Spring Batch - Reference
Documentation

Version 4.3.0-RC1

Table of Contents

1. Spring Batch Introduction
1.1. Background
1.2. Usage Scenarios
1.3. Spring Batch Architecture
1.4. General Batch Principles and Guidelines
1.5. Batch Processing Strategies
2. WhatOs New in Spring Batch 4.3
3. The Domain Language of Batch
3.1. Job
3.1.1. JobInstance
3.1.2. JobParameters
3.1.3. JobExecution
3.2. Step
3.2.1. StepExecution
3.3. ExecutionContext
3.4. JobRepository
3.5. JobLauncher
3.6. Item Reader
3.7. Item Writer
3.8. Item Processor
3.9. Batch Namespace
4. Configuring and Running a Job
4.1. Configuring a Job
4.1.1. Restartability
4.1.2. Intercepting Job Execution
4.1.3. Inheriting from a Parent Job
4.1.4. JobParametersValidator
4.2. Java Config
4.3. Configuring a JobRepository
4.3.1. Transaction Configuration for the JobRepository
4.3.2. Changing the Table Prefix
4.3.3. In-Memory Repository
4.3.4. Non-standard Database Types in a Repository
4.4. Configuring a JobLauncher
4.5. Running a Job
4.5.1. Running Jobs from the Command Line
The CommandLineJobRunner
ExitCodes

> O P PR

12
13
13
15
15
16
18
19
20
22
23
23
23
23
23
25
25
26
27
28
29
30
31
32
34
35
35
36
38
38
39
40

4.5.2. Running Jobs from within a Web Container
4.6. Advanced Meta-Data Usage
4.6.1. Querying the Repository
4.6.2. JobRegistry
JobRegistryBeanPostProcessor
AutomaticJobRegistrar
4.6.3. JobOperator
4.6.4. JobParametersincrementer
4.6.5. Stopping a Job
4.6.6. Aborting a Job
5. Configuring a Step
5.1. Chunk-oriented Processing
5.1.1. Configuring a Step
5.1.2. Inheriting from a Parent ~ Step
Abstract Step
Merging Lists
5.1.3. The Commit Interval
5.1.4. Configuring a Step for Restart
Setting a Start Limit
Restarting a Completed Step
Step Restart Configuration Example
5.1.5. Configuring Skip Logic
5.1.6. Configuring Retry Logic
5.1.7. Controlling Rollback
Transactional Readers
5.1.8. Transaction Attributes
5.1.9. Registering ItemStreamwith a Step
5.1.10. Intercepting Step Execution
StepExecutionListener
ChunkListener
ltemReadListener
ItemProcessListener
ItemWriteListener
SkipListener
5.2. TaskletStep
5.2.1. TaskletAdapter
5.2.2. Example Tasklet Implementation
5.3. Controlling Step Flow
5.3.1. Sequential Flow
5.3.2. Conditional Flow

Batch Status Versus Exit Status

41
42
44
45
46
46
48
49
51
51
52
52
53
55
55
56
56
57
57
58
59
61
63
64
65
66
67
68
69
70
A1
Z1
72
72
73
{4
74
76
A1
79
81

5.3.3. Configuring for Stop
Ending at a Step
Failing a Step
Stopping a Job at a Given Step
5.3.4. Programmatic Flow Decisions
5.3.5. Split Flows
5.3.6. Externalizing Flow Definitions and Dependencies Between Jobs
5.4. Late Binding of Joband Step Attributes
5.4.1. Step Scope
5.4.2. Job Scope
. temReaders and ItemWriters
6.1. ltemReader
6.2. ltemWriter
6.3. ItemStream
6.4. The Delegate Pattern and Registering with the Step
6.5. Flat Files
6.5.1. The FieldSet
6.5.2. FlatFileltemReader
LineMapper.
LineTokenizer
FieldSetMapper
DefaultLineMapper
Simple Delimited File Reading Example
Mapping Fields by Name
Automapping FieldSets to Domain Objects
Fixed Length File Formats
Multiple Record Types within a Single File
Exception Handling in Flat Files
6.5.3. FlatFileltemWriter
LineAggregator
Simplified File Writing Example
FieldExtractor
Delimited File Writing Example
Fixed Width File Writing Example
Handling File Creation
6.6. XML Item Readers and Writers
6.6.1. StaxEventltemReader
6.6.2. StaxEventltemWriter
6.7. JSON Item Readers And Writers
6.7.1. JsonltemReader.
6.7.2. JsonFileltemWriter

83
84
85
86
86
88
89
91
94
95
98
98
99
99
100
101
101
102
103
104
104
104
105
107
108
108
110
112
114
114
114
115
117
118
120
120
122
125
128
129
130

6.8. Multi-File Input 130 ..

6.9. Database 131. ..
6.9.1. Cursor-based ItemReaderimplementations 131
JdbcCursorltemReader. 132. .
HibernateCursorltemReader 136. .
StoredProcedureltemReader. 137 .
6.9.2. Paging ItemReaderlmplementations 142
JdbcPagingltemReader 142 . .
JpaPagingltemReader 144 ..
6.9.3. Database ItemWHriters 145. .
6.10. Reusing EXisting Services 147. .
6.11. Preventing State Persistence 148 .
6.12. Creating Custom ItemReaders and ItemWriters 149
6.12.1. Custom ltemReaderExample 150.
Making the ItemReaderRestartable 150.
6.12.2. Custom ltemWriter Example 152 .
Making the ItemWriter Restartable 153.
6.13. ltem Reader and Writer Implementations 153
6.13.1. DeCOrators A53 ..
SynchronizedltemStreamReader. 153 .
SingleltemPeekableltemReader 153 .
SynchronizedltemStreamWriter 154 .
MultiResourceltemWIIter 154. .
ClassifierCompositeltemWriter 154 .
ClassifierCompositeltemProcessor 154.
6.13.2. Messaging Readers And Writers 154,
AmgpltemReader. 454 ..
AmgpltemWIIter. . . . 455 ..
JmsltemReader 155 . .
IMSHEMWIITET 155, ..
KafkaltemReader. A55 ..
KafkaltemWriter A55 ..
6.13.3. Database Readers 155. .
NeodjltemReader. A55 ..
MongoltemReader. 156 . .
HibernateCursorltemReader 156. .
HibernatePagingltemReader. 156. .
RepositoryltemReader 156. .
6.13.4. Database WIIters 156. .
NeodjlitemWIIter 156 . .

MongoltemMWIILEr. 156 . .

RepositoryltemWriter
HibernateltemWriter

JdbcBatchltemWriter
JpaltemWriter
GemfireltemWriter

6.13.5. Specialized Readers
LdifReader
MappingLdifReader
AvroltemReader

6.13.6. Specialized Writers
SimpleMailMessageltemWriter
AvroltemWriter

6.13.7. Specialized Processors
ScriptltemProcessor

. Iltem processing

7.1. Chaining ItemProcessors

7.2. Filtering Records

7.3. Validating Input

7.4. Fault Tolerance

. Scaling and Parallel Processing

8.1. Multi-threaded Step

8.2. Parallel Steps

8.3. Remote Chunking

8.4. Partitioning
8.4.1. PartitionHandler
8.4.2. Partitioner
8.4.3. Binding Input Data to Steps

. Repeat

9.1. RepeatTemplate
9.1.1. RepeatContext
9.1.2. RepeatStatus

9.2. Completion Policies

9.3. Exception Handling

9.4. Listeners

9.5. Parallel Processing

9.6. Declarative Iteration

10. Retry

10.1. RetryTemplate
10.1.1. RetryContext
10.1.2. RecoveryCallback
10.1.3. Stateless Retry

157
457

457
457
457
457
157
457
158
158
158
158
158
158
159
161
164
165
167
168
168
170
172
173
475
176
477
179
179
180
180
181
181
181
182
182
184
184
185
185
186

10.1.4. Stateful Retry 186

10.2. Retry Policies 187
10.3. Backoff Policies 188
10.4. Listeners 188
10.5. Declarative Retry 189
11. Unit Testing 191
11.1. Creating a Unit Test Class 191
11.2. End-To-End Testing of Batch Jobs 191
11.3. Testing Individual Steps 193
11.4. Testing Step-Scoped Components 193
11.5. Validating Output Files 195
11.6. Mocking Domain Objects 195
12. Common Batch Patterns 197
12.1. Logging Item Processing and Failures 197
12.2. Stopping a Job Manually for Business Reasons 198
12.3. Adding a Footer Record 200
12.3.1. Writing a Summary Footer 201
12.4. Driving Query Based ItemReaders 203
12.5. Multi-Line Records 204
12.6. Executing System Commands 208
12.7. Handling Step Completion When No Input is Found 209
12.8. Passing Data to Future Steps 210
13. JSR-352 Support 213
13.1. General Notes about Spring Batch and JSR-352 213
13.2. Setup 213
13.2.1. Application Contexts 213
13.2.2. Launching a JSR-352 based job 213
13.3. Dependency Injection 215
13.4. Batch Properties 217
13.4.1. Property Support 217
13.4.2. @BatchProperty annotation 217
13.4.3. Property Substitution 218
13.5. Processing Models 218
13.5.1. Item based processing 218
13.5.2. Custom checkpointing 219
13.6. Running a job 219
13.7. Contexts 220
13.8. Step Flow 220
13.9. Scaling a JSR-352 batch job 221
13.9.1. Partitioning 221

13.10. Testing 222

14. Spring Batch Integration
14.1. Spring Batch Integration Introduction
14.1.1. Namespace Support
14.1.2. Launching Batch Jobs through Messages
Transforming a file into a JobLaunchRequest
The JobExecution Response
Spring Batch Integration Configuration
Example ItemReader Configuration
14.2. Available Attributes of the Job-Launching Gateway
14.3. Sub-Elements

14.3.1. Providing Feedback with Informational Messages

14.3.2. Asynchronous Processors
14.3.3. Externalizing Batch Process Execution
Remote Chunking
Remote Partitioning
15. Monitoring and metrics
15.1. Built-in metrics
15.2. Custom metrics
Appendix A: List of temReaders and ItemWriters
A.l. Item Readers
A.2. Item Writers
Appendix B: Meta-Data Schema
B.1. Overview
B.1.1. Example DDL Scripts
B.1.2. Migration DDL Scripts
B.1.3. Version
B.1.4. Identity
B.2. BATCH_JOB_INSTANCE
B.3.BATCH_JOB_EXECUTION_PARAMS
B.4.BATCH_JOB_EXECUTION
B.5.BATCH_STEP_EXECUTION
B.6. BATCH_JOB_EXECUTION_CONTEXT
B.7.BATCH_STEP_EXECUTION_CONTEXT
B.8. Archiving
B.9. International and Multi-byte Characters
B.10. Recommendations for Indexing Meta Data Tables
Appendix C: Batch Processing and Transactions
C.1. Simple Batching with No Retry
C.2. Simple Stateless Retry
C.3. Typical Repeat-Retry Pattern

C.4. Asynchronous Chunk Processing

223
223
223
224
225
226
227
228
229
230
230
233
234
234
243
251
251
251
253
253
254
257
257
257
257
258
258
258
259
260
261
262
263
263
264
264
265
265
265
266
267

C.5. Asynchronous Item Processing
C.6. Interactions Between Batching and Transaction Propagation
C.7. Special Case: Transactions with Orthogonal Resources
C.8. Stateless Retry Cannot Recover

Appendix D: Glossary
Spring Batch Glossary

267
268
269
270
272
272

Chapter 1. Spring Batch Introduction

Many applications within the enterprise domain require bulk processing to perform business
operations in mission critical environments. These business operations include:

¥ Automated, complex processing of large volumes of information that is most efficiently
processed without user interaction. These operations typically include time-based events (such
as month-end calculations, notices, or correspondence).

¥ Periodic application of complex business rules processed repetitively across very large data sets
(for example, insurance benefit determination or rate adjustments).

¥ Integration of information that is received from internal and external systems that typically
requires formatting, validation, and processing in a transactional manner into the system of
record. Batch processing is used to process billions of transactions every day for enterprises.

Spring Batch is a lightweight, comprehensive batch framework designed to enable the development

of robust batch applications vital for the daily operations of enterprise systems. Spring Batch builds
upon the characteristics of the Spring Framework that people have come to expect (productivity,
POJO-based development approach, and general ease of use), while making it easy for developers to
access and leverage more advance enterprise services when necessary. Spring Batch is not a
scheduling framework. There are many good enterprise schedulers (such as Quartz, Tivoli, Control-
M, etc.) available in both the commercial and open source spaces. It is intended to work in
conjunction with a scheduler, not replace a scheduler.

Spring Batch provides reusable functions that are essential in processing large volumes of records,
including logging/tracing, transaction management, job processing statistics, job restart, skip, and
resource management. It also provides more advanced technical services and features that enable
extremely high-volume and high performance batch jobs through optimization and partitioning
techniques. Spring Batch can be used in both simple use cases (such as reading a file into a database
or running a stored procedure) as well as complex, high volume use cases (such as moving high
volumes of data between databases, transforming it, and so on). High-volume batch jobs can
leverage the framework in a highly scalable manner to process significant volumes of information.

1.1. Background

While open source software projects and associated communities have focused greater attention on
web-based and microservices-based architecture frameworks, there has been a notable lack of
focus on reusable architecture frameworks to accommodate Java-based batch processing needs,
despite continued needs to handle such processing within enterprise IT environments. The lack of a
standard, reusable batch architecture has resulted in the proliferation of many one-off, in-house
solutions developed within client enterprise IT functions.

SpringSource (now Pivotal) and Accenture collaborated to change this. AccentureOs hands-on
industry and technical experience in implementing batch architectures, SpringSourceOs depth of
technical experience, and SpringOs proven programming model together made a natural and
powerful partnership to create high-quality, market-relevant software aimed at filling an important

gap in enterprise Java. Both companies worked with a number of clients who were solving similar
problems by developing Spring-based batch architecture solutions. This provided some useful

additional detail and real-life constraints that helped to ensure the solution can be applied to the
real-world problems posed by clients.

Accenture contributed previously proprietary batch processing architecture frameworks to the
Spring Batch project, along with committer resources to drive support, enhancements, and the
existing feature set. AccentureOs contribution was based upon decades of experience in building
batch architectures with the last several generations of platforms: COBOL/Mainframe, C++/Unix,
and now Java/anywhere.

The collaborative effort between Accenture and SpringSource aimed to promote the
standardization of software processing approaches, frameworks, and tools that can be consistently
leveraged by enterprise users when creating batch applications. Companies and government
agencies desiring to deliver standard, proven solutions to their enterprise IT environments can
benefit from Spring Batch.

1.2. Usage Scenarios

A typical batch program generally:

¥ Reads a large number of records from a database, file, or queue.

¥ Processes the data in some fashion.

¥ Writes back data in a modified form.
Spring Batch automates this basic batch iteration, providing the capability to process similar
transactions as a set, typically in an offline environment without any user interaction. Batch jobs

are part of most IT projects, and Spring Batch is the only open source framework that provides a
robust, enterprise-scale solution.

Business Scenarios

¥ Commit batch process periodically

¥ Concurrent batch processing: parallel processing of a job

¥ Staged, enterprise message-driven processing

¥ Massively parallel batch processing

¥ Manual or scheduled restart after failure

¥ Sequential processing of dependent steps (with extensions to workflow-driven batches)
¥ Partial processing: skip records (for example, on rollback)

¥ Whole-batch transaction, for cases with a small batch size or existing stored procedures/scripts
Technical Objectives

¥ Batch developers use the Spring programming model: Concentrate on business logic and let the
framework take care of infrastructure.

¥ Clear separation of concerns between the infrastructure, the batch execution environment, and
the batch application.

¥ Provide common, core execution services as interfaces that all projects can implement.

¥ Provide simple and default implementations of the core execution interfaces that can be used
‘out of the box'.

¥ Easy to configure, customize, and extend services, by leveraging the spring framework in all
layers.

¥ All existing core services should be easy to replace or extend, without any impact to the
infrastructure layer.

¥ Provide a simple deployment model, with the architecture JARs completely separate from the
application, built using Maven.

1.3. Spring Batch Architecture

Spring Batch is designed with extensibility and a diverse group of end users in mind. The figure
below shows the layered architecture that supports the extensibility and ease of use for end-user
developers.

Batch Infrastructure

Figure 1. Spring Batch Layered Architecture

This layered architecture highlights three major high-level components: Application, Core, and
Infrastructure. The application contains all batch jobs and custom code written by developers using
Spring Batch. The Batch Core contains the core runtime classes necessary to launch and control a
batch job. It includes implementations for JobLauncher Job, and Step. Both Application and Core are
built on top of a common infrastructure. This infrastructure contains common readers and writers

and services (such as the RetryTemplate), which are used both by application developers(readers
and writers, such as ItemReaderand ItemWriter) and the core framework itself (retry, which is its
own library).

1.4. General Batch Principles and Guidelines

The following key principles, guidelines, and general considerations should be considered when
building a batch solution.

¥ Remember that a batch architecture typically affects on-line architecture and vice versa. Design
with both architectures and environments in mind using common building blocks when
possible.

¥ Simplify as much as possible and avoid building complex logical structures in single batch
applications.

¥ Keep the processing and storage of data physically close together (in other words, keep your
data where your processing occurs).

¥ Minimize system resource use, especially 1/0. Perform as many operations as possible in
internal memory.

¥ Review application I/O (analyze SQL statements) to ensure that unnecessary physical I/O is
avoided. In particular, the following four common flaws need to be looked for:

I Reading data for every transaction when the data could be read once and cached or kept in
the working storage.

I Rereading data for a transaction where the data was read earlier in the same transaction.
! Causing unnecessary table or index scans.
I Not specifying key values in the WHERE clause of an SQL statement.

¥ Do not do things twice in a batch run. For instance, if you need data summarization for
reporting purposes, you should (if possible) increment stored totals when data is being initially
processed, so your reporting application does not have to reprocess the same data.

¥ Allocate enough memory at the beginning of a batch application to avoid time-consuming
reallocation during the process.

¥ Always assume the worst with regard to data integrity. Insert adequate checks and record
validation to maintain data integrity.

¥ Implement checksums for internal validation where possible. For example, flat files should
have a trailer record telling the total of records in the file and an aggregate of the key fields.

¥ Plan and execute stress tests as early as possible in a production-like environment with realistic
data volumes.

¥ In large batch systems, backups can be challenging, especially if the system is running
concurrent with on-line on a 24-7 basis. Database backups are typically well taken care of in the
on-line design, but file backups should be considered to be just as important. If the system
depends on flat files, file backup procedures should not only be in place and documented but be
regularly tested as well.

1.5. Batch Processing Strategies

To help design and implement batch systems, basic batch application building blocks and patterns
should be provided to the designers and programmers in the form of sample structure charts and

code shells. When starting to design a batch job, the business logic should be decomposed into a
series of steps that can be implemented using the following standard building blocks:

¥ Conversion Applications: For each type of file supplied by or generated to an external system, a
conversion application must be created to convert the transaction records supplied into a
standard format required for processing. This type of batch application can partly or entirely
consist of translation utility modules (see Basic Batch Services).

¥ Validation Applications: Validation applications ensure that all input/output records are correct
and consistent. Validation is typically based on file headers and trailers, checksums and
validation algorithms, and record level cross-checks.

¥ Extract Applications: An application that reads a set of records from a database or input file,
selects records based on predefined rules, and writes the records to an output file.

¥ Extract/Update Applications: An application that reads records from a database or an input file
and makes changes to a database or an output file driven by the data found in each input
record.

¥ Processing and Updating Applications: An application that performs processing on input
transactions from an extract or a validation application. The processing usually involves
reading a database to obtain data required for processing, potentially updating the database
and creating records for output processing.

¥ Output/Format Applications: Applications that read an input file, restructure data from this
record according to a standard format, and produce an output file for printing or transmission
to another program or system.

Additionally, a basic application shell should be provided for business logic that cannot be built
using the previously mentioned building blocks.

In addition to the main building blocks, each application may use one or more of standard utility
steps, such as:

¥ Sort: A program that reads an input file and produces an output file where records have been

re-sequenced according to a sort key field in the records. Sorts are usually performed by
standard system utilities.

¥ Split: A program that reads a single input file and writes each record to one of several output

files based on a field value. Splits can be tailored or performed by parameter-driven standard
system utilities.

¥ Merge: A program that reads records from multiple input files and produces one output file
with combined data from the input files. Merges can be tailored or performed by parameter-
driven standard system utilities.

Batch applications can additionally be categorized by their input source:

¥ Database-driven applications are driven by rows or values retrieved from the database.
¥ File-driven applications are driven by records or values retrieved from a file.

¥ Message-driven applications are driven by messages retrieved from a message queue.

The foundation of any batch system is the processing strategy. Factors affecting the selection of the

strategy include: estimated batch system volume, concurrency with on-line systems or with other
batch systems, available batch windows. (Note that, with more enterprises wanting to be up and
running 24x7, clear batch windows are disappearing).

Typical processing options for batch are (in increasing order of implementation complexity):

¥ Normal processing during a batch window in off-line mode.

¥ Concurrent batch or on-line processing.

¥ Parallel processing of many different batch runs or jobs at the same time.

¥ Partitioning (processing of many instances of the same job at the same time).

¥ A combination of the preceding options.
Some or all of these options may be supported by a commercial scheduler.

The following section discusses these processing options in more detail. It is important to notice
that, as a rule of thumb, the commit and locking strategy adopted by batch processes depends on
the type of processing performed and that the on-line locking strategy should also use the same
principles. Therefore, the batch architecture cannot be simply an afterthought when designing an
overall architecture.

The locking strategy can be to use only normal database locks or to implement an additional
custom locking service in the architecture. The locking service would track database locking (for
example, by storing the necessary information in a dedicated db-table) and give or deny
permissions to the application programs requesting a db operation. Retry logic could also be
implemented by this architecture to avoid aborting a batch job in case of a lock situation.

1. Normal processing in a batch window For simple batch processes running in a separate batch
window where the data being updated is not required by on-line users or other batch processes,
concurrency is not an issue and a single commit can be done at the end of the batch run.

In most cases, a more robust approach is more appropriate. Keep in mind that batch systems have a
tendency to grow as time goes by, both in terms of complexity and the data volumes they handle. If
no locking strategy is in place and the system still relies on a single commit point, modifying the
batch programs can be painful. Therefore, even with the simplest batch systems, consider the need
for commit logic for restart-recovery options as well as the information concerning the more
complex cases described later in this section.

2. Concurrent batch or on-line processing Batch applications processing data that can be
simultaneously updated by on-line users should not lock any data (either in the database or in files)
which could be required by on-line users for more than a few seconds. Also, updates should be
committed to the database at the end of every few transactions. This minimizes the portion of data

that is unavailable to other processes and the elapsed time the data is unavailable.

Another option to minimize physical locking is to have logical row-level locking implemented with
either an Optimistic Locking Pattern or a Pessimistic Locking Pattern.

¥ Optimistic locking assumes a low likelihood of record contention. It typically means inserting a
timestamp column in each database table used concurrently by both batch and on-line

processing. When an application fetches a row for processing, it also fetches the timestamp. As
the application then tries to update the processed row, the update uses the original timestamp

in the WHERE clause. If the timestamp matches, the data and the timestamp are updated. If the
timestamp does not match, this indicates that another application has updated the same row

between the fetch and the update attempt. Therefore, the update cannot be performed.

¥ Pessimistic locking is any locking strategy that assumes there is a high likelihood of record
contention and therefore either a physical or logical lock needs to be obtained at retrieval time.
One type of pessimistic logical locking uses a dedicated lock-column in the database table. When
an application retrieves the row for update, it sets a flag in the lock column. With the flag in
place, other applications attempting to retrieve the same row logically fail. When the
application that sets the flag updates the row, it also clears the flag, enabling the row to be
retrieved by other applications. Please note that the integrity of data must be maintained also
between the initial fetch and the setting of the flag, for example by using db locks (such as
SELECT FOR UPDATNote also that this method suffers from the same downside as physical
locking except that it is somewhat easier to manage building a time-out mechanism that gets the
lock released if the user goes to lunch while the record is locked.

These patterns are not necessarily suitable for batch processing, but they might be used for
concurrent batch and on-line processing (such as in cases where the database does not support
row-level locking). As a general rule, optimistic locking is more suitable for on-line applications,
while pessimistic locking is more suitable for batch applications. Whenever logical locking is used,
the same scheme must be used for all applications accessing data entities protected by logical locks.

Note that both of these solutions only address locking a single record. Often, we may need to lock a
logically related group of records. With physical locks, you have to manage these very carefully in
order to avoid potential deadlocks. With logical locks, it is usually best to build a logical lock
manager that understands the logical record groups you want to protect and that can ensure that
locks are coherent and non-deadlocking. This logical lock manager usually uses its own tables for
lock management, contention reporting, time-out mechanism, and other concerns.

3. Parallel Processing Parallel processing allows multiple batch runs or jobs to run in parallel to
minimize the total elapsed batch processing time. This is not a problem as long as the jobs are not
sharing the same files, db-tables, or index spaces. If they do, this service should be implemented
using partitioned data. Another option is to build an architecture module for maintaining
interdependencies by using a control table. A control table should contain a row for each shared
resource and whether it is in use by an application or not. The batch architecture or the application

in a parallel job would then retrieve information from that table to determine if it can get access to
the resource it needs or not.

If the data access is not a problem, parallel processing can be implemented through the use of
additional threads to process in parallel. In the mainframe environment, parallel job classes have
traditionally been used, in order to ensure adequate CPU time for all the processes. Regardless, the
solution has to be robust enough to ensure time slices for all the running processes.

Other key issues in parallel processing include load balancing and the availability of general system
resources such as files, database buffer pools, and so on. Also note that the control table itself can
easily become a critical resource.

4. Partitioning Using partitioning allows multiple versions of large batch applications to run

concurrently. The purpose of this is to reduce the elapsed time required to process long batch jobs.
Processes that can be successfully partitioned are those where the input file can be split and/or the
main database tables partitioned to allow the application to run against different sets of data.

In addition, processes which are partitioned must be designed to only process their assigned data
set. A partitioning architecture has to be closely tied to the database design and the database
partitioning strategy. Note that database partitioning does not necessarily mean physical
partitioning of the database, although in most cases this is advisable. The following picture
illustrates the partitioning approach:

Split Process Partitioned Merge Process
Process

- - -

Figure 2. Partitioned Process

The architecture should be flexible enough to allow dynamic configuration of the number of
partitions. Both automatic and user controlled configuration should be considered. Automatic
configuration may be based on parameters such as the input file size and the number of input
records.

4.1 Partitioning Approaches Selecting a partitioning approach has to be done on a case-by-case
basis. The following list describes some of the possible partitioning approaches:

1. Fixed and Even Break-Up of Record Set

This involves breaking the input record set into an even number of portions (for example, 10,
where each portion has exactly 1/10th of the entire record set). Each portion is then processed by
one instance of the batch/extract application.

In order to use this approach, preprocessing is required to split the record set up. The result of this
split will be a lower and upper bound placement number which can be used as input to the
batch/extract application in order to restrict its processing to only its portion.

Preprocessing could be a large overhead, as it has to calculate and determine the bounds of each
portion of the record set.

2. Break up by a Key Column

This involves breaking up the input record set by a key column, such as a location code, and
assigning data from each key to a batch instance. In order to achieve this, column values can be
either:

¥ Assigned to a batch instance by a partitioning table (described later in this section).

¥ Assigned to a batch instance by a portion of the value (such as 0000-0999, 1000 - 1999, and so
on).

Under option 1, adding new values means a manual reconfiguration of the batch/extract to ensure
that the new value is added to a particular instance.

Under option 2, this ensures that all values are covered via an instance of the batch job. However,
the number of values processed by one instance is dependent on the distribution of column values
(there may be a large number of locations in the 0000-0999 range, and few in the 1000-1999 range).
Under this option, the data range should be designed with partitioning in mind.

Under both options, the optimal even distribution of records to batch instances cannot be realized.
There is no dynamic configuration of the number of batch instances used.

3. Breakup by Views

This approach is basically breakup by a key column but on the database level. It involves breaking
up the record set into views. These views are used by each instance of the batch application during
its processing. The breakup is done by grouping the data.

With this option, each instance of a batch application has to be configured to hit a particular view

(instead of the master table). Also, with the addition of new data values, this new group of data has
to be included into a view. There is no dynamic configuration capability, as a change in the number

of instances results in a change to the views.

4. Addition of a Processing Indicator

This involves the addition of a new column to the input table, which acts as an indicator. As a
preprocessing step, all indicators are marked as being non-processed. During the record fetch stage
of the batch application, records are read on the condition that that record is marked as being non-
processed, and once they are read (with lock), they are marked as being in processing. When that
record is completed, the indicator is updated to either complete or error. Many instances of a batch
application can be started without a change, as the additional column ensures that a record is only
processed once.

With this option, I/O on the table increases dynamically. In the case of an updating batch
application, this impact is reduced, as a write must occur anyway.

5. Extract Table to a Flat File

This involves the extraction of the table into a file. This file can then be split into multiple segments
and used as input to the batch instances.

With this option, the additional overhead of extracting the table into a file and splitting it may
cancel out the effect of multi-partitioning. Dynamic configuration can be achieved by changing the
file splitting script.

6. Use of a Hashing Column

This scheme involves the addition of a hash column (key/index) to the database tables used to

retrieve the driver record. This hash column has an indicator to determine which instance of the
batch application processes this particular row. For example, if there are three batch instances to
be started, then an indicator of ‘A" marks a row for processing by instance 1, an indicator of 'B'
marks a row for processing by instance 2, and an indicator of 'C' marks a row for processing by
instance 3.

The procedure used to retrieve the records would then have an additional WHERtause to select all
rows marked by a particular indicator. The inserts in this table would involve the addition of the
marker field, which would be defaulted to one of the instances (such as 'A).

A simple batch application would be used to update the indicators, such as to redistribute the load
between the different instances. When a sufficiently large number of new rows have been added,
this batch can be run (anytime, except in the batch window) to redistribute the new rows to other

instances.

Additional instances of the batch application only require the running of the batch application as
described in the preceding paragraphs to redistribute the indicators to work with a new number of
instances.

4.2 Database and Application Design Principles

An architecture that supports multi-partitioned applications which run against partitioned
database tables using the key column approach should include a central partition repository for
storing partition parameters. This provides flexibility and ensures maintainability. The repository
generally consists of a single table, known as the partition table.

Information stored in the partition table is static and, in general, should be maintained by the DBA.
The table should consist of one row of information for each partition of a multi-partitioned
application. The table should have columns for Program ID Code, Partition Number (logical ID of
the partition), Low Value of the db key column for this partition, and High Value of the db key
column for this partition.

On program start-up, the program id and partition number should be passed to the application
from the architecture (specifically, from the Control Processing Tasklet). If a key column approach

is used, these variables are used to read the partition table in order to determine what range of
data the application is to process. In addition the partition number must be used throughout the
processing to:

¥ Add to the output files/database updates in order for the merge process to work properly.

¥ Report normal processing to the batch log and any errors to the architecture error handler.
4.3 Minimizing Deadlocks

When applications run in parallel or are partitioned, contention in database resources and
deadlocks may occur. It is critical that the database design team eliminates potential contention
situations as much as possible as part of the database design.

Also, the developers must ensure that the database index tables are designed with deadlock
prevention and performance in mind.

10

Deadlocks or hot spots often occur in administration or architecture tables, such as log tables,
control tables, and lock tables. The implications of these should be taken into account as well. A
realistic stress test is crucial for identifying the possible bottlenecks in the architecture.

To minimize the impact of conflicts on data, the architecture should provide services such as wait-
and-retry intervals when attaching to a database or when encountering a deadlock. This means a
built-in mechanism to react to certain database return codes and, instead of issuing an immediate
error, waiting a predetermined amount of time and retrying the database operation.

4.4 Parameter Passing and Validation

The partition architecture should be relatively transparent to application developers. The
architecture should perform all tasks associated with running the application in a partitioned
mode, including:

¥ Retrieving partition parameters before application start-up.

¥ Validating partition parameters before application start-up.

¥ Passing parameters to the application at start-up.
The validation should include checks to ensure that:

¥ The application has sufficient partitions to cover the whole data range.

¥ There are no gaps between partitions.

If the database is partitioned, some additional validation may be necessary to ensure that a single
partition does not span database partitions.

Also, the architecture should take into consideration the consolidation of partitions. Key questions
include:

¥ Must all the partitions be finished before going into the next job step?

¥ What happens if one of the partitions aborts?

11

Chapter 2. WhatOs New in Spring Batch 4.3

TDB

12

Chapter 3. The Domain Language of Batch

To any experienced batch architect, the overall concepts of batch processing used in Spring Batch
should be familiar and comfortable. There are "Jobs" and "Steps" and developer-supplied
processing units called ItemReader and ItemWriter . However, because of the Spring patterns,
operations, templates, callbacks, and idioms, there are opportunities for the following:

¥ Significant improvement in adherence to a clear separation of concerns.
¥ Clearly delineated architectural layers and services provided as interfaces.

¥ Simple and default implementations that allow for quick adoption and ease of use out-of-the-
box.

¥ Significantly enhanced extensibility.

The following diagram is a simplified version of the batch reference architecture that has been
used for decades. It provides an overview of the components that make up the domain language of
batch processing. This architecture framework is a blueprint that has been proven through decades

of implementations on the last several generations of platforms (COBOL/Mainframe, C/Unix, and
now Java/anywhere). JCL and COBOL developers are likely to be as comfortable with the concepts
as C, C#, and Java developers. Spring Batch provides a physical implementation of the layers,
components, and technical services commonly found in the robust, maintainable systems that are
used to address the creation of simple to complex batch applications, with the infrastructure and
extensions to address very complex processing needs.

ItemReader

ItemWriter

Figure 3. Batch Stereotypes

The preceding diagram highlights the key concepts that make up the domain language of Spring
Batch. A Job has one to many steps, each of which has exactly one ItemReader, one ItemProcessor,
and one ItemWriter . A job needs to be launched (with JobLaunche), and metadata about the
currently running process needs to be stored (in JobRepository).

3.1. Job

This section describes stereotypes relating to the concept of a batch job. A Job is an entity that
encapsulates an entire batch process. As is common with other Spring projects, a Job is wired
together with either an XML configuration file or Java-based configuration. This configuration may

be referred to as the "job configuration”. However, Job is just the top of an overall hierarchy, as
shown in the following diagram:

13

_ / The EndeDay Job
\
Joblnstance

\ \ The EndOfDay Job
*

for 2007/05/05

The first attempt at
JobExecution EndOfDay Job
for 2007/05/05

Figure 4. Job Hierarchy

In Spring Batch, a Job is simply a container for Step instances. It combines multiple steps that
belong logically together in a flow and allows for configuration of properties global to all steps,
such as restartability. The job configuration contains:

¥ The simple name of the job.
¥ Definition and ordering of ~ Step instances.

¥ Whether or not the job is restartable.

Spring Batch provides a default implementation of the Job interface in the form of the SimpleJob
class, which creates some standard functionality on top of Job. When using Java-based
configuration, a collection of builders are made available for the instantiation of a Job, as shown in

the following example:

@Bean

public Job footballJob () {

return this . jobBuilderFactory . get("footballJob ")
. start (playerLoad())
. next(gamelLoad)
. next(playerSummarization())

.end)
. build ();

=~ > [T > [T [y [mp

However, when using XML configuration, the batch namespace abstracts away the need to
instantiate it directly. Instead, the <job> tag can be used as shown in the following example:

<job id ="footballJob ">

E <step id ="playerload " next="gamelodt>

E <step id ="gamelodd next="playerSummarization" />
E <step id ="playerSummarization" />

</job>

14

3.1.1. Joblnstance

A Joblinstance refers to the concept of a logical job run. Consider a batch job that should be run once

at the end of the day, such as the 'EndOfDay’ Job from the preceding diagram. There is one
'EndOfDay' job, but each individual run of the Job must be tracked separately. In the case of this job,
there is one logical Joblnstance per day. For example, there is a January 1st run, a January 2nd run,
and so on. If the January 1st run fails the first time and is run again the next day, it is still the
January 1st run. (Usually, this corresponds with the data it is processing as well, meaning the
January 1st run processes data for January 1st). Therefore, each Joblnstance can have multiple
executions (JobExecution is discussed in more detail later in this chapter), and only one Joblnstance
corresponding to a particular ~ Job and identifying JobParameterscan run at a given time.

The definition of a Joblnstance has absolutely no bearing on the data to be loaded. It is entirely up

to the ItemReaderimplementation to determine how data is loaded. For example, in the EndOfDay
scenario, there may be a column on the data that indicates the 'effective date' or 'schedule date' to
which the data belongs. So, the January 1st run would load only data from the 1st, and the January

2nd run would use only data from the 2nd. Because this determination is likely to be a business
decision, it is left up to the ItemReaderto decide. However, using the same Joblnstance determines
whether or not the 'state’ (that is, the ExecutionContext, which is discussed later in this chapter)
from previous executions is used. Using a new Joblnstance means 'start from the beginning’, and
using an existing instance generally means 'start from where you left off'.

3.1.2. JobhParameters

Having discussed Joblnstance and how it differs from Job, the natural question to ask is: "How is

one Joblinstance distinguished from another?" The answer is: JobParameters A JobParametersobject
holds a set of parameters used to start a batch job. They can be used for identification or even as
reference data during the run, as shown in the following image:

/ The EndOfDay Job
_ schedule.date = 2007/05/05
\ /

Jobinstance

\ \ The EndOfDay Job
*

for 2007/05/05

The first attempt at
JobE i EndOfDay Job
for 2007/05/05

Figure 5. Job Parameters

In the preceding example, where there are two instances, one for January 1st, and another for
January 2nd, there is really only one Job, but it has two JobParameterobjects: one that was started
with a job parameter of 01-01-2017 and another that was started with a parameter of 01-02-2017.
Thus, the contract can be defined as: Joblnstance = Job + identifying JobParameters This allows a
developer to effectively control how a Joblnstance is defined, since they control what parameters
are passed in.

15

Not all job parameters are required to contribute to the identification of a
Jobinstance. By default, they do so. However, the framework also allows the
submission of a Job with parameters that do not contribute to the identity of a
Joblnstance.

3.1.3. JobExecution

A JobExecution refers to the technical concept of a single attempt to run a Job. An execution may

end in failure or success, but the Joblnstance corresponding to a given execution is not considered

to be complete unless the execution completes successfully. Using the EndOfDay Job described
previously as an example, consider a Joblnstance for 01-01-2017 that failed the first time it was run.

If it is run again with the same identifying job parameters as the first run (01-01-2017), a new
JobExecution is created. However, there is still only one Joblnstance.

A Job defines what a job is and how it is to be executed, and a Joblinstance is a purely organizational
object to group executions together, primarily to enable correct restart semantics. A JobExecution,
however, is the primary storage mechanism for what actually happened during a run and contains

many more properties that must be controlled and persisted, as shown in the following table:

Table 1. JobExecution Properties
Property Definition

Status A BatchStatus object that indicates the status of
the execution. While running, it is
BatchStatus#STARTEL it fails, it is
BatchStatus#FAILEDIf it finishes successfully, it is
BatchStatus#COMPLETED

startTime A java.util.Date representing the current
system time when the execution was started.
This field is empty if the job has yet to start.

endTime A java.util.Date representing the current
system time when the execution finished,
regardless of whether or not it was successful.
The field is empty if the job has yet to finish.

exitStatus The ExitStatus , indicating the result of the run.
It is most important, because it contains an exit
code that is returned to the caller. See chapter 5
for more details. The field is empty if the job has
yet to finish.

createTime A java.util.Date representing the current
system time when the JobExecution was first
persisted. The job may not have been started yet
(and thus has no start time), but it always has a
createTime, which is required by the framework
for managing job level ExecutionContexts.

16

lastUpdated A java.util.Date representing the last time a
JobExecution was persisted. This field is empty if
the job has yet to start.

executionContext The "property bag" containing any user data that
needs to be persisted between executions.

failureExceptions The list of exceptions encountered during the
execution of a Job. These can be useful if more
than one exception is encountered during the
failure of a Job.

These properties are important because they are persisted and can be used to completely
determine the status of an execution. For example, if the EndOfDay job for 01-01 is executed at 9:00
PM and fails at 9:30, the following entries are made in the batch metadata tables:

Table 2. BATCH_JOB_INSTANCE
JOB_INST_ID JOB_NAME
1 EndOfDayJob

Table 3. BATCH_JOB_EXECUTION_PARAMS

JOB_EXECUTION_I TYPE_CD KEY_NAME DATE_VAL IDENTIFYING
D
1 DATE schedule.Date 2017-01-01 TRUE

Table 4. BATCH_JOB_EXECUTION
JOB_EXEC_ID JOB_INST_ID START_TIME END_TIME STATUS
1 1 2017-01-01 21:00 2017-01-01 21:30 FAILED

Column names may have been abbreviated or removed for the sake of clarity and
formatting.

Now that the job has failed, assume that it took the entire night for the problem to be determined,

so that the 'batch window' is now closed. Further assuming that the window starts at 9:00 PM, the

job is kicked off again for 01-01, starting where it left off and completing successfully at 9:30.
Because it is now the next day, the 01-02 job must be run as well, and it is kicked off just afterwards

at 9:31 and completes in its normal one hour time at 10:30. There is no requirement that one
Jobinstance be kicked off after another, unless there is potential for the two jobs to attempt to
access the same data, causing issues with locking at the database level. It is entirely up to the
scheduler to determine when a Job should be run. Since they are separate Joblnstances, Spring
Batch makes no attempt to stop them from being run concurrently. (Attempting to run the same
Jobinstance while another is already running results in a JobExecutionAlreadyRunningException
being thrown). There should now be an extra entry in both the Joblnstance and JobParameterstables
and two extra entries in the JobExecution table, as shown in the following tables:

Table 5. BATCH_JOB_INSTANCE

17

JOB_INST_ID
1
2

JOB_NAME

EndOfDayJob

EndOfDayJob

Table 6. BATCH_JOB_EXECUTION_PARAMS

JOB_EXECUTION_| TYPE_CD

D
1

DATE

DATE

DATE

Table 7. BATCH_JOB_EXECUTION

JOB_EXEC_ID
1
2

3.2. Step

JOB_INST_ID
1
1
2

KEY_NAME

schedule.Date

schedule.Date

schedule.Date

START_TIME

2017-01-01 21:00
2017-01-02 21:00
2017-01-02 21:31

DATE_VAL

2017-01-01
00:00:00

2017-01-01
00:00:00

2017-01-02
00:00:00

END_TIME

2017-01-01 21:30
2017-01-02 21:30
2017-01-02 22:29

IDENTIFYING

TRUE

TRUE

TRUE

STATUS
FAILED
COMPLETED
COMPLETED

Column names may have been abbreviated or removed for the sake of clarity and
formatting.

A Step is a domain object that encapsulates an independent, sequential phase of a batch job.

Therefore, every Job is composed entirely of one or more steps. A

Step contains all of the

information necessary to define and control the actual batch processing. This is a necessarily vague

description because the contents of any given

Job. A Step can be as simple or complex as the developer desires. A simple
from a file into the database, requiring little or no code (depending upon the implementations
used). A more complex Step may have complicated business rules that are applied as part of the

processing. As with a Job, a Step has an individual

JobExecution, as shown in the following image:

18

Step are at the discretion of the developer writing a
Step might load data

StepExecution that correlates with a unique

\
* _
Joblnstance

*

JobExecution \
StepExecution

Figure 6. Job Hierarchy With Steps

3.2.1. StepExecution

A StepExecution represents a single attempt to execute a Step. A new StepExecution is created each

time a Stepis run, similar to JobExecution. However, if a step fails to execute because the step before

it fails, no execution is persisted for it. A StepExecution is created only when its Step is actually

started.

Step executions are represented by objects of the StepExecution class. Each execution contains a

reference to its corresponding step and JobExecution and transaction related data, such as commit
and rollback counts and start and end times. Additionally, each step execution contains an
ExecutionContext, which contains any data a developer needs to have persisted across batch runs,
such as statistics or state information needed to restart. The following table lists the properties for
StepExecution:

Table 8. StepExecution Properties
Property Definition

Status A BatchStatus object that indicates the status of
the execution. While running, the status is
BatchStatus.STARTEDH(it fails, the status is
BatchStatus.FAILED. If it finishes successfully, the
status is BatchStatus. COMPLETED

startTime A java.util.Date representing the current
system time when the execution was started.
This field is empty if the step has yet to start.

endTime A java.util.Date representing the current
system time when the execution finished,
regardless of whether or not it was successful.
This field is empty if the step has yet to exit.

19

exitStatus The ExitStatus indicating the result of the
execution. It is most important, because it
contains an exit code that is returned to the
caller. See chapter 5 for more details. This field
is empty if the job has yet to exit.

executionContext The "property bag" containing any user data that
needs to be persisted between executions.

readCount The number of items that have been successfully
read.

writeCount The number of items that have been successfully
written.

commitCount The number of transactions that have been

committed for this execution.

rollbackCount The number of times the business transaction
controlled by the Step has been rolled back.

readSkipCount The number of times read has failed, resulting in
a skipped item.

processSkipCount The number of times process has failed,
resulting in a skipped item.

filterCount The number of items that have been ‘filtered' by
the ItemProcessor.

writeSkipCount The number of times write has failed, resulting
in a skipped item.

3.3. ExecutionContext

An ExecutionContext represents a collection of key/value pairs that are persisted and controlled by

the framework in order to allow developers a place to store persistent state that is scoped to a
StepExecution object or a JobExecution object. For those familiar with Quartz, it is very similar to
JobDataMap. The best usage example is to facilitate restart. Using flat file input as an example,
while processing individual lines, the framework periodically persists the ExecutionContext at
commit points. Doing so allows the ItemReaderto store its state in case a fatal error occurs during
the run or even if the power goes out. All that is needed is to put the current number of lines read

into the context, as shown in the following example, and the framework will do the rest:

executionContext . putLong(getKey(LINES_READ_CQUNe€ader. getPosition ());

Using the EndOfDay example from the Job Stereotypes section as an example, assume there is one
step, 'loadData’, that loads a file into the database. After the first failed run, the metadata tables
would look like the following example:

Table 9. BATCH_JOB_INSTANCE

20

JOB_INST_ID JOB_NAME
1 EndOfDayJob

Table 10. BATCH_JOB_EXECUTION_PARAMS
JOB_INST_ID TYPE_CD KEY_NAME DATE_VAL

1 DATE schedule.Date 2017-01-01

Table 11. BATCH_JOB_EXECUTION
JOB_EXEC_ID JOB_INST_ID START_TIME END_TIME STATUS
1 1 2017-01-01 21:00 2017-01-01 21:30 FAILED

Table 12. BATCH_STEP_EXECUTION

STEP_EXEC_ID JOB_EXEC_ID STEP_NAME START_TIME END_TIME STATUS
1 1 loadData 2017-01-01 2017-01-01 FAILED
21:00 21:30

Table 13. BATCH_STEP_EXECUTION_CONTEXT
STEP_EXEC_ID SHORT_CONTEXT

1 {piece.count=40321}

In the preceding case, the Step ran for 30 minutes and processed 40,321 'pieces’, which would
represent lines in a file in this scenario. This value is updated just before each commit by the
framework and can contain multiple rows corresponding to entries within the ExecutionContext.
Being notified before a commit requires one of the various StepListener implementations (or an
ltemStream), which are discussed in more detail later in this guide. As with the previous example, it

is assumed that the Job is restarted the next day. When it is restarted, the values from the
ExecutionContext of the last run are reconstituted from the database. When the ltemReader is
opened, it can check to see if it has any stored state in the context and initialize itself from there, as
shown in the following example:

if (executionContext . containsKey(getKey(LINES_READ_COUNT
E log.debud" Initializing for restart. Restart data is: " + executionContext);

E long lineCount = executionContext . getLong(getKey(LINES READ_COUNT

E LineReader reader = getReader);
E Object record = "";
E while (reader.getPosition () < lineCount &&record != null) {
E record = readLine();
E }
}
In this case, after the above code runs, the current line is 40,322, allowing the Step to start again

21

from where it left off. The ExecutionContext can also be used for statistics that need to be persisted
about the run itself. For example, if a flat file contains orders for processing that exist across
multiple lines, it may be necessary to store how many orders have been processed (which is much
different from the number of lines read), so that an email can be sent at the end of the Step with the
total number of orders processed in the body. The framework handles storing this for the
developer, in order to correctly scope it with an individual JoblInstance. It can be very difficult to
know whether an existing ExecutionContext should be used or not. For example, using the
'EndOfDay’ example from above, when the 01-01 run starts again for the second time, the
framework recognizes that it is the same Joblnstance and on an individual Step basis, pulls the
ExecutionContext out of the database, and hands it (as part of the StepExecution) to the Step itself.
Conversely, for the 01-02 run, the framework recognizes that it is a different instance, so an empty
context must be handed to the Step. There are many of these types of determinations that the
framework makes for the developer, to ensure the state is given to them at the correct time. It is

also important to note that exactly one ExecutionContext exists per StepExecution at any given time.
Clients of the ExecutionContext should be careful, because this creates a shared keyspace. As a
result, care should be taken when putting values in to ensure no data is overwritten. However, the

Step stores absolutely no data in the context, so there is no way to adversely affect the framework.

It is also important to note that there is at least one ExecutionContext per JobExecution and one for
every StepExecution. For example, consider the following code snippet:

ExecutionContext ecStep = stepExecution . getExecutionContext () ;
ExecutionContext ecJob = jobExecution . getExecutionContext () ;
/lecStep does not equal ecJob

As noted in the comment, ecStep does not equal ecJohb They are two different ExecutionContexts.
The one scoped to the Step is saved at every commit point in the Step, whereas the one scoped to the
Job is saved in between every Step execution.

3.4. JobRepository

JobRepository is the persistence mechanism for all of the Stereotypes mentioned above. It provides
CRUD operations for JobLauncher Job, and Step implementations. When a Job is first launched, a
JobExecution is obtained from the repository, and, during the course of execution, StepExecution and
JobExecution implementations are persisted by passing them to the repository.

The Spring Batch XML namespace provides support for configuring a JobRepository instance with
the <job-repository> tag, as shown in the following example:

<job-repository id ="jobRepository "/>

When using Java configuration, the ~ @EnableBatchProcessing@nnotation provides a JobRepository as
one of the components automatically configured out of the box.

22

3.5. JobLauncher

JobLauncherrepresents a simple interface for launching a Job with a given set of JobParameters as
shown in the following example:

public interface JobLauncher {

public JobExecution run(Job job, JobParameters jobParameters)

E throws JobExecutionAlreadyRunningException, JobRestartException ,

E JoblnstanceAlreadyCompleteException, JobParametersinvalidException ;

}
It is expected that implementations obtain a valid JobExecution from the JobRepository and execute
the Job.

3.6. Item Reader

ltemReaderis an abstraction that represents the retrieval of input for a Step, one item at a time.
When the ItemReader has exhausted the items it can provide, it indicates this by returning null .
More details about the ItemReader interface and its various implementations can be found in
Readers And Writers .

3.7. Item Writer

ltemWriter is an abstraction that represents the output of a Step, one batch or chunk of items at a
time. Generally, an ItemWriter has no knowledge of the input it should receive next and knows only

the item that was passed in its current invocation. More details about the ItemWriter interface and
its various implementations can be found in Readers And Writers .

3.8. Item Processor

ltemProcessor is an abstraction that represents the business processing of an item. While the
ltemReader reads one item, and the ItemWriter writes them, the ItemProcessor provides an access
point to transform or apply other business processing. If, while processing the item, it is
determined that the item is not valid, returning null indicates that the item should not be written
out. More details about the ItemProcessor interface can be found in Readers And Writers .

3.9. Batch Namespace

Many of the domain concepts listed previously need to be configured in a Spring
ApplicationContext . While there are implementations of the interfaces above that can be used in a
standard bean definition, a namespace has been provided for ease of configuration, as shown in the
following example:

23

<beans:beans xmIns="http://www.springframework.org/schema/batch "
xmins:beans="http://www.springframework.org/schema/beans "

xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation ="

= http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/batch
https://www.springframework.org/schema/batch/spring-batch.xsd ">

[T > T M

<job id ="ioSampleJoby >

—

E <step id="stepl">

E <tasklet>

E <chunk reader="itemReader" writer ="itemWriter " commit-interval ="2"/>
E </tasklet>

E </step>

</job>

</beans:beans>

As long as the batch namespace has been declared, any of its elements can be used. More
information on configuring a Job can be found in Configuring and Running a Job . More information
on configuring a Step can be found in Configuring a Step .

24

Chapter 4. Configuring and Running a Job

In the domain section , the overall architecture design was discussed, using the following diagram
as a guide:

ItemReader

ItemProcessor

ItemWriter

e =
I N

Figure 7. Batch Stereotypes

While the Job object may seem like a simple container for steps, there are many configuration
options of which a developer must be aware. Furthermore, there are many considerations for how
a Job will be run and how its meta-data will be stored during that run. This chapter will explain the
various configuration options and runtime concerns of a Job.

4.1. Configuring a Job

There are multiple implementations of the Job interface, however this is abstracted behind either
the builders provided for java configuration or the XML namespace when using XML based
configuration.

Java Configuration

@Bean

public Job footballJob () {

return this . jobBuilderFactory . get("footballJob ™)
.start (playerLoad())
. next(gameLoa@)
. next(playerSummarization())

.end)
. build ();

~ IT> [T T I T [mp

XML Configuration

<job id ="footballJob ">

E <step id ="playerload " parent="s1" next="gamelodd>
E <step id ="gamelodd parent="s2" next="playerSummarization"/>
E <step id ="playerSummarization" parent="s3"/>
</job>
The examples here use a parent bean definition to create the steps; see the section on step

configuration for more options declaring specific step details inline. The XML namespace defaults

25

to referencing a repository with an id of 'jobRepository’, which is a sensible default. However, this
can be overridden explicitly:

<job id ="footballJob " job-repository ="specialRepository ">

E <step id ="playerload " parent="s1" next="gamelLodd>

E <step id ="gameload parent="s3" next="playerSummarization" />
E <step id ="playerSummarization" parent="s3"/>

</job>

In addition to steps a job configuration can contain other elements that help with parallelisation
(<split>), declarative flow control (<decision>) and externalization of flow definitions (<flow/>).

4.1.1. Restartability

One key issue when executing a batch job concerns the behavior of a Job when it is restarted. The
launching of a Job is considered to be a 'restart' if a JobExecution already exists for the particular
Joblnstance. Ideally, all jobs should be able to start up where they left off, but there are scenarios
where this is not possible. It is entirely up to the developer to ensure that a new Joblnstance is
created in this scenario. However, Spring Batch does provide some help. If a Job should never be
restarted, but should always be run as part of a new Joblnstance, then the restartable property may
be set to ‘false'.

The following example shows how to setthe restartable field to false in XML:

XML Configuration

<job id ="footballJob " restartable ="false ">
E
</job>

The following example shows how to setthe restartable field to false in Java:

Java Configuration

public Job footballJob () {
E return this . jobBuilderFactory . get("footballJob ")
. preventRestart ()

build ():

~ [T M M M

To phrase it another way, setting restartable to false means Othis Job does not support being started
againO. Restarting a Jobthat is not restartable causes a JobRestartException to be thrown.

26

Job job = new SimpleJol() ;
job. setRestartable (false);

JobParameters jobParameters = new JobParameterg) ;

JobExecution firstExecution = jobRepository . createJobExecution (job, jobParameters);
jobRepository . saveOrUpdatéfirstExecution);

try {

E jobRepository . createJobExecution (job, jobParameters);
E fail ();

}

catch (JobRestartException e) {
E // expected

}

This snippet of JUnit code shows how attempting to create a JobExecution the first time for a non
restartable job will cause no issues. However, the second attempt will throw a JobRestartException .

4.1.2. Intercepting Job Execution

During the course of the execution of a Job, it may be useful to be notified of various events in its
lifecycle so that custom code may be executed. The SimpleJoballows for this by callinga JobListener
at the appropriate time:

public interface JobExecutionListener {
E void beforeJob(JobExecution jobExecution);

E void afterJob (JobExecution jobExecution);

JobListeners can be added to a SimpleJobby setting listeners on the job.
The following example shows how to add a listener element to an XML job definition:

XML Configuration

<job id ="footballJob ">

E <step id ="playerload " parent="s1" next="gamelodd>

E <step id ="gameLodd parent="s2" next="playerSummarization" />
E <step id ="playerSummarization" parent="s3"/>

E <listeners>

E <listener ref ="sampleListener"/>

E <llisteners>

</job>

27

The following example shows how to add a listener method to a Java job definition:

Java Configuration

public Job footballJob () {
return this . jobBuilderFactory . get("footballJob ")
. listener (sampleListener ())

il 0;

=~ [T> [Tp [T> [Tp

It should be noted that the afterJob method is called regardless of the success or failure of the

If success or failure needs to be determined, it can be obtained from the JobExecution, as follows:

public void afterJob (JobExecution jobExecution){

E if (jobExecution .getStatus () == BatchStatus. COMPLETEDQ
E /ljob success

E }

E else if (jobExecution .getStatus () == BatchStatus. FAILED {
E /ljob failure

E }

}

The annotations corresponding to this interface are:

¥ @BeforeJob
¥ @AfterJob

4.1.3. Inheriting from a Parent Job

If a group of Jobs share similar, but not identical, configurations, then it may be helpful to define a
"parent” Job from which the concrete Jobs may inherit properties. Similar to class inheritance in
Java, the "child" Jobwill combine its elements and attributes with the parentOs.

In the following example, "baseJob" is an abstract Job definition that defines only a list of listeners.
The Job "job1" is a concrete definition that inherits the list of listeners from "baseJob" and merges it
with its own list of listeners to produce a Job with two listeners and one Step, "stepl".

28

Job.

<job id ="baseJoly abstract ="true ">
E <listeners>

E <listener ref ='listenerOne "/>
E <listeners>
<ljob>

<job id="jobl" parent="baseJoly >
E <step id ="stepl" parent="standaloneStep"/>

E <listeners mergetrue ">

E <listener ref ="listenerTwo "/>
E <listeners>

</job>

Please see the section on Inheriting from a Parent Step for more detailed information.

This section only applies to XML based configuration as java configuration provides better reuse
capabilities.

4.1.4. JobParametersValidator

A job declared in the XML namespace or using any subclass of AbstractJob can optionally declare a
validator for the job parameters at runtime. This is useful when for instance you need to assert that

a job is started with all its mandatory parameters. There is a DefaultJobParametersValidator that can
be used to constrain combinations of simple mandatory and optional parameters, and for more
complex constraints you can implement the interface yourself.

The configuration of a validator is supported through the java builders, as follows:

@Bean
public Job jobl() {

E return this .jobBuilderFactory .get("jobl")
E . validator (parametersValidator ())
E .
E . build ();
}
XML namespace support is also available for configuration of a JobParametersValidator :

<job id ="job1l" parent="baseJoh3>

E <step id ="stepl" parent="standaloneStep"/>
E <validator ref ="parametersValidator "/>
</job>

The validator can be specified as a reference (as above) or as a nested bean definition in the beans
namespace.

29

4.2. Java Config

Spring 3 brought the ability to configure applications via java instead of XML. As of Spring Batch
2.2.0, batch jobs can be configured using the same java config. There are two components for the
java based configuration: the ~ @EnableBatchProcessin@nnotation and two builders.

The @EnableBatchProcessingvorks similarly to the other @Enable* annotations in the Spring family.
In this case, @EnableBatchProcessingprovides a base configuration for building batch jobs. Within
this base configuration, an instance of StepScopeis created in addition to a number of beans made
available to be autowired:

¥ JobRepository: bean name "jobRepository"

¥ JobLauncher bean name "jobLauncher"

¥ JobRegistry : bean name "jobRegistry"

¥ PlatformTransactionManager: bean name "transactionManager"

¥ JobBuilderFactory : bean name "jobBuilders"

¥ StepBuilderFactory : bean name "stepBuilders"
The core interface for this configuration is the BatchConfigurer . The default implementation

provides the beans mentioned above and requires a DataSourceas a bean within the context to be
provided. This data source is used by the JobRepository.

Only one configuration class needs to have the = @EnableBatchProcessing@nnotation.
Once you have a class annotated with it, you will have all of the above available.

With the base configuration in place, a user can use the provided builder factories to configure a
job. The following example shows a two step job configured with the JobBuilderFactory and the
StepBuilderFactory :

30

(DataSourceConfiguration . class)
public class AppConfig {

E

E private JobBuilderFactory jobs:

E

E private StepBuilderFactory steps;

E

E public Job job(("stepl") Step stepil, ("step2") Step step2) {
E return jobs. get("myJob). start (stepl).next(step2). build ();
E }

E

E protected Step stepl(ltemReadexPersor> reader,

E IltemProcessor<Person, Persor> processor,
E ItemWriter <Persor> writer) {

E return steps. get("stepl")

E . <Person, Persor> chunk(10)

E . reader (reader)

E . processor (processor)

E . writer (writer)

E . build ();

E }

E

E protected Step step2(Tasklet tasklet) {

E return steps. get("step2")

E .tasklet (tasklet)

E . build ();

E }

}

4.3. Configuring a JobRepository

When using @EnableBatchProcessinga JobRepository is provided out of the box for you. This section
addresses configuring your own.

As described in earlier, the JobRepository is used for basic CRUD operations of the various persisted
domain objects within Spring Batch, such as JobExecution and StepExecution. It is required by many
of the major framework features, such as the JobLauncher Job, and Step.

The batch namespace abstracts away many of the implementation details of the JobRepository
implementations and their collaborators. However, there are still a few configuration options
available, as shown in the following example:

31

XML Configuration

<job-repository id ="jobRepository "

E data-source ="dataSource"

E transaction-manager ='transactionManager"

E isolation-level-for-create ="'SERIALIZABLE

E table-prefix ="BATCH_

E max-varchar-length ='1000'/>
None of the configuration options listed above are required except the id . If they are not set, the
defaults shown above will be used. They are shown above for awareness purposes. The max-

varchar-length defaults to 2500, which is the length of the long VARCHA¢®lumns in the sample
schema scripts .

When using java configuration, a JobRepository is provided for you. A JDBC based one is provided
out of the box if a DataSourceis provided, the Mapbased one if not. However, you can customize the
configuration of the JobRepository through an implementation of the BatchConfigurer interface.

Java Configuration

// This would reside in your BatchConfigurer implementation

protected JobRepository createJobRepository () throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean() ;
factory . setDataSource(dataSource) ;

factory . setTransactionManager(transactionManager);

factory . setlsolationLevelForCreate ("ISOLATION_ SERIALIZABLE
factory . setTablePrefix ("BATCH);

factory . setMaxVarCharLengtb1000);

return factory . getObject ();

> [T> [Tp 1> [T > [T [T

None of the configuration options listed above are required except the dataSource and
transactionManager. If they are not set, the defaults shown above will be used. They are shown
above for awareness purposes. The max varchar length defaults to 2500, which is the length of the
long VARCHARBIumns in the sample schema scripts

4.3.1. Transaction Configuration for the JobRepository

If the namespace or the provided FactoryBeanis used, transactional advice is automatically created

around the repository. This is to ensure that the batch meta-data, including state that is necessary

for restarts after a failure, is persisted correctly. The behavior of the framework is not well defined

if the repository methods are not transactional. The isolation level in the create* method attributes

is specified separately to ensure that, when jobs are launched, if two processes try to launch the

same job at the same time, only one succeeds. The default isolation level for that method is
SERIALIZABLBEvhich is quite aggressive. READ_COMMITWaDId work just as well. READ_UNCOMMITTED
would be fine if two processes are not likely to collide in this way. However, since a call to the

32

create* method is quite short, it is unlikely that SERIALIZEDauses problems, as long as the database
platform supports it. However, this can be overridden.

The following example shows how to override the isolation level in XML:

XML Configuration

<job-repository id ="jobRepository "
E isolation-level-for-create ='REPEATABLE_READ

The following example shows how to override the isolation level in Java:

Java Configuration

/[This would reside in your BatchConfigurer implementation

@Override

protected JobRepository createJobRepository () throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean();
factory . setDataSource(dataSource);

factory . setTransactionManager(transactionManager) ;

factory . setlsolationLevelForCreate ("ISOLATION_REPEATABLE"READ
return factory . getObject ();

> > [T e [T mp

If the namespace or factory beans are not used, then it is also essential to configure the
transactional behavior of the repository using AOP.

The following example shows how to configure the transactional behavior of the repository in XML:

XML Configuration

<aop:config>
E <aop:advisor

E pointcut ="execution(* org.springframework.batch.core..*Repository+.*(..))
n />

E <advice-ref ="txAdvice" />

</aop:config>

<tx:advice id="txAdvice" transaction-manager ="transactionManager" >
<tx:attributes>
<tx:method name"*" />
E </txattributes>
</tx:advice>

[T TP

The preceding fragment can be used nearly as is, with almost no changes. Remember also to
include the appropriate namespace declarations and to make sure spring-tx and spring-aop (or the
whole of Spring) are on the classpath.

The following example shows how to configure the transactional behavior of the repository in Java:

33

Java Configuration

public TransactionProxyFactoryBean baseProxy() {

E TransactionProxyFactoryBean transactionProxyFactoryBean = new
TransactionProxyFactoryBean() ;

Properties transactionAttributes = new Properties ();

transactionAttributes . setProperty ("*", "PROPAGATION_REQUIRED
transactionProxyFactoryBean . setTransactionAttributes (transactionAttributes);
transactionProxyFactoryBean . setTarget (jobRepository ());
transactionProxyFactoryBean . setTransactionManager(transactionManager ());
return transactionProxyFactoryBean ;

= [T> [Tp [T> [T [Ty [mp

4.3.2. Changing the Table Prefix

Another modifiable property of the JobRepository is the table prefix of the meta-data tables. By
default they are all prefaced with BATCH BATCH_JOB_EXECUaMANBATCH_STEP_EXECUai®©Mvo
examples. However, there are potential reasons to modify this prefix. If the schema names needs to

be prepended to the table names, or if more than one set of meta data tables is needed within the
same schema, then the table prefix needs to be changed:

The following example shows how to change the table prefix in XML:

XML Configuration

<job-repository id ='jobRepository "
E table-prefix ="SYSTEM.TEST/>

The following example shows how to change the table prefix in Java:

Java Configuration
// This would reside in your BatchConfigurer implementation

protected JobRepository createJobRepository () throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean() ;
factory . setDataSource(dataSource) ;

factory . setTransactionManager(transactionManager);

factory . setTablePrefix ("SYSTEM.TESY;

return factory . getObject();

= [T> [T [y mp m

Given the preceding changes, every query to the meta-data tables is prefixed with SYSTEM.TEST _
BATCH_JOB_EXECUisIfeférred to as SYSTEM. TEST_JOB_EXECUTION

| Only the table prefix is configurable. The table and column names are not.

34

4.3.3. In-Memory Repository

There are scenarios in which you may not want to persist your domain objects to the database. One
reason may be speed; storing domain objects at each commit point takes extra time. Another reason
may be that you just donOt need to persist status for a particular job. For this reason, Spring batch
provides an in-memory Mapversion of the job repository.

The following example shows the inclusion of MapJobRepositoryFactoryBearin XML:

XML Configuration

<bean id ='jobRepository "

E class ="

org.springframework.batch.core.repository.support. MapJobRepositoryFactoryBean ">
E <property name"transactionManager" ref ='transactionManager" />

</bean>

The following example shows the inclusion of MapJobRepositoryFactoryBearin Java:

Java Configuration
/[This would reside in your BatchConfigurer implementation

protected JobRepository createJobRepository () throws Exception {
MapJobRepositoryFactoryBeanfactory = new MapJobRepositoryFactoryBeal) ;
factory . setTransactionManager(transactionManager) ;

return factory . getObject ();

= [T M [m

Note that the in-memory repository is volatile and so does not allow restart between JVM instances.

It also cannot guarantee that two job instances with the same parameters are launched
simultaneously, and is not suitable for use in a multi-threaded Job, or a locally partitioned Step. So
use the database version of the repository wherever you need those features.

However it does require a transaction manager to be defined because there are rollback semantics
within the repository, and because the business logic might still be transactional (such as RDBMS
access). For testing purposes many people find the ResourcelessTransactionManageruseful.

4.3.4. Non-standard Database Types in a Repository

If you are using a database platform that is not in the list of supported platforms, you may be able

to use one of the supported types, if the SQL variant is close enough. To do this, you can use the raw
JobRepositoryFactoryBean instead of the namespace shortcut and use it to set the database type to
the closest match.

The following example shows how to use JobRepositoryFactoryBean to set the database type to the
closest match in XML:

35

XML Configuration

<beanid ="jobRepository " class ="org...JobRepositoryFactoryBean ">
E <property name'databaseTypé value="db2'/>

E <property name'dataSource' ref ="dataSource'/>

</bean>

The following example shows how to use JobRepositoryFactoryBean to set the database type to the
closest match in Java:

Java Configuration

// This would reside in your BatchConfigurer implementation

@Override

protected JobRepository createJobRepository () throws Exception {
JobRepositoryFactoryBean factory = new JobRepositoryFactoryBean() ;
factory . setDataSource(dataSource) ;

factory . setDatabaseTypd"db2');

factory . setTransactionManager(transactionManager) ;

return factory . getObject ();

= [T> [Tp [T [[T

(The JobRepositoryFactoryBean tries to auto-detect the database type from the DataSourceif it is not
specified.) The major differences between platforms are mainly accounted for by the strategy for
incrementing primary keys, so often it might be necessary to override the incrementerFactory as
well (using one of the standard implementations from the Spring Framework).

If even that doesnOt work, or you are not using an RDBMS, then the only option may be to
implement the various Daointerfaces that the SimpleJobRepository depends on and wire one up
manually in the normal Spring way.

4.4. Configuring a JobLauncher

When using @EnableBatchProcessinga JobRegistry is provided out of the box for you. This section
addresses configuring your own.

The most basic implementation of the JobLauncher interface is the SimpleJobLauncher Its only
required dependency is a JobRepository, in order to obtain an execution.

The following example shows a SimpleJobLauncherin XML:

XML Configuration

<bean id ='jobLauncher"

E class ="org.springframework.batch.core.launch.support.SimpleJobLauncher ">
E <property name"jobRepository " ref ='jobRepository " />
</bean>

The following example shows a SimpleJobLauncherin Java:

36

Java Configuration

/[This would reside in your BatchConfigurer implementation
@Override

protected JobLauncher createJobLauncher() throws Exception {
SimpleJobLauncher jobLauncher = new SimpleJobLaunche() ;
jobLauncher. setJobRepository (jobRepository);

jobLauncher. afterPropertiesSet () ;

return jobLauncher;

=~ [T [T [T mp

Once a JobExecution is obtained, it is passed to the execute method of Job, ultimately returning the
JobExecution to the caller, as shown in the following image:

rung) _i_ i
execute() [

ExitStatus R

T
1
JobExecutiong || ;
[= with ExitStatus FINISHED ar FAILED

28

Figure 8. Job Launcher Sequence

The sequence is straightforward and works well when launched from a scheduler. However, issues
arise when trying to launch from an HTTP request. In this scenario, the launching needs to be done
asynchronously so that the SimpleJobLauncherreturns immediately to its caller. This is because it is
not good practice to keep an HTTP request open for the amount of time needed by long running
processes such as batch. The following image shows an example sequence:

Figure 9. Asynchronous Job Launcher Sequence

The SimpleJobLaunchercan be configured to allow for this scenario by configuring a TaskExecutor.

37

