Spring AMQP

Mark Pollack, Mark Fisher, Oleg Zhurakousky, Dave Syer, Gary Russell, Gunnar
Hillert, Artem Bilan, Stéphane Nicoll, Arnaud Cogoluegnes, Jay Bryant

Version 2.4.1

Table of Contents

1. Preface
2. What’s New
2.1. Changes in 2.4 Since 2.3
2.1.1. @RabbitListener Changes
2.1.2. RabbitAdmin Changes
2.1.3. Remoting Support
3. Introduction
3.1. Quick Tour for the impatient
3.1.1. Introduction
Compatibility
Very, Very Quick
With XML Configuration
With Java Configuration
With Spring Boot Auto Configuration and an Async POJO Listener
4. Reference
4.1. Using Spring AMQP
4.1.1. AMQP Abstractions
Message
Exchange
Queue
Binding
4.1.2. Connection and Resource Management
Choosing a Connection Factory
AddressResolver
Naming Connections
Blocked Connections and Resource Constraints
Configuring the Underlying Client Connection Factory
RabbitConnectionFactoryBean and Configuring SSL
Connecting to a Cluster
Routing Connection Factory
Queue Affinity and the LocalizedQueueConnectionFactory
Publisher Confirms and Returns
Connection and Channel Listeners
Logging Channel Close Events
Runtime Cache Properties
RabbitMQ Automatic Connection/Topology recovery
4.1.3. Adding Custom Client Connection Properties
4.1.4. AngpTemplate

© © © O 3 O U1 B B B B PR LW LW LW W W N

W W oW N NDNDNID NDIDNIDR NIDNIDNDR R B B B B B R,
R R O 0 N9 9 0O U W NP O O 0 00 W WwN Rk o

Adding Retry Capabilities 31

Publishing is Asynchronous — How to Detect Successes and Failures 33
Correlated Publisher Confirms and Returns 34
Scoped Operations 36
Strict Message Ordering in a Multi-Threaded Environment 38
Messaging Integration 43
Validated User Id 44
Using a Separate Connection 44
4.1.5. Sending Messages 44
Message Builder API 46
Publisher Returns 48
Batching 48
4.1.6. Receiving Messages 49
Polling Consumer 49
Asynchronous Consumer 52
Batched Messages 58
Consumer Events 58
Consumer Tags 59
Annotation-driven Listener Endpoints 60
@RabbitListener with Batching 84
Using Container Factories 86
Asynchronous @RabbitListener Return Types 87
Threading and Asynchronous Consumers 87
Choosing a Container 88
Detecting Idle Asynchronous Consumers 89
Monitoring Listener Performance 91
4.1.7. Containers and Broker-Named queues 92
4.1.8. Message Converters 92
SimpleMessageConverter 94
SerializerMessageConverter 94
Jackson2]sonMessageConverter 94
MarshallingMessageConverter 100
Jackson2XmlMessageConverter 100
ContentTypeDelegatingMessageConverter 101
Java Deserialization 101
Message Properties Converters 102
4.1.9. Modifying Messages - Compression and More 104
4.1.10. Request/Reply Messaging 105
Reply Timeout 105
RabbitMQ Direct reply-to 106

Message Correlation With A Reply Queue 106

Reply Listener Container 107

Async Rabbit Template 110
Spring Remoting with AMQP 112
4.1.11. Configuring the Broker 115
Headers Exchange 120
Builder API for Queues and Exchanges 123
Declaring Collections of Exchanges, Queues, and Bindings 124
Conditional Declaration 126

A Note On the id and name Attributes 128
AnonymousQueue 129
Recovering Auto-Delete Declarations 130
4.1.12. Broker Event Listener 131
4.1.13. Delayed Message Exchange 131
4.1.14. RabbitMQ REST API 132
4.1.15. Exception Handling 133
4.1.16. Transactions 134
Conditional Rollback 136

A note on Rollback of Received Messages 136
Using RabbitTransactionManager 137
Transaction Synchronization 138
4.1.17. Message Listener Container Configuration 138
4.1.18. Listener Concurrency 151
SimpleMessageListenerContainer 151
Using DirectMessageListenerContainer 152
4.1.19. Exclusive Consumer 152
4.1.20. Listener Container Queues 152
4.1.21. Resilience: Recovering from Errors and Broker Failures 153
Automatic Declaration of Exchanges, Queues, and Bindings 153
Failures in Synchronous Operations and Options for Retry 154
Retry with Batch Listeners 155
Message Listeners and the Asynchronous Case 155
Exception Classification for Spring Retry 158
4.1.22. Multiple Broker (or Cluster) Support 158
4.1.23. Debugging 162
4.2. Using the RabbitMQ Stream Plugin 162
4.2.1. Sending Messages 162
4.2.2. Receiving Messages 163
4.2.3. Examples 164
4.3. Logging Subsystem AMQP Appenders 165
4.3.1. Common properties 166

4.3.2. Log4j 2 Appender 168

4.3.3. Logback Appender
4.3.4. Customizing the Messages
4.3.5. Customizing the Client Properties
Simple String Properties
Advanced Technique for Logback
4.3.6. Providing a Custom Queue Implementation
4.4. Sample Applications
4.4.1. The “Hello World” Sample
Synchronous Example
Asynchronous Example
4.4.2. Stock Trading
4.4.3. Receiving JSON from Non-Spring Applications
4.5. Testing Support
4.5.1. @SpringRabbitTest
4.5.2. Mockito Answer<?> Implementations
4.5.3. @RabbitListenerTest and RabbitListenerTestHarness
4.5.4. Using TestRabbitTemplate
4.5.5. JUnit4 @Rules
Using BrokerRunning
Using LongRunningIntegrationTest
4.5.6. JUnit5 Conditions
Using the @RabbitAvailable Annotation
Using the @LongRunning Annotation
5. Spring Integration - Reference
5.1. Spring Integration AMQP Support
5.1.1. Introduction
5.1.2. Inbound Channel Adapter
5.1.3. Outbound Channel Adapter
5.1.4. Inbound Gateway
5.1.5. Outbound Gateway
6. Other Resources
6.1. Further Reading
Appendix A: Change History
A.1. Current Release
A.2. Previous Releases
A.2.1. Changes in 2.3 Since 2.2
Connection Factory Changes
@RabbitListener Changes
Message Converter Changes
Testing Changes
RabbitTemplate Changes

169
169
171
171
172
173
173
174
174
175
177
181
181
181
182
184
188
192
192
194
194
194
198
199
199
199
199
199
200
200
201
201
202
202
202
202
202
202
202
202
202

Listener Container Changes 202

MessagePostProcessor Changes 203
Multiple Broker Support Improvements 203
RepublishMessageRecoverer Changes 203
A.2.2. Changes in 2.2 Since 2.1 203
Package Changes 203
Dependency Changes 203
"Breaking" API Changes 204
ListenerContainer Changes 204
@RabbitListener Changes 204
AMQP Logging Appenders Changes 205
MessageListenerAdapter Changes 205
Exchange/Queue Declaration Changes 205
Connection Factory Changes 205
New MessagePostProcessor Classes 205
Other Changes 205
A.2.3. Changes in 2.1 Since 2.0 206
AMQP Client library 206
Package Changes 206
Publisher Confirms Changes 206
Listener Container Factory Improvements 206
Broker Event Listener 207
RabbitAdmin Changes 207
RabbitTemplate Changes 207
Message Conversion 207
Management REST API 207
@RabbitListener Changes 208
Async @RabbitListener Return 208
Connection Factory Bean Changes 208
Connection Factory Changes 208
Listener Container Changes 208
Immediate requeue 208
A.2.4. Changes in 2.0 Since 1.7 208
Using CachingConnectionFactory 208
AMQP Client library 209
General Changes 209
Deleted Classes 209
New Listener Container 209
Log4j Appender 209
RabbitTemplate Changes 209

Listener Adapter 210

Listener Container Changes
Connection Factory Changes
Retry Changes
Anonymous Queue Naming
@RabbitListener Changes
Container Conditional Rollback
Remove Jackson 1.x support
JSON Message Converter
XML Parsers
Blocked Connection
A.2.5. Changes in 1.7 Since 1.6
AMQP Client library
Log4j 2 upgrade
Logback Appender
Spring Retry Upgrade
FasterXML Jackson upgrade
JUnit @Rules
Container Conditional Rollback
Connection Naming Strategy
Listener Container Changes
A.2.6. Earlier Releases
A.2.7. Changes in 1.6 Since 1.5
Testing Support
Builder
Namespace Changes

Listener Container Changes

AutoDeclare and RabbitAdmin Instances

AmgpTemplate: Receive with Timeout
Using AsyncRabbitTemplate
RabbitTemplate Changes
Message Properties
RabbitAdmin Changes
@RabbitListener Changes
Delayed Message Exchange
Exchange Internal Flag
CachingConnectionFactory Changes
Using RabbitConnectionFactoryBean
Java Deserialization
JSON MessageConverter
Logging Appenders

A.2.8. Changes in 1.5 Since 1.4

210
211
211
211
211
212
212
212
212
212
213
213
213
213
213
213
213
214
214
214
214
214
214
214
214
215
215
215
215
215
216
217
217
217
217
217
218
218
218
218
218

spring-erlang Is No Longer Supported 218

CachingConnectionFactory Changes 218
Properties to Control Container Queue Declaration Behavior 219
Class Package Change 219
DefaultMessagePropertiesConverter Changes 219
@RabbitListener Improvements 219
Automatic Exchange, Queue, and Binding Declaration 220
RabbitTemplate Changes 220
RabbitManagementTemplate Added 220
Listener Container Bean Names (XML) 220
Class-Level @RabbitListener 221
SimpleMessagelistenerContainer: BackOff Support 221
Channel Close Logging 221
Application Events 221
Consumer Tag Configuration 221
Using MessagelistenerAdapter 221
LocalizedQueueConnectionFactory Added 222
Anonymous Queue Naming 222
A.2.9. Changes in 1.4 Since 1.3 222
@RabbitListener Annotation 222
RabbitMessagingTemplate Added 222
Listener Container missingQueuesFatal Attribute 222
RabbitTemplate ConfirmCallback Interface 222
RabbitConnectionFactoryBean Added 222
Using CachingConnectionFactory 222
Log Appender 223
Listener Queues 223
RabbitTemplate: mandatory and connectionFactorySelector Expressions 223
Listeners and the Routing Connection Factory 223
RabbitTemplate: RecoveryCallback Option 223
MessageConversionException Change 223
RabbitMQ 3.4 Compatibility 224
ContentTypeDelegatingMessageConverter Added 224
A.2.10. Changes in 1.3 Since 1.2 224
Listener Concurrency 224
Listener Queues 224
Consumer Priority 224
Exclusive Consumer 225
Rabbit Admin 225
Direct Exchange Binding 225

AmgpTemplate Changes 225

Caching Connection Factory 225

Binding Arguments 225
Routing Connection Factory 225
MessageBuilder and MessagePropertiesBuilder 225
RetryInterceptorBuilder Change 226
RepublishMessageRecoverer Added 226
Default Error Handler (Since 1.3.2) 226
Listener Container 'missingQueuesFatal® Property (Since 1.3.5) 226
A.2.11. Changes to 1.2 Since 1.1 226
RabbitMQ Version 226
Rabbit Admin 226
Rabbit Template 226
JSON Message Converters 227
Automatic Declaration of Queues and Other Items 227
AMQP Remoting 227
Requested Heart Beats 227
A.2.12. Changes to 1.1 Since 1.0 227
General 227

AMQP Log4j Appender 227

o This documentation is also available as HTML.

© 2010 - 2021 by VMware, Inc.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

https://docs.spring.io/spring-amqp/docs/current/reference/html/index.html

Chapter 1. Preface

The Spring AMQP project applies core Spring concepts to the development of AMQP-based
messaging solutions. We provide a “template” as a high-level abstraction for sending and receiving
messages. We also provide support for message-driven POJOs. These libraries facilitate
management of AMQP resources while promoting the use of dependency injection and declarative
configuration. In all of these cases, you can see similarities to the JMS support in the Spring
Framework. For other project-related information, visit the Spring AMQP project homepage.

https://projects.spring.io/spring-amqp/

Chapter 2. What’s New

2.1. Changes in 2.4 Since 2.3

This section describes the changes between version 2.4 and version 2.4. See Change History for
changes in previous versions.

2.1.1. eRabbitListener Changes

MessageProperties is now available for argument matching. See Annotated Endpoint Method
Signature for more information.

2.1.2. RabbitAdmin Changes

A new property recoverManualDeclarations allows recovery of manually declared
queues/exchanges/bindings. See Recovering Auto-Delete Declarations for more information.

2.1.3. Remoting Support

Support remoting using Spring Framework’s RMI support is deprecated and will be removed in 3.0.
See Spring Remoting with AMQP for more information.

Chapter 3. Introduction

This first part of the reference documentation is a high-level overview of Spring AMQP and the
underlying concepts. It includes some code snippets to get you up and running as quickly as
possible.

3.1. Quick Tour for the impatient

3.1.1. Introduction
This is the five-minute tour to get started with Spring AMQP.

Prerequisites: Install and run the RabbitMQ broker (https://www.rabbitme.com/download.html).
Then grab the spring-rabbit JAR and all its dependencies - the easiest way to do so is to declare a
dependency in your build tool. For example, for Maven, you can do something resembling the
following:

<dependency>
<groupld>org.springframework.amqp</groupId>
<artifactId>spring-rabbit</artifactId>
<version>2.4.1</version>

</dependency>

For Gradle, you can do something resembling the following:

compile 'org.springframework.amqp:spring-rabbit:2.4.1

Compatibility

The minimum Spring Framework version dependency is 5.2.0.
The minimum amqp-client Java client library version is 5.7.0.
Very, Very Quick

This section offers the fastest introduction.

First, add the following import statements to make the examples later in this section work:

https://www.rabbitmq.com/download.html

import org.
import org.
import org.
import org.
import org.
import org.
import org.

springframework.
springframework.
springframework.
springframework.
springframework.
springframework.
springframework.

amgp.
amgp.
amgp.
amgp.
amgp.
amgp.
amgp.

core.AmgpAdmin;

core.AmgpTemplate;

core.Queue;
rabbit.connection.CachingConnectionFactory;
rabbit.connection.ConnectionFactory;
rabbit.core.RabbitAdmin;
rabbit.core.RabbitTemplate;

The following example uses plain, imperative Java to send and receive a message:

ConnectionFactory connectionFactory = new CachingConnectionFactory();
AmgpAdmin admin = new RabbitAdmin(connectionFactory);
admin.declareQueue(new Queue("myqueue"));

AmgpTemplate template = new RabbitTemplate(connectionFactory);
template.convertAndSend("myqueue”, "foo");

= (String) template.receiveAndConvert("myqueue");

String foo

Note that there is also a ConnectionFactory in the native Java Rabbit client. We use the Spring
abstraction in the preceding code. It caches channels (and optionally connections) for reuse. We
rely on the default exchange in the broker (since none is specified in the send), and the default
binding of all queues to the default exchange by their name (thus, we can use the queue name as a

routing key in the send). Those behaviors are defined in the AMQP specification.

With XML Configuration

The following example is the same as the preceding example but externalizes the resource

configuration to XML:

ApplicationContext context =

new GenericXmlApplicationContext("classpath:/rabbit-context.xml");
AmgpTemplate template = context.getBean(AmgpTemplate.class);
template.convertAndSend("myqueue”, "foo");
String foo = (String) template.receiveAndConvert("myqueue");

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:rabbit="http://www.springframework.org/schema/rabbit"
xsi:schemalocation="http://www.springframework.org/schema/rabbit
https://www.springframework.org/schema/rabbit/spring-rabbit.xsd
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<rabbit:connection-factory id="connectionFactory"/>

<rabbit:template id="amgqpTemplate" connection-factory="connectionFactory"/>
<rabbit:admin connection-factory="connectionFactory"/>

<rabbit:queue name="myqueue"/>

</beans>

By default, the <rabbit:admin/> declaration automatically looks for beans of type Queue, Exchange,
and Binding and declares them to the broker on behalf of the user. As a result, you need not use that
bean explicitly in the simple Java driver. There are plenty of options to configure the properties of
the components in the XML schema. You can use auto-complete features of your XML editor to
explore them and look at their documentation.

With Java Configuration

The following example repeats the same example as the preceding example but with the external
configuration defined in Java:

ApplicationContext context =

new AnnotationConfigApplicationContext(RabbitConfiguration.class);
AmgpTemplate template = context.getBean(AmgpTemplate.class);
template.convertAndSend("myqueue”, "foo");
String foo = (String) template.receiveAndConvert("myqueue");

public class RabbitConfiguration {

public CachingConnectionFactory connectionFactory() {
return new CachingConnectionFactory("localhost");

}

public RabbitAdmin amgpAdmin() {
return new RabbitAdmin(connectionFactory());

}

public RabbitTemplate rabbitTemplate() {
return new RabbitTemplate(connectionFactory());

}

public Queue myQueue() {
return new Queue("myqueue");

}

With Spring Boot Auto Configuration and an Async POJO Listener

Spring Boot automatically configures the infrastructure beans, as the following example shows:

@SpringBootApplication
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

@Bean
public ApplicationRunner runner(AmgpTemplate template) {
return args -> template.convertAndSend("myqueue”, "foo");

}

@Bean
public Queue myQueue() {
return new Queue("myqueue");

}

@RabbitListener(queues = "myqueue")

public void listen(String in) {
System.out.println(in);

}

Chapter 4. Reference

This part of the reference documentation details the various components that comprise Spring
AMQP. The main chapter covers the core classes to develop an AMQP application. This part also
includes a chapter about the sample applications.

4.1. Using Spring AMQP

This chapter explores the interfaces and classes that are the essential components for developing
applications with Spring AMQP.

4.1.1. AMQP Abstractions

Spring AMQP consists of two modules (each represented by a JAR in the distribution): spring-amqp
and spring-rabbit. The 'spring-amqp' module contains the org.springframework.amgp.core package.
Within that package, you can find the classes that represent the core AMQP “model”. Our intention
is to provide generic abstractions that do not rely on any particular AMQP broker implementation
or client library. End user code can be more portable across vendor implementations as it can be
developed against the abstraction layer only. These abstractions are then implemented by broker-
specific modules, such as 'spring-rabbit’. There is currently only a RabbitMQ implementation.
However, the abstractions have been validated in .NET using Apache Qpid in addition to RabbitMQ.
Since AMQP operates at the protocol level, in principle, you can use the RabbitMQ client with any
broker that supports the same protocol version, but we do not test any other brokers at present.

This overview assumes that you are already familiar with the basics of the AMQP specification. If
not, have a look at the resources listed in Other Resources

Message

The 0-9-1 AMQP specification does not define a Message class or interface. Instead, when performing
an operation such as basicPublish(), the content is passed as a byte-array argument and additional
properties are passed in as separate arguments. Spring AMQP defines a Message class as part of a
more general AMQP domain model representation. The purpose of the Message class is to
encapsulate the body and properties within a single instance so that the API can, in turn, be
simpler. The following example shows the Message class definition:

public class Message {
private final MessageProperties messageProperties;
private final byte[] body;

public Message(byte[] body, MessageProperties messageProperties) {
this.body = body;
this.messageProperties = messageProperties;

}

public byte[] getBody() {
return this.body;

}

public MessageProperties getMessageProperties() {
return this.messageProperties;

}

The MessageProperties interface defines several common properties, such as 'messageld’,
'timestamp’, 'contentType', and several more. You can also extend those properties with user-
defined 'headers' by calling the setHeader (String key, Object value) method.

Starting with versions 1.5.7, 1.6.11, 1.7.4, and 2.0.0, if a message body is a
serialized Serializable java object, it is no longer deserialized (by default) when
performing toString() operations (such as in log messages). This is to prevent

o unsafe deserialization. By default, only java.util and java.lang classes are
deserialized. To revert to the previous behavior, you can add allowable
class/package patterns by invoking Message.addAllowedListPatterns(:--). A simple
wildcard is supported, for example com.something., *.MyClass. Bodies that cannot
be deserialized are represented by byte[<size>] in log messages.

Exchange

The Exchange interface represents an AMQP Exchange, which is what a Message Producer sends to.
Each Exchange within a virtual host of a broker has a unique name as well as a few other
properties. The following example shows the Exchange interface:

10

public interface Exchange {
String getName();
String getExchangeType();
boolean isDurable();
boolean isAutoDelete();

Map<String, Object> getArguments();

As you can see, an Exchange also has a 'type' represented by constants defined in ExchangeTypes. The
basic types are: direct, topic, fanout, and headers. In the core package, you can find
implementations of the Exchange interface for each of those types. The behavior varies across these
Exchange types in terms of how they handle bindings to queues. For example, a Direct exchange lets
a queue be bound by a fixed routing key (often the queue’s name). A Topic exchange supports
bindings with routing patterns that may include the ™' and '#' wildcards for 'exactly-one' and 'zero-
or-more’, respectively. The Fanout exchange publishes to all queues that are bound to it without
taking any routing key into consideration. For much more information about these and the other
Exchange types, see Other Resources.

The AMQP specification also requires that any broker provide a “default” direct

o exchange that has no name. All queues that are declared are bound to that default
Exchange with their names as routing keys. You can learn more about the default
Exchange’s usage within Spring AMQP in AmgpTemplate.

Queue

The Queue class represents the component from which a message consumer receives messages. Like
the various Exchange classes, our implementation is intended to be an abstract representation of this
core AMQP type. The following listing shows the Queue class:

11

public class Queue {
private final String name;
private volatile boolean durable;
private volatile boolean exclusive;
private volatile boolean autoDelete;

private volatile Map<String, Object> arguments;

/**

* The queue 1is durable, non-exclusive and non auto-delete.
*

* @param name the name of the queue.

*/

public Queue(String name) {
this(name, true, false, false);

// Getters and Setters omitted for brevity

Notice that the constructor takes the queue name. Depending on the implementation, the admin
template may provide methods for generating a uniquely named queue. Such queues can be useful
as a “reply-to” address or in other temporary situations. For that reason, the 'exclusive’ and
'‘autoDelete’ properties of an auto-generated queue would both be set to 'true’.

o See the section on queues in Configuring the Broker for information about
declaring queues by using namespace support, including queue arguments.

Binding

Given that a producer sends to an exchange and a consumer receives from a queue, the bindings
that connect queues to exchanges are critical for connecting those producers and consumers via
messaging. In Spring AMQP, we define a Binding class to represent those connections. This section
reviews the basic options for binding queues to exchanges.

You can bind a queue to a DirectExchange with a fixed routing key, as the following example shows:

new Binding(someQueue, someDirectExchange, "foo.bar");

12

You can bind a queue to a TopicExchange with a routing pattern, as the following example shows:
new Binding(someQueue, someTopicExchange, "foo.*");

You can bind a queue to a FanoutExchange with no routing key, as the following example shows:
new Binding(someQueue, someFanoutExchange);

We also provide a BindingBuilder to facilitate a “fluent API” style, as the following example shows:

Binding b = BindingBuilder.bind(someQueue).to(someTopicExchange).with("foo.*");

o For clarity, the preceding example shows the BindingBuilder class, but this style
works well when using a static import for the 'bind()' method.

By itself, an instance of the Binding class only holds the data about a connection. In other words, it
is not an “active” component. However, as you will see later in Configuring the Broker, the
AmgpAdmin class can use Binding instances to actually trigger the binding actions on the broker. Also,
as you can see in that same section, you can define the Binding instances by using Spring’s @Bean
annotations within @Configuration classes. There is also a convenient base class that further
simplifies that approach for generating AMQP-related bean definitions and recognizes the queues,
exchanges, and bindings so that they are all declared on the AMQP broker upon application startup.

The AmgpTemplate is also defined within the core package. As one of the main components involved
in actual AMQP messaging, it is discussed in detail in its own section (see AmgpTemplate).

4.1.2. Connection and Resource Management

Whereas the AMQP model we described in the previous section is generic and applicable to all
implementations, when we get into the management of resources, the details are specific to the
broker implementation. Therefore, in this section, we focus on code that exists only within our
“spring-rabbit” module since, at this point, RabbitMQ is the only supported implementation.

The central component for managing a connection to the RabbitMQ broker is the ConnectionFactory
interface. The responsibility of a ConnectionFactory implementation is to provide an instance of
org.springframework.amgp.rabbit.connection.Connection, which is a wrapper for
com.rabbitmg.client.Connection.

Choosing a Connection Factory

There are three connection factories to chose from

13

* PooledChannelConnectionFactory
e ThreadChannelConnectionFactory

* CachingConnectionFactory
The first two were added in version 2.3.

For most wuse cases, the PooledChannelConnectionFactory should be used. The
ThreadChannelConnectionFactory can be used if you want to ensure strict message ordering without
the need to use Scoped Operations. The CachingConnectionFactory should be used if you want to use
correlated publisher confirmations or if you wish to open multiple connections, via its CacheMode.

Simple publisher confirmations are supported by all three factories.

When configuring a RabbitTemplate to use a separate connection, you can now, starting with version
2.3.2, configure the publishing connection factory to be a different type. By default, the publishing
factory is the same type and any properties set on the main factory are also propagated to the
publishing factory.

PooledChannelConnectionFactory

This factory manages a single connection and two pools of channels, based on the Apache Pool2.
One pool is for transactional channels, the other is for non-transactional channels. The pools are
GenericObjectPool s with default configuration; a callback is provided to configure the pools; refer
to the Apache documentation for more information.

The Apache commons-pool2 jar must be on the class path to use this factory.

PooledChannelConnectionFactory pcf() throws Exception {

ConnectionFactory rabbitConnectionFactory = new ConnectionFactory();

rabbitConnectionFactory.setHost("localhost");

PooledChannelConnectionFactory pcf = new PooledChannelConnectionFactory
(rabbitConnectionFactory);

pcf.setPoolConfigurer((pool, tx) -> {

if (tx) {
// confiqure the transactional pool

}
else {

// configure the non-transactional pool
}

)

return pcf;

ThreadChannelConnectionFactory

This factory manages a single connection and two ThreadlLocal s, one for transactional channels, the
other for non-transactional channels. This factory ensures that all operations on the same thread

14

use the same channel (as long as it remains open). This facilitates strict message ordering without
the need for Scoped Operations. To avoid memory leaks, if your application uses many short-lived
threads, you must call the factory’s closeThreadChannel() to release the channel resource. Starting
with version 2.3.7, a thread can transfer its channel(s) to another thread. See Strict Message
Ordering in a Multi-Threaded Environment for more information.

CachingConnectionFactory

The third implementation provided is the CachingConnectionFactory, which, by default, establishes a
single connection proxy that can be shared by the application. Sharing of the connection is possible
since the “unit of work” for messaging with AMQP is actually a “channel” (in some ways, this is
similar to the relationship between a connection and a session in JMS). The connection instance
provides a createChannel method. The CachingConnectionFactory implementation supports caching
of those channels, and it maintains separate caches for channels based on whether they are
transactional. When creating an instance of CachingConnectionFactory, you can provide the
'hostname' through the constructor. You should also provide the 'username' and 'password’
properties. To configure the size of the channel cache (the default is 25), you can call the
setChannelCacheSize() method.

Starting with version 1.3, you can configure the CachingConnectionFactory to cache connections as
well as only channels. In this case, each call to createConnection() creates a new connection (or
retrieves an idle one from the cache). Closing a connection returns it to the cache (if the cache size
has not been reached). Channels created on such connections are also cached. The use of separate
connections might be useful in some environments, such as consuming from an HA cluster, in
conjunction with a load balancer, to connect to different cluster members, and others. To cache
connections, set the cacheMode to CacheMode.CONNECTION.

o This does not limit the number of connections. Rather, it specifies how many idle
open connections are allowed.

Starting with version 1.5.5, a new property called connectionlLimit is provided. When this property
is set, it limits the total number of connections allowed. When set, if the limit is reached, the
channelCheckoutTimelLimit is used to wait for a connection to become idle. If the time is exceeded, an
AmgpTimeoutException is thrown.

When the cache mode is CONNECTION, automatic declaration of queues and others
(See Automatic Declaration of Exchanges, Queues, and Bindings) is NOT supported.

Also, at the time of this writing, the amgp-client library by default creates a fixed
thread pool for each connection (default size:
Runtime.getRuntime().availableProcessors() * 2 threads). When using a large

o number of connections, you should consider setting a custom executor on the
CachingConnectionFactory. Then, the same executor can be used by all connections
and its threads can be shared. The executor’s thread pool should be unbounded or
set appropriately for the expected use (usually, at least one thread per connection).
If multiple channels are created on each connection, the pool size affects the
concurrency, so a variable (or simple cached) thread pool executor would be most
suitable.

15

It is important to understand that the cache size is (by default) not a limit but is merely the number
of channels that can be cached. With a cache size of, say, 10, any number of channels can actually
be in use. If more than 10 channels are being used and they are all returned to the cache, 10 go in
the cache. The remainder are physically closed.

Starting with version 1.6, the default channel cache size has been increased from 1 to 25. In high
volume, multi-threaded environments, a small cache means that channels are created and closed at
a high rate. Increasing the default cache size can avoid this overhead. You should monitor the
channels in use through the RabbitMQ Admin UI and consider increasing the cache size further if
you see many channels being created and closed. The cache grows only on-demand (to suit the
concurrency requirements of the application), so this change does not impact existing low-volume
applications.

Starting with version 1.4.2, the CachingConnectionfFactory has a property called
channelCheckoutTimeout. When this property is greater than zero, the channelCacheSize becomes a
limit on the number of channels that can be created on a connection. If the limit is reached, calling
threads block until a channel is available or this timeout is reached, in which case a
AmgpTimeoutException is thrown.

Channels used within the framework (for example, RabbitTemplate) are reliably
returned to the cache. If you create channels outside of the framework, (for

A example, by accessing the connections directly and invoking createChannel()), you
must return them (by closing) reliably, perhaps in a finally block, to avoid
running out of channels.

The following example shows how to create a new connection:

CachingConnectionFactory connectionFactory = new CachingConnectionFactory(
"somehost");

connectionFactory.setUsername("quest");
connectionFactory.setPassword("quest");

Connection connection = connectionFactory.createConnection();

When using XML, the configuration might look like the following example:

<bean id="connectionFactory"
class="org.springframework.amqp.rabbit.connection.CachingConnectionFactory">
<constructor-arg value="somehost"/>
<property name="username" value="quest"/>
<property name="password" value="guest"/>
</bean>

16

There is also a SingleConnectionFactory implementation that is available only in
the unit test code of the framework. It is simpler than CachingConnectionFactory,
o since it does not cache channels, but it is not intended for practical usage outside
of simple tests due to its lack of performance and resilience. If you need to
implement your own ConnectionFactory for some reason, the
AbstractConnectionFactory base class may provide a nice starting point.

A ConnectionFactory can be created quickly and conveniently by using the rabbit namespace, as
follows:

<rabbit:connection-factory id="connectionFactory"/>

In most cases, this approach is preferable, since the framework can choose the best defaults for
you. The created instance is a CachingConnectionFactory. Keep in mind that the default cache size for
channels is 25. If you want more channels to be cachedm, set a larger value by setting the
'‘channelCacheSize' property. In XML it would look like as follows:

<bean id="connectionFactory"
class="org.springframework.amgp.rabbit.connection.CachingConnectionFactory">
<constructor-arg value="somehost"/>
<property name="username" value="guest"/>
<property name="password" value="quest"/>
<property name="channelCacheSize" value="50"/>
</bean>

Also, with the namespace, you can add the 'channel-cache-size' attribute, as follows:

<rabbit:connection-factory
id="connectionFactory" channel-cache-size="50"/>

The default cache mode is CHANNEL, but you can configure it to cache connections instead. In the
following example, we use connection-cache-size:

<rabbit:connection-factory
id="connectionFactory" cache-mode="CONNECTION" connection-cache-size="25"/>

You can provide host and port attributes by using the namespace, as follows:

17

<rabbit:connection-factory
id="connectionFactory" host="somehost" port="5672"/>

Alternatively, if running in a clustered environment, you can use the addresses attribute, as
follows:

<rabbit:connection-factory
id="connectionFactory" addresses="host1:5672,host2:5672" address-shuffle-mode
="RANDOM" />

See Connecting to a Cluster for information about address-shuffle-mode.

The following example with a custom thread factory that prefixes thread names with rabbitmg-:

<rabbit:connection-factory id="multiHost" virtual-host="/bar" addresses=
"host1:1234,host2,host3:4567"

thread-factory="tf"

channel-cache-size="10" username="user" password="password" />

<bean id="tf" class=

"org.springframework.scheduling.concurrent.CustomizableThreadFactory">
<constructor-arg value="rabbitmq-" />

</bean>

AddressResolver

Starting with version 2.1.15, you can now use an AddressResover to resolve the connection
address(es). This will override any settings of the addresses and host/port properties.

Naming Connections

Starting with version 1.7, a ConnectionNameStrategy is provided for the injection into the
AbstractionConnectionFactory. The generated name is used for the application-specific identification
of the target RabbitMQ connection. The connection name is displayed in the management UI if the
RabbitMQ server supports it. This value does not have to be unique and cannot be used as a
connection identifier — for example, in HTTP API requests. This value is supposed to be human-
readable and is a part of ClientProperties under the connection_name key. You can use a simple
Lambda, as follows:

18

connectionFactory.setConnectionNameStrategy(connectionFactory -> "MY_CONNECTION");

The ConnectionFactory argument can be used to distinguish target connection names by some logic.
By default, the beanName of the AbstractConnectionFactory, a hex string representing the object, and
an internal counter are used to generate the connection_name. The <rabbit:connection-factory>
namespace component is also supplied with the connection-name-strategy attribute.

An implementation of SimplePropertyValueConnectionNameStrategy sets the connection name to an
application property. You can declare it as a @Bean and inject it into the connection factory, as the
following example shows:

public SimplePropertyValueConnectionNameStrategy cns() {
return new SimplePropertyValueConnectionNameStrategy("spring.application.name

)i
}

public ConnectionFactory rabbitConnectionFactory(ConnectionNameStrategy cns) {
CachingConnectionFactory connectionFactory = new CachingConnectionFactory();

connectionFactory.setConnectionNameStrategy(cns);
return connectionFactory;

The property must exist in the application context’s Environment.

When using Spring Boot and its autoconfigured connection factory, you need only
o declare the ConnectionNameStrategy @Bean. Boot auto-detects the bean and wires it
into the factory.

Blocked Connections and Resource Constraints

The connection might be blocked for interaction from the broker that corresponds to the Memory
Alarm. Starting with version 2.0, the org.springframework.amgp.rabbit.connection.Connection can be
supplied with com.rabbitmqg.client.BlockedListener instances to be notified for connection blocked
and unblocked events. In addition, the AbstractConnectionFactory emits a ConnectionBlockedEvent
and ConnectionUnblockedEvent, respectively, through its internal BlockedlListener implementation.
These let you provide application logic to react appropriately to problems on the broker and (for
example) take some corrective actions.

19

https://www.rabbitmq.com/memory.html
https://www.rabbitmq.com/memory.html

When the application is configured with a single CachingConnectionFactory, as it is
by default with Spring Boot auto-configuration, the application stops working
when the connection is blocked by the Broker. And when it is blocked by the
Broker, any of its clients stop to work. If we have producers and consumers in the
same application, we may end up with a deadlock when producers are blocking

o the connection (because there are no resources on the Broker any more) and
consumers cannot free them (because the connection is blocked). To mitigate the
problem, we suggest having one more separate CachingConnectionFactory instance
with the same options—one for producers and one for consumers. A separate
CachingConnectionFactory is not possible for transactional producers that execute
on a consumer thread, since they should reuse the Channel associated with the
consumer transactions.

Starting with version 2.0.2, the RabbitTemplate has a configuration option to automatically use a
second connection factory, unless transactions are being used. See Using a Separate Connection for
more information. The ConnectionNameStrategy for the publisher connection is the same as the
primary strategy with .publisher appended to the result of calling the method.

Starting with version 1.7.7, an AmqpResourceNotAvailableException is provided, which is thrown
when SimpleConnection.createChannel() cannot create a Channel (for example, because the
channelMax limit is reached and there are no available channels in the cache). You can use this
exception in the RetryPolicy to recover the operation after some back-off.

Configuring the Underlying Client Connection Factory

The CachingConnectionFactory uses an instance of the Rabbit client ConnectionFactory. A number of
configuration properties are passed through (host, port, userName, password, requestedHeartBeat,
and connectionTimeout for example) when setting the equivalent property on the
CachingConnectionFactory. To set other properties (clientProperties, for example), you can define an
instance of the Rabbit factory and provide a reference to it by using the appropriate constructor of
the CachingConnectionFactory. When using the namespace (as described earlier), you need to
provide a reference to the configured factory in the connection-factory attribute. For convenience,
a factory bean is provided to assist in configuring the connection factory in a Spring application
context, as discussed in the next section.

<rabbit:connection-factory
id="connectionFactory" connection-factory="rabbitConnectionFactory"/>

20

The 4.0.x client enables automatic recovery by default. While compatible with this
feature, Spring AMQP has its own recovery mechanisms and the client recovery
feature generally is not needed. We recommend disabling amqp-client automatic
recovery, to avoid getting AutoRecoverConnectionNotCurrentlyOpenException
instances when the broker is available but the connection has not yet recovered.
You may notice this exception, for example, when a RetryTemplate is configured in
o a RabbitTemplate, even when failing over to another broker in a cluster. Since the
auto-recovering connection recovers on a timer, the connection may be recovered
more quickly by using Spring AMQP’s recovery mechanisms. Starting with version
1.7.1, Spring AMQP disables amgp-client automatic recovery unless you explicitly
create your own RabbitMQ connection factory and provide it to the
CachingConnectionFactory. RabbitMQ ConnectionFactory instances created by the
RabbitConnectionFactoryBean also have the option disabled by default.

RabbitConnectionFactoryBean and Configuring SSL

Starting with version 1.4, a convenient RabbitConnectionFactoryBean is provided to enable
convenient configuration of SSL properties on the underlying client connection factory by using
dependency injection. Other setters delegate to the underlying factory. Previously, you had to
configure the SSL options programmatically. The following example shows how to configure a
RabbitConnectionFactoryBean:

<rabbit:connection-factory id="rabbitConnectionFactory"
connection-factory="clientConnectionFactory"
host="${host}"
port="${port}"
virtual-host="${vhost}"
username="${username}" password="${password}" />

<bean id="clientConnectionFactory"
class=
"org.springframework.amgp.rabbit.connection.RabbitConnectionFactoryBean">
<property name="useSSL" value="true" />
<property name="ss1PropertiesLocation" value=
"file:/secrets/rabbitSSL.properties"/>
</bean>

See the RabbitMQ Documentation for information about configuring SSL. Omit the keyStore and
trustStore configuration to connect over SSL without certificate validation. The next example
shows how you can provide key and trust store configuration.

The ss1PropertiesLocation property is a Spring Resource pointing to a properties file containing the
following keys:

21

https://www.rabbitmq.com/ssl.html

keyStore=file:/secret/keycert.p12
trustStore=file:/secret/trustStore
keyStore.passPhrase=secret
trustStore.passPhrase=secret

The keyStore and truststore are Spring Resources pointing to the stores. Typically this properties
file is secured by the operating system with the application having read access.

Starting with Spring AMQP version 1.5,you can set these properties directly on the factory bean. If
both discrete properties and ss1PropertiesLocation is provided, properties in the latter override the
discrete values.

Starting with version 2.0, the server certificate is validated by default because it is
more secure. If you wish to skip this validation for some reason, set the factory

o bean’s skipServerCertificateValidation property to true. Starting with version 2.1,
the RabbitConnectionFactoryBean now calls enableHostnameVerification() by
default. To revert to the previous behavior, set the enableHostnameVerification
property to false.

Starting with version 2.2.5, the factory bean will always use TLS v1.2 by default;

o previously, it used v1.1 in some cases and v1.2 in others (depending on other
properties). If you need to use v1.1 for some reason, set the ss1Algorithm property:
setSs1Algorithm("TLSv1.1").

Connecting to a Cluster

To connect to a cluster, configure the addresses property on the CachingConnectionFactory:

public CachingConnectionFactory ccf() {
CachingConnectionFactory ccf = new CachingConnectionFactory();
ccef.setAddresses("host1:5672,host2:5672,host3:5672");
return ccf;

The underlying connection factory will attempt to connect to each host, in order, whenever a new
connection is established. Starting with version 2.1.8, the connection order can be made random by
setting the addressShuffleMode property to RANDOM; the shuffle will be applied before creating any
new connection. Starting with version 2.6, the INORDER shuffle mode was added, which means the
first address is moved to the end after a connection is created. You may wish to use this mode with
the RabbitMQ Sharding Plugin with CacheMode.CONNECTION and suitable concurrency if you wish to
consume from all shards on all nodes.

22

https://github.com/rabbitmq/rabbitmq-sharding

public CachingConnectionFactory ccf() {
CachingConnectionFactory ccf = new CachingConnectionFactory();
ccf.setAddresses("host1:5672,host2:5672,host3:5672");
cef.setAddressShuffleMode (AddressShuffleMode.RANDOM);
return ccf;

Routing Connection Factory

Starting with version 1.3, the AbstractRoutingConnectionFactory has been introduced. This factory
provides a mechanism to configure mappings for several ConnectionFactories and determine a
target ConnectionFactory by some lookupKey at runtime. Typically, the implementation checks a
thread-bound context. For convenience, Spring AMQP provides the SimpleRoutingConnectionFactory,
which gets the current thread-bound lookupKey from the SimpleResourceHolder. The following
examples shows how to configure a SimpleRoutingConnectionFactory in both XML and Java:

23

<bean id="connectionFactory"
class=
"org.springframework.amqgp.rabbit.connection.SimpleRoutingConnectionFactory">
<property name="targetConnectionFactories">
<map>
<entry key="#{connectionFactoryl.virtualHost}" ref="
connectionFactory1"/>
<entry key="#{connectionFactory2.virtualHost}" ref="
connectionFactory2"/>
</map>
</property>
</bean>

<rabbit:template id="template" connection-factory="connectionFactory" />

public class MyService {

@Autowired
private RabbitTemplate rabbitTemplate;

public void service(String vHost, String payload) {
SimpleResourceHolder.bind(rabbitTemplate.getConnectionFactory(), vHost);
rabbitTemplate.convertAndSend(payload);
SimpleResourceHolder.unbind(rabbitTemplate.getConnectionFactory());

It is important to unbind the resource after use. For more information, see the JavaDoc for
AbstractRoutingConnectionFactory.

Starting with version 1.4, RabbitTemplate supports the SpEL
sendConnectionFactorySelectorExpression and receiveConnectionFactorySelectorExpression
properties, which are evaluated on each AMQP protocol interaction operation (send, sendAndReceive,
receive, or receiveAndReply), resolving to a lookupKey value for the provided
AbstractRoutingConnectionFactory. You can use bean references, such as
@vHostResolver.getVHost(#root) in the expression. For send operations, the message to be sent is the
root evaluation object. For receive operations, the queueName is the root evaluation object.

The routing algorithm is as follows: If the selector expression is null or is evaluated to null or the
provided ConnectionFactory is not an instance of AbstractRoutingConnectionFactory, everything
works as before, relying on the provided ConnectionFactory implementation. The same occurs if the
evaluation result is not null, but there is no target ConnectionFactory for that lookupKey and the
AbstractRoutingConnectionFactory is configured with lenientFallback = true. In the case of an
AbstractRoutingConnectionFactory, it does fallback to its routing implementation based on
determineCurrentLookupKey(). However, if lenientFallback = false, an IllegalStateException is

24

https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/rabbit/connection/AbstractRoutingConnectionFactory.html

thrown.

The namespace support also provides the send-connection-factory-selector-expression and
receive-connection-factory-selector-expression attributes on the <rabbit:template> component.

Also, starting with version 1.4, you can configure a routing connection factory in a listener
container. In that case, the list of queue names is used as the lookup key. For example, if you
configure the container with setQueueNames("thing1", "thing2"), the lookup key is [thing1,thing]"
(note that there is no space in the key).

Starting with version 1.6.9, you can add a qualifier to the lookup key by using setLookupKeyQualifier
on the listener container. Doing so enables, for example, listening to queues with the same name
but in a different virtual host (where you would have a connection factory for each).

For example, with lookup key qualifier thing1 and a container listening to queue thing2, the lookup
key you could register the target connection factory with could be thing1[thing2].

o The target (and default, if provided) connection factories must have the same
settings for publisher confirms and returns. See Publisher Confirms and Returns.

Queue Affinity and the LocalizedQueueConnectionFactory

When using HA queues in a cluster, for the best performance, you may want to connect to the
physical broker where the lead queue resides. The CachingConnectionFactory can be configured with
multiple broker addresses. This is to fail over and the client attempts to connect in order. The
LocalizedQueueConnectionFactory uses the REST API provided by the management plugin to
determine which node is the lead for the queue. It then creates (or retrieves from a cache) a
CachingConnectionFactory that connects to just that node. If the connection fails, the new lead node
is determined and the consumer connects to it. The LocalizedQueueConnectionFactory is configured
with a default connection factory, in case the physical location of the queue cannot be determined,
in which case it connects as normal to the cluster.

The LocalizedQueueConnectionFactory is a RoutingConnectionFactory and the
SimpleMessagelListenerContainer uses the queue names as the lookup key as discussed in Routing
Connection Factory above.

For this reason (the use of the queue name for the lookup), the
o LocalizedQueueConnectionFactory can only be used if the container is configured to
listen to a single queue.

e The RabbitMQ management plugin must be enabled on each node.

This connection factory is intended for long-lived connections, such as those used
by the SimpleMessagelListenerContainer. It is not intended for short connection use,

o such as with a RabbitTemplate because of the overhead of invoking the REST API
before making the connection. Also, for publish operations, the queue is unknown,
and the message is published to all cluster members anyway, so the logic of looking
up the node has little value.

25

The following example configuration shows how to configure the factories:

private ConfigurationProperties props;

public CachingConnectionFactory defaultConnectionFactory() {
CachingConnectionFactory cf = new CachingConnectionFactory();
cf.setAddresses(this.props.getAddresses());
cf.setUsername(this.props.getUsername());
cf.setPassword(this.props.getPassword());
cf.setVirtualHost(this.props.getVirtualHost());
return cf;

public LocalizedQueueConnectionFactory queueAffinityCF(
("defaultConnectionFactory") ConnectionFactory defaultCF) {
return new LocalizedQueueConnectionFactory(defaultCF,
StringUtils.commaDelimitedListToStringArray(this.props.getAddresses()

StringUtils.commaDelimitedListToStringArray(this.props.getAdminUris()

StringUtils.commaDelimitedListToStringArray(this.props.getNodes()),

this.props.getVirtualHost(), this.props.getUsername(), this.props
.getPassword(),

false, null);

}

Notice that the first three parameters are arrays of addresses, adminUris, and nodes. These are
positional in that, when a container attempts to connect to a queue, it uses the admin API to
determine which node is the lead for the queue and connects to the address in the same array
position as that node.

Publisher Confirms and Returns

Confirmed (with correlation) and returned messages are supported by setting the
CachingConnectionFactory property publisherConfirmType to ConfirmType.CORRELATED and the
publisherReturns property to 'true’.

When these options are set, Channel instances created by the factory are wrapped in an
PublisherCallbackChannel, which is used to facilitate the callbacks. When such a channel is obtained,
the client can register a PublisherCallbackChannel.Listener with the Channel. The
PublisherCallbackChannel implementation contains logic to route a confirm or return to the
appropriate listener. These features are explained further in the following sections.

See also simplePublisherConfirms in Scoped Operations.

26

(r) For some more background information, see the blog post by the RabbitMQ team
- titled Introducing Publisher Confirms.
Connection and Channel Listeners

The connection factory supports registering ConnectionlListener and Channellistener
implementations. This allows you to receive notifications for connection and channel related
events. (A ConnectionListener is used by the RabbitAdmin to perform declarations when the
connection is established - see Automatic Declaration of Exchanges, Queues, and Bindings for more
information). The following listing shows the ConnectionListener interface definition:

@FunctionalIlnterface
public interface ConnectionlListener {

void onCreate(Connection connection);

default void onClose(Connection connection) {

}

default void onShutDown(ShutdownSignalException signal) {
}

Starting with version 2.0, the org.springframework.amqgp.rabbit.connection.Connection object can be
supplied with com.rabbitmq.client.BlockedListener instances to be notified for connection blocked
and unblocked events. The following example shows the ChannelListener interface definition:

@Functionallnterface
public interface Channellistener {

void onCreate(Channel channel, boolean transactional);

default void onShutDown(ShutdownSignalException signal) {
}

See Publishing is Asynchronous — How to Detect Successes and Failures for one scenario where you
might want to register a ChannellListener.

Logging Channel Close Events

Version 1.5 introduced a mechanism to enable users to control logging levels.

27

https://www.rabbitmq.com/blog/2011/02/10/introducing-publisher-confirms/

The CachingConnectionFactory uses a default strategy to log channel closures as follows:

* Normal channel closes (200 OK) are not logged.

 If a channel is closed due to a failed passive queue declaration, it is logged at debug level.

o If a channel is closed because the basic.consume is refused due to an exclusive consumer
condition, it is logged at INFO level.

» All others are logged at ERROR level.

To modify this behavior, you can inject a custom ConditionalExceptionlLogger into the
CachingConnectionFactory in its closeExceptionLogger property.

See also Consumer Events.

Runtime Cache Properties

Staring with version 1.6, the CachingConnectionFactory now provides cache statistics through the
getCacheProperties() method. These statistics can be used to tune the cache to optimize it in
production. For example, the high water marks can be used to determine whether the cache size
should be increased. If it equals the cache size, you might want to consider increasing further. The
following table describes the CacheMode.CHANNEL properties:

Table 1. Cache properties for CacheMode.CHANNEL

Property

connectionName

channelCacheSize

localPort

idleChannelsTx

idleChannelsNotTx

idleChannelsTxHighWater

idleChannelsNotTxHighWater

Meaning

The name of the connection generated by the
ConnectionNameStrategy.

The currently configured maximum channels that are allowed to
be idle.

The local port for the connection (if available). This can be used
to correlate with connections and channels on the RabbitMQ
Admin UL

The number of transactional channels that are currently idle
(cached).

The number of non-transactional channels that are currently idle
(cached).

The maximum number of transactional channels that have been
concurrently idle (cached).

The maximum number of non-transactional channels have been
concurrently idle (cached).

The following table describes the CacheMode.CONNECTION properties:

Table 2. Cache properties for CacheMode. CONNECTION

28

Property

connectionName:<localPort>

openConnections

channelCacheSize

connectionCacheSize

idleConnections

idleConnectionsHighWater

idleChannelsTx:<localPort>

idleChannelsNotTx:<localPort>

idleChannelsTxHighWater:<loca
1Port>

idleChannelsNotTxHighWater:<1
ocalPort>

Meaning

The name of the connection generated by the
ConnectionNameStrategy.

The number of connection objects representing connections to
brokers.

The currently configured maximum channels that are allowed to
be idle.

The currently configured maximum connections that are allowed
to be idle.

The number of connections that are currently idle.

The maximum number of connections that have been
concurrently idle.

The number of transactional channels that are currently idle
(cached) for this connection. You can use the localPort part of the
property name to correlate with connections and channels on the
RabbitMQ Admin UL

The number of non-transactional channels that are currently idle
(cached) for this connection. The localPort part of the property
name can be used to correlate with connections and channels on
the RabbitMQ Admin UL

The maximum number of transactional channels that have been
concurrently idle (cached). The localPort part of the property
name can be used to correlate with connections and channels on
the RabbitMQ Admin UL

The maximum number of non-transactional channels have been
concurrently idle (cached). You can use the localPort part of the
property name to correlate with connections and channels on the
RabbitMQ Admin UL

The cacheMode property (CHANNEL or CONNECTION) is also included.

29

i Operation return value

cacheMode=CONNECTION

‘e idleConnections=2
connectionCacheSize=5
channelCacheSize=1@
idleChannelsTxHighWater:53823=2
idleChannelsTxHighWater:53822=0
connectionName:53823=myApp.myServer#l
connectionMame:53822=myApp.myServer#d
idleChannelsNotTx:53823=1
idleChannelsTx:53823=2
openConnections=2
idleChannelsNotTxHighWater:53823=1
idleChannelsNotTx:53822=2
idleChannelsTx:53822=0
idleChannelsNotTxHighWater:53822=2

idleConnectionsHighWater=2

Figure 1. JVisualVM Example

RabbitMQ Automatic Connection/Topology recovery

Since the first version of Spring AMQP, the framework has provided its own connection and
channel recovery in the event of a broker failure. Also, as discussed in Configuring the Broker, the
RabbitAdmin re-declares any infrastructure beans (queues and others) when the connection is re-
established. It therefore does not rely on the auto-recovery that is now provided by the amgp-client
library. Spring AMQP now uses the 4.0.x version of amgp-client, which has auto recovery enabled
by default. Spring AMQP can still use its own recovery mechanisms if you wish, disabling it in the
client, (by setting the automaticRecoveryEnabled property on the wunderlying RabbitMQ
connectionFactory to false). However, the framework is completely compatible with auto-recovery
being enabled. This means any consumers you create within your code (perhaps via
RabbitTemplate.execute()) can be recovered automatically.

30

https://www.rabbitmq.com/api-guide.html#recovery

Only elements (queues, exchanges, bindings) that are defined as beans will be re-
declared after a connection failure. Elements declared by invoking

o RabbitAdmin.declare*() methods directly from user code are unknown to the
framework and therefore cannot be recovered. If you have a need for a variable
number of declarations, consider defining a bean, or beans, of type Declarables, as
discussed in Declaring Collections of Exchanges, Queues, and Bindings.

4.1.3. Adding Custom Client Connection Properties

The CachingConnectionFactory now lets you access the underlying connection factory to allow, for
example, setting custom client properties. The following example shows how to do so:

connectionFactory.getRabbitConnectionFactory().getClientProperties().put("thing1",
"thing2");

These properties appear in the RabbitMQ Admin UI when viewing the connection.

4.1.4. AmgpTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects,
Spring AMQP provides a “template” that plays a central role. The interface that defines the main
operations is called AmgpTemplate. Those operations cover the general behavior for sending and
receiving messages. In other words, they are not unique to any implementation —hence the
“AMQP” in the name. On the other hand, there are implementations of that interface that are tied to
implementations of the AMQP protocol. Unlike JMS, which is an interface-level API itself, AMQP is a
wire-level protocol. The implementations of that protocol provide their own client libraries, so each
implementation of the template interface depends on a particular client library. Currently, there is
only a single implementation: RabbitTemplate. In the examples that follow, we often use an
AmgpTemplate. However, when you look at the configuration examples or any code excerpts where
the template is instantiated or setters are invoked, you can see the implementation type (for
example, RabbitTemplate).

As mentioned earlier, the AmgpTemplate interface defines all of the basic operations for sending and
receiving messages. We will explore message sending and reception, respectively, in Sending
Messages and Receiving Messages.

See also Async Rabbit Template.

Adding Retry Capabilities

Starting with version 1.3, you can now configure the RabbitTemplate to use a RetryTemplate to help
with handling problems with broker connectivity. See the spring-retry project for complete
information. The following is only one example that uses an exponential back off policy and the
default SimpleRetryPolicy, which makes three tries before throwing the exception to the caller.

The following example uses the XML namespace:

31

https://github.com/spring-projects/spring-retry

<rabbit:template id="template" connection-factory="connectionFactory" retry-
template="retryTemplate"/>

<bean id="retryTemplate" class="org.springframework.retry.support.RetryTemplate">
<property name="backOffPolicy">
<bean class="org.springframework.retry.backoff.ExponentialBackOffPolicy">
<property name="initialInterval" value="500" />
<property name="multiplier" value="10.0" />
<property name="maxInterval" value="10000" />
</bean>
</property>
</bean>

The following example uses the @Configuration annotation in Java:

@Bean

public RabbitTemplate rabbitTemplate() {
RabbitTemplate template = new RabbitTemplate(connectionFactory());
RetryTemplate retryTemplate = new RetryTemplate();
ExponentialBackOffPolicy backOffPolicy = new ExponentialBackOffPolicy();
backOffPolicy.setInitialInterval(500);
backOffPolicy.setMultiplier(10.0);
backOffPolicy.setMaxInterval(10000);
retryTemplate.setBackOffPolicy(backOffPolicy);
template.setRetryTemplate(retryTemplate);
return template;

Starting with version 1.4, in addition to the retryTemplate property, the recoveryCallback option is
supported on the RabbitTemplate. It is wused as a second argument for the
RetryTemplate.execute(RetryCallback<T, E> retryCallback, RecoveryCallback<T> recoveryCallback).

The RecoveryCallback is somewhat limited, in that the retry context contains only
the lastThrowable field. For more sophisticated use cases, you should use an

o external RetryTemplate so that you can convey additional information to the
RecoveryCallback through the context’s attributes. The following example shows
how to do so:

32

retryTemplate.execute(
new RetryCallback<Object, Exception>() {

public Object doWithRetry(RetryContext context) throws Exception {
context.setAttribute("message"”, message);
return rabbitTemplate.convertAndSend(exchange, routingKey, message);

}, new RecoveryCallback<Object>() {

public Object recover(RetryContext context) throws Exception {
Object message = context.getAttribute("message");
Throwable t = context.getlastThrowable();
// Do something with message
return null;

1

In this case, you would not inject a RetryTemplate into the RabbitTemplate.

Publishing is Asynchronous — How to Detect Successes and Failures

Publishing messages is an asynchronous mechanism and, by default, messages that cannot be
routed are dropped by RabbitMQ. For successful publishing, you can receive an asynchronous
confirm, as described in Correlated Publisher Confirms and Returns. Consider two failure
scenarios:

* Publish to an exchange but there is no matching destination queue.
* Publish to a non-existent exchange.

The first case is covered by publisher returns, as described in Correlated Publisher Confirms and
Returns.

For the second case, the message is dropped and no return is generated. The underlying channel is
closed with an exception. By default, this exception is logged, but you can register a ChannellListener
with the CachingConnectionFactory to obtain notifications of such events. The following example
shows how to add a ConnectionlListener:

33

this.connectionFactory.addConnectionListener(new ConnectionlListener() {

public void onCreate(Connection connection) {

}

public void onShutDown(ShutdownSignalException signal) {
}
};

You can examine the signal’s reason property to determine the problem that occurred.

To detect the exception on the sending thread, you can setChannelTransacted(true) on the
RabbitTemplate and the exception is detected on the txCommit(). However, transactions
significantly impede performance, so consider this carefully before enabling transactions for just
this one use case.

Correlated Publisher Confirms and Returns

The RabbitTemplate implementation of AmgpTemplate supports publisher confirms and returns.

For returned messages, the template’s mandatory property must be set to true or the mandatory-
expression must evaluate to true for a particular message. This feature requires a
CachingConnectionFactory that has its publisherReturns property set to true (see Publisher Confirms
and Returns). Returns are sent to the client by it registering a RabbitTemplate.ReturnsCallback by
calling setReturnsCallback(ReturnsCallback callback). The callback must implement the following
method:

void returnedMessage(ReturnedMessage returned);

The ReturnedMessage has the following properties:

* message - the returned message itself

* replyCode - a code indicating the reason for the return

* replyText - a textual reason for the return - e.g. NO_ROUTE
* exchange - the exchange to which the message was sent

* routingKey - the routing key that was used

Only one ReturnsCallback is supported by each RabbitTemplate. See also Reply Timeout.

34

For publisher confirms (also known as publisher acknowledgements), the template requires a
CachingConnectionFactory that has its publisherConfirm property set to ConfirmType.CORRELATED.
Confirms are sent to the client by it registering a RabbitTemplate.ConfirmCallback by calling
setConfirmCallback(ConfirmCallback callback). The callback must implement this method:

void confirm(CorrelationData correlationData, boolean ack, String cause);

The CorrelationData is an object supplied by the client when sending the original message. The ack
is true for an ack and false for a nack. For nack instances, the cause may contain a reason for the
nack, if it is available when the nack is generated. An example is when sending a message to a non-
existent exchange. In that case, the broker closes the channel. The reason for the closure is included
in the cause. The cause was added in version 1.4.

Only one ConfirmCallback is supported by a RabbitTemplate.

When a rabbit template send operation completes, the channel is closed. This
precludes the reception of confirms or returns when the connection factory cache
is full (when there is space in the cache, the channel is not physically closed and
the returns and confirms proceed normally). When the cache is full, the
framework defers the close for up to five seconds, in order to allow time for the
confirms and returns to be received. When using confirms, the channel is closed

o when the last confirm is received. When using only returns, the channel remains
open for the full five seconds. We generally recommend setting the connection
factory’s channelCacheSize to a large enough value so that the channel on which a
message is published is returned to the cache instead of being closed. You can
monitor channel usage by using the RabbitMQ management plugin. If you see
channels being opened and closed rapidly, you should consider increasing the
cache size to reduce overhead on the server.

Before version 2.1, channels enabled for publisher confirms were returned to the
cache before the confirms were received. Some other process could check out the
channel and perform some operation that causes the channel to close —such as

o publishing a message to a non-existent exchange. This could cause the confirm to
be lost. Version 2.1 and later no longer return the channel to the cache while
confirms are outstanding. The RabbitTemplate performs a logical close() on the
channel after each operation. In general, this means that only one confirm is
outstanding on a channel at a time.

35

Starting with version 2.2, the callbacks are invoked on one of the connection
factory’s executor threads. This is to avoid a potential deadlock if you perform
Rabbit operations from within the callback. With previous versions, the callbacks
were invoked directly on the amgp-client connection I/O thread; this would

o deadlock if you perform some RPC operation (such as opening a new channel)
since the I/O thread blocks waiting for the result, but the result needs to be
processed by the I/O thread itself. With those versions, it was necessary to hand off
work (such as sending a messasge) to another thread within the callback. This is
no longer necessary since the framework now hands off the callback invocation to
the executor.

The guarantee of receiving a returned message before the ack is still maintained as

o long as the return callback executes in 60 seconds or less. The confirm is scheduled
to be delivered after the return callback exits or after 60 seconds, whichever
comes first.

Starting with version 2.1, the CorrelationData object has a ListenableFuture that you can use to get
the result, instead of using a ConfirmCallback on the template. The following example shows how to
configure a CorrelationData instance:

CorrelationData cd1 = new CorrelationData();
this.templateWithConfirmsEnabled.convertAndSend("exchange”, queue.getName(), "foo
Y, cdl);

assertTrue(cd1.getFuture().get(10, TimeUnit.SECONDS).isAck());

Since it is a ListenableFuture<Confirm>, you can either get() the result when ready or add listeners
for an asynchronous callback. The Confirm object is a simple bean with 2 properties: ack and reason
(for nack instances). The reason is not populated for broker-generated nack instances. It is populated
for nack instances generated by the framework (for example, closing the connection while ack
instances are outstanding).

In addition, when both confirms and returns are enabled, the CorrelationData is populated with the
returned message, as long as the CorrelationData has a unique id; this is always the case, by default,
starting with version 2.3. It is guaranteed that the returned message is set before the future is set
with the ack.

See also Scoped Operations for a simpler mechanism for waiting for publisher confirms.

Scoped Operations

Normally, when using the template, a Channel is checked out of the cache (or created), used for the
operation, and returned to the cache for reuse. In a multi-threaded environment, there is no
guarantee that the next operation uses the same channel. There may be times, however, where you
want to have more control over the use of a channel and ensure that a number of operations are all
performed on the same channel.

36

Starting with version 2.0, a new method called invoke is provided, with an OperationsCallback. Any
operations performed within the scope of the callback and on the provided RabbitOperations
argument use the same dedicated Channel, which will be closed at the end (not returned to a cache).
If the channel is a PublisherCallbackChannel, it is returned to the cache after all confirms have been
received (see Correlated Publisher Confirms and Returns).

public interface OperationsCallback<T> {

T doInRabbit(RabbitOperations operations);

One example of why you might need this is if you wish to use the waitForConfirms() method on the
underlying Channel. This method was not previously exposed by the Spring API because the channel
is, generally, cached and shared, as discussed earlier. The RabbitTemplate now provides
waitForConfirms(long timeout) and waitForConfirmsOrDie(long timeout), which delegate to the
dedicated channel used within the scope of the OperationsCallback. The methods cannot be used
outside of that scope, for obvious reasons.

Note that a higher-level abstraction that lets you correlate confirms to requests is provided
elsewhere (see Correlated Publisher Confirms and Returns). If you want only to wait until the
broker has confirmed delivery, you can use the technique shown in the following example:

Collection<?> messages = getMessagesToSend();

Boolean result = this.template.invoke(t -> {
messages.forEach(m -> t.convertAndSend(ROUTE, m));
t.waitForConfirmsOrDie(10_000);
return true;

1

If you wish RabbitAdmin operations to be invoked on the same channel within the scope of the
OperationsCallback, the admin must have been constructed by using the same RabbitTemplate that
was used for the invoke operation.

The preceding discussion is moot if the template operations are already performed
within the scope of an existing transaction —for example, when running on a

o transacted listener container thread and performing operations on a transacted
template. In that case, the operations are performed on that channel and
committed when the thread returns to the container. It is not necessary to use
invoke in that scenario.

When using confirms in this way, much of the infrastructure set up for correlating confirms to
requests is not really needed (unless returns are also enabled). Starting with version 2.2, the

37

connection factory supports a new property called publisherConfirmType. When this is set to
ConfirmType.SIMPLE, the infrastructure is avoided and the confirm processing can be more efficient.

Furthermore, the RabbitTemplate sets the publisherSequenceNumber property in the sent message
MessageProperties. If you wish to check (or log or otherwise use) specific confirms, you can do so
with an overloaded invoke method, as the following example shows:

public <T> T invoke(OperationsCallback<T> action, com.rabbitmg.client
.ConfirmCallback acks,
com.rabbitmg.client.ConfirmCallback nacks);

o These ConfirmCallback objects (for ack and nack instances) are the Rabbit client
callbacks, not the template callback.

The following example logs ack and nack instances:

Collection<?> messages = getMessagesToSend();

Boolean result = this.template.invoke(t -> {
messages.forEach(m -> t.convertAndSend(ROUTE, m));
t.waitForConfirmsOrDie(10_000);
return true;

}, (tag, multiple) -> {

log.info("Ack: " + tag +

}, (tag, multiple) -> {

+ multiple);

log.info("Nack: " + tag + ":" + multiple);
1)

Scoped operations are bound to a thread. See Strict Message Ordering in a Multi-
o Threaded Environment for a discussion about strict ordering in a multi-threaded

environment.

Strict Message Ordering in a Multi-Threaded Environment

The discussion in Scoped Operations applies only when the operations are performed on the same
thread.

Consider the following situation:

 thread-1sends a message to a queue and hands off work to thread-2

* thread-2 sends a message to the same queue

Because of the async nature of RabbitMQ and the use of cached channels; it is not certain that the
same channel will be used and therefore the order in which the messages arrive in the queue is not
guaranteed. (In most cases they will arrive in order, but the probability of out-of-order delivery is

38

not zero). To solve this use case, you can use a bounded channel cache with size 1 (together with a
channelCheckoutTimeout) to ensure the messages are always published on the same channel, and
order will be guaranteed. To do this, if you have other uses for the connection factory, such as
consumers, you should either use a dedicated connection factory for the template, or configure the
template to use the publisher connection factory embedded in the main connection factory (see
Using a Separate Connection).

This is best illustrated with a simple Spring Boot Application:

39

40

public class Application {
private static final Logger log = LoggerFactory.getlLogger(Application.class);

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

TaskExecutor exec() {
ThreadPoolTaskExecutor exec = new ThreadPoolTaskExecutor();
exec.setCorePoolSize(10);
return exec;

CachingConnectionFactory ccf() {
CachingConnectionFactory ccf = new CachingConnectionFactory("localhost");
CachingConnectionFactory publisherCF = (CachingConnectionFactory) ccf
.getPublisherConnectionFactory();
publisherCF.setChannelCacheSize(1);
publisherCF.setChannelCheckoutTimeout(1000L);
return ccf;

(queues = "queue")
void listen(String in) {
log.info(in);
}

Queue queue() {
return new Queue("queue");

}

public ApplicationRunner runner(Service service, TaskExecutor exec) {
return args -> {
exec.execute(() -> service.mainService("test"));

b

class Service {

private static final Logger LOG = LoggerFactory.getlLogger(Service.class);
private final RabbitTemplate template;
private final TaskExecutor exec;

Service(RabbitTemplate template, TaskExecutor exec) {
template.setUsePublisherConnection(true);
this.template = template;
this.exec = exec;

}

void mainService(String toSend) {
L0G.info("Publishing from main service");
this.template.convertAndSend("queue", toSend);
this.exec.execute(() -> secondaryService(toSend.toUpperCase()));

}

void secondaryService(String toSend) {
LOG.info("Publishing from secondary service");
this.template.convertAndSend("queue", toSend);

Even though the publishing is performed on two different threads, they will both use the same
channel because the cache is capped at a single channel.

Starting with version 2.3.7, the ThreadChannelConnectionFactory supports transferring a thread’s
channel(s) to another thread, using the prepareContextSwitch and switchContext methods. The first
method returns a context which is passed to the second thread which calls the second method. A
thread can have either a non-transactional channel or a transactional channel (or one of each)
bound to it; you cannot transfer them individually, unless you use two connection factories. An
example follows:

41

public class Application {
private static final Logger log = LoggerFactory.getlLogger(Application.class);

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

TaskExecutor exec() {
ThreadPoolTaskExecutor exec = new ThreadPoolTaskExecutor();
exec.setCorePoolSize(10);
return exec;

ThreadChannelConnectionFactory tccf() {
ConnectionFactory rabbitConnectionFactory = new ConnectionFactory();
rabbitConnectionFactory.setHost("localhost");
return new ThreadChannelConnectionFactory(rabbitConnectionFactory);

(queues = "queue")
void listen(String in) {
log.info(in);
}

Queue queue() {
return new Queue("queue");

}

public ApplicationRunner runner(Service service, TaskExecutor exec) {
return args -> {
exec.execute(() -> service.mainService("test"));

};

class Service {
private static final Logger LOG = LoggerFactory.getlLogger(Service.class);

private final RabbitTemplate template;

42

private final TaskExecutor exec;
private final ThreadChannelConnectionFactory connFactory;

Service(RabbitTemplate template, TaskExecutor exec,
ThreadChannelConnectionFactory tccf) {

this.template = template;
this.exec = exec;
this.connFactory = tccf;

}

void mainService(String toSend) {
L0G.info("Publishing from main service");
this.template.convertAndSend("queue", toSend);
Object context = this.connFactory.prepareSwitchContext();
this.exec.execute(() -> secondaryService(toSend.toUpperCase(), context));

}

void secondaryService(String toSend, Object threadContext) {
L0G.info("Publishing from secondary service");
this.connFactory.switchContext(threadContext);
this.template.convertAndSend("queue", toSend);
this.connFactory.closeThreadChannel();

Once the prepareSwitchContext is called, if the current thread performs any more
o operations, they will be performed on a new channel. It is important to close the
thread-bound channel when it is no longer needed.

Messaging Integration

Starting with version 1.4, RabbitMessagingTemplate (built on top of RabbitTemplate) provides an
integration with the Spring Framework messaging abstraction — that is,
org.springframework.messaging.Message. This lets you send and receive messages by using the
spring-messaging Message<?> abstraction. This abstraction is used by other Spring projects, such as
Spring Integration and Spring’s STOMP support. There are two message converters involved: one to
convert between a spring-messaging Message<?> and Spring AMQP’s Message abstraction and one to
convert between Spring AMQP’s Message abstraction and the format required by the underlying
RabbitMQ client library. By default, the message payload is converted by the provided
RabbitTemplate instance’s message converter. Alternatively, you can inject a custom
MessagingMessageConverter with some other payload converter, as the following example shows:

43

MessagingMessageConverter amgpMessageConverter = new MessagingMessageConverter();
amgpMessageConverter.setPayloadConverter(myPayloadConverter);
rabbitMessagingTemplate.setAmgpMessageConverter (amgpMessageConverter);

Validated User Id

Starting with version 1.6, the template now supports a user-id-expression (userIdExpression when
using Java configuration). If a message is sent, the user id property is set (if not already set) after
evaluating this expression. The root object for the evaluation is the message to be sent.

The following examples show how to use the user-id-expression attribute:

<rabbit:template ... user-id-expression=""guest"'" />

<rabbit:template ... user-id-expression="@myConnectionFactory.username" />

The first example is a literal expression. The second obtains the username property from a
connection factory bean in the application context.

Using a Separate Connection

Starting with version 2.0.2, you can set the usePublisherConnection property to true to use a
different connection to that used by listener containers, when possible. This is to avoid consumers
being blocked when a producer is blocked for any reason. The connection factories maintain a
second internal connection factory for this purpose; by default it is the same type as the main
factory, but can be set explicity if you wish to use a different factory type for publishing. If the
rabbit template is running in a transaction started by the listener container, the container’s channel
is used, regardless of this setting.

In general, you should not use a RabbitAdmin with a template that has this set to
true. Use the RabbitAdmin constructor that takes a connection factory. If you use the
other constructor that takes a template, ensure the template’s property is false.

o This is because, often, an admin is used to declare queues for listener containers.
Using a template that has the property set to true would mean that exclusive
queues (such as AnonymousQueue) would be declared on a different connection to
that used by listener containers. In that case, the queues cannot be used by the
containers.

4.1.5. Sending Messages

When sending a message, you can use any of the following methods:

44

void send(Message message) throws AmgpException;
void send(String routingKey, Message message) throws AmgpException;

void send(String exchange, String routingKey, Message message) throws
AmgpException;

We can begin our discussion with the last method in the preceding listing, since it is actually the
most explicit. It lets an AMQP exchange name (along with a routing key)be provided at runtime.
The last parameter is the callback that is responsible for actual creating the message instance. An
example of using this method to send a message might look like this: The following example shows
how to use the send method to send a message:

amqpTemplate.send("marketData.topic", "quotes.nasdaq.THING1",
new Message("12.34".qetBytes(), someProperties));

You can set the exchange property on the template itself if you plan to use that template instance to
send to the same exchange most or all of the time. In such cases, you can use the second method in
the preceding listing. The following example is functionally equivalent to the previous example:

amgpTemplate.setExchange("marketData.topic");
amgpTemplate.send("quotes.nasdaq.F00", new Message("12.34".getBytes(),
someProperties));

If both the exchange and routingKey properties are set on the template, you can use the method that
accepts only the Message. The following example shows how to do so:

amgpTemplate.setExchange("marketData.topic");
amgpTemplate.setRoutingKey("quotes.nasdaq.F00");
amgpTemplate.send(new Message("12.34".getBytes(), someProperties));

A better way of thinking about the exchange and routing key properties is that the explicit method
parameters always override the template’s default values. In fact, even if you do not explicitly set
those properties on the template, there are always default values in place. In both cases, the default
is an empty String, but that is actually a sensible default. As far as the routing key is concerned, it is
not always necessary in the first place (for example, for a Fanout exchange). Furthermore, a queue
may be bound to an exchange with an empty String. Those are both legitimate scenarios for
reliance on the default empty String value for the routing key property of the template. As far as
the exchange name is concerned, the empty String is commonly used because the AMQP

45

specification defines the “default exchange” as having no name. Since all queues are automatically
bound to that default exchange (which is a direct exchange), using their name as the binding value,
the second method in the preceding listing can be used for simple point-to-point messaging to any
queue through the default exchange. You can provide the queue name as the routingKey, either by
providing the method parameter at runtime. The following example shows how to do so:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange
template.send("queue.helloWor1ld", new Message("Hello World".getBytes(),
someProperties));

Alternately, you can create a template that can be used for publishing primarily or exclusively to a
single Queue. The following example shows how to do so:

RabbitTemplate template = new RabbitTemplate(); // using default no-name Exchange
template.setRoutingKey("queue.helloWorld"); // but we'll always send to this Queue
template.send(new Message("Hello World".getBytes(), someProperties));

Message Builder API

Starting with version 1.3, a message builder API is provided by the MessageBuilder and
MessagePropertiesBuilder. These methods provide a convenient “fluent” means of creating a
message or message properties. The following examples show the fluent API in action:

Message message = MessageBuilder.withBody("foo".getBytes())
.setContentType(MessageProperties.CONTENT_TYPE_TEXT_PLAIN)
.setMessageId("123")

.setHeader ("bar", "baz")
.build();

MessageProperties props = MessagePropertiesBuilder.newInstance()
.setContentType(MessageProperties.CONTENT_TYPE_TEXT_PLAIN)
.setMessageId("123")

.setHeader ("bar", "baz")

.build();

Message message = MessageBuilder.withBody("foo".getBytes())
.andProperties(props)
.build();

Each of the properties defined on the MessageProperties can be set. Other methods include
setHeader(String key, String value), removeHeader(String key), removeHeaders(), and
copyProperties(MessageProperties properties). Each property setting method has a set*IfAbsent()

46

https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/MessageProperties.html

variant. In the cases where a default initial value exists, the method is named
set*IfAbsentOrDefault().

Five static methods are provided to create an initial message builder:

public static MessageBuilder withBody(byte[] body) ™

public static MessageBuilder withClonedBody(byte[] body) @

public static MessageBuilder withBody(byte[] body, int from, int to) ®
public static MessageBuilder fromMessage(Message message) @

public static MessageBuilder fromClonedMessage(Message message) ®

@ The message created by the builder has a body that is a direct reference to the argument.

@ The message created by the builder has a body that is a new array containing a copy of
bytes in the argument.

® The message created by the builder has a body that is a new array containing the range of
bytes from the argument. See Arrays.copy0OfRange() for more details.

@ The message created by the builder has a body that is a direct reference to the body of the
argument. The argument’s properties are copied to a new MessageProperties object.

® The message created by the builder has a body that is a new array containing a copy of the
argument’s body. The argument’s properties are copied to a new MessageProperties object.

Three static methods are provided to create a MessagePropertiesBuilder instance:

public static MessagePropertiesBuilder newInstance() @

public static MessagePropertiesBuilder fromProperties(MessageProperties
properties) @

public static MessagePropertiesBuilder fromClonedProperties(MessageProperties
properties) ®

@ A new message properties object is initialized with default values.
@ The builder is initialized with, and build() will return, the provided properties object.,

® The argument’s properties are copied to a new MessageProperties object.

With the RabbitTemplate implementation of AmgpTemplate, each of the send() methods has an
overloaded version that takes an additional CorrelationData object. When publisher confirms are
enabled, this object is returned in the callback described in AmgpTemplate. This lets the sender
correlate a confirm (ack or nack) with the sent message.

47

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

Starting with version 1.6.7, the CorrelationAwareMessagePostProcessor interface was introduced,
allowing the correlation data to be modified after the message has been converted. The following
example shows how to use it:

Message postProcessMessage(Message message, Correlation correlation);

In version 2.0, this interface is deprecated. The method has been moved to MessagePostProcessor
with a default implementation that delegates to postProcessMessage(Message message).

Also starting with version 1.6.7, a new callback interface called CorrelationDataPostProcessor is
provided. This is invoked after all MessagePostProcessor instances (provided in the send() method as
well as those provided in setBeforePublishPostProcessors()). Implementations can update or
replace the correlation data supplied in the send() method (if any). The Message and original
CorrelationData (if any) are provided as arguments. The following example shows how to use the
postProcess method:

CorrelationData postProcess(Message message, CorrelationData correlationData);

Publisher Returns

When the template’s mandatory property is true, returned messages are provided by the callback
described in AmgpTemplate.

Starting with version 1.4, the RabbitTemplate supports the SpEL mandatoryExpression property, which
is evaluated against each request message as the root evaluation object, resolving to a boolean
value. Bean references, such as @myBean.isMandatory(#root), can be used in the expression.

Publisher returns can also be used internally by the RabbitTemplate in send and receive operations.
See Reply Timeout for more information.

Batching

Version 1.4.2 introduced the BatchingRabbitTemplate. This is a subclass of RabbitTemplate with an
overridden send method that batches messages according to the BatchingStrategy. Only when a
batch is complete is the message sent to RabbitMQ. The following listing shows the BatchingStrategy
interface definition:

48

public interface BatchingStrategy {
MessageBatch addToBatch(String exchange, String routingKey, Message message);
Date nextRelease();

Collection<MessageBatch> releaseBatches();

° Batched data is held in memory. Unsent messages can be lost in the event of a
system failure.

A SimpleBatchingStrategy is provided. It supports sending messages to a single exchange or routing
key. It has the following properties:

* batchSize: The number of messages in a batch before it is sent.

* bufferLimit: The maximum size of the batched message. This preempts the batchSize, if
exceeded, and causes a partial batch to be sent.

* timeout: A time after which a partial batch is sent when there is no new activity adding
messages to the batch.

The SimpleBatchingStrategy formats the batch by preceding each embedded message with a four-
byte binary length. This is communicated to the receiving system by setting the springBatchFormat
message property to lengthHeader4.

Batched messages are automatically de-batched by listener containers by default
o (by using the springBatchFormat message header). Rejecting any message from a
batch causes the entire batch to be rejected.

However, see @RabbitListener with Batching for more information.

4.1.6. Receiving Messages

Message reception is always a little more complicated than sending. There are two ways to receive
a Message. The simpler option is to poll for one Message at a time with a polling method call. The
more complicated yet more common approach is to register a listener that receives Messages on-
demand, asynchronously. We consider an example of each approach in the next two sub-sections.

Polling Consumer

The AmgpTemplate itself can be used for polled Message reception. By default, if no message is
available, null is returned immediately. There is no blocking. Starting with version 1.5, you can set
a receiveTimeout, in milliseconds, and the receive methods block for up to that long, waiting for a
message. A value less than zero means block indefinitely (or at least until the connection to the

49

broker is lost). Version 1.6 introduced variants of the receive methods that let the timeout be passed
in on each call.

Since the receive operation creates a new QueueingConsumer for each message, this
é technique is not really appropriate for high-volume environments. Consider using
an asynchronous consumer or a receivelTimeout of zero for those use cases.

There are four simple receive methods available. As with the Exchange on the sending side, there is
a method that requires that a default queue property has been set directly on the template itself,
and there is a method that accepts a queue parameter at runtime. Version 1.6 introduced variants
to accept timeoutMillis to override receiveTimeout on a per-request basis. The following listing
shows the definitions of the four methods:

Message receive() throws AmgpException;
Message receive(String queueName) throws AmgpException;
Message receive(long timeoutMillis) throws AmgpException;

Message receive(String queueName, long timeoutMillis) throws AmgpException;

As in the case of sending messages, the AngpTemplate has some convenience methods for receiving
POJOs instead of Message instances, and implementations provide a way to customize the
MessageConverter used to create the Object returned: The following listing shows those methods:

Object receiveAndConvert() throws AmgpException;
Object receiveAndConvert(String queueName) throws AmqpException;
Object receiveAndConvert(long timeoutMillis) throws AmgpException;

Object receiveAndConvert(String queueName, long timeoutMillis) throws
AmgpException;

Starting with version 2.0, there are variants of these methods that take an additional
ParameterizedTypeReference argument to convert complex types. The template must be configured
with a SmartMessageConverter. See Converting From a Message With RabbitTemplate for more
information.

Similar to sendAndReceive methods, beginning with version 1.3, the AmgpTemplate has several
convenience receiveAndReply methods for synchronously receiving, processing and replying to
messages. The following listing shows those method definitions:

50

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback)
throws AmgpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S>
callback)
throws AmgpException;

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback,
String replyExchange, String replyRoutingKey) throws AmqpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S>
callback,
String replyExchange, String replyRoutingKey) throws AmqpException;

<R, S> boolean receiveAndReply(ReceiveAndReplyCallback<R, S> callback,
ReplyToAddressCallback<S> replyToAddressCallback) throws AmgpException;

<R, S> boolean receiveAndReply(String queueName, ReceiveAndReplyCallback<R, S>
callback,

ReplyToAddressCallback<S> replyToAddressCallback) throws
AmgpException;

The AmgpTemplate implementation takes care of the receive and reply phases. In most cases, you
should provide only an implementation of ReceiveAndReplyCallback to perform some business logic
for the received message and build a reply object or message, if needed. Note, a
ReceiveAndReplyCallback may return null. In this case, no reply is sent and receiveAndReply works
like the receive method. This lets the same queue be used for a mixture of messages, some of which
may not need a reply.

Automatic message (request and reply) conversion is applied only if the provided callback is not an
instance of ReceiveAndReplyMessageCallback, which provides a raw message exchange contract.

The ReplyToAddressCallback is useful for cases requiring custom logic to determine the replyTo
address at runtime against the received message and reply from the ReceiveAndReplyCallback. By
default, replyTo information in the request message is used to route the reply.

The following listing shows an example of POJO-based receive and reply:

31

boolean received =
this.template.receiveAndReply(ROUTE, new ReceiveAndReplyCallback<Order,
Invoice>() {

public Invoice handle(Order order) {
return processOrder(order);

b
if (received) {
log.info("We received an order!");

Asynchronous Consumer

Spring AMQP also supports annotated listener endpoints through the use of the
@RabbitListener annotation and provides an open infrastructure to register

o endpoints programmatically. This is by far the most convenient way to setup an
asynchronous consumer. See Annotation-driven Listener Endpoints for more
details.

The prefetch default value used to be 1, which could lead to under-utilization of
efficient consumers. Starting with version 2.0, the default prefetch value is now
250, which should keep consumers busy in most common scenarios and thus
improve throughput.

There are, nevertheless, scenarios where the prefetch value should be low:

» For large messages, especially if the processing is slow (messages could add up
to a large amount of memory in the client process)

* When strict message ordering is necessary (the prefetch value should be set
o back to 1 in this case)

* Other special cases

Also, with low-volume messaging and multiple consumers (including concurrency
within a single listener container instance), you may wish to reduce the prefetch to
get a more even distribution of messages across consumers.

See Message Listener Container Configuration.

For more background about prefetch, see this post about consumer utilization in
RabbitMQ and this post about queuing theory.

Message Listener

For asynchronous Message reception, a dedicated component (not the AmqpTemplate) is involved. That
component is a container for a Message-consuming callback. We consider the container and its

32

https://www.rabbitmq.com/blog/2014/04/14/finding-bottlenecks-with-rabbitmq-3-3/
https://www.rabbitmq.com/blog/2014/04/14/finding-bottlenecks-with-rabbitmq-3-3/
https://www.rabbitmq.com/blog/2012/05/11/some-queuing-theory-throughput-latency-and-bandwidth/

properties later in this section. First, though, we should look at the callback, since that is where
your application code is integrated with the messaging system. There are a few options for the
callback, starting with an implementation of the Messagelistener interface, which the following
listing shows:

public interface Messagelistener {
void onMessage(Message message);

}

If your callback logic depends on the AMQP Channel instance for any reason, you may instead use
the ChannelAwareMessagelistener. It looks similar but has an extra parameter. The following listing
shows the ChannelAwareMessagelistener interface definition:

public interface ChannelAwareMessagelistener {
void onMessage(Message message, Channel channel) throws Exception;

}

o In version 2.1, this interface moved from package o.s.amgp.rabbit.core to
0.s.amgp.rabbit.listener.api.

MessagelistenerAdapter

If you prefer to maintain a stricter separation between your application logic and the messaging
API, you can rely upon an adapter implementation that is provided by the framework. This is often
referred to as “Message-driven POJO” support.

Version 1.5 introduced a more flexible mechanism for POJO messaging, the
o @RabbitListener annotation. See Annotation-driven Listener Endpoints for more
information.

When using the adapter, you need to provide only a reference to the instance that the adapter itself
should invoke. The following example shows how to do so:

MessagelistenerAdapter listener = new MessagelistenerAdapter(somePojo);
listener.setDefaultListenerMethod("myMethod");

You can subclass the adapter and provide an implementation of getlListenerMethodName() to
dynamically select different methods based on the message. This method has two parameters,
originalMessage and extractedMessage, the latter being the result of any conversion. By default, a
SimpleMessageConverter is configured. See SimpleMessageConverter for more information and
information about other converters available.

33

Starting with version 1.4.2, the original message has consumerQueue and consumerTag properties,
which can be used to determine the queue from which a message was received.

Starting with version 1.5, you can configure a map of consumer queue or tag to method name, to
dynamically select the method to call. If no entry is in the map, we fall back to the default listener
method. The default listener method (if not set) is handleMessage.

Starting with version 2.0, a convenient FunctionalInterface has been provided. The following listing
shows the definition of FunctionalInterface:

public interface ReplyingMessagelListener<T, R> {

R handleMessage(T t);

This interface facilitates convenient configuration of the adapter by using Java 8 lambdas, as the
following example shows:

new MessagelistenerAdapter((ReplyingMessagelistener<String, String>) data -> {

return result;

1);

Starting with version 2.2, the buildListenerArguments(Object) has been deprecated and new
buildListenerArguments(Object, Channel, Message) one has been introduced instead. The new
method helps listener to get Channel and Message arguments to do more, such as calling
channel.basicReject(long, boolean) in manual acknowledge mode. The following listing shows the
most basic example:

public class ExtendedListenerAdapter extends MessagelistenerAdapter {

protected Object[] buildListenerArguments(Object extractedMessage, Channel
channel, Message message) {
return new Object[]{extractedMessage, channel, message};

}

Now you could configure ExtendedListenerAdapter as same as MessagelistenerAdapter if you need to

54

receive “channel” and “message”. Parameters of listener should be set as
buildListenerArquments(Object, Channel, Message) returned, as the following example of listener
shows:

public void handleMessage(Object object, Channel channel, Message message) throws
IOException {

Container

Now that you have seen the various options for the Message-listening callback, we can turn our
attention to the container. Basically, the container handles the “active” responsibilities so that the
listener callback can remain passive. The container is an example of a “lifecycle” component. It
provides methods for starting and stopping. When configuring the container, you essentially bridge
the gap between an AMQP Queue and the MessagelListener instance. You must provide a reference to
the ConnectionFactory and the queue names or Queue instances from which that listener should
consume messages.

Prior to version 2.0, there was one listener container, the SimpleMessageListenerContainer. There is
now a second container, the DirectMessagelistenerContainer. The differences between the
containers and criteria you might apply when choosing which to use are described in Choosing a
Container.

The following listing shows the most basic example, which works by using the,
SimpleMessagelistenerContainer:

SimpleMessagelistenerContainer container = new SimpleMessagelistenerContainer();
container.setConnectionFactory(rabbitConnectionFactory);
container.setQueueNames("some.queue");

container.setMessagelListener(new MessagelistenerAdapter(somePojo));

As an “active” component, it is most common to create the listener container with a bean definition
so that it can run in the background. The following example shows one way to do so with XML:

<rabbit:listener-container connection-factory="rabbitConnectionFactory">
<rabbit:listener queues="some.queue" ref="somePojo" method="handle"/>
</rabbit:listener-container>

The following listing shows another way to do so with XML:

55

<rabbit:listener-container connection-factory="rabbitConnectionFactory" type=
"direct">

<rabbit:listener queues="some.queue" ref="somePojo" method="handle"/>
</rabbit:listener-container>

Both of the preceding examples create a DirectMessagelistenerContainer (notice the type
attribute — it defaults to simple).

Alternately, you may prefer to use Java configuration, which looks similar to the preceding code
snippet:

@Configuration
public class ExampleAmgpConfiguration {

@Bean

public SimpleMessagelistenerContainer messagelistenerContainer() {
SimpleMessagelistenerContainer container = new

SimpleMessagelistenerContainer();

container.setConnectionFactory(rabbitConnectionFactory());
container.setQueueName("some.queue");
container.setMessagelListener(exampleListener());
return container;

@Bean
public CachingConnectionFactory rabbitConnectionFactory() {
CachingConnectionFactory connectionFactory =
new CachingConnectionFactory("localhost");
connectionFactory.setUsername("quest");
connectionFactory.setPassword("quest");
return connectionFactory;

@Bean
public Messagelistener exampleListener() {
return new Messagelistener() {
public void onMessage(Message message) {
System.out.println("received: " + message);
}
¥

36

Consumer Priority

Starting with RabbitMQ Version 3.2, the broker now supports consumer priority (see Using
Consumer Priorities with RabbitMQ). This is enabled by setting the x-priority argument on the
consumer. The SimpleMessagelListenerContainer now supports setting consumer arguments, as the
following example shows:

container.setConsumerArguments(Collections.
<String, Object> singletonMap("x-priority", Integer.value0f(10)));

For convenience, the namespace provides the priority attribute on the listener element, as the
following example shows:

<rabbit:listener-container connection-factory="rabbitConnectionFactory">
<rabbit:listener queues="some.queue" ref="somePojo" method="handle" priority=

"10" />

</rabbit:listener-container>

Starting with version 1.3, you can modify the queues on which the container listens at runtime. See
Listener Container Queues.

auto-delete Queues

When a container is configured to listen to auto-delete queues, the queue has an x-expires option,
or the Time-To-Live policy is configured on the Broker, the queue is removed by the broker when
the container is stopped (that is, when the last consumer is cancelled). Before version 1.3, the
container could not be restarted because the queue was missing. The RabbitAdmin only
automatically redeclares queues and so on when the connection is closed or when it opens, which
does not happen when the container is stopped and started.

Starting with version 1.3, the container uses a RabbitAdmin to redeclare any missing queues during
startup.

You can also use conditional declaration (see Conditional Declaration) together with an auto-
startup="false" admin to defer queue declaration until the container is started. The following
example shows how to do so:

57

https://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/
https://www.rabbitmq.com/blog/2013/12/16/using-consumer-priorities-with-rabbitmq/
https://www.rabbitmq.com/ttl.html

<rabbit:queue id="otherAnon" declared-by="containerAdmin" />

<rabbit:direct-exchange name="otherExchange" auto-delete="true" declared-by=
"containerAdmin">
<rabbit:bindings>
<rabbit:binding queue="otherAnon" key="otherAnon" />
</rabbit:bindings>
</rabbit:direct-exchange>

<rabbit:listener-container id="container2" auto-startup="false">
<rabbit:listener id="listener2" ref="foo" queues="otherAnon" admin=

"containerAdmin" />

</rabbit:listener-container>

<rabbit:admin id="containerAdmin" connection-factory="rabbitConnectionFactory"
auto-startup="false" />

In this case, the queue and exchange are declared by containerAdmin, which has auto-
startup="false" so that the elements are not declared during context initialization. Also, the
container is not started for the same reason. When the container is later started, it uses its
reference to containerAdmin to declare the elements.

Batched Messages

Batched messages (created by a producer) are automatically de-batched by listener containers
(using the springBatchFormat message header). Rejecting any message from a batch causes the entire
batch to be rejected. See Batching for more information about batching.

Starting with version 2.2, the SimpleMessagelListenerContainer can be use to create batches on the
consumer side (where the producer sent discrete messages).

Set the container property consumerBatchEnabled to enable this feature. deBatchingEnabled must also
be true so that the container is responsible for processing batches of both types. Implement
BatchMessagelListener or ChannelAwareBatchMessagelistener when consumerBatchEnabled is true.
Starting with version 2.2.7 both the SimpleMessagelListenerContainer and
DirectMessagelListenerContainer can debatch producer created batches as List<Message>. See
@RabbitListener with Batching for information about using this feature with eRabbitListener.

Consumer Events

The containers publish application events whenever a listener (consumer) experiences a failure of
some kind. The event ListenerContainerConsumerFailedEvent has the following properties:
 container: The listener container where the consumer experienced the problem.
* reason: A textual reason for the failure.

» fatal: A boolean indicating whether the failure was fatal. With non-fatal exceptions, the
container tries to restart the consumer, according to the recoveryInterval or recoveryBackoff

38

(for the SimpleMessagelListenerContainer) or the monitorInterval (for the
DirectMessagelistenerContainer).

* throwable: The Throwable that was caught.

These events can be consumed by implementing
ApplicationListener<ListenerContainerConsumerFailedEvent>.

o System-wide events (such as connection failures) are published by all consumers
when concurrentConsumers is greater than 1.

If a consumer fails because one if its queues is being used exclusively, by default, as well as
publishing the event, a WARN log is issued. To change this logging behavior, provide a custom
ConditionalExceptionlLogger in the SimpleMessagelistenerContainer instance’s
exclusiveConsumerExceptionLogger property. See also Logging Channel Close Events.

Fatal errors are always logged at the ERROR level. This it not modifiable.
Several other events are published at various stages of the container lifecycle:

* AsyncConsumerStartedEvent: When the consumer is started.

e AsyncConsumerRestartedEvent: When the consumer is restarted after a failure -
SimpleMessagelistenerContainer only.

* AsyncConsumerTerminatedEvent: When a consumer is stopped normally.

* AsyncConsumerStoppedEvent: When the consumer is stopped - SimpleMessagelistenerContainer
only.

* ConsumeOkEvent: When a consumeOk is received from the broker, contains the queue name and
consumerTag

» ListenerContainerIdleEvent: See Detecting Idle Asynchronous Consumers.

* MissingQueueEvent: When a missing queue is detected.

Consumer Tags

You can provide a strategy to generate consumer tags. By default, the consumer tag is generated by
the broker. The following listing shows the ConsumerTagStrategy interface definition:

public interface ConsumerTagStrategy {

String createConsumerTag(String queue);

The queue is made available so that it can (optionally) be used in the tag.

See Message Listener Container Configuration.

39

Annotation-driven Listener Endpoints

The easiest way to receive a message asynchronously is to use the annotated listener endpoint
infrastructure. In a nutshell, it lets you expose a method of a managed bean as a Rabbit listener
endpoint. The following example shows how to use the @RabbitListener annotation:

public class MyService {

(queues = "myQueue")
public void processOrder(String data) {

}

The idea of the preceding example is that, whenever a message is available on the queue named
myQueue, the processOrder method is invoked accordingly (in this case, with the payload of the
message).

The annotated endpoint infrastructure creates a message listener container behind the scenes for
each annotated method, by using a RabbitListenerContainerFactory.

In the preceding example, myQueue must already exist and be bound to some exchange. The queue
can be declared and bound automatically, as long as a RabbitAdmin exists in the application context.

Property placeholders (${some.property}) or SpEL expressions (#{someExpression})
can be specified for the annotation properties (queues etc). See Listening to

o Multiple Queues for an example of why you might use SpEL instead of a property
placeholder. The following listing shows three examples of how to declare a Rabbit
listener:

60

public class MyService {

(bindings = (
value = (value = "myQueue", durable = "true"),
exchange = (value = "auto.exch", ignoreDeclarationExceptions =
"true"),
key = "orderRoutingKey")
)
public void processOrder(Order order) {
}
(bindings = (
value = ,
exchange = (value = "auto.exch"),
key = "invoiceRoutingKey")
)
public void processInvoice(Invoice invoice) {
}
(queuesToDeclare = (name = "${my.queue}", durable = "true"
)

public String handleWithSimpleDeclare(String data) {

}

In the first example, a queue myQueue is declared automatically (durable) together with the
exchange, if needed, and bound to the exchange with the routing key. In the second example, an
anonymous (exclusive, auto-delete) queue is declared and bound. Multiple QueueBinding entries can
be provided, letting the listener listen to multiple queues. In the third example, a queue with the
name retrieved from property my.queue is declared, if necessary, with the default binding to the
default exchange using the queue name as the routing key.

Since version 2.0, the @Exchange annotation supports any exchange types, including custom. For
more information, see AMQP Concepts.

You can use normal @Bean definitions when you need more advanced configuration.

Notice ignoreDeclarationExceptions on the exchange in the first example. This allows, for example,
binding to an existing exchange that might have different settings (such as internal). By default, the
properties of an existing exchange must match.

Starting with version 2.0, you can now bind a queue to an exchange with multiple routing keys, as
the following example shows:

61

https://www.rabbitmq.com/tutorials/amqp-concepts.html

key = { "red", "yellow" }

You can also specify arguments within @QueueBinding annotations for queues, exchanges, and
bindings, as the following example shows:

(bindings = (
value = (value = "auto.headers", autoDelete = "true",
arguments = (name = "x-message-ttl", value =
"10000",
type = "java.lang.Integer")),
exchange = (value = "auto.headers", type = ExchangeTypes.HEADERS,
autoDelete = "true"),
arguments = {

(name = "x-match", value = "all"),
(name = "thing1", value = "somevalue"),
(name = "thing2")

iy

)
public String handleWithHeadersExchange(String foo) {

}

Notice that the x-message-ttl argument is set to 10 seconds for the queue. Since the argument type
is not String, we have to specify its type —in this case, Integer. As with all such declarations, if the
queue already exists, the arguments must match those on the queue. For the header exchange, we
set the binding arguments to match messages that have the thing1 header set to somevalue, and the
thing2 header must be present with any value. The x-match argument means both conditions must
be satisfied.

The argument name, value, and type can be property placeholders (${::*}) or SpEL expressions
(#{---}). The name must resolve to a String. The expression for type must resolve to a Class or the
fully-qualified name of a class. The value must resolve to something that can be converted by the
DefaultConversionService to the type (such as the x-message-tt1 in the preceding example).

If a name resolves to null or an empty String, that @Argument is ignored.

Meta-annotations

Sometimes you may want to use the same configuration for multiple listeners. To reduce the
boilerplate configuration, you can use meta-annotations to create your own listener annotation.
The following example shows how to do so:

62

@Target({ElementType.TYPE, ElementType.METHOD, ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
@RabbitListener(bindings = @QueueBinding(

value = @Queue,

exchange = @Fxchange(value = "metaFanout”, type = ExchangeTypes.FANOUT)))
public @interface MyAnonFanoutListener {

}
public class Metalistener {

@MyAnonFanoutListener
public void handle1(String foo) {

}

@MyAnonFanoutListener
public void handle2(String foo) {

}

In the preceding example, each listener created by the @MyAnonFanoutListener annotation binds an
anonymous, auto-delete queue to the fanout exchange, metaFanout. Starting with version 2.2.3,
@AliasFor is supported to allow overriding properties on the meta-annotated annotation. Also, user
annotations can now be @Repeatable, allowing multiple containers to be created for a method.

63

@Component
static class MetaAnnotationTestBean {

@MyListener("queuel")
@MyListener("queue2")

public void handleIt(String body) {
}

@RabbitListener
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Repeatable(MyListeners.class)
static @interface MyListener {

@AliasFor(annotation = RabbitListener.class, attribute = "queues")
String[] value() default {};

}
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)

static @interface MyListeners {

MyListener[] value();

Enable Listener Endpoint Annotations

To enable support for @RabbitListener annotations, you can add @EnableRabbit to one of your
@Configuration classes. The following example shows how to do so:

64

public class AppConfig {

public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(connectionFactory());
factory.setConcurrentConsumers(3);
factory.setMaxConcurrentConsumers(10);
factory.setContainerCustomizer(container -> /* customize the container */

return factory;

Since version 2.0, a DirectMessagelistenerContainerFactory is also available. It creates
DirectMessagelistenerContainer instances.

o For information to help you choose between SimpleRabbitListenerContainerFactory
and DirectRabbitListenerContainerFactory, see Choosing a Container.

Starting wih version 2.2.2, you can provide a ContainerCustomizer implementation (as shown
above). This can be used to further configure the container after it has been created and
configured; you can use this, for example, to set properties that are not exposed by the container
factory.

By default, the infrastructure looks for a bean named rabbitListenerContainerFactory as the source
for the factory to use to create message listener containers. In this case, and ignoring the RabbitMQ
infrastructure setup, the processOrder method can be invoked with a core poll size of three threads
and a maximum pool size of ten threads.

You can customize the listener container factory to use for each annotation, or you can configure
an explicit default by implementing the RabbitListenerConfigurer interface. The default is required
only if at least one endpoint is registered without a specific container factory. See the Javadoc for
full details and examples.

The container factories provide methods for adding MessagePostProcessor instances that are applied
after receiving messages (before invoking the listener) and before sending replies.

See Reply Management for information about replies.

Starting with version 2.0.6, you can add a RetryTemplate and RecoveryCallback to the listener
container factory. It is used when sending replies. The RecoveryCallback is invoked when retries are
exhausted. You can use a SendRetryContextAccessor to get information from the context. The
following example shows how to do so:

65

https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/rabbit/annotation/RabbitListenerConfigurer.html

factory.setRetryTemplate(retryTemplate);
factory.setReplyRecoveryCallback(ctx -> {
Message failed = SendRetryContextAccessor.getMessage(ctx);
Address replyTo = SendRetryContextAccessor.getAddress(ctx);
Throwable t = ctx.getlLastThrowable();

return null;

1

If you prefer XML configuration, you can use the <rabbit:annotation-driven> element. Any beans
annotated with eRabbitListener are detected.

For SimpleRabbitListenerContainer instances, you can use XML similar to the following:

<rabbit:annotation-driven/>

<bean id="rabbitListenerContainerFactory"
class=
"org.springframework.amgp.rabbit.config.SimpleRabbitListenerContainerFactory">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="concurrentConsumers" value="3"/>
<property name="maxConcurrentConsumers" value="10"/>
</bean>

For DirectMessagelListenerContainer instances, you can use XML similar to the following:

<rabbit:annotation-driven/>

<bean id="rabbitListenerContainerFactory"
class=
"org.springframework.amgp.rabbit.config.DirectRabbitListenerContainerFactory">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="consumersPerQueue" value="3"/>
</bean>

Starting with version 2.0, the @RabbitListener annotation has a concurrency property. It supports
SpEL expressions (#{::-}) and property placeholders (§{::-}). Its meaning and allowed values depend
on the container type, as follows:

» For the DirectMessagelListenerContainer, the value must be a single integer value, which sets the
consumersPerQueue property on the container.

* For the SimpleRabbitListenerContainer, the value can be a single integer value, which sets the

66

concurrentConsumers property on the container, or it can have the form, m-n, where m is the
concurrentConsumers property and n is the maxConcurrentConsumers property.

In either case, this setting overrides the settings on the factory. Previously you had to define
different container factories if you had listeners that required different concurrency.

The annotation also allows overriding the factory autoStartup and taskExecutor properties via the
autoStartup and executor (since 2.2) annotation properties. Using a different executor for each
might help with identifying threads associated with each listener in logs and thread dumps.

Version 2.2 also added the ackMode property, which allows you to override the container factory’s
acknowledgeMode property.

(id = "manual.acks.1", queues = "manual.acks.1", ackMode = "MANUAL
Il)
public void manual1(String in, Channel channel,
(AmgpHeaders.DELIVERY_TAG) long tag) throws IOException {

channel.basicAck(tag, false);

Message Conversion for Annotated Methods

There are two conversion steps in the pipeline before invoking the listener. The first step uses a
MessageConverter to convert the incoming Spring AMQP Message to a Spring-messaging Message.
When the target method is invoked, the message payload is converted, if necessary, to the method
parameter type.

The default MessageConverter for the first step is a Spring AMQP SimpleMessageConverter that handles
conversion to String and java.io.Serializable objects. All others remain as a byte[]. In the
following discussion, we call this the “message converter”.

The default converter for the second step is a GenericMessageConverter, which delegates to a
conversion service (an instance of DefaultFormattingConversionService). In the following discussion,
we call this the “method argument converter”.

To change the message converter, you can add it as a property to the container factory bean. The
following example shows how to do so:

67

public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();

factory.setMessageConverter(new Jackson2JsonMessageConverter());

return factory;

This configures a Jackson2 converter that expects header information to be present to guide the
conversion.

You can also use a ContentTypeDelegatingMessageConverter, which can handle conversion of
different content types.

Starting with version 2.3, you can override the factory converter by specifying a bean name in the
messageConverter property.

public Jackson2]sonMessageConverter jsonConverter() {
return new Jackson2JsonMessageConverter();

}

(..., messageConverter = "jsonConverter")
public void listen(String in) {

}

This avoids having to declare a different container factory just to change the converter.

In most cases, it is not necessary to customize the method argument converter unless, for example,
you want to use a custom ConversionService.

In versions prior to 1.6, the type information to convert the JSON had to be provided in message
headers, or a custom (lassMapper was required. Starting with version 1.6, if there are no type
information headers, the type can be inferred from the target method arguments.

0 This type inference works only for @RabbitListener at the method level.

See Jackson2]JsonMessageConverter for more information.

If you wish to customize the method argument converter, you can do so as follows:

68

public class AppConfig implements RabbitListenerConfigurer {

public DefaultMessageHandlerMethodFactory myHandlerMethodFactory() {
DefaultMessageHandlerMethodFactory factory = new
DefaultMessageHandlerMethodFactory();

factory.setMessageConverter(new GenericMessageConverter
(myConversionService()));

return factory;

}

public DefaultConversionService myConversionService() {

DefaultConversionService conv = new DefaultConversionService();
conv.addConverter(mySpecialConverter());
return conv;

public void configureRabbitListeners(RabbitListenerEndpointRegistrar
registrar) {

registrar.setMessageHandlerMethodFactory(myHandlerMethodFactory());
}

For multi-method listeners (see Multi-method Listeners), the method selection is
o based on the payload of the message after the message conversion. The method
argument converter is called only after the method has been selected.

Adding a Custom HandlerMethodArgumentResolver to @RabbitListener

Starting with version 2.3.7 you are able to add your own HandlerMethodArgumentResolver and resolve
custom method parameters. All you need is to implement RabbitListenerConfigurer and use method
setCustomMethodArgumentResolvers() from class RabbitListenerEndpointRegistrar.

69

class CustomRabbitConfig implements RabbitListenerConfigurer {

public void configureRabbitListeners(RabbitListenerEndpointRegistrar
registrar) {
registrar.setCustomMethodArgumentResolvers(
new HandlerMethodArgumentResolver() {

public boolean supportsParameter(MethodParameter parameter) {
return CustomMethodArgument.class.isAssignableFrom
(parameter.getParameterType());

}

public Object resolveArgument(MethodParameter parameter, org
.springframework.messaging.Message<?> message) {
return new CustomMethodArgument(
(String) message.getPayload(),
message.getHeaders().get("customHeader", String
.class)

Programmatic Endpoint Registration

RabbitListenerEndpoint provides a model of a Rabbit endpoint and is responsible for configuring
the container for that model. The infrastructure lets you configure endpoints programmatically in
addition to the ones that are detected by the RabbitListener annotation. The following example
shows how to do so:

70

public class AppConfig implements RabbitListenerConfiqurer {

public void configureRabbitListeners(RabbitListenerEndpointRegistrar
registrar) {
SimpleRabbitListenerEndpoint endpoint = new SimpleRabbitListenerEndpoint(

)i
endpoint.setQueueNames("anotherQueue");
endpoint.setMessagelListener(message -> {

// processing
1)
registrar.registerEndpoint(endpoint);
}
}

In the preceding example, we used SimpleRabbitlListenerEndpoint, which provides the actual
MessageListener to invoke, but you could just as well build your own endpoint variant to describe a
custom invocation mechanism.

It should be noted that you could just as well skip the use of @RabbitListener altogether and register
your endpoints programmatically through RabbitListenerConfigurer.

Annotated Endpoint Method Signature

So far, we have been injecting a simple String in our endpoint, but it can actually have a very
flexible method signature. The following example rewrites it to inject the Order with a custom
header:

public class MyService {

(queues = "myQueue")
public void processOrder(Order order, ("order_type") String orderType)

The following list shows the arguments that are available to be matched with parameters in listener
endpoints:

* The raw org.springframework.amgp.core.Message.

* The MessageProperties from the raw Message.

71

* The com.rabbitmg.client.Channel on which the message was received.
* The org.springframework.messaging.Message converted from the incoming AMQP message.

* @Header-annotated method arguments to extract a specific header value, including standard
AMQP headers.

» @Headers-annotated argument that must also be assignable to java.util.Map for getting access to
all headers.

* The converted payload

A non-annotated element that is not one of the supported types (that is, Message, MessageProperties,
Message<?> and Channel) is matched with the payload. You can make that explicit by annotating the
parameter with @Payload. You can also turn on validation by adding an extra @Valid.

The ability to inject Spring’s message abstraction is particularly useful to benefit from all the
information stored in the transport-specific message without relying on the transport-specific APL
The following example shows how to do so:

(queues = "myQueue")
public void processOrder(Message<Order> order) { ...

}

Handling of method arguments is provided by DefaultMessageHandlerMethodFactory, which you can
further customize to support additional method arguments. The conversion and validation support
can be customized there as well.

For instance, if we want to make sure our Order is valid before processing it, we can annotate the
payload with @Valid and configure the necessary validator, as follows:

72

public class AppConfig implements RabbitListenerConfigurer {

public void configureRabbitListeners(RabbitListenerEndpointRegistrar
registrar) {
registrar.setMessageHandlerMethodFactory(myHandlerMethodFactory());

}

public DefaultMessageHandlerMethodFactory myHandlerMethodFactory() {
DefaultMessageHandlerMethodFactory factory = new
DefaultMessageHandlerMethodFactory();
factory.setValidator(myValidator());
return factory;

@RabbitListener @Payload Validation

Starting with version 2.3.7, it is now easier to add a Validator to validate @RabbitListener and
@RabbitHandler @Payload arguments. Now, you can simply add the validator to the registrar itself.

public class Config implements RabbitListenerConfigurer {

public void configureRabbitListeners(RabbitListenerEndpointRegistrar
registrar) {
registrar.setValidator(new MyValidator());
}

e When using Spring Boot with the validation starter, a LocalValidatorFactoryBean is
auto-configured:

73

@Configuration

@EnableRabbit

public class Config implements RabbitListenerConfigurer {
@Autowired
private LocalValidatorFactoryBean validator;

@0verride
public void configureRabbitListeners(RabbitListenerEndpointRegistrar
registrar) {
registrar.setValidator(this.validator);

}

To validate:

public static class ValidatedClass {
@Max(10)
private int bar;
public int getBar() {
return this.bar;
by
public void setBar(int bar) {
this.bar = bar;
b
}

and

@RabbitListener(id="validated", queues = "queuel", errorHandler =
"validationErrorHandler",

containerFactory = "jsonListenerContainerFactory")
public void validatedlListener(@Payload @Valid ValidatedClass val) {

}
@Bean

public RabbitListenerErrorHandler validationErrorHandler() {
return (m, e) -> {

};

74

Listening to Multiple Queues

When you use the queues attribute, you can specify that the associated container can listen to
multiple queues. You can use a @Header annotation to make the queue name from which a message
was received available to the POJO method. The following example shows how to do so:

public class MyService {
(queues = { "queuel", "queue2" })

public void processOrder(String data, (AmgpHeaders.CONSUMER_QUEUE)
String queue) {

}

Starting with version 1.5, you can externalize the queue names by using property placeholders and
SpEL. The following example shows how to do so:

public class MyService {

(queues =
"#{'${property.with.comma.delimited.queuve.names}"'.split(',")}")
public void processOrder(String data, (AmgpHeaders.CONSUMER _QUEUE)

String queue) {

}

Prior to version 1.5, only a single queue could be specified this way. Each queue needed a separate
property.

Reply Management

The existing support in MessagelistenerAdapter already lets your method have a non-void return
type. When that is the case, the result of the invocation is encapsulated in a message sent to the the
address specified in the ReplyToAddress header of the original message, or to the default address
configured on the listener. You can set that default address by using the @SendTo annotation of the
messaging abstraction.

Assuming our processOrder method should now return an OrderStatus, we can write it as follows to
automatically send a reply:

75

(destination = "myQueue")
("status")
public OrderStatus processOrder(Order order) {
// order processing
return status;

If you need to set additional headers in a transport-independent manner, you could return a
Message instead, something like the following:

(destination = "myQueue")
("status")
public Message<OrderStatus> processOrder(Order order) {
// order processing
return MessageBuilder
.withPayload(status)
.setHeader ("code", 1234)
.build();

Alternatively, you can use a MessagePostProcessor in the beforeSendReplyMessagePostProcessors
container factory property to add more headers. Starting with version 2.2.3, the called bean/method
is made avaiable in the reply message, which can be used in a message post processor to
communicate the information back to the caller:

factory.setBeforeSendReplyPostProcessors(msg -> {
msg.getMessageProperties().setHeader("calledBean",
msg.getMessageProperties().getTargetBean().getClass().getSimpleName()

)i
msg.getMessageProperties().setHeader ("calledMethod",
msg.getMessageProperties().getTargetMethod().getName());
return m;
3

Starting with version 2.2.5, you can configure a ReplyPostProcessor to modify the reply message
before it is sent; it is called after the correlationId header has been set up to match the request.

76

(queues = "test.header", group = "testGroup", replyPostProcessor =
"echoCustomHeader")
public String capitalizeWithHeader(String in) {
return in.toUpperCase();

}

public ReplyPostProcessor echoCustomHeader() {
return (req, resp) -> {
resp.getMessageProperties().setHeader ("myHeader", req.
getMessageProperties().getHeader ("myHeader"));
return resp,

};

The @SendTo value is assumed as a reply exchange and routingKey pair that follows the
exchange/routingKey pattern, where one of those parts can be omitted. The valid values are as
follows:

* thing1/thing2: The replyTo exchange and the routingKey. thing1/: The replyTo exchange and the
default (empty) routingKey. thing2 or /thing2: The replyTo routingKey and the default (empty)
exchange. / or empty: The replyTo default exchange and the default routingKey.

Also, you can use @SendTo without a value attribute. This case is equal to an empty sendTo pattern.
@SendTo is used only if the inbound message does not have a replyToAddress property.

Starting with version 1.5, the @SendTo value can be a bean initialization SpEL Expression, as shown
in the following example:

(queues = "test.sendTo.spel")
("#{spelReplyTo}")
public String capitalizeWithSendToSpel(String foo) {
return foo.toUpperCase();

}

public String spelReplyTo() {
return "test.sendTo.reply.spel”;

}

The expression must evaluate to a String, which can be a simple queue name (sent to the default
exchange) or with the form exchange/routingKey as discussed prior to the preceding example.

o The #{---} expression is evaluated once, during initialization.

77

For dynamic reply routing, the message sender should include a reply_to message property or use
the alternate runtime SpEL expression (described after the next example).

Starting with version 1.6, the @SendTo can be a SpEL expression that is evaluated at runtime against
the request and reply, as the following example shows:

(queues = "test.sendTo.spel")
("!{"some.reply.queuve.with."' + result.queueName}")
public Bar capitalizeWithSendToSpel(Foo foo) {
return processTheFooAndReturnABar (foo);

}

The runtime nature of the SpEL expression is indicated with !{::} delimiters. The evaluation
context #root object for the expression has three properties:

* request: The o.s.amqp.core.Message request object.
 source: The 0.s.messaging.Message<?> after conversion.

e result: The method result.

The context has a map property accessor, a standard type converter, and a bean resolver, which
lets other beans in the context be referenced (for example, @someBeanName.determineReplyQ(request,
result)).

In summary, #{:-'} is evaluated once during initialization, with the #root object being the
application context. Beans are referenced by their names. !{::-} is evaluated at runtime for each
message, with the root object having the properties listed earlier. Beans are referenced with their
names, prefixed by @.

Starting with version 2.1, simple property placeholders are also supported (for example,
${some.reply.to}). With earlier versions, the following can be used as a work around, as the
following example shows:

(queues = "foo")
("#{environment['my.send.to"]}")
public String listen(Message in) {

return ...

}
Reply ContentType
If you are using a sophisticated message converter, such as the

ContentTypeDelegatingMessageConverter, you can control the content type of the reply by setting the
replyContentType property on the listener. This allows the converter to select the appropriate

78

delegate converter for the reply.

(queues = "q1", messageConverter = "delegating",
replyContentType = "application/json")
public Thing2 listen(Thingl in) {

}

By default, for backwards compatibility, any content type property set by the converter will be
overwritten by this value after conversion. Converters such as the SimpleMessageConverter use the
reply type rather than the content type to determine the conversion needed and sets the content
type in the reply message appropriately. This may not be the desired action and can be overridden
by setting the converterWinsContentType property to false. For example, if you return a String
containing JSON, the SimpleMessageConverter will set the content type in the reply to text/plain. The
following configuration will ensure the content type 1is set properly, even if the
SimpleMessageConverter is used.

(queues = "q1", replyContentType = "application/json",
converterWinsContentType = "false")
public String listen(Thing in) {

return someJsonString;

These properties (replyContentType and converterWinsContentType) do not apply when the return
type is a Spring AMQP Message or a Spring Messaging Message<?>. In the first case, there is no
conversion involved; simply set the contentType message property. In the second case, the behavior
is controlled using message headers:

n

(queues = "q1", messageConverter = "delegating")
(llqzll)
public Message<String> listen(String in) {

return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (MessageHeaders.CONTENT_TYPE, "application/xml")
.build();

This content type will be passed in the MessageProperties to the converter. By default, for
backwards compatibility, any content type property set by the converter will be overwritten by this
value after conversion. If you wish to override that behavior, also set the
AmgpHeaders.CONTENT_TYPE_CONVERTER_WINS to true and any value set by the converter will be

79

retained.

Multi-method Listeners

Starting with version 1.5.0, you can specify the @RabbitListener annotation at the class level.
Together with the new @RabbitHandler annotation, this lets a single listener invoke different
methods, based on the payload type of the incoming message. This is best described using an
example:

(id="multi", queues = "someQueue")
("my.reply.queue")
public class MultilistenerBean {

public String thing2(Thing2 thing2) {

}

public String cat(Cat cat) {

}

public String hat(("amqp_receivedRoutingKey") String rk, Hat
hat) {

}

(isDefault = true)
public String defaultMethod(Object object) {

}

In this case, the individual eRabbitHandler methods are invoked if the converted payload is a Thing2,
a Cat, or a Hat. You should understand that the system must be able to identify a unique method
based on the payload type. The type is checked for assignability to a single parameter that has no
annotations or that is annotated with the @Payload annotation. Notice that the same method
signatures apply, as discussed in the method-level @RabbitListener (described earlier).

Starting with version 2.0.3, a @RabbitHandler method can be designated as the default method,
which is invoked if there is no match on other methods. At most, one method can be so designated.

80

@RabbitHandler is intended only for processing message payloads after conversion,
if you wish to receive the unconverted raw Message object, you must use
@RabbitListener on the method, not the class.

©Repeatable @RabbitListener

Starting with version 1.6, the @RabbitListener annotation is marked with @Repeatable. This means
that the annotation can appear on the same annotated element (method or class) multiple times. In
this case, a separate listener container is created for each annotation, each of which invokes the
same listener @Bean. Repeatable annotations can be used with Java 8 or above.

Proxy @RabbitListener and Generics

If your service is intended to be proxied (for example, in the case of @Transactional), you should
keep in mind some considerations when the interface has generic parameters. Consider the
following example:

interface TxService<P> {

String handle(P payload, String header);

static class TxServiceImpl implements TxService<Foo> {

(o)
public String handle(Thing thing, String rk) {

With a generic interface and a particular implementation, you are forced to switch to the CGLIB
target class proxy because the actual implementation of the interface handle method is a bridge
method. In the case of transaction management, the use of CGLIB is configured by using an
annotation option: @EnableTransactionManagement(proxyTargetClass = true). And in this case, all
annotations have to be declared on the target method in the implementation, as the following
example shows:

81

static class TxServiceImpl implements TxService<Foo> {

(...)
public String handle(Foo foo, ("amqp_receivedRoutingKey")

String rk) {

Handling Exceptions

By default, if an annotated listener method throws an exception, it is thrown to the container and
the message are requeued and redelivered, discarded, or routed to a dead letter exchange,
depending on the container and broker configuration. Nothing is returned to the sender.

Starting with version 2.0, the @RabbitListener annotation has two new attributes: errorHandler and
returnExceptions.

These are not configured by default.

You can use the errorHandler to provide the bean name of a RabbitListenerErrorHandler
implementation. This functional interface has one method, as follows:

public interface RabbitListenerErrorHandler {

Object handleError(Message amgpMessage, org.springframework.messaging.Message<?>
message,
ListenerExecutionFailedException exception) throws Exception;

As you can see, you have access to the raw message received from the container, the spring-
messaging Message<?> object produced by the message converter, and the exception that was
thrown by the listener (wrapped in a ListenerExecutionFailedException). The error handler can
either return some result (which is sent as the reply) or throw the original or a new exception
(which is thrown to the container or returned to the sender, depending on the returnExceptions
setting).

The returnExceptions attribute, when true, causes exceptions to be returned to the sender. The
exception is wrapped in a RemoteInvocationResult object. On the sender side, there is an available
RemoteInvocationAwareMessageConverterAdapter, which, if configured into the RabbitTemplate, re-
throws the server-side exception, wrapped in an AmgpRemoteException. The stack trace of the server

82

exception is synthesized by merging the server and client stack traces.

This mechanism generally works only with the default SimpleMessageConverter,
o which uses Java serialization. Exceptions are generally not “Jackson-friendly” and

cannot be serialized to JSON. If you use JSON, consider using an errorHandler to

return some other Jackson-friendly Error object when an exception is thrown.

o In version 2.1, this interface moved from package o.s.amgp.rabbit.listener to
0.s.amgp.rabbit.listener.api.

Starting with version 2.1.7, the Channel is available in a messaging message header; this allows you
to ack or nack the failed messasge when using AcknowledgeMode . MANUAL:

public Object handleError(Message amgpMessage, org.springframework.messaging
.Message<?> message,
ListenerExecutionFailedException exception) {

message.getHeaders().get(AmgpHeaders.CHANNEL, Channel.class)
.basicReject(message.getHeaders().get(AmgpHeaders.DELIVERY_TAG,
Long.class),
true);

}

Starting with version 2.2.18, if a message conversion exception is thrown, the error handler will be
called, with null in the message argument. This allows the application to send some result to the
caller, indicating that a badly-formed message was received. Previously, such errors were thrown
and handled by the container.

Container Management

Containers created for annotations are not registered with the application context. You can obtain a
collection of all containers by invoking getListenerContainers() on the
RabbitListenerEndpointRegistry bean. You can then iterate over this collection, for example, to stop
or start all containers or invoke the Lifecycle methods on the registry itself, which will invoke the
operations on each container.

You can also get a reference to an individual container by wusing its 1id, using
getListenerContainer(String id) —for example, registry.getlListenerContainer("multi") for the
container created by the snippet above.

Starting with version 1.5.2, you can obtain the id values of the registered containers with
getlListenerContainerIds().

Starting with version 1.5, you can now assign a group to the container on the RabbitListener
endpoint. This provides a mechanism to get a reference to a subset of containers. Adding a group
attribute causes a bean of type Collection<MessagelistenerContainer> to be registered with the
context with the group name.

83

@RabbitListener with Batching

When receiving a a batch of messages, the de-batching is normally performed by the container and
the listener is invoked with one message at at time. Starting with version 2.2, you can configure the
listener container factory and listener to receive the entire batch in one call, simply set the factory’s
batchListener property, and make the method payload parameter a List:

public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(connectionFactory());
factory.setBatchListener(true);
return factory;

(queues = "batch.1")
public void listen1(List<Thing> in) {

}
// or

(queues = "batch.2")
public void listen2(List<Message<Thing>> in) {

}

Setting the batchListener property to true automatically turns off the deBatchingEnabled container
property in containers that the factory creates (unless consumerBatchEnabled is true - see below).
Effectively, the debatching is moved from the container to the listener adapter and the adapter
creates the list that is passed to the listener.

A batch-enabled factory cannot be used with a multi-method listener.

Also starting with version 2.2. when receiving batched messages one-at-a-time, the last message
contains a boolean header set to true. This header can be obtained by adding the
@Header (AmgpHeaders.LAST_IN_BATCH) boolean last™ parameter to your listener method. The header is
mapped from MessageProperties.isLastInBatch(). In addition, AmqpHeaders.BATCH_SIZE is populated
with the size of the batch in every message fragment.

In addition, a new property consumerBatchEnabled has been added to the
SimpleMessagelListenerContainer. When this is true, the container will create a batch of messages, up
to batchSize; a partial batch is delivered if receiveTimeout elapses with no new messages arriving. If
a producer-created batch is received, it is debatched and added to the consumer-side batch;
therefore the actual number of messages delivered may exceed batchSize, which represents the
number of messages received from the broker. deBatchingEnabled must be true when
consumerBatchEnabled is true; the container factory will enforce this requirement.

84

public SimpleRabbitListenerContainerFactory consumerBatchContainerFactory() {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(rabbitConnectionFactory());
factory.setConsumerTagStrategy(consumerTagStrategy());
factory.setBatchListener(true); // configures a BatchMessagelistenerAdapter
factory.setBatchSize(2);
factory.setConsumerBatchEnabled(true);
return factory;

When using consumerBatchEnabled with @RabbitListener:

(queues = "batch.1", containerFactory =
"consumerBatchContainerFactory")
public void consumerBatch1(List<Message> amgpMessages) {
this.amgpMessagesReceived = amgpMessages;
this.batch1Latch.countDown();

(queues = "batch.2", containerFactory =
"consumerBatchContainerFactory")
public void consumerBatch2(List<org.springframework.messaging.Message<Invoice>>
messages) {
this.messagingMessagesReceived = messages;
this.batch2Latch.countDown();

(queues = "batch.3", containerFactory =
"consumerBatchContainerFactory")
public void consumerBatch3(List<Invoice> strings) {
this.batch3Strings = strings;
this.batch3Latch.countDown();

o the first is called with the raw, unconverted org.springframework.amgp.core.Message s received.

* the second is called with the org.springframework.messaging.Message<?> s with converted
payloads and mapped headers/properties.

* the third is called with the converted payloads, with no access to headers/properteis.

You can also add a Channel parameter, often used when using MANUAL ack mode. This is not very
useful with the third example because you don’t have access to the delivery_tag property.

85

Using Container Factories

Listener container factories were introduced to support the @RabbitListener and registering
containers with the RabbitListenerEndpointRegistry, as discussed in Programmatic Endpoint
Registration.

Starting with version 2.1, they can be used to create any listener container —even a container
without a listener (such as for use in Spring Integration). Of course, a listener must be added before
the container is started.

There are two ways to create such containers:

» Use a SimpleRabbitListenerEndpoint

¢ Add the listener after creation

The following example shows how to use a SimpleRabbitListenerEndpoint to create a listener
container:

public SimpleMessagelListenerContainer factoryCreatedContainerSimplelListener(
SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory) {
SimpleRabbitListenerEndpoint endpoint = new SimpleRabbitListenerEndpoint();
endpoint.setQueueNames("queue.1");
endpoint.setMessagelistener(message -> {

1

return rabbitListenerContainerFactory.createlListenerContainer(endpoint);

The following example shows how to add the listener after creation:

public SimpleMessagelistenerContainer factoryCreatedContainerNoListener(
SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory) {
SimpleMessagelistenerContainer container = rabbitlListenerContainerFactory
.createlListenerContainer();
container.setMessagelistener(message -> {

;i
container.setQueueNames("test.no.listener.yet");
return container;

In either case, the listener can also be a ChannelAwareMessagelListener, since it is now a sub-interface
of MessagelListener.

86

These techniques are useful if you wish to create several containers with similar properties or use a
pre-configured container factory such as the one provided by Spring Boot auto configuration or
both.

o Containers created this way are normal @Bean instances and are not registered in
the RabbitListenerEndpointRegistry.

Asynchronous @RabbitListener Return Types

Starting with version 2.1, @RabbitListener (and @RabbitHandler) methods can be specified with
asynchronous return types ListenableFuture<?> and Mono<?>, letting the reply be sent
asynchronously.

The listener container factory must be configured with AcknowledgeMode.MANUAL so
that the consumer thread will not ack the message; instead, the asynchronous
completion will ack or nack the message when the async operation completes.
When the async result is completed with an error, whether the message is
requeued or not depends on the exception type thrown, the container
configuration, and the container error handler. By default, the message will be
requeued, unless the container’s defaultRequeueRejected property is set to false (it

o is true by default). If the async vresult is completed with an
AmgpRejectAndDontRequeueException, the message will not be requeued. If the
container’s defaultRequeueRejected property is false, you can override that by
setting the future’s exception to a ImmediateRequeueException and the message will
be requeued. If some exception occurs within the listener method that prevents
creation of the async result object, you MUST catch that exception and return an
appropriate return object that will cause the message to be acknowledged or
requeued.

Starting with versions 2.2.21, 2.3.13, 2.4.1, the AcknowledgeMode will be automatically set the MANUAL
when async return types are detected. In addition, incoming messages with fatal exceptions will be
negatively acknowledged individually, previously any prior unacknowledged message were also
negatively acknowledged.

Threading and Asynchronous Consumers

A number of different threads are involved with asynchronous consumers.

Threads from the TaskExecutor configured in the SimpleMessagelListenerContainer are used to invoke
the Messagelistener when a new message is delivered by RabbitMQ Client. If not configured, a
SimpleAsyncTaskExecutor is used. If you use a pooled executor, you need to ensure the pool size is
sufficient to handle the configured concurrency. With the DirectMessagelistenerContainer, the
MessageListener is invoked directly on a RabbitMQ Client thread. In this case, the taskExecutor is
used for the task that monitors the consumers.

87

When using the default SimpleAsyncTaskExecutor, for the threads the listener is
invoked on, the listener container beanName is used in the threadNamePrefix. This is
useful for log analysis. We generally recommend always including the thread

o name in the logging appender configuration. When a TaskExecutor is specifically
provided through the taskExecutor property on the container, it is used as is,
without modification. It is recommended that you use a similar technique to name
the threads created by a custom TaskExecutor bean definition, to aid with thread
identification in log messages.

The Executor configured in the CachingConnectionFactory is passed into the RabbitMQ Client when
creating the connection, and its threads are used to deliver new messages to the listener container.
If this is not configured, the client uses an internal thread pool executor with (at the time of
writing) a pool size of Runtime.getRuntime().availableProcessors() * 2 for each connection.

If you have a large number of factories or are using CacheMode.CONNECTION, you may wish to consider
using a shared ThreadPoolTaskExecutor with enough threads to satisfy your workload.

With the DirectMessagelListenerContainer, you need to ensure that the connection
factory is configured with a task executor that has sufficient threads to support
o your desired concurrency across all listener containers that use that factory. The
default pool size (at the time of writing) is
Runtime.getRuntime().availableProcessors() * 2.

The RabbitMQ client uses a ThreadFactory to create threads for low-level I/O (socket) operations. To
modify this factory, you need to configure the underlying RabbitMQ ConnectionFactory, as discussed
in Configuring the Underlying Client Connection Factory.

Choosing a Container

Version 2.0 introduced the DirectMessagelistenerContainer (DMLC). Previously, only the
SimpleMessagelListenerContainer (SMLC) was available. The SMLC uses an internal queue and a
dedicated thread for each consumer. If a container is configured to listen to multiple queues, the
same consumer thread is used to process all the queues. Concurrency is controlled by
concurrentConsumers and other properties. As messages arrive from the RabbitMQ client, the client
thread hands them off to the consumer thread through the queue. This architecture was required
because, in early versions of the RabbitMQ client, multiple concurrent deliveries were not possible.
Newer versions of the client have a revised threading model and can now support concurrency.
This has allowed the introduction of the DMLC where the listener is now invoked directly on the
RabbitMQ Client thread. Its architecture is, therefore, actually “simpler” than the SMLC. However,
there are some limitations with this approach, and certain features of the SMLC are not available
with the DMLC. Also, concurrency is controlled by consumersPerQueue (and the client library’s thread
pool). The concurrentConsumers and associated properties are not available with this container.

The following features are available with the SMLC but not the DMLC:

* batchSize: With the SMLC, you can set this to control how many messages are delivered in a
transaction or to reduce the number of acks, but it may cause the number of duplicate
deliveries to increase after a failure. (The DMLC does have messagesPerAck, which you can use to

88

reduce the acks, the same as with batchSize and the SMLC, but it cannot be used with
transactions — each message is delivered and ack’d in a separate transaction).

» consumerBatchEnabled: enables batching of discrete messages in the consumer; see Message
Listener Container Configuration for more information.

» maxConcurrentConsumers and consumer scaling intervals or triggers — there is no auto-scaling in
the DMLC. It does, however, let you programmatically change the consumersPerQueue property
and the consumers are adjusted accordingly.

However, the DMLC has the following benefits over the SMLC:

* Adding and removing queues at runtime is more efficient. With the SMLC, the entire consumer
thread is restarted (all consumers canceled and re-created). With the DMLC, unaffected
consumers are not canceled.

* The context switch between the RabbitMQ Client thread and the consumer thread is avoided.

» Threads are shared across consumers rather than having a dedicated thread for each consumer
in the SMLC. However, see the IMPORTANT note about the connection factory configuration in
Threading and Asynchronous Consumers.

See Message Listener Container Configuration for information about which configuration
properties apply to each container.

Detecting Idle Asynchronous Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle — users
might want to take some action if no messages arrive for some period of time.

Starting with version 1.6, it is now possible to configure the listener container to publish a
ListenerContainerIdleEvent when some time passes with no message delivery. While the container
is idle, an event is published every idleEventInterval milliseconds.

To configure this feature, set idleEventInterval on the container. The following example shows how
to do so in XML and in Java (for both a SimpleMessagelListenerContainer and a
SimpleRabbitListenerContainerFactory):

89

<rabbit:listener-container connection-factory="connectionFactory"
idle-event-interval="60000"

>
<rabbit:listener id="container1" queue-names="foo" ref="myListener" method=
"handle" />
</rabbit:listener-container>

public SimpleMessagelListenerContainer(ConnectionFactory connectionFactory) {
SimpleMessagelistenerContainer container = new SimpleMessagelistenerContainer
(connectionFactory);

container.setIdleEventInterval(60000L);

return container;

public SimpleRabbitListenerContainerFactory rabbitListenerContainerFactory() {
SimpleRabbitListenerContainerFactory factory = new

SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(rabbitConnectionFactory());
factory.setIdleEventInterval(60000L);

return factory;

In each of these cases, an event is published once per minute while the container is idle.

Event Consumption

You can capture idle events by implementing ApplicationListener —either a general listener, or
one narrowed to only receive this specific event. You can also use @EventListener, introduced in

Spring Framework 4.2.

The following example combines the @RabbitListener and @EventListener into a single class. You
need to understand that the application listener gets events for all containers, so you may need to
check the listener ID if you want to take specific action based on which container is idle. You can

also use the @EventListener condition for this purpose.

The events have four properties:

e source: The listener container instance

90

¢ id: The listener ID (or container bean name)
* idleTime: The time the container had been idle when the event was published
» queueNames: The names of the queue(s) that the container listens to

The following example shows how to create listeners by using both the @RabbitListener and the
@EventListener annotations:

public class Listener {

(id="someId", queues="#{queue.name}")
public String listen(String foo) {
return foo.toUpperCase();

(condition = "event.listenerId == 'someId'")
public void onApplicationEvent(ListenerContainerIdleEvent event) {

o Event listeners see events for all containers. Consequently, in the preceding
example, we narrow the events received based on the listener ID.

If you wish to use the idle event to stop the lister container, you should not call

° container.stop() on the thread that calls the listener. Doing so always causes
delays and unnecessary log messages. Instead, you should hand off the event to a
different thread that can then stop the container.

Monitoring Listener Performance

Starting with version 2.2, the listener containers will automatically create and update Micrometer
Timer s for the listener, if Micrometer is detected on the class path, and a MeterRegistry is present in
the application context. The timers can be disabled by setting the container property
micrometerEnabled to false.

Two timers are maintained - one for successful calls to the listener and one for failures. With a
simple MessagelListener, there is a pair of timers for each configured queue.

The timers are named spring.rabbitmq.listener and have the following tags:

e listenerId: (listener id or container bean name)

* queue : (the queue name for a simple listener or list of configured queue names when
consumerBatchEnabled is true - because a batch may contain messages from multiple queues)

e result: success or failure

91

» exception: none or ListenerExecutionFailedException

You can add additional tags using the micrometerTags container property.

4.1.7. Containers and Broker-Named queues

While it is preferable to use AnonymousQueue instances as auto-delete queues, starting with version
2.1, you can use broker named queues with listener containers. The following example shows how
to do so:

public Queue queue() {

return new Queue("", false, true, true);

public SimpleMessagelListenerContainer container() {
SimpleMessagelListenerContainer container = new SimpleMessagelistenerContainer

(cf());
container.setQueues(queue());
container.setMessagelListener(m -> {

)
container.setMissingQueuesFatal(false);
return container;

Notice the empty String for the name. When the RabbitAdmin declares queues, it updates the
Queue.actualName property with the name returned by the broker. You must use setQueues() when
you configure the container for this to work, so that the container can access the declared name at
runtime. Just setting the names is insufficient.

e You cannot add broker-named queues to the containers while they are running.

When a connection is reset and a new one is established, the new queue gets a
new name. Since there is a race condition between the container restarting and

o the queue being re-declared, it is important to set the container’s
missingQueuesFatal property to false, since the container is likely to initially try to
reconnect to the old queue.

4.1.8. Message Converters

The AmgpTemplate also defines several methods for sending and receiving messages that delegate to
a MessageConverter. The MessageConverter provides a single method for each direction: one for
converting to a Message and another for converting from a Message. Notice that, when converting to
a Message, you can also provide properties in addition to the object. The object parameter typically

92

corresponds to the Message body. The following listing shows the MessageConverter interface
definition:

public interface MessageConverter {

Message toMessage(Object object, MessageProperties messageProperties)
throws MessageConversionException;

Object fromMessage(Message message) throws MessageConversionException;

The relevant Message-sending methods on the AmgpTemplate are simpler than the methods we
discussed previously, because they do not require the Message instance. Instead, the
MessageConverter is responsible for “creating” each Message by converting the provided object to the
byte array for the Message body and then adding any provided MessageProperties. The following
listing shows the definitions of the various methods:

void convertAndSend(Object message) throws AmgpException;
void convertAndSend(String routingKey, Object message) throws AmgpException;

void convertAndSend(String exchange, String routingKey, Object message)
throws AmqpException;

void convertAndSend(Object message, MessagePostProcessor messagePostProcessor)
throws AmgpException;

void convertAndSend(String routingKey, Object message,
MessagePostProcessor messagePostProcessor) throws AmgpException;

void convertAndSend(String exchange, String routingKey, Object message,
MessagePostProcessor messagePostProcessor) throws AmgpException;

On the receiving side, there are only two methods: one that accepts the queue name and one that
relies on the template’s “queue” property having been set. The following listing shows the
definitions of the two methods:

Object receiveAndConvert() throws AmgpException;

Object receiveAndConvert(String queueName) throws AmgpException;

93

o The MessagelistenerAdapter mentioned in Asynchronous Consumer also uses a
MessageConverter.

SimpleMessageConverter

The default implementation of the MessageConverter strategy is called SimpleMessageConverter. This
is the converter that is used by an instance of RabbitTemplate if you do not explicitly configure an
alternative. It handles text-based content, serialized Java objects, and byte arrays.

Converting From a Message

If the content type of the input Message begins with "text" (for example, "text/plain"), it also checks
for the content-encoding property to determine the charset to be used when converting the Message
body byte array to a Java String. If no content-encoding property had been set on the input Message,
it uses the UTF-8 charset by default. If you need to override that default setting, you can configure
an instance of SimpleMessageConverter, set its defaultCharset property, and inject that into a
RabbitTemplate instance.

If the content-type property value of the input Message is set to "application/x-java-serialized-object",
the SimpleMessageConverter tries to deserialize (rehydrate) the byte array into a Java object. While
that might be useful for simple prototyping, we do not recommend relying on Java serialization,
since it leads to tight coupling between the producer and the consumer. Of course, it also rules out
usage of non-Java systems on either side. With AMQP being a wire-level protocol, it would be
unfortunate to lose much of that advantage with such restrictions. In the next two sections, we
explore some alternatives for passing rich domain object content without relying on Java
serialization.

For all other content-types, the SimpleMessageConverter returns the Message body content directly as
a byte array.

See Java Deserialization for important information.

Converting To a Message

When converting to a Message from an arbitrary Java Object, the SimpleMessageConverter likewise
deals with byte arrays, strings, and serializable instances. It converts each of these to bytes (in the
case of byte arrays, there is nothing to convert), and it ses the content-type property accordingly. If
the Object to be converted does not match one of those types, the Message body is null.

SerializerMessageConverter

This converter is similar to the SimpleMessageConverter except that it can be configured with other
Spring Framework Serializer and Deserializer implementations for application/x-java-
serialized-object conversions.

See Java Deserialization for important information.

Jackson2JsonMessageConverter

This section covers using the Jackson2JsonMessageConverter to convert to and from a Message. It has

94

the following sections:

* Converting to a Message

» Converting from a Message

Converting to a Message

As mentioned in the previous section, relying on Java serialization is generally not recommended.
One rather common alternative that is more flexible and portable across different languages and
platforms is JSON (JavaScript Object Notation). The converter can be configured on any
RabbitTemplate instance to override its usage of the SimpleMessageConverter default. The
Jackson2JsonMessageConverter uses the com.fasterxml.jackson 2.x library. The following example
configures a Jackson2JsonMessageConverter:

<bean class="org.springframework.amqgp.rabbit.core.RabbitTemplate">
<property name="connectionFactory" ref="rabbitConnectionFactory"/>
<property name="messageConverter">
<bean class=
"org.springframework.amgp.support.converter.Jackson2JsonMessageConverter">

<!-- if necessary, override the Default(ClassMapper -->
<property name="classMapper" ref="customClassMapper"/>
</bean>
</property>

</bean>

As shown above, Jackson2JsonMessageConverter uses a DefaultClassMapper by default. Type
information is added to (and retrieved from) MessageProperties. If an inbound message does not
contain type information in MessageProperties, but you know the expected type, you can configure
a static type by using the defaultType property, as the following example shows:

<bean id="jsonConverterWithDefaultType"
class="o.s.amqp.support.converter.Jackson2JsonMessageConverter">
<property name="classMapper">
<bean class="
org.springframework.amgp.support.converter.DefaultClassMapper">
<property name="defaultType" value="thing1.PurchaseOrder"/>
</bean>
</property>
</bean>

In addition, you can provide custom mappings from the value in the Typeld header. The following
example shows how to do so:

95

public Jackson2]sonMessageConverter jsonMessageConverter() {
Jackson2JsonMessageConverter jsonConverter = new Jackson2]sonMessageConverter

OF
jsonConverter.setClassMapper(classMapper());
return jsonConverter;

public DefaultClassMapper classMapper() {
DefaultClassMapper classMapper = new DefaultClassMapper();
Map<String, Class<?>> idClassMapping = new HashMap<>();
idClassMapping.put("thing1", Thingl.class);
idClassMapping.put("thing2", Thing2.class);
classMapper.setIdClassMapping(idClassMapping);
return classMapper;

Now, if the sending system sets the header to thing1, the converter creates a Thing1 object, and so
on. See the Receiving JSON from Non-Spring Applications sample application for a complete
discussion about converting messages from non-Spring applications.

Converting from a Message

Inbound messages are converted to objects according to the type information added to headers by
the sending system.

In versions prior to 1.6, if type information is not present, conversion would fail. Starting with
version 1.6, if type information is missing, the converter converts the JSON by using Jackson
defaults (usually a map).

Also, starting with version 1.6, when you use @RabbitListener annotations (on methods), the
inferred type information is added to the MessageProperties. This lets the converter convert to the
argument type of the target method. This only applies if there is one parameter with no annotations
or a single parameter with the @Payload annotation. Parameters of type Message are ignored during
the analysis.

96

By default, the inferred type information will override the inbound Typeld and
related headers created by the sending system. This lets the receiving system
automatically convert to a different domain object. This applies only if the
parameter type is concrete (not abstract or an interface) or it is from the java.util
package. In all other cases, the Typeld and related headers is used. There are cases
where you might wish to override the default behavior and always use the Typeld
information. For example, suppose you have a @RabbitListener that takes a Thing1
argument but the message contains a Thing2 that is a subclass of Thing1 (which is
concrete). The inferred type would be incorrect. To handle this situation, set the
TypePrecedence property on the Jackson2JsonMessageConverter to TYPE_ID instead of
the default INFERRED. (The property 1is actually on the converter’s
Defaultlackson2JavaTypeMapper, but a setter is provided on the converter for
convenience.) If you inject a custom type mapper, you should set the property on
the mapper instead.

When converting from the Message, an incoming
MessageProperties.getContentType() must be JSON-compliant
(contentType.contains("json") is used to check). Starting with version 2.2,
application/json is assumed if there is no contentType property, or it has the
default value application/octet-stream. To revert to the previous behavior (return
an unconverted byte[]), set the converter’s assumeSupportedContentType property to
false. If the content type is not supported, a WARN log message Could not convert
incoming message with content-type [::+], is emitted and message.getBody() is
returned as is—as a byte[]. So, to meet the Jackson2]sonMessageConverter
requirements on the consumer side, the producer must add the contentType
message property — for example, as application/json or text/x-json or by using
the Jackson2]sonMessageConverter, which sets the header automatically. The
following listing shows a number of converter calls:

97

public void thing1(Thing1 thing1) {...}

public void thing1(Thing1 thingT, ("amqp_consumerQueue") String
queue) {...}
public void thing1(Thing1 thing1, o.s.amqp.core.Message message) {...}

public

public

public

In the first four cases in the preceding listing, the converter tries to convert to the Thing1 type. The
fifth example is invalid because we cannot determine which argument should receive the message
payload. With the sixth example, the Jackson defaults apply due to the generic type being a
WildcardType.

You can, however, create a custom converter and use the targetMethod message property to decide

void thing1(Thing1 thing1, o.s.messaging.Message<Foo> message) {...}

void thing1(Thing1 thing1, String bar) {...}

void thing1(Thing1 thing1, o.s.messaging.Message<?> message) {...}

which type to convert the JSON to.

This type inference can only be achieved when the @RabbitListener annotation is
declared at the method level. With class-level @RabbitListener, the converted type
is used to select which @RabbitHandler method to invoke. For this reason, the
infrastructure provides the targetObject message property, which you can use in a
custom converter to determine the type.

Starting with version 1.6.11, Jackson2JsonMessageConverter and, therefore,
DefaultJackson2JavaTypeMapper (DefaultClassMapper) provide the trustedPackages
option to overcome Serialization Gadgets vulnerability. By default and for
backward compatibility, the Jackson2]sonMessageConverter trusts all
packages — that is, it uses * for the option.

Deserializing Abstract Classes

Prior to version 2.2.8, if the inferred type of a @RabbitListener was an abstract class (including
interfaces), the converter would fall back to looking for type information in the headers and, if
present, used that information; if that was not present, it would try to create the abstract class. This
caused a problem when a custom ObjectMapper that is configured with a custom deserializer to

handle the abstract class is used, but the incoming message has invalid type headers.

98

https://pivotal.io/security/cve-2017-4995

Starting with version 2.2.8, the previous behavior is retained by default. If you have such a custom
ObjectMapper and you want to ignore type headers, and always use the inferred type for conversion,
set the alwaysConvertToInferredType to true. This is needed for backwards compatibility and to
avoid the overhead of an attempted conversion when it would fail (with a standard ObjectMapper).

Using Spring Data Projection Interfaces

Starting with version 2.2, you can convert JSON to a Spring Data Projection interface instead of a
concrete type. This allows very selective, and low-coupled bindings to data, including the lookup of
values from multiple places inside the JSON document. For example the following interface can be
defined as message payload type:

interface SomeSample {

({ "$.username", "$.user.name" })
String getUsername();

(queues = "projection")
public void projection(SomeSample in) {
String username = in.getUsername();

Accessor methods will be used to lookup the property name as field in the received JSON document
by default. The @JsonPath expression allows customization of the value lookup, and even to define
multiple JSON path expressions, to lookup values from multiple places until an expression returns
an actual value.

To enable this feature, set the useProjectionForInterfaces to true on the message converter. You
must also add spring-data:spring-data-commons and com.jayway.jsonpath:json-path to the class path.

When used as the parameter to a @RabbitListener method, the interface type is automatically
passed to the converter as normal.

Converting From a Message With RabbitTemplate

As mentioned earlier, type information is conveyed in message headers to assist the converter
when converting from a message. This works fine in most cases. However, when using generic
types, it can only convert simple objects and known “container” objects (lists, arrays, and maps).
Starting with version 2.0, the Jackson2JsonMessageConverter implements SmartMessageConverter,
which lets it be used with the new RabbitTemplate methods that take a ParameterizedTypeReference
argument. This allows conversion of complex generic types, as shown in the following example:

99

Thing1<Thing2<Cat, Hat>> thingl =
rabbitTemplate.receiveAndConvert(new ParameterizedTypeReference<Thing1<Thing2
<Cat, Hat>>>() { });

Starting with version 2.1, the Abstract]sonMessageConverter class has been
o removed. It is no longer the base class for Jackson2JsonMessageConverter. It has
been replaced by AbstractJackson2MessageConverter.

MarshallingMessageConverter

Yet another option is the MarshallingMessageConverter. It delegates to the Spring OXM library’s
implementations of the Marshaller and Unmarshaller strategy interfaces. You can read more about
that library here. In terms of configuration, it is most common to provide only the constructor
argument, since most implementations of Marshaller also implement Unmarshaller. The following
example shows how to configure a MarshallingMessageConverter:

<bean class="org.springframework.amgp.rabbit.core.RabbitTemplate">
<property name="connectionFactory" ref="rabbitConnectionFactory"/>
<property name="messageConverter">
<bean class=
"org.springframework.amgp.support.converter.MarshallingMessageConverter">
<constructor-arg ref="someImplemenationOfMarshallerAndUnmarshaller"/>
</bean>
</property>
</bean>

Jackson2XmlMessageConverter

This class was introduced in version 2.1 and can be used to convert messages from and to XML.

Both Jackson2XmlMessageConverter and Jackson2]sonMessageConverter have the same base class:
AbstractJackson2MessageConverter.

o The AbstractJackson2MessageConverter class is introduced to replace a removed
class: AbstractJsonMessageConverter.

The Jackson2XmlMessageConverter uses the com.fasterxml.jackson 2.x library.

You can use it the same way as Jackson2JsonMessageConverter, except it supports XML instead of
JSON. The following example configures a Jackson2JsonMessageConverter:

100

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/oxm.html

<bean id="xmlConverterWithDefaultType"
class="org.springframework.amqp.support.converter.Jackson2XmlMessageConverter

">
<property name="classMapper">
<bean class="org.springframework.amgp.support.converter.DefaultClassMapper">
<property name="defaultType" value="foo.PurchaseOrder"/>
</bean>
</property>
</bean>

See Jackson2]JsonMessageConverter for more information.

Starting with version 2.2, application/xml is assumed if there is no contentType

o property, or it has the default value application/octet-stream. To revert to the
previous behavior (return an unconverted byte[]), set the converter’s
assumeSupportedContentType property to false.

ContentTypeDelegatingMessageConverter

This class was introduced in version 1.4.2 and allows delegation to a specific MessageConverter based
on the content type property in the MessageProperties. By default, it delegates to a
SimpleMessageConverter if there is no contentType property or there is a value that matches none of
the configured converters. The following example configures a
ContentTypeDelegatingMessageConverter:

<bean id="contentTypeConverter" class="ContentTypeDelegatingMessageConverter">
<property name="delegates">
<map>
<entry key="application/json" value-ref="jsonMessageConverter" />
<entry key="application/xml" value-ref="xmlMessageConverter" />
</map>
</property>
</bean>

Java Deserialization

This section covers how to deserialize Java objects.

101

There is a possible vulnerability when deserializing java objects from untrusted
sources.

If you accept messages from untrusted sources with a content-type of
application/x-java-serialized-object, you should consider configuring which
packages and classes are allowed to be deserialized. This applies to both the
SimpleMessageConverter and SerializerMessageConverter when it is configured to
use a DefaultDeserializer either implicitly or via configuration.

o By default, the allowed list is empty, meaning all classes are deserialized.
You can set a list of patterns, such as thing1., thingl.thing2.Cat or .MySafe(lass.

The patterns are checked in order until a match is found. If there is no match, a
SecurityException is thrown.

You can set the patterns using the allowedlListPatterns property on these
converters.

Message Properties Converters

The MessagePropertiesConverter strategy interface is used to convert between the Rabbit Client
BasicProperties and Spring AMQP MessageProperties. The default implementation
(DefaultMessagePropertiesConverter) is usually sufficient for most purposes, but you can implement
your own if needed. The default properties converter converts BasicProperties elements of type
LongString to String instances when the size is not greater than 1024 bytes. Larger LongString
instances are not converted (see the next paragraph). This limit can be overridden with a
constructor argument.

Starting with version 1.6, headers longer than the long string limit (default: 1024) are now left as
LongString instances by default by the DefaultMessagePropertiesConverter. You can access the
contents through the getBytes[], toString(), or getStream() methods.

Previously, the DefaultMessagePropertiesConverter “converted” such headers to a DatalnputStream
(actually it just referenced the LongString instance’s DatalnputStream). On output, this header was
not converted (except to a String—for example, java.io.DatalnputStream@1d057a39 by calling
toString() on the stream).

Large incoming LongString headers are now correctly “converted” on output, too (by default).

A new constructor is provided to let you configure the converter to work as before. The following
listing shows the Javadoc comment and declaration of the method:

102

* Construct an instance where LongStrings will be returned

* unconverted or as a java.io.DatalnputStream when longer than this limit.
* Use this constructor with "true' to restore pre-1.6 behavior.

* @param longStringLimit the Timit.

* @param convertlLonglongStrings LongString when false,

* DatalnputStream when true.

* @since 1.6

*/

public DefaultMessagePropertiesConverter(int longStringlLimit, boolean
convertLonglongStrings) { ... }

Also starting with version 1.6, a new property called correlationIdString has been added to
MessageProperties. Previously, when converting to and from BasicProperties used by the RabbitMQ
client, an unnecessary byte[] <> String conversion was performed because
MessageProperties.correlationId is a byte[], but BasicProperties uses a String. (Ultimately, the
RabbitMQ client uses UTF-8 to convert the String to bytes to put in the protocol message).

To provide maximum backwards compatibility, a new property called correlationIdPolicy has been
added to the DefaultMessagePropertiesConverter. This takes a
DefaultMessagePropertiesConverter.CorrelationIdPolicy enum argument. By default it is set to
BYTES, which replicates the previous behavior.

For inbound messages:

» STRING: Only the correlationIdString property is mapped
* BYTES: Only the correlationId property is mapped
* BOTH: Both properties are mapped

For outbound messages:

» STRING: Only the correlationIdString property is mapped
* BYTES: Only the correlationId property is mapped

* BOTH: Both properties are considered, with the String property taking precedence

Also starting with version 1.6, the inbound deliveryMode property is no longer mapped to
MessageProperties.deliveryMode. It is mapped to MessageProperties.receivedDeliveryMode instead.
Also, the inbound userId property is no longer mapped to MessageProperties.userId. It is mapped to
MessageProperties.receivedUserId instead. These changes are to avoid unexpected propagation of
these properties if the same MessageProperties object is used for an outbound message.

Starting with version 2.2, the DefaultMessagePropertiesConverter converts any custom headers with
values of type (lass<?> using getName() instead of toString(); this avoids consuming application
having to parse the class name out of the toString() representation. For rolling upgrades, you may
need to change your consumers to understand both formats until all producers are upgraded.

103

4.1.9. Modifying Messages - Compression and More

A number of extension points exist. They let you perform some processing on a message, either
before it is sent to RabbitMQ or immediately after it is received.

As can be seen in Message Converters, one such extension point is in the AmgpTemplate
convertAndReceive operations, where you can provide a MessagePostProcessor. For example, after
your POJO has been converted, the MessagePostProcessor lets you set custom headers or properties
on the Message.

Starting with version 1.4.2, additional extension points have been added to the RabbitTemplate -
setBeforePublishPostProcessors() and setAfterReceivePostProcessors(). The first enables a post
processor to run immediately before sending to RabbitMQ. When using batching (see Batching),
this is invoked after the batch is assembled and before the batch is sent. The second is invoked
immediately after a message is received.

These extension points are used for such features as compression and, for this purpose, several
MessagePostProcessor implementations are provided. GZipPostProcessor, ZipPostProcessor and
DeflaterPostProcessor compress messages before sending, and GUnzipPostProcessor,
UnzipPostProcessor and InflaterPostProcessor decompress received messages.

Starting with version 2.1.5, the GZipPostProcessor can be configured with the
copyProperties = true option to make a copy of the original message properties. By
default, these properties are reused for performance reasons, and modified with

o compression content encoding and the optional
MessageProperties.SPRING_AUTO_DECOMPRESS header. If you retain a reference to the
original outbound message, its properties will change as well. So, if your
application retains a copy of an outbound message with these message post
processors, consider turning the copyProperties option on.

Starting with version 2.2.12, you can configure the delimiter that the compressing
post processors use between content encoding elements. With versions 2.2.11 and

before, this was hard-coded as :, it is now set to , * by default. The decompressors
o will work with both delimiters. However, if you publish messages with 2.3 or

later and consume with 2.2.11 or earlier, you MUST set the ‘encodingDelimiter
property on the compressor(s) to :. When your consumers are upgraded to 2.2.11
or later, you can revert to the default of °, ".

Similarly, the SimpleMessagelistenerContainer also has a setAfterReceivePostProcessors() method,
letting the decompression be performed after messages are received by the container.

Starting with version 2.1.4, addBeforePublishPostProcessors() and addAfterReceivePostProcessors()
have been added to the RabbitTemplate to allow appending new post processors to the list of before
publish and after receive post processors respectively. Also there are methods provided to remove
the post processors. Similarly, AbstractMessagelistenerContainer also has
addAfterReceivePostProcessors() and removeAfterReceivePostProcessor() methods added. See the
Javadoc of RabbitTemplate and AbstractMessagelListenerContainer for more detail.

104

4.1.10. Request/Reply Messaging

The AmgpTemplate also provides a variety of sendAndReceive methods that accept the same argument
options that were described earlier for the one-way send operations (exchange, routingKey, and
Message). Those methods are quite useful for request-reply scenarios, since they handle the
configuration of the necessary reply-to property before sending and can listen for the reply
message on an exclusive queue that is created internally for that purpose.

Similar request-reply methods are also available where the MessageConverter is applied to both the
request and reply. Those methods are named convertSendAndReceive. See the Javadoc of
AmgpTemplate for more detail.

Starting with version 1.5.0, each of the sendAndReceive method variants has an overloaded version
that takes CorrelationData. Together with a properly configured connection factory, this enables the
receipt of publisher confirms for the send side of the operation. See Correlated Publisher Confirms
and Returns and the Javadoc for RabbitOperations for more information.

Starting with version 2.0, there are variants of these methods (convertSendAndReceiveAsType) that
take an additional ParameterizedTypeReference argument to convert complex returned types. The
template must be configured with a SmartMessageConverter. See Converting From a Message With
RabbitTemplate for more information.

Starting with version 2.1, you can configure the RabbitTemplate with the nolLocalReplyConsumer
option to control a nolLocal flag for reply consumers. This is false by default.

Reply Timeout

By default, the send and receive methods timeout after five seconds and return null. You can
modify this behavior by setting the replyTimeout property. Starting with version 1.5, if you set the
mandatory property to true (or the mandatory-expression evaluates to true for a particular message),
if the message cannot be delivered to a queue, an AmgpMessageReturnedException is thrown. This
exception has returnedMessage, replyCode, and replyText properties, as well as the exchange and
routingKey used for the send.

This feature uses publisher returns. You can enable it by setting publisherReturns

o to true on the CachingConnectionFactory (see Publisher Confirms and Returns).
Also, you must not have registered your own ReturnCallback with the
RabbitTemplate.

Starting with version 2.1.2, a replyTimedOut method has been added, letting subclasses be informed
of the timeout so that they can clean up any retained state.

Starting with versions 2.0.11 and 2.1.3, when you use the default
DirectReplyToMessagelListenerContainer, you can add an error handler by setting the template’s
replyErrorHandler property. This error handler is invoked for any failed deliveries, such as late
replies and messages received without a correlation header. The exception passed in is a
ListenerExecutionFailedException, which has a failedMessage property.

105

https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/AmqpTemplate.html
https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/core/AmqpTemplate.html
https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/rabbit/core/RabbitOperations.html
https://docs.spring.io/spring-amqp/docs/latest-ga/api/org/springframework/amqp/rabbit/core/RabbitOperations.html

RabbitMQ Direct reply-to

Starting with version 3.4.0, the RabbitMQ server supports direct reply-to. This
eliminates the main reason for a fixed reply queue (to avoid the need to create a
temporary queue for each request). Starting with Spring AMQP version 1.4.1 direct
reply-to is used by default (if supported by the server) instead of creating

o temporary reply queues. When no replyQueue is provided (or it is set with a name
of amq.rabbitmg.reply-to), the RabbitTemplate automatically detects whether direct
reply-to is supported and either uses it or falls back to using a temporary reply
queue. When using direct reply-to, a reply-listener is not required and should not
be configured.

Reply listeners are still supported with named queues (other than amq.rabbitmq.reply-to), allowing
control of reply concurrency and so on.

Starting with version 1.6, if you wish to use a temporary, exclusive, auto-delete queue for each
reply, set the useTemporaryReplyQueues property to true. This property is ignored if you set a
replyAddress.

You can change the criteria that dictate whether to use direct reply-to by subclassing RabbitTemplate
and overriding useDirectReplyTo() to check different criteria. The method is called once only, when
the first request is sent.

Prior to version 2.0, the RabbitTemplate created a new consumer for each request and canceled the
consumer when the reply was received (or timed out). Now the template uses a
DirectReplyToMessagelListenerContainer instead, letting the consumers be reused. The template still
takes care of correlating the replies, so there is no danger of a late reply going to a different sender.
If you want to revert to the previous behavior, set the useDirectReplyToContainer (direct-reply-to-
container when using XML configuration) property to false.

The AsyncRabbitTemplate has no such option. It always used a DirectReplyToContainer for replies
when direct reply-to is used.

Starting with version 2.3.7, the template has a new property useChannelForCorrelation. When this is
true, the server does not have to copy the correlation id from the request message headers to the
reply message. Instead, the channel used to send the request is used to correlate the reply to the
request.

Message Correlation With A Reply Queue

When using a fixed reply queue (other than amq.rabbitmg.reply-to), you must provide correlation
data so that replies can be correlated to requests. See RabbitMQ Remote Procedure Call (RPC). By
default, the standard correlationId property is used to hold the correlation data. However, if you
wish to use a custom property to hold correlation data, you can set the correlation-key attribute on
the <rabbit-template/>. Explicitly setting the attribute to correlationId is the same as omitting the
attribute. The client and server must use the same header for correlation data.

106

https://www.rabbitmq.com/direct-reply-to.html
https://www.rabbitmq.com/tutorials/tutorial-six-java.html

Spring AMQP version 1.1 used a custom property called spring_reply_correlation

o for this data. If you wish to revert to this behavior with the current version
(perhaps to maintain compatibility with another application using 1.1), you must
set the attribute to spring_reply_correlation.

By default, the template generates its own correlation ID (ignoring any user-supplied value). If you
wish to use your own correlation ID, set the RabbitTemplate instance’s userCorrelationId property to
true.

o The correlation ID must be unique to avoid the possibility of a wrong reply being
returned for a request.

Reply Listener Container

When using RabbitMQ versions prior to 3.4.0, a new temporary queue is used for each reply.
However, a single reply queue can be configured on the template, which can be more efficient and
also lets you set arguments on that queue. In this case, however, you must also provide a <reply-
listener/> sub element. This element provides a listener container for the reply queue, with the
template being the listener. All of the Message Listener Container Configuration attributes allowed
on a <listener-container/> are allowed on the element, except for connection-factory and message-
converter, which are inherited from the template’s configuration.

If you run multiple instances of your application or use multiple RabbitTemplate

o instances, you MUST use a unique reply queue for each. RabbitMQ has no ability
to select messages from a queue, so, if they all use the same queue, each instance
would compete for replies and not necessarily receive their own.

The following example defines a rabbit template with a connection factory:

<rabbit:template id="amgpTemplate"
connection-factory="connectionFactory"
reply-queue="replies"
reply-address="replyEx/routeReply">
<rabbit:reply-listener/>
</rabbit:template>

While the container and template share a connection factory, they do not share a channel.
Therefore, requests and replies are not performed within the same transaction (if transactional).

107

Prior to version 1.5.0, the reply-address attribute was not available. Replies were
always routed by using the default exchange and the reply-queue name as the
routing key. This is still the default, but you can now specify the new reply-address
attribute. The reply-address can contain an address with the form

o <exchange>/<routingKey> and the reply is routed to the specified exchange and
routed to a queue bound with the routing key. The reply-address has precedence
over reply-queue. When only reply-address is in use, the <reply-listener> must be
configured as a separate <listener-container> component. The reply-address and
reply-queue (or queues attribute on the <listener-container>) must refer to the
same queue logically.

With this configuration, a SimplelListenerContainer is used to receive the replies, with the
RabbitTemplate being the Messagelistener. When defining a template with the <rabbit:template/>
namespace element, as shown in the preceding example, the parser defines the container and wires
in the template as the listener.

When the template does not use a fixed replyQueue (or is using direct reply-to — see
o RabbitMQ Direct reply-to), a listener container is not needed. Direct reply-to is the
preferred mechanism when using RabbitMQ 3.4.0 or later.

If you define your RabbitTemplate as a <bean/> or use an @Configuration class to define it as an @Bean
or when you create the template programmatically, you need to define and wire up the reply
listener container yourself. If you fail to do this, the template never receives the replies and
eventually times out and returns null as the reply to a call to a sendAndReceive method.

Starting with version 1.5, the RabbitTemplate detects if it has been configured as a MessagelListener to
receive replies. If not, attempts to send and receive messages with a reply address fail with an
I1legalStateException (because the replies are never received).

Further, if a simple replyAddress (queue name) is used, the reply listener container verifies that it is
listening to a queue with the same name. This check cannot be performed if the reply address is an
exchange and routing key and a debug log message is written.

When wiring the reply listener and template yourself, it is important to ensure
o that the template’s replyAddress and the container’s queues (or queueNames)
properties refer to the same queue. The template inserts the reply address into the

outbound message replyTo property.

The following listing shows examples of how to manually wire up the beans:

108

<bean id="amgpTemplate'

' class="

org.springframework.amgp.rabbit.core.RabbitTemplate">
<constructor-arg ref="connectionFactory" />
<property name="exchange" value="foo.exchange" />
<property name="routingKey" value="foo" />
<property name="replyQueue" ref="replyQ" />
<property name="replyTimeout" value="600000" />
<property name="useDirectReplyToContainer" value="false" />

</bean>

<bean class=

"org.springframework.amqp.rabbit.listener.SimpleMessagelListenerContainer">
<constructor-arg ref="connectionFactory" />
<property name="queues" ref="replyQ" />
<property name="messagelistener" ref="amgpTemplate" />

</bean>

<rabbit:queue id="replyQ" name="my.reply.queue" />

@Bean

public RabbitTemplate amgpTemplate() {

RabbitTemplate

rabbitTemplate.

rabbitTemplate

rabbitTemplate = new RabbitTemplate(connectionFactory());
setMessageConverter(msgConv());

.setReplyAddress(replyQueue().getName());
rabbitTemplate.
.setUseDirectReplyToContainer(false);

setReplyTimeout(60000);

rabbitTemplate

return rabbitTemplate;
}
@Bean

public SimpleMessagelListenerContainer replylListenerContainer() {
SimpleMessagelistenerContainer container = new
SimpleMessagelistenerContainer();
container.setConnectionFactory(connectionFactory());
container.setQueues(replyQueue());
container.setMessagelListener(amgpTemplate());
return container;

}

@Bean

public Queue replyQueue() {
return new Queue("my.reply.queue");

}

A complete example of a RabbitTemplate wired with a fixed reply queue, together with a “remote”
listener container that handles the request and returns the reply is shown in this test case.

109

https://github.com/spring-projects/spring-amqp/tree/main/spring-rabbit/src/test/java/org/springframework/amqp/rabbit/listener/JavaConfigFixedReplyQueueTests.java

o When the reply times out (replyTimeout), the sendAndReceive() methods return null.

Prior to version 1.3.6, late replies for timed out messages were only logged. Now, if a late reply is
received, it is rejected (the template throws an AmgpRejectAndDontRequeueException). If the reply
queue is configured to send rejected messages to a dead letter exchange, the reply can be retrieved
for later analysis. To do so, bind a queue to the configured dead letter exchange with a routing key
equal to the reply queue’s name.

See the RabbitMQ Dead Letter Documentation for more information about configuring dead
lettering. You can also take a look at the FixedReplyQueueDeadLetterTests test case for an example.

Async Rabbit Template

Version 1.6 introduced the AsyncRabbitTemplate. This has similar sendAndReceive (and
convertSendAndReceive) methods to those on the AmgpTemplate. However, instead of blocking, they
return a ListenableFuture.

The sendAndReceive methods return a RabbitMessageFuture. The convertSendAndReceive methods
return a RabbitConverterFuture.

You can either synchronously retrieve the result later, by invoking get() on the future, or you can
register a callback that is called asynchronously with the result. The following listing shows both
approaches:

110

https://www.rabbitmq.com/dlx.html

private AsyncRabbitTemplate template;

public void doSomeWorkAndGetResultLater() {

ListenableFuture<String> future = this.template.convertSendAndReceive("foo");
// do some more work
String reply = null;

try {
reply = future.get();

}

catch (ExecutionException e) {

}

}

public void doSomeWorkAndGetResultAsync() {

RabbitConverterFuture<String> future = this.template.convertSendAndReceive(
I|f00|l);
future.addCallback(new ListenableFutureCallback<String>() {

public void onSuccess(String result) {

}

public void onFailure(Throwable ex) {

}
1)

111

If mandatory is set and the message cannot be delivered, the future throws an ExecutionException
with a cause of AmgpMessageReturnedException, which encapsulates the returned message and
information about the return.

If enableConfirms 1is set, the future has a property called confirm, which is itself a
ListenableFuture<Boolean> with true indicating a successful publish. If the confirm future is false,
the RabbitFuture has a further property called nackCause, which contains the reason for the failure,
if available.

o The publisher confirm is discarded if it is received after the reply, since the reply
implies a successful publish.

You can set the receiveTimeout property on the template to time out replies (it defaults to 30000 - 30
seconds). If a timeout occurs, the future is completed with an AmgpReplyTimeoutException.

The template implements SmartLifecycle. Stopping the template while there are pending replies
causes the pending Future instances to be canceled.

Starting with version 2.0, the asynchronous template now supports direct reply-to instead of a
configured reply queue. To enable this feature, use one of the following constructors:

public AsyncRabbitTemplate(ConnectionFactory connectionFactory, String exchange,
String routingKey)

public AsyncRabbitTemplate(RabbitTemplate template)

See RabbitMQ Direct reply-to to use direct reply-to with the synchronous RabbitTemplate.

Version 2.0 introduced variants of these methods (convertSendAndReceiveAsType) that take an
additional ParameterizedTypeReference argument to convert complex returned types. You must
configure the underlying RabbitTemplate with a SmartMessageConverter. See Converting From a
Message With RabbitTemplate for more information.

Spring Remoting with AMQP

This feature is deprecated and will be removed in 3.0. It has been superseded for a

o long time by Handling Exceptions with the returnExceptions being set to true, and
configuring a RemoteInvocationAwareMessageConverterAdapter on the sending side.
See Handling Exceptions for more information.

The Spring Framework has a general remoting capability, allowing Remote Procedure Calls (RPC)
that wuse wvarious transports. Spring-AMQP supports a similar mechanism with a
AmgpProxyFactoryBean on the client and a AmgpInvokerServiceExporter on the server. This provides
RPC over AMQP. On the client side, a RabbitTemplate is used as described earlier. On the server side,
the invoker (configured as a Messagelistener) receives the message, invokes the configured service,
and returns the reply by using the inbound message’s replyTo information.

112

https://www.rabbitmq.com/direct-reply-to.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/remoting.html

You can inject the client factory bean into any bean (by using its serviceInterface). The client can
then invoke methods on the proxy, resulting in remote execution over AMQP.

o With the default MessageConverter instances, the method parameters and returned
value must be instances of Serializable.

On the server side, the AmgpInvokerServiceExporter has both AmgpTemplate and MessageConverter
properties. Currently, the template’s MessageConverter is not used. If you need to supply a custom
message converter, you should provide it by setting the messageConverter property. On the client
side, you can add a custom message converter to the AmgpTemplate, which is provided to the
AmgpProxyFactoryBean by using its amgpTemplate property.

The following listing shows sample client and server configurations:

113

<bean id="client"
class="org.springframework.amqgp.remoting.client.AmgpProxyFactoryBean">
<property name="amgpTemplate" ref="template" />
<property name="serviceInterface" value="foo.Servicelnterface" />
</bean>

<rabbit:connection-factory id="connectionFactory" />

<rabbit:template id="template" connection-factory="connectionFactory" reply-
timeout="2000"
routing-key="remoting.binding" exchange="remoting.exchange" />

<rabbit:admin connection-factory="connectionFactory" />
<rabbit:queue name="remoting.queue" />

<rabbit:direct-exchange name="remoting.exchange">
<rabbit:bindings>
<rabbit:binding queue="remoting.queue" key="remoting.binding" />
</rabbit:bindings>
</rabbit:direct-exchange>

<bean id="listener"
class="org.springframework.amqp.remoting.service.AmqpInvokerServiceExporter">
<property name="servicelnterface" value="foo.Servicelnterface" />
<property name="service" ref="service" />
<property name="amqpTemplate" ref="template" />

</bean>

<bean id="service" class="foo.ServiceImpl" />

<rabbit:connection-factory id="connectionFactory" />

<rabbit:template id="template" connection-factory="connectionFactory" />
<rabbit:queue name="remoting.queue" />

<rabbit:listener-container connection-factory="connectionFactory">

<rabbit:listener ref="listener" queue-names="remoting.queue" />
</rabbit:listener-container>

The AmgpInvokerServiceExporter can process only properly formed messages, such
as those sent from the AmgpProxyFactoryBean. If it receives a message that it cannot

o interpret, a serialized RuntimeException is sent as a reply. If the message has no
replyToAddress property, the message is rejected and permanently lost if no dead
letter exchange has been configured

114

By default, if the request message cannot be delivered, the calling thread
eventually times out and a RemoteProxyFailureException is thrown. By default, the
timeout is five seconds. You can modify that duration by setting the replyTimeout

o property on the RabbitTemplate. Starting with version 1.5, by setting the mandatory
property to true and enabling returns on the connection factory (see Publisher
Confirms and Returns), the calling thread throws an AmgpMessageReturnedException.
See Reply Timeout for more information.

4.1.11. Configuring the Broker

The AMQP specification describes how the protocol can be used to configure queues, exchanges,
and bindings on the broker. These operations (which are portable from the 0.8 specification and
higher) are present in the AmgpAdmin interface in the org.springframework.amgp.core package. The
RabbitMQ implementation of that class is RabbitAdmin located in the
org.springframework.amgp.rabbit.core package.

The AmgpAdmin interface is based on using the Spring AMQP domain abstractions and is shown in the
following listing:

115

public interface AmgpAdmin {
// Exchange Operations
void declareExchange(Exchange exchange);
void deleteExchange(String exchangeName);
// Queue Operations
Queue declareQueue();
String declareQueue(Queue queue);
void deleteQueue(String queueName);
void deleteQueue(String queueName, boolean unused, boolean empty);
void purgeQueue(String queueName, boolean noWait);
// Binding Operations
void declareBinding(Binding binding);
void removeBinding(Binding binding);

Properties getQueueProperties(String queueName);

See also Scoped Operations.

The getQueueProperties() method returns some limited information about the queue (message
count and consumer count). The keys for the properties returned are available as constants in the
RabbitTemplate (QUEUE_NAME, QUEUE_MESSAGE _COUNT, and QUEUE_CONSUMER_COUNT). The RabbitMQ REST API
provides much more information in the QueueInfo object.

The no-arg declareQueve() method defines a queue on the broker with a name that is automatically
generated. The additional properties of this auto-generated queue are exclusive=true,
autoDelete=true, and durable=false.

The declareQueue(Queue queue) method takes a Queue object and returns the name of the declared
queue. If the name property of the provided Queue is an empty String, the broker declares the queue
with a generated name. That name is returned to the caller. That name is also added to the
actualName property of the Queue. You can use this functionality programmatically only by invoking
the RabbitAdmin directly. When using auto-declaration by the admin when defining a queue
declaratively in the application context, you can set the name property to "" (the empty string). The
broker then creates the name. Starting with version 2.1, listener containers can use queues of this

116

type. See Containers and Broker-Named queues for more information.

This is in contrast to an AnonymousQueue where