Spring Batch - Reference Documentation

Spring Batch 1.0

Copyright © 2005-2007 Dave Syer, Wayne Lund, Lucas Ward

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

1. Spring Batch Introduction ... 1
1.1. Introduction ... 1
1.1.1. Background ... 1
1.1.2. Usage Scenarios ... 2
1.1.3. Spring Batch Architecture ... 2
2. TheDomain Language of Batch ... 4
2.1. Introduction ... 4
2.2. Batch Application Style Interactions and Services ... 4
2.3. Job Stereotypes ... 5
23.1. Job ...6
2.3.2. JobInstance ... 6
2.3.3. JobParameters ... 7
2.3.4. JobExecution ... 7
2.4. Step Stereotypes ... 9
24.1. Step ... 9
2.4.2. StepExecution ... 10
2.4.3. ExecutionContext ... 11
2.5. JobRepository ... 11
2.6. JobLauncher ... 12
2.7. JobLocator ... 12
2.8. Item Reader ... 12
2.9. Item Writer ... 12
2.10. Tasklet ... 13
3. ItemReadersand ItemWriters... 14
3.1. Introduction ... 14
3.2. ItemReader ... 14
3.3. IltemWriter ... 14
3.4. ItemStream ... 15
3.5. Flat Files ... 15
35.1. TheFieldSet ... 16
3.5.2. HatFileltemReader ... 16
3.5.3. FlatFileltemWriter ... 21
3.6. XML Item Readers and Writers ... 22
3.6.1. StaxEventltemReader ... 24
3.6.2. StaxEventltemWriter ... 26
3.7. Creating File Names at Runtime ... 27
3.8. Database ... 28
3.8.1. Cursor Based ItemReaders ... 28
3.8.2. Driving Query Based ItemReaders ... 31
3.8.3. Database ItemWriters ... 35
3.9. Reusing Existing Services ... 36
3.10. Item Transforming ... 36
3.10.1. The Delegate Pattern and Registering with the Step ... 38
3.10.2. Chaining ItemTransformers ... 38
3.11. Validating Input ... 39
3.11.1. The Delegate Pattern and Registering with the Step ... 40
3.12. Creating Custom ItemReaders and
I[temWriters ... 40
3.12.1. Custom ItemReader Example ... 40
3.12.2. Custom ItemWriter Example ... 43
4. Configuring and Executing A Job ... 45
4.1. Introduction ... 45

Spring Batch 1.0

Spring Batch - Reference Documentation

4.2. RunTier ... 45
4.2.1. Running Jobs from the Command Line ... 46
4.3. Job Tier ... 48
4.3.1. SimpleJobLauncher ... 48
4.3.2. SimpleJobRepository ... 50
4.3.3. SimpleJob ... 52
4.3.4. JobFactory and Stateful Componentsin Steps ... 54
4.4. Application Tier ... 54
4.4.1. ItemOrientedStep ... 55
4.4.2. TaskletStep ... 61
4.5. Examples of Customized BusinessLogic ... 62
451.62
4.5.2. Logging Item Processing and Failures ... 62
4.5.3. Stopping a Job Manually for Business Reasons ... 63
4.5.4. Adding aFooter Record ... 64
5. Repeat ... 66
5.1. RepeatTemplate ... 66
5.1.1. RepeatContext ... 66
5.1.2. ExitStatus ... 67
5.2. Completion Palicies ... 67
5.3. Exception Handling ... 68
54. Listeners ... 68
5.5. Parallel Processing ... 68
5.6. Declarative Iteration ... 69
6. Retry ... 70
6.1. RetryTemplate ... 70
6.1.1. RetryContext ... 70
6.2. Retry Palicies... 70
6.2.1. StatelessRetry ... 71
6.2.2. Stateful Retry ... 72
6.3. Backoff Policies ... 73
6.4. Listeners ... 73
6.5. Declarative Retry ... 73
7. Unit Testing ... 75
7.1. End To End Testing Batch Jobs ... 75
7.2. Extending Unit Test frameworks ... 76
A. List of ItemReaders ... 78
A.l. Item Readers ... 78
A.2. Item Writers ... 79
B. Meta-Data Schema ... 81
B.1. Overview ... 81
B.1.1. Version ... 81
B.1.2. Identity ... 81
B.2. BATCH_JOB_INSTANCE ... 82
B.3. BATCH_JOB_PARAMS ... 82
B.4. BATCH_JOB_EXECUTION ... 83
B.5. BATCH_STEP_EXECUTION ... 84
B.6. BATCH _STEP EXECUTION_CONTEXT ... 85
B.7. Archiving ... 85
Glossary ... 87

Spring Batch 1.0

Chapter 1. Spring Batch Introduction

1.1. Introduction

Many applications within the enterprise domain require bulk processing to perform business operations in
mission critical environments. These business operations include automated, complex processing of large
volumes of information that is most efficiently processed without user interaction. These operations typically
include time based events (e.g. month-end calculations, notices or correspondence), periodic application of
complex business rules processed repetitively across very large data sets (e.g. Insurance benefit determination
or rate adjustments), or the integration of information that is received from internal and external systems that
typically requires formatting, validation and processing in a transactional manner into the system of record.
Batch processing is used to process billions of transactions every day for enterprises.

Spring Batch is a lightweight, comprehensive batch framework designed to enable the development of robust
batch applications vital for the daily operations of enterprise systems. Spring Batch builds upon the
productivity, POJO-based development approach, and general ease of use capabilities people have come to
know from the Spring Framework, while making it easy for developers to access and |leverage more advance
enterprise services when necessary. Spring Batch is not a scheduling framework. There are many good
enterprise schedulers available in both the commercial and open source spaces such as Quartz, Tivali,
Control-M, etc. It isintended to work in conjunction with a scheduler, not replace a scheduler.

Spring Batch provides reusable functions that are essential in processing large volumes of records, including
logging/tracing, transaction management, job processing statistics, job restart, skip, and resource management.
It also provides more advance technical services and features that will enable extremely high-volume and high
performance batch jobs though optimization and partitioning techniques. Simple as well as complex,
high-volume batch jobs can leverage the framework in a highly scalable manner to process significant volumes
of information.

1.1.1. Background

While open source software projects and associated communities have focused greater attention on web-based
and SOA messaging-based architecture frameworks, there has been a notable lack of focus on reusable
architecture frameworks to accommodate Java-based batch processing needs, despite continued needs to handle
such processing within enterprise IT environments. The lack of a standard, reusable batch architecture has
resulted in the proliferation of many one-off, in-house sol utions devel oped within client enterprise I T functions.

SpringSource and Accenture have collaborated to change this. Accenture's hands-on industry and technical
experience in implementing batch architectures, SpringSource's depth of technical experience, and Spring's
proven programming model together mark a natural and powerful partnership to create high-quality, market
relevant software aimed at filling an important gap in enterprise Java. Both companies are also currently
working with a number of clients solving similar problems developing Spring-based batch architecture
solutions. This has provided some useful additional detail and real-life constraints helping to ensure the solution
can be applied to the real-world problems posed by clients. For these reasons and many more, SpringSource
and Accenture have teamed to collaborate on the development of Spring Batch.

Accenture has contributed previously proprietary batch processing architecture frameworks, based upon
decades worth of experience in building batch architectures with the last several generations of platforms, (i.e.,
COBOL/Mainframe, C++/Unix, and now Java/anywhere) to the Spring Batch project along with committer
resources to drive support, enhancements, and the future roadmap.

Spring Batch 1.0 1

Spring Batch Introduction

The collaborative effort between Accenture and SpringSource aims to promote the standardization of software
processing approaches, frameworks, and tools that can be consistently leveraged by enterprise users when
creating batch applications. Companies and government agencies desiring to deliver standard, proven solutions
to their enterprise IT environments will benefit from Spring Batch.

1.1.2. Usage Scenarios

A typical batch program generally reads alarge number of records from a database, file, or queue, processes the
data in some fashion, and then writes back data in a modified form. Spring Batch automates this basic batch
iteration, providing the capability to process similar transactions as a set, typically in an offline environment
without any user interaction. Batch jobs are part of most IT projects and Spring Batch is the only open source
framework that provides a robust, enterprise-scale solution.

Business Scenarios

e Commit batch process periodically

¢ Concurrent batch processing: parallel processing of ajob

» Staged, enterprise message-driven processing

» Massively parallel batch processing

* Manua or scheduled restart after failure

» Sequential processing of dependent steps (with extensions to workflow-driven batches)
 Partial processing: skip records (e.g. on rollback)

» Whole-batch transaction: for cases with a small batch size or existing stored procedures/scripts

Technical Objectives

» Batch developers use the Spring programming model: concentrate on business logic; let the framework take
care of infrastructure.

» Clear separation of concerns between the infrastructure, the batch execution environment, and the batch
application.

 Provide common, core execution services as interfaces that all projects can implement.

* Provide smple and default implementations of the core execution interfaces that can be used ‘out of the

box’.
» Easy to configure, customize, and extend services, by leveraging the spring framework in al layers.
« All existing core services should be easy to replace or extend, without any impact to the infrastructure layer.
* Provide a simple deployment model, with the architecture JARs completely separate from the application,

built using Maven.

1.1.3. Spring Batch Architecture

Spring Batch 1.0 2

Spring Batch Introduction

Spring Batch is designed with extensibility and a diverse group of end users in mind. The figure below shows a
sketch of the layered architecture that supports the extensibility and ease of use for end-user developers.

Batch Core

N Infrastructure

Figure 1.1: Spring Batch Layered Architecture

This layered architecture highlights three major high level components: Application, Core, and Infrastructure.
The application contains all batch jobs and custom code written by developers using Spring Batch. The Batch
Core contains the core runtime classes necessary to launch and control a batch job. It includes things such as a
JobLauncher, Job, and Step implementations. Both Application and Core are built on top of a common
infrastructure. This infrastructure contains common readers and writers, and services such as the

Ret ryTenpl at e, which are used both by application developers(i t enReader and Itenwiter) and the core
framework itself. (retry)

Spring Batch 1.0 3

Chapter 2. The Domain Language of Batch

2.1. Introduction

To any experienced batch architect, the overall concepts of batch processing used in Spring Batch should be
familiar and comfortable. There are “Jobs’ and “Steps’ and developer supplied processing units called
ItemReaders and ItemWiriters. However, because of the Spring patterns, operations, templates, callbacks, and
idioms, there are opportunities for the following:

« significant improvement in adherence to a clear separation of concerns

clearly delineated architectural layers and services provided as interfaces

simple and default implementations that allowed for quick adoption and ease of use out-of-the-box

significantly enhanced extensibility

The diagram below is only a dlight variation of the batch reference architecture that has been used for decades.
It provides an overview of the high level components, technical services, and basic operations required by a
batch architecture. This architecture framework is a blueprint that has been proven through decades of
implementations on the last several generations of platforms (COBOL/Mainframe, C++/Unix, and now
Javalanywhere). JCL and COBOL developers are likely to be as comfortable with the concepts as C++, C# and
Java developers. Spring Batch provides a physical implementation of the layers, components and technical
services commonly found in robust, maintainable systems used to address the creation of ssmple to complex
batch applications, with the infrastructure and extensions to address very complex processing needs.

2.2. Batch Application Style Interactions and Services

Bateh Application Style — Interactions and Services

Run Tier

-

Job Tier Application Tier Data Tier

T
|
|
[[
| | :
: ltemReader -l 1
Read | 1
| | H
| | 1
| | 1
P
! i
I]
1
1
1
. 1
]
]
1
1

JobRunner JobLauncher 8|

. Data Access
Business
-

JobLocator

JobRepository

Kay

Custom Application Arifacts
Application Architecture Servicas
Applications, App Servers, VMs

Figure 2.1: Batch Stereotypes

The above diagram highlights the interactions and key services provided by the Spring Batch framework. The
colors used are important to understanding the responsibilities of a developer in Spring Batch. Grey represents
an external application such as an enterprise scheduler or a database. It's important to note that scheduling is
grey, and should thus be considered separate from Spring Batch. Blue represents application architecture
services. In most cases these are provided by Spring Batch with out of the box implementations, but an

Spring Batch 1.0 4

The Domain Language of Batch

architecture team may make specific implementations that better address their specific needs. Y ellow represents
the pieces that must be configured by a developer. For example, they need to configure their job schedule so
that the job is kicked off at the appropriate time. They also need to create a job configuration that defines how
their job will be run. It is also worth noting that the I t enReader and I temwi ter used by an application may
just as easily be a custom one made by the developer for the specific batch job, rather than one provided by
Spring Batch or even an architecture team.

The Batch Application Style is organized into four logical tiers, which include Run, Job, Application, and Data.
The primary goal for organizing an application according to the tiers is to embed what is known as " separation
of concerns' within the system. These tiers can be conceptual but may prove effective in mapping the
deployment of the artifacts onto physical components like Java runtimes and integration with data sources and
targets. Effective separation of concerns results in reducing the impact of change to the system. The four
conceptual tiers containing batch artifacts are:

e Run Tier: The Run Tier is concerned with the scheduling and launching of the application. A vendor
product is typically used in thistier to allow time-based and interdependent scheduling of batch jobs as well
as providing parallel processing capabilities.

« Job Tier: The Job Tier is responsible for the overall execution of a batch job. It sequentially executes batch
steps, ensuring that all steps arein the correct state and all appropriate policies are enforced.

e Application Tier: The Application Tier contains components required to execute the program. It contains
specific tasklets that address the required batch functionality and enforces policies around a tasklet execution
(e.g., commit intervals, capture of statistics, etc.)

e Data Tier: The Data Tier provides the integration with the physical data sources that might include
databases, files, or queues.

2.3. Job Stereotypes

This section describes stereotypes relating to the concept of abatch job. A job is an entity that encapsulates an
entire batch process. As is common with other Spring projects, a Job will be wired together via an XML
configuration file. This file may be referred to as the "job configuration". However, Job is just the top of an
overall hierarchy:

Spring Batch 1.0 5

The Domain Language of Batch

&

Job — The EndOfDay Job

The EndOfDay Job
Jobinstance | <+ for 2007/05/05

* The first attempt at

JobExecution «— EndOfDay Job
for 2007/05/05

2.3.1. Job

A job is represented by a Spring bean that implements the Job interface and contains al of the information
necessary to define the operations performed by a job. A job configuration is typically contained within a
Spring XML configuration file and the job's name is determined by the "id" attribute associated with the job
configuration bean. The job configuration contains

* The simple name of the job
« Definition and ordering of Steps
* Whether or not the job is restartable

A default simple implementation of the Job interface is provided by Spring Batch in the form of the Si npl eJob
class which creates some standard functionality on top of Job, namely a standard execution logic that al jobs
should utilize. In general, all jobs should be defined using a bean of type Si npl eJob:

<bean i d="f oot bal | Job"
cl ass="org. spri ngf ramewor k. bat ch. core. j ob. Si npl eJob" >
<property name="steps">
<list>
<l-- Step Bean details ommtted for clarity -->
<bean i d="pl ayerl| oad" parent="sinmpl eStep" />
<bean i d="ganelLoad" parent="sinpl eStep" />
<bean i d="pl ayer Sunmari zati on" parent="sinpl eStep" />
</list>
</ property>
<property name="restartabl e" value="true" />
</ bean>

2.3.2. Joblnstance

A Jobl nst ance refers to the concept of alogical job run. Let's consider a batch job that should be run once at
the end of the day, such as the 'EndOfDay" job from the diagram above. There is one 'EndOfDay’ Job, but each
individual run of the Job must be tracked separately. In the case of this job, there will be one logica
Jobl nst ance per day. For example, there will be a January 1st run, and a January 2nd run. If the January 1st
run fails the first time and is run again the next day, it's till the January 1st run. (Usually this corresponds with

Spring Batch 1.0 6

The Domain Language of Batch

the data its processing as well, meaning the January 1st run processes data for January 1st, etc) That is to say,
each Jobl nst ance can have multiple executions. (JobExecuti on is discussed in more detail below) and only
one Jobl nstance corresponding to a particular Job can be running at a given time. The definition of a
Jobl nst ance has absolutely no bearing on the data the will be loaded. It is entirely up to the It enReader
implementation used to determine how data will be loaded. For example, in the EndOfDay scenario, there may
be a column on the data that indicates the 'effective date’ or ‘schedule date' to which the data belongs. So, the
January 1st run would only load data from the 1st, and the January 2nd run would only use data from the 2nd.
Because this determination will likely be a business decision, it is left up to the I t enReader to decide. What
using the same Jobl nst ance will determine, however, is whether or not the 'state’ (i.e. the ExecutionContext,
which is discussed below) from previous executions will be used. Using a new Jobl nst ance will mean 'start
from the beginning' and using an existing instance will generally mean 'start from where you left off".

2.3.3. JobParameters

Having discussed Jobl nstance and how it differs from Job, the natural question to ask is: "how is one
Jobl nstance distinguished from another?' The answer is. JobParaneters. JobParaneters are any set of
parameters used to start a batch job, which can be used for identification or even as reference data during the
run. In the example above, where there are two instances, one for January 1st, and another for January 2nd,
there is really only one Job, one that was started with a job parameter of 01-01-2008 and another that was
started with a parameter of 01-02-2008. Thus, the contract can be defined as. Joblnstance = Job +
JobPar anet er s. This allows you to effectively control how you define a Jobl nst ance, since you control what
parameters are passed in.

2.3.4. JobExecution

A JobExecution refers to the technical concept of a single attempt to run a Job. An execution may end in
failure or success, but the Jobl nst ance corresponding to a given execution will not be marked as complete
unless the execution completes successfully. For instance, if we have a Jobl nst ance of the EndOfDay job for
01-01-2008, as described above, that fails to successfully complete its work the first time it is run, when we
attempt to run it again (with the same job parameters of 01-01-2008), a new job execution will be created.

A Job defines what a job is and defines how it is to be executed, and Jobl nst ance is a purely organization
object to group executions together, primarily to enable correct restart. A JobExecution, however, is the
primary storage mechanism for what actually happened during a run, and as such contains many more
properties that must be controlled and persisted:

Table 2.1. JobExecution properties

status A Bat chSt at us Object that indicates the status of the
execution. While it's running, it's
BatchStatus.STARTED, if it fails it's
BatchStatus.FAILED, and if it finishes successfully
it's BatchStatus. COMPLETED

startTime A java.util.Date representing the current system
time when the execution was started.

endTime A java.util.Date representing the current system
time when the execution finished, regardless of
whether or not it was successful.

exitStatus The Exi t St at us indicating the result of the run. It is
most important because it contains an exit code that

Spring Batch 1.0 7

The Domain Language of Batch

will be returned to the caller. See chapter 5 for more
details.

These properties are important because they will be persisted and can be used to completely determine the
status of an execution. For example, if the EndOfDay job for 01-01 is executed at 9:00 PM, and fails at 9:30,
the following entries will be made in the batch meta data tables:

Table2.2. BATCH_JOB_INSTANCE

JOB_INSTANCE_ID JOB_NAME

1 EndOfDayJob

Table2.3. BATCH_JOB_PARAMS

JOB_INSTANCE_ID TYPE_CD KEY_NAME DATE_VAL
1 DATE schedule.Date 2008-01-01 00:00:00

Table2.4. BATCH_JOB_EXECUTION

JOB_EXECUTION_|DOB_INSTANCE_ID START_TIME END_TIME STATUS
1 1 2008-01-01 2008-01-01 FAILED
21:00:23.571 21:30:17.132
Note

extra columnsin the table have been removed for added clarity.

Now that the job has failed, let's assume that it took the entire course of the night for the problem to be
determined, so that the 'batch window' is now closed. Assuming the window starts at 9:00 PM, the job will be
kicked off again for 01-01, starting where it left off and completing successfully at 9:30. Because it's now the
next day, the 01-02 job must be run as well, which is kicked off just afterwards at 9:31, and completes in it's
normal one hour time at 10:30. There is no requirement that one Jobl nst ance be kicked off after another,
unless there is potentia for the two jobs to attempt to access the same data, causing issues with locking at the
database level. It is entirely up to the scheduler to determine when to run. Since they're separate Joblnstances,
Spring Batch will make no attempt to stop them from being run concurrently. (Attempting to run the same
Jobl nst ance While another is already running will result in a JobExecut i onAl r eadyRunni ngExcept i on being
thrown) There should now be an extra entry in both the Jobl nst ance and JobPar anet er s tables, and two extra
entriesin the JobExecut i on table:

Table2.5. BATCH_JOB_INSTANCE

JOB_INSTANCE_ID JOB_NAME
1 EndOfDayJob
2 EndOfDayJob

Spring Batch 1.0 8

The Domain Language of Batch

Table 2.6. BATCH_JOB_PARAMS

JOB_INSTANCE_ID TYPE_CD KEY_NAME DATE_VAL
1 DATE schedule.Date 2008-01-01 00:00:00
2 DATE schedule.Date 2008-01-02 00:00:00

Table2.7. BATCH_JOB_EXECUTION

JOB_EXECUTION_IDOB_INSTANCE_ID START_TIME END_TIME STATUS

1 1 2008-01-01 21:00 2008-01-0121:30 FAILED

2 1 2008-01-02 21:00 2008-01-0221:30 @ COMPLETED
3 2 2008-01-02 21:31 2008-01-02 22:29 COMPLETED

2.4. Step Stereotypes

A step is adomain object that encapsulates an independent, sequential phase of a batch job. Therefore, every
Job is composed entirely of one or more steps. A st ep should be thought of as a unique processing stream that
will be executed in sequence. For example, if you have one step that loads a file into a database, another that
reads from the database, validates the data, preforms processing, and then writes to another table, and another
that reads from that table and writes out to a file. Each of these steps will be performed completely before
moving on to the next step. The file will be completely read into the database before step 2 can begin. As with
Job, ast ep hasan individual st epExecut i on that corresponds with a unique JobExecut i on:

Job
\
Step

StepExecution

2.4.1. Step

Spring Batch 1.0 9

The Domain Language of Batch

A step contains all of the information necessary to define and control the actual batch processing. Thisis a
necessarily vague description because the contents of any given step are at the discretion of the developer
writing a Job. A Step can be as simple or complex as the developer desires. A simple st ep might load data
from a file into the database, requiring little or no code. (depending upon the implementations used) A more
complex st ep may have complicated business rules that are applied as part of the processing.

Steps are defined by instantiating implementations of the st ep interface. Two step implementation classes are
available in the Spring Batch framework, and they are each discussed in detail in Chatper 4 of this guide. For
most situations, the 1t enri ent edSt ep implementation is sufficient, but for situations where only one call is
needed, such as a stored procedure call or a wrapper around existing script, a Taskl et St ep may be a better
option.

2.4.2. StepExecution

A StepExecution represents a single attempt to execute a st ep. Using the example from JobExecuti on, if
there isaJobl nst ance for the "EndOfDayJob", with JobPar anet er s of "01-01-2008" that fails to successfully
complete its work the first time it is run, when it is executed again, anew St epExecut i on Will be created. Each
of these step executions may represent a different invocation of the batch framework, but they will all
correspond to the same Jobl nst ance, just as multiple JobExecut i ons belong to the same Jobl nst ance.

Step executions are represented by objects of the st epExecut i on class. Each execution contains a reference to
its corresponding step and JobExecut i on, and transaction related data such as commit and rollback count and
start and end times. Additionally, each step execution will contain an Execut i onCont ext , which contains any
data a developer needs persisted across batch runs, such as statistics or state information needed to restart. The
following is alisting of the properties for St epExecut i on:

Table 2.8. StepExecution properties

status A Bat chSt at us Object that indicates the status of the
execution. While it's running, the status is
BatchStatus.STARTED, if it falls the status is
BatchStatus.FAILED, and if it finishes successfully
the status is BatchStatus. COMPLETED

startTime A java.util.Date representing the current system
time when the execution was started.

endTime A java.util.Date representing the current system
time when the execution finished, regardless of
whether or not it was successful.

exitStatus The Exitstatus indicating the result of the
execution. It is most important because it contains an
exit code that will be returned to the caller. See
chapter 5 for more details.

executionContext The 'property bag' containing any user data that needs
to be persisted between executions.

commitCount The number transactions that have been committed
for this execution

itemCount The number of items that have been processed for this
execution.

Spring Batch 1.0 10

The Domain Language of Batch

2.4.3. ExecutionContext

An ExecutionContext represents a collection of key/value pairs that are persisted and controlled by the
framework in order to allow developers a place to store persistent state that is scoped to a St epExecut i on. For
those familiar with Quartz, it is very similar to JobDat aMap. The best usage example is restart. Using flat file
input as an example, while processing individua lines, the framework periodicaly persists the
Executi onCont ext a commit points. This allows the | t enReader to store its state in case a fatal error occurs
during the run, or even if the power goes out. All that is needed is to put the current number of lines read into
the context, and the framework will do the rest:

execut i onCont ext . put Long(get Key(LI NES_READ COUNT), reader.getPosition());

The call above will store the current number of lines read into the ExecutionContext. It should be made just
before the framework commits. Being notified before a commit requires one of the various StepListeners, or an
ItemStream, which are discussed in more detail later in this guide. When the 1t enReader is opened, it can
check to seeif it has any stored state in the context, and initialize itself from there:

i f (executionContext.containsKey(getKey(LI NES READ COUNT))) {
| og. debug("Initializing for restart. Restart data is: " + executionContext);

| ong |i neCount = executi onCont ext.get Long(get Key(LI NES_READ COUNT)) ;
Li neReader reader = get Reader();

oj ect record = "";

whil e (reader.getPosition() < lineCount && record != null) {
record = readLine();

}

}

The ExecutionContext can aso be used for startistics that need to be persisted about the run itself. For
example, if aflat file contains orders for processing that exist across multiple lines, it may be necessary to store
how many orders have been processed (which is much different from than the number of lines read) so that an
email can be sent at the end of the st ep with the total orders processed in the body. The framework handles
storing this for the developer, in order to correctly scope it with an individual Jobl nst ance. It can be very
difficult to know whether an existing Executi onCont ext should be used or not. For example, using the
'EndOfDay’ example from above, when the 01-01 run starts again for the second time, the framework
recognizes that it is the same Jobl nst ance and on an individual st ep basis, pulls the Execut i onCont ext out of
the database and hands it as part of the St epExecuti on to the St ep itself. Conversely, for the 01-02 run the
framework recognizes that it is a different instance, so an empty context must be handed to the st ep. There are
many of these types of determinations that the framework makes for the developer to ensure the state is given
to them at the correct time. It is also important to note that exactly one Executi onContext eXists per
St epExecuti on a any given time. Clients of the Execut i onCont ext should be careful because this creates a
shared keyspace, so care should be taken when putting values in to ensure no data is overwritten, however, the
St ep stores absolutely no datain the context, so there is no way to adversely affect the framework.

2.5. JobRepository

JobReposi tory is the persistence mechanism for all of the Stereotypes mentioned above. When a job is first
launched, a JobExecut i on is obtained by calling the repository's cr eat eJobExecut i on method, and during the
course of execution, St epExecut i on and JobExecut i on are persisted by passing them to the repository:

public interface JobRepository {

publ i c JobExecution createJobExecution(Job job, JobParaneters jobParaneters)
throws JobExecuti onAl readyRunni ngExcepti on, JobRestartExcepti on;

Spring Batch 1.0 11

The Domain Language of Batch

voi d saveOr Updat e(JobExecuti on j obExecution);

voi d saveOr Updat e(St epExecuti on st epExecution);

voi d saveOr Updat eExecuti onCont ext (St epExecuti on st epExecution);

St epExecuti on get Last St epExecut i on(Jobl nst ance j obl nstance, Step step);

i nt get St epExecuti onCount (Jobl nst ance j obl nstance, Step step);

2.6. JobLauncher

JobLauncher represents asimple interface for launching aJob with agiven set of JobPar anet er s:

public interface JobLauncher {

publ i c JobExecution run(Job job, JobParaneters jobParaneters) throws JobExecuti onAl readyRunni ngExcepti on,
JobRest art Excepti on;

It is expected that implementations will obtain a valid JobExecut i on from the JobReposi t ory and execute the
Job.

2.7. JobLocator

JobLocat or represents an interface for locating a Job:

public interface JobLocator {

Job getJob(String nane) throws NoSuchJobExcepti on;

This interface is very necessary due to the nature of Spring itself. Because we can't guarantee one
Appl i cati onCont ext eguals one Job, an abstraction is needed to obtain a Job for a given name. It becomes
especially useful when launching jobs from within a Java EE application server.

2.8. Item Reader

I tenrReader iS an abstraction that represents the retrieval of input for a st ep, one item at a time. When the
I t enReader has exhausted the items it can provide, it will indicate this by returning null. More details about the
I t emReader interface and it's various implementations can be found in Chapter 3.

2.9. Item Writer

ItenWiter isan abstraction that represents the output of a st ep, one item at atime. Generally, an item writer
has no knowledge of the input it will receive next, only the item that was passed in its current invocation. More
detailsabout the I t emwi t er interface and it's various implementations can be found in Chapter 3.

Spring Batch 1.0 12

The Domain Language of Batch

2.10. Tasklet

A Taskl et represents the execution of a logical unit of work, as defined by its implementation of the Spring
Batch provided Taskl et interface. A Taskl et is useful for encapsulating processing logic that is not natural to
split into read-(transform)-write phases, such as invoking a system command or a stored procedure.

Spring Batch 1.0 13

Chapter 3. ItemReaders and ItemWriters

3.1. Introduction

All batch processing can be described in its most simple form as reading in large amounts of data, performing
some type of calculation or transformation, and writing the result out. Spring Batch provides two key interfaces
to help perform bulk reading and writing: | t enReader and I temWiter.

3.2. ltemReader

Although a simple concept, an I t enReader is the means for providing data from many different types of input.
The most general examplesinclude:

e Flat File- Flat File Item Readers read lines of data from aflat file that typically describe records with fields
of data defined by fixed positionsin the file or delimited by some special character (e.g. Comma).

e XML - XML ItemReaders process XML independently of technologies used for parsing, mapping and
validating objects. Input data alows for the validation of and XML file against an XSD schema.

« Database - A database resource is accessed that returns resultsets which can be mapped to objects for
processing. The default SQL Input Sources invoke a Rowvapper to return objects, keep track of the current
row if restart is required, basic statistics, and some transaction enhancements that will be explained later.

There are many more possibilities, but well focus on the basic ones for this chapter. A complete list of al
available ItemReaders can be found in Appendix A.

I t enReader isabasic interface for generic input operations:

public interface |tenReader {
oj ect read() throws Exception;
void mark() throws MarkFail edExcepti on;

void reset () throws ResetFail edExcepti on;

}

The read method defines the most essential contract of the It enReader, calling it returns one ltem, returning
null if no more items are left. An item might represent alinein afile, arow in a database, or an element in an
XML file. It is generally expected that these will be mapped to a usable domain object (i.e. Trade, Foo, etc) but
there is no requirement in the contract to do so.

The mar k and r eset methods are important due to the transactional nature of batch processing. Mark() will be
called before reading begins. Calling reset at anytime will position the | t enReader to its position when nar k
was last called. The semantics are very similar toj ava. i 0. Reader .

3.3. ltemWriter

ItenWiter issimilar in functionality to an I t enReader with the exception that the operations are reversed.
Resources still need to be located, opened and closed but they differ in the case that an | t emw i t er writes out,
rather than reading in. In the case of databases or queues these may be inserts, updates or sends. The format of

Spring Batch 1.0 14

ItemReaders and ItemWriters

the serialization of the output is specific for every batch job.

Aswith It enReader, I temW i t er isafairly genericinterface:

public interface ItenWiter {
void wite(Object itenm) throws Exception;
void flush() throws FlushFail edExcepti on;

void clear() throws C earFail edExcepti on;

}

Aswith read on It enReader, wri t e provides the basic contract of | temw i ter, it will attempt to write out the
item passed in as long as it is open. As with mark and reset, flush and cl ear are necessary due to the
transactional nature of batch processing. Because it is generally expected that items will be 'batched' together
into a chunk, and then output, it is expected that an | t emw i t er will perform some type of buffering. f1 ush will
empty the buffer by actually writing the items out, whereas cl ear will simply throw the contents of the buffer
away. In most cases, a Step implementation will call 1 ush before acommit and cl ear in case of rollback. It is
expected that implementations of the st ep interface will call these methods.

3.4. ltemStream

Both ItemReaders and ItemWriters serve their individual purposes well, but there is a common concern among
both of them that necessitates another interface. In general, as part of the scope of a batch job, readers and
writers need to be opened, closed, and require a mechanism for persisting state:

public interface ItentStream {
voi d open(Executi onCont ext executionContext) throws StreanException;
voi d updat e(Executi onCont ext executi onCont ext);

voi d cl ose(Executi onCont ext executionContext) throws StreanmExcepti on;

}

Before describing each method, it's worth briefly mentioning the Execut i onCont ext . Clients of an I t enReader
that also implements | t enst r eamshould call open before any calls to r ead, to open any resources such as files
or obtain connections. A similar restriction applies to an Itemwiter is aso implements | tenttream AS
mentioned before, if expected datais found in the Execut i onCont ext , it may be used to start the | t enReader or
ItenWiter a alocation other than its initial state. Conversely, cl ose will be called to ensure any resources
allocated during open will be released safely. updat e is called primarily to ensure that any state currently being
held is loaded into the provided Execut i onCont ext . This method will be called before committing, to ensure
that the current state is persisted in the database before commit.

In the special case where the client of an Itenttream is a Step (from the Spring Batch Core), an
Execut i onCont ext iS created for each St epExecut i on to allow users to store the state of a particular execution,
with the expectation that it will be returned if the same Jobl nst ance is started again. For those familiar with
Quartz, the semantics are very similar to a Quartz JobDat aMap.

3.5. Flat Files

One of the most common mechanisms for interchanging bulk data has always been the flat file. Unlike XML,
which has an agreed upon standard for defining how it is structured (XSD), anyone reading a flat file must
understand ahead of time exactly how the file is structured. In general, al flat files fal into two general types.

Spring Batch 1.0 15

ItemReaders and ItemWriters

Delimited and Fixed Length.

3.5.1. The FieldSet

When working with flat files in Spring Batch, regardliess of whether it is for input or output, one of the most
important classes is the Fi el dset . Many architectures and libraries contain abstractions for helping you read in
from afile, but they usually return a String or an array of Strings. This really only gets you hafway there. A
Fi el dSet is Spring Batch's abstraction for enabling the binding of fields from a file resource. It alows
developers to work with file input in much the same way as they would work with database input. A Fi el dSet
is conceptually very similar to a Jdbc Resul t Set . FieldSets only require one argument, a String array of
tokens. Optionally, you can also configure in the names of the fields so that the fields may be accessed either by
index or name as patterned after Resul t Set . In code it meansit's as simple as:

String[] tokens = new String[]{"foo", "1", "true"};
Fi el dSet fs = new Defaul t Fi el dSet (t okens);

String nane = fs.readString(0);

int value = fs.readlnt(1);

bool ean bool eanVal ue = fs. readBool ean(2);

There are many more options on the Fi el dSet interface, such as Dat e, long, Bi gDeci mal , etc. The biggest
advantage of the Fi el dSet is that it provides consistent parsing of flat file input. Rather than each batch job
parsing differently in potentially unexpected ways, it can be consistent, both when erroring out due to a format
exception, or when doing simple data conversions.

3.5.2. FlatFileltemReader

A flat file is any type of file that contains at most two-dimensional (tabular) data. Reading flat files in the
Spring Batch framework is facilitated by the class Fi at Fi | el t enReader , which provides basic functionality for
reading and parsing flat files. Fl at Fi | el t enReader class has several properties. The three most important of
these properties are Resource, FieldSetMapper and LineTokenizer. The Fiel dSet Mapper and
Li neTokeni zer interfaces will be explored more in the next sections. The resource property represents a Spring
Core Resour ce. Documentation explaining how to create beans of this type can be found in Spring Framework,
Chapter 4.Resources. Therefore, this guide will not go into the details of creating Resour ce objects. A resource
is used to locate, open, and close resources. It can be assimple as:

Resource resource = new Fil eSyst emResour ce("resources/trades. csv");

In complex batch environments the directory structures are often managed by the EAI infrastructure where drop
zones for external interfaces are established for moving files from ftp locations to batch processing locations
and vice versa. File moving utilities are beyond the scope of the spring batch architecture but it is not unusual
for batch job streams to include file moving utilities as steps in the job stream. It's sufficient to know that the
batch architecture only needs to know how to locate the files to be processed. Spring Batch begins the process
of feeding the datainto the pipe from this starting point.

The other propertiesin Fl at Fi | el t enReader alow you to further specify how your datawill be interpreted:

Table 3.1. Flat File Item Reader Properties
Property Type Description

encoding String Specifies what text encoding to use

Spring Batch 1.0 16

http://static.springframework.org/spring/docs/2.5.x/reference/resources.html
http://static.springframework.org/spring/docs/2.5.x/reference/resources.html

ItemReaders and ItemWriters

Property Type Description
- default is"1SO-8859-1"

comments Stringf[] Specifies line prefixes that indicate
comment rows

linesToSkip int Number of linesto ignore at the
top of thefile

firstLinel sHeader boolean Indicates that the first line of the
fileis aheader containing field
names. If the column names have
not been set yet and the tokenizer
extends AbstractLineT okenizer,
field names will be set
automatically from thisline

recordSeparatorPolicy RecordSeparatorPolicy Used to determine where the line
endings are and do things like
continue over aline ending if
inside a quoted string.

3.5.2.1. FieldSetMapper

The Fi el dSet Mapper interface defines a single method, mapLi ne, which takes a Fi el dSet object and maps its
contents to an object. This object may be a custom DTO or domain object, or it could be as smple as an array,
depending on your needs. The Fi el dSet Mapper is used in conjunction with the Li neTokeni zer to trandate a
line of datafrom aresource into an object of the desired type:

public interface Fiel dSet Mapper {

public Onject mapLine(Fiel dSet fs);

Asyou can see, the pattern used is exactly the same as Rowvapper used by JdbcTenpl at e.

3.5.2.2. LineTokenizer

Because there can be many formats of flat file data, which all need to be converted to a Fi el dSet so that a
Fi el dSet Mapper can create a useful domain object from them, an abstraction for turning a line of input into a
Fi el dSet isnecessary. In Spring Batch, thisiscalled aLi neTokeni zer:

public interface LineTokenizer {

Fi el dSet tokenize(String line);

The contract of aLi neTokeni zer issuch that, given aline of input (in theory the st ri ng could encompass more
than one line) aFi el dset representing the line will be returned. This will then be passed to aFi el dSet Mapper .
Spring Batch contains the following LineTokenizers:

e Del it edLi neTokeni zer - Used for files that separate records by a delimiter. The most common is a comma,

Spring Batch 1.0 17

ItemReaders and ItemWriters

but pipes or semicolons are often used as well

* Fi xedLengt hTokeni zer - Used for tokenizing files where each record is separated by a ‘fixed width' that
must be defined per record.

e PrefixMat chi ngConposi t eLi neTokeni zer - Tokenizer that determines which among a list of Tokenizers
should be used on a particular line by checking against a prefix.

3.5.2.3. Simple Delimited File Reading Example

Now that the basic interfaces for reading in flat files have been defined, a ssmple example explaining how they
work together is helpful. In it's most simple form, the flow when reading aline from afile is the following:

1. Read oneline from thefile.
2. Passthe string line into the LineT okenizer#tokenize() method, in order to retrieve aFi el dSet

3. Pass the FieldSet returned from tokenizing to a FieldSetMapper, returning the result from the
ItemReader#read() method

The following example will be used to illustrate this using an actual domain scenario. This particular batch job
reads in football players from the following file:

I D, | ast Nane, fi rst Nane, posi tion, birthYear, debut Year
" AbduKa00, Abdul - Jabbar, Kari mrb, 1974, 1996",

" AbduRa00, Abdul | ah, Rabi h, rb, 1975, 1999",

" Aber WA00, Aber cr onbi e, Wl ter, rb, 1959, 1982",

" Abr aDa00, Abr anowi cz, Danny, wr, 1945, 1967",

" AdanBo00, Adans, Bob, t e, 1946, 1969",

" Adanth00, Adans, Charlie, w, 1979, 2003"

We want to map this data to the following Player domain object:

public class Player inplenments Serializable {

private String |ID;
private String |astNane;
private String firstNane;
private String position;
private int birthYear;
private int debut Year;

public String toString() {

return "PLAYER I D=" + ID + ", Last Name=" + | ast Nane +
",First Nane=" + firstName + ", Position=" + position +
",Birth Year=" + birthYear + ", DebutYear=" +
debut Year ;

}

/] setters and getters...

}

In order to map aFi el dSet into our Player object, we need to create aFi el dSet Mapper that returns players:

protected static class PlayerFiel dSet Mapper inpl enents Fi el dSet Mapper {
public oject mapLine(FieldSet fieldSet) {
Pl ayer player = new Pl ayer();

Spring Batch 1.0 18

ItemReaders and ItemWriters

pl ayer.set| D(fiel dSet.readString(0));

pl ayer. set Last Nane(fi el dSet.readString(1));
pl ayer. set First Name(fiel dSet.readString(2));
pl ayer. setPosition(fieldSet.readString(3));
pl ayer.setBirthYear (fiel dSet.readlnt(4));

pl ayer. set Debut Year (fi el dSet.readl nt(5));

return player;

We can then read in from the file by correctly constructing our FlatFileltemReader and calling read():

Fl at Fil el t enReader itenReader = new Fl at Fil eltenmReader ();

i t enReader . set Resource = new Fil eSyst enResour ce("resources/ pl ayers. csv");
[/ DelimtedLi neTokeni zer defaults to conma as it's delimter

i t enReader . set Li neTokeni zer (new Del i m t edLi neTokeni zer ());

i t enReader . set Fi el dSet Mapper (new Pl ayer Fi el dSet Mapper ());

i t emReader . read();

Each call to read will return a new Player object from each line in the file. When the end of the file is reached,
null will be returned.

3.5.2.4. Mapping fields by name

Thereis one additional functionality line tokenizersthat is similar in function to a JDBC Resul t Set . The names
of the fields can be injected into the Li neTokeni zer to increase the readability of the mapping function. First,
wetell the Li neTokeni zer what the names of the fieldsin the fieldset are:

t okeni zer. set Nanes(new String[] {"ID', "lastNane","firstNanme", "position","birthYear", "debutYear"});
and provide aFi el dSet Mapper that uses thisinformation as follows:

public class PlayerMapper inplenments Fiel dSet Mapper {
public Object mapLine(FieldSet fs) {

if(fs == null){
return null;
}

Pl ayer player = new Pl ayer();

pl ayer.setl D(fs.readString("1D"));

pl ayer. set Last Nane(fs. readString("l ast Name"));
pl ayer. set Fi rst Nane(fs.readString("firstNane"));
pl ayer. set Position(fs.readString("position"));

pl ayer. set Debut Year (fs. readl nt ("debut Year"));

pl ayer.setBirthYear(fs.readlnt("birthYear"));

return player;

3.5.2.5. Automapping FieldSets to Domain Objects

For many, having to write a specific Fi el dSet Mapper IS equally as cumbersome as writing a specific
Rowmvapper for a JdbcTemplate. Spring Batch makes this easier by providing a Fi el dSet Mapper that

Spring Batch 1.0 19

ItemReaders and ItemWriters

automatically maps fields by matching a field name with a setter using the JavaBean spec. Again using the
football example, the Fi el dSet Mapper configuration looks like the following:

<bean i d="fi el dSet Mapper"
cl ass="org. springfranmework. batch.io.file. mappi ng. BeanW apper Fi el dSet Mapper " >
<property name="prototypeBeanNane" val ue="pl ayer" />
</ bean>

<bean i d="person"
cl ass="org. spri ngf ramewor k. bat ch. sanpl e. donai n. Pl ayer"
scope="prototype" />

For each entry in the Fi el dSet , the mapper will look for a corresponding setter on a new instance of the Pl ayer
object (for this reason, prototype scope is required) in the same way the Spring container will look for setters
matching a property name. Each available field in the Fi el dset will be mapped, and the resultant Pl ayer
object will be returned, with no code required.

3.5.2.6. Fixed Length file formats

So far only delimited files have been discussed in much detail, however, they respresent only half of the file
reading picture. Many organizations that use flat files use fixed length formats. An example fixed length fileis
below:

UK21341EAH4121131. 11cust oner 1
UK21341EAH4221232. 11cust oner 2
UK21341EAH4321333. 11cust oner 3
UK21341EAH4421434. 11cust oner 4
UK21341EAH4521535. 11cust oner 5

While this looks like one large field, it actually represent 4 distinct fields:

1. ISIN: Unique identifier for the item being order - 12 characters long.
2. Quantity: Number of thisitem being ordered - 3 characters long.

3. Price: Price of theitem - 4 characters long.

4. Customer: Id of the customer ordering the item - 8 characters long.

When configuring the Fi xedLengt hLi neTokeni zer, each of these lengths must be provided in the form of
ranges:
<bean i d="fi xedLengt hLi neTokeni zer"
cl ass="org. springframework. batch.io.file.transform Fi xedLengt hTokeni zer" >
<property name="names" value="ISIN, Quantity, Price, Customer" />

<property name="col uims" val ue="1-12, 13-15, 16-20, 21-29" />
</ bean>

This Li neTokeni zer will return the sameFi el dset asif adlimiter had been used, alowing the same approachs
above to be used such as the BeanW apper Fi el dSet Mapper , in away that isignorant of how the actual line was
parsed.

3.5.2.7. Multiple record types within a single file

All of the file reading examples up to this point have all made a key assumption for simplicity's sake: one
record equals one line. However, this may not always be the case. Its very common that a file might have
records spanning multiple lines with multiple formats. The following excerpt from afileillustrates this:

Spring Batch 1.0 20

ItemReaders and ItemWriters

HEA; 0013100345; 2007- 02- 15

NCU; Smi t h; Peter;; T; 20014539; F

BAD; ; Cak Street 31/ A;; Small Town; 00235;1L; US

SAD; Smith, Elizabeth;Elm Street 17;; Some City; 30011; FL; United States
BI' N; VI SA; VI SA- 12345678903

LI T; 1044391041; 37. 49; 0; 0; 4. 99; 2. 99; 1, 45. 47

LI T; 2134776319; 221. 99; 5; 0; 7. 99; 2. 99; 1; 221. 87

SI' N; UPS; EXP; DELI VER ONLY ON WEEKDAYS

FOT; 2; 2; 267. 34

Everything between the line starting with '"HEA' and the line starting with 'FOT" is considered one record. The
PrefixMatchingCompositeLineTokenizer makes this easier by matching the prefix in a line with a particular
tokenizer:

<bean i d="orderFil eDescri ptor"
cl ass="org. springframework. batch.io.file.transform PrefixMat chi ngConpositeLi neTokeni zer">
<property nanme="t okeni zers">
<map>
<entry key="HEA" val ue-ref ="header Recor dDescriptor" />
<entry key="FOT" val ue-ref="f oot er RecordDescriptor" />
<entry key="BCU' val ue-ref="busi nessCust ormer Li neDescriptor" />
<entry key="NCU' val ue-ref ="cust onerLi neDescriptor" />
<entry key="BAD' val ue-ref="billingAddressLi neDescriptor" />
<entry key="SAD' val ue-ref ="shi ppi ngAddr essLi neDescriptor" />
<entry key="BIN' val ue-ref="billingLi neDescriptor" />
<entry key="SI N' val ue-ref="shi ppi ngLi neDescriptor" />
<entry key="LIT" val ue-ref="itenli neDescriptor" />
<entry key="" val ue-ref="defaul tLi neDescriptor" />
</ map>
</ property>
</ bean>

This ensures that the line will be parsed correctly, which is especially important for fixed length input, with the
correct field names. Any users of the Fl at Fi | el t emReader in this scenario must continue calling r ead until the
footer for the record is returned, allowing them to return a complete order as one ‘item'.

3.5.3. FlatFileltemWriter

Writing out to flat files has the same problems and issues that reading in from a file must overcome. It must be
able to write out in either delimited or fixed length formatsin atransactional manner.

3.5.3.1. LineAggregator

Just asthe Li neTokeni zer interface is necessary to take a string and split it into tokens, file writing must have a
way to aggregate multiple fields into a single string for writing to a file. In Spring Batch this is the
Li neAggr egat or:

public interface LineAggregator {

public String aggregate(FieldSet fieldSet);

The Li neAggr egat or is exactly the opposite of aLi neTokeni zer . Li neTokeni zer takesa st ri ng and returns a
Fi el dSet , wWhereas Li neAggr egat or takes a Fi el dSet and returns a Stri ng. As with reading there are two
types: Del i ni t edLi neAggr egat or and Fi xedLengt hLi neAggr egat or .

3.5.3.2. FieldSetCreator

Because the LineAggregator interface uses aFi el dSet asit's mechanism for converting to a string, there needs

Spring Batch 1.0 21

ItemReaders and ItemWriters

to be an interface that describes how to convert from an object into aFi el dSet :

public interface FieldSetCreator {

Fi el dSet mapltenm Cbj ect data);

As with Li neTokeni zer and Li neAggregat or, Fi el dSet Creator iS the polar opposite of Fi el dSet Mapper .
Fi el dSet Mapper takes a Fi el dSet and returns a mapped object, whereas a Fi el dSet Cr eat or takes an Object
and returns aFi el dSet .

3.5.3.3. Simple Delimited File Writing Example

Now that both the Li neAggregat or and Fi el dSet Cr eat or interfaces have been defined, the basic flow of
writing can be explained:

1. The object to be written is passed to the Fi el dSet Cr eat or in order to obtain aFi el dSet .
2. Thereturned Fi el dSet ispassed to the Li neAggr egat or
3. Thereturned st ri ng iswritten to the configured file.

The following excerpt fromthe Fl at Fi | el tenw i t er expressesthisin code:

public void wite(Object data) throws Exception {

Fiel dSet fieldSet = fieldSetCreator.maplten(data);

getQutput State().wite(lineAggregator. aggregate(fieldSet) + LINE_SEPARATOR);
}

A simple configuration with the smallest ammount of setters would look like the following:

<bean id="itenWiter"
cl ass="org. springframework. batch.io.file.FlatFileltenWiter">
<property name="resource"
val ue="fil e:target/test-outputs/20070122. testStream nul tilineStep.txt" />
<property nanme="fiel dSet Creator">
<bean cl ass="org. spri ngfranmework. batch.io.file. mappi ng. PassThr oughFi el dSet Mapper "/ >

</ property>

</ bean>

3.5.3.4. Handling file creation

Fl at Fi | el t enReader has avery simple relationship with file resources. When the reader is initialized, it opens
the file if it exists, and throws an exception if it does not. File writing isn't quite so simple. At first glance it
seems like a similar straight forward contract should exist for Fl at Fil el temW i ter, if the file already exists,
throw an exception, if it does not, create it and start writing. However, potentially restarting a Job can cause
issues. In the normal restart scenario, the contract is reversed, if the file exists start writing to it from the last
known good position, if it does not, throw an exception. However, what happens if the file name for thisjob is
always the same? In this case, you would want to delete the file if it exists, unlessit's a restart. Because of this
possibility, the Fl atFil el temwiter contains the property, shoul dDel et el f Exi sts. Setting this property to
true will cause an existing file with the same name to be deleted when the writer is opened.

3.6. XML Item Readers and Writers

Spring Batch provides transactional infrastructure for both reading XML records and mapping them to Java

Spring Batch 1.0 22

ItemReaders and ItemWriters

objects as well as writing Java objects as XML records.
Constraintson streaming XML

The StAX API is used for I/O as other standard XML parsing APIs do not fit batch processing
requirements (DOM loads the whole input into memory at once and SAX controls the parsing
process allowing the user only to provide callbacks).

Lets take a closer look how XML input and output works in Spring Batch. First, there are a few concepts that
vary from file reading and writing but are common across Spring Batch XML processing. With XML
processing instead of lines of records (FieldSets) that need to be tokenized, it is assumed an XML resourceis a
collection of 'fragments' corresponding to individual records. Note that OXM tools are designed to work with
standalone XML documents rather than XML fragments cut out of an XML document, therefore the Spring
Batch infrastructure needs to work around this fact, as described below:

- <trade>
<isin>XYZ0001</isin>
< <quantity>5</quantity>
<price>11.39</price>
<customer>Customeri</customer>
<[trade>
<trade>
<isin>XYZ0002</isin>
< <quantity>2</quantity>
<price>72.99</price>
<customer>Customer2c</customer>
</trade>
<trade>
<isin>XYZ0003</isin>
<quantity>9</quantity>
< <price>99.99</price>
<customer>Customer3</customer>
_ </trade>

Fragment |

N

Fragment 2

0

Fragment 3

Figure 3.1: XML Input

The 'trade’ tag is defined as the 'root element’ in the scenario above. Everything between '<trade>' and '</trade>'
is considered one ‘fragment’. Spring Batch uses Object/ XML Mapping (OXM) to bind fragments to objects.
However, Spring Batch is not tied to any particular xml binding technology. Typical useisto delegate to Spring
OXM, which provides uniform abstraction for the most popular OXM technologies. The dependency on Spring
OXM is optional and you can choose to implement Spring Batch specific interfaces if desired. The relationship
to the technologies that OXM supports can be shown as the following:

Spring Batch 1.0 23

http://static.springframework.org/spring-ws/site/reference/html/oxm.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

ItemReaders and ItemWriters

Spring OXM

JaxB2

Fragment 1 I et
9 astior

XmiIBeans

Any binding fraimework
supported by Spring OXM

Figure 3.2: OXM Binding

Now with an introduction to OXM and how one can use XML fragments to represent records, let's take a closer
look at Item Readers and Item Writers.

3.6.1. StaxEventltemReader

The st axEvent | t enReader configuration provides a typical setup for the processing of records from an XML
input stream. First, lets examine a set of XML recordsthat the St axEvent | t enReader Can process.

<?xm version="1.0" encodi ng="UTF-8"?>
<recor ds>
<trade xm ns="http://springfranmework. org/bat ch/ sanpl e/ i o/ oxnl domai n" >
<i si n>XYZ0001</i si n>
<quantity>5</quantity>
<price>11. 39</ pri ce>
<cust oner >Cust onrer 1</ cust oner >
</trade>
<trade xm ns="http://springframework. org/ bat ch/sanpl e/i o/ oxm domai n">
<i si n>XYZ0002</i si n>
<quantity>2</quantity>
<price>72.99</price>
<cust omer >Cust oner 2c</ cust omer >
</trade>
<trade xm ns="http://springframework. org/ bat ch/sanpl e/i o/ oxm domai n" >
<i si n>XYZ0003</i si n>
<quantity>9</quantity>
<price>99. 99</pri ce>
<cust omer >Cust oner 3</ cust oner >
</trade>
</records>

Spring Batch 1.0 24

ItemReaders and ItemWriters

To be able to process the XML records we need the following:

* Root Element Name - Name of the root element of the fragment that constitutes the object to be mapped. The
example configuration demonstrates this with the value of trade.

* Resource - Spring Resource that represents the file to be read.

* Fragnent Deserial i zer - UnMarshalling facility provided by Spring OXM for mapping the XML fragment
to an object.

<property nanme="itenReader">
<bean cl ass="org. spri ngframework. batch.io.xm . StaxEvent|tenReader" >
<property nanme="fragnent Root El enent Nane" val ue="trade" />
<property name="resource" val ue="data/staxJob/input/20070918.testStream xm Fil eStep. xm " />
<property nanme="fragnent Deseri al i zer">
<bean cl ass="org. springfranmework. bat ch.i 0. xm . oxm Unmar shal | i ngEvent Reader Deseri al i zer" >
<constructor - ar g>
<bean cl ass="org. spri ngfranmewor k. oxm xstream XSt reaniarshal | er" >
<property name="al i ases" ref="aliases" />
</ bean>
</ constructor-arg>
</ bean>
</ property>
</ bean>
</ property>

Notice that in this example we have chosen to use an xSt r eanvar shal | er that requires an alias passed in as a
map with the first key and value being the name of the fragment (i.e. root element) and the object type to bind.
Then, similar to a Fi el dSet, the names of the other elements that map to fields within the object type are
described as key/value pairs in the map. In the configuration file we can use a spring configuration utility to
describe the required alias as follows:

<util:map id="aliases">
<entry key="trade"
val ue="or g. spri ngf ranewor k. bat ch. sanpl e. domai n. Tr ade" />
<entry key="isin" value="java.lang. String" />
<entry key="quantity" value="long" />
<entry key="price" val ue="java. math. Bi gDeci mal " />
<entry key="customer" val ue="java.lang. String" />
</util:map>

On input the reader reads the XML resource until it recognizes a new fragment is about to start (by matching
the tag name by default). The reader creates a standalone XML document from the fragment (or at least makes
it appear so) and passes the document to a deserializer (typically a wrapper around a Spring OXM
Unnar shal | er) to map the XML to a Java object.

In summary, if you were to see thisin scripted code like Java the injection provided by the spring configuration
would look something like the following:

St axEvent | t enReader xml St axEvent |t enReader = new St axEvent |t enReader ()
Resource resource = new Byt eArrayResour ce(xm Resource. get Bytes())

Map al i ases = new HashMap();
al i ases. put ("trade", "org. spri ngf ramewor k. bat ch. sanpl e. donai n. Trade") ;
al i ases. put ("isin","java.lang. String");

al i ases. put ("quantity","long");
al i ases. put ("price","java. mat h. Bi gDeci mal ") ;

Spring Batch 1.0 25

ItemReaders and ItemWriters

al i ases. put ("custoner”,"java. lang. String");

Mar shal | er marshal | er = new XStreanMarshall er();
mar shal | er. set Al i ases(al i ases);

xm St axEvent | t enReader . set Fragnment Deseri al i zer (new Unnar shal | i ngEvent Reader Deseri al i zer (marshal l er));
xm St axEvent | t enReader . set Resour ce(resource);

xm St axEvent | t enReader . set Fr agnent Root El enent Nane("trade");
xm St axEvent | t emReader . open(new Executi onContext());

bool ean hasNext = true

whil e (hasNext) {
trade = xm St axEvent |t enReader.read();
if (trade == null) {
hasNext = fal se;
} else {
println trade;
}

}

3.6.2. StaxEventltemWriter

Output works symmetrically to input. The StaxEventltemWiter needs a Resource, a seridizer, and a
rootTagName. A Java object is passed to a serializer (typically a wrapper around Spring OXM Mar shal | er)
which writes to a Resour ce Using a custom event writer that filters the st ar t Docurment and EndDocunent events
produced for each fragment by the OXM tools. Well show this in an example using the
Mar shal | i ngEvent Wi t er Seri al i zer . The Spring configuration for this setup looks as follows:

<bean cl ass="org. springframework. batch.item xm . StaxEventltemWiter" id="tradeStaxWiter">
<property name="resource"val ue="file:target/test-outputs/20070918.testStream xm Fi | eSt ep. out put. xm " />
<property name="serializer" ref="tradeMarshal lingSerializer" />
<property nanme="r oot TagNane" val ue="trades" />
<property name="overwiteCQutput" value="true" />
</ bean>

The configuration sets up the three required properties and optionally sets the overwriteOutput=true, mentioned
earlier in the chapter for specifying whether an existing file can be overwritten. The
TradeMar shal | i ngSeri al i zer isconfigured asfollows:

<bean cl ass="org. spri ngframework. batch.item xm . oxm Marshal | i ngEvent WiterSerializer" id="tradeMarshal lingSerializer">
<constructor-arg>
<bean cl ass="org. spri ngframewor k. oxm xst ream XSt r eamvar shal | er ">
<property nane="al i ases" ref="aliases" />
</ bean>
</ constructor-arg>
</ bean>

To summarize with a Java example, the following code illustrates all of the points discussed, demonstrating the
programmatic setup of the required properties.

StaxEventltenmNiter staxltemWiter = new StaxEventltenWiter()

Fi | eSyst enResource resource = new Fil eSyst enResource(Fil e.createTenpFil e("StaxEvent Wi t er Qut put Sour ceTest s"

Map al i ases = new HashMap();

al i ases. put ("trade", "org. spri ngf ramewor k. bat ch. sanpl e. donai n. Trade") ;
al i ases. put ("isin","java.lang. String");

al i ases. put ("quantity","long");

al i ases. put ("price", "java. mat h. Bi gDeci mal ") ;

al i ases. put ("custoner”,"java. lang. String");

XSt reamvar shal | er marshal l er = new XSt reanmMarshal | er ()

mar shal | er. set Al i ases(al i ases)

Mar shal I'i ngEvent Wi terSerializer tradeMarshallingSerializer = new Marshal li ngEvent WiterSerializer(marshall

staxltenmNiter.set Resource(resource)

Spring Batch 1.0 26

ItemReaders and ItemWriters

staxltemNiter.setSerializer(tradeMarshallingSerializer)
staxltemWiter. set Root TagNane("trades")
staxltemWiter.set OverwiteQutput (true)

Execut i onCont ext executi onContext = new Executi onCont ext ()
staxltenmWiter. open(executi onCont ext)

Trade trade = new Trade()

trade.isin = "XYzZ0001"

trade. quantity =5

trade.price = 11. 39

trade. cust omer = "Custoner 1"

println trade

staxltenmWiter.wite(trade)

staxltemWNiter.flush()

For a complete example configuration of XML input and output and a corresponding Job see the sample
xml StaxJob.

3.7. Creating File Names at Runtime

Both the XML and Flat File examples above use the Spring Resour ce abstraction to obtain the file to read or
write from. This works because Resour ce has a getFile method, that returns aj ava. i o. Fi | e. Both XML and
Flat File resources can be configured using standard Spring constructs:

<bean id="flatFileltenReader"
cl ass="org. springframework. batch.itemfile.FlatFileltenReader">
<property name="resource"
val ue="fil e://out puts/20070122. t est St ream Cust oner Report St ep. TEMP. t xt" />
</ bean>

The above Resource will load the file from the file system, at the location specificied. Note that absolute
locations have to start with a double slash ("//"). In most spring applications, this solution is good enough
because the names of these are known at compile time. However, in batch scenarios, the file name may need to
be determined at runtime as a parameter to the job. This could be solved using '-D' parameters, i.e. a system

property:

<bean id="flatFileltenReader"
cl ass="org. springframework. batch.itemfile.FlatFileltenReader">
<property name="resource" value="${input.file.nane}" />
</ bean>

All that would be required for this solution to work would be a system argument
(-Dinput.file.name="file://file.txt"). (Note that although a Pr opert yPI acehol der Confi gurer can be used here,
it is not necessary if the system property is always set because the Resour ceEdi t or in Spring already filters and
does placeholder replacement on system properties.)

Oftenin abatch setting it is preferable to parameterize the file name in the JobPar anet er s of the job, instead of
through system properties, and access them that way. To alow for this, Spring Batch provides the
St epExecut i onResour ceProxy. The proxy can use either job name, step name, or any values from the
JobPar anet er s, by surrounding them with %:

<bean i d="inputFile"
cl ass="org. spri ngframewor k. bat ch. core. resour ce. St epExecut i onResour cePr oxy" />
<property name="filePattern" val ue="//% OB _NAVEY ¥%STEP_NAME% % i | e. name% />
</ bean>

Assuming a job name of ‘fooJob’, and a step name of ‘fooStep, and the key-value pair of
file.name="fileName.txt"' isin the JobPar aret er s the job is started with, the following filename will be passed

Spring Batch 1.0 27

ItemReaders and ItemWriters

as the Resource: "//fooJob/ fooStep/ fil eNane. t xt . It should be noted that in order for the proxy to have
access to the st epExecut i on, it must be registered asa St eplLi st ener:

<bean i d="fooStep" parent="abstractStep"
p: i tenReader-ref="itenReader"
p:itemNiter-ref="itenWiter">
<property name="listeners" ref="inputFile" />
</ bean>

The st epLi st ener interface will be discussed in more detail in Chapter 4. For now, it is sufficient to know that
the proxy must be registered.

3.8. Database

Like most enterprise application styles, a database is the central storage mechanism for batch. However, batch
differs from other application styles due to the sheer size of the datasets that must be worked with. The Spring
Core JdbcTenpl at e illustrates this problem well. If you use JdbcTenpl at e With a Rowvapper , the Rowvapper
will be called once for every result returned from the provided query. This causes few issuesin scenarios where
the dataset is small, but the large datasets often necessary for batch processing would cause any VM to crash
quickly. If the sgl statement returns 1 million rows, the Rowvapper will be called 1 million times. Spring Batch
provides two types of solutions for this problem: Cursor and DrivingQuery ItemReaders.

3.8.1. Cursor Based IltemReaders

Using a database cursor is generally the default approach of most batch developers. This is because it is the
database's solution to the problem of 'streaming' relational data. The Java Resul t Set class is essentially an
object orientated mechanism for manipulating a cursor. A Resul t Set maintains a cursor to the current row of
data. Calling next on aResul t Set moves this cursor to the next row. Spring Batch cursor based ItemReaders
open the a cursor on initiaization, and move the cursor forward one row for every call to read, returning a
mapped object that can be used for processing. The cl ose method will then be called to ensure all resources are
freed up. The Spring core JdbcTenpl at e gets around this problem by using the callback pattern to completely
map all rows in aResul t Set and close before returning control back to the method caller. However, in batch
this must wait until the step is complete. Below is a generic diagram of how a cursor based | t enReader Works,
and while a SQL statement is used as an example since it is so widely known, any technology could implement
the basic approach:

Spring Batch 1.0 28

ItemReaders and ItemWriters

FOO 2 Select * from FOO

id=2 where id > 1 and id < 7

name=foo?2

bar=bar? D NAME |BAR
1 foo1 bar1

FOO 3 2 foo2 | bar?

icd=3

name=foo3 3 foo3 bar3

bar=bar3 4 foo4d bard
5 fooS bard

Fo0 4 6 foo6 | baré

id=4

name=food K foo7 bar?

bar=bar4 8 foo8 bar8

The example illustrates the basic pattern. Given a'FOQ' table, which has three columns: ID, NAME, and BAR,
select all rows with an ID greater than one but less than 7. This puts the beginning of the cursor (row 1) on ID
2. The result of this row should be a completely mapped Foo object, calling read() again, moves the cursor to
the next row, which is the Foo with an ID of 3.

3.8.1.1. JdbcCursorltemReader

JdbcCur sor | t enReader is the JDBC implementation of the cursor based technique. It works directly with a
Resul t Set and requires a SQL statement to run against a connection obtained from a Dat aSource. The
following database schemawill be used as an example:

CREATE TABLE CUSTOMER (
ID Bl G NT | DENTI TY PRI MARY KEY,
NAVE VARCHAR(45) ,

CREDI T FLOAT

)

Many people prefer to use a domain object for each row, so we'll use an implementation of the RowMvapper
interface to map acust oner Credi t Object:
public class CustonerCreditRowivapper inplements RowMvapper {
public static final String |D_COLUW = "id";
public static final String NAVE_COLUW = "nanme";
public static final String CREDIT_COLUW = "credit";

public Object mapRow(ResultSet rs, int rowmun) throws SQLException {
CustonmerCredit custonerCredit = new CustonerCredit();

custonmerCredit.setld(rs.getlnt(ID COLUW));
custoner Credi t. set Name(rs. get String(NAVE_COLUW)) ;
custonmerCredit.setCredit(rs. getBigDeci mal (CREDI T_COLUW)) ;

return custonerCredit;

Spring Batch 1.0 29

ItemReaders and ItemWriters

Because JdbcTenpl at e is so familiar to users of Spring, and the JdbcCur sor I t enReader shares key interfaces
with it, it's useful to see an example of how to read in this data with JdbcTenpl at e, in order to contrast it with
the item reader. For the purposes of this example, let's assume there are 1,000 rows in the CUSTOMER
database. The first example will be using JdbcTenpl at e:

//For sinplicity sake, assune a dataSource has al ready been obtai ned
JdbcTenpl ate j dbcTenpl ate = new JdbcTenpl at e(dat aSour ce) ;
Li st custonmerCredits = jdbcTenpl ate. query("SELECT ID, NAME, CREDI T from CUSTOMER', new Custoner Credi t Rowivapper ()

After running this code snippet the customerCredits list will contain 1,000 cust ormer Credi t oObjects. In the
query method, a connection will be obtained from the bat aSour ce, the provided SQL will be run against it, and
the mapRow method will be called for each row in the Resul t Set . Let's constrast this with the approach of the
JdbcCur sor | t enReader :

JdbcCur sor |t enReader itenReader = new JdbcCursorltenReader();
i t emReader . set Dat aSour ce(dat aSour ce) ;

i t emReader . set Sgl (" SELECT |1 D, NAME, CREDI T from CUSTOVER');

i t enReader . set Mapper (new Cust oner Cr edi t Rowivapper ()) ;

int counter = O;

Executi onCont ext executi onContext = new Executi onContext();

i t emReader . open(executi onCont ext);

Obj ect custonerCredit = new Object();

whi |l e(custonmerCredit != null){
custonerCredit = itenReader.read();
count er ++;

}

i t enReader . cl ose(executi onCont ext) ;

After running this code snippet the counter will equal 1,000. If the code above had put the returned
customerCredit into a list, the result would have been exactly the same as with the JdbcTenpl at e example.
However, the big advantage of the I t enReader isthat it allows items to be 'streamed’. The r ead method can be
called once, and the item written out viaan I temw i t er , and then the next item obtained viar ead. This alows
item reading and writing to be done in 'chunks and committed periodically, which is the essence of high
performance batch processing.

3.8.1.1.1. Additional Properties

Because there are so many varying options for opening a cursor in Java, there are many properties on the
JdbcCust or | t enReader that can be set:

Table 3.2. JdbcCursorltemReader Properties

ignoreWarnings Determines whether or not SQLWarnings are logged
or cause an exception - default istrue

fetchSize Gives the JDBC driver a hint as to the number of
rows that should be fetched from the database when
more rows are needed by the Resul t Set object used
by the ItemReader. By default, no hint is given.

maxRows Sets the limits for the maximum number of rows the
underlying Resul t Set can hold at any one time.

queryTimeout Sets the number of seconds the driver will wait for a

Spring Batch 1.0 30

ItemReaders and ItemWriters

Statement object to execute to the given number of
seconds. If the Ilimit is exceeded, a
Dat aAccessEcept i on is thrown. (consult your driver
vendor documentation for details).

verifyCursorPosition Because the same Resul t Set held by the ItemReader
is passed to the RowMapper, it's possible for users to
call ResultSet.next() themselves, which could cause
issues with the reader's internal count. Settings this
value to true will cause an exception to be thrown if
the cursor position is not the same after the
RowMapper call asit was before.

saveState Indicates whether or not the reader's state should be
saved in the ExecutionContext provided by
ItemStream#update(ExecutionContext) The default
valueisfalse.

3.8.1.2. HibernateCursorltemReader

Just as normal Spring users make important decisions about whether or not to use ORM solutions, which
affects whether or not they use a JdbcTenpl ate Or @ Hi ber nat eTenpl at e, Spring Batch users have the same
options. Hi ber nat eCur sor I t enReader is the Hibernate implementation of the cursor technique. Hibernate's
usage in batch has been fairly controversial. This has largely been because hibernate was originally devel oped
to support online application styles. However, that doesn't mean it can't be used for batch processing. The
easiest approach for solving this problem is to use a St at el essSessi on rather than a standard session. This
removes al of the caching and dirty checking hibernate employs that can cause issues when using it in a batch
scenario. For more information on the differences between stateless and normal hibernate sessions, refer to the
documentation of your specific hibernate release. The Hi ber nat eCur sor | t enReader allows you to declare an
HQL statement and passin a Sessi onFact or y, which will pass back one item per cal tor ead in the same basic
fashion as the JdbccCursor | t enReader. Below is an example configuration using the same 'customer credit'
example as the JDBC reader:

Hi ber nat eCur sor | t enReader itenReader = new Hi bernat eCursorltenReader();
i t enReader . set QueryString("from CustonerCredit");

//For sinplicity sake, assune sessionFactory already obtai ned.

i t enReader . set Sessi onFact ory(sessi onFactory);

i t emReader . set UseSt at el essSessi on(true);

int counter = O;

Execut i onCont ext executi onContext = new Executi onContext();

i t emReader . open(executi onCont ext);

bj ect custonmerCredit = new Object();

whil e(custonmerCredit !'= null){
custonmerCredit = itenReader.read();
count er ++;

}

i t emReader . cl ose(executi onCont ext);

This configured | t enReader will return Cust oner Credi t 0bjects in the exact same manner as described by the
JdbcCur sor | t enReader , assuming hibernate mapping files have been created correctly for the Customer table.
The 'useStatel essSession' property defaults to true, but has been added here to draw attention to the ability to
switch it on or off.

3.8.2. Driving Query Based ItemReaders

In the previous section, Cursor based database input was discussed. However, it isn't the only option. Many

Spring Batch 1.0 31

ItemReaders and ItemWriters

database vendors, such as DB2, have extremely pessimistic locking strategies that can cause issues if the table
being read also needs to be used by other portions of the online application. Furthermore, opening cursors over
extremely large datasets can cause issues on certain vendors. Therefore, many projects prefer to use a 'Driving
Query' approach to reading in data. This approach works by iterating over keys, rather than the entire object
that needs to be returned, as the following example illustrates:

Select ID from FOO
where id > 1 and id < 7

1D NAME |BAR
1 foo1 bar1
2 foo2 bar2
3 foo3 bar3
2 ﬂ 4 food | bard
5 foo5 bard
6 foob bart
7 foo7 bar7
8 foo8 bar8

As you can see, this example uses the same 'FOQ' table as was used in the cursor based example. However,
rather than selecting the entire row, only the ID's were selected in the SQL statement. So, rather than a FOO
object being returned from r ead, an Integer will be returned. This number can then be used to query for the
'details, which is a complete Foo object:

Job
=
S8 2 s
S 5 o =
5 J9o| |5 |3 |
|| 2R e e *| Database
= 5 o o)
. 2a |E| |3
o= 2
{' Query for details using
Existing key as parameter
Keys obtained at step initialization DAO

Spring Batch 1.0 32

ItemReaders and ItemWriters

As you can see, an existing DAO can be used to obtain a full 'Foo' object using the key obtained from the
driving query. In Spring Batch, driving query style input is implemented with a Dri vi ngQueryl t enReader ,
which has only one dependency: aKeyCol | ect or

3.8.2.1. KeyCollector

As the previous example illustrates, the DrivingQueryltemReader is fairly ssimple. It simply iterates over alist
of keys. However, the real complication is how those keys are obtained. The KeyCol | ect or interface abstracts
this:

public interface KeyCollector {
Li st retrieveKeys(ExecutionContext executionContext);

voi d updat eCont ext (Cbj ect key, ExecutionContext executionContext);
}

The primary method in thisinterfaceistheret ri evekeys method. It is expected that this method will return the
keys to be processed regardless of whether or not it is a restart scenario. For example, if a job starts processing
keys 1 through 1,000, and fails after processing key 500, upon restarting keys 500 through 1,000 should be
returned. This functionality is made possible by the updat eCont ext method, which saves the provided key
(which should be the current key being processed) in the provided ExecutionContext. The retri eveKeys
method can then use this value to retrieve a subset of the original keys:

Execut i onCont ext executi onCont ext = new Executi onCont ext () ;
Li st keys = keyStrategy.retrieveKeys(executionContext);

/1 Assune keys contains 1 through 1,000

keyStrat egy. updat eCont ext (new Long(500), executi onContext);
keys = keyStrategy.retrieveKeys(executionContext);

/I keys shoul d now contains 500 through 1, 000

This generalization illustrates the KeyCol | ect or contract. If we assume that initially calling retri eveKeys
returned 1,000 keys (1 through 1,000), calling updat eCont ext with key 500 should mean that calling
retri eveKeys again with the same Execut i onCont ext will return 500 keys (501 through 1,000).

3.8.2.2. SingleColumnJdbcKeyCollector

The most common driving query scenario is that of input that has only one column that represents its key. This
isimplemented asthe Si ngl eCol utmJdbeKeyCol | ect or class, which has the following options:

Table 3.3. SinglecolumnJdbcK eyCollector properties

jdbcTemplate The JdbcTemplate to be used to query the database

S The sgl statement to query the database with. It
should return only one value.

restartSql The sgl statement to use in the case of restart.
Because only one key will be used, this query should
reguire only one argument.

keyMapper The RowMapper implementation to be used to map
the keys to objects. By default, this is a Spring Core
SingleColumnRowM apper, which maps them to well
known types such as Integer, String, etc. For more
information, check the documentation of your

Spring Batch 1.0 33

ItemReaders and ItemWriters

specific Spring release.

The following code helpsillustrate how to setup and use a Si ngl eCol umJdbcKeyCol | ect or :

Si ngl eCol umJdbcKeyCol | ect or keyCol | ect or = new Si ngl eCol uimJdbcKeyCol | ect or (get JdbcTenpl ate(),
"SELECT I D from T_FOOS order by ID");

keyCol | ector. set Restart Sql ("SELECT ID from T_FOOS where ID > ? order by 1D");
Execut i onCont ext executi onCont ext = new Executi onContext ();
Li st keys = keyStrategy.retrieveKeys(new Executi onContext());

for (int i =0; i < keys.size(); i++) {
System out . println(keys.get(i));
}

If this code were run in the proper environment with the correct database tables setup, then it would output the
following:

O WN PP

Now, let's modify the code slightly to show what would happen if the code were started again after a restart,
having failed after processing key 3 successfully:

Si ngl eCol umJdbcKeyCol | ect or keyCol | ector = new Si ngl eCol umJdbcKeyCol | ect or (get JdbcTenpl ate(),
"SELECT ID from T_FOOS order by ID");

keyCol | ector. set Restart Sql ("SELECT ID from T_FOOS where ID > ? order by 1D");
Execut i onCont ext executi onContext = new Executi onContext();

keyStrat egy. updat eCont ext (new Long(3), executionContext);

Li st keys = keyStrategy.retrieveKeys(executionContext);

for (int i =0; i < keys.size(); i++) {
System out . println(keys.get(i));
}

Running this code snippet would result in the following:

4
5

The key difference between the two examplesisthe following line:

keyStrat egy. updat eCont ext (new Long(3), executionContext);

This tells the key collector to update the provided Execut i onCont ext with the key of three. This will normally
be called by the Dri vi ngQuer yl t enReader , but is called directly for ssimplicities sake. By calling ret ri eveKeys
with the Execut i onCont ext that was updated to contain 3, the argument of 3 will be passed to the restartSql:

keyCol | ector. set Restart Sql ("SELECT ID from T_FOOS where ID > ? order by 1D");

Thiswill cause only keys 4 and 5 to be returned, since they are the only ones with an ID greater than 3.

Spring Batch 1.0 34

ItemReaders and ItemWriters

3.8.2.3. Mapping multiple column keys

The Si ngl eCol umJdbceKeyCol | ect or is extremely useful for generating keys, but only if one column uniquely
identifies your record. What if more than one column is required to be able to uniquely identify your record?
This should be a minority scenario, but it is still possible. In this case, the Mul ti pl eCol umJdbcKeyCol | ect or
should be used. It alows for mapping multiple columns by sacrificing simplicity. The properties needed to use
the multiple column collector are the same as the single column version except one difference: instead of a
regular RowMaper, an Execut i onCont ext RowMapper must be provided. Just like the single column version, it
requires a normal SQL statement and a restart SQL statement. However, because the restart SQL statement will
require more than one argument, there needs to be more complex handling of how keys are mapped to an
execution context. An Execut i onCont ext RowMapper providesthis:

public interface ExecutionContext Rowvapper extends RowlVapper {
public void mapKeys(Ohj ect key, ExecutionContext executionContext);

public PreparedStatenent Setter createSetter(ExecutionContext executionContext);

}

The Executi onCont ext Rowvapper interface extends the standard Rowwmapper interface to allow for multiple
keys to be stored in an Execut i onCont ext , and a Pr epar edSt at enent Set t er be created so that arguments to a
the restart SQL statement can be set for the key returned.

By default a implementation of the ExecutionContext Rowvapper that uses a map will be used. It is
recommended that this implementation not be overridden. However, if a specific type of key needs to be
returned, then a new implementation can be provided.

3.8.2.4. iBatisKeyCollector

Jdbc is not the only option available for key collectors, iBatis can be used as well. The usage of iBatis doesn't
change the basic requirements of a KeyCol | ect or: query, restart query, and Dat aSour ce. However, because
iBatisis used, both queries are simply iBatis query ids, and the data sourceisa sql Mapd i ent .

3.8.3. Database ItemWriters

While both Flat Files and XML have specific ItemWriters, there is no exact equivalent in the database world.
This is because transactions provide all the functionality that is needed. ItemWriters are necessary for files
because they must act as if they're transactional, keeping track of written items and flushing or clearing at the
appropriate times. Databases have no need for this functionality, since the write is already contained in a
transaction. Users can create their own DAQO's that implement the Itemwiter interface or use one from a
custom Itemwiter that's written for generic processing concerns, either way, they should work without any
issues. The one exception to this is buffered output. This is most common when using hibernate as an
ItenWiter, but could have the same issues when using Jdbc batch mode. Buffering database output doesn't
have any inherent flaws, assuming there are no errors in the data. However, any errors while writing out can
cause issues because there is no way to know which individual item caused an exception. An example would be
arecord that causes a Datal ntegrityViolationException, perhaps because of a primary key violation. If items are
buffered before being written out, this error will not be thrown until the buffer is flushed just before a commit.
For example, let's assume that 20 items will be written per chunk, and the 15th item throws a
DatalntegrityViolationException. As far as the Step is concerned, al 20 item will be written out successfully,
since there's no way to know that an error will occur until they are actually written out. Once
ItemWiter#flush() is called, the buffer will be emptied and the exception will be hit. At this point, there's
nothing the st ep can do, the transaction must be rolled back. Normally, this exception will cause the Item to be
skipped (depending upon the skip/retry policies), and then it won't be written out again. However, in this

Spring Batch 1.0 35

ItemReaders and ItemWriters

scenario, there's no way for it to know which item caused the issue, the whole buffer was being written out
when the failure happened. Because this is a common enough use case, especialy when using Hibernate,
Spring Batch provides an implementation to help: HibernateAwareltenwWiter. The
Hi ber nat eAwar el temW i t er solves the problem in a straightforward way: if a chunk fails the first time, on
subsequent runs it will be flushed after after each time. This effectively lowers the commit interval to one for
the length of the chunk. Doing so alows for items to be skipped reliably. The following example illustrates
how to configure the Hi ber nat eAwar el t emW i ter:

<bean id="hi bernateltenWiter"
cl ass="org. spri ngfranmework. bat ch. it em dat abase. H ber nat eAwarel tenmWiter">
<property name="sessi onFactory" ref="sessionFactory" />
<property name="del egate" ref="custonerCreditWiter" />
</ bean>

<bean id="custonerCreditWiter"
cl ass="org. spri ngf ranmewor k. bat ch. sanpl e. dao. Hi ber nat eCr edi t Dao" >
<property name="sessi onFactory" ref="sessionFactory" />
</ bean>

3.9. Reusing Existing Services

Batch systems are often used in conjunction with other application styles. The most common is an online
system, but it may also support integration or even athick client application by moving necessary bulk data that
each application style uses. For this reason, it is common that many users want to reuse existing DAOs or other
services within their batch jobs. The Spring container itself makes this fairly easy by alowing any necessary
class to be injected. However, there may be cases where the existing service needs to act as an | t enReader Or
ItenWiter, either to satisfy the dependency of another Spring Batch class, or because it truly is the main
I tenReader for a step. It's fairly trivial to write an adaptor class for each service that needs wrapping, but
because it's such a common concern, Spring Batch provides implementations: |t enReader Adapter and
I tenmWiter Adapt er . Both classes implement the standard Spring method invoking delegator pattern and are
fairly smple to set up. Below is an example of the reader:

<bean i d="itenReader" class="org.springfranework. batch.item adapter.|tenReader Adapter">
<property name="target Cbject" ref="fooService" />
<property nanme="t ar get Met hod" val ue="gener at eFoo" />

</ bean>

<bean i d="fooService" class="org.springfranmework. batch.item sanpl e. FooService" />

One important point to note is that the contract of the targetMethod must be the same as the contract for r ead.
That is, when exhausted it will return null, otherwise an hj ect . Anything else will prevent the framework
from correctly knowing when processing should end, either causing an infinite loop or incorrect failure,
depending upon the implementation of theltemwiter. Theltemwiter implementation isequally as simple:

<bean id="itenmWiter" class="org.springfranework.batch.item adapter.|ten/iterAdapter">
<property name="target Cbj ect" ref="fooService" />
<property name="tar get Met hod" val ue="processFoo" />

</ bean>

<bean i d="fooService" class="org.springfranmework. batch.item sanpl e. FooServi ce" />

3.10. Item Transforming

TheltenReader and ItemWiter interfaces have been discussed in detail in this chapter, but what if you want
to insert business logic before writing? One option for both reading and writing is to use the composite pattern.

Spring Batch 1.0 36

ItemReaders and ItemWriters

That is, create an ItemWiter that contains another ItemNiter, or an |ItenReader that contains another
I t emReader . For example:

public class ConpositeltemWiter inplenents ItenWViter {
ItenWiter itemWiter;

public ConpositeltenWiter(ltemWiter itenmWiter) {
this.itemWiter = itenWiter;
}

public void wite(Object item) throws Exception {
/1 Add busi ness | ogic here

itemWiter.wite(iten);
}

public void clear() throws C earFail edException {
itemWiter.clear();

}

public void flush() throws FlushFail edException {
itemWiter.flush();

}

The class above contains another 1 temw i ter that it delgates to after having provided some business logic. It
should be noted that the cl ear and f | ush methods must be propogated as well so that the delegate 1t emwi ter
is notified. This pattern could easily be used for an | t enReader as well, perhaps to obtain more reference data
based upon the input that was provided by the main |t enReader. This pattern is very useful if you need to
control the call towr i t e yourself. However, if you only want to 'transform' the item passed in for writing before
it is actual written, there isn't much need to call wite yourself, you just want to modify the item. For this
scenario, Spring Batch providesthe | t enir ansf or ner interface:

public interface Itenilransformer {

oj ect transform(Object item throws Exception;
}

An ItemTransformer is very simple, given one object, transorm it and return another. The object provided may
or may not be of the same type. The point is that business logic may be applied within transform, and is
completely up to the developer to create. An Itenfransformer is used as pat of the
I tenilransformerltemtiter, which acceptsanitenwiter and anitenilransf or mer, passing the item first to
the transformer, before writing it. For example, assuming an I t enReader provides a class of type Foo, and it
needs to be converted to type Bar before being written out. An |t enir ansf or mer can be written that performs
the conversion:

public class Foo {}

public class Bar {
public Bar(Foo foo) {}
}

public class FooTransforner inplements |temnlransforner{

/! Preform sinple transformati on, convert a Foo to a Barr
public oject transforn{Object item) throws Exception {
assert True(item i nstanceof Foo);
Foo foo = (Foo)item
return new Bar (foo0);
}
}

public class BarWiter inplements ItemWNiter{

public void wite(Object item) throws Exception {
assert True(item i nstanceof Bar);

Spring Batch 1.0 37

ItemReaders and ItemWriters

}

//rest of class omitted for clarity

}

In the very simple example above, there is a class Foo, a class Bar, and a class FooTr ansf or ner that adheres to
the I t enilr ansf or rer interface. The transformation is simple, but any type of transformation could be done
here. The Barwiter will be used to write out '‘Bars, throwing an exception if any other type is provided.
Similarly, the FooTransformer will throw an exception if anything but a Foo is provided. An
I teniTr ansformer | temWiter can then be used like a normal ItemWriter. It will be passed a Foo for writing,
which will be passed to the transformer, and aBar returned. The resulting Bar will then be written:

ItemlransfornerltemWiter itemlransfornerlitenmWiter = new ItenfransfornerltemWiter();
itemlransfornerltemWiter.setltenilransforner(new FooTransforner());
itemlransfornerltemiter. setDel egate(new BarWiter());
itemiransfornmerlitenWiter.wite(new Foo());

3.10.1. The Delegate Pattern and Registering with the Step

Note that the Itenfransforneritemniter and the Conpositeltenwiter are examples of a delegation
pattern, which is common in Spring Batch. The delegates themselves might implement callback interfaces like
It emSt reamOr St epLi st ener . If they do, and they are being used in conjunction with Spring Batch Core as part
of astep in aJob, then they amost certainly need to be registered manually with the st ep. Registration is
automatic when using the factory beans (* St epFact or yBean) , but only for the | t enReader and Itenwi ter
injected directly. The delegates are not known to the st ep, so they need to be injected as listeners or streams (or
both if appropriate).

3.10.2. Chaining ItemTransformers

Performing asingle transformation is useful in many scenarios, but what if you want to 'chain’ together multiple
ItemTransformers? This can be accomplished using a Conposi t el t enir ansf or mer . TO update the previous,
single transformation, example, Foo will be Transformed to Bar, which will be transformed to Foobar and
written out:

public class Foo {}

public class Bar {
public Bar(Foo foo) {}

public class Foobar {
publ i ¢ Foobar (Bar bar){}

}

public class FooTransformer inplenments |tenTransformer{

//Preformsinple transformation, convert a Foo to a Barr
public oject transforn{Object item throws Exception {
assert True(item i nstanceof Foo);
Foo foo = (Foo)item
return new Bar (foo0);
}
}

public class BarTransformer inplenments |tenilransformer{

public oject transforn{Object item) throws Exception {
assert True(item i nstanceof Bar);
return new Foobar ((Bar)iten);
}
}

Spring Batch 1.0 38

ItemReaders and ItemWriters

public class FoobarWiter inplenents ItenWiter{

public void wite(Object item) throws Exception {
assert True(iteminstanceof Foobar);

}

//rest of class omitted for clarity

}

A FooTr ansf or mer and Bar Tr ansf or mer can be 'chained’ together to give the resultant Foobar :

Conposi t el t enilr ansf ormer conpositeTransformer = new Conpositeltenilransformer();
Li st itemlransformers = new Arraylist();

i t enTr ansf or ners. add(new FooTr ansforner());

i t emlr ansf orners. add(new Bar Transformer());

conposi t eTransformer. set|tenilransformners(itenilransforners);

The compositeTransformer could be said to accept a Foo and return a Foobar. Clients of the composite
transformer don't need to know that there are actually two separate transformations taking place. By updating
the example from above to use the composite transformer, the correct class can be passed to Foobar Wi ter:

ItemlransfornerlitenWiter itenmfransfornerlitenWiter = new ItenifransfornerltemWiter();
itemiransfornerltenmWiter.setltenilransformer(conpositeTransforner);
itenTransfornerltemWiter. set Del egat e(new FoobarWiter());
itemliransfornerltenWiter.wite(new Foo());

3.11. Validating Input

During the course of this chapter, multiple approaches to parsing input have been discussed. Each major
implementation will throw exception if it is not 'well-formed’. The Fi xedLengt hTokeni zer will throw an
exception if a range of data is missing. Similarly, attempting to access an index in a RowMapper Of
Fi el dSet Mapper that doesn't exist or isin adifferent format than the one expected will cause an exception to be
thrown. All of these types of exceptions will be thrown before read returns. However, they don't address the
issue of whether or not the returned item is valid. For example, if one of the fieldsis an age, it obviously cannot
be negative. It will parse correctly, because it existed and is a number, but it won't cause an exception. Since
there are already a plethora of Validation frameworks, Spring Batch does not attempt to provide yet another,
but rather provides avery simple interface that can be implemented by any number of frameworks:

public interface Validator {

voi d val i date(Object value) throws Validati onExcepti on;

The contract is that the val i dat e method will throw an exception if the object isinvalid, and return normally if
it is valid. Spring Batch provides an out of the box ItenReader that delegates to another |t enReader and
validates the returned item:

<bean cl ass="org. springframework. batch.item validator.ValidatingltenReader">
<property nanme="itenReader">
<bean cl ass="org. springfranmework. bat ch. sanpl e.itemreader. OrderltenReader" />
</ property>
<property name="validator" ref="validator" />
</ bean>

<bean i d="validator"
cl ass="org. spri ngfranmewor k. batch.item validator. SpringValidator">
<property name="val i dator">
<bean i d="order Val i dator"
cl ass="org. spri ngnodul es. val i dati on. val ang. Val angVal i dat or " >

Spring Batch 1.0 39

ItemReaders and ItemWriters

<property nanme="val ang" >

<val ue>
<! [CDATA]
{ orderld : ? >0 AND ? <= 9999999999 : 'Incorrect order ID : 'error.order.id" }
{ totalLines : ? = size(lineltens) : 'Bad count of order lines' : 'error.order.!lines.badcount"}
{ custoner.registered : custoner.busi nessCustoner = FALSE OR ? = TRUE : 'Busi ness custonmer nust be

{ custoner. conpanyNane : customner. busi nessCustoner = FALSE OR ? HAS TEXT : ' Conpany nane for busir
11>
</val ue>
</ property>
</ bean>
</ property>
</ bean>

This simple example shows a simple val angVal i dat or that is used to validate an order object. The intent is not
to show Vaang functionality as much as to show how avalidator could be added.

3.11.1. The Delegate Pattern and Registering with the Step

Note that the val i dat i ngl t enReader is another example of a delegation pattern, and the delegates themselves
might implement callback interfaces like I t enst reamor St epLi st ener . If they do, and they are being used in
conjunction with Spring Batch Core as part of a step in a job, then they aimost certainly need to be registered
manually with the st ep. Registration is automatic when using the factory beans (* St epFact or yBean) , but only
for the I tenReader and Itenw it er injected directly - the delegates are not known to the step, so they need to
be injected as listeners or streams (or both if appropriate).

3.12. Creating Custom ItemReaders and ItemWriters

So far in this chapter the basic contracts that exist for reading and writing in Spring Batch and some common
implementations have been discussed. However, these are al fairly generic, and there are many potential
scenarios that may not be covered by out of the box implementations. This section will show, using a simple
example, how to create a custom |t enReader and It emWiter implementation and implement their contracts
correctly. The 1t enReader will also implement It enstream in order to illustrate how to make a reader or
writer restartable.

3.12.1. Custom ItemReader Example

For the purpose of this example, a simple | t enReader implementation that reads from a provided list will be
created. We'll start out by implementing the most basic contract of | t enReader , r ead:

public class Custonm tenReader inplenents |tenReader{
Li st itens;

public CustomltenReader (List itens) {
this.items = itens;

}

public Object read() throws Exception, Unexpectedl nput Exception
NoWor kFoundExcept i on, ParseException {

if (Yitems.isEnpty()) {
return itens.renove(0);

}
return null
}
public void mark() throws MarkFail edException { };

public void reset() throws ResetFail edException { };

Spring Batch 1.0 40

ItemReaders and ItemWriters

This very simple class takes a list of items, and returns one at a time, removing it from the list. When the list
empty, it returns null, thus satisfying the most basic requirements of an | t enReader , asillustrated below:

List itens = new Arraylist();
itens.add("1");
items. add("2");
items. add("3");

|t enReader itenReader = new CustonltenReader(itens);
assert Equal s("1", itenReader.read());

assert Equal s("2", itenReader.read());

assert Equal s("3", itenReader.read());

assertNul | (i tenReader.read());

3.12.1.1. Making the I t enReader transactional

This most basic I t emReader Will work, but what happens if the transaction needs to be rolled back? This will
usually caused by an error in the ItemWriter, since the ItmReader generally won't do anything that invalidates
the transaction, but without supporting it, there would be erroneous results. ItemReaders are notified about
rollbacks via the nmark and reset methods. In the example above they're empty, but we'll need to add code to
them in order to support the rollback scenario:

public class CustomtenReader inplenents |tenReader{

List itens;
int currentlndex = O;
int |astMarkedl ndex = 0;

public CustomtenReader(List itenms) {
this.itenms = itens;

}

public oject read() throws Exception, Unexpectedl nput Excepti on,
NoWor kFoundExcept i on, Par seException {

if (currentindex < itens.size()) {
return itens.get(currentlndex++);
}

return null;

}

public void mark() throws MarkFail edException {
| ast Mar kedl ndex = current | ndex;

ba

public void reset() throws ResetFail edException {
current | ndex = | ast Mar kedl ndex;

bé

}

The cust onl t enReader has now been modified to keep track of where it is currently, and where it was when
mark() was last called. This allows the new | t enReader to fulfill the basic contract that calling reset returns
the It enReader to the state it wasin when mar k was last called:

/! Assune sane setup as |ast exanple, a list with "1, "2", and "3"
i t enReader . mark();

assert Equal s("1", itenReader.read());

assert Equal s("2", itenReader.read());

i temrReader . reset();

assert Equal s("1", itenReader.read());

In most real world scenarios, there will likely be some kind of underlying resource that will require tracking. In
the case of a file, mark will hold the current location within the file, and reset will move it back. The
JdbcCur sor | t enReader , for example, holds on to the current row number, and on reset moves the cursor back

Spring Batch 1.0 41

ItemReaders and ItemWriters

by calling the Resul t Set absol ut e method, which moves the current cursor to the row number supplied. The
Cust o t enReader Now completely adheresto the entire | t enReader contract. read will return the appropriates
items, returning null when empty, and reset returnsthe I t enReader back to it's state as of the last call to nar k,
allowing for correct support of arollback. (It's assumed a st ep implementation will call mark and r eset).

3.12.1.2. Making the It enReader restartable

The final challenge now isto maketheit enReader restartable. Currently, if the power goes out, and processing
begins again, the | t enReader must start at the beginning. This is actualy valid in many scenarios, but it is
sometimes preferable that a batch job starts off at where it left off. The key discriminant is often whether the
reader is stateful or stateless. A stateless reader does not need to worry about restartablility, but a stateful one
has to try and reconstitute its last known state on restart. For this reason, we recommend that you keep custom
readers stateless as far as possible, so you don't have to worry about restartability.

If you do need to store state, then in Spring Batch, thisis implemented with the | t enst r eaminterface:

public class CustomtenReader inplenents |ItenReader, |tenttrean{

Li st itens;

int currentlndex = O;

int | astMarkedl ndex = 0;

private static String CURRENT_I NDEX = "current.index";

public Custom tenReader (List itens) {
this.items = itens;
}

public Object read() throws Exception, Unexpectedl nput Excepti on,
NoWor kFoundExcept i on, ParseException {

if (currentlndex < itens.size()) {
return itens.get(currentlndex++);

}

return null;

}

public void mark() throws MarkFail edException {
| ast Mar kedl ndex = currentl ndex;

%

public void reset() throws ResetFail edException {
current | ndex = |astMarkedl ndex;

}

public void open(ExecutionContext executi onContext) throws |tenftreanTException {
i f (executi onCont ext . cont ai nsKey(CURRENT_| NDEX)) {
current|ndex = new Long(executionContext.getLong(CURRENT | NDEX)). int Val ue();
}

el se{
current|ndex = 0;
| ast Mar kedl ndex = O;

}
}

public void updat e(Executi onCont ext executionContext) throws |tenStreanException {
execut i onCont ext . put Long(CURRENT_| NDEX, new Long(currentlndex).|ongVal ue());

he

public void cl ose(ExecutionContext executionContext) throws |tenftreanException {}

On each call to I t enst r eamupdat e method, the current index of the | t enReader will be stored in the provided
ExecutionContext with a key of ‘current.index’. When the Itenstream open method is called, the
Execut i onCont ext iSchecked to seeif it contains an entry with that key, and if so the current index is moved to
that location. Thisisafairly trivial example, but it still meets the general contract:

Execut i onCont ext executi onCont ext = new Executi onCont ext ();
((ItenStrean)itenReader). open(executionContext);

Spring Batch 1.0 42

ItemReaders and ItemWriters

assert Equal s("1", itenReader.read());
((ItenStrean)itenReader). updat e(executi onCont ext);

List itens = new Arraylist();

items. add("1");

itens.add("2");

items. add("3");

i temReader = new Customnl t enReader (i tens);

((ItenStrean)itenReader). open(executionContext);
assert Equal s("2", itenReader.read());

Most ItemReaders have much more sophisticated restart logic. The Dri vi ngQueryl t enReader , for example,
only loads up the remaining keys to be processed, rather than loading all of them and then moving to the correct
index.

It is aso worth noting that the key used within the Execut i onCont ext should not be trivial. That is because the
same Execut i onCont ext IS used for al ItemStreams within a st ep. In most cases, ssimply prepending the key
with the class name should be enough to guarantee uniqueness. However, in the rare cases where two of the
same type of 1t enst reamare used in the same step (which can happen if two files are need for output) then a
more unique name will be needed. For this reason, many of the Spring Batch ItemReader and ItemWriters have
a setName() property that allows this key name to be overridden.

3.12.2. Custom ItemWriter Example

Implementing a Custom 1 temW i t er is Similar in many ways to the | t enReader example above, but differsin
enough ways as to warrant its own example. However, adding restartability is essentially the same, so it won't
be covered in this example. As with the | t enReader example, a List will be used in order to keep the example
as simple as possible:

public class CustomtenWiter inplenents ItemWNiter{
Li st output = new Arraylist();
public void wite(Object item) throws Exception {
out put. add(item;
public void clear() throws C earFail edException { }

public void flush() throws FlushFail edException { }

3.12.2.1. Making the I t enReader transactional

The example is extremely simple, but it's worth showing to illustrate an 1 temwi ter that doesn't respond to
rollbacks and commits (i.e. cl ear and f1ush). If your potential writer is such that it doesn't need to care about
rollback or commit, likely because it's writing to a database, then there is little value to the 1temwiter
interface in that scenario other than using it to meet another class's requirement for an implementation of the
ItemWiter interface. Inthat case theltemiit er Adapt er would be a better solution. However, if it does need
to be transactional, then f I ush and cl ear should be implemented to allow for a buffering solution:

public class CustomtemNiter inplements ItemNiter{

Li st out put
Li st buffer

= new Arraylist();

= new Arraylist();

public void wite(Object item throws Exception {
buf fer.add(item;

}

public void clear() throws C earFail edException {

Spring Batch 1.0 43

ItemReaders and ItemWriters

buffer.clear();

}

public void flush() throws Fl ushFail edException {
for(lterator it = buffer.iterator(); it.hasNext();){
out put.add(it.next());
it.renove();
}
}
}

Theitemwiter buffersal output, only writing to the actual output (in this case by added to a list) when the
ItemWiter flush() method is called. The contents of the buffer are thrown away when i temwiter clear () is
called.

3.12.2.2. Making the I temw i ter restartable

To make the ItemWriter restartable we would follow the same process as for the It enReader, adding and
implementing the 1 t enst r eaminterface to synchronize the execution context. In the example we might have to
count the number of items processed and add that as a footer record. If we needed to do that, we could
implement | tenstreamin our Itenmwiter SO that the counter was reconstituted from the execution context if
the stream was re-opened.

In many realistic cases, custom ItemWriters also delegate to another writer that itself is restartable (e.g. when
writing to a file), or else it writes to a transactional resource so doesn't need to be restartable because it is
stateless. When you have a stateful writer you should probably also be sure to implement 1 t ensst r eamas well as
Itenwiter. Remember also that the client of the writer needs to be aware of the I t enst r eam S0 you may need
to register it with afactory bean (e.g. one of the St epFact or yBean implementationsin Spring Batch Core).

Spring Batch 1.0 44

Chapter 4. Configuring and Executing A Job

4.1. Introduction

In Chapter 2, the overall architecture design was discussed, using the following diagram as a guide:

Batch Application Style — Interactions and Services

Run Tier

Mw

Job Tier Application Tier Data Tier

ItemReader

JobRunner

JobLauncher

JobLocator

Itemiritar

JobRepository

Kay

Custom Application Artifacts
Application Architecture Services
Applications, App Servers, ViMs

When viewed from left to right, the diagram describes a basic flow for the execution of a batch job:

1. A Scheduler kicks off ajob script (usually some form of shell script)

2. The script sets up the classpath appropriately, and starts the Java process. In most cases, using
CommandLi neJobRunner asthe entry point

3. The JobRunner finds the Job using the JobLocat or , pulls together the JobPar anet er s and launches the Job
4, TheJobLauncher retrieves aJobExecut i on from the JobReposi t ory, and executes the Job
5. The Job executes each St ep in sequence.

6. The st ep calls read on the | t enReader , handing the resulting item to the 1 t emw i t er until null is returned,
periodically committing and storing statusin the JobReposi tory.

7. When execution is complete, the st ep returns control back to the Job, and if no more steps exit, control is
returned back to the original caller, in this case, the scheduler.

Thisflow is perhaps a bit overly simplified, but describes the complete flow in the most basic terms. From here,
each tier will be described in detail, using actual implementations and examples.

4.2. Run Tier

As its name suggests, this tier is entirely concerned with actualy running the job. Regardless of whether the
originator is a Scheduler or an HTTP request, a Job must be obtained, parameters must be parsed, and
eventually aJobLauncher called:

Spring Batch 1.0 45

Configuring and Executing A Job

Run Tier

=" JobRunner

JoblLocator

Fay

Custom Application Artifacts
Application Architaciure Services
Applications, App Servers, ViMs

4.2.1. Running Jobs from the Command Line

For users that want to run their jobs from an enterprise scheduler, the command line is the primary interface.
This is because most schedulers (with the exception of Quartz unless using the Nat i veJob) work directly with
operating system processes, primarily kicked off with shell scripts. There are many ways to launch a Java
process besides a shell script, such as Perl, Ruby, or even 'build tools such as ant or maven. However, because
most people are familiar with shell scripts, this example will focus on them.

4.2.1.1. The CommandLineJobRunner

Because the script launching the job must kick off a Java Virtual Machine, there needsto be a class with amain
method to act as the primary entry point. Spring Batch provides an implementation that serves just this purpose:
ConmandLi neJobRunner . It's important to note that this is just one way to bootstrap your application, but there
are many ways to launch a Java process, and this class should in no way be viewed as definitive. It performs
four tasks:

L oads the appropriate Application Context

e Parses command line arguments into JobParameters

L ocates the appropriate job based on arguments

Uses the JobLauncher provided in the application context to launch the job.

All of these tasks are accomplished based completely upon the arguments passed in. The following are required
arguments:

Spring Batch 1.0 46

Configuring and Executing A Job

Table 4.1. CommandLineJobRunner arguments

jobPath The location of the XML file that will be used to
create an ApplicationContext. This file should
contain everything needed to run the complete Job

jobName The name of the job to be run.

These arguments must be passed in with the path first and the name second. All arguments after these are
considered to be JobParameters and must be in the format of 'name=value':

bash$ j ava CommandLi neJobRunner endO DayJob. xm endOf Day schedul e. dat e(dat e) =2008/ 01/ 01

In most cases you would want to use a manifest to declare your main classin ajar, but for simplicity, the class
was used directly. This example is using the same 'EndOfDay' example from Chapter 2. The first argument is
‘endOfDayJob.xml’, which is the Spring Appl i cationContext containing the Job. The second argument,
'endOfDay"' represents the job name. The final argument, 'schedule.date=01-01-2008" will be converted into
JobPar anet er s. An example of the XML configuration is below:

<bean i d="endO Day"
cl ass="org. spri ngf ramewor k. bat ch. core. j ob. Si npl eJob" >
<property nanme="steps">
<bean i d="stepl" parent="sinpleStep" />

<l-- Step details renmoved for clarity -->
</ property>
</ bean>
<!-- Launcher details renoved for clarity -->

<bean i d="j obLauncher"
cl ass="org. spri ngf ramewor k. bat ch. core. | aunch. support. Si npl eJobLauncher" />

This example is overly simplistic, since there are many more requirements to a run a batch job in Spring Batch
in general, but it serves to show the two main requirements of the CommandLi neJobRunner: Job and
JobLauncher

4.2.1.2. ExitCodes

When launching a batch job from the command-line, it is often from an enterprise scheduler. Most schedulers
are fairly dumb, and work only at the process level. Meaning, they only know about some operating system
process such as a shell script that they're invoking. In this scenario, the only way to communicate back to the
scheduler about the success or failure of ajob is through return codes. A number is returned to a scheduler that
is told how to interpret the result. In the simple case: 0 is success and 1 is failure. However, there may be
scenarios such as: If job A returns 4 kick off job B, if it returns 5 kick off job C. This type of behavior is
configured at the scheduler level, but it is important that a processing framework such as Spring Batch provide
away to return a numeric representation of of the 'Exit Code' for a particular batch job. In Spring Batch thisis
encapsulated within an Exit Stat us, which is covered in more detail in Chapter 5. For the purposes of
discussing exit codes, the only important thing to know isthat an Exi t St at us has an exit code property that is
set by the framework (or the developer) and is returned as part of the JobExecution returned from the
JobLauncher. The CommandLi neJobRunner converts this string value to a number using the Exi t CodeMapper
interface:

public interface ExitCodeMapper {

public int intValue(String exitCode);

Spring Batch 1.0 a7

Configuring and Executing A Job

The essential contract of an Exi t CodeMapper is that, given a string exit code, a number representation will be
returned. The default implementation used by the job runner is the SimplelvmExitCodeM apper that returns O
for completion, 1 for generic errors, and 2 for any job runner errors such as not being able to find a Job in the
provided context. If anything more complex than the 3 values above is heeded, then a custom implementation
of the Exi t CodeMapper interface must be supplied. Because the CommandLi neJobRunner isthe class that creates
an Appl i cati onCont ext , and thus cannot be 'wired together', any values that need to be overwritten must be
autowired. This means that if an implementation of Exi t CodeMapper isfound within the BeanFactory, it will be
injected into the runner after the context is created. All that needs to be done to provide your own
Exi t CodeMapper iS to declare the implementation as a root level bean, and ensure it's part of the
Appl i cati onCont ext that isloaded by the runner.

4.3. Job Tier

The Job Tier is responsible for the overall execution of a batch job. It sequentially executes batch steps,
ensuring that al steps are in the correct state and all appropriate policies are enforced:

Jab Tier

JoblLauncher

JobRepository

The job tier is entiredly concerned with maintaining the three job stereotypes: Job, Jobl nstance, and
JobExecut i on. The JobLauncher interacts with the JobReposi t ory in order to create a JobExecut i on, and the
Job storesthe JobExecut i on using the repository.

4.3.1. SimpleJobLauncher

The most basic implementation of the JobLauncher interface is the SimpleJobLauncher. It's only required
dependency isaJobReposi t ory, in order to obtain an execution:

<bean i d="j obLauncher"
cl ass="org. spri ngf ramewor k. bat ch. executi on. | aunch. Si npl eJobLauncher" >
<property nanme="j obRepository" ref="jobRepository" />
</ bean>

Spring Batch 1.0 48

Configuring and Executing A Job

Once a JobExecution is obtained, it is passed to the execute method of Job, ultimately returning the
JobExecut i on to the caller:

Job

Business

Y

Client JobLauncher
_ start(i |
| execute() |
) ExitStatus
JobExecution«]__| 3

————— With ExitStatus. FINISHED or FAILED

The sequence is straightforward, and works well when launched from a scheduler, but causes issues when
trying to launch from an HT TP request. In this scenario, the launching needs to be done asynchronously, so that
the si npl eJobLauncher returns immediately to it's caller. This is because it is not good practice to keep an
HTTP request open for the amount of time needed by long running processes such as batch. An example
sequence is below:

Client JobLauncher
start()
JobExecution
Starts iwith
ExitStatus UNKNOWN execute() .
ExitStatus

Business

A 2

The Si npl eJobLauncher can easily be configured to allow for this scenario by configuring a TaskExecut or :

<bean i d="j obLauncher"

cl ass="org. spri ngf ramewor k. bat ch. executi on. | aunch. Si npl eJobLauncher" >
<property name="j obRepository"

<property nanme="t askExecut or">

<bean cl ass="org. spri ngfranmewor k. core. t ask. Si npl eAsyncTaskExecutor" />

</ property>

</ bean>

ref ="j obRepository" />

Spring Batch 1.0

49

Configuring and Executing A Job

Any implementation of the spring TaskExecut or interface can be used to control how jobs are asynchronously
executed.

4.3.1.1. Stopping a Job

One of the most common reasons for wanting to launching aj ob asynchronoudly isto be able to gracefully stop
it. This can be done through the JobExecut i on returned by the JobLauncher :

JobExecution jobExecution = | auncher.run(getJob(), jobParaneters);

//give job adequate time to start
Thr ead. sl eep(1000) ;

assert Equal s(Bat chSt at us. STARTED, j obExecution. getStatus());
assert True(j obExecution.i sRunning());

j obExecution. stop();

//give job time to stop
Thr ead. sl eep(1000) ;

assert Equal s(Bat chSt at us. STOPPED, j obExecution. get Status());
assert Fal se(j obExecution.isRunning());

The shutdown is not immediate, since there is no way to force immediate shutdown, especialy if the execution
is currently in developer code that the framework has no control over, such as a business service. What it does
mean, is that as soon as control is returned back to the framework, it will set the status of the current
St epExecut i on t0 Bat chSt at us. STOPPED, save it, then do the same for the JobExecut i on before finishing.

4.3.2. SimpleJobRepository

The SimpleJobRepository is the only provided implementation of the JobReposi t ory interface. It completely
manages the various batch domain objects and ensures they are created and persisted correctly. The
Si mpl eJobReposi tory uses three different DAO interfaces for the three major domain types it stores:
Jobl nst anceDao, JobExecut i onDao, and St epExecut i onDao. The repository delegates to these DAOs to both
persist the various domain objects and query for them during initialization. The following configuration shows
a SimpleJobRepository configured with JDBC DAOs:

<bean i d="j obRepository" class="org.springfranmework. batch. core.repository. support.Si npl eJobRepository">
<constructor-arg ref="jobl nstanceDao" />
<constructor-arg ref="jobExecuti onDao" />
<constructor-arg ref="stepExecuti onbDao" />

</ bean>

<bean i d="j obl nst anceDao" cl ass="org. spri ngframewor k. bat ch. core. repository. support.dao. JdbcJobl nst anceDao" >
<property name="j dbcTenpl ate" ref="jdbcTenpl ate" />
<property name="j obl ncrenenter" ref="joblncrementer" />

</ bean>

<bean i d="j obExecuti onDao" cl ass="org. spri ngframework. bat ch. core. repository. support.dao. JdbcJobExecuti onDao" >
<property nanme="j dbcTenpl ate" ref="jdbcTenpl ate" />
<property name="j obExecutionlncrementer" ref="jobExecutionlncrementer" />

</ bean>

<bean i d="st epExecuti onDao" cl ass="org. springfranework. batch. core. repository.support.dao. JdbcSt epExecuti onDao"
<property name="j dbcTenpl ate" ref="jdbcTenpl ate" />
<property name="stepExecutionlncrenmenter" ref="stepExecutionlncrementer" />

</ bean>

<bean i d="j dbcTenpl ate" cl ass="org. spri ngframework. j dbc. core. JdbcTenpl ate" >
<property name="dat aSource" ref="dataSource" />
</ bean>

Spring Batch 1.0 50

Configuring and Executing A Job

The configuration above isn't quite complete, each DAO implementation makes a reference to a Spring
Dat aFi el dMaxVal uel ncr enent er . Jobl nst ance, JobExecut i on, and St epExecut i on each have unique IDs, and
the incrementers are used to create them.

4.3.2.1. JobRepositoryFactoryBean

Including the incrementers, which must be database specific, the configuration above is verbose. In order to
make this more manageable, the framework provides a FactoryBean for convenience:
JobReposi t or yFact or yBean.

<bean i d="j obRepository"
cl ass="org. spri ngf ramewor k. bat ch. executi on. repository. JobReposi t oryFact or yBean"
<property name="dat abaseType" val ue="hsqgl" />
<property name="dat aSource" val ue="dat aSource" />
</ bean>

The databaseType property indicates the type of incrementer that must be used. Options include: "db2",

non non non

"derby", "hsgl", "mysql", "oracle", and "postgres”.

4.3.2.2. In-Memory Repository

There are scenarios in which you may not want to persist your domain objects to the database. One reason may
be speed, storing domain objects at each commit point takes extra time. Another reason may be that you just
don't need to persist status for a particular job. Spring batch provides a solution:

<bean i d="j obRepository" class="org.springframework. batch. core.repository. support.Si npl eJobRepository">
<constructor-arg ref="mapJobl nst anceDao" />
<constructor-arg ref="nmapJobExecuti onDao" />
<constructor-arg ref="nmapJt epExecuti onDao" />

</ bean>

<bean i d="nmapJobl nst anceDao"
cl ass="org. spri ngfranmewor k. bat ch. executi on. reposi tory. dao. MapJobl nst anceDao" />

<bean i d="mapJobExecuti onDao"
cl ass="org. spri ngf ramewor k. bat ch. executi on. reposi tory. dao. MapJobExecut i onDao" />

<bean i d="napSt epExecuti onDao"
cl ass="org. spri ngf ramewor k. bat ch. executi on. reposi t ory. dao. MapSt epExecut i onDao" />

The Map* DAO implementations store the batch artifacts in a transactional map. So, the repository and DAOs
may still be used normally, and are transactionally sound, but their contents will be lost when the class is
destroyed.

4.3.2.2.1. Transaction Configuration For the JobRepository

If the IDBC daos are used with the JobRepository it is also essential to configure the transactional behaviour of
the repository. This is to ensure that the batch meta data, including state that is necessary for restarts after a
failure, is persisted correctly. The behaviour of the framework is not well defined if the repository methods are
not transactional .

The Spring Batch samples have a simple-job-launcher-context.xml configuration file that contains the
necessary details. Hereisthe relevant section:

<aop: confi g>
<aop: advi sor
poi nt cut ="execution(* org.springfranmework. batch. core..*Repository+.*(..))"
<advi ce-ref ="t xAdvi ce" />
</ aop: confi g>

Spring Batch 1.0 51

Configuring and Executing A Job

<t x:advi ce id="txAdvi ce" transaction-nmanager="transacti onManager" >
<tx:attributes>
<t x: net hod nanme="create*" propagati on="REQUI RES_NEW i sol ati on="SERI ALI ZABLE" />
<t x: met hod name="*" />
</tx:attributes>
</t x: advi ce>

This fragment can be used as is, with almost no changes. The isolation level in the cr eat e* method attiributes
is specified to ensure that when jobs are launched there if two processes are trying to launch the same job at the
same time, only one will succeed. Thisis quite aggressive, and READ_COMMITTED would work just as well;
READ_UNCOMMITTED would be fine if two processes are not likely to collide in this way. However, since a
call to the creat e method is quite short, it is unlikely that the SERIALIZED will cause problems, as long as
the database platform supportsit.

Remember also to include the appropiate namespace declarations and to make sure spring-tx and spring-aop (or
the whole of spring) is on the classpath.

4.3.2.2.2. Recommendations for Indexing Meta Data Tables

Spring Batch provides DDL samples for the meta-data tables in the Core jar file for severa common database
platforms. Index declarations are not included in that DDL because there are too many variations in how users
may want to index dependeing on their precise platform, local conventions and also the business regquirements
of how the jobs will be operated. The table below provides some indication as to which columns are going to be
used in a WHERE clause by the Dao ipmlementations provided by Spring Batch, and how frequently they
might be used, so that individual projects can make up their own minds about indexing.

Table4.2. Where clausesin SQL statements (exluding primary keys) and their approximate frequency of
use.

Default Table Name Where Clause Fregquency

BATCH_JOB_INSTANCE JOB_NAME = ? and JOB_KEY = Every timeajob islaunched
?

BATCH_JOB_EXECUTION JOB_INSTANCE ID =7 Every time ajob isrestarted

BATCH_STEP_EXECUTION_CONSEXT EXECUTION_ID = ? and Oncommitinterval, ak.a chunk
KEY_NAME =?

BATCH_STEP_EXECUTION VERSION =? On commit interval, ak.a chunk
(and at start and end of step)

BATCH_STEP EXECUTION STEP_NAME = ? and Before each step execution
JOB _EXECUTION ID =7

4.3.3. SimpleJob

The only current implementation of the Job interface is Si npl eJob. Since a Job is just a simple loop through a
list of Steps, this implementation should be sufficient for the majority of needs. It has only three required
dependencies: aname, JobReposi t ory, and alist of Steps.

<bean i d="f oot bal | Job"
cl ass="org. spri ngf ramewor k. bat ch. core. j ob. Si npl eJob" >
<property nanme="steps">

Spring Batch 1.0 52

Configuring and Executing A Job

<list>
<l-- Step Bean details ommtted for clarity -->
<bean i d="pl ayerl| oad" parent="sinpl eStep" />
<bean i d="ganelLoad" parent="sinpl eStep" />
<bean i d="pl ayer Sunmari zati on" parent="sinpl eStep" />
</list>
</ property>
<property name="j obRepository" ref="jobRepository" />
</ bean>

Each st ep will be executed in sequence until all have completed successfully. Any Step that fails will cause the
entire job to fail.

4.3.3.1. Restartability

One key concern when execution a batch job, is what happens when a failed job is restarted? A Job is
considered to have been 'restarted' if the same Joblnstance has more than one JobExecution. Ideally, all jobs
should be able to start up where they left off, but there are scenarios where thisis not possible. It isentirely up
to the developer to ensure that a new instance is always created in this scenario. However, Spring Batch
does provide some help. If a Job should never be restarted, but should always be run as part of a new
Joblnstance, then the restartable property may be set to 'false’.

<bean i d="f oot bal | Job"
cl ass="org. spri ngf ramewor k. bat ch. core. j ob. Si npl eJob" >
<property name="steps">
<list>
<l-- Step Bean details onmtted for clarity -->
<bean id="pl ayer| oad" parent="sinpl eStep" />
<bean i d="ganelLoad" parent="sinpl eStep" />
<bean i d="pl ayer Summari zati on" parent="sinpl eStep" />
</list>
</ property>
<property nanme="j obRepository" ref="jobRepository" />
<property name="restartabl e" val ue="fal se" />
</ bean>

To phrase it another way, setting restartable to false means "this Job does not support being started again”.
Restarting a Job that is not restartable will cause aJobRest ar t Except i on to be thrown:

Job job = new Sinpl eJob();
j ob. set Restartabl e(fal se);

JobPar anet ers j obParaneters new JobPar anet ers()

JobExecution firstExecution = jobRepository. createJobExecution(job, jobParaneters);
j obReposi tory. saveOr Updat e(first Execution);

try {
j obReposi tory. creat eJobExecuti on(job, jobParaneters);

fail();

catch (JobRestart Exception e) {
/'l expected

}

This snippet of JUnit code shows how attempting to create a JobExecut i on the first time for a non restartable
j ob will cause no issues. However, the second attempt will throw aJobRest ar t Except i on.

4.3.3.2. Intercepting Job execution

During the course of the execution of a Job, it may be useful to be notified of various eventsin its lifecycle so
that custom code may be executed. The Si npl eJob alows for this by calling a JoblLi st ener at the appropriate
time:

Spring Batch 1.0 53

Configuring and Executing A Job

public interface JobListener {
voi d beforeJob(JobExecuti on jobExecution);
voi d afterJob(JobExecution jobExecution);
voi d onError(JobExecution jobExecution, Throwable e);

voi d onlnterrupt (JobExecution jobExecution);

Listeners can be added to a Si npl eJob viathe setJobListeners property:

<bean id="f oot bal | Job"
cl ass="org. spri ngf ramewor k. bat ch. core. j ob. Si npl eJob" >
<property name="steps">
<list>
<l-- Step Bean details ommtted for clarity -->
<bean i d="pl ayerl| oad" parent="sinpl eStep" />
<bean i d="ganelLoad" parent="sinpl eStep" />
<bean i d="pl ayer Summari zati on" parent="sinpl eStep" />
</list>
</ property>
<property nanme="j obRepository" ref="jobRepository" />
<property nanme="j obLi st eners">
<bean cl ass="org. spri ngfranmewor k. bat ch. core. |istener.JobLi stener Support” />
</ property>
</ bean>

4.3.4. JobFactory and Stateful Components in Steps

Unlike many traditional Spring applications, many of the components of a batch application are stateful, the file
readers and writers are obvious examples. The recommended way to deal with this is to create a fresh
ApplicationContext for each job execution. If the Job is launched from the command line with
CommandLi neJobRunner this is trivial. For more complex launching scenarios, where jobs are executed in
paralel or seridly from the same process, some extra steps have to be taken to ensure that the
Appl i cationCont ext is refreshed. This is preferable to using prototype scope for the stateful beans because
then they would not receive lifecycle callbacks from the container at the end of use. (eg. through
destroy-method in XML)

The strategy provided by Spring Batch to deal with this scenario isthe JobFact ory, and the samples provide an
example of a specialized implementation that can load an Appl i cat i onCont ext and close it properly when the
job is finished. A relevant examples is d assPat hXm Appl i cati onCont ext JobFactory and its use in the
adhoc-j ob- 1 auncher - cont ext . xm and the quart z-j ob- 1 auncher - cont ext . xmi , which can be found in the
Samples project.

4.4. Application Tier

The Application tier is entirely concerned with the actual processing of inpuit:

Spring Batch 1.0 54

Configuring and Executing A Job

Application Tier

ltemReader

Itarm\riter

JobRepository

4.4.1. ltemOrientedStep

The figure above shows a simple 'item-oriented' execution flow. One item is read in from an I t enReader, and
then handed to an 1 t emw i t er, until their are no more items left. When processing first begins, atransaction is
started and periodically committed until the step is complete. Given these basic requirements, the
I temri ent edSt ep requires the following dependencies, at a minimum:

* |tenReader - TheltenReader that providesitemsfor processing.
e ItemWiter - Theltemniter that processestheitems provided by theit enReader .

e Platforniransacti onManager - Spring transaction manager that will be used to begin and commit
transactions during processing.

e JobRepository - The JobRepository that will be used to periodicaly store the St epExecution and
Execut i onCont ext during processing (just before committing).

4.4.1.1. SimpleStepFactoryBean

Degspite the relatively short list of required dependenciesfor an | t enri ent edSt ep, it is an extremely complex
class that can potentially contain many collaborators. In order to ease configuration, a Si npl eSt epFact or yBean
can be used:

<bean i d="si npl eSt ep"
cl ass="org. spri ngfranmewor k. bat ch. core. step.item Si npl eSt epFact or yBean" >
<property nanme="transacti onManager" ref="transacti onManager" />
<property nanme="j obRepository" ref="jobRepository" />
<property name="itenReader" ref="itenReader" />
<property name="itenWiter" ref="itenWiter" />
</ bean>

The configuration above represents the only required dependencies of the factory bean. Attempting to
instantiate a Si npl eSt epFact or yBean Without at least those four dependencies will result in an exception being
thrown during construction by the Spring container.

Spring Batch 1.0 55

Configuring and Executing A Job

4.4.1.2. Configuring a Commitinterval

As mentioned above, the I t enri ent edSt ep reads in and writes out items, periodically commiting using the
supplied Pl at f or niTr ansact i onManager . By default, it will commit after each item has been written. This is
less than ideal in many situations, since beginning and commiting a transaction is expensive. Ideally, you
would like to process as many items as possible in each transaction, which is completely dependant upon the
type of data being processed and the resources that are being interacted with. For this reason, the number of
itemsthat are processed within a commit can be set as the commit interval:

<bean i d="si npl eSt ep"
cl ass="org. spri ngf ramewor k. bat ch. core. step. i tem Si npl eSt epFact or yBean" >
<property name="transacti onManager" ref="transacti onManager" />
<property nanme="j obRepository" ref="jobRepository" />
<property nanme="itenReader" ref="itenReader" />
<property name="itenmWiter" ref="itenWiter" />
<property name="comm tlnterval " val ue="10" />
</ bean>

In this example, 10 items will be processed within each transaction. At the beginning of processing a
transaction is begun, and each time read is called on the | t enReader , a counter is incremented. When it reaches
10, the transaction will be committed.

4.4.1.3. Configuring a Step for Restart

Earlier in this chapter, restarting a Job was discussed. Restart has numerous impacts on steps, and as such may
reguire some specific configuration.

4.4.1.3.1. Setting a StartLimit

There are many scenarios where you may want to control the number of times a step may be started. An
example is a st ep that may be run only once, usually because it invalidates some resource that must be fixed
manually before it can be run again. This is configurable on the step level, since different steps have different
requirements. One Step that may only be executed once can exist as part of the same Job as St ep that can be
run infinitely. Below is an example start limit configuration:

<bean i d="si npl eSt ep"
cl ass="org. spri ngfranmewor k. bat ch. core. step.item Si npl eSt epFact or yBean" >
<property nanme="transacti onManager" ref="transacti onManager" />
<property nanme="j obRepository" ref="jobRepository" />
<property name="itenReader" ref="itenReader" />
<property name="itenWiter" ref="itenWiter" />
<property name="comm tlnterval" val ue="10" />
<property nanme="startLimt" value="1" />
</ bean>

The simple step above can be run only once. Attempting to run it again will cause an exception to be thrown. It
should be noted that the default value for startLimit isi1 nt eger . MAX_VALUE.

4.4.1.3.2. Restarting a completed step

In the case of arestartable job, there may be one or more steps that should always be run, regardless of whether
or not they were successful the first time. An example might be a validation step, or a step that cleans up
resources before processing. During normal processing of a restarted job, any step with a status of
'COMPLETED', meaning it has aready been completed successfully, will be skipped. Setting
allowStartlfCompl ete to true overrides this so that the step will always run:

<bean i d="si npl eSt ep"
cl ass="org. spri ngfranmewor k. bat ch. core. step.item Si npl eSt epFact or yBean" >

Spring Batch 1.0 56

Configuring and Executing A Job

<property nanme="transacti onManager" ref="transacti onManager" />
<property nanme="j obRepository" ref="jobRepository" />
<property name="itenReader" ref="itenReader" />
<property name="itenmWiter" ref="itenWiter" />
<property name="conmitlnterval" val ue="10" />
<property name="startLimt" value="1" />
<property name="al |l owStart|f Conpl ete" val ue="true" />
</ bean>

4.4.1.3.3. Step restart configuration example

<bean id="f oot bal | Job"
cl ass="org. spri ngframewor k. bat ch. core. j ob. Si npl eJob" >
<property nanme="steps">
<list>
<l-- Step Bean details ommtted for clarity -->
<bean i d="pl ayerl oad" parent="sinpl eStep" />
<bean i d="ganeLoad" parent="sinpleStep" >
<property name="al |l owStart|f Conpl ete" val ue="true" />
</ bean>
<bean i d="pl ayer Summari zati on" parent="si npl eStep" >
<property name="startLimt" val ue="2" />
</ bean>
</list>
</ property>
<property nanme="j obRepository" ref="jobRepository" />
<property name="restartabl e" value="true" />
</ bean>

The above example configuration is for a job that loads in information about football games and summarizes
them. It contains three steps: playerLoad, gameload, and playerSummarization. The playerLoad st ep loads
player information from a flat file, while the ganeLoad Step does the same for games. The fina step,
playerSummarization, then summarizes the statistics for each player based upon the provided games. It is
assumed that the file loaded by 'playerL oad’ must be loaded only once, but that ‘gamel oad' will load any games
found within a particular directory, deleting them after they have been successfully loaded into the database. As
a result, the playerLoad st ep contains no additional configuration. It can be started amost limitlessly, and if
complete will be skipped. The 'gameLoad' st ep, however, needs to be run everytime, in case extra files have
been dropped since it last executed, so it has 'allowStartlfComplete' set to 'true' in order to always be started. (It
is assumed that the database tables games are |oaded into has a process indicator on it, to ensure new games can
be properly found by the summarization step) The summarization st ep, which is the most important in the Job,
is configured to have a start limit of 3. Thisis useful in caseit continually fails, a new exit code will be returned
to the operators that control job execution, and it won't be allowed to start again until manual intervention has
taken place.

Note
Thisjob is purely for example purposes and is not the same as the footballJob found in the samples
project.

Run 1:

1. playerLoad is executed and completes successfully, adding 400 playersto the 'PLAY ERS table.

2. gameload is executed and processes 11 files worth of game data, loading their contents into the 'GAMES
table.

3. playerSummarization begins processing and fails after 5 minutes.

Run 2:

Spring Batch 1.0 57

Configuring and Executing A Job

1. playerLoad is not run, since it has aready completed succesfully, and allowStartifComplete is false (the
default).

2. gamelLoad is executed again and processes another 2 files, loading their contents into the 'GAMES table as
well (with a process indicator indicating they have yet to be processed)

3. playerSummarization begins processing of all remaining game data (filtering using the process indicator)
and fails again after 30 minutes.

Run 3:

1. playerLoad is not run, since it has already completed succesfully, and alowStartifComplete is false (the
default).

2. gameload is executed again and processes another 2 files, loading their contents into the 'GAMES table as
well (with a process indicator indicating they have yet to be processed)

3. playerSummarization is not start, and the job is immeadiately killed, since this is the third execution of
playerSummarization, and it's limit isonly 2. The limit must either be raised, or the Job must be executed as
anew Jobl nst ance.

4.4.1.4. Configuring Skip Logic

There are many scenarios where errors encountered while processing should not result in step failure, but
should be skipped instead. This is usually a decision that must be made by someone who understands the data
itself and what meaning it has. Financial data, for example, may not be skippable because it results in money
being transferred, which needs to be completely accurate. Loading in alist of vendors, on the other hand, might
allow for skips, since a vendor not being loaded because it was formatted incorrectly, or missing necessary
information, won't cause issues. Usually these bad records are logged as well, which will be covered later when
discussing listeners. Configuring skip handling requires using a new factory bean: ski pLi i t St epFact or yBean

<bean i d="ski pSanpl e" parent ="si npl eSt ep"
cl ass="org. spri ngfranmewor k. bat ch. core. step.item Ski pLi m t St epFact or yBean" >
<property name="skipLinmt" value="10" />
<property name="itenReader" ref="flatFileltenReader" />
<property name="itemWNiter" ref="itenWiter" />
<property name="ski ppabl eExcepti ond asses"
val ue="org. spri ngfranework. batch.itemfile. Fl at Fi | ePar seExcepti on">
</ property>
</ bean>

In this example, aFl at Fi | el t enReader is used, and if at any point a FlatFileParseException is thrown, it will
be skipped and counted against the total skip limit of 10. It should be noted that any failures encountered while
reading will not count against the commit interval. In other words, the commit interval is only incremented on
writes (regardless of success or failure).

4.4.1.5. Configuring Retry Logic

In most cases you want an Exception to cause either a skip or step failure. However, not all exceptions are
deterministic. If a FlatFileParseException is encountered while reading, it will always be thrown for that record.
Resseting the I1tenReader will not help. However, for other exceptions, such as a
Deadl ockLoser Dat aAccessExcept i on, which indicates that the current process has attempted to update a
record that another process holds a lock on, waiting and trying again might result in success. In this case, a
St at ef ul Ret rySt epFact or yBean should be used:

<bean i d="stepl" parent="sinpl eStep"

Spring Batch 1.0 58

Configuring and Executing A Job

cl ass="org. spri ngframewor k. bat ch. core. step.item St at ef ul Ret rySt epFact or yBean" >
<property name="itenReader" ref="itenGenerator" />
<property name="itemWNiter" ref="itenWiter" />
<property name="retryLimt" value="3" />
<property name="retryabl eExcepti onCl asses" val ue="org. spri ngframewor k. dao. Deadl ockLoser Dat aAccessExcepti on"
</ bean>

The StatefulRetryStepFactoryBean requires a limit for the number of times an individual item can be retried,
and alist of Exceptions that are 'retryable’.

4.4.1.6. Registering ItemStreams with the Step

The step has to take care of | t enst reamcallbacks at the necessary points in its lifecycle. Thisis vita if a step
fails, and might need to be restarted, because the I t enst r eaminterface is where the step gets the information it
needs about persistent state between executions. The factory beans that Spring Batch provides for convenient
configuration of step instances have features that allow streams to be registered with the step when it is
configured.

If the1tenReader Or Itemwiter themselvesimplement the ItemStream interface, then these will be registered
automatically. Any other streams need to be registered separately. This is often the case where there are indirect
dependencies, like delegates being injected into the reader and writer. To register these they can be injected into
the factory beans through the streams property, asillustrated below:

<bean i d="stepl" parent="sinpl eStep"
cl ass="org. springfranmewor k. bat ch. core. step.item St at ef ul Ret rySt epFact or yBean" >
<property name="streans" ref="fileltenReader" />
<property nanme="itenReader">
<bean
cl ass="org. springfranmewor k. batch.item validator. ValidatingltenReader">
<property name="itenReader" ref="itenReader" />
<property name="validator" ref="fixedValidator" />
</ bean>
</ property>

</ bean>

In the example above the main item reader is being set up to delegate to a bean called "fileltemReader", which
itself is being registered as a stream directly. The step will now be restartable and the state of the reader will be
correctly persisted in case of afailure.

4.4.1.7. Intercepting Step Execution

Just as with the Job, there are many events during the execution of a st ep that a user may need notification of.
For example, if writing out to a flat file that requires a footer, the It em i t er needs to be notified when the
st ep has been completed, so that it can write the footer. This can be accomplished with one of many st ep
scoped listeners.

4.4.1.7.1. StepExecutionListener

St epExecut i onLi st ener represents the most generic listener for step execution. It alows for notification
before a st ep is started, after it has completed, and if any errors are encountered during processing:
public interface StepExecutionListener extends StepListener {
voi d beforeSt ep(StepExecuti on stepExecution);
Exi t Status onErrorlnSt ep(StepExecuti on stepExecution, Throwable e);

Exi t Status afterStep(StepExecution stepExecution);

Spring Batch 1.0 59

Configuring and Executing A Job

Exi t St at us iSthe return type of onError | nSt ep and af t er St ep in order to alow listeners the chance to modify
the exit code that is returned upon completion of a st ep. A St epExecut i onLi st ener can be applied to any step
factory bean viathe listeners property:

<bean i d="si npl eSt ep"”
cl ass="org. spri ngframewor k. bat ch. core. step.item Si npl eSt epFact or yBean" >
<property name="transacti onManager" ref="transacti onManager" />
<property nanme="j obRepository" ref="jobRepository" />
<property name="itenReader" ref="itenReader" />
<property name="itemWNiter" ref="itenWiter" />
<property name="comm tlnterval" val ue="10" />
<property name="listeners" ref="stepListener" />
</ bean>

Because all listeners extend the st epLi st ener interface, they all may be applied to factory beans in the same
way.

4.41.7.2. ChunkListener

A chunk is defined as the items processed within the scope of a transaction. Committing a transaction commits
a 'chunk’. It may be useful to be nofied before and after a chunk has completed, in which case the
ChunkLi st ener interface may be used:
public interface ChunkLi stener extends SteplListener {
voi d bef oreChunk();

voi d afterChunk();
}

The bef or eChunk method is called after the transaction is started, but before r ead is called on the | t enReader .
Conversely, af t er Chunk is called after the last call towite ontheltemniter, but before the chunk has been
committed.

4.41.7.3. ltemReadListener

When discussing skip logic above, it was mentioned that it may be beneficial to log out skipped records, so that
they can be deal with later. In the case of read errors, this can be done with an I t enReader Li st ener :
public interface |tenReadlLi stener extends StepListener {
voi d beforeRead();
voi d afterRead(Object item;

voi d onReadError (Exception ex);

The bef or eRead method will be called before each call to r ead on the | t enReader . The af t er Read method will
be caled after each successful call to read, and will be passed the item that was read. If there was an error
while reading, the onReadEr r or method will be called. The exception encounterd will be provided so that it can
be logged.

4.4.1.7.4. ltemWriteListener

Just as with the IltemReaderListener, the writing of an item can be 'listened' to:

public interface ItemNitelListener extends StepListener {

voi d beforeWite(Object item;

Spring Batch 1.0 60

Configuring and Executing A Job

void afterWite(Object item;

void onWiteError(Exception ex, Qbject iten);

The bef orewi t e method will be called beforew ite ontheitemniter, and is handed the item that will be
written. The af t er wi t e method will be called after the item has been succesfully writen. If there was an error
while writing, the onwiteError method will be called. The exception encountered and the item that was
attempted to be written will be provided, so that they can be logged.

4.4.2. TaskletStep

ItemOriented processing is not the only way to processin ast ep. What if a st ep must consist as asimple storec
procedure call? Y ou could implement the call asan I t enReader and return null after the procedure finishes, but
it is a bit unnatural since there would need to be a no-op Itenwiter and lots of overhead for transaction
handling, listeners, etc. Spring Batch provides an implementation of Step for this scenario: Taskl et St ep. AS
explained in Chapter 2, the Taskl et is asimple interface that has one method, execut e, which will be a called
once for the whole st ep. Taskl et implementors might call a stored procedure, a script, or asimple SQL upate
statement. Because there are less concerns, there are only two required dependencies for a Taskl et Step: a
Taskl et , and aJobReposi tory:

<bean i d="t askl et St ep"
cl ass="org. spri ngframewor k. bat ch. core. st ep. t askl et. Taskl et Step" />
<property nanme="tasklet" ref="tasklet" />
<property name="j obRepository" ref="repository" />
</ bean>

4.4.2.1. TaskletAdapter

As with other adapters for the I1temwiter and ItenReader interfaces, the Taskl et interface contains an
implementation that allows for adapting itself to any pre-existing class. Taskl et Adapt er . An example where
this may be useful is an existing DAO that is used to upate a flag on a set of records. The Taskl et Adapt er can
be used to call this class without having to write an adapter for the Taskl et interface:

<bean id="del eteFileslnDir" parent="taskl et Step">
<property name="taskl et">
<bean cl ass="org. spri ngframework. bat ch. core. step. taskl et. Taskl et Adapt er ">
<property nanme="t ar get Obj ect" >
<bean cl ass="org. nyconpany. FooDao" >
</ property>
<property name="tar get Met hod" val ue-"updat eFoo" />
</ bean>
</ property>
</ bean>

4.4.2.2. Example Tasklet implementation

Many batch jobs contains steps that must be done before the main processing begins in order to set up various
resources, or after processing has completed to cleanup those resources. In the case of a job that works heavily
with files, it is often necessary to delete certain files locally after they have been uploaded successfully to
another location. The example below taken from the Spring Batch samples project, is a Taskl et
implementation with just such aresponsibility:

public class FileDel etingTasklet inplements Tasklet, InitializingBean {

private Resource directory

Spring Batch 1.0 61

Configuring and Executing A Job

public ExitStatus execute() throws Exception {
File dir = directory.getFile();
Assert.state(dir.isDirectory());

File[] files = dir.listFiles();
for (int i =0; i <files.length; i++) {
bool ean del eted = files[i].delete();
if (!deleted) {
t hrow new Unexpect edJobExecuti onException("Could not delete file " + files[i].getPath());
}
}
return ExitStatus. Fl Nl SHED,
}

public void setDirectoryResource(Resource directory) {
this.directory = directory;

}

public void afterPropertiesSet() throws Exception {
Assert.notNul | (directory, "directory nmust be set");

}
}

The above Taskl et implementation will delete all files within a given directory. It should be noted that the
execut e method will only be called once. All that isleft isto inject the Taskl et into aTaskl et St ep:

<bean i d="t askl et Job" parent="si npl eJob" >
<property nanme="steps">
<bean i d="del eteFil esInDir" parent="taskl et Step">
<property name="taskl et">
<bean cl ass="org. spri ngfranmewor k. bat ch. sanpl e. t askl et . Fi | eDel eti ngTaskl et ">
<property nanme="directoryResource" ref="directory" />
</ bean>
</ property>
</ bean>
</ property>
</ bean>

<bean id="directory"
cl ass="org. spri ngframework. core.io. Fil eSyst enResour ce" >
<constructor-arg val ue="target/test-outputs/test-dir" />
</ bean>

4.5. Examples of Customized Business Logic

Some batch jobs can be assembled purely from off-the-shelf components in Spring Batch, mostly the
I tenReader and I tenwiter implementations. Where this is not possible (the majority of cases) the main AP
entry points for application developers are the Taskl et, |tenReader, ItenWiter and the various listener
interfaces. Most simple batch jobs will be able to use off-the-shelf input from a Spring Batch | t enReader , but it
is very often the case that there are custom concerns in the processing and writing, which normally leads
developerstoimplement an i temwi ter, OF | t emir ansf or ner .

Here we provide a few examples of common patterns in custom business logic, mainly using the listener
interfaces . It should be noted that an 1 t enReader Or I temW i ter canimplement the listener interfaces as well
if appropriate.

4.5.2. Logging Item Processing and Failures

A common use case is the need for special handling of errors in a step, item by item, perhaps logging to a
special channel, or inserting a record into a database. The ItemOrientedStep (created from the step factory
beans) allows users to implement this use case with a simple It enReadLi st ener, for errors on read, and an
ItenWitelistener, for errors on write. The below code snippets illustrate a listener that logs both read and

Spring Batch 1.0 62

Configuring and Executing A Job

write failures:

public class |tenfail ureLoggerlListener extends |tenlistenerSupport {
private static Log | ogger = LogFactory.getLog("itemerror");
public void onReadError(Exception ex) {

| ogger.error("Encountered error on read", e);

public void onWiteError(Exception ex, bject itenm {
| ogger.error("Encountered error on wite", e);

Having implemented this listener it must be registered with the step:

<bean i d="si npl eSt ep"”
cl ass="org. spri ngframewor k. bat ch. core. step.item Si npl eSt epFact or yBean" >

<property name="listeners">

<bean cl ass="org. exanpl e...|tenfail ureLoggerlListener"/>
</ property>
</ bean>

Remember that if your listener does anything in an onError () method, it will be inside a transaction that is
going to be rolled back. If you need to use a transactional resource such as a database inside an onError ()
method, consider adding a declarative transaction to that method (see Spring Core Reference Guide for details),
and giving its propagation attribute the value REQUIRES _NEW.

4.5.3. Stopping a Job Manually for Business Reasons

Spring Batch provides a stop() method through the JobLauncher interface, but this is really aimed at the
operator, rather than the application programmer. Sometimes it is more convenient or makes more sense to stop
ajob execution from within the business logic.

The simplest thing to do is to throw a RuntimeException (one that isn't retried indefinitely or skipped), For
example, a custom exception type could be used, asin the example below:
public class PoisonPillltemWNiter extends AbstractltemWiter {
public void wite(Object itenm) throws Exception {

if (isPoisonPill(item) {
throw new Poi sonPi | | Exception("Posion pill detected: "+item;
}

Another ssimple way to stop a step from executing isto simply return nul | fromthe | t enReader :

public class EarlyConpl etionltenReader extends Abstract!tenReader {
private |tenReader del egate;
public void setDel egate(ltenReader del egate) { ... }
public Object read() throws Exception {
oj ect item = del egate.read();

if (isEndlten(item) {
return null; // end the step here

Spring Batch 1.0 63

Configuring and Executing A Job

}

return item

The previous example actually relies on the fact that there is a default implementation of the
Conpl eti onPol i cy strategy which signals a complete batch when the item to be processed is null. A more
sophisticated completion policy could be implemented and injected into the step through the
Repeat Qper at i onsSt epFact or yBean:

<bean i d="si npl eSt ep"”
cl ass="org. spri ngf ramewor k. bat ch. core. st ep. it em Repeat Oper ati onsSt epFact or yBean" >

<property nanme="chunkQOperati ons">
<bean cl ass="org. spri ngfranmewor k. bat ch. repeat . support. Repeat Tenpl at e" >
<property name="conpl etionPolicy">
<bean cl ass="org. exanpl e. .. Speci al Conpl eti onPol i cy"/ >
</ property>
</ bean>
</ property>
</ bean>

An alternative is to set a flag in the st epExecuti on, which is checked by the st ep implementations in the
framework in between item processing. To implement this aternative, we need access to the current
StepExecution, and this can be achieved by implementing a StepListener and registering it with the Step. Here
is an example of alistener that sets the flag:

public class CustomtenmNiter extends |tenlistenerSupport inplenments Steplistener {
private StepExecution stepExecution
public void beforeStep(StepExecuti on stepExecution) {
t hi s. st epExecuti on = stepExecution
}
public void afterRead(Object item {

if (isPoisonPill(item) {
st epExecuti on. set Term nat eOnl y(true);
}

The default behaviour here when the flag is set is for the step to throw a Jobl nt er r upt edExcept i on. This can
be controlled through the St epl nt er rupt i onPol i cy, but the only choice is to throw or not throw an exception,
so thisis aways an abnormal ending to ajob.

4.5.4. Adding a Footer Record

A very common requirement is to aggregate information during the output process and to append arecord at the
end of afile summarizing the data, or providing a checksum. This can also be achieved with a callbacks in the
step, normally as part of acustom I temw i ter. In thiscase, since ajob is accumulating state that should not be
lost if the job aborts, the I t enst r eaminterface should be implemented:

public class CustomtenWiter extends AbstractltemNiter inplenents
ItenStream Steplistener
{

Spring Batch 1.0 64

Configuring and Executing A Job

private static final String TOTAL_AMOUNT _KEY = "total .anmunt";
private ItemWiter del egate;

private doubl e total Amtount = 0.0;

public void setDel egate(ltemWiter delegate) { ... }

public ExitStatus afterStep(StepExecution stepExecution) {
/1 Add the footer record here...
del egate. wite("Total Anpunt Processed: " + total Amount);

}

public void open(ExecutionContext executionContext) {
i f (executionContext.contai nsKey(TOTAL_AMOUNT_KEY) {
t ot al Amount = executi onCont ext . get Doubl e(TOTAL_AMOUNT_KEY) ;

}
}

public void updat e(Executi onCont ext executionContext) {
execut i onCont ext . set Doubl e(TOTAL_AMOUNT_KEY, t ot al Anmount);

}
public void wite(Object item {

del egate.wite(iten);
total Amount += ((Trade) item.get Amount();

The custom writer in the example is stateful (it maintainsits total in an instance variable t ot al Amount), but the
state is stored through the 1 t ensst r eaminterface in the Execut i onCont ext . In thisway we can be sure that when
the open() callback is received on a restart. The framework garuntees we always get the last value that was
committed. It should be noted that it is not always necessary to implement ItemStream. For example, if the
[temWriter is re-runnable, in the sense that it maintains its own state in a transactional resource like a database,
there is no need to maintain state within the writer itself.

Spring Batch 1.0 65

Chapter 5. Repeat

5.1. RepeatTemplate

Batch processing is about repetitive actions - either as a simple optimisation, or as part of ajob. To strategise
and generalise the repetition, and provide what amounts to an iterator framework, Spring Batch has the
Repeat Qper at i ons interface. The Repeat Oper at i ons interface looks like this:

public interface Repeat Qperations {

ExitStatus iterate(RepeatCallback call back) throws Repeat Exception;

}

where the callback is a simple interface that allows you to insert some business logic to be repeated

public interface RepeatCal |l back {

Exi t Status dolnlterati on(Repeat Context context) throws Exception;

}

The callback is executed repeatedly, until the implementation decides that the iteration should end. The return
value in these interfaces is a special form of extendable enumeration (not a true enumeration because users are
free to create new values). An Exi t Stat us is immutable and conveys information to the caler of the repeat
operations about whether there is any more work to do. Generally speaking, implementations of
Repeat Qper at i ons should inspect the Exi t St at us and use it as part of the decision to end the iteration. Any
callback that wishesto signal to the caller that there is no more work to do can return Exi t St at us. FI NI SHED.

The simplest general purpose implementation of Repeat Oper ati ons iS Repeat Tenpl at e. It could be used like
this
Repeat Tenpl ate tenpl ate = new Repeat Tenpl ate();
tenpl at e. set Conpl eti onPol i cy(new Fi xedChunkSi zeConpl eti onPolicy(2));
tenpl ate.iterate(new Repeat Cal | back() {
public ExitStatus dolnlterati on(Repeat Context context) ({

/1 Do stuff in batch...
return ExitStatus. CONTI NUABLE;

});

In the example we return Exi t St at us. CONTI NUABLE to show that there is more work to do. The callback can
also return Exit St at us. FI NI SHED if it wants to signal to the caller that there is no more work to do. Some
iterations can be terminated by considerations intrinsic to the work being done in the callback, others are
effectively infinite loops as far as the callback is concerned, and the completion decision is delegated to an
external policy asin the case above.

5.1.1. RepeatContext

The method parameter for the Repeat Cal | back IS a Repeat Cont ext . Many callbacks will simply ignore the
context, but if necessary it can be used as an attribute bag to store transient data for the duration of the iteration.

Spring Batch 1.0 66

Repeat

After thei t er at e method returns, the context will no longer exist.

A Repeat Cont ext Will have a parent context if there is a nested iteration in progress. The parent context is
occasionally useful for storing data that need to be shared between calls to iterate. This is the case for
instance if you want to count the number of occurrences of an even in the iteration and remember it across
subsequent calls.

5.1.2. ExitStatus

Exi t St at us iS used by Spring Batch to indicate whether processing has finished, and if so whether or not iswas
successful. It is also used to carry textua information about the end state of a batch or iteration, in the form of
an exit code and a description of the status in freeform text. These are the properties of an Exi t St at us:

Table5.1. ExitStatus properties

Property Name Type Description
continuable boolean trueif there is more work to do
exitCode String Short code describing the exit

status, e.g. CONTINUABLE,
FINISHED, FAILED

exitDescription String Long description of the exit status,
could be a stack trace for example.

Exi t Stat us values are designed to be flexible, so that they can be created with any code and description the
user needs. Spring Batch comes with some standard values out of the box, to support common use cases, but
users are free to create their own values, as long as the semantics of teh cont i nuabl e property are honoured.

ExitStatus values can aso be combined with valrious operators built into the class as methods. Y ou can add an
exit code, or description, or combine the continuable values with logical AND using methods in ExitStatus.
Y ou can aso combine two ExitStatus values with the and method taking ExitStatus as a parameter. The effect
of thisisto do alogical AND on the continuable flag, concatenate the descriptions and replace the exit code
with the new value, as long as the result is continuable, or the input is not continuable. This has the effect of
maintaining the semantics of the continuable flag, but not making any "surprising” changes to the exit code
(e.g. it never becomes CONTINUABLE when it was aready FINISHED, unless someone does something
wilful, like passin avalue that is not continuable, but with a code of CONTINUABLE).

5.2. Completion Policies

Inside a Repeat Tenpl ate the termination of the loop in the iterate method is determined by a
Conpl et i onPol i cy which is also afactory for the Reapeat Cont ext . The Repeat Tenpl at e has the reponsibility
to use the current policy to create a Repeat Cont ext and passthat in to the Repeat Cal | back at every stagein the
iteration. After a callback completes its dolniteration the Repeat Tenpl ate has to make a call to the
Conpl eti onPol i cy to ask it to update its state (which will be stored in the Repeat Cont ext), then it asks the
policy if the iteration is complete.

Spring Batch provides some simple general purpose implementations of Conpl eti onPol i cy, for example the
Si npl eConpl eti onPol i cy used in the example above. The Si npl eConpl eti onPol i cy just allows an execution
up to afixed number of times (with Exi t St at us. FI NI SHED forcing early completion at any time).

Spring Batch 1.0 67

Repeat

Users might need to implement their own completion policies for more complicated decisions, e.g. a batch
processing window that prevents batch jobs from executing once the online systems arein use.

5.3. Exception Handling

If there is an exception thrown inside a Repeat Cal | back, the Repeat Tenpl at e cONsults an Except i onHandl er
which can decide whether or not to re-throw the exception.

public interface ExceptionHandl er {

voi d handl eExcepti on(Repeat Cont ext context, Throwabl e t hrowabl e)
throws Runti meException;

}

A common use case is to count the number of exceptions of a given type, and fail when alimit is reached. For
this purpose Spring Batch provides the Sinpl eLinitExceptionHandler and dightly more flexible
Ret hr owOnThr eshol dExcept i onHandl er. The Si npl eLi i t Excepti onHandl er has a limit property and an
exception type that should be compared with the current exception - all subclasses of the provided type are also
counted. Exceptions of the given type are ignored until the limit is reached, and then rethrown. Those of other
types are always rethrown.

An important optional property of the Si npl eLi mi t Except i onHandl er isthe boolean flag useParent . It isfalse
by default, so the limit is only accounted for in the current Repeat Cont ext . When set to true, the limit is kept
across sibling contexts in a nested iteration (e.g. a set of chunks inside a step).

5.4. Listeners

Often it is useful to be able to receive additiona callbacks for cross cutting concerns across a number of
different iterations. For this purpose Spring Batch provides the Repeat Li st ener interface. The Repeat Tenpl at e
allows users to register Repeat Li steners, and they will be given callbacks with the Repeat Context and
Exi t St at us where available during the iteration.

The interface looks like this:

public interface RepeatlListener {
voi d bef or e(Repeat Cont ext context);

voi d after(Repeat Context context, ExitStatus result);
voi d open(Repeat Cont ext context);
voi d onError (Repeat Cont ext context, Throwable e);

voi d cl ose(Repeat Cont ext context);

}

The open and cl ose callbacks come before and after the entire iteration, and bef or e, af t er and onError apply
to the individual RepeatCallback calls.

Note that when there is more than one listener, they are in a list, so there is an order. In this case open and
bef or e are called in the same order, and af t er, onEr ror and cl ose are called in reverse order.

5.5. Parallel Processing

Spring Batch 1.0 68

Repeat

Implementations of Repeat Qperations are not restricted to executing the callback sequentially. It is quite
important that some implementations are able to execute their callbacks in parallel. To this end Spring Batch
provides the TaskExecut or Repeat Tenpl ate, which uses the Spring TaskExecutor strategy to run the
Repeat Cal | back. The default is to use a SynchronousTaskExecutor, which has the effect of executing the
whole iteration in the same thread (the same as anormal Repeat Tenpl at €).

5.6. Declarative lteration

Sometimes there is some business processing that you know you want to repeat every time it happens. The
classic example of this is the optimization of a message pipeline - it is more efficient to process a batch of
messages, if they are arriving frequently, than to bear the cost of a separate transaction for every message.
Spring Batch provides an AOP interceptor that wraps a method call in a Repeat Operations for just this
purpose. The Repeat Oper ati onsl nt er cept or executes the intercepted method and repeats according to the
Conpet i onPol i cy in the provided Repeat Tenpl at e.

Here is an example of declarative iteration using the Spring AOP namespace to repeat a service call to a
method called processMessage (for more detail on how to configure AOP interceptors see the Spring User
Guide):

<aop: confi g>
<aop: poi ntcut id="transactional"
expressi on="execution(* com..*Service. processMessage(..))" />
<aop: advi sor pointcut-ref="transactional"
advi ce-ref="retryAdvi ce" order="-1"/>
</ aop: confi g>

<bean i d="retryAdvice"
cl ass="org. spri ngframewor k. bat ch. repeat . i nt er cept or. Repeat Qper ati onsl nterceptor”/>

The example above uses a default Repeat Tenpl at e inside the interceptor. To change the policies, listeners etc.
you only need to inject an instance of Repeat Tenpl at e into the interceptor.

If the intercepted method returns voi d then the interceptor always returns ExitStatus. CONTINUABLE (so there
is a danger of an infinite loop if the Conpl eti onPol i cy does not have a finite end point). Otherwise it returns
Exi t St at us. CONTI NUABLE until the return value from the intercepted method is null, at which point it returns
Exi t St at us. FI NI SHED. So the business logic inside the target method can signal that there is no more work to
do by returning nul |, or by throwing an exception that is re-thrown by the Except i onHandl er in the provided
Repeat Tenpl at e.

Spring Batch 1.0 69

Chapter 6. Retry

6.1. RetryTemplate

To make processing more robust and less prone to failure, sometimes it helps to automatically retry a failed
operation in case it might succeed on a subsequent attempt. Errors that are susceptible to this kind of treatment
are transient in nature, for example a remote call to a web service or RMI service that fails because of a
network glitch, or a DeadLockLoser Excepti on in a database update. To automate the retry of such operations
Spring Batch hasthe Ret ryOper at i ons strategy. The Ret r yQper at i ons interface looks like this:

public interface RetryQOperations {
oj ect execute(RetryCall back retryCall back) throws Exception;

}

where the callback is a simple interface that allows you to insert some business logic to be retried

public interface RetryCall back {

Obj ect doWthRetry(RetryContext context) throws Throwabl e;

}

The callback is executed and if it fails (by throwing an Excepti on), it will be retried until either it is successful,
or the implementation decides to abort.

The simplest general purpose implementation of Ret r yOper at i ons iSRet ryTenpl at e. It could be used like this

RetryTenpl ate tenpl ate = new RetryTenpl ate();

tenpl at e. set RetryPol i cy(new Ti meout Ret ryPol i cy(30000L));

oj ect result = tenpl ate. execute(new RetryCal | back() {
public oject doWthRetry(RetryContext context) {

/'l Do stuff that might fail, e.g. webservice operation
return result;

1)

In the example we execute a web service call and return the result to the user. If that call fails then it isretried
until atimeout is reached.

6.1.1. RetryContext

The method parameter for the RetryCal | back iS a RetryContext. Many callbacks will simply ignore the
context, but if necessary it can be used as an attribute bag to store data for the duration of the iteration.

A RetryCont ext Will have a parent context if there is a nested retry in progress in the same thread. The parent
context is occasionally useful for storing data that need to be shared between callsto execut e.

6.2. Retry Policies

Spring Batch 1.0 70

Retry

Inside a Ret ryTenpl at e the decision to retry or fail in the execut e method is determined by a Ret ryPol i cy
which isaso afactory for the Ret r yCont ext . The Ret ryTenpl at e has the reponsibility to use the current policy
to create a RetryCont ext and pass that in to the RetrycCal | back at every attempt. After a callback fails the
Ret ryTenpl at e has to make a call to the Ret ryPol i cy to ask it to update its state (which will be stored in the
Ret r yCont ext), and then it asks the policy if another attempt can be made. If another attempt cannot be made
(e.g. alimit is reached or atimeout is detected) then the policy is also responsible for handling the exhausted
state. Simple implementations will just throw Ret r yExhaust edExcept i on, and any enclosing transaction will be
rolled back. More sophisticated implementations might attempt to take some recovery action, in which case the
transaction can remain intact.

Tip

Failures are inherently either retryable or not - if the same exception is always going to be thrown
from the business logic, it doesn't help to retry it. So don't retry on all exception types - try to focus
on only those exceptions that you expect to be retryable. It's not usually harmful to the business
logic to retry more aggressively, but it's wasteful because if afailure is determinstic there could be
avery tight loop retrying something that you know in advance isfatal.

6.2.1. Stateless Retry

In the simplest case aretry isjust awhile loop - the Ret ryTenpl at e can just keep trying until it either succeeds
or fails. The Ret ryCont ext contains some state to determine whether to retry or abort, but this state is on the
stack and there is no need to store it anywhere globally, so we call this stateless retry. The distinction between
stateless and stateful retry is contained in the implementation of the RetryPolicy (the RetryTenpl ate can
handle both). In a stateless retry, the callback is aways executed in the same thread on retry aswhen it failed.

Spring Batch provides some simple general purpose implementations of stateless Ret ryPol i cy, for example a
Si npl eRet ryPol i cy, and the Ti neout Ret ryPol i cy used in the example above.

The si npl eRet ryPol i cy just allows aretry on any of anamed list of exception types, up to a fixed humber of
times. It also has alist of "fatal" exceptions that should never be retried, and thislist overrides the retryable list,
so it can be used to give finer control over the retry behaviour, e.g.

Si npl eRetryPolicy policy = new Sinpl eRetryPolicy(5);

// Retry on all exceptions (this is the default)

policy. set Retryabl eExcepti ons(new Cl ass[] {Exception.class});

/1 ... but never retry |llegal StateException

policy. set Fat al Excepti ons(new O ass[] {I LIl egal St at eException.cl ass});

/1 Use the policy...
RetryTenpl ate tenpl ate = new RetryTenpl ate();
tenpl ate. set RetryPol i cy(policy);
tenpl at e. execut e(new RetryCal | back() {
public nject doWthRetry(RetryContext context) {
/'l business |ogic here
}

});

There is d'so a more flexible implementation called Excepti ond assi fi er Ret ryPol i cy, which allows the user
to configure different retry behaviour for an arbitrary set of excecption types though the Except i ond assi fi er

abstraction. The policy works by calling on the classifier to convert an exception into a delegate Ret ryPol i cy,
so for example, one exception type can be retried more times before failure than another by mapping it to a
different policy.

Users might need to implement their own retry policies for more customized decisions, e.g. if there is a

Spring Batch 1.0 71

Retry

well-known solution-specific classification of exceptions into retryable and not retryable.

6.2.2. Stateful Retry

Where the failure has caused a transactional resource to become invalid there are some special considerations.
This does not apply to a simple remote call because there was no transactional resource (usually), but it does
sometimes apply to a database update, especially when using Hibernate. In this case it only makes sense to
rethrow the exception that called the failure immediately, so that the transaction can roll back, and we can start
anew valid one.

In these cases a stateless retry is not good enough because the re-throw and roll back necessarily involve
leaving the Ret ryOper at i ons. execut e() method and potentially losing the context that was on the stack. To
avoid losing it we have to introduce a storage strategy to lift it off the stack and put it (at a minimum) in heap
storage. For this purpose Spring Batch provides a storage strategy RetryCont ext Cache. The default
implementation of the Ret r yCont ext Cache is in memory, using a simple vap. Advanced usage with multiple
processes in a clustered environment might also consider implementing the Ret r yCont ext Cache with a cluster
cache of some sort (even in a clustered environment this might be overkill).

6.2.2.1. Item processing and stateful retry

Part of the reponsibility of a stateful retry policy is to recognise the failed operations when they come back in a
new transaction. To facilitate this in the commonest case where an object (like a message or message payload)
is being processed, Spring Batch provides the It emniterRetryPol i cy. This works in conjunction with a
special RetrycCal | back implementation | t emW i t er Ret ryCal | back, which in turn relies on the user providing
anitemniter. Thiscalback implements the common pattern where it passes the item to awriter.

The way the failed operations are recognised in this implementation is by identifying the item across multiple
invocations of the retry. To identify the item the user can provide an I t enkeyGener at or strategy, and thisis
responsible for returning a unique key identifying the item. The identifier is used as a key in the
Ret ryCont ext Cache. AN ItenKeyGenerator can be provided either by injecting it directly into the
ItenWiterRetryCal | back, or by implementing the interface in the 1temwiter, or by accepting the default
which isto simply use the item itself as akey.

Warning

If you use the default item key generation strategy be very careful with the implementation of
Qbj ect . equal s() and Qbj ect . hashCode() in your item class. In particular, if the Itemwiter is
going to insert the item into a database and update a primary key field it is not a good idea to use
the primary key in the equal s and hashCode implementations, because their values will change
before and after the call to teh 1 temw it er. The best advice is to use a business key to identify the
items.

When the retry is exhausted, because a stateful retry is always in a fresh transaction, there is also the option to
handle the failed item in a different way, instead of calling the Ret rycCal | back (which is presumed now to be
likely to fail). This option is provided by the I t enRecover er strategy. Like the key generator, it can be directly
injected or provided by implementing the interfaceinthe temwi ter.

The decision to retry or not is actually delegated to a regular stateless retry policy, so the usual concerns about
limits and timeouts can be injected into the 1 t emw i t er Ret ryPol i cy through the delegate property.

Spring Batch 1.0 72

Retry

6.3. Backoff Policies

When retrying after atransient failure it often helps to wait a bit before trying again, because usually the failure
is caused by some problem that will only be resolved by waiting. If aRet rycCal | back fails, the Ret ryTenpl at e
can pause execution according to the Backof f Pol i cy in place.

public interface BackoffPolicy {
BackCf f Cont ext start(RetryContext context);

voi d backOf f (BackOf f Cont ext backOf f Cont ext)
throws BackO f I nterruptedException;

}

A Backof fPol i cy is free to implement the backOff in any way it chooses. The policies provided by Spring
Batch out of the box all use tvj ect . wai t (). A common use case is to backoff with an exponentially increasing
wait period, to avoid two retries getting into lock step and both failing - this is a lesson learned from the
ethernet. For this purpose Spring Batch provides the Exponent i al Backof f Pol i cy.

6.4. Listeners

Often it is useful to be able to receive additiona callbacks for cross cutting concerns across a number of
different retries. For this purpose Spring Batch provides the RetryLi st ener interface. The RetryTenpl at e
allows users to register RetryListeners, and they will be given callbacks with the RetryContext and
Thr owabl e where available during the iteration.

The interface looks like this:

public interface Retrylistener {
voi d open(RetryContext context, RetryCallback call back);
voi d onError (RetryContext context, RetryCallback call back, Throwable e);

voi d cl ose(RetryContext context, RetryCallback call back, Throwable e);
}

The open and cl ose callbacks come before and after the entire retry in the smplest case, and onEr ror applies
to the individual RetryCallback calls. The cl ose method might also receive a Thr owabl e, if there has been an
error it isthe last one thrown by the Ret r yCal | back.

Note that when there is more than one listener, they arein alist, so there is an order. In this case open is called
in the same order, and onErr or and cl ose are called in reverse order.

6.5. Declarative Retry

Sometimes there is some business processing that you know you want to retry every time it happens. The
classic example of this is the remote service call. Spring Batch provides an AOP interceptor that wraps a
method call in a Retryperations for just this purpose. The RetryQperationsl nterceptor executes the
intercepted method and retries on failure according to the Ret r yPol i cy in the provided Repeat Tenpl at e.

Here is an example of declarative iteration using the Spring AOP namespace to repeat a service call to a
method called r enot eCal | (for more detail on how to configure AOP interceptors see the Spring User Guide):

Spring Batch 1.0 73

Retry

<aop: confi g>
<aop: poi ntcut id="transactional"
expressi on="execution(* com..*Service.remoteCall(..))" />
<aop: advi sor pointcut-ref="transactional"
advi ce-ref="retryAdvi ce" order="-1"/>
</ aop: confi g>

<bean i d="retryAdvice"
cl ass="org. springframework. batch.retry.interceptor. RetryOperationslnterceptor"/>

The example above uses a default Ret ryTenpl at e inside the interceptor. To change the policies, listeners etc.
you only need to inject an instance of Ret r yTenpl at e into the interceptor.

Spring Batch 1.0 74

Chapter 7. Unit Testing

Just as with other application styles, it is extremely important to unit test any code written as part of a batch job
as well. The Spring core documentation covers how to unit and integration test with Spring in great detail, so it
won't be repeated here. It is important, however, to think about how to 'end to end' test a batch job, which is
what this chapter will focus on.

7.1. End To End Testing Batch Jobs

'End To End' testing can be defined as testing the complete run of a batch job from beginning to end. If the job
reads from a file, then writes into the database, this type of testing ensures that any preconditions are met
(reference data, correct file, etc) and then runs the job, verifying afterwards that all records that should be in the
database are present and correct. Below is an example from one of the Spring Batch sample jobs, the
‘fixedLengthlmportJob'. It reads from aflat file (in fixed length format) and loads the records into the database.
The following unit test code assures it processes correctly:

//fixed-length file is expected on input
protected void validatePreConditions() throws Exception{
Buf f er edReader reader = null;
reader = new Buf f er edReader (new Fi | eReader (fil eLocator.getFile()));
String |line;
while ((line = reader.readLine()) !'= null) {
assert Equal s (LI NE_LENGTH, line.length());
}
}

// Check that records have been correctly witten to database
protected voi d val i dat ePost Condi ti ons() throws Exception {

i nput Sour ce. open(new Executi onContext());

j dbcTenpl ate. query("SELECT I D, ISIN, QUANTITY, PRI CE, CUSTOVER FROM trade ORDER BY id",
new RowCal | backHandl er () {

public void processRow ResultSet rs) throws SQ.Exception {
Trade trade;

try {
trade = (Trade)i nput Source.read();

}
catch (Exception e) {
throw new |11 egal St at eExcepti on(e. get Message());

}
assert Equal s(trade.getlsin(), rs.getString(2));

assert Equal s(trade. get Quantity(),rs.getlLong(3));

assert Equal s(trade. getPrice(), rs.getBigDecimal(4));

assert Equal s(trade. get Custoner(), rs.getString(5));
)

assert Nul | (i nput Source.read());

}

In the first method, val i dat ePreCondi ti ons, the input file is checked to ensure it is correctly formatted.
Because it is common to add extra lines to the file to test additional use cases, this test ensures that the fixed
length lines are the length they should be. If they are not, it is much preferred to fail in this phase, rather than
the job (correctly) failing during the run and causing needless debugging.

In the second method, validatePostconditions, the database is checked to ensure al data has been written
correctly. This is arguably the most important part of the test. In this case, it reads one line from the file, and
one row from the database, and checks each column one by one for accuracy. It'simportant to not hard-code the
data that should be present in the database into the test class. Instead, use the input file (bypassing the job) to
check the output. This allows you to quickly add additional test cases to your file without having to add them to

Spring Batch 1.0 75

Unit Testing

code. The same would be true for database to database jobs, or database to file jobs. It is preferable to be able to
add additional rows to the database input without having to add them to the hard coded list in the test class.

7.2. Extending Unit Test frameworks

Because most unit testing of complete batch jobs will take place in the development environment (i.e. eclipse)
it's important to be able to launch these tests in the same way you would launch any unit test. In the following
examples JUnit 3.8 will be used, but any testing framework could be substituted. The Spring Batch samples
contain many 'sample jobs that are unit tested using this technique. The most important step is being able to
launch the job within a unit test. This requires the use of the JobLauncher interface that is discussed in chapters
2 and 4. A Job and JobLauncher must be obtained from an Appl i cati onCont ext, and then launched. The
following abstract class from Spring Batch Samplesillustrates this:

public abstract class AbstractBatchLauncher Tests extends
Abst r act Dependencyl nj ecti onSpri ngCont ext Tests {

JobLauncher | auncher;
private Job job;
private JobParaneters jobParanmeters = new JobParaneters();

publi ¢ Abstract Bat chLauncher Tests() {
set DependencyCheck(f al se);
}

/*
* @ee org.springfranework.test.AbstractSi ngl eSpri ngCont ext Test s#get Confi gLocati ons()
*/
protected String[] getConfigLocations() {
return new String[] { CassUils.addResour cePat hToPackagePat h(get C ass(),
ClassUtils. get Short Name(get Cl ass()) + "-context.xm ") };
}

public void testLaunchJob() throws Exception {
| auncher. run(job, jobParaneters);

}

public void setlLauncher (JobLauncher bootstrap) {
thi s.launcher = bootstrap;

}

public void setJob(Job job) {
this.job = job;
}

The Spring Test class Abst r act Dependencyl nj ecti onSpri ngCont ext Test s iS extended to allow for context
loading, autowiring, etc. Only two classes are needed: The Job to be run, and the JobLauncher to run it. Empty
JobPar anet er s are used in the example above. However, if the job requires specific parameters they could be
coded in subclasses with an abstract method, or using a factory bean in the Appli cati onCont ext for testing
purposes. Because none of the sample jobs require this, an empty JobPar anet er s is used. One simple JUnit test
case is present in the file, which actually launches the job. If any exceptions are thrown or assertions fail, it will
act the same way as any other unit test and display as afailed test due to errors or assertion failure. Because of
the best practice for validation mentioned earlier in the chapter, this class is extended further to allow for
separate validation before and after the job is run:

public abstract class Abstract ValidatingBatchLauncher Tests extends Abstract Bat chLauncher Tests {

public void testLaunchJob() throws Exception {
val i dat ePreCondi tions();
super . t est LaunchJob();
val i dat ePost Condi ti ons();

}

/**

Spring Batch 1.0 76

Unit Testing

* Make sure input data neets expectations

*/

protected voi d validatePreConditions() throws Exception {}
/**

* Make sure job did what it was expected to do.
*/
protected abstract void validat ePost Conditions() throws Exception;

In the class above, the t est LaunchJob method is overridden to call the two abstract methods for validation.
Before actually running the job, val i dat ePreCondi ti ons is called (it should be noted that it's not required),
and then after the job completes successfully, val i dat ePost Coni dti ons is called.

Spring Batch 1.0 77

Appendix A. List of temReaders

A.l. ltem Readers

Table A.1. Available Item Readers

Item Reader Type of Item Provided Description
ListltemReader javalang.Object Provides the items from alist, one
at atime
ValidatingltemReader javalang.Object A simple extension of
DelegatingltemReader that

provides for validation before
returning input.

Aggregatel temReader java.util.Collection An ItemReader that delivers alist
asitsitem, storing up objects from
the injected ItemReader until they
are ready to be packed out as a
collection. This ItemReader should
mark the beginning and end of
records with the constant valuesin
FieldSetM apper
Aggregatel temReader#BEGIN_RECORD
and
AggregateltemReader#END _RECORD

DelegatingltemReader java.lang.Object Extends
AbstractM ethodI nvokingDel egator,
which enables dynamically calling
of a custom method of the injected
object. Provides a convenient API
for dynamic method invocation
shielding subclasses from the
low-level details and exception
handling.

FlatFileltemReader javalang.String Reads from aflat file, includes
ItemStream and Skippable
functionality. See section on Read
from aFile

StaxEventltemReader javalang.Object Readsvia StAX. See HOWTO -
Read from aFile

JdbcCursorltemReader javalang.Object Reads from a database cursor via
JDBC. See HOWTO - Read from a
Database

DrivingQueryltemReader javalang.Object Base class for operations that read
from a database based on asingle

Spring Batch 1.0 78

List of [temReaders

Item Reader Type of I1tem Provided

HibernateCursorltemReader javalang.Object

Description

driving query. Configured by
injecting a KeyGenerator object.
See HOWTO - Read from a
Database

Reads from a cursor based on an
HQL query. See section on
Reading from a Database

| batisDrivingQueryltemReader java.lang.Object

JmsltemReader javax.jms.Message

A.2. Item Writers

Table A.2. Available ltem Writers

Item Writer Type of Item Written
Compositel temWriter javalang.Object
DelegatingltemWriter java.lang.Object

PropertyExtractingDel egatingltemWijidea.| ang.Obj ect

ItemTransformerltemWriter java.lang.Object

FlatFileltemWriter javalang.Object

Reads viaiBATIS based on a
driving query. See HOWTO - Read
from a Database

Given a Spring JmsOperations
object and a JMS Destination or
destination name to send errors,
provides items received through
the injected JmsOperations
receive() method

Description

Passes an item to the process
method of each in an injected List
of ItemWriter objects

Wraps ItemWriter and is
BeanAware allowing it to respond
to Spring Bean events like
afterPropertiesSet().

Extends

AbstractM ethodl nvokingDel egator
creating arguments on the fly.
Arguments are created by
retrieving the values from the
fieldsin the item to be processed
(viaa SpringBeanWrapper) based
on an injected array of field name

Extends ItemWriter [temWriter
by defining its doPr ocess method
to cal aninjected
ItemTransformer

Attemptsto convert theitemto a
String, Collection or array using
an injected Coverter and then

Spring Batch 1.0

79

List of [temReaders

Item Writer

HibernateAwarel tem\Writer

StaxEventWriterltemWriter

Typeof Item Written

javalang.Object

javalang.Object

Description

recurses. See [HOWTO - Write to
aFile]

Thisitem writer is hibernate
session aware and handles some
transaction-related work that a
non-"hibernate aware" item writer
would not need to know about and
then delegates to another item
writer to do the actual writing. See
[HOWTO - Write to a Database]

Uses an ObjectToXmlSerializer
implementation to convert each
item to XML and then writesit to
an XML fileusing StAX. See
[HOWTO - Writeto aFile]

Spring Batch 1.0

80

Appendix B. Meta-Data Schema

B.1. Overview

The Spring Batch Meta-Data tables very closely match the Domain objects that represent them in Java. For
example, Joblnstance, JobExecution, JobParameters, StepExecution, and ExecutionContext map to
BATCH_JOB_INSTANCE, BATCH_JOB_EXECUTION, BATCH_JOB_PARAMS,
BATCH_STEP_EXECUTION, BATCH_STEP_EXECUTION_CONTEXT, respectively. The JobReposi t ory
is responsible for saving and storing each Java object into it's correct table. The following appendix describes
the meta-data tables in detail, along with many of the design decisions that were made when creating them.
When viewing the various table creation statements below, it isimportant to realize that the data types used are
as generic as possible. Spring Batch provides many schemas as examples, which al have varying data types
due to variations in individual database vendors handling of datatypes. Below is an ERD model of all 5 tables
and their relationships to one another:

B.1.1. Version

Many of the database tables discussed in this appendix contain a version column. This column is important
because Spring Batch employs an optimistic locking strategy when dealing with updates to the database. This
means that each time a record is 'touched' (updated) the value in the version column is incremented by one.
When the repository goes back to try and save the value, if the version number has change it will throw
Opti mi sti cLocki ngFai | ur eExcept i on, indicating there has been an error with concurrent access. Thischeck is
necessary, since even though different batch jobs may be running in different machines, they are all using the
same database tables.

B.1.2. Identity

BATCH_JOB_INSTANCE, BATCH_JOB_EXECUTION, and BATCH_STEP_EXECUTION each contain
columns ending in _ID, which act as primary keys for their respective tables. However, they are not database
generated keys, but rather are generated by separate sequences. This is necessary because after inserting one of
the domain objects into the database, the key it is given needs to be set on the actual object, so that they can be
uniquely identified in Java. Newer database drivers (Jdbc 3.0 and up) support this feature with database
generated keys, but rather than requiring it, sequences were used. Each variation of the schema will contain
some form of the following:

CREATE SEQUENCE BATCH STEP_EXECUTI ON_SEQ
CREATE SEQUENCE BATCH JOB_EXECUTI ON_SEQ
CREATE SEQUENCE BATCH JOB_SEQ

Many database vendors don't support sequences. In these cases, work arounds are used, such as the following
for mySQL.:

CREATE TABLE BATCH STEP_EXECUTI ON_SEQ (1D BI G NT NOT NULL) type=MYl SAM
I NSERT | NTO BATCH_STEP_EXECUTI ON_SEQ val ues(0);

CREATE TABLE BATCH JOB_EXECUTI ON_SEQ (1D BI G NT NOT NULL) type=MYl SAM
I NSERT | NTO BATCH JOB_EXECUTI ON_SEQ val ues(0);

CREATE TABLE BATCH JOB SEQ (1D BI GINT NOT NULL) type=MYI SAM

I NSERT | NTO BATCH_JOB_SEQ val ues(0);

In the above case, atable is used in place of each sequence. The Spring core class MySQLMaxVal uel ncr enent er

Spring Batch 1.0 81

Meta-Data Schema

will then increment the one column in this sequence in order to give similar functionality.

B.2. BATCH_JOB_INSTANCE

The BATCH_JOB_INSTANCE table holds all information relevant to a Jobl nst ance, and serves as the top of

the overall hierarchy. The following generic DDL statement is used to create it:

CREATE TABLE BATCH JOB_I NSTANCE (
JOB_I NSTANCE_ | D BI G NT PRI MARY KEY |,
VERSI| ON BI GI NT,

JOB_NAME VARCHAR(100) NOT NULL |,
JOB_KEY VARCHAR(2500)

Below are descriptions of each column in the table:

* JOB_INSTANCE_ID: The unique id that will identify the instance, which is aso the primary key. The value

of this column should be obtainable by calling the get | d method on Jobl nst ance.

* VERSION: See above section.

« JOB_NAME: Name of the job obtained from the Job object. Because it is required to identify the instance, it

must not be null.

» JOB KEY: A seridization of the JobPar anet er s that uniquely identifies separate instances of the same job

from one another. (Jobl nst ances with the same job hame

B.3. BATCH_JOB_PARAMS

The BATCH_JOB_PARAMS table holds all information relevant to the JobParameters object. It contains O or
more key/value pairs that together uniquely identify a Jobl nst ance and serve as a record of the parameters a
job was run with. It should be noted that the table has been denormalized. Rather than creating a separate table

for each type, there is one table with a column indicating the type:

CREATE TABLE BATCH JOB_PARAMS (
JOB_I NSTANCE_I D BI G NT NOT NULL ,
TYPE_CD VARCHAR(6) NOT NULL ,
KEY_NAME VARCHAR(100) NOT NULL ,
STRI NG_VAL VARCHAR(250) ,
DATE_VAL TI MESTAMP DEFAULT NULL,
LONG VAL BI G NT
DOUBLE_VAL DOUBLE PRECI SI ON,
constraint JOB_ | NSTANCE PARAMS FK foreign key (JOB_I NSTANCE | D)
ref erences BATCH_ JOB_| NSTANCE(JOB_| NSTANCE_I D)

Below are descriptions for each column:

» JOB_INSTANCE._ID: Foreign Key from the BATCH_JOB_INSTANCE table that indicates the job instance
the parameter entry belongs to. It should be noted that multiple rows (i.e key/value pairs) may exist for each

instance.

« TYPE_CD: String representation of the type of value stored, which can be either a string, date, long, or

double. Because the type must be known, it cannot be null.

Spring Batch 1.0

82

Meta-Data Schema

It

KEY_NAME: The parameter key.

STRING_VAL: Parameter value, if the typeis string.
DATE VAL: Parameter value, if thetypeis date.
LONG_VAL: Parameter value, if thetypeisalong.
DOUBLE_VAL: Parameter value, if the typeis double.

is worth noting that there is no primary key for this table. Thisis simply because the framework has no use

for one, and thus doesn't require it. If a user so chooses, one may be added with a database generated key,

Wi

thout causing any issues to the framework itself.

B.4. BATCH_JOB_EXECUTION

The BATCH_JOB EXECUTION table holds all information relevant to the JobExecut i on object. Every timea

Jo

b isrun there will always be a new JobExecut i on, and anew row in this table:

CREATE TABLE BATCH JOB_EXECUTI ON (

)

JOB_EXECUTI ON_I D BIG NT PRI MARY KEY ,

VERSI ON Bl G NT,

JOB_I NSTANCE_I D BI G NT NOT NULL,

START_TI ME TI MESTAMP DEFAULT NULL,

END_TI ME TI MESTAMP DEFAULT NULL,

STATUS VARCHAR(10),

CONTI NUABLE CHAR(1),

EXI T_CODE VARCHAR(20),

EXI T_MESSAGE VARCHAR(2500),

constraint JOB_| NSTANCE_EXECUTI ON_FK foreign key (JOB_I NSTANCE | D)
ref erences BATCH JOB | NSTANCE(JOB_| NSTANCE | D)

Below are descriptions for each column:

JOB_EXECUTION_ID: Primary key that uniquely identifies this execution. The value of this column is
obtainable by calling the get | d method of the JobExecut i on object.

VERSION: See above section.

JOB_INSTANCE_ID: Foreign key from the BATCH_JOB_INSTANCE table indicating the instance to
which this execution belongs. There may be more than one execution per instance.

START_TIME: Timestamp representing the time the execution was started.

END_TIME: Timestamp representing the time the execution was finished, regardless of success or failure.
An empty value in this column even though the job is not currently running indicates that there has been
some type of error and the framework was unable to perform alast save before failing.

STATUS: Character string representing the status of the execution. This may be COMPLETED, STARTED,
etc. The object representation of this column is the Bat chst at us enumeration.

CONTINUABLE: Character indicating whether or not the execution is currently able to continue. "Y' for yes
and 'N' for no.

EXIT_CODE: Character string representing the exit code of the execution. In the case of a command line
job, this may be converted into a number.

Spring Batch 1.0 83

Meta-Data Schema

EXIT_MESSAGE: Character string representing a more detailed description of how the job exited. In the
case of failure, this might include as much of the stack trace asis possible.

B.5. BATCH_STEP_EXECUTION

The BATCH_STEP_EXECUTION table holds all information relevant to the St epExecut i on object. Thistable

is
en

very similar in many ways to the BATCH_JOB_EXECUTION table and there will always be at least one
try per St ep for each JobExecut i on created:

CREATE TABLE BATCH_STEP_EXECUTI ON (

)

STEP_EXECUTI ON_I D Bl G NT PRI MARY KEY ,

VERSI ON Bl G NT NOT NULL,

STEP_NAME VARCHAR(100) NOT NULL,

JOB_EXECUTI ON_I D BI G NT NOT NULL,

START_TI ME TI MESTAMP NOT NULL ,

END_TI ME TI MESTAMP DEFAULT NULL,

STATUS VARCHAR(10) ,

COW T_COUNT BI G NT ,

| TEM_COUNT BI G NT ,

CONTI NUABLE CHAR(1),

EXI T_CODE VARCHAR(20) ,

EXI T_MESSAGE VARCHAR(2500) ,

constrai nt JOB_EXECUTI ON_STEP_FK forei gn key (JOB_EXECUTI ON | D)
ref erences BATCH JOB_EXECUTI ON(JOB_EXECUTI ON_I D)

Below are descriptions for each column:

STEP_EXECUTION_ID: Primary key that uniquely identifies this execution. The value of this column
should be obtainable by calling the get | d method of the st epExecut i on object.

VERSION: See above section.
STEP_NAME: The name of the step to which this execution belongs.

JOB_EXECUTION_ID: Foreign key from the BATCH_JOB_EXECUTION table indicating the
JobExecution to which this StepExecution belongs. There may be only one St epExecution for a given
JobExecut i on for agiven st ep name.

START_TIME: Timestamp representing the time the execution was started.

END_TIME: Timestamp representing the time the execution was finished, regardless of success or failure.
An empty value in this column even though the job is not currently running indicates that there has been
some type of error and the framework was unable to perform alast save before failing.

STATUS: Character string representing the status of the execution. This may be COMPLETED, STARTED,
etc. The object representation of this column is the Bat chst at us enumeration.

COMMIT_COUNT: The number of times in which the step has committed a transaction during this
execution.

ITEM_COUNT: The number of items that have been written out during this execution.

CONTINUABLE: Character indicating whether or not the execution is currently able to continue. "Y' for yes
and 'N' for no.

EXIT_CODE: Character string representing the exit code of the execution. In the case of a command line

Spring Batch 1.0 84

Meta-Data Schema

job, this may be converted into a number.

* EXIT_MESSAGE: Character string representing a more detailed description of how the job exited. In the
case of failure, this might include as much of the stack trace asis possible.

B.6. BATCH_STEP_EXECUTION_CONTEXT

The BATCH_STEP_EXECUTION_CONTEXT table holds all information relevant to an Execut i onCont ext .
There is exactly one Execut i onCont ext per St epExecuti on, and it contains all user defined key/value pairs
that need to persisted for a particular job run. This data is typically state that must be retrieved back after a
failure so that a Jobl nst ance can 'start from where it left off'. As with the BATCH_JOB_PARAMS table, this
table has been denormalized and uses a column to determine the type:

CREATE TABLE BATCH _STEP_EXECUTI ON_CONTEXT (

STEP_EXECUTI ON_I D BI G NT NOT NULL |,

TYPE_CD VARCHAR(6) NOT NULL ,

KEY_NAME VARCHAR(1000) NOT NULL |,

STRI NG_VAL VARCHAR(1000) ,

DATE VAL TI MESTAMP DEFAULT NULL |,

LONG_VAL VARCHAR(10) ,

DOUBLE_VAL DOUBLE PRECI SI ON ,

OBJECT_VAL BLOB,

constrai nt STEP_EXECUTI ON_CONTEXT_FK forei gn key (STEP_EXECUTI ON_I D)
ref erences BATCH_STEP_EXECUTI ON(STEP_EXECUTI ON_| D)
)

Below are descriptions for each column:

e STEP EXECUTION_ID: Foreign key representing the st epExecut i on to which the context belongs. There
may be more than one row associated to a given St epExecut i on.

» TYPE_CD: String representation of the type of value stored, which can be either a character string, date,
long, or double. Because the type must be known, it cannot be null.

 KEY_NAME: The Parameter key.

* STRING_VAL: Parameter value, if the typeisstring.

« DATE_VAL: Parameter valug, if thetypeis date.

e LONG_VAL: Parameter value, if thetypeisalong.

« DOUBLE_VAL: Parameter value, if the typeis double.

e OBJECT_VAL: Parameter value, if the typeisablob.

When an ExecutionContext is stored, values that are one of the well known types above will be stored as their
respective type. Any unknown type will be serialized to a blob and stored in the OBJECT_VAL column. As
with BATCH_JOB_PARAMS, there is no primary key for thistable. Thisis simply because the framework has
no use for one, and thus doesn't require it. If a user so chooses, one may be added with a database generated
key, without causing any issues to the framework itself.

B.7. Archiving

Spring Batch 1.0 85

Meta-Data Schema

Because there are entries in multiple tables everytime a batch job is run, it is common to create an archive
strategy for the meta-data tables. The tables themselves are designed to show a record of what happened in the
past, and generally won't affect the run of any job, with a couple of notable exceptions:

* Restart: Because the ExecutionContext is persisted, removing any entries from this table of jobs that haven't
completed successfully, will prevent them from starting at the correct point if run again. Furthermore, if an
entry for a Joblnstance is removed without having completed successfully, the framework will think that the
job is new, rather than arestart.

* Determining if an instance has been run: The framework will use the meta-data tables to determine if a
particular Joblnstance has been run before, and if it has an exception will be thrown.

Spring Batch 1.0 86

Glossary

Spring Batch Glossary

Batch

Batch Application Style

Batch Processing

Batch Window
Step

Tasklet

Batch Job Type
Driving Query
Item

Logicial Unit
(LUW)

Commit Interva

Partitioning

of

Work

An accumulation of business transactions over time.

Term used to designate batch as an application style in its own right similar to
online, Web or SOA. It has standard elements of input, validation,
transformation of information to business model, business processing and
output. In addition, it requires monitoring at a macro level.

The handling of a batch of many business transactions that have accumulated
over a period of time (e.g. an hour, day, week, month, or year). It is the
application of a process, or set of processes, to many data entities or objectsin
a repetitive and predictable fashion with either no manual element, or a
separate manual element for error processing.

The time frame within which a batch job must complete. This can be
constrained by other systems coming online, other dependent jobs needing to
execute or other factors specific to the batch environment.

It is the main batch task or unit of work controller. It initializes the business
logic, and controls the transaction environment based on commit interval
setting, etc.

An application program created by application developer to process the
business logic for an entire Step.

Job Types describe application of jobs for particular type of processing.
Common areas are interface processing (typically flat files), forms processing
(either for online pdf generation or print formats), report processing.

A driving query identifies the set of work for a job to do; the job then breaks
that work into individual units of work. For instance, identify all financial
transactions that have a status of "pending transmission" and send them to our
partner system. The driving query returns a set of record I1Ds to process; each
record ID then becomes a unit of work. A driving query may involve ajoin (if
the criteria for selection falls across two or more tables) or it may work with a
singletable.

An item represents the smallest ammount of complete data for processing. In
the most simple terms this might mean a line in a file, a row in a database
table, or aparticular element in an XML file.

A batch job iterates through a driving query (or another input source such as a
file) to perform the set of work that the job must accomplish. Each iteration of
work performed isaunit of work.

A set of LUWSs constitute a commit interval.

Splitting a job into multiple threads where each thread is responsible for a
subset of the overall data to be processed. The threads of execution may be

Spring Batch 1.0 87

Glossary

Staging Table

Restartable

Rerunnable

Repeat

Retry

Recover

within the same JVM or they may span JVMs in a clustered environment that
supports workload balancing.

A table that holds temporary datawhileit is being processed.

- ajob that can be executed again and will assume the same identity as when
run initially. In othewords, it is has the same job instance id.

ajob that is restartable and manages it's own state in terms of previous run's
record processing. An example of a rerunnable step is one based on a driving
query. If the driving query can be formed so that it will limit the processed
rows when the job is restarted than it is re-runnable. This is managed by the
application logic. Often times a condition is added to the where statement to
limit the rows returned by the driving query with something like "and
processedFlag != true".

One of the most basic units of batch processing, that defines repeatability
calling a portion of code until it is finished, and while there is no error.
Typically abatch process would be repeatable aslong as there isinput.

Simplifies the execution of operations with retry semantics most frequently
associated with handling transactional output exceptions. Retry is dlightly
different from repeat, rather than continually calling a block of code, retry is
stateful, and continually calls the same block of code with the same input, until
it either succeeds, or some type of retry limit has been exceeded. It is only
generally useful if the operation is non-deterministic meaning that aretry on a
subsequent invocation might succeed because something in the environment
has improved.

Recover operations handle an exception in such a way that a repeat processis
able to continue.

Skip is a recovery strategy often used on file input sources as the strategy for
ignoring bad input records that failed validation.

Spring Batch 1.0 88

	Spring Batch - Reference Documentation
	Table of Contents
	Chapter 1. Spring Batch Introduction
	1.1. Introduction
	1.1.1. Background
	1.1.2. Usage Scenarios
	1.1.3. Spring Batch Architecture

	Chapter 2. The Domain Language of Batch
	2.1. Introduction
	2.2. Batch Application Style Interactions and Services
	2.3. Job Stereotypes
	2.3.1. Job
	2.3.2. JobInstance
	2.3.3. JobParameters
	2.3.4. JobExecution

	2.4. Step Stereotypes
	2.4.1. Step
	2.4.2. StepExecution
	2.4.3. ExecutionContext

	2.5. JobRepository
	2.6. JobLauncher
	2.7. JobLocator
	2.8. Item Reader
	2.9. Item Writer
	2.10. Tasklet

	Chapter 3. ItemReaders and ItemWriters
	3.1. Introduction
	3.2. ItemReader
	3.3. ItemWriter
	3.4. ItemStream
	3.5. Flat Files
	3.5.1. The FieldSet
	3.5.2. FlatFileItemReader
	3.5.2.1. FieldSetMapper
	3.5.2.2. LineTokenizer
	3.5.2.3. Simple Delimited File Reading Example
	3.5.2.4. Mapping fields by name
	3.5.2.5. Automapping FieldSets to Domain Objects
	3.5.2.6. Fixed Length file formats
	3.5.2.7. Multiple record types within a single file

	3.5.3. FlatFileItemWriter
	3.5.3.1. LineAggregator
	3.5.3.2. FieldSetCreator
	3.5.3.3. Simple Delimited File Writing Example
	3.5.3.4. Handling file creation

	3.6. XML Item Readers and Writers
	3.6.1. StaxEventItemReader
	3.6.2. StaxEventItemWriter

	3.7. Creating File Names at Runtime
	3.8. Database
	3.8.1. Cursor Based ItemReaders
	3.8.1.1. JdbcCursorItemReader
	3.8.1.1.1. Additional Properties

	3.8.1.2. HibernateCursorItemReader

	3.8.2. Driving Query Based ItemReaders
	3.8.2.1. KeyCollector
	3.8.2.2. SingleColumnJdbcKeyCollector
	3.8.2.3. Mapping multiple column keys
	3.8.2.4. iBatisKeyCollector

	3.8.3. Database ItemWriters

	3.9. Reusing Existing Services
	3.10. Item Transforming
	3.10.1. The Delegate Pattern and Registering with the Step
	3.10.1.1.

	3.10.2. Chaining ItemTransformers

	3.11. Validating Input
	3.11.1. The Delegate Pattern and Registering with the Step
	3.11.1.1.

	3.12. Creating Custom ItemReaders and ItemWriters
	3.12.1. Custom ItemReader Example
	3.12.1.1. Making the ItemReader transactional
	3.12.1.2. Making the ItemReader restartable

	3.12.2. Custom ItemWriter Example
	3.12.2.1. Making the ItemReader transactional
	3.12.2.2. Making the ItemWriter restartable

	Chapter 4. Configuring and Executing A Job
	4.1. Introduction
	4.2. Run Tier
	4.2.1. Running Jobs from the Command Line
	4.2.1.1. The CommandLineJobRunner
	4.2.1.2. ExitCodes

	4.3. Job Tier
	4.3.1. SimpleJobLauncher
	4.3.1.1. Stopping a Job

	4.3.2. SimpleJobRepository
	4.3.2.1. JobRepositoryFactoryBean
	4.3.2.2. In-Memory Repository
	4.3.2.2.1. Transaction Configuration For the JobRepository
	4.3.2.2.2. Recommendations for Indexing Meta Data Tables

	4.3.3. SimpleJob
	4.3.3.1. Restartability
	4.3.3.2. Intercepting Job execution

	4.3.4. JobFactory and Stateful Components in Steps

	4.4. Application Tier
	4.4.1. ItemOrientedStep
	4.4.1.1. SimpleStepFactoryBean
	4.4.1.2. Configuring a CommitInterval
	4.4.1.3. Configuring a Step for Restart
	4.4.1.3.1. Setting a StartLimit
	4.4.1.3.2. Restarting a completed step
	4.4.1.3.3. Step restart configuration example

	4.4.1.4. Configuring Skip Logic
	4.4.1.5. Configuring Retry Logic
	4.4.1.6. Registering ItemStreams with the Step
	4.4.1.7. Intercepting Step Execution
	4.4.1.7.1. StepExecutionListener
	4.4.1.7.2. ChunkListener
	4.4.1.7.3. ItemReadListener
	4.4.1.7.4. ItemWriteListener

	4.4.2. TaskletStep
	4.4.2.1. TaskletAdapter
	4.4.2.2. Example Tasklet implementation

	4.5. Examples of Customized Business Logic
	4.5.1.
	4.5.2. Logging Item Processing and Failures
	4.5.3. Stopping a Job Manually for Business Reasons
	4.5.4. Adding a Footer Record

	Chapter 5. Repeat
	5.1. RepeatTemplate
	5.1.1. RepeatContext
	5.1.2. ExitStatus

	5.2. Completion Policies
	5.3. Exception Handling
	5.4. Listeners
	5.5. Parallel Processing
	5.6. Declarative Iteration

	Chapter 6. Retry
	6.1. RetryTemplate
	6.1.1. RetryContext

	6.2. Retry Policies
	6.2.1. Stateless Retry
	6.2.2. Stateful Retry
	6.2.2.1. Item processing and stateful retry

	6.3. Backoff Policies
	6.4. Listeners
	6.5. Declarative Retry

	Chapter 7. Unit Testing
	7.1. End To End Testing Batch Jobs
	7.2. Extending Unit Test frameworks

	Appendix A. List of ItemReaders
	A.1. Item Readers
	A.2. Item Writers

	Appendix B. Meta-Data Schema
	B.1. Overview
	B.1.1. Version
	B.1.2. Identity

	B.2. BATCH_JOB_INSTANCE
	B.3. BATCH_JOB_PARAMS
	B.4. BATCH_JOB_EXECUTION
	B.5. BATCH_STEP_EXECUTION
	B.6. BATCH_STEP_EXECUTION_CONTEXT
	B.7. Archiving

	Glossary

