(); // using default no-nane Exchange
tenpl at e. send(" queue. hel | oWorl d", new Message("Hello World". getBytes(), soneProperties));

Or, if you prefer to create atemplate that will be used for publishing primarily or exclusively to asingle
Queue, the following is perfectly reasonable:

Rabbi t Tenpl ate tenpl ate = new Rabbit Tenplate(); // using default no-nane Exchange
tenpl at e. set Rout i ngKey(" queue. hel oWorl d"); // but we'll always send to this Queue
tenpl at e. send(new Message("Hell o Worl d". getBytes(), soneProperties));

Publisher Confirms

With the Rabbi t Tenpl at e implementation of AnrgpTenpl at e, each of thesend() methods has
an overloaded version that takes an additional Cor r el at i onDat a object. When publisher confirms
are enabled, this object is returned in the callback described in Section 2.3, “AmgpTemplate’. This
allows the sender to correlate a confirm (ack or nack) with the sent message.

Publisher Returns

When the template's mandat or y property is 'true’ returned messages are provided by the callback
described in Section 2.3, “AmgpTemplate”.

2.5 Receiving messages

M essage reception is always a bit more complicated than sending. The reason isthat there are two ways
toreceilveaMessage. Thesimpler optionisto poll for asingle Message at atimewith asynchronous,
blocking method call. The more complicated yet more common approach is to register a listener that
will receive Messages on-demand, asynchronously. We will look at an example of each approachin
the next two sub-sections.

Synchronous Consumer

The AngpTenpl at e itself can be used for synchronous Message reception. There are two 'receive
methods available. As with the Exchange on the sending side, there is a method that requires a queue
property having been set directly on the template itself, and there is a method that accepts a queue
parameter at runtime.

Message receive() throws AngpExcepti on;

Message receive(String queueNane) throws AngpException;
Just like in the case of sending messages, the AngpTenpl at e has some convenience methods for
receiving POJOs instead of Message instances, and implementations will provide away to customize
the MessageConvert er usedto create the Cbj ect returned:

bj ect recei veAndConvert () throws AngpExcepti on;

hj ect recei veAndConvert (String queueNane) throws AngpExcepti on;

Spring AMQP -
1.1.3.RELEASE Reference Documentation 12

Spring AMQP

Asynchronous Consumer

For asynchronous Message reception, a dedicated component (not the AngpTenpl at €) isinvolved.
That component is a container for a Message consuming callback. We will look at the container and its
propertiesin just amoment, but first we should look at the callback since that iswhere your application
codewill beintegrated with the messaging system. Thereare afew optionsfor the callback. The simplest
of theseisto implement the MessagelLi st ener interface:

public interface MessagelLi stener {

voi d onMessage(Message nessage);

If your callback logic depends upon the AMQP Channel instance for any reason, you may instead use
the Channel Awar eMessageli st ener . It looks similar but with an extra parameter:

public interface Channel Awar eMessagelLi st ener {

voi d onMessage(Message nmessage, Channel channel) throws Exception

If you prefer to maintain a stricter separation between your application logic and the messaging API,
you can rely upon an adapter implementation that is provided by the framework. Thisis often referred
to as "Message-driven POJO" support. When using the adapter, you only need to provide a reference
to the instance that the adapter itself should invoke.

Messageli stener |istener = new Messageli st ener Adapt er (sonePoj 0) ;

Now that you've seen the various options for the Message-listening callback, we can turn our attention
to the container. Basically, the container handles the "active" responsibilities so that the listener
callback can remain passive. The container is an example of a "lifecycle" component. It provides
methods for starting and stopping. When configuring the container, you are essentially bridging
the gap between an AMQP Queue and the Messageli st ener instance. You must provide a
reference to the Connect i onFact ory and the queue name or Queue instance(s) from which that
listener should consume Messages. Here is the most basic example using the default implementation,
Si npl eMessageli st ener Cont ai ner :

Si npl eMessagelLi st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact or y(rabbi t Connecti onFactory);

cont ai ner. set QueueNanes("sone. queue") ;

cont ai ner. set Messageli st ener (new Messageli st ener Adapt er (sonmePoj 0)) ;

As an "active" component, it's most common to create the listener container with a bean definition so
that it can simply run in the background. This can be done via XML.:

<rabbit:|istener-container connection-factory="rabbitConnecti onFactory">
<rabbit:|istener queues="somne.queue" ref="somePojo" nethod="handl e"/>
</rabbit:listener-container>
Or, you may prefer to use the @Configuration style which will look very similar to the actual code
snippet above:

Spring AMQP -
1.1.3.RELEASE Reference Documentation 13

Spring AMQP

@Configuration
public class Exanpl eAngpConfi guration {

@Bean
publ i c MessagelLi st ener Cont ai ner nessageli st ener Cont ai ner () {
Si npl eMessageli st ener Cont ai ner cont ai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact or y(rabbit Connecti onFactory());
cont ai ner. set QueueNane(" sone. queue") ;
cont ai ner. set Messageli st ener (exanpl eLi stener());
return container;

}

@Bean
publ i ¢ Connecti onFactory rabbit ConnectionFactory() {
Cachi ngConnecti onFactory connecti onFactory = new Cachi ngConnecti onFactory("l ocal host");
connecti onFact ory. set User nane("guest ") ;
connecti onFact ory. set Passwor d(" guest") ;
return connectionFactory;

}

@ean
publ i c Messageli st ener exanpl eLi stener () {
return new Messageli stener () {
public void onMessage(Message nessage) {
Systemout.println("received: " + nmessage);
}
}s

2.6 Message Converters

The AnmgpTenpl at e also defines several methods for sending and receiving Messages that will
delegate to a MessageConvert er. The MessageConvert er itsalf is quite straightforward. It
provides asingle method for each direction: one for converting to a M essage and another for converting
fromaMessage. Notice that when converting to aMessage, you may also provide propertiesin addition
to the object. The "object" parameter typically corresponds to the Message body.

public interface MessageConverter {

Message t oMessage(Obj ect object, MessageProperti es nessageProperti es)
t hrows MessageConver si onExcepti on;

hj ect fromvessage(Message nessage) throws MessageConver si onExcepti on;

Therelevant M essage-sending methods onthe AngpTenpl at e arelisted below. They are simpler than
the methods we discussed previously because they do not require the Message instance. Instead, the
MessageConvert er isresponsiblefor "creating" each Message by converting the provided object
to the byte array for the Message body and then adding any provided MessagePr operti es.

voi d convert AndSend(Cbj ect nessage) throws AnmgpExcepti on;
voi d convert AndSend(String routi ngkey, Object nessage) throws AngpException;

voi d convertAndSend(String exchange, String routingKey, Cbject nessage) throws AngpExcepti on;

Spring AMQP -
1.1.3.RELEASE Reference Documentation 14

Spring AMQP

voi d convert AndSend(Cbj ect nessage, MessagePost Processor nessagePost Processor) throws AngpExcepti on;

voi d convert AndSend(String routi ngkey, Object nessage, MessagePost Processor nmessagePost Processor)
t hrows AngpExcepti on;

voi d convert AndSend(String exchange, String routingKey, Object nmessage,
MessagePost Processor nessagePost Processor) throws AngpException;

On the receiving side, there are only two methods: one that accepts the queue name and one that relies
on the template's "queue” property having been set.

Obj ect recei veAndConvert () throws AngpExcepti on;

Obj ect recei veAndConvert (String queueNane) throws AngpExcepti on;

SimpleMessageConverter

The default implementation of the MessageConverter strategy is caled
Si mpl eMessageConverter. This is the converter that will be used by an instance of
RabbitTemplateif you do not explicitly configure an alternative. It handlestext-based content, serialized
Javaobjects, and simple byte arrays.

Converting From a Message

If the content type of the input Message begins with "text" (e.g. "text/plain®), it will also check for
the content-encoding property to determine the charset to be used when converting the Message body
byte array to a Java String. If no content-encoding property had been set on the input Message, it will
use the "UTF-8" charset by default. If you need to override that default setting, you can configure an
instance of Si npl eMessageConvert er, setits"defaultCharset" property and then inject that into
aRabbi t Tenpl at e instance.

If the content-type property value of the input Message is set to "application/x-java-serialized-object”,
the Si npl eMessageConvert er will attempt to deserialize (rehydrate) the byte array into a Java
object. While that might be useful for simple prototyping, it's generally not recommended to rely on
Javaserialization sinceit leads to tight coupling between the producer and consumer. Of coursg, it also
rules out usage of non-Java systemson either side. With AMQP being awire-level protocol, it would be
unfortunate to lose much of that advantage with such restrictions. In the next two sections, we'll explore
some alternatives for passing rich domain object content without relying on Java serialization.

For al other content-types, the Si npl eMessageConvert er will return the Message body content
directly as a byte array.

Converting To a Message

When converting to a Message from an arbitrary Java Object, the Si npl eMessageConvert er
likewise deals with byte arrays, Strings, and Serializable instances. It will convert each of these to
bytes (in the case of byte arrays, there is nothing to convert), and it will set the content-type property
accordingly. If the Object to be converted does not match one of those types, the Message body will
be null.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 15

Spring AMQP

JsonMessageConverter

As mentioned in the previous section, relying on Java serialization is generally not recommended. One
rather common alternative that is more flexible and portable across different languages and platforms
is JSON (JavaScript Object Notation). An implementation is available and can be configured on any
Rabbi t Tenpl at e instance to override its usage of the Si npl eMessageConvert er default.

<bean cl ass="org. spri ngframewor k. angp. r abbi t. cor e. Rabbi t Tenpl at e" >
<property nanme="connecti onFactory" ref="rabbitConnecti onFactory"/>
<property name="nmessageConverter">
<bean cl ass="org. spri ngframewor k. angp. support. converter.JsonMessageConverter">

<l-- if necessary, override the Defaul tC assMapper -->
<property nanme="cl assMapper" ref="custonCl assMapper"/>

</ bean>

</ property>

</ bean>

Asshown above, the JsonMessageConvert er usesaDef aul t G assMapper by default. Type
information is added to (and retrieved from) the MessagePr oper t i es. If aninbound message does
not contain type information in the MessagePr oper ti es, but you know the expected type, you can
configure a static type using the def aul t Type property

<bean i d="j sonConverterWthDefaul t Type" class="org.springfranework. angp. support.converter.JsonMessageConver
<property nanme="cl assMapper">
<bean cl ass="org. spri ngframewor k. angp. support. converter. Def aul t O assMapper " >
<property nanme="defaul t Type"
val ue="f oo. PurchaseOrder" />
</ bean>
</ property>
</ bean>

MarshallingMessageConverter

Yet another option is the Mar shal | i ngMessageConvert er. It delegates to the Spring OXM
library'simplementations of the Mar shal | er and Unmar shal | er strategy interfaces. Y ou canread
more about that library here. In terms of configuration, it's most common to provide the constructor
argument only since most implementations of Mar shal | er will also implement Unmar shal | er .

<bean cl ass="org. spri ngframewor k. angp. r abbi t. core. Rabbi t Tenpl at e" >
<property nanme="connectionFactory" ref="rabbitConnecti onFactory"/>
<property name="nessageConverter">
<bean cl ass="org. spri ngf ramewor k. angp. support. converter. Marshal | i ngMessageConverter" >
<constructor-arg ref="sonel npl emenat i onO Mar shal | er AndUnnar shal | er"/>
</ bean>
</ property>
</ bean>

2.7 Request/Reply Messaging

The AngpTenpl at e aso provides a variety of sendAndRecei ve methods that accept the same
argument optionsthat you have seen above for the one-way send operations (exchange, routingKey, and
Message). Those methods are quite useful for request/reply scenarios sincethey handlethe configuration

Spring AMQP -
1.1.3.RELEASE Reference Documentation 16

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

Spring AMQP

of the necessary "reply-to" property before sending and can listen for the reply message on an exclusive
Queue that is created internally for that purpose.

Similar request/reply methods are also available where the MessageConvert er is applied to both
the request and reply. Those methods are named conver t SendAndRecei ve. See the Javadoc of
AmgpTenpl at e for more detail.

By default, a new temporary queue is used for each reply. However, a single reply queue can be
configured on the template, which allows you to set arguments on that queue (such as 'ha_args="all""
for mirrored queues). In this case, however, you must also provide a <reply-listener/> sub element. This
element provides alistener container for the reply queue, with the template being the listener. All of the
Section 2.11, “Message Listener Container Configuration” attributes allowed on a<listener-container/>
are alowed on the element, except for connection-factory and message-converter, which are inherited
from the template's configuration.

<rabbit:tenpl ate i d="angpTenpl at e"
connecti on-factory="connecti onFactory" reply-queue="replies">
<rabbit:reply-listener />
</rabbit:tenpl ate>

While the container and template share a connection factory, they do not share a channel and therefore
regquests and replies are not performed within the same transaction (if transactional).

2.8 Configuring the broker

The AMQP specification describes how the protocol can be used to configure Queues, Exchanges and
Bindings on the broker. These operations which are portable from the 0.8 specification and higher are
present in the AmgpAdmin interface in the org.springframework.amap.core package. The RabbitMQ
implementation of that class is RabbitAdmin located in the org.springframework.amqp.rabbit.core
package.

The AmgpAdmininterfaceisbased on using the Spring AM QP domain abstractions and is shown below:

public interface AngpAdmi n {
/| Exchange Operations
voi d decl ar eExchange(Exchange exchange);
voi d del et eExchange(String exchangeNane) ;
/1 Queue Operations
Queue decl areQueue();
voi d decl areQueue(Queue queue);
voi d del et eQueue(String queueNane);
voi d del et eQueue(String queueNane, bool ean unused, bool ean enpty);

voi d purgeQueue(String queueNarme, bool ean noWit);

Spring AMQP -
1.1.3.RELEASE Reference Documentation 17

Spring AMQP

/1 Binding Operations

voi d decl ar eBi ndi ng(Bi ndi ng bi ndi ng) ;

The no-arg declareQueue() method defines a queue on the broker whose name is automatically
generated. The additional properties of this auto-generated queue are exclusive=true, autoDel ete=true,
and durable=false.

Note

Removing a binding was not introduced until the 0.9 version of the AMQP spec.

The RabbitM Q implementation of this interface is RabbitAdmin which when configured using Spring
XML would look like this:

<rabbi t: connection-factory i d="connecti onFactory"/>

<rabbi t:adm n i d="anmgpAdmni n" connecti on-factory="connectionFactory"/>

The Rabbi t Admi n implementation does automatic lazy declaration of Queues, Exchanges and
Bi ndi ngs declaredinthesame Appl i cat i onCont ext . These componentswill be declared asson
as a Connecti on is opened to the broker. There are some namespace features that make this very
convenient, e.g. in the Stocks sample application we have:

<rabbi t: queue id="tradeQueue" />
<rabbi t: queue i d="nmarket Dat aQueue" />

<f anout - exchange name="broadcast.responses” xm ns="http://ww. spri ngfranmework. org/schema/rabbit">
<bi ndi ngs>
<bi ndi ng queue="tradeQueue" />
</ bi ndi ngs>
</ f anout - exchange>

<t opi c- exchange name="app. st ock. mar ket data" xm ns="http://ww. spri ngfranmework. org/ schema/rabbit">
<bi ndi ngs>
<bi ndi ng queue="nar ket Dat aQueue" pattern="${stocks. quote.pattern}" />
</ bi ndi ngs>
</t opi c- exchange>

In the example above we are using anonymous Queues (actually internally just Queues with names
generated by the framework, not by the broker) and refer to them by ID. We can also declare Queues
with explicit names, which also serve asidentifiers for their bean definitionsin the context. E.g.

<rabbi t: queue name="st ocks. trade. queue"/>

Tip

You can provide both an id and a name attribute. This allows you to refer to the queue (for
example in abinding) by an id that is independent of the queue name. It also alows standard
Spring features such as property placeholders, and SpEL expressionsfor the queue name; these
features are not available when using the name as the bean identifier.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 18

Spring AMQP

Queues can be configured with additional arguments, for example, 'x-message-ttl' or 'x-ha-policy'. Using
the namespace support, they are provided in the form of aMap of argument name/argument value pairs,
using the <rabbit:queue-arguments> element.

<r abbi t: queue nane="wi t hAr gunent s" >
<r abbi t: queue- ar gunent s>
<entry key="x-ha-policy" value="all" />
</rabbit: queue- ar gunment s>
</rabbit: queue>

By default, the arguments are assumed to be strings. For arguments of other types, the type needs to
be provided.

<rabbi t: queue nane="w t hAr gunent s">

<r abbi t: queue- argunent s val ue-type="j ava. | ang. Long" >
<entry key="x-nessage-ttl" val ue="100" />

</ rabbit: queue- ar gumrent s>

</rabbit: queue>

When providing arguments of mixed types, the typeis provided for each entry element:

<rabbi t: queue nane="w t hArgunent s">
<r abbi t: queue- ar gunent s>
<entry key="x-nmessage-ttl">
<val ue type="j ava. | ang. Long" >100</ val ue>
</entry>
<entry key="x-ha-policy" value="all" />
</rabbit: queue-argunent s>
</rabbit: queue>

With Spring Framework 3.2 and later, this can be declared alittle more succinctly:

<rabbi t: queue nane="w t hAr gunent s" >

<r abbi t: queue- ar gunent s>
<entry key="x-nessage-ttl" val ue="100" val ue-type="j ava.l ang. Long" />
<entry key="x-ha-policy" value="all" />

</rabbit: queue-ar gunent s>

</ rabbi t: queue>

To see how to use Java to configure the AMQP infrastructure, look at the Stock sample application,
where there is the @onf i gur ati on class Abst ract St ockRabbi t Confi gurati on which
in turn has RabbitClientConfiguration and RabbitServerConfiguration subclasses. The code for
AbstractStockRabbitConfiguration is shown below

@Configuration
public abstract class Abstract St ockAppRabbit Configuration {

@Bean
publ i c Connecti onFactory connectionFactory() {
Cachi ngConnecti onFact ory connecti onFactory = new Cachi ngConnecti onFactory("| ocal host");
connecti onFact ory. set User nane(" guest")
connecti onFact ory. set Passwor d("guest");
return connectionFactory;

}

@ean
publ i ¢ Rabbit Tenpl ate rabbit Tenpl ate() {

Spring AMQP -
1.1.3.RELEASE Reference Documentation 19

Spring AMQP

Rabbi t Tenpl at e tenpl ate = new Rabbi t Tenpl at e(connecti onFactory());
tenpl at e. set MessageConverter (j sonMessageConverter());

confi gur eRabbi t Tenpl at e(t enpl ate) ;

return tenpl ate;

}

@ean
publ i c MessageConverter jsonMessageConverter() {
return new JsonMessageConverter();

}

@ean
publ i ¢ Topi cExchange mar ket Dat aExchange() {
return new Topi cExchange("app. st ock. mar ket data") ;

}

/] additional code omitted for brevity

In the Stock application, the server is configured using the following @Configuration class:

@Configuration
public cl ass Rabbit Server Confi guration extends Abstract St ockAppRabbi t Configuration {

@ean
publ i c Queue stockRequest Queue() {
return new Queue("app. stock. request");

}

This is the end of the whole inheritance chain of @Configuration classes. The end result is the the
TopicExchange and Queue will be declared to the broker upon application startup. Thereis no binding
of the TopicExchange to a queue in the server configuration, as that is done in the client application.
The stock request queue however is automatically bound to the AM QP default exchange - this behavior
is defined by the specification.

The client @Configuration classis alittle more interesting and is shown below.

@Configuration
public class Rabbitd ientConfiguration extends Abstract St ockAppRabbi t Confi guration {

@/al ue(" ${stocks. quote. pattern}")
private String market Dat aRout i ngKey;

@ean
publ i c Queue narket Dat aQueue() {
return angpAdmi n() . decl areQueue();

}

/**

* Binds to the market data exchange. Interested in any stock quotes

* that match its routing key.

*/

@ean

publ i ¢ Bi ndi ng nar ket Dat aBi ndi ng() {

return Bi ndi ngBui | der . bi nd(
mar ket Dat aQueue()) .t o(mar ket Dat aExchange()) . wi t h(mar ket Dat aRout i ngKey) ;

Spring AMQP -
1.1.3.RELEASE Reference Documentation 20

Spring AMQP

// additional code omitted for brevity

}

The client is declaring another queue via the declareQueue() method on the AmgpAdmin, and it binds
that queue to the market data exchange with arouting pattern that is externalized in a propertiesfile.

Federated Exchanges

Rabbit supports federation; federated exchanges are backed by one of the other exchange types.
Therefore, when configuring afederated exchange, it isimportant to supply bindings of the appropriate
type for the backing exchange. Examplesinclude...

<f eder at ed- exchange nane="fedDi rect" backi ng-type="direct"
upstream set ="upstreamset">
<di r ect - bi ndi ngs>
<bi ndi ng queue="bucket" />
</ di rect - bi ndi ngs>
</ f eder at ed- exchange>

<f eder at ed- exchange nane="f edTopi c" backi ng-type="topi c"
upstream set ="upstreamset">
<t opi c- bi ndi ngs>
<bi ndi ng queue="bucket" pattern="bucket.#"/>
</t opi c- bi ndi ngs>
</ f eder at ed- exchange>

Notice that the child element, e.g. <direct-bindings/> matches the backing-type attribute.

2.9 Exception Handling

Many operations with the RabbitMQ Java client can throw checked Exceptions. For
example, there are a lot of cases where 10Exceptions may be thrown. The RabbitTemplate,
SimpleM essagelistenerContainer, and other Spring AMQP components will catch those Exceptions
and convert into one of the Exceptions within our runtime hierarchy. Those are defined in the
‘org.springframework.amqp' package, and AmgpEXxception is the base of the hierarchy.

If youareusing aSi npl eMessagelLi st ener Cont ai ner you will also be able to inject a Spring
Er r or Handl er instancethat can be used to react to an exceptioninthelistener. TheEr r or Handl er
cannot prevent the exception from eventually propagating, but it can be used to log or aert another
component that there is a problem.

2.10 Transactions

The Spring Rabbit framework has support for automatic transaction management in the synchronous
and asynchronous use cases with a number of different semantics that can be selected declaratively, as
is familiar to existing users of Spring transactions. This makes many if not most common messaging
patterns very easy to implement.

There are two ways to signa the desired transaction semantics to the framework. In
both the Rabbit Tenpl ate and Si npl eMessageli st ener Cont ai ner there is a flag

Spring AMQP -
1.1.3.RELEASE Reference Documentation 21

Spring AMQP

channel Transact ed which, if true, tells the framework to use a transactional channel and to
end all operations (send or receive) with a commit or rollback depending on the outcome, with an
exception signaling arollback. Another signal isto provide an external transaction with one of Spring's
Pl at f or nilr ansact i onManager implementations as a context for the ongoing operation. If there
is already a transaction in progress when the framework is sending or receiving a message, and the
channel Tr ansact ed flag istrue, then the commit or rollback of the messaging transaction will be
deferred until the end of the current transaction. If the channel Tr ansact ed flag is false, then no
transaction semantics apply to the messaging operation (it is auto-acked).

The channel Tr ansact ed flag is a configuration time setting: it is declared and processed once
when the AM QP components are created, usually at application startup. The external transactionismore
dynamic in principle because the system responds to the current Thread state at runtime, but in practice
is often also a configuration setting, when the transactions are layered onto an application declaratively.

For synchronous use cases with Rabbi t Tenpl at e the external transaction is provided by the caller,
either declaratively or imperatively according to taste (the usual Spring transaction model). An example
of a declarative approach (usualy preferred because it is non-invasive), where the template has been
configured with channel Tr ansact ed=t r ue:

@r ansacti onal
public void doSonet hing() {
String incomng = rabbitTenpl at e. recei veAndConvert () ;
/1 do sone nore database processing...
String outgoing = processl nDat abaseAndExt ract Repl y(i nconi ng);
rabbi t Tenpl at e. convert AndSend(out goi ng) ;

}

A String payload is received, converted and sent as a message body inside a method marked as
@Transactional, so if the database processing fails with an exception, the incoming message will be
returned to the broker, and the outgoing message will not be sent. This applies to any operations
with the Rabbi t Tenpl at e inside achain of transactional methods (unless the Channel isdirectly
manipulated to commit the transaction early for instance).

For asynchronous use caseswith Si npl eMessagelLi st ener Cont ai ner if anexternal transaction
is needed it has to be requested by the container when it sets up the listener. To signal that an external
transaction is required the user provides an implementation of Pl at f or nmilr ansact i onManager
to the container when it is configured. For example:

@Conf i guration
publ i c cl ass Exanpl eExt ernal Transacti onAngpConfi guration {

@ean
publ i ¢ Messageli st ener Cont ai ner nmessageli st ener Cont ai ner () {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(rabbit Connecti onFactory());
cont ai ner. set Transacti onManager (transacti onManager());
cont ai ner. set Channel Transact ed(true);
cont ai ner. set QueueNane("some. queue") ;
cont ai ner. set Messageli st ener (exanpl eLi stener());
return container;

Spring AMQP -
1.1.3.RELEASE Reference Documentation 22

Spring AMQP

In the example above, the transaction manager is added as a dependency injected from another bean
definition (not shown), and the channel Tr ansact ed flag is also set to true. The effect is that if
the listener fails with an exception the transaction will be rolled back, and the message will also be
returned to the broker. Significantly, if the transaction fails to commit (e.g. a database constraint error,
or connectivity problem), then the AMQP transaction will also be rolled back, and the message will
be returned to the broker. This is sometimes known as a Best Efforts 1 Phase Commit, and is a very
powerful pattern for reliable messaging. If the channel Tr ansact ed flag was set to false in the
example above, whichisthe default, then the external transaction would still be provided for the listener,
but all messaging operations would be auto-acked, so the effect isto commit the messaging operations
even on arollback of the business operation.

A note on Rollback of Received Messages

AMQP transactions only apply to messages and acks sent to the broker, so when thereis arollback of a
Spring transaction and a message has been received, what Spring AMQP has to do is not just rollback
the transaction, but also manually reject the message (sort of anack, but that's not what the specification
callsit). Such messages (and any that are unacked when a channel is closed or aborts) go to the back
of the queue on a Rabbit broker, and this behaviour is not what some users expect, especialy if they
come from a JM S background, so it's good to be aware of it. The re-queuing order is not mandated by
the AMQP specification, but it makes the broker much more efficient, and also meansthat if it isunder
load thereis a natural back off before the message can be consumed again.

Using the RabbitTransactionManager

The RabbitTransactionManager is an aternative to executing Rabbit operations within, and
synchronized with, externa transactions. This Transaction Manager is an implementation of the
PlatformTransactionM anager interface and should be used with a single Rabbit ConnectionFactory.

I mportant
This strategy isnot able to provide XA transactions, for examplein order to share transactions
between messaging and database access.

Application code is required to retrieve the transactional Rabbit resources via
ConnectionFactoryUils. get Transacti onal Resour ceHol der (Connecti onFact ory,
bool ean) instead of astandard Connect i on. cr eat eChannel () call with subsequent Channel
creation. When using Spring's Rabbi t Tenpl at e, it will autodetect a thread-bound Channel and
automatically participatein it.

With Java Configuration you can setup a new RabbitTransactionManager using:

@ean
publ i ¢ Rabbit Transacti onManager rabbit Transacti onManager () {
return new Rabbit Transacti onManager (connecti onFactory);

}

If you prefer using XML configuration, declare the following bean in your XML Application Context
file:

<bean i d="rabbi t TxManager"

Spring AMQP -
1.1.3.RELEASE Reference Documentation 23

http://static.springsource.org/spring-amqp/docs/latest-ga/apidocs/org/springframework/amqp/rabbit/transaction/RabbitTransactionManager.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html
http://static.springsource.org/spring-amqp/docs/latest-ga/apidocs/org/springframework/amqp/rabbit/core/RabbitTemplate.html

Spring AMQP

cl ass="org. spri ngframewor k. angp. rabbi t. transacti on. Rabbi t Transacti onManager " >
<property name="connecti onFactory" ref="connecti onFactory"/>

</ bean>

2.11 Message Listener Container Configuration

There are quite afew options for configuring aSi npl eMessagelLi st ener Cont ai ner related to
transactions and quality of service, and some of them interact with each other.

When configuring with the XML namespace, the convention is to use hyphenated attributes rather than
camel case; for example, for property 'connectionFactory', the XML equivalent is 'connection-factory'.

Table 2.1. Configuration options for a message listener container

Property Description

channel Transacted Boolean flag to signal that all messages should be
acknowledged in atransaction (either manually or
automatically)

acknowledgeMode NONE = no acks will be sent

(the default and incompatible with
channel Transact ed=true). RabbitMQ
calls this "autoack" because the broker
assumes all messages are acked without any
action from the consumer. MANUAL = the
listener must acknowledge al messages by
calling Channel . basi cAck(). AUTO =
the container will acknowledge the message
automatically. Note that acknow edgeiMbde
is complementary to channel Transacted - if the
channel is transacted then the broker requires a
commit notification in addition to the ack.

transactionM anager

prefetchCount

Externa transaction manager for the operation
of the listener. Also complementary to
channel Transacted - if the Channel istransacted
then its transaction will be synchronized with the
external transaction.

The number of messagesto accept from the broker
in one socket frame. The higher thisis the faster
the messages can be delivered, but the higher the
risk of non-sequential processing. Ignored if the
acknow edgeMode isNONE.

shutdownTimeout

When a container shutsdown (e.g. if itsenclosing
Appl i cati onCont ext is closed) it waits for
in-flight messagesto be processed up to thislimit.

1.1.3.RELEASE

Spring AMQP -
Reference Documentation 24

Spring AMQP

Property

Description

txSize

Defaults to 10 seconds. After the limit is reached,
if the channel is not transacted messages will be
discarded.

If the channel is transacted or an external
transaction manager is provided, the container
will attempt to process up to this number of
messages per transaction (waiting for each one up
to the receive timeout setting).

receiveTimeout

The maximum time to wait for each message.
If acknowledgeMode=NONE (the default) this
has very little effect - the container just spins
round and asks for another message. It has the
biggest effect for a transactional Channel with
txSize > 1, since it can cause messages
already consumed not to be acknowledged until
the timeout expires.

autoStartup

Flag to indicate that the container should start
when the Appl i cati onCont ext does (as
part of the Smart Li f ecycl e callbacks which
happen after all beans are initialized). Defaultsto
true, but set it to falseif your broker might not be
available on startup, and then call st art () later
manually when you know the broker is ready.

phase

When autoStartup is true, the lifecycle phase
within which this container should start and stop.
The lower the vaue the earlier this container
will start and the later it will stop. The default
is Integer.MAX_VALUE meaning the container
will start as late as possible and stop as soon as
possible.

adviceChain

taskExecutor

An array of AOP Advice to apply to the listener
execution. This can be used to apply additional
Cross cutting concerns such as automatic retry in
the event of broker death. Note that simple re-
connection after an AMQP error is handled by
the Cachi ngConnecti onFact ory, as long
asthe broker is till alive.

A referenceto a Spring TaskExecutor (or standard
JDK 1.5+ Executor) for executing listener

1.1.3.RELEASE

Spring AMQP -
Reference Documentation 25

Spring AMQP

Property Description

invokers. Default isa SimpleAsyncTaskExecutor,
using internally managed threads.

errorHandler A reference to an ErrorHandler strategy for
handling any uncaught Exceptions that may occur
during the execution of the MessageL istener.

concurrency The number of concurrent consumers to start for
each listener.
connectionFactory A reference to the connectionFactory; when

configuring using the XML namespace,
the default referenced bean name s
"rabbitConnectionFactory".

messageConverter A reference to the MessageConverter strategy for
converting AMQP Messages to listener method
arguments for any referenced 'listener’ that is a
POJO. Default is a SimpleM essageConverter.

requeueRejected Determines whether messages that are rejected
because the listener threw an exception should be
requeued or not. Default 'true'.

2.12 Resilience: Recovering from Errors and Broker
Failures

Some of the key (and most popular) high-level features that Spring AMQP provides are to do with
recovery and automatic re-connection in the event of a protocol error or broker failure. We have seen
all the relevant components already in this guide, but it should help to bring them all together here and
call out the features and recovery scenarios individually.

The primary reconnection features are enabled by the Cachi ngConnecti onFact ory itself.
It is also often beneficia to use the Rabbi t Adm n auto-declaration features. In addition, if
you care about guaranteed delivery, you probably also need to use the channel Tr ansact ed
flag in RabbitTenplate and Sinpl eMessageli stenerContainer and aso the
Acknow edgeMbde. AUTO (or manual if you do the acks yoursef) in the
Si mpl eMessageli st ener Cont ai ner.

Automatic Declaration of Exchanges, Queues and Bindings

The Rabbi t Adm n component can declare exchanges, queues and bindings on startup. It does this
lazily, through aConnect i onLi st ener, soif the broker is not present on startup it doesn't matter.
Thefirst timeaConnect i on isused (e.g. by sending a message) the listener will fire and the admin
features will be applied. A further benefit of doing the auto declarations in a listener is that if the

Spring AMQP -
1.1.3.RELEASE Reference Documentation 26

Spring AMQP

connection is dropped for any reason (e.g. broker death, network glitch, etc.) they will be applied again
the next time they are needed.

Failures in Synchronous Operations and Options for Retry

If you lose your connection to the broker in a synchronous sequence using Rabbi t Tenpl at e
(for instance), then Spring AMQP will throw an AngpExcepti on (usually but not aways
Anmgpl OExcept i on). Wedon' try to hide the fact that there was a problem, so you haveto be ableto
catch and respond to the exception. The easiest thing to do if you suspect that the connection was lost,
and it wasn't your fault, is to simply try the operation again. Y ou can do this manually, or you could
look at using Spring Retry to handle the retry (imperatively or declaratively).

Spring Retry provides a couple of AOP interceptors and a great deal of flexibility to specify the
parameters of the retry (number of attempts, exception types, backoff algorithm etc.). Spring AMQP
also provides some convenience factory beans for creating Spring Retry interceptors in a convenient
form for AMQP use cases, with strongly typed callback interfaces for you to implement custom
recovery logic. See the Javadocs and properties of St at ef ul Ret r yQper at i onsl nt er cept or
and St at el essRet ryQper ati onsl nt er cept or for more detail. Stateless retry is appropriate
if there is no transaction or if atransaction is started inside the retry callback. Note that stateless retry
is simpler to configure and analyse than stateful retry, but it is not usually appropriate if there is an
ongoing transaction which must be rolled back or definitely isgoing to roll back. A dropped connection
in the middle of atransaction should have the same effect as a rollback, so for reconnection where the
transaction is started higher up the stack, stateful retry is usually the best choice.

Message Listeners and the Asynchronous Case

If aMessageli st ener failsbecause of abusinessexception, the exceptionishandled by the message
listener container and then it goes back to listening for another message. If the failure is caused by a
dropped connection (not a business exception), then the consumer that is collecting messages for the
listener hasto be cancelled and restarted. The Si npl eMessagelLi st ener Cont ai ner handlesthis
seamlessly, and it leaves alog to say that the listener is being restarted. In fact it loops endlessly trying
to restart the consumer, and only if the consumer is very badly behaved indeed will it give up. One side
effect isthat if the broker is down when the container starts, it will just keep trying until a connection
can be established.

Business exception handling, as opposed to protocol errors and dropped connections, might need more
thought and some custom configuration, especialy if transactions and/or container acksarein use. Prior
to 2.8.x, RabbitM Q had no definition of dead |etter behaviour, so by default amessage that isrejected or
rolled back because of a business exception can be redelivered ad infinitum. To put alimit in the client
on the number of re-deliveries, one choice is a St at ef ul Ret ryOper ati onsl nterceptor in
the advice chain of the listener. The interceptor can have arecovery callback that implements a custom
dead letter action: whatever is appropriate for your particular environment.

Another alternative is to set the container's rejectRequeued property to false. This causes al failed
messages to be discarded. When using RabbitMQ 2.8.x or higher, this also facilitates delivering the
message to a Dead L etter Exchange.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 27

Spring AMQP

Or, youcanthrow aAngpRej ect AndDont RequeueExcept i on;thisprevents messageregueuing,
regardless of the setting of the rejectRequeued property.

Often, a combination of both techniques will be used. Use a
St at ef ul Ret ryQper ati onsl nt er cept or intheadvice chain, whereit'sMessageRecover

throws an AngpRej ect AndDont RequeueExcepti on. The MessageRecover is called when
al retries have been exhausted. The default MessageRecover er simply consumes the errant
message and emits a WARN message. In which case, the message is ACK'd and won't be sent to the
Dead L etter Exchange, if any.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 28

Spring AMQP

3. Erlang integration

3.1 Introduction

There is an open source project caled Jinterface that provides a way for Java applications to
communicate with an Erlang process. The API is very low level and rather tedious to use and throws
checked exceptions. The Spring Erlang module makes accessing functions in Erlang from Java easy,
often they can be oneliners.

3.2 Communicating with Erlang processes

Executing RPC

The interface ErlangOperations is the high level API for interacting with an Erlang process.

public interface ErlangOperations {
<T> T execut e(Connecti onCal | back<T> action) throws O pException;

O pEr |l angObj ect execut eErl angRpc(String nmodul e, String function, O pErlangList args)
throws O pExcepti on;

O pEr |l angObj ect execut eErl angRpc(String nmodul e, String function, OpErlangCbject... args)
throws O pException;

O pEr |l angObj ect executeRpc(String nmodule, String function, Cbject... args)
throws O pExcepti on;

hj ect execut eAndConvert Rpc(String nodul e, String function,
Erl angConverter converterToUse, Object... args) throws O pException;

/'l Sweet!
Obj ect execut eAndConvert Rpc(String nodule, String function, Object... args)
throws O pExcepti on;

The class that implements this interface is called Er | angTenpl at e. There are a few convenience
methods, most notably execut eAndConvert Rpc, as well as the execut e method which gives
you access to the 'native’ APl of the Jinterface project. For simple functions, you can invoke
execut eAndConvert Rpc with the appropriate Erlang module name, function, and argumentsin a
one-liner. For example, here is the implementation of the RabbitBrokerAdmin method 'DeleteUser’

@mnagedQper at i on
public void del eteUser(String usernane) {
erl angTenpl at e. execut eAndConvert Rpc(
"rabbit_access_control", "delete_user", usernane.getBytes());

As the Jinterface library uses specific classes such as OtpErlangDouble and OtpErlangString to
represent the primitive types in Erlang RPC calls, there is a converter class that works in concert with
ErlangTemplate that knows how to tranglate from Java primitive typesto their Erlang class equivalents.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 29

Spring AMQP

You can also create custom converters and register them with the ErlangTemplate to handle more
complex data format translations.

ErlangConverter

The ErlangConverter interface is shown below.

public interface ErlangConverter {

/**

* Convert a Java object to a Erlang data type.

* @aram obj ect the object to convert

* @eturn the Erlang data type

* @hrows ErlangConversi onException in case of conversion failure

*/

O pErl angObj ect toErl ang(Obj ect object) throws ErlangConversi onExcepti on;

/**

* Convert froma Erlang data type to a Java object.

* @aram erl angQbj ect the Erlang object to convert

* @eturn the converted Java object

* @hrows ErlangConversi onException in case of conversion failure

*/

bj ect fronErl ang(O pErl angbj ect erl angCbject) throws ErlangConversi onExcepti on;

/**
* The return val ue from executing the Erlang RPC
*/
Obj ect fronErlangRpc(String nodule, String function, O pErlangObject erlangObject)
throws ErlangConversi onExcepti on;

3.3 Exceptions

The Jinterface checked exception hierarchy is trandlated into a parallel runtime exception hierarchy
when executing operations through ErlangTemplate.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 30

Spring AMQP

4. Sample Applications

4.1 Introduction

The Spring AMQP Samples project includes two sample applications. The first is a simple "Hello
World" example that demonstrates both synchronous and asynchronous message reception. It provides
an excellent starting point for acquiring an understanding of the essential components. The second
sampleisbased on astock-trading use caseto demonstrate the types of interaction that would be common
inrea world applications. In this chapter, we will provide a quick walk-through of each sample so that
you can focus on the most important components. The samples are both Maven-based, so you should
be able to import them directly into any Maven-aware IDE (such as SpringSource Tool Suite).

4.2 Hello World

The Hello World sample demonstrates both synchronous and asynchronous message reception. Y ou can
import the 'spring-rabbit-helloworld' sample into the IDE and then follow the discussion below.

Synchronous Example

Within the 'src/main/java’ directory, navigate to the 'org.springframework.amgp.helloworld' package.
Open the HelloWorldConfiguration class and notice that it contains the @Configuration annotation at
class-level and some @Bean annotations at method-level. This is an example of Spring's Java-based
configuration. Y ou can read more about that here.

@Bean
publ i ¢ Connecti onFactory connectionFactory() {
Cachi ngConnecti onFactory connecti onFactory = new Cachi ngConnecti onFactory("l ocal host");
connecti onFact ory. set User nane("guest");
connecti onFact ory. set Passwor d("guest");
return connectionFactory;

}

The configuration also contains an instance of Rabbi t Adni n, which by default looksfor any beans of
type Exchange, Queue, or Binding and then declaresthem on the broker. In fact, the "hellowWorldQueue"
bean that is generated in HelloWorldConfiguration is an example simply because it is an instance of
Queue.

@ean
public Queue hel |l oWor | dQueue() ({
return new Queue(this. hell oWrl| dQueueNane);

}

Looking back at the"rabbitTemplate" bean configuration, you will seethat it hasthe helloWorldQueue's
name set asits"queue” property (for receiving Messages) and for its"routingKey" property (for sending
Messages).

Now that we've explored the configuration, let's ook at the code that actually uses these components.

First, open the Producer class from within the same package. It contains a main() method where the
Spring ApplicationContext is created.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 31

http://github.com/SpringSource/spring-amqp-samples
http://www.springsource.com/products/sts
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-java

Spring AMQP

public static void main(String[] args) {
Appl i cati onCont ext context = new Annot ati onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AngpTenpl at e angpTenpl at e = cont ext . get Bean(AngpTenpl at e. cl ass) ;
amgpTenpl at e. convert AndSend("Hel l o World");
Systemout.println("Sent: Hello World");

}

As you can see in the example above, the AmgpTemplate bean is retrieved and used for sending a
Message. Since the client code should rely on interfaces whenever possible, the typeis AmgpTemplate
rather than RabbitTemplate. Even though the bean created in HelloWorldConfiguration is an instance
of RabbitTemplate, relying on the interface means that this code is more portable (the configuration
can be changed independently of the code). Since the convertAndSend() method is invoked, the
template will be delegating to its MessageConverter instance. In this case, it's using the default
SimpleM essageConverter, but a different implementation could be provided to the "rabbitTemplate"
bean as defined in HelloWorldConfiguration.

Now open the Consumer class. It actually sharesthe same configuration base classwhich meansit will be
sharing the"rabbitTemplate" bean. That'swhy we configured that template with both a"routingKey" (for
sending) and "queue" (for receiving). Asyou saw in Section 2.3, “AmgpTemplate’, you could instead
pass the 'routingK ey' argument to the send method and the 'queue’ argument to the receive method. The
Consumer code is basically a mirror image of the Producer, calling receiveAndConvert() rather than
convertAndSend().

public static void main(String[] args) {
Appl i cati onCont ext context = new Annot ati onConfi gAppl i cati onCont ext (Rabbi t Confi gurati on. cl ass);
AngpTenpl at e angpTenpl at e = cont ext . get Bean(AngpTenpl at e. cl ass) ;
Systemout. println("Received: " + anmgpTenpl ate. recei veAndConvert());

}

If you run the Producer, and then run the Consumer, you should see the message "Received: Hello
World" in the consol e output.

Asynchronous Example

Now that we've walked through the synchronous Hello World sample, it's time to move on to aslightly
more advanced but significantly more powerful option. With a few modifications, the Hello World
sample can provide an example of asynchronous reception, ak.a. Message-driven POJOs. In fact, there
is a sub-package that provides exactly that: org.springframework.amgp.samples.helloworld.async.

Once again, we will start with the sending side. Open the ProducerConfiguration class and notice that it
createsa connectionFactory" and "rabbitTemplate" bean. Thistime, sincethe configurationisdedicated
to the message sending side, we don't even need any Queue definitions, and the RabbitTemplate only
has the 'routingKey' property set. Recall that messages are sent to an Exchange rather than being sent
directly to a Queue. The AMQP default Exchange is a direct Exchange with no name. All Queues are
bound to that default Exchange with their name as the routing key. That iswhy we only need to provide
the routing key here.

publ i ¢ Rabbit Tenpl ate rabbit Tenpl ate() {
Rabbi t Tenpl ate tenpl ate = new Rabbi t Tenpl at e(connecti onFactory());
tenpl at e. set Rout i ngKey(t hi s. hel | oWwr | dQueueNane) ;
return tenpl ate;

Spring AMQP -
1.1.3.RELEASE Reference Documentation 32

Spring AMQP

Sincethissamplewill be demonstrating asynchronous message reception, the producing sideisdesigned
to continuously send messages (if it were a message-per-execution modd like the synchronous version,
it would not be quite so obviousthat it isin fact amessage-driven consumer). The component responsible
for sending messages continuously is defined as an inner class within the ProducerConfiguration. It is
configured to execute every 3 seconds.

static class Schedul edProducer {

@\ut owi r ed
private vol atil e RabbitTenpl ate rabbitTenpl at e;

private final Atom clnteger counter = new Atom cl nteger();

@chedul ed(fi xedRate = 3000)
public void sendMessage() {

rabbi t Tenpl at e. convert AndSend("Hello World " + counter.incrementAndGet ());
}

You don't need to understand al of the details since the real focus should be on the receiving
side (which we will cover momentarily). However, if you are not yet familiar with Spring 3.0 task
scheduling support, you can learn more here. The short story is that the "postProcessor” bean in the
ProducerConfiguration is registering the task with a scheduler.

Now, let's turn to the receiving side. To emphasize the Message-driven POJO behavior will start with
the component that is reacting to the messages. The classis called HelloworldHandler.

public class Hell owr| dHandl er {

public void handl eMessage(String text) {
System out. println("Received: " + text);

}

Clearly, that is a POJO. It does not extend any base class, it doesn't implement any
interfaces, and it doesn't even contain any imports. It is being "adapted”" to the Messagel istener
interface by the Spring AMQP Messagel istenerAdapter. That adapter can then be configured
on a SimpleMessagelistenerContainer. For this sample, the container is created in the
ConsumerConfiguration class. Y ou can see the POJO wrapped in the adapter there.

@ean

publ i c Si nmpl eMessageli st ener Cont ai ner |istenerContainer() {
Si npl eMessageli st ener Cont ai ner contai ner = new Si npl eMessageli st ener Cont ai ner () ;
cont ai ner. set Connecti onFact ory(connecti onFactory());
cont ai ner. set QueueNane(t hi s. hel | oWor | dQueueNane) ;
cont ai ner. set Messageli st ener (new Messageli st ener Adapt er (new Hel | oWor | dHandl er()));
return contai ner;

The SimpleM essagel istenerContainer is a Spring lifecycle component and will start automatically by
default. If you look in the Consumer class, you will see that its main() method consists of nothing

Spring AMQP -
1.1.3.RELEASE Reference Documentation 33

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#scheduling-annotation-support

Spring AMQP

more than a one-line bootstrap to create the ApplicationContext. The Producer's main() method is also
aone-line bootstrap, since the component whose method is annotated with @Scheduled will also start
executing automatically. You can start the Producer and Consumer in any order, and you should see
messages being sent and received every 3 seconds.

4.3 Stock Trading

The Stock Trading sample demonstrates more advanced messaging scenarios than the Hello World
sample. However, the configuration is very similar - just a bit more involved. Since we've walked
through the Hello World configuration in detail, here we'll focus on what makes this sample different.
Thereisaserver that pushes market data (stock quotes) to a Topic Exchange. Then, clients can subscribe
to the market data feed by binding a Queue with a routing pattern (e.g. "app.stock.quotes.nasdag.*").
The other main feature of this demo is a request-reply "stock trade" interaction that is initiated by the
client and handled by the server. That involvesaprivate "replyTo" Queuethat issent by the client within
the order request Message itself.

The Server's core configuration is in the RabbitServerConfiguration class
within the org.springframework.amgp.rabbit.stocks.config.server package. It extends the
AbstractStock A ppRabbitConfiguration. That iswhere the resources common to the Server and Client(s)
are defined, including the market data Topic Exchange (whose name is 'app.stock.marketdata) and the
Queue that the Server exposes for stock trades (whose name is 'app.stock.request’). In that common
configuration file, you will also see that a JsonM essageConverter is configured on the RabbitTemplate.

The Server-specific configuration consists of 2 things. First, it configures the market data exchange on
the RabbitTemplate so that it does not need to provide that exchange name with every call to send a
Message. It does this within an abstract callback method defined in the base configuration class.

public voi d configureRabbit Tenpl at e(Rabbi t Tenpl at e rabbit Tenpl ate) {
rabbi t Tenpl at e. set Exchange(MARKET_DATA EXCHANGE_NAME) ;

}

Secondly, the stock request queue is declared. It does not require any explicit bindings in this case,
because it will be bound to the default no-name exchange with its own name as the routing key. As
mentioned earlier, the AMQP specification defines that behavior.

@ean
publ i c Queue stockRequest Queue() {
return new Queue(STOCK REQUEST_QUEUE_NAME) ;

}

Now that you've seen the configuration of the Server's AMQP resources, navigate to the
‘org.springframework.amgp.rabbit.stocks' package under the 'src/test/java directory. There you will see
the actual Server class that provides a main() method. It creates an ApplicationContext based on the
‘server-bootstrap.xml’ config file. In there you will see the scheduled task that publishes dummy market
data. That configuration relies upon Spring 3.0's "task" namespace support. The bootstrap config file
also imports a few other files. The most interesting one is 'server-messaging.xml’ which is directly
under 'src/main/resources. Inthere you will seethe"messagel istenerContainer" bean that isresponsible
for handling the stock trade requests. Finally have a look at the "serverHandler" bean that is defined
in "server-handlers.xml” (also in 'src/main/resources). That bean is an instance of the ServerHandler

Spring AMQP -
1.1.3.RELEASE Reference Documentation 34

Spring AMQP

class and is agood example of a Message-driven POJO that is also capable of sending reply Messages.
Notice that it is not itself coupled to the framework or any of the AMQP concepts. It simply accepts a
TradeReguest and returns a TradeResponse.

publ i c TradeResponse handl eMessage(Tr adeRequest tradeRequest) { ... }

Now that weve seen the most important configuration and code for the Server, let's
turn to the Client. The best starting point is probably RabbitClientConfiguration within the
‘org.springframework.amgp.rabhit.stocks.config.client' package. Notice that it declares two queues
without providing explicit names.

@ean
publ i c Queue mar ket Dat aQueue() {
return angpAdni n() . decl areQueue();

}

@Bean
public Queue traderJoeQueue() {
return anmgpAdm n() . decl areQueue();

}

Those are private queues, and unique names will be generated automatically. The first generated queue
isused by the Client to bind to the market dataexchange that has been exposed by the Server. Recall that
in AMQP, consumers interact with Queues while producers interact with Exchanges. The "binding" of
Queues to Exchanges is what instructs the broker to deliver, or route, messages from a given Exchange
to a Queue. Since the market data exchange is a Topic Exchange, the binding can be expressed with a
routing pattern. The RabbitClientConfiguration declares that with a Binding object, and that object is
generated with the BindingBuilder's fluent API.

@/al ue(" ${st ocks. quote. pattern}")
private String market Dat aRouti ngKey;

@Bean
publ i c Bi ndi ng nar ket Dat aBi ndi ng() {
return Bindi ngBui | der. bi nd(
mar ket Dat aQueue()) .t o(mar ket Dat aExchange()). w t h(mar ket Dat aRout i ngKey) ;

Noticethat the actual value has been externalized in apropertiesfile ("client.properties’ under src/main/
resources), and that we are using Spring's @V a ue annotation to inject that value. Thisis generally a
good idea, since otherwise the value would have been hardcoded in a class and unmodifiable without
recompilation. In this case, it makes it much easier to run multiple versions of the Client while making
changes to the routing pattern used for binding. Let'stry that now.

Start by running org.springframework.amgp.rabbit.stocks. Server and then
org.springframework.amqp.rabbit.stocks.Client. Y ou should see dummy quotes for NASDAQ stocks
because the current value associated with the 'stocks.quote.pattern' key in client.properties is
‘app.stock.quotes.nasdag.*'. Now, while keeping the existing Server and Client running, change that
property value to 'app.stock.quotes.nyse.*' and start a second Client instance. Y ou should see that the
first client isstill receiving NASDAQ quotes while the second client receives NY SE quotes. Y ou could
instead change the pattern to get all stocks or even an individual ticker.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 35

Spring AMQP

The final feature we'll explore is the request-reply interaction from the Client's perspective. Recall
that we have already seen the ServerHandler that is accepting TradeRequest objects and returning
TradeResponse objects. The corresponding code on the Client side is RabbitStockServiceGateway in

the 'org.springframework.amgp.rabbit.stocks.gateway' package. It delegates to the RabbitTemplate in
order to send Messages.

public void send(TradeRequest tradeRequest) {
get Rabbi t Tenpl at e() . convert AndSend(tradeRequest, new MessagePost Processor () {
publ i c Message post ProcessMessage(Message nessage) throws AngpException {
message. get MessageProperties(). set Repl yTo(new Address(def aul t Repl yToQueue));
try {
message. get MessageProperties().setCorrel ati onl d(
UUI D. randonmJUl D() . toString().getBytes("UTF-8"));
}
catch (UnsupportedEncodi ngException e) {
t hrow new AngpException(e);
}

return nessage,

1)

Notice that prior to sending the message, it setsthe "replyTo" address. It's providing the queue that was
generated by the "traderJoeQueue” bean definition shown above. Here's the @Bean definition for the
StockServiceGateway class itself.

@ean
publ i c StockServiceGat eway stockServiceGateway() {
Rabbi t St ockSer vi ceGat eway gat eway = new Rabbi t St ockServi ceGat eway() ;
gat eway. set Rabbi t Tenpl at e(rabbi t Tenpl ate());
gat eway. set Def aul t Repl yToQueue(trader JoeQueue());
return gateway;

If you are no longer running the Server and Client, start them now. Try sending arequest with the format
of '100 TCKR'. After a brief artificial delay that simulates "processing” of the request, you should see
a confirmation message appear on the Client.

Spring AMQP -
1.1.3.RELEASE Reference Documentation 36

Part Ill. Spring Integration - Reference

This part of the reference documentation provides a quick introduction to the AMQP support within
the Spring Integration project.

Spring AMQP

5. Spring Integration AMQP Support

5.1 Introduction

The Spring Integration project includes AMQP Channel Adapters and Gateways that build upon
the Spring AMQP project. Those adapters are developed and released in the Spring Integration
project. In Spring Integration, "Channel Adapters' are unidirectional (one-way) whereas "Gateways'
are bidirectional (request-reply). We provide an inbound-channel-adapter, outbound-channel -adapter,
inbound-gateway, and outbound-gateway.

Sincethe AM QP adapters are part of the Spring Integration release, the documentation will be available
as part of the Spring Integration distribution. As ataster, we just provide a quick overview of the main
features here.

5.2 Inbound Channel Adapter

To receive AMQP Messages from a Queue, configure an <inbound-channel -adapter>

<angp: i nbound- channel - adapt er channel ="f r omAMJ®P"
queue- nanmes="sone. queue"
connecti on-factory="rabbit Connecti onFactory"/>

5.3 Outbound Channel Adapter

To send AMQP Messages to an Exchange, configure an <outbound-channel-adapter>. A 'routing-key'
may optionally be provided in addition to the exchange name.

<angp: out bound- channel - adapt er channel ="t oAM®P"
exchange- nane="sone. exchange"
routi ng- key="fo00"
anmqgp-t enpl at e="rabbi t Tenpl ate"/ >

5.4 Inbound Gateway

Toreceivean AMQP Message from aQueue, and respond to itsreply-to address, configure an <inbound-
gateway>.

<angp: i nbound- gat eway request - channel ="fr omAMP"

repl y- channel ="t oAMQP"
queue- names="somne. queue"
connecti on-factory="rabbi t Connecti onFactory"/>

5.5 Outbound Gateway

To send AMQP Messages to an Exchange and receive back a response from aremote client, configure
an <outbound-gateway>. A 'routing-key' may optionally be provided in addition to the exchange name.

<angp: out bound- gat eway request-channel ="t oAMP"

Spring AMQP -
1.1.3.RELEASE Reference Documentation 38

http://springsource.org/spring-integration

Spring AMQP

repl y- channel =" f r omAMQ®P"
exchange- nane="sone. exchange"
routing- key="fo00"

anmgp-t enpl at e="rabbi t Tenpl ate"/>

1.1.3.RELEASE

Spring AMQP -
Reference Documentation

39

Part IV. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help you
learn about AMQP.

Spring AMQP

6. Further Reading

For those who are not familiar with AMQP, the specification is actually quite readable. It is of course
the authoritative source of information, and the Spring AMQP code should be very easy to understand
for anyonewho isfamiliar with the spec. Our current implementation of the RabbitMQ support is based
on their 2.8.x version, and it officially supports AMQP 0.8 and 0.9.1. We recommend reading the 0.9.1
document.

There are many great articles, presentations, and blogs available on the RabbitM Q Getting Started page.
Since that is currently the only supported implementation for Spring AMQP, we also recommend that
as agenera starting point for all broker-related concerns.

Finally, be sure to visit the Spring AMQP Forum if you have questions or suggestions. With this first
GA release, we are looking forward to alot of community feedback!

Spring AMQP -
1.1.3.RELEASE Reference Documentation 41

http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
http://www.rabbitmq.com/how.html
http://forum.springsource.org/forumdisplay.php?f=74

Spring AMQP

Bibliography

[jinterface-00] Ericsson AB. jinterface User Guide. Ericson AB . 2000.

Spring AMQP -
1.1.3.RELEASE Reference Documentation

42

http://www.erlang.org/doc/apps/jinterface/jinterface.pdf

	Spring AMQP - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Quick Tour for the impatient
	1.1 Introduction
	Very, Very Quick
	With XML Configuration
	With Java Configuration

	Part II. Reference
	2. Using Spring AMQP
	2.1 AMQP Abstractions
	Message
	Exchange
	Queue
	Binding

	2.2 Connection and Resource Management
	Publisher Confirms and Returns

	2.3 AmqpTemplate
	Publisher Confirms and Returns

	2.4 Sending messages
	Publisher Confirms
	Publisher Returns

	2.5 Receiving messages
	Synchronous Consumer
	Asynchronous Consumer

	2.6 Message Converters
	SimpleMessageConverter
	Converting From a Message
	Converting To a Message

	JsonMessageConverter
	MarshallingMessageConverter

	2.7 Request/Reply Messaging
	2.8 Configuring the broker
	Federated Exchanges

	2.9 Exception Handling
	2.10 Transactions
	A note on Rollback of Received Messages
	Using the RabbitTransactionManager

	2.11 Message Listener Container Configuration
	2.12 Resilience: Recovering from Errors and Broker Failures
	Automatic Declaration of Exchanges, Queues and Bindings
	Failures in Synchronous Operations and Options for Retry
	Message Listeners and the Asynchronous Case

	3. Erlang integration
	3.1 Introduction
	3.2 Communicating with Erlang processes
	Executing RPC
	ErlangConverter

	3.3 Exceptions

	4. Sample Applications
	4.1 Introduction
	4.2 Hello World
	Synchronous Example
	Asynchronous Example

	4.3 Stock Trading

	Part III. Spring Integration - Reference
	5. Spring Integration AMQP Support
	5.1 Introduction
	5.2 Inbound Channel Adapter
	5.3 Outbound Channel Adapter
	5.4 Inbound Gateway
	5.5 Outbound Gateway

	Part IV. Other Resources
	6. Further Reading
	Bibliography

