Spring Batch - Reference Documentation

Spring Batch 2.0.4.RELEASE

Copyright © 2005-2009 Lucas Ward, Dave Syer, Thomas
Risberg, Robert Kasanicky, Dan Garrette, Wayne Lund

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that
each copy contains this Copyright Notice, whether distributed in print or electronically.

1. Spring Batch Introduction 1
1.1. Background.... 1
1.2. Usage Scenarios.... 2
1.3. Spring Batch Architecture..... 3
2. What's New in Spring Batch 2.0.... 4
21 Java5...4
2.2. Chunk Oriented Processing 4
2.2.1. ItemProcessor 6
2.3. Configuration Enhancements.... 7
2.4. MetaData Access Improvements.... 8
2.5. Non Sequential Step Execution 8
2.6. Scalability 9
2.6.1. Remote Chunking 9
2.6.2. Partitioning 10
3. The Domain Language of Batch 11
31 Job....11
3.1.1. Joblnstance.... 12
3.1.2. JobParameters.... 13
3.1.3. JobExecution 13
32 Step.... 15
3.2.1. StepExecution 16
3.3. ExecutionContext 17
3.4. JobRepository 19
3.5. JobLauncher 19
3.6. Item Reader 19
3.7. Item Writer 19
3.8. Item Processor 20
3.9. Batch Namespace 20
4. Configuring and RunningaJob 21
4.1. ConfiguringaJob 21
4.1.1. Restartability 21
4.1.2. Intercepting Job Execution 22
4.1.3. Inheriting from a Parent Job 23
4.1.4. JobFactory and Stateful Componentsin Steps.... 23
4.2. Configuring a JobRepository 23
4.2.1. Transaction Configuration for the JobRepository 24
4.2.2. Changing the Table Prefix 24
4.2.3. In-Memory Repository 25
4.2.4. Non-standard Database Typesin a Repository 25
4.3. Configuring a JobLauncher 25
4.4. RunningaJab 26
4.4.1. Running Jobs from the Command Line.... 27
4.4.2. Running Jobs from within a\Web Container 28
4.5. Advanced Meta-Data Usage 29
4.5.1. Querying the Repository 30
4.5.2. JobOperator 30
4.5.3. JobParametersincrementer 31
4.5.4. Stoppingadob 32
5. Configuringa Step 33

Spring Batch 2.0.4.RELEASE

Spring Batch - Reference Documentation

5.1. Chunk-Oriented Processing 33

5.2.

5.3.

5.4.

5.1.1. Configuring aStep 34

5.1.2. Referencing a Standalone Step 34
5.1.3. Inheriting from a Parent Step 35
5.1.4. The Commit Interval 36

5.1.5. Configuring a Step for Restart 36
5.1.6. Configuring Skip Logic 38

5.1.7. Configuring Fatal Exceptions.... 39
5.1.8. Configuring Retry Logic 39

5.1.9. Controlling Rollback 39

5.1.10. Transaction Attributes..... 40

5.1.11. Registering ItemStreams with the Step 40
5.1.12. Intercepting Step Execution 41
TaskletStep 44

5.2.1. TaskletAdapter 45

5.2.2. Example Tasklet Implementation 45
Controlling Step Flow 46

5.3.1. Sequentia Flow 46

5.3.2. Conditiona Flow 47

5.3.3. Configuring for Stop 49

5.3.4. Programmatic Flow Decisions.... 50
5.3.5. Split Flows.... 51

Late Binding of Job and Step Attributes 51
5.4.1. Step Scope.... 52

6. ltemReadersand ItemWriters.... 53

6.1.
6.2.
6.3.

6.4.
6.5.
6.6.

6.7.

6.8.
6.9.

ItemReader 53

ItemWriter 53

ItemProcessor 54

6.3.1. Chaining ItemProcessors.... 55
6.3.2. Filtering Records.... 56
ItemStream 56

The Delegate Pattern and Registering with the Step ... 57
Flat Files.... 57

6.6.1. The FiddSet 58

6.6.2. FlatFileltemReader 58

6.6.3. FlatFileltemWriter 66

XML Item Readers and Writers ... 69
6.7.1. StaxEventltemReader 71
6.7.2. StaxEventltemWriter 72
Multi-File Input 73

Database 74

6.9.1. Cursor Based ItemReaders 74
6.9.2. Paging ItemReaders.... 78

6.9.3. Database ItemWriters..... 80

6.10. Reusing Existing Services.... 82

6.11. Validating Input 83

6.12. Preventing State Persistence.... 84

6.13. Creating Custom ItemReadersand ItemWriters.... 84

6.13.1. Custom ItemReader Example..... 84

Spring Batch 2.0.4.RELEASE

Spring Batch - Reference Documentation

6.13.2. Custom ItemWriter Example 86
7. Scaling and Parallel Processing 88
7.1. Multi-threaded Step 88
7.2. Pardlel Steps.... 89
7.3. Remote Chunking 89
7.4. Partitioning 90
7.4.1. PartitionHandler 92
7.4.2. StepExecutionSplitter 93
7.4.3. Binding Input Datato Steps 94
8. Repeat 95
8.1. RepeatTemplate.... 95
8.1.1. RepeatContext 96
8.1.2. RepeatStetus.... 96
8.2. Completion Palicies.... 96
8.3. Exception Handling 96
8.4. Listeners.... 97
8.5. Parallel Processing 97
8.6. Declarative Iteration 97
9. Retry 99
9.1. RetryTemplate.... 99
9.1.1. RetryContext 100
9.1.2. RecoveryCallback 100
9.1.3. Stateless Retry 100
9.14. Stateful Retry 100
9.2. Retry Policies.... 101
9.3. Backoff Policies.... 102
9.4. Listeners.... 102
9.5. Declarative Retry 103
10. Unit Testing 104
10.1. Creating aUnit Test Class.... 104
10.2. End-To-End Testing of Batch Jobs 104
10.3. Testing Individual Steps.... 105
10.4. Validating Output Files..... 105
10.5. Mocking Domain Objects.... 105
11. Common Batch Patterns.... 107
11.1. Logging Item Processing and Failures 107
11.2. Stopping a Job Manually for Business Reasons 107
11.3. Adding a Footer Record 109
11.3.1. Writing a Summary Footer 109
11.4. Driving Query Based ItemReaders 110
11.5. Multi-Line Records..... 111
11.6. Executing System Commands.... 113
11.7. Handling Step Completion When No Input is Found 113
11.8. Passing Datato Future Steps.... 114
A. List of ItemReaders and ItemWriters..... 116
A.l. Item Readers.... 116
A.2. Item Writers ... 116
B. Meta-Data Schema.... 117
B.1. Overview 117

Spring Batch 2.0.4.RELEASE

Spring Batch - Reference Documentation

B.1.1. Example DDL Scripts.... 117
B.1.2. Version.... 118
B.1.3. Identity 118
B.2. BATCH_JOB_INSTANCE 118
B.3. BATCH_JOB_PARAMS.... 119
B.4. BATCH_JOB_EXECUTION 119
B.5. BATCH_STEP_EXECUTION 120
B.6. BATCH_JOB_EXECUTION_CONTEXT 122
B.7. BATCH_STEP_EXECUTION_CONTEXT 122
B.8. Archiving.... 122
B.9. Recommendations for Indexing Meta Data Tables 123
Glossary 124

Spring Batch 2.0.4.RELEASE

Chapter 1. Spring Batch Introduction

Many applications within the enterprise domain require bulk processing to perform business
operations in mission critical environments. These business operations include automated, complex
processing of large volumes of information that is most efficiently processed without user interaction.
These operations typicaly include time based events (e.g. month-end calculations, notices or
correspondence), periodic application of complex business rules processed repetitively across very
large data sets (e.g. Insurance benefit determination or rate adjustments), or the integration of
information that is received from internal and external systems that typically requires formatting,
validation and processing in atransactional manner into the system of record. Batch processing is used
to process billions of transactions every day for enterprises.

Spring Batch isalightweight, comprehensive batch framework designed to enabl e the devel opment of
robust batch applications vital for the daily operations of enterprise systems. Spring Batch builds upon
the productivity, POJO-based devel opment approach, and general ease of use capabilities people have
come to know from the Spring Framework, while making it easy for devel opersto access and leverage
more advance enterprise services when necessary. Spring Batch is not a scheduling framework. There
are many good enterprise schedulers available in both the commercial and open source spaces such
as Quartz, Tivoli, Control-M, etc. It is intended to work in conjunction with a scheduler, not replace
ascheduler.

Spring Batch provides reusable functions that are essential in processing large volumes of records,
including logging/tracing, transaction management, job processing statistics, job restart, skip, and
resource management. It also provides more advance technical services and features that will
enable extremely high-volume and high performance batch jobs though optimization and partitioning
techniques. Simple aswell as complex, high-volume batch jobs can leverage the framework in ahighly
scal able manner to process significant volumes of information.

1.1. Background

While open source software projects and associated communities have focused greater attention
on web-based and SOA messaging-based architecture frameworks, there has been a notable lack
of focus on reusable architecture frameworks to accommodate Java-based batch processing needs,
despite continued needs to handle such processing within enterprise IT environments. The lack of
a standard, reusable batch architecture has resulted in the proliferation of many one-off, in-house
solutions devel oped within client enterprise IT functions.

SpringSource and Accenture have collaborated to change this. Accenture's hands-on industry
and technical experience in implementing batch architectures, SpringSource's depth of technical
experience, and Spring's proven programming model together mark anatural and powerful partnership
to create high-quality, market relevant software aimed at filling an important gap in enterprise
Java. Both companies are also currently working with a number of clients solving similar problems
devel oping Spring-based batch architecture solutions. This has provided some useful additional detail
and real-life constraints hel ping to ensure the sol ution can be applied to the real-world problems posed
by clients. For these reasons and many more, SpringSource and Accenture have teamed to collaborate
on the development of Spring Batch.

Accenture has contributed previously proprietary batch processing architecture frameworks, based
upon decades worth of experience in building batch architectures with the last several generations of

Spring Batch 2.0.4.RELEASE 1

Spring Batch Introduction

platforms, (i.e.,, COBOL/Mainframe, C++/Unix, and now Javalanywhere) to the Spring Batch project
along with committer resources to drive support, enhancements, and the future roadmap.

The collaborative effort between Accenture and SpringSource aims to promote the standardization
of software processing approaches, frameworks, and tools that can be consistently leveraged by
enterprise users when creating batch applications. Companies and government agencies desiring to
deliver standard, proven solutionsto their enterprise I'T environments will benefit from Spring Batch.

1.2. Usage Scenarios

A typical batch program generaly reads a large number of records from a database, file, or queue,
processes the data in some fashion, and then writes back data in a modified form. Spring Batch
automates this basic batch iteration, providing the capability to process similar transactions as a set,
typically in an offline environment without any user interaction. Batch jobsare part of most I'T projects
and Spring Batch is the only open source framework that provides a robust, enterprise-scale solution.

Business Scenarios

e Commit batch process periodically

» Concurrent batch processing: parallel processing of ajob

« Staged, enterprise message-driven processing

e Massively parallel batch processing

» Manual or scheduled restart after failure

» Sequential processing of dependent steps (with extensions to workflow-driven batches)
 Partia processing: skip records (e.g. on rollback)

* Whole-batch transaction: for cases with a small batch size or existing stored procedures/scripts
Technical Objectives

« Batch developers use the Spring programming model: concentrate on business logic; let the
framework take care of infrastructure.

* Clear separation of concerns between the infrastructure, the batch execution environment, and the
batch application.

* Provide common, core execution services as interfaces that all projects can implement.

* Provide simple and default implementations of the core execution interfaces that can be used ‘ out
of the box’.

» Easy to configure, customize, and extend services, by leveraging the spring framework in all layers.

 All existing core services should be easy to replace or extend, without any impact to theinfrastructure
layer.

» Provide a simple deployment model, with the architecture JARs completely separate from the
application, built using Maven.

Spring Batch 2.0.4.RELEASE 2

Spring Batch Introduction

1.3. Spring Batch Architecture

Spring Batch is designed with extensibility and a diverse group of end usersin mind. The figure below
shows a sketch of the layered architecture that supports the extensibility and ease of use for end-user

developers.

Batch Infrastructure

Figure 1.1: Spring Batch Layered Architecture

This layered architecture highlights three major high level components: Application, Core, and
Infrastructure. The application contains all batch jobs and custom code written by developers
using Spring Batch. The Batch Core contains the core runtime classes necessary to launch and
control a batch job. It includes things such as a JobLauncher, Job, and St ep implementations. Both
Application and Core are built ontop of acommon infrastructure. Thisinfrastructure contains common
readers and writers, and services such as the Ret ryTenpl at e, Which are used both by application
developers(l t enReader and 1t em i t er) and the core framework itself. (retry)

Spring Batch 2.0.4.RELEASE 3

Chapter 2. What's New in Spring Batch 2.0

The Spring Batch 2.0 release has six major themes:
* Javab

« Non Sequential Step Execution

» Chunk oriented processing

» Meta Data enhancements

* Scalability

e Configuration

2.1. Java b

The 1.x releases of Spring Batch were al based on Java 1.4. This prevented the framework from
using many enhancements provided in Java 5 such as generics, parameterized types, etc. The entire
framework has been updated to utilize these features. As a result, Java 1.4 is no longer supported.
Most of the interfaces developers work with have been updated to support generic types. As an
example, the |t enReader interface from 1.1 is below:

public interface ItenReader {
oj ect read() throws Exception;
voi d mark() throws MarkFail edExcepti on;

void reset () throws ResetFail edExcepti on;

Asyou can see, ther ead method returns an j ect . The 2.0 version is below:

public interface |ItenReader<T> {

T read() throws Exception, Unexpectedl nput Exception, ParseException;

Asyou can see, | t enReader NOW supports the generic type, T, which is returned from read. Y ou may
also notice that mar k and r eset have been removed. Thisis due to step processing strategy changes,
which are discussed below. Many other interfaces have been similarly updated.

2.2. Chunk Oriented Processing

Previoudly, the default processing strategy provided by Spring Batch was item-oriented processing:

Spring Batch 2.0.4.RELEASE 4

What's New in Spring Batch 2.0

- | temReader | | HemWriter

execute() : |
read() i E
iterm E
i write(itern) i
read() : E
itermn U E
| write(item) !
ExitStatus ! D

Initem-oriented processing, thel t enReader returnsone vj ect (the'item’) which isthen handed to the
Itemiter, periodicaly committing when the number of items hitsthe commit interval. For example,
if the commit interval is5, It enReader and 1t emW it er will each be called 5times. Thisisillustrated
in asimplified code example below:

for(int i =0; i < commtlnterval; i++){
oj ect item = itenReader.read();
itemWiter.wite(item;

Boththe |t enReader and It emi t er interfaces were completely geared toward this approach:

public interface |tenReader {
bj ect read() throws Exception;
void mark() throws MarkFail edExcepti on;

void reset () throws ResetFail edExcepti on;

public interface ItenWiter {
void wite(Object item throws Exception;
void flush() throws FlushFail edExcepti on;

void clear() throws C earFail edExcepti on;

Because the 'scope’ of the processing was one item, supporting rollback scenarios required additional
methods, which is what nark, reset, flush, and cl ear provided. If, after successfully reading and
writing 2 items, the third has an error while writing, the transaction would need to be rolled back. In
this case, the cl ear method on the writer would be called, indicating that it should cl ear its buffer,
andreset would be called on the I t enReader , indicating that it should return back to the last position
it was at when mar k was called. (Both mar k and f | ush are called on commit)

In 2.0, this strategy has been changed to a chunk-oriented approach:

Spring Batch 2.0.4.RELEASE 5

What's New in Spring Batch 2.0

execute() ' i
read() i E
item E
read() i E
itern i
E write(iterns) I:i]
ExitStatus i !

Using the same example from above, if the commit interval is five, read will be called 5 times, and
write once. The items read will be aggregated into a list, that will ultimately be written out, as the
simplified example below illustrates:

List items = new Arraylist();

for(int i =0; i < commtlnterval; i++){
itens. add(itenReader.read());

}

itemMWiter.wite(itens);

This approach not only allows for much simpler processing and scalability approaches, it also makes
theltenReader and1tenmwi ter interfaces much cleaner:

public interface |tenReader<T> {

T read() throws Exception, Unexpectedl nput Exception, ParseException;

public interface ItemWiter<T> {

void wite(List<? extends T> itenms) throws Exception;

As you can see, the interfaces no longer contain the mar k, reset, f1ush, and cl ear methods. This
makes the creation of readers and writers much more straightforward for developers. In the case of
I t enReader , the interface is now forward-only. The framework will buffer read items for developers
in the case of rollback (though there are exceptions if the underlying resource is transactional see:
Section 5.1.9.1, “Transactional Readers’). Itenwiter is aso simplified, since it gets the entire
‘chunk’ of items at once, rather than one at a time, it can decide to flush any resources (such
as a file or hibernate session) before returning control to the st ep. More detailed information on
chunk-oriented processing can be found in Section 5.1, “Chunk-Oriented Processing”. Reader and
writer implementation information can be found in Chapter 6, ItemReaders and ltemWriters.

2.2.1. ltemProcessor

Previoudly, st eps had only two dependencies, | t enReader and I temW i ter:

Spring Batch 2.0.4.RELEASE 6

What's New in Spring Batch 2.0

ItemReader

»

[o |
"

ItemWriter

The basic configuration above is fairly robust. However, there are many cases where the item needs
to be transformed before writing. In 1.x this can be achieved using the composite pattern:

V'
s

ItemReader

il P

ItemWriter

This approach works. However, it requires an extra layer between either the reader or the writer and
the st ep. Furthermore, the 1 t emv i t er would need to be registered separately asan | t ensst r eamwith
the st ep. For this reason, the | t enilr ansf oner was renamed to | t enPr ocessor and moved up to the
samelevel asitenReader anditemWiter:

/ ItemReader

- # ItemProcessor
N

ItemWriter

2.3. Configuration Enhancements

Until 2.0, the only option for configuring batch jobs has been normal spring bean configuration.
However, in 2.0 there is a new namespace for configuration. For example, in 1.1, configuring a job
looked like the following:

<bean id="f oot bal | Job"
cl ass="org. spri ngframewor k. bat ch. core. j ob. Si npl eJob" >
<property nanme="steps">
<list>
<l-- Step bean details ommtted for clarity -->
<bean id="pl ayer| oad"/ >

Spring Batch 2.0.4.RELEASE 7

What's New in Spring Batch 2.0

<bean i d="ganeLoad"/ >
<bean i d="pl ayer Sunmari zati on"/ >
</list>
</ property>
<property nanme="j obRepository" ref="jobRepository" />
</ bean>

In 2.0, the equivalent would be:

<job id="footbal | Job">
<l-- Step bean details onmtted for clarity -->
<step id="pl ayerl oad" next="ganeLoad"/>
<step id="ganeLoad" next="player Sunmari zati on"/ >
<step id="pl ayer Sunmari zati on"/>

</ j ob>

More information on how to configure Jobs and Steps with the new namespace can be found in
Chapter 4, Configuring and Running a Job, and Chapter 5, Configuring a Step.

2.4. Meta Data Access Improvements

TheJobReposi t or y interface represents basic CRUD operations with Job meta-data. However, it may
also be useful to query the meta-data. For that reason, the JobExpl or er and JobQper at or interfaces

have been created:
-t\\ Combines all
| iy | e |

CRUD operations \ t get* operations

More information on the new meta data features can be found in Section 4.5, “ Advanced Meta-Data
Usage”. Itisalsoworth noting that Jobs can now be stopped viathe database, removing the requirement
to maintain a handle to the JobExecut i on on the VM the job was launched in.

run{dob) /

2.5. Non Sequential Step Execution

2.0 has al'so seen improvementsin how steps can be configured. Rather than requiring that they solely
be sequential:

Spring Batch 2.0.4.RELEASE 8

What's New in Spring Batch 2.0

They may now be conditional:

D

Yes /\ No

This new ‘conditional flow' support is made easy to configure via the new namespace:

<job id="job">
<step id="stepA'>
<next on="FAl LED' to="stepB" />
<next on="*" to="stepC' />
</ st ep>
<step i d="stepB" next="stepC' />
<step i d="stepC' />
</ j ob>

More details on how to configure non sequential steps can be found in Section 5.3, “Controlling Step
Flow”.

2.6. Scalability

Spring Batch 1.x was always intended as a single VM, possibly multi-threaded model, but many
features were built into it that support parallel execution in multiple processes. Many projects have
successfully implemented a scal able solution relying on the quality of service features of Spring Batch
to ensurethat processing only happensin the correct sequence. In 2.0 those features have been exposed
more explicitly. There are two approaches to scalability: remote chunking, and partitioning.

2.6.1. Remote Chunking

Remote chunking is a technique for dividing up the work of a step without any explicit knowledge
of the structure of the data. Any input source can be split up dynamically by reading it in a single
process (as per normal in 1.x) and sending the items as achunk to aremote worker process. The remote
process implements a listener pattern, responding to the request, processing the data and sending
an asynchronous reply. The transport for the request and reply has to be durable with guaranteed

Spring Batch 2.0.4.RELEASE 9

What's New in Spring Batch 2.0

delivery and asingle consumer, and those features are readily available with any JM Simplementation.
But Spring Batch is building the remote chunking feature on top of Spring Integration, therefore it
is agnostic to the actual implementation of the message middleware. More details can be found in
Section 7.3, “Remote Chunking”

2.6.2. Partitioning

Partitioning is an aternative approach which in contrast depends on having some knowledge of the
structure of the input data, like arange of primary keys, or the name of afileto process. The advantage
of thismodel isthat the processors of each element in apartition can act asif they areasinglestepina
normal Spring Batch job. They don't haveto implement any special or new patterns, which makesthem
easy to configure and test. Partitioning in principle is more scalable than remote chunking because
there is no serialization bottleneck arising from reading all the input datain one place.

In Spring Batch 2.0 partitioning is supported by two interfaces. PartitionHandl er and
St epExecutionSplitter. The PartitionHandl er is the one that knows about the execution fabric
- it has to transmit requests to remote steps and collect the results using whatever grid or remoting
technology isavailable. Parti ti onHandl er isan SPI, and Spring Batch provides one implementation
out of the box for local execution through a TaskExecut or. This will be useful immediately when
parallel processing of heavily 10 bound tasks is required, since in those cases remote execution
only complicates the deployment and doesn't necessarily help much with the performance. Other
implementations will be specific to the execution fabric. (e.g. one of the grid providers such as IBM,
Oracle, Terracotta, Appistry etc.), Spring Batch makes no preference for any of grid provider over
another. More details can be found in Section 7.4, “ Partitioning”

Spring Batch 2.0.4.RELEASE 10

Chapter 3. The Domain Language of Batch

To any experienced batch architect, the overall concepts of batch processing used in Spring Batch
should be familiar and comfortable. There are “ Jobs” and “ Steps” and developer supplied processing
units called ItemReaders and ItemWriters. However, because of the Spring patterns, operations,
templates, callbacks, and idioms, there are opportunities for the following:

« significant improvement in adherence to a clear separation of concerns

« clearly delineated architectural layers and services provided as interfaces

« simple and default implementations that alow for quick adoption and ease of use out-of-the-box
 gignificantly enhanced extensibility

The diagram below is simplified version of the batch reference architecture that has been used for
decades. It provides an overview of the components that make up the domain language of batch
processing. This architecture framework is a blueprint that has been proven through decades of
implementationson thelast several generationsof platforms (COBOL/Mainframe, C++/Unix, and now
Javalanywhere). JCL and COBOL developersarelikely to be as comfortable with the concepts as C++,
C# and Java developers. Spring Batch provides a physical implementation of the layers, components
and technical services commonly found in robust, maintainable systems used to address the creation of
simple to complex batch applications, with the infrastructure and extensions to address very complex
processing needs.

1 ItemReader
e
1 * 1 1
— — — ItemProcessor
1\
1 ItemWriter

Figure 2.1: Batch Stereotypes

The diagram above highlights the key concepts that make up the domain language of batch. A Job has
one to many steps, which has exactly one ItemReader, ItemProcessor, and ItemWriter. A job needs
to be launched (JobL auncher), and meta data about the currently running process needs to be stored
(JobRepository).

3.1. Job

This section describes stereotypes relating to the concept of a batch job. A Job is an entity that
encapsulates an entire batch process. As is common with other Spring projects, a Job will be wired
together via an XML configuration file. This file may be referred to as the "job configuration”.
However, Job isjust the top of an overall hierarchy:

Spring Batch 2.0.4.RELEASE 11

The Domain Language of Batch

*

Joblnstance

\ The EndOfDay Job

* for 2007/05/05

The first attempt at
JobExecution * EndOfDay Job
for 2007/05/05

In Spring Batch, a Job is simply a container for Steps. It combines multiple steps that belong logically
together in aflow and allows for configuration of properties global to al steps, such as restartability.
Thejob configuration contains:

* The simple name of the job
 Definition and ordering of Steps
* Whether or not the job is restartable

A default simple implementation of the Job interface is provided by Spring Batch in the form of the
Si npl eJob classwhich creates some standard functionality ontop of Job, however the batch namespace
abstracts away the need to instantiate it directly. Instead, the <j ob> tag can be used:

<j ob id="footbal | Job">
<step i d="pl ayerl oad" next="ganeLoad"/>
<step id="ganeLoad" next="player Summari zati on"/>
<step i d="pl ayer Sunmari zati on"/>

</ j ob>

3.1.1. JobIlnstance

A Jobl nst ance refersto the concept of alogical job run. Let's consider a batch job that should be run
onceat the end of the day, such asthe 'EndOfDay’ job from the diagram above. Thereisone'EndOfDay’
Job, but each individual run of the Job must be tracked separately. In the case of thisjob, there will be
onelogical Jobl nst ance per day. For example, there will be aJanuary 1st run, and a January 2nd run.
If the January 1st run fails the first time and is run again the next day, it is till the January 1st run.
(Usually this corresponds with the dataiit is processing as well, meaning the January 1st run processes
datafor January 1st, etc). Therefore, each Jobl nst ance can have multiple executions (JobExecut i on
is discussed in more detail below) and only one Jobl nst ance corresponding to a particular Job and
JobPar anet er s can be running at a given time.

The definition of aJobl nst ance has absolutely no bearing on the data the will be loaded. It isentirely
up to the I t enReader implementation used to determine how datawill be loaded. For example, in the
EndOfDay scenario, there may be a column on the data that indicates the 'effective date' or 'schedule
date' to which the data belongs. So, the January 1st run would only load data from the 1st, and the
January 2nd run would only use data from the 2nd. Because this determination will likely be abusiness

Spring Batch 2.0.4.RELEASE 12

The Domain Language of Batch

decision, it isleft up tothe | t enReader to decide. What using the same Jobl nst ance will determine,
however, is whether or not the 'state’ (i.e. the Executi onCont ext , which is discussed below) from
previous executions will be used. Using anew Jobl nst ance will mean 'start from the beginning' and
using an existing instance will generally mean 'start from where you left off'.

3.1.2. JobParameters

Having discussed Jobl nst ance and how it differs from Job, the natural question to ask is: "how is
one Jobl nst ance distinguished from another?' The answer is: JobPar anet ers. JobPar aneters IS a
set of parameters used to start a batch job. They can be used for identification or even as reference
data during the run:

‘—/_,_.- The EndOfDay Job
_ schedule.date = 2007/05/05
* /

\ The EndOfDay Job

* for 2007/05/05

Joblnstance

The first attempt at
JobExecution * EndOfDay Job
for 2007/05/05

In the example above, where there are two instances, one for January 1st, and another for January 2nd,
there isreally only one Job, one that was started with ajob parameter of 01-01-2008 and another that
was started with a parameter of 01-02-2008. Thus, the contract can be defined as: Jobl nst ance = Job
+ JobPar anet er s. This allows adevel oper to effectively control how aJobl nst ance isdefined, since
they control what parameters are passed in.

3.1.3. JobExecution

A JobExecut i on refersto the technical concept of asingle attempt to run aJob. An execution may end
in failure or success, but the Jobl nst ance corresponding to a given execution will not be considered
complete unless the execution completes successfully. Using the EndOfDay Job described above as
an example, consider a Jobl nst ance for 01-01-2008 that failed the first time it was run. If it isrun
again with the same job parameters as the first run (01-01-2008), anew JobExecut i on will be created.
However, there will still be only one Jobl nst ance.

A Job defineswhat ajob isand how it isto be executed, and Jobl nst ance is a purely organizational
object to group executions together, primarily to enable correct restart semantics. A JobExecuti on,
however, is the primary storage mechanism for what actually happened during a run, and as such
contains many more properties that must be controlled and persisted:

Spring Batch 2.0.4.RELEASE 13

The Domain Language of Batch

Table 3.1. JobExecution Properties

status A BatchsStatus object that indicates the status of the execution. While running,
it's BatchStatus.STARTED, if it fails, it's BatchStatus.FAILED, and if it finishes
successfully, it's BatchStatus. COMPLETED

startTime Ajava. util . Dat e representing the current system time when the execution was started.

endTime A java.util . Date representing the current system time when the execution finished,
regardless of whether or not it was successful.

exitStatus The Exi t St at us indicating the result of the run. It is most important because it contains
an exit code that will be returned to the caller. See chapter 5 for more details.

createTime A java.util . Date representing the current system time when the JobExecut i on was
first persisted. The job may not have been started yet (and thus has no start time), but
it will always have a createTime, which is required by the framework for managing job
level Execut i onCont ext S.

lastUpdated Ajava. util . Dat e representing the last time aJobExecut i on was persisted.

executionContext

failureExceptions

The'property bag' containing any user datathat needsto be persisted between executions.

Thelist of exceptions encountered during the execution of aJob. These can be useful if
more than one exception is encountered during the failure of aJob.

These properties are important because they will be persisted and can be used to completely determine
the status of an execution. For example, if the EndOfDay job for 01-01 is executed at 9:00 PM, and
fails at 9:30, the following entries will be made in the batch meta data tables:

Table3.2. BATCH_JOB_INSTANCE

JOB_INST_ID JOB_NAME

1 EndOfDayJob
Table3.3. BATCH_JOB_PARAMS

JOB_INST_ID TYPE_CD KEY_NAME DATE_VAL

1 DATE schedule.Date 2008-01-01
Table3.4. BATCH_JOB_EXECUTION

JOB_EXEC_ID JOB_INST_ID START_TIME END_TIME STATUS

1 1 2008-01-01 21:00 2008-01-0121:30 FAILED

Note
2

column names may have been abbreviated or removed for clarity and formatting

Now that the job has failed, let's assume that it took the entire course of the night for the problem to
be determined, so that the 'batch window' is now closed. Assuming the window starts at 9:00 PM, the
job will be kicked off again for 01-01, starting where it left off and completing successfully at 9:30.

Spring Batch 2.0.4.RELEASE 14

The Domain Language of Batch

Because it's now the next day, the 01-02 job must be run aswell, which is kicked off just afterwards at
9:31, and completesinitsnormal one hour timeat 10:30. Thereisno requirement that one Jobl nst ance
be kicked off after another, unless there is potential for the two jobs to attempt to access the same
data, causing issues with locking at the database level. It is entirely up to the scheduler to determine
when a Job should be run. Since they're separate Jobl nst ances, Spring Batch will make no attempt
to stop them from being run concurrently. (Attempting to run the same Jobl nst ance while another is
aready running will resultin aJobExecut i onAl r eadyRunni ngExcept i on being thrown). There should
now be an extra entry in both the Jobl nst ance and JobPar anet er s tables, and two extra entries in
the JobExecut i on table:

Table3.5. BATCH_JOB_INSTANCE

JOB_INST_ID JOB_NAME
1 EndOfDayJob
2 EndOfDayJob

Table3.6. BATCH_JOB_PARAMS

JOB_INST_ID TYPE_CD KEY_NAME DATE_VAL
1 DATE schedule.Date 2008-01-01 00:00:00
2 DATE schedule.Date 2008-01-02 00:00:00

Table3.7. BATCH_JOB_EXECUTION

JOB_EXEC ID JOB_INST_ID START_TIME END_TIME STATUS
1 1 2008-01-0121:00 2008-01-0121:30 FAILED
2 1 2008-01-0221:00 2008-01-0221:30 COMPLETED
3 2 2008-01-0221:31 2008-01-0222:29 COMPLETED
Note
"

column names may have been abbreviated or removed for clarity and formatting

3.2. Step

A st ep isadomain object that encapsulates an independent, sequential phase of abatch job. Therefore,
every Job is composed entirely of one or more steps. A st ep contains al of the information necessary
to define and control the actual batch processing. Thisis a necessarily vague description because the
contents of any given st ep are at the discretion of the developer writing aJob. A Step can beassimple
or complex as the developer desires. A simple st ep might load data from a file into the database,
requiring little or no code. (depending upon the implementations used) A more complex St ep may
have complicated business rules that are applied as part of the processing. Aswith Job, a st ep hasan
individual st epExecut i on that corresponds with a unique JobExecut i on:

Spring Batch 2.0.4.RELEASE 15

The Domain Language of Batch

——_—

Joblnstance

*

JobExecution \
StepExecution

3.2.1. StepExecution

A St epExecut i on representsasingle attempt to execute ast ep. A new St epExecut i on Will be created
eachtimeast ep isrun, similar to JobExecut i on. However, if a step fails to execute because the step
beforeit fails, there will be no execution persisted for it. A St epExecut i on Will only be created when
its st ep isactually started.

Step executions are represented by objects of the st epExecuti on class. Each execution contains a
reference to its corresponding step and JobExecut i on, and transaction related data such as commit
and rollback count and start and end times. Additionally, each step execution will contain an
Execut i onCont ext, Which contains any data a developer needs persisted across batch runs, such
as statigtics or state information needed to restart. The following is a listing of the properties for
St epExecut i on:

Spring Batch 2.0.4.RELEASE 16

The Domain Language of Batch

Table 3.8. StepExecution Properties

status A Bat chSt at us object that indicates the status of the execution. While it's running, the
status is BatchStatus. STARTED, if it fails, the status is BatchStatus.FAILED, and if it
finishes successfully, the status is BatchStatus. COMPLETED

startTime Ajava. util . Dat e representing the current system time when the execution was started.

endTime A java.util . Date representing the current system time when the execution finished,
regardless of whether or not it was successful.

exitStatus The Exi t St at us indicating the result of the execution. It is most important because it

executionContext

contains an exit code that will be returned to the caller. See chapter 5 for more details.

The'property bag' containing any user datathat needsto be persisted between executions.

readCount

The number of items that have been successfully read

writeCount

The number of items that have been successfully written

commitCount

The number transactions that have been committed for this execution

rollbackCount
readSkipCount
processSkipCount
filterCount

writeSkipCount

The number of timesthe busi nesstransaction controlled by the st ep hasbeen rolled back.
The number of timesr ead hasfailed, resulting in a skipped item.

The number of times pr ocess hasfailed, resulting in a skipped item.

The number of items that have been filtered' by the 1 t enPr ocessor.

The number of timeswri t e hasfailed, resulting in a skipped item.

3.3. ExecutionContext

An Execut i onCont ext represents a collection of key/value pairs that are persisted and controlled
by the framework in order to allow developers a place to store persistent state that is scoped to a
St epExecut i on Or JobExecut i on. For those familiar with Quartz, it is very similar to JobDat aMap.
The best usage example is to facilitate restart. Using flat file input as an example, while processing
individual lines, the framework periodically persists the Execut i onCont ext a commit points. This
allowsthel t enReader to storeitsstatein case afatal error occurs during the run, or even if the power
goesout. All that isneeded isto put the current number of linesread into the context, and the framework
will do the rest:

execut i onCont ext . put Long(get Key(LI NES_READ COUNT), reader.getPosition());

Using the EndOfDay example from the Job Stereotypes section as an example, assume there's one
step: 'loadDatd, that loads afile into the database. After the first failed run, the meta data tables would
look like the following:

Table 3.9. BATCH_JOB_INSTANCE

JOB_INST_ID

1

JOB_NAME

EndOfDayJob

Spring Batch 2.0.4.RELEASE 17

The Domain Language of Batch

Table3.10. BATCH_JOB_PARAMS
JOB_INST_ID TYPE_CD KEY_NAME DATE_VAL

1 DATE schedule.Date 2008-01-01

Table3.11. BATCH_JOB_EXECUTION
JOB_EXEC_ID JOB_INST_ID START_TIME END_TIME STATUS
1 1 2008-01-0121:00 2008-01-0121:30 FAILED

Table3.12. BATCH_STEP_EXECUTION

STEP_EXEC _ID| JOB_EXEC ID STEP NAME |START TIME END _TIME STATUS

1 1 loadDate 2008-01-01 2008-01-01 FAILED
21:00 21:30

Table3.13. BATCH_STEP_EXECUTION_CONTEXT

STEP_EXEC_ID SHORT_CONTEXT

1 { piece.count=40321}

In this case, the st ep ran for 30 minutes and processed 40,321 'pieces, which would represent linesin
afilein this scenario. This value will be updated just before each commit by the framework, and can
contain multiple rows corresponding to entries within the Execut i onCont ext . Being notified before a
commit requires one of the various St epLi st ener S, Or an | t enst r eam Which are discussed in more
detail later in this guide. Aswith the previous example, it is assumed that the Job is restarted the next
day. When it isrestarted, the values from the Execut i onCont ext Of the last run are reconstituted from
the database, and when the | t enReader is opened, it can check to seeif it has any stored state in the
context, and initialize itself from there:

i f (executionContext.containsKey(getKey(LlI NES READ_COUNT))) {
| og. debug("Initializing for restart. Restart data is: " + executionContext);

I ong |ineCount = executionContext.getLong(getKey(LI NES_READ COUNT)) ;
Li neReader reader = get Reader();

Obj ect record = "";
whil e (reader.getPosition() < lineCount & record != null) {
record = readLine();
}
}

In this case, after the above code is executed, the current line will be 40,322, allowing the St ep to
start again from where it left off. The Executi onCont ext can also be used for statistics that need to
be persisted about the run itself. For example, if aflat file contains orders for processing that exist
across multiple lines, it may be necessary to store how many orders have been processed (which is
much different from than the number of lines read) so that an email can be sent at the end of the st ep
with the total orders processed in the body. The framework handles storing this for the developer, in
order to correctly scopeit with anindividual Jobl nst ance. It can be very difficult to know whether an
existing Execut i onCont ext should be used or not. For example, using the 'EndOfDay"' example from
above, when the 01-01 run starts again for the second time, the framework recognizesthat it isthe same
Jobl nst ance and on an individual st ep basis, pulls the Execut i onCont ext out of the database and

Spring Batch 2.0.4.RELEASE 18

The Domain Language of Batch

hands it as part of the St epExecut i on to the St ep itself. Conversely, for the 01-02 run the framework
recognizes that it is a different instance, so an empty context must be handed to the st ep. There are
many of these types of determinationsthat the framework makesfor the devel oper to ensurethe stateis
given to them at the correct time. It is also important to note that exactly one Execut i onCont ext exists
per St epExecution at any given time. Clients of the Executi onCont ext should be careful because
this creates a shared keyspace, so care should be taken when putting values in to ensure no data is
overwritten. However, the st ep stores absolutely no datain the context, so thereisno way to adversely
affect the framework.

It isalso important to note that there is at least one Execut i onCont ext Per JobExecut i on, and one for
every st epExecut i on. For example, consider the following code snippet:

Execut i onCont ext ecStep = st epExecuti on. get Executi onCont ext () ;
Execut i onCont ext ecJob = j obExecuti on. get Executi onCont ext () ;
//ecStep does not equal ecJob

Asnoted in the comment, ecStep will not equal ecJob; they aretwo different Execut i onCont ext S. The
one scoped to the st ep will be saved at every commit point in the st ep, whereas the one scoped to the
Job will be saved in between every st ep execution.

3.4. JobRepository

JobReposi t ory is the persistence mechanism for al of the Stereotypes mentioned above. It provides
CRUD operations for JobLauncher, Job, and st ep implementations. When a Job is first launched, a
JobExecut i on isobtained from the repository, and during the course of execution St epExecut i on and
JobExecut i on implementations are persisted by passing them to the repository:

<j ob-repository id="jobRepository"/>

3.5. JobLauncher

JobLauncher represents asimple interface for launching a Job with agiven set of JobPar anet er s:

public interface JobLauncher {

publi ¢ JobExecution run(Job job, JobParaneters jobParaneters)
t hrows JobExecuti onAl readyRunni ngExcepti on, JobRestartException
}

It is expected that implementations will obtain a valid JobExecut i on from the JobReposi t ory and
execute the Job.

3.6. Iltem Reader

I t enReader iSan abstraction that representstheretrieval of input for ast ep, oneitem at atime. When
the I t enReader has exhausted the items it can provide, it will indicate this by returning null. More
details about the | t enReader interface and its various implementations can be found in Chapter 6,
ItemReaders and ItemWriters.

3.7. Item Writer

ItenWiter iSanabstraction that representsthe output of ast ep, oneitem at atime. Generaly, anitem
writer has no knowledge of the input it will receive next, only the item that was passed in its current

Spring Batch 2.0.4.RELEASE 19

The Domain Language of Batch

invocation. More detailsabout the1 t emw i t er interface and its various implementations can be found
in Chapter 6, [temReaders and ItemWkiters.

3.8. Item Processor

ItenProcessor IS an abstraction that represents the business processing of an item. While the
I t enReader reads oneitem, and theltemwiter writesthem, the i tenProcessor provides accessto
transform or apply other business processing. If, while processing the item, it is determined that the
item is not valid, returning null indicates that the item should not be written out. More details about
the ItemProcessor interface can be found in Chapter 6, [temReaders and ItemWkiters.

3.9. Batch Namespace

Many of the domain concepts listed above need to be configured in a Spring Appl i cat i onCont ext .
While there are implementations of the interfaces above that can be used in a standard bean definition,
a namespace has been provided for ease of configuration:

<beans: beans xm ns="http://ww. spri ngframewor k. or g/ schena/ bat ch"

xm ns: beans="htt p: // ww. spri ngframewor k. or g/ schenma/ beans"

xm ns: xsi ="http://www. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocat i on="
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans
http://ww. spri ngframework. or g/ schenma/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. or g/ schema/ bat ch
ht t p: / / ww. spri ngf ranewor k. or g/ schena/ bat ch/ spri ng- bat ch- 2. 0. xsd" >

<job id="ioSanpl eJob">
<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itemWiter" conmt-interval ="2"/>
</t askl et >
</ st ep>
</ j ob>

</ beans: beans>

Aslong as the batch namespace has been declared, any of its elements can be used. More information
on configuring a Job can be found in Chapter 4, Configuring and Running a Job. More information
on configuring a Step can be found in Chapter 5, Configuring a Step.

Spring Batch 2.0.4.RELEASE 20

Chapter 4. Configuring and Running a Job

In Batch Domain Language, the overall architecture design wasdiscussed, using thefollowing diagram

asaguide:
1 ItemReader
1/
1 * 1 1
—— — — ItemProcessor
1\
1 ItemWriter

While the Job object may seem like a simple container for steps, there are many configuration options
of which a developers must be aware . Furthermore, there are many considerations for how a Job
will be run and how its meta-data will be stored during that run. This chapter will explain the various
configuration options and runtime concerns of aJob .

4.1. Configuring a Job

There are multiple implementations of the Job interface, however, the namespace abstracts away the
differences in configuration. It has only three required dependencies: a name, JobReposi tory , and
alistof step s.

<j ob id="footbal | Job">

<step i d="pl ayer| oad" parent ="s1" next="ganeLoad"/>
<step id="ganeLoad" parent ="s2" next ="pl ayer Sunmari zati on"/ >
<step id="player Summari zati on" parent="s3"/>

</ j ob>

The namespace defaults to referencing a repository with an id of 'jobRepository’, which is a sensible
default. However, this can be overridden explicitly:

<job id="footbal |l Job" job-repository="special Repository">

<step i d="pl ayerl oad" parent ="s1" next="ganeLoad"/>
<step id="ganeLoad" parent ="s3" next ="pl ayer Summari zati on"/ >
<step id="player Sunmari zati on" parent="s3"/>

</ j ob>

4.1.1. Restartability

One key issue when executing a batch job concerns the behavior of a Job when it is restarted? The
launching of a Job is considered to be a 'restart’ if a JobExecuti on aready exists for the particular
Jobl nst ance. ldeally, all jobs should be able to start up where they left off, but there are scenarios
where this is not possible. It is entirely up to the developer to ensure that a new Jobl nst ance is
created in this scenario. However, Spring Batch does provide some help. If a Job should never be
restarted, but should always be run as part of a new Jobl nst ance, then the restartable property may
be set to ‘false":

<job id="football Job" restartabl e="fal se">

Spring Batch 2.0.4.RELEASE 21

Configuring and Running a Job

</j ob>

To phrase it another way, setting restartable to false means "this Job does not support being started
again". Restarting a Job that is not restartable will cause aJobRest ar t Except i on to be thrown:

Job job = new Sinpl eJob();
j ob. set Restartabl e(fal se);

JobPar anet ers j obParaneters = new JobPar anet ers()

JobExecution firstExecution = jobRepository.createJobExecution(job, jobParaneters);
j obReposi tory. saveOr Updat e(first Execution);

try {
j obReposi tory. creat eJobExecution(j ob, jobParaneters);
fail();

}

catch (JobRestart Exception e) {
/'l expected

}

This snippet of JUnit code shows how attempting to create a JobExecut i on the first time for a non
restartablej ob will cause no issues. However, the second attempt will throw aJobRest ar t Except i on.

4.1.2. Intercepting Job Execution

During the course of the execution of a Job, it may be useful to be notified of various eventsin its
lifecycle sothat custom code may be executed. Thesi npl eJob alowsfor thisby callingaJobLi st ener
at the appropriate time:

public interface JobExecuti onLi stener {
voi d beforeJob(JobExecution jobExecution);

voi d afterJob(JobExecution jobExecution);

JobLi st ener S can be added to asi npl eJob viathe listeners element on the job:

<j ob id="footbal | Job">
<step id="pl ayer| oad" parent ="s1" next ="ganelLoad"/ >
<step i d="ganmeLoad" parent ="s2" next="pl ayer Summari zati on"/ >
<step i d="pl ayer Sunmari zati on" parent="s3"/>
<listeners>
<l istener class="org.springframework. batch. sanpl e. Sanpl eLi st ener"/>
</listeners>
</ j ob>

It should be noted that af t er Job will be called regardless of the success or failure of the Job. If success
or failure needs to be determined it can be obtained from the JobExecut i on:

public void afterJob(JobExecution jobExecution){
i f(jobExecution.getStatus() == BatchStatus. COWPLETED) {
//job success

}

el se if(jobExecution.getStatus() == BatchStatus. FAI LED) {
/1job failure

}

Spring Batch 2.0.4.RELEASE 22

Configuring and Running a Job

The annotations corresponding to thisinterface are:
* @Beforedob

e @\fterJob

4.1.3. Inheriting from a Parent Job

If a group of Jobs share similar, but not identical, configurations, then it may be helpful to define a
"parent” Job from which the concrete Jobs may inherit properties. Similar to classinheritance in Java,
the "child" Job will combine its elements and attributes with the parent's.

In the following example, "baseJob" is an abstract Job definition that defines only alist of listeners.
The Job "jobl" is a concrete definition that inherits the list of listeners from "baseJob” and merges it
with itsown list of listenersto produce a Job with two listeners and one st ep, "stepl".

<j ob i d="baseJob" abstract="true">
<l i steners>
<l istener class="com ListenerOne"/>
<l i steners>
</ j ob>

<job id="jobl" parent="baseJob3">
<step id="stepl" parent="standal oneStep"/>

<listeners nerge="true">
<listener class="com Listener Two"/>
<listeners>
</ j ob>

Please see the section on Inheriting from a Parent Step for more detailed information.

4.1.4. JobFactory and Stateful Components in Steps

Unlike many traditional Spring applications, many of the components of a batch application are
stateful; the file readers and writers are obvious examples. The recommended way to deal with thisis
to createafresh Appl i cat i onCont ext for each job execution. If the Job islaunched from the command
line with CommandLi neJobRunner, thisis trivial. For more complex launching scenarios where jobs
are executed in paralel or serially from the same process, some extra steps have to be taken to ensure
that the Appl i cati onCont ext isrefreshed. Thisis preferable to using prototype scope for the stateful
beans because then they would not receive lifecycle callbacks from the container at the end of use.
(e.g. through destroy-method in XML)

The dtrategy provided by Spring Batch to deal with this scenario is the JobFactory,
and the samples provide an example of a specialized implementation that can load an
ApplicationContext and close it properly when the job is finished. A relevant examples is
d assPat hXm Appl i cat i onCont ext JobFact ory and itsuseintheadhoc- j ob- | auncher - cont ext . xm
and the quart z-j ob- I auncher - cont ext . xm , which can be found in the Samples project.

4.2. Configuring a JobRepository

Asdescribed in earlier, the JobReposi t or y isused for basic CRUD operations of the various persisted
domain objects within Spring Batch, such as JobExecution and St epExecuti on. It is required by
many of the major framework features, such asthe JobLauncher , Job, and St ep. The batch namespace
abstracts away many of the implementation details of the JobReposi t ory implementations and their
collaborators. However, there are still afew configuration options available:

Spring Batch 2.0.4.RELEASE 23

Configuring and Running a Job

<j ob-repository id="jobRepository"
dat aSour ce="dat aSour ce"
transacti onManager ="transacti onManager"
i sol ation-1evel -for-create="SERI ALI ZABLE"
t abl e- prefi x="BATCH_"
/>

None of the configuration optionslisted above are required except theid. If they are not set, the defaults
shown above will be used. They are shown above for awareness purposes.

4.2.1. Transaction Configuration for the JobRepository

If the namespace is used, transactional advice will be automatically created around the repository.
Thisisto ensure that the batch meta data, including state that is necessary for restarts after a failure,
is persisted correctly. The behavior of the framework is not well defined if the repository methods
are not transactional. The isolation level in the creat e* method attributes is specified separately to
ensurethat when jobs are launched, if two processes are trying to launch the same job at the sametime,
only one will succeed. The default isolation level for that method is SERIALIZABLE, which is quite
aggressive: READ_COMMITTED would work just aswell; READ_UNCOMMITTED would befine
if two processes are not likely to collide in this way. However, since a call to the cr eat e method is
quite short, it is unlikely that the SERIALIZED will cause problems, aslong as the database platform
supportsit. However, this can be overridden:

<j ob-repository id="j obRepository"
i sol ation-1evel -for-creat e="REPEATABLE_READ' />

If the namespace or factory beans aren't used then it is also essential to configure the transactional
behavior of the repository using AOP:

<aop: confi g>
<aop: advi sor
poi nt cut ="execution(* org.springfranework. batch. core..*Repository+.*(..))"/>
<advi ce-ref ="t xAdvi ce" />
</ aop: confi g>

<t x:advi ce id="txAdvi ce" transaction-nmanager="transacti onManager" >
<tx:attributes>
<t x: net hod name="*" />
</tx:attributes>
</t x: advi ce>

This fragment can be used as is, with aimost no changes. Remember also to include the appropriate
namespace declarations and to make sure spring-tx and spring-aop (or the whole of spring) are on the

classpath.

4.2.2. Changing the Table Prefix

Another modifiable property of the JobRepository is the table prefix of the meta-data
tables. By default they are all prefaced with BATCH_ . BATCH_JOB _EXECUTION and
BATCH_STEP EXECUTION are two examples. However, there are potential reasons to modify this
prefix. If the schema names needs to be prepended to the table names, or if more than one set of meta
datatables is needed within the same schema, then the table prefix will need to be changed:

<j ob-repository id="j obRepository"
t abl e- prefi x="SYSTEM TEST_" />

Spring Batch 2.0.4.RELEASE 24

Configuring and Running a Job

Given the above changes, every query to the metadatatableswill be prefixed with"SY STEM.TEST _".
BATCH_JOB_EXECUTION will bereferred to as SYSTEM.TEST_JOB_EXECUTION.

Note
a

Only the table prefix is configurable. The table and column names are not.

4.2.3. In-Memory Repository

There are scenarios in which you may not want to persist your domain objects to the database. One
reason may be speed; storing domain objects at each commit point takes extra time. Another reason
may be that you just don't need to persist status for a particular job. For this reason, Spring batch
provides an in-memory Map version of the job repository:

<bean i d="j obReposi tory"
cl ass="org. springfranmewor k. bat ch. core. reposi tory. support. MapJobReposi t or yFact or yBean" >
<property name="transacti onManager" ref="transacti onManager"/>
</ bean>

Note that the in-memory repository is volatile and so does not allow restart between JVM instances.
It also cannot guarantee that two job instances with the same parameters are launched simultaneously,
and is not suitable for use in a multi-threaded Job, or alocally partitioned Step. So use the database
version of the repository wherever you need those features.

However it does require a transaction manager to be defined because there are rollback semantics
within the repository, and because the businesslogic might still be transactional (e.g. RDBMS access).
For testing purposes many people find the Resour cel essTransact i onManager useful.

4.2.4. Non-standard Database Types in a Repository

If you are using a database platform that is not in the list of supported platforms, you may be able to
use one of the supported types, if the SQL variant is close enough. To do this you can use the raw
JobReposi t or yFact or yBean instead of the namespace shortcut and use it to set the database type to
the closest match:

<bean i d="j obRepository" class="org...JobRepositoryFactoryBean">
<property nanme="dat abaseType" val ue="db2"/>
<property nanme="dat aSource" ref="dataSource"/>

</ bean>

(The JobReposi t or yFact or yBean tries to auto-detect the database type from the Dat aSource if it is
not specified.) The major differences between platforms are mainly accounted for by the strategy for
incrementing primary keys, so often it might be necessary to overridethei ncr ement er Fact ory aswell
(using one of the standard implementations from the Spring Framework).

If even that doesn't work, or you are not using an RDBMS, then the only option may be to implement
the various Dao interfacesthat the Si npl eJobReposi t or y depends on and wire one up manually in the
normal Spring way.

4.3. Configuring a JobLauncher

The most basic implementation of the JobLauncher interface is the Si npl eJobLauncher . Its only
required dependency isaJobReposi t ory, in order to obtain an execution:

<bean i d="j obLauncher"

Spring Batch 2.0.4.RELEASE 25

Configuring and Running a Job

cl ass="org. spri ngf ramewor k. bat ch. core. | aunch. support. Si npl eJobLauncher" >
<property nanme="j obRepository" ref="jobRepository" />
</ bean>

Once aJobExecut i on is obtained, it is passed to the execute method of Job, ultimately returning the
JobExecut i on to the caller:

start()

execute()

ExitStatus

JobExecution | | : 5
=~ With ExitStatus FINISHED or FAILED |

The sequence is straightforward and works well when launched from a scheduler. However, issues
arise when trying to launch from an HTTP request. In this scenario, the launching needs to be done
asynchronously so that the Si npl eJobLauncher returns immediately to its caller. This is because it
is not good practice to keep an HTTP request open for the amount of time needed by long running
processes such as batch. An example sequence is below:

start()

JobExecution

T/ !
-/
Starts with / execute()

ExilSta:.tus.UNKNOWN

ExitStatus .

The si npl eJobLauncher can easily be configured to allow for this scenario by configuring a
TaskExecutor:

<bean i d="j obLauncher"
cl ass="org. spri ngf ramewor k. bat ch. core. | aunch. support. Si npl eJobLauncher" >
<property name="j obRepository" ref="jobRepository" />
<property nanme="t askExecutor">
<bean cl ass="org. springfranmework. core. task. Si npl eAsyncTaskExecutor" />
</ property>
</ bean>

Any implementation of the spring TaskExecut or interface can be used to control how jobs are
asynchronously executed.

4.4. Running a Job

At aminimum, launching a batch job requires two things: the Job to be launched and aJobLauncher .
Both can be contained within the same context or different contexts. For example, if launching a
job from the command line, a new JVM will be instantiated for each Job, and thus every job will
have its own JobLauncher . However, if running from within a web container within the scope of an
Ht t pRequest , there will usually be one JobLauncher , configured for asynchronous job launching, that
multiple requests will invoke to launch their jobs.

Spring Batch 2.0.4.RELEASE 26

Configuring and Running a Job

4.4.1. Running Jobs from the Command Line

For users that want to run their jobs from an enterprise scheduler, the command line is the primary
interface. This is because most schedulers (with the exception of Quartz unless using the Nat i veJob)
work directly with operating system processes, primarily kicked off with shell scripts. There are many
ways to launch a Java process besides a shell script, such as Perl, Ruby, or even 'build tools such as
ant or maven. However, because most people are familiar with shell scripts, this example will focus
on them.

4.4.1.1. The CommandLineJobRunner

Because the script launching the job must kick off a Java Virtua Machine, there needs to be a class
with a main method to act as the primary entry point. Spring Batch provides an implementation that
serves just this purpose: CommandLi neJobRunner . It's important to note that this is just one way to
bootstrap your application, but there are many ways to launch a Java process, and this class should in
no way be viewed as definitive. The CommandLi neJobRunner performs four tasks:

¢ Load the appropriate Appl i cat i onCont ext

* Parse command line arguments into JobPar anet er s

 Locate the appropriate job based on arguments

e UsetheJobLauncher provided in the application context to launch the job.

All of these tasks are accomplished using only the arguments passed in. The following are required
arguments:

Table 4.1. CommandLineJobRunner arguments

jobPath The location of the XML file that will be used
to create an ApplicationContext. This file should
contain everything needed to run the complete Job

jobName The name of the job to be run.

These arguments must be passed in with the path first and the name second. All arguments after these
are considered to be JobParameters and must be in the format of 'name=value’.

bash$ j ava CommandLi neJobRunner endOf DayJob. xm endOf Day schedul e. dat e(dat e) =2008/ 01/ 01

In most cases you would want to use a manifest to declare your main class in a jar, but for
simplicity, the classwas used directly. Thisexampleisusing the same 'EndOfDay' examplefrom Batch
Domain Language. Thefirst argument is'endOfDayJob.xml', whichisthe Spring Appl i cat i onCont ext
containing the Job. The second argument, 'endOfDay' represents the job name. The final argument,
'schedul e.date(date)=2008/01/01" will be converted into JobPar anet ers. An example of the XML
configuration is below:

<j ob i d="endCf Day" >
<step id="stepl" parent="sinpleStep" />
</ j ob>

<!-- Launcher details renoved for clarity -->

Spring Batch 2.0.4.RELEASE 27

Configuring and Running a Job

<beans: bean i d="j obLauncher"
cl ass="org. spri ngfranmewor k. bat ch. core. | aunch. support. Si npl eJobLauncher" />

Thisexampleisoverly ssimplistic, sincethere are many more requirementsto arun abatch job in Spring
Batch in general, but it serves to show the two main requirements of the ComrandLi neJobRunner : Job
and JobLauncher

4.4.1.2. ExitCodes

When launching a batch job from the command-line, an enterprise scheduler is often used. Most
schedulers are fairly dumb and work only at the process level. This means that they only know about
some operating system process such as a shell script that they're invoking. In this scenario, the only
way to communicate back to the scheduler about the success or failure of ajob isthrough return codes.
A return code is anumber that is returned to a scheduler by the process that indicates the result of the
run. Inthe simplest case: Oissuccessand 1 isfailure. However, there may be more complex scenarios:
If job A returns4 kick off job B, and if it returns 5 kick off job C. Thistype of behavior is configured at
the scheduler level, but it isimportant that a processing framework such as Spring Batch provide away
to return a numeric representation of the 'Exit Code' for a particular batch job. In Spring Batch thisis
encapsulated within an Exi t St at us, which is covered in more detail in Chapter 5. For the purposes of
discussing exit codes, the only important thing to know isthat an Exi t St at us hasan exit code property
that is set by the framework (or the developer) and is returned as part of the JobExecut i on returned
from the JobLauncher . The CommandLi neJobRunner converts this string value to a number using the
Exi t CodeMapper interface:

public interface ExitCodeMapper {

public int intValue(String exitCode);

The essential contract of an Exi t CodeMapper isthat, given a string exit code, a number representation
will bereturned. The default implementation used by thejob runner isthe SimplelvmExitCodeM apper
that returns O for completion, 1 for generic errors, and 2 for any job runner errors such as not being
able to find a Job in the provided context. If anything more complex than the 3 values above is
needed, then a custom implementation of the Exi t CodeMapper interface must be supplied. Because
the CommandLi neJobRunner is the class that creates an Appl i cati onCont ext, and thus cannot be
'wired together', any values that need to be overwritten must be autowired. This means that if an
implementation of Exi t CodeMapper isfound withinthe BeanFactory, it will beinjected into the runner
after the context is created. All that needsto be doneto provide your own Exi t CodeMapper iSto declare
the implementation as a root level bean and ensure that it is part of the Appl i cati onCont ext that is
loaded by the runner.

4.4.2. Running Jobs from within a Web Container

Historically, offline processing such as batch jobs have been launched from the command-line, as
described above. However, there are many cases where launching from an Ht t pRequest is a better
option. Many such use cases include reporting, ad-hoc job running, and web application support.
Because a batch job by definition is long running, the most important concern is ensuring to launch
the job asynchronoudly:

Spring Batch 2.0.4.RELEASE 28

Configuring and Running a Job

start()
JobExecution

O

execute()

The controller inthiscaseisa Spring MV C controller. Moreinformation on Spring MV C can be found
here: http://static.springframework.org/spring/docs/2.5.x/reference/mvc.html. The controller launches
aJob using a JobLauncher that has been configured to launch asynchronously, which immediately
returns a JobExecut i on. The Job will likely still be running, however, this nonblocking behaviour
alows the controller to return immediately, which is required when handling an H: t pRequest . An
exampleis below:

@Control |l er
public class JobLauncherController {

©@Aut owi r ed
JobLauncher jobLauncher;

©@Aut owi r ed
Job j ob;

@Request Mappi ng("/j obLauncher. htm ")
public void handle() throws Exception{
j obLauncher. run(j ob, new JobParaneters());

}

4.5. Advanced Meta-Data Usage

So far, both the JobLauncher and JobRepository interfaces have been discussed. Together, they
represent simple launching of ajob, and basic CRUD operations of batch domain objects:

runfJob)

_-
N

-

CRUD operations l

A JobLauncher usesthe JobReposi t ory t0 create new JobExecut i on objects and run them. Job and
St ep implementations later use the same JobReposi tory for basic updates of the same executions
during the running of a Job. The basic operations suffice for simple scenarios, but in a large batch
environment with hundreds of batch jobs and complex scheduling requirements, more advanced access
of the meta datais required:

Spring Batch 2.0.4.RELEASE 29

http://static.springframework.org/spring/docs/2.5.x/reference/mvc.html

Configuring and Running a Job

Combines all

I N

CRUD operations \ t get* operations

The JobExpl orer and Jobperat or interfaces, which will be discussed below, add additional
functionality for querying and controlling the meta data.

4.5.1. Querying the Repository

The most basic need before any advanced features is the ahility to query the repository for existing
executions. This functionality is provided by the JobExpl or er interface:

public interface JobExplorer {
Li st <Jobl nst ance> get Jobl nst ances(String jobName, int start, int count);
JobExecuti on get JobExecuti on(Long executionld);
St epExecuti on get St epExecuti on(Long j obExecutionld, Long stepExecutionld);
Jobl nst ance get Jobl nst ance(Long i nstancel d);
Li st <JobExecuti on> get JobExecuti ons(Jobl nst ance j obl nstance);

Set <JobExecuti on> findRunni ngJobExecuti ons(String jobNane);

As is evident from the method signatures above, JobExpl orer is a read-only version of the
JobReposi t ory, and like the JobReposi t ory, it can be easily configured via afactory bean:

<bean i d="j obExpl orer" class="org.spr...JobExpl orerFact or yBean"
p: dat aSour ce- r ef =" dat aSour ce" />

Earlier in this chapter, it was mentioned that the table prefix of the JobReposi t ory can be modified
to allow for different versions or schemas. Because the JobExpl or er isworking with the same tables,
it too needs the ahility to set a prefix:

<bean i d="j obExpl orer" class="org.spr...JobExpl orerFact or yBean"
p: dat aSour ce-r ef =" dat aSour ce" p:tabl ePrefi x="BATCH " />

4.5.2. JobOperator

As previously discussed, the JobReposi t ory provides CRUD operations on the meta-data, and the
JobExpl orer provides read-only operations on the meta-data. However, those operations are most
useful when used together to perform common monitoring tasks such as stopping, restarting, or

Spring Batch 2.0.4.RELEASE 30

Configuring and Running a Job

summarizing a Job, as is commonly done by batch operators. Spring Batch provides for these types
of operations viathe Jobper at or interface:

public interface JobOperator {
Li st <Long> get Executi ons(l ong instancel d) throws NoSuchJobl nstanceExcepti on;

Li st <Long> get Jobl nstances(String jobNane, int start, int count)
t hrows NoSuchJobExcepti on;

Set <Long> get Runni ngExecuti ons(String jobNane) throws NoSuchJobExcepti on;
String getParaneters(long executionld) throws NoSuchJobExecuti onExcepti on;

Long start(String jobName, String paraneters)
throws NoSuchJobException, Jobl nstanceAl readyExi st sExcepti on;

Long restart (|l ong executionld)
throws Jobl nst anceAl readyConpl et eExcepti on, NoSuchJobExecuti onExcepti on,
NoSuchJobExcepti on, JobRestart Excepti on;
Long startNext|nstance(String jobNane)
t hrows NoSuchJobExcepti on, JobParanet er sNot FoundExcepti on, JobRestartExcepti on,
JobExecut i onAl r eadyRunni ngExcepti on, Jobl nstanceAl r eadyConpl et eExcepti on;

bool ean stop(l ong executionld)
t hrows NoSuchJobExecuti onException, JobExecuti onNot Runni ngExcepti on;

String get Summary(l ong executionld) throws NoSuchJobExecuti onExcepti on;

Map<Long, String> get St epExecuti onSunmari es(l ong executi onl d)
t hrows NoSuchJobExecuti onExcepti on;

Set <String> get JobNanes();

The above operations represent methods from many different interfaces, such as JobLauncher,
JobReposi tory, JobExpl orer, and JobRegi st ry. For this reason, the provided implementation of
JobQper at or, Si npl eJobQper at or , has many dependencies:

<bean i d="j obQperator" class="org.spr...SinpleJobOperator">
<property nanme="j obExpl orer">
<bean cl ass="org. spr...JobExpl or er Fact or yBean" >
<property nanme="dat aSource" ref="dataSource" />
</ bean>
</ property>
<property nanme="j obRepository" ref="jobRepository" />
<property name="j obRegi stry" ref="jobRegistry" />
<property name="jobLauncher" ref="jobLauncher" />
</ bean>

4.5.3. JobParametersincrementer

Most of the methods on JobOper at or are self-explanatory, and more detailed explanations can be
found on the javadoc of the interface. However, thest ar t Next | nst ance method isworth noting. This
method will aways start a new instance of a Job. This can be extremely useful if there are serious
issues in a JobExecuti on and the Job needs to be started over again from the beginning. Unlike
JobLauncher though, which requiresanew JobPar anet er s object that will trigger anew Jobl nst ance
if the parameters are different from any previous set of parameters, the st ar t Next | nst ance method
will use the JobPar anet er si ncrement er tied to the Job to force the Job to a new instance:

Spring Batch 2.0.4.RELEASE 31

http://static.springframework.org/spring-batch/apidocs/org/springframework/batch/core/launch/JobOperator.html

Configuring and Running a Job

public interface JobParaneterslncrenenter {

JobPar anmet ers get Next (JobPar anet ers paraneters);

The contract of JobPar anet er sl ncrenent er isthat, given a JobPar anet er s object, it will return the
'next’ JobPar anet ers object by incrementing any necessary values it may contain. This strategy is
useful because the framework has no way of knowing what changes to the JobPar anet er s make it
the 'next’ instance. For example, if the only value in JobPar anet er s is a date, and the next instance
should be created, should that value be incremented by one day? Or one week (if the job isweekly for
instance)? The same can be said for any numerical valuesthat help to identify the Job, as shown bel ow:

public class Sanpl el ncrenmenter inplenments JobParaneterslncrenmenter {

publ i c JobParaneters get Next (JobParaneters paraneters) {
if (parameters==null || paranmeters.isEmty()) {
return new JobPar anet er sBui | der (). addLong("run.id", 1L).toJobParaneters();
}
long id = paraneters.getlLong("“run.id",1L) + 1;
return new JobPar anet er sBui |l der (). addLong("run.id", id).toJobParaneters();

In this example, the value with a key of 'run.id' is used to discriminate between Jobl nst ances. If the
JobPar anet er s passed in is null, it can be assumed that the Job has never been run before and thus
itsinitial state can be returned. However, if not, the old value is obtained, incremented by one, and
returned. An incrementer can be associated with Job viathe 'incrementer’ attribute in the namespace:

<job id="footballJob" increnenter="sanpl el ncrenmenter">

</j ob>

4.5.4. Stopping a Job

One of the most common use cases of JobCper at or is gracefully stopping aJob:

Set <Long> executions = jobQOperator.get Runni ngExecuti ons("sanpl eJob");
j obOper ator. stop(executions.iterator().next());

The shutdown is not immediate, since there is no way to force immediate shutdown, especially if the
execution is currently in developer code that the framework has no control over, such as a business
service. However, as soon as control is returned back to the framework, it will set the status of the
current St epExecut i on tO Bat chSt at us. STOPPED, Save it, then do the same for the JobExecuti on
before finishing.

Spring Batch 2.0.4.RELEASE 32

Chapter 5. Configuring a Step

Asdiscussed in Batch Domain Language, a St ep isadomain object that encapsulates an independent,
sequential phase of a batch job and contains all of the information necessary to define and control
the actual batch processing. Thisis a necessarily vague description because the contents of any given
Step are at the discretion of the developer writing a Job. A Step can be as simple or complex as
the developer desires. A simple st ep might load data from afile into the database, requiring little or
no code. (depending upon the implementations used) A more complex st ep may have complicated
business rules that are applied as part of the processing.

/ ItemReader

- # ItemProcessor

IltemWriter

5.1. Chunk-Oriented Processing

Spring Batch uses a'Chunk Oriented' processing style within its most common implementation. Chunk
oriented processing refers to reading the data one at atime, and creating 'chunks' that will be written
out, within atransaction boundary. Oneitemisread infroman| t enReader , handedtoanitemwi ter,
and aggregated. Once the number of itemsread equal s the commit interval, the entire chunk iswritten
out viathe IltemWriter, and then the transaction is committed.

- ‘ ItemReader | | ItemProcessor | ‘ ItemWriter |
: T H !

execute()
read()
itern)
process(item) .
. item :| H
read() _E : '
item) i :
i process(item) !
item D !
: : write(items) D
ExitStatus !

Below is a code representation of the same concepts shown above:

List itens = new Arraylist();

for(int i =0; i < commtlnterval; i++){
oj ect item = itenReader.read()
Obj ect processedltem = itenProcessor. process(iten);
itens. add(processedlten);

}

itemMWiter.wite(itens);

Spring Batch 2.0.4.RELEASE 33

Configuring a Step

5.1.1. Configuring a Step

Despite the relatively short list of required dependencies for a st ep, it is an extremely complex class
that can potentially contain many collaborators. In order to ease configuration, the Spring Batch
namespace can be used:

<j ob i d="sanpl eJob" job-repository="jobRepository">
<step id="stepl">
<taskl et transaction-manager="transacti onManager" >
<chunk reader="itenReader" witer="itemNiter" commt-interval ="10"/>
<t askl et >
</ st ep>
</ j ob>

The configuration above represents the only required dependencies to create aitem-oriented step:

reader - The | t enReader that providesitems for processing.
writer - Thel temwi t er that processes the items provided by the | t enReader .

transaction-manager - Spring'sPl at f or nilr ansact i onManager that will be used to begin and commit
transactions during processing.

job-repository - The JobReposi t ory that will be used to periodically store the St epExecut i on and
Execut i onCont ext during processing (just before committing). For an in-line <step/> (one defined
within a <job/>) it is an attribute on the <job/> element; for a standalone step, it is defined as an
attribute of the on the <tasklet/>.

commit-interval - The number of items that will be processed before the transaction is committed.

It should be noted that, job-repository defaultsto "jobRepository” and transaction-manager defaultsto
"transactionManger". Furthermore, the | t enPr ocessor isoptional, not required, since the item could
be directly passed from the reader to the writer.

5.1.2. Referencing a Standalone Step

While steps must exist within a Job to define the flow, it can sometimes be useful to reference a
'standalone’ Step. For example, if a Step isused by multiplejobsit can be useful to declareit once and
reference it from multiple jobs. This can be achieved with the 'parent’ attribute:

<j ob i d="sanpl eJob" job-repository="jobRepository">
<step id="stepl" parent="standal oneStep" />
</j ob>

<step i d="standal oneStep">
<taskl et job-repository="jobRepository" transaction-manager="transacti onManager">
<chunk reader="itenReader" witer="itemNiter" commit-interval ="10"/>
</t askl et >
</ st ep>

It should be noted that the id attribute is still required on the step within the job element. Thisis for
two reasons:

1. Theidwill be used asthe step name when persisting the StepExecution. If the same standal one step

is referenced in more than one step in the job, an error will occur.

2. When creating job flows, as described later in this chapter, the next attribute should be referring to

the step in the flow, not the standal one step.

Spring Batch 2.0.4.RELEASE 34

Configuring a Step

5.1.3. Inheriting from a Parent Step

If a group of steps share similar configurations, then it may be helpful to define a "parent” st ep
from which the concrete st eps may inherit properties. Similar to class inheritance in Java, the "child"
St ep will combine its elements and attributes with the parent's. The child will also override any of
the parent's St eps.

In the following example, the step "concreteStepl" will inherit from "parentStep".
It will be instantiated with ‘itemReader', ‘itemProcessor', 'itemWriter', startLimit=5, and
alowStartlfComplete=true. Additionally, the commitinterval will be'5' since it is overridden by the
"concreteStepl":

<step i d="parent Step">
<tasklet allowstart-if-conplete="true">
<chunk reader="itenReader" witer="itemWiter" conmt-interval ="10"/>
</t askl et >
</ st ep>

<step i d="concreteStepl" parent="parent Step">
<tasklet start-limt="5">
<chunk processor="itenProcessor" commt-interval ="5"/>
</taskl et >
</ st ep>

5.1.3.1. Abstract Step

Sometimesit may be necessary to define aparent st ep that isnot acomplete st ep configuration. If, for
instance, the reader, writer, and tasklet attributes are left off of ast ep configuration, theninitialization
will fail. If a parent must be defined without these properties, then the "abstract” attribute should be
used. An "abstract” st ep will not be instantiated; it is used only for extending.

In the following example, the st ep "abstractParentStep” would not instantiate if it were not declared
to be abstract. The st ep "concreteStep2" will have 'itemReader’, 'itemWriter', and commitinterval=10.

<step i d="abstract Parent St ep" abstract="true">
<t askl et >
<chunk commit-interval ="10"/>
</ taskl et >
</ st ep>

<step i d="concreteStep2" parent="abstract Parent Step">
<t askl et >
<chunk reader="itenReader" witer="itenWiter"/>
</t askl et >
</ st ep>

5.1.3.2. Merging Lists

Some of the configurable elementson st epsarelists; the <listeners/> element, for instance. If both the
parent and child st eps declare a<listeners/> element, then the child'slist will override the parent's. In
order to allow achild to add additional listenersto the list defined by the parent, every list element has
a"merge" atribute. If the element specifies that merge="true", then the child's list will be combined
with the parent'sinstead of overriding it.

In the following example, the step "concreteStep3" will be created will two listeners:

com Li st ener One and com Li st ener Two:

<step id="listenersParent Step" abstract="true">

Spring Batch 2.0.4.RELEASE 35

Configuring a Step

<listeners>
<listener class="com ListenerOne"/>
<l i steners>
</ st ep>

<step id="concreteStep3" parent="1istenersParentStep">
<t askl et >
<chunk reader="itenReader" witer="itemWiter" commt-interval="5"/>
<listeners nmerge="true">
<listener class="com ListenerTwo"/>
<l i steners>
</t askl et >
</ st ep>

5.1.4. The Commit Interval

As mentioned above, a step reads in and writes out items, periodically committing using the supplied
Pl at f or nlr ansact i onManager . With a commit-interval of 1, it will commit after writing each
individual item. Thisislessthanideal in many situations, since beginning and committing atransaction
isexpensive. Idedly, it is preferable to process as many items as possible in each transaction, whichis
completely dependent upon the type of data being processed and the resources with which the step is
interacting. For thisreason, the number of itemsthat are processed within acommit can be configured.

<j ob i d="sanpl eJob" >
<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itemWiter" conmt-interval ="10"/>
</t askl et >
</ step>
</ j ob>

In the example above, 10 items will be processed within each transaction. At the beginning of
processing a transaction is begun, and each time read is called on the It enReader, a counter is
incremented. When it reaches 10, the list of aggregated items is passed to the 1temwi t er, and the
transaction will be committed.

5.1.5. Configuring a Step for Restart

In Chapter 4, Configuring and Running a Job, restarting a Job was discussed. Restart has numerous
impacts on steps, and as such may require some specific configuration.

5.1.5.1. Setting a StartLimit

There are many scenarios where you may want to control the number of times a st ep may be started.
For example, a particular step might need to be configured so that it only runs once because it
invalidates some resource that must be fixed manually before it can be run again. Thisis configurable
on the step level, since different steps may have different requirements. A St ep that may only be
executed once can exist as part of the same Job asast ep that can beruninfinitely. Below isan example
start limit configuration:

<step id="stepl">
<tasklet start-limt="1">
<chunk reader="itenReader" witer="itemWiter" commt-interval ="10"/>
</t askl et >
</ step>

The simple step above can be run only once. Attempting to run it again will cause an exception to be
thrown. 1t should be noted that the default value for the start-limit is| nt eger . MAX_VALUE.

Spring Batch 2.0.4.RELEASE 36

Configuring a Step

5.1.5.2. Restarting a completed step

In the case of arestartable job, there may be one or more steps that should always be run, regardless
of whether or not they were successful the first time. An example might be avalidation step, or ast ep
that cleans up resources before processing. During normal processing of arestarted job, any step witha
status of 'COMPLETED', meaning it has already been completed successfully, will be skipped. Setting
allow-start-if-complete to "true" overrides this so that the step will always run:

<step id="stepl">
<tasklet allowstart-if-conplete="true">
<chunk reader="itenReader" witer="itemWNiter" comnmt-interval ="10"/>
</t askl et >
</ st ep>

5.1.5.3. Step Restart Configuration Example

<job id="footbal | Job" restartabl e="true">
<step i d="pl ayerl oad" next="ganeLoad">
<t askl et >
<chunk reader="pl ayerFil eltenReader" witer="playerWiter"
comit-interval ="10" />
</ taskl et >
</ step>
<step i d="ganelLoad" next="pl ayer Sunmari zati on">
<tasklet allowstart-if-conplete="true">
<chunk reader="ganeFil eltenReader" witer="gameWiter"
comit-interval ="10"/>
</ taskl et >
</ step>
<step i d="pl ayer Sunmari zati on">
<tasklet start-limt="3">
<chunk reader ="pl ayer Summari zati onSource" witer="summaryWiter"
comit-interval ="10"/>
</ taskl et >
</ step>
</j ob>

The above example configuration is for a job that loads in information about football games and
summarizes them. It contains three steps. playerLoad, gamel oad, and playerSummarization. The
playerLoad st ep loads player information from aflat file, while the gameload st ep does the same for
games. Thefina st ep, playerSummarization, then summarizesthe statisticsfor each player based upon
the provided games. It is assumed that the file loaded by 'playerL oad' must be loaded only once, but
that '‘gameload' will load any games found within a particular directory, deleting them after they have
been successfully loaded into the database. As a result, the playerLoad st ep contains no additional
configuration. It can be started almost limitlessly, and if complete will be skipped. The 'gameload'
St ep, however, needs to be run every time in case extrafiles have been dropped sinceit last executed.
It has'allow-start-if-complete' set to 'true’ in order to always be started. (It is assumed that the database
tablesgamesareloaded into hasaprocessindicator onit, to ensure new games can be properly found by
the summarization step). The summarization st ep, which isthemost important intheJob, isconfigured
to have a start limit of 3. Thisis useful because if the step continually fails, a new exit code will be
returned to the operatorsthat control job execution, and it won't be allowed to start again until manual
intervention has taken place.

Note

Thisjob is purely for example purposes and is not the same as the footballJob found in
the samples project.

Spring Batch 2.0.4.RELEASE 37

Configuring a Step

Run 1:
1. playerLoad is executed and completes successfully, adding 400 playersto the 'PLAY ERS table.

2. gameload is executed and processes 11 files worth of game data, loading their contents into the
'GAMES table.

3. playerSummarization begins processing and fails after 5 minutes.
Run 2:

1. playerLoad is hot run, since it has already completed successfully, and allow-start-if-complete is
‘false' (the default).

2. gamel oad is executed again and processes another 2 files, loading their contentsinto the ' GAMES
table aswell (with a process indicator indicating they have yet to be processed)

3. playerSummarization begins processing of all remaining game data (filtering using the process
indicator) and fails again after 30 minutes.

Run 3:

1. playerLoad is hot run, since it has already completed successfully, and allow-start-if-complete is
false' (the default).

2. gameload is executed again and processes another 2 files, loading their contentsinto the ' GAMES
table aswell (with a process indicator indicating they have yet to be processed)

3. playerSummarization is not start, and the job isimmediately killed, since thisisthe third execution
of playerSummarization, and itslimit isonly 2. The limit must either be raised, or the Job must be
executed as anew Jobl nst ance.

5.1.6. Configuring Skip Logic

There are many scenarios where errors encountered while processing should not result in Step
failure, but should be skipped instead. Thisis usually a decision that must be made by someone who
understands the dataitself and what meaning it has. Financial data, for example, may not be skippable
because it resultsin money being transferred, which needsto be completely accurate. Loading alist of
vendors, on the other hand, might allow for skips. If a vendor is not loaded because it was formatted
incorrectly or was missing necessary information, then there probably won't be issues. Usually these
bad records are logged as well, which will be covered later when discussing listeners.

<step id="stepl">
<t askl et >
<chunk reader="flatFileltenReader" witer="itenWiter"
comm t-interval ="10" skip-limt="10">
<ski ppabl e- excepti on-cl asses>
org. springframework. batch.itemfile. FlatFil eParseException
</ ski ppabl e- excepti on-cl asses>
</ chunk>
</ taskl et >
</ st ep>

In this example, aFl at Fi | el t enReader iS used, and if at any point a Fl at Fi | ePar seException iS
thrown, it will be skipped and counted against the total skip limit of 10. Separate counts are made of
skips on read, process and write inside the step execution, and the limit applies across all.

Spring Batch 2.0.4.RELEASE 38

Configuring a Step

5.1.7. Configuring Fatal Exceptions

One problem with the example above is that any other exception besides aFl at Fi | ePar seExcept i on
will cause the Job to fail. In certain scenarios this may be the correct behavior. However, in other
scenarios it may be easier to identify which exceptions should cause failure and skip everything else:

<step id="stepl">
<t askl et >
<chunk reader="flatFileltenReader" witer="itenWiter"
commit-interval ="10" skip-limt="10">
<ski ppabl e- excepti on- cl asses>
j ava. | ang. Excepti on
</ ski ppabl e- excepti on-cl asses>
<fat al - excepti on-cl asses>
java.io. Fi | eNot FoundExcepti on
</fatal -excepti on-cl asses>
</ chunk>
</t askl et >
</ st ep>

By setting the skippable exceptions to j ava. | ang. Except i on, any exception that is thrown will be
skipped. However, the second list, ‘fatal-exception-classes, contains specific exceptions that should
be fatal if encountered (i.e. not skipped).

5.1.8. Configuring Retry Logic

In most cases you want an exception to cause either askip or st ep failure. However, not all exceptions
are deterministic. If a Fl at Fi | ePar seExcept i on is encountered while reading, it will aways be
thrown for that record; resetting the | t enReader will not help. However, for other exceptions, such
as aDeadl ockLoser Dat aAccessExcept i on, Which indicates that the current process has attempted to
update a record that another process holds alock on, waiting and trying again might result in success.
In this case, retry should be configured:

<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itemNiter"
commit-interval ="2" retry-limt="3">
<retryabl e- excepti on-cl asses>
org. spri ngf ramewor k. dao. Deadl ockLoser Dat aAccessExcepti on
</retryabl e- excepti on-cl asses>
</ chunk>
</t askl et >
</ st ep>

Thest ep alowsalimit for the number of timesanindividual item can beretried, and alist of exceptions
that are 'retryable’. More details on how retry works can be found in Chapter 9, Retry

5.1.9. Controlling Rollback

By default, regardless of retry or skip, any exceptions thrown from the I temw i ter will cause the
transaction controlled by the st ep to rollback. If skip is configured as described above, exceptions
thrown from the | t enReader will not cause a rollback. However, there are many scenarios in which
exceptionsthrown fromthe i t emw i t er should not cause arollback because no action has taken place
to invalidate the transaction. For this reason, the st ep can be configured with alist of exceptions that
should not cause rollback. The no-rollback-exception-classes element isalist of transaction attributes,
separated by commas or newlines.

Spring Batch 2.0.4.RELEASE 39

Configuring a Step

<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itenWiter" commt-interval ="2"/>
<no-rol | back- excepti on-cl asses>
org. springframewor k. batch.itemvalidator. Validati onException
</ no-rol | back- excepti on-cl asses>
</t askl et >
</ step>

5.1.9.1. Transactional Readers

The basic contract of the I t enReader isthat it isforward only. The step buffers reader input, so that
in the case of arollback the items don't need to be re-read from the reader. However, there are certain
scenarios in which the reader is built on top of atransactional resource, such as a JMS queue. In this
case, since the queue istied to the transaction that is rolled back, the messages that have been pulled
from the queue will be put back on. For this reason, the step can be configured to not buffer the items:

<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itemNiter" commt-interval ="2"
i s-reader-transactional - queue="true"/>
</taskl et >
</ st ep>

5.1.10. Transaction Attributes

Transaction attributes can be used to control the isolation, propagation, and timeout settings. More
information on setting transaction attributes can be found in the spring core documentation.

<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="itenWiter" commt-interval="2"/>
<transaction-attributes isol ati on="DEFAULT"
propagat i on=" REQUI RED"
ti meout =" 30"/ >
</t askl et >
</ st ep>

5.1.11. Registering ItemStreams with the Step

The step has to take care of |t enst r eam callbacks at the necessary points in its lifecycle. (for more
information on the | t ent r eaminterface, please refer to Section 6.4, “IltemStream™) Thisis vital if a
step fails, and might need to be restarted, because the 1 t enst r eaminterface is where the step getsthe
information it needs about persistent state between executions.

If the | t enReader, I t enProcessor, Of I temWi ter itself implements the | t enst reaminterface, then
these will be registered automatically. Any other streams need to be registered separately. Thisisoften
the case where there are indirect dependencies such as delegates being injected into the reader and
writer. A stream can be registered on the st ep through the 'streams’ element, as illustrated below:

<step id="stepl">
<t askl et >
<chunk reader="itenReader" witer="conpositeWiter" comit-interval ="2">
<streans>
<streamref="fileltenWiterl1"/>
<streamref="fileltenWiter2"/>
</ streans>
</ chunk>

Spring Batch 2.0.4.RELEASE 40

Configuring a Step

</t askl et >
</ step>

<beans: bean i d="conpositeWiter"
cl ass="org. spri ngfranmewor k. bat ch. i tem support. ConpositeltenWiter">
<beans: property nanme="del egates">
<beans:|ist>
<beans:ref bean="fileltenWiterl" />
<beans: ref bean="fileltenWiter2" />
</ beans:|ist>
</ beans: property>
</ beans: bean>

In the example above, the Conposi teltemiiter iSNot an I tenst ream but both of its delegates are.
Therefore, both delegate writers must be explicitly registered as streamsin order for the framework to
handle them correctly. The t enReader does not need to be explicitly registered as a stream because it
isadirect property of the st ep. The step will now be restartable and the state of the reader and writer
will be correctly persisted in the event of afailure.

5.1.12. Intercepting Step Execution

Just as with the Job, there are many events during the execution of a st ep where a user may need to
perform some functionality. For example, in order to write out to aflat file that requires afooter, the
ItenwWiter needs to be notified when the st ep has been completed, so that the footer can written.
This can be accomplished with one of many st ep scoped listeners.

Any class that implements the st epLi st ener interface (or an extension thereof) can be applied to a
step viathe listeners element:

<step id="stepl">
<t askl et >
<chunk reader="reader" witer="witer" commt-interval ="10"/>
<l i steners>
<l istener ref="steplListener"/>
</listeners>
</t askl et >
</ st ep>

An ItenReader, ItemWiter Of ItenProcessor that itself implements one of the SteplListener
interfaces will be registered automatically with the st ep if using the namespace <st ep> element, or
one of the the * st epFact or yBean factories. This only applies to components directly injected into
the st ep: if the listener is nested inside another component, it needs to be explicitly registered (as
described above).

In addition to the st epLi st ener interfaces, annotations are provided to address the same concerns.
5.1.12.1. StepExecutionListener

St epExecut i onLi st ener represents the most generic listener for step execution. It alows for
notification before a st ep is started and after it has ends, whether it ended normally or failed:

public interface StepExecutionListener extends SteplListener {
voi d beforeSt ep(StepExecuti on stepExecution);

Exi t Status afterStep(StepExecution stepExecution);

Spring Batch 2.0.4.RELEASE 41

Configuring a Step

Exi t St at us iSthe return type of af t er St ep in order to allow listeners the chance to maodify the exit
code that is returned upon completion of a st ep.

The annotations corresponding to thisinterface are:
* @eforeStep
* @\fterStep

5.1.12.2. ChunkListener

A chunk is defined as the items processed within the scope of atransaction. Committing atransaction,
at each commit interval, commits a'chunk’. A chunkLi st ener may be useful to perform logic before
achunk begins processing or after a chunk has completed:

public interface ChunkListener extends StepListener {
voi d bef oreChunk();

voi d afterChunk();

The bef or echunk method is called after the transaction is started, but before r ead is caled on the
I t enReader . Conversely, af t er Chunk iscalled after thelast call towr i t e onthel t enwi t er , but before
the chunk has been committed.

The annotations corresponding to thisinterface are:
* @ef or eChunk
* @Aft er Chunk

5.1.12.3. ItemReadListener

When discussing skip logic above, it was mentioned that it may be beneficial to log out skipped
records, so that they can be deal with later. In the case of read errors, this can be done with an
I t enReader Li st ener:

public interface |tenReadlLi stener<T> extends StepListener {
voi d beforeRead();
void afterRead(T item;

voi d onReadError (Exception ex);

The bef or eRead Method will be called before each call to read on the | t enReader. The af t er Read
method will be called after each successful call to read, and will be passed the item that was read. If
there was an error while reading, the onReadEr r or method will be called. The exception encountered
will be provided so that it can be logged.

The annotations corresponding to this interface are:

* @Bef or eRead

Spring Batch 2.0.4.RELEASE 42

Configuring a Step

* @A terRead
* @nReadError
5.1.12.4. ltemProcessListener

Just aswith the | t enReadLi st ener , the processing of an item can be 'listened' to:

public interface ItenProcessLi stener<T, S> extends SteplListener {
voi d beforeProcess(T item;
void afterProcess(T item S result);

voi d onProcessError(T item Exception e);

The bef oreProcess method will be called before process on the It enProcessor, and is handed
the item that will be processed. The af t er Process method will be called after the item has been
successfully processed. If there was an error while processing, the onPr ocessError method will be
called. The exception encountered and the item that was attempted to be processed will be provided,
so that they can be logged.

The annotations corresponding to this interface are:
* @Bef oreProcess
* @\fterProcess
® @nProcessError
5.1.12.5. ltemWriteListener

The writing of an item can be 'listened' towiththeltemw i t eLi st ener :

public interface ItenWitelistener<S> extends StepListener {
voi d beforeWite(List<? extends S> itens);
void afterWite(List<? extends S> itens);

voi d onWiteError(Exception exception, List<? extends S> itens);

The bef orew i t e method will be called beforewri t e ontheltemwi ter, and is handed the item that
will bewritten. Theaf t er Wi t e method will be called after the item has been successfully written. If
there was an error while writing, theonw i t eEr r or method will be called. The exception encountered
and the item that was attempted to be written will be provided, so that they can be logged.

The annotations corresponding to thisinterface are:
e @BeforeWite
e G\NfterWite

e @nWiteError

Spring Batch 2.0.4.RELEASE 43

Configuring a Step

5.1.12.6. SkipListener

I t enReadLi st ener, | t enProcessLi stener,and|temniteLi st ner al provide mechanismsfor being
notified of errors, but nonewill inform you that arecord has actually been skipped. onw i t eError, for
example, will be called even if an item is retried and successful. For this reason, there is a separate
interface for tracking skipped items:

public interface SkipListener<T, S> extends StepListener {
voi d onSki pl nRead(Throwabl e t);
voi d onSki pl nProcess(T item Throwable t);

void onSkiplnWite(S item Throwable t);

onski pl nRead Will be called whenever an item is skipped while reading. It should be noted that
rollbacks may cause the same item to be registered as skipped more than once. onSki pl nwi t e will
be called when an item is skipped while writing. Because the item has been read successfully (and not
skipped), it is also provided the item itself as an argument.

The annotations corresponding to thisinterface are:
* @nski pl nRead
* @nSkiplnWite
* @nski pl nProcess
5.1.12.6.1. SkipListeners and Transactions

One of the most common use cases for a ski pLi st ener iSto log out a skipped item, so that another
batch process or even human process can be used to evaluate and fix the issue leading to the skip.
Becausethere are many casesin which the original transaction may berolled back, Spring Batch makes
two guarantees:

1. The appropriate skip method (depending on when the error happened) will only be called once per
item.

2. Theski pLi st ener will always be called just before the transaction is committed. Thisisto ensure
that any transactional resources call by the listener are not rolled back by a failure within the
ItemNiter.

5.2. TaskletStep

Chunk-oriented processing is not the only way to processin a st ep. What if a st ep must consist as a
simple stored procedure call? Y ou could implement the call asan | t enReader and return null after the
procedure finishes, but it is a bit unnatural since there would need to beano-op 1temwiter. Spring
Batch providesthe Taskl et St ep for this scenario.

The Taskl et is a simple interface that has one method, execut e, which will be a called repeatedly
by the Taskl et St ep until it either returns Repeat St at us. FI NI SHED or throws an exception to signal a

Spring Batch 2.0.4.RELEASE 44

Configuring a Step

failure. Each call to the Taskl et iswrapped in atransaction. Taskl et implementors might call astored
procedure, a script, or asimple SQL update statement. To create a Taskl et St ep, the 'ref' attribute of
the <tasket/> element should reference abean defining aTask! et object; no <chunk/> element should
be used within the <tasket/>:

<step id="stepl">
<t askl et ref="nyTasklet"/>
</ st ep>

Note

.

‘8

Taskl et St ep Will automatically register the tasklet as st epLi st ener if it implementsthis
interface

5.2.1. TaskletAdapter

Aswith other adaptersfor the | t enReader and It emi t er interfaces, the Taskl et interface contains
an implementation that allows for adapting itself to any pre-existing class. Taskl et Adapter. An
example where this may be useful is an existing DAO that is used to update a flag on a set of records.
The Taskl et Adapt er can be used to call this class without having to write an adapter for the Task! et
interface:

<bean i d="nyTaskl et" class="org.springframework. batch. core. step.taskl et. Taskl et Adapt er">
<property nanme="t ar get Obj ect">
<bean cl ass="org. nyconpany. FooDao" >
</ property>
<property name="t ar get Met hod" val ue="updat eFoo" />
</ bean>

5.2.2. Example Tasklet Implementation

Many batch jobs contain steps that must be done before the main processing beginsin order to set up
various resources or after processing has completed to cleanup those resources. In the case of a job
that works heavily with files, it is often necessary to delete certain files locally after they have been
uploaded successfully to another location. The example below taken from the Spring Batch samples
project, isaTaskl et implementation with just such aresponsibility:

public class FileDel etingTasklet inplements Tasklet, InitializingBean {
private Resource directory;

publ i c Repeat St at us execut e(StepContribution contribution,
ChunkCont ext chunkContext) throws Exception {
File dir = directory.getFile();
Assert.state(dir.isDirectory());

File[] files = dir.listFiles();
for (int i =0; i <files.length; i++) {
bool ean deleted = files[i].delete();
if (!deleted) {
t hrow new Unexpect edJobExecut i onException("Could not delete file " +
files[i].getPath());
}
}
return Repeat St at us. COWLETED;
}

public void setDirectoryResource(Resource directory) {

Spring Batch 2.0.4.RELEASE 45

Configuring a Step

this.directory = directory;

}

public void afterPropertiesSet() throws Exception {
Assert.notNul |l (directory, "directory nmust be set")

}

TheaboveTaskl et implementationwill deleteall fileswithin agiven directory. It should be noted that
the execut e method will only be called once. All that isleft isto reference the Taskl et from the st ep:

<j ob id="taskl et Job" >
<step id="del eteFilesInDir">
<taskl et ref="fileDel etingTasklet"/>
</ step>
</ j ob>

<beans: bean i d="fil eDel eti ngTaskl et"
cl ass="org. spri ngf ramewor k. bat ch. sanpl e. t askl et . Fi | eDel eti ngTaskl et ">
<beans: property nanme="direct oryResour ce">
<beans: bean i d="directory"

cl ass="org. spri ngframework. core.io. Fil eSyst enResour ce">

<beans: constructor-arg val ue="target/test-outputs/test-dir" />
</ beans: bean>

</ beans: property>
</ beans: bean>

5.3. Controlling Step Flow

With the ability to group steps together within an owning job comes the need to be able to control
how the job 'flows' from one step to another. The failure of a st ep doesn't necessarily mean that the
Job should fail. Furthermore, there may be more than one type of 'success which determines which
st ep should be executed next. Depending upon how a group of Stepsis configured, certain steps may

not even be processed at all.
5.3.1. Sequential Flow

The simplest flow scenario is ajob where al of the steps execute sequentially:

This can be achieved using the 'next' attribute of the step element:

<job id="job">
<step id="stepA' parent="sl1" next="stepB" />
<step i d="stepB" parent="s2" next="stepC'/>
<step i d="stepC' parent="s3" />

</ j ob>

Spring Batch 2.0.4.RELEASE 46

Configuring a Step

In the scenario above, 'step A" will execute first becauseit isthefirst st ep listed. If 'step A' completes
normally, then 'step B' will execute, and so on. However, if 'step A’ fails, then the entire Job will fail
and 'step B' will not execute.

Note

e

With the Spring Batch namespace, the first step listed in the configuration will always be
the first step executed by the Job. The order of the other step elements does not matter,
but the first step must always appear first in the xml.

5.3.2. Conditional Flow

In the example above, there are only two possibilities:
1. The st ep issuccessful and the next st ep should be executed.
2. The st ep failed and thus the Job should fail.

In many cases, this may be sufficient. However, what about a scenario in which the failure of a st ep
should trigger a different st ep, rather than causing failure?

=
v

Yes l No

In order to handle more complex scenarios, the Spring Batch namespace allows transition elements to
be defined within the step element. One such transition isthe "next" element. Likethe "next" attribute,
the "next" element will tell the Job which st ep to execute next. However, unlike the attribute, any
number of "next" elements are alowed on a given st ep, and there is no default behavior the case of
failure. Thismeansthat if transition elementsare used, then all of the behavior for the st ep'stransitions
must be defined explicitly. Note also that a single step cannot have both a "next" attribute and a
transition element.

The next element specifies a pattern to match and the step to execute next:

<job id="job">
<step i d="stepA" parent="s1">
<next on="*" to="stepB"' />
<next on="FAlLED' to="stepC' />
</ step>
<step i d="stepB" parent="s2" next="stepC' />
<step id="stepC' parent="s3" />
</ j ob>

The "on" attribute of a transition element uses a simple pattern-matching scheme to match the
Exi t St at us that results from the execution of the st ep. Only two special characters are alowed in
the pattern:

Spring Batch 2.0.4.RELEASE 47

Configuring a Step

o "*" will zero or more characters
o "?' will match exactly one character
For example, "c*t" will match "cat" and "count”, while "c?" will match "cat" but not "count”.

While there is no limit to the number of transition elements on a St ep, if the St ep's execution results
inan Exi t St at us that is not covered by an element, then the framework will throw an exception and
the Job will fail. It is important to note that the framework will automatically order transitions from
most specific to least specific. This means that even if the elements were swapped for "stepA” in the
example above, an Exi t St at us of "FAILED" would still go to "stepB".

5.3.2.1. Batch Status vs. Exit Status

When configuring a Job for conditional flow, it is important to understand the difference between
Bat chSt at us and Exi t St at us. Bat chSt at us iSan enumeration that isaproperty of both JobExecut i on
and st epExecut i on and is used by the framework to record the status of a Job or St ep. It can be one
of thefollowing values: COMPLETED, STARTING, STARTED, STOPPING, STOPPED, FAILED,
ABANDONED or UNKNOWN. Most of them are self explanatory: COMPLETED is the status set
when a step or job has completed successfully, FAILED is set when it fails, and so on. The example
above contains the following 'next' el ement:

<next on="FAlLED' to="stepB" />

At first glance, it would appear that the 'on’ attribute referencestheBat chst at us of the st ep towhichit
belongs. However, it actually referencesthexi t St at us of the st ep. Asthenameimplies, Exi t St at us
represents the status of a st ep after it finishes execution. More specificaly, the 'next' element above
referencesthe exit code of the Exi t St at us. Towriteit in English, it says: "go to stepB if the exit code
is FAILED". By default, the exit code is always the same as the Bat chst at us for the Step, which is
why the entry above works. However, what if the exit code needs to be different? A good example
comes from the skip sample job within the samples project:

<step id="stepl" parent="s1">
<end on="FAl LED" />
<next on="COWLETED W TH SKI PS" to="errorPrintl1" />
<next on="*" to="step2" />

</ st ep>

The above step has three possibilities:
1. The st ep failed, in which case the job should fail.
2. The st ep completed successfully.

3. The st ep completed successfully, but with an exit code of 'COMPLETED WITH SKIPS. In this
case, a different step should be run to handle the errors.

The above configuration will work. However, something needs to change the exit code based on the
condition of the execution having skipped records:

public cl ass Ski pChecki ngLi st ener extends StepExecuti onLi stenerSupport {

public ExitStatus afterStep(StepExecution stepExecution) {
String exitCode = stepExecution.get ExitStatus().getExitCode();
i f (!exitCode. equal s(Exit Status. FAI LED. get Exi t Code()) &&

Spring Batch 2.0.4.RELEASE 48

Configuring a Step

st epExecut i on. get Ski pCount () > 0) {
return new ExitStatus("COVPLETED W TH SKI PS") ;
}
el se {
return null;

}

The above codeis a St epExecut i onLi st ener that first checks to make sure the st ep was successful,
and next if the skip count on the St epExecuti on is higher than 0. If both conditions are met, a new
Exi t St at us with an exit code of "COMPLETED WITH SKIPS" is returned.

5.3.3. Configuring for Stop

After the discussion of Bat chSt at us and Exi t St at us, one might wonder how the Bat chst at us and
Exi t St at us are determined for the Job. While these statuses are determined for the st ep by the code
that is executed, the statuses for the Job will be determined based on the configuration.

So far, al of the job configurations discussed have had at |east one final st ep with no transitions. For
example, after the following step executes, the Job will end:

<step i d="stepC' parent="s3"/>

If no transitions are defined for a st ep, then the Job's statuses will be defined as follows:

* |f the st ep ends with Exi t St at us FAILED, then the Job's Bat chSt at us and Exi t St at us will both
be FAILED.

* Otherwise, the Job's Bat chSt at us and Exi t St at us will both be COMPLETED.

While this method of terminating a batch job is sufficient for some batch jobs, such as a simple
sequential step job, custom defined job-stopping scenarios may be required. For this purpose, Spring
Batch provides three transition elements to stop aJob (in addition to the "next" element [47] that we
discussed previously). Each of these stopping elements will stop aJob with a particular Bat chSt at us.
It isimportant to note that the stop transition elements will have no effect on either the Bat chst at us
or Exi t St at us Of any St epsin the Job: these elements will only affect the final statuses of the Job.
For example, it is possible for every step in a job to have a status of FAILED but the job to have a
status of COMPLETED, or vise versa.

5.3.3.1. The 'End' Element

The 'end’ element instructs a Job to stop with a BatchStatus of COMPLETED. A Job
that has finished with status COMPLETED cannot be restarted (the framework will throw a
Jobl nst anceAl r eadyConpl et eExcept i on). The 'end’ element also allows for an optiona 'exit-code
attribute that can be used to customize the Exi t St at us of the Job. If no 'exit-code' attribute is given,
then the Exi t St at us will be "COMPLETED" by default, to match the Bat chSt at us.

In the following scenario, if step2 fails, then the Job will stop with aBat chst at us of COMPLETED
and an Exi t St at us of "COMPLETED" and step3 will not execute; otherwise, execution will moveto
step3. Note that if step2 fails, the Job will not be restartable (because the status is COMPLETED).

<step i d="stepl" parent="sl1" next="step2">

Spring Batch 2.0.4.RELEASE 49

Configuring a Step

<step i d="step2" parent="s2">
<end on="FAl LED'/ >
<next on="*" to="step3"/>
</ st ep>

<step id="step3" parent="s3">
5.3.3.2. The 'Fail' Element

The 'fall' element instructs a Job to stop with a Bat chst at us of FAILED. Unlike the 'end’ element,
the 'fail' element will not prevent the Job from being restarted. The 'fail' element also allows for an
optional 'exit-code' attribute that can be used to customize the Exi t St at us of the Job. If no 'exit-code
attribute is given, then the Exi t St at us will be "FAILED" by default, to match the Bat chst at us.

In the following scenario, if step2 fails, then the Job will stop with aBat chst at us of FAILED and an
Exi t St at us Of "EARLY TERMINATION" and step3 will not execute; otherwise, execution will move
to step3. Additionaly, if step2 fails, and the Job isrestarted, then execution will begin again on step2.

<step i d="stepl" parent="sl1" next="step2">

<step i d="step2" parent="s2">
<fail on="FAlILED' exit-code="EARLY TERM NATI ON'/ >
<next on="*" to="step3"/>

</ st ep>

<step i d="step3" parent="s3">
5.3.3.3. The 'Stop' Element

The'stop' element instructsaJob to stop with aBat chst at us of STOPPED. Stopping aJob can provide
atemporary break in processing so that the operator can take some action before restarting the Job.
The 'stop' element requires a 'restart’ attribute that specifies the step where execution should pick up
whentheJob is restarted.

In the following scenario, if stepl finishes with COMPLETE, then the job will then stop. Onceit is
restarted, execution will begin on step2.

<step id="stepl" parent="sl1">
<stop on="COWLETED' restart="step2"/>
</ st ep>

<step id="step2" parent="s2"/>

5.3.4. Programmatic Flow Decisions

In some situations, more information than the Exi t St at us may be required to decide which step to
execute next. In this case, aJobExecut i onDeci der can be used to assist in the decision.

public class MyDecider inplenments JobExecutionDecider {
public String deci de(JobExecution jobExecution, StepExecution stepExecution) {
i f (sonmeCondition) {
return "FAl LED';
}
el se {
return " COWLETED';
}

Spring Batch 2.0.4.RELEASE 50

Configuring a Step

Inthejob configuration, a"decision" tag will specify the decider to use aswell asall of thetransitions.

<job id="job">
<step id="stepl" parent="sl1" next="decision" />

<deci si on i d="deci sion" deci der="deci der">
<next on="FAl LED' to="step2" />
<next on="COWPLETED' to="step3" />

</ deci si on>

<step i d="step2" parent="s2" next="step3"/>
<step id="step3" parent="s3" />

</ ob>

<beans: bean i d="deci der" cl ass="com MyDeci der"/>

5.3.5. Split Flows

Every scenario described so far has involved a Job that executes its St eps one at atime in alinear
fashion. In addition to this typical style, the Spring Batch namespace also allows for a job to be
configured with parallel flows using the 'split' element. Asis seen below, the 'split' element contains
one or more 'flow' elements, where entire separate flows can be defined. A 'split' element may also
contain any of the previously discussed transition elements such as the 'next' attribute or the 'next’,
‘'end', 'fail', or 'pause’ elements.

<split id="splitl" next="step4">
<fl ow>
<step id="stepl" parent="sl1" next="step2"/>
<step id="step2" parent="s2"/>
</ fl ow>
<fl ow>
<step id="step3" parent="s3"/>
</ fl ow>
</split>
<step id="step4" parent="s4"/>

5.4. Late Binding of Job and Step Attributes

Both the XML and Flat File examples above use the Spring Resour ce abstraction to obtain afile. This
works because Resour ce has a getFile method, which returns aj ava. i o. Fi | e. Both XML and Flat
File resources can be configured using standard Spring constructs:

<bean id="flatFileltenReader"
cl ass="org. springframework. batch.itemfile.FlatFileltenReader">
<property name="resource"
val ue="fil e://out puts/20070122. t est St ream Cust oner Report St ep. TEMP. t xt" />
</ bean>

The above Resour ce will load the file from the file system location specified. Note that absolute
locations have to start with a double slash ("//"). In most spring applications, this solution is good
enough because the names of these are known at compile time. However, in batch scenarios, the file
name may need to be determined at runtime as a parameter to the job. This could be solved using '-D'
parameters, i.e. a system property:

<bean id="flatFileltenReader"
class="org. springframework. batch.itemfile.FlatFileltenReader">
<property name="resource" value="${input.file.nane}" />
</ bean>

Spring Batch 2.0.4.RELEASE 51

Configuring a Step

All that would be required for this solution to work would be a system argument
(-Dinput.file.name="file://file.txt"). (Note that although a Pr opert yPl acehol der Confi gurer can be
used here, it isnot necessary if the system property isalways set because the Resour ceEdi t or in Spring
already filters and does placeholder replacement on system properties.)

Often in a batch setting it is preferable to parameterize the file name in the JobPar anet ers of the
job, instead of through system properties, and access them that way. To accomplish this, Spring Batch
allows for the late binding of various Job and Step attributes:

<bean id="flatFil eltenReader" scope="step"
cl ass="org. springframework. batch.itemfile.FlatFileltenReader">
<property name="resource" val ue="#{j obParaneters[input.file.nanme]}" />
</ bean>

BoththeJobExecut i on and St epExecut i on level Execut i onCont ext can be accessed in the sameway:

<bean id="flatFil eltenReader" scope="step"
class="org. springframework. batch.itemfile.FlatFileltenReader">
<property nanme="resource" val ue="#{j obExecuti onContext[input.file.nanme]}" />
</ bean>

<bean id="flatFileltenReader" scope="step"
class="org. springframework. batch.itemfile.FlatFileltenReader">
<property name="resource" val ue="#{stepExecuti onContext[input.file.nane]}" />
</ bean>

Note

Any bean that useslate-binding must be declared with scope="step". Seefor Section 5.4.1,
“Step Scope” more information.

5.4.1. Step Scope

All of the late binding examples from above have a scope of "step” declared on the bean definition:

<bean id="flatFil eltenReader" scope="step"
class="org. springframework. batch.itemfile.FlatFileltenReader">
<property name="resource" val ue="#{j obParaneters[input.file.nane]}" />
</ bean>

Using a scope of Step is required in order to use late binding since the bean cannot actualy be
instantiated until the st ep starts, which allows the attributes to be found. Because it is not part of the
Spring container by default, it must be added explicitly, either by using the bat ch hamespace:

<beans: beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: bat ch="htt p: //ww. spri ngframewor k. or g/ schena/ bat ch"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="...">

</ beans: beans>

or by including a bean definition explicitly for thest ep (but not both):

<bean cl ass="org. spri ngfranmewor k. bat ch. core. scope. St epScope" />

Spring Batch 2.0.4.RELEASE 52

Chapter 6. ItemReaders and ItemWriters

All batch processing can be described in its most simple form as reading in large amounts of data,
performing some type of calculation or transformation, and writing the result out. Spring Batch
provides three key interfaces to help perform bulk reading and writing: | t enReader , | t enPr ocessor
anditemWiter.

6.1. temReader

Although asimple concept, an I t enReader isthe meansfor providing data from many different types
of input. The most general examplesinclude:

« Fat File- Flat File Item Readers read lines of data from a flat file that typically describe records
with fields of data defined by fixed positionsin the file or delimited by some special character (e.g.
Comma).

e XML - XML ItemReaders process XML independently of technologies used for parsing, mapping
and validating objects. Input data allows for the validation of an XML file against an XSD schema.

« Database - A database resource is accessed to return resultsets which can be mapped to objects for
processing. The default SQL ItemReaders invoke a Rowvapper to return objects, keep track of the
current row if restart is required, store basic statistics, and provide some transaction enhancements
that will be explained later.

There are many more possibilities, but we'll focus on the basic ones for this chapter. A complete list

of al available ItemReaders can be found in Appendix A.

I t enReader iSabasic interface for generic input operations:

public interface |tenReader<T> {
T read() throws Exception, Unexpectedl nput Exception, ParseException;

}

The r ead method defines the most essential contract of the I t enReader ; calling it returns one ltem
or null if no more items are left. An item might represent aline in afile, arow in a database, or an
element in an XML file. It is generally expected that these will be mapped to a usable domain object
(i.e. Trade, Foo, etc) but there is no requirement in the contract to do so.

It is expected that implementations of the | t enReader interface will be forward only. However, if the
underlying resourceistransactional (such asaJM Squeue) then calling read may return the samelogical
item on subsequent callsin arollback scenario. It is aso worth noting that alack of items to process
by an I t enReader will not cause an exception to be thrown. For example, adatabase | t enReader that
is configured with a query that returns O results will simply return null on the first invocation of r ead.

6.2. ltemWriter

ItenwWiter issimilar in functionality to an | t enReader , but with inverse operations. Resources still
need to be located, opened and closed but they differ in that an I tenwiter writes out, rather than
reading in. In the case of databases or queues these may be inserts, updates, or sends. The format of
the serialization of the output is specific to each batch job.

AswithItenReader, Itemwiter isafairly generic interface:

Spring Batch 2.0.4.RELEASE 53

ItemReaders and ItemWriters

public interface ItenWiter<T> {

void wite(List<? extends T> itens) throws Exception;

Aswithread onitenReader,wite providesthebasic contract of I t emWi t er ; it will attempt to write
out the list of items passed in as long as it is open. Because it is generally expected that items will
be 'batched' together into a chunk and then output, the interface accepts a list of items, rather than an
item by itself. After writing out the list, any flushing that may be necessary can be performed before
returning from the write method. For example, if writing to a Hibernate DAO, multiple calls to write
can bemade, onefor each item. Thewriter canthen call close on the hibernate Session beforereturning.

6.3. ItemProcessor

The 1 tenReader and Itemiter interfaces are both very useful for their specific tasks, but what if
you want to insert business logic before writing? One option for both reading and writing is to use
the composite pattern: createan 1t emW i t er that containsanother I temWiter, Or anltenReader that
contains another | t enReader . For example:

public class ConpositeltemNiter<T> inplenments ItenmNiter<T> {
IltemWiter<T> itenWiter;

public ConpositeltemNiter(ltemNiter<T> itemNiter) {
this.itemMiter = itenWiter;
}

public void wite(List<? extends T> itens) throws Exception {
/1 Add business | ogic here
itemWiter.wite(iten);

}

public void setDelegate(ltenWiter<T> itemWiter){
this.itemWiter = itenWiter;
}

The classabove containsanother | t enw i t er towhich it delgates after having provided some business
logic. This pattern could easily be used for an |1 t enReader as well, perhaps to obtain more reference
data based upon the input that was provided by the main I t enReader . It is also useful if you need
to control the call towri t e yourself. However, if you only want to 'transform' the item passed in for
writing before it is actually written, there isn't much need to call write yourself: you just want to
modify the item. For this scenario, Spring Batch providesthe It enPr ocessor interface:

public interface ItenProcessor<l, O {

O process(l item throws Exception;

An I tenProcessor isvery simple; given one object, transform it and return another. The provided
object may or may not be of the same type. The point is that business logic may be applied within
process, and is completely up to the devel oper to create. An| t enPr ocessor can bewired directly into
astep, For example, assuming an | t enReader providesaclass of type Foo, and it needsto be converted
to type Bar before being written out. An 1t enProcessor can be written that performs the conversion:

public class Foo {}

Spring Batch 2.0.4.RELEASE 54

ItemReaders and ItemWriters

public class Bar {
public Bar(Foo foo) {}

}

public class FooProcessor inplenments |tenProcessor<Foo, Bar >{
public Bar process(Foo foo) throws Exception {
/1 Perform sinple transfornmation, convert a Foo to a Bar
return new Bar (fo0);

}

public class BarWiter inplements [temNiter<Bar>{
public void wite(List<? extends Bar> bars) throws Exception {
//wite bars

}

In the very simple example above, there is a class Foo, a class Bar, and a class FooPr ocessor that
adheresto thel t enProcessor interface. The transformation is ssmple, but any type of transformation
could be done here. TheBar wi t er will be used to write out Bar objects, throwing an exception if any
other type is provided. Similarly, the FooPr ocessor will throw an exception if anything but a Foo is
provided. The FooProcessor canthen beinjected into a st ep:

<job id="ioSanpl eJob">
<step name="stepl">
<t askl et >
<chunk reader="f ooReader" processor="fooProcessor" witer="barWiter"
comm t-interval ="2"/>
</t askl et >
</ st ep>
</j ob>

6.3.1. Chaining ItemProcessors

Performing a single transformation is useful in many scenarios, but what if you want to 'chain’
together multiple 1 t enPr ocessor s? This can be accomplished using the composite pattern mentioned
previously. To update the previous, single transformation, example, Foo will be transformed to Bar,
which will be transformed to Foobar and written out:

public class Foo {}

public class Bar {
public Bar(Foo foo) {}

}

public class Foobar {
publ i c Foobar (Bar bar) {}

}

public class FooProcessor inplenments |tenProcessor<Foo, Bar >{
public Bar process(Foo foo) throws Exception {
//Performsinple transformation, convert a Foo to a Bar
return new Bar (fo0);

}

public class BarProcessor inplenents |tenProcessor<Bar, FooBar >{
publ i c FooBar process(Bar bar) throws Exception {
return new Foobar (bar);

}

Spring Batch 2.0.4.RELEASE 55

ItemReaders and ItemWriters

public class FoobarWiter inplenments Item/Niter<FooBar>{
public void wite(List<? extends FooBar> itens) throws Exception {
[lwite itenms

}

A FooProcessor and Bar Processor can be 'chained' together to give the resultant Foobar :

Conposi t el t enPr ocessor <Foo, Foobar > conposi t eProcessor =
new Conposi teltenProcessor <Foo, Foobar >();
Li st itenmProcessors = new ArraylList();
i t enProcessors. add(new FooTr ansforner());
i tenProcessors. add(new Bar Transforner());
conposi t eProcessor. setltenProcessors(itenProcessors);

Just as with the previous example, the composite processor can be configured into the st ep:

<job id="ioSanpl eJob" >
<step nanme="stepl">
<t askl et >
<chunk reader="fooReader" processor="conpositeProcessor" witer="foobarWiter"
comit-interval ="2"/>
</taskl et >
</ step>
</ j ob>

<bean i d="conpositeltenProcessor"
cl ass="org. spri ngframewor k. bat ch. i tem support. Conposi teltenProcessor">
<property nanme="itenProcessors">

<list>
<bean cl ass=".. FooProcessor" />
<bean cl ass="..Bar Processor" />
</list>
</ property>

</ bean>

6.3.2. Filtering Records

Onetypical use for an item processor isto filter out records before they are passed to the ItemWriter.
Filtering isan action distinct from skipping; skipping indicatesthat arecordisinvalid whereasfiltering
simply indicates that a record should not be written.

For example, consider abatch job that reads a file containing three different types of records:. records
to insert, records to update, and records to delete. If record deletion is not supported by the system,
then we would not want to send any "delete" recordsto the 1t emni t er . But, since these records are
not actually bad records, we would want to filter them out, rather than skip. Asaresult, the ltemWriter
would receive only "insert" and "update" records.

To filter arecord, one simply returns "null” from the I t enPr ocessor . The framework will detect that
the result is "null" and avoid adding that item to the list of records delivered to the itemwiter. As
usual, an exception thrown from the | t enPr ocessor will result in askip.

6.4. ltemStream

Both It enReaders and I temw i t er s serve their individual purposes well, but there is a common
concern among both of them that necessitates another interface. In general, as part of the scope of a
batch job, readers and writers need to be opened, closed, and require a mechanism for persisting state:

public interface Itenttream {

Spring Batch 2.0.4.RELEASE 56

ItemReaders and ItemWriters

voi d open(Executi onCont ext executionContext) throws |tenftreanException
voi d updat e(Executi onCont ext executionContext) throws |tenttreanException

void close() throws ItenStreanException

Before describing each method, we should mention the Execut i onCont ext . Clients of an | t enReader

that alsoimplement | t enst r eamshould call open beforeany callstor ead in order to open any resources
such asfiles or to abtain connections. A similar restriction appliesto anitenwi t er that implements
I t et ream Asmentioned in Chapter 2, if expected dataisfound inthe Execut i onCont ext , it may be
used to start the I t enReader Or Itenw it er at alocation other than itsinitial state. Conversely, cl ose
will be called to ensurethat any resourcesallocated during open will bereleased safely. updat e iscalled
primarily to ensure that any state currently being held is loaded into the provided Execut i onCont ext .
Thismethod will be called before committing, to ensurethat the current stateispersisted in the database
before commit.

In the specia case where the client of an I tenstreamis a St ep (from the Spring Batch Core), an
Execut i onCont ext is created for each st epExecut i on to allow users to store the state of a particular
execution, with the expectation that it will be returned if the same Jobl nst ance is started again. For
those familiar with Quartz, the semantics are very similar to a Quartz JobDat aMap.

6.5. The Delegate Pattern and Registering with the Step

Note that the Conpositeltemtiter isan example of the delegation pattern, which is common in
Spring Batch. The delegates themselves might implement callback interfaces like |t ent r eam or
St epLi st ener . If they do, and they are being used in conjunction with Spring Batch Core as part of
astep in aJob, then they aimost certainly need to be registered manually with the st ep. A reader,
writer, or processor that isdirectly wired into the Step will be registered automatically if it implements
I tenStreamOr a St epli st ener interface. But because the delegates are not known to the st ep, they
need to be injected as listeners or streams (or both if appropriate):

<job id="ioSanpl eJob">
<step nanme="stepl">
<t askl et >

<chunk reader="fooReader" processor="fooProcessor" witer="conpositeltenWiter!

comm t-interval ="2">

<streans>
<streamref="barWiter" />
</ streans>

</ chunk>
</taskl et >
</ step>
</ j ob>
<bean id="conpositeltenNiter" class="...ConpositeltenWiter">
<property name="del egate" ref="barWiter" />
</ bean>
<bean i d="barWiter" class="...BarWiter" />
6.6. Flat Files

One of the most common mechanisms for interchanging bulk data has always been theflat file. Unlike
XML, which has an agreed upon standard for defining how it is structured (XSD), anyone reading a

Spring Batch 2.0.4.RELEASE 57

ItemReaders and ItemWriters

flat file must understand ahead of time exactly how the file is structured. In general, al flat files fall
into two types: Delimited and Fixed Length. Delimited files are those in which fields are separated by
adelimiter, such as acomma. Fixed Length files have fields that are a set length.

6.6.1. The FieldSet

When working with flat files in Spring Batch, regardless of whether it is for input or output, one of
the most important classes is the Fi el dSet . Many architectures and libraries contain abstractions for
helping you read in from afile, but they usualy return a String or an array of Strings. Thisreally only
gets you halfway there. A Fi el dSet is Spring Batch’s abstraction for enabling the binding of fields
from afileresource. It allows devel opers to work with file input in much the same way as they would
work with database input. A Fi el dSet is conceptually very similar to a Jdbc Resul t Set . FieldSets
only require one argument, a st ri ng array of tokens. Optionally, you can also configure in the names
of the fields so that the fields may be accessed either by index or name as patterned after Resul t Set :

String[] tokens = new String[]{"foo", "1", "true"};
Fi el dSet fs = new Defaul t Fi el dSet (t okens);

String name = fs.readString(0);

int value = fs.readlnt(1);

bool ean bool eanVal ue = fs. readBool ean(2);

There are many more options on the Fi el dSet interface, such as pat e, long, Bi gDeci mal , €tc. The
biggest advantage of the Fi el dSet isthat it provides consistent parsing of flat file input. Rather than
each batch job parsing differently in potentially unexpected ways, it can be consistent, both when
handling errors caused by aformat exception, or when doing simple data conversions.

6.6.2. FlatFileltemReader

A flat fileis any type of file that contains at most two-dimensional (tabular) data. Reading flat files
in the Spring Batch framework is facilitated by the class Fi at Fi | el t enReader , which provides basic
functionality for reading and parsing flat files. The two most important required dependencies of
Fl at Fi | el t enReader are Resource and Li neMapper. The Li neMapper interface will be explored
more in the next sections. The resource property represents a Spring Core Resour ce. Documentation
explaining how to create beans of this type can be found in Soring Framework, Chapter 4.Resour ces.
Therefore, this guide will not go into the details of creating Resour ce objects. However, a smple
example of afile system resource can be found below:

Resource resource = new Fil eSyst enResource("resources/trades. csv");

In complex batch environments the directory structures are often managed by the EAI infrastructure
where drop zones for external interfaces are established for moving files from ftp locations to batch
processing locations and vice versa. File moving utilities are beyond the scope of the spring batch
architecture but it is not unusual for batch job streams to include file moving utilities as steps in the
job stream. It is sufficient that the batch architecture only needs to know how to locate the files to be
processed. Spring Batch begins the process of feeding the data into the pipe from this starting point.
However, Soring Integration provides many of these types of services.

The other properties in Fl at Fi | el t enReader alow you to further specify how your data will be
interpreted:

Spring Batch 2.0.4.RELEASE 58

http://static.springframework.org/spring/docs/2.5.x/reference/resources.html
http://www.springsource.org/spring-integration

ItemReaders and ItemWriters

Table 6.1. FlatFileltemReader Properties

Property Type Description

comments String[] Specifies line prefixes that indicate
comment rows

encoding String Specifies what text encoding to use
- default is "1 SO-8859-1"

lineM apper LineMapper Convertsast ri ng to an bj ect
representing the item.

linesToSkip int Number of linesto ignore at the

top of thefile

recordSeparatorPolicy

resource

skippedLinesCallback

RecordSeparatorPolicy

Resource

LineCallbackHandler

Used to determine where the line
endings are and do things like
continue over aline ending if
inside a quoted string.

The resource from which to read.

Interface which passes the raw line
content of the linesin thefileto be
skipped. If linesToSkip is set to 2,
then thisinterface will be called
twice.

strict

6.6.2.1. LineMapper

boolean

In strict mode, the reader

will throw an exception on
ExecutionContext if the input
resource does not exist.

As with Rowvapper , which takes alow level construct such as Resul t Set and returns an bj ect , flat
file processing requires the same construct to convert ast ri ng lineinto an vj ect :

public interface Li neMapper<T> {

T mapLi ne(String |ine,

int |ineNunmber) throws Exception;

The basic contract is that, given the current line and the line number with which it is associated,
the mapper should return a resulting domain object. Thisis similar to Rowvapper in that each lineis
associated with its line number, just as each row in aResul t Set istied toits row number. Thisalows
theline number to betied to the resulting domain object for identity comparison or for moreinformative
logging. However, unlike Rowvapper , the Li neMapper is given araw line which, as discussed above,
only gets you halfway there. The line must be tokenized into aFi el dset , which can then be mapped

to an object, as described below.

Spring Batch 2.0.4.RELEASE

59

ItemReaders and ItemWriters

6.6.2.2. LineTokenizer

An abstraction for turning aline of input into alineinto aFi el dSet isnecessary because there can be
many formats of flat file data that need to be converted to aFi el dSet . In Spring Batch, thisinterface
istheLi neTokeni zer:

public interface LineTokenizer {

Fi el dSet tokenize(String line);

The contract of a Li neTokeni zer is such that, given a line of input (in theory the string could
encompass more than one line), a Fi el dSet representing the line will be returned. This Fi el dSet
can then be passed to a Fi el dSet Mapper. Spring Batch contains the following Li neTokeni zer
implementations:

e Del it edLi neTokeni zer - Used for fileswhere fields in arecord are separated by adelimiter. The
most common delimiter is acomma, but pipes or semicolons are often used as well.

* Fi xedLengt hTokeni zer - Used for fileswherefieldsin arecord are each a 'fixed width'. The width
of each field must be defined for each record type.

e PatternMat chi ngConposi t eLi neTokeni zer - Determines which among a list of Li neTokeni zer s
should be used on a particular line by checking against a pattern.

6.6.2.3. FieldSetMapper

TheFi el dSet Mapper interface defines a single method, mapFi el dSet , which takes aFi el dSet object
and maps its contents to an object. This abject may be a custom DTO, a domain object, or asimple
array, depending on the needs of the job. The Fi el dSet Mapper iS used in conjunction with the
Li neTokeni zer to trandate aline of datafrom aresource into an object of the desired type:

public interface Fiel dSet Mapper<T> {

T mapFi el dSet (Fi el dSet fiel dSet);

The pattern used is the same as the Rowvapper used by JdbcTenpl at e.
6.6.2.4. DefaultLineMapper

Now that the basic interfaces for reading in flat files have been defined, it becomes clear that three
basic steps are required:

1. Read oneline from thefile.
2. Passthe string line into the Li neTokeni zer #t okeni ze() method, in order to retrieve aFi el dSet .

3. Pass the Fi el dset returned from tokenizing to a Fi el dSet Mapper , returning the result from the
I t emReader #r ead() method.

The two interfaces described above represent two separate tasks: converting aline into aFi el dSet ,
and mapping aFi el dSet to adomain object. Because the input of aLi neTokeni zer matches the input
of theLi nevapper (aline), and the output of aFi el dSet Mapper matchesthe output of the Li neMapper ,

Spring Batch 2.0.4.RELEASE 60

ItemReaders and ItemWriters

a default implementation that uses both a Li neTokeni zer and Fi el dSet Mapper is provided. The
Def aul t Li neMapper represents the behavior most users will need:

public class DefaultLi neMapper<T> i npl ements Li neMapper<T>, InitializingBean {
private LineTokenizer tokenizer;
private Fiel dSet Mapper<T> fi el dSet Mapper ;

public T mapLine(String line, int |ineNunber) throws Exception {
return fiel dSet Mapper. mapFi el dSet (t okeni zer. t okeni ze(line));

}

public void setLineTokeni zer (Li neTokeni zer tokenizer) {
thi s.tokeni zer = tokenizer;

}

public void setFiel dSet Mapper (Fi el dSet Mapper <T> fi el dSet Mapper) {
this.fiel dSet Mapper = fi el dSet Mapper;
}

The above functionality is provided in adefault implementation, rather than being built into the reader
itself (as was done in previous versions of the framework) in order to allow users greater flexibility in
controlling the parsing process, especialy if accessto the raw line is needed.

6.6.2.5. Simple Delimited File Reading Example

The following example will be used to illustrate this using an actual domain scenario. This particular
batch job reads in football players from the following file:

I D, | ast Nane, fi rst Nane, posi tion, birthYear, debut Year
" AbduKaO00, Abdul - Jabbar, Kari m rb, 1974, 1996",

" AbduRa00, Abdul | ah, Rabi h, rb, 1975, 1999",

" Aber V400, Aber cronbi e, Wal ter, rb, 1959, 1982",

" Abr aDa00, Abr amowi cz, Danny, wr, 1945, 1967",

" AdanBo00, Adans, Bob, t e, 1946, 1969",

" Adanth00, Adans, Charlie, w, 1979, 2003"

The contents of thisfile will be mapped to the following Pl ayer domain object:

public class Player inplements Serializable {

private String |ID;
private String | astNaneg;
private String firstNane;
private String position;
private int birthYear;
private int debut Year;

public String toString() {
return "PLAYER I D=" + ID + ", Last Name=" + | ast Nane +
",First Nane=" + firstName + ", Position=" + position +
",Birth Year=" + birthYear + ", Debut Year=" +
debut Year;
}

/] setters and getters...

In order to map aFi el dSet into aPl ayer object, aFi el dSet Mapper that returns players needs to be
defined:

Spring Batch 2.0.4.RELEASE 61

ItemReaders and ItemWriters

protected static class PlayerFiel dSet Mapper inplenents Fiel dSet Mapper <Pl ayer > {
public Player mapFi el dSet (Fi el dSet fieldSet) {
Pl ayer player = new Pl ayer();

pl ayer.set| D(fiel dSet.readString(0));

pl ayer. set Last Name(fi el dSet.readString(1));
pl ayer. set Fi rst Nane(fi el dSet.readString(2));
pl ayer.setPosition(fieldSet.readString(3));
pl ayer.setBirthYear (fieldSet.readlnt(4));

pl ayer. set Debut Year (fi el dSet . readl nt(5));

return player;

Thefile can then be read by correctly constructing aFl at Fi | el t enReader and calling r ead:

Fl at Fi | el t enReader <Pl ayer> itenmReader = new Fl at Fi | el t enReader <Pl ayer >();
i t emReader . set Resour ce(new Fi | eSyst enResour ce("resources/ pl ayers. csv"));
[/ DelimtedLi neTokeni zer defaults to comma as its delimter

Li neMapper <Pl ayer > | i neMapper = new Def aul t Li neMapper <Pl ayer >();

| i neMapper . set Li neTokeni zer (new Del i m t edLi neTokeni zer ());

I i neMapper . set Fi el dSet Mapper (new Pl ayer Fi el dSet Mapper ());

i t enReader . set Li neMapper (| i neMapper);

i t emReader . open(new Executi onContext());

Pl ayer player = itenReader.read();

Each call to read will return a new Player object from each line in the file. When the end of the file
is reached, null will be returned.

6.6.2.6. Mapping Fields by Name

There is one additional piece of functionality that is alowed by both Del i ni t edLi neTokeni zer and
Fi xedLengt hTokeni zer thatissimilar in function to aJdbc Resul t Set . The names of the fields can be
injected into either of theseLi neTokeni zer implementationsto increase the readability of the mapping
function. First, the column names of al fieldsin the flat file are injected into the tokenizer:

t okeni zer. set Nanes(new String[] {"ID', "lastNane","firstName", "position","birthYear", "debutYear"});

A Fi el dSet Mapper can use thisinformation as follows:

public class PlayerMapper inplenents Fiel dSet Mapper <Pl ayer> {
public Player mapFiel dSet (Fi el dSet fs) {

if(fs == null){
return null;

}

Pl ayer player = new Pl ayer();

pl ayer.setl D(fs.readString("1D"));

pl ayer. set Last Nane(fs.readString("l ast Name"));

pl ayer. set Fi rst Nane(fs.readString("firstNane"));
pl ayer.setPosition(fs.readString("position"));
pl ayer. set Debut Year (fs. readl nt ("debut Year"));

pl ayer.setBirthYear(fs.readlnt("birthYear"));

return player;

Spring Batch 2.0.4.RELEASE 62

ItemReaders and ItemWriters

6.6.2.7. Automapping FieldSets to Domain Objects

For many, having to write a specific Fi el dSet Mapper isequally as cumbersome as writing a specific
RowMapper for aJdbcTenpl at e. Spring Batch makes this easier by providing aFi el dSet Mapper that
automatically maps fields by matching a field name with a setter on the object using the JavaBean
specification. Again using thefootball example, the Beanw apper Fi el dSet Mapper configuration looks
like the following:

<bean i d="fi el dSet Mapper"
cl ass="org. spri ngframework. batch.itemfil e. mappi ng. BeanW apper Fi el dSet Mapper " >
<property name="prot ot ypeBeanNanme" val ue="pl ayer" />
</ bean>

<bean i d="pl ayer"
cl ass="org. spri ngf ramewor k. bat ch. sanpl e. donai n. Pl ayer"
scope="pr ot ot ype" />

For each entry in the Fi el dSet , the mapper will look for a corresponding setter on a new instance of
the Pl ayer object (for this reason, prototype scope is required) in the same way the Spring container
will look for setters matching a property name. Each available field in the Fi el dset will be mapped,
and the resultant Pl ayer object will be returned, with no code required.

6.6.2.8. Fixed Length File Formats

So far only delimited files have been discussed in much detail, however, they represent only half of
the file reading picture. Many organizations that use flat files use fixed length formats. An example
fixed length fileis below:

UK21341EAH4121131. 11cust onmer 1
UK21341EAH4221232. 11cust oner 2
UK21341EAH4321333. 11cust oner 3
UK21341EAHA421434. 11cust oner 4
UK21341EAH4521535. 11cust oner 5

While thislooks like one large field, it actually represent 4 distinct fields:
1. ISIN: Unique identifier for the item being order - 12 characters long.
2. Quantity: Number of thisitem being ordered - 3 characters long.

3. Price: Price of theitem - 5 characterslong.

4. Customer: Id of the customer ordering the item - 9 characters long.

When configuring theFi xedLengt hLi neTokeni zer , each of theselengths must be provided intheform
of ranges:

<bean i d="fi xedLengt hLi neTokeni zer"
cl ass="org. springframework. batch.io.file.transform Fi xedLengt hTokeni zer" >
<property name="nanmes" val ue="1SI N, Quantity, Price, Custoner" />
<property nanme="col ums" val ue="1-12, 13-15, 16-20, 21-29" />
</ bean>

Because the Fi xedLengt hLi neTokeni zer usesthe same Li neTokeni zer interface as discussed above,
it will return the same Fi el dset asif a delimiter had been used. This allows the same approaches to
be used in handling its output, such as using the Beanw apper Fi el dSet Mapper .

Spring Batch 2.0.4.RELEASE 63

ItemReaders and ItemWriters

Note

Supporting the above syntax for ranges requires that a specialized property editor,
RangeAr r ayPr oper t yEdi t or, be configured in the Appl i cat i onCont ext . However, this
bean is automatically declared in an Appl i cati onCont ext Where the batch namespaceis
used.

6.6.2.9. Multiple Record Types within a Single File

All of the file reading examples up to this point have all made akey assumption for simplicity's sake:
all of the recordsin afile have the same format. However, this may not always be the case. It isvery
common that afile might have records with different formats that need to be tokenized differently and
mapped to different objects. The following excerpt from afileillustrates this:

USER; Smit h; Peter;; T; 20014539; F
LI NEA; 1044391041ABC037. 49&01XX1383. 12H
LI NEB; 2134776319DEF422. 99MDO5L

In this file we have three types of records, "USER", "LINEA", and "LINEB". A "USER" line
corresponds to a User object. "LINEA" and "LINEB" both correspond to Line objects, though a
"LINEA" has more information than a"LINEB".

The 1 tenReader Will read each line individually, but we must specify different Li neTokeni zer
and Fi el dSet Mapper oObjects so that the 1temwiter will receive the correct items. The
Pat t er nMat chi ngConposi t eLi neMapper makes this easy by alowing maps of patterns to
Li neTokeni zer Sand patternsto Fi el dSet Mapper S to be configured:

<bean i d="orderFil eLi neMapper"
cl ass="org. spr... PatternMat chi ngConposi t eLi neMapper" >
<property nanme="t okenizers">

<map>
<entry key="USER*" val ue-ref="user Tokeni zer" />
<entry key="LI NEA*" val ue-ref="1ineATokeni zer" />
<entry key="LI NEB*" val ue-ref="1ineBTokeni zer" />
</ map>

</ property>
<property nanme="fi el dSet Mappers" >

<map>
<entry key="USER*" val ue-ref="userFi el dSet Mapper" />
<entry key="LINE*" val ue-ref="1ineFi el dSet Mapper" />

</ map>

</ property>

</ bean>

In this example, "LINEA" and "LINEB" have separate Li neTokeni zer s but they both use the same
Fi el dSet Mapper .

The Pat t er nvat chi ngConposi t eLi neMapper makes use of the Pat t er nMat cher 's mat ch method in
order to select the correct delegate for each line. The PatternMat cher alows for two wildcard
characters with special meaning: the question mark ("?") will match exactly one character, while the
asterisk ("*") will match zero or more characters. Note that in the configuration above, all patterns end
with an asterisk, making them effectively prefixes to lines. The Pat t er nvat cher will always match
the most specific pattern possible, regardless of the order in the configuration. So if "LINE*" and
"LINEA*" were both listed as patterns, "LINEA" would match pattern "LINEA*", while "LINEB"
would match pattern "LINE*". Additionally, asingle asterisk ("*") can serve as adefault by matching
any line not matched by any other pattern.

Spring Batch 2.0.4.RELEASE 64

ItemReaders and ItemWriters

<entry key="*" val ue-ref="defaul tLi neTokeni zer" />

Thereisaso aPatt er nvat chi ngConposi t eLi neTokeni zer that can be used for tokenization alone.

It is also common for a flat file to contain records that each span multiple lines. To handle this
situation, a more complex strategy is required. A demonstration of this common pattern can be found
in Section 11.5, “Multi-Line Records’.

6.6.2.10. Exception Handling in Flat Files

There are many scenarios when tokenizing a line may cause exceptions to be thrown. Many flat
files are imperfect and contain records that aren't formatted correctly. Many users choose to skip
these erroneous lines, logging out the issue, origina line, and line number. These logs can later be
inspected manually or by another batch job. For this reason, Spring Batch provides a hierarchy of
exceptions for handling parse exceptions: Fl at Fi | ePar seExcept i on and Fl at Fi | eFor mat Except i on.
Fl at Fi | ePar seExcept i on iS thrown by the Fl at Fi | el t emReader When any errors are encountered
while trying to read a file. Fl atFil eFormat Exception is thrown by implementations of the
Li neTokeni zer interface, and indicates a more specific error encountered while tokenizing.

6.6.2.10.1. IncorrectTokenCountException

Both Del i i t edLi neTokeni zer and Fi xedLengt hLi neTokeni zer have the ability to specify column
names that can be used for creating a Fi el dSet . However, if the number of column names doesn't
match the number of columns found while tokenizing a line the Fi el dSet can't be created, and a
I ncorr ect TokenCount Except i on is thrown, which contains the number of tokens encountered, and
the number expected:

t okeni zer. set Names(new String[] {"A", "B", "C', "D'});

try{
t okeni zer.t okeni ze("a, b, c");

}

cat ch(| ncorrect TokenCount Excepti on e){
assert Equal s(4, e.getExpectedCount());
assert Equal s(3, e.getActual Count());

Because the tokenizer was configured with 4 column names, but only 3 tokens were found in thefile,
an | ncor r ect TokenCount Except i on was thrown.

6.6.2.10.2. IncorrectLineLengthException

Files formatted in a fixed length format have additional requirements when parsing because, unlike
a delimited format, each column must strictly adhere to its predefined width. If the total line length
doesn't add up to the widest value of this column, an exception is thrown:

t okeni zer. set Col ums(new Range[] { new Range(1, 5),
new Range(6, 10),
new Range(11, 15) });
try {
t okeni zer . t okeni ze(" 12345");
fail ("Expected IncorrectLi neLengt hException");
}
catch (Il ncorrectlLinelLengthException ex) {
assert Equal s(15, ex. get ExpectedLength());
assert Equal s(5, ex.getActual Length());

Spring Batch 2.0.4.RELEASE 65

ItemReaders and ItemWriters

The configured ranges for the tokenizer above are: 1-5, 6-10, and 11-15, thus the total length
of the line expected is 15. However, in this case a line of length 5 was passed in, causing an
I ncorrect Li neLengt hExcept i on to be thrown. Throwing an exception here rather than only mapping
the first column allows the processing of the line to fail earlier, and with more information than it
would if it failed while trying to read in column 2 in aFi el dSet Mapper . However, there are scenarios
where the length of the line isn't always constant. For this reason, validation of line length can be
turned off viathe 'strict’ property:

t okeni zer. set Col ums(new Range[] { new Range(l1, 5), new Range(6, 10) });
tokeni zer.set Strict(fal se);

Fi el dSet tokens = tokenizer.tokenize("12345");

assert Equal s("12345", tokens.readString(0));

assert Equal s("", tokens.readString(1));

The above example is amost identical to the one before it, except that tokenizer.setStrict(false) was
called. This setting tellsthe tokenizer to not enforce line lengths when tokenizing the line. A Fi el dSet
is now correctly created and returned. However, it will only contain empty tokens for the remaining
values.

6.6.3. FlatFileltemWriter

Writing out to flat files has the same problems and issues that reading in from a file must overcome.
A step must be able to write out in either delimited or fixed length formats in a transactional manner.

6.6.3.1. LineAggregator

Just asthe Li neTokeni zer interfaceis necessary to takeanitemand turnitinto astri ng, filewriting
must have away to aggregate multiple fields into a single string for writing to afile. In Spring Batch
thisisthe Li neAggregat or :

public interface LineAggregator<T> {

public String aggregate(T item;

The Li neAggr egat or iSthe opposite of aLi neTokeni zer. Li neTokeni zer takesastri ng and returns
aFi el dSet , whereas Li neAggr egat or takesanit emand returnsast ri ng.

6.6.3.1.1. PassThroughLineAggregator

The most basic implementation of the LineAggregator interface is the PassThr oughLi neAggr egat or
which simply assumes that the object is already a string, or that its string representation is acceptable
for writing:

public class PassThroughLi neAggregat or<T> i npl ements Li neAggregat or <T> {

public String aggregate(T item {
return itemtoString();

}

Theaboveimplementationisuseful if direct control of creating the stringisrequired, but the advantages
of aFl atFileltemwiter, such astransaction and restart support, are necessary.

Spring Batch 2.0.4.RELEASE 66

ItemReaders and ItemWriters

6.6.3.2. Simplified File Writing Example

Now that the LineAggregator interface and its most basic implementation,
PassThr oughLi neAggr egat or , have been defined, the basic flow of writing can be explained:

1. The object to be written is passed to the Li neAggr egat or in order to obtain astri ng.
2. Thereturned st ri ng iswritten to the configured file.

The following excerpt fromthe Fl at Fi | el tenwi t er expressesthisin code:

public void wite(T iten) throws Exception {
write(lineAggregator.aggregate(itenm) + LI NE_SEPARATOR);

}

A simple configuration would look like the following:

<bean id="itenmWiter" class="org.spr...FlatFileltenWiter">
<property name="resource" value="file:target/test-outputs/output.txt" />
<property nanme="l|ineAggregator">
<bean cl ass="org. spr...PassThroughLi neAggregator"/>
</ property>
</ bean>

6.6.3.3. FieldExtractor

The above example may be useful for the most basic uses of awriting to afile. However, most users
of theFl atFil el temWi ter Will have adomain object that needs to be written out, and thus must be
converted into aline. In file reading, the following was required:

1. Read onelinefrom thefile.
2. Passthe string line into the Li neTokeni zer #t okeni ze() method, in order to retrieve aFi el dSet

3. Pass the Fi el dSet returned from tokenizing to a Fi el dSet Mapper , returning the result from the
I t enReader #r ead() method

File writing has similar, but inverse steps:
1. Passtheitem to be written to the writer
2. convert the fields on the item into an array
3. aggregate the resulting array into aline

Because there is no way for the framework to know which fields from the object need to be written
out, aFi el dExt ract or must be written to accomplish the task of turning the item into an array:

public interface Fiel dExtractor<T> {

oj ect[] extract(T item;

Implementationsof theFi el dext r act or interface should create an array from thefieldsof the provided
object, which can then be written out with a delimiter between the elements, or as part of afield-width
line.

Spring Batch 2.0.4.RELEASE 67

ItemReaders and ItemWriters

6.6.3.3.1. PassThroughFieldExtractor

There are many cases where a collection, such as an array, Col | ecti on, Or Fi el dSet, needs to be
written out. "Extracting" an array from a one of these collection typesis very straightforward: simply
convert the collection to an array. Therefore, the PassThr oughFi el dExt ract or should be used in
this scenario. It should be noted, that if the object passed in is not a type of collection, then the

PassThr oughFi el dExt ract or Will return an array containing solely the item to be extracted.

6.6.3.3.2. BeanWrapperFieldExtractor

As with the Beanw apper Fi el dSet Mapper described in the file reading section, it is often preferable
to configure how to convert a domain object to an object array, rather than writing the conversion

yourself. The Beanw apper Fi el dExt r act or providesjust this type of functionality:

BeanW apper Fi el dExt r act or <Nane> extractor = new BeanW apper Fi el dExt r act or <Nane>();
extractor.setNanes(new String[] { "first", "last", "born" });

String first = "Alan";
String last = "Turing";
int born = 1912;

Name n = new Nanme(first, last, born);
oj ect[] values = extractor.extract(n);

assert Equal s(first, values[O0]);
assert Equal s(l ast, values[1]);
assert Equal s(born, values[2]);

This extractor implementation has only one required property, the names of the fields to map. Just as
the BeanWw apper Fi el dSet Mapper needs field names to map fields on the Fi el dSet to setters on the
provided object, the BeanW apper Fi el dExt r act or needs namesto map to gettersfor creating an object
array. It isworth noting that the order of the names determines the order of the fields within the array.

6.6.3.4. Delimited File Writing Example

The most basic flat file format is one in which all fields are separated by a delimiter. This can be
accomplished using a Del i ni t edLi neAggr egat or . The example below writes out a simple domain

object that represents a credit to a customer account:

public class CustomerCredit {
private int id;
private String nane;

private BigDecinal credit;

//getters and setters renoved for clarity

Because a domain abject is being used, an implementation of the FieldExtractor interface must be

provided, along with the delimiter to use:

<bean id="itemWiter" class="org.springfranework.batch.itemfile.FlatFileltemNiter">
<property nanme="resource" ref="output Resource" />

<property name="|ineAggregator">
<bean cl ass="org.spr...DelimtedLi neAggregator">
<property nane="delimter" val ue=","/>

<property name="fiel dExtractor">
<bean cl ass="org. spr...BeanW apper Fi el dExtract or">
<property nanme="nanes" val ue="nane, credit"/>

Spring Batch 2.0.4.RELEASE

68

ItemReaders and ItemWriters

</ bean>
</ property>
</ bean>
</ property>
</ bean>

Inthis case, the Beanw apper Fi el dExt r act or described earlier in this chapter is used to turn the name
and credit fields within cust oner Credi t into an object array, which is then written out with commas

between each field.

6.6.3.5. Fixed Width File Writing Example

Delimited is not the only type of flat file format. Many prefer to use a set width for each column to
delineate between fields, which isusually referred to as 'fixed width'. Spring Batch supportsthisinfile
writing viathe For mat t er Li neAggr egat or . Using the same Cust orrer Cr edi t domain object described
above, it can be configured as follows:

<bean id="itenmWiter" class="org.springfranework.batch.itemfile.FlatFileltemNiter">
<property name="resource" ref="outputResource" />
<property nanme="l|ineAggregator">
<bean cl ass="org. spr...FormatterLi neAggregat or">
<property name="fiel dExtractor">
<bean cl ass="org. spr...BeanW apper Fi el dExtract or">
<property name="nanes" val ue="name, credit" />
</ bean>
</ property>
<property name="format" val ue="% 9s% 2. 0f" />
</ bean>
</ property>
</ bean>

Most of the above example should look familiar. However, the value of the format property is new:

<property name="format" val ue="% 9s% 2. 0f" />

The underlying implementation is built using the same For mat t er added as part of Java 5. The Java
For mat t er isbased ontheprintf functionality of the C programming language. Most details on how
to configure aformatter can be found in the javadoc of Formatter.

6.6.3.6. Handling File Creation

Fl at Fi | el t enReader hasavery simple relationship with file resources. When the reader isinitialized,
it opens the file if it exists, and throws an exception if it does not. File writing isn't quite so simple.
At first glance it seemslike asimilar straight forward contract should exist for Fl at Fil el temMiter:
if the file already exists, throw an exception, and if it does not, create it and start writing. However,
potentially restarting aJob can causeissues. In normal restart scenarios, the contract is reversed: if the
file exists, start writing to it from the last known good position, and if it does not, throw an exception.
However, what happensiif the file name for thisjob is always the same? In this case, you would want
to delete thefileif it exists, unlessit's a restart. Because of this possibility, the Fl at Fil el t em i t er
contains the property, shoul dDel et el f Exi st s. Setting this property to true will cause an existing file
with the same name to be deleted when the writer is opened.

6.7. XML Item Readers and Writers

Spring Batch provides transactional infrastructure for both reading XML records and mapping them
to Java objects as well aswriting Java objects as XML records.

Spring Batch 2.0.4.RELEASE 69

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

ItemReaders and ItemWriters

Constraintson streaming XML

The StAX API is used for 1/O as other standard XML parsing APIs do not fit batch
processing requirements (DOM loads the whole input into memory at once and SAX
controls the parsing process allowing the user only to provide callbacks).

Letstakeacloser look how XML input and output worksin Spring Batch. First, thereareafew concepts
that vary from file reading and writing but are common across Spring Batch XML processing. With
XML processing, instead of lines of records (FieldSets) that need to be tokenized, it is assumed an
XML resource is acollection of ‘fragments' corresponding to individual records:

<trade>
<isin>XYZ0001</isin>
<quantity>5</quantity>
Fragment 1 <:rice>?; .39<?prica>ty
<customer>Customeri</customer>
</trade>
<trade>
<isin>XYZ0002</isin>
<quantity>2</quantity>
<price>72.99</price>
<customer>Customer2c</customer>
<ltrade>
<trade>
<isin>XYZ0003</isin>
<quantity>9</quantity>
<price>99.99</price>
<customer>Customer3</customer>
</trade>

Fragment 2

[Fragment 3

Figure 3.1: XML Input

The 'trade’ tag is defined as the 'root element’ in the scenario above. Everything between '<trade>'
and '</trade>' is considered one ‘fragment'. Spring Batch uses Object/XML Mapping (OXM) to bind
fragments to objects. However, Spring Batch is not tied to any particular XML binding technology.
Typical useisto delegate to Soring OXM, which provides uniform abstraction for the most popular
OXM technologies. The dependency on Spring OXM is optional and you can choose to implement

Spring Batch specific interfaces if desired. The relationship to the technologies that OXM supports
can be shown as the following:

Fragment 1 |

Any binding fraﬁ;lework
supported by Spring OXM

Figure 3.2: OXM Binding

Now with an introduction to OXM and how one can use XML fragments to represent records, let's
take a closer ook at readers and writers.

Spring Batch 2.0.4.RELEASE 70

http://static.springframework.org/spring-ws/site/reference/html/oxm.html

ItemReaders and ItemWriters

6.7.1. StaxEventltemReader

The st axEvent | t enReader configuration provides atypical setup for the processing of records from
an XML input stream. First, lets examine a set of XML records that the St axEvent | t enReader can
process.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<records>
<trade xm ns="http://springfranmework. org/ bat ch/sanpl e/i o/ oxm domai n" >
<i si n>XYZ0001</i si n>
<quantity>5</quantity>
<price>11. 39</pri ce>
<cust omer >Cust oner 1</ cust omer >
</trade>
<trade xm ns="http://springfranmework. org/ bat ch/sanpl e/i o/ oxm domai n" >
<i si n>XYZ0002</i si n>
<quantity>2</quantity>
<price>72.99</price>
<cust omer >Cust onmer 2c</ cust omer >
</trade>
<trade xm ns="http://springfranmework. org/ bat ch/ sanpl e/ i o/ oxm domai n" >
<i si n>XYZ0003</i si n>
<quantity>9</quantity>
<price>99. 99</price>
<cust omer >Cust oner 3</ cust omer >
</trade>
</records>

To be able to process the XML records the following is needed:

* Root Element Name - Name of the root element of the fragment that constitutes the object to be
mapped. The example configuration demonstrates this with the value of trade.

» Resource - Spring Resource that represents the file to be read.

* Fragnent Deseri al i zer - Unmarshalling facility provided by Spring OXM for mapping the XML
fragment to an object.

<bean i d="itenReader" class="org. springfranmework. batch.item xnl . StaxEvent|tenReader">
<property nanme="fragnment Root El enent Nane" val ue="custoner" />
<property name="resource" val ue="data/i osanpl e/input/input.xm" />
<property name="unmarshal |l er" ref="custonerCreditMrshaller" />

</ bean>

<bean id="custonerCreditMarshal |l er"
cl ass="org. spri ngfranmewor k. oxm xstream XSt reaniVarshal | er">
<property name="al i ases">
<util:map id="aliases">
<entry key="customer"
val ue="or g. spri ngf ranewor k. bat ch. sanpl e. domai n. CustonerCredit" />
<entry key="price" val ue="java. mat h. Bi gDeci mal " />
<entry key="name" val ue="java.lang. String" />
</util:map>
</ property>
</ bean>

Notice that in this example we have chosen to use an Xst r eamar shal | er that requires an alias passed
in as a map with the first key and value being the name of the fragment (i.e. root element) and the
object type to bind. Then, similar to aFi el dSet , the names of the other elements that map to fields
within the object type are described as key/value pairs in the map. In the configuration file we can use
a Spring configuration utility to describe the required alias as follows:

Spring Batch 2.0.4.RELEASE 71

ItemReaders and ItemWriters

<bean i d="itenReader" class="org.springfranework. batch.item xnl.StaxEvent|tenReader">
<property nanme="fragnent Root El enent Nane" val ue="custoner" />
<property name="resource" val ue="data/i osanple/input/input.xm" />
<property nanme="unmarshal |l er" ref="customerCreditMrshaller" />

</ bean>

<bean i d="customer Credit Marshal | er"
cl ass="org. spri ngf ramewor k. oxm xstream XSt r eanVar shal | er " >
<property name="al i ases">
<util:map id="aliases">
<entry key="customer"
val ue="org. spri ngf ramewor k. bat ch. sanpl e. dormai n. Cust onerCredi t" />
<entry key="price" val ue="java. mat h. Bi gDeci mal " />
<entry key="nanme" val ue="java.lang. String" />
</util: map>
</ property>
</ bean>

Oninput the reader readsthe XML resource until it recognizesthat a new fragment is about to start (by
matching the tag name by default). The reader creates a standalone XML document from the fragment
(or at least makes it appear so) and passes the document to a deserializer (typically awrapper around
a Spring OXM unmar shal | er) to map the XML to a Java object.

In summary, this procedure is analogous to the following scripted Java code which uses the injection
provided by the Spring configuration:

St axEvent | t enReader xml St axEvent |t enReader = new St axEvent|tenReader ()
Resource resource = new Byt eArrayResour ce(xm Resource. get Bytes())

Map al i ases = new HashMap();

al i ases. put ("custoner"”, "org. spri ngframewor k. bat ch. sanpl e. domai n. CustonerCredit");
al i ases. put ("price","java. mat h. Bi gDeci mal ") ;

al i ases. put ("nane", "java.l ang. String");

Marshal | er nmarshal | er = new XStreanMarshall er();

mar shal | er. set Al i ases(al i ases);

xm St axEvent | t enReader . set Unmar shal | er (marshal | er) ;

xm St axEvent | t enReader . set Resour ce(resource);

xm St axEvent | t enReader . set Fr agment Root El enent Nane(" cust onmer ") ;

xm St axEvent | t enReader . open(new Executi onContext());

bool ean hasNext = true
CustonerCredit credit = null;
whil e (hasNext) {
credit = xm StaxEvent|tenReader.read();

if (credit == null) {
hasNext = fal se;

}

el se {
Systemout.println(credit);

}

6.7.2. StaxEventltemWriter

Output works symmetrically to input. The St axEvent | t emW i t er needs aResour ce, a serializer, and
a rootTagName. A Java object is passed to a serializer (typically a wrapper around Spring OXM
Mar shal | er) which writes to a Resour ce USing a custom event writer that filters the St ar t Docunent
and EndDocurnrent events produced for each fragment by the OXM tools. Wel'll show thisin an example

Spring Batch 2.0.4.RELEASE 72

ItemReaders and ItemWriters

using the Marshal i ngEvent Wi terSerializer. The Spring configuration for this setup looks as
follows:

<bean id="itenWiter" class="org.springframework.batch.itemxm .StaxEventltenWiter">
<property name="resource" ref="outputResource" />
<property name="marshal | er" ref="custonerCreditMrshaller" />
<property nanme="r oot TagNane" val ue="custoners" />
<property nanme="overwiteQutput" value="true" />
</ bean>

The configuration sets up the three required properties and optionally sets the overwriteOutput=true,
mentioned earlier in the chapter for specifying whether an existing file can be overwritten. It should
be noted the marshaller used for the writer is the exact same as the one used in the reading example
from earlier in the chapter:

<bean i d="cust omer Cr edi t Marshal | er"
cl ass="org. spri ngfranmewor k. oxm xstream XSt reaniar shal | er">
<property name="al i ases">
<util:map id="aliases">
<entry key="custoner"
val ue="or g. spri ngf ranewor k. bat ch. sanpl e. domai n. Cust onerCredit" />
<entry key="price" val ue="java. math. Bi gDeci mal " />
<entry key="nanme" val ue="java.lang. String" />
</util: map>
</ property>
</ bean>

To summarize with a Java example, the following code illustrates all of the points discussed,
demonstrating the programmatic setup of the required properties:

StaxEventltemNiter staxltemWiter = new StaxEventltemWNiter()
Fi | eSyst enResource resource = new Fil eSyst enResource("data/outputFile.xm")

Map al i ases = new HashMap();

al i ases. put ("custoner", "org. spri ngf ramewor k. bat ch. sanpl e. domai n. CustonerCredit");
al i ases. put ("price","java. mat h. Bi gDeci mal ") ;

al i ases. put ("nane", "java.l ang. String");

Marshal | er marshal |l er = new XStreanmvarshall er();

mar shal | er. set Al i ases(al i ases);

staxltemWiter.set Resource(resource);
staxltemWNiter.setMarshal | er(marshaller);
staxltenmWiter. set Root TagNane("trades");
staxltemWiter.setOverwiteQutput(true);

Execut i onCont ext executi onContext = new Executi onContext();
staxltemWiter. open(executi onContext);

CustonmerCredit Credit = new CustonerCredit();

trade. set Price(11. 39);

credit.set Name(" Custoner1");

staxltenmWiter.wite(trade);

6.8. Multi-File Input

It is acommon requirement to process multiple files within asingle st ep. Assuming the files all have
the same formatting, the mul t i Resour cel t enReader supportsthistype of input for both XML and flat
file processing. Consider the following filesin adirectory:

file-1.txt file-2.txt ignored.txt

Spring Batch 2.0.4.RELEASE 73

ItemReaders and ItemWriters

file-1.txt and file-2.txt are formatted the same and for business reasons should be processed together.
The Ml i Resour cel t emReader can be used to read in both files by using wildcards:

<bean id="mul ti ResourceReader" class="org.spr...MiltiResourceltenReader">
<property name="resources" val ue="cl asspath:data/input/file-*.txt" />
<property nanme="del egate" ref="flatFil eltenReader" />

</ bean>

The referenced delegate is a simple FI at Fi | el t enReader . The above configuration will read input
from both files, handling rollback and restart scenarios. It should be noted that, aswithany | t enReader ,
adding extrainput (in this case afile) could cause potential issues when restarting. It is recommended
that batch jobs work with their own individual directories until completed successfully.

6.9. Database

Likemost enterprise application styles, adatabaseisthe central storage mechanismfor batch. However,
batch differs from other application styles due to the sheer size of the datasets with which the system
must work. If aSQL statement returns 1 million rows, the result set probably holds all returned results
in memory until all rows have been read. Spring Batch providestwo types of solutionsfor this problem:
Cursor and Paging database ItemReaders.

6.9.1. Cursor Based ItemReaders

Using a database cursor is generaly the default approach of most batch developers, because it is the
database's solution to the prablem of 'streaming’ relational data. The JavaResul t Set classisessentialy
an object orientated mechanism for manipulating a cursor. A Resul t Set maintains a cursor to the
current row of data. Calling next on a Resul t Set moves this cursor to the next row. Spring Batch
cursor based ItemReaders open the a cursor on initialization, and move the cursor forward one row
for every call toread, returning a mapped object that can be used for processing. The cl ose method
will then be called to ensure all resources are freed up. The Spring core JdbcTenpl at e gets around
this problem by using the callback pattern to completely map all rowsin aResul t Set and close before
returning control back to the method caller. However, in batch this must wait until the step iscomplete.
Below is a generic diagram of how a cursor based | t enReader works, and while a SQL statement is
used as an example sinceit is so widely known, any technology could implement the basic approach:

Foo2 Select * from FOO

id=2 where id > 1 and id < 7

name=foo2

bar=bar2 D NAME |BAR
1 foo1 bar1

-F 23 2 foo2 bar2

id=3

name=foo3 3 foo3 bar3

bar=bar3 4 food bard
5 foo5 bar5

-F — 6 foo6 baré

id=4

name=foo4 7 foo7 bar7

bar=bar4 8 fon8 barg

This example illustrates the basic pattern. Given a'FOQ' table, which has three columns: ID, NAME,
and BAR, select all rowswith an ID greater than 1 but lessthan 7. This putsthe beginning of the cursor
(row 1) on ID 2. Theresult of thisrow should be acompletely mapped Foo object. Callingr ead() again
moves the cursor to the next row, which isthe Foo with an ID of 3. The results of these reads will be

Spring Batch 2.0.4.RELEASE 74

ItemReaders and ItemWriters

written out after each r ead, thus alowing the objects to be garbage collected (assuming no instance
variables are maintaining references to them).

6.9.1.1. JdbcCursorltemReader

JdbcCur sor | t enReader IS the Jdbc implementation of the cursor based technique. It works directly
with a Resul t Set and requires a SQL statement to run against a connection obtained from a
Dat aSour ce. The following database schemawill be used as an example:

CREATE TABLE CUSTOMER (
ID Bl G NT | DENTI TY PRI MARY KEY,
NAVE VARCHAR(45) ,
CREDI T FLOAT

Many people prefer to use a domain object for each row, so well use an implementation of the
RowMapper interface to map aCust orer Credi t Object:

public cl ass Custoner Credi t Rowivapper inpl enents RowMapper {

public static final String D COLUW = "id";
public static final String NAME_COLUWN = "nane";
public static final String CREDI T_COLUW = “credit";

public Ooject mapRowm ResultSet rs, int rowNum) throws SQLException {
CustonmerCredit custonerCredit = new CustonerCredit();

customerCredit.setld(rs.getlnt(lD _COLUW));
custonmer Credi t. set Name(rs. get Stri ng(NAVE_COLUW)) ;
customerCredit.setCredit(rs. getBigDeci mal (CREDI T_COLUW)) ;

return custonerCredit;

Because JdbcTenpl at e is so familiar to users of Spring, and the JdbcCur sor | t enReader shares key
interfaceswithit, it is useful to see an example of how to read in this datawith JdbcTenpl at e, in order
to contrast it with the | t enReader . For the purposes of this example, let's assume there are 1,000 rows
in the CUSTOMER database. The first example will be using JdbcTenpl at e:

//For sinmplicity sake, assume a dataSource has al ready been obtai ned

JdbcTenpl ate j dbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;

Li st customerCredits = jdbcTenpl ate. query("SELECT I D, NAME, CREDI T from CUSTOMVER',
new Cust orer Cr edi t Rowvapper ()) ;

After running this code snippet the customerCredits list will contain 1,000 Cust orrer Cr edi t Objects.
In the query method, a connection will be obtained from the Dat aSour ce, the provided SQL will be
run against it, and the mapRow method will be called for each row in the Resul t Set . Let's contrast this
with the approach of the JdbcCur sor | t erReader :

JdbcCursor | t enReader itenReader = new JdbcCursorltenReader();
i t emReader . set Dat aSour ce(dat aSour ce) ;
i t emReader . set Sgl (" SELECT |1 D, NAME, CREDI T from CUSTOVER');
i t enReader . set Rowivapper (new Cust oner Cr edi t Rowivapper ()) ;
int counter = O;
Execut i onCont ext executi onContext = new Executi onContext();
i t enReader . open(execut i onCont ext) ;
bj ect custonmerCredit = new Object();
whi |l e(customerCredit !'= null){
custonmerCredit = itenReader.read();

Spring Batch 2.0.4.RELEASE 75

ItemReaders and ItemWriters

count er ++;

}

i t emReader . cl ose(executionCont ext);

After running this code snippet the counter will equal 1,000. If the code above had put the returned
customerCredit into a list, the result would have been exactly the same as with the JdbcTenpl at e
example. However, the big advantage of the | t enReader isthat it alows itemsto be 'streamed'. The
read method can be called once, and the item written out via an ItemWi ter, and then the next
item obtained viar ead. This allows item reading and writing to be done in 'chunks and committed
periodically, which isthe essence of high performance batch processing. Furthermore, itisvery easily
configured for injection into a Spring Batch st ep:

<bean i d="itenReader" class="org.spr...JdbcCursorltenReader">
<property nanme="dat aSource" ref="dataSource"/>
<property name="sql" value="select ID, NAME, CREDI T from CUSTOVER'/ >
<property name="rowMapper" >
<bean cl ass="org. spri ngfranmewor k. bat ch. sanpl e. donai n. Cust oner Cr edi t Row\Mapper "/ >
</ property>
</ bean>

6.9.1.1.1. Additional Properties

Because there are so many varying options for opening a cursor in Java, there are many properties on
the JdbcCust or I t enReader that can be set:

Spring Batch 2.0.4.RELEASE 76

ignoreéWarnings
ItemReaders and ItemWr

Determines whether or not SQLWarnings are logged
terscause an exception - default istrue

TEHRBZ JdbcCur sorItemReader Properties

Gives the Jdbc driver a hint as to the number of rows
that should be fetched from the database when more
rows are needed by the Resul t Set object used by the
I t enReader . By default, no hint is given.

maxRows Sets the limit for the maximum number of rows the
underlying Resul t Set can hold at any one time.
queryTimeout Sets the number of seconds the driver will wait

verifyCursorPosition

saveState

for a statement object to execute to the given
number of seconds. If the limit is exceeded, a
Dat aAccessEcept i on is thrown. (Consult your driver
vendor documentation for details).

Because the same Resul t Set held by the I t enReader
is passed to the RowMapper , it is possible for users to
call Resul t Set . next () themselves, which could cause
issues with the reader's internal count. Setting this
valueto truewill cause an exception to bethrown if the
cursor position is not the same after the Rowvapper call
asit was before.

Indicates whether or not the reader's state should
be saved in the ExecutionContext provided by
I t enSt r eam#updat e(Execut i onCont ext) The default
valueisfalse.

driverSupportsAbsolute

setUseSharedExtendedConnection

Defaults to false. Indicates whether the Jdbc driver
supports setting the absolute row on aResul t Set . It is
recommended that this is set to true for Jdbc drivers
that supportsResul t Set . absol ut e() asit may improve
performance, especialy if a step fails while working
with alarge data set.

Defaults to fase. Indicates whether the connection
used for the cursor should be used by all other
processing thus sharing the same transaction. If this
is set to false, which is the default, then the cursor
will be opened using its own connection and will
not participate in any transactions started for the
rest of the step processing. If you set this flag
to true then you must wrap the DataSource in
an Ext endedConnect i onDat aSour cePr oxy tO prevent
the connection from being closed and released
after each commit. When you set this option to
true then the statement used to open the cursor
will be created with both 'READ ONLY' and
'HOLD_CUSORS OVER_COMMIT" options. This
allows holding the cursor open over transaction start
and commits performed in the step processing. To use
this feature you need a database that supports this and
a Jdbc driver supporting Jdbc 3.0 or later.

Spring Batch 2.0.4.RELEASE

77

ItemReaders and ItemWriters

6.9.1.2. HibernateCursorltemReader

Just as normal Spring users make important decisions about whether or not to use ORM solutions,
which affect whether or not they use a JdbcTenpl at e OF a Hi ber nat eTenpl at e, Spring Batch users
have the same options. Hi ber nat eCur sor | t enReader is the Hibernate implementation of the cursor
technique. Hibernate's usage in batch has been fairly controversial. This has largely been because
Hibernate was originally developed to support online application styles. However, that doesn't mean
it can't be used for batch processing. The easiest approach for solving this problem is to use a
St at el essSessi on rather than a standard session. This removes al of the caching and dirty checking
hibernate employs that can cause issues in a batch scenario. For more information on the differences
between stateless and normal hibernate sessions, refer to the documentation of your specific hibernate
release. The Hi ber nat eCur sor | t enReader alows you to declare an HQL statement and pass in a
Sessi onFact ory, which will pass back one item per call to read in the same basic fashion as the
JdbcCur sor | t enReader . Below is an example configuration using the same 'customer credit' example
asthe JIDBC reader:

Hi ber nat eCur sor |t enReader itenReader = new Hi bernat eCursorltenReader();
i t enReader . set QueryString("from CustonerCredit");

//For sinplicity sake, assune sessionFactory already obtained.

i t emReader . set Sessi onFact ory(sessi onFactory);

i t enReader . set UseSt at el essSessi on(true);

int counter = O;

Execut i onCont ext executi onContext = new Executi onContext();

i t enReader . open(execut i onCont ext) ;

bj ect custonmerCredit = new Object();

whi |l e(customerCredit != null){
custonmerCredit = itenReader.read();
count er ++;

}

i t enReader . cl ose(execut i onCont ext) ;

Thisconfigured | t enReader will return cust oner Cr edi t objectsinthe exact same manner as described
by the Jdbccur sor I t enReader , assuming hibernate mapping files have been created correctly for the
Customer table. The 'useStatel essSession’ property defaults to true, but has been added here to draw
attention to the ability to switch it on or off. It is also worth noting that the fetchSize of the underlying
cursor can be set via the setFetchSize property. As with JdbcCur sor | t enReader, configuration is
straightforward:

<bean id="itenReader"
cl ass="org. spri ngframewor k. bat ch. i t em dat abase. Hi ber nat eCur sor | t enReader " >
<property nanme="sessi onFactory" ref="sessionFactory" />
<property name="queryString" val ue="from CustonerCredit" />
</ bean>

6.9.2. Paging IltemReaders

An aternative to using a database cursor is executing multiple queries where each query is bringing
back a portion of the results. We refer to this portion as a page. Each query that is executed must
specify the starting row number and the number of rows that we want returned for the page.

6.9.2.1. JdbcPagingltemReader

One implementation of a paging |ItenReader S the JdbcPagingltenReader. The
JdbcPagi ngl t enReader needs a Pagi ngQuer yProvi der responsible for providing the SQL queries
used to retrieve the rows making up a page. Since each database has its own strategy for providing
paging support, we need to use a different Pagi ngQuer yProvi der for each supported database type.

Spring Batch 2.0.4.RELEASE 78

ItemReaders and ItemWriters

There is also the Sql Pagi ngQuer yProvi der Fact or yBean that will auto-detect the database that is
being used and determine the appropriate Pagi ngQuer yPr ovi der implementation. This simplifies the
configuration and is the recommended best practice.

Thesqgl Pagi ngQuer yPr ovi der Fact or yBean requiresthat you specify aselect clauseand afrom clause.
Y ou can also provide an optional where clause. These clauses will be used to build an SQL statement
combined with the required sortKey.

After the reader has been opened, it will pass back one item per call tor ead in the same basic fashion
as any other I t enReader . The paging happens behind the scenes when additional rows are needed.

Below is an example configuration using a similar ‘customer credit' example as the cursor based
ItemReaders above:

<bean i d="itenReader" class="org.spr...JdbcPagi ngltenReader">
<property name="dat aSource" ref="dataSource"/>
<property name="queryProvider">
<bean cl ass="org. spr. .. Sqgl Pagi ngQuer yProvi der Fact or yBean" >
<property nanme="sel ect 0 ause" val ue="select id, name, credit"/>
<property name="fronCl ause" val ue="from custoner"/>
<property name="whered ause" val ue="where status=:status"/>
<property name="sortKey" val ue="id"/>
</ bean>
</ property>
<property name="paraneter Val ues" >
<map>
<entry key="status" val ue="NEW/>
</ map>
</ property>
<property nanme="pageSi ze" val ue="1000"/>
<property name="row\Vapper" ref="custonerMapper"/>
</ bean>

This configured | t enReader will return cust omer Credi t objects using the Rowvapper that must be
specified. The 'pageSize' property determines the number of entities read from the database for each
query execution.

The 'parameterVaues property can be used to specify aMap of parameter valuesfor the query. If you
use named parametersin the where clause the key for each entry should match the name of the named
parameter. If you use atraditional '? placeholder then the key for each entry should be the number of
the placeholder, starting with 1.

6.9.2.2. JpaPagingltemReader

Another implementation of a paging | t enReader iS the JpaPagi ngl t enReader . JPA doesn't have a
concept similar to the Hibernate st at el essSessi on SO we have to use other features provided by the
JPA specification. Since JPA supports paging, thisis a natural choice when it comes to using JPA for
batch processing. After each pageisread, the entitieswill become detached and the persistence context
will be cleared in order to allow the entities to be garbage collected once the page is processed.

The JpaPagingltenReader alows you to declare a JPQL statement and pass in a
Enti t yManager Fact ory. It will then passback oneitem per call tor ead inthe samebasic fashion asany
other 1 t enReader . The paging happens behind the scenes when additional entities are needed. Below
is an example configuration using the same "customer credit' example as the JDBC reader above:

<bean id="itenReader" class="org.spr...JpaPagi ngltenReader">

Spring Batch 2.0.4.RELEASE 79

ItemReaders and ItemWriters

<property name="entityManager Factory" ref="entityManagerFactory"/>
<property name="queryString" val ue="select ¢ from CustonerCredit c"/>
<property name="pageSi ze" val ue="1000"/>

</ bean>

Thisconfigured t enReader will return cust omer Cr edi t objectsinthe exact same manner as described
by the JdbcPagi ngl t enReader above, assuming the Customer object has the correct JPA annotations
or ORM mapping file. The'pageSize' property determinesthe number of entitiesread from the database
for each query execution.

6.9.2.3. IbatisPagingltemReader

If you use IBATIS for your data access then you can usethe | bat i sPagi ngl t enReader which, asthe
nameindicates, is an implementation of apaging I t enReader . IBATIS doesn't have direct support for
reading rows in pages but by providing a couple of standard variables you can add paging support to
your IBATIS queries.

Hereis an example of aconfiguration for al bat i sPagi ngl t enReader reading CustomerCreditsasin
the examples above:

<bean id="itenReader" class="org.spr...|batisPagi ngltenReader">
<property name="sqgl Mapdient" ref="sql Mapdient"/>
<property nanme="queryld" val ue="get PagedCust onerCredi ts"/>
<property name="pageSi ze" val ue="1000"/>

</ bean>

The 1batisPagingltenReader configuration above references an IBATIS query called
"getPagedCustomerCredits’. Here is an example of what that query should look like for MySQL.

<sel ect id="get PagedCustonerCredits" resultMp="customerCreditResult">
select id, nanme, credit fromcustoner order by id asc LIMT # skiprows#, # pagesize#
</ sel ect>

The _ski prows and _pagesi ze variables are provided by the I bat i sPagi ngl t enReader and thereis
also a_page variable that can be used if necessary. The syntax for the paging queries varies with the
database used. Hereisan examplefor Oracle (unfortunately we need to use CDATA for some operators
since this belongsin an XML document):

<sel ect id="get PagedCust onmer Credi ts" resul t Map="cust onmer Credi t Resul t">
select * from (
select * from (
select t.id, t.name, t.credit, ROMUM ROMUM_ from custonmer t order by id
) where ROMUM <![CDATAl >]]> (#_page# * #_pagesi ze#)
) where ROWNUM <! [CDATA[<=]]> #_pagesi ze#
</ sel ect >

6.9.3. Database ItemWriters

While both Flat Filesand XML have specific [temWriters, there is no exact equivalent in the database
world. This is because transactions provide all the functionality that is needed. ItemWriters are
necessary for files because they must act as if they're transactional, keeping track of written items
and flushing or clearing at the appropriate times. Databases have no need for this functionality, since
the write is already contained in a transaction. Users can create their own DAOSs that implement
theltenmwi ter interface or use one from acustom | temni ter that's written for generic processing
concerns, either way, they should work without any issues. Onething to look out for isthe performance

Spring Batch 2.0.4.RELEASE 80

ItemReaders and ItemWriters

and error handling capabilities that are provided by batching the outputs. Thisis most common when
using hibernate as an 1temwiter, but could have the same issues when using Jdbc batch mode.
Batching database output doesn't have any inherent flaws, assuming we are careful to flush and there
are no errors in the data. However, any errors while writing out can cause confusion because there
is no way to know which individual item caused an exception, or even if any individual item was
responsible, asillustrated below:

ftemvWriter

Step Session TransactionManager

execute) 1 begin] !

i Lpdate
Update D
:

i
rollback() '

write(items) | E ﬂ
1

If itemsare buffered before being written out, any errors encountered will not be thrown until the buffer
isflushed just before acommit. For example, let's assume that 20 items will be written per chunk, and
the 15th item throws a Datal ntegrityViolationException. As far as the Step is concerned, all 20 item
will be written out successfully, since there's no way to know that an error will occur until they are
actually written out. Once Sessi on#f | ush() iscalled, the buffer will be emptied and the exception will
be hit. At this point, there's nothing the st ep can do, the transaction must be rolled back. Normally,
this exception might cause the Item to be skipped (depending upon the skip/retry policies), and then it
won't be written out again. However, in the batched scenario, there's no way for it to know which item
caused the issue, the whole buffer was being written out when the failure happened. The only way to
solvethisissue isto flush after each item:

Spring Batch 2.0.4.RELEASE 81

ItemReaders and ItemWriters

ftemvWriter
]
Step : Session TransactionManager
i i : :
executel) . , .
——>r__ beging : B
writelitermn) : |
> update 1 !
™ 1
|
flushi) !
T :
write(iterm) [|
()=‘_ update : !
|
|
flush !
— rl |
i I
rollback() ! ; _
T | !]

This is a common use case, especially when using Hibernate, and the simple guideline for
implementations of 1 tenmw i ter, isto flush on each call towite(). Doing so alows for items to be
skipped reliably, with Spring Batch taking careinternally of the granularity of thecallsto1temni t er
after an error.

6.10. Reusing Existing Services

Batch systems are often used in conjunction with other application styles. The most common is an
onlinesystem, but it may al so support integration or even athick client application by moving necessary
bulk data that each application style uses. For this reason, it is common that many users want to reuse
existing DAOs or other services within their batch jobs. The Spring container itself makes this fairly
easy by alowing any necessary class to be injected. However, there may be cases where the existing
serviceneedstoact asan| t enReader OF I t emW i t er, either to satisfy the dependency of another Spring
Batch class, or becauseit truly isthemain | t enReader for astep. Itisfairly trivial to write an adaptor
class for each service that needs wrapping, but because it is such a common concern, Spring Batch
providesimplementations: | t enReader Adapt er and |t emW i t er Adapt er . Both classes implement the
standard Spring method invoking the delegate pattern and are fairly simple to set up. Below is an
example of the reader:

<bean i d="itenReader" class="org.springfranework. batch.item adapter.|tenReader Adapter">
<property name="target Cbject" ref="fooService" />
<property nanme="t ar get Met hod" val ue="gener at eFoo" />

</ bean>

<bean i d="fooService" class="org.springfranmework. batch.item sanpl e. FooServi ce" />

One important point to note is that the contract of the targetM ethod must be the same as the contract
for read: when exhausted it will return null, otherwise an j ect. Anything else will prevent the
framework from knowing when processing should end, either causing an infinite loop or incorrect
failure, depending upon the implementation of the Itemwiter. Theltem¥iter implementation is
equally assimple:

Spring Batch 2.0.4.RELEASE 82

ItemReaders and ItemWriters

<bean id="itenmWiter" class="org.springfranework.batch.item adapter.|ten/iterAdapter">
<property nanme="target Obj ect" ref="fooService" />
<property nanme="t ar get Met hod" val ue="processFoo" />

</ bean>

<bean i d="fooService" class="org.springfranework. batch.item sanpl e. FooService" />

6.11. Validating Input

During the course of this chapter, multiple approaches to parsing input have been discussed. Each
major implementation will throw an exception if it is not ‘well-formed'. The Fi xedLengt hTokeni zer

will throw an exception if a range of data is missing. Similarly, attempting to access an index in a
RowMapper Of Fi el dSet Mapper that doesn't exist or isin a different format than the one expected will

cause an exception to be thrown. All of these types of exceptions will be thrown before r ead returns.
However, they don't address the issue of whether or not the returned item isvalid. For example, if one
of thefieldsisan age, it obviously cannot be negative. It will parse correctly, becauseit existed and is
anumber, but it won't cause an exception. Since there are already aplethoraof Validation frameworks,
Spring Batch does not attempt to provide yet another, but rather provides avery simple interface that
can be implemented by any number of frameworks:

public interface Validator {

voi d val i date(Object value) throws Validati onException

The contract is that the val i dat e method will throw an exception if the object isinvalid, and return
normally if it isvalid. Spring Batch provides an out of the box | t enPr ocessor :

<bean cl ass="org. springframework. batch.item validator.ValidatingltenProcessor">
<property name="validator" ref="validator" />
</ bean>

<bean i d="validator"
cl ass="org. spri ngfranmewor k. batch.item validator. SpringValidator">
<property name="val i dator">
<bean i d="order Val i dator"
cl ass="org. spri ngnodul es. val i dati on. val ang. Val angVal i dat or " >
<property nanme="val ang" >

<val ue>
<! [CDATA[
{ orderid : ? > 0 AND ? <= 9999999999 : 'Incorrect order ID : 'error.order.id" |}
{ totalLines : ? = size(lineltens) : 'Bad count of order |ines

"error.order.lines. badcount"'}
{ custoner.registered : custoner.businessCustoner = FALSE OR ? = TRUE
' Busi ness custoner must be registered
‘error.custoner.registration'}
{ custoner. conpanyNane : custoner. busi nessCustoner = FALSE OR ? HAS TEXT
' Conpany nane for business customer is mandatory
:'error.custoner.conpanynane' }
11>
</val ue>
</ property>
</ bean>
</ property>
</ bean>

This simple example shows a simple val angVval i dat or that is used to validate an order object. The
intent is not to show Valang functionality as much as to show how avalidator could be added.

Spring Batch 2.0.4.RELEASE 83

ItemReaders and ItemWriters

6.12. Preventing State Persistence

By default, all of the It enReader and It emwiter implementations store their current state in the
Execut i onCont ext before it is committed. However, this may not always be the desired behavior.
For example, many devel opers choose to make their database readers 'rerunnable’ by using a process
indicator. An extra column is added to the input data to indicate whether or not it has been processed.
When a particular record is being read (or written out) the processed flag is flipped from false to
true. The SQL statement can then contain an extra statement in the where clause, such as "where
PROCESSED IND = fase", thereby ensuring that only unprocessed records will be returned in the
case of arestart. In thisscenario, it is preferable to not store any state, such asthe current row number,
since it will be irrelevant upon restart. For this reason, all readers and writers include the 'saveState’

property:

<bean i d="pl ayer Summari zati onSour ce" cl ass="org. spr...JdbcCursorltenReader">
<property name="dat aSource" ref="dataSource" />
<property name="rowvapper" >
<bean cl ass="org. spri ngfranmewor k. bat ch. sanpl e. Pl ayer Sunmar yMapper" />
</ property>
<property name="saveState" val ue="fal se" />
<property name="sql ">
<val ue>
SELECT ganes. pl ayer _i d, games.year_no, SUM COVPLETES),
SUM ATTEMPTS), SUM PASSI NG_YARDS), SUM PASSI NG TD),
SUM | NTERCEPTI ONS), SUM RUSHES), SUM RUSH_YARDS),
SUM RECEPTI ONS), SUM RECEPTI ONS_YARDS), SUM TOTAL_TD)
from ganes, players where players.player_id =
ganes. pl ayer _id group by ganes. player_id, ganes.year_no
</ val ue>
</ property>
</ bean>

The 1t enReader configured above will not make any entries in the ExecutionContext for any
executions in which it participates.

6.13. Creating Custom ItemReaders and ltemWriters

So far in this chapter the basic contracts that exist for reading and writing in Spring Batch and some
common implementations have been discussed. However, these are all fairly generic, and there are
many potential scenariosthat may not be covered by out of the box implementations. This section will
show, using a simple example, how to create a custom I t enReader and I temW i t er implementation
and implement their contracts correctly. The t enReader will alsoimplement | t ent r eam in order to
illustrate how to make areader or writer restartable.

6.13.1. Custom ItemReader Example

For the purpose of this example, asimple | t enReader implementation that reads from a provided list
will be created. We'll start out by implementing the most basic contract of | t enReader , r ead:

public class CustomntenReader<T> i npl enents |tenReader <T>{
Li st<T> itens;
publ i c CustomnltenReader (List<T> itens) {

this.items = itens;

}

public T read() throws Exception, Unexpectedl nput Excepti on,

Spring Batch 2.0.4.RELEASE 84

ItemReaders and ItemWriters

NoWor kFoundExcept i on, Par seException {

if (Yitems.isEnpty()) {
return itens.renmove(0);

}

return null;

Thisvery simple classtakesalist of items, and returns them one at atime, removing each fromthelist.
When thelist is empty, it returns null, thus satisfying the most basic requirements of an I t enReader ,
asillustrated below:

List<String> items = new ArrayList<String>();
itens.add("1");
itens.add("2");
items. add("3");

|t enReader itenReader = new CustonltenReader<String>(itens);
assert Equal s("1", itenReader.read());

assert Equal s("2", itenReader.read());

assert Equal s("3", itenReader.read());

assertNul | (itenmReader.read());

6.13.1.1. Making the I t enReader Restartable

The final challenge now isto make the I t enReader restartable. Currently, if the power goes out, and
processing begins again, the 1 t enReader must start at the beginning. This is actually valid in many
scenarios, but it is sometimes preferable that a batch job starts where it |eft off. The key discriminant
is often whether the reader is stateful or stateless. A stateless reader does not need to worry about
restartability, but astateful one hasto try and reconstituteitslast known state on restart. For thisreason,
we recommend that you keep custom readers stateless if possible, so you don't have to worry about
restartability.

If you do need to store state, then the | t enst r eaminterface should be used:

public class CustomtenReader<T> inplenments |tenReader<T>, |tenftream {

Li st<T> itens;
int currentlndex = O;
private static final String CURRENT_| NDEX = "current.index";

publi c CustomltenReader (List<T> itens) {
this.items = itens;

}

public T read() throws Exception, Unexpectedl nput Excepti on,
Par seException {

if (currentlndex < itens.size()) {
return itens.get(currentlndex++);

}

return null;

}

public void open(ExecutionContext executionContext) throws |tenfstreanException {
i f (executionCont ext . cont ai nsKey(CURRENT_| NDEX)) {
currentlndex = new Long(executi onContext.getLong(CURRENT | NDEX)). i nt Val ue();
}
el se{
currentlndex = 0;

Spring Batch 2.0.4.RELEASE 85

ItemReaders and ItemWriters

}

public void updat e(Executi onCont ext executionContext) throws |tenStreanException {
execut i onCont ext . put Long(CURRENT _| NDEX, new Long(currentlndex).|ongVal ue());

}

public void close() throws |tenftreanException {}

On each call to the I t ent r eamupdat e method, the current index of the I t enReader will be stored
in the provided Execut i onCont ext with akey of 'current.index’. When the |1 t ent r eamopen method
is called, the Execut i onCont ext is checked to see if it contains an entry with that key. If the key is
found, then the current index ismoved to that location. Thisisafairly trivial example, but it still meets
the general contract:

Execut i onCont ext executi onContext = new Executi onContext();
((ItenStrean)itenReader). open(executionContext);

assert Equal s("1", itenReader.read());
((ItenStrean)itenReader) . updat e(executi onCont ext);

List<String> itens = new Arraylist<String>();
items. add("1");

itens. add("2");

itens. add("3");

i t emReader new Custonl t enReader <Stri ng>(itens);

W N R

((ItenStrean)itenReader). open(executionContext);
assert Equal s("2", itenReader.read());

Most ItemReaders have much more sophisticated restart logic. The JdbcCur sor | t enReader, for
example, storesthe row id of the last processed row in the Cursor.

It is also worth noting that the key used within the Execut i onCont ext should not be trivial. That is
because the same Execut i onCont ext isused for all 1 t ensst r eans within ast ep. In most cases, smply
prepending the key with the class name should be enough to guarantee uniqueness. However, in the
rare cases where two of the same type of 1t enst reamare used in the same step (which can happen
if two files are need for output) then a more unique name will be needed. For this reason, many of
the Spring Batch | t enReader and 1t emW it er implementations have aset Namre() property that allows
this key name to be overridden.

6.13.2. Custom ItemWriter Example

Implementing a Custom | temw i t er issimilar in many waysto the | t enReader example above, but
differsin enough ways asto warrant its own example. However, adding restartability is essentially the
same, so it won't be covered in this example. As with the | t enReader example, aLi st will be used
in order to keep the example as simple as possible:

public class CustomtemWiter<T> inplenments ItemWiter<T> {
Li st <T> out put = Transacti onAwar ePr oxyFactory. createTransacti onal Li st();

public void wite(List<? extends T> itens) throws Exception {
out put. addAl | (itens);
}

public List<T> getQutput() {
return output;

}

Spring Batch 2.0.4.RELEASE 86

ItemReaders and ItemWriters

6.13.2.1. Making the 1temwiter Restartable

To make the ItemWriter restartable we would follow the same process as for the | t enReader , adding
and implementing the I t ensst r eaminterface to synchronize the execution context. In the example we
might have to count the number of items processed and add that as a footer record. If we needed to do
that, we could implement | t enSt reamin our | temW i t er SO that the counter was reconstituted from
the execution context if the stream was re-opened.

In many realistic cases, custom ItemWriters al so del egate to another writer that itself isrestartable (e.g.
when writing to afile), or else it writes to a transactional resource so doesn't need to be restartable
becauseit is statel ess. When you have a stateful writer you should probably also be sure to implement
Itenstreamaswell asitemniter. Remember also that the client of the writer needs to be aware of
the I t enfst r eam SO YOU may need to register it as a stream in the configuration xml.

Spring Batch 2.0.4.RELEASE 87

Chapter 7. Scaling and Parallel Processing

Many batch processing problems can be solved with single threaded, single process jobs, so it is
always a good idea to properly check if that meets your needs before thinking about more complex
implementations. Measure the performance of aredlistic job and see if the simplest implementation
meets your needs first: you can read and write a file of several hundred megabytes in well under a
minute, even with bog standard hardware.

When you are ready to start implementing a job with some parallel processing, Spring Batch offers a
range of options, which are described in this chapter, although some features are covered elsewhere.
At a high level there are two modes of parallel processing: single process, multi-threaded; and
multi-process. These break down into categories as well, asfollows:

Multi-threaded Step (single process)

Parallel Steps (single process)

Remote Chunking of Step (multi process)

Partitioning a Step (single or multi process)

Next we review the single-process options first, and then the multi-process options.

7.1. Multi-threaded Step

The simplest way to start parallel processing isto add aTaskExecut or to your Step configuration, e.g.
as an attribute of the chunk:

<step i d="Iloadi ng">
<t askl et >
<chunk reader ="st agi ngReader"
processor ="st agi ngPr ocessor"

witer="tradeWiter"

comit-interval ="1"

t ask- execut or ="t askExecut or"/ >
</t askl et >

</ st ep>

In this example the taskExecutor is a reference to another bean definition, implementing the
TaskExecut or interface. TaskExecut or is a standard Spring interface, so consult the Spring User
Guide for details of available implementations. The simplest multi-threaded TaskExecutor is a
Si mpl eAsyncTaskExecut or .

Theresult of the above configuration will be that the Step executes by reading, processing and writing
each chunk of items (each commit interval) in a separate thread of execution.

There are some practical limitations of using multi-threaded Steps for some common Batch use cases.
Many participants in a Step (e.g. readers and writers) are stateful, and if the state is not segregated
by thread, then those components are not usable in a multi-threaded Step. In particular most of the
off-the-shelf readers and writers from Spring Batch are not designed for multi-threaded use. It is,
however, possible to work with stateless or thread safe readers and writers, and there is a sample
(parallelJob) in the Spring Batch Samples that show the use of a process indicator (see Section 6.12,

Spring Batch 2.0.4.RELEASE 88

Scaling and Parallel Processing

“Preventing State Persistence”) to keep track of items that have been processed in a database input
table.

7.2. Parallel Steps

Aslong as the application logic that needsto be parallelized can be split into distinct responsibilities,
and assigned to individual stepsthen it can be parallelized in asingle process. Parallel Step execution
is easy to configure and use, for example, to execute steps (st epl, st ep2) in parallel with st ep3, you
could configure aflow like this:

<job id="jobl">
<split id="splitl" task-executor="taskExecutor" next="step4">
<fl ow>
<step id="stepl" parent="s1" next="step2"/>
<step id="step2" parent="s2"/>

</fl ow>
<fl ow>
<step id="step3" parent="s3"/>
</fl ow>
</split>
<step id="step4" parent="s4"/>

</j ob>

<beans: bean i d="taskExecutor" class="org.spr...Sinpl eAsyncTaskExecutor"/>

The configurable "task-executor” attribute is used to specify which TaskExecutor implementation
should be used to execute theindividual flows. The default isSyncTaskExecut or , but an asynchronous
TaskExecutor is required to run the steps in parallel. Note that the job will ensure that every flow in
the split completes before aggregating the exit statuses and transitioning.

See the section on Section 5.3.5, “ Split Flows® for more detail.

7.3. Remote Chunking

In Remote Chunking the Step processing is split across multiple processes, communicating with each
other through some middleware. Here is a picture of the pattern in action:

Spring Batch 2.0.4.RELEASE 89

Scaling and Parallel Processing

Remote Chunking

Master: Slave:
<<Step>> <<Listener>>
- o
L
; o ﬁ .
- |= -
s O =
o A = - .
e —EE
El | c = o
i = et
= |E 2 T
o O
. .
I"I:

-

The Master component is a single process, and the Slaves are multiple remote processes. Clearly this
pattern works best if the Master is not a bottleneck, so the processing must be more expensive than
the reading of items (thisis often the case in practice).

The Master is just an implementation of a Spring Batch st ep, with the ItemWriter replaced with
a generic version that knows how to send chunks of items to the middleware as messages. The
Slaves are standard listeners for whatever middleware is being used (e.g. with IMS they would be
MesssagelLi st eners), and their role is to process the chunks of items using a standard 1 temwi t er
or I'tenProcessor plusitemwiter, through the chunkProcessor interface. One of the advantages
of using this pattern is that the reader, processor and writer components are off-the-shelf (the same
as would be used for alocal execution of the step). The items are divided up dynamically and work
is shared through the middleware, so if the listeners are all eager consumers, then load balancing is
automatic.

The middleware has to be durable, with guaranteed delivery and single consumer for each message.
JM Sisthe obvious candidate, but other optionsexist in the grid computing and shared memory product

space (e.g. Java Spaces).

Spring Batch has a sub-project (Spring Batch Integration), providing implementations of various
patterns like this one using Spring Integration. Spring Batch Integration is available in subversion for
peopleto use, but is not intended to be part of the official general release of Spring Batch until it builds
up more of acommunity of users.

7.4. Partitioning

Spring Batch also provides an SPI for partitioning a Step execution and executing it remotely. In this
case the remote participants are simply Step instances that could just as easily have been configured
and used for local processing. Here is a picture of the pattern in action:;

Spring Batch 2.0.4.RELEASE 90

Scaling and Parallel Processing

Partitioning Overview

Job
‘ Step | / Slave |
/ Slave |
‘ Ma:ter Ié//ﬂ Slave |
*| Slave |
T \ e _
Slave |

The Job is executing on the left hand side as a sequence of Steps, and one of the Stepsislabelled asa
Master. The Slavesinthispictureareall identical instances of a Step, which could in fact take the place
of the Master resulting in the same outcome for the Job. The Slaves are typically going to be remote
services, but could also be local threads of execution. The messages sent by the Master to the Slaves
in this pattern do not need to be durable, or have guaranteed delivery: Spring Batch meta-datain the
JobReposi t ory Will ensure that each Slave is executed once and only once for each Job execution.

The SPI in Spring Batch consists of a special implementation of Step (the Parti ti onSt ep), and two
strategy interfaces that need to be implemented for the specific environment. The strategy interfaces
arePartitionHandl er and St epExecutionSplitter, and their role is show in the sequence diagram
below:

Spring Batch 2.0.4.RELEASE 91

Scaling and Parallel Processing

PaditionStep

3

i Step
i PartitionHandler i
execute() | : . . .
i handle{) | StepExecultlonSplltter !
4B split() ! :
l
I
l

executel)

u } repeat

jOﬁ{mmmmmmmm

The Step on the right in this case is the "remote" Slave, so potentially there are many objects and or
processes playing this role, and the PartitionStep is shown driving the execution. The PartitionStep
configuration looks like this:

<bean nanme="stepl: master" class="org.sfw ..PartitionStep">
<property name="partitionHandl er" ref="partitionHandl er"/>
<property name="stepExecutionSplitter" ref="stepExecutionSplitter"/>
<property nanme="j obRepository" ref="jobRepository" />

</ bean>

There is a simple example which can be copied and extended in the unit test suite for Spring Batch
Core (seeor g. spri ngf ramewor k. bat ch. core. partiti on package).

7.4.1. PartitionHandler

The PartitionHandl er is the component that knows about the fabric of the remoting or grid
environment. It is able to send St epExecuti on requests to the remote Steps, wrapped in some
fabric-specific format, like a DTO. It does not have to know how to split up the input data, or how
to aggregate the result of multiple Step executions. Generally speaking it probably also doesn't need
to know about resilience or failover, since those are features of the fabric in many cases, and anyway
Spring Batch always provides restartability independent of the fabric: a failed Job can always be
restarted and only the failed Steps will be re-executed.

The PartitionHandl er interface can have specialized implementations for a variety of fabric types:
e.g. simple RMI remoting, EJB remoting, custom web service, IMS, Java Spaces, shared memory grids
(like Terracotta or Coherence), grid execution fabrics (like GridGain). Spring Batch does not contain
implementations for any proprietary grid or remoting fabrics.

Spring Batch 2.0.4.RELEASE 92

Scaling and Parallel Processing

Spring Batch does however provide a useful implementation of PartitionHandl er that executes
Steps locally in separate threads of execution, using the TaskExecut or strategy from Spring. The
implementation is called TaskExecut or Par t i ti onHandl er, and it can be configured like this:

<bean cl ass="org. spr... TaskExecutorPartitionHandl er">
<property nanme="t askExecutor" ref="taskExecutor"/>
<property name="step" ref="stepl" />
<property nanme="gri dSi ze" val ue="10" />

</ bean>

Thegri dsi ze determines the number of separate step executionsto create, so it can be matched to the
size of thethread pool inthe TaskExecut or, Or elseit can be set to be larger than the number of threads
available, in which case the blocks of work are smaller.

The TaskExecutorPartitionHandl er is quite useful for 10 intensive Steps, like copying large
numbers of files or replicating filesystems into content management systems.

7.4.2. StepExecutionSplitter

The st epExecuti onSpl i tter isresponsiblefor splitting up ast epExecut i on into blocks of work, and
providing input parameters for the remote Slaves in the form of an Execut i onCont ext for each one.
The principal method for thisin the interfaceis

public interface StepExecutionSplitter {

Set <St epExecuti on> split(StepExecuti on stepExecution, int gridSize)
t hrows JobExecuti onExcepti on;

So an execution instance for the Master step is passed in, along with a hint about the grid size,
and the splitter has to create a set of partitioned St epExecuti on instances, each with a different
Execut i onCont ext .

A convenient generic implementation of StepExecutionSplitter is provided by Spring Batch, which
handles concernslikeinterpreting the grid size and handling restart. It isrecommended that you usethis
implementation (the Si npl eSt epExecut i onSpl i tter) and inject specific knowledge of the input data
through itsParti ti oner property. The Partitioner has a smpler responsibility: to generate execution
contexts as input parameters for new step executions only (no need to worry about restarts). It has a
single method:

public interface Partitioner {
Map<String, ExecutionContext> partition(int gridSize);
}

The return value from this method associates a unique name for each step execution (the Stri ng),
with input parameters in the form of an Execut i onCont ext . The names show up later in the Batch
meta data as the step name in the partitioned St epExecut i ons. The Execut i onCont ext iSjust abag of
name-value pairs, so it might contain a range of primary keys, or line numbers, or the location of an
input file. The remote st ep then normally binds to the context input using #{. . . } placeholders (late
binding in step scope), asillustrated in the next section.

The names of the step executions (the keys in the Map returned by Partiti oner) need to be unique
amongst the step executions of a Job, but do not have any other specific requirements. The easiest way
to do this, and to make the names meaningful for users, isto use a prefix+suffix naming convention,

Spring Batch 2.0.4.RELEASE 93

Scaling and Parallel Processing

where the prefix is the name of the step that is being executed (which itself is uniquein the Job), and
the suffix isjust acounter. Thereisasi npl eParti ti oner intheframework that usesthis convention.

7.4.3. Binding Input Data to Steps

Itisvery efficient for the stepsthat are executed by the PartitionHandl er to haveidentical configuration,
and for their input parameters to be bound at runtime from the ExecutionContext. Thisis easy to do
with the StepScope feature of Spring Batch (covered in more detail in the section on Late Binding).
For exampleif thePartiti oner creates Executi onCont ext instanceswith an attribute key i | eNane,
pointing to adifferent file (or directlory) for each step invocation, the Par ti ti oner output might look

like this:

Table 7.1. Example step execution name to execution context provided by Partitioner targeting

directory processing

Step Execution Name (key)

ExecutionContext (value)

filecopy:partition0
filecopy:partitionl

filecopy:partition2

Then the file name can be bound to a step using late binding to the execution context:

fileName=/home/data/one
fileName=/home/data/two

fileName=/home/data/three

<bean i d="itenReader" scope="step"
class="org.spr...Mlti ResourceltenReader">
<property name="resource" val ue="#{stepExecuti onContext[fileNane]}/*"/>

</ bean>

Spring Batch 2.0.4.RELEASE

94

Chapter 8. Repeat

8.1. RepeatTemplate

Batch processing is about repetitive actions - either as a simple optimization, or as part of ajob. To
strategize and generalize the repetition as well as to provide what amounts to an iterator framework,
Spring Batch has the Repeat Oper at i ons interface. The Repeat Qper at i ons interface looks like this:

public interface RepeatOperations {

Repeat St atus iterate(RepeatCall back cal | back) throws Repeat Excepti on;

}

The callback is asimple interface that allows you to insert some business logic to be repeated:

public interface RepeatCal |l back {

Repeat St at us dol nlteration(Repeat Cont ext context) throws Exception;

}

The callback is executed repeatedly until the implementation decides that the iteration should end.
The return value in these interfaces is an enumeration that can either be Repeat St at us. CONTI NUABLE
Or Repeat Status. FI NlSHED. A Repeat Status conveys information to the caller of the repeat
operations about whether there is any more work to do. Generaly speaking, implementations of
Repeat Qper at i ons should inspect the Repeat St at us and use it as part of the decision to end the
iteration. Any callback that wishes to signal to the caller that there is no more work to do can return
Repeat St at us. FI NI SHED.

The simplest general purpose implementation of Repeat Oper at i ons iS Repeat Tenpl at e. It could be
used like this:

Repeat Tenpl ate tenpl ate = new Repeat Tenpl ate();
t enpl at e. set Conpl eti onPol i cy(new Fi xedChunkSi zeConpl eti onPolicy(2));
tenpl ate.iterate(new Repeat Cal | back() {

public ExitStatus dolnlterati on(Repeat Context context) ({

/1l Do stuff in batch...
return ExitStatus. CONTI NUABLE;

55

In the example we return Repeat St at us. CONTI NUABLE to show that there is more work to do. The
callback can also return Exi t St at us. FI NI SHED if it wants to signal to the caller that there is no more
work to do. Some iterations can be terminated by considerations intrinsic to the work being done in
the callback, others are effectively infinite loops as far asthe callback is concerned and the compl etion
decision is delegated to an external policy asin the case above.

Spring Batch 2.0.4.RELEASE 95

Repeat

8.1.1. RepeatContext

Themethod parameter for the Repeat Cal | back iSaRepeat Cont ext . Many callbackswill ssimply ignore
the context, but if necessary it can be used as an attribute bag to store transient data for the duration of
the iteration. After thei t er at e method returns, the context will no longer exist.

A Repeat Cont ext Will haveaparent context if thereisanested iteration in progress. The parent context
isoccasionally useful for storing data that need to be shared between callstoi t er at e. Thisisthe case
for instance if you want to count the number of occurrences of an event in the iteration and remember
it across subsequent calls.

8.1.2. RepeatStatus

Repeat St at us IS an enumeration used by Spring Batch to indicate whether processing has finished.
These are possible Repeat St at us values:

Table 8.1. ExitStatus Properties

Value Description
CONTINUABLE Thereis more work to do.
FINISHED No more repetitions should take place.

Repeat St at us values can aso be combined with alogical AND operation using the and() method in
Repeat St at us. The effect of thisisto do alogical AND on the continuable flag. In other words, if
either statusis FI NI SHED, then the result will be FI NI SHED.

8.2. Completion Policies

Inside a Repeat Tenpl ate the termination of the loop in the iterate method is determined by
a Conpl eti onPol i cy which is also a factory for the Repeat Context. The Repeat Tenpl ate has
the responsibility to use the current policy to create a Repeat Cont ext and pass that in to the
Repeat Cal | back at every stage in the iteration. After a callback completes its dol niterati on, the
Repeat Tenpl at e has to make a call to the Conpl eti onPol i cy to ask it to update its state (which will
be stored in the Repeat Cont ext). Then it asks the policy if the iteration is complete.

Spring Batch provides some simple general purpose implementations of Conpl etionPolicy.
The Si npl eConpl eti onPol i cy just allows an execution up to a fixed number of times (with
Repeat St at us. FI NI SHED forcing early completion at any time).

Users might need to implement their own completion policies for more complicated decisions. For
example, abatch processing window that prevents batch jobs from executing once the online systems
are in use would require a custom policy.

8.3. Exception Handling

If there is an exception thrown inside a Repeat Cal | back, the Repeat Tenpl ate consults an
Except i onHandl er which can decide whether or not to re-throw the exception.

public interface ExceptionHandl er {

voi d handl eExcepti on(Repeat Cont ext context, Throwabl e t hrowabl e)

Spring Batch 2.0.4.RELEASE 96

Repeat

throws Runti meException;

}

A common use case is to count the number of exceptions of a given type, and fail when a limit
is reached. For this purpose Spring Batch provides the Si npl eLi ni t Except i onHandl er and slightly
more flexible Ret hr owOnThr eshol dExcept i onHandl er. The Si npl eLi ni t Except i onHandl er has a
limit property and an exception typethat should be compared with the current exception - all subclasses
of the provided type are al so counted. Exceptionsof the giventypeareignored until thelimit isreached,
and then rethrown. Thaose of other types are aways rethrown.

An important optional property of the Si npl eLi mi t Except i onHandl er isthe boolean flag usePar ent .
Itisfalse by default, so thelimit isonly accounted for in the current Repeat Cont ext . When set to true,
the limit is kept across sibling contexts in a nested iteration (e.g. a set of chunksinside a step).

8.4. Listeners

Often it isuseful to be able to receive additional callbacks for cross cutting concerns across a number
of different iterations. For this purpose Spring Batch provides the Repeat Li st ener interface. The
Repeat Tenpl at e allows usersto register Repeat Li st ener S, and they will be given callbacks with the
Repeat Cont ext and Repeat St at us Where available during the iteration.

The interface looks like this:

public interface RepeatlListener {
voi d bef or e(Repeat Cont ext context);

voi d after(Repeat Context context, RepeatStatus result);
voi d open(Repeat Cont ext context);
voi d onError (Repeat Cont ext context, Throwable e);

voi d cl ose(Repeat Cont ext context);

}

The open and cl ose callbacks come before and after the entire iteration. bef or e, af t er and onErr or
apply to theindividual RepeatCallback calls.

Note that when there is more than one listener, they arein alist, so thereisan order. In this case open
and bef or e are called in the same order while af t er, onError and cl ose are called in reverse order.

8.5. Parallel Processing

Implementations of Repeat Oper ati ons are not restricted to executing the callback sequentialy. It
is quite important that some implementations are able to execute their callbacks in parallel. To this
end, Spring Batch provides the TaskExecut or Repeat Tenpl at e, Which uses the Spring TaskExecut or
strategy to run the Repeat Cal | back. The default isto use aSynchr onousTaskExecut or , which hasthe
effect of executing the whole iteration in the same thread (the same as a normal Repeat Tenpl at e).

8.6. Declarative lteration

Sometimes there is some business processing that you know you want to repeat every time it
happens. The classic example of this is the optimization of a message pipeline - it is more efficient

Spring Batch 2.0.4.RELEASE 97

Repeat

to process a batch of messages, if they are arriving frequently, than to bear the cost of a separate
transaction for every message. Spring Batch provides an AOP interceptor that wrapsamethod call ina
Repeat Qper at i ons for just this purpose. TheRepeat Qper at i onsl nt er cept or executestheintercepted
method and repeats according to the Conpet i onPol i cy in the provided Repeat Tenpl at e.

Here is an example of declarative iteration using the Spring AOP namespace to repeat a service call
to a method called pr ocessMessage (for more detail on how to configure AOP interceptors see the
Spring User Guide):

<aop: confi g>
<aop: poi ntcut id="transactional"
expressi on="execution(* com..*Service. processMessage(..))" />
<aop: advi sor pointcut-ref="transactional"
advi ce-ref="retryAdvi ce" order="-1"/>
</ aop: confi g>

<bean i d="retryAdvi ce" class="org.spr...RepeatQperationslnterceptor"/>

The example above uses a default Repeat Tenpl at e inside the interceptor. To change the policies,
listeners etc. you only need to inject an instance of Repeat Tenpl at e into the interceptor.

If theintercepted method returnsvoi d then theinterceptor always returns ExitStatus. CONTINUABLE
(so there is a danger of an infinite loop if the Conpl eti onPol i cy does not have a finite end point).
Otherwise it returns Exi t St at us. CONTI NUABLE until the return value from the intercepted method is
null, at which point it returns Exi t St at us. FI NI SHED. So the business logic inside the target method
can signal that there is no more work to do by returning nul I, or by throwing an exception that is
re-thrown by the Except i onHandl er in the provided Repeat Tenpl at e.

Spring Batch 2.0.4.RELEASE 98

Chapter 9. Retry

9.1. RetryTemplate

To make processing more robust and less prone to failure, sometimes it helps to automatically retry
a failed operation in case it might succeed on a subsequent attempt. Errors that are susceptible to
this kind of treatment are transient in nature. For example a remote call to a web service or RMI
service that fails because of anetwork glitch or abeadLockLoser Except i on in a database update may
resolve themselves after a short wait. To automate the retry of such operations Spring Batch has the
Ret ryQper at i ons strategy. The Ret r yQper at i ons interface looks like this:

public interface RetryQOperations {
<T> T execute(RetryCal | back<T> retryCal | back) throws Excepti on;

<T> T execute(RetryCal | back<T> retryCal | back, RecoveryCallback<T> recoveryCal |l back)
t hrows Excepti on;

<T> T execute(RetryCal | back<T> retryCal | back, RetryState retryState)
throws Exception, ExhaustedRetryExcepti on;

<T> T execut e(RetryCal | back<T> retryCal | back, RecoveryCallback<T> recoverycCall back,
RetryState retryState) throws Exception;

}

The basic callback is a simple interface that allows you to insert some business logic to be retried:

public interface RetryCall back<T> {
T doWthRetry(RetryContext context) throws Throwabl e;

}

The callback is executed and if it fails (by throwing an Except i on), it will be retried until either it is
successful, or theimplementation decidesto abort. There areanumber of overloaded execut e methods
in the Ret r yOper at i ons interface dealing with various use cases for recovery when all retry attempts
are exhausted, and al so with retry state, which allows clients and implementations to store information
between calls (more on this | ater).

Thesimplest general purposeimplementation of Ret r yQper at i ons iSRet r yTenpl at e. It could be used
likethis

RetryTenpl ate tenplate = new RetryTenpl ate();

tenpl at e. set RetryPol i cy(new Ti meout Ret ryPol i cy(30000L));

Foo result = tenpl ate. execut e(new RetryCal | back<Foo>() {
public Foo doWthRetry(RetryContext context) {

/'l Do stuff that might fail, e.g. webservice operation
return result;

56

In the example we execute a web service call and return the result to the user. If that cal fails then it
isretried until atimeout is reached.

Spring Batch 2.0.4.RELEASE 99

Retry

9.1.1. RetryContext

The method parameter for the Ret ryCal | back iSaRet ryCont ext . Many callbacks will smply ignore
the context, but if necessary it can be used as an attribute bag to store data for the duration of the
iteration.

A RetryCont ext Will have aparent context if thereisanested retry in progressin the sasmethread. The
parent context is occasionally useful for storing data that need to be shared between callsto execut e.

9.1.2. RecoveryCallback

When a retry is exhausted the RetryQperations can pass control to a different callback, the
Recover yCal | back. To use thisfeature clients just pass in the callbacks together to the same method,
for example:

Foo foo = tenpl ate. execute(new RetryCal | back<Foo>() {
public Foo doWthRetry(RetryContext context) {
/'l business |ogic here
b
new RecoveryCal | back<Foo>() {
Foo recover (RetryContext context) throws Exception {
/'l recover |ogic here
}
b

If the business logic does not succeed before the templ ate decides to abort, then the client is given the
chance to do some alternate processing through the recovery callback.

9.1.3. Stateless Retry

In the simplest case, aretry isjust awhile loop: the Ret r yTenpl at e can just keep trying until it either
succeeds or fails. The Ret ryCont ext contains some state to determine whether to retry or abort, but
this state is on the stack and there is no need to store it anywhere globally, so we call this stateless
retry. The distinction between stateless and stateful retry is contained in the implementation of the
Ret ryPol i cy (theRet ryTenpl at e can handle both). In astatelessretry, the callback isaways executed
in the same thread on retry as when it failed.

9.1.4. Stateful Retry

Where the failure has caused a transactional resource to become invalid, there are some specia
considerations. This does not apply to a simple remote call because there is no transactional resource
(usually), but it does sometimes apply to a database update, especially when using Hibernate. In
this case it only makes sense to rethrow the exception that called the failure immediately so that the
transaction can roll back and we can start a new valid one.

In these cases a stateless retry is not good enough because the re-throw and roll back necessarily
involve leaving the Ret r y(per at i ons. execut e() method and potentially losing the context that was
on the stack. To avoid losing it we have to introduce a storage strategy to lift it off the stack and
put it (at a minimum) in heap storage. For this purpose Spring Batch provides a storage strategy
Ret r yCont ext Cache Which can beinjected into the Ret r y Tenpl at e. The default implementation of the
Ret r yCont ext Cache iSin memory, using a simple Map. Advanced usage with multiple processesin a
clustered environment might also consider implementing the Ret r yCont ext Cache with acluster cache
of some sort (though, even in a clustered environment this might be overkill).

Spring Batch 2.0.4.RELEASE 100

Retry

Part of the responsibility of theRet r yQper at i ons isto recognize the failed operations when they come
back in a new execution (and usually wrapped in a new transaction). To facilitate this, Spring Batch
provides the Ret rySt at e abstraction. This works in conjunction with a special execut e methods in
the Ret ryQper at i ons.

The way the failed operations are recognized is by identifying the state across multiple invocations
of the retry. To identify the state, the user can provide an Ret rySt at e object that is responsible for
returning a unique key identifying the item. The identifier isused as akey in the Ret r yCont ext Cache.

Warning

Bevery careful with theimplementation of j ect . equal s() and vj ect . hashCode() in
the key returned by Ret rySt at e. The best advice is to use a business key to identify the
items. In the case of a JM'S message the message |D can be used.

When the retry is exhausted thereis also the option to handle the failed item in adifferent way, instead
of calling the Ret rycal | back (which is presumed now to be likely to fail). Just like in the stateless
case, this option is provided by the Recover yCal | back, which can be provided by passing it in to the
execut e method of Ret ryOper ati ons.

Thedecisionto retry or not isactually delegated to aregular Ret ryPol i cy, S0 the usual concerns about
limits and timeouts can be injected there (see below).

9.2. Retry Policies

Inside a RetryTenpl ate the decision to retry or fail in the execute method is determined by a
Ret ryPol i cy whichisalso afactory for the Ret r yCont ext . The Ret r yTenpl at e hasthe responsibility
to use the current policy to create a Ret ryCont ext and pass that in to the RetryCal | back at every
attempt. After a callback fails the Ret ryTenpl at e has to make a call to the RetryPol i cy to ask it
to update its state (which will be stored in the Ret r yCont ext), and then it asks the policy if another
attempt can be made. If another attempt cannot be made (e.g. alimit isreached or atimeout is detected)
then the policy is also responsible for handling the exhausted state. Simple implementations will
just throw Ret r yExhaust edExcept i on which will cause any enclosing transaction to be rolled back.
More sophisticated implementations might attempt to take some recovery action, in which case the
transaction can remain intact.
Tip

.

‘8

Failures areinherently either retryable or not - if the same exception is always going to be
thrown from the business logic, it doesn't help to retry it. So don't retry on all exception
types - try to focus on only those exceptions that you expect to be retryable. It's not
usually harmful to the businesslogic to retry more aggressively, but it's wasteful because
if afailure is deterministic there will be time spent retrying something that you know in
advance isfatal.

Spring Batch provides some simple general purpose implementations of stateless Ret ryPol i cy, for
example a si npl eRet ryPol i cy, and the Ti meout Ret ryPol i cy used in the example above.

The si npl eRet ryPol i cy just allows aretry on any of a named list of exception types, up to a fixed
number of times. It also hasalist of "fatal" exceptionsthat should never beretried, and thislist overrides
the retryable list so that it can be used to give finer control over the retry behavior:

Spring Batch 2.0.4.RELEASE 101

Retry

Si npl eRetryPolicy policy = new Sinpl eRetryPolicy(5);

/1 Retry on all exceptions (this is the default)

pol i cy. set Retryabl eExcepti ons(new C ass[] {Exception.class});

/1 ... but never retry |l egal StateException

pol i cy. set Fat al Excepti ons(new Cl ass[] {ILI egal StateException.class});

/'l Use the policy...
RetryTenpl ate tenpl ate = new RetryTenpl ate();
tenpl at e. set RetryPol i cy(policy);
tenpl at e. execut e(new RetryCal | back<Foo>() {
public Foo doWthRetry(RetryContext context) {
/1 business |ogic here
}
1)

Thereisaso amoreflexibleimplementation called Except i onCl assi fi er Ret ryPol i cy, which allows
the user to configure different retry behavior for an arbitrary set of exception types though the
Exceptiond assifier abstraction. The policy works by calling on the classifier to convert an
exception into a delegate Ret ryPol i cy, SO for example, one exception type can be retried more times
before failure than another by mapping it to a different policy.

Users might need to implement their own retry policies for more customized decisions. For instance,
if thereisawell-known, solution-specific, classification of exceptionsinto retryable and not retryable.

9.3. Backoff Policies

When retrying after atransient failure it often helps to wait a bit before trying again, because usualy
the failure is caused by some problem that will only be resolved by waiting. If aRet ryCal | back fails,
the Ret ryTenpl at e Can pause execution according to the Backof f Pol i cy in place.

public interface BackoffPolicy {
BackCf f Cont ext start (RetryContext context);

voi d backO f (BackO f Cont ext backOf f Cont ext)
throws BackOf f I nterruptedException;

}

A Backof fPol i cy is free to implement the backOff in any way it chooses. The policies provided
by Spring Batch out of the box all use vject.wait(). A common use case is to backoff with
an exponentially increasing wait period, to avoid two retries getting into lock step and both
failing - this is a lesson learned from the ethernet. For this purpose Spring Batch provides the
Exponent i al Backof f Pol i cy.

9.4. Listeners

Often it is useful to be able to receive additional callbacks for cross cutting concerns across a
number of different retries. For this purpose Spring Batch providesthe Ret ryLi st ener interface. The
Ret ryTenpl at e allOws users to register Ret ryLi st ener S, and they will be given callbacks with the
Ret r yCont ext and Thr owabl e where available during the iteration.

The interface looks like this:;

public interface RetryListener {

Spring Batch 2.0.4.RELEASE 102

Retry

voi d open(RetryContext context, RetryCallback<T> cal | back);
voi d onError(RetryContext context, RetryCallback<T> call back, Throwable e);

voi d cl ose(RetryContext context, RetryCallback<T> call back, Throwable e);
}

The open and cl ose callbacks come before and after the entire retry in the simplest case and onEr r or
applies to the individual Ret rycal | back cals. The cl ose method might also receive a Thr owabl e; if
there has been an error it isthe last one thrown by the Ret ryCal | back.

Note that when there is more than one listener, they arein alist, so thereisan order. In this case open
will be called in the same order while onEr ror and cl ose will be called in reverse order.

9.5. Declarative Retry

Sometimes there is some business processing that you know you want to retry every time it happens.
The classic example of thisis the remote service call. Spring Batch provides an AOP interceptor that
wraps a method call in aRet ryQper at i ons for just this purpose. The Ret r yOper at i onsl nt er cept or
executes the intercepted method and retries on failure according to the Ret ryPol i cy in the provided
Repeat Tenpl at e.

Here is an example of declarative iteration using the Spring AOP namespace to repeat a service call
to amethod called r enot ecal | (for more detail on how to configure AOP interceptors see the Spring
User Guide):

<aop: confi g>
<aop: poi ntcut id="transactional"
expressi on="execution(* com..*Service.remoteCall(..))" />
<aop: advi sor pointcut-ref="transactional"
advi ce-ref="retryAdvi ce" order="-1"/>
</ aop: confi g>

<bean id="retryAdvi ce"
cl ass="org. springframework. batch.retry.interceptor. RetryOperationslnterceptor"/>

The example above uses a default Ret ryTenpl at e inside the interceptor. To change the policies or
listeners, you only need to inject an instance of Ret r yTenpl at e into the interceptor.

Spring Batch 2.0.4.RELEASE 103

Chapter 10. Unit Testing

Just as with other application styles, it is extremely important to unit test any code written as part of a
batch job as well. The Spring core documentation covers how to unit and integration test with Spring
in great detail, so it won't be repeated here. It isimportant, however, to think about how to 'end to end'
test abatch job, which iswhat this chapter will focus on. The spring-batch-test project includes classes
that will help facilitate this end-to-end test approach.

10.1. Creating a Unit Test Class

In order for the unit test to run a batch job, the framework must load the job's ApplicationContext.
Two annotations are used to trigger this:

e @unWth(SpringJunit4d assRunner.cl ass): Indicates that the class should use Spring's JUnit
facilities

* @ontext Configuration(locations = {...}): Indicates which XML files contain the
ApplicationContext.

@unW t h(Spri ngJUni t 4Cl assRunner. cl ass)

@Cont ext Confi guration(locations = { "/sinple-job-launcher-context.xm",
"/] obs/ ski pSanpl eJob. xm " })

public class Ski pSanpl eFuncti onal Tests extends AbstractJobTests { ... }

10.2. End-To-End Testing of Batch Jobs

'End To End' testing can be defined as testing the complete run of a batch job from beginning to end.
Thisallows for atest that sets up atest condition, executes the job, and verifies the end result.

In the example below, the batch job reads from the database and writes to aflat file. The test method
begins by setting up the database with test data. It clears the CUSTOMER table and then inserts
10 new records. The test then launches the Job using the | aunchJob() method. The | aunchJob()
method is provided by the AbstractJobTests parent class. Also provided by the super class is
I aunchJob(JobPar anet er s) , which alows the test to give particular parameters. The | aunchJob()
method returns the JobExecut i on object which isuseful for asserting particular information about the
Job run. In the case below, the test verifies that the Job ended with status "COMPLETED".

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@Cont ext Configuration(locations = { "/sinple-job-1launcher-context.xm",
"/] obs/ ski pSanpl eJob. xm " })

public class Ski pSanpl eFuncti onal Tests extends AbstractJobTests {

private SinpleldbcTenpl ate sinpl eJdbcTenpl at e;

@\ut owi r ed
public void set Dat aSour ce(Dat aSour ce dat aSource) {
thi s. sinpl eJdbcTenpl ate = new Si npl eJdbcTenpl at e(dat aSour ce) ;

}

@r ansacti onal
@est
public void testJob() throws Exception {
si mpl eJdbcTenpl at e. updat e("del ete from CUSTOVER') ;
for (int i =1; i <= 10; i++) {
si npl eJdbcTenpl at e. updat e("insert into CUSTOVER values (?, 0, ?, 100000)",
i, "custoner" + i);

Spring Batch 2.0.4.RELEASE 104

Unit Testing

}

JobExecution jobExecution = this.launchJob();

Assert. assert Equal s(" COVWPLETED', j obExecution.getExitStatus());

10.3. Testing Individual Steps

For complex batch jobs, test cases in the end-to-end testing approach may become unmanageable.
It these cases, it may be more useful to have test cases to test individual steps on their own. The
Abstract JobTests class contains a method | aunchst ep that takes a step name and runs just that
particular st ep. Thisapproach allows for more targeted tests by allowing the test to set up datafor just
that step and to validate its results directly.

JobExecution jobExecution = this.launchStep("l oadFileStep");

10.4. Validating Output Files

When a batch job writes to the database, it is easy to query the database to verify that the output is as
expected. However, if the batch job writesto afile, it is equally important that the output be verified.
Spring Batch provides a class Assert Fi | e to facilitate the verification of output files. The method
assert Fi | eEqual s takestwo Fi | e objects (or two Resour ce objects) and asserts, line by line, that the
two files have the same content. Therefore, it is possible to create a file with the expected output and
to compare it to the actual result:

private static final String EXPECTED FILE = "src/ main/resources/data/input.txt";
private static final String OUTPUT_FILE = "target/test-outputs/output.txt"”;

AssertFil e. assert Fi | eEqual s(new Fi | eSyst enResour ce(EXPECTED_FI LE) ,
new Fi | eSyst enResour ce(OQUTPUT_FI LE)) ;

10.5. Mocking Domain Objects

Another common issue encountered while writing unit and integration tests for Spring Batch
components is how to mock domain objects. A good example is a St epExecuti onLi st ener, as
illustrated below:

public class NoWrkFoundSt epExecuti onLi stener extends StepExecutionLi stener Support {

public ExitStatus afterStep(StepExecution stepExecution) {
i f (stepExecution.getReadCount() == 0) {
t hr ow new NoWbr kFoundExcepti on("Step has not processed any itens");

}

return stepExecution. get ExitStatus();

The above listener is provided by the framework and checks a st epExecuti on for an empty read
count, thus signifying that no work was done. While thisexampleisfairly simple, it servestoillustrate
the types of problems that may be encountered when attempting to unit test classes that implement
interfaces requiring Spring Batch domain objects. Consider the above listener's unit test:

private NoWr kFoundSt epExecuti onLi st ener tested = new NoWr kFoundSt epExecut i onLi st ener () ;

Spring Batch 2.0.4.RELEASE 105

Unit Testing

@rest
public void testAfterStep() {
St epExecuti on st epExecution = new StepExecution("NoProcessi ngStep",
new JobExecuti on(new Jobl nstance(1L, new JobParaneters(),
"NoProcessi ngJob")));

st epExecut i on. set ReadCount (0) ;

try {
tested. af t er St ep(st epExecution);

fail();
} catch (NoWdr kFoundException e) {
assert Equal s("Step has not processed any itens", e.getMssage());

}

Because the Spring Batch domain model follows good object orientated principles, the StepExecution
requires aJobExecut i on, which requiresaJobl nst ance and JobPar anet er s in order to create avalid
St epExecut i on. While this is good in a solid domain model, it does make creating stub objects for
unit testing verbose. To addressthisissue, the Spring Batch test module includes afactory for creating
domain objects: Met aDat al nst anceFact or y. Given thisfactory, the unit test can be updated to be more
concise:

private NoWdr kFoundSt epExecuti onLi stener tested = new NoWdr kFoundSt epExecuti onLi st ener () ;

@est
public void testAfterStep() {
St epExecuti on st epExecution = Mt aDat al nst anceFact ory. cr eat eSt epExecuti on();

st epExecut i on. set ReadCount (0) ;

try {
tested. aft er St ep(st epExecution);

fail();
} catch (NoWdr kFoundException e) {
assert Equal s("Step has not processed any itens", e.getMessage());

}

The above method for creating a simple St epExecuti on is just one convenience method available
within the factory. A full method listing can be found in its Javadoc.

Spring Batch 2.0.4.RELEASE 106

http://static.springframework.org/spring-batch/apidocs/org/springframework/batch/test/MetaDataInstanceFactory.html

Chapter 11. Common Batch Patterns

Some batch jobs can be assembled purely from off-the-shelf componentsin Spring Batch. For instance
thel t enReader and | t emw i t er implementations can be configured to cover awiderange of scenarios.
However, for the mgjority of cases, custom code will have to be written. The main API entry pointsfor
application developers are the Taskl et , | t enReader, I tenWi t er and the various listener interfaces.
Most simple batch jobswill be ableto use off-the-shelf input from a Spring Batch | t enReader , butitis
often the case that there are custom concerns in the processing and writing, which require developers
toimplementanitemniter OF I t enProcessor.

Here, we provide a few examples of common patterns in custom business logic. These examples
primarily feature the listener interfaces. It should be noted that an |t enReader Of | temWiter can
implement alistener interface aswell, if appropriate.

11.1. Logging Item Processing and Failures

A common use case is the need for special handling of errorsin a step, item by item, perhaps logging
to aspecial channel, or inserting arecord into adatabase. A chunk-oriented st ep (created from the step
factory beans) allows usersto implement this use case with asimple| t enReadLi st ener , for errors on
read, and anitemw it eLi st ener, for errors on write. The below code snippetsillustrate alistener that
logs both read and write failures:

public class |tenfailureLoggerlListener extends |tenlistenerSupport {
private static Log | ogger = LogFactory.getLog("itemerror");

public void onReadError (Exception ex) {
| ogger.error("Encountered error on read", e);

}

public void onWiteError(Exception ex, Ooject iten) {
| ogger.error("Encountered error on wite", e);

}
}

Having implemented this listener it must be registered with the step:
<step id="sinpleStep">

<l i steners>
<listener class="org.exanple...|tenfailureLoggerlListener"/>
</listeners>
</ st ep>

Remember that if your listener does anything in an onError () method, it will be inside a transaction
that is going to be rolled back. If you need to use a transactional resource such as a database inside
an onkrror () method, consider adding a declarative transaction to that method (see Spring Core
Reference Guide for details), and giving its propagation attribute the value REQUIRES_NEW.

11.2. Stopping a Job Manually for Business Reasons

Spring Batch provides ast op() method through the JobLauncher interface, but thisisrealy for use by
the operator rather than the application programmer. Sometimes it is more convenient or makes more
sense to stop ajob execution from within the business logic.

Spring Batch 2.0.4.RELEASE 107

Common Batch Patterns

Thesimplest thing to doistothrow aRunt i meExcept i on (onethat isn't retried indefinitely or skipped).
For example, a custom exception type could be used, as in the example below:

public class PoisonPillltemNiter inplements ItenWiter<T> {

public void wite(T iten) throws Exception {
if (isPoisonPill(item) {
t hrow new Poi sonPi | | Exception("Posion pill detected: " + iten);

Another simple way to stop a step from executing isto simply return nul | fromthe t enReader :

public class EarlyConpletionltenReader inplenents |tenReader<T> {
private |tenReader<T> del egat e;
public void setDel egate(ltenReader<T> del egate) { ... }

public T read() throws Exception {
T item = del egate.read();
if (isEndlten(item) {
return null; // end the step here

}

return item

The previous example actually relies on the fact that there is a default implementation of the
Conpl eti onPol i cy strategy which signals a complete batch when the item to be processed is null. A
more sophisticated completion policy could be implemented and injected into the st ep through the
Si npl eSt epFact or yBean:

<step id="sinpleStep">
<t askl et >
<chunk reader="reader" witer="witer" comit-interval ="10"
chunk- conpl eti on- pol i cy="conpl eti onPol i cy"/>
</t askl et >
</ st ep>

<bean i d="conpl etionPolicy" class="org.exanple...Special Conpl etionPolicy"/>

An dternative is to set aflag in the st epExecut i on, which is checked by the st ep implementations
in the framework in between item processing. To implement this alternative, we need access to the
current st epExecut i on, and this can be achieved by implementing a st epLi st ener and registering it
with the st ep. Here is an example of alistener that sets the flag:

public class CustomtenWiter extends |tenlistenerSupport inplenments Steplistener {
private StepExecution stepExecution;

public void beforeStep(StepExecuti on stepExecution) {
thi s. st epExecuti on = stepExecuti on;

}

public void afterRead(Object itenm {
if (isPoisonPill(item) {
st epExecuti on. set Term nat eOnl y(true);

Spring Batch 2.0.4.RELEASE 108

Common Batch Patterns

The default behavior here when the flag is set is for the step to throw a Jobl nt er r upt edExcept i on.
This can be controlled through the St epl nt er rupt i onPol i cy, but the only choice is to throw or not
throw an exception, so thisis always an abnormal ending to ajob.

11.3. Adding a Footer Record

Often when writing to flat files, a "footer" record must be appended to the end of the file, after
all processing has be completed. This can also be achieved using the Fi at Fi | eFoot er Cal | back
interface provided by Spring Batch. The Fl at Fi | eFooter Cal | back (and its counterpart, the
Fl at Fi | eHeader Cal | back) are optional properties of theFl at Fil el temWi ter:

<bean id="itenmWNiter" class="org.spr...FlatFileltenWiter">
<property name="resource" ref="outputResource" />
<property name="|ineAggregator" ref="lineAggregator"/>
<property nanme="header Cal | back" ref="headerCal | back" />
<property name="footerCal | back" ref="footerCallback" />
</ bean>

Thefooter callback interfaceisvery simple. It has just one method that is called when the footer must
be written:

public interface FlatFil eFooterCallback {

void witeFooter(Witer witer) throws | OException;

11.3.1. Writing a Summary Footer

A very common requirement involving footer records is to aggregate information during the output
process and to append this information to the end of the file. This footer serves as a summarization
of the file or provides a checksum.

For example, if a batch job is writing Tr ade records to aflat file, and there is a requirement that the
total amount from al the Tr adesis placed in afooter, then the following I t emw i t er implementation
can be used:

public class TradeltemWiter inplements ItemWiter<Trade>,
Fl at Fi | eFoot er Cal | back {

private ItemNiter<Trade> del egate;
private BigDeci mal total Amount = Bi gDeci mal . ZERO,
public void wite(List<? extends Trade> itens) {
Bi gDeci mal chunkTot al = Bi gDeci mal . ZERG,
for (Trade trade : items) {

chunkTot al = chunkTot al . add(trade. get Amount ());
}

del egate.wite(itens);

/] After successfully witing all itens
t ot al Amount = t ot al Amount. add(chunkTotal);

Spring Batch 2.0.4.RELEASE 109

Common Batch Patterns

}

public void witeFooter(Witer witer) throws | OException {
witer.wite("Total Ampbunt Processed: " + total Amount);

}

public void setDelegate(ltemWiter delegate) {...}

ThisTradeltemWiter storesat ot al Amount valuethat isincreased with the anount from each Tr ade
item written. After the last Trade is processed, the framework will call writ eFoot er, which will
put that t ot al Amount into the file. Note that the wri t e method makes use of a temporary variable,
chunkTot al Amount , that stores the total of the trades in the chunk. This is done to ensure that if a
skip occurs in the wri t e method, that the total Amount will be left unchanged. It is only at the end
of the wri t e method, once we are guaranteed that no exceptions will be thrown, that we update the
t ot al Arount .

In order for the witeFooter method to be called, the Tradeltemwiter (which implements
Fl at Fi | eFoot er Cal | back) must bewired intothe Fl at Fi | el temw i ter asthef oot er Cal | back:

<bean id="tradeltenmNiter" class="..TradeltenWiter">
<property nanme="del egate" ref="flatFileltenWiter" />
</ bean>

<bean id="flatFileltemWiter" class="org.spr...FlatFileltenWiter">
<property name="resource" ref="output Resource" />

<property name="|ineAggregator" ref="1ineAggregator"/>
<property name="footerCal |l back" ref="tradeltenWiter" />
</ bean>

The way that the Tradel temwiter has been so far will only function correctly if the step is not
restartable. Thisis because the classis stateful (sinceit storesthet ot al Anount), but thet ot al Amount
isnot persisted to the database, and therefore, it cannot beretrieved in the event of arestart. In order to
make this class restartable, the 1 t enst r eaminterface should be implemented along with the methods
open and updat e:

public void open(ExecutionContext executionContext) {
i f (executionContext.containsKey("total.amunt") {
t ot al Amount = (Bi gDeci mal) executionContext.get("total.anmunt");
}
}

public void updat e(Executi onCont ext executionContext) {
executi onCont ext. put(“total.anount”, total Amount);

}

The updat e method will store the most current version of t ot al Anount to the Execut i onCont ext
just before that object is persisted to the database. The open method will retrieve any existing
t ot al Amount from the Execut i onCont ext and useit as the starting point for processing, allowing the
Tradel temW it er to pick up on restart where it left off the previous time the st ep was executed.

11.4. Driving Query Based ItemReaders

In the chapter on readers and writers, database input using paging was discussed. Many database
vendors, such as DB2, have extremely pessimistic locking strategies that can cause issuesif the table
being read also needs to be used by other portions of the online application. Furthermore, opening
cursors over extremely large datasets can cause issues on certain vendors. Therefore, many projects

Spring Batch 2.0.4.RELEASE 110

Common Batch Patterns

prefer to use a'Driving Query' approach to reading in data. Thisapproach worksby iterating over keys,
rather than the entire object that needs to be returned, as the following example illustrates:

Select ID from FOO
where id > 1 and id < 7

D NAME |BAR
1 foo1 bar1
2 foo2 bar2
3 foo3 bar3
I 4 food bard
5 foo5 bar5
6 foo6 baré
7 foo7 bar?
8 foo8 barg

As you can see, this example uses the same 'FOQO' table as was used in the cursor based example.
However, rather than selecting the entire row, only the ID's were selected in the SQL statement. So,
rather than a FOO object being returned from r ead, an Integer will be returned. This number can then
be used to query for the 'details, which is a complete Foo object:

Job

* Database

E

Y
JdbcltemReader
ltemProcessor
JdbcltemWriter

=
__ Query for details using
. Existing “_'",_.-—— key as parameter
Keys obtained at step initialization DAD

An ItemProcessor should be used to transform the key obtained from the driving query into afull 'Foo'
object. An existing DAO can be used to query for the full object based on the key.

11.5. Multi-Line Records

Whileitisusualy the case with flat files that one each record is confined to asinglelineg, it iscommon
that a file might have records spanning multiple lines with multiple formats. The following excerpt
from afileillustrates this:

HEA; 0013100345; 2007- 02- 15

NCU; Smi t h; Pet er; ; T; 20014539; F

BAD; ; Cak Street 31/A;; Small Town; 00235;1L; US
FOT; 2; 2; 267. 34

Spring Batch 2.0.4.RELEASE 111

Common Batch Patterns

Everything between the line starting with '"HEA" and the line starting with 'FOT" is considered one
record. There are afew considerations that must be made in order to handle this situation correctly:

« Instead of reading onerecord at atime, the t enReader must read every line of the multi-line record
asagroup, so that it can be passed to the | temw i t er intact.

» Each line type may need to be tokenized differently.

Because a single record spans multiple lines, and we may not know how many lines there are, the
I t emReader must be careful to always read an entire record. In order to do this, acustom | t enReader
should be implemented as awrapper for the Fl at Fi | el t enReader .

<bean i d="itenReader" class="org.spr...MiltiLineTradeltenReader">
<property nanme="del egate">
<bean cl ass="org. springframework. batch.itemfile.FlatFileltenReader">
<property name="resource" val ue="data/i osanple/input/multilLine.txt" />

<property nanme="|ineMapper">
<bean cl ass="org. spr...Defaul tLi neMapper">
<property name="lineTokeni zer" ref="orderFil eTokeni zer"/>

<property nanme="fi el dSet Mapper" >
<bean cl ass="org. spr...PassThroughFi el dSet Mapper" />
</ property>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

To ensure that each line istokenized properly, which is especially important for fixed length input, the
Pat t er nMat chi ngConposi t eLi neTokeni zer can be used on the delegate FI at Fi | el t enReader . See
Section 6.6.2.9, “Multiple Record Types within a Single File” for more details. The delegate reader
will then use aPassThr oughFi el dSet Mapper to deliver aFi el dSet for each line back to the wrapping
I t emReader .

<bean i d="orderFil eTokeni zer" class="org.spr...PatternhMatchi ngConpositelLi neTokeni zer">
<property name="t okenizers">
<map>
<entry key="HEA*" val ue-ref ="header Recor dTokeni zer" />
<entry key="FOr*" val ue-ref="f oot er Recor dTokeni zer" />
<entry key="NCU*" val ue-ref="cust oner Li neTokeni zer" />
<entry key="BAD*" val ue-ref="billingAddressLi neTokeni zer" />
</ map>
</ property>
</ bean>

This wrapper will have to be able recognize the end of arecord so that it can continually call r ead()
onitsdelegate until the end is reached. For each line that isread, the wrapper should build up theitem
to be returned. Once the footer is reached, the item can be returned for delivery to the t enPr ocessor
anditemWiter.

private FlatFileltenReader<Fi el dSet > del egat e

public Trade read() throws Exception {
Trade t = nul |

for (FieldSet line = null; (line = this.delegate.read()) != null;) {
String prefix = line.readString(0);
if (prefix.equal s("HEA")) {
t = new Trade(); // Record nust start w th header

}

Spring Batch 2.0.4.RELEASE 112

Common Batch Patterns

else if (prefix.equals("NCU")) {
Assert.notNull (t, "No header was found.");
t.setlLast(line.readString(1));
t.setFirst(line.readString(2));

}
else if (prefix.equal s("BAD")) {

Assert.notNull (t, "No header was found.");
t.setCty(line.readString(4));
t.setState(line.readString(6));

}
else if (prefix.equals("FOr")) {

return t; // Record must end with footer
}

}
Assert.isNull(t, "No 'END was found.");
return null;

11.6. Executing System Commands

Many batch jobs may require that an external command be called from within the batch job. Such
a process could be kicked off separately by the scheduler, but the advantage of common meta-data
about the run would be lost. Furthermore, a multi-step job would also need to be split up into multiple
jobs as well.

Because the need is so common, Spring Batch provides a Taskl et implementation for calling system
commands:

<bean cl ass="org. spri ngfranmework. bat ch. core. st ep. taskl et. Syst enConmandTaskl et " >
<property nanme="conmand" val ue="echo hello" />

<l-- 5 second tinmeout for the command to conplete -->
<property name="tinmeout" val ue="5000" />
</ bean>

11.7. Handling Step Completion When No Input is Found

In many batch scenarios, finding no rowsin a database or file to process is not exceptional. The St ep
is simply considered to have found no work and completes with O items read. All of the | t enReader

implementations provided out of the box in Spring Batch default to thisapproach. This can lead to some
confusion if nothing is written out even when input is present. (which usualy happens if afile was
misnamed, etc) For this reason, the meta data itself should be inspected to determine how much work
the framework found to be processed. However, what if finding no input is considered exceptional ? In
this case, programmatically checking the meta data for no items processed and causing failure is the
best solution. Because thisis acommon use case, alistener is provided with just this functionality:

public class NoWr kFoundSt epExecuti onlLi st ener extends StepExecutionLi stener Support {

public ExitStatus afterStep(StepExecution stepExecution) {
i f (stepExecution.getReadCount() == 0) {
return ExitStatus. FAI LED;
}

return null;

Spring Batch 2.0.4.RELEASE 113

Common Batch Patterns

Theabove st epExecut i onLi st ener inspectsthe readCount property of the St epExecut i on during the
‘afterStep' phase to determine if no items were read. If that is the case, an exit code of FAILED is
returned, indicating that the st ep should fail. Otherwise, null is returned, which will not affect the
status of the st ep.

11.8. Passing Data to Future Steps

It is often useful to pass information from one step to another. This can be done using the
Execut i onCont ext . The catch is that there are two Execut i onCont ext S. one at the St ep level and
one at the Job level. The Step ExecutionContext lives only as long as the step while the Job
Execut i onCont ext lives through the whole Job. On the other hand, the St ep Executi onCont ext iS
updated every time the st ep commits a chunk while the Job Executi onCont ext is updated only at
the end of each st ep.

The consequence of this separation isthat al datamust be placed inthe St ep Execut i onCont ext While
the st ep isexecuting. Thiswill ensure that the datawill be stored properly whilethe st ep ison-going.
If datais stored to the Job Execut i onCont ext , then it will not be persisted during st ep execution and
if the st ep fails, that datawill be lost.

public void SavingltemWiter inplements |temNiter<Object> {
private StepExecution stepExecution

public void wite(List<? extends Object> itens) throws Exception {
...

Executi onCont ext stepContext = this.stepExecution.getExecutionContext();
st epCont ext . put ("sonmeKey", sonej ect);

}

@Bef oreSt ep
public void saveSt epExecuti on(St epExecuti on stepExecution) {
t hi s. st epExecuti on = stepExecution

}

To makethe dataavailableto future st eps, it will haveto be "promoted” to the Job Execut i onCont ext
after the step has finished. Spring Batch provides the Execut i onCont ext Pr onot i onLi st ener for this
purpose. The listener must be configured with the keys related to the data in the Execut i onCont ext
that must be promoted. It can also, optionally, be configured with alist of exit code patterns for which
the promotion should occur ("COMPLETED" isthe default). Aswith all listeners, it must be registered
onthe st ep.

<job id="jobl">
<step id="stepl">
<t asket >
<chunk reader="reader" witer="savingWiter" commt-interval ="10"/>
<l'i st eners>
<listener ref="pronotionListener"/>
</listeners>
</t askl et >
</ st ep>

<step id="step2">

</ step>
</ j ob>

<beans: bean i d="pronotionLi stener" class="org.spr....ExecutionContextPronotionLi stener">

Spring Batch 2.0.4.RELEASE 114

Common Batch Patterns

<beans: property name="keys" val ue="soneKey"/>
</ beans: bean>

Finally, to the saved values must be retrieved from the Job Exeuct i onCont ext :

public void RetrievingltemWiter inplements ItenWiter<Object> {
private Cbject sonme(bject;

public void wite(List<? extends Object> itens) throws Exception {
/1

}

@Bef oreSt ep

public void saveSt epExecuti on(St epExecuti on stepExecution) {
JobExecuti on j obExecution = stepExecution. get JobExecution();
Execut i onCont ext j obContext = jobExecuti on. get Executi onContext();
t hi s. soneObj ect = j obCont ext . get ("sonmeKey");

Spring Batch 2.0.4.RELEASE

115

Table A.1. Available Item Readers

R AR R R AR R R A R B R R R R R R D |

up Obj ectsfrom the injected ItemReader untll they

arn yand abhan
ar'c

Appendix A. List of ItemF

ltemWriters

anl,an ~ A aet Thic
lcauy LU DT UACACTU UUL (JDC!.\.:UIIC\.:LIUII S

ItemReader should mark the beginning and end of

Q@J&@ elre@nﬁ*ﬂﬂes in FieldSetMapper

AggregateltemReader#BEGIN_RECORD and
AggregateltemReader#END RECORD

FlatFileltemReader

A.l. Item Readers

StaxEventltemReader

Reads from aflat file. Includes ItemStream and
Skippable functionality. See section on Read from a
File

Reads via StAX. See HOWTO - Read from aFile

JdbcCursorltemReader

HibernateCursorltemReader

Reads from a database cursor via JDBC. See
HOWTO - Read from a Database

Reads from a cursor based on an HQL query. See
section on Reading from a Database

| bati sPagingltemReddem Writer

AbstractltemStreamltemWriter

Reads viaiBATIS bdaa$@ihid iqiery. Pages through
NP 8%£aﬁ YRS SR R TR WO g

rungwq out ?nt ?mcgsy See HOWTO - Read from a

ter
Database

CompositeltemWriter
JmsltemReader

Passes an item to the process method of each in an

LA PG R AP SIRECt o 2 S

DeS[I nation or destination name to send errors,

ItemWriterAdapter

prdaptizenesisseteithel theought thie i njediack.

PropertyExtractingDel egatingltemWriter

]grgtso Herﬂ)s[] We}/k%mv&l ngDelegator creating

Table A.2. Avajlabie Ttém Writers
JpaPagingltemReader

JdbcPagingltemReader
FlatFileltemWriter

A.2. Iteme\WiE Eersiter

SyumentPQL theddyneht gpagestthrcrigredhedt bis,
seiseshal Hhge ahuesdirorarinsefiebdpintHeittennitirioe
pueesiseehiiorg a SpringBeanWrapper) based on an

injected array of field name
Given a SQL statement, pages through the rows, such

Wi tes G aldt abdibcdntiodesd t@imBbigararaneg out of
Mdpembl e functionality. See section on Writing to a

File

Thisitem writer is hibernate session aware and
handles some transaction-related work that a
non-"hibernate aware" item writer would not need to
know about and then delegates to another item writer
to do the actual writing.

JdbcBatchltemWriter

JpaltemWriter

Uses batching features from a pr epar edSt at enent , if
available, and can take rudimentary stepsto locate a
failure during af | ush.

Thisitem writer is JPA EntityManager aware and
handles some transaction-related work that a non-"jpa
aware" 1 tenwiter would not need to know about
and then delegates to another writer to do the actual
writing.

StaxEventltemWriter

Uses an ObjectToXmlSerializer implementation to
convert each item to XML and then writesiit to an
XML fileusing StAX.

Spring Batch 2.0.4.RELEASE 116

Appendix B. Meta-Data Schema

B.1. Overview

The Spring Baich MetaData tables very closely match
example,

represent them in Java

For
to

Jobl nst ance,

the Domain objects that

JobExecution, JobParaneters,

and StepExecution map BATCH_JOB_INSTANCE, BATCH_JOB_EXECUTION,
BATCH_JOB_PARAMS, and BATCH_STEP_EXECUTION, respectively. Execut i onCont ext maps
to both BATCH_JOB_EXECUTION_CONTEXT and BATCH_STEP_EXECUTION_CONTEXT.
The JobReposi t ory is responsible for saving and storing each Java object into its correct table. The
following appendix describes the meta-data tables in detail, along with many of the design decisions
that were made when creating them. When viewing the various table creation statements below, it
is important to realize that the data types used are as generic as possible. Spring Batch provides
many schemas as examples, which al have varying datatypes due to variationsin individual database
vendors handling of data types. Below is an ERD model of all 6 tables and their relationships to one
another:

BATCH_JOB_PARAMS

BATCH_JOB_INSTANCE
FK1 |JOB_INSTANCE_ID
PK [JOB INSTANCE ID TYPE_CD
- KEY_NAME
VERSION STRING_VAL
JOB_NAME DATE_VAL
JOB_KEY LONG_VAL
A DOUBLE_VAL

BATCH_STEP_EXECUTION

BATCH_JOB_EXECUTION oK |STEP EXEGUTION 1D
PK |JOB_EXECUTION_ID
VERSION
VERSION STEP_NAME
FK1 | JOB_INSTANCE_ID FK1 |JOB_EXECUTION_ID
CREATE_TIME < START_TIME
START_TIME END_TIME
END_TIME STATUS
STATUS COMMIT_COUNT
EXIT_CODE READ_COUNT
EXIT_MESSAGE FILTER_COUNT
LAST_UPDATED WRITE_COUNT

READ_SKIP_COUNT
WRITE_SKIP_COUNT
PROCESS_SKIP_COUNT
ROLLBACK_COUNT
EXIT_CODE
EXIT_MESSAGE

LAST UPDATED

T

BATCH_STEP_EXECUTION_CONTEXT
STEP_EXECUTION ID

A

BATCH_JOB EXECUTION_CONTEXT
JOB EXECUTION 1D

PK,FK1 PK,FK1

SHORT_CONTEXT
SERIALIZED_CONTEXT

SHORT_CONTEXT
SERIALIZED_CONTEXT

B.1.1. Example DDL Scripts

The root of the Spring Batch Core JAR file contains example scripts to create the relational tables for
a number of database platforms (which are in turn auto-detected by the job repository factory bean
or namespace equivalent). These scripts can be used as is, or modified with additional indexes and
constraints as desired. The file names are in the form schena- *. sql , where "*" is the short name of
the target database platform.

Spring Batch 2.0.4.RELEASE 117

Meta-Data Schema

B.1.2. Version

Many of the database tables discussed in this appendix contain a version column. This column is
important because Spring Batch employs an optimistic locking strategy when dealing with updatesto
the database. This means that each time arecord is 'touched' (updated) the value in the version column
isincremented by one. When the repository goes back to try and save the value, if the version number
has change it will throw Opti i sti cLocki ngFai | ur eExcept i on, indicating there has been an error
with concurrent access. This check isnecessary since, even though different batch jobs may be running
in different machines, they are all using the same database tables.

B.1.3. Identity

BATCH_JOB_INSTANCE, BATCH_JOB_EXECUTION, and BATCH_STEP_EXECUTION each
contain columns ending in _ID. These fields act as primary keys for their respective tables. However,
they are not database generated keys, but rather they are generated by separate sequences. This is
necessary because after inserting one of the domain objectsinto the database, thekey itisgiven needsto
be set on the actual object so that they can be uniquely identified in Java. Newer database drivers (Jdbc
3.0 and up) support this feature with database generated keys, but rather than requiring it, sequences
were used. Each variation of the schemawill contain some form of the following:

CREATE SEQUENCE BATCH_STEP_EXECUTI ON_SEQ
CREATE SEQUENCE BATCH JOB_EXECUTI ON_SEQ
CREATE SEQUENCE BATCH JOB_SEQ

Many database vendors don't support sequences. In these cases, work-arounds are used, such as the
following for mySQL.:

CREATE TABLE BATCH_STEP_EXECUTI ON_SEQ (I D BI G NT NOT NULL) type=Myl SAM
I NSERT | NTO BATCH_STEP_EXECUTI ON_SEQ val ues(0);

CREATE TABLE BATCH JOB_EXECUTI ON_SEQ (I D BIG NT NOT NULL) type=Myl SAM
I NSERT | NTO BATCH_JOB_EXECUTI ON_SEQ val ues(0);

CREATE TABLE BATCH JOB_SEQ (I D Bl G NT NOT NULL) type=MYl SAM

I NSERT | NTO BATCH_JOB_SEQ val ues(0);

In the above case, a table is used in place of each sequence. The Spring core class
MySQLMaxVal uel ncrenent er Will then increment the one column in this sequence in order to give
similar functionality.

B.2. BATCH_JOB_INSTANCE

The BATCH_JOB_INSTANCE table holds al information relevant to a Jobl nst ance, and serves as
the top of the overall hierarchy. The following generic DDL statement is used to create it:

CREATE TABLE BATCH JOB_I NSTANCE (
JOB_I NSTANCE | D BI G NT PRI MARY KEY |,
VERS| ON Bl GI NT,

JOB_NAME VARCHAR(100) NOT NULL ,
JOB_KEY VARCHAR(2500)

Below are descriptions of each column in the table:

« JOB_INSTANCE._ID: The unique id that will identify the instance, which is also the primary key.
The value of this column should be obtainable by calling the get I d method on Jobl nst ance.

Spring Batch 2.0.4.RELEASE 118

Meta-Data Schema

* VERSION: See above section.

« JOB_NAME: Name of the job obtained from the Job object. Because it is required to identify the

instance, it must not be null.

e JOB_KEY: A seridlization of the JobParaneters that uniquely identifies separate instances of

the same job from one another. (Jobl nst ances with the same job name must have different
JobPar anet er s, and thus, different JOB_KEY values).

B.3. BATCH_JOB_PARAMS

The BATCH_JOB_PARAMS table holds all information relevant to the JobPar amet er s object. It
contains 0 or more key/value pairs that together uniquely identify aJobl nst ance and serve asarecord
of the parameters ajob was run with. It should be noted that the table has been denormalized. Rather
than creating a separate table for each type, there is one table with a column indicating the type:

CREATE TABLE BATCH JOB_PARAMS (

JOB_| NSTANCE_I D BI G NT NOT NULL ,

TYPE_CD VARCHAR(6) NOT NULL ,

KEY_NAME VARCHAR(100) NOT NULL ,

STRI NG VAL VARCHAR(250) ,

DATE_VAL TI MESTAMP DEFAULT NULL,

LONG VAL BI G NT ,

DOUBLE_VAL DOUBLE PRECI SI ON,

constraint JOB_ | NSTANCE PARAMS FK foreign key (JOB_I NSTANCE | D)
ref erences BATCH_JOB_| NSTANCE(JOB_| NSTANCE_I D)

Below are descriptions for each column:

JOB_INSTANCE_ID: Foreign Key fromthe BATCH_JOB_INSTANCE tablethat indicatesthejob
instance the parameter entry belongs to. It should be noted that multiple rows (i.e key/value pairs)
may exist for each instance.

TYPE_CD: String representation of the type of value stored, which can be either astring, date, long,
or double. Because the type must be known, it cannot be null.

KEY_NAME: The parameter key.

STRING_VAL: Parameter value, if the typeis string.
DATE_VAL: Parameter value, if the typeis date.
LONG_VAL: Parameter value, if thetypeisalong.

DOUBLE_VAL: Parameter value, if the typeis double.

It is worth noting that there is no primary key for this table. This is ssmply because the framework
has no use for one, and thus doesn't require it. If auser so chooses, one may be added with a database
generated key, without causing any issues to the framework itself.

B.4. BATCH_JOB_EXECUTION

The BATCH_JOB_EXECUTION table holds al information relevant to the JobExecut i on object.
Every time aJob isrun there will always be a new JobExecut i on, and a new row in thistable:

Spring Batch 2.0.4.RELEASE 119

Meta-Data Schema

CREATE TABLE BATCH JOB_EXECUTI ON (

JOB_EXECUTI ON_I D BI G NT PRI MARY KEY ,

VERSI ON BI G NT,

JOB_| NSTANCE_I D BI G NT NOT NULL,

CREATE_TI ME TI MESTAMP NOT NULL,

START_TI ME TI MESTAMP DEFAULT NULL,

END_TI ME TI MESTAMP DEFAULT NULL,

STATUS VARCHAR(10),

EXI T_CODE VARCHAR(20) ,

EXI T_MESSAGE VARCHAR(2500),

LAST_UPDATED TI MESTAMP,

constraint JOB_| NSTANCE_EXECUTI ON_FK forei gn key (JOB_| NSTANCE | D)
ref erences BATCH_JOB_| NSTANCE(JOB_| NSTANCE_I D)
)

Below are descriptions for each column:

JOB_EXECUTION_ID: Primary key that uniquely identifies this execution. The value of this
column is obtainable by calling the get | d method of the JobExecut i on object.

VERSION: See above section.

JOB_INSTANCE_ID: Foreign key from the BATCH_JOB_INSTANCE table indicating the
instance to which this execution belongs. There may be more than one execution per instance.

CREATE_TIME: Timestamp representing the time that the execution was created.
START_TIME: Timestamp representing the time the execution was started.

END_TIME: Timestamp representing the time the execution was finished, regardless of success or
failure. An empty value in this column even though the job is not currently running indicates that
there has been sometype of error and the framework was unableto perform alast save beforefailing.

STATUS: Character string representing the status of the execution. This may be COMPLETED,
STARTED, etc. The object representation of this column is the Bat chst at us enumeration.

EXIT_CODE: Character string representing the exit code of the execution. In the case of acommand
line job, this may be converted into a number.

EXIT_MESSAGE: Character string representing amore detailed description of how the job exited.
In the case of failure, this might include as much of the stack trace asis possible.

LAST_UPDATED: Timestamp representing the last time this execution was persisted.

B.5. BATCH_STEP_EXECUTION

The BATCH_STEP_EXECUTION table holds al information relevant to the St epExecut i on object.
Thistableisvery similar in many waysto the BATCH_JOB_EXECUTION tableand therewill aways
be at least one entry per st ep for each JobExecut i on created:

CREATE TABLE BATCH_STEP_EXECUTI ON (
STEP_EXECUTI ON_I D BI G NT PRI MARY KEY ,
VERSI ON Bl GI NT NOT NULL,

STEP_NAME VARCHAR(100) NOT NULL,
JOB_EXECUTI ON_I D BI G NT NOT NULL,
START_TI ME TI MESTAMP NOT NULL |,
END_TI ME TI MESTAMP DEFAULT NULL,
STATUS VARCHAR(10)

COVMM T_COUNT BI G NT |,

Spring Batch 2.0.4.RELEASE 120

Meta-Data Schema

)

READ_COUNT BI G NT ,

FI LTER_COUNT BI G NT

VWRI TE_COUNT BI G NT ,

READ_SKI P_COUNT BI G NT ,

VRl TE_SKI P_COUNT BI G NT ,

PROCESS_SKI P_COUNT BI G NT

ROLLBACK_COUNT BI G NT ,

EXI T_CODE VARCHAR(20) ,

EXI T_MESSACGE VARCHAR(2500) ,

LAST_UPDATED TI MESTAMP,

constraint JOB_EXECUTI ON_STEP_FK foreign key (JOB_EXECUTI ON_I D)
ref erences BATCH JOB_EXECUTI ON(JOB_EXECUTI ON_| D)

Below are descriptions for each column:

STEP_EXECUTION_ID: Primary key that uniquely identifies this execution. The value of this
column should be obtainable by calling the get | d method of the St epExecut i on object.

VERSION: See above section.
STEP_NAME: The name of the step to which this execution belongs.

JOB_EXECUTION_ID: Foreign key from the BATCH_JOB_EXECUTION table indicating the
JobExecution to which this StepExecution belongs. There may be only one St epExecut i on for a
given JobExecut i on for agiven st ep name.

START_TIME: Timestamp representing the time the execution was started.

END_TIME: Timestamp representing the time the execution was finished, regardless of success or
failure. An empty value in this column even though the job is not currently running indicates that
there has been sometype of error and the framework was unable to perform alast save beforefailing.

STATUS: Character string representing the status of the execution. This may be COMPLETED,
STARTED, etc. The object representation of this column is the Bat chst at us enumeration.

COMMIT_COUNT: The number of times in which the step has committed a transaction during
this execution.

READ_COUNT: The number of items read during this execution.

FILTER_COUNT: The number of itemsfiltered out of this execution.

WRITE_COUNT: The number of items written and committed during this execution.
READ_SKIP_COUNT: The number of items skipped on read during this execution.
WRITE_SKIP_COUNT: The number of items skipped on write during this execution.
PROCESS SKIP_COUNT: The number of items skipped during processing during this execution.

ROLLBACK_COUNT: Thenumber of rollbacksduring thisexecution. Notethat thiscount includes
each time rollback occurs, including rollbacks for retry and those in the skip recovery procedure.

EXIT_CODE: Character string representing the exit code of the execution. In the case of acommand
line job, this may be converted into a number.

EXIT_MESSAGE: Character string representing amore detailed description of how the job exited.
In the case of failure, this might include as much of the stack trace asis possible.

Spring Batch 2.0.4.RELEASE 121

Meta-Data Schema

* LAST_UPDATED: Timestamp representing the last time this execution was persisted.

B.6. BATCH_JOB_EXECUTION_CONTEXT

The BATCH_JOB_EXECUTION_CONTEXT table holds all information relevant to an Job's
Execut i onCont ext . There is exactly one Job Execut i onCont ext per JobExecuti on, and it contains
all of the job-level datathat is needed for a particular job execution. This datatypically representsthe
state that must be retrieved after afailure so that aJobl nst ance can 'start from where it left off'.

CREATE TABLE BATCH_JOB_EXECUTI ON_CONTEXT (

JOB_EXECUTI ON_I D BI G NT PRI MARY KEY,

SHORT_CONTEXT VARCHAR(2500) NOT NULL,

SERI ALI ZED_CONTEXT CLOB,

constraint JOB_EXEC CTX FK foreign key (JOB_EXECUTI ON | D)
ref erences BATCH JOB_EXECUTI ON(JOB_EXECUTI ON_I D)
)

Below are descriptions for each column:

« JOB_EXECUTION_ID: Foreign key representing the JobExecut i on to which the context belongs.
There may be more than one row associated to a given execution.

* SHORT_CONTEXT: A string version of the SERIALIZED_CONTEXT.

» SERIALIZED CONTEXT: The entire context, serialized.

B.7. BATCH_STEP_EXECUTION_CONTEXT

The BATCH_STEP_EXECUTION_CONTEXT table holds al information relevant to an Step's
Execut i onCont ext . Thereisexactly one Execut i onCont ext per St epExecut i on, and it containsall of
the data that needs to persisted for a particular step execution. This data typically represents the state
that must be retrieved after afailure so that aJobl nst ance can 'start from where it left off'.

CREATE TABLE BATCH STEP_EXECUTI ON_CONTEXT (

STEP_EXECUTI ON_I D Bl G NT PRI MARY KEY,

SHORT_CONTEXT VARCHAR(2500) NOT NULL,

SERI ALl ZED_CONTEXT CLOB,

constraint STEP_EXEC CTX FK forei gn key (STEP_EXECUTI ON_I D)
ref erences BATCH STEP_EXECUTI ON(STEP_EXECUTI ON_| D)
)

Below are descriptions for each column:

e STEP EXECUTION_ID: Foreign key representing the StepExecution to which the context
belongs. There may be more than one row associated to a given execution.

e SHORT_CONTEXT: A string version of the SERIALIZED CONTEXT.

e SERIALIZED_CONTEXT: The entire context, serialized.

B.8. Archiving

Because there are entries in multiple tables every time a batch job is run, it is common to create an
archive strategy for the meta-data tables. The tables themselves are designed to show arecord of what

Spring Batch 2.0.4.RELEASE 122

Meta-Data Schema

happened in the past, and generally won't affect the run of any job, with a couple of notable exceptions
pertaining to restart:

« The framework will use the meta-data tables to determine if a particular Joblnstance has been run
before. If it has been run, and the job is not restartabl e, then an exception will be thrown.

« |If an entry for a Joblnstance is removed without having completed successfully, the framework will
think that the job is new, rather than a restart.

« |f ajobisrestarted, the framework will use any datathat has been persisted to the ExecutionContext
to restore the Job's state. Therefore, removing any entries from this table for jobs that haven't
completed successfully will prevent them from starting at the correct point if run again.

B.9. Recommendations for Indexing Meta Data Tables

Spring Batch provides DDL samples for the meta-data tables in the Core jar file for several common
database platforms. Index declarations are not included in that DDL because there are too many
variations in how users may want to index depending on their precise platform, local conventions
and also the business requirements of how the jobs will be operated. The table below provides some
indication as to which columns are going to be used in a WHERE clause by the Dao implementations
provided by Spring Batch, and how frequently they might be used, so that individual projects can make
up their own minds about indexing.

Table B.1. Where clausesin SQL statements (excluding primary keys) and their approximate
frequency of use.

Default Table Name Where Clause Fregquency

BATCH_JOB_INSTANCE

JOB_NAME=?and JOB_KEY =? Every timeajob islaunched

BATCH_JOB_EXECUTION

BATCH_EXECUTION_CONTEXT EXECUTION_ID
KEY_NAME =7

JOB_INSTANCE_ID =7

Every timeajob is restarted

? and Oncommitinterval, ak.a. chunk

BATCH_STEP_EXECUTION VERSION =? On commit interval, ak.a chunk
(and at start and end of step)
BATCH_STEP_EXECUTION STEP_NAME = ? and Before each step execution

JOB_EXECUTION_ID =?

Spring Batch 2.0.4.RELEASE

123

Glossary

Spring Batch Glossary

Batch

Batch Application Style

Batch Processing

Batch Window
Step

Tasklet

Batch Job Type
Driving Query
Item

Logicial Unit
(LUW)

Commit Interva

Partitioning

of

Work

An accumulation of business transactions over time.

Term used to designate batch as an application style in its own right similar to
online, Web or SOA. It hasstandard el ementsof input, validation, transformation
of information to business model, business processing and output. In addition,
it requires monitoring at a macro level.

The handling of a batch of many business transactions that have accumul ated
over a period of time (e.g. an hour, day, week, month, or year). It is the
application of a process, or set of processes, to many data entities or objectsin
arepetitive and predictable fashion with either no manual element, or a separate
manual element for error processing.

Thetime frame within which abatch job must complete. This can be constrained
by other systems coming online, other dependent jobs needing to execute or other
factors specific to the batch environment.

Itisthe main batch task or unit of work controller. Itinitializesthe businesslogic,
and controls the transaction environment based on commit interval setting, etc.

A component created by application developer to process the business logic for
a Step.

Job Typesdescribe application of jobsfor particular type of processing. Common
areas are interface processing (typicaly flat files), forms processing (either for
online pdf generation or print formats), report processing.

A driving query identifies the set of work for a job to do; the job then breaks
that work into individual units of work. For instance, identify al financia
transactions that have a status of "pending transmission” and send them to our
partner system. The driving query returns a set of record 1Ds to process; each
record ID then becomes a unit of work. A driving query may involve ajoin (if
the criteria for selection falls across two or more tables) or it may work with a
singletable.

An item represents the smallest ammount of complete datafor processing. Inthe
simplest terms, this might mean aline in afile, arow in a database table, or a
particular element in an XML file.

A batch job iterates through a driving query (or another input source such as a
file) to perform the set of work that the job must accomplish. Each iteration of
work performed isaunit of work.

A set of LUWSs processed within a single transaction.

Splitting ajob into multiple threads where each thread is responsible for a subset
of the overall datato be processed. The threads of execution may be within the

Spring Batch 2.0.4.RELEASE 124

Glossary

Staging Table

Restartable

Rerunnable

Repeat

Retry

Recover

same JVM or they may span JVMs in a clustered environment that supports
workload balancing.

A table that holds temporary datawhileit is being processed.

A job that can be executed again and will assume the same identity as when run
initially. In othewords, it is has the same job instance id.

A job that is restartable and manages its own state in terms of previous run's
record processing. An example of a rerunnable step is one based on a driving
query. If the driving query can be formed so that it will limit the processed rows
whenthejobisrestarted thanit isre-runnable. Thisismanaged by the application
logic. Often times a condition is added to the where statement to limit the rows
returned by the driving query with something like "and processedFlag !=true".

One of the most basic units of batch processing, that defines repeatability calling
aportion of code until it isfinished, and whilethereisno error. Typically abatch
process would be repeatable as long as there is input.

Simplifies the execution of operations with retry semantics most frequently
associated with handling transactional output exceptions. Retry is dlightly
different from repeat, rather than continually calling a block of code, retry is
stateful, and continually calls the same block of code with the same input,
until it either succeeds, or some type of retry limit has been exceeded. It is
only generally useful if a subsequent invocation of the operation might succeed
because something in the environment has improved.

Recover operations handle an exception in such a way that a repeat processis
able to continue.

Skip is a recovery strategy often used on file input sources as the strategy for
ignoring bad input records that failed validation.

Spring Batch 2.0.4.RELEASE 125

