Spring AMQP

Mark Pollack, Mark Fisher, Oleg Zhurakousky, Dave Syer, Gary Russell, Gunnar
Hillert, Artem Bilan, Stéphane Nicoll, Arnaud Cogoluegnes, Jay Bryant

Version 2.3.6

Table of Contents

1. Preface
2. What’s New
2.1. Changes in 2.3 Since 2.2
2.1.1. Connection Factory Changes
2.1.2. @RabbitListener Changes
2.1.3. Message Converter Changes
2.1.4. Testing Changes
2.1.5. RabbitTemplate Changes
2.1.6. Listener Container Changes
2.1.7. MessagePostProcessor Changes
2.1.8. Multiple Broker Support Improvements
2.1.9. RepublishMessageRecoverer Changes
3. Introduction
3.1. Quick Tour for the impatient
3.1.1. Introduction
Compatibility
Very, Very Quick
With XML Configuration
With Java Configuration
With Spring Boot Auto Configuration and an Async POJO Listener
4. Reference
4.1. Using Spring AMQP
4.1.1. AMQP Abstractions
Message
Exchange
Queue
Binding
4.1.2. Connection and Resource Management
Choosing a Connection Factory
AddressResolver
Naming Connections
Blocked Connections and Resource Constraints
Configuring the Underlying Client Connection Factory
RabbitConnectionFactoryBean and Configuring SSL
Connecting to a Cluster
Routing Connection Factory
Queue Affinity and the LocalizedQueueConnectionFactory
Publisher Confirms and Returns

O N o 1 U1 U1 U1 Ul R W W W W W W W W W

NN NN NDNDNR P R B R B oRm | s) e,
TR WY R O O O R R WN R, O O O O

Connection and Channel Listeners
Logging Channel Close Events
Runtime Cache Properties
RabbitMQ Automatic Connection/Topology recovery
4.1.3. Adding Custom Client Connection Properties
4.1.4. AmgpTemplate
Adding Retry Capabilities
Publishing is Asynchronous — How to Detect Successes and Failures
Correlated Publisher Confirms and Returns
Scoped Operations
Messaging Integration
Validated User Id
Using a Separate Connection
4.1.5. Sending Messages
Message Builder API
Publisher Returns
Batching
4.1.6. Receiving Messages
Polling Consumer
Asynchronous Consumer
Batched Messages
Consumer Events
Consumer Tags
Annotation-driven Listener Endpoints
@RabbitListener with Batching
Using Container Factories
Asynchronous @RabbitListener Return Types
Threading and Asynchronous Consumers
Choosing a Container
Detecting Idle Asynchronous Consumers
Monitoring Listener Performance
4.1.7. Containers and Broker-Named queues
4.1.8. Message Converters
SimpleMessageConverter
SerializerMessageConverter
Jackson2]sonMessageConverter
MarshallingMessageConverter
Jackson2XmlMessageConverter
ContentTypeDelegatingMessageConverter
Java Deserialization

Message Properties Converters

28
28
29
31
32
32
32
34
35
37
39
40
40
40
42
44
44
45
45
48
35
35
56
57
78
81
82
82
83
84
86
87
87
89
89
89
95
95
96
96
97

4.1.9. Modifying Messages - Compression and More 99

4.1.10. Request/Reply Messaging 100
Reply Timeout 100
RabbitMQ Direct reply-to 101
Message Correlation With A Reply Queue 101
Reply Listener Container 102
Async Rabbit Template 105
Spring Remoting with AMQP 107

4.1.11. Configuring the Broker 110
Headers Exchange 115
Builder API for Queues and Exchanges 118
Declaring Collections of Exchanges, Queues, and Bindings 119
Conditional Declaration 121
A Note On the id and name Attributes 123
AnonymousQueue 124

4.1.12. Broker Event Listener 125

4.1.13. Delayed Message Exchange 126

4.1.14. RabbitMQ REST API 127

4.1.15. Exception Handling 127

4.1.16. Transactions 129
Conditional Rollback 130
A note on Rollback of Received Messages 131
Using RabbitTransactionManager 132

4.1.17. Message Listener Container Configuration 132

4.1.18. Listener Concurrency 143
SimpleMessageListenerContainer 143
Using DirectMessageListenerContainer 143

4.1.19. Exclusive Consumer 144

4.1.20. Listener Container Queues 144

4.1.21. Resilience: Recovering from Errors and Broker Failures 144
Automatic Declaration of Exchanges, Queues, and Bindings 145
Failures in Synchronous Operations and Options for Retry 145
Retry with Batch Listeners 146
Message Listeners and the Asynchronous Case 147
Exception Classification for Spring Retry 149

4.1.22. Multiple Broker (or Cluster) Support 149

4.1.23. Debugging 153

4.2. Logging Subsystem AMQP Appenders 153

4.2.1. Common properties 153

4.2.2. Log4j 2 Appender 155

4.2.3. Logback Appender 156

4.2.4. Customizing the Messages
4.2.5. Customizing the Client Properties
Simple String Properties
Advanced Technique for Logback
4.2.6. Providing a Custom Queue Implementation
4.3. Sample Applications
4.3.1. The “Hello World” Sample
Synchronous Example
Asynchronous Example
4.3.2. Stock Trading
4.3.3. Receiving JSON from Non-Spring Applications
4.4. Testing Support
4.4.1. @SpringRabbitTest
4.4.2. Mockito Answer<?> Implementations
4.4.3. 0RabbitListenerTest and RabbitListenerTestHarness
4.4.4. Using TestRabbitTemplate
4.4.5. JUnit4 eRules
Using BrokerRunning
Using LongRunningIntegrationTest
4.4.6. JUnit5 Conditions
Using the @RabbitAvailable Annotation
Using the @LongRunning Annotation
5. Spring Integration - Reference
5.1. Spring Integration AMQP Support
5.1.1. Introduction
5.1.2. Inbound Channel Adapter
5.1.3. Outbound Channel Adapter
5.1.4. Inbound Gateway
5.1.5. Outbound Gateway
6. Other Resources
6.1. Further Reading
Appendix A: Change History
A.1. Current Release
A.2. Previous Releases
A.2.1. Changes in 2.2 Since 2.1
Package Changes
Dependency Changes
"Breaking" API Changes
ListenerContainer Changes
@RabbitListener Changes
AMQP Logging Appenders Changes

156
158
158
159
160
160
161
161
162
164
168
168
168
169
171
175
179
179
181
181
181
185
186
186
186
186
186
187
187
188
188
189
189
189
189
189
189
189
189
190
190

MessageListenerAdapter Changes
Exchange/Queue Declaration Changes
Connection Factory Changes
New MessagePostProcessor Classes
Other Changes

A.2.2. Changes in 2.1 Since 2.0
AMQP Client library
Package Changes
Publisher Confirms Changes
Listener Container Factory Improvements
Broker Event Listener
RabbitAdmin Changes
RabbitTemplate Changes
Message Conversion
Management REST API
@RabbitListener Changes
Async @RabbitListener Return
Connection Factory Bean Changes
Connection Factory Changes
Listener Container Changes
Immediate requeue

A.2.3. Changes in 2.0 Since 1.7
Using CachingConnectionFactory
AMQP Client library
General Changes
Deleted Classes
New Listener Container
Log4j Appender
RabbitTemplate Changes
Listener Adapter
Listener Container Changes
Connection Factory Changes
Retry Changes
Anonymous Queue Naming
@RabbitListener Changes
Container Conditional Rollback
Remove Jackson 1.x support
JSON Message Converter
XML Parsers
Blocked Connection

A.2.4. Changes in 1.7 Since 1.6

190
191
191
191
191
192
192
192
192
192
192
192
193
193
193
193
193
193
194
194
194
194
194
194
195
195
195
195
195
196
196
197
197
197
197
198
198
198
198
198
198

AMQP Client library 198

Log4j 2 upgrade 199
Logback Appender 199
Spring Retry Upgrade 199
FasterXML Jackson upgrade 199
JUnit @Rules 199
Container Conditional Rollback 199
Connection Naming Strategy 200
Listener Container Changes 200
A.2.5. Earlier Releases 200
A.2.6. Changes in 1.6 Since 1.5 200
Testing Support 200
Builder 200
Namespace Changes 200
Listener Container Changes 200
AutoDeclare and RabbitAdmin Instances 201
AmgpTemplate: Receive with Timeout 201
Using AsyncRabbitTemplate 201
RabbitTemplate Changes 201
Message Properties 201
RabbitAdmin Changes 202
@RabbitListener Changes 203
Delayed Message Exchange 203
Exchange Internal Flag 203
CachingConnectionFactory Changes 203
Using RabbitConnectionFactoryBean 204
Java Deserialization 204
JSON MessageConverter 204
Logging Appenders 204
A.2.7. Changes in 1.5 Since 1.4 204
spring-erlang Is No Longer Supported 204
CachingConnectionFactory Changes 204
Properties to Control Container Queue Declaration Behavior 205
Class Package Change 205
DefaultMessagePropertiesConverter Changes 205
@RabbitListener Improvements 205
Automatic Exchange, Queue, and Binding Declaration 206
RabbitTemplate Changes 206
RabbitManagementTemplate Added 206
Listener Container Bean Names (XML) 206

Class-Level @RabbitListener 207

SimpleMessagelistenerContainer: BackOff Support 207

Channel Close Logging 207
Application Events 207
Consumer Tag Configuration 207
Using MessagelistenerAdapter 207
LocalizedQueueConnectionFactory Added 208
Anonymous Queue Naming 208
A.2.8. Changes in 1.4 Since 1.3 208
@RabbitListener Annotation 208
RabbitMessagingTemplate Added 208
Listener Container missingQueuesFatal Attribute 208
RabbitTemplate ConfirmCallback Interface 208
RabbitConnectionFactoryBean Added 208
Using CachingConnectionFactory 208
Log Appender 209
Listener Queues 209
RabbitTemplate: mandatory and connectionFactorySelector Expressions 209
Listeners and the Routing Connection Factory 209
RabbitTemplate: RecoveryCallback Option 209
MessageConversionException Change 209
RabbitMQ 3.4 Compatibility 210
ContentTypeDelegatingMessageConverter Added 210
A.2.9. Changes in 1.3 Since 1.2 210
Listener Concurrency 210
Listener Queues 210
Consumer Priority 210
Exclusive Consumer 211
Rabbit Admin 211
Direct Exchange Binding 211
AmgpTemplate Changes 211
Caching Connection Factory 211
Binding Arguments 211
Routing Connection Factory 211
MessageBuilder and MessagePropertiesBuilder 211
RetryInterceptorBuilder Change 212
RepublishMessageRecoverer Added 212
Default Error Handler (Since 1.3.2) 212
Listener Container 'missingQueuesFatal® Property (Since 1.3.5) 212
A.2.10. Changes to 1.2 Since 1.1 212
RabbitMQ Version 212

Rabbit Admin 212

Rabbit Template
JSON Message Converters
Automatic Declaration of Queues and Other Items
AMQP Remoting
Requested Heart Beats
A.2.11. Changes to 1.1 Since 1.0
General
AMQP Log4j Appender

212
213
213
213
213
213
213
213

© 2010 - 2021 by VMware, Inc.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Chapter 1. Preface

The Spring AMQP project applies core Spring concepts to the development of AMQP-based
messaging solutions. We provide a “template” as a high-level abstraction for sending and receiving
messages. We also provide support for message-driven POJOs. These libraries facilitate
management of AMQP resources while promoting the use of dependency injection and declarative
configuration. In all of these cases, you can see similarities to the JMS support in the Spring
Framework. For other project-related information, visit the Spring AMQP project homepage.

https://projects.spring.io/spring-amqp/

Chapter 2. What’s New

2.1. Changes in 2.3 Since 2.2

This section describes the changes between version 2.2 and version 2.3. See Change History for
changes in previous versions.

2.1.1. Connection Factory Changes

Two additional connection factories are now provided. See Choosing a Connection Factory for more
information.

2.1.2. RabbitListener Changes

You can now specify a reply content type. See Reply ContentType for more information.

2.1.3. Message Converter Changes

The Jackson2JIMessageConverter s can now deserialize abstract classes (including interfaces) if the
ObjectMapper is configured with a custom deserializer. See Deserializing Abstract Classes for more
information.

2.1.4. Testing Changes

A new annotation @SpringRabbitTest is provided to automatically configure some infrastructure
beans for when you are not using SpringBootTest. See @SpringRabbitTest for more information.

2.1.5. RabbitTemplate Changes

The template’s ReturnCallback has been refactored as ReturnsCallback for simpler use in lambda
expressions. See Correlated Publisher Confirms and Returns for more information.

When using returns and correlated confirms, the CorrelationData now requires a unique id
property. See Correlated Publisher Confirms and Returns for more information.

2.1.6. Listener Container Changes

A new listener container property consumeDelay is now available; it is helpful when using the
RabbitMQ Sharding Plugin.

The default JavalangErrorHandler now calls System.exit(99). To revert to the previous behavior (do
nothing), add a no-op handler.

See Message Listener Container Configuration for more information.

2.1.7. MessagePostProcessor Changes

The compressing MessagePostProcessor s now use a comma to separate multiple content encodings

https://github.com/rabbitmq/rabbitmq-sharding

instead of a colon. The decompressors can handle both formats but, if you produce messages with
this version that are consumed by versions earlier than 2.2.12, you should configure the
compressor to use the old delimiter. See the IMPORTANT note in Modifying Messages - Compression
and More for more information.

2.1.8. Multiple Broker Support Improvements

See Multiple Broker (or Cluster) Support for more information.

2.1.9. RepublishMessageRecoverer Changes

A new subclass of this recoverer is not provided that supports publisher confirms. See Message
Listeners and the Asynchronous Case for more information.

Chapter 3. Introduction

This first part of the reference documentation is a high-level overview of Spring AMQP and the
underlying concepts. It includes some code snippets to get you up and running as quickly as
possible.

3.1. Quick Tour for the impatient

3.1.1. Introduction
This is the five-minute tour to get started with Spring AMQP.

Prerequisites: Install and run the RabbitMQ broker (https://www.rabbitme.com/download.html).
Then grab the spring-rabbit JAR and all its dependencies - the easiest way to do so is to declare a
dependency in your build tool. For example, for Maven, you can do something resembling the
following:

<dependency>
<groupld>org.springframework.amqp</groupId>
<artifactId>spring-rabbit</artifactId>
<version>2.3.6</version>

</dependency>

For Gradle, you can do something resembling the following:

compile 'org.springframework.amqp:spring-rabbit:2.3.6'

Compatibility

The minimum Spring Framework version dependency is 5.2.0.
The minimum amqp-client Java client library version is 5.7.0.
Very, Very Quick

This section offers the fastest introduction.

First, add the following import statements to make the examples later in this section work:

https://www.rabbitmq.com/download.html

import org.
import org.
import org.
import org.
import org.
import org.
import org.

springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.

amgp.
amgp.
amgp.
amgp.
amgp.
amgp.
amgp.

core.AmgpAdmin;

core.AmgpTemplate;

core.Queue;
rabbit.connection.CachingConnectionFactory;
rabbit.connection.ConnectionFactory;
rabbit.core.RabbitAdmin;
rabbit.core.RabbitTemplate;

The following example uses plain, imperative Java to send and receive a message:

ConnectionFactory connectionFactory = new CachingConnectionFactory();
AmgpAdmin admin = new RabbitAdmin(connectionFactory);
admin.declareQueue(new Queue("myqueue"));

AmgpTemplate template = new RabbitTemplate(connectionFactory);
template.convertAndSend("myqueue”, "foo");

= (String) template.receiveAndConvert("myqueue");

String foo

Note that there is also a ConnectionFactory in the native Java Rabbit client. We use the Spring
abstraction in the preceding code. It caches channels (and optionally connections) for reuse. We
rely on the default exchange in the broker (since none is specified in the send), and the default
binding of all queues to the default exchange by their name (thus, we can use the queue name as a

routing key in the send). Those behaviors are defined in the AMQP specification.

With XML Configuration

The following example is the same as the preceding example but externalizes the resource

configuration to XML:

ApplicationContext context =

new GenericXmlApplicationContext("classpath:/rabbit-context.xml");
AmgpTemplate template = context.getBean(AmgpTemplate.class);
template.convertAndSend("myqueue”, "foo");
String foo = (String) template.receiveAndConvert("myqueue");

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:rabbit="http://www.springframework.org/schema/rabbit"
xsi:schemalocation="http://www.springframework.org/schema/rabbit
https://www.springframework.org/schema/rabbit/spring-rabbit.xsd
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<rabbit:connection-factory id="connectionFactory"/>

<rabbit:template id="amgqpTemplate" connection-factory="connectionFactory"/>
<rabbit:admin connection-factory="connectionFactory"/>

<rabbit:queue name="myqueue"/>

</beans>

By default, the <rabbit:admin/> declaration automatically looks for beans of type Queue, Exchange,
and Binding and declares them to the broker on behalf of the user. As a result, you need not use that
bean explicitly in the simple Java driver. There are plenty of options to configure the properties of
the components in the XML schema. You can use auto-complete features of your XML editor to
explore them and look at their documentation.

With Java Configuration

The following example repeats the same example as the preceding example but with the external
configuration defined in Java:

ApplicationContext context =

new AnnotationConfigApplicationContext(RabbitConfiguration.class);
AmgpTemplate template = context.getBean(AmgpTemplate.class);
template.convertAndSend("myqueue”, "foo");
String foo = (String) template.receiveAndConvert("myqueue");

public class RabbitConfiguration {

public CachingConnectionFactory connectionFactory() {
return new CachingConnectionFactory("localhost");

}

public RabbitAdmin amgpAdmin() {
return new RabbitAdmin(connectionFactory());

}

public RabbitTemplate rabbitTemplate() {
return new RabbitTemplate(connectionFactory());

}

public Queue myQueue() {
return new Queue("myqueue");

}

With Spring Boot Auto Configuration and an Async POJO Listener

Spring Boot automatically configures the infrastructure beans, as the following example shows:

@SpringBootApplication
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

@Bean
public ApplicationRunner runner(AmgpTemplate template) {
return args -> template.convertAndSend("myqueue”, "foo");

}

@Bean
public Queue myQueue() {
return new Queue("myqueue");

}

@RabbitListener(queues = "myqueue")

public void listen(String in) {
System.out.println(in);

}

Chapter 4. Reference

This part of the reference documentation details the various components that comprise Spring
AMQP. The main chapter covers the core classes to develop an AMQP application. This part also
includes a chapter about the sample applications.

4.1. Using Spring AMQP

This chapter explores the interfaces and classes that are the essential components for developing
applications with Spring AMQP.

4.1.1. AMQP Abstractions

Spring AMQP consists of two modules (each represented by a JAR in the distribution): spring-amqp
and spring-rabbit. The 'spring-amqp' module contains the org.springframework.amgp.core package.
Within that package, you can find the classes that represent the core AMQP “model”. Our intention
is to provide generic abstractions that do not rely on any particular AMQP broker implementation
or client library. End user code can be more portable across vendor implementations as it can be
developed against the abstraction layer only. These abstractions are then implemented by broker-
specific modules, such as 'spring-rabbit’. There is currently only a RabbitMQ implementation.
However, the abstractions have been validated in .NET using Apache Qpid in addition to RabbitMQ.
Since AMQP operates at the protocol level, in principle, you can use the RabbitMQ client with any
broker that supports the same protocol version, but we do not test any other brokers at present.

This overview assumes that you are already familiar with the basics of the AMQP specification. If
not, have a look at the resources listed in Other Resources

Message

The 0-9-1 AMQP specification does not define a Message class or interface. Instead, when performing
an operation such as basicPublish(), the content is passed as a byte-array argument and additional
properties are passed in as separate arguments. Spring AMQP defines a Message class as part of a
more general AMQP domain model representation. The purpose of the Message class is to
encapsulate the body and properties within a single instance so that the API can, in turn, be
simpler. The following example shows the Message class definition:

10

public class Message {
private final MessageProperties messageProperties;
private final byte[] body;

public Message(byte[] body, MessageProperties messageProperties) {
this.body = body;
this.messageProperties = messageProperties;

}

public byte[] getBody() {
return this.body;

}

public MessageProperties getMessageProperties() {
return this.messageProperties;

}

The MessageProperties interface defines several common properties, such as 'messageld’,
'timestamp’, 'contentType', and several more. You can also extend those properties with user-
defined 'headers' by calling the setHeader (String key, Object value) method.

Starting with versions 1.5.7, 1.6.11, 1.7.4, and 2.0.0, if a message body is a
serialized Serializable java object, it is no longer deserialized (by default) when
performing toString() operations (such as in log messages). This is to prevent

o unsafe deserialization. By default, only java.util and java.lang classes are
deserialized. To revert to the previous behavior, you can add allowable
class/package patterns by invoking Message.addAllowedListPatterns(:--). A simple
wildcard is supported, for example com.something., *.MyClass. Bodies that cannot
be deserialized are represented by byte[<size>] in log messages.

Exchange

The Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to.
Each Exchange within a virtual host of a broker has a unique name as well as a few other
properties. The following example shows the Exchange interface:

11

public interface Exchange {
String getName();
String getExchangeType();
boolean isDurable();
boolean isAutoDelete();

Map<String, Object> getArguments();

As you can see, an Exchange also has a 'type' represented by constants defined in ExchangeTypes. The
basic types are: direct, topic, fanout, and headers. In the core package, you can find
implementations of the Exchange interface for each of those types. The behavior varies across these
Exchange types in terms of how they handle bindings to queues. For example, a Direct exchange lets
a queue be bound by a fixed routing key (often the queue’s name). A Topic exchange supports
bindings with routing patterns that may include the ™' and '#' wildcards for 'exactly-one' and 'zero-
or-more’, respectively. The Fanout exchange publishes to all queues that are bound to it without
taking any routing key into consideration. For much more information about these and the other
Exchange types, see Other Resources.

The AMQP specification also requires that any broker provide a “default” direct

o exchange that has no name. All queues that are declared are bound to that default
Exchange with their names as routing keys. You can learn more about the default
Exchange’s usage within Spring AMQP in AmgpTemplate.

Queue

The Queue class represents the component from which a message consumer receives messages. Like
the various Exchange classes, our implementation is intended to be an abstract representation of this
core AMQP type. The following listing shows the Queue class:

12

public class Queue {
private final String name;
private volatile boolean durable;
private volatile boolean exclusive;
private volatile boolean autoDelete;

private volatile Map<String, Object> arguments;

/**

* The queue 1is durable, non-exclusive and non auto-delete.
*

* @param name the name of the queue.

*/

public Queue(String name) {
this(name, true, false, false);

// Getters and Setters omitted for brevity

Notice that the constructor takes the queue name. Depending on the implementation, the admin
template may provide methods for generating a uniquely named queue. Such queues can be useful
as a “reply-to” address or in other temporary situations. For that reason, the 'exclusive’ and
'‘autoDelete’ properties of an auto-generated queue would both be set to 'true’.

o See the section on queues in Configuring the Broker for information about
declaring queues by using namespace support, including queue arguments.

Binding

Given that a producer sends to an exchange and a consumer receives from a queue, the bindings
that connect queues to exchanges are critical for connecting those producers and consumers via
messaging. In Spring AMQP, we define a Binding class to represent those connections. This section
reviews the basic options for binding queues to exchanges.

You can bind a queue to a DirectExchange with a fixed routing key, as the following example shows:

new Binding(someQueue, someDirectExchange, "foo.bar");

13

You can bind a queue to a TopicExchange with a routing pattern, as the following example shows:
new Binding(someQueue, someTopicExchange, "foo.*");

You can bind a queue to a FanoutExchange with no routing key, as the following example shows:
new Binding(someQueue, someFanoutExchange);

We also provide a BindingBuilder to facilitate a “fluent API” style, as the following example shows:

Binding b = BindingBuilder.bind(someQueue).to(someTopicExchange).with("foo.*");

o For clarity, the preceding example shows the BindingBuilder class, but this style
works well when using a static import for the 'bind()' method.

By itself, an instance of the Binding class only holds the data about a connection. In other words, it
is not an “active” component. However, as you will see later in Configuring the Broker, the
AmgpAdmin class can use Binding instances to actually trigger the binding actions on the broker. Also,
as you can see in that same section, you can define the Binding instances by using Spring’s @Bean
annotations within @Configuration classes. There is also a convenient base class that further
simplifies that approach for generating AMQP-related bean definitions and recognizes the queues,
exchanges, and bindings so that they are all declared on the AMQP broker upon application startup.

The AmgpTemplate is also defined within the core package. As one of the main components involved
in actual AMQP messaging, it is discussed in detail in its own section (see AmgpTemplate).

4.1.2. Connection and Resource Management

Whereas the AMQP model we described in the previous section is generic and applicable to all
implementations, when we get into the management of resources, the details are specific to the
broker implementation. Therefore, in this section, we focus on code that exists only within our
“spring-rabbit” module since, at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ broker is the ConnectionFactory
interface. The responsibility of a ConnectionFactory implementation is to provide an instance of
org.springframework.amgp.rabbit.connection.Connection, which is a wrapper for
com.rabbitmg.client.Connection.

Choosing a Connection Factory

There are three connection factories to chose from

14

* PooledChannelConnectionFactory
e ThreadChannelConnectionFactory

* CachingConnectionFactory
The first two were added in version 2.3.

For most wuse cases, the PooledChannelConnectionFactory should be used. The
ThreadChannelConnectionFactory can be used if you want to ensure strict message ordering without
the need to use Scoped Operations. The CachingConnectionFactory should be used if you want to use
correlated publisher confirmations or if you wish to open multiple connections, via its CacheMode.

Simple publisher confirmations are supported by all three factories.

When configuring a RabbitTemplate to use a separate connection, you can now, starting with version
2.3.2, configure the publishing connection factory to be a different type. By default, the publishing
factory is the same type and any properties set on the main factory are also propagated to the
publishing factory.

PooledChannelConnectionFactory

This factory manages a single connection and two pools of channels, based on the Apache Pool2.
One pool is for transactional channels, the other is for non-transactional channels. The pools are
GenericObjectPool s with default configuration; a callback is provided to configure the pools; refer
to the Apache documentation for more information.

The Apache commons-pool2 jar must be on the class path to use this factory.

PooledChannelConnectionFactory pcf() throws Exception {

ConnectionFactory rabbitConnectionFactory = new ConnectionFactory();

rabbitConnectionFactory.setHost("localhost");

PooledChannelConnectionFactory pcf = new PooledChannelConnectionFactory
(rabbitConnectionFactory);

pcf.setPoolConfigurer((pool, tx) -> {

if (tx) {
// confiqure the transactional pool

}
else {

// configure the non-transactional pool
}

)

return pcf;

ThreadChannelConnectionFactory

This factory manages a single connection and two ThreadlLocal s, one for transactional channels, the
other for non-transactional channels. This factory ensures that all operations on the same thread

15

use the same channel (as long as it remains open). This facilitates strict message ordering without
the need for Scoped Operations. To avoid memory leaks, if your application uses many short-lived
threads, you must call the factory’s closeThreadChannel() to release the channel resource.

CachingConnectionFactory

The third implementation provided is the CachingConnectionFactory, which, by default, establishes a
single connection proxy that can be shared by the application. Sharing of the connection is possible
since the “unit of work” for messaging with AMQP is actually a “channel” (in some ways, this is
similar to the relationship between a connection and a session in JMS). The connection instance
provides a createChannel method. The CachingConnectionFactory implementation supports caching
of those channels, and it maintains separate caches for channels based on whether they are
transactional. When creating an instance of CachingConnectionFactory, you can provide the
'hostname' through the constructor. You should also provide the 'username' and 'password'
properties. To configure the size of the channel cache (the default is 25), you can call the
setChannelCacheSize() method.

Starting with version 1.3, you can configure the CachingConnectionFactory to cache connections as
well as only channels. In this case, each call to createConnection() creates a new connection (or
retrieves an idle one from the cache). Closing a connection returns it to the cache (if the cache size
has not been reached). Channels created on such connections are also cached. The use of separate
connections might be useful in some environments, such as consuming from an HA cluster, in
conjunction with a load balancer, to connect to different cluster members, and others. To cache
connections, set the cacheMode to CacheMode.CONNECTION.

o This does not limit the number of connections. Rather, it specifies how many idle
open connections are allowed.

Starting with version 1.5.5, a new property called connectionLimit is provided. When this property
is set, it limits the total number of connections allowed. When set, if the limit is reached, the
channelCheckoutTimelLimit is used to wait for a connection to become idle. If the time is exceeded, an
AmgpTimeoutException is thrown.

When the cache mode is CONNECTION, automatic declaration of queues and others
(See Automatic Declaration of Exchanges, Queues, and Bindings) is NOT supported.

Also, at the time of this writing, the amgp-client library by default creates a fixed
thread pool for each connection (default size:
Runtime.getRuntime().availableProcessors() * 2 threads). When using a large

o number of connections, you should consider setting a custom executor on the
CachingConnectionFactory. Then, the same executor can be used by all connections
and its threads can be shared. The executor’s thread pool should be unbounded or
set appropriately for the expected use (usually, at least one thread per connection).
If multiple channels are created on each connection, the pool size affects the
concurrency, so a variable (or simple cached) thread pool executor would be most
suitable.

It is important to understand that the cache size is (by default) not a limit but is merely the number
of channels that can be cached. With a cache size of, say, 10, any number of channels can actually

16

be in use. If more than 10 channels are being used and they are all returned to the cache, 10 go in
the cache. The remainder are physically closed.

Starting with version 1.6, the default channel cache size has been increased from 1 to 25. In high
volume, multi-threaded environments, a small cache means that channels are created and closed at
a high rate. Increasing the default cache size can avoid this overhead. You should monitor the
channels in use through the RabbitMQ Admin UI and consider increasing the cache size further if
you see many channels being created and closed. The cache grows only on-demand (to suit the
concurrency requirements of the application), so this change does not impact existing low-volume
applications.

Starting with version 1.4.2, the CachingConnectionFactory has a property called
channelCheckoutTimeout. When this property is greater than zero, the channelCacheSize becomes a
limit on the number of channels that can be created on a connection. If the limit is reached, calling
threads block until a channel is available or this timeout is reached, in which case a
AmgpTimeoutException is thrown.

Channels used within the framework (for example, RabbitTemplate) are reliably
returned to the cache. If you create channels outside of the framework, (for

A example, by accessing the connections directly and invoking createChannel()), you
must return them (by closing) reliably, perhaps in a finally block, to avoid
running out of channels.

The following example shows how to create a new connection:

CachingConnectionFactory connectionFactory = new CachingConnectionFactory(
"somehost");

connectionFactory.setUsername("quest");
connectionFactory.setPassword("quest");

Connection connection = connectionFactory.createConnection();

When using XML, the configuration might look like the following example:

<bean id="connectionFactory"
class="org.springframework.amgp.rabbit.connection.CachingConnectionFactory">
<constructor-arg value="somehost"/>
<property name="username" value="guest"/>
<property name="password" value="guest"/>
</bean>

17

There is also a SingleConnectionFactory implementation that is available only in
the unit test code of the framework. It is simpler than CachingConnectionFactory,
o since it does not cache channels, but it is not intended for practical usage outside
of simple tests due to its lack of performance and resilience. If you need to
implement your own ConnectionFactory for some reason, the
AbstractConnectionFactory base class may provide a nice starting point.

A ConnectionFactory can be created quickly and conveniently by using the rabbit namespace, as
follows:

<rabbit:connection-factory id="connectionFactory"/>

In most cases, this approach is preferable, since the framework can choose the best defaults for
you. The created instance is a CachingConnectionFactory. Keep in mind that the default cache size for
channels is 25. If you want more channels to be cachedm, set a larger value by setting the
'‘channelCacheSize' property. In XML it would look like as follows:

<bean id="connectionFactory"
class="org.springframework.amgp.rabbit.connection.CachingConnectionFactory">
<constructor-arg value="somehost"/>
<property name="username" value="guest"/>
<property name="password" value="quest"/>
<property name="channelCacheSize" value="50"/>
</bean>

Also, with the namespace, you can add the 'channel-cache-size' attribute, as follows:

<rabbit:connection-factory
id="connectionFactory" channel-cache-size="50"/>

The default cache mode is CHANNEL, but you can configure it to cache connections instead. In the
following example, we use connection-cache-size:

<rabbit:connection-factory
id="connectionFactory" cache-mode="CONNECTION" connection-cache-size="25"/>

You can provide host and port attributes by using the namespace, as follows:

18

<rabbit:connection-factory
id="connectionFactory" host="somehost" port="5672"/>

Alternatively, if running in a clustered environment, you can use the addresses attribute, as
follows:

<rabbit:connection-factory
id="connectionFactory" addresses="host1:5672,host2:5672" address-shuffle-mode
="RANDOM" />

See Connecting to a Cluster for information about address-shuffle-mode.

The following example with a custom thread factory that prefixes thread names with rabbitmg-:

<rabbit:connection-factory id="multiHost" virtual-host="/bar" addresses=
"host1:1234,host2,host3:4567"

thread-factory="tf"

channel-cache-size="10" username="user" password="password" />

<bean id="tf" class=

"org.springframework.scheduling.concurrent.CustomizableThreadFactory">
<constructor-arg value="rabbitmq-" />

</bean>

AddressResolver

Starting with version 2.1.15, you can now use an AddressResover to resolve the connection
address(es). This will override any settings of the addresses and host/port properties.

Naming Connections

Starting with version 1.7, a ConnectionNameStrategy is provided for the injection into the
AbstractionConnectionFactory. The generated name is used for the application-specific identification
of the target RabbitMQ connection. The connection name is displayed in the management UI if the
RabbitMQ server supports it. This value does not have to be unique and cannot be used as a
connection identifier — for example, in HTTP API requests. This value is supposed to be human-
readable and is a part of ClientProperties under the connection_name key. You can use a simple
Lambda, as follows:

19

connectionFactory.setConnectionNameStrategy(connectionFactory -> "MY_CONNECTION");

The ConnectionFactory argument can be used to distinguish target connection names by some logic.
By default, the beanName of the AbstractConnectionFactory, a hex string representing the object, and
an internal counter are used to generate the connection_name. The <rabbit:connection-factory>
namespace component is also supplied with the connection-name-strategy attribute.

An implementation of SimplePropertyValueConnectionNameStrategy sets the connection name to an
application property. You can declare it as a @Bean and inject it into the connection factory, as the
following example shows:

public SimplePropertyValueConnectionNameStrategy cns() {

return new SimplePropertyValueConnectionNameStrategy("spring.application.name
")i
}

public ConnectionFactory rabbitConnectionFactory(ConnectionNameStrategy cns) {
CachingConnectionFactory connectionFactory = new CachingConnectionFactory();

connectionFactory.setConnectionNameStrategy(cns);
return connectionFactory;

The property must exist in the application context’s Environment.

When using Spring Boot and its autoconfigured connection factory, you need only
o declare the ConnectionNameStrategy @Bean. Boot auto-detects the bean and wires it
into the factory.

Blocked Connections and Resource Constraints

The connection might be blocked for interaction from the broker that corresponds to the Memory
Alarm. Starting with version 2.0, the org.springframework.amgp.rabbit.connection.Connection can be
supplied with com.rabbitmqg.client.BlockedListener instances to be notified for connection blocked
and unblocked events. In addition, the AbstractConnectionFactory emits a ConnectionBlockedEvent
and ConnectionUnblockedEvent, respectively, through its internal BlockedlListener implementation.
These let you provide application logic to react appropriately to problems on the broker and (for
example) take some corrective actions.

20

https://www.rabbitmq.com/memory.html
https://www.rabbitmq.com/memory.html

When the application is configured with a single CachingConnectionFactory, as it is
by default with Spring Boot auto-configuration, the application stops working
when the connection is blocked by the Broker. And when it is blocked by the
Broker, any of its clients stop to work. If we have producers and consumers in the
same application, we may end up with a deadlock when producers are blocking

o the connection (because there are no resources on the Broker any more) and
consumers cannot free them (because the connection is blocked). To mitigate the
problem, we suggest having one more separate CachingConnectionFactory instance
with the same options—one for producers and one for consumers. A separate
CachingConnectionFactory is not possible for transactional producers that execute
on a consumer thread, since they should reuse the Channel associated with the
consumer transactions.

Starting with version 2.0.2, the RabbitTemplate has a configuration option to automatically use a
second connection factory, unless transactions are being used. See Using a Separate Connection for
more information. The ConnectionNameStrategy for the publisher connection is the same as the
primary strategy with .publisher appended to the result of calling the method.

Starting with version 1.7.7, an AmqpResourceNotAvailableException is provided, which is thrown
when SimpleConnection.createChannel() cannot create a Channel (for example, because the
channelMax limit is reached and there are no available channels in the cache). You can use this
exception in the RetryPolicy to recover the operation after some back-off.

Configuring the Underlying Client Connection Factory

The CachingConnectionFactory uses an instance of the Rabbit client ConnectionFactory. A number of
configuration properties are passed through (host, port, userName, password, requestedHeartBeat,
and connectionTimeout for example) when setting the equivalent property on the
CachingConnectionFactory. To set other properties (clientProperties, for example), you can define an
instance of the Rabbit factory and provide a reference to it by using the appropriate constructor of
the CachingConnectionFactory. When using the namespace (as described earlier), you need to
provide a reference to the configured factory in the connection-factory attribute. For convenience,
a factory bean is provided to assist in configuring the connection factory in a Spring application
context, as discussed in the next section.

<rabbit:connection-factory
id="connectionFactory" connection-factory="rabbitConnectionFactory"/>

21

The 4.0.x client enables automatic recovery by default. While compatible with this
feature, Spring AMQP has its own recovery mechanisms and the client recovery
feature generally is not needed. We recommend disabling amqp-client automatic
recovery, to avoid getting AutoRecoverConnectionNotCurrentlyOpenException
instances when the broker is available but the connection has not yet recovered.
You may notice this exception, for example, when a RetryTemplate is configured in
a RabbitTemplate, even when failing over to another broker in a cluster. Since the
auto-recovering connection recovers on a timer, the connection may be recovered
more quickly by using Spring AMQP’s recovery mechanisms. Starting with version
1.7.1, Spring AMQP disables amgp-client automatic recovery unless you explicitly
create your own RabbitMQ connection factory and provide it to the
CachingConnectionFactory. RabbitMQ ConnectionFactory instances created by the
RabbitConnectionFactoryBean also have the option disabled by default.

RabbitConnectionFactoryBean and Configuring SSL

Starting with version 1.4, a convenient RabbitConnectionFactoryBean is provided to enable

convenient configuration of SSL properties on the underlying client connection factory by using

dependency injection. Other setters delegate to the underlying factory. Previously, you had to

configure the SSL options programmatically. The following example shows how to configure a

RabbitConnectionFactoryBean:

See the RabbitMQ Documentation for information about configuring SSL. Omit the keyStore and

<rabbit:

connection-factory id="rabbitConnectionFactory"

connection-factory="clientConnectionFactory"
host="${host}"

port="${port}"

virtual-host="${vhost}"

username="${username}" password="${password}" />

<bean id="clientConnectionFactory"

class=

"org.springframework.amgp.rabbit.connection.RabbitConnectionFactoryBean">
<property name="useSSL" value="true" />
<property name="ss1PropertiesLocation" value=
"file:/secrets/rabbitSSL.properties"/>

</bean>

trustStore configuration to connect over SSL without certificate validation. The next example
shows how you can provide key and trust store configuration.

The ss1PropertiesLocation property is a Spring Resource pointing to a properties file containing the
following keys:

22

https://www.rabbitmq.com/ssl.html

keyStore=file:/secret/keycert.p12
trustStore=file:/secret/trustStore
keyStore.passPhrase=secret
trustStore.passPhrase=secret

The keyStore and truststore are Spring Resources pointing to the stores. Typically this properties
file is secured by the operating system with the application having read access.

Starting with Spring AMQP version 1.5,you can set these properties directly on the factory bean. If
both discrete properties and ss1PropertiesLocation is provided, properties in the latter override the
discrete values.

Starting with version 2.0, the server certificate is validated by default because it is
more secure. If you wish to skip this validation for some reason, set the factory

o bean’s skipServerCertificateValidation property to true. Starting with version 2.1,
the RabbitConnectionFactoryBean now calls enableHostnameVerification() by
default. To revert to the previous behavior, set the enableHostnameVerification
property to false.

Starting with version 2.2.5, the factory bean will always use TLS v1.2 by default;

o previously, it used v1.1 in some cases and v1.2 in others (depending on other
properties). If you need to use v1.1 for some reason, set the ss1Algorithm property:
setSs1Algorithm("TLSv1.1").

Connecting to a Cluster

To connect to a cluster, configure the addresses property on the CachingConnectionFactory:

public CachingConnectionFactory ccf() {
CachingConnectionFactory ccf = new CachingConnectionFactory();
ccef.setAddresses("host1:5672,host2:5672,host3:5672");
return ccf;

The underlying connection factory will attempt to connect to each host, in order, whenever a new
connection is established. Starting with version 2.1.8, the connection order can be made random by
setting the addressShuffleMode property to RANDOM; the shuffle will be applied before creating any
new connection. Starting with version 2.6, the INORDER shuffle mode was added, which means the
first address is moved to the end after a connection is created. You may wish to use this mode with
the RabbitMQ Sharding Plugin with CacheMode.CONNECTION and suitable concurrency if you wish to
consume from all shards on all nodes.

23

https://github.com/rabbitmq/rabbitmq-sharding

public CachingConnectionFactory ccf() {
CachingConnectionFactory ccf = new CachingConnectionFactory();
ccf.setAddresses("host1:5672,host2:5672,host3:5672");
cef.setAddressShuffleMode (AddressShuffleMode.RANDOM);
return ccf;

Routing Connection Factory

Starting with version 1.3, the AbstractRoutingConnectionFactory has been introduced. This factory
provides a mechanism to configure mappings for several ConnectionFactories and determine a
target ConnectionFactory by some lookupKey at runtime. Typically, the implementation checks a
thread-bound context. For convenience, Spring AMQP provides the SimpleRoutingConnectionFactory,
which gets the current thread-bound lookupKey from the SimpleResourceHolder. The following
examples shows how to configure a SimpleRoutingConnectionFactory in both XML and Java:

24

<bean id="connectionFactory"
class=
"org.springframework.amqgp.rabbit.connection.SimpleRoutingConnectionFactory">
<property name="targetConnectionFactories">
<map>
<entry key="#{connectionFactoryl.virtualHost}" ref="
connectionFactory1"/>
<entry key="#{connectionFactory2.virtualHost}" ref="
connectionFactory2"/>
</map>
</property>
</bean>

<rabbit:template id="template" connection-factory="connectionFactory" />

public class MyService {

@Autowired
private RabbitTemplate rabbitTemplate;

public void service(String vHost, String payload) {
SimpleResourceHolder.bind(rabbitTemplate.getConnectionFactory(), vHost);
rabbitTemplate.convertAndSend(payload);
SimpleResourceHolder.unbind(rabbitTemplate.getConnectionFactory());

It is important to unbind the resource after use. For more information, see the JavaDoc for
AbstractRoutingConnectionFactory.

Starting with version 1.4, RabbitTemplate supports the SpEL
sendConnectionFactorySelectorExpression and receiveConnectionFactorySelectorExpression
properties, which are evaluated on each AMQP protocol interaction operation (send, sendAndReceive,
receive, or receiveAndReply), resolving to a lookupKey value for the provided
AbstractRoutingConnectionFactory. You can use bean references, such as
@vHostResolver.getVHost(#root) in the expression. For send operations, the message to be sent is the
root evaluation object. For receive operations, the queueName is the root evaluation object.

The routing algorithm is as follows: If the selector expression is null or is evaluated to null or the
provided ConnectionFactory is not an instance of AbstractRoutingConnectionFactory, everything
works as before, relying on the provided ConnectionFactory implementation. The same occurs if the
evaluation result is not null, but there is no target ConnectionFactory for that lookupKey and the
AbstractRoutingConnectionFactory is configured with lenientFallback = true. In the case of an
AbstractRoutingConnectionFactory, it does fallback to its routing implementation based on
determineCurrentLookupKey(). However, if lenientFallback = false, an IllegalStateException is

25

https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/rabbit/connection/AbstractRoutingConnectionFactory.html

thrown.

The namespace support also provides the send-connection-factory-selector-expression and
receive-connection-factory-selector-expression attributes on the <rabbit:template> component.

Also, starting with version 1.4, you can configure a routing connection factory in a listener
container. In that case, the list of queue names is used as the lookup key. For example, if you
configure the container with setQueueNames("thing1", "thing2"), the lookup key is [thing1,thing]"
(note that there is no space in the key).

Starting with version 1.6.9, you can add a qualifier to the lookup key by using setLookupKeyQualifier
on the listener container. Doing so enables, for example, listening to queues with the same name
but in a different virtual host (where you would have a connection factory for each).

For example, with lookup key qualifier thing1 and a container listening to queue thing2, the lookup
key you could register the target connection factory with could be thing1[thing2].

o The target (and default, if provided) connection factories must have the same
settings for publisher confirms and returns. See Publisher Confirms and Returns.

Queue Affinity and the LocalizedQueueConnectionFactory

When using HA queues in a cluster, for the best performance, you may want to connect to the
physical broker where the master queue resides. The CachingConnectionFactory can be configured
with multiple broker addresses. This is to fail over and the client attempts to connect in order. The
LocalizedQueueConnectionFactory uses the REST API provided by the admin plugin to determine on
which node the queue is mastered. It then creates (or retrieves from a cache) a
CachingConnectionFactory that connects to just that node. If the connection fails, the new master
node is determined and the consumer connects to it. The LocalizedQueueConnectionFactory is
configured with a default connection factory, in case the physical location of the queue cannot be
determined, in which case it connects as normal to the cluster.

The LocalizedQueueConnectionFactory is a RoutingConnectionFactory and the
SimpleMessagelListenerContainer uses the queue names as the lookup key as discussed in Routing
Connection Factory above.

For this reason (the use of the queue name for the lookup), the
o LocalizedQueueConnectionFactory can only be used if the container is configured to
listen to a single queue.

e The RabbitMQ management plugin must be enabled on each node.

This connection factory is intended for long-lived connections, such as those used
by the SimpleMessagelListenerContainer. It is not intended for short connection use,

o such as with a RabbitTemplate because of the overhead of invoking the REST API
before making the connection. Also, for publish operations, the queue is unknown,
and the message is published to all cluster members anyway, so the logic of looking
up the node has little value.

26

The following example configuration shows how to configure the factories:

private ConfigurationProperties props;

public CachingConnectionFactory defaultConnectionFactory() {
CachingConnectionFactory cf = new CachingConnectionFactory();
cf.setAddresses(this.props.getAddresses());
cf.setUsername(this.props.getUsername());
cf.setPassword(this.props.getPassword());
cf.setVirtualHost(this.props.getVirtualHost());
return cf;

public LocalizedQueueConnectionFactory queueAffinityCF(
("defaultConnectionFactory") ConnectionFactory defaultCF) {
return new LocalizedQueueConnectionFactory(defaultCF,
StringUtils.commaDelimitedListToStringArray(this.props.getAddresses()

StringUtils.commaDelimitedListToStringArray(this.props.getAdminUris()

StringUtils.commaDelimitedListToStringArray(this.props.getNodes()),

this.props.getVirtualHost(), this.props.getUsername(), this.props
.getPassword(),

false, null);

}

Notice that the first three parameters are arrays of addresses, adminUris, and nodes. These are
positional in that, when a container attempts to connect to a queue, it uses the admin API to
determine on which node the queue is mastered and connects to the address in the same array
position as that node.

Publisher Confirms and Returns

Confirmed (with correlation) and returned messages are supported by setting the
CachingConnectionFactory property publisherConfirmType to ConfirmType.CORRELATED and the
publisherReturns property to 'true’.

When these options are set, Channel instances created by the factory are wrapped in an
PublisherCallbackChannel, which is used to facilitate the callbacks. When such a channel is obtained,
the client can register a PublisherCallbackChannel.Listener with the Channel. The
PublisherCallbackChannel implementation contains logic to route a confirm or return to the
appropriate listener. These features are explained further in the following sections.

See also simplePublisherConfirms in Scoped Operations.

27

(r) For some more background information, see the blog post by the RabbitMQ team
- titled Introducing Publisher Confirms.
Connection and Channel Listeners

The connection factory supports registering ConnectionlListener and Channellistener
implementations. This allows you to receive notifications for connection and channel related
events. (A ConnectionListener is used by the RabbitAdmin to perform declarations when the
connection is established - see Automatic Declaration of Exchanges, Queues, and Bindings for more
information). The following listing shows the ConnectionListener interface definition:

@FunctionalIlnterface
public interface ConnectionlListener {

void onCreate(Connection connection);

default void onClose(Connection connection) {

}

default void onShutDown(ShutdownSignalException signal) {
}

Starting with version 2.0, the org.springframework.amqgp.rabbit.connection.Connection object can be
supplied with com.rabbitmq.client.BlockedListener instances to be notified for connection blocked
and unblocked events. The following example shows the ChannelListener interface definition:

@Functionallnterface
public interface Channellistener {

void onCreate(Channel channel, boolean transactional);

default void onShutDown(ShutdownSignalException signal) {
}

See Publishing is Asynchronous — How to Detect Successes and Failures for one scenario where you
might want to register a ChannellListener.

Logging Channel Close Events

Version 1.5 introduced a mechanism to enable users to control logging levels.

28

https://www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms/

The CachingConnectionFactory uses a default strategy to log channel closures as follows:

* Normal channel closes (200 OK) are not logged.
 If a channel is closed due to a failed passive queue declaration, it is logged at debug level.

o If a channel is closed because the basic.consume is refused due to an exclusive consumer
condition, it is logged at INFO level.

» All others are logged at ERROR level.

To modify this behavior, you can inject a custom ConditionalExceptionlLogger into the
CachingConnectionFactory in its closeExceptionLogger property.

See also Consumer Events.

Runtime Cache Properties

Staring with version 1.6, the CachingConnectionFactory now provides cache statistics through the
getCacheProperties() method. These statistics can be used to tune the cache to optimize it in
production. For example, the high water marks can be used to determine whether the cache size
should be increased. If it equals the cache size, you might want to consider increasing further. The
following table describes the CacheMode.CHANNEL properties:

Table 1. Cache properties for CacheMode.CHANNEL
Property Meaning

connectionName The name of the connection generated by the
ConnectionNameStrategy.

channelCacheSize The currently configured maximum channels that are allowed to
be idle.

localPort The local port for the connection (if available). This can be used
to correlate with connections and channels on the RabbitMQ
Admin UL

idleChannelsTx The number of transactional channels that are currently idle
(cached).

idleChannelsNotTx The number of non-transactional channels that are currently idle
(cached).

idleChannelsTxHighWater The maximum number of transactional channels that have been

concurrently idle (cached).

idleChannelsNotTxHighWater The maximum number of non-transactional channels have been
concurrently idle (cached).

The following table describes the CacheMode.CONNECTION properties:

Table 2. Cache properties for CacheMode. CONNECTION

29

Property

connectionName:<localPort>

openConnections

channelCacheSize

connectionCacheSize

idleConnections

idleConnectionsHighWater

idleChannelsTx:<localPort>

idleChannelsNotTx:<localPort>

idleChannelsTxHighWater:<loca
1Port>

idleChannelsNotTxHighWater:<1
ocalPort>

Meaning

The name of the connection generated by the
ConnectionNameStrategy.

The number of connection objects representing connections to
brokers.

The currently configured maximum channels that are allowed to
be idle.

The currently configured maximum connections that are allowed
to be idle.

The number of connections that are currently idle.

The maximum number of connections that have been
concurrently idle.

The number of transactional channels that are currently idle
(cached) for this connection. You can use the localPort part of the
property name to correlate with connections and channels on the
RabbitMQ Admin UL

The number of non-transactional channels that are currently idle
(cached) for this connection. The localPort part of the property
name can be used to correlate with connections and channels on
the RabbitMQ Admin UL

The maximum number of transactional channels that have been
concurrently idle (cached). The localPort part of the property
name can be used to correlate with connections and channels on
the RabbitMQ Admin UL

The maximum number of non-transactional channels have been
concurrently idle (cached). You can use the localPort part of the
property name to correlate with connections and channels on the
RabbitMQ Admin UL

The cacheMode property (CHANNEL or CONNECTION) is also included.

30

i Operation return value

cacheMode=CONNECTION

‘e idleConnections=2
connectionCacheSize=5
channelCacheSize=1@
idleChannelsTxHighWater:53823=2
idleChannelsTxHighWater:53822=0
connectionName:53823=myApp.myServer#l
connectionMame:53822=myApp.myServer#d
idleChannelsNotTx:53823=1
idleChannelsTx:53823=2
openConnections=2
idleChannelsNotTxHighWater:53823=1
idleChannelsNotTx:53822=2
idleChannelsTx:53822=0
idleChannelsNotTxHighWater:53822=2

idleConnectionsHighWater=2

Figure 1. JVisualVM Example

RabbitMQ Automatic Connection/Topology recovery

Since the first version of Spring AMQP, the framework has provided its own connection and
channel recovery in the event of a broker failure. Also, as discussed in Configuring the Broker, the
RabbitAdmin re-declares any infrastructure beans (queues and others) when the connection is re-
established. It therefore does not rely on the auto-recovery that is now provided by the amgp-client
library. Spring AMQP now uses the 4.0.x version of amgp-client, which has auto recovery enabled
by default. Spring AMQP can still use its own recovery mechanisms if you wish, disabling it in the
client, (by setting the automaticRecoveryEnabled property on the wunderlying RabbitMQ
connectionFactory to false). However, the framework is completely compatible with auto-recovery
being enabled. This means any consumers you create within your code (perhaps via
RabbitTemplate.execute()) can be recovered automatically.

31

https://www.rabbitmq.com/api-guide.html#recovery

Only elements (queues, exchanges, bindings) that are defined as beans will be re-
declared after a connection failure. Elements declared by invoking

o RabbitAdmin.declare*() methods directly from user code are unknown to the
framework and therefore cannot be recovered. If you have a need for a variable
number of declarations, consider defining a bean, or beans, of type Declarables, as
discussed in Declaring Collections of Exchanges, Queues, and Bindings.

4.1.3. Adding Custom Client Connection Properties

The CachingConnectionFactory now lets you access the underlying connection factory to allow, for
example, setting custom client properties. The following example shows how to do so:

connectionFactory.getRabbitConnectionFactory().getClientProperties().put("thing1",
"thing2");

These properties appear in the RabbitMQ Admin UI when viewing the connection.

4.1.4. AmgpTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects,
Spring AMQP provides a “template” that plays a central role. The interface that defines the main
operations is called AmgpTemplate. Those operations cover the general behavior for sending and
receiving messages. In other words, they are not unique to any implementation —hence the
“AMQP” in the name. On the other hand, there are implementations of that interface that are tied to
implementations of the AMQP protocol. Unlike JMS, which is an interface-level API itself, AMQP is a
wire-level protocol. The implementations of that protocol provide their own client libraries, so each
implementation of the template interface depends on a particular client library. Currently, there is
only a single implementation: RabbitTemplate. In the examples that follow, we often use an
AmgpTemplate. However, when you look at the configuration examples or any code excerpts where
the template is instantiated or setters are invoked, you can see the implementation type (for
example, RabbitTemplate).

As mentioned earlier, the AmgpTemplate interface defines all of the basic operations for sending and
receiving messages. We will explore message sending and reception, respectively, in Sending
Messages and Receiving Messages.

See also Async Rabbit Template.

Adding Retry Capabilities

Starting with version 1.3, you can now configure the RabbitTemplate to use a RetryTemplate to help
with handling problems with broker connectivity. See the spring-retry project for complete
information. The following is only one example that uses an exponential back off policy and the
default SimpleRetryPolicy, which makes three tries before throwing the exception to the caller.

The following example uses the XML namespace:

32

https://github.com/spring-projects/spring-retry

<rabbit:template id="template" connection-factory="connectionFactory" retry-
template="retryTemplate"/>

<bean id="retryTemplate" class="org.springframework.retry.support.RetryTemplate">
<property name="backOffPolicy">
<bean class="org.springframework.retry.backoff.ExponentialBackOffPolicy">
<property name="initialInterval" value="500" />
<property name="multiplier" value="10.0" />
<property name="maxInterval" value="10000" />
</bean>
</property>
</bean>

The following example uses the @Configuration annotation in Java:

@Bean

public RabbitTemplate rabbitTemplate() {
RabbitTemplate template = new RabbitTemplate(connectionFactory());
RetryTemplate retryTemplate = new RetryTemplate();
ExponentialBackOffPolicy backOffPolicy = new ExponentialBackOffPolicy();
backOffPolicy.setInitialInterval(500);
backOffPolicy.setMultiplier(10.0);
backOffPolicy.setMaxInterval(10000);
retryTemplate.setBackOffPolicy(backOffPolicy);
template.setRetryTemplate(retryTemplate);
return template;

Starting with version 1.4, in addition to the retryTemplate property, the recoveryCallback option is
supported on the RabbitTemplate. It is wused as a second argument for the
RetryTemplate.execute(RetryCallback<T, E> retryCallback, RecoveryCallback<T> recoveryCallback).

The RecoveryCallback is somewhat limited, in that the retry context contains only
the lastThrowable field. For more sophisticated use cases, you should use an

o external RetryTemplate so that you can convey additional information to the
RecoveryCallback through the context’s attributes. The following example shows
how to do so:

33

retryTemplate.execute(
new RetryCallback<Object, Exception>() {

public Object doWithRetry(RetryContext context) throws Exception {
context.setAttribute("message"”, message);
return rabbitTemplate.convertAndSend(exchange, routingKey, message);

}, new RecoveryCallback<Object>() {

public Object recover(RetryContext context) throws Exception {
Object message = context.getAttribute("message");
Throwable t = context.getlastThrowable();
// Do something with message
return null;

1

In this case, you would not inject a RetryTemplate into the RabbitTemplate.

Publishing is Asynchronous — How to Detect Successes and Failures

Publishing messages is an asynchronous mechanism and, by default, messages that cannot be
routed are dropped by RabbitMQ. For successful publishing, you can receive an asynchronous
confirm, as described in Correlated Publisher Confirms and Returns. Consider two failure
scenarios:

* Publish to an exchange but there is no matching destination queue.
* Publish to a non-existent exchange.

The first case is covered by publisher returns, as described in Correlated Publisher Confirms and
Returns.

For the second case, the message is dropped and no return is generated. The underlying channel is
closed with an exception. By default, this exception is logged, but you can register a ChannellListener
with the CachingConnectionFactory to obtain notifications of such events. The following example
shows how to add a ConnectionlListener:

34

this.connectionFactory.addConnectionListener(new ConnectionlListener() {

public void onCreate(Connection connection) {

}

public void onShutDown(ShutdownSignalException signal) {
}
};

You can examine the signal’s reason property to determine the problem that occurred.

To detect the exception on the sending thread, you can setChannelTransacted(true) on the
RabbitTemplate and the exception is detected on the txCommit(). However, transactions
significantly impede performance, so consider this carefully before enabling transactions for just
this one use case.

Correlated Publisher Confirms and Returns

The RabbitTemplate implementation of AmgpTemplate supports publisher confirms and returns.

For returned messages, the template’s mandatory property must be set to true or the mandatory-
expression must evaluate to true for a particular message. This feature requires a
CachingConnectionFactory that has its publisherReturns property set to true (see Publisher Confirms
and Returns). Returns are sent to the client by it registering a RabbitTemplate.ReturnsCallback by
calling setReturnsCallback(ReturnsCallback callback). The callback must implement the following
method:

void returnedMessage(ReturnedMessage returned);

The ReturnedMessage has the following properties:

* message - the returned message itself

* replyCode - a code indicating the reason for the return

* replyText - a textual reason for the return - e.g. NO_ROUTE
* exchange - the exchange to which the message was sent

* routingKey - the routing key that was used

Only one ReturnsCallback is supported by each RabbitTemplate. See also Reply Timeout.

35

For publisher confirms (also known as publisher acknowledgements), the template requires a
CachingConnectionFactory that has its publisherConfirm property set to ConfirmType.CORRELATED.
Confirms are sent to the client by it registering a RabbitTemplate.ConfirmCallback by calling
setConfirmCallback(ConfirmCallback callback). The callback must implement this method:

void confirm(CorrelationData correlationData, boolean ack, String cause);

The CorrelationData is an object supplied by the client when sending the original message. The ack
is true for an ack and false for a nack. For nack instances, the cause may contain a reason for the
nack, if it is available when the nack is generated. An example is when sending a message to a non-
existent exchange. In that case, the broker closes the channel. The reason for the closure is included
in the cause. The cause was added in version 1.4.

Only one ConfirmCallback is supported by a RabbitTemplate.

When a rabbit template send operation completes, the channel is closed. This
precludes the reception of confirms or returns when the connection factory cache
is full (when there is space in the cache, the channel is not physically closed and
the returns and confirms proceed normally). When the cache is full, the
framework defers the close for up to five seconds, in order to allow time for the
confirms and returns to be received. When using confirms, the channel is closed

o when the last confirm is received. When using only returns, the channel remains
open for the full five seconds. We generally recommend setting the connection
factory’s channelCacheSize to a large enough value so that the channel on which a
message is published is returned to the cache instead of being closed. You can
monitor channel usage by using the RabbitMQ management plugin. If you see
channels being opened and closed rapidly, you should consider increasing the
cache size to reduce overhead on the server.

Before version 2.1, channels enabled for publisher confirms were returned to the
cache before the confirms were received. Some other process could check out the
channel and perform some operation that causes the channel to close —such as

o publishing a message to a non-existent exchange. This could cause the confirm to
be lost. Version 2.1 and later no longer return the channel to the cache while
confirms are outstanding. The RabbitTemplate performs a logical close() on the
channel after each operation. In general, this means that only one confirm is
outstanding on a channel at a time.

36

Starting with version 2.2, the callbacks are invoked on one of the connection
factory’s executor threads. This is to avoid a potential deadlock if you perform
Rabbit operations from within the callback. With previous versions, the callbacks
were invoked directly on the amgp-client connection I/O thread; this would

o deadlock if you perform some RPC operation (such as opening a new channel)
since the I/O thread blocks waiting for the result, but the result needs to be
processed by the I/O thread itself. With those versions, it was necessary to hand off
work (such as sending a messasge) to another thread within the callback. This is
no longer necessary since the framework now hands off the callback invocation to
the executor.

The guarantee of receiving a returned message before the ack is still maintained as

o long as the return callback executes in 60 seconds or less. The confirm is scheduled
to be delivered after the return callback exits or after 60 seconds, whichever
comes first.

Starting with version 2.1, the CorrelationData object has a ListenableFuture that you can use to get
the result, instead of using a ConfirmCallback on the template. The following example shows how to
configure a CorrelationData instance:

CorrelationData cd1 = new CorrelationData();
this.templateWithConfirmsEnabled.convertAndSend("exchange”, queue.getName(), "foo
Y, cdl);

assertTrue(cd1.getFuture().get(10, TimeUnit.SECONDS).isAck());

Since it is a ListenableFuture<Confirm>, you can either get() the result when ready or add listeners
for an asynchronous callback. The Confirm object is a simple bean with 2 properties: ack and reason
(for nack instances). The reason is not populated for broker-generated nack instances. It is populated
for nack instances generated by the framework (for example, closing the connection while ack
instances are outstanding).

In addition, when both confirms and returns are enabled, the CorrelationData is populated with the
returned message, as long as the CorrelationData has a unique id; this is always the case, by default,
starting with version 2.3. It is guaranteed that the returned message is set before the future is set
with the ack.

See also Scoped Operations for a simpler mechanism for waiting for publisher confirms.

Scoped Operations

Normally, when using the template, a Channel is checked out of the cache (or created), used for the
operation, and returned to the cache for reuse. In a multi-threaded environment, there is no
guarantee that the next operation uses the same channel. There may be times, however, where you
want to have more control over the use of a channel and ensure that a number of operations are all
performed on the same channel.

37

Starting with version 2.0, a new method called invoke is provided, with an OperationsCallback. Any
operations performed within the scope of the callback and on the provided RabbitOperations
argument use the same dedicated Channel, which will be closed at the end (not returned to a cache).
If the channel is a PublisherCallbackChannel, it is returned to the cache after all confirms have been
received (see Correlated Publisher Confirms and Returns).

public interface OperationsCallback<T> {

T doInRabbit(RabbitOperations operations);

One example of why you might need this is if you wish to use the waitForConfirms() method on the
underlying Channel. This method was not previously exposed by the Spring API because the channel
is, generally, cached and shared, as discussed earlier. The RabbitTemplate now provides
waitForConfirms(long timeout) and waitForConfirmsOrDie(long timeout), which delegate to the
dedicated channel used within the scope of the OperationsCallback. The methods cannot be used
outside of that scope, for obvious reasons.

Note that a higher-level abstraction that lets you correlate confirms to requests is provided
elsewhere (see Correlated Publisher Confirms and Returns). If you want only to wait until the
broker has confirmed delivery, you can use the technique shown in the following example:

Collection<?> messages = getMessagesToSend();

Boolean result = this.template.invoke(t -> {
messages.forEach(m -> t.convertAndSend(ROUTE, m));
t.waitForConfirmsOrDie(10_000);
return true;

1

If you wish RabbitAdmin operations to be invoked on the same channel within the scope of the
OperationsCallback, the admin must have been constructed by using the same RabbitTemplate that
was used for the invoke operation.

The preceding discussion is moot if the template operations are already performed
within the scope of an existing transaction —for example, when running on a

o transacted listener container thread and performing operations on a transacted
template. In that case, the operations are performed on that channel and
committed when the thread returns to the container. It is not necessary to use
invoke in that scenario.

When using confirms in this way, much of the infrastructure set up for correlating confirms to
requests is not really needed (unless returns are also enabled). Starting with version 2.2, the

38

connection factory supports a new property called publisherConfirmType. When this is set to
ConfirmType.SIMPLE, the infrastructure is avoided and the confirm processing can be more efficient.

Furthermore, the RabbitTemplate sets the publisherSequenceNumber property in the sent message
MessageProperties. If you wish to check (or log or otherwise use) specific confirms, you can do so
with an overloaded invoke method, as the following example shows:

public <T> T invoke(OperationsCallback<T> action, com.rabbitmg.client
.ConfirmCallback acks,
com.rabbitmg.client.ConfirmCallback nacks);

o These ConfirmCallback objects (for ack and nack instances) are the Rabbit client
callbacks, not the template callback.

The following example logs ack and nack instances:

Collection<?> messages = getMessagesToSend();

Boolean result = this.template.invoke(t -> {
messages.forEach(m -> t.convertAndSend(ROUTE, m));
t.waitForConfirmsOrDie(10_000);
return true;

}, (tag, multiple) -> {

log.info("Ack: " + tag +

}, (tag, multiple) -> {

log.info("Nack:

+ multiple);

n n,n

+ tag + + multiple);

)i

Messaging Integration

Starting with version 1.4, RabbitMessagingTemplate (built on top of RabbitTemplate) provides an
integration with the Spring Framework messaging abstraction — that is,
org.springframework.messaging.Message. This lets you send and receive messages by using the
spring-messaging Message<?> abstraction. This abstraction is used by other Spring projects, such as
Spring Integration and Spring’s STOMP support. There are two message converters involved: one to
convert between a spring-messaging Message<?> and Spring AMQP’s Message abstraction and one to
convert between Spring AMQP’s Message abstraction and the format required by the underlying
RabbitMQ client library. By default, the message payload is converted by the provided
RabbitTemplate instance’s message converter. Alternatively, you can inject a custom
MessagingMessageConverter with some other payload converter, as the following example shows:

39

MessagingMessageConverter amgpMessageConverter = new MessagingMessageConverter();
amgpMessageConverter.setPayloadConverter(myPayloadConverter);
rabbitMessagingTemplate.setAmgpMessageConverter (amgpMessageConverter);

Validated User Id

Starting with version 1.6, the template now supports a user-id-expression (userIdExpression when
using Java configuration). If a message is sent, the user id property is set (if not already set) after
evaluating this expression. The root object for the evaluation is the message to be sent.

The following examples show how to use the user-id-expression attribute:

<rabbit:template ... user-id-expression=""guest"'" />

<rabbit:template ... user-id-expression="@myConnectionFactory.username" />

The first example is a literal expression. The second obtains the username property from a
connection factory bean in the application context.

Using a Separate Connection

Starting with version 2.0.2, you can set the usePublisherConnection property to true to use a
different connection to that used by listener containers, when possible. This is to avoid consumers
being blocked when a producer is blocked for any reason. The connection factories maintain a
second internal connection factory for this purpose; by default it is the same type as the main
factory, but can be set explicity if you wish to use a different factory type for publishing. If the
rabbit template is running in a transaction started by the listener container, the container’s channel
is used, regardless of this setting.

In general, you should not use a RabbitAdmin with a template that has this set to
true. Use the RabbitAdmin constructor that takes a connection factory. If you use the
other constructor that takes a template, ensure the template’s property is false.

o This is because, often, an admin is used to declare queues for listener containers.
Using a template that has the property set to true would mean that exclusive
queues (such as AnonymousQueue) would be declared on a different connection to
that used by listener containers. In that case, the queues cannot be used by the
containers.

4.1.5. Sending Messages

When sending a message, you can use any of the following methods:

40

void send(Message message) throws AmgpException;
void send(String routingKey, Message message) throws AmgpException;

void send(String exchange, String routingKey, Message message) throws
AmgpException;

We can begin our discussion with the last method in the preceding listing, since it is actually the
most explicit. It lets an AMQP exchange name (along with a routing key)be provided at runtime.
The last parameter is the callback that is responsible for actual creating the message instance. An
example of using this method to send a message might look like this: The following example shows
how to use the send method to send a message:

amqpTemplate.send("marketData.topic", "quotes.nasdaq.THING1",
new Message("12.34".qetBytes(), someProperties));

You can set the exchange property on the template itself if you plan to use that template instance to
send to the same exchange most or all of the time. In such cases, you can use the second method in
the preceding listing. The following example is functionally equivalent to the previous example:

amgpTemplate.setExchange("marketData.topic");
amgpTemplate.send("quotes.nasdaq.F00", new Message("12.34".getBytes(),
someProperties));

If both the exchange and routingKey properties are set on the template, you can use the method that
accepts only the Message. The following example shows how to do so:

amgpTemplate.setExchange("marketData.topic");
amgpTemplate.setRoutingKey("quotes.nasdaq.F00");
amgpTemplate.send(new Message("12.34".getBytes(), someProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method
parameters always override the template’s default values. In fact, even if you do not explicitly set
those properties on the template, there are always default values in place. In both cases, the default
is an empty String, but that is actually a sensible default. As far as the routing key is concerned, it is
not always necessary in the first place (for example, for a Fanout exchange). Furthermore, a queue
may be bound to an exchange with an empty String. Those are both legitimate scenarios for
reliance on the default empty String value for the routing key property of the template. As far as
the exchange name is concerned, the empty String is commonly used because the AMQP

41

specification defines the “default exchange” as having no name. Since all queues are automatically
bound to that default exchange (which is a direct exchange), using their name as the binding value,
the second method in the preceding listing can be used for simple point-to-point messaging to any
queue through the default exchange. You can provide the queue name as the routingKey, either by
providing the method parameter at runtime. The following example shows how to do so:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange
template.send("queue.helloWor1ld", new Message("Hello World".getBytes(),
someProperties));

Alternately, you can create a template that can be used for publishing primarily or exclusively to a
single Queue. The following example shows how to do so:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange
template.setRoutingKey("queue.helloWorld"); // but we'll always send to this Queue
template.send(new Message("Hello World".getBytes(), someProperties));

Message Builder API

Starting with version 1.3, a message builder API is provided by the MessageBuilder and
MessagePropertiesBuilder. These methods provide a convenient “fluent” means of creating a
message or message properties. The following examples show the fluent API in action:

Message message = MessageBuilder.withBody("foo".getBytes())
.setContentType(MessageProperties.CONTENT_TYPE_TEXT_PLAIN)
.setMessageId("123")

.setHeader ("bar", "baz")
.build();

MessageProperties props = MessagePropertiesBuilder.newInstance()
.setContentType(MessageProperties.CONTENT_TYPE_TEXT_PLAIN)
.setMessageId("123")

.setHeader ("bar", "baz")

.build();

Message message = MessageBuilder.withBody("foo".getBytes())
.andProperties(props)
.build();

Each of the properties defined on the MessageProperties can be set. Other methods include
setHeader(String key, String value), removeHeader(String key), removeHeaders(), and
copyProperties(MessageProperties properties). Each property setting method has a set*IfAbsent()

42

https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/MessageProperties.html

variant. In the cases where a default initial value exists, the method is named
set*IfAbsentOrDefault().

Five static methods are provided to create an initial message builder:

public static MessageBuilder withBody(byte[] body) ™

public static MessageBuilder withClonedBody(byte[] body) @

public static MessageBuilder withBody(byte[] body, int from, int to) ®
public static MessageBuilder fromMessage(Message message) @

public static MessageBuilder fromClonedMessage(Message message) ®

@ The message created by the builder has a body that is a direct reference to the argument.

@ The message created by the builder has a body that is a new array containing a copy of
bytes in the argument.

® The message created by the builder has a body that is a new array containing the range of
bytes from the argument. See Arrays.copy0OfRange() for more details.

@ The message created by the builder has a body that is a direct reference to the body of the
argument. The argument’s properties are copied to a new MessageProperties object.

® The message created by the builder has a body that is a new array containing a copy of the
argument’s body. The argument’s properties are copied to a new MessageProperties object.

Three static methods are provided to create a MessagePropertiesBuilder instance:

public static MessagePropertiesBuilder newInstance() @

public static MessagePropertiesBuilder fromProperties(MessageProperties
properties) @

public static MessagePropertiesBuilder fromClonedProperties(MessageProperties
properties) ®

@ A new message properties object is initialized with default values.
@ The builder is initialized with, and build() will return, the provided properties object.,

® The argument’s properties are copied to a new MessageProperties object.

With the RabbitTemplate implementation of AmgpTemplate, each of the send() methods has an
overloaded version that takes an additional CorrelationData object. When publisher confirms are
enabled, this object is returned in the callback described in AmgpTemplate. This lets the sender
correlate a confirm (ack or nack) with the sent message.

43

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

Starting with version 1.6.7, the CorrelationAwareMessagePostProcessor interface was introduced,
allowing the correlation data to be modified after the message has been converted. The following
example shows how to use it:

Message postProcessMessage(Message message, Correlation correlation);

In version 2.0, this interface is deprecated. The method has been moved to MessagePostProcessor
with a default implementation that delegates to postProcessMessage(Message message).

Also starting with version 1.6.7, a new callback interface called CorrelationDataPostProcessor is
provided. This is invoked after all MessagePostProcessor instances (provided in the send() method as
well as those provided in setBeforePublishPostProcessors()). Implementations can update or
replace the correlation data supplied in the send() method (if any). The Message and original
CorrelationData (if any) are provided as arguments. The following example shows how to use the
postProcess method:

CorrelationData postProcess(Message message, CorrelationData correlationData);

Publisher Returns

When the template’s mandatory property is true, returned messages are provided by the callback
described in AmgpTemplate.

Starting with version 1.4, the RabbitTemplate supports the SpEL mandatoryExpression property, which
is evaluated against each request message as the root evaluation object, resolving to a boolean
value. Bean references, such as @myBean.isMandatory(#root), can be used in the expression.

Publisher returns can also be used internally by the RabbitTemplate in send and receive operations.
See Reply Timeout for more information.

Batching

Version 1.4.2 introduced the BatchingRabbitTemplate. This is a subclass of RabbitTemplate with an
overridden send method that batches messages according to the BatchingStrategy. Only when a
batch is complete is the message sent to RabbitMQ. The following listing shows the BatchingStrategy
interface definition:

44

public interface BatchingStrategy {
MessageBatch addToBatch(String exchange, String routingKey, Message message);
Date nextRelease();

Collection<MessageBatch> releaseBatches();

° Batched data is held in memory. Unsent messages can be lost in the event of a
system failure.

A SimpleBatchingStrategy is provided. It supports sending messages to a single exchange or routing
key. It has the following properties:

* batchSize: The number of messages in a batch before it is sent.

* bufferLimit: The maximum size of the batched message. This preempts the batchSize, if
exceeded, and causes a partial batch to be sent.

* timeout: A time after which a partial batch is sent when there is no new activity adding
messages to the batch.

The SimpleBatchingStrategy formats the batch by preceding each embedded message with a four-
byte binary length. This is communicated to the receiving system by setting the springBatchFormat
message property to lengthHeader4.

Batched messages are automatically de-batched by listener containers by default
o (by using the springBatchFormat message header). Rejecting any message from a
batch causes the entire batch to be rejected.

However, see @RabbitListener with Batching for more information.

4.1.6. Receiving Messages

Message reception is always a little more complicated than sending. There are two ways to receive
a Message. The simpler option is to poll for one Message at a time with a polling method call. The
more complicated yet more common approach is to register a listener that receives Messages on-
demand, asynchronously. We consider an example of each approach in the next two sub-sections.

Polling Consumer

The AmgpTemplate itself can be used for polled Message reception. By default, if no message is
available, null is returned immediately. There is no blocking. Starting with version 1.5, you can set
a receiveTimeout, in milliseconds, and the receive methods block for up to that long, waiting for a
message. A value less than zero means block indefinitely (or at least until the connection to the

45

broker is lost). Version 1.6 introduced variants of the receive methods that let the timeout be passed
in on each call.

Since the receive operation creates a new QueueingConsumer for each message, this
é technique is not really appropriate for high-volume environments. Consider using
an asynchronous consumer or a receivelTimeout of zero for those use cases.

There are four simple receive methods available. As with the Exchange on the sending side, there is
a method that requires that a default queue property has been set directly on the template itself,
and there is a method that accepts a queue parameter at runtime. Version 1.6 introduced variants
to accept timeoutMillis to override receiveTimeout on a per-request basis. The following listing
shows the definitions of the four methods:

Message receive() throws AmgpException;
Message receive(String queueName) throws AmgpException;
Message receive(long timeoutMillis) throws AmgpException;

Message receive(String queueName, long timeoutMillis) throws AmgpException;

As in the case of sending messages, the AngpTemplate has some convenience methods for receiving
POJOs instead of Message instances, and implementations provide a way to customize the
MessageConverter used to create the Object returned: The following listing shows those methods:

Object receiveAndConvert() throws AmgpException;
Object receiveAndConvert(String queueName) throws AmqpException;
Object receiveAndConvert(long timeoutMillis) throws AmgpException;

Object receiveAndConvert(String queueName, long timeoutMillis) throws
AmgpException;

Starting with version 2.0, there are variants of these methods that take an additional
ParameterizedTypeReference argument to convert complex types. The template must be configured
with a SmartMessageConverter. See Converting From a Message With RabbitTemplate for more
information.

Similar to sendAndReceive methods, beginning with version 1.3, the AmgpTemplate has several
convenience receiveAndReply methods for synchronously receiving, processing and replying to
messages. The following listing shows those method definitions:

46

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback)
throws AmgpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S>
callback)
throws AmgpException;

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback,
String replyExchange, String replyRoutingKey) throws AmqpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S>
callback,
String replyExchange, String replyRoutingKey) throws AmqpException;

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback,
ReplyToAddressCallback<S> replyToAddressCallback) throws AmgpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S>
callback,

ReplyToAddressCallback<S> replyToAddressCallback) throws
AmgpException;

The AmgpTemplate implementation takes care of the receive and reply phases. In most cases, you
should provide only an implementation of ReceiveAndReplyCallback to perform some business logic
for the received message and build a reply object or message, if needed. Note, a
ReceiveAndReplyCallback may return null. In this case, no reply is sent and receiveAndReply works
like the receive method. This lets the same queue be used for a mixture of messages, some of which
may not need a reply.

Automatic message (request and reply) conversion is applied only if the provided callback is not an
instance of ReceiveAndReplyMessageCallback, which provides a raw message exchange contract.

The ReplyToAddressCallback is useful for cases requiring custom logic to determine the replyTo
address at runtime against the received message and reply from the ReceiveAndReplyCallback. By
default, replyTo information in the request message is used to route the reply.

The following listing shows an example of POJO-based receive and reply:

47

boolean received =
this.template.receiveAndReply(ROUTE, new ReceiveAndReplyCallback<Order,
Invoice>() {

public Invoice handle(Order order) {
return processOrder(order);

}
b
if (received) {
log.info("We received an order!");

}

Asynchronous Consumer

Spring AMQP also supports annotated listener endpoints through the use of the
@RabbitListener annotation and provides an open infrastructure to register

o endpoints programmatically. This is by far the most convenient way to setup an
asynchronous consumer. See Annotation-driven Listener Endpoints for more
details.

48

The prefetch default value used to be 1, which could lead to under-utilization of
efficient consumers. Starting with version 2.0, the default prefetch value is now
250, which should keep consumers busy in most common scenarios and thus
improve throughput.

There are, nevertheless, scenarios where the prefetch value should be low:

» For large messages, especially if the processing is slow (messages could add up
to a large amount of memory in the client process)

* When strict message ordering is necessary (the prefetch value should be set
back to 1 in this case)

* Other special cases

Also, with low-volume messaging and multiple consumers (including concurrency
within a single listener container instance), you may wish to reduce the prefetch to
get a more even distribution of messages across consumers. We also recommend
using prefetch = 1 with the MANUAL ack mode. The basicAck is an asynchronous
operation and, if something wrong happens on the Broker (double ack for the same
delivery tag, for example), you end up with processed subsequent messages in the
batch that are unacknowledged on the Broker, and other consumers may see
them.

See Message Listener Container Configuration.

For more background about prefetch, see this post about consumer utilization in
RabbitMQ and this post about queuing theory.

Message Listener

For asynchronous Message reception, a dedicated component (not the AmqpTemplate) is involved. That
component is a container for a Message-consuming callback. We consider the container and its
properties later in this section. First, though, we should look at the callback, since that is where
your application code is integrated with the messaging system. There are a few options for the
callback, starting with an implementation of the Messagelistener interface, which the following
listing shows:

public interface Messagelistener {
void onMessage(Message message);

If your callback logic depends on the AMQP Channel instance for any reason, you may instead use
the ChannelAwareMessagelistener. It looks similar but has an extra parameter. The following listing
shows the ChannelAwareMessagelistener interface definition:

49

https://www.rabbitmq.com/blog/2014/04/14/finding-bottlenecks-with-rabbitmq-3-3/
https://www.rabbitmq.com/blog/2014/04/14/finding-bottlenecks-with-rabbitmq-3-3/
https://www.rabbitmq.com/blog/2012/05/11/some-queuing-theory-throughput-latency-and-bandwidth/

public interface ChannelAwareMessagelistener {
void onMessage(Message message, Channel channel) throws Exception;

}

o In version 2.1, this interface moved from package o.s.amgp.rabbit.core to
0.s.amgp.rabbit.listener.api.

MessagelistenerAdapter

If you prefer to maintain a stricter separation between your application logic and the messaging
API, you can rely upon an adapter implementation that is provided by the framework. This is often
referred to as “Message-driven POJO” support.

Version 1.5 introduced a more flexible mechanism for POJO messaging, the
@RabbitListener annotation. See Annotation-driven Listener Endpoints for more
information.

When using the adapter, you need to provide only a reference to the instance that the adapter itself
should invoke. The following example shows how to do so:

MessagelistenerAdapter listener = new MessagelistenerAdapter(somePojo);
listener.setDefaultListenerMethod("myMethod");

You can subclass the adapter and provide an implementation of getlListenerMethodName() to
dynamically select different methods based on the message. This method has two parameters,
originalMessage and extractedMessage, the latter being the result of any conversion. By default, a
SimpleMessageConverter is configured. See SimpleMessageConverter for more information and
information about other converters available.

Starting with version 1.4.2, the original message has consumerQueue and consumerTag properties,
which can be used to determine the queue from which a message was received.

Starting with version 1.5, you can configure a map of consumer queue or tag to method name, to
dynamically select the method to call. If no entry is in the map, we fall back to the default listener
method. The default listener method (if not set) is handleMessage.

Starting with version 2.0, a convenient FunctionalInterface has been provided. The following listing
shows the definition of FunctionalInterface:

50

public interface ReplyingMessagelistener<T, R> {

R handleMessage(T t);

This interface facilitates convenient configuration of the adapter by using Java 8 lambdas, as the
following example shows:

new MessagelistenerAdapter((ReplyingMessagelistener<String, String>) data -> {

return result;

)i

Starting with version 2.2, the buildlListenerArquments(Object) has been deprecated and new
buildListenerArquments(Object, Channel, Message) one has been introduced instead. The new
method helps listener to get Channel and Message arguments to do more, such as calling
channel.basicReject(long, boolean) in manual acknowledge mode. The following listing shows the
most basic example:

public class ExtendedlListenerAdapter extends MessagelistenerAdapter {

protected Object[] buildListenerArguments(Object extractedMessage, Channel
channel, Message message) {
return new Object[]{extractedMessage, channel, message};

}

Now you could configure ExtendedListenerAdapter as same as MessagelistenerAdapter if you need to
receive “channel” and “message”. Parameters of listener should be set as
buildListenerArquments(Object, Channel, Message) returned, as the following example of listener
shows:

31

public void handleMessage(Object object, Channel channel, Message message) throws
IOException {

Container

Now that you have seen the various options for the Message-listening callback, we can turn our
attention to the container. Basically, the container handles the “active” responsibilities so that the
listener callback can remain passive. The container is an example of a “lifecycle” component. It
provides methods for starting and stopping. When configuring the container, you essentially bridge
the gap between an AMQP Queue and the Messagelistener instance. You must provide a reference to
the ConnectionFactory and the queue names or Queue instances from which that listener should
consume messages.

Prior to version 2.0, there was one listener container, the SimpleMessagelListenerContainer. There is
now a second container, the DirectMessagelistenerContainer. The differences between the
containers and criteria you might apply when choosing which to use are described in Choosing a
Container.

The following listing shows the most basic example, which works by using the,
SimpleMessagelistenerContainer:

SimpleMessagelistenerContainer container = new SimpleMessagelistenerContainer();
container.setConnectionFactory(rabbitConnectionFactory);
container.setQueueNames("some.queue");

container.setMessagelListener(new MessagelistenerAdapter(somePojo));

As an “active” component, it is most common to create the listener container with a bean definition
so that it can run in the background. The following example shows one way to do so with XML:

<rabbit:listener-container connection-factory="rabbitConnectionFactory">
<rabbit:listener queues="some.queue" ref="somePojo" method="handle"/>
</rabbit:listener-container>

The following listing shows another way to do so with XML:

32

<rabbit:listener-container connection-factory="rabbitConnectionFactory" type=
"direct">

<rabbit:listener queues="some.queue" ref="somePojo" method="handle"/>
</rabbit:listener-container>

Both of the preceding examples create a DirectMessagelistenerContainer (notice the type
attribute — it defaults to simple).

Alternately, you may prefer to use Java configuration, which looks similar to the preceding code
snippet:

@Configuration
public class ExampleAmgpConfiguration {

@Bean

public SimpleMessagelistenerContainer messagelistenerContainer() {
SimpleMessagelistenerContainer container = new

SimpleMessagelistenerContainer();

container.setConnectionFactory(rabbitConnectionFactory());
container.setQueueName("some.queue");
container.setMessagelListener(exampleListener());
return container;

@Bean
public CachingConnectionFactory rabbitConnectionFactory() {
CachingConnectionFactory connectionFactory =
new CachingConnectionFactory("localhost");
connectionFactory.setUsername("quest");
connectionFactory.setPassword("quest");
return connectionFactory;

@Bean
public Messagelistener exampleListener() {
return new Messagelistener() {
public void onMessage(Message message) {
System.out.println("received: " + message);
}
¥

33

Consumer Priority

Starting with RabbitMQ Version 3.2, the broker now supports consumer priority (see Using
Consumer Priorities with RabbitMQ). This is enabled by setting the x-priority argument on the
consumer. The SimpleMessagelListenerContainer now supports setting consumer arguments, as the
following example shows:

container.setConsumerArguments(Collections.
<String, Object> singletonMap("x-priority", Integer.value0f(10)));

For convenience, the namespace provides the priority attribute on the listener element, as the
following example shows:

<rabbit:listener-container connection-factory="rabbitConnectionFactory">
<rabbit:listener queues="some.queue" ref="somePojo" method="handle" priority=

"10" />

</rabbit:listener-container>

Starting with version 1.3, you can modify the queues on which the container listens at runtime. See
Listener Container Queues.

auto-delete Queues

When a container is configured to listen to auto-delete queues, the queue has an x-expires option,
or the Time-To-Live policy is configured on the Broker, the queue is removed by the broker when
the container is stopped (that is, when the last consumer is cancelled). Before version 1.3, the
container could not be restarted because the queue was missing. The RabbitAdmin only
automatically redeclares queues and so on when the connection is closed or when it opens, which
does not happen when the container is stopped and started.

Starting with version 1.3, the container uses a RabbitAdmin to redeclare any missing queues during
startup.

You can also use conditional declaration (see Conditional Declaration) together with an auto-
startup="false" admin to defer queue declaration until the container is started. The following
example shows how to do so:

54

https://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/
https://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/
https://www.rabbitmq.com/ttl.html

<rabbit:queue id="otherAnon" declared-by="containerAdmin" />

<rabbit:direct-exchange name="otherExchange" auto-delete="true" declared-by=
"containerAdmin">
<rabbit:bindings>
<rabbit:binding queue="otherAnon" key="otherAnon" />
</rabbit:bindings>
</rabbit:direct-exchange>

<rabbit:listener-container id="container2" auto-startup="false">
<rabbit:listener id="listener2" ref="foo" queues="otherAnon" admin=

"containerAdmin" />

</rabbit:listener-container>

<rabbit:admin id="containerAdmin" connection-factory="rabbitConnectionFactory"
auto-startup="false" />

In this case, the queue and exchange are declared by containerAdmin, which has auto-
startup="false" so that the elements are not declared during context initialization. Also, the
container is not started for the same reason. When the container is later started, it uses its
reference to containerAdmin to declare the elements.

Batched Messages

Batched messages (created by a producer) are automatically de-batched by listener containers
(using the springBatchFormat message header). Rejecting any message from a batch causes the entire
batch to be rejected. See Batching for more information about batching.

Starting with version 2.2, the SimpleMessagelListenerContainer can be use to create batches on the
consumer side (where the producer sent discrete messages).

Set the container property consumerBatchEnabled to enable this feature. deBatchingEnabled must also
be true so that the container is responsible for processing batches of both types. Implement
BatchMessagelListener or ChannelAwareBatchMessagelistener when consumerBatchEnabled is true.
Starting with version 2.2.7 both the SimpleMessagelListenerContainer and
DirectMessagelListenerContainer can debatch producer created batches as List<Message>. See
@RabbitListener with Batching for information about using this feature with eRabbitListener.

Consumer Events

The containers publish application events whenever a listener (consumer) experiences a failure of
some kind. The event ListenerContainerConsumerFailedEvent has the following properties:
 container: The listener container where the consumer experienced the problem.
* reason: A textual reason for the failure.

» fatal: A boolean indicating whether the failure was fatal. With non-fatal exceptions, the
container tries to restart the consumer, according to the recoveryInterval or recoveryBackoff

55

(for the SimpleMessagelListenerContainer) or the monitorInterval (for the
DirectMessagelistenerContainer).

* throwable: The Throwable that was caught.

These events can be consumed by implementing
ApplicationListener<ListenerContainerConsumerFailedEvent>.

o System-wide events (such as connection failures) are published by all consumers
when concurrentConsumers is greater than 1.

If a consumer fails because one if its queues is being used exclusively, by default, as well as
publishing the event, a WARN log is issued. To change this logging behavior, provide a custom
ConditionalExceptionlLogger in the SimpleMessagelistenerContainer instance’s
exclusiveConsumerExceptionLogger property. See also Logging Channel Close Events.

Fatal errors are always logged at the ERROR level. This it not modifiable.
Several other events are published at various stages of the container lifecycle:

* AsyncConsumerStartedEvent: When the consumer is started.

e AsyncConsumerRestartedEvent: When the consumer is restarted after a failure -
SimpleMessagelistenerContainer only.

* AsyncConsumerTerminatedEvent: When a consumer is stopped normally.

* AsyncConsumerStoppedEvent: When the consumer is stopped - SimpleMessagelistenerContainer
only.

* ConsumeOkEvent: When a consumeOk is received from the broker, contains the queue name and
consumerTag

» ListenerContainerIdleEvent: See Detecting Idle Asynchronous Consumers.

* MissingQueueEvent: When a missing queue is detected.

Consumer Tags

You can provide a strategy to generate consumer tags. By default, the consumer tag is generated by
the broker. The following listing shows the ConsumerTagStrategy interface definition:

public interface ConsumerTagStrategy {

String createConsumerTag(String queue);

The queue is made available so that it can (optionally) be used in the tag.

See Message Listener Container Configuration.

36

Annotation-driven Listener Endpoints

The easiest way to receive a message asynchronously is to use the annotated listener endpoint
infrastructure. In a nutshell, it lets you expose a method of a managed bean as a Rabbit listener
endpoint. The following example shows how to use the @RabbitListener annotation:

public class MyService {

(queues = "myQueue")
public void processOrder(String data) {

}

The idea of the preceding example is that, whenever a message is available on the queue named
myQueue, the processOrder method is invoked accordingly (in this case, with the payload of the
message).

The annotated endpoint infrastructure creates a message listener container behind the scenes for
each annotated method, by using a RabbitListenerContainerFactory.

In the preceding example, myQueue must already exist and be bound to some exchange. The queue
can be declared and bound automatically, as long as a RabbitAdmin exists in the application context.

Property placeholders (${some.property}) or SpEL expressions (#{someExpression})
can be specified for the annotation properties (queues etc). See Listening to

o Multiple Queues for an example of why you might use SpEL instead of a property
placeholder. The following listing shows three examples of how to declare a Rabbit
listener:

57

public class MyService {

(bindings = (
value = (value = "myQueue", durable = "true"),
exchange = (value = "auto.exch", ignoreDeclarationExceptions =
"true"),
key = "orderRoutingKey")
)
public void processOrder(Order order) {
}
(bindings = (
value = ,
exchange = (value = "auto.exch"),
key = "invoiceRoutingKey")
)
public void processInvoice(Invoice invoice) {
}
(queuesToDeclare = (name = "${my.queue}", durable = "true"
)

public String handleWithSimpleDeclare(String data) {

}

In the first example, a queue myQueue is declared automatically (durable) together with the
exchange, if needed, and bound to the exchange with the routing key. In the second example, an
anonymous (exclusive, auto-delete) queue is declared and bound. Multiple QueueBinding entries can
be provided, letting the listener listen to multiple queues. In the third example, a queue with the
name retrieved from property my.queue is declared, if necessary, with the default binding to the
default exchange using the queue name as the routing key.

Since version 2.0, the @Exchange annotation supports any exchange types, including custom. For
more information, see AMQP Concepts.

You can use normal @Bean definitions when you need more advanced configuration.

Notice ignoreDeclarationExceptions on the exchange in the first example. This allows, for example,
binding to an existing exchange that might have different settings (such as internal). By default, the
properties of an existing exchange must match.

Starting with version 2.0, you can now bind a queue to an exchange with multiple routing keys, as
the following example shows:

38

https://www.rabbitmq.com/tutorials/amqp-concepts.html

key = { "red", "yellow" }

You can also specify arguments within @QueueBinding annotations for queues, exchanges, and
bindings, as the following example shows:

(bindings = (
value = (value = "auto.headers", autoDelete = "true",
arguments = (name = "x-message-ttl", value =
"10000",
type = "java.lang.Integer")),
exchange = (value = "auto.headers", type = ExchangeTypes.HEADERS,
autoDelete = "true"),
arguments = {

(name = "x-match", value = "all"),
(name = "thing1", value = "somevalue"),
(name = "thing2")

iy

)
public String handleWithHeadersExchange(String foo) {

}

Notice that the x-message-ttl argument is set to 10 seconds for the queue. Since the argument type
is not String, we have to specify its type —in this case, Integer. As with all such declarations, if the
queue already exists, the arguments must match those on the queue. For the header exchange, we
set the binding arguments to match messages that have the thing1 header set to somevalue, and the
thing2 header must be present with any value. The x-match argument means both conditions must
be satisfied.

The argument name, value, and type can be property placeholders (${::*}) or SpEL expressions
(#{---}). The name must resolve to a String. The expression for type must resolve to a Class or the
fully-qualified name of a class. The value must resolve to something that can be converted by the
DefaultConversionService to the type (such as the x-message-tt1 in the preceding example).

If a name resolves to null or an empty String, that @Argument is ignored.

Meta-annotations

Sometimes you may want to use the same configuration for multiple listeners. To reduce the
boilerplate configuration, you can use meta-annotations to create your own listener annotation.
The following example shows how to do so:

39

@Target({ElementType.TYPE, ElementType.METHOD, ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
@RabbitListener(bindings = @QueueBinding(

value = @Queue,

exchange = @Fxchange(value = "metaFanout”, type = ExchangeTypes.FANOUT)))
public @interface MyAnonFanoutListener {

}
public class Metalistener {

@MyAnonFanoutListener
public void handle1(String foo) {

}

@MyAnonFanoutListener
public void handle2(String foo) {

}

In the preceding example, each listener created by the @MyAnonFanoutListener annotation binds an
anonymous, auto-delete queue to the fanout exchange, metaFanout. Starting with version 2.2.3,
@AliasFor is supported to allow overriding properties on the meta-annotated annotation. Also, user
annotations can now be @Repeatable, allowing multiple containers to be created for a method.

60

@Component
static class MetaAnnotationTestBean {

@MyListener("queuel")
@MyListener("queue2")

public void handleIt(String body) {
}

@RabbitListener
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Repeatable(MyListeners.class)
static @interface MyListener {

@AliasFor(annotation = RabbitListener.class, attribute = "queues")
String[] value() default {};

}
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)

static @interface MyListeners {

MyListener[] value();

Enable Listener Endpoint Annotations

To enable support for @RabbitListener annotations, you can add @EnableRabbit to one of your
@Configuration classes. The following example shows how to do so:

61

public class AppConfig {

public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(connectionFactory());
factory.setConcurrentConsumers(3);
factory.setMaxConcurrentConsumers(10);
factory.setContainerCustomizer(container -> /* customize the container */

return factory;

Since version 2.0, a DirectMessagelistenerContainerFactory is also available. It creates
DirectMessagelistenerContainer instances.

o For information to help you choose between SimpleRabbitListenerContainerFactory
and DirectRabbitListenerContainerFactory, see Choosing a Container.

Starting wih version 2.2.2, you can provide a ContainerCustomizer implementation (as shown
above). This can be used to further configure the container after it has been created and
configured; you can use this, for example, to set properties that are not exposed by the container
factory.

By default, the infrastructure looks for a bean named rabbitListenerContainerFactory as the source
for the factory to use to create message listener containers. In this case, and ignoring the RabbitMQ
infrastructure setup, the processOrder method can be invoked with a core poll size of three threads
and a maximum pool size of ten threads.

You can customize the listener container factory to use for each annotation, or you can configure
an explicit default by implementing the RabbitListenerConfigurer interface. The default is required
only if at least one endpoint is registered without a specific container factory. See the Javadoc for
full details and examples.

The container factories provide methods for adding MessagePostProcessor instances that are applied
after receiving messages (before invoking the listener) and before sending replies.

See Reply Management for information about replies.

Starting with version 2.0.6, you can add a RetryTemplate and RecoveryCallback to the listener
container factory. It is used when sending replies. The RecoveryCallback is invoked when retries are
exhausted. You can use a SendRetryContextAccessor to get information from the context. The
following example shows how to do so:

62

https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/rabbit/annotation/RabbitListenerConfigurer.html

factory.setRetryTemplate(retryTemplate);
factory.setReplyRecoveryCallback(ctx -> {
Message failed = SendRetryContextAccessor.getMessage(ctx);
Address replyTo = SendRetryContextAccessor.getAddress(ctx);
Throwable t = ctx.getlLastThrowable();

return null;

1

If you prefer XML configuration, you can use the <rabbit:annotation-driven> element. Any beans
annotated with eRabbitListener are detected.

For SimpleRabbitListenerContainer instances, you can use XML similar to the following:

<rabbit:annotation-driven/>

<bean id="rabbitListenerContainerFactory"
class=
"org.springframework.amgp.rabbit.config.SimpleRabbitListenerContainerFactory">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="concurrentConsumers" value="3"/>
<property name="maxConcurrentConsumers" value="10"/>
</bean>

For DirectMessagelListenerContainer instances, you can use XML similar to the following:

<rabbit:annotation-driven/>

<bean id="rabbitListenerContainerFactory"
class=
"org.springframework.amgp.rabbit.config.DirectRabbitListenerContainerFactory">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="consumersPerQueue" value="3"/>
</bean>

Starting with version 2.0, the @RabbitListener annotation has a concurrency property. It supports
SpEL expressions (#{::-}) and property placeholders (§{::-}). Its meaning and allowed values depend
on the container type, as follows:

» For the DirectMessagelListenerContainer, the value must be a single integer value, which sets the
consumersPerQueue property on the container.

* For the SimpleRabbitListenerContainer, the value can be a single integer value, which sets the

63

concurrentConsumers property on the container, or it can have the form, m-n, where m is the
concurrentConsumers property and n is the maxConcurrentConsumers property.

In either case, this setting overrides the settings on the factory. Previously you had to define
different container factories if you had listeners that required different concurrency.

The annotation also allows overriding the factory autoStartup and taskExecutor properties via the
autoStartup and executor (since 2.2) annotation properties. Using a different executor for each
might help with identifying threads associated with each listener in logs and thread dumps.

Version 2.2 also added the ackMode property, which allows you to override the container factory’s
acknowledgeMode property.

(id = "manual.acks.1", queues = "manual.acks.1", ackMode = "MANUAL
Il)
public void manual1(String in, Channel channel,
(AmgpHeaders.DELIVERY_TAG) long tag) throws IOException {

channel.basicAck(tag, false);

Message Conversion for Annotated Methods

There are two conversion steps in the pipeline before invoking the listener. The first step uses a
MessageConverter to convert the incoming Spring AMQP Message to a Spring-messaging Message.
When the target method is invoked, the message payload is converted, if necessary, to the method
parameter type.

The default MessageConverter for the first step is a Spring AMQP SimpleMessageConverter that handles
conversion to String and java.io.Serializable objects. All others remain as a byte[]. In the
following discussion, we call this the “message converter”.

The default converter for the second step is a GenericMessageConverter, which delegates to a
conversion service (an instance of DefaultFormattingConversionService). In the following discussion,
we call this the “method argument converter”.

To change the message converter, you can add it as a property to the container factory bean. The
following example shows how to do so:

64

public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();

factory.setMessageConverter(new Jackson2JsonMessageConverter());

return factory;

This configures a Jackson2 converter that expects header information to be present to guide the
conversion.

You can also use a ContentTypeDelegatingMessageConverter, which can handle conversion of
different content types.

Starting with version 2.3, you can override the factory converter by specifying a bean name in the
messageConverter property.

public Jackson2]sonMessageConverter jsonConverter() {
return new Jackson2JsonMessageConverter();

}

(..., messageConverter = "jsonConverter")
public void listen(String in) {

}

This avoids having to declare a different container factory just to change the converter.

In most cases, it is not necessary to customize the method argument converter unless, for example,
you want to use a custom ConversionService.

In versions prior to 1.6, the type information to convert the JSON had to be provided in message
headers, or a custom (lassMapper was required. Starting with version 1.6, if there are no type
information headers, the type can be inferred from the target method arguments.

0 This type inference works only for @RabbitListener at the method level.

See Jackson2]JsonMessageConverter for more information.

If you wish to customize the method argument converter, you can do so as follows:

65

public class AppConfig implements RabbitListenerConfigurer {

public DefaultMessageHandlerMethodFactory myHandlerMethodFactory() {
DefaultMessageHandlerMethodFactory factory = new
DefaultMessageHandlerMethodFactory();
factory.setMessageConverter(new GenericMessageConverter
(myConversionService()));
return factory;

}

public DefaultConversionService myConversionService() {
DefaultConversionService conv = new DefaultConversionService();
conv.addConverter(mySpecialConverter());
return conv;

public void configureRabbitListeners(RabbitListenerEndpointRegistrar
registrar) {
registrar.setMessageHandlerMethodFactory(myHandlerMethodFactory());
}

For multi-method listeners (see Multi-method Listeners), the method selection is
o based on the payload of the message after the message conversion. The method
argument converter is called only after the method has been selected.

Programmatic Endpoint Registration

RabbitListenerEndpoint provides a model of a Rabbit endpoint and is responsible for configuring
the container for that model. The infrastructure lets you configure endpoints programmatically in
addition to the ones that are detected by the RabbitListener annotation. The following example
shows how to do so:

66

public class AppConfig implements RabbitListenerConfiqurer {

public void configureRabbitListeners(RabbitListenerEndpointRegistrar
registrar) {
SimpleRabbitListenerEndpoint endpoint = new SimpleRabbitListenerEndpoint(

)i
endpoint.setQueueNames("anotherQueue");
endpoint.setMessagelListener(message -> {

// processing
1)
registrar.registerEndpoint(endpoint);
}
}

In the preceding example, we used SimpleRabbitlListenerEndpoint, which provides the actual
MessageListener to invoke, but you could just as well build your own endpoint variant to describe a
custom invocation mechanism.

It should be noted that you could just as well skip the use of @RabbitListener altogether and register
your endpoints programmatically through RabbitListenerConfigurer.

Annotated Endpoint Method Signature

So far, we have been injecting a simple String in our endpoint, but it can actually have a very
flexible method signature. The following example rewrites it to inject the Order with a custom
header:

public class MyService {

(queues = "myQueue")
public void processOrder(Order order, ("order_type") String orderType)

The following list shows the main elements you can inject in listener endpoints:

* The raw org.springframework.amgp.core.Message

* The com.rabbitmg.client.Channel on which the message was received.

67

* The org.springframework.messaging.Message representing the incoming AMQP message. Note
that this message holds both the custom and the standard headers (as defined by AmgpHeaders).

Starting with version 1.6, the inbound deliveryMode header is now available in the
header with a name of AmgpHeaders.RECEIVED_DELIVERY_MODE instead of
AmgpHeaders.DELIVERY_MODE.

* @Header-annotated method arguments to extract a specific header value, including standard
AMQP headers.

* @Headers-annotated argument that must also be assignable to java.util.Map for getting access to
all headers.

A non-annotated element that is not one of the supported types (that is, Message and Channel) is
considered to be the payload. You can make that explicit by annotating the parameter with
@Payload. You can also turn on validation by adding an extra @Valid.

The ability to inject Spring’s message abstraction is particularly useful to benefit from all the
information stored in the transport-specific message without relying on the transport-specific API
The following example shows how to do so:

(queues = "myQueue")
public void processOrder(Message<Order> order) { ...

}

Handling of method arguments is provided by DefaultMessageHandlerMethodFactory, which you can
further customize to support additional method arguments. The conversion and validation support
can be customized there as well.

For instance, if we want to make sure our Order is valid before processing it, we can annotate the
payload with @Valid and configure the necessary validator, as follows:

68

public class AppConfig implements RabbitListenerConfigurer {

public void configureRabbitListeners(RabbitListenerEndpointRegistrar
registrar) {
registrar.setMessageHandlerMethodFactory(myHandlerMethodFactory());

}

public DefaultMessageHandlerMethodFactory myHandlerMethodFactory() {
DefaultMessageHandlerMethodFactory factory = new
DefaultMessageHandlerMethodFactory();
factory.setValidator(myValidator());
return factory;

Listening to Multiple Queues

When you use the queues attribute, you can specify that the associated container can listen to
multiple queues. You can use a @Header annotation to make the queue name from which a message
was received available to the POJO method. The following example shows how to do so:

public class MyService {
(queues = { "queuel", "queue2" })
public void processOrder(String data, (AmgpHeaders.CONSUMER_QUEUE)
String queue) {

}

Starting with version 1.5, you can externalize the queue names by using property placeholders and
SpEL. The following example shows how to do so:

69

public class MyService {

(queues =
"#{'${property.with.comma.delimited.queue.names}".split(',"')}")
public void processOrder(String data, (AmgpHeaders.CONSUMER_QUEUE)

String queue) {

}

Prior to version 1.5, only a single queue could be specified this way. Each queue needed a separate
property.

Reply Management

The existing support in MessagelistenerAdapter already lets your method have a non-void return
type. When that is the case, the result of the invocation is encapsulated in a message sent to the the
address specified in the ReplyToAddress header of the original message, or to the default address
configured on the listener. You can set that default address by using the @SendTo annotation of the
messaging abstraction.

Assuming our processOrder method should now return an OrderStatus, we can write it as follows to
automatically send a reply:

(destination = "myQueue")
("status")
public OrderStatus processOrder(Order order) {
// order processing
return status;

If you need to set additional headers in a transport-independent manner, you could return a
Message instead, something like the following:

70

(destination = "myQueue")
("status")
public Message<OrderStatus> processOrder(Order order) {

// order processing
return MessageBuilder

.withPayload(status)

.setHeader ("code", 1234)

.build();

Alternatively, you can use a MessagePostProcessor in the beforeSendReplyMessagePostProcessors
container factory property to add more headers. Starting with version 2.2.3, the called bean/method
is made avaiable in the reply message, which can be used in a message post processor to
communicate the information back to the caller:

factory.setBeforeSendReplyPostProcessors(msg -> {
msg.getMessageProperties().setHeader("calledBean",
msg.getMessageProperties().getTargetBean().getClass().getSimpleName()

)i
msg.getMessageProperties().setHeader("calledMethod",
msg.getMessageProperties().getTargetMethod().getName());
return m;
I9K

Starting with version 2.2.5, you can configure a ReplyPostProcessor to modify the reply message
before it is sent; it is called after the correlationId header has been set up to match the request.

(queues = "test.header", group = "testGroup", replyPostProcessor =
"echoCustomHeader")
public String capitalizeWithHeader(String in) {
return in.toUpperCase();

}

public ReplyPostProcessor echoCustomHeader() {
return (req, resp) -> {
resp.getMessageProperties().setHeader ("myHeader", req.
getMessageProperties().getHeader ("myHeader"));
return resp,

};

71

The @SendTo value is assumed as a reply exchange and routingKey pair that follows the
exchange/routingKey pattern, where one of those parts can be omitted. The valid values are as
follows:

* thing1/thing2: The replyTo exchange and the routingKey. thing1/: The replyTo exchange and the
default (empty) routingKey. thing2 or /thing2: The replyTo routingKey and the default (empty)
exchange. / or empty: The replyTo default exchange and the default routingKey.

Also, you can use @SendTo without a value attribute. This case is equal to an empty sendTo pattern.
@SendTo is used only if the inbound message does not have a replyToAddress property.

Starting with version 1.5, the @SendTo value can be a bean initialization SpEL Expression, as shown
in the following example:

(queues = "test.sendTo.spel")
("#{spelReplyTo}")
public String capitalizeWithSendToSpel(String foo) {
return foo.toUpperCase();

}

public String spelReplyTo() {
return "test.sendTo.reply.spel”;

}

The expression must evaluate to a String, which can be a simple queue name (sent to the default
exchange) or with the form exchange/routingKey as discussed prior to the preceding example.

e The #{---} expression is evaluated once, during initialization.

For dynamic reply routing, the message sender should include a reply_to message property or use
the alternate runtime SpEL expression (described after the next example).

Starting with version 1.6, the @SendTo can be a SpEL expression that is evaluated at runtime against
the request and reply, as the following example shows:

(queues = "test.sendTo.spel")
("!{"some.reply.queuve.with."' + result.queueName}")
public Bar capitalizeWithSendToSpel(Foo foo) {
return processTheFooAndReturnABar(foo);

}

The runtime nature of the SpEL expression is indicated with !{---} delimiters. The evaluation
context #root object for the expression has three properties:

72

* request: The o.s.amgp.core.Message request object.
 source: The 0.s.messaging.Message<?> after conversion.

e result: The method result.

The context has a map property accessor, a standard type converter, and a bean resolver, which
lets other beans in the context be referenced (for example, @someBeanName .determineReplyQ(request,
result)).

In summary, #{:-'} is evaluated once during initialization, with the #root object being the
application context. Beans are referenced by their names. !{::-} is evaluated at runtime for each
message, with the root object having the properties listed earlier. Beans are referenced with their
names, prefixed by @.

Starting with version 2.1, simple property placeholders are also supported (for example,
${some.reply.to}). With earlier versions, the following can be used as a work around, as the
following example shows:

(queues = "foo")
("#{environment['my.send.to"]}")
public String listen(Message in) {

return ...

}
Reply ContentType
If you are using a sophisticated message converter, such as the

ContentTypeDelegatingMessageConverter, you can control the content type of the reply by setting the
replyContentType property on the listener. This allows the converter to select the appropriate
delegate converter for the reply.

(queues = "q1", messageConverter = "delegating",
replyContentType = "application/json")
public Thing2 listen(Thingl in) {

}

By default, for backwards compatibility, any content type property set by the converter will be
overwritten by this value after conversion. Converters such as the SimpleMessageConverter use the
reply type rather than the content type to determine the conversion needed and sets the content
type in the reply message appropriately. This may not be the desired action and can be overridden
by setting the converterWinsContentType property to false. For example, if you return a String
containing JSON, the SimpleMessageConverter will set the content type in the reply to text/plain. The
following configuration will ensure the content type 1is set properly, even if the

73

SimpleMessageConverter is used.

(queues = "q1", replyContentType = "application/json",
converterWinsContentType = "false")
public String listen(Thing in) {

return someJsonString;

These properties (replyContentType and converterWinsContentType) do not apply when the return
type is a Spring AMQP Message or a Spring Messaging Message<?>. In the first case, there is no
conversion involved; simply set the contentType message property. In the second case, the behavior
is controlled using message headers:

(queues = "q1", messageConverter = "delegating")
("qzll)
public Message<String> listen(String in) {

return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (MessageHeaders.CONTENT_TYPE, "application/xml")
.build();

This content type will be passed in the MessageProperties to the converter. By default, for
backwards compatibility, any content type property set by the converter will be overwritten by this
value after conversion. If you wish to override that behavior, also set the
AmgpHeaders.CONTENT_TYPE_CONVERTER_WINS to true and any value set by the converter will be
retained.

Multi-method Listeners

Starting with version 1.5.0, you can specify the @RabbitListener annotation at the class level.
Together with the new @RabbitHandler annotation, this lets a single listener invoke different
methods, based on the payload type of the incoming message. This is best described using an
example:

74

(id="multi", queues = "someQueue")
("my.reply.queue")
public class MultilListenerBean {

public String thing2(Thing2 thing2) {

}

public String cat(Cat cat) {

}

public String hat(("amqp_receivedRoutingKey") String rk, Hat
hat) {

}

(isDefault = true)
public String defaultMethod(Object object) {

}

In this case, the individual @RabbitHandler methods are invoked if the converted payload is a Thing2,
a (at, or a Hat. You should understand that the system must be able to identify a unique method
based on the payload type. The type is checked for assignability to a single parameter that has no
annotations or that is annotated with the @Payload annotation. Notice that the same method
signatures apply, as discussed in the method-level @RabbitListener (described earlier).

Starting with version 2.0.3, a @RabbitHandler method can be designated as the default method,
which is invoked if there is no match on other methods. At most, one method can be so designated.

@RabbitHandler is intended only for processing message payloads after conversion,
if you wish to receive the unconverted raw Message object, you must use
@RabbitListener on the method, not the class.

@Repeatable @RabbitListener

Starting with version 1.6, the @RabbitListener annotation is marked with @Repeatable. This means
that the annotation can appear on the same annotated element (method or class) multiple times. In
this case, a separate listener container is created for each annotation, each of which invokes the
same listener @Bean. Repeatable annotations can be used with Java 8 or above.

75

Proxy @RabbitListener and Generics

If your service is intended to be proxied (for example, in the case of @Transactional), you should
keep in mind some considerations when the interface has generic parameters. Consider the
following example:

interface TxService<P> {

String handle(P payload, String header);

static class TxServiceImpl implements TxService<Foo> {

(...)
public String handle(Foo foo, String rk) {

}

With a generic interface and a particular implementation, you are forced to switch to the CGLIB
target class proxy because the actual implementation of the interface handle method is a bridge
method. In the case of transaction management, the use of CGLIB is configured by using an
annotation option: @EnableTransactionManagement(proxyTargetClass = true). And in this case, all
annotations have to be declared on the target method in the implementation, as the following
example shows:

static class TxServiceImpl implements TxService<Foo> {

(...)
public String handle(Foo foo, ("amqp_receivedRoutingKey")
String rk) {
}
}
Handling Exceptions

By default, if an annotated listener method throws an exception, it is thrown to the container and
the message are requeued and redelivered, discarded, or routed to a dead letter exchange,

76

depending on the container and broker configuration. Nothing is returned to the sender.

Starting with version 2.0, the @RabbitListener annotation has two new attributes: errorHandler and
returnExceptions.

These are not configured by default.

You can use the errorHandler to provide the bean name of a RabbitListenerErrorHandler
implementation. This functional interface has one method, as follows:

public interface RabbitListenerErrorHandler {

Object handleError(Message amgpMessage, org.springframework.messaging.Message<?>
message,
ListenerExecutionFailedException exception) throws Exception;

As you can see, you have access to the raw message received from the container, the spring-
messaging Message<?> object produced by the message converter, and the exception that was
thrown by the listener (wrapped in a ListenerExecutionFailedException). The error handler can
either return some result (which is sent as the reply) or throw the original or a new exception
(which is thrown to the container or returned to the sender, depending on the returnExceptions
setting).

The returnExceptions attribute, when true, causes exceptions to be returned to the sender. The
exception is wrapped in a RemoteInvocationResult object. On the sender side, there is an available
RemoteInvocationAwareMessageConverterAdapter, which, if configured into the RabbitTemplate, re-
throws the server-side exception, wrapped in an AmgpRemoteException. The stack trace of the server
exception is synthesized by merging the server and client stack traces.

This mechanism generally works only with the default SimpleMessageConverter,
o which uses Java serialization. Exceptions are generally not “Jackson-friendly” and

cannot be serialized to JSON. If you use JSON, consider using an errorHandler to

return some other Jackson-friendly Error object when an exception is thrown.

o In version 2.1, this interface moved from package o.s.amgp.rabbit.listener to
0.s.amgp.rabbit.listener.api.

Starting with version 2.1.7, the Channel is available in a messaging message header; this allows you
to ack or nack the failed messasge when using AcknowledgeMode . MANUAL:

77

public Object handleError(Message amgpMessage, org.springframework.messaging
.Message<?> message,
ListenerExecutionFailedException exception) {

message.getHeaders().get(AmgpHeaders.CHANNEL, Channel.class)
.basicReject(message.getHeaders().get(AmgpHeaders.DELIVERY_TAG,
Long.class),
true);

Container Management

Containers created for annotations are not registered with the application context. You can obtain a
collection of all containers by invoking getListenerContainers() on the
RabbitListenerEndpointRegistry bean. You can then iterate over this collection, for example, to stop
or start all containers or invoke the Lifecycle methods on the registry itself, which will invoke the
operations on each container.

You can also get a reference to an individual container by wusing its 1id, using
getListenerContainer(String id) —for example, registry.getListenerContainer("multi") for the
container created by the snippet above.

Starting with version 1.5.2, you can obtain the id values of the registered containers with
getListenerContainerIds().

Starting with version 1.5, you can now assign a group to the container on the RabbitListener
endpoint. This provides a mechanism to get a reference to a subset of containers. Adding a group
attribute causes a bean of type Collection<MessagelistenerContainer> to be registered with the
context with the group name.

@RabbitListener with Batching

When receiving a a batch of messages, the de-batching is normally performed by the container and
the listener is invoked with one message at at time. Starting with version 2.2, you can configure the
listener container factory and listener to receive the entire batch in one call, simply set the factory’s
batchListener property, and make the method payload parameter a List:

78

public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(connectionFactory());
factory.setBatchListener(true);
return factory;

(queues = "batch.1")
public void listen1(List<Thing> in) {

}

// or

(queues = "batch.2")
public void listen2(List<Message<Thing>> in) {

}

Setting the batchListener property to true automatically turns off the deBatchingEnabled container
property in containers that the factory creates (unless consumerBatchEnabled is true - see below).
Effectively, the debatching is moved from the container to the listener adapter and the adapter
creates the list that is passed to the listener.

A batch-enabled factory cannot be used with a multi-method listener.

Also starting with version 2.2. when receiving batched messages one-at-a-time, the last message
contains a boolean header set to true. This header can be obtained by adding the
@Header (AmgpHeaders.LAST_IN_BATCH) boolean last™ parameter to your listener method. The header is
mapped from MessageProperties.isLastInBatch(). In addition, AmqpHeaders.BATCH_SIZE is populated
with the size of the batch in every message fragment.

In addition, a new property consumerBatchEnabled has been added to the
SimpleMessagelListenerContainer. When this is true, the container will create a batch of messages, up
to batchSize; a partial batch is delivered if receiveTimeout elapses with no new messages arriving. If
a producer-created batch is received, it is debatched and added to the consumer-side batch;
therefore the actual number of messages delivered may exceed batchSize, which represents the
number of messages received from the broker. deBatchingEnabled must be true when
consumerBatchEnabled is true; the container factory will enforce this requirement.

79

public SimpleRabbitListenerContainerFactory consumerBatchContainerFactory() {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(rabbitConnectionFactory());
factory.setConsumerTagStrategy(consumerTagStrategy());
factory.setBatchListener(true); // configures a BatchMessagelistenerAdapter
factory.setBatchSize(2);
factory.setConsumerBatchEnabled(true);
return factory;

When using consumerBatchEnabled with @RabbitListener:

(queues = "batch.1", containerFactory =
"consumerBatchContainerFactory")
public void consumerBatch1(List<Message> amgpMessages) {
this.amgpMessagesReceived = amgpMessages;
this.batch1Latch.countDown();

(queues = "batch.2", containerFactory =
"consumerBatchContainerFactory")
public void consumerBatch2(List<org.springframework.messaging.Message<Invoice>>
messages) {
this.messagingMessagesReceived = messages;
this.batch2Latch.countDown();

(queues = "batch.3", containerFactory =
"consumerBatchContainerFactory")
public void consumerBatch3(List<Invoice> strings) {
this.batch3Strings = strings;
this.batch3Latch.countDown();

o the first is called with the raw, unconverted org.springframework.amgp.core.Message s received.

* the second is called with the org.springframework.messaging.Message<?> s with converted
payloads and mapped headers/properties.

* the third is called with the converted payloads, with no access to headers/properteis.

You can also add a Channel parameter, often used when using MANUAL ack mode. This is not very
useful with the third example because you don’t have access to the delivery_tag property.

80

Using Container Factories

Listener container factories were introduced to support the @RabbitListener and registering
containers with the RabbitListenerEndpointRegistry, as discussed in Programmatic Endpoint
Registration.

Starting with version 2.1, they can be used to create any listener container —even a container
without a listener (such as for use in Spring Integration). Of course, a listener must be added before
the container is started.

There are two ways to create such containers:

» Use a SimpleRabbitListenerEndpoint

¢ Add the listener after creation

The following example shows how to use a SimpleRabbitListenerEndpoint to create a listener
container:

public SimpleMessagelListenerContainer factoryCreatedContainerSimplelListener(
SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory) {
SimpleRabbitListenerEndpoint endpoint = new SimpleRabbitListenerEndpoint();
endpoint.setQueueNames("queue.1");
endpoint.setMessagelistener(message -> {

1

return rabbitListenerContainerFactory.createlListenerContainer(endpoint);

The following example shows how to add the listener after creation:

public SimpleMessagelistenerContainer factoryCreatedContainerNoListener(
SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory) {
SimpleMessagelistenerContainer container = rabbitlListenerContainerFactory
.createlListenerContainer();
container.setMessagelistener(message -> {

;i
container.setQueueNames("test.no.listener.yet");
return container;

In either case, the listener can also be a ChannelAwareMessagelListener, since it is now a sub-interface
of MessagelListener.

81

These techniques are useful if you wish to create several containers with similar properties or use a
pre-configured container factory such as the one provided by Spring Boot auto configuration or
both.

o Containers created this way are normal @Bean instances and are not registered in
the RabbitListenerEndpointRegistry.

Asynchronous @RabbitListener Return Types

Starting with version 2.1, @RabbitListener (and @RabbitHandler) methods can be specified with
asynchronous return types ListenableFuture<?> and Mono<?>, letting the reply be sent
asynchronously.

The listener container factory must be configured with AcknowledgeMode.MANUAL so
that the consumer thread will not ack the message; instead, the asynchronous
completion will ack or nack the message when the async operation completes.
When the async result is completed with an error, whether the message is
requeued or not depends on the exception type thrown, the container
configuration, and the container error handler. By default, the message will be
requeued, unless the container’s defaultRequeueRejected property is set to false (it

o is true by default). If the async vresult is completed with an
AmgpRejectAndDontRequeueException, the message will not be requeued. If the
container’s defaultRequeueRejected property is false, you can override that by
setting the future’s exception to a ImmediateRequeueException and the message will
be requeued. If some exception occurs within the listener method that prevents
creation of the async result object, you MUST catch that exception and return an
appropriate return object that will cause the message to be acknowledged or
requeued.

Threading and Asynchronous Consumers

A number of different threads are involved with asynchronous consumers.

Threads from the TaskExecutor configured in the SimpleMessagelListenerContainer are used to invoke
the Messagelistener when a new message is delivered by RabbitMQ Client. If not configured, a
SimpleAsyncTaskExecutor is used. If you use a pooled executor, you need to ensure the pool size is
sufficient to handle the configured concurrency. With the DirectMessagelistenerContainer, the
MessageListener is invoked directly on a RabbitMQ Client thread. In this case, the taskExecutor is
used for the task that monitors the consumers.

When using the default SimpleAsyncTaskExecutor, for the threads the listener is
invoked on, the listener container beanName is used in the threadNamePrefix. This is
useful for log analysis. We generally recommend always including the thread

o name in the logging appender configuration. When a TaskExecutor is specifically
provided through the taskExecutor property on the container, it is used as is,
without modification. It is recommended that you use a similar technique to name
the threads created by a custom TaskExecutor bean definition, to aid with thread
identification in log messages.

82

The Executor configured in the CachingConnectionFactory is passed into the RabbitMQ Client when
creating the connection, and its threads are used to deliver new messages to the listener container.
If this is not configured, the client uses an internal thread pool executor with a pool size of five.

With the DirectMessagelListenerContainer, you need to ensure that the connection

o factory is configured with a task executor that had sufficient threads to support
your desired concurrency across all listener containers that use that factory. The
default pool size is only five.

The RabbitMQ client uses a ThreadFactory to create threads for low-level I/O (socket) operations. To
modify this factory, you need to configure the underlying RabbitMQ ConnectionFactory, as discussed
in Configuring the Underlying Client Connection Factory.

Choosing a Container

Version 2.0 introduced the DirectMessagelistenerContainer (DMLC). Previously, only the
SimpleMessagelListenerContainer (SMLC) was available. The SMLC uses an internal queue and a
dedicated thread for each consumer. If a container is configured to listen to multiple queues, the
same consumer thread is used to process all the queues. Concurrency is controlled by
concurrentConsumers and other properties. As messages arrive from the RabbitMQ client, the client
thread hands them off to the consumer thread through the queue. This architecture was required
because, in early versions of the RabbitMQ client, multiple concurrent deliveries were not possible.
Newer versions of the client have a revised threading model and can now support concurrency.
This has allowed the introduction of the DMLC where the listener is now invoked directly on the
RabbitMQ Client thread. Its architecture is, therefore, actually “simpler” than the SMLC. However,
there are some limitations with this approach, and certain features of the SMLC are not available
with the DMLC. Also, concurrency is controlled by consumersPerQueue (and the client library’s thread
pool). The concurrentConsumers and associated properties are not available with this container.

The following features are available with the SMLC but not the DMLC:

* batchSize: With the SMLC, you can set this to control how many messages are delivered in a
transaction or to reduce the number of acks, but it may cause the number of duplicate
deliveries to increase after a failure. (The DMLC does have messagesPerAck, which you can use to
reduce the acks, the same as with batchSize and the SMLC, but it cannot be used with
transactions — each message is delivered and ack’d in a separate transaction).

» consumerBatchEnabled: enables batching of discrete messages in the consumer; see Message
Listener Container Configuration for more information.

* maxConcurrentConsumers and consumer scaling intervals or triggers — there is no auto-scaling in
the DMLC. It does, however, let you programmatically change the consumersPerQueue property
and the consumers are adjusted accordingly.

However, the DMLC has the following benefits over the SMLC:

* Adding and removing queues at runtime is more efficient. With the SMLC, the entire consumer
thread is restarted (all consumers canceled and re-created). With the DMLC, unaffected
consumers are not canceled.

* The context switch between the RabbitMQ Client thread and the consumer thread is avoided.

83

» Threads are shared across consumers rather than having a dedicated thread for each consumer
in the SMLC. However, see the IMPORTANT note about the connection factory configuration in
Threading and Asynchronous Consumers.

See Message Listener Container Configuration for information about which configuration
properties apply to each container.

Detecting Idle Asynchronous Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle — users
might want to take some action if no messages arrive for some period of time.

Starting with version 1.6, it is now possible to configure the listener container to publish a
ListenerContainerIdleEvent when some time passes with no message delivery. While the container
is idle, an event is published every idleEventInterval milliseconds.

To configure this feature, set idleEventInterval on the container. The following example shows how
to do so in XML and in Java (for both a SimpleMessagelListenerContainer and a
SimpleRabbitListenerContainerFactory):

84

<rabbit:listener-container connection-factory="connectionFactory"
idle-event-interval="60000"

>
<rabbit:listener id="container1" queue-names="foo" ref="myListener" method=
"handle" />
</rabbit:listener-container>

public SimpleMessagelListenerContainer(ConnectionFactory connectionFactory) {
SimpleMessagelistenerContainer container = new SimpleMessagelistenerContainer
(connectionFactory);

container.setIdleEventInterval(60000L);

return container;

public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {
SimpleRabbitListenerContainerFactory factory = new

SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(rabbitConnectionFactory());
factory.setIdleEventInterval(60000L);

return factory;

In each of these cases, an event is published once per minute while the container is idle.

Event Consumption

You can capture idle events by implementing ApplicationListener —either a general listener, or
one narrowed to only receive this specific event. You can also use @EventListener, introduced in
Spring Framework 4.2.

The following example combines the @RabbitListener and @EventListener into a single class. You
need to understand that the application listener gets events for all containers, so you may need to
check the listener ID if you want to take specific action based on which container is idle. You can
also use the @EventListener condition for this purpose.

The events have four properties:

e source: The listener container instance

85

¢ id: The listener ID (or container bean name)
* idleTime: The time the container had been idle when the event was published
» queueNames: The names of the queue(s) that the container listens to

The following example shows how to create listeners by using both the @RabbitListener and the
@EventListener annotations:

public class Listener {

(id="someId", queues="#{queue.name}")
public String listen(String foo) {
return foo.toUpperCase();

(condition = "event.listenerId == 'someId'")
public void onApplicationEvent(ListenerContainerIdleEvent event) {

o Event listeners see events for all containers. Consequently, in the preceding
example, we narrow the events received based on the listener ID.

If you wish to use the idle event to stop the lister container, you should not call

° container.stop() on the thread that calls the listener. Doing so always causes
delays and unnecessary log messages. Instead, you should hand off the event to a
different thread that can then stop the container.

Monitoring Listener Performance

Starting with version 2.2, the listener containers will automatically create and update Micrometer
Timer s for the listener, if Micrometer is detected on the class path, and a MeterRegistry is present in
the application context. The timers can be disabled by setting the container property
micrometerEnabled to false.

Two timers are maintained - one for successful calls to the listener and one for failures. With a
simple MessagelListener, there is a pair of timers for each configured queue.

The timers are named spring.rabbitmq.listener and have the following tags:

e listenerId: (listener id or container bean name)

* queue : (the queue name for a simple listener or list of configured queue names when
consumerBatchEnabled is true - because a batch may contain messages from multiple queues)

e result: success or failure

86

» exception: none or ListenerExecutionFailedException

You can add additional tags using the micrometerTags container property.

4.1.7. Containers and Broker-Named queues

While it is preferable to use AnonymousQueue instances as auto-delete queues, starting with version
2.1, you can use broker named queues with listener containers. The following example shows how
to do so:

public Queue queue() {

return new Queue("", false, true, true);

public SimpleMessagelListenerContainer container() {
SimpleMessagelListenerContainer container = new SimpleMessagelistenerContainer

(cf());
container.setQueues(queue());
container.setMessagelListener(m -> {

)
container.setMissingQueuesFatal(false);
return container;

Notice the empty String for the name. When the RabbitAdmin declares queues, it updates the
Queue.actualName property with the name returned by the broker. You must use setQueues() when
you configure the container for this to work, so that the container can access the declared name at
runtime. Just setting the names is insufficient.

e You cannot add broker-named queues to the containers while they are running.

When a connection is reset and a new one is established, the new queue gets a
new name. Since there is a race condition between the container restarting and

o the queue being re-declared, it is important to set the container’s
missingQueuesFatal property to false, since the container is likely to initially try to
reconnect to the old queue.

4.1.8. Message Converters

The AmgpTemplate also defines several methods for sending and receiving messages that delegate to
a MessageConverter. The MessageConverter provides a single method for each direction: one for
converting to a Message and another for converting from a Message. Notice that, when converting to
a Message, you can also provide properties in addition to the object. The object parameter typically

87

corresponds to the Message body. The following listing shows the MessageConverter interface
definition:

public interface MessageConverter {

Message toMessage(Object object, MessageProperties messageProperties)
throws MessageConversionException;

Object fromMessage(Message message) throws MessageConversionException;

The relevant Message-sending methods on the AmgpTemplate are simpler than the methods we
discussed previously, because they do not require the Message instance. Instead, the
MessageConverter is responsible for “creating” each Message by converting the provided object to the
byte array for the Message body and then adding any provided MessageProperties. The following
listing shows the definitions of the various methods:

void convertAndSend(Object message) throws AmgpException;
void convertAndSend(String routingKey, Object message) throws AmgpException;

void convertAndSend(String exchange, String routingKey, Object message)
throws AmqpException;

void convertAndSend(Object message, MessagePostProcessor messagePostProcessor)
throws AmgpException;

void convertAndSend(String routingKey, Object message,
MessagePostProcessor messagePostProcessor) throws AmgpException;

void convertAndSend(String exchange, String routingKey, Object message,
MessagePostProcessor messagePostProcessor) throws AmgpException;

On the receiving side, there are only two methods: one that accepts the queue name and one that
relies on the template’s “queue” property having been set. The following listing shows the
definitions of the two methods:

Object receiveAndConvert() throws AmgpException;

Object receiveAndConvert(String queueName) throws AmgpException;

88

o The MessagelistenerAdapter mentioned in Asynchronous Consumer also uses a
MessageConverter.

SimpleMessageConverter

The default implementation of the MessageConverter strategy is called SimpleMessageConverter. This
is the converter that is used by an instance of RabbitTemplate if you do not explicitly configure an
alternative. It handles text-based content, serialized Java objects, and byte arrays.

Converting From a Message

If the content type of the input Message begins with "text" (for example, "text/plain"), it also checks
for the content-encoding property to determine the charset to be used when converting the Message
body byte array to a Java String. If no content-encoding property had been set on the input Message,
it uses the UTF-8 charset by default. If you need to override that default setting, you can configure
an instance of SimpleMessageConverter, set its defaultCharset property, and inject that into a
RabbitTemplate instance.

If the content-type property value of the input Message is set to "application/x-java-serialized-object",
the SimpleMessageConverter tries to deserialize (rehydrate) the byte array into a Java object. While
that might be useful for simple prototyping, we do not recommend relying on Java serialization,
since it leads to tight coupling between the producer and the consumer. Of course, it also rules out
usage of non-Java systems on either side. With AMQP being a wire-level protocol, it would be
unfortunate to lose much of that advantage with such restrictions. In the next two sections, we
explore some alternatives for passing rich domain object content without relying on Java
serialization.

For all other content-types, the SimpleMessageConverter returns the Message body content directly as
a byte array.

See Java Deserialization for important information.

Converting To a Message

When converting to a Message from an arbitrary Java Object, the SimpleMessageConverter likewise
deals with byte arrays, strings, and serializable instances. It converts each of these to bytes (in the
case of byte arrays, there is nothing to convert), and it ses the content-type property accordingly. If
the Object to be converted does not match one of those types, the Message body is null.

SerializerMessageConverter

This converter is similar to the SimpleMessageConverter except that it can be configured with other
Spring Framework Serializer and Deserializer implementations for application/x-java-
serialized-object conversions.

See Java Deserialization for important information.

Jackson2JsonMessageConverter

This section covers using the Jackson2JsonMessageConverter to convert to and from a Message. It has

89

the following sections:

* Converting to a Message

» Converting from a Message

Converting to a Message

As mentioned in the previous section, relying on Java serialization is generally not recommended.
One rather common alternative that is more flexible and portable across different languages and
platforms is JSON (JavaScript Object Notation). The converter can be configured on any
RabbitTemplate instance to override its usage of the SimpleMessageConverter default. The
Jackson2JsonMessageConverter uses the com.fasterxml.jackson 2.x library. The following example
configures a Jackson2JsonMessageConverter:

<bean class="org.springframework.amqgp.rabbit.core.RabbitTemplate">
<property name="connectionFactory" ref="rabbitConnectionFactory"/>
<property name="messageConverter">
<bean class=
"org.springframework.amgp.support.converter.Jackson2JsonMessageConverter">

<!-- if necessary, override the Default(ClassMapper -->
<property name="classMapper" ref="customClassMapper"/>
</bean>
</property>

</bean>

As shown above, Jackson2JsonMessageConverter uses a DefaultClassMapper by default. Type
information is added to (and retrieved from) MessageProperties. If an inbound message does not
contain type information in MessageProperties, but you know the expected type, you can configure
a static type by using the defaultType property, as the following example shows:

<bean id="jsonConverterWithDefaultType"
class="o.s.amqp.support.converter.Jackson2JsonMessageConverter">
<property name="classMapper">
<bean class="
org.springframework.amgp.support.converter.DefaultClassMapper">
<property name="defaultType" value="thing1.PurchaseOrder"/>
</bean>
</property>
</bean>

In addition, you can provide custom mappings from the value in the Typeld header. The following
example shows how to do so:

90

public Jackson2]sonMessageConverter jsonMessageConverter() {
Jackson2JsonMessageConverter jsonConverter = new Jackson2]sonMessageConverter

OF
jsonConverter.setClassMapper(classMapper());
return jsonConverter;

public DefaultClassMapper classMapper() {
DefaultClassMapper classMapper = new DefaultClassMapper();
Map<String, Class<?>> idClassMapping = new HashMap<>();
idClassMapping.put("thing1", Thingl.class);
idClassMapping.put("thing2", Thing2.class);
classMapper.setIdClassMapping(idClassMapping);
return classMapper;

Now, if the sending system sets the header to thing1, the converter creates a Thing1 object, and so
on. See the Receiving JSON from Non-Spring Applications sample application for a complete
discussion about converting messages from non-Spring applications.

Converting from a Message

Inbound messages are converted to objects according to the type information added to headers by
the sending system.

In versions prior to 1.6, if type information is not present, conversion would fail. Starting with
version 1.6, if type information is missing, the converter converts the JSON by using Jackson
defaults (usually a map).

Also, starting with version 1.6, when you use @RabbitListener annotations (on methods), the
inferred type information is added to the MessageProperties. This lets the converter convert to the
argument type of the target method. This only applies if there is one parameter with no annotations
or a single parameter with the @Payload annotation. Parameters of type Message are ignored during
the analysis.

91

92

By default, the inferred type information will override the inbound Typeld and
related headers created by the sending system. This lets the receiving system
automatically convert to a different domain object. This applies only if the
parameter type is concrete (not abstract or an interface) or it is from the java.util
package. In all other cases, the Typeld and related headers is used. There are cases
where you might wish to override the default behavior and always use the Typeld
information. For example, suppose you have a @RabbitListener that takes a Thing1
argument but the message contains a Thing2 that is a subclass of Thing1 (which is
concrete). The inferred type would be incorrect. To handle this situation, set the
TypePrecedence property on the Jackson2JsonMessageConverter to TYPE_ID instead of
the default INFERRED. (The property 1is actually on the converter’s
Defaultlackson2JavaTypeMapper, but a setter is provided on the converter for
convenience.) If you inject a custom type mapper, you should set the property on
the mapper instead.

When converting from the Message, an incoming
MessageProperties.getContentType() must be JSON-compliant
(contentType.contains("json") is used to check). Starting with version 2.2,
application/json is assumed if there is no contentType property, or it has the
default value application/octet-stream. To revert to the previous behavior (return
an unconverted byte[]), set the converter’s assumeSupportedContentType property to
false. If the content type is not supported, a WARN log message Could not convert
incoming message with content-type [::+], is emitted and message.getBody() is
returned as is—as a byte[]. So, to meet the Jackson2]sonMessageConverter
requirements on the consumer side, the producer must add the contentType
message property — for example, as application/json or text/x-json or by using
the Jackson2]sonMessageConverter, which sets the header automatically. The
following listing shows a number of converter calls:

public void thing1(Thing1 thing1) {...}

public void thing1(Thing1 thingT, ("amqp_consumerQueue") String
queue) {...}

public void thing1(Thing1 thing1, o.s.amqp.core.Message message) {...}
public void thing1(Thing1 thing1, o.s.messaging.Message<Foo> message) {...}
public void thing1(Thing1 thing1, String bar) {...}

public void thing1(Thing1 thing1, o.s.messaging.Message<?> message) {...}

In the first four cases in the preceding listing, the converter tries to convert to the Thing1 type. The
fifth example is invalid because we cannot determine which argument should receive the message
payload. With the sixth example, the Jackson defaults apply due to the generic type being a
WildcardType.

You can, however, create a custom converter and use the targetMethod message property to decide
which type to convert the JSON to.

This type inference can only be achieved when the @RabbitListener annotation is
declared at the method level. With class-level @RabbitListener, the converted type

o is used to select which @RabbitHandler method to invoke. For this reason, the
infrastructure provides the targetObject message property, which you can use in a
custom converter to determine the type.

Starting with version 1.6.11, Jackson2JsonMessageConverter and, therefore,
DefaultJackson2JavaTypeMapper (DefaultClassMapper) provide the trustedPackages

o option to overcome Serialization Gadgets vulnerability. By default and for
backward compatibility, the Jackson2]sonMessageConverter trusts all
packages — that is, it uses * for the option.

Deserializing Abstract Classes

Prior to version 2.2.8, if the inferred type of a @RabbitListener was an abstract class (including
interfaces), the converter would fall back to looking for type information in the headers and, if
present, used that information; if that was not present, it would try to create the abstract class. This
caused a problem when a custom ObjectMapper that is configured with a custom deserializer to
handle the abstract class is used, but the incoming message has invalid type headers.

93

https://pivotal.io/security/cve-2017-4995

Starting with version 2.2.8, the previous behavior is retained by default. If you have such a custom
ObjectMapper and you want to ignore type headers, and always use the inferred type for conversion,
set the alwaysConvertToInferredType to true. This is needed for backwards compatibility and to
avoid the overhead of an attempted conversion when it would fail (with a standard ObjectMapper).

Using Spring Data Projection Interfaces

Starting with version 2.2, you can convert JSON to a Spring Data Projection interface instead of a
concrete type. This allows very selective, and low-coupled bindings to data, including the lookup of
values from multiple places inside the JSON document. For example the following interface can be
defined as message payload type:

interface SomeSample {

({ "$.username", "$.user.name" })
String getUsername();

(queues = "projection")
public void projection(SomeSample in) {
String username = in.getUsername();

Accessor methods will be used to lookup the property name as field in the received JSON document
by default. The @JsonPath expression allows customization of the value lookup, and even to define
multiple JSON path expressions, to lookup values from multiple places until an expression returns
an actual value.

To enable this feature, set the useProjectionForInterfaces to true on the message converter. You
must also add spring-data:spring-data-commons and com.jayway.jsonpath:json-path to the class path.

When used as the parameter to a @RabbitListener method, the interface type is automatically
passed to the converter as normal.

Converting From a Message With RabbitTemplate

As mentioned earlier, type information is conveyed in message headers to assist the converter
when converting from a message. This works fine in most cases. However, when using generic
types, it can only convert simple objects and known “container” objects (lists, arrays, and maps).
Starting with version 2.0, the Jackson2JsonMessageConverter implements SmartMessageConverter,
which lets it be used with the new RabbitTemplate methods that take a ParameterizedTypeReference
argument. This allows conversion of complex generic types, as shown in the following example:

94

Thing1<Thing2<Cat, Hat>> thingl =
rabbitTemplate.receiveAndConvert(new ParameterizedTypeReference<Thing1<Thing2
<Cat, Hat>>>() { });

Starting with version 2.1, the Abstract]sonMessageConverter class has been
o removed. It is no longer the base class for Jackson2JsonMessageConverter. It has
been replaced by AbstractJackson2MessageConverter.

MarshallingMessageConverter

Yet another option is the MarshallingMessageConverter. It delegates to the Spring OXM library’s
implementations of the Marshaller and Unmarshaller strategy interfaces. You can read more about
that library here. In terms of configuration, it is most common to provide only the constructor
argument, since most implementations of Marshaller also implement Unmarshaller. The following
example shows how to configure a MarshallingMessageConverter:

<bean class="org.springframework.amgp.rabbit.core.RabbitTemplate">
<property name="connectionFactory" ref="rabbitConnectionFactory"/>
<property name="messageConverter">
<bean class=
"org.springframework.amgp.support.converter.MarshallingMessageConverter">
<constructor-arg ref="someImplemenationOfMarshallerAndUnmarshaller"/>
</bean>
</property>
</bean>

Jackson2XmlMessageConverter

This class was introduced in version 2.1 and can be used to convert messages from and to XML.

Both Jackson2XmlMessageConverter and Jackson2]sonMessageConverter have the same base class:
AbstractJackson2MessageConverter.

o The AbstractJackson2MessageConverter class is introduced to replace a removed
class: AbstractJsonMessageConverter.

The Jackson2XmlMessageConverter uses the com.fasterxml.jackson 2.x library.

You can use it the same way as Jackson2JsonMessageConverter, except it supports XML instead of
JSON. The following example configures a Jackson2JsonMessageConverter:

95

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html

<bean id="xmlConverterWithDefaultType"
class="org.springframework.amqp.support.converter.Jackson2XmlMessageConverter

">
<property name="classMapper">
<bean class="org.springframework.amgp.support.converter.DefaultClassMapper">
<property name="defaultType" value="foo.PurchaseOrder"/>
</bean>
</property>
</bean>

See Jackson2]JsonMessageConverter for more information.

Starting with version 2.2, application/xml is assumed if there is no contentType

o property, or it has the default value application/octet-stream. To revert to the
previous behavior (return an unconverted byte[]), set the converter’s
assumeSupportedContentType property to false.

ContentTypeDelegatingMessageConverter

This class was introduced in version 1.4.2 and allows delegation to a specific MessageConverter based
on the content type property in the MessageProperties. By default, it delegates to a
SimpleMessageConverter if there is no contentType property or there is a value that matches none of
the configured converters. The following example configures a
ContentTypeDelegatingMessageConverter:

<bean id="contentTypeConverter" class="ContentTypeDelegatingMessageConverter">
<property name="delegates">
<map>
<entry key="application/json" value-ref="jsonMessageConverter" />
<entry key="application/xml" value-ref="xmlMessageConverter" />
</map>
</property>
</bean>

Java Deserialization

This section covers how to deserialize Java objects.

96

There is a possible vulnerability when deserializing java objects from untrusted
sources.

If you accept messages from untrusted sources with a content-type of
application/x-java-serialized-object, you should consider configuring which
packages and classes are allowed to be deserialized. This applies to both the
SimpleMessageConverter and SerializerMessageConverter when it is configured to
use a DefaultDeserializer either implicitly or via configuration.

o By default, the allowed list is empty, meaning all classes are deserialized.
You can set a list of patterns, such as thing1., thingl.thing2.Cat or .MySafe(lass.

The patterns are checked in order until a match is found. If there is no match, a
SecurityException is thrown.

You can set the patterns using the allowedlListPatterns property on these
converters.

Message Properties Converters

The MessagePropertiesConverter strategy interface is used to convert between the Rabbit Client
BasicProperties and Spring AMQP MessageProperties. The default implementation
(DefaultMessagePropertiesConverter) is usually sufficient for most purposes, but you can implement
your own if needed. The default properties converter converts BasicProperties elements of type
LongString to String instances when the size is not greater than 1024 bytes. Larger LongString
instances are not converted (see the next paragraph). This limit can be overridden with a
constructor argument.

Starting with version 1.6, headers longer than the long string limit (default: 1024) are now left as
LongString instances by default by the DefaultMessagePropertiesConverter. You can access the
contents through the getBytes[], toString(), or getStream() methods.

Previously, the DefaultMessagePropertiesConverter “converted” such headers to a DatalnputStream
(actually it just referenced the LongString instance’s DatalnputStream). On output, this header was
not converted (except to a String—for example, java.io.DatalnputStream@1d057a39 by calling
toString() on the stream).

Large incoming LongString headers are now correctly “converted” on output, too (by default).

A new constructor is provided to let you configure the converter to work as before. The following
listing shows the Javadoc comment and declaration of the method:

97

* Construct an instance where LongStrings will be returned

* unconverted or as a java.io.DatalnputStream when longer than this limit.
* Use this constructor with "true' to restore pre-1.6 behavior.

* @param longStringLimit the Timit.

* @param convertlLonglongStrings LongString when false,

* DatalnputStream when true.

* @since 1.6

*/

public DefaultMessagePropertiesConverter(int longStringlLimit, boolean
convertLonglongStrings) { ... }

Also starting with version 1.6, a new property called correlationIdString has been added to
MessageProperties. Previously, when converting to and from BasicProperties used by the RabbitMQ
client, an unnecessary byte[] <> String conversion was performed because
MessageProperties.correlationId is a byte[], but BasicProperties uses a String. (Ultimately, the
RabbitMQ client uses UTF-8 to convert the String to bytes to put in the protocol message).

To provide maximum backwards compatibility, a new property called correlationIdPolicy has been
added to the DefaultMessagePropertiesConverter. This takes a
DefaultMessagePropertiesConverter.CorrelationIdPolicy enum argument. By default it is set to
BYTES, which replicates the previous behavior.

For inbound messages:

» STRING: Only the correlationIdString property is mapped
* BYTES: Only the correlationId property is mapped
* BOTH: Both properties are mapped

For outbound messages:

» STRING: Only the correlationIdString property is mapped
* BYTES: Only the correlationId property is mapped

* BOTH: Both properties are considered, with the String property taking precedence

Also starting with version 1.6, the inbound deliveryMode property is no longer mapped to
MessageProperties.deliveryMode. It is mapped to MessageProperties.receivedDeliveryMode instead.
Also, the inbound userId property is no longer mapped to MessageProperties.userId. It is mapped to
MessageProperties.receivedUserId instead. These changes are to avoid unexpected propagation of
these properties if the same MessageProperties object is used for an outbound message.

Starting with version 2.2, the DefaultMessagePropertiesConverter converts any custom headers with
values of type (lass<?> using getName() instead of toString(); this avoids consuming application
having to parse the class name out of the toString() representation. For rolling upgrades, you may
need to change your consumers to understand both formats until all producers are upgraded.

98

4.1.9. Modifying Messages - Compression and More

A number of extension points exist. They let you perform some processing on a message, either
before it is sent to RabbitMQ or immediately after it is received.

As can be seen in Message Converters, one such extension point is in the AmgpTemplate
convertAndReceive operations, where you can provide a MessagePostProcessor. For example, after
your POJO has been converted, the MessagePostProcessor lets you set custom headers or properties
on the Message.

Starting with version 1.4.2, additional extension points have been added to the RabbitTemplate -
setBeforePublishPostProcessors() and setAfterReceivePostProcessors(). The first enables a post
processor to run immediately before sending to RabbitMQ. When using batching (see Batching),
this is invoked after the batch is assembled and before the batch is sent. The second is invoked
immediately after a message is received.

These extension points are used for such features as compression and, for this purpose, several
MessagePostProcessor implementations are provided. GZipPostProcessor, ZipPostProcessor and
DeflaterPostProcessor compress messages before sending, and GUnzipPostProcessor,
UnzipPostProcessor and InflaterPostProcessor decompress received messages.

Starting with version 2.1.5, the GZipPostProcessor can be configured with the
copyProperties = true option to make a copy of the original message properties. By
default, these properties are reused for performance reasons, and modified with

o compression content encoding and the optional
MessageProperties.SPRING_AUTO_DECOMPRESS header. If you retain a reference to the
original outbound message, its properties will change as well. So, if your
application retains a copy of an outbound message with these message post
processors, consider turning the copyProperties option on.

Starting with version 2.2.12, you can configure the delimiter that the compressing
post processors use between content encoding elements. With versions 2.2.11 and

before, this was hard-coded as :, it is now set to , * by default. The decompressors
o will work with both delimiters. However, if you publish messages with 2.3 or

later and consume with 2.2.11 or earlier, you MUST set the ‘encodingDelimiter
property on the compressor(s) to :. When your consumers are upgraded to 2.2.11
or later, you can revert to the default of °, ".

Similarly, the SimpleMessagelistenerContainer also has a setAfterReceivePostProcessors() method,
letting the decompression be performed after messages are received by the container.

Starting with version 2.1.4, addBeforePublishPostProcessors() and addAfterReceivePostProcessors()
have been added to the RabbitTemplate to allow appending new post processors to the list of before
publish and after receive post processors respectively. Also there are methods provided to remove
the post processors. Similarly, AbstractMessagelistenerContainer also has
addAfterReceivePostProcessors() and removeAfterReceivePostProcessor() methods added. See the
Javadoc of RabbitTemplate and AbstractMessagelListenerContainer for more detail.

99

4.1.10. Request/Reply Messaging

The AmgpTemplate also provides a variety of sendAndReceive methods that accept the same argument
options that were described earlier for the one-way send operations (exchange, routingKey, and
Message). Those methods are quite useful for request-reply scenarios, since they handle the
configuration of the necessary reply-to property before sending and can listen for the reply
message on an exclusive queue that is created internally for that purpose.

Similar request-reply methods are also available where the MessageConverter is applied to both the
request and reply. Those methods are named convertSendAndReceive. See the Javadoc of
AmgpTemplate for more detail.

Starting with version 1.5.0, each of the sendAndReceive method variants has an overloaded version
that takes CorrelationData. Together with a properly configured connection factory, this enables the
receipt of publisher confirms for the send side of the operation. See Correlated Publisher Confirms
and Returns and the Javadoc for RabbitOperations for more information.

Starting with version 2.0, there are variants of these methods (convertSendAndReceiveAsType) that
take an additional ParameterizedTypeReference argument to convert complex returned types. The
template must be configured with a SmartMessageConverter. See Converting From a Message With
RabbitTemplate for more information.

Starting with version 2.1, you can configure the RabbitTemplate with the nolLocalReplyConsumer
option to control a nolLocal flag for reply consumers. This is false by default.

Reply Timeout

By default, the send and receive methods timeout after five seconds and return null. You can
modify this behavior by setting the replyTimeout property. Starting with version 1.5, if you set the
mandatory property to true (or the mandatory-expression evaluates to true for a particular message),
if the message cannot be delivered to a queue, an AmgpMessageReturnedException is thrown. This
exception has returnedMessage, replyCode, and replyText properties, as well as the exchange and
routingKey used for the send.

This feature uses publisher returns. You can enable it by setting publisherReturns

o to true on the CachingConnectionFactory (see Publisher Confirms and Returns).
Also, you must not have registered your own ReturnCallback with the
RabbitTemplate.

Starting with version 2.1.2, a replyTimedOut method has been added, letting subclasses be informed
of the timeout so that they can clean up any retained state.

Starting with versions 2.0.11 and 2.1.3, when you use the default
DirectReplyToMessagelListenerContainer, you can add an error handler by setting the template’s
replyErrorHandler property. This error handler is invoked for any failed deliveries, such as late
replies and messages received without a correlation header. The exception passed in is a
ListenerExecutionFailedException, which has a failedMessage property.

100

https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/AmqpTemplate.html
https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/AmqpTemplate.html
https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/rabbit/core/RabbitOperations.html
https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/rabbit/core/RabbitOperations.html

RabbitMQ Direct reply-to

Starting with version 3.4.0, the RabbitMQ server supports direct reply-to. This
eliminates the main reason for a fixed reply queue (to avoid the need to create a
temporary queue for each request). Starting with Spring AMQP version 1.4.1 direct
reply-to is used by default (if supported by the server) instead of creating

o temporary reply queues. When no replyQueue is provided (or it is set with a name
of amq.rabbitmg.reply-to), the RabbitTemplate automatically detects whether direct
reply-to is supported and either uses it or falls back to using a temporary reply
queue. When using direct reply-to, a reply-listener is not required and should not
be configured.

Reply listeners are still supported with named queues (other than amq.rabbitmq.reply-to), allowing
control of reply concurrency and so on.

Starting with version 1.6, if you wish to use a temporary, exclusive, auto-delete queue for each
reply, set the useTemporaryReplyQueues property to true. This property is ignored if you set a
replyAddress.

You can change the criteria that dictate whether to use direct reply-to by subclassing RabbitTemplate
and overriding useDirectReplyTo() to check different criteria. The method is called once only, when
the first request is sent.

Prior to version 2.0, the RabbitTemplate created a new consumer for each request and canceled the
consumer when the reply was received (or timed out). Now the template uses a
DirectReplyToMessagelListenerContainer instead, letting the consumers be reused. The template still
takes care of correlating the replies, so there is no danger of a late reply going to a different sender.
If you want to revert to the previous behavior, set the useDirectReplyToContainer (direct-reply-to-
container when using XML configuration) property to false.

The AsyncRabbitTemplate has no such option. It always used a DirectReplyToContainer for replies
when direct reply-to is used.

Message Correlation With A Reply Queue

When using a fixed reply queue (other than amq.rabbitmg.reply-to), you must provide correlation
data so that replies can be correlated to requests. See RabbitMQ Remote Procedure Call (RPC). By
default, the standard correlationId property is used to hold the correlation data. However, if you
wish to use a custom property to hold correlation data, you can set the correlation-key attribute on
the <rabbit-template/>. Explicitly setting the attribute to correlationId is the same as omitting the
attribute. The client and server must use the same header for correlation data.

Spring AMQP version 1.1 used a custom property called spring_reply_correlation

o for this data. If you wish to revert to this behavior with the current version
(perhaps to maintain compatibility with another application using 1.1), you must
set the attribute to spring_reply_correlation.

By default, the template generates its own correlation ID (ignoring any user-supplied value). If you
wish to use your own correlation ID, set the RabbitTemplate instance’s userCorrelationId property to

101

https://www.rabbitmq.com/direct-reply-to.html
https://www.rabbitmq.com/tutorials/tutorial-six-java.html

true.

o The correlation ID must be unique to avoid the possibility of a wrong reply being
returned for a request.

Reply Listener Container

When using RabbitMQ versions prior to 3.4.0, a new temporary queue is used for each reply.
However, a single reply queue can be configured on the template, which can be more efficient and
also lets you set arguments on that queue. In this case, however, you must also provide a <reply-
listener/> sub element. This element provides a listener container for the reply queue, with the
template being the listener. All of the Message Listener Container Configuration attributes allowed
on a <listener-container/> are allowed on the element, except for connection-factory and message-
converter, which are inherited from the template’s configuration.

If you run multiple instances of your application or use multiple RabbitTemplate

o instances, you MUST use a unique reply queue for each. RabbitMQ has no ability
to select messages from a queue, so, if they all use the same queue, each instance
would compete for replies and not necessarily receive their own.

The following example defines a rabbit template with a connection factory:

<rabbit:template id="amgpTemplate"
connection-factory="connectionFactory"
reply-queue="replies"
reply-address="replyEx/routeReply">
<rabbit:reply-listener/>
</rabbit:template>

While the container and template share a connection factory, they do not share a channel.
Therefore, requests and replies are not performed within the same transaction (if transactional).

Prior to version 1.5.0, the reply-address attribute was not available. Replies were
always routed by using the default exchange and the reply-queue name as the
routing key. This is still the default, but you can now specify the new reply-address
attribute. The reply-address can contain an address with the form

o <exchange>/<routingKey> and the reply is routed to the specified exchange and
routed to a queue bound with the routing key. The reply-address has precedence
over reply-queue. When only reply-address is in use, the <reply-listener> must be
configured as a separate <listener-container> component. The reply-address and
reply-queue (or queues attribute on the <listener-container>) must refer to the
same queue logically.

With this configuration, a SimplelListenerContainer is used to receive the replies, with the

RabbitTemplate being the Messagelistener. When defining a template with the <rabbit:template/>
namespace element, as shown in the preceding example, the parser defines the container and wires

102

in the template as the listener.

When the template does not use a fixed replyQueue (or is using direct reply-to — see
0 RabbitMQ Direct reply-to), a listener container is not needed. Direct reply-to is the
preferred mechanism when using RabbitMQ 3.4.0 or later.

If you define your RabbitTemplate as a <bean/> or use an @Configuration class to define it as an @Bean
or when you create the template programmatically, you need to define and wire up the reply
listener container yourself. If you fail to do this, the template never receives the replies and
eventually times out and returns null as the reply to a call to a sendAndReceive method.

Starting with version 1.5, the RabbitTemplate detects if it has been configured as a MessagelListener to
receive replies. If not, attempts to send and receive messages with a reply address fail with an
I1legalStateException (because the replies are never received).

Further, if a simple replyAddress (queue name) is used, the reply listener container verifies that it is
listening to a queue with the same name. This check cannot be performed if the reply address is an
exchange and routing key and a debug log message is written.

When wiring the reply listener and template yourself, it is important to ensure
o that the template’s replyAddress and the container’s queues (or queueNames)
properties refer to the same queue. The template inserts the reply address into the

outbound message replyTo property.

The following listing shows examples of how to manually wire up the beans:

103

<bean id="amgpTemplate'

' class="

org.springframework.amgp.rabbit.core.RabbitTemplate">
<constructor-arg ref="connectionFactory" />
<property name="exchange" value="foo.exchange" />
<property name="routingKey" value="foo" />
<property name="replyQueue" ref="replyQ" />
<property name="replyTimeout" value="600000" />
<property name="useDirectReplyToContainer" value="false" />

</bean>

<bean class=

"org.springframework.amqp.rabbit.listener.SimpleMessagelListenerContainer">
<constructor-arg ref="connectionFactory" />
<property name="queues" ref="replyQ" />
<property name="messagelistener" ref="amgpTemplate" />

</bean>

<rabbit:queue id="replyQ" name="my.reply.queue" />

@Bean

public RabbitTemplate amgpTemplate() {

RabbitTemplate

rabbitTemplate.

rabbitTemplate

rabbitTemplate = new RabbitTemplate(connectionFactory());
setMessageConverter(msgConv());

.setReplyAddress(replyQueue().getName());
rabbitTemplate.
.setUseDirectReplyToContainer(false);

setReplyTimeout(60000);

rabbitTemplate

return rabbitTemplate;
}
@Bean

public SimpleMessagelListenerContainer replylListenerContainer() {
SimpleMessagelistenerContainer container = new
SimpleMessagelistenerContainer();
container.setConnectionFactory(connectionFactory());
container.setQueues(replyQueue());
container.setMessagelListener(amgpTemplate());
return container;

}

@Bean

public Queue replyQueue() {
return new Queue("my.reply.queue");

}

A complete example of a RabbitTemplate wired with a fixed reply queue, together with a “remote”
listener container that handles the request and returns the reply is shown in this test case.

104

https://github.com/spring-projects/spring-amqp/tree/master/spring-rabbit/src/test/java/org/springframework/amqp/rabbit/listener/JavaConfigFixedReplyQueueTests.java

o When the reply times out (replyTimeout), the sendAndReceive() methods return null.

Prior to version 1.3.6, late replies for timed out messages were only logged. Now, if a late reply is
received, it is rejected (the template throws an AmgpRejectAndDontRequeueException). If the reply
queue is configured to send rejected messages to a dead letter exchange, the reply can be retrieved
for later analysis. To do so, bind a queue to the configured dead letter exchange with a routing key
equal to the reply queue’s name.

See the RabbitMQ Dead Letter Documentation for more information about configuring dead
lettering. You can also take a look at the FixedReplyQueueDeadLetterTests test case for an example.

Async Rabbit Template

Version 1.6 introduced the AsyncRabbitTemplate. This has similar sendAndReceive (and
convertSendAndReceive) methods to those on the AmgpTemplate. However, instead of blocking, they
return a ListenableFuture.

The sendAndReceive methods return a RabbitMessageFuture. The convertSendAndReceive methods
return a RabbitConverterFuture.

You can either synchronously retrieve the result later, by invoking get() on the future, or you can
register a callback that is called asynchronously with the result. The following listing shows both
approaches:

105

https://www.rabbitmq.com/dlx.html

private AsyncRabbitTemplate template;

public void doSomeWorkAndGetResultLater() {

ListenableFuture<String> future = this.template.convertSendAndReceive("foo");
// do some more work
String reply = null;

try {
reply = future.get();

}

catch (ExecutionException e) {

}

}

public void doSomeWorkAndGetResultAsync() {

RabbitConverterFuture<String> future = this.template.convertSendAndReceive(
I|f00|l);
future.addCallback(new ListenableFutureCallback<String>() {

public void onSuccess(String result) {

}

public void onFailure(Throwable ex) {

}
1)

106

If mandatory is set and the message cannot be delivered, the future throws an ExecutionException
with a cause of AmgpMessageReturnedException, which encapsulates the returned message and
information about the return.

If enableConfirms 1is set, the future has a property called confirm, which is itself a
ListenableFuture<Boolean> with true indicating a successful publish. If the confirm future is false,
the RabbitFuture has a further property called nackCause, which contains the reason for the failure,
if available.

o The publisher confirm is discarded if it is received after the reply, since the reply
implies a successful publish.

You can set the receiveTimeout property on the template to time out replies (it defaults to 30000 - 30
seconds). If a timeout occurs, the future is completed with an AmgpReplyTimeoutException.

The template implements SmartLifecycle. Stopping the template while there are pending replies
causes the pending Future instances to be canceled.

Starting with version 2.0, the asynchronous template now supports direct reply-to instead of a
configured reply queue. To enable this feature, use one of the following constructors:

public AsyncRabbitTemplate(ConnectionFactory connectionFactory, String exchange,
String routingKey)

public AsyncRabbitTemplate(RabbitTemplate template)

See RabbitMQ Direct reply-to to use direct reply-to with the synchronous RabbitTemplate.

Version 2.0 introduced variants of these methods (convertSendAndReceiveAsType) that take an
additional ParameterizedTypeReference argument to convert complex returned types. You must
configure the underlying RabbitTemplate with a SmartMessageConverter. See Converting From a
Message With RabbitTemplate for more information.

Spring Remoting with AMQP

The Spring Framework has a general remoting capability, allowing Remote Procedure Calls (RPC)
that use various transports. Spring-AMQP supports a similar mechanism with a
AmgpProxyFactoryBean on the client and a AmgpInvokerServiceExporter on the server. This provides
RPC over AMQP. On the client side, a RabbitTemplate is used as described earlier. On the server side,
the invoker (configured as a Messagelistener) receives the message, invokes the configured service,
and returns the reply by using the inbound message’s replyTo information.

You can inject the client factory bean into any bean (by using its serviceInterface). The client can
then invoke methods on the proxy, resulting in remote execution over AMQP.

o With the default MessageConverter instances, the method parameters and returned
value must be instances of Serializable.

107

https://www.rabbitmq.com/direct-reply-to.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/remoting.html

On the server side, the AmgpInvokerServiceExporter has both AmgpTemplate and MessageConverter
properties. Currently, the template’s MessageConverter is not used. If you need to supply a custom
message converter, you should provide it by setting the messageConverter property. On the client
side, you can add a custom message converter to the AmgpTemplate, which is provided to the
AmgpProxyFactoryBean by using its amgpTemplate property.

The following listing shows sample client and server configurations:

108

<bean id="client"
class="org.springframework.amqgp.remoting.client.AmgpProxyFactoryBean">
<property name="amgpTemplate" ref="template" />
<property name="serviceInterface" value="foo.Servicelnterface" />
</bean>

<rabbit:connection-factory id="connectionFactory" />
<rabbit:template id="template" connection-factory="connectionFactory" reply-
timeout="2000"

routing-key="remoting.binding" exchange="remoting.exchange" />
<rabbit:admin connection-factory="connectionFactory" />
<rabbit:queue name="remoting.queue" />
<rabbit:direct-exchange name="remoting.exchange">

<rabbit:bindings>

<rabbit:binding queue="remoting.queue" key="remoting.binding" />

</rabbit:bindings>
</rabbit:direct-exchange>

<bean id="listener"

class="org.springframework.amqp.remoting.service.AmqpInvokerServiceExporter">

<property name="servicelnterface" value="foo.Servicelnterface" />
<property name="service" ref="service" />
<property name="amgpTemplate" ref="template" />
</bean>
<bean id="service" class="foo.ServiceImpl" />
<rabbit:connection-factory id="connectionFactory" />
<rabbit:template id="template" connection-factory="connectionFactory" />
<rabbit:queue name="remoting.queue" />
<rabbit:listener-container connection-factory="connectionFactory">

<rabbit:listener ref="listener" queue-names="remoting.queue" />
</rabbit:listener-container>

The AmgpInvokerServiceExporter can process only properly formed messages, such
as those sent from the AmgpProxyFactoryBean. If it receives a message that it cannot
o interpret, a serialized RuntimeException is sent as a reply. If the message has no
replyToAddress property, the message is rejected and permanently lost if no dead

letter exchange has been configured

109

By default, if the request message cannot be delivered, the calling thread
eventually times out and a RemoteProxyFailureException is thrown. By default, the
timeout is five seconds. You can modify that duration by setting the replyTimeout

o property on the RabbitTemplate. Starting with version 1.5, by setting the mandatory
property to true and enabling returns on the connection factory (see Publisher
Confirms and Returns), the calling thread throws an AmgpMessageReturnedException.
See Reply Timeout for more information.

4.1.11. Configuring the Broker

The AMQP specification describes how the protocol can be used to configure queues, exchanges,
and bindings on the broker. These operations (which are portable from the 0.8 specification and
higher) are present in the AmgpAdmin interface in the org.springframework.amgp.core package. The
RabbitMQ implementation of that class is RabbitAdmin located in the
org.springframework.amgp.rabbit.core package.

The AmgpAdmin interface is based on using the Spring AMQP domain abstractions and is shown in the
following listing:

110

public interface AmgpAdmin {
// Exchange Operations
void declareExchange(Exchange exchange);
void deleteExchange(String exchangeName);
// Queue Operations
Queue declareQueue();
String declareQueue(Queue queue);
void deleteQueue(String queueName);
void deleteQueue(String queueName, boolean unused, boolean empty);
void purgeQueue(String queueName, boolean noWait);
// Binding Operations
void declareBinding(Binding binding);
void removeBinding(Binding binding);

Properties getQueueProperties(String queueName);

See also Scoped Operations.

The getQueueProperties() method returns some limited information about the queue (message
count and consumer count). The keys for the properties returned are available as constants in the
RabbitTemplate (QUEUE_NAME, QUEUE_MESSAGE _COUNT, and QUEUE_CONSUMER_COUNT). The RabbitMQ REST API
provides much more information in the QueueInfo object.

The no-arg declareQueve() method defines a queue on the broker with a name that is automatically
generated. The additional properties of this auto-generated queue are exclusive=true,
autoDelete=true, and durable=false.

The declareQueue(Queue queue) method takes a Queue object and returns the name of the declared
queue. If the name property of the provided Queue is an empty String, the broker declares the queue
with a generated name. That name is returned to the caller. That name is also added to the
actualName property of the Queue. You can use this functionality programmatically only by invoking
the RabbitAdmin directly. When using auto-declaration by the admin when defining a queue
declaratively in the application context, you can set the name property to "" (the empty string). The
broker then creates the name. Starting with version 2.1, listener containers can use queues of this

111

type. See Containers and Broker-Named queues for more information.

This is in contrast to an AnonymousQueue where the framework generates a unique (UUID) name and
sets durable to false and exclusive, autoDelete to true. A <rabbit:queue/> with an empty (or missing)
name attribute always creates an AnonymousQueue.

See AnonymousQueue to understand why AnonymousQueue is preferred over broker-generated queue
names as well as how to control the format of the name. Starting with version 2.1, anonymous
queues are declared with argument x-queue-master-locator set to client-local by default. This
ensures that the queue is declared on the node to which the application is connected. Declarative
queues must have fixed names because they might be referenced elsewhere in the context— such
as in the listener shown in the following example:

<rabbit:listener-container>
<rabbit:listener ref="listener" queue-names="#{someQueue.name}" />
</rabbit:1listener-container>

See Automatic Declaration of Exchanges, Queues, and Bindings.

The RabbitMQ implementation of this interface is RabbitAdmin, which, when configured by using
Spring XML, resembles the following example:

<rabbit:connection-factory id="connectionFactory"/>

<rabbit:admin id="amgpAdmin" connection-factory="connectionFactory"/>

When the C(achingConnectionFactory cache mode is CHANNEL (the default), the RabbitAdmin
implementation does automatic lazy declaration of queues, exchanges, and bindings declared in the
same ApplicationContext. These components are declared as soon as a Connection is opened to the
broker. There are some namespace features that make this very convenient — for example, in the
Stocks sample application, we have the following:

112

<rabbit:queue id="tradeQueue"/>
<rabbit:queuve id="marketDataQueue"/>

<fanout-exchange name="broadcast.responses”
xmlns="http://www.springframework.org/schema/rabbit">
<bindings>
<binding queue="tradeQueue"/>
</bindings>
</fanout-exchange>

<topic-exchange name="app.stock.marketdata"
xmlns="http://www.springframework.org/schema/rabbit">
<bindings>
<binding queue="marketDataQueue" pattern="${stocks.quote.pattern}"/>
</bindings>
</topic-exchange>

In the preceding example, we use anonymous queues (actually, internally, just queues with names
generated by the framework, not by the broker) and refer to them by ID. We can also declare
queues with explicit names, which also serve as identifiers for their bean definitions in the context.
The following example configures a queue with an explicit name:

<rabbit:queue name="stocks.trade.queue"/>

You can provide both id and name attributes. This lets you refer to the queue (for
example, in a binding) by an ID that is independent of the queue name. It also
@ allows standard Spring features (such as property placeholders and SpEL
et expressions for the queue name). These features are not available when you use
the name as the bean identifier.

Queues can be configured with additional arguments — for example, x-message-ttl. When you use
the namespace support, they are provided in the form of a Map of argument-name/argument-value
pairs, which are defined by using the <rabbit:queue-arguments> element. The following example
shows how to do so:

113

<rabbit:queue name="withArguments">
<rabbit:queue-arguments>
<entry key="x-dead-letter-exchange" value="myDLX"/>
<entry key="x-dead-letter-routing-key" value="d1qRK"/>
</rabbit:queue-arquments>
</rabbit:queue>

By default, the arguments are assumed to be strings. For arguments of other types, you must
provide the type. The following example shows how to specify the type:

<rabbit:queue name="withArquments">
<rabbit:queue-arguments value-type="java.lang.Long">
<entry key="x-message-ttl" value="100"/>
</rabbit:queue-arquments>
</rabbit:queue>

When providing arguments of mixed types, you must provide the type for each entry element. The
following example shows how to do so:

<rabbit:queue name="withArguments">
<rabbit:queue-arguments>
<entry key="x-message-tt1">
<value type="java.lang.Long">100</value>
</entry>
<entry key="x-dead-letter-exchange" value="myDLX"/>
<entry key="x-dead-letter-routing-key" value="d1qRK"/>
</rabbit:queue-arguments>
</rabbit:queue>

With Spring Framework 3.2 and later, this can be declared a little more succinctly, as follows:

<rabbit:queue name="withArguments">
<rabbit:queue-arguments>
<entry key="x-message-ttl" value="100" value-type="java.lang.Long"/>
<entry key="x-ha-policy" value="all"/>
</rabbit:queue-arquments>
</rabbit:queue>

When you use Java configuration, the x-queue-master-locator is supported as a first class property

114

through the setMasterLocator() method on the Queue class. Starting with version 2.1, anonymous
queues are declared with this property set to client-local by default. This ensures that the queue is
declared on the node the application is connected to.

The RabbitMQ broker does not allow declaration of a queue with mismatched

o arguments. For example, if a queue already exists with no time to live argument,
and you attempt to declare it with (for example) key="x-message-tt1" value="100",
an exception is thrown.

By default, the RabbitAdmin immediately stops processing all declarations when any exception
occurs. This could cause downstream issues, such as a listener container failing to initialize because
another queue (defined after the one in error) is not declared.

This behavior can be modified by setting the ignore-declaration-exceptions attribute to true on the
RabbitAdmin instance. This option instructs the RabbitAdmin to log the exception and continue
declaring other elements. When configuring the RabbitAdmin using Java, this property is called
ignoreDeclarationExceptions. This is a global setting that applies to all elements. Queues, exchanges,
and bindings have a similar property that applies to just those elements.

Prior to version 1.6, this property took effect only if an I0Exception occurred on the channel, such as
when there is a mismatch between current and desired properties. Now, this property takes effect
on any exception, including TimeoutException and others.

In addition, any declaration exceptions result in the publishing of a DeclarationExceptionEvent,
which is an ApplicationEvent that can be consumed by any ApplicationListener in the context. The
event contains a reference to the admin, the element that was being declared, and the Throwable.

Headers Exchange

Starting with version 1.3, you can configure the HeadersExchange to match on multiple headers. You
can also specify whether any or all headers must match. The following example shows how to do
so:

<rabbit:headers-exchange name="headers-test">
<rabbit:bindings>
<rabbit:binding queue="bucket">
<rabbit:binding-arquments>
<entry key="foo" value="bar"/>
<entry key="baz" value="qux"/>
<entry key="x-match" value="all"/>
</rabbit:binding-arguments>
</rabbit:binding>
</rabbit:bindings>
</rabbit:headers-exchange>

Starting with version 1.6, you can configure Exchanges with an internal flag (defaults to false) and
such an Exchange is properly configured on the Broker through a RabbitAdmin (if one is present in the

115

application context). If the internal flag is true for an exchange, RabbitMQ does not let clients use
the exchange. This is useful for a dead letter exchange or exchange-to-exchange binding, where you
do not wish the exchange to be used directly by publishers.

To see how to use Java to configure the AMQP infrastructure, look at the Stock sample application,
where there is the @Configuration class AbstractStockRabbitConfiguration, which ,in turn has
RabbitClientConfiguration and RabbitServerConfiguration subclasses. The following listing shows
the code for AbstractStockRabbitConfiguration:

public abstract class AbstractStockAppRabbitConfiguration {

public CachingConnectionFactory connectionFactory() {
CachingConnectionFactory connectionFactory =
new CachingConnectionFactory("localhost");
connectionFactory.setUsername("quest");
connectionFactory.setPassword("quest");
return connectionFactory;

public RabbitTemplate rabbitTemplate() {
RabbitTemplate template = new RabbitTemplate(connectionFactory());
template.setMessageConverter(jsonMessageConverter());
configureRabbitTemplate(template);
return template;

public Jackson2]sonMessageConverter jsonMessageConverter() {
return new Jackson2]sonMessageConverter();

}

public TopicExchange marketDataExchange() {
return new TopicExchange("app.stock.marketdata");

}

// additional code omitted for brevity

In the Stock application, the server is configured by using the following @Configuration class:

116

@Configuration
public class RabbitServerConfiguration extends AbstractStockAppRabbitConfiguration
{

@Bean
public Queue stockRequestQueue() {
return new Queue("app.stock.request");

}

This is the end of the whole inheritance chain of @Configuration classes. The end result is that
TopicExchange and Queue are declared to the broker upon application startup. There is no binding of
TopicExchange to a queue in the server configuration, as that is done in the client application. The
stock request queue, however, is automatically bound to the AMQP default exchange. This behavior
is defined by the specification.

The client @Configuration class is a little more interesting. Its declaration follows:

@Configuration
public class RabbitClientConfiguration extends AbstractStockAppRabbitConfiguration
{

@Value("${stocks.quote.pattern}")
private String marketDataRoutingKey;

@Bean
public Queue marketDataQueue() {
return amgpAdmin().declareQueue();

}

/**
* Binds to the market data exchange.
* Interested in any stock quotes
* that match its routing key.
*/
@Bean
public Binding marketDataBinding() {
return BindingBuilder.bind(
marketDataQueue()).to(marketDataExchange()).with
(marketDataRoutingKey);
}

// additional code omitted for brevity

117

The client declares another queue through the declareQueue() method on the AmgpAdmin. It binds
that queue to the market data exchange with a routing pattern that is externalized in a properties
file.

Builder API for Queues and Exchanges

Version 1.6 introduces a convenient fluent API for configuring Queue and Exchange objects when
using Java configuration. The following example shows how to use it:

public Queue queue() {
return QueueBuilder.nonDurable("foo")
.autoDelete()
.exclusive()
.withArgument("foo", "bar")
.build();

public Exchange exchange() {
return ExchangeBuilder.directExchange("foo")

.autoDelete()
.internal()
.withArgument("foo", "bar")
.build();
}
See the Javadoc for org.springframework.amgp.core.QueueBuilder and

org.springframework.amgp.core.ExchangeBuilder for more information.

Starting with version 2.0, the ExchangeBuilder now creates durable exchanges by default, to be
consistent with the simple constructors on the individual AbstractExchange classes. To make a non-
durable exchange with the builder, use .durable(false) before invoking .build(). The durable()
method with no parameter is no longer provided.

Version 2.2 introduced fluent APIs to add "well known" exchange and queue arguments...

118

https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/QueueBuilder.html
https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/ExchangeBuilder.html

public Queue allArgs1() {
return QueueBuilder.nonDurable("all.args.1")

.tt1(1000)
.expires(200_000)
.maxLength(42)
.maxLengthBytes(10_000)
.overflow(Overflow.rejectPublish)
.deadlLetterExchange("d1x")
.deadlLetterRoutingKey("d1lrk")
.maxPriority(4)
.lazy()
.masterLocator(MasterLocator.minMasters)
.singleActiveConsumer ()
.build();

public DirectExchange ex() {
return ExchangeBuilder.directExchange("ex.with.alternate")
.durable(true)
.alternate("alternate")
.build();

Declaring Collections of Exchanges, Queues, and Bindings

You can wrap collections of Declarable objects (Queue, Exchange, and Binding) in Declarables objects.
The RabbitAdmin detects such beans (as well as discrete Declarable beans) in the application context,
and declares the contained objects on the broker whenever a connection is established (initially
and after a connection failure). The following example shows how to do so:

119

public static class Config {

public CachingConnectionFactory cf() {
return new CachingConnectionFactory("localhost");

}

public RabbitAdmin admin(ConnectionFactory cf) {
return new RabbitAdmin(cf);
}

public DirectExchange el1() {
return new DirectExchange("e1", false, true);

}

public Queue q1() {
return new Queue("q1", false, false, true);

}

public Binding b1() {
return BindingBuilder.bind(q1()).to(e1()).with("k1");
}

public Declarables es() {
return new Declarables(
new DirectExchange("e2", false, true),
new DirectExchange("e3", false, true));

public Declarables gs() {
return new Declarables(
new Queue("q2", false, false, true),
new Queue("q3", false, false, true));

(ConfigurableBeanFactory.SCOPE_PROTOTYPE)
public Declarables prototypes() {
return new Declarables(new Queue(this.prototypeQueueName, false, false,
true));
}

120

public Declarables bs() {
return new Declarables(
new Binding("q2", DestinationType.QUEUE, "e2", "k2", null),
new Binding("q3", DestinationType.QUEUE, "e3", "k3", null));

public Declarables ds() {
return new Declarables(
new DirectExchange("e4", false, true),
new Queue("q4", false, false, true),
new Binding("q4", DestinationType.QUEUE, "e4", "k4", null));

In versions prior to 2.1, you could declare multiple Declarable instances by
defining beans of type Collection<Declarable>. This can cause undesirable side

o effects in some cases, because the admin has to iterate over all Collection<?>
beans. This feature is now disabled in favor of Declarables, as discussed earlier in
this section. You can revert to the previous behavior by setting the RabbitAdmin
property called declareCollections to true.

Version 2.2 added the getDeclarablesByType method to Declarables; this can be used as a
convenience, for example, when declaring the listener container bean(s).

public SimpleMessagelListenerContainer container(ConnectionFactory
connectionFactory,
Declarables mixedDeclarables, Messagelistener listener) {

SimpleMessagelistenerContainer container = new SimpleMessagelistenerContainer

(connectionFactory);
container.setQueues(mixedDeclarables.getDeclarablesByType(Queue.class).
toArray(new Queue[0]));
container.setMessagelistener(listener);
return container;

Conditional Declaration

By default, all queues, exchanges, and bindings are declared by all RabbitAdmin instances (assuming
they have auto-startup="true") in the application context.

Starting with version 2.1.9, the RabbitAdmin has a new property explicitDeclarationsOnly (which is
false by default); when this is set to true, the admin will only declare beans that are explicitly

121

configured to be declared by that admin.

Starting with the 1.2 release, you can conditionally declare these elements. This is
particularly useful when an application connects to multiple brokers and needs to
specify with which brokers a particular element should be declared.

The classes representing these elements implement Declarable, which has two methods:
shouldDeclare() and getDeclaringAdmins(). The RabbitAdmin uses these methods to determine
whether a particular instance should actually process the declarations on its Connection.

The properties are available as attributes in the namespace, as shown in the following examples:

<rabbit:admin id="admin1" connection-factory="CF1" />
<rabbit:admin id="admin2" connection-factory="CF2" />

<rabbit:admin id="admin3" connection-factory="CF3" explicit-declarations-only=
"true" />

<rabbit:queue id="declaredByAdmin1AndAdmin2Implicitly" />
<rabbit:queue id="declaredByAdmin1AndAdmin2" declared-by="admin1, admin2" />
<rabbit:queuve id="declaredByAdmin10nly" declared-by="admin1" />
<rabbit:queuve id="notDeclaredByAllExceptAdmin3" auto-declare="false" />
<rabbit:direct-exchange name="direct" declared-by="admin1, admin2">
<rabbit:bindings>
<rabbit:binding key="foo" queue="bar"/>

</rabbit:bindings>
</rabbit:direct-exchange>

By default, the auto-declare attribute is true and, if the declared-by is not supplied

o (or is empty), then all RabbitAdmin instances declare the object (as long as the
admin’s auto-startup attribute is true, the default, and the admin’s explicit-
declarations-only attribute is false).

Similarly, you can use Java-based @Configuration to achieve the same effect. In the following
example, the components are declared by admin1 but not by "admin2 ":

122

public RabbitAdmin admin1() {
return new RabbitAdmin(cf1());
}

public RabbitAdmin admin2() {
return new RabbitAdmin(cf2());
}

public Queue queue() {
Queue queue = new Queue("foo");
queue.setAdminsThatShouldDeclare(admini());
return queue;

public Exchange exchange() {
DirectExchange exchange = new DirectExchange("bar");
exchange.setAdminsThatShouldDeclare(admin1());
return exchange;

public Binding binding() {

Binding binding = new Binding("foo", DestinationType.QUEUE, exchange().
getName(), "foo", null);

binding.setAdminsThatShouldDeclare(admini());

return binding;

A Note On the id and name Attributes

The name attribute on <rabbit:queue/> and <rabbit:exchange/> elements reflects the name of the
entity in the broker. For queues, if the name is omitted, an anonymous queue is created (see
AnonymousQueue).

In versions prior to 2.0, the name was also registered as a bean name alias (similar to name on <bean/>
elements).

This caused two problems:

* It prevented the declaration of a queue and exchange with the same name.

» The alias was not resolved if it contained a SpEL expression (#{::*}).

Starting with version 2.0, if you declare one of these elements with both an id and a name attribute,
the name is no longer declared as a bean name alias. If you wish to declare a queue and exchange

123

with the same name, you must provide an id.

There is no change if the element has only a name attribute. The bean can still be referenced by the
name —for example, in binding declarations. However, you still cannot reference it if the name
contains SpEL — you must provide an id for reference purposes.

AnonymousQueue

In general, when you need a uniquely-named, exclusive, auto-delete queue, we recommend that
you use the AnonymousQueue instead of broker-defined queue names (using "" as a Queue name causes
the broker to generate the queue name).

This is because:

1. The queues are actually declared when the connection to the broker is established. This is long
after the beans are created and wired together. Beans that use the queue need to know its
name. In fact, the broker might not even be running when the application is started.

2. If the connection to the broker is lost for some reason, the admin re-declares the AnonymousQueue
with the same name. If we used broker-declared queues, the queue name would change.

You can control the format of the queue name used by AnonymousQueue instances.

By default, the queue name is prefixed by spring.gen- followed by a base64 representation of the
UUID — for example: spring.gen-MRBv9sqISkuCiPfOYfpo4g.

You can provide an AnonymousQueue.NamingStrategy implementation in a constructor argument. The
following example shows how to do so:

public Queue anon1() {
return new AnonymousQueue();

}

public Queue anon2() {
return new AnonymousQueue(new AnonymousQueue.Baseb4Ur1NamingStrategy(
"something-"));

}

public Queue anon3() {
return new AnonymousQueue(AnonymousQueue.UUIDNamingStrateqy.DEFAULT);

}

The first bean generates a queue name prefixed by spring.gen- followed by a base64 representation
of the UUID— for example: spring.gen-MRBv9sqISkuCiPfOYfpo4g. The second bean generates a queue
name prefixed by something- followed by a base64 representation of the UUID. The third bean
generates a name by using only the UUID (no base64 conversion) —for example, f20c818a-006b-

124

4416-bt91-643590fedble.

The base64 encoding uses the “URL and Filename Safe Alphabet” from RFC 4648. Trailing padding
characters (=) are removed.

You can provide your own naming strategy, whereby you can include other information (such as
the application name or client host) in the queue name.

You can specify the naming strategy when you use XML configuration. The naming-strategy
attribute is present on the <rabbit:queue> element for a bean reference that implements
AnonymousQueue.NamingStrategy. The following examples show how to specify the naming strategy in
various ways:

<rabbit:queue id="uuidAnon" />
<rabbit:queue id="springAnon" naming-strategy="uuidNamer" />
<rabbit:queue id="customAnon" naming-strategy="customNamer" />

<bean id="uuidNamer" class=
"org.springframework.amgp.core.AnonymousQueue.UUIDNamingStrategy" />

<bean id="customNamer" class=

"org.springframework.amqp.core.AnonymousQueue.Base64Ur INamingStrategy">
<constructor-arg value="custom.gen-" />

</bean>

The first example creates names such as spring.gen-MRBv9sqISkuCiPf0Yfpo4g. The second example
creates names with a String representation of a UUID. The third example creates names such as
custom.gen-MRBv9sqISkuCiPf0Yfpo4qg.

You can also provide your own naming strategy bean.

Starting with version 2.1, anonymous queues are declared with argument x-queue-master-locator
set to client-local by default. This ensures that the queue is declared on the node to which the
application is connected. You can revert to the previous behavior by calling
queue.setMasterLocator(null) after constructing the instance.

4.1.12. Broker Event Listener

When the Event Exchange Plugin is enabled, if you add a bean of type BrokerEventListener to the
application context, it publishes selected broker events as BrokerEvent instances, which can be
consumed with a normal Spring ApplicationlListener or @EventListener method. Events are
published by the broker to a topic exchange amq.rabbitmg.event with a different routing key for
each event type. The listener uses event keys, which are used to bind an AnonymousQueue to the
exchange so the listener receives only selected events. Since it is a topic exchange, wildcards can be
used (as well as explicitly requesting specific events), as the following example shows:

125

https://www.rabbitmq.com/event-exchange.html

public BrokerEventListener eventListener() {
return new BrokerEventListener(connectionFactory(), "user.deleted",
channel.#", "queue.#");

}

You can further narrow the received events in individual event listeners, by using normal Spring
techniques, as the following example shows:

(condition = "event.eventType == 'queue.created'")
public void listener(BrokerEvent event) {

}

4.1.13. Delayed Message Exchange

Version 1.6 introduces support for the Delayed Message Exchange Plugin

The plugin is currently marked as experimental but has been available for over a
year (at the time of writing). If changes to the plugin make it necessary, we plan to

o add support for such changes as soon as practical. For that reason, this support in
Spring AMQP should be considered experimental, too. This functionality was
tested with RabbitMQ 3.6.0 and version 0.0.1 of the plugin.

To use a RabbitAdmin to declare an exchange as delayed, you can set the delayed property on the
exchange bean to true. The RabbitAdmin uses the exchange type (Direct, Fanout, and so on) to set the
x-delayed-type argument and declare the exchange with type x-delayed-message.

The delayed property (default: false) is also available when configuring exchange beans using XML.
The following example shows how to use it:

<rabbit:topic-exchange name="topic" delayed="true" />

To send a delayed message, you can set the x-delay header through MessageProperties, as the
following examples show:

126

https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/

MessageProperties properties = new MessageProperties();

properties.setDelay(15000);

template.send(exchange, routingKey,
MessageBuilder.withBody("foo".getBytes()).andProperties(properties).build

()

rabbitTemplate.convertAndSend(exchange, routingKey, "foo", new
MessagePostProcessor() {

public Message postProcessMessage(Message message) throws AmgpException {
message.getMessageProperties().setDelay(15000);
return message;

D

To check if a message was delayed, use the getReceivedDelay() method on the MessageProperties. It
is a separate property to avoid unintended propagation to an output message generated from an
input message.

4.1.14. RabbitMQ REST API

When the management plugin is enabled, the RabbitMQ server exposes a REST API to monitor and
configure the broker. A Java Binding for the API is now provided. The
com.rabbitmg.http.client.Client is a standard, immediate, and, therefore, blocking API. It is based
on the Spring Web module and its RestTemplate implementation. On the other hand, the
com.rabbitmg.http.client.ReactorNettyClient is a reactive, non-blocking implementation based on
the Reactor Netty project.

The hop dependency (com.rabbitmg:http-client) is now also optional.

See their Javadoc for more information.

4.1.15. Exception Handling

Many operations with the RabbitMQ Java client can throw checked exceptions. For example, there
are a lot of cases where IOException instances may be thrown. The RabbitTemplate,
SimpleMessagelListenerContainer, and other Spring AMQP components catch those exceptions and
convert them into one of the exceptions within AmgpException hierarchy. Those are defined in the
'org.springframework.amqp' package, and AmqpException is the base of the hierarchy.

When a listener throws an exception, it is wrapped in a ListenerExecutionFailedException.
Normally the message is rejected and requeued by the broker. Setting defaultRequeueRejected to
false causes messages to be discarded (or routed to a dead letter exchange). As discussed in
Message Listeners and the Asynchronous Case, the listener can throw an

127

https://github.com/rabbitmq/hop
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#spring-web
https://projectreactor.io/docs/netty/release/reference/docs/index.html

AmgpRejectAndDontRequeueException (or ImmediateRequeueAmgpException) to conditionally control this
behavior.

However, there is a class of errors where the listener cannot control the behavior. When a message
that cannot be converted is encountered (for example, an invalid content_encoding header), some
exceptions are thrown before the message reaches user code. With defaultRequeueRejected set to
true (default) (or throwing an ImmediateRequeueAmgpException), such messages would be redelivered
over and over. Before version 1.3.2, users needed to write a custom ErrorHandler, as discussed in
Exception Handling, to avoid this situation.

Starting with version 1.3.2, the default ErrorHandler is now a ConditionalRejectingErrorHandler that
rejects (and does not requeue) messages that fail with an irrecoverable error. Specifically, it rejects
messages that fail with the following errors:

* 0.s.amgp'MessageConversionException: Can be thrown when converting the incoming message
payload using a MessageConverter.

* 0.s.messaging:--MessageConversionException: Can be thrown by the conversion service if
additional conversion is required when mapping to a @RabbitListener method.

* 0.5.messaging---MethodArgumentNotValidException: Can be thrown if validation (for example,
@Valid) is used in the listener and the validation fails.

* 0.s.messaging:--MethodArgumentTypeMismatchException: Can be thrown if the inbound message
was converted to a type that is not correct for the target method. For example, the parameter is
declared as Message<Foo> but Message<Bar> is received.

* java.lang.NoSuchMethodException: Added in version 1.6.3.

* java.lang.(ClassCastException: Added in version 1.6.3.

You can configure an instance of this error handler with a FatalExceptionStrategy so that users can
provide their own rules for conditional message rejection—for example, a delegate
implementation to the BinaryExceptionClassifier from Spring Retry (Message Listeners and the
Asynchronous Case). In addition, the ListenerExecutionFailedException now has a failedMessage
property that you can use in the decision. If the FatalExceptionStrategy.isFatal() method returns
true, the error handler throws an AmgpRejectAndDontRequeueException. The default
FatalExceptionStrategy logs a warning message when an exception is determined to be fatal.

Since version 1.6.3, a convenient way to add user exceptions to the fatal list is to subclass
ConditionalRejectingErrorHandler.DefaultExceptionStrategy and override the
isUserCauseFatal(Throwable cause) method to return true for fatal exceptions.

A common pattern for handling DLQ messages is to set a time-to-1live on those messages as well as
additional DLQ configuration such that these messages expire and are routed back to the main
queue for retry. The problem with this technique is that messages that cause fatal exceptions loop
forever. Starting with version 2.1, the ConditionalRejectingErrorHandler detects an x-death header
on a message that causes a fatal exception to be thrown. The message is logged and discarded. You
can revert to the previous behavior by setting the discardFatalsWithXDeath property on the
ConditionalRejectingErrorHandler to false.

128

Starting with version 2.1.9, messages with these fatal exceptions are rejected and
NOT requeued by default, even if the container acknowledge mode is MANUAL.

o These exceptions generally occur before the listener is invoked so the listener does
not have a chance to ack or nack the message so it remained in the queue in an un-
acked state. To revert to the previous behavior, set the rejectManual property on
the ConditionalRejectingErrorHandler to false.

4.1.16. Transactions

The Spring Rabbit framework has support for automatic transaction management in the
synchronous and asynchronous use cases with a number of different semantics that can be selected
declaratively, as is familiar to existing users of Spring transactions. This makes many if not most
common messaging patterns easy to implement.

There are two ways to signal the desired transaction semantics to the framework. In both the
RabbitTemplate and SimpleMessagelistenerContainer, there is a flag channelTransacted which, if true,
tells the framework to use a transactional channel and to end all operations (send or receive) with a
commit or rollback (depending on the outcome), with an exception signaling a rollback. Another
signal is to provide an external transaction with one of Spring’s PlatformTransactionManager
implementations as a context for the ongoing operation. If there is already a transaction in progress
when the framework is sending or receiving a message, and the channelTransacted flag is true, the
commit or rollback of the messaging transaction is deferred until the end of the current
transaction. If the channelTransacted flag is false, no transaction semantics apply to the messaging
operation (it is auto-acked).

The channelTransacted flag is a configuration time setting. It is declared and processed once when
the AMQP components are created, usually at application startup. The external transaction is more
dynamic in principle because the system responds to the current thread state at runtime. However,
in practice, it is often also a configuration setting, when the transactions are layered onto an
application declaratively.

For synchronous use cases with RabbitTemplate, the external transaction is provided by the caller,
either declaratively or imperatively according to taste (the usual Spring transaction model). The
following example shows a declarative approach (usually preferred because it is non-invasive),
where the template has been configured with channelTransacted=true:

public void doSomething() {
String incoming = rabbitTemplate.receiveAndConvert();
// do some more database processing...
String outgoing = processInDatabaseAndExtractReply(incoming);
rabbitTemplate.convertAndSend(outgoing);

In the preceding example, a String payload is received, converted, and sent as a message body
inside a method marked as @Transactional. If the database processing fails with an exception, the

129

incoming message is returned to the broker, and the outgoing message is not sent. This applies to
any operations with the RabbitTemplate inside a chain of transactional methods (unless, for
instance, the Channel is directly manipulated to commit the transaction early).

For asynchronous use cases with SimpleMessagelListenerContainer, if an external transaction is
needed, it has to be requested by the container when it sets up the listener. To signal that an
external transaction is required, the user ©provides an implementation of
PlatformTransactionManager to the container when it is configured. The following example shows
how to do so:

public class ExampleExternalTransactionAmgpConfiguration {

public SimpleMessagelistenerContainer messagelistenerContainer() {

SimpleMessagelistenerContainer container = new

SimpleMessagelistenerContainer();
container.setConnectionFactory(rabbitConnectionFactory());
container.setTransactionManager(transactionManager());
container.setChannelTransacted(true);
container.setQueueName("some.queue");
container.setMessagelListener(exampleListener());
return container;

In the preceding example, the transaction manager is added as a dependency injected from another
bean definition (not shown), and the channelTransacted flag is also set to true. The effect is that if
the listener fails with an exception, the transaction is rolled back, and the message is also returned
to the broker. Significantly, if the transaction fails to commit (for example, because of a database
constraint error or connectivity problem), the AMQP transaction is also rolled back, and the
message is returned to the broker. This is sometimes known as a “Best Efforts 1 Phase Commit”, and
is a very powerful pattern for reliable messaging. If the channelTransacted flag was set to false (the
default) in the preceding example, the external transaction would still be provided for the listener,
but all messaging operations would be auto-acked, so the effect is to commit the messaging
operations even on a rollback of the business operation.

Conditional Rollback

Prior to version 1.6.6, adding a rollback rule to a container’s transactionAttribute when using an
external transaction manager (such as JDBC) had no effect. Exceptions always rolled back the
transaction.

Also, when using a transaction advice in the container’s advice chain, conditional rollback was not
very useful, because all listener exceptions are wrapped in a ListenerExecutionFailedException.

130

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/transaction.html#transaction-declarative

The first problem has been corrected, and the rules are now applied properly. Further, the
ListenerFailedRuleBasedTransactionAttribute is now provided. It is a subclass of
RuleBasedTransactionAttribute, with the only difference being that it is aware of the
ListenerExecutionFailedException and uses the cause of such exceptions for the rule. This
transaction attribute can be used directly in the container or through a transaction advice.

The following example uses this rule:

public AbstractMessagelistenerContainer container() {

container.setTransactionManager(transactionManager);
RuleBasedTransactionAttribute transactionAttribute =
new ListenerFailedRuleBasedTransactionAttribute();
transactionAttribute.setRollbackRules(Collections.singletonList(
new NoRollbackRuleAttribute(DontRol1BackException.class)));
container.setTransactionAttribute(transactionAttribute);

A note on Rollback of Received Messages

AMQP transactions apply only to messages and acks sent to the broker. Consequently, when there is
a rollback of a Spring transaction and a message has been received, Spring AMQP has to not only
rollback the transaction but also manually reject the message (sort of a nack, but that is not what
the specification calls it). The action taken on message rejection is independent of transactions and
depends on the defaultRequeueRejected property (default: true). For more information about
rejecting failed messages, see Message Listeners and the Asynchronous Case.

For more information about RabbitMQ transactions and their limitations, see RabbitMQ Broker
Semantics.

Prior to RabbitMQ 2.7.0, such messages (and any that are unacked when a channel

o is closed or aborts) went to the back of the queue on a Rabbit broker. Since 2.7.0,
rejected messages go to the front of the queue, in a similar manner to JMS rolled
back messages.

Previously, message requeue on transaction rollback was inconsistent between
local transactions and when a TransactionManager was provided. In the former
case, the normal requeue logic (AmgpRejectAndDontRequeueException or
defaultRequeueRejected=false) applied (see Message Listeners and the

o Asynchronous Case). With a transaction manager, the message was
unconditionally requeued on rollback. Starting with version 2.0, the behavior is
consistent and the normal requeue logic is applied in both cases. To revert to the
previous behavior, you can set the container’s alwaysRequeuelithTxManagerRollback
property to true. See Message Listener Container Configuration.

131

https://www.rabbitmq.com/semantics.html
https://www.rabbitmq.com/semantics.html

Using RabbitTransactionManager

The RabbitTransactionManager is an alternative to executing Rabbit operations within, and
synchronized with, external transactions. This transaction manager is an implementation of the
PlatformTransactionManager interface and should be used with a single Rabbit ConnectionFactory.

o This strategy is not able to provide XA transactions —for example, in order to
share transactions between messaging and database access.

Application code is required to retrieve the transactional Rabbit resources through
ConnectionFactoryUtils.getTransactionalResourceHolder (ConnectionFactory, boolean) instead of a
standard Connection.createChannel() call with subsequent channel creation. When using Spring
AMQP’s RabbitTemplate, it will autodetect a thread-bound Channel and automatically participate in
its transaction.

With Java Configuration, you can setup a new RabbitTransactionManager by using the following
bean:

public RabbitTransactionManager rabbitTransactionManager() {
return new RabbitTransactionManager(connectionFactory);

}

If you prefer XML configuration, you can declare the following bean in your XML Application
Context file:

<bean id="rabbitTxManager"
class="org.springframework.amgp.rabbit.transaction.RabbitTransactionManager

n

>
<property name="connectionFactory" ref="connectionFactory"/>
</bean>

4.1.17. Message Listener Container Configuration

There are quite a few options for configuring a SimpleMessagelListenerContainer (SMLC) and a
DirectMessageListenerContainer (DMLC) related to transactions and quality of service, and some of
them interact with each other. Properties that apply to the SMLC or DMLC are indicated by the
check mark in the appropriate column. See Choosing a Container for information to help you
decide which container is appropriate for your application.

The following table shows the container property names and their equivalent attribute names (in
parentheses) when using the namespace to configure a <rabbit:listener-container/>. The type
attribute on that element can be simple (default) or direct to specify an SMLC or DMLC respectively.
Some properties are not exposed by the namespace. These are indicated by N/A for the attribute.

132

https://docs.spring.io/spring-amqp/docs/latest_ga/api/org/springframework/amqp/rabbit/transaction/RabbitTransactionManager.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/transaction/PlatformTransactionManager.html
https://docs.spring.io/spring-amqp/docs/latest_ga/api/org/springframework/amqp/rabbit/core/RabbitTemplate.html

Table 3. Configuration options for a message listener container

Property (Attribute)

ackTimeout
(N/A)

acknowledgeMode
(acknowledge)

adviceChain
(advice-chain)

afterReceivePostProce
SSors
(N/A)

alwaysRequeuelith
TxManagerRollback
(N/A)

Description

When messagesPerAck is set, this timeout is used as an alternative
to send an ack. When a new message arrives, the count of
unacked messages is compared to messagesPerAck, and the time
since the last ack is compared to this value. If either condition is
true, the message is acknowledged. When no new messages
arrive and there are unacked messages, this timeout is
approximate since the condition is only checked each
monitorInterval. See also messagesPerAck and monitorInterval in
this table.

* NONE: No acks are sent (incompatible with
channelTransacted=true). RabbitMQ calls this “autoack”,
because the broker assumes all messages are acked without
any action from the consumer.

* MANUAL: The listener must acknowledge all messages by calling
Channel.basicAck().

* AUTO: The container acknowledges the message automatically,
unless the Messagelistener throws an exception. Note that
acknowledgeMode is complementary to channelTransacted —if
the channel is transacted, the broker requires a commit
notification in addition to the ack. This is the default mode.
See also batchSize.

An array of AOP Advice to apply to the listener execution. This
can be used to apply additional cross-cutting concerns, such as
automatic retry in the event of broker death. Note that simple re-
connection after an AMQP error is handled by the
CachingConnectionFactory, as long as the broker is still alive.

An array of MessagePostProcessor instances that are invoked
before invoking the listener. Post processors can implement
PriorityOrdered or Ordered. The array is sorted with un-ordered
members invoked last. If a post processor returns null, the
message is discarded (and acknowledged, if appropriate).

Set to true to always requeue messages on rollback when a
transaction manager is configured.

S D
M M
LC LC

v

arvd

v v

v ¥

v ¥

133

Property (Attribute)

autoDeclare
(auto-declare)

autoStartup
(auto-startup)

batchSize
(transaction-size)
(batch-size)

batchingStrateqy
(N/A)

channelTransacted
(channel-transacted)

concurrency
(N/A)

concurrentConsumers
(concurrency)

134

Description

When set to true (default), the container uses a RabbitAdmin to
redeclare all AMQP objects (queues, exchanges, bindings), if it
detects that at least one of its queues is missing during startup,
perhaps because it is an auto-delete or an expired queue, but the
redeclaration proceeds if the queue is missing for any reason. To
disable this behavior, set this property to false. Note that the
container fails to start if all of its queues are missing.

Prior to version 1.6, if there was more than one
admin in the context, the container would

o randomly select one. If there were no admins, it
would create one internally. In either case, this
could cause unexpected results. Starting with
version 1.6, for autoDeclare to work, there must
be exactly one RabbitAdmin in the context, or a
reference to a specific instance must be
configured on the container wusing the
rabbitAdmin property.

Flag to indicate that the container should start when the
ApplicationContext does (as part of the SmartLifecycle callbacks,
which happen after all beans are initialized). Defaults to true, but
you can set it to false if your broker might not be available on
startup and call start() later manually when you know the
broker is ready.

When used with acknowledgelMode set to AUTO, the container tries to
process up to this number of messages before sending an ack
(waiting for each one up to the receive timeout setting). This is
also when a transactional channel is committed. If the
prefetchCount is less than the batchSize, it is increased to match
the batchSize.

The strategy used when debatchng messages. Default
SimpleDebatchingStrategy. See Batching and @RabbitListener
with Batching.

Boolean flag to signal that all messages should be acknowledged
in a transaction (either manually or automatically).

m-n The range of concurrent consumers for each listener (min,
max). If only n is provided, n is a fixed number of consumers. See
Listener Concurrency.

The number of concurrent consumers to initially start for each
listener. See Listener Concurrency.

S D
M M
LC LC

v v

v ¥

arvd

v ¥

Property (Attribute)

connectionFactory
(connection-factory)

consecutiveActiveTrig
ger

(min-consecutive-
active)

consecutiveldleTrigge
c

(min-consecutive-
idle)

consumerBatchEnabled
(batch-enabled)

consumerStartTimeout
(N/A)

consumerTagStrategy
(consumer-tag-
strategy)

consumersPerQueue
(consumers-per-queue)

consumeDelay
(N/A)

debatchingEnabled
(N/A)

Description

A reference to the ConnectionFactory. When configuring byusing
the XML namespace, the default referenced bean name is
rabbitConnectionFactory.

The minimum number of consecutive messages received by a
consumer, without a receive timeout occurring, when
considering starting a new consumer. Also impacted by
'batchSize'. See Listener Concurrency. Default: 10.

The minimum number of receive timeouts a consumer must
experience before considering stopping a consumer. Also
impacted by 'batchSize'. See Listener Concurrency. Default: 10.

If the MessagelListener supports it, setting this to true enables
batching of discrete messages, up to batchSize; a partial batch
will be delivered if no new messages arrive in receiveTimeout.
When this is false, batching is only supported for batches created
by a producer; see Batching.

S
M
LC

v

"

"

v

The time in milliseconds to wait for a consumer thread to start. If \:/

this time elapses, an error log is written. An example of when
this might happen is if a configured taskExecutor has insufficient
threads to support the container concurrentConsumers.

See Threading and Asynchronous Consumers. Default: 60000
(one minute).

Set an implementation of ConsumerTagStrategy, enabling the
creation of a (unique) tag for each consumer.

The number of consumers to create for each configured queue.
See Listener Concurrency.

When using the RabbitMQ Sharding Plugin with
concurrentConsumers > 1, there is a race condition that can
prevent even distribution of the consumers across the shards.
Use this property to add a small delay between consumer starts
to avoid this race condition. You should experiment with values
to determine the suitable delay for your environment.

When true, the listener container will debatch batched messages
and invoke the listener with each message from the batch.
Starting with version 2.2.7, producer created batches will be
debatched as a List<Message> if the listener is a
BatchMessagelistener or ChannelAwareBatchMessagelistener.
Otherwise messages from the batch are presented one-at-a-time.
Default true. See Batching and @RabbitListener with Batching.

v

v

v

D
M
LC

v

7

v

v

135

https://github.com/rabbitmq/rabbitmq-sharding

Property (Attribute)

declarationRetries
(declaration-retries)

defaultRequeueRejecte
d
(requeue-rejected)

errorHandler
(error-handler)

exclusive
(exclusive)

exclusiveConsumer
ExceptionLogger
(N/A)

failedDeclaration
RetryInterval
(failed-declaration
-retry-interval)

forceCloseChannel
(N/A)

(group)

136

Description S D
M M
LC LC

The number of retry attempts when passive queue declaration v
fails. Passive queue declaration occurs when the consumer starts

or, when consuming from multiple queues, when not all queues
were available during initialization. When none of the

configured queues can be passively declared (for any reason)

after the retries are exhausted, the container behavior is

controlled by the 'missingQueuesFatal " property, described

earlier. Default: Three retries (for a total of four attempts).

Determines whether messages that are rejected because the v ¥
listener threw an exception should be requeued or not. Default:
true.

A reference to an ErrorHandler strategy for handling any v ¥
uncaught exceptions that may occur during the execution of the
MessageListener. Default: ConditionalRejectingErrorHandler

Determines whether the single consumer in this container has v ¥
exclusive access to the queues. The concurrency of the container

must be 1 when this is true. If another consumer has exclusive

access, the container tries to recover the consumer, according to

the recovery-interval or recovery-back-off. When using the

namespace, this attribute appears on the <rabbit:1listener/>

element along with the queue names. Default: false.

An exception logger used when an exclusive consumer cannot v ¥
gain access to a queue. By default, this is logged at the WARN level.

The interval between passive queue declaration retry attempts. v ¥
Passive queue declaration occurs when the consumer starts or,

when consuming from multiple queues, when not all queues

were available during initialization. Default: 5000 (five seconds).

If the consumers do not respond to a shutdown within v ¥
shutdownTimeout, if this is true, the channel will be closed, causing

any unacked messages to be requeued. Defaults to true since 2.0.

You can set it to false to revert to the previous behavior.

This is available only when using the namespace. When v ¥
specified, a bean of type Collection<MessagelListenerContainer> is
registered with this name, and the container for each <listener/>
element is added to the collection. This allows, for example,

starting and stopping the group of containers by iterating over

the collection. If multiple <listener-container/> elements have

the same group value, the containers in the collection form an

aggregate of all containers so designated.

Property (Attribute)

idleEventInterval
(idle-event-interval)

javalangErrorHandler
(N/A)

maxConcurrentConsumer
S
(max-concurrency)

messagesPerAck
(N/A)

Description S D
M M
LC LC
See Detecting Idle Asynchronous Consumers. v Y
An AbstractMessagelistenerContainer.JavalangErrorHandler v ¥

implementation that is called when a container thread catches
an Error. The default implementation calls System.exit(99); to
revert to the previous behavior (do nothing), add a no-op
handler.

The maximum number of concurrent consumers to start, if ‘:_‘/
needed, on demand. Must be greater than or equal to
'‘concurrentConsumers'. See Listener Concurrency.

The number of messages to receive between acks. Use this to v
reduce the number of acks sent to the broker (at the cost of

increasing the possibility of redelivered messages). Generally,

you should set this property only on high-volume listener

containers. If this is set and a message is rejected (exception

thrown), pending acks are acknowledged and the failed message

is rejected. Not allowed with transacted channels. If the

prefetchCount is less than the messagesPerAck, it is increased to

match the messagesPerAck. Default: ack every message. See also

ackTimeout in this table.

137

Property (Attribute)

mismatchedQueuesFatal When the container starts, if this property is true (default: false),
the container checks that all queues declared in the context are
compatible with queues already on the broker. If mismatched
properties (such as auto-delete) or arguments (skuch as x-
message-ttl) exist, the container (and application context) fails to

(mismatched-queues-
fatal)

138

Description

start with a fatal exception.

If the problem is detected during recovery (for example, after a

lost connection), the container is stopped.

There must be a single RabbitAdmin in the application context (or
one specifically configured on the container by using the

rabbitAdmin property). Otherwise, this property must be false.

If the broker is not available during initial
startup, the container starts and the conditions
are checked when the connection is established.

The check is done against all queues in the
context, not just the queues that a particular
listener is configured to use. If you wish to limit
the checks to just those queues used by a
container, you should configure a separate
RabbitAdmin for the container, and provide a
reference to it using the rabbitAdmin property.
See Conditional Declaration for more
information.

Mismatched queue argument detection is
disabled while starting a container for a
@RabbitListener in a bean that is marked @Lazy.
This is to avoid a potential deadlock which can
delay the start of such containers for up to 60
seconds. Applications using lazy listener beans
should check the queue arguments before
getting a reference to the lazy bean.

S D
M M
LC LC

v v

Property (Attribute)

missingQueuesFatal
(missing-queues-
fatal)

Description S D
M M
LC LC

When set to true (default), if none of the configured queues are v ¥
available on the broker, it is considered fatal. This causes the
application context to fail to initialize during startup. Also, when

the queues are deleted while the container is running, by default,

the consumers make three retries to connect to the queues (at

five second intervals) and stop the container if these attempts

fail.

This was not configurable in previous versions.

When set to false, after making the three retries, the container
goes into recovery mode, as with other problems, such as the
broker being down. The container tries to recover according to
the recoveryInterval property. During each recovery attempt,
each consumer again tries four times to passively declare the
queues at five second intervals. This process continues
indefinitely.

You can also use a properties bean to set the property globally
for all containers, as follows:

<util:properties
id="spring.amqp.global.properties">
<prop key="mlc.missing.queues.fatal">
false
</prop>
</util:properties>

This global property is not applied to any containers that have an
explicit missingQueuesFatal property set.

The default retry properties (three retries at five-second
intervals) can be overridden by setting the properties below.

Missing queue detection is disabled while
starting a container for a @RabbitListener in a

o bean that is marked @Lazy. This is to avoid a
potential deadlock which can delay the start of
such containers for up to 60 seconds.
Applications using lazy listener beans should
check the queue(s) before getting a reference to
the lazy bean.

139

Property (Attribute)

monitorInterval
(monitor-interval)

noLocal
(N/A)

phase
(phase)

possibleAuthenticatio
n

FailureFatal
(possible-
authentication-
failure-fatal)

140

Description

With the DMLC, a task is scheduled to run at this interval to
monitor the state of the consumers and recover any that have
failed.

Set to true to disable delivery from the server to consumers
messages published on the same channel’s connection.

When autoStartup is true, the lifecycle phase within which this
container should start and stop. The lower the value, the earlier
this container starts and the later it stops. The default is
Integer.MAX_VALUE, meaning the container starts as late as
possible and stops as soon as possible.

When set to true (default), if a
PossibleAuthenticationFailureException is thrown during
connection, it is considered fatal. This causes the application
context to fail to initialize during startup.

Since version 2.0.

When set to false, after making the 3 retries, the container will
go into recovery mode, as with other problems, such as the
broker being down. The container will attempt to recover
according to the recoverylnterval property. During each
recovery attempt, each consumer will again try 4 times to start.
This process will continue indefinitely.

You can also use a properties bean to set the property globally
for all containers, as follows:

<util:properties
id="spring.amgp.global.properties">
<prop
key="mlc.possible.authentication.failure.fatal">
false
</prop>
</util:properties>

This global property will not be applied to any containers that
have an explicit missingQueuesFatal property set.

The default retry properties (3 retries at 5 second intervals) can
be overridden using the properties after this one.

/

>

7

Y

v

Property (Attribute)

prefetchCount
(prefetch)

rabbitAdmin
(admin)

receiveTimeout
(receive-timeout)

Description

S D
M M
LC LC

The number of unacknowledged messages that can be v ¥

outstanding at each consumer. The higher this value is, the faster
the messages can be delivered, but the higher the risk of non-
sequential processing. Ignored if the acknowledgeMode is NONE. This
is increased, if necessary, to match the batchSize or
messagePerAck. Defaults to 250 since 2.0. You can set it to 1 to
revert to the previous behavior.

There are scenarios where the prefetch value
should be low—for example, with large
messages, especially if the processing is slow
o (messages could add up to a large amount of
memory in the client process), and if strict
message ordering is necessary (the prefetch
value should be set back to 1 in this case). Also,
with low-volume messaging and multiple
consumers (including concurrency within a
single listener container instance), you may
wish to reduce the prefetch to get a more even
distribution of messages across consumers.

When a listener container listens to at least one auto-delete
queue and it is found to be missing during startup, the container
uses a RabbitAdmin to declare the queue and any related bindings
and exchanges. If such elements are configured to use
conditional declaration (see Conditional Declaration), the
container must use the admin that was configured to declare
those elements. Specify that admin here. It is required only when
using auto-delete queues with conditional declaration. If you do
not wish the auto-delete queues to be declared until the
container is started, set auto-startup to false on the admin.
Defaults to a RabbitAdmin that declares all non-conditional
elements.

The maximum time to wait for each message. If
acknowledgeMode=NONE, this has very little effect — the container
spins round and asks for another message. It has the biggest
effect for a transactional Channel with batchSize > 1, since it can
cause messages already consumed not to be acknowledged until
the timeout expires. When consumerBatchEnabled is true, a partial
batch will be delivered if this timeout occurs before a batch is
complete.

\/ \/

v

141

Property (Attribute)

recoveryBackOff
(recovery-back-off)

recoveryInterval
(recovery-interval)

retryDeclarationInter
val

(missing-queue-
retry-interval)

shutdownTimeout
(N/A)

startConsumerMinInter
val
(min-start-interval)

statefulRetryFatal
WithNullMessageld
(N/A)

stopConsumerMinInterv
al
(min-stop-interval)

taskExecutor
(task-executor)

taskScheduler
(task-scheduler)

transactionManager
(transaction-manager)

142

Description

Specifies the BackOff for intervals between attempts to start a
consumer if it fails to start for non-fatal reasons. Default is
FixedBackOff with unlimited retries every five seconds. Mutually
exclusive with recoveryInterval.

Determines the time in milliseconds between attempts to start a
consumer if it fails to start for non-fatal reasons. Default: 5000.
Mutually exclusive with recoveryBackOff.

If a subset of the configured queues are available during
consumer initialization, the consumer starts consuming from
those queues. The consumer tries to passively declare the
missing queues by using this interval. When this interval elapses,
the 'declarationRetries' and 'failedDeclarationRetryInterval' is
used again. If there are still missing queues, the consumer again
waits for this interval before trying again. This process continues
indefinitely until all queues are available. Default: 60000 (one
minute).

When a container shuts down (for example, if its enclosing
ApplicationContext is closed), it waits for in-flight messages to be
processed up to this limit. Defaults to five seconds.

The time in milliseconds that must elapse before each new
consumer is started on demand. See Listener Concurrency.
Default: 10000 (10 seconds).

When using a stateful retry advice, if a message with a missing
messageld property is received, it is considered fatal for the
consumer (it is stopped) by default. Set this to false to discard (or
route to a dead-letter queue) such messages.

The time in milliseconds that must elapse before a consumer is
stopped since the last consumer was stopped when an idle
consumer is detected. See Listener Concurrency. Default: 60000
(one minute).

A reference to a Spring TaskExecutor (or standard JDK 1.5+
Executor) for executing listener invokers. Default is a
SimpleAsyncTaskExecutor, using internally managed threads.

With the DMLC, the scheduler used to run the monitor task at the
'monitorInterval'.

External transaction manager for the operation of the listener.
Also complementary to channelTransacted — if the Channel is
transacted, its transaction is synchronized with the external
transaction.

S D
M M
LC LC

v v

v ¥

"

v ¥

Ve

Y

arve

4.1.18. Listener Concurrency

SimpleMessageListenerContainer

By default, the listener container starts a single consumer that receives messages from the queues.

When examining the table in the previous section, you can see a number of properties and
attributes that control concurrency. The simplest is concurrentConsumers, which creates that (fixed)
number of consumers that concurrently process messages.

Prior to version 1.3.0, this was the only setting available and the container had to be stopped and
started again to change the setting.

Since version 1.3.0, you can now dynamically adjust the concurrentConsumers property. If it is
changed while the container is running, consumers are added or removed as necessary to adjust to
the new setting.

In addition, a new property called maxConcurrentConsumers has been added and the container
dynamically adjusts the concurrency based on workload. This works in conjunction with four
additional properties: consecutiveActiveTrigger, startConsumerMinInterval, consecutiveldleTrigger,
and stopConsumerMinInterval. With the default settings, the algorithm to increase consumers works
as follows:

If the maxConcurrentConsumers has not been reached and an existing consumer is active for ten
consecutive cycles AND at least 10 seconds has elapsed since the last consumer was started, a new
consumer is started. A consumer is considered active if it received at least one message in batchSize
* receiveTimeout milliseconds.

With the default settings, the algorithm to decrease consumers works as follows:

If there are more than concurrentConsumers running and a consumer detects ten consecutive
timeouts (idle) AND the last consumer was stopped at least 60 seconds ago, a consumer is stopped.
The timeout depends on the receiveTimeout and the batchSize properties. A consumer is considered
idle if it receives no messages in batchSize * receiveTimeout milliseconds. So, with the default
timeout (one second) and a batchSize of four, stopping a consumer is considered after 40 seconds of
idle time (four timeouts correspond to one idle detection).

o Practically, consumers can be stopped only if the whole container is idle for some
time. This is because the broker shares its work across all the active consumers.

Each consumer uses a single channel, regardless of the number of configured queues.

Starting with version 2.0, the concurrentConsumers and maxConcurrentConsumers properties can be set
with the concurrency property — for example, 2-4.

Using DirectMessagelistenerContainer

With this container, concurrency is based on the configured queues and consumersPerQueue. Each
consumer for each queue uses a separate channel, and the concurrency is controlled by the rabbit
client library. By default, at the time of writing, it uses a pool of DEFAULT_NUM_THREADS =

143

Runtime.getRuntime().availableProcessors() * 2 threads.

You can configure a taskExecutor to provide the required maximum concurrency.

4.1.19. Exclusive Consumer

Starting with version 1.3, you can configure the listener container with a single exclusive
consumer. This prevents other containers from consuming from the queues until the current
consumer is cancelled. The concurrency of such a container must be 1.

When using exclusive consumers, other containers try to consume from the queues according to
the recoveryInterval property and log a WARN message if the attempt fails.

4.1.20. Listener Container Queues

Version 1.3 introduced a number of improvements for handling multiple queues in a listener
container.

The container must be configured to listen on at least one queue. This was the case previously, too,
but now queues can be added and removed at runtime. The container recycles (cancels and re-
creates) the consumers when any pre-fetched messages have been processed. See the Javadoc for
the addQueues, addQueueNames, removeQueues and removeQueueNames methods. When removing queues,
at least one queue must remain.

A consumer now starts if any of its queues are available. Previously, the container would stop if any
queues were unavailable. Now, this is only the case if none of the queues are available. If not all
queues are available, the container tries to passively declare (and consume from) the missing
queues every 60 seconds.

Also, if a consumer receives a cancel from the broker (for example, if a queue is deleted) the
consumer tries to recover, and the recovered consumer continues to process messages from any
other configured queues. Previously, a cancel on one queue cancelled the entire consumer and,
eventually, the container would stop due to the missing queue.

If you wish to permanently remove a queue, you should update the container before or after
deleting to queue, to avoid future attempts trying to consume from it.

4.1.21. Resilience: Recovering from Errors and Broker Failures

Some of the key (and most popular) high-level features that Spring AMQP provides are to do with
recovery and automatic re-connection in the event of a protocol error or broker failure. We have
seen all the relevant components already in this guide, but it should help to bring them all together
here and call out the features and recovery scenarios individually.

The primary reconnection features are enabled by the CachingConnectionFactory itself. It is also
often beneficial to use the RabbitAdmin auto-declaration features. In addition, if you care about
guaranteed delivery, you probably also need to use the channelTransacted flag in RabbitTemplate and
SimpleMessagelListenerContainer and the AcknowledgeMode.AUTO (or manual if you do the acks
yourself) in the SimpleMessagelistenerContainer.

144

https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/rabbit/listener/AbstractMessageListenerContainer.html

Automatic Declaration of Exchanges, Queues, and Bindings

The RabbitAdmin component can declare exchanges, queues, and bindings on startup. It does this
lazily, through a ConnectionlListener. Consequently, if the broker is not present on startup, it does
not matter. The first time a Connection is used (for example, by sending a message) the listener fires
and the admin features is applied. A further benefit of doing the auto declarations in a listener is
that, if the connection is dropped for any reason (for example, broker death, network glitch, and
others), they are applied again when the connection is re-established.

Queues declared this way must have fixed names — either explicitly declared or
o generated by the framework for AnonymousQueue instances. Anonymous queues are
non-durable, exclusive, and auto-deleting.

Automatic declaration is performed only when the CachingConnectionFactory cache
o mode is CHANNEL (the default). This limitation exists because exclusive and auto-
delete queues are bound to the connection.

Starting with version 2.2.2, the RabbitAdmin will detect beans of type DeclarationCustomizer and
apply the function before actually processing the declaration. This is useful, for example, to set a
new argument (property) before it has first class support within the framework.

public DeclarableCustomizer customizer() {
return dec -> {
if (dec instanceof Queue && ((Queue) dec).getName().equals("my.queue")) {
dec.addArgument("some.new.queue.argument”, true);

}

return dec;

};

It is also useful in projects that don’t provide direct access to the Declarable bean definitions.

See also RabbitMQ Automatic Connection/Topology recovery.

Failures in Synchronous Operations and Options for Retry

If you lose your connection to the broker in a synchronous sequence when using RabbitTemplate
(for instance), Spring AMQP throws an AmqpException (usually, but not always, AmqpIOException). We
do not try to hide the fact that there was a problem, so you have to be able to catch and respond to
the exception. The easiest thing to do if you suspect that the connection was lost (and it was not
your fault) is to try the operation again. You can do this manually, or you could look at using Spring
Retry to handle the retry (imperatively or declaratively).

Spring Retry provides a couple of AOP interceptors and a great deal of flexibility to specify the
parameters of the retry (number of attempts, exception types, backoff algorithm, and others).
Spring AMQP also provides some convenience factory beans for creating Spring Retry interceptors

145

in a convenient form for AMQP use cases, with strongly typed callback interfaces that you can use
to implement custom recovery logic. See the Javadoc and properties of
StatefulRetryOperationsInterceptor and StatelessRetryOperationsInterceptor for more detail.
Stateless retry is appropriate if there is no transaction or if a transaction is started inside the retry
callback. Note that stateless retry is simpler to configure and analyze than stateful retry, but it is not
usually appropriate if there is an ongoing transaction that must be rolled back or definitely is going
to roll back. A dropped connection in the middle of a transaction should have the same effect as a
rollback. Consequently, for reconnections where the transaction is started higher up the stack,
stateful retry is usually the best choice. Stateful retry needs a mechanism to uniquely identify a
message. The simplest approach is to have the sender put a unique value in the MessageId message
property. The provided message converters provide an option to do this: you can set
createMessagelds to true. Otherwise, you can inject a MessageKeyGenerator implementation into the
interceptor. The key generator must return a unique key for each message. In versions prior to
version 2.0, a MissingMessageldAdvice was provided. It enabled messages without a messageld
property to be retried exactly once (ignoring the retry settings). This advice is no longer provided,
since, along with spring-retry version 1.2, its functionality is built into the interceptor and message
listener containers.

For backwards compatibility, a message with a null message ID is considered fatal
for the consumer (consumer is stopped) by default (after one retry). To replicate
o the functionality provided by the MissingMessageIdAdvice, you can set the
statefulRetryFatalWithNullMessageld property to false on the listener container.
With that setting, the consumer continues to run and the message is rejected (after
one retry). It is discarded or routed to the dead letter queue (if one is configured).

Starting with version 1.3, a builder API is provided to aid in assembling these interceptors by using
Java (in @Configuration classes). The following example shows how to do so:

public StatefulRetryOperationsInterceptor interceptor() {
return RetryInterceptorBuilder.stateful()
.maxAttempts(5)
.backOffOptions(1000, 2.0, 10000) // initiallnterval, multiplier,
maxInterval
.build();

Only a subset of retry capabilities can be configured this way. More advanced features would need
the configuration of a RetryTemplate as a Spring bean. See the Spring Retry Javadoc for complete
information about available policies and their configuration.

Retry with Batch Listeners

It is not recommended to configure retry with a batch listener, unless the batch was created by the
producer, in a single record. See Batched Messages for information about consumer and producer-
created batches. With a consumer-created batch, the framework has no knowledge about which

146

https://docs.spring.io/spring-retry/docs/api/current/

message in the batch caused the failure so recovery after the retries are exhausted is not possible.
With producer-created batches, since there is only one message that actually failed, the whole
message can be recovered. Applications may want to inform a custom recoverer where in the batch
the failure occurred, perhaps by setting an index property of the thrown exception.

A retry recoverer for a batch listener must implement MessageBatchRecoverer.

Message Listeners and the Asynchronous Case

If a Messagelistener fails because of a business exception, the exception is handled by the message
listener container, which then goes back to listening for another message. If the failure is caused by
a dropped connection (not a business exception), the consumer that is collecting messages for the
listener has to be cancelled and restarted. The SimpleMessagelistenerContainer handles this
seamlessly, and it leaves a log to say that the listener is being restarted. In fact, it loops endlessly,
trying to restart the consumer. Only if the consumer is very badly behaved indeed will it give up.
One side effect is that if the broker is down when the container starts, it keeps trying until a
connection can be established.

Business exception handling, as opposed to protocol errors and dropped connections, might need
more thought and some custom configuration, especially if transactions or container acks are in
use. Prior to 2.8.x, RabbitMQ had no definition of dead letter behavior. Consequently, by default, a
message that is rejected or rolled back because of a business exception can be redelivered
endlessly. To put a limit on the client on the number of re-deliveries, one choice is a
StatefulRetryOperationsInterceptor in the advice chain of the listener. The interceptor can have a
recovery callback that implements a custom dead letter action —whatever is appropriate for your
particular environment.

Another alternative is to set the container’s defaultRequeueRejected property to false. This causes
all failed messages to be discarded. When using RabbitMQ 2.8.x or higher, this also facilitates
delivering the message to a dead letter exchange.

Alternatively, you can throw a AmgpRejectAndDontRequeueException. Doing so prevents message
requeuing, regardless of the setting of the defaultRequeueRejected property.

Starting with version 2.1, an ImmediateRequeueAmqpException is introduced to perform exactly the
opposite logic: the message will be requeued, regardless of the setting of the defaultRequeueRejected

property.

Often, a combination of both techniques is used. You can use a StatefulRetryOperationsInterceptor
in the advice chain with a MessageRecoverer that throws an AmqpRejectAndDontRequeueException. The
MessageRecover is called when all retries have been exhausted. The RejectAndDontRequeueRecoverer
does exactly that. The default MessageRecoverer consumes the errant message and emits a WARN
message.

Starting with version 1.3, a new RepublishMessageRecoverer is provided, to allow publishing of failed
messages after retries are exhausted.

When a recoverer consumes the final exception, the message is ack’d and is not sent to the dead
letter exchange, if any.

147

When RepublishMessageRecoverer is used on the consumer side, the received
message has deliveryMode in the receivedDeliveryMode message property. In this

e case the deliveryMode is null. That means a NON_PERSISTENT delivery mode on the
broker. Starting with version 2.0, you can configure the RepublishMessageRecoverer
for the deliveryMode to set into the message to republish if it is null. By default, it
uses MessageProperties default value - MessageDeliveryMode.PERSISTENT

The following example shows how to set a RepublishMessageRecoverer as the recoverer:

RetryOperationsInterceptor interceptor() {
return RetryInterceptorBuilder.stateless()
.maxAttempts(5)
.recoverer(new RepublishMessageRecoverer(amqpTemplate(), "something",
"somethingelse"))
.build();
}

The RepublishMessageRecoverer publishes the message with additional information in message
headers, such as the exception message, stack trace, original exchange, and routing key. Additional
headers can be added by creating a subclass and overriding additionalHeaders(). The deliveryMode
(or any other properties) can also be changed in the additionalHeaders(), as the following example
shows:

RepublishMessageRecoverer recoverer = new RepublishMessageRecoverer(amgpTemplate,
"error") {

protected Map<? extends String, ? extends Object> additionalHeaders(Message
message, Throwable cause) {
message.getMessageProperties()
.setDeliveryMode(message.getMessageProperties()
.getReceivedDeliveryMode());
return null;

}
+

Starting with version 2.0.5, the stack trace may be truncated if it is too large; this is because all
headers have to fit in a single frame. By default, if the stack trace would cause less than 20,000 bytes
(‘headroom’) to be available for other headers, it will be truncated. This can be adjusted by setting
the recoverer’s frameMaxHeadroom property, if you need more or less space for other headers. Starting
with versions 2.1.13, 2.2.3, the exception message is included in this calculation, and the amount of
stack trace will be maximized using the following algorithm:

148

« if the stack trace alone would exceed the limit, the exception message header will be truncated
to 97 bytes plus -- and the stack trace is truncated too.

« if the stack trace is small, the message will be truncated (plus -**) to fit in the available bytes (but
the message within the stack trace itself is truncated to 97 bytes plus).

Whenever a truncation of any kind occurs, the original exception will be logged to retain the
complete information.

Starting with version 2.3.3, a new subclass RepublishMessageRecovererWithConfirms is provided; this
supports both styles of publisher confirms and will wait for the confirmation before returning (or
throw an exception if not confirmed or the message is returned).

If the confirm type is CORRELATED, the subclass will also detect if a message is returned and throw an
AmgpMessageReturnedException; if the publication is negatively acknowledged, it will throw an
AmgpNackReceivedException.

If the confirm type is SIMPLE, the subclass will invoke the waitForConfirmsOrDie method on the
channel.

See Publisher Confirms and Returns for more information about confirms and returns.

Starting with version 2.1, an ImmediateRequeueMessageRecoverer 1is added to throw an
ImmediateRequeueAmgpException, which notifies a listener container to requeue the current failed
message.

Exception Classification for Spring Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry. The
default configuration retries for all exceptions. Given that user exceptions are wrapped in a
ListenerExecutionFailedException, we need to ensure that the classification examines the exception
causes. The default classifier looks only at the top level exception.

Since Spring Retry 1.0.3, the BinaryExceptionClassifier has a property called traverseCauses
(default: false). When true, it travers exception causes until it finds a match or there is no cause.

To use this classifier for retry, you can use a SimpleRetryPolicy created with the constructor that
takes the max attempts, the Map of Exception instances, and the boolean (traverseCauses) and inject
this policy into the RetryTemplate.

4.1.22. Multiple Broker (or Cluster) Support

Version 2.3 added more convenience when communicating between a single application and
multiple brokers or broker clusters. The main benefit, on the consumer side, is that the
infrastructure can automatically associate auto-declared queues with the appropriate broker.

This is best illustrated with an example:

149

(exclude = RabbitAutoConfiguration.class)
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

CachingConnectionFactory cf1() {
return new CachingConnectionFactory("localhost");

}

CachingConnectionFactory cf2() {
return new CachingConnectionFactory("otherHost");

}

CachingConnectionFactory cf3() {
return new CachingConnectionFactory("thirdHost");

}

SimpleRoutingConnectionFactory rcf(CachingConnectionFactory cf1,
CachingConnectionFactory cf2, CachingConnectionFactory cf3) {

SimpleRoutingConnectionFactory rcf = new SimpleRoutingConnectionFactory();

rcf.setDefaultTargetConnectionFactory(cf1);

rcf.setTargetConnectionFactories(Map.of("one", cf1, "two", cf2, "three",
cf3));

return ref;

("factoryl-admin")
RabbitAdmin admin1(CachingConnectionFactory cf1) {
return new RabbitAdmin(cf1);
}

("factory2-admin")
RabbitAdmin admin2(CachingConnectionFactory cf2) {
return new RabbitAdmin(cf2);
}

("factory3-admin")
RabbitAdmin admin3(CachingConnectionFactory cf3) {
return new RabbitAdmin(cf3);
}

150

public RabbitListenerEndpointRegistry rabbitListenerEndpointRegistry() {
return new RabbitListenerEndpointRegistry();
}

public RabbitListenerAnnotationBeanPostProcessor postProcessor
(RabbitListenerEndpointRegistry registry) {
MultiRabbitListenerAnnotationBeanPostProcessor postProcessor
= new MultiRabbitListenerAnnotationBeanPostProcessor();
postProcessor.setEndpointRegistry(registry);
postProcessor.setContainerFactoryBeanName("defaultContainerFactory");
return postProcessor;

public SimpleRabbitListenerContainerFactory factory1(CachingConnectionFactory
cf1) {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(cf1);
return factory;

public SimpleRabbitListenerContainerFactory factory2(CachingConnectionFactory
cf2) {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(cf2);
return factory;

public SimpleRabbitListenerContainerFactory factory3(CachingConnectionFactory
cf3) {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(cf3);
return factory;

RabbitTemplate template(RoutingConnectionFactory rcf) {
return new RabbitTemplate(rcf);

}

ConnectionFactoryContextWrapper wrapper(SimpleRoutingConnectionFactory rcf) {
return new ConnectionFactoryContextWrapper(rcf);

}

151

class Listeners {

(queuesToDeclare = ("gq1"), containerFactory = "factory1")
public void listen1(String in) {
}

(queuesToDeclare = ("g2"), containerFactory = "factory2")
public void listen2(String in) {
}

(queuesToDeclare = ("g3"), containerFactory = "factory3")

public void listen3(String in) {

}

As you can see, we have declared 3 sets of infrastructure (connection factories, admins, container
factories). As discussed earlier, @RabbitListener can define which container factory to use; in this
case, they also use queuesToDeclare which causes the queue(s) to be declared on the broker, if it
doesn’t exist. By naming the RabbitAdmin beans with the convention <container-factory-name>-admin,
the infrastructure is able to determine which admin should declare the queue. This will also work
with bindings = @QueueBinding(::*) whereby the exchange and binding will also be declared. It will
NOT work with queues, since that expects the queue(s) to already exist.

On the producer side, a convenient ConnectionFactoryContextWrapper class is provided, to make
using the RoutingConnectionFactory (see Routing Connection Factory) simpler.

As you can see above, a SimpleRoutingConnectionFactory bean has been added with routing keys one,
two and three. There is also a RabbitTemplate that uses that factory. Here is an example of using that
template with the wrapper to route to one of the broker clusters.

public ApplicationRunner runner(RabbitTemplate template,
ConnectionFactoryContextWrapper wrapper) {
return args -> {
wrapper.run("one", () -> template.convertAndSend("q1", "toCluster1"));
wrapper.run("two", () -> template.convertAndSend("q2", "toCluster2"));
wrapper.run("three", () -> template.convertAndSend("q3", "toCluster3"));

};

152

4.1.23. Debugging
Spring AMQP provides extensive logging, especially at the DEBUG level.

If you wish to monitor the AMQP protocol between the application and broker, you can use a tool
such as WireShark, which has a plugin to decode the protocol. Alternatively, the RabbitMQ Java
client comes with a very useful class called Tracer. When run as a main, by default, it listens on port
5673 and connects to port 5672 on localhost. You can run it and change your connection factory
configuration to connect to port 5673 on localhost. It displays the decoded protocol on the console.
Refer to the Tracer Javadoc for more information.

4.2. Logging Subsystem AMQP Appenders
The framework provides logging appenders for some popular logging subsystems:

* logback (since Spring AMQP version 1.4)
* log4j2 (since Spring AMQP version 1.6)

The appenders are configured by using the normal mechanisms for the logging subsystem,
available properties are specified in the following sections.

4.2.1. Common properties
The following properties are available with all appenders:

Table 4. Common Appender Properties

Property Default Description
exchangeName logs Name of the exchange to which to publish log
events.
exchangeType topic Type of the exchange to which to publish log

events — needed only if the appender declares
the exchange. See declareExchange.

routingKeyPattern %C.%p Logging subsystem pattern format to use to
generate a routing key.

applicationlId Application ID — added to the routing key if the
pattern includes %X{applicationIld}.

senderPoolSize 2 The number of threads to use to publish log
events.

maxSenderRetries 30 How many times to retry sending a message if
the broker is unavailable or there is some other
error. Retries are delayed as follows: N A Tog(N),
where N is the retry number.

addresses A comma-delimited list of broker addresses in

the following form: host:port[,host:port]* -
overrides host and port.

153

Property
host
port
virtualHost
username
password

useSsl

verifyHostname

ss1Algorithm

ss1PropertiesLocatio
n

keyStore
keyStorePassphrase
keyStoreType
trustStore
trustStorePassphrase
trustStoreType

saslConfig

contentType
contentEncoding

declareExchange

durable

autoDelete

charset

154

Default
localhost
5672
/
guest
guest

false

true

null
null

null
null
JKS
null
null
JKS

null (RabbitMQ
client default
applies)

text/plain

false

true

false

null

Description

RabbitMQ host to which to connect .
RabbitMQ port to which to connect.
RabbitMQ virtual host to which to connect.
RabbitMQ user to use when connecting.
RabbitMQ password for this user.

Whether to use SSL for the RabbitMQ
connection. See RabbitConnectionFactoryBean and
Configuring SSL

Enable server hostname verification for TLS
connections. See RabbitConnectionFactoryBean
and Configuring SSL

The SSL algorithm to use.

Location of the SSL properties file.

Location of the keystore.
Passphrase for the keystore.
The keystore type.

Location of the truststore.
Passphrase for the truststore.
The truststore type.

The saslConfig - see the javadoc for
RabbitUtils.stringToSas1Config for valid values.

content-type property of log messages.
content-encoding property of log messages.

Whether or not to declare the configured
exchange when this appender starts. See also
durable and autoDelete.

When declareExchange is true, the durable flag is
set to this value.

When declareExchange is true, the auto-delete
flag is set to this value.

Character set to use when converting String to
byte[]. Default: null (the system default charset
is used). If the character set is unsupported on
the current platform, we fall back to using the
system character set.

Property Default
deliveryMode PERSISTENT

generateld false

clientConnectionProp null
erties

addMdcAsHeaders true

4.2.2. Log4j 2 Appender

Description

PERSISTENT or NON_PERSISTENT to determine
whether or not RabbitMQ should persist the
messages.

Used to determine whether the messageld
property is set to a unique value.

A comma-delimited list of key:value pairs for
custom client properties to the RabbitMQ
connection.

MDC properties were always added into
RabbitMQ message headers until this property
was introduced. It can lead to issues for big MDC
as while RabbitMQ has limited buffer size for all
headers and this buffer is pretty small. This
property was introduced to avoid issues in cases
of big MDC. By default this value set to true for
backward compatibility. The false turns off
serialization MDC into headers. Please note, the
JsonLayout adds MDC into the message by
default.

The following example shows how to configure a Log4j 2 appender:

<Appenders>

<RabbitMQ name="rabbitmq"

addresses="f00:5672,bar:5672" user="guest" password="quest" virtualHost="

/II

exchange="10g4j2" exchangeType="topic" declareExchange="true" durable=

"true" autoDelete="false"

applicationId="myAppId" routingKeyPattern="%X{applicationId}.%c.%p"
contentType="text/plain" contentEncoding="UTF-8" generateId="true"

deliveryMode="NON_PERSISTENT"
charset="UTF-8"

senderPoolSize="3" maxSenderRetries="5"

addMdcAsHeaders="false">

</RabbitMQ>
</Appenders>

155

Starting with versions 1.6.10 and 1.7.3, by default, the log4j2 appender publishes
the messages to RabbitMQ on the calling thread. This is because Log4j 2 does not,
by default, create thread-safe events. If the broker is down, the maxSenderRetries is
used to retry, with no delay between retries. If you wish to restore the previous

o behavior of publishing the messages on separate threads (senderPoolSize), you can
set the async property to true. However, you also need to configure Log4j 2 to use
the DefaultLogEventFactory instead of the ReusablelLogEventFactory. One way to do
that is to set the system property -Dlog4j2.enable.threadlocals=false. If you use
asynchronous publishing with the ReusablelLogEventFactory, events have a high
likelihood of being corrupted due to cross-talk.

4.2.3. Logback Appender

The following example shows how to configure a logback appender:

<appender name="AMQP" class="org.springframework.amqp.rabbit.logback.AmqpAppender
">
<layout>
<pattern><![CDATA[%d %p %t [%c] - <%m>%n ||></pattern>
</layout>
<addresses>f00:5672,bar:5672</addresses>
<abbreviation>36</abbreviation>
<includeCallerData>false</includeCallerData>
<applicationId>myApplication</applicationId>
<routingKeyPattern>%property{applicationId}.%c.%p</routingKeyPattern>
<generateld>true</generateld>
<charset>UTF-8</charset>
<durable>false</durable>
<deliveryMode>NON_PERSISTENT</deliveryMode>
<declareExchange>true</declareExchange>
<addMdcAsHeaders>false</addMdcAsHeaders>
</appender>

Starting with version 1.7.1, the Logback AmgpAppender provides an includeCallerData option, which is
false by default. Extracting caller data can be rather expensive, because the log event has to create
a throwable and inspect it to determine the calling location. Therefore, by default, caller data
associated with an event is not extracted when the event is added to the event queue. You can
configure the appender to include caller data by setting the includeCallerData property to true.

Starting with version 2.0.0, the Logback AmgpAppender supports Logback encoders with the encoder
option. The encoder and layout options are mutually exclusive.

4.2.4. Customizing the Messages

By default, AMQP appenders populate the following message properties:

156

https://logback.qos.ch/manual/encoders.html

« deliveryMode

* contentType

» contentEncoding, if configured

* messageld, if generateld is configured
 timestamp of the log event

* appld, if applicationld is configured
In addition they populate headers with the following values:

 categoryName of the log event

* The level of the log event

thread: the name of the thread where log event happened

The location of the stack trace of the log event call

* A copy of all the MDC properties (unless addMdcAsHeaders is set to false)

Each of the appenders can be subclassed, letting you modify the messages before publishing. The
following example shows how to customize log messages:

public class MyEnhancedAppender extends AmgpAppender {

public Message postProcessMessageBeforeSend(Message message, Event event) {
message.getMessageProperties().setHeader("foo", "bar");
return message;

Starting with 2.2.4, the log4j2 AmgpAppender can be extended using @PluginBuilderFactory and
extending also AmqpAppender .Builder

157

(name = "MyEnhancedAppender", category = "Core", elementType = "appender"”,
printObject = true)
public class MyEnhancedAppender extends AmgpAppender {

public MyEnhancedAppender(String name, Filter filter, Layout<? extends
Serializable> layout,
boolean ignoreExceptions, AmgpManager manager, BlockingQueue<Event>
eventQueue, String foo, String bar) {
super(name, filter, layout, ignoreExceptions, manager, eventQueue);

public Message postProcessMessageBeforeSend(Message message, Event event) {
message.getMessageProperties().setHeader("foo", "bar");
return message;

public static Builder newBuilder() {
return new Builder();

}

protected static class Builder extends AmgpAppender.Builder {

protected AmgpAppender buildInstance(String name, Filter filter, Layout<?

extends Serializable> layout,
boolean ignoreExceptions, AmgpManager manager, BlockingQueue<
Event> eventQueue) {
return new MyEnhancedAppender(name, filter, layout, ignoreExceptions,

manager, eventQueue);

}

}

4.2.5. Customizing the Client Properties

You can add custom client properties by adding either string properties or more complex
properties.

Simple String Properties
Each appender supports adding client properties to the RabbitMQ connection.

The following example shows how to add a custom client property for logback:

158

<appender name="AMQP" ...>
<clientConnectionProperties>thing1:thing2,cat:hat</clientConnectionProperties>

</appender>

Example 1. log4j2

<Appenders>
<RabbitMQ name="rabbitmq"
clientConnectionProperties="thing1:thing2,cat:hat"

</RabbitMQ>
</Appenders>

The properties are a comma-delimited list of key:value pairs. Keys and values cannot contain
commas or colons.

These properties appear on the RabbitMQ Admin UI when the connection is viewed.

Advanced Technique for Logback

You can subclass the Logback appender. Doing so lets you modify the client connection properties
before the connection is established. The following example shows how to do so:

public class MyEnhancedAppender extends AmgpAppender {
private String thingl;

@0verride
protected void updateConnectionClientProperties(Map<String, Object>
clientProperties) {
clientProperties.put("thing1", this.thing1);
}

public void setThing1(String thing1) {
this.thing1l = thing1;
}

159

Then you can add <thing1>thing2</thing1> to logback.xml.

For String properties such as those shown in the preceding example, the previous technique can be
used. Subclasses allow for adding richer properties (such as adding a Map or numeric property).

4.2.6. Providing a Custom Queue Implementation

The AmgpAppenders use a BlockingQueue to asynchronously publish logging events to RabbitMQ. By
default, a LinkedBlockingQueue is used. However, you can supply any kind of custom BlockingQueue
implementation.

The following example shows how to do so for Logback:

public class MyEnhancedAppender extends AmgpAppender {

protected BlockingQueue<Event> createEventQueue() {
return new ArrayBlockingQueue();

}

The Log4j 2 appender supports using a BlockingQueueFactory, as the following example shows:

<Appenders>

<RabbitMQ name="rabbitmq"

bufferSize="10" ... >
<ArrayBlockingQueue/>
</RabbitMQ>

</Appenders>

4.3. Sample Applications

The Spring AMQP Samples project includes two sample applications. The first is a simple “Hello
World” example that demonstrates both synchronous and asynchronous message reception. It
provides an excellent starting point for acquiring an understanding of the essential components.
The second sample is based on a stock-trading use case to demonstrate the types of interaction that
would be common in real world applications. In this chapter, we provide a quick walk-through of
each sample so that you can focus on the most important components. The samples are both
Maven-based, so you should be able to import them directly into any Maven-aware IDE (such as
SpringSource Tool Suite).

160

https://logging.apache.org/log4j/2.x/manual/appenders.html#BlockingQueueFactory
https://github.com/SpringSource/spring-amqp-samples
https://www.springsource.org/sts

4.3.1. The “Hello World” Sample

The “Hello World” sample demonstrates both synchronous and asynchronous message reception.
You can import the spring-rabbit-helloworld sample into the IDE and then follow the discussion
below.

Synchronous Example

Within the src/main/java directory, navigate to the org.springframework.amqp.helloworld package.
Open the HelloWorldConfiguration class and notice that it contains the @Configuration annotation at
the class level and notice some @Bean annotations at method-level. This is an example of Spring’s
Java-based configuration. You can read more about that here.

The following listing shows how the connection factory is created:

public CachingConnectionFactory connectionFactory() {
CachingConnectionFactory connectionFactory =
new CachingConnectionFactory("localhost");
connectionFactory.setUsername("quest");
connectionFactory.setPassword("quest");
return connectionFactory;

The configuration also contains an instance of RabbitAdmin, which, by default, looks for any beans of
type exchange, queue, or binding and then declares them on the broker. In fact, the helloWor1dQueue
bean that is generated in HelloWorldConfiguration is an example because it is an instance of Queue.

The following listing shows the helloWor1dQueue bean definition:

public Queue helloWorldQueue() {
return new Queue(this.helloWorldQueueName);

}

Looking back at the rabbitTemplate bean configuration, you can see that it has the name of
helloWorldQueue set as its queue property (for receiving messages) and for its routingKey property
(for sending messages).

Now that we have explored the configuration, we can look at the code that actually uses these
components. First, open the Producer class from within the same package. It contains a main()
method where the Spring ApplicationContext is created.

The following listing shows the main method:

161

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-java

public static void main(String[] args) {
ApplicationContext context =
new AnnotationConfigApplicationContext(RabbitConfiguration.class);
AmgpTemplate amgpTemplate = context.getBean(AmgpTemplate.class);
amgpTemplate.convertAndSend("Hello World");
System.out.println("Sent: Hello World");

In the preceding example, the AmgpTemplate bean is retrieved and used for sending a Message. Since
the client code should rely on interfaces whenever possible, the type is AmgpTemplate rather than
RabbitTemplate. Even though the bean created in HelloWorldConfiguration is an instance of
RabbitTemplate, relying on the interface means that this code is more portable (you can change the
configuration independently of the code). Since the convertAndSend() method is invoked, the
template delegates to its MessageConverter instance. In this case, it uses the default
SimpleMessageConverter, but a different implementation could be provided to the rabbitTemplate
bean, as defined in HelloWor1ldConfiguration.

Now open the Consumer class. It actually shares the same configuration base class, which means it
shares the rabbitTemplate bean. That is why we configured that template with both a routingKey (for
sending) and a queue (for receiving). As we describe in AmgpTemplate, you could instead pass the
'routingKey' argument to the send method and the 'queue’ argument to the receive method. The
Consumer code is basically a mirror image of the Producer, calling receiveAndConvert() rather than
conver tAndSend().

The following listing shows the main method for the Consumer:

public static void main(String[] args) {
ApplicationContext context =
new AnnotationConfigApplicationContext(RabbitConfiguration.class);
AmgpTemplate amgpTemplate = context.getBean(AmgpTemplate.class);
System.out.println("Received: " + amgpTemplate.receiveAndConvert());

If you run the Producer and then run the Consumer, you should see Received: Hello World in the
console output.

Asynchronous Example

Synchronous Example walked through the synchronous Hello World sample. This section describes
a slightly more advanced but significantly more powerful option. With a few modifications, the
Hello World sample can provide an example of asynchronous reception, also known as message-
driven POJOs. In fact, there is a sub-package that provides exactly that:
org.springframework.amgp.samples.helloworld.async.

162

Again, we start with the sending side. Open the ProducerConfiguration class and notice that it
creates a connectionfFactory and a rabbitTemplate bean. This time, since the configuration is
dedicated to the message sending side, we do not even need any queue definitions, and the
RabbitTemplate has only the 'routingKey' property set. Recall that messages are sent to an exchange
rather than being sent directly to a queue. The AMQP default exchange is a direct exchange with no
name. All queues are bound to that default exchange with their name as the routing key. That is
why we only need to provide the routing key here.

The following listing shows the rabbitTemplate definition:

public RabbitTemplate rabbitTemplate() {
RabbitTemplate template = new RabbitTemplate(connectionFactory());
template.setRoutingKey(this.helloWor1dQueueName);
return template;

Since this sample demonstrates asynchronous message reception, the producing side is designed to
continuously send messages (if it were a message-per-execution model like the synchronous
version, it would not be quite so obvious that it is, in fact, a message-driven consumer). The
component responsible for continuously sending messages is defined as an inner class within the
ProducerConfiquration. It is configured to run every three seconds.

The following listing shows the component:

static class ScheduledProducer {

private volatile RabbitTemplate rabbitTemplate;
private final AtomicInteger counter = new AtomicInteger();

(fixedRate = 3000)
public void sendMessage() {
rabbitTemplate.convertAndSend("Hello World " + counter.incrementAndGet());

}

You do not need to understand all of the details, since the real focus should be on the receiving side
(which we cover next). However, if you are not yet familiar with Spring task scheduling support,
you can learn more here. The short story is that the postProcessor bean in the
ProducerConfiguration registers the task with a scheduler.

Now we can turn to the receiving side. To emphasize the message-driven POJO behavior, we start
with the component that react to the messages. The class is called HelloWorldHandler and is shown
in the following listing:

163

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html#scheduling-annotation-support

public class HelloWorldHandler {

public void handleMessage(String text) {
System.out.println("Received: " + text);

}

That class is a POJO. It does not extend any base class, it does not implement any interfaces, and it
does not even contain any imports. It is being “adapted” to the Messagelistener interface by the
Spring AMQP MessagelistenerAdapter. You can then configure that adapter on a
SimpleMessagelListenerContainer. For this sample, the container is created in the
ConsumerConfiguration class. You can see the POJO wrapped in the adapter there.

The following listing shows how the listenerContainer is defined:

public SimpleMessagelListenerContainer listenerContainer() {
SimpleMessagelistenerContainer container = new SimpleMessagelistenerContainer

0);
container.setConnectionFactory(connectionFactory());
container.setQueueName(this.helloWorldQueueName);
container.setMessagelListener(new MessagelListenerAdapter(new HelloWorldHandler

());

return container;

The SimpleMessagelistenerContainer is a Spring lifecycle component and, by default, starts
automatically. If you look in the Consumer class, you can see that its main() method consists of
nothing more than a one-line bootstrap to create the ApplicationContext. The Producer’s main()
method is also a one-line bootstrap, since the component whose method is annotated with
@Scheduled also starts automatically. You can start the Producer and Consumer in any order, and you
should see messages being sent and received every three seconds.

4.3.2. Stock Trading

The Stock Trading sample demonstrates more advanced messaging scenarios than the Hello World
sample. However, the configuration is very similar, if a bit more involved. Since we walked through
the Hello World configuration in detail, here, we focus on what makes this sample different. There
is a server that pushes market data (stock quotations) to a topic exchange. Then, clients can
subscribe to the market data feed by binding a queue with a routing pattern (for example,
app.stock.quotes.nasdaq.*). The other main feature of this demo is a request-reply “stock trade”
interaction that is initiated by the client and handled by the server. That involves a private replyTo
queue that is sent by the client within the order request message itself.

164

The server’s core configuration is in the RabbitServerConfiguration class within the
org.springframework.amgp.rabbit.stocks.config.server package. It extends the
AbstractStockAppRabbitConfiguration. That is where the resources common to the server and client
are defined, including the market data topic exchange (whose name is 'app.stock.marketdata’) and
the queue that the server exposes for stock trades (whose name is 'app.stock.request’). In that
common configuration file, you also see that a Jackson2JsonMessageConverter is configured on the
RabbitTemplate.

The server-specific configuration consists of two things. First, it configures the market data
exchange on the RabbitTemplate so that it does not need to provide that exchange name with every
call to send a Message. It does this within an abstract callback method defined in the base
configuration class. The following listing shows that method:

public void configureRabbitTemplate(RabbitTemplate rabbitTemplate) {
rabbitTemplate.setExchange (MARKET_DATA_EXCHANGE_NAME);
}

Second, the stock request queue is declared. It does not require any explicit bindings in this case,
because it is bound to the default no-name exchange with its own name as the routing key. As
mentioned earlier, the AMQP specification defines that behavior. The following listing shows the
definition of the stockRequestQueue bean:

public Queue stockRequestQueue() {
return new Queue(STOCK_REQUEST_QUEUE_NAME);
}

Now that you have seen the configuration of the server’s AMQP resources, navigate to the
org.springframework.amgp.rabbit.stocks package under the src/test/java directory. There, you can
see the actual Server class that provides a main() method. It creates an ApplicationContext based on
the server-bootstrap.xml config file. There, you can see the scheduled task that publishes dummy
market data. That configuration relies upon Spring’s task namespace support. The bootstrap config
file also imports a few other files. The most interesting one is server-messaging.xml, which is
directly under src/main/resources. There, you can see the messagelListenerContainer bean that is
responsible for handling the stock trade requests. Finally, have a look at the serverHandler bean that
is defined in server-handlers.xml (which is also in 'src/main/resources'). That bean is an instance of
the ServerHandler class and is a good example of a message-driven POJO that can also send reply
messages. Notice that it is not itself coupled to the framework or any of the AMQP concepts. It
accepts a TradeRequest and returns a TradeResponse. The following listing shows the definition of the
handleMessage method:

165

public TradeResponse handleMessage(TradeRequest tradeRequest) { ...
}

Now that we have seen the most important configuration and code for the server, we can turn to
the client. The Dbest starting point is probably RabbitClientConfiguration, in the
org.springframework.amgp.rabbit.stocks.config.client package. Notice that it declares two queues
without providing explicit names. The following listing shows the bean definitions for the two
queues:

public Queue marketDataQueue() {
return amgpAdmin().declareQueue();

}

public Queue traderJoeQueue() {
return amgpAdmin().declareQueue();

}

Those are private queues, and unique names are generated automatically. The first generated
queue is used by the client to bind to the market data exchange that has been exposed by the
server. Recall that, in AMQP, consumers interact with queues while producers interact with
exchanges. The “binding” of queues to exchanges is what tells the broker to deliver (or route)
messages from a given exchange to a queue. Since the market data exchange is a topic exchange,
the binding can be expressed with a routing pattern. The RabbitClientConfiguration does so with a
Binding object, and that object is generated with the BindingBuilder fluent API. The following listing
shows the Binding:

("${stocks.quote.pattern}")
private String marketDataRoutingKey;

public Binding marketDataBinding() {
return BindingBuilder.bind(
marketDataQueue()).to(marketDataExchange()).with(marketDataRoutingKey);

Notice that the actual value has been externalized in a properties file (client.properties under
src/main/resources), and that we use Spring’s @Value annotation to inject that value. This is
generally a good idea. Otherwise, the value would have been hardcoded in a class and
unmodifiable without recompilation. In this case, it is much easier to run multiple versions of the

166

client while making changes to the routing pattern used for binding. We can try that now.

Start by running org.springframework.amgp.rabbit.stocks.Server and then
org.springframework.amgp.rabbit.stocks.Client. You should see dummy quotations for NASDAQ
stocks, because the current value associated with the 'stocks.quote.pattern’ key in client.properties
is 'app.stock.quotes.nasdaq.'. Now, while keeping the existing Server and Client running, change
that property value to 'app.stock.quotes.nyse.' and start a second Client instance. You should see
that the first client still receives NASDAQ quotes while the second client receives NYSE quotes. You
could instead change the pattern to get all stocks or even an individual ticker.

The final feature we explore is the request-reply interaction from the client’s perspective. Recall
that we have already seen the ServerHandler that accepts TradeRequest objects and returns
TradeResponse objects. The corresponding code on the Client side is RabbitStockServiceGateway in
the org.springframework.amgp.rabbit.stocks.gateway package. It delegates to the RabbitTemplate in
order to send messages. The following listing shows the send method:

public void send(TradeRequest tradeRequest) {
getRabbitTemplate().convertAndSend(tradeRequest, new MessagePostProcessor() {
public Message postProcessMessage(Message message) throws AmgpException {
message.getMessageProperties().setReplyTo(new Address
(defaultReplyToQueue));
try {
message.getMessageProperties().setCorrelationId(
UUID.randomUUID().toString().qgetBytes("UTF-8"));
}
catch (UnsupportedEncodingException e) {
throw new AmgpException(e);

}

return message;

1

Notice that, prior to sending the message, it sets the replyTo address. It provides the queue that was
generated by the traderJoeQueue bean definition (shown earlier). The following listing shows the
@Bean definition for the StockServiceGateway class itself:

public StockServiceGateway stockServiceGateway() {
RabbitStockServiceGateway gateway = new RabbitStockServiceGateway();
gateway.setRabbitTemplate(rabbitTemplate());
gateway.setDefaultReplyToQueue(traderJoeQueuve());
return gateway;

167

If you are no longer running the server and client, start them now. Try sending a request with the
format of '100 TCKR'. After a brief artificial delay that simulates “processing” of the request, you
should see a confirmation message appear on the client.

4.3.3. Receiving JSON from Non-Spring Applications

Spring applications, when sending JSON, set the Typeld header to the fully qualified class name to
assist the receiving application in converting the JSON back to a Java object.

The spring-rabbit-json sample explores several techniques to convert the JSON from a non-Spring
application.

See also Jackson2]JsonMessageConverter as well as the Javadoc for the DefaultClassMapper.

4.4. Testing Support

Writing integration for asynchronous applications is necessarily more complex than testing simpler
applications. This is made more complex when abstractions such as the @RabbitListener
annotations come into the picture. The question is how to verify that, after sending a message, the
listener received the message as expected.

The framework itself has many unit and integration tests. Some using mocks while, others use
integration testing with a live RabbitMQ broker. You can consult those tests for some ideas for
testing scenarios.

Spring AMQP version 1.6 introduced the spring-rabbit-test jar, which provides support for testing
some of these more complex scenarios. It is anticipated that this project will expand over time, but
we need community feedback to make suggestions for the features needed to help with testing.
Please use JIRA or GitHub Issues to provide such feedback.

4.4.1. @SpringRabbitTest

Use this annotation to add infrastructure beans to the Spring test ApplicationContext. This is not
necessary when using, for example @SpringBootTest since Spring Boot’s auto configuration will add
the beans.

Beans that are registered are:

* CachingConnectionFactory (autoConnectionFactory). If @RabbitEnabled is present, its connectionn
factory is used.

» RabbitTemplate (autoRabbitTemplate)

RabbitAdmin (autoRabbitAdmin)

RabbitListenerContainerFactory (autoContainerFactory)

In addition, the beans associated with @EnableRabbit (to support @RabbitListener) are added.

168

https://docs.spring.io/spring-amqp/docs/current/api/index.html?org/springframework/amqp/support/converter/DefaultClassMapper.html
https://docs.spring.io/spring-amqp/docs/current/api/index.html?org/springframework/amqp/support/converter/DefaultClassMapper.html
https://jira.spring.io/browse/AMQP
https://github.com/spring-projects/spring-amqp/issues

Example 2. Junit5 example

@SpringJunitConfig
@SpringRabbitTest
public class MyRabbitTests {

@Autowired
private RabbitTemplate template;

@Autowired
private RabbitAdmin admin;

@Autowired
private RabbitlListenerEndpointRegistry registry;

@Test
void test() {

}

@Configuration
public static class Config {

With JUnit4, replace @SpringJunitConfig with @RunWith(SpringRunnner.class).

4.4.2. Mockito Answer<?> Implementations
There are currently two Answer<?> implementations to help with testing.

The first, LatchCountDownAndCallRealMethodAnswer, provides an Answer<Void> that returns null and
counts down a latch. The following example shows how to use
LatchCountDownAndCallRealMethodAnswer

169

LatchCountDownAndCallRealMethodAnswer answer = this.harness.getlLatchAnswerFor(
"myListener", 2);
doAnswer (answer)

.when(listener).foo(anyString(), anyString());

assertThat(answer.await(10)).isTrue();

The second, LambdaAnswer<T> provides a mechanism to optionally call the real method and provides
an opportunity to return a custom result, based on the InvocationOnMock and the result (if any).

Consider the following POJO:

public class Thing {

public String thing(String thing) {
return thing.toUpperCase();
}

The following class tests the Thing POJO:

Thing thing = spy(new Thing());

doAnswer (new LambdaAnswer<String>(true, (i, r) ->r +r))
.when(thing).thing(anyString());
assertEquals("THINGTHING", thing.thing("thing"));

doAnswer (new LambdaAnswer<String>(true, (i, r) -> r + i.getArquments()[0]))
.when(thing).thing(anyString());
assertEquals("THINGthing", thing.thing("thing"));

doAnswer (new LambdaAnswer<String>(false, (i, r) ->
"" 4+ i.getArqguments()[0] + i.getArquments()[0])).when(thing).thing(anyString(

));
assertEquals("thingthing", thing.thing("thing"));

Starting with version 2.2.3, the answers capture any exceptions thrown by the method under test.
Use answer.getExceptions() to get a reference to them.

170

When used in conjunction with the @RabbitListenerTest and RabbitListenerTestHarness use
harness.getLambdaAnswerFor ("listenerId", true, -*) to get a properly constructed answer for the
listener.

4.4.3. 0RabbitListenerTest and RabbitListenerTestHarness

Annotating one of your @Configuration classes with @RabbitListenerTest causes the framework to
replace the standard RabbitListenerAnnotationBeanPostProcessor with a subclass called
RabbitListenerTestHarness (it also enables @RabbitListener detection through @EnableRabbit).

The RabbitListenerTestHarness enhances the listener in two ways. First, it wraps the listener in a
Mockito Spy, enabling normal Mockito stubbing and verification operations. It can also add an Advice
to the listener, enabling access to the arguments, result, and any exceptions that are thrown. You
can control which (or both) of these are enabled with attributes on the @RabbitListenerTest. The
latter is provided for access to lower-level data about the invocation. It also supports blocking the
test thread until the async listener is called.

o final @RabbitListener methods cannot be spied or advised. Also, only listeners with
an id attribute can be spied or advised.

Consider some examples.

The following example uses spy:

171

@Configuration
@RabbitListenerTest
public class Config {

@Bean
public Listener listener() {
return new Listener();

}

}
public class Listener {

@RabbitlListener(id="foo", queues="#{queuel.name}")
public String foo(String foo) {
return foo.toUpperCase();

}

@RabbitListener(id="bar", queues="#{queue2.name}")
public void foo(@Payload String foo, @Header("amgp_receivedRoutingKey") String
rk) {

}
}
public class MyTests {

@Autowired
private RabbitListenerTestHarness harness; @

@Test
public void testTwoWay() throws Exception {
assertEquals("F00", this.rabbitTemplate.convertSendAndReceive(this.queuel
.getName(), "foo"));

Listener listener = this.harness.getSpy("foo"); @
assertNotNull(listener);
verify(listener).foo("foo");

}

@Test

public void testOneWay() throws Exception {
Listener listener = this.harness.getSpy("bar");

assertNotNull(listener);

LatchCountDownAndCallRealMethodAnswer answer = this.harness

172

.getLatchAnswerFor("bar", 2); ®
doAnswer (answer) .when(listener).foo(anyString(), anyString()); @

this.rabbitTemplate.convertAndSend(this.queue2.getName(), "bar");
this.rabbitTemplate.convertAndSend(this.queue2.getName(), "baz");

assertTrue(answer.await(10));
verify(listener).foo("bar", this.queue2.getName());
verify(listener).foo("baz", this.queue2.getName());

@ Inject the harness into the test case so we can get access to the spy.

@ Get a reference to the spy so we can verify it was invoked as expected. Since this is a send
and receive operation, there is no need to suspend the test thread because it was already
suspended in the RabbitTemplate waiting for the reply.

® In this case, we’re only using a send operation so we need a latch to wait for the
asynchronous call to the listener on the container thread. We use one of the Answer<?>
implementations to help with that. IMPORTANT: Due to the way the listener is spied, it is
important to use harness.getlLatchAnswerFor() to get a properly configured answer for the

Spy.
@ Configure the spy to invoke the Answer.

The following example uses the capture advice:

173

#mockito-answer

174

(spy = false, capture = true)
public class Config {

}

public class Listener {
private boolean failed;
(id="foo", queues="#{queuel.name}")

public String foo(String foo) {
return foo.toUpperCase();

}
(id="bar", queues="#{queue2.name}")
public void foo(String foo, ("amgp_receivedRoutingKey") String
rk) {
if (1failed && foo.equals("ex")) {
failed = true;
throw new RuntimeException(foo);
}
failed = false;
Iy

}

public class MyTests {

private RabbitListenerTestHarness harness; @

public void testTwoWay() throws Exception {
assertEquals("F00", this.rabbitTemplate.convertSendAndReceive(this.queuel
.getName(), "foo"));

InvocationData invocationData =
this.harness.getNextInvocationDataFor("foo", @, TimeUnit.SECONDS); @

assertThat(invocationData.getArguments()[0], equalTo("foo")); ®

assertThat((String) invocationData.getResult(), equalTo("F00"));

public void testOneWay() throws Exception {
this.rabbitTemplate.convertAndSend(this.queue2.getName(), "bar");
this.rabbitTemplate.convertAndSend(this.queue2.getName(), "baz");

this.rabbitTemplate.convertAndSend(this.queue2.getName(), "ex");

InvocationData invocationData =
this.harness.getNextInvocationDataFor("bar", 10, TimeUnit.SECONDS); @

Object[] args = invocationData.getArguments();

assertThat((String) args[0], equalTo("bar"));

assertThat((String) args[1], equalTo(queue2.getName()));

invocationData = this.harness.getNextInvocationDataFor("bar", 10,
TimeUnit.SECONDS);

args = invocationData.getArguments();

assertThat((String) args[0], equalTo("baz"));

invocationData = this.harness.getNextInvocationDataFor("bar", 10,
TimeUnit.SECONDS);

args = invocationData.getArguments();

assertThat((String) args[0], equalTo("ex"));

assertEquals("ex", invocationData.getThrowable().getMessage()); ®

@ Inject the harness into the test case so we can get access to the spy.

@ Use harness.getNextInvocationDataFor () to retrieve the invocation data - in this case since it
was a request/reply scenario there is no need to wait for any time because the test thread
was suspended in the RabbitTemplate waiting for the result.

® We can then verify that the argument and result was as expected.

@ This time we need some time to wait for the data, since it’s an async operation on the
container thread and we need to suspend the test thread.

® When the listener throws an exception, it is available in the throwable property of the
invocation data.

When using custom Answer<?> s with the harness, in order to operate properly,
such answers should subclass ForwardsInvocation and get the actual listener (not

o the spy) from the harness (getDelegate("myListener")) and call
super.answer (invocation). See the provided Mockito Answer<?> Implementations
source code for examples.

4.4.4. Using TestRabbitTemplate

The TestRabbitTemplate is provided to perform some basic integration testing without the need for a
broker. When you add it as a @Bean in your test case, it discovers all the listener containers in the
context, whether declared as @Bean or <bean/> or using the @RabbitListener annotation. It currently
only supports routing by queue name. The template extracts the message listener from the
container and invokes it directly on the test thread. Request-reply messaging (sendAndReceive
methods) is supported for listeners that return replies.

175

The following test case uses the template:

176

(SpringRunner.class)

public class TestRabbitTemplateTests {

private TestRabbitTemplate template;

private Config config;

public void testSimpleSends() {

this.template.convertAndSend("foo", "hellol1");
assertThat(this.config.fooIn, equalTo("foo:hello1"));
this.template.convertAndSend("bar", "hello2");
assertThat(this.config.barIn, equalTo("bar:hello2"));
assertThat(this.config.smlc1In, equalTo("smlc1:"));
this.template.convertAndSend("foo", "hello3");
assertThat(this.config.fooln, equalTo("foo:hello1"));
this.template.convertAndSend("bar", "hello4");
assertThat(this.config.barIn, equalTo("bar:hello2"));
assertThat(this.config.smlc1In, equalTo("smlc1:hello3hellod"));

this.template.setBroadcast(true);

this.template.convertAndSend("foo", "hello5");
assertThat(this.config.fooIn, equalTo("foo:hellol1foo:hello5"));
this.template.convertAndSend("bar", "hellob");
assertThat(this.config.barIn, equalTo("bar:hello2bar:hello6"));
assertThat(this.config.smlc1In, equalTo("smlc1:hello3hellodhello5hello6")

public void testSendAndReceive() {

assertThat(this.template.convertSendAndReceive("baz", "hello"), equalTo(

"baz:hello"));

public static class Config {

public String fooln g

public String barIn g

public String smlc1In = "smlc1:";

177

public TestRabbitTemplate template() throws IOException {
return new TestRabbitTemplate(connectionFactory());

}

public ConnectionFactory connectionFactory() throws IOException {
ConnectionFactory factory = mock(ConnectionFactory.class);
Connection connection = mock(Connection.class);
Channel channel = mock(Channel.class);
willReturn(connection).given(factory).createConnection();
willReturn(channel).given(connection).createChannel(anyBoolean());
given(channel.isOpen()).willReturn(true);
return factory;

public SimpleRabbitListenerContainerFactory
rabbitListenerContainerFactory() throws IOException {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(connectionFactory());
return factory;

(queues = "foo")
public void foo(String in) {
this.fooIn += "foo:" + in;

}

(queues = "bar")
public void bar(String in) {
this.barIn += "bar:" + in;

}

(queues = "baz")
public String baz(String in) {
return "baz:" + in;

}

public SimpleMessagelListenerContainer smlc1() throws IOException {
SimpleMessagelistenerContainer container = new
SimpleMessagelistenerContainer(connectionFactory());
container.setQueueNames("foo", "bar");
container.setMessagelListener(new MessagelistenerAdapter(new Object() {

("unused")
public void handleMessage(String in) {
smle1In += in;

}

178

)i

return container;

4.4.5. JUnit4 @Rules

Spring AMQP version 1.7 and later provide an additional jar called spring-rabbit-junit. This jar
contains a couple of utility @Rule instances for use when running JUnit4 tests. See JUnit5 Conditions
for JUnit5 testing.

Using BrokerRunning

BrokerRunning provides a mechanism to let tests succeed when a broker is not running (on
localhost, by default).

It also has utility methods to initialize and empty queues and delete queues and exchanges.

The following example shows its usage:

public static BrokerRunning brokerRunning = BrokerRunning.
isRunningWithEmptyQueues("foo", "bar");

public static void tearDown() {
brokerRunning.removeTestQueues("some.other.queue.too") // removes foo, bar as
well

}

There are several isRunning-- static methods, such as isBrokerAndManagementRunning(), which
verifies the broker has the management plugin enabled.

Configuring the Rule

There are times when you want tests to fail if there is no broker, such as a nightly CI build. To
disable the rule at runtime, set an environment variable called RABBITMQ SERVER_REQUIRED to true.

You can override the broker properties, such as hostname with either setters or environment
variables:

The following example shows how to override properties with setters:

179

@ClassRule
public static BrokerRunning brokerRunning = BrokerRunning.
isRunningWithEmptyQueues("“foo", "bar");

static {
brokerRunning.setHostName("10.0.0.1")

}

@AfterClass

public static void tearDown() {
brokerRunning.removeTestQueues("some.other.queue.too") // removes foo, bar as

well

}

You can also override properties by setting the following environment variables:

public static final String BROKER_ADMIN_URI = "RABBITMQ_TEST_ADMIN_URI";
public static final String BROKER_HOSTNAME = "RABBITMQ_TEST_HOSTNAME";
public static final String BROKER_PORT = "RABBITMQ_TEST_PORT";

public static final String BROKER_USER = "RABBITMQ_TEST_USER";

public static final String BROKER_PW = "RABBITMQ_TEST_PASSWORD";

public static final String BROKER_ADMIN_USER = "RABBITMQ_TEST_ADMIN_USER";
public static final String BROKER_ADMIN_PW = "RABBITMQ_TEST_ADMIN_PASSWORD";

These environment variables override the default settings (localhost:5672 for amqgp and
localhost:15672/api/ for the management REST API).

Changing the host name affects both the amgp and management REST API connection (unless the
admin uri is explicitly set).

BrokerRunning also provides a static method called setEnvironmentVariableOverrides that lets you
can pass in a map containing these variables. They override system environment variables. This
might be useful if you wish to use different configuration for tests in multiple test suites.
IMPORTANT: The method must be called before invoking any of the isRunning() static methods that
create the rule instance. Variable values are applied to all instances created after this invocation.
Invoke clearEnvironmentVariableOverrides() to reset the rule to use defaults (including any actual
environment variables).

In your test cases, you can use the brokerRunning when creating the connection factory;
getConnectionFactory() returns the rule’s RabbitMQ ConnectionFactory. The following example
shows how to do so:

180

http://localhost:15672/api/

public CachingConnectionFactory rabbitConnectionFactory() {
return new CachingConnectionFactory(brokerRunning.getConnectionFactory());

}

Using LongRunningIntegrationTest

LongRunningIntegrationTest is a rule that disables long running tests. You might want to use this on
a developer system but ensure that the rule is disabled on, for example, nightly CI builds.

The following example shows its usage:

public LongRunningIntegrationTest longTests = new LongRunningIntegrationTest();

To disable the rule at runtime, set an environment variable called RUN_LONG_INTEGRATION_TESTS to
true.

4.4.6. JUnit5 Conditions

Version 2.0.2 introduced support for JUnit5.

Using the gRabbitAvailable Annotation

This class-level annotation is similar to the BrokerRunning @Rule discussed in JUnit4 @Rules. It is
processed by the RabbitAvailableCondition.

The annotation has three properties:
* queues: An array of queues that are declared (and purged) before each test and deleted when all

tests are complete.

» management: Set this to true if your tests also require the management plugin installed on the
broker.

* purgeAfterEach: (Since version 2.2) when true (default), the queues will be purged between tests.

It is used to check whether the broker is available and skip the tests if not. As discussed in
Configuring the Rule, the environment variable called RABBITMQ_SERVER_REQUIRED, if true, causes the
tests to fail fast if there is no broker. You can configure the condition by using environment
variables as discussed in Configuring the Rule.

In addition, the RabbitAvailableCondition supports argument resolution for parameterized test
constructors and methods. Two argument types are supported:

* BrokerRunningSupport: The instance (before 2.2, this was a JUnit 4 BrokerRunning instance)

181

* ConnectionFactory: The BrokerRunningSupport instance’s RabbitMQ connection factory

The following example shows both:

(queues = "rabbitAvailableTests.queue")
public class RabbitAvailableCTORInjectionTests {

private final ConnectionFactory connectionFactory;

public RabbitAvailableCTORInjectionTests(BrokerRunningSupport brokerRunning) {
this.connectionFactory = brokerRunning.getConnectionFactory();

}

public void test(ConnectionFactory cf) throws Exception {

assertSame(cf, this.connectionFactory);
Connection conn = this.connectionFactory.newConnection();
Channel channel = conn.createChannel();
DeclareOk declareOk = channel.queueDeclarePassive(

"rabbitAvailableTests.queue");
assertEquals(0, declareOk.getConsumerCount());
channel.close();
conn.close();

The preceding test is in the framework itself and verifies the argument injection and that the
condition created the queue properly.

A practical user test might be as follows:

182

(queues = "rabbitAvailableTests.queue")
public class RabbitAvailableCTORInjectionTests {

private final CachingConnectionFactory connectionFactory;

public RabbitAvailableCTORInjectionTests(BrokerRunningSupport brokerRunning) {
this.connectionFactory =

new CachingConnectionFactory(brokerRunning.getConnectionFactory());

public void test() throws Exception {

RabbitTemplate template = new RabbitTemplate(this.connectionFactory);

When you use a Spring annotation application context within a test class, you can get a reference to
the condition’s connection factory through

a static method called
RabbitAvailableCondition.getBrokerRunning().

Starting with version 2.2, getBrokerRunning() returns a BrokerRunningSupport object;

previously, the JUnit 4 BrokerRunnning instance was returned. The new class has the
same API as BrokerRunning.

The following test comes from the framework and demonstrates the usage:

183

184

@RabbitAvailable(queues = {
RabbitTemplateMPPIntegrationTests.QUEUE,
RabbitTemplateMPPIntegrationTests.REPLIES })

@SpringJUnitConfig

@DirtiesContext(classMode = ClassMode.AFTER_EACH_TEST_METHOD)

public class RabbitTemplateMPPIntegrationTests {

public static final String QUEUE = "mpp.tests";
public static final String REPLIES = "mpp.tests.replies"”;

@Autowired
private RabbitTemplate template;

@Autowired
private Config config;

@Test
public void test() {

}

@Configuration
@EnableRabbit
public static class Config {

@Bean
public CachingConnectionFactory cf() {
return new CachingConnectionFactory(RabbitAvailableCondition
.getBrokerRunning()
.getConnectionFactory());
}

@Bean
public RabbitTemplate template() {

}

@Bean
public SimpleRabbitListenerContainerFactory
rabbitListenerContainerFactory() {

@RabbitListener(queues = QUEUE)
public byte[] foo(byte[] in) {
return in;

}

Using the gLongRunning Annotation

Similar to the LongRunningIntegrationTest JUnit4 @Rule, this annotation causes tests to be skipped
unless an environment variable (or system property) is set to true. The following example shows
how to use it:

@RabbitAvailable(queues = SimpleMessagelListenerContainerLongTests.QUEUE)
@LongRunning
public class SimpleMessagelistenerContainerLongTests {

public static final String QUEUE =
"SimpleMessagelListenerContainerLongTests.queue";

By default, the variable is RUN_LONG_INTEGRATION_TESTS, but you can specify the variable name in the
annotation’s value attribute.

185

Chapter 5. Spring Integration - Reference

This part of the reference documentation provides a quick introduction to the AMQP support
within the Spring Integration project.

5.1. Spring Integration AMQP Support

This brief chapter covers the relationship between the Spring Integration and the Spring AMQP
projects.

5.1.1. Introduction

The Spring Integration project includes AMQP Channel Adapters and Gateways that build upon the
Spring AMQP project. Those adapters are developed and released in the Spring Integration project.
In Spring Integration, “Channel Adapters” are unidirectional (one-way), whereas “Gateways” are
bidirectional (request-reply). We provide an inbound-channel-adapter, an outbound-channel-
adapter, an inbound-gateway, and an outbound-gateway.

Since the AMQP adapters are part of the Spring Integration release, the documentation is available
as part of the Spring Integration distribution. We provide a quick overview of the main features
here. See the Spring Integration Reference Guide for much more detail.

5.1.2. Inbound Channel Adapter

To receive AMQP Messages from a queue, you can configure an <inbound-channel-adapter>. The
following example shows how to configure an inbound channel adapter:

<amgp:inbound-channel-adapter channel="fromAMQP"
queue-names="some.queue"
connection-factory="rabbitConnectionFactory"/>

5.1.3. Outbound Channel Adapter

To send AMQP Messages to an exchange, you can configure an <outbound-channel-adapter>. You can
optionally provide a 'routing-key' in addition to the exchange name. The following example shows
how to define an outbound channel adapter:

<amqgp:outbound-channel-adapter channel="toAMQP"
exchange-name="some.exchange"
routing-key="foo"
amqp-template="rabbitTemplate"/>

186

https://www.springsource.org/spring-integration
https://docs.spring.io/spring-integration/reference/htmlsingle/

5.1.4. Inbound Gateway

To receive an AMQP Message from a queue and respond to its reply-to address, you can configure
an <inbound-gateway>. The following example shows how to define an inbound gateway:

<amgp:inbound-gateway request-channel="fromAMQP"
reply-channel="toAMQP"
queue-names="some.queue"
connection-factory="rabbitConnectionFactory"/>

5.1.5. Outbound Gateway

To send AMQP Messages to an exchange and receive back a response from a remote client, you can
configure an <outbound-gateway>. You can optionally provide a 'routing-key' in addition to the
exchange name. The following example shows how to define an outbound gateway:

<amgp:outbound-gateway request-channel="toAMQP"
reply-channel="fromAMQP"
exchange-name="some.exchange"
routing-key="foo"
amqp-template="rabbitTemplate"/>

187

Chapter 6. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help
you learn about AMQP.

6.1. Further Reading

For those who are not familiar with AMQP, the specification is actually quite readable. It is, of
course, the authoritative source of information, and the Spring AMQP code should be easy to
understand for anyone who is familiar with the spec. Our current implementation of the RabbitMQ
support is based on their 2.8.x version, and it officially supports AMQP 0.8 and 0.9.1. We
recommend reading the 0.9.1 document.

There are many great articles, presentations, and blogs available on the RabbitMQ Getting Started
page. Since that is currently the only supported implementation for Spring AMQP, we also
recommend that as a general starting point for all broker-related concerns.

188

https://www.amqp.org/resources/download
https://www.rabbitmq.com/how.html

Appendix A: Change History

This section describes what changes have been made as versions have changed.

A.1. Current Release

See What’s New.

A.2. Previous Releases

A.2.1. Changes in 2.2 Since 2.1

This section describes the changes between version 2.1 and version 2.2.

Package Changes

The following classes/interfaces have been moved from
org.springframework.amgp.rabbit.core.support to org.springframework.amgp.rabbit.batch:

» BatchingStrategy
* MessageBatch

* SimpleBatchingStrategy

In addition, ListenerExecutionFailedException has been moved from
org.springframework.amgp.rabbit.listener.exceptionto org.springframework.amgp.rabbit.support.

Dependency Changes

JUnit (4) is now an optional dependency and will no longer appear as a transitive dependency.

The spring-rabbit-junit module is now a compile dependency in the spring-rabbit-test module
for a better target application development experience when with only a single spring-rabbit-test
we get the full stack of testing utilities for AMQP components.

"Breaking" API Changes

the JUnit (5) RabbitAvailableCondition.getBrokerRunning() now returns a BrokerRunningSupport
instance instead of a BrokerRunning, which depends on JUnit 4. It has the same API so it’s just a
matter of changing the class name of any references. See JUnit5 Conditions for more information.

ListenerContainer Changes

Messages with fatal exceptions are now rejected and NOT requeued, by default, even if the
acknowledge mode is manual. See Exception Handling for more information.

Listener performance can now be monitored using Micrometer Timer s. See Monitoring Listener
Performance for more information.

189

@RabbitListener Changes

You can now configure an executor on each listener, overriding the factory configuration, to more
easily identify threads associated with the listener. You can now override the container factory’s
acknowledgeMode property with the annotation’s ackMode property. See overriding container factory
properties for more information.

When using batching, @RabbitListener methods can now receive a complete batch of messages in
one call instead of getting them one-at-a-time.

When receiving batched messages one-at-a-time, the last message has the isLastInBatch message
property set to true.

In addition, received batched messages now contain the amqp_batchSize header.

Listeners can also consume batches created in the SimpleMessagelistenerContainer, even if the batch
is not created by the producer. See Choosing a Container for more information.

Spring Data Projection interfaces are now supported by the Jackson2JsonMessageConverter. See Using
Spring Data Projection Interfaces for more information.

The Jackson2JsonMessageConverter now assumes the content is JSON if there is no contentType
property, or it is the default (application/octet-string). See Converting from a Message for more
information.

Similarly. the Jackson2XmlMessageConverter now assumes the content is XML if there is no
contentType property, or it is the default (application/octet-string). See
Jackson2XmlMessageConverter for more information.

When a @RabbitListener method returns a result, the bean and Method are now available in the
reply message properties. This allows configuration of a beforeSendReplyMessagePostProcessor to, for
example, set a header in the reply to indicate which method was invoked on the server. See Reply
Management for more information.

You can now configure a ReplyPostProcessor to make modifications to a reply message before it is
sent. See Reply Management for more information.

AMQP Logging Appenders Changes

The Log4] and Logback AmgpAppender s now support a verifyHostname SSL option.

Also these appenders now can be configured to not add MDC entries as headers. The
addMdcAsHeaders boolean option has been introduces to configure such a behavior.

The appenders now support the Sas1Config property.

See Logging Subsystem AMQP Appenders for more information.

MessageListenerAdapter Changes

The MessagelListenerAdapter provides now a new buildListenerArquments(Object, Channel, Message)
method to build an array of arguments to be passed into target listener and an old one is

190

deprecated. See MessagelistenerAdapter for more information.

Exchange/Queue Declaration Changes

The ExchangeBuilder and QueueBuilder fluent APIs used to create Exchange and Queue objects for
declaration by RabbitAdmin now support "well known" arguments. See Builder API for Queues and
Exchanges for more information.

The RabbitAdmin has a new property explicitDeclarationsOnly. See Conditional Declaration for more
information.

Connection Factory Changes

The CachingConnectionFactory has a new property shuffleAddresses. When providing a list of broker
node addresses, the list will be shuffled before creating a connection so that the order in which the
connections are attempted is random. See Connecting to a Cluster for more information.

When using Publisher confirms and returns, the callbacks are now invoked on the connection
factory’s executor. This avoids a possible deadlock in the amqp-clients library if you perform rabbit
operations from within the callback. See Correlated Publisher Confirms and Returns for more
information.

Also, the publisher confirm type is now specified with the ConfirmType enum instead of the two
mutually exclusive setter methods.

The RabbitConnectionFactoryBean now uses TLS 1.2 by default when SSL is enabled. See
RabbitConnectionFactoryBean and Configuring SSL for more information.

New MessagePostProcessor Classes

Classes DeflaterPostProcessor and InflaterPostProcessor were added to support compression and
decompression, respectively, when the message content-encoding is set to deflate.

Other Changes

The Declarables object (for declaring multiple queues, exchanges, bindings) now has a filtered
getter for each type. See Declaring Collections of Exchanges, Queues, and Bindings for more
information.

You can now customize each Declarable bean before the RabbitAdmin processes the declaration
thereof. See Automatic Declaration of Exchanges, Queues, and Bindings for more information.

singleActiveConsumer() has been added to the QueueBuilder to set the x-single-active-consumer
queue argument. See Builder API for Queues and Exchanges for more information.

Outbound headers with values of type (lass<?> are now mapped using getName() instead of
toString(). See Message Properties Converters for more information.

Recovery of failed producer-created batches is now supported. See Retry with Batch Listeners for
more information.

191

A.2.2. Changes in 2.1 Since 2.0

AMQP Client library

Spring AMQP now uses the 5.4.x version of the amqp-client library provided by the RabbitMQ team.
This client has auto-recovery configured by default. See RabbitMQ Automatic Connection/Topology
recovery.

As of version 4.0, the client enables automatic recovery by default. While
compatible with this feature, Spring AMQP has its own recovery mechanisms and
the client recovery feature generally is not needed. We recommend disabling amqp-
client automatic recovery, to avoid getting

o AutoRecoverConnectionNotCurrentlyOpenException instances when the broker is
available but the connection has not yet recovered. Starting with version 1.7.1,
Spring AMQP disables it unless you explicitly create your own RabbitMQ
connection factory and provide it to the CachingConnectionFactory. RabbitMQ
ConnectionFactory instances created by the RabbitConnectionFactoryBean also have
the option disabled by default.

Package Changes

Certain classes have moved to different packages. Most are internal classes and do not affect user
applications. Two exceptions are ChannelAwareMessagelistener and RabbitListenerErrorHandler.
These interfaces are now in org.springframework.amgp.rabbit.listener.api.

Publisher Confirms Changes

Channels enabled for publisher confirmations are not returned to the cache while there are
outstanding confirmations. See Correlated Publisher Confirms and Returns for more information.

Listener Container Factory Improvements

You can now use the listener container factories to create any listener container, not only those for
use with @RabbitListener annotations or the @RabbitListenerEndpointRegistry. See Using Container
Factories for more information.

ChannelAwareMessagelistener now inherits from MessagelListener.

Broker Event Listener

A BrokerEventListener is introduced to publish selected broker events as ApplicationEvent instances.
See Broker Event Listener for more information.

RabbitAdmin Changes

The RabbitAdmin discovers beans of type Declarables (which is a container for Declarable - Queue,
Exchange, and Binding objects) and declare the contained objects on the broker. Users are
discouraged from using the old mechanism of declaring <Collection<Queue>> (and others) and
should use Declarables beans instead. By default, the old mechanism is disabled. See Declaring
Collections of Exchanges, Queues, and Bindings for more information.

192

AnonymousQueue instances are now declared with x-queue-master-locator set to client-local by
default, to ensure the queues are created on the node the application is connected to. See
Configuring the Broker for more information.

RabbitTemplate Changes

You can now configure the RabbitTemplate with the noLocalReplyConsumer option to control a nolLocal
flag for reply consumers in the sendAndReceive() operations. See Request/Reply Messaging for more
information.

CorrelationData for publisher confirmations now has a ListenableFuture, which you can use to get
the acknowledgment instead of using a callback. When returns and confirmations are enabled, the
correlation data, if provided, is populated with the returned message. See Correlated Publisher
Confirms and Returns for more information.

A method called replyTimedOut is now provided to notify subclasses that a reply has timed out,
allowing for any state cleanup. See Reply Timeout for more information.

You can now specify an ErrorHandler to be invoked when using request/reply with a
DirectReplyToMessagelListenerContainer (the default) when exceptions occur when replies are
delivered (for example, late replies). See setReplyErrorHandler on the RabbitTemplate. (Also since
2.0.11).

Message Conversion

We introduced a new Jackson2XmlMessageConverter to support converting messages from and to
XML format. See Jackson2XmlMessageConverter for more information.

Management REST API

The RabbitManagementTemplate is now deprecated in favor of the direct
com.rabbitmg.http.client.Client (or com.rabbitmg.http.client.ReactorNettyClient) wusage. See
RabbitMQ REST API for more information.

@RabbitListener Changes

The listener container factory can now be configured with a RetryTemplate and, optionally, a
Recovery(Callback used when sending replies. See Enable Listener Endpoint Annotations for more
information.

Async @RabbitListener Return

@RabbitListener methods can now return ListenableFuture<?> or Mono<?>. See Asynchronous
@RabbitListener Return Types for more information.

Connection Factory Bean Changes

By default, the RabbitConnectionFactoryBean now calls enableHostnameVerification(). To revert to the
previous behavior, set the enableHostnameVerification property to false.

193

Connection Factory Changes

The CachingConnectionFactory now unconditionally disables auto-recovery in the underlying
RabbitMQ ConnectionFactory, even if a pre-configured instance is provided in a constructor. While
steps have been taken to make Spring AMQP compatible with auto recovery, certain corner cases
have arisen where issues remain. Spring AMQP has had its own recovery mechanism since 1.0.0
and does not need to use the recovery provided by the client. While it is still possible to enable the
feature (using cachingConnectionFactory.getRabbitConnectionFactory()
.setAutomaticRecoveryEnabled()) after the CachingConnectionFactory is constructed, we strongly
recommend that you not do so. We recommend that you use a separate RabbitMQ
ConnectionFactory if you need auto recovery connections when using the client factory directly
(rather than using Spring AMQP components).

Listener Container Changes

The default ConditionalRejectingErrorHandler now completely discards messages that cause fatal
errors if an x-death header is present. See Exception Handling for more information.

Immediate requeue

A new ImmediateRequeueAmgpException is introduced to notify a listener container that the message
has to be re-queued. To use this feature, a new ImmediateRequeueMessageRecoverer implementation is
added.

See Message Listeners and the Asynchronous Case for more information.

A.2.3. Changes in 2.0 Since 1.7

Using CachingConnectionFactory

Starting with version 2.0.2, you can configure the RabbitTemplate to use a different connection to
that used by listener containers. This change avoids deadlocked consumers when producers are
blocked for any reason. See Using a Separate Connection for more information.

AMQP Client library

Spring AMQP now uses the new 5.0.x version of the amqp-client library provided by the RabbitMQ
team. This client has auto recovery configured by default. See RabbitMQ Automatic
Connection/Topology recovery.

194

As of version 4.0, the client enables automatic recovery by default. While
compatible with this feature, Spring AMQP has its own recovery mechanisms, and
the client recovery feature generally is not needed. We recommend that you
disable amgp-client automatic recovery, to avoid getting

o AutoRecoverConnectionNotCurrentlyOpenException instances when the broker is
available but the connection has not yet recovered. Starting with version 1.7.1,
Spring AMQP disables it unless you explicitly create your own RabbitMQ
connection factory and provide it to the CachingConnectionFactory. RabbitMQ
ConnectionFactory instances created by the RabbitConnectionFactoryBean also have
the option disabled by default.

General Changes

The ExchangeBuilder now builds durable exchanges by default. The @Exchange annotation used
within a @QeueueBinding also declares durable exchanges by default. The @Queue annotation used
within a @RabbitListener by default declares durable queues if named and non-durable if
anonymous. See Builder API for Queues and Exchanges and Annotation-driven Listener Endpoints
for more information.

Deleted Classes

UniquelyNameQueue is no longer provided. It is unusual to create a durable non-auto-delete queue
with a unique name. This class has been deleted. If you require its functionality, use new
Queue(UUID.randomUUID().toString()).

New Listener Container

The DirectMessagelListenerContainer has been added alongside the existing
SimpleMessagelistenerContainer. See Choosing a Container and Message Listener Container
Configuration for information about choosing which container to use as well as how to configure
them.

Log4j Appender

This appender is no longer available due to the end-of-life of log4j. See Logging Subsystem AMQP
Appenders for information about the available log appenders.

RabbitTemplate Changes

Previously, a non-transactional RabbitTemplate participated in an existing
transaction if it ran on a transactional listener container thread. This was a serious

o bug. However, users might have relied on this behavior. Starting with version
1.6.2, you must set the channelTransacted boolean on the template for it to
participate in the container transaction.

The RabbitTemplate now uses a DirectReplyToMessagelistenerContainer (by default) instead of
creating a new consumer for each request. See RabbitMQ Direct reply-to for more information.

The AsyncRabbitTemplate now supports direct reply-to. See Async Rabbit Template for more

195

information.

The RabbitTemplate and AsyncRabbitTemplate now have receiveAndConvert and
convertSendAndReceiveAsType methods that take a ParameterizedTypeReference<T> argument, letting
the caller specify the type to which to convert the result. This is particularly useful for complex
types or when type information is not conveyed in message headers. It requires a
SmartMessageConverter such as the Jackson2]sonMessageConverter. See Receiving Messages,
Request/Reply Messaging, Async Rabbit Template, and Converting From a Message With
RabbitTemplate for more information.

You can now use a RabbitTemplate to perform multiple operations on a dedicated channel. See
Scoped Operations for more information.

Listener Adapter

A convenient Functionallnterface is available for using lambdas with the MessagelistenerAdapter.
See MessagelistenerAdapter for more information.

Listener Container Changes

Prefetch Default Value

The prefetch default value used to be 1, which could lead to under-utilization of efficient
consumers. The default prefetch value is now 250, which should keep consumers busy in most
common scenarios and, thus, improve throughput.

There are scenarios where the prefetch value should be low — for example, with
large messages, especially if the processing is slow (messages could add up to a
large amount of memory in the client process), and if strict message ordering is

o necessary (the prefetch value should be set back to 1 in this case). Also, with low-
volume messaging and multiple consumers (including concurrency within a single
listener container instance), you may wish to reduce the prefetch to get a more
even distribution of messages across consumers.

For more background about prefetch, see this post about consumer utilization in RabbitMQ and this
post about queuing theory.

Message Count

Previously, MessageProperties.getMessageCount() returned 0 for messages emitted by the container.
This property applies only when you use basicGet (for example, from RabbitTemplate.receive()
methods) and is now initialized to null for container messages.

Transaction Rollback Behavior

Message re-queue on transaction rollback is now consistent, regardless of whether or not a
transaction manager is configured. See A note on Rollback of Received Messages for more
information.

196

https://www.rabbitmq.com/blog/2014/04/14/finding-bottlenecks-with-rabbitmq-3-3/
https://www.rabbitmq.com/blog/2012/05/11/some-queuing-theory-throughput-latency-and-bandwidth/

Shutdown Behavior

If the container threads do not respond to a shutdown within shutdownTimeout, the channels are
forced closed by default. See Message Listener Container Configuration for more information.

After Receive Message Post Processors

If a MessagePostProcessor in the afterReceiveMessagePostProcessors property returns null, the
message is discarded (and acknowledged if appropriate).

Connection Factory Changes

The connection and channel listener interfaces now provide a mechanism to obtain information
about exceptions. See Connection and Channel Listeners and Publishing is Asynchronous — How to
Detect Successes and Failures for more information.

A new ConnectionNameStrategy is now provided to populate the application-specific identification of
the target RabbitMQ connection from the AbstractConnectionFactory. See Connection and Resource
Management for more information.

Retry Changes

The MissingMessageIdAdvice is no longer provided. Its functionality is now built-in. See Failures in
Synchronous Operations and Options for Retry for more information.

Anonymous Queue Naming

By default, AnonymousQueues are now named with the default Base64Ur1NamingStrategy instead of a
simple UUID string. See AnonymousQueue for more information.

@RabbitListener Changes

You can now provide simple queue declarations (bound only to the default exchange) in
@RabbitListener annotations. See Annotation-driven Listener Endpoints for more information.

You can now configure @RabbitListener annotations so that any exceptions are returned to the
sender. You can also configure a RabbitListenerErrorHandler to handle exceptions. See Handling
Exceptions for more information.

You can now bind a queue with multiple routing keys when you use the @QueueBinding annotation.
Also @QueueBinding.exchange() now supports custom exchange types and declares durable
exchanges by default.

You can now set the concurrency of the listener container at the annotation level rather than having
to configure a different container factory for different concurrency settings.

You can now set the autoStartup property of the listener container at the annotation level,
overriding the default setting in the container factory.

You can now set after receive and before send (reply) MessagePostProcessor instances in the
RabbitListener container factories.

197

See Annotation-driven Listener Endpoints for more information.

Starting with version 2.0.3, one of the @RabbitHandler annotations on a class-level @RabbitListener
can be designated as the default. See Multi-method Listeners for more information.

Container Conditional Rollback

When using an external transaction manager (such as JDBC), rule-based rollback is now supported
when you provide the container with a transaction attribute. It is also now more flexible when you
use a transaction advice. See Conditional Rollback for more information.

Remove Jackson 1.x support

Deprecated in previous versions, Jackson 1.x converters and related components have now been
deleted. You can use similar components based on Jackson 2.x. See Jackson2]JsonMessageConverter
for more information.

JSON Message Converter

When the Typeld is set to Hashtable for an inbound JSON message, the default conversion type is
now LinkedHashMap. Previously, it was Hashtable. To revert to a Hashtable, you can use
setDefaultMapType on the DefaultClassMapper.

XML Parsers

When parsing Queue and Exchange XML components, the parsers no longer register the name attribute
value as a bean alias if an id attribute is present. See A Note On the id and name Attributes for more
information.

Blocked Connection

You can now inject the com.rabbitmqg.client.BlockedListener into the
org.springframework.amgp.rabbit.connection.Connection object. Also, the ConnectionBlockedEvent
and ConnectionUnblockedEvent events are emitted by the ConnectionFactory when the connection is
blocked or unblocked by the Broker.

See Connection and Resource Management for more information.

A.2.4. Changes in 1.7 Since 1.6

AMQP Client library

Spring AMQP now uses the new 4.0.x version of the amqp-client library provided by the RabbitMQ
team. This client has auto-recovery configured by default. See RabbitMQ Automatic
Connection/Topology recovery.

198

The 4.0.x client enables automatic recovery by default. While compatible with this
feature, Spring AMQP has its own recovery mechanisms, and the client recovery
feature generally is not needed. We recommend disabling amqp-client automatic
recovery, to avoid getting AutoRecoverConnectionNotCurrentlyOpenException
o instances when the broker is available but the connection has not yet recovered.
Starting with version 1.7.1, Spring AMQP disables it unless you explicitly create
your own RabbitMQ connection factory and provide it to the
CachingConnectionFactory. RabbitMQ ConnectionFactory instances created by the
RabbitConnectionFactoryBean also have the option disabled by default.

Log4j 2 upgrade

The minimum Log4j 2 version (for the AmgpAppender) is now 2.7. The framework is no longer
compatible with previous versions. See Logging Subsystem AMQP Appenders for more information.

Logback Appender

This appender no longer captures caller data (method, line number) by default. You can re-enable it
by setting the includeCallerData configuration option. See Logging Subsystem AMQP Appenders for
information about the available log appenders.

Spring Retry Upgrade

The minimum Spring Retry version is now 1.2. The framework is no longer compatible with
previous versions.

Shutdown Behavior

You can now set forceCloseChannel to true so that, if the container threads do not respond to a
shutdown within shutdownTimeout, the channels are forced closed, causing any unacked messages to
be re-queued. See Message Listener Container Configuration for more information.

FasterXML Jackson upgrade

The minimum Jackson version is now 2.8. The framework is no longer compatible with previous
versions.

JUnit @Rules

Rules that have previously been used internally by the framework have now been made available
in a separate jar called spring-rabbit-junit. See JUnit4 @Rules for more information.

Container Conditional Rollback

When you use an external transaction manager (such as JDBC), rule-based rollback is now
supported when you provide the container with a transaction attribute. It is also now more flexible
when you use a transaction advice.

199

Connection Naming Strategy

A new ConnectionNameStrategy is now provided to populate the application-specific identification of
the target RabbitMQ connection from the AbstractConnectionFactory. See Connection and Resource
Management for more information.

Listener Container Changes

Transaction Rollback Behavior

You can now configure message re-queue on transaction rollback to be consistent, regardless of
whether or not a transaction manager is configured. See A note on Rollback of Received Messages
for more information.

A.2.5. Earlier Releases

See Previous Releases for changes in previous versions.

A.2.6. Changes in 1.6 Since 1.5

Testing Support

A new testing support library is now provided. See Testing Support for more information.

Builder

Builders that provide a fluent API for configuring Queue and Exchange objects are now available. See
Builder API for Queues and Exchanges for more information.

Namespace Changes

Connection Factory

You can now add a thread-factory to a connection factory bean declaration — for example, to name
the threads created by the amgp-client library. See Connection and Resource Management for more
information.

When you use CacheMode.CONNECTION, you can now limit the total number of connections allowed.
See Connection and Resource Management for more information.

Queue Definitions

You can now provide a naming strategy for anonymous queues. See AnonymousQueue for more
information.

Listener Container Changes

Idle Message Listener Detection

You can now configure listener containers to publish ApplicationEvent instances when idle. See
Detecting Idle Asynchronous Consumers for more information.

200

Mismatched Queue Detection

By default, when a listener container starts, if queues with mismatched properties or arguments
are detected, the container logs the exception but continues to listen. The container now has a
property called mismatchedQueuesFatal, which prevents the container (and context) from starting if
the problem is detected during startup. It also stops the container if the problem is detected later,
such as after recovering from a connection failure. See Message Listener Container Configuration
for more information.

Listener Container Logging

Now, listener container provides its beanName to the internal SimpleAsyncTaskExecutor as a
threadNamePrefix. It is useful for logs analysis.

Default Error Handler

The default error handler (ConditionalRejectingErrorHandler) now considers irrecoverable
@RabbitListener exceptions as fatal. See Exception Handling for more information.

AutoDeclare and RabbitAdmin Instances

See Message Listener Container Configuration (autoDeclare) for some changes to the semantics of
that option with respect to the use of RabbitAdmin instances in the application context.

AmgpTemplate: Receive with Timeout

A number of new receive() methods with timeout have been introduced for the AmgpTemplate and its
RabbitTemplate implementation. See Polling Consumer for more information.

Using AsyncRabbitTemplate

A new AsyncRabbitTemplate has been introduced. This template provides a number of send and
receive methods, where the return value is a ListenableFuture, which can be used later to obtain
the result either synchronously or asynchronously. See Async Rabbit Template for more
information.

RabbitTemplate Changes

1.4.1 introduced the ability to use direct reply-to when the broker supports it. It is more efficient
than using a temporary queue for each reply. This version lets you override this default behavior
and use a temporary queue by setting the useTemporaryReplyQueues property to true. See RabbitMQ
Direct reply-to for more information.

The RabbitTemplate now supports a user-id-expression (userIdExpression when using Java
configuration). See Validated User-ID RabbitMQ documentation and Validated User Id for more
information.

Message Properties

201

https://www.rabbitmq.com/direct-reply-to.html
https://www.rabbitmq.com/validated-user-id.html

Using CorrelationId

The correlationId message property can now be a String. See Message Properties Converters for
more information.

Long String Headers

Previously, the DefaultMessagePropertiesConverter “converted” headers longer than the long string
limit (default 1024) to a DatalnputStream (actually, it referenced the LongString instance’s
DatalnputStream). On output, this header was not converted (except to a String— for example,
java.io.DatalnputStream@1d@57a39 by calling toString() on the stream).

With this release, long LongString instances are now left as LongString instances by default. You can
access the contents by using the getBytes[], toString(), or getStream() methods. A large incoming
LongString is now correctly “converted” on output too.

See Message Properties Converters for more information.

Inbound Delivery Mode

The deliveryMode property is no longer mapped to the MessageProperties.deliveryMode. This change
avoids unintended propagation if the the same MessageProperties object is used to send an
outbound message. Instead, the inbound deliveryMode header is mapped to
MessageProperties.receivedDeliveryMode.

See Message Properties Converters for more information.

When using annotated endpoints, the header is provided in the header named
AmqpHeaders.RECEIVED_DELIVERY_MODE.

See Annotated Endpoint Method Signature for more information.

Inbound User ID

The user_id property is no longer mapped to the MessageProperties.userld. This change avoids
unintended propagation if the the same MessageProperties object is used to send an outbound
message. Instead, the inbound userId header is mapped to MessageProperties.receivedUserId.

See Message Properties Converters for more information.

When you use annotated endpoints, the header is provided in the header named
AmqpHeaders.RECEIVED_USER_ID.

See Annotated Endpoint Method Signature for more information.

RabbitAdmin Changes

Declaration Failures

Previously, the ignoreDeclarationFailures flag took effect only for I0OException on the channel (such
as mis-matched arguments). It now takes effect for any exception (such as TimeoutException). In
addition, a DeclarationExceptionEvent is now published whenever a declaration fails. The

202

RabbitAdmin last declaration event is also available as a property lastDeclarationExceptionEvent. See
Configuring the Broker for more information.

@RabbitListener Changes

Multiple Containers for Each Bean

When you use Java 8 or later, you can now add multiple @RabbitListener annotations to @Bean
classes or their methods. When using Java 7 or earlier, you can use the @RabbitListeners container
annotation to provide the same functionality. See @Repeatable @RabbitListener for more
information.

@SendTo SpEL Expressions

@SendTo for routing replies with no replyTo property can now be SpEL expressions evaluated against
the request/reply. See Reply Management for more information.

©QueueBinding Improvements

You can now specify arguments for queues, exchanges, and bindings in @QueueBinding annotations.
Header exchanges are now supported by @QueueBinding. See Annotation-driven Listener Endpoints
for more information.

Delayed Message Exchange

Spring AMQP now has first class support for the RabbitMQ Delayed Message Exchange plugin. See
Delayed Message Exchange for more information.

Exchange Internal Flag

Any Exchange definitions can now be marked as internal, and RabbitAdmin passes the value to the
broker when declaring the exchange. See Configuring the Broker for more information.

CachingConnectionFactory Changes

CachingConnectionFactory Cache Statistics

The CachingConnectionFactory now provides cache properties at runtime and over JMX. See Runtime
Cache Properties for more information.

Accessing the Underlying RabbitMQ Connection Factory

A new getter has been added to provide access to the underlying factory. You can use this getter, for
example, to add custom connection properties. See Adding Custom Client Connection Properties for
more information.

Channel Cache

The default channel cache size has been increased from 1 to 25. See Connection and Resource
Management for more information.

In addition, the SimpleMessagelListenerContainer no longer adjusts the cache size to be at least as

203

large as the number of concurrentConsumers — this was superfluous, since the container consumer
channels are never cached.

Using RabbitConnectionFactoryBean

The factory bean now exposes a property to add client connection properties to connections made
by the resulting factory.

Java Deserialization

You can now configure a “allowed list” of allowable classes when you use Java deserialization. You
should consider creating an allowed list if you accept messages with serialized java objects from
untrusted sources. See Java Deserialization for more information.

JSON MessageConverter

Improvements to the JSON message converter now allow the consumption of messages that do not
have type information in message headers. See Message Conversion for Annotated Methods and
Jackson2JsonMessageConverter for more information.

Logging Appenders
Log4j 2

A log4j 2 appender has been added, and the appenders can now be configured with an addresses
property to connect to a broker cluster.

Client Connection Properties
You can now add custom client connection properties to RabbitMQ connections.

See Logging Subsystem AMQP Appenders for more information.

A.2.7. Changes in 1.5 Since 1.4

spring-erlang Is No Longer Supported

The spring-erlangjar is no longer included in the distribution. Use the RabbitMQ REST API instead.

CachingConnectionFactory Changes

Empty Addresses Property in CachingConnectionFactory

Previously, if the connection factory was configured with a host and port but an empty String was
also supplied for addresses, the host and port were ignored. Now, an empty addresses String is
treated the same as a null, and the host and port are used.

URI Constructor

The CachingConnectionFactory has an additional constructor, with a URI parameter, to configure the
broker connection.

204

Connection Reset

A new method called resetConnection() has been added to let users reset the connection (or
connections). You might use this, for example, to reconnect to the primary broker after failing over
to the secondary broker. This does impact in-process operations. The existing destroy() method
does exactly the same, but the new method has a less daunting name.

Properties to Control Container Queue Declaration Behavior

When the listener container consumers start, they attempt to passively declare the queues to
ensure they are available on the broker. Previously, if these declarations failed (for example,
because the queues didn’t exist) or when an HA queue was being moved, the retry logic was fixed
at three retry attempts at five-second intervals. If the queues still do not exist, the behavior is
controlled by the missingQueuesFatal property (default: true). Also, for containers configured to
listen from multiple queues, if only a subset of queues are available, the consumer retried the
missing queues on a fixed interval of 60 seconds.

The declarationRetries, failedDeclarationRetryInterval, and retryDeclarationInterval properties
are now configurable. See Message Listener Container Configuration for more information.

Class Package Change

The RabbitGatewaySupport class has been moved from o.s.amgp.rabbit.core.support to
0.s.amgp.rabbit.core.

DefaultMessagePropertiesConverter Changes

You can now configure the DefaultMessagePropertiesConverter to determine the maximum length of
a LongString that is converted to a String rather than to a DatalnputStream. The converter has an
alternative constructor that takes the value as a limit. Previously, this limit was hard-coded at 1024
bytes. (Also available in 1.4.4).

@RabbitListener Improvements

©QueueBinding for @RabbitListener

The bindings attribute has been added to the @RabbitListener annotation as mutually exclusive with
the queues attribute to allow the specification of the queue, its exchange, and binding for declaration
by a RabbitAdmin on the Broker.

SpEL in @SendTo

The default reply address (@SendTo) for a @RabbitListener can now be a SpEL expression.

Multiple Queue Names through Properties

You can now use a combination of SpEL and property placeholders to specify multiple queues for a
listener.

See Annotation-driven Listener Endpoints for more information.

205

Automatic Exchange, Queue, and Binding Declaration

You can now declare beans that define a collection of these entities, and the RabbitAdmin adds the
contents to the list of entities that it declares when a connection is established. See Declaring
Collections of Exchanges, Queues, and Bindings for more information.

RabbitTemplate Changes

reply-address Added

The reply-address attribute has been added to the <rabbit-template> component as an alternative
reply-queue. See Request/Reply Messaging for more information. (Also available in 1.4.4 as a setter
on the RabbitTemplate).

Blocking receive Methods

The RabbitTemplate now supports blocking in receive and convertAndReceive methods. See Polling
Consumer for more information.

Mandatory with sendAndReceive Methods

When the mandatory flag is set when using the sendAndReceive and convertSendAndReceive methods,
the calling thread throws an AmgpMessageReturnedException if the request message cannot be
deliverted. See Reply Timeout for more information.

Improper Reply Listener Configuration

The framework tries to verify proper configuration of a reply listener container when using a
named reply queue.

See Reply Listener Container for more information.

RabbitManagementTemplate Added

The RabbitManagementTemplate has been introduced to monitor and configure the RabbitMQ Broker
by using the REST API provided by its management plugin. See RabbitMQ REST API for more
information.

Listener Container Bean Names (XML)

206

https://www.rabbitmq.com/management.html

The id attribute on the <listener-container/> element has been removed. Starting
with this release, the id on the <listener/> child element is used alone to name the
listener container bean created for each listener element.

Normal Spring bean name overrides are applied. If a later <listener/> is parsed

o with the same id as an existing bean, the new definition overrides the existing one.
Previously, bean names were composed from the id attributes of the <listener-
container/>and <listener/> elements.

When migrating to this release, if you have 1id attributes on your <listener-
container/> elements, remove them and set the id on the child <listener/> element
instead.

However, to support starting and stopping containers as a group, a new group attribute has been
added. When this attribute is defined, the containers created by this element are added to a bean
with this name, of type Collection<SimpleMessagelListenerContainer>. You can iterate over this group
to start and stop containers.

Class-Level @RabbitListener

The @RabbitListener annotation can now be applied at the class level. Together with the new
@RabbitHandler method annotation, this lets you select the handler method based on payload type.
See Multi-method Listeners for more information.

SimpleMessagelistenerContainer: BackOff Support

The SimpleMessagelistenerContainer can now be supplied with a BackOff instance for consumer
startup recovery. See Message Listener Container Configuration for more information.

Channel Close Logging

A mechanism to control the log levels of channel closure has been introduced. See Logging Channel
Close Events.

Application Events

The SimpleMessagelListenerContainer now emits application events when consumers fail. See
Consumer Events for more information.

Consumer Tag Configuration

Previously, the consumer tags for asynchronous consumers were generated by the broker. With this
release, it is now possible to supply a naming strategy to the listener container. See Consumer Tags.

Using MessagelListenerAdapter

The MessagelistenerAdapter now supports a map of queue names (or consumer tags) to method
names, to determine which delegate method to call based on the queue from which the message
was received.

207

LocalizedQueueConnectionFactory Added

LocalizedQueueConnectionFactory is a new connection factory that connects to the node in a cluster
where a mirrored queue actually resides.

See Queue Affinity and the LocalizedQueueConnectionFactory.

Anonymous Queue Naming

Starting with version 1.5.3, you can now control how AnonymousQueue names are generated. See
AnonymousQueue for more information.

A.2.8. Changes in 1.4 Since 1.3

@RabbitListener Annotation

POJO listeners can be annotated with @RabbitListener, enabled by @EnableRabbit or
<rabbit:annotation-driven />. Spring Framework 4.1 is required for this feature. See Annotation-
driven Listener Endpoints for more information.

RabbitMessagingTemplate Added

A new RabbitMessagingTemplate lets you interact with RabbitMQ by using spring-messaging Message
instances. Internally, it uses the RabbitTemplate, which you can configure as normal. Spring
Framework 4.1 is required for this feature. See Messaging Integration for more information.

Listener Container missingQueuesFatal Attribute

1.3.5 introduced the missingQueuesFatal property on the SimpleMessagelistenerContainer. This is
now available on the listener container namespace element. See Message Listener Container
Configuration.

RabbitTemplate ConfirmCallback Interface

The confirm method on this interface has an additional parameter called cause. When available, this
parameter contains the reason for a negative acknowledgement (nack). See Correlated Publisher
Confirms and Returns.

RabbitConnectionFactoryBean Added

RabbitConnectionFactoryBean creates the underlying RabbitMQ ConnectionFactory used by the
CachingConnectionFactory. This enables configuration of SSL options using Spring’s dependency
injection. See Configuring the Underlying Client Connection Factory.

Using CachingConnectionFactory

The CachingConnectionFactory now lets the connectionTimeout be set as a property or as an attribute
in the namespace. It sets the property on the underlying RabbitMQ ConnectionFactory. See
Configuring the Underlying Client Connection Factory.

208

Log Appender

The Logback org.springframework.amgp.rabbit.logback.AmgpAppender has been introduced. It
provides options similar to org.springframework.amqp.rabbit.log4j.AmqpAppender. For more
information, see the JavaDoc of these classes.

The Log4j AmgpAppender now supports the deliveryMode property (PERSISTENT or NON_PERSISTENT,
default: PERSISTENT). Previously, all log4j messages were PERSISTENT.

The appender also supports modification of the Message before sending — allowing, for example, the
addition of custom headers. Subclasses should override the postProcessMessageBeforeSend().

Listener Queues

The listener container now, by default, redeclares any missing queues during startup. A new auto-
declare attribute has been added to the <rabbit:listener-container> to prevent these re-
declarations. See auto-delete Queues.

RabbitTemplate: mandatory and connectionFactorySelector Expressions

The mandatoryExpression, sendConnectionFactorySelectorExpression, and
receiveConnectionFactorySelectorExpression SpEL Expression's properties have been added to
RabbitTemplate. The mandatoryExpression is used to evaluate a mandatory boolean value against each
request message when a ReturnCallback is in use. See Correlated Publisher Confirms and Returns.
The sendConnectionFactorySelectorExpression and receiveConnectionFactorySelectorExpression are
used when an AbstractRoutingConnectionFactory is provided, to determine the lookupKey for the
target ConnectionFactory at runtime on each AMQP protocol interaction operation. See Routing
Connection Factory.

Listeners and the Routing Connection Factory

You can configure a SimpleMessagelistenerContainer with a routing connection factory to enable
connection selection based on the queue names. See Routing Connection Factory.

RabbitTemplate: RecoveryCallback Option

The recovery(Callback property has been added for use in the retryTemplate.execute(). See Adding
Retry Capabilities.

MessageConversionException Change

This exception is now a subclass of AmgpException. Consider the following code:

209

try {
template.convertAndSend("thing1", "thing2", "cat");

}
catch (AmgpException e) {

}

catch (MessageConversionException e) {

}

The second catch block is no longer reachable and needs to be moved above the catch-all
AmgpException catch block.

RabbitMQ 3.4 Compatibility

Spring AMQP is now compatible with the RabbitMQ 3.4, including direct reply-to. See Compatibility
and RabbitMQ Direct reply-to for more information.

ContentTypeDelegatingMessageConverter Added

The ContentTypeDelegatingMessageConverter has been introduced to select the MessageConverter to
use, based on the contentType property in the MessageProperties. See Message Converters for more
information.

A.2.9. Changes in 1.3 Since 1.2

Listener Concurrency

The listener container now supports dynamic scaling of the number of consumers based on
workload, or you can programmatically change the concurrency without stopping the container.
See Listener Concurrency.

Listener Queues

The listener container now permits the queues on which it listens to be modified at runtime. Also,
the container now starts if at least one of its configured queues is available for use. See Listener
Container Queues

This listener container now redeclares any auto-delete queues during startup. See auto-delete
Queues.

Consumer Priority

The listener container now supports consumer arguments, letting the x-priority argument be set.
See Consumer Priority.

210

Exclusive Consumer

You can now configure SimpleMessagelistenerContainer with a single exclusive consumer,
preventing other consumers from listening to the queue. See Exclusive Consumer.

Rabbit Admin

You can now have the broker generate the queue name, regardless of durable, autoDelete, and
exclusive settings. See Configuring the Broker.

Direct Exchange Binding

Previously, omitting the key attribute from a binding element of a direct-exchange configuration
caused the queue or exchange to be bound with an empty string as the routing key. Now it is bound
with the the name of the provided Queue or Exchange. If you wish to bind with an empty string

nn

routing key, you need to specify key="".

AmgpTemplate Changes

The AmgpTemplate now provides several synchronous receiveAndReply methods. These are
implemented by the RabbitTemplate. For more information see Receiving Messages.

The RabbitTemplate now supports configuring a RetryTemplate to attempt retries (with optional
back-off policy) for when the broker is not available. For more information see Adding Retry
Capabilities.

Caching Connection Factory

You can now configure the caching connection factory to cache Connection instances and their
Channel instances instead of using a single connection and caching only Channel instances. See
Connection and Resource Management.

Binding Arguments

The <binding> of the <exchange> now supports parsing of the <binding-arguments> sub-element. You
can now configure the <binding> of the <headers-exchange> with a key/value attribute pair (to match
on a single header) or with a <binding-arguments> sub-element (allowing matching on multiple
headers). These options are mutually exclusive. See Headers Exchange.

Routing Connection Factory

A new SimpleRoutingConnectionFactory has been introduced. It allows configuration of
ConnectionFactories mapping, to determine the target ConnectionFactory to use at runtime. See
Routing Connection Factory.

MessageBuilder and MessagePropertiesBuilder

“Fluent APIs” for building messages or message properties are now provided. See Message Builder
APL

211

RetryInterceptorBuilder Change

A “Fluent API” for building listener container retry interceptors is now provided. See Failures in
Synchronous Operations and Options for Retry.

RepublishMessageRecoverer Added

This new MessageRecoverer is provided to allow publishing a failed message to another queue
(including stack trace information in the header) when retries are exhausted. See Message
Listeners and the Asynchronous Case.

Default Error Handler (Since 1.3.2)

A default ConditionalRejectingErrorHandler has been added to the listener container. This error
handler detects fatal message conversion problems and instructs the container to reject the
message to prevent the broker from continually redelivering the unconvertible message. See
Exception Handling.

Listener Container 'missingQueuesFatal " Property (Since 1.3.5)

The SimpleMessagelListenerContainer now has a property called missingQueuesFatal (default: true).
Previously, missing queues were always fatal. See Message Listener Container Configuration.

A.2.10. Changes to 1.2 Since 1.1

RabbitMQ Version

Spring AMQP now uses RabbitMQ 3.1.x by default (but retains compatibility with earlier versions).
Certain deprecations have been added for features no longer supported by RabbitMQ
3.1.x —federated exchanges and the immediate property on the RabbitTemplate.

Rabbit Admin

RabbitAdmin now provides an option to let exchange, queue, and binding declarations continue
when a declaration fails. Previously, all declarations stopped on a failure. By setting ignore-
declaration-exceptions, such exceptions are logged (at the WARN level), but further declarations
continue. An example where this might be useful is when a queue declaration fails because of a
slightly different tt1 setting that would normally stop other declarations from proceeding.

RabbitAdmin now provides an additional method called getQueueProperties(). You can use this
determine if a queue exists on the broker (returns null for a non-existent queue). In addition, it
returns the current number of messages in the queue as well as the current number of consumers.

Rabbit Template

Previously, when the ---sendAndReceive() methods were used with a fixed reply queue, two custom
headers were used for correlation data and to retain and restore reply queue information. With
this release, the standard message property (correlationld) is used by default, although you can
specify a custom property to use instead. In addition, nested replyTo information is now retained
internally in the template, instead of using a custom header.

212

The immediate property is deprecated. You must not set this property when using RabbitMQ 3.0.x or
greater.

JSON Message Converters

A Jackson 2.x MessageConverter is now provided, along with the existing converter that uses Jackson
1.x.

Automatic Declaration of Queues and Other Items

Previously, when declaring queues, exchanges and bindings, you could not define which
connection factory was used for the declarations. Each RabbitAdmin declared all components by
using its connection.

Starting with this release, you can now limit declarations to specific RabbitAdmin instances. See
Conditional Declaration.

AMQP Remoting

Facilities are now provided for using Spring remoting techniques, using AMQP as the transport for
the RPC calls. For more information see Spring Remoting with AMQP

Requested Heart Beats

Several users have asked for the underlying client connection factory’s requestedHeartBeats
property to be exposed on the Spring AMQP CachingConnectionFactory. This is now available.
Previously, it was necessary to configure the AMQP client factory as a separate bean and provide a
reference to it in the CachingConnectionFactory.

A.2.11. Changes to 1.1 Since 1.0

General

Spring-AMQP is now built with Gradle.

Adds support for publisher confirms and returns.

Adds support for HA queues and broker failover.

Adds support for dead letter exchanges and dead letter queues.
AMQP Log4j Appender

Adds an option to support adding a message ID to logged messages.

Adds an option to allow the specification of a Charset name to be used when converting String to
byte[].

213

	Spring AMQP
	Table of Contents
	Chapter 1. Preface
	Chapter 2. What’s New
	2.1. Changes in 2.3 Since 2.2
	2.1.1. Connection Factory Changes
	2.1.2. @RabbitListener Changes
	2.1.3. Message Converter Changes
	2.1.4. Testing Changes
	2.1.5. RabbitTemplate Changes
	2.1.6. Listener Container Changes
	2.1.7. MessagePostProcessor Changes
	2.1.8. Multiple Broker Support Improvements
	2.1.9. RepublishMessageRecoverer Changes

	Chapter 3. Introduction
	3.1. Quick Tour for the impatient
	3.1.1. Introduction
	Compatibility
	Very, Very Quick
	With XML Configuration
	With Java Configuration
	With Spring Boot Auto Configuration and an Async POJO Listener

	Chapter 4. Reference
	4.1. Using Spring AMQP
	4.1.1. AMQP Abstractions
	Message
	Exchange
	Queue
	Binding

	4.1.2. Connection and Resource Management
	Choosing a Connection Factory
	AddressResolver
	Naming Connections
	Blocked Connections and Resource Constraints
	Configuring the Underlying Client Connection Factory
	RabbitConnectionFactoryBean and Configuring SSL
	Connecting to a Cluster
	Routing Connection Factory
	Queue Affinity and the LocalizedQueueConnectionFactory
	Publisher Confirms and Returns
	Connection and Channel Listeners
	Logging Channel Close Events
	Runtime Cache Properties
	RabbitMQ Automatic Connection/Topology recovery

	4.1.3. Adding Custom Client Connection Properties
	4.1.4. AmqpTemplate
	Adding Retry Capabilities
	Publishing is Asynchronous — How to Detect Successes and Failures
	Correlated Publisher Confirms and Returns
	Scoped Operations
	Messaging Integration
	Validated User Id
	Using a Separate Connection

	4.1.5. Sending Messages
	Message Builder API
	Publisher Returns
	Batching

	4.1.6. Receiving Messages
	Polling Consumer
	Asynchronous Consumer
	Batched Messages
	Consumer Events
	Consumer Tags
	Annotation-driven Listener Endpoints
	@RabbitListener with Batching
	Using Container Factories
	Asynchronous @RabbitListener Return Types
	Threading and Asynchronous Consumers
	Choosing a Container
	Detecting Idle Asynchronous Consumers
	Monitoring Listener Performance

	4.1.7. Containers and Broker-Named queues
	4.1.8. Message Converters
	SimpleMessageConverter
	SerializerMessageConverter
	Jackson2JsonMessageConverter
	MarshallingMessageConverter
	Jackson2XmlMessageConverter
	ContentTypeDelegatingMessageConverter
	Java Deserialization
	Message Properties Converters

	4.1.9. Modifying Messages - Compression and More
	4.1.10. Request/Reply Messaging
	Reply Timeout
	RabbitMQ Direct reply-to
	Message Correlation With A Reply Queue
	Reply Listener Container
	Async Rabbit Template
	Spring Remoting with AMQP

	4.1.11. Configuring the Broker
	Headers Exchange
	Builder API for Queues and Exchanges
	Declaring Collections of Exchanges, Queues, and Bindings
	Conditional Declaration
	A Note On the id and name Attributes
	AnonymousQueue

	4.1.12. Broker Event Listener
	4.1.13. Delayed Message Exchange
	4.1.14. RabbitMQ REST API
	4.1.15. Exception Handling
	4.1.16. Transactions
	Conditional Rollback
	A note on Rollback of Received Messages
	Using RabbitTransactionManager

	4.1.17. Message Listener Container Configuration
	4.1.18. Listener Concurrency
	SimpleMessageListenerContainer
	Using DirectMessageListenerContainer

	4.1.19. Exclusive Consumer
	4.1.20. Listener Container Queues
	4.1.21. Resilience: Recovering from Errors and Broker Failures
	Automatic Declaration of Exchanges, Queues, and Bindings
	Failures in Synchronous Operations and Options for Retry
	Retry with Batch Listeners
	Message Listeners and the Asynchronous Case
	Exception Classification for Spring Retry

	4.1.22. Multiple Broker (or Cluster) Support
	4.1.23. Debugging

	4.2. Logging Subsystem AMQP Appenders
	4.2.1. Common properties
	4.2.2. Log4j 2 Appender
	4.2.3. Logback Appender
	4.2.4. Customizing the Messages
	4.2.5. Customizing the Client Properties
	Simple String Properties
	Advanced Technique for Logback

	4.2.6. Providing a Custom Queue Implementation

	4.3. Sample Applications
	4.3.1. The “Hello World” Sample
	Synchronous Example
	Asynchronous Example

	4.3.2. Stock Trading
	4.3.3. Receiving JSON from Non-Spring Applications

	4.4. Testing Support
	4.4.1. @SpringRabbitTest
	4.4.2. Mockito Answer<?> Implementations
	4.4.3. @RabbitListenerTest and RabbitListenerTestHarness
	4.4.4. Using TestRabbitTemplate
	4.4.5. JUnit4 @Rules
	Using BrokerRunning
	Using LongRunningIntegrationTest

	4.4.6. JUnit5 Conditions
	Using the @RabbitAvailable Annotation
	Using the @LongRunning Annotation

	Chapter 5. Spring Integration - Reference
	5.1. Spring Integration AMQP Support
	5.1.1. Introduction
	5.1.2. Inbound Channel Adapter
	5.1.3. Outbound Channel Adapter
	5.1.4. Inbound Gateway
	5.1.5. Outbound Gateway

	Chapter 6. Other Resources
	6.1. Further Reading

	Appendix A: Change History
	A.1. Current Release
	A.2. Previous Releases
	A.2.1. Changes in 2.2 Since 2.1
	Package Changes
	Dependency Changes
	"Breaking" API Changes
	ListenerContainer Changes
	@RabbitListener Changes
	AMQP Logging Appenders Changes
	MessageListenerAdapter Changes
	Exchange/Queue Declaration Changes
	Connection Factory Changes
	New MessagePostProcessor Classes
	Other Changes

	A.2.2. Changes in 2.1 Since 2.0
	AMQP Client library
	Package Changes
	Publisher Confirms Changes
	Listener Container Factory Improvements
	Broker Event Listener
	RabbitAdmin Changes
	RabbitTemplate Changes
	Message Conversion
	Management REST API
	@RabbitListener Changes
	Async @RabbitListener Return
	Connection Factory Bean Changes
	Connection Factory Changes
	Listener Container Changes
	Immediate requeue

	A.2.3. Changes in 2.0 Since 1.7
	Using CachingConnectionFactory
	AMQP Client library
	General Changes
	Deleted Classes
	New Listener Container
	Log4j Appender
	RabbitTemplate Changes
	Listener Adapter
	Listener Container Changes
	Connection Factory Changes
	Retry Changes
	Anonymous Queue Naming
	@RabbitListener Changes
	Container Conditional Rollback
	Remove Jackson 1.x support
	JSON Message Converter
	XML Parsers
	Blocked Connection

	A.2.4. Changes in 1.7 Since 1.6
	AMQP Client library
	Log4j 2 upgrade
	Logback Appender
	Spring Retry Upgrade
	FasterXML Jackson upgrade
	JUnit @Rules
	Container Conditional Rollback
	Connection Naming Strategy
	Listener Container Changes

	A.2.5. Earlier Releases
	A.2.6. Changes in 1.6 Since 1.5
	Testing Support
	Builder
	Namespace Changes
	Listener Container Changes
	AutoDeclare and RabbitAdmin Instances
	AmqpTemplate: Receive with Timeout
	Using AsyncRabbitTemplate
	RabbitTemplate Changes
	Message Properties
	RabbitAdmin Changes
	@RabbitListener Changes
	Delayed Message Exchange
	Exchange Internal Flag
	CachingConnectionFactory Changes
	Using RabbitConnectionFactoryBean
	Java Deserialization
	JSON MessageConverter
	Logging Appenders

	A.2.7. Changes in 1.5 Since 1.4
	spring-erlang Is No Longer Supported
	CachingConnectionFactory Changes
	Properties to Control Container Queue Declaration Behavior
	Class Package Change
	DefaultMessagePropertiesConverter Changes
	@RabbitListener Improvements
	Automatic Exchange, Queue, and Binding Declaration
	RabbitTemplate Changes
	RabbitManagementTemplate Added
	Listener Container Bean Names (XML)
	Class-Level @RabbitListener
	SimpleMessageListenerContainer: BackOff Support
	Channel Close Logging
	Application Events
	Consumer Tag Configuration
	Using MessageListenerAdapter
	LocalizedQueueConnectionFactory Added
	Anonymous Queue Naming

	A.2.8. Changes in 1.4 Since 1.3
	@RabbitListener Annotation
	RabbitMessagingTemplate Added
	Listener Container missingQueuesFatal Attribute
	RabbitTemplate ConfirmCallback Interface
	RabbitConnectionFactoryBean Added
	Using CachingConnectionFactory
	Log Appender
	Listener Queues
	RabbitTemplate: mandatory and connectionFactorySelector Expressions
	Listeners and the Routing Connection Factory
	RabbitTemplate: RecoveryCallback Option
	MessageConversionException Change
	RabbitMQ 3.4 Compatibility
	ContentTypeDelegatingMessageConverter Added

	A.2.9. Changes in 1.3 Since 1.2
	Listener Concurrency
	Listener Queues
	Consumer Priority
	Exclusive Consumer
	Rabbit Admin
	Direct Exchange Binding
	AmqpTemplate Changes
	Caching Connection Factory
	Binding Arguments
	Routing Connection Factory
	MessageBuilder and MessagePropertiesBuilder
	RetryInterceptorBuilder Change
	RepublishMessageRecoverer Added
	Default Error Handler (Since 1.3.2)
	Listener Container 'missingQueuesFatal` Property (Since 1.3.5)

	A.2.10. Changes to 1.2 Since 1.1
	RabbitMQ Version
	Rabbit Admin
	Rabbit Template
	JSON Message Converters
	Automatic Declaration of Queues and Other Items
	AMQP Remoting
	Requested Heart Beats

	A.2.11. Changes to 1.1 Since 1.0
	General
	AMQP Log4j Appender

