
Spring AMQP - Reference
Documentation

Mark Pollack
Mark Fisher

Oleg Zhurakousky
Dave Syer

Gary Russell
Gunnar Hillert

Spring AMQP - Reference Documentation
by Mark Pollack, Mark Fisher, Oleg Zhurakousky, Dave Syer, Gary Russell, and Gunnar Hillert

1.1.4.RELEASE

Copyright © 2010, 2011, 2012, 2013 VMware, Inc. All rights reserved. VMware is a registered trademark or

trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned

herein may be trademarks of their respective companies.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies

and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation iii

Table of Contents

Preface .. v

I. Introduction .. 1

1. Quick Tour for the impatient .. 2

1.1. Introduction ... 2

Very, Very Quick .. 2

With XML Configuration ... 2

With Java Configuration ... 3

II. Reference .. 4

2. Using Spring AMQP .. 5

2.1. AMQP Abstractions .. 5

2.2. Connection and Resource Management ... 8

2.3. AmqpTemplate .. 10

2.4. Sending messages .. 11

2.5. Receiving messages ... 12

2.6. Message Converters ... 14

2.7. Request/Reply Messaging .. 16

2.8. Configuring the broker ... 17

Federated Exchanges .. 21

2.9. Exception Handling ... 21

2.10. Transactions .. 21

A note on Rollback of Received Messages .. 23

Using the RabbitTransactionManager .. 23

2.11. Message Listener Container Configuration .. 24

2.12. Resilience: Recovering from Errors and Broker Failures 26

Automatic Declaration of Exchanges, Queues and Bindings 26

Failures in Synchronous Operations and Options for Retry 27

Message Listeners and the Asynchronous Case .. 27

3. Erlang integration ... 29

3.1. Introduction ... 29

3.2. Communicating with Erlang processes .. 29

Executing RPC ... 29

ErlangConverter ... 30

3.3. Exceptions ... 30

4. Sample Applications ... 31

4.1. Introduction ... 31

4.2. Hello World .. 31

Synchronous Example .. 31

Asynchronous Example .. 32

4.3. Stock Trading .. 34

III. Spring Integration - Reference .. 37

5. Spring Integration AMQP Support .. 38

5.1. Introduction ... 38

5.2. Inbound Channel Adapter .. 38

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation iv

5.3. Outbound Channel Adapter .. 38

5.4. Inbound Gateway .. 38

5.5. Outbound Gateway .. 38

IV. Other Resources ... 40

6. Further Reading ... 41

Bibliography .. 42

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation v

Preface
The Spring AMQP project applies core Spring concepts to the development of AMQP-based messaging

solutions. We provide a "template" as a high-level abstraction for sending and receiving messages.

We also provide support for Message-driven POJOs. These libraries facilitate management of AMQP

resources while promoting the use of dependency injection and declarative configuration. In all of these

cases, you will see similarities to the JMS support in the Spring Framework. The project consists of both

Java and .NET versions. This manual is dedicated to the Java version. For links to the .NET version's

manual or any other project-related information visit the Spring AMQP project homepage.

http://springsource.org/spring-amqp

Part I. Introduction
This first part of the reference documentation is a high-level overview of Spring AMQP and the

underlying concepts and some code snippets that will get you up and running as quickly as possible.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 2

1. Quick Tour for the impatient

1.1 Introduction

This is the 5 minute tour to get started with Spring AMQP.

Prerequisites: install and run the RabbitMQ broker (http://www.rabbitmq.com/download.html). Then

grab the spring-rabbit JAR and all its dependencies - the easiest way to do that is to declare a dependency

in your build tool, e.g. for Maven:

<dependency>

 <groupId>org.springframework.amqp</groupId>

 <artifactId>spring-rabbit</artifactId>

 <version>1.1.4.RELEASE</version>

</dependency>

Very, Very Quick

Using plain, imperative Java to send and receive a message:

ConnectionFactory connectionFactory = new CachingConnectionFactory();

AmqpAdmin admin = new RabbitAdmin(connectionFactory);

admin.declareQueue(new Queue("myqueue"));

AmqpTemplate template = new RabbitTemplate(connectionFactory);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

Note that there is a ConnectionFactory in the native Java Rabbit client as well. We are using the

Spring abstraction in the code above. We are relying on the default exchange in the broker (since none

is specified in the send), and the default binding of all queues to the default exchange by their name

(hence we can use the queue name as a routing key in the send). Those behaviours are defined in the

AMQP specification.

With XML Configuration

The same example as above, but externalizing the resource configuration to XML:

ApplicationContext context = new GenericXmlApplicationContext("classpath:/rabbit-context.xml");

AmqpTemplate template = context.getBean(AmqpTemplate.class);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:rabbit="http://www.springframework.org/schema/rabbit"

 xsi:schemaLocation="http://www.springframework.org/schema/rabbit

 http://www.springframework.org/schema/rabbit/spring-rabbit-1.0.xsd

 http://www.springframework.org/schema/beans

http://www.rabbitmq.com/download.html

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 3

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<rabbit:connection-factory id="connectionFactory"/>

<rabbit:template id="amqpTemplate" connection-factory="connectionFactory"/>

<rabbit:admin connection-factory="connectionFactory"/>

<rabbit:queue name="myqueue"/>

</beans>

The <rabbit:admin/> declaration by default automatically looks for beans of type Queue,

Exchange and Binding and declares them to the broker on behalf of the user, hence there is no

need to use that bean explicitly in the simple Java driver. There are plenty of options to configure the

properties of the components in the XML schema - you can use auto-complete features of your XML

editor to explore them and look at their documentation.

With Java Configuration

The same example again with the external configuration in Java:

ApplicationContext context = new AnnotationConfigApplicationContext(RabbitConfiguration.class);

AmqpTemplate template = context.getBean(AmqpTemplate.class);

template.convertAndSend("myqueue", "foo");

String foo = (String) template.receiveAndConvert("myqueue");

@Configuration

public class RabbitConfiguration {

 @Bean

 public ConnectionFactory connectionFactory() {

 CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");

 return connectionFactory;

 }

 @Bean

 public AmqpAdmin amqpAdmin() {

 return new RabbitAdmin(connectionFactory());

 }

 @Bean

 public RabbitTemplate rabbitTemplate() {

 return new RabbitTemplate(connectionFactory());

 }

 @Bean

 public Queue myQueue() {

 return new Queue("myqueue");

 }

}

Part II. Reference
This part of the reference documentation details the various components that comprise Spring AMQP.

The main chapter covers the core classes to develop an AMQP application. This part also includes a

chapter on integration with Erlang and a chapter about the sample applications.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 5

2. Using Spring AMQP

In this chapter, we will explore the interfaces and classes that are the essential components for developing

applications with Spring AMQP.

2.1 AMQP Abstractions

Spring AMQP consists of a handful of modules, each represented by a JAR in the distribution. These

modules are: spring-amqp, spring-rabbit and spring-erlang. The 'spring-amqp' module contains the

org.springframework.amqp.core package. Within that package, you will find the classes that

represent the core AMQP "model". Our intention is to provide generic abstractions that do not rely on any

particular AMQP broker implementation or client library. End user code will be more portable across

vendor implementations as it can be developed against the abstraction layer only. These abstractions are

then used implemented by broker-specific modules, such as 'spring-rabbit'. For the 1.0 release there is

only a RabbitMQ implementation however the abstractions have been validated in .NET using Apache

Qpid in addition to RabbitMQ. Since AMQP operates at the protocol level in principle the RabbitMQ

client can be used with any broker that supports the same protocol version, but we do not test any other

brokers at present.

The overview here assumes that you are already familiar with the basics of the AMQP specification

already. If you are not, then have a look at the resources listed in Part IV, “Other Resources”

Message

The 0-8 and 0-9-1 AMQP specifications do not define a Message class or interface. Instead, when

performing an operation such as ' basicPublish ', the content is passed as a byte-array argument

and additional properties are passed in as separate arguments. Spring AMQP defines a Message class

as part of a more general AMQP domain model representation. The purpose of the Message class is

to simply encapsulate the body and properties within a single instance so that the API can in turn be

simpler. The Message class definition is quite straightforward.

public class Message {

 private final MessageProperties messageProperties;

 private final byte[] body;

 public Message(byte[] body, MessageProperties messageProperties) {

 this.body = body;

 this.messageProperties = messageProperties;

 }

 public byte[] getBody() {

 return this.body;

 }

 public MessageProperties getMessageProperties() {

 return this.messageProperties;

}

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 6

The MessageProperties interface defines several common properties such as 'messageId',

'timestamp', 'contentType', and several more. Those properties can also be extended with user-defined

'headers' by calling the setHeader(String key, Object value) method.

Exchange

The Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to.

Each Exchange within a virtual host of a broker will have a unique name as well as a few other properties:

public interface Exchange {

 String getName();

 String getExchangeType();

 boolean isDurable();

 boolean isAutoDelete();

 Map<String, Object> getArguments();

}

As you can see, an Exchange also has a 'type' represented by constants defined in ExchangeTypes.

The basic types are: Direct, Topic, Fanout, Headers and Federated. In the core package

you will find implementations of the Exchange interface for each of those types. The behavior varies

across these Exchange types in terms of how they handle bindings to Queues. For example, a Direct

exchange allows for a Queue to be bound by a fixed routing key (often the Queue's name). A Topic

exchange supports bindings with routing patterns that may include the '*' and '#' wildcards for 'exactly-

one' and 'zero-or-more', respectively. The Fanout exchange publishes to all Queues that are bound to

it without taking any routing key into consideration. For much more information about these and the

other Exchange types, check out Part IV, “Other Resources”.

Note

The AMQP specification also requires that any broker provide a "default" Direct Exchange

that has no name. All Queues that are declared will be bound to that default Exchange with

their names as routing keys. You will learn more about the default Exchange's usage within

Spring AMQP in Section 2.3, “AmqpTemplate”.

Queue

The Queue class represents the component from which a Message Consumer receives Messages. Like

the various Exchange classes, our implementation is intended to be an abstract representation of this

core AMQP type.

public class Queue {

 private final String name;

 private volatile boolean durable;

 private volatile boolean exclusive;

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 7

 private volatile boolean autoDelete;

 private volatile Map<String, Object> arguments;

 /**

 * The queue is durable, non-exclusive and non auto-delete.

 *

 * @param name the name of the queue.

 */

 public Queue(String name) {

 this(name, true, false, false);

 }

 // Getters and Setters omitted for brevity

Notice that the constructor takes the Queue name. Depending on the implementation, the admin template

may provide methods for generating a uniquely named Queue. Such Queues can be useful as a "reply-

to" address or other temporary situations. For that reason, the 'exclusive' and 'autoDelete' properties of

an auto-generated Queue would both be set to 'true'.

Note
See the section on queues in Section 2.8, “Configuring the broker” for information about

declaring queues using namespace support, including queue arguments.

Binding

Given that a producer sends to an Exchange and a consumer receives from a Queue, the bindings that

connect Queues to Exchanges are critical for connecting those producers and consumers via messaging.

In Spring AMQP, we define a Binding class to represent those connections. Let's review the basic

options for binding Queues to Exchanges.

You can bind a Queue to a DirectExchange with a fixed routing key.

new Binding(someQueue, someDirectExchange, "foo.bar")

You can bind a Queue to a TopicExchange with a routing pattern.

new Binding(someQueue, someTopicExchange, "foo.*")

You can bind a Queue to a FanoutExchange with no routing key.

new Binding(someQueue, someFanoutExchange)

We also provide a BindingBuilder to facilitate a "fluent API" style.

Binding b = BindingBuilder.bind(someQueue).to(someTopicExchange).with("foo.*");

Note

The BindingBuilder class is shown above for clarity, but this style works well when using a

static import for the 'bind()' method.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 8

By itself, an instance of the Binding class is just holding the data about a connection. In other words, it

is not an "active" component. However, as you will see later in Section 2.8, “Configuring the broker”,

Binding instances can be used by the AmqpAdmin class to actually trigger the binding actions on the

broker. Also, as you will see in that same section, the Binding instances can be defined using Spring's

@Bean-style within @Configuration classes. There is also a convenient base class which further

simplifies that approach for generating AMQP-related bean definitions and recognizes the Queues,

Exchanges, and Bindings so that they will all be declared on the AMQP broker upon application startup.

The AmqpTemplate is also defined within the core package. As one of the main components

involved in actual AMQP messaging, it is discussed in detail in its own section (see Section 2.3,

“AmqpTemplate”).

2.2 Connection and Resource Management

Whereas the AMQP model we described in the previous section is generic and applicable to all

implementations, when we get into the management of resources, the details are specific to the broker

implementation. Therefore, in this section, we will be focusing on code that exists only within our

"spring-rabbit" module since at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ

broker is the ConnectionFactory interface. The responsibility of

a ConnectionFactory implementation is to provide an instance of

org.springframework.amqp.rabbit.connection.Connection which is a wrapper

for com.rabbitmq.client.Connection. The only concrete implementation we provide is

CachingConnectionFactory which establishes a single connection proxy that can be shared by

the application. Sharing of the connection is possible since the "unit of work" for messaging with AMQP

is actually a "channel" (in some ways, this is similar to the relationship between a Connection and a

Session in JMS). As you can imagine, the connection instance provides a createChannel method.

The CachingConnectionFactory implementation supports caching of those channels, and it

maintains separate caches for channels based on whether they are transactional or not. When creating

an instance of CachingConnectionFactory, the 'hostname' can be provided via the constructor.

The 'username' and 'password' properties should be provided as well. If you would like to configure the

size of the channel cache (the default is 1), you could call the setChannelCacheSize() method

here as well.

CachingConnectionFactory connectionFactory = new CachingConnectionFactory("somehost");

connectionFactory.setUsername("guest");

connectionFactory.setPassword("guest");

Connection connection = connectionFactory.createConnection();

When using XML, the configuration might look like this:

<bean id="connectionFactory"

 class="org.springframework.amqp.rabbit.connection.CachingConnectionFactory">

 <constructor-arg value="somehost"/>

 <property name="username" value="guest"/>

 <property name="password" value="guest"/>

</bean>

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 9

Note
There is also a SingleConnectionFactory implementation which is only available in

the unit test code of the framework. It is simpler than CachingConnectionFactory

since it does not cache channels, but it is not intended for practical usage outside of simple

tests due to its lack of performance and resilience. If you find a need to implement your own

ConnectionFactory for some reason, the AbstractConnectionFactory base

class may provide a nice starting point.

A ConnectionFactory can be created quickly and conveniently using the rabbit namespace:

<rabbit:connection-factory

 id="connectionFactory"/>

In most cases this will be preferable since the framework can choose the best defaults for you. The

created instance will be a CachingConnectionFactory. Keep in mind that the default cache size

for channels is 1. If you want more channels to be cached set a larger value via the 'channelCacheSize'

property. In XML it would look like this:

<bean id="connectionFactory"

 class="org.springframework.amqp.rabbit.connection.CachingConnectionFactory">

 <constructor-arg value="somehost"/>

 <property name="username" value="guest"/>

 <property name="password" value="guest"/>

 <property name="channelCacheSize" value="25"/>

</bean>

And with the namespace you can just add the 'channel-cache-size' attribute:

<rabbit:connection-factory

 id="connectionFactory" channel-cache-size="25"/>

Host and port attributes can be provided using the namespace

<rabbit:connection-factory

 id="connectionFactory" host="somehost" port="5672" />

Alternatively, if running in a clustered environment, use the addresses attribute.

<rabbit:connection-factory

 id="connectionFactory" addresses="host1:5672,host2:5672" />

Publisher Confirms and Returns

Confirmed and returned messages are supported by setting the CachingConnectionFactory's

publisherConfirms and publisherReturns properties to 'true' respectively.

When these options are set, Channels created by the factory are wrapped in an

PublisherCallbackChannel which is used to facilitate the callbacks. When such a channel is

obtained, the client can register a PublisherCallbackChannel.Listener with the Channel.

The PublisherCallbackChannel implementation contains logic to route a confirm/return to the

appropriate listener.

These features are explained further in the following sections.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 10

Tip
For some more background information, please see the following blog post by the RabbitMQ

team titled Introducing Publisher Confirms.

2.3 AmqpTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects,

Spring AMQP provides a "template" that plays a central role. The interface that defines the main

operations is called AmqpTemplate. Those operations cover the general behavior for sending and

receiving Messages. In other words, they are not unique to any implementation, hence the "AMQP" in

the name. On the other hand, there are implementations of that interface that are tied to implementations

of the AMQP protocol. Unlike JMS, which is an interface-level API itself, AMQP is a wire-level

protocol. The implementations of that protocol provide their own client libraries, so each implementation

of the template interface will depend on a particular client library. Currently, there is only a single

implementation: RabbitTemplate. In the examples that follow, you will often see usage of an

"AmqpTemplate", but when you look at the configuration examples, or any code excerpts where

the template is instantiated and/or setters are invoked, you will see the implementation type (e.g.

"RabbitTemplate").

As mentioned above, the AmqpTemplate interface defines all of the basic operations for sending and

receiving Messages. We will explore Message sending and reception, respectively, in the two sections

that follow.

Publisher Confirms and Returns

The RabbitTemplate implementation of AmqpTemplate supports Publisher Confirms and

Returns.

For returned messages, the template's mandatory property must be set to 'true', and it requires a

CachingConnectionFactory that has its publisherReturns property set to true. Returns

are sent to to the client by it registering a RabbitTemplate.ReturnCallback by calling

setReturnCallback(ReturnCallback callback). The callback must implement this

method:

void returnedMessage(Message message, int replyCode, String replyText,

 String exchange, String routingKey);

Only one ReturnCallback is supported by each RabbitTemplate.

For Publisher Confirms (aka Publisher Acknowledgements), the template requires a

CachingConnectionFactory that has its publisherConfirms property set to true. Confirms

are sent to to the client by it registering a RabbitTemplate.ConfirmCallback by calling

setConfirmCallback(ConfirmCallback callback). The callback must implement this

method:

void confirm(CorrelationData correlationData, boolean ack);

http://www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms/

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 11

The CorrelationData is an object supplied by the client when sending the original message. This

is described further in the next section.

Only one ConfirmCallback is supported by a RabbitTemplate.

2.4 Sending messages

When sending a Message, one can use any of the following methods:

void send(Message message) throws AmqpException;

void send(String routingKey, Message message) throws AmqpException;

void send(String exchange, String routingKey, Message message) throws AmqpException;

We can begin our discussion with the last method listed above since it is actually the most explicit. It

allows an AMQP Exchange name to be provided at runtime along with a routing key. The last parameter

is the callback that is responsible for actual creating of the Message instance. An example of using this

method to send a Message might look this this:

amqpTemplate.send("marketData.topic", "quotes.nasdaq.FOO", new Message("12.34".getBytes(), someProperties));

The "exchange" property can be set on the template itself if you plan to use that template instance to

send to the same exchange most or all of the time. In such cases, the second method listed above may

be used instead. The following example is functionally equivalent to the previous one:

amqpTemplate.setExchange("marketData.topic");

amqpTemplate.send("quotes.nasdaq.FOO", new Message("12.34".getBytes(), someProperties));

If both the "exchange" and "routingKey" properties are set on the template, then the method accepting

only the Message may be used:

amqpTemplate.setExchange("marketData.topic");

amqpTemplate.setRoutingKey("quotes.nasdaq.FOO");

amqpTemplate.send(new Message("12.34".getBytes(), someProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method

parameters will always override the template's default values. In fact, even if you do not explicitly set

those properties on the template, there are always default values in place. In both cases, the default is

an empty String, but that is actually a sensible default. As far as the routing key is concerned, it's not

always necessary in the first place (e.g. a Fanout Exchange). Furthermore, a Queue may be bound to an

Exchange with an empty String. Those are both legitimate scenarios for reliance on the default empty

String value for the routing key property of the template. As far as the Exchange name is concerned, the

empty String is quite commonly used because the AMQP specification defines the "default Exchange"

as having no name. Since all Queues are automatically bound to that default Exchange (which is a Direct

Exchange) using their name as the binding value, that second method above can be used for simple

point-to-point Messaging to any Queue through the default Exchange. Simply provide the queue name

as the "routingKey" - either by providing the method parameter at runtime:

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 12

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange

template.send("queue.helloWorld", new Message("Hello World".getBytes(), someProperties));

Or, if you prefer to create a template that will be used for publishing primarily or exclusively to a single

Queue, the following is perfectly reasonable:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange

template.setRoutingKey("queue.helloWorld"); // but we'll always send to this Queue

template.send(new Message("Hello World".getBytes(), someProperties));

Publisher Confirms

With the RabbitTemplate implementation of AmqpTemplate, each of the send() methods has

an overloaded version that takes an additional CorrelationData object. When publisher confirms

are enabled, this object is returned in the callback described in Section 2.3, “AmqpTemplate”. This

allows the sender to correlate a confirm (ack or nack) with the sent message.

Publisher Returns

When the template's mandatory property is 'true' returned messages are provided by the callback

described in Section 2.3, “AmqpTemplate”.

2.5 Receiving messages

Message reception is always a bit more complicated than sending. The reason is that there are two ways

to receive a Message. The simpler option is to poll for a single Message at a time with a synchronous,

blocking method call. The more complicated yet more common approach is to register a listener that

will receive Messages on-demand, asynchronously. We will look at an example of each approach in

the next two sub-sections.

Synchronous Consumer

The AmqpTemplate itself can be used for synchronous Message reception. There are two 'receive'

methods available. As with the Exchange on the sending side, there is a method that requires a queue

property having been set directly on the template itself, and there is a method that accepts a queue

parameter at runtime.

Message receive() throws AmqpException;

Message receive(String queueName) throws AmqpException;

Just like in the case of sending messages, the AmqpTemplate has some convenience methods for

receiving POJOs instead of Message instances, and implementations will provide a way to customize

the MessageConverter used to create the Object returned:

Object receiveAndConvert() throws AmqpException;

Object receiveAndConvert(String queueName) throws AmqpException;

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 13

Asynchronous Consumer

For asynchronous Message reception, a dedicated component (not the AmqpTemplate) is involved.

That component is a container for a Message consuming callback. We will look at the container and its

properties in just a moment, but first we should look at the callback since that is where your application

code will be integrated with the messaging system. There are a few options for the callback. The simplest

of these is to implement the MessageListener interface:

public interface MessageListener {

 void onMessage(Message message);

}

If your callback logic depends upon the AMQP Channel instance for any reason, you may instead use

the ChannelAwareMessageListener. It looks similar but with an extra parameter:

public interface ChannelAwareMessageListener {

 void onMessage(Message message, Channel channel) throws Exception;

}

If you prefer to maintain a stricter separation between your application logic and the messaging API,

you can rely upon an adapter implementation that is provided by the framework. This is often referred

to as "Message-driven POJO" support. When using the adapter, you only need to provide a reference

to the instance that the adapter itself should invoke.

MessageListener listener = new MessageListenerAdapter(somePojo);

Now that you've seen the various options for the Message-listening callback, we can turn our attention

to the container. Basically, the container handles the "active" responsibilities so that the listener

callback can remain passive. The container is an example of a "lifecycle" component. It provides

methods for starting and stopping. When configuring the container, you are essentially bridging

the gap between an AMQP Queue and the MessageListener instance. You must provide a

reference to the ConnectionFactory and the queue name or Queue instance(s) from which that

listener should consume Messages. Here is the most basic example using the default implementation,

SimpleMessageListenerContainer :

SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

container.setConnectionFactory(rabbitConnectionFactory);

container.setQueueNames("some.queue");

container.setMessageListener(new MessageListenerAdapter(somePojo));

As an "active" component, it's most common to create the listener container with a bean definition so

that it can simply run in the background. This can be done via XML:

<rabbit:listener-container connection-factory="rabbitConnectionFactory">

 <rabbit:listener queues="some.queue" ref="somePojo" method="handle"/>

</rabbit:listener-container>

Or, you may prefer to use the @Configuration style which will look very similar to the actual code

snippet above:

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 14

@Configuration

public class ExampleAmqpConfiguration {

 @Bean

 public MessageListenerContainer messageListenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(rabbitConnectionFactory());

 container.setQueueName("some.queue");

 container.setMessageListener(exampleListener());

 return container;

 }

 @Bean

 public ConnectionFactory rabbitConnectionFactory() {

 CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");

 connectionFactory.setUsername("guest");

 connectionFactory.setPassword("guest");

 return connectionFactory;

 }

 @Bean

 public MessageListener exampleListener() {

 return new MessageListener() {

 public void onMessage(Message message) {

 System.out.println("received: " + message);

 }

 };

 }

}

2.6 Message Converters

The AmqpTemplate also defines several methods for sending and receiving Messages that will

delegate to a MessageConverter. The MessageConverter itself is quite straightforward. It

provides a single method for each direction: one for converting to a Message and another for converting

from a Message. Notice that when converting to a Message, you may also provide properties in addition

to the object. The "object" parameter typically corresponds to the Message body.

public interface MessageConverter {

 Message toMessage(Object object, MessageProperties messageProperties)

 throws MessageConversionException;

 Object fromMessage(Message message) throws MessageConversionException;

}

The relevant Message-sending methods on the AmqpTemplate are listed below. They are simpler than

the methods we discussed previously because they do not require the Message instance. Instead, the

MessageConverter is responsible for "creating" each Message by converting the provided object

to the byte array for the Message body and then adding any provided MessageProperties.

void convertAndSend(Object message) throws AmqpException;

void convertAndSend(String routingKey, Object message) throws AmqpException;

void convertAndSend(String exchange, String routingKey, Object message) throws AmqpException;

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 15

void convertAndSend(Object message, MessagePostProcessor messagePostProcessor) throws AmqpException;

void convertAndSend(String routingKey, Object message, MessagePostProcessor messagePostProcessor)

 throws AmqpException;

void convertAndSend(String exchange, String routingKey, Object message,

 MessagePostProcessor messagePostProcessor) throws AmqpException;

On the receiving side, there are only two methods: one that accepts the queue name and one that relies

on the template's "queue" property having been set.

Object receiveAndConvert() throws AmqpException;

Object receiveAndConvert(String queueName) throws AmqpException;

SimpleMessageConverter

The default implementation of the MessageConverter strategy is called

SimpleMessageConverter. This is the converter that will be used by an instance of

RabbitTemplate if you do not explicitly configure an alternative. It handles text-based content, serialized

Java objects, and simple byte arrays.

Converting From a Message

If the content type of the input Message begins with "text" (e.g. "text/plain"), it will also check for

the content-encoding property to determine the charset to be used when converting the Message body

byte array to a Java String. If no content-encoding property had been set on the input Message, it will

use the "UTF-8" charset by default. If you need to override that default setting, you can configure an

instance of SimpleMessageConverter, set its "defaultCharset" property and then inject that into

a RabbitTemplate instance.

If the content-type property value of the input Message is set to "application/x-java-serialized-object",

the SimpleMessageConverter will attempt to deserialize (rehydrate) the byte array into a Java

object. While that might be useful for simple prototyping, it's generally not recommended to rely on

Java serialization since it leads to tight coupling between the producer and consumer. Of course, it also

rules out usage of non-Java systems on either side. With AMQP being a wire-level protocol, it would be

unfortunate to lose much of that advantage with such restrictions. In the next two sections, we'll explore

some alternatives for passing rich domain object content without relying on Java serialization.

For all other content-types, the SimpleMessageConverter will return the Message body content

directly as a byte array.

Converting To a Message

When converting to a Message from an arbitrary Java Object, the SimpleMessageConverter

likewise deals with byte arrays, Strings, and Serializable instances. It will convert each of these to

bytes (in the case of byte arrays, there is nothing to convert), and it will set the content-type property

accordingly. If the Object to be converted does not match one of those types, the Message body will

be null.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 16

JsonMessageConverter

As mentioned in the previous section, relying on Java serialization is generally not recommended. One

rather common alternative that is more flexible and portable across different languages and platforms

is JSON (JavaScript Object Notation). An implementation is available and can be configured on any

RabbitTemplate instance to override its usage of the SimpleMessageConverter default.

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">

 <property name="connectionFactory" ref="rabbitConnectionFactory"/>

 <property name="messageConverter">

 <bean class="org.springframework.amqp.support.converter.JsonMessageConverter">

 <!-- if necessary, override the DefaultClassMapper -->

 <property name="classMapper" ref="customClassMapper"/>

 </bean>

 </property>

</bean>

As shown above, the JsonMessageConverter uses a DefaultClassMapper by default. Type

information is added to (and retrieved from) the MessageProperties. If an inbound message does

not contain type information in the MessageProperties, but you know the expected type, you can

configure a static type using the defaultType property

<bean id="jsonConverterWithDefaultType" class="org.springframework.amqp.support.converter.JsonMessageConverter">

 <property name="classMapper">

 <bean class="org.springframework.amqp.support.converter.DefaultClassMapper">

 <property name="defaultType"

 value="foo.PurchaseOrder" />

 </bean>

 </property>

</bean>

MarshallingMessageConverter

Yet another option is the MarshallingMessageConverter. It delegates to the Spring OXM

library's implementations of the Marshaller and Unmarshaller strategy interfaces. You can read

more about that library here. In terms of configuration, it's most common to provide the constructor

argument only since most implementations of Marshaller will also implement Unmarshaller.

<bean class="org.springframework.amqp.rabbit.core.RabbitTemplate">

 <property name="connectionFactory" ref="rabbitConnectionFactory"/>

 <property name="messageConverter">

 <bean class="org.springframework.amqp.support.converter.MarshallingMessageConverter">

 <constructor-arg ref="someImplemenationOfMarshallerAndUnmarshaller"/>

 </bean>

 </property>

</bean>

2.7 Request/Reply Messaging

The AmqpTemplate also provides a variety of sendAndReceive methods that accept the same

argument options that you have seen above for the one-way send operations (exchange, routingKey, and

Message). Those methods are quite useful for request/reply scenarios since they handle the configuration

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 17

of the necessary "reply-to" property before sending and can listen for the reply message on an exclusive

Queue that is created internally for that purpose.

Similar request/reply methods are also available where the MessageConverter is applied to both

the request and reply. Those methods are named convertSendAndReceive. See the Javadoc of

AmqpTemplate for more detail.

By default, a new temporary queue is used for each reply. However, a single reply queue can be

configured on the template, which allows you to set arguments on that queue (such as 'ha_args="all"'

for mirrored queues). In this case, however, you must also provide a <reply-listener/> sub element. This

element provides a listener container for the reply queue, with the template being the listener. All of the

Section 2.11, “Message Listener Container Configuration” attributes allowed on a <listener-container/>

are allowed on the element, except for connection-factory and message-converter, which are inherited

from the template's configuration.

<rabbit:template id="amqpTemplate"

 connection-factory="connectionFactory" reply-queue="replies">

 <rabbit:reply-listener />

</rabbit:template>

While the container and template share a connection factory, they do not share a channel and therefore

requests and replies are not performed within the same transaction (if transactional).

2.8 Configuring the broker

The AMQP specification describes how the protocol can be used to configure Queues, Exchanges and

Bindings on the broker. These operations which are portable from the 0.8 specification and higher are

present in the AmqpAdmin interface in the org.springframework.amqp.core package. The RabbitMQ

implementation of that class is RabbitAdmin located in the org.springframework.amqp.rabbit.core

package.

The AmqpAdmin interface is based on using the Spring AMQP domain abstractions and is shown below:

public interface AmqpAdmin {

 // Exchange Operations

 void declareExchange(Exchange exchange);

 void deleteExchange(String exchangeName);

 // Queue Operations

 Queue declareQueue();

 void declareQueue(Queue queue);

 void deleteQueue(String queueName);

 void deleteQueue(String queueName, boolean unused, boolean empty);

 void purgeQueue(String queueName, boolean noWait);

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 18

 // Binding Operations

 void declareBinding(Binding binding);

}

The no-arg declareQueue() method defines a queue on the broker whose name is automatically

generated. The additional properties of this auto-generated queue are exclusive=true, autoDelete=true,

and durable=false.

Note

Removing a binding was not introduced until the 0.9 version of the AMQP spec.

The RabbitMQ implementation of this interface is RabbitAdmin which when configured using Spring

XML would look like this:

<rabbit:connection-factory id="connectionFactory"/>

<rabbit:admin id="amqpAdmin" connection-factory="connectionFactory"/>

The RabbitAdmin implementation does automatic lazy declaration of Queues, Exchanges and

Bindings declared in the same ApplicationContext. These components will be declared as son

as a Connection is opened to the broker. There are some namespace features that make this very

convenient, e.g. in the Stocks sample application we have:

<rabbit:queue id="tradeQueue" />

<rabbit:queue id="marketDataQueue" />

<fanout-exchange name="broadcast.responses" xmlns="http://www.springframework.org/schema/rabbit">

 <bindings>

 <binding queue="tradeQueue" />

 </bindings>

</fanout-exchange>

<topic-exchange name="app.stock.marketdata" xmlns="http://www.springframework.org/schema/rabbit">

 <bindings>

 <binding queue="marketDataQueue" pattern="${stocks.quote.pattern}" />

 </bindings>

</topic-exchange>

In the example above we are using anonymous Queues (actually internally just Queues with names

generated by the framework, not by the broker) and refer to them by ID. We can also declare Queues

with explicit names, which also serve as identifiers for their bean definitions in the context. E.g.

<rabbit:queue name="stocks.trade.queue"/>

Tip
You can provide both an id and a name attribute. This allows you to refer to the queue (for

example in a binding) by an id that is independent of the queue name. It also allows standard

Spring features such as property placeholders, and SpEL expressions for the queue name; these

features are not available when using the name as the bean identifier.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 19

Queues can be configured with additional arguments, for example, 'x-message-ttl' or 'x-ha-policy'. Using

the namespace support, they are provided in the form of a Map of argument name/argument value pairs,

using the <rabbit:queue-arguments> element.

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments>

 <entry key="x-ha-policy" value="all" />

 </rabbit:queue-arguments>

</rabbit:queue>

By default, the arguments are assumed to be strings. For arguments of other types, the type needs to

be provided.

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments value-type="java.lang.Long">

 <entry key="x-message-ttl" value="100" />

 </rabbit:queue-arguments>

</rabbit:queue>

When providing arguments of mixed types, the type is provided for each entry element:

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments>

 <entry key="x-message-ttl">

 <value type="java.lang.Long">100</value>

 </entry>

 <entry key="x-ha-policy" value="all" />

 </rabbit:queue-arguments>

</rabbit:queue>

With Spring Framework 3.2 and later, this can be declared a little more succinctly:

<rabbit:queue name="withArguments">

 <rabbit:queue-arguments>

 <entry key="x-message-ttl" value="100" value-type="java.lang.Long" />

 <entry key="x-ha-policy" value="all" />

 </rabbit:queue-arguments>

</rabbit:queue>

To see how to use Java to configure the AMQP infrastructure, look at the Stock sample application,

where there is the @Configuration class AbstractStockRabbitConfiguration which

in turn has RabbitClientConfiguration and RabbitServerConfiguration subclasses. The code for

AbstractStockRabbitConfiguration is shown below

@Configuration

public abstract class AbstractStockAppRabbitConfiguration {

 @Bean

 public ConnectionFactory connectionFactory() {

 CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");

 connectionFactory.setUsername("guest");

 connectionFactory.setPassword("guest");

 return connectionFactory;

 }

 @Bean

 public RabbitTemplate rabbitTemplate() {

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 20

 RabbitTemplate template = new RabbitTemplate(connectionFactory());

 template.setMessageConverter(jsonMessageConverter());

 configureRabbitTemplate(template);

 return template;

 }

 @Bean

 public MessageConverter jsonMessageConverter() {

 return new JsonMessageConverter();

 }

 @Bean

 public TopicExchange marketDataExchange() {

 return new TopicExchange("app.stock.marketdata");

 }

 // additional code omitted for brevity

}

In the Stock application, the server is configured using the following @Configuration class:

@Configuration

public class RabbitServerConfiguration extends AbstractStockAppRabbitConfiguration {

 @Bean

 public Queue stockRequestQueue() {

 return new Queue("app.stock.request");

 }

}

This is the end of the whole inheritance chain of @Configuration classes. The end result is the the

TopicExchange and Queue will be declared to the broker upon application startup. There is no binding

of the TopicExchange to a queue in the server configuration, as that is done in the client application.

The stock request queue however is automatically bound to the AMQP default exchange - this behavior

is defined by the specification.

The client @Configuration class is a little more interesting and is shown below.

@Configuration

public class RabbitClientConfiguration extends AbstractStockAppRabbitConfiguration {

 @Value("${stocks.quote.pattern}")

 private String marketDataRoutingKey;

 @Bean

 public Queue marketDataQueue() {

 return amqpAdmin().declareQueue();

 }

 /**

 * Binds to the market data exchange. Interested in any stock quotes

 * that match its routing key.

 */

 @Bean

 public Binding marketDataBinding() {

 return BindingBuilder.bind(

 marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

 }

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 21

 // additional code omitted for brevity

}

The client is declaring another queue via the declareQueue() method on the AmqpAdmin, and it binds

that queue to the market data exchange with a routing pattern that is externalized in a properties file.

Federated Exchanges

Rabbit supports federation; federated exchanges are backed by one of the other exchange types.

Therefore, when configuring a federated exchange, it is important to supply bindings of the appropriate

type for the backing exchange. Examples include...

<federated-exchange name="fedDirect" backing-type="direct"

 upstream-set="upstream-set">

 <direct-bindings>

 <binding queue="bucket" />

 </direct-bindings>

</federated-exchange>

<federated-exchange name="fedTopic" backing-type="topic"

 upstream-set="upstream-set">

 <topic-bindings>

 <binding queue="bucket" pattern="bucket.#"/>

 </topic-bindings>

</federated-exchange>

Notice that the child element, e.g. <direct-bindings/> matches the backing-type attribute.

2.9 Exception Handling

Many operations with the RabbitMQ Java client can throw checked Exceptions. For

example, there are a lot of cases where IOExceptions may be thrown. The RabbitTemplate,

SimpleMessageListenerContainer, and other Spring AMQP components will catch those Exceptions

and convert into one of the Exceptions within our runtime hierarchy. Those are defined in the

'org.springframework.amqp' package, and AmqpException is the base of the hierarchy.

If you are using a SimpleMessageListenerContainer you will also be able to inject a Spring

ErrorHandler instance that can be used to react to an exception in the listener. The ErrorHandler

cannot prevent the exception from eventually propagating, but it can be used to log or alert another

component that there is a problem.

2.10 Transactions

The Spring Rabbit framework has support for automatic transaction management in the synchronous

and asynchronous use cases with a number of different semantics that can be selected declaratively, as

is familiar to existing users of Spring transactions. This makes many if not most common messaging

patterns very easy to implement.

There are two ways to signal the desired transaction semantics to the framework. In

both the RabbitTemplate and SimpleMessageListenerContainer there is a flag

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 22

channelTransacted which, if true, tells the framework to use a transactional channel and to

end all operations (send or receive) with a commit or rollback depending on the outcome, with an

exception signaling a rollback. Another signal is to provide an external transaction with one of Spring's

PlatformTransactionManager implementations as a context for the ongoing operation. If there

is already a transaction in progress when the framework is sending or receiving a message, and the

channelTransacted flag is true, then the commit or rollback of the messaging transaction will be

deferred until the end of the current transaction. If the channelTransacted flag is false, then no

transaction semantics apply to the messaging operation (it is auto-acked).

The channelTransacted flag is a configuration time setting: it is declared and processed once

when the AMQP components are created, usually at application startup. The external transaction is more

dynamic in principle because the system responds to the current Thread state at runtime, but in practice

is often also a configuration setting, when the transactions are layered onto an application declaratively.

For synchronous use cases with RabbitTemplate the external transaction is provided by the caller,

either declaratively or imperatively according to taste (the usual Spring transaction model). An example

of a declarative approach (usually preferred because it is non-invasive), where the template has been

configured with channelTransacted=true:

@Transactional

public void doSomething() {

 String incoming = rabbitTemplate.receiveAndConvert();

 // do some more database processing...

 String outgoing = processInDatabaseAndExtractReply(incoming);

 rabbitTemplate.convertAndSend(outgoing);

}

A String payload is received, converted and sent as a message body inside a method marked as

@Transactional, so if the database processing fails with an exception, the incoming message will be

returned to the broker, and the outgoing message will not be sent. This applies to any operations

with the RabbitTemplate inside a chain of transactional methods (unless the Channel is directly

manipulated to commit the transaction early for instance).

For asynchronous use cases with SimpleMessageListenerContainer if an external transaction

is needed it has to be requested by the container when it sets up the listener. To signal that an external

transaction is required the user provides an implementation of PlatformTransactionManager

to the container when it is configured. For example:

@Configuration

public class ExampleExternalTransactionAmqpConfiguration {

 @Bean

 public MessageListenerContainer messageListenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(rabbitConnectionFactory());

 container.setTransactionManager(transactionManager());

 container.setChannelTransacted(true);

 container.setQueueName("some.queue");

 container.setMessageListener(exampleListener());

 return container;

 }

}

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 23

In the example above, the transaction manager is added as a dependency injected from another bean

definition (not shown), and the channelTransacted flag is also set to true. The effect is that if

the listener fails with an exception the transaction will be rolled back, and the message will also be

returned to the broker. Significantly, if the transaction fails to commit (e.g. a database constraint error,

or connectivity problem), then the AMQP transaction will also be rolled back, and the message will

be returned to the broker. This is sometimes known as a Best Efforts 1 Phase Commit, and is a very

powerful pattern for reliable messaging. If the channelTransacted flag was set to false in the

example above, which is the default, then the external transaction would still be provided for the listener,

but all messaging operations would be auto-acked, so the effect is to commit the messaging operations

even on a rollback of the business operation.

A note on Rollback of Received Messages

AMQP transactions only apply to messages and acks sent to the broker, so when there is a rollback of a

Spring transaction and a message has been received, what Spring AMQP has to do is not just rollback

the transaction, but also manually reject the message (sort of a nack, but that's not what the specification

calls it). Such messages (and any that are unacked when a channel is closed or aborts) go to the back

of the queue on a Rabbit broker, and this behaviour is not what some users expect, especially if they

come from a JMS background, so it's good to be aware of it. The re-queuing order is not mandated by

the AMQP specification, but it makes the broker much more efficient, and also means that if it is under

load there is a natural back off before the message can be consumed again.

Using the RabbitTransactionManager

The RabbitTransactionManager is an alternative to executing Rabbit operations within, and

synchronized with, external transactions. This Transaction Manager is an implementation of the

PlatformTransactionManager interface and should be used with a single Rabbit ConnectionFactory.

Important
This strategy is not able to provide XA transactions, for example in order to share transactions

between messaging and database access.

Application code is required to retrieve the transactional Rabbit resources via

ConnectionFactoryUtils.getTransactionalResourceHolder(ConnectionFactory,

boolean) instead of a standard Connection.createChannel() call with subsequent Channel

creation. When using Spring's RabbitTemplate, it will autodetect a thread-bound Channel and

automatically participate in it.

With Java Configuration you can setup a new RabbitTransactionManager using:

@Bean

public RabbitTransactionManager rabbitTransactionManager() {

 return new RabbitTransactionManager(connectionFactory);

}

If you prefer using XML configuration, declare the following bean in your XML Application Context

file:

<bean id="rabbitTxManager"

http://static.springsource.org/spring-amqp/docs/latest-ga/apidocs/org/springframework/amqp/rabbit/transaction/RabbitTransactionManager.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html
http://static.springsource.org/spring-amqp/docs/latest-ga/apidocs/org/springframework/amqp/rabbit/core/RabbitTemplate.html

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 24

 class="org.springframework.amqp.rabbit.transaction.RabbitTransactionManager">

 <property name="connectionFactory" ref="connectionFactory"/>

</bean>

2.11 Message Listener Container Configuration

There are quite a few options for configuring a SimpleMessageListenerContainer related to

transactions and quality of service, and some of them interact with each other.

When configuring with the XML namespace, the convention is to use hyphenated attributes rather than

camel case; for example, for property 'connectionFactory', the XML equivalent is 'connection-factory'.

Table 2.1. Configuration options for a message listener container

Property Description

channelTransacted Boolean flag to signal that all messages should be

acknowledged in a transaction (either manually or

automatically)

acknowledgeMode NONE = no acks will be sent

(the default and incompatible with

channelTransacted=true). RabbitMQ

calls this "autoack" because the broker

assumes all messages are acked without any

action from the consumer. MANUAL = the

listener must acknowledge all messages by

calling Channel.basicAck(). AUTO =

the container will acknowledge the message

automatically. Note that acknowledgeMode

is complementary to channelTransacted - if the

channel is transacted then the broker requires a

commit notification in addition to the ack.

transactionManager External transaction manager for the operation

of the listener. Also complementary to

channelTransacted - if the Channel is transacted

then its transaction will be synchronized with the

external transaction.

prefetchCount The number of messages to accept from the broker

in one socket frame. The higher this is the faster

the messages can be delivered, but the higher the

risk of non-sequential processing. Ignored if the

acknowledgeMode is NONE.

shutdownTimeout When a container shuts down (e.g. if its enclosing

ApplicationContext is closed) it waits for

in-flight messages to be processed up to this limit.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 25

Property Description

Defaults to 10 seconds. After the limit is reached,

if the channel is not transacted messages will be

discarded.

txSize If the channel is transacted or an external

transaction manager is provided, the container

will attempt to process up to this number of

messages per transaction (waiting for each one up

to the receive timeout setting).

receiveTimeout The maximum time to wait for each message.

If acknowledgeMode=NONE (the default) this

has very little effect - the container just spins

round and asks for another message. It has the

biggest effect for a transactional Channel with

txSize > 1, since it can cause messages

already consumed not to be acknowledged until

the timeout expires.

autoStartup Flag to indicate that the container should start

when the ApplicationContext does (as

part of the SmartLifecycle callbacks which

happen after all beans are initialized). Defaults to

true, but set it to false if your broker might not be

available on startup, and then call start() later

manually when you know the broker is ready.

phase When autoStartup is true, the lifecycle phase

within which this container should start and stop.

The lower the value the earlier this container

will start and the later it will stop. The default

is Integer.MAX_VALUE meaning the container

will start as late as possible and stop as soon as

possible.

adviceChain An array of AOP Advice to apply to the listener

execution. This can be used to apply additional

cross cutting concerns such as automatic retry in

the event of broker death. Note that simple re-

connection after an AMQP error is handled by

the CachingConnectionFactory, as long

as the broker is still alive.

taskExecutor A reference to a Spring TaskExecutor (or standard

JDK 1.5+ Executor) for executing listener

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 26

Property Description

invokers. Default is a SimpleAsyncTaskExecutor,

using internally managed threads.

errorHandler A reference to an ErrorHandler strategy for

handling any uncaught Exceptions that may occur

during the execution of the MessageListener.

concurrency The number of concurrent consumers to start for

each listener.

connectionFactory A reference to the connectionFactory; when

configuring using the XML namespace,

the default referenced bean name is

"rabbitConnectionFactory".

messageConverter A reference to the MessageConverter strategy for

converting AMQP Messages to listener method

arguments for any referenced 'listener' that is a

POJO. Default is a SimpleMessageConverter.

requeueRejected Determines whether messages that are rejected

because the listener threw an exception should be

requeued or not. Default 'true'.

2.12 Resilience: Recovering from Errors and Broker
Failures

Some of the key (and most popular) high-level features that Spring AMQP provides are to do with

recovery and automatic re-connection in the event of a protocol error or broker failure. We have seen

all the relevant components already in this guide, but it should help to bring them all together here and

call out the features and recovery scenarios individually.

The primary reconnection features are enabled by the CachingConnectionFactory itself.

It is also often beneficial to use the RabbitAdmin auto-declaration features. In addition, if

you care about guaranteed delivery, you probably also need to use the channelTransacted

flag in RabbitTemplate and SimpleMessageListenerContainer and also the

AcknowledgeMode.AUTO (or manual if you do the acks yourself) in the

SimpleMessageListenerContainer.

Automatic Declaration of Exchanges, Queues and Bindings

The RabbitAdmin component can declare exchanges, queues and bindings on startup. It does this

lazily, through a ConnectionListener, so if the broker is not present on startup it doesn't matter.

The first time a Connection is used (e.g. by sending a message) the listener will fire and the admin

features will be applied. A further benefit of doing the auto declarations in a listener is that if the

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 27

connection is dropped for any reason (e.g. broker death, network glitch, etc.) they will be applied again

the next time they are needed.

Failures in Synchronous Operations and Options for Retry

If you lose your connection to the broker in a synchronous sequence using RabbitTemplate

(for instance), then Spring AMQP will throw an AmqpException (usually but not always

AmqpIOException). We don't try to hide the fact that there was a problem, so you have to be able to

catch and respond to the exception. The easiest thing to do if you suspect that the connection was lost,

and it wasn't your fault, is to simply try the operation again. You can do this manually, or you could

look at using Spring Retry to handle the retry (imperatively or declaratively).

Spring Retry provides a couple of AOP interceptors and a great deal of flexibility to specify the

parameters of the retry (number of attempts, exception types, backoff algorithm etc.). Spring AMQP

also provides some convenience factory beans for creating Spring Retry interceptors in a convenient

form for AMQP use cases, with strongly typed callback interfaces for you to implement custom

recovery logic. See the Javadocs and properties of StatefulRetryOperationsInterceptor

and StatelessRetryOperationsInterceptor for more detail. Stateless retry is appropriate

if there is no transaction or if a transaction is started inside the retry callback. Note that stateless retry

is simpler to configure and analyse than stateful retry, but it is not usually appropriate if there is an

ongoing transaction which must be rolled back or definitely is going to roll back. A dropped connection

in the middle of a transaction should have the same effect as a rollback, so for reconnection where the

transaction is started higher up the stack, stateful retry is usually the best choice.

Message Listeners and the Asynchronous Case

If a MessageListener fails because of a business exception, the exception is handled by the message

listener container and then it goes back to listening for another message. If the failure is caused by a

dropped connection (not a business exception), then the consumer that is collecting messages for the

listener has to be cancelled and restarted. The SimpleMessageListenerContainer handles this

seamlessly, and it leaves a log to say that the listener is being restarted. In fact it loops endlessly trying

to restart the consumer, and only if the consumer is very badly behaved indeed will it give up. One side

effect is that if the broker is down when the container starts, it will just keep trying until a connection

can be established.

Business exception handling, as opposed to protocol errors and dropped connections, might need more

thought and some custom configuration, especially if transactions and/or container acks are in use. Prior

to 2.8.x, RabbitMQ had no definition of dead letter behaviour, so by default a message that is rejected or

rolled back because of a business exception can be redelivered ad infinitum. To put a limit in the client

on the number of re-deliveries, one choice is a StatefulRetryOperationsInterceptor in

the advice chain of the listener. The interceptor can have a recovery callback that implements a custom

dead letter action: whatever is appropriate for your particular environment.

Another alternative is to set the container's rejectRequeued property to false. This causes all failed

messages to be discarded. When using RabbitMQ 2.8.x or higher, this also facilitates delivering the

message to a Dead Letter Exchange.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 28

Or, you can throw a AmqpRejectAndDontRequeueException; this prevents message requeuing,

regardless of the setting of the rejectRequeued property.

Often, a combination of both techniques will be used. Use a

StatefulRetryOperationsInterceptor in the advice chain, where it's MessageRecover

throws an AmqpRejectAndDontRequeueException. The MessageRecover is called when

all retries have been exhausted. The default MessageRecoverer simply consumes the errant

message and emits a WARN message. In which case, the message is ACK'd and won't be sent to the

Dead Letter Exchange, if any.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 29

3. Erlang integration

3.1 Introduction

There is an open source project called JInterface that provides a way for Java applications to

communicate with an Erlang process. The API is very low level and rather tedious to use and throws

checked exceptions. The Spring Erlang module makes accessing functions in Erlang from Java easy,

often they can be one liners.

3.2 Communicating with Erlang processes

Executing RPC

The interface ErlangOperations is the high level API for interacting with an Erlang process.

public interface ErlangOperations {

 <T> T execute(ConnectionCallback<T> action) throws OtpException;

 OtpErlangObject executeErlangRpc(String module, String function, OtpErlangList args)

 throws OtpException;

 OtpErlangObject executeErlangRpc(String module, String function, OtpErlangObject... args)

 throws OtpException;

 OtpErlangObject executeRpc(String module, String function, Object... args)

 throws OtpException;

 Object executeAndConvertRpc(String module, String function,

 ErlangConverter converterToUse, Object... args) throws OtpException;

 // Sweet!

 Object executeAndConvertRpc(String module, String function, Object... args)

 throws OtpException;

}

The class that implements this interface is called ErlangTemplate. There are a few convenience

methods, most notably executeAndConvertRpc, as well as the execute method which gives

you access to the 'native' API of the JInterface project. For simple functions, you can invoke

executeAndConvertRpc with the appropriate Erlang module name, function, and arguments in a

one-liner. For example, here is the implementation of the RabbitBrokerAdmin method 'DeleteUser'

@ManagedOperation

public void deleteUser(String username) {

 erlangTemplate.executeAndConvertRpc(

 "rabbit_access_control", "delete_user", username.getBytes());

}

As the JInterface library uses specific classes such as OtpErlangDouble and OtpErlangString to

represent the primitive types in Erlang RPC calls, there is a converter class that works in concert with

ErlangTemplate that knows how to translate from Java primitive types to their Erlang class equivalents.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 30

You can also create custom converters and register them with the ErlangTemplate to handle more

complex data format translations.

ErlangConverter

The ErlangConverter interface is shown below.

public interface ErlangConverter {

 /**

 * Convert a Java object to a Erlang data type.

 * @param object the object to convert

 * @return the Erlang data type

 * @throws ErlangConversionException in case of conversion failure

 */

 OtpErlangObject toErlang(Object object) throws ErlangConversionException;

 /**

 * Convert from a Erlang data type to a Java object.

 * @param erlangObject the Erlang object to convert

 * @return the converted Java object

 * @throws ErlangConversionException in case of conversion failure

 */

 Object fromErlang(OtpErlangObject erlangObject) throws ErlangConversionException;

 /**

 * The return value from executing the Erlang RPC.

 */

 Object fromErlangRpc(String module, String function, OtpErlangObject erlangObject)

 throws ErlangConversionException;

}

3.3 Exceptions

The JInterface checked exception hierarchy is translated into a parallel runtime exception hierarchy

when executing operations through ErlangTemplate.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 31

4. Sample Applications

4.1 Introduction

The Spring AMQP Samples project includes two sample applications. The first is a simple "Hello

World" example that demonstrates both synchronous and asynchronous message reception. It provides

an excellent starting point for acquiring an understanding of the essential components. The second

sample is based on a stock-trading use case to demonstrate the types of interaction that would be common

in real world applications. In this chapter, we will provide a quick walk-through of each sample so that

you can focus on the most important components. The samples are both Maven-based, so you should

be able to import them directly into any Maven-aware IDE (such as SpringSource Tool Suite).

4.2 Hello World

The Hello World sample demonstrates both synchronous and asynchronous message reception. You can

import the 'spring-rabbit-helloworld' sample into the IDE and then follow the discussion below.

Synchronous Example

Within the 'src/main/java' directory, navigate to the 'org.springframework.amqp.helloworld' package.

Open the HelloWorldConfiguration class and notice that it contains the @Configuration annotation at

class-level and some @Bean annotations at method-level. This is an example of Spring's Java-based

configuration. You can read more about that here.

@Bean

public ConnectionFactory connectionFactory() {

 CachingConnectionFactory connectionFactory = new CachingConnectionFactory("localhost");

 connectionFactory.setUsername("guest");

 connectionFactory.setPassword("guest");

 return connectionFactory;

}

The configuration also contains an instance of RabbitAdmin, which by default looks for any beans of

type Exchange, Queue, or Binding and then declares them on the broker. In fact, the "helloWorldQueue"

bean that is generated in HelloWorldConfiguration is an example simply because it is an instance of

Queue.

@Bean

public Queue helloWorldQueue() {

 return new Queue(this.helloWorldQueueName);

}

Looking back at the "rabbitTemplate" bean configuration, you will see that it has the helloWorldQueue's

name set as its "queue" property (for receiving Messages) and for its "routingKey" property (for sending

Messages).

Now that we've explored the configuration, let's look at the code that actually uses these components.

First, open the Producer class from within the same package. It contains a main() method where the

Spring ApplicationContext is created.

http://github.com/SpringSource/spring-amqp-samples
http://www.springsource.com/products/sts
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#beans-java

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 32

public static void main(String[] args) {

 ApplicationContext context = new AnnotationConfigApplicationContext(RabbitConfiguration.class);

 AmqpTemplate amqpTemplate = context.getBean(AmqpTemplate.class);

 amqpTemplate.convertAndSend("Hello World");

 System.out.println("Sent: Hello World");

}

As you can see in the example above, the AmqpTemplate bean is retrieved and used for sending a

Message. Since the client code should rely on interfaces whenever possible, the type is AmqpTemplate

rather than RabbitTemplate. Even though the bean created in HelloWorldConfiguration is an instance

of RabbitTemplate, relying on the interface means that this code is more portable (the configuration

can be changed independently of the code). Since the convertAndSend() method is invoked, the

template will be delegating to its MessageConverter instance. In this case, it's using the default

SimpleMessageConverter, but a different implementation could be provided to the "rabbitTemplate"

bean as defined in HelloWorldConfiguration.

Now open the Consumer class. It actually shares the same configuration base class which means it will be

sharing the "rabbitTemplate" bean. That's why we configured that template with both a "routingKey" (for

sending) and "queue" (for receiving). As you saw in Section 2.3, “AmqpTemplate”, you could instead

pass the 'routingKey' argument to the send method and the 'queue' argument to the receive method. The

Consumer code is basically a mirror image of the Producer, calling receiveAndConvert() rather than

convertAndSend().

public static void main(String[] args) {

 ApplicationContext context = new AnnotationConfigApplicationContext(RabbitConfiguration.class);

 AmqpTemplate amqpTemplate = context.getBean(AmqpTemplate.class);

 System.out.println("Received: " + amqpTemplate.receiveAndConvert());

}

If you run the Producer, and then run the Consumer, you should see the message "Received: Hello

World" in the console output.

Asynchronous Example

Now that we've walked through the synchronous Hello World sample, it's time to move on to a slightly

more advanced but significantly more powerful option. With a few modifications, the Hello World

sample can provide an example of asynchronous reception, a.k.a. Message-driven POJOs. In fact, there

is a sub-package that provides exactly that: org.springframework.amqp.samples.helloworld.async.

Once again, we will start with the sending side. Open the ProducerConfiguration class and notice that it

creates a "connectionFactory" and "rabbitTemplate" bean. This time, since the configuration is dedicated

to the message sending side, we don't even need any Queue definitions, and the RabbitTemplate only

has the 'routingKey' property set. Recall that messages are sent to an Exchange rather than being sent

directly to a Queue. The AMQP default Exchange is a direct Exchange with no name. All Queues are

bound to that default Exchange with their name as the routing key. That is why we only need to provide

the routing key here.

public RabbitTemplate rabbitTemplate() {

 RabbitTemplate template = new RabbitTemplate(connectionFactory());

 template.setRoutingKey(this.helloWorldQueueName);

 return template;

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 33

}

Since this sample will be demonstrating asynchronous message reception, the producing side is designed

to continuously send messages (if it were a message-per-execution model like the synchronous version,

it would not be quite so obvious that it is in fact a message-driven consumer). The component responsible

for sending messages continuously is defined as an inner class within the ProducerConfiguration. It is

configured to execute every 3 seconds.

static class ScheduledProducer {

 @Autowired

 private volatile RabbitTemplate rabbitTemplate;

 private final AtomicInteger counter = new AtomicInteger();

 @Scheduled(fixedRate = 3000)

 public void sendMessage() {

 rabbitTemplate.convertAndSend("Hello World " + counter.incrementAndGet());

 }

}

You don't need to understand all of the details since the real focus should be on the receiving

side (which we will cover momentarily). However, if you are not yet familiar with Spring 3.0 task

scheduling support, you can learn more here. The short story is that the "postProcessor" bean in the

ProducerConfiguration is registering the task with a scheduler.

Now, let's turn to the receiving side. To emphasize the Message-driven POJO behavior will start with

the component that is reacting to the messages. The class is called HelloWorldHandler.

public class HelloWorldHandler {

 public void handleMessage(String text) {

 System.out.println("Received: " + text);

 }

}

Clearly, that is a POJO. It does not extend any base class, it doesn't implement any

interfaces, and it doesn't even contain any imports. It is being "adapted" to the MessageListener

interface by the Spring AMQP MessageListenerAdapter. That adapter can then be configured

on a SimpleMessageListenerContainer. For this sample, the container is created in the

ConsumerConfiguration class. You can see the POJO wrapped in the adapter there.

@Bean

public SimpleMessageListenerContainer listenerContainer() {

 SimpleMessageListenerContainer container = new SimpleMessageListenerContainer();

 container.setConnectionFactory(connectionFactory());

 container.setQueueName(this.helloWorldQueueName);

 container.setMessageListener(new MessageListenerAdapter(new HelloWorldHandler()));

 return container;

}

The SimpleMessageListenerContainer is a Spring lifecycle component and will start automatically by

default. If you look in the Consumer class, you will see that its main() method consists of nothing

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html#scheduling-annotation-support

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 34

more than a one-line bootstrap to create the ApplicationContext. The Producer's main() method is also

a one-line bootstrap, since the component whose method is annotated with @Scheduled will also start

executing automatically. You can start the Producer and Consumer in any order, and you should see

messages being sent and received every 3 seconds.

4.3 Stock Trading

The Stock Trading sample demonstrates more advanced messaging scenarios than the Hello World

sample. However, the configuration is very similar - just a bit more involved. Since we've walked

through the Hello World configuration in detail, here we'll focus on what makes this sample different.

There is a server that pushes market data (stock quotes) to a Topic Exchange. Then, clients can subscribe

to the market data feed by binding a Queue with a routing pattern (e.g. "app.stock.quotes.nasdaq.*").

The other main feature of this demo is a request-reply "stock trade" interaction that is initiated by the

client and handled by the server. That involves a private "replyTo" Queue that is sent by the client within

the order request Message itself.

The Server's core configuration is in the RabbitServerConfiguration class

within the org.springframework.amqp.rabbit.stocks.config.server package. It extends the

AbstractStockAppRabbitConfiguration. That is where the resources common to the Server and Client(s)

are defined, including the market data Topic Exchange (whose name is 'app.stock.marketdata') and the

Queue that the Server exposes for stock trades (whose name is 'app.stock.request'). In that common

configuration file, you will also see that a JsonMessageConverter is configured on the RabbitTemplate.

The Server-specific configuration consists of 2 things. First, it configures the market data exchange on

the RabbitTemplate so that it does not need to provide that exchange name with every call to send a

Message. It does this within an abstract callback method defined in the base configuration class.

public void configureRabbitTemplate(RabbitTemplate rabbitTemplate) {

 rabbitTemplate.setExchange(MARKET_DATA_EXCHANGE_NAME);

}

Secondly, the stock request queue is declared. It does not require any explicit bindings in this case,

because it will be bound to the default no-name exchange with its own name as the routing key. As

mentioned earlier, the AMQP specification defines that behavior.

@Bean

public Queue stockRequestQueue() {

 return new Queue(STOCK_REQUEST_QUEUE_NAME);

}

Now that you've seen the configuration of the Server's AMQP resources, navigate to the

'org.springframework.amqp.rabbit.stocks' package under the 'src/test/java' directory. There you will see

the actual Server class that provides a main() method. It creates an ApplicationContext based on the

'server-bootstrap.xml' config file. In there you will see the scheduled task that publishes dummy market

data. That configuration relies upon Spring 3.0's "task" namespace support. The bootstrap config file

also imports a few other files. The most interesting one is 'server-messaging.xml' which is directly

under 'src/main/resources'. In there you will see the "messageListenerContainer" bean that is responsible

for handling the stock trade requests. Finally have a look at the "serverHandler" bean that is defined

in "server-handlers.xml" (also in 'src/main/resources'). That bean is an instance of the ServerHandler

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 35

class and is a good example of a Message-driven POJO that is also capable of sending reply Messages.

Notice that it is not itself coupled to the framework or any of the AMQP concepts. It simply accepts a

TradeRequest and returns a TradeResponse.

public TradeResponse handleMessage(TradeRequest tradeRequest) { ... }

Now that we've seen the most important configuration and code for the Server, let's

turn to the Client. The best starting point is probably RabbitClientConfiguration within the

'org.springframework.amqp.rabbit.stocks.config.client' package. Notice that it declares two queues

without providing explicit names.

@Bean

public Queue marketDataQueue() {

 return amqpAdmin().declareQueue();

}

@Bean

public Queue traderJoeQueue() {

 return amqpAdmin().declareQueue();

}

Those are private queues, and unique names will be generated automatically. The first generated queue

is used by the Client to bind to the market data exchange that has been exposed by the Server. Recall that

in AMQP, consumers interact with Queues while producers interact with Exchanges. The "binding" of

Queues to Exchanges is what instructs the broker to deliver, or route, messages from a given Exchange

to a Queue. Since the market data exchange is a Topic Exchange, the binding can be expressed with a

routing pattern. The RabbitClientConfiguration declares that with a Binding object, and that object is

generated with the BindingBuilder's fluent API.

@Value("${stocks.quote.pattern}")

private String marketDataRoutingKey;

@Bean

public Binding marketDataBinding() {

 return BindingBuilder.bind(

 marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

}

Notice that the actual value has been externalized in a properties file ("client.properties" under src/main/

resources), and that we are using Spring's @Value annotation to inject that value. This is generally a

good idea, since otherwise the value would have been hardcoded in a class and unmodifiable without

recompilation. In this case, it makes it much easier to run multiple versions of the Client while making

changes to the routing pattern used for binding. Let's try that now.

Start by running org.springframework.amqp.rabbit.stocks.Server and then

org.springframework.amqp.rabbit.stocks.Client. You should see dummy quotes for NASDAQ stocks

because the current value associated with the 'stocks.quote.pattern' key in client.properties is

'app.stock.quotes.nasdaq.*'. Now, while keeping the existing Server and Client running, change that

property value to 'app.stock.quotes.nyse.*' and start a second Client instance. You should see that the

first client is still receiving NASDAQ quotes while the second client receives NYSE quotes. You could

instead change the pattern to get all stocks or even an individual ticker.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 36

The final feature we'll explore is the request-reply interaction from the Client's perspective. Recall

that we have already seen the ServerHandler that is accepting TradeRequest objects and returning

TradeResponse objects. The corresponding code on the Client side is RabbitStockServiceGateway in

the 'org.springframework.amqp.rabbit.stocks.gateway' package. It delegates to the RabbitTemplate in

order to send Messages.

public void send(TradeRequest tradeRequest) {

 getRabbitTemplate().convertAndSend(tradeRequest, new MessagePostProcessor() {

 public Message postProcessMessage(Message message) throws AmqpException {

 message.getMessageProperties().setReplyTo(new Address(defaultReplyToQueue));

 try {

 message.getMessageProperties().setCorrelationId(

 UUID.randomUUID().toString().getBytes("UTF-8"));

 }

 catch (UnsupportedEncodingException e) {

 throw new AmqpException(e);

 }

 return message;

 }

 });

 }

Notice that prior to sending the message, it sets the "replyTo" address. It's providing the queue that was

generated by the "traderJoeQueue" bean definition shown above. Here's the @Bean definition for the

StockServiceGateway class itself.

@Bean

public StockServiceGateway stockServiceGateway() {

 RabbitStockServiceGateway gateway = new RabbitStockServiceGateway();

 gateway.setRabbitTemplate(rabbitTemplate());

 gateway.setDefaultReplyToQueue(traderJoeQueue());

 return gateway;

}

If you are no longer running the Server and Client, start them now. Try sending a request with the format

of '100 TCKR'. After a brief artificial delay that simulates "processing" of the request, you should see

a confirmation message appear on the Client.

Part III. Spring Integration - Reference
This part of the reference documentation provides a quick introduction to the AMQP support within

the Spring Integration project.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 38

5. Spring Integration AMQP Support

5.1 Introduction

The Spring Integration project includes AMQP Channel Adapters and Gateways that build upon

the Spring AMQP project. Those adapters are developed and released in the Spring Integration

project. In Spring Integration, "Channel Adapters" are unidirectional (one-way) whereas "Gateways"

are bidirectional (request-reply). We provide an inbound-channel-adapter, outbound-channel-adapter,

inbound-gateway, and outbound-gateway.

Since the AMQP adapters are part of the Spring Integration release, the documentation will be available

as part of the Spring Integration distribution. As a taster, we just provide a quick overview of the main

features here.

5.2 Inbound Channel Adapter

To receive AMQP Messages from a Queue, configure an <inbound-channel-adapter>

<amqp:inbound-channel-adapter channel="fromAMQP"

 queue-names="some.queue"

 connection-factory="rabbitConnectionFactory"/>

5.3 Outbound Channel Adapter

To send AMQP Messages to an Exchange, configure an <outbound-channel-adapter>. A 'routing-key'

may optionally be provided in addition to the exchange name.

<amqp:outbound-channel-adapter channel="toAMQP"

 exchange-name="some.exchange"

 routing-key="foo"

 amqp-template="rabbitTemplate"/>

5.4 Inbound Gateway

To receive an AMQP Message from a Queue, and respond to its reply-to address, configure an <inbound-

gateway>.

<amqp:inbound-gateway request-channel="fromAMQP"

 reply-channel="toAMQP"

 queue-names="some.queue"

 connection-factory="rabbitConnectionFactory"/>

5.5 Outbound Gateway

To send AMQP Messages to an Exchange and receive back a response from a remote client, configure

an <outbound-gateway>. A 'routing-key' may optionally be provided in addition to the exchange name.

<amqp:outbound-gateway request-channel="toAMQP"

http://springsource.org/spring-integration

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 39

 reply-channel="fromAMQP"

 exchange-name="some.exchange"

 routing-key="foo"

 amqp-template="rabbitTemplate"/>

Part IV. Other Resources
In addition to this reference documentation, there exist a number of other resources that may help you

learn about AMQP.

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 41

6. Further Reading

For those who are not familiar with AMQP, the specification is actually quite readable. It is of course

the authoritative source of information, and the Spring AMQP code should be very easy to understand

for anyone who is familiar with the spec. Our current implementation of the RabbitMQ support is based

on their 2.8.x version, and it officially supports AMQP 0.8 and 0.9.1. We recommend reading the 0.9.1

document.

There are many great articles, presentations, and blogs available on the RabbitMQ Getting Started page.

Since that is currently the only supported implementation for Spring AMQP, we also recommend that

as a general starting point for all broker-related concerns.

Finally, be sure to visit the Spring AMQP Forum if you have questions or suggestions. With this first

GA release, we are looking forward to a lot of community feedback!

http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
http://www.rabbitmq.com/how.html
http://forum.springsource.org/forumdisplay.php?f=74

Spring AMQP

1.1.4.RELEASE

Spring AMQP -

Reference Documentation 42

Bibliography
[jinterface-00] Ericsson AB. jinterface User Guide. Ericson AB . 2000.

http://www.erlang.org/doc/apps/jinterface/jinterface.pdf

	Spring AMQP - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Quick Tour for the impatient
	1.1 Introduction
	Very, Very Quick
	With XML Configuration
	With Java Configuration

	Part II. Reference
	2. Using Spring AMQP
	2.1 AMQP Abstractions
	Message
	Exchange
	Queue
	Binding

	2.2 Connection and Resource Management
	Publisher Confirms and Returns

	2.3 AmqpTemplate
	Publisher Confirms and Returns

	2.4 Sending messages
	Publisher Confirms
	Publisher Returns

	2.5 Receiving messages
	Synchronous Consumer
	Asynchronous Consumer

	2.6 Message Converters
	SimpleMessageConverter
	Converting From a Message
	Converting To a Message

	JsonMessageConverter
	MarshallingMessageConverter

	2.7 Request/Reply Messaging
	2.8 Configuring the broker
	Federated Exchanges

	2.9 Exception Handling
	2.10 Transactions
	A note on Rollback of Received Messages
	Using the RabbitTransactionManager

	2.11 Message Listener Container Configuration
	2.12 Resilience: Recovering from Errors and Broker Failures
	Automatic Declaration of Exchanges, Queues and Bindings
	Failures in Synchronous Operations and Options for Retry
	Message Listeners and the Asynchronous Case

	3. Erlang integration
	3.1 Introduction
	3.2 Communicating with Erlang processes
	Executing RPC
	ErlangConverter

	3.3 Exceptions

	4. Sample Applications
	4.1 Introduction
	4.2 Hello World
	Synchronous Example
	Asynchronous Example

	4.3 Stock Trading

	Part III. Spring Integration - Reference
	5. Spring Integration AMQP Support
	5.1 Introduction
	5.2 Inbound Channel Adapter
	5.3 Outbound Channel Adapter
	5.4 Inbound Gateway
	5.5 Outbound Gateway

	Part IV. Other Resources
	6. Further Reading
	Bibliography

