Spring Batch - Reference Documentation
Table of Contents
	1. Spring Batch Introduction	Background
	Usage Scenarios
	Spring Batch Architecture
	General Batch Principles and Guidelines
	Batch Processing Strategies

	2. What's New in Spring Batch 3.0	JSR-352 Support
	Promote Spring Batch Integration to Spring Batch
	Upgrade to Support Spring 4 and Java 8
	JobScope Support
	SQLite Support

	3. The Domain Language of Batch	Job	JobInstance
	JobParameters
	JobExecution

	Step	StepExecution

	ExecutionContext
	JobRepository
	JobLauncher
	Item Reader
	Item Writer
	Item Processor
	Batch Namespace

	4. Configuring and Running a Job	Configuring a Job	Restartability
	Intercepting Job Execution
	Inheriting from a Parent Job
	JobParametersValidator

	Java Config
	Configuring a JobRepository	Transaction Configuration for the JobRepository
	Changing the Table Prefix
	In-Memory Repository
	Non-standard Database Types in a Repository

	Configuring a JobLauncher
	Running a Job	Running Jobs from the Command Line	The CommandLineJobRunner
	ExitCodes

	Running Jobs from within a Web Container

	Advanced Meta-Data Usage	Querying the Repository
	JobRegistry	JobRegistryBeanPostProcessor
	AutomaticJobRegistrar

	JobOperator
	JobParametersIncrementer
	Stopping a Job
	Aborting a Job

	5. Configuring a Step	Chunk-Oriented Processing	Configuring a Step
	Inheriting from a Parent Step	Abstract Step
	Merging Lists

	The Commit Interval
	Configuring a Step for Restart	Setting a StartLimit
	Restarting a completed step
	Step Restart Configuration Example

	Configuring Skip Logic
	Configuring Retry Logic
	Controlling Rollback	Transactional Readers

	Transaction Attributes
	Registering ItemStreams with the Step
	Intercepting Step Execution	StepExecutionListener
	ChunkListener
	ItemReadListener
	ItemProcessListener
	ItemWriteListener
	SkipListener	SkipListeners and Transactions

	TaskletStep	TaskletAdapter
	Example Tasklet Implementation

	Controlling Step Flow	Sequential Flow
	Conditional Flow	Batch Status vs. Exit Status

	Configuring for Stop	The 'End' Element
	The 'Fail' Element
	The 'Stop' Element

	Programmatic Flow Decisions
	Split Flows
	Externalizing Flow Definitions and Dependencies Between
 Jobs

	Late Binding of Job and Step Attributes	Step Scope
	Job Scope

	6. ItemReaders and ItemWriters	ItemReader
	ItemWriter
	ItemProcessor	Chaining ItemProcessors
	Filtering Records
	Fault Tolerance

	ItemStream
	The Delegate Pattern and Registering with the Step
	Flat Files	The FieldSet
	FlatFileItemReader	LineMapper
	LineTokenizer
	FieldSetMapper
	DefaultLineMapper
	Simple Delimited File Reading Example
	Mapping Fields by Name
	Automapping FieldSets to Domain Objects
	Fixed Length File Formats
	Multiple Record Types within a Single File
	Exception Handling in Flat Files	IncorrectTokenCountException
	IncorrectLineLengthException

	FlatFileItemWriter	LineAggregator	PassThroughLineAggregator

	Simplified File Writing Example
	FieldExtractor	PassThroughFieldExtractor
	BeanWrapperFieldExtractor

	Delimited File Writing Example
	Fixed Width File Writing Example
	Handling File Creation

	XML Item Readers and Writers	StaxEventItemReader
	StaxEventItemWriter

	Multi-File Input
	Database	Cursor Based ItemReaders	JdbcCursorItemReader	Additional Properties

	HibernateCursorItemReader
	StoredProcedureItemReader

	Paging ItemReaders	JdbcPagingItemReader
	JpaPagingItemReader
	IbatisPagingItemReader

	Database ItemWriters

	Reusing Existing Services
	Validating Input
	Preventing State Persistence
	Creating Custom ItemReaders and
 ItemWriters	Custom ItemReader Example	Making the ItemReader
 Restartable

	Custom ItemWriter Example	Making the ItemWriter
 Restartable

	7. Scaling and Parallel Processing	Multi-threaded Step
	Parallel Steps
	Remote Chunking
	Partitioning	PartitionHandler
	Partitioner
	Binding Input Data to Steps

	8. Repeat	RepeatTemplate	RepeatContext
	RepeatStatus

	Completion Policies
	Exception Handling
	Listeners
	Parallel Processing
	Declarative Iteration

	9. Retry	RetryTemplate	RetryContext
	RecoveryCallback
	Stateless Retry
	Stateful Retry

	Retry Policies
	Backoff Policies
	Listeners
	Declarative Retry

	10. Unit Testing	Creating a Unit Test Class
	End-To-End Testing of Batch Jobs
	Testing Individual Steps
	Testing Step-Scoped Components
	Validating Output Files
	Mocking Domain Objects

	11. Common Batch Patterns	Logging Item Processing and Failures
	Stopping a Job Manually for Business Reasons
	Adding a Footer Record	Writing a Summary Footer

	Driving Query Based ItemReaders
	Multi-Line Records
	Executing System Commands
	Handling Step Completion When No Input is Found
	Passing Data to Future Steps

	12. JSR-352 Support	General Notes Spring Batch and JSR-352
	Setup	Application Contexts
	Launching a JSR-352 based job

	Dependency Injection
	Batch Properties	Property Support
	@BatchProperty annotation
	Property Substitution

	Processing Models	Item based processing
	Custom checkpointing

	Running a job
	Contexts
	Step Flow
	Scaling a JSR-352 batch job	Partitioning

	Testing

	13. Spring Batch Integration	Spring Batch Integration Introduction	Namespace Support
	Launching Batch Jobs through Messages	Transforming a file into a JobLaunchRequest
	The JobExecution Response
	Spring Batch Integration Configuration
	Example ItemReader Configuration	Available Attributes of the Job-Launching Gateway
	Sub-Elements

	Providing Feedback with Informational Messages
	Asynchronous Processors
	Externalizing Batch Process Execution	Remote Chunking
	Remote Partitioning

	A. List of ItemReaders and ItemWriters	Item Readers
	Item Writers

	B. Meta-Data Schema	Overview	Example DDL Scripts
	Version
	Identity

	BATCH_JOB_INSTANCE
	BATCH_JOB_EXECUTION_PARAMS
	BATCH_JOB_EXECUTION
	BATCH_STEP_EXECUTION
	BATCH_JOB_EXECUTION_CONTEXT
	BATCH_STEP_EXECUTION_CONTEXT
	Archiving
	International and Multi-byte Characters
	Recommendations for Indexing Meta Data Tables

	C. Batch Processing and Transactions	Simple Batching with No Retry
	Simple Stateless Retry
	Typical Repeat-Retry Pattern
	Asynchronous Chunk Processing
	Asynchronous Item Processing
	Interactions Between Batching and Transaction Propagation
	Special Case: Transactions with Orthogonal Resources
	Stateless Retry Cannot Recover

	Glossary

Spring Batch - Reference Documentation

			Lucas Ward

			Dave Syer

			Thomas Risberg

			Robert Kasanicky

			Dan Garrette

			Wayne Lund

			Michael Minella

			Chris Schaefer

			Gunnar Hillert

		

3.0.8.RLEASE

Copyright © 2009, 2010, 2011, 2012, 2013, 2014
				GoPivotal, Inc. All Rights Reserved.
			

			Copies of this document may be made for your own use and for
				distribution to others, provided that you do not charge any fee for such
				copies and further provided that each copy contains this Copyright
				Notice, whether distributed in print or electronically.

		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Chapter 1. Spring Batch Introduction

Many applications within the enterprise domain require bulk processing
 to perform business operations in mission critical environments. These
 business operations include automated, complex processing of large volumes
 of information that is most efficiently processed without user interaction.
 These operations typically include time based events (e.g. month-end
 calculations, notices or correspondence), periodic application of complex
 business rules processed repetitively across very large data sets (e.g.
 Insurance benefit determination or rate adjustments), or the integration of
 information that is received from internal and external systems that
 typically requires formatting, validation and processing in a transactional
 manner into the system of record. Batch processing is used to process
 billions of transactions every day for enterprises.
Spring Batch is a lightweight, comprehensive batch framework designed
 to enable the development of robust batch applications vital for the daily
 operations of enterprise systems. Spring Batch builds upon the productivity,
 POJO-based development approach, and general ease of use capabilities people
 have come to know from the Spring Framework, while making it easy for
 developers to access and leverage more advance enterprise services when
 necessary. Spring Batch is not a scheduling framework. There are many good
 enterprise schedulers available in both the commercial and open source
 spaces such as Quartz, Tivoli, Control-M, etc. It is intended to work in
 conjunction with a scheduler, not replace a scheduler.
Spring Batch provides reusable functions that are essential in
 processing large volumes of records, including logging/tracing, transaction
 management, job processing statistics, job restart, skip, and resource
 management. It also provides more advance technical services and features
 that will enable extremely high-volume and high performance batch jobs
 though optimization and partitioning techniques. Simple as well as complex,
 high-volume batch jobs can leverage the framework in a highly scalable
 manner to process significant volumes of information.
Background

While open source software projects and associated communities have
 focused greater attention on web-based and SOA messaging-based
 architecture frameworks, there has been a notable lack of focus on
 reusable architecture frameworks to accommodate Java-based batch
 processing needs, despite continued needs to handle such processing within
 enterprise IT environments. The lack of a standard, reusable batch
 architecture has resulted in the proliferation of many one-off, in-house
 solutions developed within client enterprise IT functions.
SpringSource and Accenture have collaborated to change this.
 Accenture's hands-on industry and technical experience in implementing
 batch architectures, SpringSource's depth of technical experience, and
 Spring's proven programming model together mark a natural and powerful
 partnership to create high-quality, market relevant software aimed at
 filling an important gap in enterprise Java. Both companies are also
 currently working with a number of clients solving similar problems
 developing Spring-based batch architecture solutions. This has provided
 some useful additional detail and real-life constraints helping to ensure
 the solution can be applied to the real-world problems posed by clients.
 For these reasons and many more, SpringSource and Accenture have teamed to
 collaborate on the development of Spring Batch.
Accenture has contributed previously proprietary batch processing
 architecture frameworks, based upon decades worth of experience in
 building batch architectures with the last several generations of
 platforms, (i.e., COBOL/Mainframe, C++/Unix, and now Java/anywhere) to the
 Spring Batch project along with committer resources to drive support,
 enhancements, and the future roadmap.
The collaborative effort between Accenture and SpringSource aims to
 promote the standardization of software processing approaches, frameworks,
 and tools that can be consistently leveraged by enterprise users when
 creating batch applications. Companies and government agencies desiring to
 deliver standard, proven solutions to their enterprise IT environments
 will benefit from Spring Batch.
Usage Scenarios

A typical batch program generally reads a large number of records
 from a database, file, or queue, processes the data in some fashion, and
 then writes back data in a modified form. Spring Batch automates this
 basic batch iteration, providing the capability to process similar
 transactions as a set, typically in an offline environment without any
 user interaction. Batch jobs are part of most IT projects and Spring Batch
 is the only open source framework that provides a robust, enterprise-scale
 solution.
Business Scenarios
	Commit batch process periodically

	Concurrent batch processing: parallel processing of a
 job

	Staged, enterprise message-driven processing

	Massively parallel batch processing

	Manual or scheduled restart after failure

	Sequential processing of dependent steps (with extensions to
 workflow-driven batches)

	Partial processing: skip records (e.g. on rollback)

	Whole-batch transaction: for cases with a small batch size or
 existing stored procedures/scripts

Technical Objectives
	Batch developers use the Spring programming model: concentrate
 on business logic; let the framework take care of
 infrastructure.

	Clear separation of concerns between the infrastructure, the
 batch execution environment, and the batch application.

	Provide common, core execution services as interfaces that all
 projects can implement.

	Provide simple and default implementations of the core
 execution interfaces that can be used ‘out of the box’.

	Easy to configure, customize, and extend services, by
 leveraging the spring framework in all layers.

	All existing core services should be easy to replace or
 extend, without any impact to the infrastructure layer.

	Provide a simple deployment model, with the architecture JARs
 completely separate from the application, built using Maven.

Spring Batch Architecture

Spring Batch is designed with extensibility and a diverse group of
 end users in mind. The figure below shows a sketch of the layered
 architecture that supports the extensibility and ease of use for end-user
 developers.
Figure 1.1: Spring Batch Layered
 Architecture

This layered architecture highlights three major high level
 components: Application, Core, and Infrastructure. The application
 contains all batch jobs and custom code written by developers using Spring
 Batch. The Batch Core contains the core runtime classes necessary to
 launch and control a batch job. It includes things such as a
 JobLauncher, Job, and
 Step implementations. Both Application and Core are
 built on top of a common infrastructure. This infrastructure contains
 common readers and writers, and services such as the
 RetryTemplate, which are used both by application
 developers(ItemReader and
 ItemWriter) and the core framework itself.
 (retry)
General Batch Principles and Guidelines

The following are a number of key principles, guidelines, and general considerations to take into consideration when building a batch solution.
	A batch architecture typically affects on-line architecture and vice versa. Design with both architectures and environments in mind using common building blocks when possible.

	Simplify as much as possible and avoid building complex logical structures in single batch applications.

	Process data as close to where the data physically resides as possible or vice versa (i.e., keep your data where your processing occurs).

	Minimize system resource use, especially I/O. Perform as many operations as possible in internal memory.

	Review application I/O (analyze SQL statements) to ensure that unnecessary physical I/O is avoided. In particular, the following four common flaws need to be looked for:
					
	Reading data for every transaction when the data could be read once and kept cached or in the working storage;

	Rereading data for a transaction where the data was read earlier in the same transaction;

	Causing unnecessary table or index scans;

	Not specifying key values in the WHERE clause of an SQL statement.

				

	Do not do things twice in a batch run. For instance, if you need data summarization for reporting purposes, increment stored totals if possible when data is being initially processed, so your reporting application does not have to reprocess the same data.

	Allocate enough memory at the beginning of a batch application to avoid time-consuming reallocation during the process.

	Always assume the worst with regard to data integrity. Insert adequate checks and record validation to maintain data integrity.

	Implement checksums for internal validation where possible. For example, flat files should have a trailer record telling the total of records in the file and an aggregate of the key fields.

	Plan and execute stress tests as early as possible in a production-like environment with realistic data volumes.

	In large batch systems backups can be challenging, especially if the system is running concurrent with on-line on a 24-7 basis. Database backups are typically well taken care of in the on-line design, but file backups should be considered to be just as important. If the system depends on flat files, file backup procedures should not only be in place and documented, but regularly tested as well.

Batch Processing Strategies

To help design and implement batch systems, basic batch application building blocks and patterns should be provided to the designers and programmers in form of sample structure charts and code shells. When starting to design a batch job, the business logic should be decomposed into a series of steps which can be implemented using the following standard building blocks:
	Conversion Applications: For each type of file supplied by or generated to an external system, a conversion application will need to be created to convert the transaction records supplied into a standard format required for processing. This type of batch application can partly or entirely consist of translation utility modules (see Basic Batch Services).

	Validation Applications: Validation applications ensure that all input/output records are correct and consistent. Validation is typically based on file headers and trailers, checksums and validation algorithms as well as record level cross-checks.

	Extract Applications: An application that reads a set of records from a database or input file, selects records based on predefined rules, and writes the records to an output file.

	Extract/Update Applications: An application that reads records from a database or an input file, and makes changes to a database or an output file driven by the data found in each input record.

	Processing and Updating Applications: An application that performs processing on input transactions from an extract or a validation application. The processing will usually involve reading a database to obtain data required for processing, potentially updating the database and creating records for output processing.

	Output/Format Applications: Applications reading an input file, restructures data from this record according to a standard format, and produces an output file for printing or transmission to another program or system.

Additionally a basic application shell should be provided for business logic that cannot be built using the previously mentioned building blocks.
In addition to the main building blocks, each application may use one or more of standard utility steps, such as:
	Sort - A Program that reads an input file and produces an output file where records have been re-sequenced according to a sort key field in the records. Sorts are usually performed by standard system utilities.

	Split - A program that reads a single input file, and writes each record to one of several output files based on a field value. Splits can be tailored or performed by parameter-driven standard system utilities.

	Merge - A program that reads records from multiple input files and produces one output file with combined data from the input files. Merges can be tailored or performed by parameter-driven standard system utilities.

Batch applications can additionally be categorized by their input source:
	Database-driven applications are driven by rows or values retrieved from the database.

	File-driven applications are driven by records or values retrieved from a file.

	Message-driven applications are driven by messages retrieved from a message queue.

The foundation of any batch system is the processing strategy. Factors affecting the selection of the strategy include: estimated batch system volume, concurrency with on-line or with another batch systems, available batch windows (and with more enterprises wanting to be up and running 24x7, this leaves no obvious batch windows).
Typical processing options for batch are:
	Normal processing in a batch window during off-line

	Concurrent batch / on-line processing

	Parallel processing of many different batch runs or jobs at the same time

	Partitioning (i.e. processing of many instances of the same job at the same time)

	A combination of these

The order in the list above reflects the implementation complexity, processing in a batch window being the easiest and partitioning the most complex to implement.
Some or all of these options may be supported by a commercial scheduler.
In the following section these processing options are discussed in more detail. It is important to notice that the commit and locking strategy adopted by batch processes will be dependent on the type of processing performed, and as a rule of thumb and the on-line locking strategy should also use the same principles. Therefore, the batch architecture cannot be simply an afterthought when designing an overall architecture.
The locking strategy can use only normal database locks, or an additional custom locking service can be implemented in the architecture. The locking service would track database locking (for example by storing the necessary information in a dedicated db-table) and give or deny permissions to the application programs requesting a db operation. Retry logic could also be implemented by this architecture to avoid aborting a batch job in case of a lock situation.
1. Normal processing in a batch window
		For simple batch processes running in a separate batch window, where the data being updated is not required by on-line users or other batch processes, concurrency is not an issue and a single commit can be done at the end of the batch run.
In most cases a more robust approach is more appropriate. A thing to keep in mind is that batch systems have a tendency to grow as time goes by, both in terms of complexity and the data volumes they will handle. If no locking strategy is in place and the system still relies on a single commit point, modifying the batch programs can be painful. Therefore, even with the simplest batch systems, consider the need for commit logic for restart-recovery options as well as the information concerning the more complex cases below.
2. Concurrent batch / on-line processing
		Batch applications processing data that can simultaneously be updated by on-line users, should not lock any data (either in the database or in files) which could be required by on-line users for more than a few seconds. Also updates should be committed to the database at the end of every few transaction. This minimizes the portion of data that is unavailable to other processes and the elapsed time the data is unavailable.
Another option to minimize physical locking is to have a logical row-level locking implemented using either an Optimistic Locking Pattern or a Pessimistic Locking Pattern.
	Optimistic locking assumes a low likelihood of record contention. It typically means inserting a timestamp column in each database table used concurrently by both batch and on-line processing. When an application fetches a row for processing, it also fetches the timestamp. As the application then tries to update the processed row, the update uses the original timestamp in the WHERE clause. If the timestamp matches, the data and the timestamp will be updated successfully. If the timestamp does not match, this indicates that another application has updated the same row between the fetch and the update attempt and therefore the update cannot be performed.

	Pessimistic locking is any locking strategy that assumes there is a high likelihood of record contention and therefore either a physical or logical lock needs to be obtained at retrieval time. One type of pessimistic logical locking uses a dedicated lock-column in the database table. When an application retrieves the row for update, it sets a flag in the lock column. With the flag in place, other applications attempting to retrieve the same row will logically fail. When the application that set the flag updates the row, it also clears the flag, enabling the row to be retrieved by other applications. Please note, that the integrity of data must be maintained also between the initial fetch and the setting of the flag, for example by using db locks (e.g., SELECT FOR UPDATE). Note also that this method suffers from the same downside as physical locking except that it is somewhat easier to manage building a time-out mechanism that will get the lock released if the user goes to lunch while the record is locked.

These patterns are not necessarily suitable for batch processing, but they might be used for concurrent batch and on-line processing (e.g. in cases where the database doesn't support row-level locking). As a general rule, optimistic locking is more suitable for on-line applications, while pessimistic locking is more suitable for batch applications. Whenever logical locking is used, the same scheme must be used for all applications accessing data entities protected by logical locks.
Note that both of these solutions only address locking a single record. Often we may need to lock a logically related group of records. With physical locks, you have to manage these very carefully in order to avoid potential deadlocks. With logical locks, it is usually best to build a logical lock manager that understands the logical record groups you want to protect and can ensure that locks are coherent and non-deadlocking. This logical lock manager usually uses its own tables for lock management, contention reporting, time-out mechanism, etc.
3. Parallel Processing
		Parallel processing allows multiple batch runs / jobs to run in parallel to minimize the total elapsed batch processing time. This is not a problem as long as the jobs are not sharing the same files, db-tables or index spaces. If they do, this service should be implemented using partitioned data. Another option is to build an architecture module for maintaining interdependencies using a control table. A control table should contain a row for each shared resource and whether it is in use by an application or not. The batch architecture or the application in a parallel job would then retrieve information from that table to determine if it can get access to the resource it needs or not.
If the data access is not a problem, parallel processing can be implemented through the use of additional threads to process in parallel. In the mainframe environment, parallel job classes have traditionally been used, in order to ensure adequate CPU time for all the processes. Regardless, the solution has to be robust enough to ensure time slices for all the running processes.
Other key issues in parallel processing include load balancing and the availability of general system resources such as files, database buffer pools etc. Also note that the control table itself can easily become a critical resource.
4. Partitioning
		Using partitioning allows multiple versions of large batch applications to run concurrently. The purpose of this is to reduce the elapsed time required to process long batch jobs. Processes which can be successfully partitioned are those where the input file can be split and/or the main database tables partitioned to allow the application to run against different sets of data.
In addition, processes which are partitioned must be designed to only process their assigned data set. A partitioning architecture has to be closely tied to the database design and the database partitioning strategy. Please note, that the database partitioning doesn't necessarily mean physical partitioning of the database, although in most cases this is advisable. The following picture illustrates the partitioning approach:

		
Figure 1.2: Partitioned Process

		
		
The architecture should be flexible enough to allow dynamic configuration of the number of partitions. Both automatic and user controlled configuration should be considered. Automatic configuration may be based on parameters such as the input file size and/or the number of input records.
4.1 Partitioning Approaches
		The following lists some of the possible partitioning approaches. Selecting a partitioning approach has to be done on a case-by-case basis.
1. Fixed and Even Break-Up of Record Set
This involves breaking the input record set into an even number of portions (e.g. 10, where each portion will have exactly 1/10th of the entire record set). Each portion is then processed by one instance of the batch/extract application.
In order to use this approach, preprocessing will be required to split the recordset up. The result of this split will be a lower and upper bound placement number which can be used as input to the batch/extract application in order to restrict its processing to its portion alone.
Preprocessing could be a large overhead as it has to calculate and determine the bounds of each portion of the record set.
2. Breakup by a Key Column
This involves breaking up the input record set by a key column such as a location code, and assigning data from each key to a batch instance. In order to achieve this, column values can either be
3. Assigned to a batch instance via a partitioning table (see below for details).
4. Assigned to a batch instance by a portion of the value (e.g. values 0000-0999, 1000 - 1999, etc.)
Under option 1, addition of new values will mean a manual reconfiguration of the batch/extract to ensure that the new value is added to a particular instance.
Under option 2, this will ensure that all values are covered via an instance of the batch job. However, the number of values processed by one instance is dependent on the distribution of column values (i.e. there may be a large number of locations in the 0000-0999 range, and few in the 1000-1999 range). Under this option, the data range should be designed with partitioning in mind.
Under both options, the optimal even distribution of records to batch instances cannot be realized. There is no dynamic configuration of the number of batch instances used.
5. Breakup by Views
This approach is basically breakup by a key column, but on the database level. It involves breaking up the recordset into views. These views will be used by each instance of the batch application during its processing. The breakup will be done by grouping the data.
With this option, each instance of a batch application will have to be configured to hit a particular view (instead of the master table). Also, with the addition of new data values, this new group of data will have to be included into a view. There is no dynamic configuration capability, as a change in the number of instances will result in a change to the views.
6. Addition of a Processing Indicator
This involves the addition of a new column to the input table, which acts as an indicator. As a preprocessing step, all indicators would be marked to non-processed. During the record fetch stage of the batch application, records are read on the condition that that record is marked non-processed, and once they are read (with lock), they are marked processing. When that record is completed, the indicator is updated to either complete or error. Many instances of a batch application can be started without a change, as the additional column ensures that a record is only processed once.
With this option, I/O on the table increases dynamically. In the case of an updating batch application, this impact is reduced, as a write will have to occur anyway.
7. Extract Table to a Flat File
This involves the extraction of the table into a file. This file can then be split into multiple segments and used as input to the batch instances.
With this option, the additional overhead of extracting the table into a file, and splitting it, may cancel out the effect of multi-partitioning. Dynamic configuration can be achieved via changing the file splitting script.
8. Use of a Hashing Column
This scheme involves the addition of a hash column (key/index) to the database tables used to retrieve the driver record. This hash column will have an indicator to determine which instance of the batch application will process this particular row. For example, if there are three batch instances to be started, then an indicator of 'A' will mark that row for processing by instance 1, an indicator of 'B' will mark that row for processing by instance 2, etc.
The procedure used to retrieve the records would then have an additional WHERE clause to select all rows marked by a particular indicator. The inserts in this table would involve the addition of the marker field, which would be defaulted to one of the instances (e.g. 'A').
A simple batch application would be used to update the indicators such as to redistribute the load between the different instances. When a sufficiently large number of new rows have been added, this batch can be run (anytime, except in the batch window) to redistribute the new rows to other instances.
Additional instances of the batch application only require the running of the batch application as above to redistribute the indicators to cater for a new number of instances.
4.2 Database and Application design Principles
An architecture that supports multi-partitioned applications which run against partitioned database tables using the key column approach, should include a central partition repository for storing partition parameters. This provides flexibility and ensures maintainability. The repository will generally consist of a single table known as the partition table.
Information stored in the partition table will be static and in general should be maintained by the DBA. The table should consist of one row of information for each partition of a multi-partitioned application. The table should have columns for: Program ID Code, Partition Number (Logical ID of the partition), Low Value of the db key column for this partition, High Value of the db key column for this partition.
On program start-up the program id and partition number should be passed to the application from the architecture (Control Processing Tasklet). These variables are used to read the partition table, to determine what range of data the application is to process (if a key column approach is used). In addition the partition number must be used throughout the processing to:
	Add to the output files/database updates in order for the merge process to work properly

	Report normal processing to the batch log and any errors that occur during execution to the architecture error handler

4.3 Minimizing Deadlocks
When applications run in parallel or partitioned, contention in database resources and deadlocks may occur. It is critical that the database design team eliminates potential contention situations as far as possible as part of the database design.
Also ensure that the database index tables are designed with deadlock prevention and performance in mind.
Deadlocks or hot spots often occur in administration or architecture tables such as log tables, control tables, and lock tables. The implications of these should be taken into account as well. A realistic stress test is crucial for identifying the possible bottlenecks in the architecture.
To minimize the impact of conflicts on data, the architecture should provide services such as wait-and-retry intervals when attaching to a database or when encountering a deadlock. This means a built-in mechanism to react to certain database return codes and instead of issuing an immediate error handling, waiting a predetermined amount of time and retrying the database operation.
4.4 Parameter Passing and Validation
The partition architecture should be relatively transparent to application developers. The architecture should perform all tasks associated with running the application in a partitioned mode including:
	Retrieve partition parameters before application start-up

	Validate partition parameters before application start-up

	Pass parameters to application at start-up

The validation should include checks to ensure that:
	the application has sufficient partitions to cover the whole data range

	there are no gaps between partitions

If the database is partitioned, some additional validation may be necessary to ensure that a single partition does not span database partitions.
Also the architecture should take into consideration the consolidation of partitions. Key questions include:
	Must all the partitions be finished before going into the next job step?

	What happens if one of the partitions aborts?

Chapter 2. What's New in Spring Batch 3.0

The Spring Batch 3.0 release has five major themes:
	JSR-352 Support

	Upgrade to Support Spring 4 and Java 8

	Promote Spring Batch Integration to Spring Batch

	JobScope Support

	SQLite Support

JSR-352 Support

JSR-352 is the new java specification for batch processing. Heavily inspired by Spring Batch, this
		specification provides similar functionality to what Spring Batch already supports. However, Spring Batch 3.0
	 has implemented the specification and now supports the definition of batch jobs in compliance with the standard.
	 An example of a batch job configured using JSR-352's Job Specification Language (JSL) would look like below:
	
<?xml version="1.0" encoding="UTF-8"?>
<job id="myJob3" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
 <step id="step1" >
 <batchlet ref="testBatchlet" />
 </step>
</job>
	
See section JSR-352 Support for more details.
Promote Spring Batch Integration to Spring Batch

Spring Batch Integration has been a sub module of the Spring Batch Admin project now for a few years. It
	 provides functionality to better integrate the capabilities provided in Spring Integration with Spring Batch.
	 Specific functionality includes:
	Launching jobs via messages

	Asynchronous ItemProcessors

	Providing feedback with information messages

	Externalizing batch process execution via remote partitioning and remote chunking

See section Spring Batch Integration for details.
Upgrade to Support Spring 4 and Java 8

With the promotion of Spring Batch Integration to be a module of the Spring Batch project, it has been updated
	 to use Spring Integration 4. Spring Integration 4 moves the core messaging APIs to Spring core. Because of
	 this, Spring Batch 3 will now require Spring 4 or greater.
As part of the dependency updates that have occurred with this major release, Spring Batch now supports being
	 run on Java 8. It will still execute on Java 6 or higher as well.
JobScope Support

The Spring scope "step" used in Spring Batch has had a pivotal role in batch applications, providing late
		binding functionality for a long time now. With the 3.0 release Spring Batch now supports a "job" scope. This
		new scope allows for the delayed construction of objects until a Job is actually launched as well as providing
		a facility for new instances for each execution of a job. You can read the details about this new bean scope
		in the section the section called “Job Scope”.
SQLite Support

SQLite has been added as a newly supported database option for the JobRepository by
		adding job repository ddl for SQLite. This provides a useful, file based, data store for testing purposes.
Chapter 3. The Domain Language of Batch

 To any experienced batch architect, the overall concepts of batch
 processing used in Spring Batch should be familiar and comfortable. There
 are "Jobs" and "Steps" and developer supplied processing units called
 ItemReaders and ItemWriters. However, because of the Spring patterns,
 operations, templates, callbacks, and idioms, there are opportunities for
 the following:
	
 significant improvement in adherence to a clear separation of
 concerns

	
 clearly delineated architectural layers and services provided as
 interfaces

	
 simple and default implementations that allow for quick adoption
 and ease of use out-of-the-box

	
 significantly enhanced extensibility

 The diagram below is simplified version of the batch reference
 architecture that has been used for decades. It provides an overview of the
 components that make up the domain language of batch processing. This
 architecture framework is a blueprint that has been proven through decades
 of implementations on the last several generations of platforms
 (COBOL/Mainframe, C++/Unix, and now Java/anywhere). JCL and COBOL developers
 are likely to be as comfortable with the concepts as C++, C# and Java
 developers. Spring Batch provides a physical implementation of the layers,
 components and technical services commonly found in robust, maintainable
 systems used to address the creation of simple to complex batch
 applications, with the infrastructure and extensions to address very complex
 processing needs.

 Figure 2.1: Batch Stereotypes

 The diagram above highlights the key concepts that make up the domain
 language of batch. A Job has one to many steps, which has exactly one
 ItemReader, ItemProcessor, and ItemWriter. A job needs to be launched
 (JobLauncher), and meta data about the currently running process needs to be
 stored (JobRepository).

 Job

 This section describes stereotypes relating to the concept of a
 batch job. A Job is an entity that encapsulates an
 entire batch process. As is common with other Spring projects, a
 Job will be wired together via an XML configuration
 file or Java based configuration. This configuration may be referred to as
 the "job configuration". However, Job is just the
 top of an overall hierarchy:

 In Spring Batch, a Job is simply a container for Steps. It combines
 multiple steps that belong logically together in a flow and allows for
 configuration of properties global to all steps, such as restartability.
 The job configuration contains:

 	
 The simple name of the job

	
 Definition and ordering of Steps

	
 Whether or not the job is restartable

 A default simple implementation of the Job
 interface is provided by Spring Batch in the form of the
 SimpleJob class which creates some standard
 functionality on top of Job, however the batch
 namespace abstracts away the need to instantiate it directly. Instead, the
 <job> tag can be used:

 <job id="footballJob">
 <step id="playerload" next="gameLoad"/>
 <step id="gameLoad" next="playerSummarization"/>
 <step id="playerSummarization"/>
</job>

 JobInstance

 A JobInstance refers to the concept of a
 logical job run. Let's consider a batch job that should be run once at
 the end of the day, such as the 'EndOfDay' job from the diagram above.
 There is one 'EndOfDay' Job, but each individual
 run of the Job must be tracked separately. In the
 case of this job, there will be one logical
 JobInstance per day. For example, there will be a
 January 1st run, and a January 2nd run. If the January 1st run fails the
 first time and is run again the next day, it is still the January 1st
 run. (Usually this corresponds with the data it is processing as well,
 meaning the January 1st run processes data for January 1st, etc).
 Therefore, each JobInstance can have multiple
 executions (JobExecution is discussed in more
 detail below) and only one JobInstance
 corresponding to a particular Job and
 identifying JobParameters can be running at a given
 time.

 The definition of a JobInstance has
 absolutely no bearing on the data the will be loaded. It is entirely up
 to the ItemReader implementation used to
 determine how data will be loaded. For example, in the EndOfDay
 scenario, there may be a column on the data that indicates the
 'effective date' or 'schedule date' to which the data belongs. So, the
 January 1st run would only load data from the 1st, and the January 2nd
 run would only use data from the 2nd. Because this determination will
 likely be a business decision, it is left up to the
 ItemReader to decide. What using the same
 JobInstance will determine, however, is whether
 or not the 'state' (i.e. the ExecutionContext,
 which is discussed below) from previous executions will be used. Using a
 new JobInstance will mean 'start from the
 beginning' and using an existing instance will generally mean 'start
 from where you left off'.

 JobParameters

 Having discussed JobInstance and how it
 differs from Job, the natural question to ask is:
 "how is one JobInstance distinguished from
 another?" The answer is: JobParameters.
 JobParameters is a set of parameters used to
 start a batch job. They can be used for identification or even as
 reference data during the run:

 In the example above, where there are two instances, one for
 January 1st, and another for January 2nd, there is really only one Job,
 one that was started with a job parameter of 01-01-2008 and another that
 was started with a parameter of 01-02-2008. Thus, the contract can be
 defined as: JobInstance =
 Job + identifying JobParameters. This
 allows a developer to effectively control how a
 JobInstance is defined, since they control what
 parameters are passed in.

		[image: [Note]]	Note
	
		Not all job parameters are required to contribute to the identification
		of a JobInstance. By default they do, however the framework
		allows the submission of a Job with parameters that do
		not contribute to the identity of a JobInstance as well.

	

 JobExecution

 A JobExecution refers to the technical
 concept of a single attempt to run a Job. An
 execution may end in failure or success, but the
 JobInstance corresponding to a given execution
 will not be considered complete unless the execution completes
 successfully. Using the EndOfDay Job described
 above as an example, consider a JobInstance for
 01-01-2008 that failed the first time it was run. If it is run again
 with the same identifying job parameters as the first run (01-01-2008), a new
 JobExecution will be created. However, there will
 still be only one JobInstance.

 A Job defines what a job is and how it is
 to be executed, and JobInstance is a purely
 organizational object to group executions together, primarily to enable
 correct restart semantics. A JobExecution,
 however, is the primary storage mechanism for what actually happened
 during a run, and as such contains many more properties that must be
 controlled and persisted:

 Table 3.1. JobExecution Properties

 	status	A BatchStatus object that
 indicates the status of the execution. While running, it's
 BatchStatus.STARTED, if it fails, it's BatchStatus.FAILED, and
 if it finishes successfully, it's BatchStatus.COMPLETED
	startTime	A java.util.Date representing the
 current system time when the execution was started.
	endTime	A java.util.Date representing the
 current system time when the execution finished, regardless of
 whether or not it was successful.
	exitStatus	The ExitStatus indicating the
 result of the run. It is most important because it contains an
 exit code that will be returned to the caller. See chapter 5 for
 more details.
	createTime	A java.util.Date representing the
 current system time when the JobExecution
 was first persisted. The job may not have been started yet (and
 thus has no start time), but it will always have a createTime,
 which is required by the framework for managing job level
 ExecutionContexts.
	lastUpdated	A java.util.Date representing the
 last time a JobExecution was
 persisted.
	executionContext	The 'property bag' containing any user data that needs to
 be persisted between executions.
	failureExceptions	The list of exceptions encountered during the execution
 of a Job. These can be useful if more
 than one exception is encountered during the failure of a
 Job.

 These properties are important because they will be persisted and
 can be used to completely determine the status of an execution. For
 example, if the EndOfDay job for 01-01 is executed at 9:00 PM, and fails
 at 9:30, the following entries will be made in the batch meta data
 tables:

 Table 3.2. BATCH_JOB_INSTANCE

 	JOB_INST_ID	JOB_NAME
	1	EndOfDayJob

 Table 3.3. BATCH_JOB_EXECUTION_PARAMS

 	JOB_EXECUTION_ID	TYPE_CD	KEY_NAME	DATE_VAL	IDENTIFYING
	1	DATE	schedule.Date	2008-01-01	TRUE

 Table 3.4. BATCH_JOB_EXECUTION

 	JOB_EXEC_ID	JOB_INST_ID	START_TIME	END_TIME	STATUS
	1	1	2008-01-01 21:00	2008-01-01 21:30	FAILED

 	[image: [Note]]	Note
	
 column names may have been abbreviated or removed for clarity
 and formatting

 Now that the job has failed, let's assume that it took the entire
 course of the night for the problem to be determined, so that the 'batch
 window' is now closed. Assuming the window starts at 9:00 PM, the job
 will be kicked off again for 01-01, starting where it left off and
 completing successfully at 9:30. Because it's now the next day, the
 01-02 job must be run as well, which is kicked off just afterwards at
 9:31, and completes in its normal one hour time at 10:30. There is no
 requirement that one JobInstance be kicked off
 after another, unless there is potential for the two jobs to attempt to
 access the same data, causing issues with locking at the database level.
 It is entirely up to the scheduler to determine when a
 Job should be run. Since they're separate
 JobInstances, Spring Batch will make no attempt
 to stop them from being run concurrently. (Attempting to run the same
 JobInstance while another is already running will
 result in a JobExecutionAlreadyRunningException
 being thrown). There should now be an extra entry in both the
 JobInstance and
 JobParameters tables, and two extra entries in
 the JobExecution table:

 Table 3.5. BATCH_JOB_INSTANCE

 	JOB_INST_ID	JOB_NAME
	1	EndOfDayJob
	2	EndOfDayJob

 Table 3.6. BATCH_JOB_EXECUTION_PARAMS

 	JOB_EXECUTION_ID	TYPE_CD	KEY_NAME	DATE_VAL	IDENTIFYING
	1	DATE	schedule.Date	2008-01-01 00:00:00	TRUE
	2	DATE	schedule.Date	2008-01-01 00:00:00	TRUE
	3	DATE	schedule.Date	2008-01-02 00:00:00	TRUE

 Table 3.7. BATCH_JOB_EXECUTION

 	JOB_EXEC_ID	JOB_INST_ID	START_TIME	END_TIME	STATUS
	1	1	2008-01-01 21:00	2008-01-01 21:30	FAILED
	2	1	2008-01-02 21:00	2008-01-02 21:30	COMPLETED
	3	2	2008-01-02 21:31	2008-01-02 22:29	COMPLETED

 	[image: [Note]]	Note
	
 column names may have been abbreviated or removed for clarity
 and formatting

Step

 A Step is a domain object that encapsulates
 an independent, sequential phase of a batch job. Therefore, every
 Job is composed entirely of one or more steps. A
 Step contains all of the information necessary to
 define and control the actual batch processing. This is a necessarily
 vague description because the contents of any given
 Step are at the discretion of the developer writing
 a Job. A Step can be as simple or complex as the
 developer desires. A simple Step might load data
 from a file into the database, requiring little or no code. (depending
 upon the implementations used) A more complex Step
 may have complicated business rules that are applied as part of the
 processing. As with Job, a
 Step has an individual
 StepExecution that corresponds with a unique
 JobExecution:

 StepExecution

 A StepExecution represents a single attempt
 to execute a Step. A new
 StepExecution will be created each time a
 Step is run, similar to
 JobExecution. However, if a step fails to execute
 because the step before it fails, there will be no execution persisted
 for it. A StepExecution will only be created when
 its Step is actually started.

 Step executions are represented by objects of the
 StepExecution class. Each execution contains a
 reference to its corresponding step and
 JobExecution, and transaction related data such
 as commit and rollback count and start and end times. Additionally, each
 step execution will contain an ExecutionContext,
 which contains any data a developer needs persisted across batch runs,
 such as statistics or state information needed to restart. The following
 is a listing of the properties for
 StepExecution:

 Table 3.8. StepExecution Properties

 	status	A BatchStatus object that
 indicates the status of the execution. While it's running, the
 status is BatchStatus.STARTED, if it fails, the status is
 BatchStatus.FAILED, and if it finishes successfully, the status
 is BatchStatus.COMPLETED
	startTime	A java.util.Date representing the
 current system time when the execution was started.
	endTime	A java.util.Date representing the
 current system time when the execution finished, regardless of
 whether or not it was successful.
	exitStatus	The ExitStatus indicating the
 result of the execution. It is most important because it
 contains an exit code that will be returned to the caller. See
 chapter 5 for more details.
	executionContext	The 'property bag' containing any user data that needs to
 be persisted between executions.
	readCount	The number of items that have been successfully
 read
	writeCount	The number of items that have been successfully
 written
	commitCount	The number transactions that have been committed for this
 execution
	rollbackCount	The number of times the business transaction controlled
 by the Step has been rolled back.
	readSkipCount	The number of times read has
 failed, resulting in a skipped item.
	processSkipCount	The number of times process has
 failed, resulting in a skipped item.
	filterCount	The number of items that have been 'filtered' by the
 ItemProcessor.
	writeSkipCount	The number of times write has
 failed, resulting in a skipped item.

 ExecutionContext

 An ExecutionContext represents a collection
 of key/value pairs that are persisted and controlled by the framework in
 order to allow developers a place to store persistent state that is scoped
 to a StepExecution or
 JobExecution. For those familiar with Quartz, it is
 very similar to JobDataMap. The best usage example
 is to facilitate restart. Using flat file input as an example, while
 processing individual lines, the framework periodically persists the
 ExecutionContext at commit points. This allows the
 ItemReader to store its state in case a fatal error
 occurs during the run, or even if the power goes out. All that is needed
 is to put the current number of lines read into the context, and the
 framework will do the rest:

 executionContext.putLong(getKey(LINES_READ_COUNT), reader.getPosition());

 Using the EndOfDay example from the Job Stereotypes section as an
 example, assume there's one step: 'loadData', that loads a file into the
 database. After the first failed run, the meta data tables would look like
 the following:

 Table 3.9. BATCH_JOB_INSTANCE

 	JOB_INST_ID	JOB_NAME
	1	EndOfDayJob

Table 3.10. BATCH_JOB_PARAMS

 	JOB_INST_ID	TYPE_CD	KEY_NAME	DATE_VAL
	1	DATE	schedule.Date	2008-01-01

Table 3.11. BATCH_JOB_EXECUTION

 	JOB_EXEC_ID	JOB_INST_ID	START_TIME	END_TIME	STATUS
	1	1	2008-01-01 21:00	2008-01-01 21:30	FAILED

Table 3.12. BATCH_STEP_EXECUTION

 	STEP_EXEC_ID	JOB_EXEC_ID	STEP_NAME	START_TIME	END_TIME	STATUS
	1	1	loadDate	2008-01-01 21:00	2008-01-01 21:30	FAILED

Table 3.13. BATCH_STEP_EXECUTION_CONTEXT

 	STEP_EXEC_ID	SHORT_CONTEXT
	1	{piece.count=40321}

In this case, the Step ran for 30 minutes
 and processed 40,321 'pieces', which would represent lines in a file in
 this scenario. This value will be updated just before each commit by the
 framework, and can contain multiple rows corresponding to entries within
 the ExecutionContext. Being notified before a
 commit requires one of the various StepListeners,
 or an ItemStream, which are discussed in more
 detail later in this guide. As with the previous example, it is assumed
 that the Job is restarted the next day. When it is
 restarted, the values from the ExecutionContext of
 the last run are reconstituted from the database, and when the
 ItemReader is opened, it can check to see if it has
 any stored state in the context, and initialize itself from there:

 if (executionContext.containsKey(getKey(LINES_READ_COUNT))) {
 log.debug("Initializing for restart. Restart data is: " + executionContext);

 long lineCount = executionContext.getLong(getKey(LINES_READ_COUNT));

 LineReader reader = getReader();

 Object record = "";
 while (reader.getPosition() < lineCount && record != null) {
 record = readLine();
 }
}

 In this case, after the above code is executed, the current line
 will be 40,322, allowing the Step to start again
 from where it left off. The ExecutionContext can
 also be used for statistics that need to be persisted about the run
 itself. For example, if a flat file contains orders for processing that
 exist across multiple lines, it may be necessary to store how many orders
 have been processed (which is much different from than the number of lines
 read) so that an email can be sent at the end of the
 Step with the total orders processed in the body.
 The framework handles storing this for the developer, in order to
 correctly scope it with an individual JobInstance.
 It can be very difficult to know whether an existing
 ExecutionContext should be used or not. For
 example, using the 'EndOfDay' example from above, when the 01-01 run
 starts again for the second time, the framework recognizes that it is the
 same JobInstance and on an individual
 Step basis, pulls the
 ExecutionContext out of the database and hands it
 as part of the StepExecution to the
 Step itself. Conversely, for the 01-02 run the
 framework recognizes that it is a different instance, so an empty context
 must be handed to the Step. There are many of these
 types of determinations that the framework makes for the developer to
 ensure the state is given to them at the correct time. It is also
 important to note that exactly one ExecutionContext
 exists per StepExecution at any given time. Clients
 of the ExecutionContext should be careful because
 this creates a shared keyspace, so care should be taken when putting
 values in to ensure no data is overwritten. However, the
 Step stores absolutely no data in the context, so
 there is no way to adversely affect the framework.

 It is also important to note that there is at least one
 ExecutionContext per
 JobExecution, and one for every
 StepExecution. For example, consider the following
 code snippet:

 ExecutionContext ecStep = stepExecution.getExecutionContext();
ExecutionContext ecJob = jobExecution.getExecutionContext();
//ecStep does not equal ecJob

 As noted in the comment, ecStep will not equal ecJob; they are two
 different ExecutionContexts. The one scoped to the
 Step will be saved at every commit point in the
 Step, whereas the one scoped to the
 Job will be saved in between every
 Step execution.

 JobRepository

 JobRepository is the persistence mechanism
 for all of the Stereotypes mentioned above. It provides CRUD operations
 for JobLauncher, Job, and
 Step implementations. When a
 Job is first launched, a
 JobExecution is obtained from the repository, and
 during the course of execution StepExecution and
 JobExecution implementations are persisted by
 passing them to the repository:

 <job-repository id="jobRepository"/>

 JobLauncher

 JobLauncher represents a simple interface for
 launching a Job with a given set of
 JobParameters:

 public interface JobLauncher {

 public JobExecution run(Job job, JobParameters jobParameters)
 throws JobExecutionAlreadyRunningException, JobRestartException;
}

 It is expected that implementations will obtain a valid
 JobExecution from the
 JobRepository and execute the
 Job.

 Item Reader

 ItemReader is an abstraction that represents
 the retrieval of input for a Step, one item at a
 time. When the ItemReader has exhausted the items
 it can provide, it will indicate this by returning null. More details
 about the ItemReader interface and its various
 implementations can be found in Chapter 6, ItemReaders and ItemWriters.

 Item Writer

 ItemWriter is an abstraction that
 represents the output of a Step, one batch
 or chunk of items at a time. Generally, an item writer has no
 knowledge of the input it will receive next, only the item that
 was passed in its current invocation. More details about the
 ItemWriter interface and its various
 implementations can be found in Chapter 6, ItemReaders and ItemWriters.

 Item Processor

 ItemProcessor is an abstraction that
 represents the business processing of an item. While the
 ItemReader reads one item, and the
 ItemWriter writes them, the
 ItemProcessor provides access to transform or apply
 other business processing. If, while processing the item, it is determined
 that the item is not valid, returning null indicates that the item should
 not be written out. More details about the ItemProcessor interface can be
 found in Chapter 6, ItemReaders and ItemWriters.

 Batch Namespace

 Many of the domain concepts listed above need to be configured in a
 Spring ApplicationContext. While there are
 implementations of the interfaces above that can be used in a standard
 bean definition, a namespace has been provided for ease of
 configuration:

 <beans:beans xmlns="http://www.springframework.org/schema/batch"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/batch
 http://www.springframework.org/schema/batch/spring-batch-2.2.xsd">

 <job id="ioSampleJob">
 <step id="step1">
 <tasklet>
 <chunk reader="itemReader" writer="itemWriter" commit-interval="2"/>
 </tasklet>
 </step>
 </job>

</beans:beans>

 As long as the batch namespace has been declared, any of its
 elements can be used. More information on configuring a
 Job can be found in Chapter 4, Configuring and Running a Job. More information on configuring a Step can be
 found in Chapter 5, Configuring a Step.

 Chapter 4. Configuring and Running a Job

In the domain section , the overall
 architecture design was discussed, using the following diagram as a
 guide:

While the Job object may seem like a simple
 container for steps, there are many configuration options of which a
 developers must be aware . Furthermore, there are many considerations for
 how a Job will be run and how its meta-data will be
 stored during that run. This chapter will explain the various configuration
 options and runtime concerns of a Job .
Configuring a Job

There are multiple implementations of the
 Job interface, however, the namespace
 abstracts away the differences in configuration. It has only three
 required dependencies: a name, JobRepository , and
 a list of Steps.
<job id="footballJob">
 <step id="playerload" parent="s1" next="gameLoad"/>
 <step id="gameLoad" parent="s2" next="playerSummarization"/>
 <step id="playerSummarization" parent="s3"/>
</job>
The examples here use a parent bean definition to create the steps;
 see the section on step configuration
 for more options declaring specific step details inline. The XML namespace
 defaults to referencing a repository with an id of 'jobRepository', which
 is a sensible default. However, this can be overridden explicitly:
<job id="footballJob" job-repository="specialRepository">
 <step id="playerload" parent="s1" next="gameLoad"/>
 <step id="gameLoad" parent="s3" next="playerSummarization"/>
 <step id="playerSummarization" parent="s3"/>
</job>
In addition to steps a job configuration can contain other elements
 that help with parallelisation (<split/>),
 declarative flow control (<decision/>) and
 externalization of flow definitions
 (<flow/>).
Restartability

One key issue when executing a batch job concerns the behavior of
 a Job when it is restarted. The launching of a
 Job is considered to be a 'restart' if a
 JobExecution already exists for the particular
 JobInstance. Ideally, all jobs should be able to
 start up where they left off, but there are scenarios where this is not
 possible. It is entirely up to the developer to
 ensure that a new JobInstance is created in this
 scenario. However, Spring Batch does provide some help. If a
 Job should never be restarted, but should always
 be run as part of a new JobInstance, then the
 restartable property may be set to 'false':
<job id="footballJob" restartable="false">
 ...
</job>
To phrase it another way, setting restartable to false means "this
 Job does not support being started again". Restarting a Job that is not
 restartable will cause a JobRestartException to
 be thrown:
Job job = new SimpleJob();
job.setRestartable(false);

JobParameters jobParameters = new JobParameters();

JobExecution firstExecution = jobRepository.createJobExecution(job, jobParameters);
jobRepository.saveOrUpdate(firstExecution);

try {
 jobRepository.createJobExecution(job, jobParameters);
 fail();
}
catch (JobRestartException e) {
 // expected
}
This snippet of JUnit code shows how attempting to create a
 JobExecution the first time for a non restartable
 job will cause no issues. However, the second
 attempt will throw a JobRestartException.
Intercepting Job Execution

During the course of the execution of a
 Job, it may be useful to be notified of various
 events in its lifecycle so that custom code may be executed. The
 SimpleJob allows for this by calling a
 JobListener at the appropriate time:
public interface JobExecutionListener {

 void beforeJob(JobExecution jobExecution);

 void afterJob(JobExecution jobExecution);

}
JobListeners can be added to a
 SimpleJob via the listeners element on the
 job:
<job id="footballJob">
 <step id="playerload" parent="s1" next="gameLoad"/>
 <step id="gameLoad" parent="s2" next="playerSummarization"/>
 <step id="playerSummarization" parent="s3"/>
 <listeners>
 <listener ref="sampleListener"/>
 </listeners>
</job>
It should be noted that afterJob will be
 called regardless of the success or failure of the
 Job. If success or failure needs to be determined
 it can be obtained from the JobExecution:
public void afterJob(JobExecution jobExecution){
 if(jobExecution.getStatus() == BatchStatus.COMPLETED){
 //job success
 }
 else if(jobExecution.getStatus() == BatchStatus.FAILED){
 //job failure
 }
}
The annotations corresponding to this interface are:
	@BeforeJob

	@AfterJob

Inheriting from a Parent Job

If a group of Jobs share similar, but not
 identical, configurations, then it may be helpful to define a "parent"
 Job from which the concrete
 Jobs may inherit properties. Similar to class
 inheritance in Java, the "child" Job will combine
 its elements and attributes with the parent's.
In the following example, "baseJob" is an abstract
 Job definition that defines only a list of
 listeners. The Job "job1" is a concrete
 definition that inherits the list of listeners from "baseJob" and merges
 it with its own list of listeners to produce a
 Job with two listeners and one
 Step, "step1".
<job id="baseJob" abstract="true">
 <listeners>
 <listener ref="listenerOne"/>
 <listeners>
</job>

<job id="job1" parent="baseJob">
 <step id="step1" parent="standaloneStep"/>

 <listeners merge="true">
 <listener ref="listenerTwo"/>
 <listeners>
</job>
Please see the section on Inheriting from a Parent Step
 for more detailed information.
JobParametersValidator

A job declared in the XML namespace or using any subclass of
 AbstractJob can optionally declare a validator for the job parameters at
 runtime. This is useful when for instance you need to assert that a job
 is started with all its mandatory parameters. There is a
 DefaultJobParametersValidator that can be used to constrain combinations
 of simple mandatory and optional parameters, and for more complex
 constraints you can implement the interface yourself. The configuration
 of a validator is supported through the XML namespace through a child
 element of the job, e.g:
<job id="job1" parent="baseJob3">
 <step id="step1" parent="standaloneStep"/>
 <validator ref="paremetersValidator"/>
</job>
The validator can be specified as a reference (as above) or as a
 nested bean definition in the beans namespace.
Java Config

Spring 3 brought the ability to configure applications via java instead
 	of XML. As of Spring Batch 2.2.0, batch jobs can be configured using the same
 	java config. There are two components for the java based configuration:
 	the @EnableBatchConfiguration annotation and two builders.
The @EnableBatchProcessing works similarly to the other
 	@Enable* annotations in the Spring family. In this case,
 	@EnableBatchProcessing provides a base configuration for
 	building batch jobs. Within this base configuration, an instance of
 	StepScope is created in addition to a number of beans made
 	available to be autowired:
 	
	JobRepository - bean name "jobRepository"

	JobLauncher - bean name "jobLauncher"

	JobRegistry - bean name "jobRegistry"

	PlatformTransactionManager - bean name "transactionManager"

	JobBuilderFactory - bean name "jobBuilders"

	StepBuilderFactory - bean name "stepBuilders"

The core interface for this configuration is the BatchConfigurer.
 The default implementation provides the beans mentioned above and requires a
 DataSource as a bean within the context to be provided. This data
 source will be used by the JobRepository.

	[image: [Note]]	Note
	Only one configuration class needs to have the
 	@EnableBatchProcessing annotation. Once you have a class
 	annotated with it, you will have all of the above available.

With the base configuration in place, a user can use the provided builder factories
	to configure a job. Below is an example of a two step job configured via the
	JobBuilderFactory and the StepBuilderFactory.
@Configuration
@EnableBatchProcessing
@Import(DataSourceConfiguration.class)
public class AppConfig {

 @Autowired
 private JobBuilderFactory jobs;

 @Autowired
 private StepBuilderFactory steps;

 @Bean
 public Job job(@Qualifier("step1") Step step1, @Qualifier("step2") Step step2) {
 return jobs.get("myJob").start(step1).next(step2).build();
 }

 @Bean
 protected Step step1(ItemReader<Person> reader, ItemProcessor<Person, Person> processor, ItemWriter<Person> writer) {
 return steps.get("step1")
 .<Person, Person> chunk(10)
 .reader(reader)
 .processor(processor)
 .writer(writer)
 .build();
 }

 @Bean
 protected Step step2(Tasklet tasklet) {
 return steps.get("step2")
 .tasklet(tasklet)
 .build();
 }
}
Configuring a JobRepository

As described in earlier, the
 JobRepository
 is used for basic CRUD operations of the various persisted
 domain objects within Spring Batch, such as
 JobExecution and
 StepExecution. It is required by many of the major
 framework features, such as the JobLauncher,
 Job, and Step. The batch
 namespace abstracts away many of the implementation details of the
 JobRepository implementations and their
 collaborators. However, there are still a few configuration options
 available:
<job-repository id="jobRepository"
 data-source="dataSource"
 transaction-manager="transactionManager"
 isolation-level-for-create="SERIALIZABLE"
 table-prefix="BATCH_"
	max-varchar-length="1000"/>
None of the configuration options listed above are required except
 the id. If they are not set, the defaults shown above will be used. They
 are shown above for awareness purposes. The
 max-varchar-length defaults to 2500, which is the
 length of the long VARCHAR columns in the sample schema scripts

 used to store things like exit code descriptions. If you don't modify the schema and you don't use multi-byte characters you shouldn't need to change it.

 Transaction Configuration for the JobRepository

If the namespace is used, transactional advice will be
 automatically created around the repository. This is to ensure that the
 batch meta data, including state that is necessary for restarts after a
 failure, is persisted correctly. The behavior of the framework is not
 well defined if the repository methods are not transactional. The
 isolation level in the create* method attributes is
 specified separately to ensure that when jobs are launched, if two
 processes are trying to launch the same job at the same time, only one
 will succeed. The default isolation level for that method is
 SERIALIZABLE, which is quite aggressive: READ_COMMITTED would work just
 as well; READ_UNCOMMITTED would be fine if two processes are not likely
 to collide in this way. However, since a call to the
 create* method is quite short, it is unlikely
 that the SERIALIZED will cause problems, as long as the database
 platform supports it. However, this can be overridden:

<job-repository id="jobRepository"
 isolation-level-for-create="REPEATABLE_READ" />

If the namespace or factory beans aren't used then it is also
 essential to configure the transactional behavior of the repository
 using AOP:

<aop:config>
 <aop:advisor
 pointcut="execution(* org.springframework.batch.core..*Repository+.*(..))"/>
 <advice-ref="txAdvice" />
</aop:config>

<tx:advice id="txAdvice" transaction-manager="transactionManager">
 <tx:attributes>
 <tx:method name="*" />
 </tx:attributes>
</tx:advice>

This fragment can be used as is, with almost no changes. Remember
 also to include the appropriate namespace declarations and to make sure
 spring-tx and spring-aop (or the whole of spring) are on the
 classpath.
Changing the Table Prefix

Another modifiable property of the
 JobRepository is the table prefix of the
 meta-data tables. By default they are all prefaced with BATCH_.
 BATCH_JOB_EXECUTION and BATCH_STEP_EXECUTION are two examples. However,
 there are potential reasons to modify this prefix. If the schema names
 needs to be prepended to the table names, or if more than one set of
 meta data tables is needed within the same schema, then the table prefix
 will need to be changed:
<job-repository id="jobRepository"
 table-prefix="SYSTEM.TEST_" />
Given the above changes, every query to the meta data tables will
 be prefixed with "SYSTEM.TEST_". BATCH_JOB_EXECUTION will be referred to
 as SYSTEM.TEST_JOB_EXECUTION.
	[image: [Note]]	Note
	Only the table prefix is configurable. The table and column
 names are not.

In-Memory Repository

There are scenarios in which you may not want to persist your
 domain objects to the database. One reason may be speed; storing domain
 objects at each commit point takes extra time. Another reason may be
 that you just don't need to persist status for a particular job. For
 this reason, Spring batch provides an in-memory Map version of the job
 repository:
<bean id="jobRepository"
 class="org.springframework.batch.core.repository.support.MapJobRepositoryFactoryBean">
 <property name="transactionManager" ref="transactionManager"/>
</bean>
Note that the in-memory repository is volatile and so does not
 allow restart between JVM instances. It also cannot guarantee that two
 job instances with the same parameters are launched simultaneously, and
 is not suitable for use in a multi-threaded Job, or a locally
 partitioned Step. So use the database version of the repository wherever
 you need those features.
However it does require a transaction manager to be defined
 because there are rollback semantics within the repository, and because
 the business logic might still be transactional (e.g. RDBMS access). For
 testing purposes many people find the
 ResourcelessTransactionManager useful.
Non-standard Database Types in a Repository

If you are using a database platform that is not in the list of
 supported platforms, you may be able to use one of the supported types,
 if the SQL variant is close enough. To do this you can use the raw
 JobRepositoryFactoryBean instead of the namespace
 shortcut and use it to set the database type to the closest
 match:
<bean id="jobRepository" class="org...JobRepositoryFactoryBean">
 <property name="databaseType" value="db2"/>
 <property name="dataSource" ref="dataSource"/>
</bean>
(The JobRepositoryFactoryBean tries to
 auto-detect the database type from the DataSource
 if it is not specified.) The major differences between platforms are
 mainly accounted for by the strategy for incrementing primary keys, so
 often it might be necessary to override the
 incrementerFactory as well (using one of the standard
 implementations from the Spring Framework).
If even that doesn't work, or you are not using an RDBMS, then the
 only option may be to implement the various Dao
 interfaces that the SimpleJobRepository depends
 on and wire one up manually in the normal Spring way.
Configuring a JobLauncher

The most basic implementation of the
 JobLauncher interface is the
 SimpleJobLauncher. Its only required dependency is
 a JobRepository, in order to obtain an
 execution:
<bean id="jobLauncher"
 class="org.springframework.batch.core.launch.support.SimpleJobLauncher">
 <property name="jobRepository" ref="jobRepository" />
</bean>
Once a JobExecution is
 obtained, it is passed to the execute method of
 Job, ultimately returning the
 JobExecution to the caller:

The sequence is straightforward and works well when launched from a
 scheduler. However, issues arise when trying to launch from an HTTP
 request. In this scenario, the launching needs to be done asynchronously
 so that the SimpleJobLauncher returns immediately
 to its caller. This is because it is not good practice to keep an HTTP
 request open for the amount of time needed by long running processes such
 as batch. An example sequence is below:

The SimpleJobLauncher can easily be
 configured to allow for this scenario by configuring a
 TaskExecutor:
<bean id="jobLauncher"
 class="org.springframework.batch.core.launch.support.SimpleJobLauncher">
 <property name="jobRepository" ref="jobRepository" />
 <property name="taskExecutor">
 <bean class="org.springframework.core.task.SimpleAsyncTaskExecutor" />
 </property>
</bean>
Any implementation of the spring TaskExecutor
 interface can be used to control how jobs are asynchronously
 executed.
Running a Job

At a minimum, launching a batch job requires two things: the
 Job to be launched and a
 JobLauncher. Both can be contained within the same
 context or different contexts. For example, if launching a job from the
 command line, a new JVM will be instantiated for each Job, and thus every
 job will have its own JobLauncher. However, if
 running from within a web container within the scope of an
 HttpRequest, there will usually be one
 JobLauncher, configured for asynchronous job
 launching, that multiple requests will invoke to launch their jobs.
Running Jobs from the Command Line

For users that want to run their jobs from an enterprise
 scheduler, the command line is the primary interface. This is because
 most schedulers (with the exception of Quartz unless using the
 NativeJob) work directly with operating system
 processes, primarily kicked off with shell scripts. There are many ways
 to launch a Java process besides a shell script, such as Perl, Ruby, or
 even 'build tools' such as ant or maven. However, because most people
 are familiar with shell scripts, this example will focus on them.
The CommandLineJobRunner

Because the script launching the job must kick off a Java
 Virtual Machine, there needs to be a class with a main method to act
 as the primary entry point. Spring Batch provides an implementation
 that serves just this purpose:
 CommandLineJobRunner. It's important to note
 that this is just one way to bootstrap your application, but there are
 many ways to launch a Java process, and this class should in no way be
 viewed as definitive. The CommandLineJobRunner
 performs four tasks:
	Load the appropriate
 ApplicationContext

	Parse command line arguments into
 JobParameters

	Locate the appropriate job based on arguments

	Use the JobLauncher provided in the
 application context to launch the job.

All of these tasks are accomplished using only the arguments
 passed in. The following are required arguments:
Table 4.1. CommandLineJobRunner arguments
	jobPath	The location of the XML file that will be used to
 create an ApplicationContext. This file
 should contain everything needed to run the complete
 Job
	jobName	The name of the job to be run.

These arguments must be passed in with the path first and the
 name second. All arguments after these are considered to be
 JobParameters and must be in the format of 'name=value':
bash$ java CommandLineJobRunner endOfDayJob.xml endOfDay schedule.date(date)=2007/05/05
In most cases you would want to use a manifest to declare your
 main class in a jar, but for simplicity, the class was used directly.
 This example is using the same 'EndOfDay' example from the domain section. The first argument is
 'endOfDayJob.xml', which is the Spring
 ApplicationContext containing the
 Job. The second argument, 'endOfDay' represents
 the job name. The final argument, 'schedule.date(date)=2007/05/05'
 will be converted into JobParameters. An
 example of the XML configuration is below:
<job id="endOfDay">
 <step id="step1" parent="simpleStep" />
</job>

<!-- Launcher details removed for clarity -->
<beans:bean id="jobLauncher"
 class="org.springframework.batch.core.launch.support.SimpleJobLauncher" />
This example is overly simplistic, since there are many more
 requirements to a run a batch job in Spring Batch in general, but it
 serves to show the two main requirements of the
 CommandLineJobRunner:
 Job and
 JobLauncher
ExitCodes

When launching a batch job from the command-line, an enterprise
 scheduler is often used. Most schedulers are fairly dumb and work only
 at the process level. This means that they only know about some
 operating system process such as a shell script that they're invoking.
 In this scenario, the only way to communicate back to the scheduler
 about the success or failure of a job is through return codes. A
 return code is a number that is returned to a scheduler by the process
 that indicates the result of the run. In the simplest case: 0 is
 success and 1 is failure. However, there may be more complex
 scenarios: If job A returns 4 kick off job B, and if it returns 5 kick
 off job C. This type of behavior is configured at the scheduler level,
 but it is important that a processing framework such as Spring Batch
 provide a way to return a numeric representation of the 'Exit Code'
 for a particular batch job. In Spring Batch this is encapsulated
 within an ExitStatus, which is covered in more
 detail in Chapter 5. For the purposes of discussing exit codes, the
 only important thing to know is that an
 ExitStatus has an exit code property that is
 set by the framework (or the developer) and is returned as part of the
 JobExecution returned from the
 JobLauncher. The
 CommandLineJobRunner converts this string value
 to a number using the ExitCodeMapper
 interface:
public interface ExitCodeMapper {

 public int intValue(String exitCode);

}
The essential contract of an
 ExitCodeMapper is that, given a string exit
 code, a number representation will be returned. The default
 implementation used by the job runner is the SimpleJvmExitCodeMapper
 that returns 0 for completion, 1 for generic errors, and 2 for any job
 runner errors such as not being able to find a
 Job in the provided context. If anything more
 complex than the 3 values above is needed, then a custom
 implementation of the ExitCodeMapper interface
 must be supplied. Because the
 CommandLineJobRunner is the class that creates
 an ApplicationContext, and thus cannot be
 'wired together', any values that need to be overwritten must be
 autowired. This means that if an implementation of
 ExitCodeMapper is found within the BeanFactory,
 it will be injected into the runner after the context is created. All
 that needs to be done to provide your own
 ExitCodeMapper is to declare the implementation
 as a root level bean and ensure that it is part of the
 ApplicationContext that is loaded by the
 runner.
Running Jobs from within a Web Container

Historically, offline processing such as batch jobs have been
 launched from the command-line, as described above. However, there are
 many cases where launching from an HttpRequest is
 a better option. Many such use cases include reporting, ad-hoc job
 running, and web application support. Because a batch job by definition
 is long running, the most important concern is ensuring to launch the
 job asynchronously:

The controller in this case is a Spring MVC controller. More
 information on Spring MVC can be found here: http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html.
 The controller launches a Job using a
 JobLauncher that has been configured to launch
 asynchronously, which
 immediately returns a JobExecution. The
 Job will likely still be running, however, this
 nonblocking behaviour allows the controller to return immediately, which
 is required when handling an HttpRequest. An
 example is below:
@Controller
public class JobLauncherController {

 @Autowired
 JobLauncher jobLauncher;

 @Autowired
 Job job;

 @RequestMapping("/jobLauncher.html")
 public void handle() throws Exception{
 jobLauncher.run(job, new JobParameters());
 }
}
Advanced Meta-Data Usage

So far, both the JobLauncher and JobRepository interfaces have been
 discussed. Together, they represent simple launching of a job, and basic
 CRUD operations of batch domain objects:

A JobLauncher uses the
 JobRepository to create new
 JobExecution objects and run them.
 Job and Step implementations
 later use the same JobRepository for basic updates
 of the same executions during the running of a Job.
 The basic operations suffice for simple scenarios, but in a large batch
 environment with hundreds of batch jobs and complex scheduling
 requirements, more advanced access of the meta data is required:

The JobExplorer and
 JobOperator interfaces, which will be discussed
 below, add additional functionality for querying and controlling the meta
 data.
Querying the Repository

The most basic need before any advanced features is the ability to
 query the repository for existing executions. This functionality is
 provided by the JobExplorer interface:
public interface JobExplorer {

 List<JobInstance> getJobInstances(String jobName, int start, int count);

 JobExecution getJobExecution(Long executionId);

 StepExecution getStepExecution(Long jobExecutionId, Long stepExecutionId);

 JobInstance getJobInstance(Long instanceId);

 List<JobExecution> getJobExecutions(JobInstance jobInstance);

 Set<JobExecution> findRunningJobExecutions(String jobName);
}
As is evident from the method signatures above,
 JobExplorer is a read-only version of the
 JobRepository, and like the
 JobRepository, it can be easily configured via a
 factory bean:
<bean id="jobExplorer" class="org.spr...JobExplorerFactoryBean"
 p:dataSource-ref="dataSource" />
Earlier in this
 chapter, it was mentioned that the table prefix of the
 JobRepository can be modified to allow for
 different versions or schemas. Because the
 JobExplorer is working with the same tables, it
 too needs the ability to set a prefix:
<bean id="jobExplorer" class="org.spr...JobExplorerFactoryBean"
 p:dataSource-ref="dataSource" p:tablePrefix="BATCH_" />
JobRegistry

A JobRegistry (and its parent interface JobLocator) is not
 mandatory, but it can be useful if you want to keep track of which jobs
 are available in the context. It is also useful for collecting jobs
 centrally in an application context when they have been created
 elsewhere (e.g. in child contexts). Custom JobRegistry implementations
 can also be used to manipulate the names and other properties of the
 jobs that are registered. There is only one implementation provided by
 the framework and this is based on a simple map from job name to job
 instance. It is configured simply like this:
<bean id="jobRegistry" class="org.spr...MapJobRegistry" />
There are two ways to populate a JobRegistry automatically: using
 a bean post processor and using a registrar lifecycle component. These
 two mechanisms are described in the following sections.
JobRegistryBeanPostProcessor

This is a bean post-processor that can register all jobs as they
 are created:
<bean id="jobRegistryBeanPostProcessor" class="org.spr...JobRegistryBeanPostProcessor">
 <property name="jobRegistry" ref="jobRegistry"/>
</bean>
Athough it is not strictly necessary the post-processor in the
 example has been given an id so that it can be included in child
 contexts (e.g. as a parent bean definition) and cause all jobs created
 there to also be regsistered automatically.
AutomaticJobRegistrar

This is a lifecycle component that creates child contexts and
 registers jobs from those contexts as they are created. One advantage
 of doing this is that, while the job names in the child contexts still
 have to be globally unique in the registry, their dependencies can
 have "natural" names. So for example, you can create a set of XML
 configuration files each having only one Job,
 but all having different definitions of an
 ItemReader with the same bean name, e.g.
 "reader". If all those files were imported into the same context, the
 reader definitions would clash and override one another, but with the
 automatic regsistrar this is avoided. This makes it easier to
 integrate jobs contributed from separate modules of an
 application.
<bean class="org.spr...AutomaticJobRegistrar">
 <property name="applicationContextFactories">
 <bean class="org.spr...ClasspathXmlApplicationContextsFactoryBean">
 <property name="resources" value="classpath*:/config/job*.xml" />
 </bean>
 </property>
 <property name="jobLoader">
 <bean class="org.spr...DefaultJobLoader">
 <property name="jobRegistry" ref="jobRegistry" />
 </bean>
 </property>
</bean>
The registrar has two mandatory properties, one is an array of
 ApplicationContextFactory (here created from a
 convenient factory bean), and the other is a
 JobLoader. The JobLoader
 is responsible for managing the lifecycle of the child contexts and
 registering jobs in the JobRegistry.
The ApplicationContextFactory is
 responsible for creating the child context and the most common usage
 would be as above using a
 ClassPathXmlApplicationContextFactory. One of
 the features of this factory is that by default it copies some of the
 configuration down from the parent context to the child. So for
 instance you don't have to re-define the
 PropertyPlaceholderConfigurer or AOP
 configuration in the child, if it should be the same as the
 parent.
The AutomaticJobRegistrar can be used in
 conjunction with a JobRegistryBeanPostProcessor
 if desired (as long as the DefaultJobLoader is
 used as well). For instance this might be desirable if there are jobs
 defined in the main parent context as well as in the child
 locations.
JobOperator

As previously discussed, the JobRepository
 provides CRUD operations on the meta-data, and the
 JobExplorer provides read-only operations on the
 meta-data. However, those operations are most useful when used together
 to perform common monitoring tasks such as stopping, restarting, or
 summarizing a Job, as is commonly done by batch operators. Spring Batch
 provides for these types of operations via the
 JobOperator interface:
public interface JobOperator {

 List<Long> getExecutions(long instanceId) throws NoSuchJobInstanceException;

 List<Long> getJobInstances(String jobName, int start, int count)
 throws NoSuchJobException;

 Set<Long> getRunningExecutions(String jobName) throws NoSuchJobException;

 String getParameters(long executionId) throws NoSuchJobExecutionException;

 Long start(String jobName, String parameters)
 throws NoSuchJobException, JobInstanceAlreadyExistsException;

 Long restart(long executionId)
 throws JobInstanceAlreadyCompleteException, NoSuchJobExecutionException,
 NoSuchJobException, JobRestartException;

 Long startNextInstance(String jobName)
 throws NoSuchJobException, JobParametersNotFoundException, JobRestartException,
 JobExecutionAlreadyRunningException, JobInstanceAlreadyCompleteException;

 boolean stop(long executionId)
 throws NoSuchJobExecutionException, JobExecutionNotRunningException;

 String getSummary(long executionId) throws NoSuchJobExecutionException;

 Map<Long, String> getStepExecutionSummaries(long executionId)
 throws NoSuchJobExecutionException;

 Set<String> getJobNames();

}
The above operations represent methods from many different
 interfaces, such as JobLauncher,
 JobRepository,
 JobExplorer, and
 JobRegistry. For this reason, the provided
 implementation of JobOperator,
 SimpleJobOperator, has many dependencies:
<bean id="jobOperator" class="org.spr...SimpleJobOperator">
 <property name="jobExplorer">
 <bean class="org.spr...JobExplorerFactoryBean">
 <property name="dataSource" ref="dataSource" />
 </bean>
 </property>
 <property name="jobRepository" ref="jobRepository" />
 <property name="jobRegistry" ref="jobRegistry" />
 <property name="jobLauncher" ref="jobLauncher" />
</bean>
	[image: [Note]]	Note
	
 If you set the table prefix on the job repository, don't forget to set it on the job explorer as well.

JobParametersIncrementer

Most of the methods on JobOperator are
 self-explanatory, and more detailed explanations can be found on the
 javadoc
 of the interface. However, the
 startNextInstance method is worth noting. This
 method will always start a new instance of a Job.
 This can be extremely useful if there are serious issues in a
 JobExecution and the Job
 needs to be started over again from the beginning. Unlike
 JobLauncher though, which requires a new
 JobParameters object that will trigger a new
 JobInstance if the parameters are different from
 any previous set of parameters, the
 startNextInstance method will use the
 JobParametersIncrementer tied to the
 Job to force the Job to a
 new instance:
public interface JobParametersIncrementer {

 JobParameters getNext(JobParameters parameters);

}
The contract of JobParametersIncrementer is
 that, given a JobParameters
 object, it will return the 'next' JobParameters
 object by incrementing any necessary values it may contain. This
 strategy is useful because the framework has no way of knowing what
 changes to the JobParameters make it the 'next'
 instance. For example, if the only value in
 JobParameters is a date, and the next instance
 should be created, should that value be incremented by one day? Or one
 week (if the job is weekly for instance)? The same can be said for any
 numerical values that help to identify the Job,
 as shown below:
public class SampleIncrementer implements JobParametersIncrementer {

 public JobParameters getNext(JobParameters parameters) {
 if (parameters==null || parameters.isEmpty()) {
 return new JobParametersBuilder().addLong("run.id", 1L).toJobParameters();
 }
 long id = parameters.getLong("run.id",1L) + 1;
 return new JobParametersBuilder().addLong("run.id", id).toJobParameters();
 }
}
In this example, the value with a key of 'run.id' is used to
 discriminate between JobInstances. If the
 JobParameters passed in is null, it can be
 assumed that the Job has never been run before
 and thus its initial state can be returned. However, if not, the old
 value is obtained, incremented by one, and returned. An incrementer can
 be associated with Job via the 'incrementer'
 attribute in the namespace:
<job id="footballJob" incrementer="sampleIncrementer">
 ...
</job>
Stopping a Job

One of the most common use cases of
 JobOperator is gracefully stopping a
 Job:
Set<Long> executions = jobOperator.getRunningExecutions("sampleJob");
jobOperator.stop(executions.iterator().next());
The shutdown is not immediate, since there is no way to force
 immediate shutdown, especially if the execution is currently in
 developer code that the framework has no control over, such as a
 business service. However, as soon as control is returned back to the
 framework, it will set the status of the current
 StepExecution to
 BatchStatus.STOPPED, save it, then do the same
 for the JobExecution before finishing.
Aborting a Job

A job execution which is FAILED can be
 restarted (if the Job is restartable). A job execution whose status is
 ABANDONED will not be restarted by the framework.
 The ABANDONED status is also used in step
 executions to mark them as skippable in a restarted job execution: if a
 job is executing and encounters a step that has been marked
 ABANDONED in the previous failed job execution, it
 will move on to the next step (as determined by the job flow definition
 and the step execution exit status).
If the process died ("kill -9" or server
 failure) the job is, of course, not running, but the JobRepository has
 no way of knowing because no-one told it before the process died. You
 have to tell it manually that you know that the execution either failed
 or should be considered aborted (change its status to
 FAILED or ABANDONED) - it's
 a business decision and there is no way to automate it. Only change the
 status to FAILED if it is not restartable, or if
 you know the restart data is valid. There is a utility in Spring Batch
 Admin JobService to abort a job execution.
Chapter 5. Configuring a Step

As discussed in Batch Domain Language, a
 Step is a domain object that encapsulates an
 independent, sequential phase of a batch job and contains all of the
 information necessary to define and control the actual batch processing.
 This is a necessarily vague description because the contents of any given
 Step are at the discretion of the developer writing a
 Job. A Step can be as simple or complex as the
 developer desires. A simple Step might load data from
 a file into the database, requiring little or no code. (depending upon the
 implementations used) A more complex Step may have
 complicated business rules that are applied as part of the
 processing.

Chunk-Oriented Processing

Spring Batch uses a 'Chunk Oriented' processing style within its
 most common implementation. Chunk oriented processing refers to reading
 the data one at a time, and creating 'chunks' that will be written out,
 within a transaction boundary. One item is read in from an
 ItemReader, handed to an
 ItemProcessor, and aggregated. Once the number of
 items read equals the commit interval, the entire chunk is written out via
 the ItemWriter, and then the transaction is committed.

Below is a code representation of the same concepts shown
 above:
List items = new Arraylist();
for(int i = 0; i < commitInterval; i++){
 Object item = itemReader.read()
 Object processedItem = itemProcessor.process(item);
 items.add(processedItem);
}
itemWriter.write(items);
Configuring a Step

Despite the relatively short list of required dependencies for a
 Step, it is an extremely complex class that can
 potentially contain many collaborators. In order to ease configuration,
 the Spring Batch namespace can be used:
<job id="sampleJob" job-repository="jobRepository">
 <step id="step1">
 <tasklet transaction-manager="transactionManager">
 <chunk reader="itemReader" writer="itemWriter" commit-interval="10"/>
 </tasklet>
 </step>
</job>
The configuration above represents the only required dependencies
 to create a item-oriented step:
	reader - The ItemReader that provides
 items for processing.

	writer - The ItemWriter that
 processes the items provided by the
 ItemReader.

	transaction-manager - Spring's
 PlatformTransactionManager that will be
 used to begin and commit transactions during processing.

	job-repository - The JobRepository
 that will be used to periodically store the
 StepExecution and
 ExecutionContext during processing (just
 before committing). For an in-line <step/> (one defined
 within a <job/>) it is an attribute on the <job/>
 element; for a standalone step, it is defined as an attribute of
 the <tasklet/>.

	commit-interval - The number of items that will be processed
 before the transaction is committed.

It should be noted that, job-repository defaults to
 "jobRepository" and transaction-manager defaults to "transactionManger".
 Furthermore, the ItemProcessor is optional, not
 required, since the item could be directly passed from the reader to the
 writer.
Inheriting from a Parent Step

If a group of Steps share similar
 configurations, then it may be helpful to define a "parent"
 Step from which the concrete
 Steps may inherit properties. Similar to class
 inheritance in Java, the "child" Step will
 combine its elements and attributes with the parent's. The child will
 also override any of the parent's Steps.
In the following example, the Step
 "concreteStep1" will inherit from "parentStep". It will be instantiated
 with 'itemReader', 'itemProcessor', 'itemWriter', startLimit=5, and
 allowStartIfComplete=true. Additionally, the commitInterval will be '5'
 since it is overridden by the "concreteStep1":
<step id="parentStep">
 <tasklet allow-start-if-complete="true">
 <chunk reader="itemReader" writer="itemWriter" commit-interval="10"/>
 </tasklet>
</step>

<step id="concreteStep1" parent="parentStep">
 <tasklet start-limit="5">
 <chunk processor="itemProcessor" commit-interval="5"/>
 </tasklet>
</step>
The id attribute is still required on the step within the job
 element. This is for two reasons:
	The id will be used as the step name when persisting the
 StepExecution. If the same standalone step is referenced in more
 than one step in the job, an error will occur.

	When creating job flows, as described later in this chapter,
 the next attribute should be referring to the step in the flow,
 not the standalone step.

Abstract Step

Sometimes it may be necessary to define a parent
 Step that is not a complete
 Step configuration. If, for instance, the
 reader, writer, and tasklet attributes are left off of a
 Step configuration, then initialization will
 fail. If a parent must be defined without these properties, then the
 "abstract" attribute should be used. An "abstract"
 Step will not be instantiated; it is used only
 for extending.
In the following example, the Step
 "abstractParentStep" would not instantiate if it were not declared to
 be abstract. The Step "concreteStep2" will have
 'itemReader', 'itemWriter', and commitInterval=10.
<step id="abstractParentStep" abstract="true">
 <tasklet>
 <chunk commit-interval="10"/>
 </tasklet>
</step>

<step id="concreteStep2" parent="abstractParentStep">
 <tasklet>
 <chunk reader="itemReader" writer="itemWriter"/>
 </tasklet>
</step>
Merging Lists

Some of the configurable elements on
 Steps are lists; the <listeners/>
 element, for instance. If both the parent and child
 Steps declare a <listeners/> element,
 then the child's list will override the parent's. In order to allow a
 child to add additional listeners to the list defined by the parent,
 every list element has a "merge" attribute. If the element specifies
 that merge="true", then the child's list will be combined with the
 parent's instead of overriding it.
In the following example, the Step
 "concreteStep3" will be created will two listeners:
 listenerOne and
 listenerTwo:
<step id="listenersParentStep" abstract="true">
 <listeners>
 <listener ref="listenerOne"/>
 <listeners>
</step>

<step id="concreteStep3" parent="listenersParentStep">
 <tasklet>
 <chunk reader="itemReader" writer="itemWriter" commit-interval="5"/>
 </tasklet>
 <listeners merge="true">
 <listener ref="listenerTwo"/>
 <listeners>
</step>
The Commit Interval

As mentioned above, a step reads in and writes out items,
 periodically committing using the supplied
 PlatformTransactionManager. With a
 commit-interval of 1, it will commit after writing each individual item.
 This is less than ideal in many situations, since beginning and
 committing a transaction is expensive. Ideally, it is preferable to
 process as many items as possible in each transaction, which is
 completely dependent upon the type of data being processed and the
 resources with which the step is interacting. For this reason, the
 number of items that are processed within a commit can be
 configured.
<job id="sampleJob">
 <step id="step1">
 <tasklet>
 <chunk reader="itemReader" writer="itemWriter" commit-interval="10"/>
 </tasklet>
 </step>
</job>
In the example above, 10 items will be processed within each
 transaction. At the beginning of processing a transaction is begun, and
 each time read is called on the
 ItemReader, a counter is incremented. When it
 reaches 10, the list of aggregated items is passed to the
 ItemWriter, and the transaction will be
 committed.
Configuring a Step for Restart

In Chapter 4, Configuring and Running a Job, restarting a
 Job was discussed. Restart has numerous impacts
 on steps, and as such may require some specific configuration.
Setting a StartLimit

There are many scenarios where you may want to control the
 number of times a Step may be started. For
 example, a particular Step might need to be
 configured so that it only runs once because it invalidates some
 resource that must be fixed manually before it can be run again. This
 is configurable on the step level, since different steps may have
 different requirements. A Step that may only be
 executed once can exist as part of the same Job
 as a Step that can be run infinitely. Below is
 an example start limit configuration:
<step id="step1">
 <tasklet start-limit="1">
 <chunk reader="itemReader" writer="itemWriter" commit-interval="10"/>
 </tasklet>
</step>
The simple step above can be run only once. Attempting to run it
 again will cause an exception to be thrown. It should be noted that
 the default value for the start-limit is
 Integer.MAX_VALUE.
Restarting a completed step

In the case of a restartable job, there may be one or more steps
 that should always be run, regardless of whether or not they were
 successful the first time. An example might be a validation step, or a
 Step that cleans up resources before
 processing. During normal processing of a restarted job, any step with
 a status of 'COMPLETED', meaning it has already been completed
 successfully, will be skipped. Setting allow-start-if-complete to
 "true" overrides this so that the step will always run:
<step id="step1">
 <tasklet allow-start-if-complete="true">
 <chunk reader="itemReader" writer="itemWriter" commit-interval="10"/>
 </tasklet>
</step>
Step Restart Configuration Example

<job id="footballJob" restartable="true">
 <step id="playerload" next="gameLoad">
 <tasklet>
 <chunk reader="playerFileItemReader" writer="playerWriter"
 commit-interval="10" />
 </tasklet>
 </step>
 <step id="gameLoad" next="playerSummarization">
 <tasklet allow-start-if-complete="true">
 <chunk reader="gameFileItemReader" writer="gameWriter"
 commit-interval="10"/>
 </tasklet>
 </step>
 <step id="playerSummarization">
 <tasklet start-limit="3">
 <chunk reader="playerSummarizationSource" writer="summaryWriter"
 commit-interval="10"/>
 </tasklet>
 </step>
</job>
The above example configuration is for a job that loads in
 information about football games and summarizes them. It contains
 three steps: playerLoad, gameLoad, and playerSummarization. The
 playerLoad Step loads player information from a
 flat file, while the gameLoad Step does the
 same for games. The final Step,
 playerSummarization, then summarizes the statistics for each player
 based upon the provided games. It is assumed that the file loaded by
 'playerLoad' must be loaded only once, but that 'gameLoad' will load
 any games found within a particular directory, deleting them after
 they have been successfully loaded into the database. As a result, the
 playerLoad Step contains no additional
 configuration. It can be started almost limitlessly, and if complete
 will be skipped. The 'gameLoad' Step, however,
 needs to be run every time in case extra files have been dropped since
 it last executed. It has 'allow-start-if-complete' set to 'true' in
 order to always be started. (It is assumed that the database tables
 games are loaded into has a process indicator on it, to ensure new
 games can be properly found by the summarization step). The
 summarization Step, which is the most important
 in the Job, is configured to have a start limit
 of 3. This is useful because if the step continually fails, a new exit
 code will be returned to the operators that control job execution, and
 it won't be allowed to start again until manual intervention has taken
 place.
	[image: [Note]]	Note
	This job is purely for example purposes and is not the same as
 the footballJob found in the samples project.

Run 1:
	playerLoad is executed and completes successfully, adding
 400 players to the 'PLAYERS' table.

	gameLoad is executed and processes 11 files worth of game
 data, loading their contents into the 'GAMES' table.

	playerSummarization begins processing and fails after 5
 minutes.

Run 2:
	playerLoad is not run, since it has already completed
 successfully, and allow-start-if-complete is 'false' (the
 default).

	gameLoad is executed again and processes another 2 files,
 loading their contents into the 'GAMES' table as well (with a
 process indicator indicating they have yet to be processed)

	playerSummarization begins processing of all remaining game
 data (filtering using the process indicator) and fails again after
 30 minutes.

Run 3:
	playerLoad is not run, since it has already completed
 successfully, and allow-start-if-complete is 'false' (the
 default).

	gameLoad is executed again and processes another 2 files,
 loading their contents into the 'GAMES' table as well (with a
 process indicator indicating they have yet to be processed)

	playerSummarization is not start, and the job is immediately
 killed, since this is the third execution of playerSummarization,
 and its limit is only 2. The limit must either be raised, or the
 Job must be executed as a new
 JobInstance.

Configuring Skip Logic

There are many scenarios where errors encountered while processing
 should not result in Step failure, but should be
 skipped instead. This is usually a decision that must be made by someone
 who understands the data itself and what meaning it has. Financial data,
 for example, may not be skippable because it results in money being
 transferred, which needs to be completely accurate. Loading a list of
 vendors, on the other hand, might allow for skips. If a vendor is not
 loaded because it was formatted incorrectly or was missing necessary
 information, then there probably won't be issues. Usually these bad
 records are logged as well, which will be covered later when discussing
 listeners.

<step id="step1">
 <tasklet>
 <chunk reader="flatFileItemReader" writer="itemWriter"
 commit-interval="10" skip-limit="10">
 <skippable-exception-classes>
 <include class="org.springframework.batch.item.file.FlatFileParseException"/>
 </skippable-exception-classes>
 </chunk>
 </tasklet>
</step>
In this example, a FlatFileItemReader is
 used, and if at any point a
 FlatFileParseException is thrown, it will be
 skipped and counted against the total skip limit of 10. Separate counts
 are made of skips on read, process and write inside the step execution,
 and the limit applies across all. Once the skip limit is reached, the
 next exception found will cause the step to fail.
One problem with the example above is that any other exception
 besides a FlatFileParseException will cause the
 Job to fail. In certain scenarios this may be the
 correct behavior. However, in other scenarios it may be easier to
 identify which exceptions should cause failure and skip everything
 else:

<step id="step1">
 <tasklet>
 <chunk reader="flatFileItemReader" writer="itemWriter"
 commit-interval="10" skip-limit="10">
 <skippable-exception-classes>
 <include class="java.lang.Exception"/>
 <exclude class="java.io.FileNotFoundException"/>
 </skippable-exception-classes>
 </chunk>
 </tasklet>
</step>
By 'including' java.lang.Exception as a
 skippable exception class, the configuration indicates that all
 Exceptions are skippable. However, by 'excluding'
 java.io.FileNotFoundException, the configuration
 refines the list of skippable exception classes to be all
 Exceptions except
 FileNotFoundException. Any excluded exception
 classes will be fatal if encountered (i.e. not skipped).
For any exception encountered, the skippability will be determined
 by the nearest superclass in the class hierarchy. Any unclassifed
 exception will be treated as 'fatal'. The order of the
 <include/> and <exclude/> elements
 does not matter.
Configuring Retry Logic

In most cases you want an exception to cause either a skip or
 Step failure. However, not all exceptions are
 deterministic. If a FlatFileParseException is
 encountered while reading, it will always be thrown for that record;
 resetting the ItemReader will not help. However,
 for other exceptions, such as a
 DeadlockLoserDataAccessException, which indicates
 that the current process has attempted to update a record that another
 process holds a lock on, waiting and trying again might result in
 success. In this case, retry should be configured:
<step id="step1">
 <tasklet>
 <chunk reader="itemReader" writer="itemWriter"
 commit-interval="2" retry-limit="3">
 <retryable-exception-classes>
 <include class="org.springframework.dao.DeadlockLoserDataAccessException"/>
 </retryable-exception-classes>
 </chunk>
 </tasklet>
</step>
The Step allows a limit for the number of
 times an individual item can be retried, and a list of exceptions that
 are 'retryable'. More details on how retry works can be found in Chapter 9, Retry.
Controlling Rollback

By default, regardless of retry or skip, any exceptions thrown
 from the ItemWriter will cause the transaction
 controlled by the Step to rollback. If skip is
 configured as described above, exceptions thrown from the
 ItemReader will not cause a rollback. However,
 there are many scenarios in which exceptions thrown from the
 ItemWriter should not cause a rollback because no
 action has taken place to invalidate the transaction. For this reason,
 the Step can be configured with a list of
 exceptions that should not cause rollback.
<step id="step1">
 <tasklet>
 <chunk reader="itemReader" writer="itemWriter" commit-interval="2"/>
 <no-rollback-exception-classes>
 <include class="org.springframework.batch.item.validator.ValidationException"/>
 </no-rollback-exception-classes>
 </tasklet>
</step>
Transactional Readers

The basic contract of the ItemReader is
 that it is forward only. The step buffers reader input, so that in the
 case of a rollback the items don't need to be re-read from the reader.
 However, there are certain scenarios in which the reader is built on
 top of a transactional resource, such as a JMS queue. In this case,
 since the queue is tied to the transaction that is rolled back, the
 messages that have been pulled from the queue will be put back on. For
 this reason, the step can be configured to not buffer the
 items:
<step id="step1">
 <tasklet>
 <chunk reader="itemReader" writer="itemWriter" commit-interval="2"
 is-reader-transactional-queue="true"/>
 </tasklet>
</step>
Transaction Attributes

Transaction attributes can be used to control the isolation,
 propagation, and timeout settings. More information on setting
 transaction attributes can be found in the spring core
 documentation.
<step id="step1">
 <tasklet>
 <chunk reader="itemReader" writer="itemWriter" commit-interval="2"/>
 <transaction-attributes isolation="DEFAULT"
 propagation="REQUIRED"
 timeout="30"/>
 </tasklet>
</step>
Registering ItemStreams with the Step

The step has to take care of ItemStream
 callbacks at the necessary points in its lifecycle. (for more
 information on the ItemStream interface, please
 refer to the section called “ItemStream”) This is vital if a step fails,
 and might need to be restarted, because the
 ItemStream interface is where the step gets the
 information it needs about persistent state between executions.
If the ItemReader,
 ItemProcessor, or
 ItemWriter itself implements the
 ItemStream interface, then these will be
 registered automatically. Any other streams need to be registered
 separately. This is often the case where there are indirect dependencies
 such as delegates being injected into the reader and writer. A stream
 can be registered on the Step through the
 'streams' element, as illustrated below:
<step id="step1">
 <tasklet>
 <chunk reader="itemReader" writer="compositeWriter" commit-interval="2">
 <streams>
 <stream ref="fileItemWriter1"/>
 <stream ref="fileItemWriter2"/>
 </streams>
 </chunk>
 </tasklet>
</step>

<beans:bean id="compositeWriter"
 class="org.springframework.batch.item.support.CompositeItemWriter">
 <beans:property name="delegates">
 <beans:list>
 <beans:ref bean="fileItemWriter1" />
 <beans:ref bean="fileItemWriter2" />
 </beans:list>
 </beans:property>
</beans:bean>
In the example above, the
 CompositeItemWriter is not an
 ItemStream, but both of its delegates are.
 Therefore, both delegate writers must be explicitly registered as
 streams in order for the framework to handle them correctly. The
 ItemReader does not need to be explicitly
 registered as a stream because it is a direct property of the
 Step. The step will now be restartable and the
 state of the reader and writer will be correctly persisted in the event
 of a failure.
Intercepting Step Execution

Just as with the Job, there are many events
 during the execution of a Step where a user may
 need to perform some functionality. For example, in order to write out
 to a flat file that requires a footer, the
 ItemWriter needs to be notified when the
 Step has been completed, so that the footer can
 written. This can be accomplished with one of many
 Step scoped listeners.
Any class that implements one of the extensions
	 of StepListener (but not that interface
	 itself since it is empty) can be applied to a step via the
	 listeners element. The listeners element is valid inside a
	 step, tasklet or chunk declaration. It is recommended that you
	 declare the listeners at the level which its function applies,
	 or if it is multi-featured
	 (e.g. StepExecutionListener
	 and ItemReadListener) then declare it at
	 the most granular level that it applies (chunk in the example
	 given).
<step id="step1">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="10"/>
 <listeners>
 <listener ref="chunkListener"/>
 </listeners>
 </tasklet>
</step>
An ItemReader,
 ItemWriter or
 ItemProcessor that itself implements one of the
 StepListener interfaces will be registered
 automatically with the Step if using the
 namespace <step> element, or one of the the
 *StepFactoryBean factories. This only applies to
 components directly injected into the Step: if
 the listener is nested inside another component, it needs to be
 explicitly registered (as described above).
In addition to the StepListener interfaces,
 annotations are provided to address the same concerns. Plain old Java
 objects can have methods with these annotations that are then converted
 into the corresponding StepListener type. It is
 also common to annotate custom implementations of chunk components like
 ItemReader or ItemWriter
 or Tasklet. The annotations are analysed by the
 XML parser for the <listener/> elements, so all you
 need to do is use the XML namespace to register the listeners with a
 step.
StepExecutionListener

StepExecutionListener represents the most
 generic listener for Step execution. It allows
 for notification before a Step is started and
 after it has ends, whether it ended normally or failed:
public interface StepExecutionListener extends StepListener {

 void beforeStep(StepExecution stepExecution);

 ExitStatus afterStep(StepExecution stepExecution);

}
ExitStatus is the return type of
 afterStep in order to allow listeners the
 chance to modify the exit code that is returned upon completion of a
 Step.
The annotations corresponding to this interface are:
	@BeforeStep

	@AfterStep

ChunkListener

A chunk is defined as the items processed within the scope of a
 transaction. Committing a transaction, at each commit interval,
 commits a 'chunk'. A ChunkListener can be
 useful to perform logic before a chunk begins processing or after a
 chunk has completed successfully:
public interface ChunkListener extends StepListener {

 void beforeChunk();
 void afterChunk();

}
The beforeChunk method is called after
 the transaction is started, but before read
 is called on the ItemReader. Conversely,
 afterChunk is called after the chunk has been
 committed (and not at all if there is a rollback).
The annotations corresponding to this interface are:
	@BeforeChunk

	@AfterChunk

A ChunkListener can be applied
		when there is no chunk declaration: it is
		the TaskletStep that is responsible for
		calling the ChunkListener so it applies
		to a non-item-oriented tasklet as well (called before and
		after the tasklet).
ItemReadListener

When discussing skip logic above, it was mentioned that it may
 be beneficial to log the skipped records, so that they can be deal
 with later. In the case of read errors, this can be done with an
 ItemReaderListener:

public interface ItemReadListener<T> extends StepListener {

 void beforeRead();
 void afterRead(T item);
 void onReadError(Exception ex);

}
The beforeRead method will be called
 before each call to read on the
 ItemReader. The
 afterRead method will be called after each
 successful call to read, and will be passed
 the item that was read. If there was an error while reading, the
 onReadError method will be called. The
 exception encountered will be provided so that it can be
 logged.
The annotations corresponding to this interface are:
	@BeforeRead

	@AfterRead

	@OnReadError

ItemProcessListener

Just as with the ItemReadListener, the
 processing of an item can be 'listened' to:
public interface ItemProcessListener<T, S> extends StepListener {

 void beforeProcess(T item);
 void afterProcess(T item, S result);
 void onProcessError(T item, Exception e);

}
The beforeProcess method will be called
 before process on the
 ItemProcessor, and is handed the item that will
 be processed. The afterProcess method will be
 called after the item has been successfully processed. If there was an
 error while processing, the onProcessError
 method will be called. The exception encountered and the item that was
 attempted to be processed will be provided, so that they can be
 logged.
The annotations corresponding to this interface are:
	@BeforeProcess

	@AfterProcess

	@OnProcessError

ItemWriteListener

The writing of an item can be 'listened' to with the
 ItemWriteListener:
public interface ItemWriteListener<S> extends StepListener {

 void beforeWrite(List<? extends S> items);
 void afterWrite(List<? extends S> items);
 void onWriteError(Exception exception, List<? extends S> items);

}
The beforeWrite method will be called
 before write on the
 ItemWriter, and is handed the item that will be
 written. The afterWrite method will be called
 after the item has been successfully written. If there was an error
 while writing, the onWriteError method will
 be called. The exception encountered and the item that was attempted
 to be written will be provided, so that they can be logged.
The annotations corresponding to this interface are:
	@BeforeWrite

	@AfterWrite

	@OnWriteError

SkipListener

ItemReadListener,
 ItemProcessListener, and
 ItemWriteListner all provide mechanisms for
 being notified of errors, but none will inform you that a record has
 actually been skipped. onWriteError, for
 example, will be called even if an item is retried and successful. For
 this reason, there is a separate interface for tracking skipped
 items:
public interface SkipListener<T,S> extends StepListener {

 void onSkipInRead(Throwable t);
 void onSkipInProcess(T item, Throwable t);
 void onSkipInWrite(S item, Throwable t);

}
onSkipInRead will be called whenever an
 item is skipped while reading. It should be noted that rollbacks may
 cause the same item to be registered as skipped more than once.
 onSkipInWrite will be called when an item is
 skipped while writing. Because the item has been read successfully
 (and not skipped), it is also provided the item itself as an
 argument.
The annotations corresponding to this interface are:
	@OnSkipInRead

	@OnSkipInWrite

	@OnSkipInProcess

SkipListeners and Transactions

One of the most common use cases for a
 SkipListener is to log out a skipped item, so
 that another batch process or even human process can be used to
 evaluate and fix the issue leading to the skip. Because there are
 many cases in which the original transaction may be rolled back,
 Spring Batch makes two guarantees:
	The appropriate skip method (depending on when the error
 happened) will only be called once per item.

	The SkipListener will always be
 called just before the transaction is committed. This is to
 ensure that any transactional resources call by the listener are
 not rolled back by a failure within the
 ItemWriter.

TaskletStep

Chunk-oriented processing is not the only way to process in a
 Step. What if a Step must
 consist as a simple stored procedure call? You could implement the call as
 an ItemReader and return null after the procedure
 finishes, but it is a bit unnatural since there would need to be a no-op
 ItemWriter. Spring Batch provides the
 TaskletStep for this scenario.
The Tasklet is a simple interface that has
 one method, execute, which will be a called
 repeatedly by the TaskletStep until it either
 returns RepeatStatus.FINISHED or throws an exception to
 signal a failure. Each call to the Tasklet is
 wrapped in a transaction. Tasklet implementors
 might call a stored procedure, a script, or a simple SQL update statement.
 To create a TaskletStep, the 'ref' attribute of the
 <tasklet/> element should reference a bean defining a
 Tasklet object; no <chunk/> element should be
 used within the <tasklet/>:
<step id="step1">
 <tasklet ref="myTasklet"/>
</step>
	[image: [Note]]	Note
	TaskletStep will automatically register the
 tasklet as StepListener if it implements this
 interface

TaskletAdapter

As with other adapters for the ItemReader
 and ItemWriter interfaces, the
 Tasklet interface contains an implementation that
 allows for adapting itself to any pre-existing class:
 TaskletAdapter. An example where this may be
 useful is an existing DAO that is used to update a flag on a set of
 records. The TaskletAdapter can be used to call
 this class without having to write an adapter for the
 Tasklet interface:
<bean id="myTasklet" class="o.s.b.core.step.tasklet.MethodInvokingTaskletAdapter">
 <property name="targetObject">
 <bean class="org.mycompany.FooDao"/>
 </property>
 <property name="targetMethod" value="updateFoo" />
</bean>
Example Tasklet Implementation

Many batch jobs contain steps that must be done before the main
 processing begins in order to set up various resources or after
 processing has completed to cleanup those resources. In the case of a
 job that works heavily with files, it is often necessary to delete
 certain files locally after they have been uploaded successfully to
 another location. The example below taken from the Spring Batch samples
 project, is a Tasklet implementation with just
 such a responsibility:
public class FileDeletingTasklet implements Tasklet, InitializingBean {

 private Resource directory;

 public RepeatStatus execute(StepContribution contribution,
 ChunkContext chunkContext) throws Exception {
 File dir = directory.getFile();
 Assert.state(dir.isDirectory());

 File[] files = dir.listFiles();
 for (int i = 0; i < files.length; i++) {
 boolean deleted = files[i].delete();
 if (!deleted) {
 throw new UnexpectedJobExecutionException("Could not delete file " +
 files[i].getPath());
 }
 }
 return RepeatStatus.FINISHED;
 }

 public void setDirectoryResource(Resource directory) {
 this.directory = directory;
 }

 public void afterPropertiesSet() throws Exception {
 Assert.notNull(directory, "directory must be set");
 }
}
The above Tasklet implementation will
 delete all files within a given directory. It should be noted that the
 execute method will only be called once. All
 that is left is to reference the Tasklet from the
 Step:
<job id="taskletJob">
 <step id="deleteFilesInDir">
 <tasklet ref="fileDeletingTasklet"/>
 </step>
</job>

<beans:bean id="fileDeletingTasklet"
 class="org.springframework.batch.sample.tasklet.FileDeletingTasklet">
 <beans:property name="directoryResource">
 <beans:bean id="directory"
 class="org.springframework.core.io.FileSystemResource">
 <beans:constructor-arg value="target/test-outputs/test-dir" />
 </beans:bean>
 </beans:property>
</beans:bean>
Controlling Step Flow

With the ability to group steps together within an owning job comes
 the need to be able to control how the job 'flows' from one step to
 another. The failure of a Step doesn't necessarily
 mean that the Job should fail. Furthermore, there
 may be more than one type of 'success' which determines which
 Step should be executed next. Depending upon how a
 group of Steps is configured, certain steps may not even be processed at
 all.
Sequential Flow

The simplest flow scenario is a job where all of the steps execute
 sequentially:

This can be achieved using the 'next' attribute of the step
 element:
<job id="job">
 <step id="stepA" parent="s1" next="stepB" />
 <step id="stepB" parent="s2" next="stepC"/>
 <step id="stepC" parent="s3" />
</job>
In the scenario above, 'step A' will execute
 first because it is the first Step listed. If
 'step A' completes normally, then 'step B' will execute, and so on.
 However, if 'step A' fails, then the entire Job
 will fail and 'step B' will not execute.
	[image: [Note]]	Note
	With the Spring Batch namespace, the first step listed in the
 configuration will always be the first step
 executed by the Job. The order of the other
 step elements does not matter, but the first step must always appear
 first in the xml.

Conditional Flow

In the example above, there are only two possibilities:
	The Step is successful and the next
 Step should be executed.

	The Step failed and thus the
 Job should fail.

In many cases, this may be sufficient. However, what about a
 scenario in which the failure of a Step should
 trigger a different Step, rather than causing
 failure?

In order to handle more complex scenarios, the
 Spring Batch namespace allows transition elements to be defined within
 the step element. One such transition is the "next" element. Like the
 "next" attribute, the "next" element will tell the
 Job which Step to execute
 next. However, unlike the attribute, any number of "next" elements are
 allowed on a given Step, and there is no default
 behavior the case of failure. This means that if transition elements are
 used, then all of the behavior for the Step's
 transitions must be defined explicitly. Note also that a single step
 cannot have both a "next" attribute and a transition element.
The next element specifies a pattern to match and the step to
 execute next:
<job id="job">
 <step id="stepA" parent="s1">
 <next on="*" to="stepB" />
 <next on="FAILED" to="stepC" />
 </step>
 <step id="stepB" parent="s2" next="stepC" />
 <step id="stepC" parent="s3" />
</job>
The "on" attribute of a transition element uses a simple
 pattern-matching scheme to match the ExitStatus
 that results from the execution of the Step. Only
 two special characters are allowed in the pattern:
	"*" will zero or more characters

	"?" will match exactly one character

For example, "c*t" will match "cat" and "count", while "c?t" will
 match "cat" but not "count".
While there is no limit to the number of transition elements on a
 Step, if the Step's
 execution results in an ExitStatus that is not
 covered by an element, then the framework will throw an exception and
 the Job will fail. The framework will
	 automatically order transitions from most specific to
 least specific. This means that even if the elements were swapped for
 "stepA" in the example above, an ExitStatus of
 "FAILED" would still go to "stepC".
Batch Status vs. Exit Status

When configuring a Job for conditional
 flow, it is important to understand the difference between
 BatchStatus and
 ExitStatus. BatchStatus
 is an enumeration that is a property of both
 JobExecution and
 StepExecution and is used by the framework to
 record the status of a Job or
 Step. It can be one of the following values:
 COMPLETED, STARTING, STARTED, STOPPING, STOPPED, FAILED, ABANDONED or
 UNKNOWN. Most of them are self explanatory: COMPLETED is the status
 set when a step or job has completed successfully, FAILED is set when
 it fails, and so on. The example above contains the following 'next'
 element:
<next on="FAILED" to="stepB" />
At first glance, it would appear that the 'on' attribute
 references the BatchStatus of the
 Step to which it belongs. However, it actually
 references the ExitStatus of the
 Step. As the name implies,
 ExitStatus represents the status of a
 Step after it finishes execution. More
 specifically, the 'next' element above references the exit code of the
 ExitStatus. To write it in English, it says:
 "go to stepB if the exit code is FAILED". By default, the exit code is
 always the same as the BatchStatus for the
 Step, which is why the entry above works. However, what if the exit
 code needs to be different? A good example comes from the skip sample
 job within the samples project:
<step id="step1" parent="s1">
 <end on="FAILED" />
 <next on="COMPLETED WITH SKIPS" to="errorPrint1" />
 <next on="*" to="step2" />
</step>
The above step has three possibilities:
	The Step failed, in which case the
 job should fail.

	The Step completed
 successfully.

	The Step completed successfully, but
 with an exit code of 'COMPLETED WITH SKIPS'. In this case, a
 different step should be run to handle the errors.

The above configuration will work. However, something needs to
 change the exit code based on the condition of the execution having
 skipped records:
public class SkipCheckingListener extends StepExecutionListenerSupport {
 public ExitStatus afterStep(StepExecution stepExecution) {
 String exitCode = stepExecution.getExitStatus().getExitCode();
 if (!exitCode.equals(ExitStatus.FAILED.getExitCode()) &&
 stepExecution.getSkipCount() > 0) {
 return new ExitStatus("COMPLETED WITH SKIPS");
 }
 else {
 return null;
 }
 }
}
The above code is a StepExecutionListener
 that first checks to make sure the Step was
 successful, and next if the skip count on the
 StepExecution is higher than 0. If both
 conditions are met, a new ExitStatus with an
 exit code of "COMPLETED WITH SKIPS" is returned.
Configuring for Stop

After the discussion of BatchStatus and
 ExitStatus, one might wonder how the
 BatchStatus and ExitStatus
 are determined for the Job. While these statuses
 are determined for the Step by the code that is
 executed, the statuses for the Job will be
 determined based on the configuration.
So far, all of the job configurations discussed have had at least
 one final Step with no transitions. For example,
 after the following step executes, the Job will
 end:
<step id="stepC" parent="s3"/>
If no transitions are defined for a Step,
 then the Job's statuses will be defined as
 follows:
	If the Step ends with
 ExitStatus FAILED, then the
 Job's BatchStatus and
 ExitStatus will both be FAILED.

	Otherwise, the Job's
 BatchStatus and
 ExitStatus will both be COMPLETED.

While this method of terminating a batch job is sufficient for
 some batch jobs, such as a simple sequential step job, custom defined
 job-stopping scenarios may be required. For this purpose, Spring Batch
 provides three transition elements to stop a Job
 (in addition to the "next" element
 that we discussed previously). Each of these stopping elements will stop
 a Job with a particular
 BatchStatus. It is important to note that the
 stop transition elements will have no effect on either the
 BatchStatus or ExitStatus
 of any Steps in the Job:
 these elements will only affect the final statuses of the
 Job. For example, it is possible for every step
 in a job to have a status of FAILED but the job to have a status of
 COMPLETED, or vise versa.
The 'End' Element

The 'end' element instructs a Job to stop
 with a BatchStatus of COMPLETED. A
 Job that has finished with status COMPLETED
 cannot be restarted (the framework will throw a
 JobInstanceAlreadyCompleteException). The 'end'
 element also allows for an optional 'exit-code' attribute that can be
 used to customize the ExitStatus of the
 Job. If no 'exit-code' attribute is given, then
 the ExitStatus will be "COMPLETED" by default,
 to match the BatchStatus.
In the following scenario, if step2 fails, then the
 Job will stop with a
 BatchStatus of COMPLETED and an
 ExitStatus of "COMPLETED" and step3 will not
 execute; otherwise, execution will move to step3. Note that if step2
 fails, the Job will not be restartable (because
 the status is COMPLETED).
<step id="step1" parent="s1" next="step2">

<step id="step2" parent="s2">
 <end on="FAILED"/>
 <next on="*" to="step3"/>
</step>

<step id="step3" parent="s3">
The 'Fail' Element

The 'fail' element instructs a Job to
 stop with a BatchStatus of FAILED. Unlike the
 'end' element, the 'fail' element will not prevent the
 Job from being restarted. The 'fail' element
 also allows for an optional 'exit-code' attribute that can be used to
 customize the ExitStatus of the
 Job. If no 'exit-code' attribute is given, then
 the ExitStatus will be "FAILED" by default, to
 match the BatchStatus.
In the following scenario, if step2 fails, then the
 Job will stop with a
 BatchStatus of FAILED and an
 ExitStatus of "EARLY TERMINATION" and step3
 will not execute; otherwise, execution will move to step3.
 Additionally, if step2 fails, and the Job is
 restarted, then execution will begin again on step2.
<step id="step1" parent="s1" next="step2">

<step id="step2" parent="s2">
 <fail on="FAILED" exit-code="EARLY TERMINATION"/>
 <next on="*" to="step3"/>
</step>

<step id="step3" parent="s3">
The 'Stop' Element

The 'stop' element instructs a Job to
 stop with a BatchStatus of STOPPED. Stopping a
 Job can provide a temporary break in processing
 so that the operator can take some action before restarting the
 Job. The 'stop' element requires a 'restart'
 attribute that specifies the step where execution should pick up when
 the Job is restarted.
In the following scenario, if step1 finishes with COMPLETE, then
 the job will then stop. Once it is restarted, execution will begin on
 step2.
<step id="step1" parent="s1">
 <stop on="COMPLETED" restart="step2"/>
</step>

<step id="step2" parent="s2"/>
Programmatic Flow Decisions

In some situations, more information than the
 ExitStatus may be required to decide which step
 to execute next. In this case, a
 JobExecutionDecider can be used to assist in the
 decision.
public class MyDecider implements JobExecutionDecider {
 public FlowExecutionStatus decide(JobExecution jobExecution, StepExecution stepExecution) {
 if (someCondition) {
 return "FAILED";
 }
 else {
 return "COMPLETED";
 }
 }
}
In the job configuration, a "decision" tag will specify the
 decider to use as well as all of the transitions.
<job id="job">
 <step id="step1" parent="s1" next="decision" />

 <decision id="decision" decider="decider">
 <next on="FAILED" to="step2" />
 <next on="COMPLETED" to="step3" />
 </decision>

 <step id="step2" parent="s2" next="step3"/>
 <step id="step3" parent="s3" />
</job>

<beans:bean id="decider" class="com.MyDecider"/>
Split Flows

Every scenario described so far has involved a
 Job that executes its
 Steps one at a time in a linear fashion. In
 addition to this typical style, the Spring Batch namespace also allows
 for a job to be configured with parallel flows using the 'split'
 element. As is seen below, the 'split' element contains one or more
 'flow' elements, where entire separate flows can be defined. A 'split'
 element may also contain any of the previously discussed transition
 elements such as the 'next' attribute or the 'next', 'end', 'fail', or
 'pause' elements.
<split id="split1" next="step4">
 <flow>
 <step id="step1" parent="s1" next="step2"/>
 <step id="step2" parent="s2"/>
 </flow>
 <flow>
 <step id="step3" parent="s3"/>
 </flow>
</split>
<step id="step4" parent="s4"/>
Externalizing Flow Definitions and Dependencies Between
 Jobs

Part of the flow in a job can be externalized as a separate bean
 definition, and then re-used. There are two ways to do this, and the
 first is to simply declare the flow as a reference to one defined
 elsewhere:
<job id="job">
 <flow id="job1.flow1" parent="flow1" next="step3"/>
 <step id="step3" parent="s3"/>
</job>

<flow id="flow1">
 <step id="step1" parent="s1" next="step2"/>
 <step id="step2" parent="s2"/>
</flow>
The effect of defining an external flow like this is simply to
 insert the steps from the external flow into the job as if they had been
 declared inline. In this way many jobs can refer to the same template
 flow and compose such templates into different logical flows. This is
 also a good way to separate the integration testing of the individual
 flows.
The other form of an externalized flow is to use a
 JobStep. A JobStep is
 similar to a FlowStep, but actually creates and
 launches a separate job execution for the steps in the flow specified.
 Here is an example:
<job id="jobStepJob" restartable="true">
 <step id="jobStepJob.step1">
 <job ref="job" job-launcher="jobLauncher"
 job-parameters-extractor="jobParametersExtractor"/>
 </step>
</job>

<job id="job" restartable="true">...</job>

<bean id="jobParametersExtractor" class="org.spr...DefaultJobParametersExtractor">
 <property name="keys" value="input.file"/>
</bean>
The job parameters extractor is a strategy that determines how a
 the ExecutionContext for the
 Step is converted into
 JobParameters for the Job that is executed. The
 JobStep is useful when you want to have some more
 granular options for monitoring and reporting on jobs and steps. Using
 JobStep is also often a good answer to the
 question: "How do I create dependencies between jobs?". It is a good way
 to break up a large system into smaller modules and control the flow of
 jobs.
Late Binding of Job and Step Attributes

Both the XML and Flat File examples above use the Spring
 Resource abstraction to obtain a file. This works
 because Resource has a getFile
 method, which returns a java.io.File. Both XML and
 Flat File resources can be configured using standard Spring
 constructs:
<bean id="flatFileItemReader"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource"
 value="file://outputs/20070122.testStream.CustomerReportStep.TEMP.txt" />
</bean>
The above Resource will load the file from
 the file system location specified. Note that absolute locations have to
 start with a double slash ("//"). In most spring applications, this
 solution is good enough because the names of these are known at compile
 time. However, in batch scenarios, the file name may need to be determined
 at runtime as a parameter to the job. This could be solved using '-D'
 parameters, i.e. a system property:
<bean id="flatFileItemReader"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource" value="${input.file.name}" />
</bean>
All that would be required for this solution to work would be a
 system argument (-Dinput.file.name="file://file.txt"). (Note that although
 a PropertyPlaceholderConfigurer can be used here,
 it is not necessary if the system property is always set because the
 ResourceEditor in Spring already filters and does
 placeholder replacement on system properties.)
Often in a batch setting it is preferable to parameterize the file
 name in the JobParameters of the
 job, instead of through system properties, and access them that way. To
 accomplish this, Spring Batch allows for the late binding of various Job
 and Step attributes:
<bean id="flatFileItemReader" scope="step"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource" value="#{jobParameters['input.file.name']}" />
</bean>
Both the JobExecution and
 StepExecution level
 ExecutionContext can be accessed in the same
 way:
<bean id="flatFileItemReader" scope="step"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource" value="#{jobExecutionContext['input.file.name']}" />
</bean>
<bean id="flatFileItemReader" scope="step"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource" value="#{stepExecutionContext['input.file.name']}" />
</bean>
	[image: [Note]]	Note
	Any bean that uses late-binding must be declared with
 scope="step". See for the section called “Step Scope” more
 information.

	[image: [Note]]	Note
	If you are using Spring 3.0 (or above) the expressions in
 step-scoped beans are in the Spring Expression Language, a powerful
 general purpose language with many interesting features. To provide
 backward compatibility, if Spring Batch detects the presence of older
 versions of Spring it uses a native expression language that is less
 powerful, and has slightly different parsing rules. The main difference
 is that the map keys in the example above do not need to be quoted with
 Spring 2.5, but the quotes are mandatory in Spring 3.0.

Step Scope

All of the late binding examples from above have a scope of "step"
 declared on the bean definition:
<bean id="flatFileItemReader" scope="step"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource" value="#{jobParameters[input.file.name]}" />
</bean>
Using a scope of Step is required in order
 to use late binding since the bean cannot actually be instantiated until
 the Step starts, which allows the attributes to
 be found. Because it is not part of the Spring container by default, the
 scope must be added explicitly, either by using the
 batch namespace:
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="...">
<batch:job .../>
...
</beans>
or by including a bean definition explicitly for the
 StepScope (but not both):
<bean class="org.springframework.batch.core.scope.StepScope" />
Job Scope

Job scope, introduced in Spring Batch 3.0 is similar to Step scope
		in configuration but is a Scope for the Job context so there is only one
		instance of such a bean per executing job. Additionally, support is provided
		for late binding of references accessible from the JobContext using
		#{..} placeholders. Using this feature, bean properties can be pulled from
		the job or job execution context and the job parameters. E.g.
		
<bean id="..." class="..." scope="job">
 <property name="name" value="#{jobParameters[input]}" />
</bean>
		
<bean id="..." class="..." scope="job">
 <property name="name" value="#{jobExecutionContext['input.name']}.txt" />
</bean>
		
Because it is not part of the Spring container by default, the scope
		must be added explicitly, either by using the batch namespace:
<beans xmlns="http://www.springframework.org/schema/beans"
		 xmlns:batch="http://www.springframework.org/schema/batch"
		 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
		 xsi:schemaLocation="...">

		 <batch:job .../>
		 ...
		 </beans>
Or by including a bean definition explicitly for the JobScope (but not both):
<bean class="org.springframework.batch.core.scope.JobScope" />
Chapter 6. ItemReaders and ItemWriters

All batch processing can be described in its most simple form as
 reading in large amounts of data, performing some type of calculation or
 transformation, and writing the result out. Spring Batch provides three key
 interfaces to help perform bulk reading and writing:
 ItemReader, ItemProcessor and
 ItemWriter.
ItemReader

Although a simple concept, an ItemReader is
 the means for providing data from many different types of input. The most
 general examples include:
	Flat File- Flat File Item Readers read lines of data from a
 flat file that typically describe records with fields of data
 defined by fixed positions in the file or delimited by some special
 character (e.g. Comma).

	XML - XML ItemReaders process XML independently of
 technologies used for parsing, mapping and validating objects. Input
 data allows for the validation of an XML file against an XSD
 schema.

	Database - A database resource is accessed to return
 resultsets which can be mapped to objects for processing. The
 default SQL ItemReaders invoke a RowMapper to
 return objects, keep track of the current row if restart is
 required, store basic statistics, and provide some transaction
 enhancements that will be explained later.

There are many more possibilities, but we'll focus on the
 basic ones for this chapter. A complete list of all available ItemReaders
 can be found in Appendix A.
ItemReader is a basic interface for generic
 input operations:
public interface ItemReader<T> {

 T read() throws Exception, UnexpectedInputException, ParseException;

}
The read method defines the most essential
 contract of the ItemReader; calling it returns one
 Item or null if no more items are left. An item might represent a line in
 a file, a row in a database, or an element in an XML file. It is generally
 expected that these will be mapped to a usable domain object (i.e. Trade,
 Foo, etc) but there is no requirement in the contract to do so.
It is expected that implementations of the
 ItemReader interface will be forward only. However,
 if the underlying resource is transactional (such as a JMS queue) then
 calling read may return the same logical item on subsequent calls in a
 rollback scenario. It is also worth noting that a lack of items to process
 by an ItemReader will not cause an exception to be
 thrown. For example, a database ItemReader that is
 configured with a query that returns 0 results will simply return null on
 the first invocation of read.
ItemWriter

ItemWriter is similar in functionality to an
 ItemReader, but with inverse operations. Resources
 still need to be located, opened and closed but they differ in that an
 ItemWriter writes out, rather than reading in. In
 the case of databases or queues these may be inserts, updates, or sends.
 The format of the serialization of the output is specific to each batch
 job.
As with ItemReader,
 ItemWriter is a fairly generic interface:
public interface ItemWriter<T> {

 void write(List<? extends T> items) throws Exception;

}
As with read on
 ItemReader, write provides
 the basic contract of ItemWriter; it will attempt
 to write out the list of items passed in as long as it is open. Because it
 is generally expected that items will be 'batched' together into a chunk
 and then output, the interface accepts a list of items, rather than an
 item by itself. After writing out the list, any flushing that may be
 necessary can be performed before returning from the write method. For
 example, if writing to a Hibernate DAO, multiple calls to write can be
 made, one for each item. The writer can then call close on the hibernate
 Session before returning.
ItemProcessor

The ItemReader and
 ItemWriter interfaces are both very useful for
 their specific tasks, but what if you want to insert business logic before
 writing? One option for both reading and writing is to use the composite
 pattern: create an ItemWriter that contains another
 ItemWriter, or an ItemReader
 that contains another ItemReader. For
 example:
public class CompositeItemWriter<T> implements ItemWriter<T> {

 ItemWriter<T> itemWriter;

 public CompositeItemWriter(ItemWriter<T> itemWriter) {
 this.itemWriter = itemWriter;
 }

 public void write(List<? extends T> items) throws Exception {
 //Add business logic here
 itemWriter.write(item);
 }

 public void setDelegate(ItemWriter<T> itemWriter){
 this.itemWriter = itemWriter;
 }
}
The class above contains another ItemWriter
 to which it delegates after having provided some business logic. This
 pattern could easily be used for an ItemReader as
 well, perhaps to obtain more reference data based upon the input that was
 provided by the main ItemReader. It is also useful
 if you need to control the call to write yourself.
 However, if you only want to 'transform' the item passed in for writing
 before it is actually written, there isn't much need to call
 write yourself: you just want to modify the item.
 For this scenario, Spring Batch provides the
 ItemProcessor interface:
public interface ItemProcessor<I, O> {

 O process(I item) throws Exception;
}
An ItemProcessor is very simple; given one
 object, transform it and return another. The provided object may or may
 not be of the same type. The point is that business logic may be applied
 within process, and is completely up to the developer to create. An
 ItemProcessor can be wired directly into a step,
 For example, assuming an ItemReader provides a
 class of type Foo, and it needs to be converted to type Bar before being
 written out. An ItemProcessor can be written that
 performs the conversion:
public class Foo {}

public class Bar {
 public Bar(Foo foo) {}
}

public class FooProcessor implements ItemProcessor<Foo,Bar>{
 public Bar process(Foo foo) throws Exception {
 //Perform simple transformation, convert a Foo to a Bar
 return new Bar(foo);
 }
}

public class BarWriter implements ItemWriter<Bar>{
 public void write(List<? extends Bar> bars) throws Exception {
 //write bars
 }
}
In the very simple example above, there is a class
 Foo, a class Bar, and a
 class FooProcessor that adheres to the
 ItemProcessor interface. The transformation is
 simple, but any type of transformation could be done here. The
 BarWriter will be used to write out
 Bar objects, throwing an exception if any other
 type is provided. Similarly, the FooProcessor will
 throw an exception if anything but a Foo is
 provided. The FooProcessor can then be injected
 into a Step:
<job id="ioSampleJob">
 <step name="step1">
 <tasklet>
 <chunk reader="fooReader" processor="fooProcessor" writer="barWriter"
 commit-interval="2"/>
 </tasklet>
 </step>
</job>
Chaining ItemProcessors

Performing a single transformation is useful in many scenarios,
 but what if you want to 'chain' together multiple
 ItemProcessors? This can be accomplished using
 the composite pattern mentioned previously. To update the previous,
 single transformation, example, Foo will be
 transformed to Bar, which will be transformed to
 Foobar and written out:
public class Foo {}

public class Bar {
 public Bar(Foo foo) {}
}

public class Foobar{
 public Foobar(Bar bar) {}
}

public class FooProcessor implements ItemProcessor<Foo,Bar>{
 public Bar process(Foo foo) throws Exception {
 //Perform simple transformation, convert a Foo to a Bar
 return new Bar(foo);
 }
}

public class BarProcessor implements ItemProcessor<Bar,FooBar>{
 public FooBar process(Bar bar) throws Exception {
 return new Foobar(bar);
 }
}

public class FoobarWriter implements ItemWriter<FooBar>{
 public void write(List<? extends FooBar> items) throws Exception {
 //write items
 }
}
A FooProcessor and
 BarProcessor can be 'chained' together to give
 the resultant Foobar:
CompositeItemProcessor<Foo,Foobar> compositeProcessor =
 new CompositeItemProcessor<Foo,Foobar>();
List itemProcessors = new ArrayList();
itemProcessors.add(new FooTransformer());
itemProcessors.add(new BarTransformer());
compositeProcessor.setDelegates(itemProcessors);
Just as with the previous example, the composite processor can be
 configured into the Step:
<job id="ioSampleJob">
 <step name="step1">
 <tasklet>
 <chunk reader="fooReader" processor="compositeProcessor" writer="foobarWriter"
 commit-interval="2"/>
 </tasklet>
 </step>
</job>

<bean id="compositeItemProcessor"
 class="org.springframework.batch.item.support.CompositeItemProcessor">
 <property name="delegates">
 <list>
 <bean class="..FooProcessor" />
 <bean class="..BarProcessor" />
 </list>
 </property>
</bean>
Filtering Records

One typical use for an item processor is to filter out records
 before they are passed to the ItemWriter. Filtering is an action
 distinct from skipping; skipping indicates that a record is invalid
 whereas filtering simply indicates that a record should not be
 written.
For example, consider a batch job that reads a file containing
 three different types of records: records to insert, records to update,
 and records to delete. If record deletion is not supported by the
 system, then we would not want to send any "delete" records to the
 ItemWriter. But, since these records are not
 actually bad records, we would want to filter them out, rather than
 skip. As a result, the ItemWriter would receive only "insert" and
 "update" records.
To filter a record, one simply returns "null" from the
 ItemProcessor. The framework will detect that the
 result is "null" and avoid adding that item to the list of records
 delivered to the ItemWriter. As usual, an
 exception thrown from the ItemProcessor will
 result in a skip.
Fault Tolerance

When a chunk is rolled back, items that have been cached
 during reading may be reprocessed. If a step is configured to
 be fault tolerant (uses skip or retry processing typically),
 any ItemProcessor used should be implemented in a way that is
 idempotent. Typically that would consist of performing no changes
 on the input item for the ItemProcessor and only updating the
 instance that is the result.
ItemStream

Both ItemReaders and
 ItemWriters serve their individual purposes well,
 but there is a common concern among both of them that necessitates another
 interface. In general, as part of the scope of a batch job, readers and
 writers need to be opened, closed, and require a mechanism for persisting
 state:
public interface ItemStream {

 void open(ExecutionContext executionContext) throws ItemStreamException;

 void update(ExecutionContext executionContext) throws ItemStreamException;

 void close() throws ItemStreamException;
}
Before describing each method, we should mention the
 ExecutionContext. Clients of an
 ItemReader that also implement
 ItemStream should call
 open before any calls to
 read in order to open any resources such as files
 or to obtain connections. A similar restriction applies to an
 ItemWriter that implements
 ItemStream. As mentioned in Chapter 2, if expected
 data is found in the ExecutionContext, it may be
 used to start the ItemReader or
 ItemWriter at a location other than its initial
 state. Conversely, close will be called to ensure
 that any resources allocated during open will be
 released safely. update is called primarily to
 ensure that any state currently being held is loaded into the provided
 ExecutionContext. This method will be called before
 committing, to ensure that the current state is persisted in the database
 before commit.
In the special case where the client of an
 ItemStream is a Step (from
 the Spring Batch Core), an ExecutionContext is
 created for each StepExecution to allow users to
 store the state of a particular execution, with the expectation that it
 will be returned if the same JobInstance is started
 again. For those familiar with Quartz, the semantics are very similar to a
 Quartz JobDataMap.
The Delegate Pattern and Registering with the Step

Note that the CompositeItemWriter is an
 example of the delegation pattern, which is common in Spring Batch. The
 delegates themselves might implement callback interfaces StepListener.
 If they do, and they are being used in conjunction with Spring Batch Core
 as part of a Step in a Job,
 then they almost certainly need to be registered manually with the
 Step. A reader, writer, or processor that is
 directly wired into the Step will be registered automatically if it
 implements ItemStream or a
 StepListener interface. But because the delegates
 are not known to the Step, they need to be injected
 as listeners or streams (or both if appropriate):
<job id="ioSampleJob">
 <step name="step1">
 <tasklet>
 <chunk reader="fooReader" processor="fooProcessor" writer="compositeItemWriter"
 commit-interval="2">
 <streams>
 <stream ref="barWriter" />
 </streams>
 </chunk>
 </tasklet>
 </step>
</job>

<bean id="compositeItemWriter" class="...CustomCompositeItemWriter">
 <property name="delegate" ref="barWriter" />
</bean>

<bean id="barWriter" class="...BarWriter" />
Flat Files

One of the most common mechanisms for interchanging bulk data has
 always been the flat file. Unlike XML, which has an agreed upon standard
 for defining how it is structured (XSD), anyone reading a flat file must
 understand ahead of time exactly how the file is structured. In general,
 all flat files fall into two types: Delimited and Fixed Length. Delimited
 files are those in which fields are separated by a delimiter, such as a
 comma. Fixed Length files have fields that are a set length.
The FieldSet

When working with flat files in Spring Batch, regardless of
 whether it is for input or output, one of the most important classes is
 the FieldSet. Many architectures and libraries
 contain abstractions for helping you read in from a file, but they
 usually return a String or an array of Strings. This really only gets
 you halfway there. A FieldSet is Spring Batch’s
 abstraction for enabling the binding of fields from a file resource. It
 allows developers to work with file input in much the same way as they
 would work with database input. A FieldSet is
 conceptually very similar to a Jdbc ResultSet.
 FieldSets only require one argument, a String
 array of tokens. Optionally, you can also configure in the names of the
 fields so that the fields may be accessed either by index or name as
 patterned after ResultSet:
String[] tokens = new String[]{"foo", "1", "true"};
FieldSet fs = new DefaultFieldSet(tokens);
String name = fs.readString(0);
int value = fs.readInt(1);
boolean booleanValue = fs.readBoolean(2);
There are many more options on the FieldSet
 interface, such as Date, long,
 BigDecimal, etc. The biggest advantage of the
 FieldSet is that it provides consistent parsing
 of flat file input. Rather than each batch job parsing differently in
 potentially unexpected ways, it can be consistent, both when handling
 errors caused by a format exception, or when doing simple data
 conversions.
FlatFileItemReader

A flat file is any type of file that contains at most
 two-dimensional (tabular) data. Reading flat files in the Spring Batch
 framework is facilitated by the class
 FlatFileItemReader, which provides basic
 functionality for reading and parsing flat files. The two most important
 required dependencies of FlatFileItemReader are
 Resource and LineMapper.
 The LineMapper interface will be
 explored more in the next sections. The resource property represents a
 Spring Core Resource. Documentation explaining
 how to create beans of this type can be found in Spring
 Framework, Chapter 5.Resources. Therefore, this
 guide will not go into the details of creating
 Resource objects. However, a simple example of a
 file system resource can be found below:

Resource resource = new FileSystemResource("resources/trades.csv");
In complex batch environments the directory structures are often
 managed by the EAI infrastructure where drop zones for external
 interfaces are established for moving files from ftp locations to batch
 processing locations and vice versa. File moving utilities are beyond
 the scope of the spring batch architecture but it is not unusual for
 batch job streams to include file moving utilities as steps in the job
 stream. It is sufficient that the batch architecture only needs to know
 how to locate the files to be processed. Spring Batch begins the process
 of feeding the data into the pipe from this starting point. However,
 Spring
 Integration provides many of these types of
 services.
The other properties in FlatFileItemReader
 allow you to further specify how your data will be interpreted:
Table 6.1. FlatFileItemReader Properties
	Property	Type	Description
	comments	String[]	Specifies line prefixes that indicate
 comment rows
	encoding	String	Specifies what text encoding to use -
 default is "ISO-8859-1"
	lineMapper	LineMapper	Converts a String
 to an Object representing the
 item.
	linesToSkip	int	Number of lines to ignore at the top of
 the file
	recordSeparatorPolicy	RecordSeparatorPolicy	Used to determine where the line endings
 are and do things like continue over a line ending if inside a
 quoted string.
	resource	Resource	The resource from which to read.
	skippedLinesCallback	LineCallbackHandler	Interface which passes the raw line
 content of the lines in the file to be skipped. If linesToSkip
 is set to 2, then this interface will be called twice.
	strict	boolean	In strict mode, the reader will throw an
 exception on ExecutionContext if the input resource does not
 exist.

LineMapper

As with RowMapper, which takes a low
 level construct such as ResultSet and returns
 an Object, flat file processing requires the
 same construct to convert a String line into an
 Object:

public interface LineMapper<T> {

 T mapLine(String line, int lineNumber) throws Exception;

}
The basic contract is that, given the current line and the line
 number with which it is associated, the mapper should return a
 resulting domain object. This is similar to
 RowMapper in that each line is associated with
 its line number, just as each row in a
 ResultSet is tied to its row number. This
 allows the line number to be tied to the resulting domain object for
 identity comparison or for more informative logging. However, unlike
 RowMapper, the
 LineMapper is given a raw line which, as
 discussed above, only gets you halfway there. The line must be
 tokenized into a FieldSet, which can then be
 mapped to an object, as described below.
LineTokenizer

An abstraction for turning a line of input into a line into a
 FieldSet is necessary because there can be many
 formats of flat file data that need to be converted to a
 FieldSet. In Spring Batch, this interface is
 the LineTokenizer:
public interface LineTokenizer {

 FieldSet tokenize(String line);

}
The contract of a LineTokenizer is such
 that, given a line of input (in theory the
 String could encompass more than one line), a
 FieldSet representing the line will be
 returned. This FieldSet can then be passed to a
 FieldSetMapper. Spring Batch contains the
 following LineTokenizer implementations:
	DelmitedLineTokenizer - Used for
 files where fields in a record are separated by a delimiter. The
 most common delimiter is a comma, but pipes or semicolons are
 often used as well.

	FixedLengthTokenizer - Used for files
 where fields in a record are each a 'fixed width'. The width of
 each field must be defined for each record type.

	PatternMatchingCompositeLineTokenizer
 - Determines which among a list of
 LineTokenizers should be used on a
 particular line by checking against a pattern.

FieldSetMapper

The FieldSetMapper interface defines a
 single method, mapFieldSet, which takes a
 FieldSet object and maps its contents to an
 object. This object may be a custom DTO, a domain object, or a simple
 array, depending on the needs of the job. The
 FieldSetMapper is used in conjunction with the
 LineTokenizer to translate a line of data from
 a resource into an object of the desired type:
public interface FieldSetMapper<T> {

 T mapFieldSet(FieldSet fieldSet);

}
The pattern used is the same as the
 RowMapper used by
 JdbcTemplate.
DefaultLineMapper

Now that the basic interfaces for reading in flat files have
 been defined, it becomes clear that three basic steps are
 required:
	Read one line from the file.

	Pass the string line into the
 LineTokenizer#tokenize() method, in
 order to retrieve a FieldSet.

	Pass the FieldSet returned from
 tokenizing to a FieldSetMapper, returning
 the result from the ItemReader#read()
 method.

The two interfaces described above represent two separate tasks:
 converting a line into a FieldSet, and mapping
 a FieldSet to a domain object. Because the
 input of a LineTokenizer matches the input of
 the LineMapper (a line), and the output of a
 FieldSetMapper matches the output of the
 LineMapper, a default implementation that uses
 both a LineTokenizer and
 FieldSetMapper is provided. The
 DefaultLineMapper represents the behavior most
 users will need:
public class DefaultLineMapper<T> implements LineMapper<T>, InitializingBean {

 private LineTokenizer tokenizer;

 private FieldSetMapper<T> fieldSetMapper;

 public T mapLine(String line, int lineNumber) throws Exception {
 return fieldSetMapper.mapFieldSet(tokenizer.tokenize(line));
 }

 public void setLineTokenizer(LineTokenizer tokenizer) {
 this.tokenizer = tokenizer;
 }

 public void setFieldSetMapper(FieldSetMapper<T> fieldSetMapper) {
 this.fieldSetMapper = fieldSetMapper;
 }
}
The above functionality is provided in a default implementation,
 rather than being built into the reader itself (as was done in
 previous versions of the framework) in order to allow users greater
 flexibility in controlling the parsing process, especially if access
 to the raw line is needed.
Simple Delimited File Reading Example

The following example will be used to illustrate this using an
 actual domain scenario. This particular batch job reads in football
 players from the following file:

ID,lastName,firstName,position,birthYear,debutYear
"AbduKa00,Abdul-Jabbar,Karim,rb,1974,1996",
"AbduRa00,Abdullah,Rabih,rb,1975,1999",
"AberWa00,Abercrombie,Walter,rb,1959,1982",
"AbraDa00,Abramowicz,Danny,wr,1945,1967",
"AdamBo00,Adams,Bob,te,1946,1969",
"AdamCh00,Adams,Charlie,wr,1979,2003"
The contents of this file will be mapped to the following
 Player domain object:

public class Player implements Serializable {

 private String ID;
 private String lastName;
 private String firstName;
 private String position;
 private int birthYear;
 private int debutYear;

 public String toString() {
 return "PLAYER:ID=" + ID + ",Last Name=" + lastName +
 ",First Name=" + firstName + ",Position=" + position +
 ",Birth Year=" + birthYear + ",DebutYear=" +
 debutYear;
 }

 // setters and getters...
}
In order to map a FieldSet into a
 Player object, a
 FieldSetMapper that returns players needs to be
 defined:
protected static class PlayerFieldSetMapper implements FieldSetMapper<Player> {
 public Player mapFieldSet(FieldSet fieldSet) {
 Player player = new Player();

 player.setID(fieldSet.readString(0));
 player.setLastName(fieldSet.readString(1));
 player.setFirstName(fieldSet.readString(2));
 player.setPosition(fieldSet.readString(3));
 player.setBirthYear(fieldSet.readInt(4));
 player.setDebutYear(fieldSet.readInt(5));

 return player;
 }
}
The file can then be read by correctly constructing a
 FlatFileItemReader and calling
 read:
FlatFileItemReader<Player> itemReader = new FlatFileItemReader<Player>();
itemReader.setResource(new FileSystemResource("resources/players.csv"));
//DelimitedLineTokenizer defaults to comma as its delimiter
DefaultLineMapper<Player> lineMapper = new DefaultLineMapper<Player>();
lineMapper.setLineTokenizer(new DelimitedLineTokenizer());
lineMapper.setFieldSetMapper(new PlayerFieldSetMapper());
itemReader.setLineMapper(lineMapper);
itemReader.open(new ExecutionContext());
Player player = itemReader.read();
Each call to read will return a new
 Player object from each line in the file. When the end of the file is
 reached, null will be returned.
Mapping Fields by Name

There is one additional piece of functionality that is allowed
 by both DelimitedLineTokenizer and
 FixedLengthTokenizer that is similar in
 function to a Jdbc ResultSet. The names of the
 fields can be injected into either of these
 LineTokenizer implementations to increase the
 readability of the mapping function. First, the column names of all
 fields in the flat file are injected into the tokenizer:
tokenizer.setNames(new String[] {"ID", "lastName","firstName","position","birthYear","debutYear"});
A FieldSetMapper can use this information
 as follows:
public class PlayerMapper implements FieldSetMapper<Player> {
 public Player mapFieldSet(FieldSet fs) {

 if(fs == null){
 return null;
 }

 Player player = new Player();
 player.setID(fs.readString("ID"));
 player.setLastName(fs.readString("lastName"));
 player.setFirstName(fs.readString("firstName"));
 player.setPosition(fs.readString("position"));
 player.setDebutYear(fs.readInt("debutYear"));
 player.setBirthYear(fs.readInt("birthYear"));

 return player;
 }
}
Automapping FieldSets to Domain Objects

For many, having to write a specific
 FieldSetMapper is equally as cumbersome as
 writing a specific RowMapper for a
 JdbcTemplate. Spring Batch makes this easier by
 providing a FieldSetMapper that automatically
 maps fields by matching a field name with a setter on the object using
 the JavaBean specification. Again using the football example, the
 BeanWrapperFieldSetMapper configuration looks
 like the following:
<bean id="fieldSetMapper"
 class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper">
 <property name="prototypeBeanName" value="player" />
</bean>

<bean id="player"
 class="org.springframework.batch.sample.domain.Player"
 scope="prototype" />
For each entry in the FieldSet, the
 mapper will look for a corresponding setter on a new instance of the
 Player object (for this reason, prototype scope
 is required) in the same way the Spring container will look for
 setters matching a property name. Each available field in the
 FieldSet will be mapped, and the resultant
 Player object will be returned, with no code
 required.
Fixed Length File Formats

So far only delimited files have been discussed in much detail,
 however, they represent only half of the file reading picture. Many
 organizations that use flat files use fixed length formats. An example
 fixed length file is below:
UK21341EAH4121131.11customer1
UK21341EAH4221232.11customer2
UK21341EAH4321333.11customer3
UK21341EAH4421434.11customer4
UK21341EAH4521535.11customer5
While this looks like one large field, it actually represent 4
 distinct fields:
	ISIN: Unique identifier for the item being order - 12
 characters long.

	Quantity: Number of this item being ordered - 3 characters
 long.

	Price: Price of the item - 5 characters long.

	Customer: Id of the customer ordering the item - 9
 characters long.

When configuring the
 FixedLengthLineTokenizer, each of these lengths
 must be provided in the form of ranges:
<bean id="fixedLengthLineTokenizer"
 class="org.springframework.batch.io.file.transform.FixedLengthTokenizer">
 <property name="names" value="ISIN,Quantity,Price,Customer" />
 <property name="columns" value="1-12, 13-15, 16-20, 21-29" />
</bean>
Because the FixedLengthLineTokenizer uses
 the same LineTokenizer interface as discussed
 above, it will return the same FieldSet as if a
 delimiter had been used. This allows the same approaches to be used in
 handling its output, such as using the
 BeanWrapperFieldSetMapper.
	[image: [Note]]	Note
	Supporting the above syntax for ranges requires that a
 specialized property editor,
 RangeArrayPropertyEditor, be configured in
 the ApplicationContext. However, this bean
 is automatically declared in an
 ApplicationContext where the batch
 namespace is used.

Multiple Record Types within a Single File

All of the file reading examples up to this point have all made
 a key assumption for simplicity's sake: all of the records in a file
 have the same format. However, this may not always be the case. It is
 very common that a file might have records with different formats that
 need to be tokenized differently and mapped to different objects. The
 following excerpt from a file illustrates this:
USER;Smith;Peter;;T;20014539;F
LINEA;1044391041ABC037.49G201XX1383.12H
LINEB;2134776319DEF422.99M005LI
In this file we have three types of records, "USER", "LINEA",
 and "LINEB". A "USER" line corresponds to a User object. "LINEA" and
 "LINEB" both correspond to Line objects, though a "LINEA" has more
 information than a "LINEB".
The ItemReader will read each line
 individually, but we must specify different
 LineTokenizer and
 FieldSetMapper objects so that the
 ItemWriter will receive the correct items. The
 PatternMatchingCompositeLineMapper makes this
 easy by allowing maps of patterns to
 LineTokenizers and patterns to
 FieldSetMappers to be configured:
<bean id="orderFileLineMapper"
 class="org.spr...PatternMatchingCompositeLineMapper">
 <property name="tokenizers">
 <map>
 <entry key="USER*" value-ref="userTokenizer" />
 <entry key="LINEA*" value-ref="lineATokenizer" />
 <entry key="LINEB*" value-ref="lineBTokenizer" />
 </map>
 </property>
 <property name="fieldSetMappers">
 <map>
 <entry key="USER*" value-ref="userFieldSetMapper" />
 <entry key="LINE*" value-ref="lineFieldSetMapper" />
 </map>
 </property>
</bean>
In this example, "LINEA" and "LINEB" have separate
 LineTokenizers but they both use the same
 FieldSetMapper.
The PatternMatchingCompositeLineMapper
 makes use of the PatternMatcher's
 match method in order to select the correct
 delegate for each line. The PatternMatcher
 allows for two wildcard characters with special meaning: the question
 mark ("?") will match exactly one character, while the asterisk ("*")
 will match zero or more characters. Note that in the configuration
 above, all patterns end with an asterisk, making them effectively
 prefixes to lines. The PatternMatcher will
 always match the most specific pattern possible, regardless of the
 order in the configuration. So if "LINE*" and "LINEA*" were both
 listed as patterns, "LINEA" would match pattern "LINEA*", while
 "LINEB" would match pattern "LINE*". Additionally, a single asterisk
 ("*") can serve as a default by matching any line not matched by any
 other pattern.
<entry key="*" value-ref="defaultLineTokenizer" />
There is also a
 PatternMatchingCompositeLineTokenizer that can
 be used for tokenization alone.
It is also common for a flat file to contain records that each
 span multiple lines. To handle this situation, a more complex strategy
 is required. A demonstration of this common pattern can be found in
 the section called “Multi-Line Records”.
Exception Handling in Flat Files

There are many scenarios when tokenizing a line may cause
 exceptions to be thrown. Many flat files are imperfect and contain
 records that aren't formatted correctly. Many users choose to skip
 these erroneous lines, logging out the issue, original line, and line
 number. These logs can later be inspected manually or by another batch
 job. For this reason, Spring Batch provides a hierarchy of exceptions
 for handling parse exceptions:
 FlatFileParseException and
 FlatFileFormatException.
 FlatFileParseException is thrown by the
 FlatFileItemReader when any errors are
 encountered while trying to read a file.
 FlatFileFormatException is thrown by
 implementations of the LineTokenizer interface,
 and indicates a more specific error encountered while
 tokenizing.
IncorrectTokenCountException

Both DelimitedLineTokenizer and
 FixedLengthLineTokenizer have the ability to
 specify column names that can be used for creating a
 FieldSet. However, if the number of column
 names doesn't match the number of columns found while tokenizing a
 line the FieldSet can't be created, and a
 IncorrectTokenCountException is thrown, which
 contains the number of tokens encountered, and the number
 expected:
tokenizer.setNames(new String[] {"A", "B", "C", "D"});

try {
 tokenizer.tokenize("a,b,c");
}
catch(IncorrectTokenCountException e){
 assertEquals(4, e.getExpectedCount());
 assertEquals(3, e.getActualCount());
}
Because the tokenizer was configured with 4 column names, but
 only 3 tokens were found in the file, an
 IncorrectTokenCountException was
 thrown.
IncorrectLineLengthException

Files formatted in a fixed length format have additional
 requirements when parsing because, unlike a delimited format, each
 column must strictly adhere to its predefined width. If the total
 line length doesn't add up to the widest value of this column, an
 exception is thrown:
tokenizer.setColumns(new Range[] { new Range(1, 5),
 new Range(6, 10),
 new Range(11, 15) });
try {
 tokenizer.tokenize("12345");
 fail("Expected IncorrectLineLengthException");
}
catch (IncorrectLineLengthException ex) {
 assertEquals(15, ex.getExpectedLength());
 assertEquals(5, ex.getActualLength());
}
The configured ranges for the tokenizer above are: 1-5, 6-10,
 and 11-15, thus the total length of the line expected is 15.
 However, in this case a line of length 5 was passed in, causing an
 IncorrectLineLengthException to be thrown.
 Throwing an exception here rather than only mapping the first column
 allows the processing of the line to fail earlier, and with more
 information than it would if it failed while trying to read in
 column 2 in a FieldSetMapper. However, there
 are scenarios where the length of the line isn't always constant.
 For this reason, validation of line length can be turned off via the
 'strict' property:
tokenizer.setColumns(new Range[] { new Range(1, 5), new Range(6, 10) });
tokenizer.setStrict(false);
FieldSet tokens = tokenizer.tokenize("12345");
assertEquals("12345", tokens.readString(0));
assertEquals("", tokens.readString(1));
The above example is almost identical to the one before it,
 except that tokenizer.setStrict(false) was called. This setting
 tells the tokenizer to not enforce line lengths when tokenizing the
 line. A FieldSet is now correctly created and
 returned. However, it will only contain empty tokens for the
 remaining values.
FlatFileItemWriter

Writing out to flat files has the same problems and issues that
 reading in from a file must overcome. A step must be able to write out
 in either delimited or fixed length formats in a transactional
 manner.
LineAggregator

Just as the LineTokenizer interface is
 necessary to take an item and turn it into a
 String, file writing must have a way to
 aggregate multiple fields into a single string for writing to a file.
 In Spring Batch this is the
 LineAggregator:
public interface LineAggregator<T> {

 public String aggregate(T item);

}
The LineAggregator is the opposite of a
 LineTokenizer.
 LineTokenizer takes a
 String and returns a
 FieldSet, whereas
 LineAggregator takes an
 item and returns a
 String.
PassThroughLineAggregator

The most basic implementation of the LineAggregator interface
 is the PassThroughLineAggregator, which
 simply assumes that the object is already a string, or that its
 string representation is acceptable for writing:
public class PassThroughLineAggregator<T> implements LineAggregator<T> {

 public String aggregate(T item) {
 return item.toString();
 }
}
The above implementation is useful if direct control of
 creating the string is required, but the advantages of a
 FlatFileItemWriter, such as transaction and
 restart support, are necessary.
Simplified File Writing Example

Now that the LineAggregator interface and
 its most basic implementation,
 PassThroughLineAggregator, have been defined,
 the basic flow of writing can be explained:
	The object to be written is passed to the
 LineAggregator in order to obtain a
 String.

	The returned String is written to the
 configured file.

The following excerpt from the
 FlatFileItemWriter expresses this in
 code:
public void write(T item) throws Exception {
 write(lineAggregator.aggregate(item) + LINE_SEPARATOR);
}
A simple configuration would look like the following:
<bean id="itemWriter" class="org.spr...FlatFileItemWriter">
 <property name="resource" value="file:target/test-outputs/output.txt" />
 <property name="lineAggregator">
 <bean class="org.spr...PassThroughLineAggregator"/>
 </property>
</bean>
FieldExtractor

The above example may be useful for the most basic uses of a
 writing to a file. However, most users of the
 FlatFileItemWriter will have a domain object
 that needs to be written out, and thus must be converted into a line.
 In file reading, the following was required:
	Read one line from the file.

	Pass the string line into the
 LineTokenizer#tokenize() method, in
 order to retrieve a FieldSet

	Pass the FieldSet returned from
 tokenizing to a FieldSetMapper, returning
 the result from the ItemReader#read()
 method

File writing has similar, but inverse steps:
	Pass the item to be written to the writer

	convert the fields on the item into an array

	aggregate the resulting array into a line

Because there is no way for the framework to know which fields
 from the object need to be written out, a
 FieldExtractor must be written to accomplish
 the task of turning the item into an array:
public interface FieldExtractor<T> {

 Object[] extract(T item);

}
Implementations of the FieldExtractor
 interface should create an array from the fields of the provided
 object, which can then be written out with a delimiter between the
 elements, or as part of a field-width line.
PassThroughFieldExtractor

There are many cases where a collection, such as an array,
 Collection, or
 FieldSet, needs to be written out.
 "Extracting" an array from a one of these collection types is very
 straightforward: simply convert the collection to an array.
 Therefore, the PassThroughFieldExtractor
 should be used in this scenario. It should be noted, that if the
 object passed in is not a type of collection, then the
 PassThroughFieldExtractor will return an
 array containing solely the item to be extracted.
BeanWrapperFieldExtractor

As with the BeanWrapperFieldSetMapper
 described in the file reading section, it is often preferable to
 configure how to convert a domain object to an object array, rather
 than writing the conversion yourself. The
 BeanWrapperFieldExtractor provides just this
 type of functionality:
BeanWrapperFieldExtractor<Name> extractor = new BeanWrapperFieldExtractor<Name>();
extractor.setNames(new String[] { "first", "last", "born" });

String first = "Alan";
String last = "Turing";
int born = 1912;

Name n = new Name(first, last, born);
Object[] values = extractor.extract(n);

assertEquals(first, values[0]);
assertEquals(last, values[1]);
assertEquals(born, values[2]);
This extractor implementation has only one required property,
 the names of the fields to map. Just as the
 BeanWrapperFieldSetMapper needs field names
 to map fields on the FieldSet to setters on
 the provided object, the
 BeanWrapperFieldExtractor needs names to map
 to getters for creating an object array. It is worth noting that the
 order of the names determines the order of the fields within the
 array.
Delimited File Writing Example

The most basic flat file format is one in which all fields are
 separated by a delimiter. This can be accomplished using a
 DelimitedLineAggregator. The example below
 writes out a simple domain object that represents a credit to a
 customer account:
public class CustomerCredit {

 private int id;
 private String name;
 private BigDecimal credit;

 //getters and setters removed for clarity
}
Because a domain object is being used, an implementation of the
 FieldExtractor interface must be provided, along with the delimiter to
 use:
<bean id="itemWriter" class="org.springframework.batch.item.file.FlatFileItemWriter">
 <property name="resource" ref="outputResource" />
 <property name="lineAggregator">
 <bean class="org.spr...DelimitedLineAggregator">
 <property name="delimiter" value=","/>
 <property name="fieldExtractor">
 <bean class="org.spr...BeanWrapperFieldExtractor">
 <property name="names" value="name,credit"/>
 </bean>
 </property>
 </bean>
 </property>
</bean>
In this case, the
 BeanWrapperFieldExtractor described earlier in
 this chapter is used to turn the name and credit fields within
 CustomerCredit into an object array, which is
 then written out with commas between each field.
Fixed Width File Writing Example

Delimited is not the only type of flat file format. Many prefer
 to use a set width for each column to delineate between fields, which
 is usually referred to as 'fixed width'. Spring Batch supports this in
 file writing via the FormatterLineAggregator.
 Using the same CustomerCredit domain object
 described above, it can be configured as follows:
<bean id="itemWriter" class="org.springframework.batch.item.file.FlatFileItemWriter">
 <property name="resource" ref="outputResource" />
 <property name="lineAggregator">
 <bean class="org.spr...FormatterLineAggregator">
 <property name="fieldExtractor">
 <bean class="org.spr...BeanWrapperFieldExtractor">
 <property name="names" value="name,credit" />
 </bean>
 </property>
 <property name="format" value="%-9s%-2.0f" />
 </bean>
 </property>
</bean>
Most of the above example should look familiar. However, the
 value of the format property is new:
<property name="format" value="%-9s%-2.0f" />
The underlying implementation is built using the same
 Formatter added as part of Java 5. The Java
 Formatter is based on the
 printf functionality of the C programming
 language. Most details on how to configure a formatter can be found in
 the javadoc of Formatter.
Handling File Creation

FlatFileItemReader has a very simple
 relationship with file resources. When the reader is initialized, it
 opens the file if it exists, and throws an exception if it does not.
 File writing isn't quite so simple. At first glance it seems like a
 similar straight forward contract should exist for
 FlatFileItemWriter: if the file already exists,
 throw an exception, and if it does not, create it and start writing.
 However, potentially restarting a Job can cause
 issues. In normal restart scenarios, the contract is reversed: if the
 file exists, start writing to it from the last known good position,
 and if it does not, throw an exception. However, what happens if the
 file name for this job is always the same? In this case, you would
 want to delete the file if it exists, unless it's a restart. Because
 of this possibility, the FlatFileItemWriter
 contains the property, shouldDeleteIfExists.
 Setting this property to true will cause an existing file with the
 same name to be deleted when the writer is opened.
XML Item Readers and Writers

Spring Batch provides transactional infrastructure for both reading
 XML records and mapping them to Java objects as well as writing Java
 objects as XML records.
	[image: [Note]]	Constraints on streaming XML
	The StAX API is used for I/O as other standard XML parsing APIs do
 not fit batch processing requirements (DOM loads the whole input into
 memory at once and SAX controls the parsing process allowing the user
 only to provide callbacks).

Lets take a closer look how XML input and output works in Spring
 Batch. First, there are a few concepts that vary from file reading and
 writing but are common across Spring Batch XML processing. With XML
 processing, instead of lines of records (FieldSets) that need to be
 tokenized, it is assumed an XML resource is a collection of 'fragments'
 corresponding to individual records:
Figure 3.1: XML Input

The 'trade' tag is defined as the 'root element' in the scenario
 above. Everything between '<trade>' and '</trade>' is
 considered one 'fragment'. Spring Batch uses Object/XML Mapping (OXM) to
 bind fragments to objects. However, Spring Batch is not tied to any
 particular XML binding technology. Typical use is to delegate to Spring
 OXM, which provides uniform abstraction for the most
 popular OXM technologies. The dependency on Spring OXM is optional and you
 can choose to implement Spring Batch specific interfaces if desired. The
 relationship to the technologies that OXM supports can be shown as the
 following:
Figure 3.2: OXM Binding

Now with an introduction to OXM and how one can use XML fragments to
 represent records, let's take a closer look at readers and writers.
StaxEventItemReader

The StaxEventItemReader configuration
 provides a typical setup for the processing of records from an XML input
 stream. First, lets examine a set of XML records that the
 StaxEventItemReader can process.
<?xml version="1.0" encoding="UTF-8"?>
<records>
 <trade xmlns="http://springframework.org/batch/sample/io/oxm/domain">
 <isin>XYZ0001</isin>
 <quantity>5</quantity>
 <price>11.39</price>
 <customer>Customer1</customer>
 </trade>
 <trade xmlns="http://springframework.org/batch/sample/io/oxm/domain">
 <isin>XYZ0002</isin>
 <quantity>2</quantity>
 <price>72.99</price>
 <customer>Customer2c</customer>
 </trade>
 <trade xmlns="http://springframework.org/batch/sample/io/oxm/domain">
 <isin>XYZ0003</isin>
 <quantity>9</quantity>
 <price>99.99</price>
 <customer>Customer3</customer>
 </trade>
</records>
To be able to process the XML records the following is needed:

	Root Element Name - Name of the root element of the fragment
 that constitutes the object to be mapped. The example
 configuration demonstrates this with the value of trade.

	Resource - Spring Resource that represents the file to be
 read.

	Unmarshaller - Unmarshalling
 facility provided by Spring OXM for mapping the XML fragment to an
 object.

<bean id="itemReader" class="org.springframework.batch.item.xml.StaxEventItemReader">
 <property name="fragmentRootElementName" value="trade" />
 <property name="resource" value="data/iosample/input/input.xml" />
 <property name="unmarshaller" ref="tradeMarshaller" />
</bean>
Notice that in this example we have chosen to use an
 XStreamMarshaller which accepts an alias passed
 in as a map with the first key and value being the name of the fragment
 (i.e. root element) and the object type to bind. Then, similar to a
 FieldSet, the names of the other elements that
 map to fields within the object type are described as key/value pairs in
 the map. In the configuration file we can use a Spring configuration
 utility to describe the required alias as follows:
<bean id="tradeMarshaller"
 class="org.springframework.oxm.xstream.XStreamMarshaller">
 <property name="aliases">
 <util:map id="aliases">
 <entry key="trade"
 value="org.springframework.batch.sample.domain.Trade" />
 <entry key="price" value="java.math.BigDecimal" />
 <entry key="name" value="java.lang.String" />
 </util:map>
 </property>
</bean>
On input the reader reads the XML resource until it recognizes
 that a new fragment is about to start (by matching the tag name by
 default). The reader creates a standalone XML document from the fragment
 (or at least makes it appear so) and passes the document to a
 deserializer (typically a wrapper around a Spring OXM
 Unmarshaller) to map the XML to a Java
 object.
In summary, this procedure is analogous to the following scripted
 Java code which uses the injection provided by the Spring
 configuration:
StaxEventItemReader xmlStaxEventItemReader = new StaxEventItemReader()
Resource resource = new ByteArrayResource(xmlResource.getBytes())

Map aliases = new HashMap();
aliases.put("trade","org.springframework.batch.sample.domain.Trade");
aliases.put("price","java.math.BigDecimal");
aliases.put("customer","java.lang.String");
XStreamMarshaller unmarshaller = new XStreamMarshaller();
unmarshaller.setAliases(aliases);
xmlStaxEventItemReader.setUnmarshaller(unmarshaller);
xmlStaxEventItemReader.setResource(resource);
xmlStaxEventItemReader.setFragmentRootElementName("trade");
xmlStaxEventItemReader.open(new ExecutionContext());

boolean hasNext = true

CustomerCredit credit = null;

while (hasNext) {
 credit = xmlStaxEventItemReader.read();
 if (credit == null) {
 hasNext = false;
 }
 else {
 System.out.println(credit);
 }
}
StaxEventItemWriter

Output works symmetrically to input. The
 StaxEventItemWriter needs a
 Resource, a marshaller, and a rootTagName. A Java
 object is passed to a marshaller (typically a standard Spring OXM
 Marshaller) which writes to a
 Resource using a custom event writer that filters
 the StartDocument and
 EndDocument events produced for each fragment by
 the OXM tools. We'll show this in an example using the
 MarshallingEventWriterSerializer. The Spring
 configuration for this setup looks as follows:
<bean id="itemWriter" class="org.springframework.batch.item.xml.StaxEventItemWriter">
 <property name="resource" ref="outputResource" />
 <property name="marshaller" ref="customerCreditMarshaller" />
 <property name="rootTagName" value="customers" />
 <property name="overwriteOutput" value="true" />
</bean>
The configuration sets up the three required properties and
 optionally sets the overwriteOutput=true, mentioned earlier in the
 chapter for specifying whether an existing file can be overwritten. It
 should be noted the marshaller used for the writer is the exact same as
 the one used in the reading example from earlier in the chapter:
<bean id="customerCreditMarshaller"
 class="org.springframework.oxm.xstream.XStreamMarshaller">
 <property name="aliases">
 <util:map id="aliases">
 <entry key="customer"
 value="org.springframework.batch.sample.domain.CustomerCredit" />
 <entry key="credit" value="java.math.BigDecimal" />
 <entry key="name" value="java.lang.String" />
 </util:map>
 </property>
</bean>
To summarize with a Java example, the following code illustrates
 all of the points discussed, demonstrating the programmatic setup of the
 required properties:
StaxEventItemWriter staxItemWriter = new StaxEventItemWriter()
FileSystemResource resource = new FileSystemResource("data/outputFile.xml")

Map aliases = new HashMap();
aliases.put("customer","org.springframework.batch.sample.domain.CustomerCredit");
aliases.put("credit","java.math.BigDecimal");
aliases.put("name","java.lang.String");
Marshaller marshaller = new XStreamMarshaller();
marshaller.setAliases(aliases);

staxItemWriter.setResource(resource);
staxItemWriter.setMarshaller(marshaller);
staxItemWriter.setRootTagName("trades");
staxItemWriter.setOverwriteOutput(true);

ExecutionContext executionContext = new ExecutionContext();
staxItemWriter.open(executionContext);
CustomerCredit Credit = new CustomerCredit();
trade.setPrice(11.39);
credit.setName("Customer1");
staxItemWriter.write(trade);
Multi-File Input

It is a common requirement to process multiple files within a single
 Step. Assuming the files all have the same
 formatting, the MultiResourceItemReader supports
 this type of input for both XML and flat file processing. Consider the
 following files in a directory:
file-1.txt file-2.txt ignored.txt
file-1.txt and file-2.txt are formatted the same and for business
 reasons should be processed together. The
 MuliResourceItemReader can be used to read in both
 files by using wildcards:
<bean id="multiResourceReader" class="org.spr...MultiResourceItemReader">
 <property name="resources" value="classpath:data/input/file-*.txt" />
 <property name="delegate" ref="flatFileItemReader" />
</bean>
The referenced delegate is a simple
 FlatFileItemReader. The above configuration will
 read input from both files, handling rollback and restart scenarios. It
 should be noted that, as with any ItemReader,
 adding extra input (in this case a file) could cause potential issues when
 restarting. It is recommended that batch jobs work with their own
 individual directories until completed successfully.
Database

Like most enterprise application styles, a database is the central
 storage mechanism for batch. However, batch differs from other application
 styles due to the sheer size of the datasets with which the system must
 work. If a SQL statement returns 1 million rows, the result set probably
 holds all returned results in memory until all rows have been read. Spring
 Batch provides two types of solutions for this problem: Cursor and Paging
 database ItemReaders.
Cursor Based ItemReaders

Using a database cursor is generally the default approach of most
 batch developers, because it is the database's solution to the problem
 of 'streaming' relational data. The Java
 ResultSet class is essentially an object
 orientated mechanism for manipulating a cursor. A
 ResultSet maintains a cursor to the current row
 of data. Calling next on a
 ResultSet moves this cursor to the next row.
 Spring Batch cursor based ItemReaders open the a cursor on
 initialization, and move the cursor forward one row for every call to
 read, returning a mapped object that can be
 used for processing. The close method will then
 be called to ensure all resources are freed up. The Spring core
 JdbcTemplate gets around this problem by using
 the callback pattern to completely map all rows in a
 ResultSet and close before returning control back
 to the method caller. However, in batch this must wait until the step is
 complete. Below is a generic diagram of how a cursor based
 ItemReader works, and while a SQL statement is
 used as an example since it is so widely known, any technology could
 implement the basic approach:

This example illustrates the basic pattern. Given a 'FOO' table,
 which has three columns: ID, NAME, and BAR, select all rows with an ID
 greater than 1 but less than 7. This puts the beginning of the cursor
 (row 1) on ID 2. The result of this row should be a completely mapped
 Foo object. Calling read() again moves the
 cursor to the next row, which is the Foo with an ID of 3. The results of
 these reads will be written out after each
 read, thus allowing the objects to be garbage
 collected (assuming no instance variables are maintaining references to
 them).
JdbcCursorItemReader

JdbcCursorItemReader is the Jdbc
 implementation of the cursor based technique. It works directly with a
 ResultSet and requires a SQL statement to run
 against a connection obtained from a
 DataSource. The following database schema will
 be used as an example:
CREATE TABLE CUSTOMER (
 ID BIGINT IDENTITY PRIMARY KEY,
 NAME VARCHAR(45),
 CREDIT FLOAT
);
Many people prefer to use a domain object for each row, so we'll
 use an implementation of the RowMapper
 interface to map a CustomerCredit
 object:
public class CustomerCreditRowMapper implements RowMapper {

 public static final String ID_COLUMN = "id";
 public static final String NAME_COLUMN = "name";
 public static final String CREDIT_COLUMN = "credit";

 public Object mapRow(ResultSet rs, int rowNum) throws SQLException {
 CustomerCredit customerCredit = new CustomerCredit();

 customerCredit.setId(rs.getInt(ID_COLUMN));
 customerCredit.setName(rs.getString(NAME_COLUMN));
 customerCredit.setCredit(rs.getBigDecimal(CREDIT_COLUMN));

 return customerCredit;
 }
}
Because JdbcTemplate is so familiar to
 users of Spring, and the JdbcCursorItemReader
 shares key interfaces with it, it is useful to see an example of how
 to read in this data with JdbcTemplate, in
 order to contrast it with the ItemReader. For
 the purposes of this example, let's assume there are 1,000 rows in the
 CUSTOMER database. The first example will be using
 JdbcTemplate:
//For simplicity sake, assume a dataSource has already been obtained
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
List customerCredits = jdbcTemplate.query("SELECT ID, NAME, CREDIT from CUSTOMER",
 new CustomerCreditRowMapper());
After running this code snippet the customerCredits list will
 contain 1,000 CustomerCredit objects. In the
 query method, a connection will be obtained from the
 DataSource, the provided SQL will be run
 against it, and the mapRow method will be
 called for each row in the ResultSet. Let's
 contrast this with the approach of the
 JdbcCursorItemReader:
JdbcCursorItemReader itemReader = new JdbcCursorItemReader();
itemReader.setDataSource(dataSource);
itemReader.setSql("SELECT ID, NAME, CREDIT from CUSTOMER");
itemReader.setRowMapper(new CustomerCreditRowMapper());
int counter = 0;
ExecutionContext executionContext = new ExecutionContext();
itemReader.open(executionContext);
Object customerCredit = new Object();
while(customerCredit != null){
 customerCredit = itemReader.read();
 counter++;
}
itemReader.close(executionContext);
After running this code snippet the counter will equal 1,000. If
 the code above had put the returned customerCredit into a list, the
 result would have been exactly the same as with the
 JdbcTemplate example. However, the big
 advantage of the ItemReader is that it allows
 items to be 'streamed'. The read method can
 be called once, and the item written out via an
 ItemWriter, and then the next item obtained via
 read. This allows item reading and writing to
 be done in 'chunks' and committed periodically, which is the essence
 of high performance batch processing. Furthermore, it is very easily
 configured for injection into a Spring Batch
 Step:
<bean id="itemReader" class="org.spr...JdbcCursorItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="sql" value="select ID, NAME, CREDIT from CUSTOMER"/>
 <property name="rowMapper">
 <bean class="org.springframework.batch.sample.domain.CustomerCreditRowMapper"/>
 </property>
</bean>
Additional Properties

Because there are so many varying options for opening a cursor
 in Java, there are many properties on the
 JdbcCustorItemReader that can be set:
Table 6.2. JdbcCursorItemReader Properties
	ignoreWarnings	Determines whether or not SQLWarnings are logged or
 cause an exception - default is true
	fetchSize	Gives the Jdbc driver a hint as to the number of rows
 that should be fetched from the database when more rows are
 needed by the ResultSet object used
 by the ItemReader. By default, no
 hint is given.
	maxRows	Sets the limit for the maximum number of rows the
 underlying ResultSet can hold at any
 one time.
	queryTimeout	Sets the number of seconds the driver will wait for a
 Statement object to execute to the
 given number of seconds. If the limit is exceeded, a
 DataAccessEception is thrown.
 (Consult your driver vendor documentation for
 details).
	verifyCursorPosition	Because the same ResultSet
 held by the ItemReader is passed to
 the RowMapper, it is possible for
 users to call ResultSet.next()
 themselves, which could cause issues with the reader's
 internal count. Setting this value to true will cause an
 exception to be thrown if the cursor position is not the
 same after the RowMapper call as it
 was before.
	saveState	Indicates whether or not the reader's state should be
 saved in the ExecutionContext
 provided by
 ItemStream#update(ExecutionContext)
 The default value is true.
	driverSupportsAbsolute	Defaults to false. Indicates whether the Jdbc driver
 supports setting the absolute row on a
 ResultSet. It is recommended that
 this is set to true for Jdbc drivers that supports
 ResultSet.absolute() as it may
 improve performance, especially if a step fails while
 working with a large data set.
	setUseSharedExtendedConnection	Defaults to false. Indicates whether the connection
 used for the cursor should be used by all other processing
 thus sharing the same transaction. If this is set to false,
 which is the default, then the cursor will be opened using
 its own connection and will not participate in any
 transactions started for the rest of the step processing. If
 you set this flag to true then you must wrap the
 DataSource in an
 ExtendedConnectionDataSourceProxy to
 prevent the connection from being closed and released after
 each commit. When you set this option to true then the
 statement used to open the cursor will be created with both
 'READ_ONLY' and 'HOLD_CUSORS_OVER_COMMIT' options. This
 allows holding the cursor open over transaction start and
 commits performed in the step processing. To use this
 feature you need a database that supports this and a Jdbc
 driver supporting Jdbc 3.0 or later.

HibernateCursorItemReader

Just as normal Spring users make important decisions about
 whether or not to use ORM solutions, which affect whether or not they
 use a JdbcTemplate or a
 HibernateTemplate, Spring Batch users have the
 same options. HibernateCursorItemReader is the
 Hibernate implementation of the cursor technique. Hibernate's usage in
 batch has been fairly controversial. This has largely been because
 Hibernate was originally developed to support online application
 styles. However, that doesn't mean it can't be used for batch
 processing. The easiest approach for solving this problem is to use a
 StatelessSession rather than a standard
 session. This removes all of the caching and dirty checking hibernate
 employs that can cause issues in a batch scenario. For more
 information on the differences between stateless and normal hibernate
 sessions, refer to the documentation of your specific hibernate
 release. The HibernateCursorItemReader allows
 you to declare an HQL statement and pass in a
 SessionFactory, which will pass back one item
 per call to read in the same basic fashion as
 the JdbcCursorItemReader. Below is an example
 configuration using the same 'customer credit' example as the JDBC
 reader:
HibernateCursorItemReader itemReader = new HibernateCursorItemReader();
itemReader.setQueryString("from CustomerCredit");
//For simplicity sake, assume sessionFactory already obtained.
itemReader.setSessionFactory(sessionFactory);
itemReader.setUseStatelessSession(true);
int counter = 0;
ExecutionContext executionContext = new ExecutionContext();
itemReader.open(executionContext);
Object customerCredit = new Object();
while(customerCredit != null){
 customerCredit = itemReader.read();
 counter++;
}
itemReader.close(executionContext);
This configured ItemReader will return
 CustomerCredit objects in the exact same manner
 as described by the JdbcCursorItemReader,
 assuming hibernate mapping files have been created correctly for the
 Customer table. The 'useStatelessSession' property defaults to true,
 but has been added here to draw attention to the ability to switch it
 on or off. It is also worth noting that the fetchSize of the
 underlying cursor can be set via the setFetchSize property. As with
 JdbcCursorItemReader, configuration is
 straightforward:
<bean id="itemReader"
 class="org.springframework.batch.item.database.HibernateCursorItemReader">
 <property name="sessionFactory" ref="sessionFactory" />
 <property name="queryString" value="from CustomerCredit" />
</bean>
StoredProcedureItemReader

Sometimes it is necessary to obtain the cursor data using a
 stored procedure. The StoredProcedureItemReader
 works like the JdbcCursorItemReader except that
 instead of executing a query to obtain a cursor we execute a stored
 procedure that returns a cursor. The stored procedure can return the
 cursor in three different ways:
	as a returned ResultSet (used by SQL Server, Sybase, DB2,
 Derby and MySQL)

	as a ref-cursor returned as an out parameter (used by Oracle
 and PostgreSQL)

	as the return value of a stored function call

Below is a basic example configuration using the same 'customer
 credit' example as earlier:
<bean id="reader" class="o.s.batch.item.database.StoredProcedureItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="procedureName" value="sp_customer_credit"/>
 <property name="rowMapper">
 <bean class="org.springframework.batch.sample.domain.CustomerCreditRowMapper"/>
 </property>
</bean>

This example relies on the stored procedure to provide a
 ResultSet as a returned result (option 1 above).
If the stored procedure returned a ref-cursor (option 2) then we
 would need to provide the position of the out parameter that is the
 returned ref-cursor. Here is an example where the first parameter is
 the returned ref-cursor:
<bean id="reader" class="o.s.batch.item.database.StoredProcedureItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="procedureName" value="sp_customer_credit"/>
 <property name="refCursorPosition" value="1"/>
 <property name="rowMapper">
 <bean class="org.springframework.batch.sample.domain.CustomerCreditRowMapper"/>
 </property>
</bean>

If the cursor was returned from a stored function (option 3) we
 would need to set the property "function" to
 true. It defaults to false. Here
 is what that would look like:
<bean id="reader" class="o.s.batch.item.database.StoredProcedureItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="procedureName" value="sp_customer_credit"/>
 <property name="function" value="true"/>
 <property name="rowMapper">
 <bean class="org.springframework.batch.sample.domain.CustomerCreditRowMapper"/>
 </property>
</bean>

In all of these cases we need to define a
 RowMapper as well as a
 DataSource and the actual procedure
 name.
If the stored procedure or function takes in parameter then they
 must be declared and set via the parameters property. Here is an
 example for Oracle that declares three parameters. The first one is
 the out parameter that returns the ref-cursor, the second and third
 are in parameters that takes a value of type INTEGER:
<bean id="reader" class="o.s.batch.item.database.StoredProcedureItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="procedureName" value="spring.cursor_func"/>
 <property name="parameters">
 <list>
 <bean class="org.springframework.jdbc.core.SqlOutParameter">
 <constructor-arg index="0" value="newid"/>
 <constructor-arg index="1">
 <util:constant static-field="oracle.jdbc.OracleTypes.CURSOR"/>
 </constructor-arg>
 </bean>
 <bean class="org.springframework.jdbc.core.SqlParameter">
 <constructor-arg index="0" value="amount"/>
 <constructor-arg index="1">
 <util:constant static-field="java.sql.Types.INTEGER"/>
 </constructor-arg>
 </bean>
 <bean class="org.springframework.jdbc.core.SqlParameter">
 <constructor-arg index="0" value="custid"/>
 <constructor-arg index="1">
 <util:constant static-field="java.sql.Types.INTEGER"/>
 </constructor-arg>
 </bean>
 </list>
 </property>
 <property name="refCursorPosition" value="1"/>
 <property name="rowMapper" ref="rowMapper"/>
 <property name="preparedStatementSetter" ref="parameterSetter"/>
</bean>
In addition to the parameter declarations we need to specify a
 PreparedStatementSetter implementation that
 sets the parameter values for the call. This works the same as for the
 JdbcCursorItemReader above. All the additional
 properties listed in the section called “Additional Properties”
 apply to the StoredProcedureItemReader as well.

Paging ItemReaders

An alternative to using a database cursor is executing multiple
 queries where each query is bringing back a portion of the results. We
 refer to this portion as a page. Each query that is executed must
 specify the starting row number and the number of rows that we want
 returned for the page.
JdbcPagingItemReader

One implementation of a paging ItemReader
 is the JdbcPagingItemReader. The
 JdbcPagingItemReader needs a
 PagingQueryProvider responsible for providing
 the SQL queries used to retrieve the rows making up a page. Since each
 database has its own strategy for providing paging support, we need to
 use a different PagingQueryProvider for each
 supported database type. There is also the
 SqlPagingQueryProviderFactoryBean that will
 auto-detect the database that is being used and determine the
 appropriate PagingQueryProvider implementation.
 This simplifies the configuration and is the recommended best
 practice.
The SqlPagingQueryProviderFactoryBean
 requires that you specify a select clause and a from clause. You can
 also provide an optional where clause. These clauses will be used to
 build an SQL statement combined with the required sortKey.
After the reader has been opened, it will pass back one item per
 call to read in the same basic fashion as any
 other ItemReader. The paging happens behind the
 scenes when additional rows are needed.
Below is an example configuration using a similar 'customer
 credit' example as the cursor based ItemReaders above:
<bean id="itemReader" class="org.spr...JdbcPagingItemReader">
 <property name="dataSource" ref="dataSource"/>
 <property name="queryProvider">
 <bean class="org.spr...SqlPagingQueryProviderFactoryBean">
 <property name="selectClause" value="select id, name, credit"/>
 <property name="fromClause" value="from customer"/>
 <property name="whereClause" value="where status=:status"/>
 <property name="sortKey" value="id"/>
 </bean>
 </property>
 <property name="parameterValues">
 <map>
 <entry key="status" value="NEW"/>
 </map>
 </property>
 <property name="pageSize" value="1000"/>
 <property name="rowMapper" ref="customerMapper"/>
</bean>
This configured ItemReader will return
 CustomerCredit objects using the
 RowMapper that must be specified. The
 'pageSize' property determines the number of entities read from the
 database for each query execution.
The 'parameterValues' property can be used to specify a Map of
 parameter values for the query. If you use named parameters in the
 where clause the key for each entry should match the name of the named
 parameter. If you use a traditional '?' placeholder then the key for
 each entry should be the number of the placeholder, starting with
 1.
JpaPagingItemReader

Another implementation of a paging
 ItemReader is the
 JpaPagingItemReader. JPA doesn't have a concept
 similar to the Hibernate StatelessSession so we
 have to use other features provided by the JPA specification. Since
 JPA supports paging, this is a natural choice when it comes to using
 JPA for batch processing. After each page is read, the entities will
 become detached and the persistence context will be cleared in order
 to allow the entities to be garbage collected once the page is
 processed.
The JpaPagingItemReader allows you to
 declare a JPQL statement and pass in a
 EntityManagerFactory. It will then pass back
 one item per call to read in the same basic
 fashion as any other ItemReader. The paging
 happens behind the scenes when additional entities are needed. Below
 is an example configuration using the same 'customer credit' example
 as the JDBC reader above:
<bean id="itemReader" class="org.spr...JpaPagingItemReader">
 <property name="entityManagerFactory" ref="entityManagerFactory"/>
 <property name="queryString" value="select c from CustomerCredit c"/>
 <property name="pageSize" value="1000"/>
</bean>
This configured ItemReader will return
 CustomerCredit objects in the exact same manner
 as described by the JdbcPagingItemReader above,
 assuming the Customer object has the correct JPA annotations or ORM
 mapping file. The 'pageSize' property determines the number of
 entities read from the database for each query execution.
IbatisPagingItemReader

	[image: [Note]]	Note
	This reader is deprecated as of Spring Batch 3.0.

If you use IBATIS for your data access then you can use the
 IbatisPagingItemReader which, as the name
 indicates, is an implementation of a paging
 ItemReader. IBATIS doesn't have direct support
 for reading rows in pages but by providing a couple of standard
 variables you can add paging support to your IBATIS queries.
Here is an example of a configuration for a
 IbatisPagingItemReader reading CustomerCredits
 as in the examples above:
<bean id="itemReader" class="org.spr...IbatisPagingItemReader">
 <property name="sqlMapClient" ref="sqlMapClient"/>
 <property name="queryId" value="getPagedCustomerCredits"/>
 <property name="pageSize" value="1000"/>
</bean>
The IbatisPagingItemReader configuration
 above references an IBATIS query called "getPagedCustomerCredits".
 Here is an example of what that query should look like for
 MySQL.
<select id="getPagedCustomerCredits" resultMap="customerCreditResult">
 select id, name, credit from customer order by id asc LIMIT #_skiprows#, #_pagesize#
</select>
The _skiprows and
 _pagesize variables are provided by the
 IbatisPagingItemReader and there is also a
 _page variable that can be used if necessary.
 The syntax for the paging queries varies with the database used. Here
 is an example for Oracle (unfortunately we need to use CDATA for some
 operators since this belongs in an XML document):
<select id="getPagedCustomerCredits" resultMap="customerCreditResult">
 select * from (
 select * from (
 select t.id, t.name, t.credit, ROWNUM ROWNUM_ from customer t order by id
)) where ROWNUM_ <![CDATA[>]]> (#_page# * #_pagesize#)
) where ROWNUM <![CDATA[<=]]> #_pagesize#
</select>
Database ItemWriters

While both Flat Files and XML have specific ItemWriters, there is
 no exact equivalent in the database world. This is because transactions
 provide all the functionality that is needed. ItemWriters are necessary
 for files because they must act as if they're transactional, keeping
 track of written items and flushing or clearing at the appropriate
 times. Databases have no need for this functionality, since the write is
 already contained in a transaction. Users can create their own DAOs that
 implement the ItemWriter interface or use one
 from a custom ItemWriter that's written for
 generic processing concerns, either way, they should work without any
 issues. One thing to look out for is the performance and error handling
 capabilities that are provided by batching the outputs. This is most
 common when using hibernate as an ItemWriter, but
 could have the same issues when using Jdbc batch mode. Batching database
 output doesn't have any inherent flaws, assuming we are careful to flush
 and there are no errors in the data. However, any errors while writing
 out can cause confusion because there is no way to know which individual
 item caused an exception, or even if any individual item was
 responsible, as illustrated below:

If items are buffered before being written out, any
 errors encountered will not be thrown until the buffer is flushed just
 before a commit. For example, let's assume that 20 items will be written
 per chunk, and the 15th item throws a DataIntegrityViolationException.
 As far as the Step is concerned, all 20 item will be written out
 successfully, since there's no way to know that an error will occur
 until they are actually written out. Once
 Session#flush() is
 called, the buffer will be emptied and the exception will be hit. At
 this point, there's nothing the Step can do, the
 transaction must be rolled back. Normally, this exception might cause
 the Item to be skipped (depending upon the skip/retry policies), and
 then it won't be written out again. However, in the batched scenario,
 there's no way for it to know which item caused the issue, the whole
 buffer was being written out when the failure happened. The only way to
 solve this issue is to flush after each item:

This is a common use case, especially when using Hibernate, and
 the simple guideline for implementations of
 ItemWriter, is to flush on each call to
 write(). Doing so allows for items to be
 skipped reliably, with Spring Batch taking care internally of the
 granularity of the calls to ItemWriter after an
 error.
Reusing Existing Services

Batch systems are often used in conjunction with other application
 styles. The most common is an online system, but it may also support
 integration or even a thick client application by moving necessary bulk
 data that each application style uses. For this reason, it is common that
 many users want to reuse existing DAOs or other services within their
 batch jobs. The Spring container itself makes this fairly easy by allowing
 any necessary class to be injected. However, there may be cases where the
 existing service needs to act as an ItemReader or
 ItemWriter, either to satisfy the dependency of
 another Spring Batch class, or because it truly is the main
 ItemReader for a step. It is fairly trivial to
 write an adaptor class for each service that needs wrapping, but because
 it is such a common concern, Spring Batch provides implementations:
 ItemReaderAdapter and
 ItemWriterAdapter. Both classes implement the
 standard Spring method invoking the delegate pattern and are fairly simple
 to set up. Below is an example of the reader:
<bean id="itemReader" class="org.springframework.batch.item.adapter.ItemReaderAdapter">
 <property name="targetObject" ref="fooService" />
 <property name="targetMethod" value="generateFoo" />
</bean>

<bean id="fooService" class="org.springframework.batch.item.sample.FooService" />
One important point to note is that the contract of the targetMethod
 must be the same as the contract for read: when
 exhausted it will return null, otherwise an Object.
 Anything else will prevent the framework from knowing when processing
 should end, either causing an infinite loop or incorrect failure,
 depending upon the implementation of the
 ItemWriter. The ItemWriter
 implementation is equally as simple:
<bean id="itemWriter" class="org.springframework.batch.item.adapter.ItemWriterAdapter">
 <property name="targetObject" ref="fooService" />
 <property name="targetMethod" value="processFoo" />
</bean>

<bean id="fooService" class="org.springframework.batch.item.sample.FooService" />

Validating Input

During the course of this chapter, multiple approaches to parsing
 input have been discussed. Each major implementation will throw an
 exception if it is not 'well-formed'. The
 FixedLengthTokenizer will throw an exception if a
 range of data is missing. Similarly, attempting to access an index in a
 RowMapper of FieldSetMapper
 that doesn't exist or is in a different format than the one expected will
 cause an exception to be thrown. All of these types of exceptions will be
 thrown before read returns. However, they don't
 address the issue of whether or not the returned item is valid. For
 example, if one of the fields is an age, it obviously cannot be negative.
 It will parse correctly, because it existed and is a number, but it won't
 cause an exception. Since there are already a plethora of Validation
 frameworks, Spring Batch does not attempt to provide yet another, but
 rather provides a very simple interface that can be implemented by any
 number of frameworks:
public interface Validator {

 void validate(Object value) throws ValidationException;

}
The contract is that the validate method
 will throw an exception if the object is invalid, and return normally if
 it is valid. Spring Batch provides an out of the box
 ItemProcessor:
<bean class="org.springframework.batch.item.validator.ValidatingItemProcessor">
 <property name="validator" ref="validator" />
</bean>

<bean id="validator"
 class="org.springframework.batch.item.validator.SpringValidator">
 <property name="validator">
 <bean id="orderValidator"
 class="org.springmodules.validation.valang.ValangValidator">
 <property name="valang">
 <value>
 <![CDATA[
 { orderId : ? > 0 AND ? <= 9999999999 : 'Incorrect order ID' : 'error.order.id' }
 { totalLines : ? = size(lineItems) : 'Bad count of order lines'
 : 'error.order.lines.badcount'}
 { customer.registered : customer.businessCustomer = FALSE OR ? = TRUE
 : 'Business customer must be registered'
 : 'error.customer.registration'}
 { customer.companyName : customer.businessCustomer = FALSE OR ? HAS TEXT
 : 'Company name for business customer is mandatory'
 :'error.customer.companyname'}
]]>
 </value>
 </property>
 </bean>
 </property>
</bean>
This simple example shows a simple
 ValangValidator that is used to validate an order
 object. The intent is not to show Valang functionality as much as to show
 how a validator could be added.
Preventing State Persistence

By default, all of the ItemReader and
 ItemWriter implementations store their current
 state in the ExecutionContext before it is
 committed. However, this may not always be the desired behavior. For
 example, many developers choose to make their database readers
 'rerunnable' by using a process indicator. An extra column is added to the
 input data to indicate whether or not it has been processed. When a
 particular record is being read (or written out) the processed flag is
 flipped from false to true. The SQL statement can then contain an extra
 statement in the where clause, such as "where PROCESSED_IND = false",
 thereby ensuring that only unprocessed records will be returned in the
 case of a restart. In this scenario, it is preferable to not store any
 state, such as the current row number, since it will be irrelevant upon
 restart. For this reason, all readers and writers include the 'saveState'
 property:
<bean id="playerSummarizationSource" class="org.spr...JdbcCursorItemReader">
 <property name="dataSource" ref="dataSource" />
 <property name="rowMapper">
 <bean class="org.springframework.batch.sample.PlayerSummaryMapper" />
 </property>
 <property name="saveState" value="false" />
 <property name="sql">
 <value>
 SELECT games.player_id, games.year_no, SUM(COMPLETES),
 SUM(ATTEMPTS), SUM(PASSING_YARDS), SUM(PASSING_TD),
 SUM(INTERCEPTIONS), SUM(RUSHES), SUM(RUSH_YARDS),
 SUM(RECEPTIONS), SUM(RECEPTIONS_YARDS), SUM(TOTAL_TD)
 from games, players where players.player_id =
 games.player_id group by games.player_id, games.year_no
 </value>
 </property>
</bean>
The ItemReader configured above will not make
 any entries in the ExecutionContext for any
 executions in which it participates.
Creating Custom ItemReaders and
 ItemWriters

So far in this chapter the basic contracts that exist for reading
 and writing in Spring Batch and some common implementations have been
 discussed. However, these are all fairly generic, and there are many
 potential scenarios that may not be covered by out of the box
 implementations. This section will show, using a simple example, how to
 create a custom ItemReader and
 ItemWriter implementation and implement their
 contracts correctly. The ItemReader will also
 implement ItemStream, in order to illustrate how to
 make a reader or writer restartable.
Custom ItemReader Example

For the purpose of this example, a simple
 ItemReader implementation that reads from a
 provided list will be created. We'll start out by implementing the most
 basic contract of ItemReader,
 read:
public class CustomItemReader<T> implements ItemReader<T>{

 List<T> items;

 public CustomItemReader(List<T> items) {
 this.items = items;
 }

 public T read() throws Exception, UnexpectedInputException,
 NoWorkFoundException, ParseException {

 if (!items.isEmpty()) {
 return items.remove(0);
 }
 return null;
 }
}
This very simple class takes a list of items, and returns them one
 at a time, removing each from the list. When the list is empty, it
 returns null, thus satisfying the most basic requirements of an
 ItemReader, as illustrated below:
List<String> items = new ArrayList<String>();
items.add("1");
items.add("2");
items.add("3");

ItemReader itemReader = new CustomItemReader<String>(items);
assertEquals("1", itemReader.read());
assertEquals("2", itemReader.read());
assertEquals("3", itemReader.read());
assertNull(itemReader.read());
Making the ItemReader
 Restartable

The final challenge now is to make the
 ItemReader restartable. Currently, if the power
 goes out, and processing begins again, the
 ItemReader must start at the beginning. This is
 actually valid in many scenarios, but it is sometimes preferable that
 a batch job starts where it left off. The key discriminant is often
 whether the reader is stateful or stateless. A stateless reader does
 not need to worry about restartability, but a stateful one has to try
 and reconstitute its last known state on restart. For this reason, we
 recommend that you keep custom readers stateless if possible, so you
 don't have to worry about restartability.
If you do need to store state, then the
 ItemStream interface should be used:
public class CustomItemReader<T> implements ItemReader<T>, ItemStream {

 List<T> items;
 int currentIndex = 0;
 private static final String CURRENT_INDEX = "current.index";

 public CustomItemReader(List<T> items) {
 this.items = items;
 }

 public T read() throws Exception, UnexpectedInputException,
 ParseException {

 if (currentIndex < items.size()) {
 return items.get(currentIndex++);
 }

 return null;
 }

 public void open(ExecutionContext executionContext) throws ItemStreamException {
 if(executionContext.containsKey(CURRENT_INDEX)){
 currentIndex = new Long(executionContext.getLong(CURRENT_INDEX)).intValue();
 }
 else{
 currentIndex = 0;
 }
 }

 public void update(ExecutionContext executionContext) throws ItemStreamException {
 executionContext.putLong(CURRENT_INDEX, new Long(currentIndex).longValue());
 }

 public void close() throws ItemStreamException {}
}
On each call to the ItemStream
 update method, the current index of the
 ItemReader will be stored in the provided
 ExecutionContext with a key of 'current.index'.
 When the ItemStream open
 method is called, the ExecutionContext is
 checked to see if it contains an entry with that key. If the key is
 found, then the current index is moved to that location. This is a
 fairly trivial example, but it still meets the general
 contract:
ExecutionContext executionContext = new ExecutionContext();
((ItemStream)itemReader).open(executionContext);
assertEquals("1", itemReader.read());
((ItemStream)itemReader).update(executionContext);

List<String> items = new ArrayList<String>();
items.add("1");
items.add("2");
items.add("3");
itemReader = new CustomItemReader<String>(items);

((ItemStream)itemReader).open(executionContext);
assertEquals("2", itemReader.read());
Most ItemReaders have much more sophisticated restart logic. The
 JdbcCursorItemReader, for example, stores the
 row id of the last processed row in the Cursor.
It is also worth noting that the key used within the
 ExecutionContext should not be trivial. That is
 because the same ExecutionContext is used for
 all ItemStreams within a
 Step. In most cases, simply prepending the key
 with the class name should be enough to guarantee uniqueness. However,
 in the rare cases where two of the same type of
 ItemStream are used in the same step (which can
 happen if two files are need for output) then a more unique name will
 be needed. For this reason, many of the Spring Batch
 ItemReader and
 ItemWriter implementations have a
 setName() property that allows this key name
 to be overridden.
Custom ItemWriter Example

Implementing a Custom ItemWriter is similar
 in many ways to the ItemReader example above, but
 differs in enough ways as to warrant its own example. However, adding
 restartability is essentially the same, so it won't be covered in this
 example. As with the ItemReader example, a
 List will be used in order to keep the example as
 simple as possible:
public class CustomItemWriter<T> implements ItemWriter<T> {

 List<T> output = TransactionAwareProxyFactory.createTransactionalList();

 public void write(List<? extends T> items) throws Exception {
 output.addAll(items);
 }

 public List<T> getOutput() {
 return output;
 }
}
Making the ItemWriter
 Restartable

To make the ItemWriter restartable we would follow the same
 process as for the ItemReader, adding and
 implementing the ItemStream interface to
 synchronize the execution context. In the example we might have to
 count the number of items processed and add that as a footer record.
 If we needed to do that, we could implement
 ItemStream in our
 ItemWriter so that the counter was
 reconstituted from the execution context if the stream was
 re-opened.
In many realistic cases, custom ItemWriters also delegate to
 another writer that itself is restartable (e.g. when writing to a
 file), or else it writes to a transactional resource so doesn't need
 to be restartable because it is stateless. When you have a stateful
 writer you should probably also be sure to implement
 ItemStream as well as
 ItemWriter. Remember also that the client of
 the writer needs to be aware of the ItemStream,
 so you may need to register it as a stream in the configuration
 xml.
Chapter 7. Scaling and Parallel Processing

Many batch processing problems can be solved with single threaded,
 single process jobs, so it is always a good idea to properly check if that
 meets your needs before thinking about more complex implementations. Measure
 the performance of a realistic job and see if the simplest implementation
 meets your needs first: you can read and write a file of several hundred
 megabytes in well under a minute, even with standard hardware.
When you are ready to start implementing a job with some parallel
 processing, Spring Batch offers a range of options, which are described in
 this chapter, although some features are covered elsewhere. At a high level
 there are two modes of parallel processing: single process, multi-threaded;
 and multi-process. These break down into categories as well, as
 follows:
	Multi-threaded Step (single process)

	Parallel Steps (single process)

	Remote Chunking of Step (multi process)

	Partitioning a Step (single or multi process)

Next we review the single-process options first, and then the
 multi-process options.
Multi-threaded Step

The simplest way to start parallel processing is to add a
 TaskExecutor to your Step configuration, e.g. as an
 attribute of the tasklet:
<step id="loading">
 <tasklet task-executor="taskExecutor">...</tasklet>
</step>
In this example the taskExecutor is a reference to another bean
 definition, implementing the TaskExecutor
 interface. TaskExecutor is a standard Spring
 interface, so consult the Spring User Guide for details of available
 implementations. The simplest multi-threaded
 TaskExecutor is a
 SimpleAsyncTaskExecutor.
The result of the above configuration will be that the Step
 executes by reading, processing and writing each chunk of items
 (each commit interval) in a separate thread of execution. Note
 that this means there is no fixed order for the items to be
 processed, and a chunk might contain items that are
 non-consecutive compared to the single-threaded case. In addition
 to any limits placed by the task executor (e.g. if it is backed by
 a thread pool), there is a throttle limit in the tasklet
 configuration which defaults to 4. You may need to increase this
 to ensure that a thread pool is fully utilised, e.g.
<step id="loading"> <tasklet
 task-executor="taskExecutor"
 throttle-limit="20">...</tasklet>
</step>
Note also that there may be limits placed on concurrency by
 any pooled resources used in your step, such as
 a DataSource. Be sure to make the pool in
 those resources at least as large as the desired number of
 concurrent threads in the step.
There are some practical limitations of using multi-threaded Steps
 for some common Batch use cases. Many participants in a Step (e.g. readers
 and writers) are stateful, and if the state is not segregated by thread,
 then those components are not usable in a multi-threaded Step. In
 particular most of the off-the-shelf readers and writers from Spring Batch
 are not designed for multi-threaded use. It is, however, possible to work
 with stateless or thread safe readers and writers, and there is a sample
 (parallelJob) in the Spring Batch Samples that show the use of a process
 indicator (see the section called “Preventing State Persistence”) to keep
 track of items that have been processed in a database input table.
Spring Batch provides some implementations of
	 ItemWriter and
	ItemReader. Usually they say in the
	Javadocs if they are thread safe or not, or what you have to do to
	avoid problems in a concurrent environment. If there is no
	information in Javadocs, you can check the implementation to see
	if there is any state. If a reader is not thread safe, it may
	still be efficient to use it in your own synchronizing delegator.
	You can synchronize the call to read() and as
	long as the processing and writing is the most expensive part of
	the chunk your step may still complete much faster than in a
	single threaded configuration.

Parallel Steps

As long as the application logic that needs to be parallelized can
 be split into distinct responsibilities, and assigned to individual steps
 then it can be parallelized in a single process. Parallel Step execution
 is easy to configure and use, for example, to execute steps
 (step1,step2) in parallel with
 step3, you could configure a flow like this:
<job id="job1">
 <split id="split1" task-executor="taskExecutor" next="step4">
 <flow>
 <step id="step1" parent="s1" next="step2"/>
 <step id="step2" parent="s2"/>
 </flow>
 <flow>
 <step id="step3" parent="s3"/>
 </flow>
 </split>
 <step id="step4" parent="s4"/>
</job>

<beans:bean id="taskExecutor" class="org.spr...SimpleAsyncTaskExecutor"/>
The configurable "task-executor" attribute is used to specify which
 TaskExecutor implementation should be used to execute the individual
 flows. The default is SyncTaskExecutor, but an
 asynchronous TaskExecutor is required to run the steps in parallel. Note
 that the job will ensure that every flow in the split completes before
 aggregating the exit statuses and transitioning.
See the section on the section called “Split Flows” for more
 detail.
Remote Chunking

In Remote Chunking the Step processing is split across multiple
 processes, communicating with each other through some middleware. Here is
 a picture of the pattern in action:

The Master component is a single process, and the Slaves are
 multiple remote processes. Clearly this pattern works best if the Master
 is not a bottleneck, so the processing must be more expensive than the
 reading of items (this is often the case in practice).
The Master is just an implementation of a Spring Batch
 Step, with the ItemWriter replaced with a generic
 version that knows how to send chunks of items to the middleware as
 messages. The Slaves are standard listeners for whatever middleware is
 being used (e.g. with JMS they would be
 MesssageListeners), and their role is to process
 the chunks of items using a standard ItemWriter or
 ItemProcessor plus
 ItemWriter, through the
 ChunkProcessor interface. One of the advantages of
 using this pattern is that the reader, processor and writer components are
 off-the-shelf (the same as would be used for a local execution of the
 step). The items are divided up dynamically and work is shared through the
 middleware, so if the listeners are all eager consumers, then load
 balancing is automatic.
The middleware has to be durable, with guaranteed delivery and
 single consumer for each message. JMS is the obvious candidate, but other
 options exist in the grid computing and shared memory product space (e.g.
 Java Spaces).
Partitioning

Spring Batch also provides an SPI for partitioning a Step execution
 and executing it remotely. In this case the remote participants are simply
 Step instances that could just as easily have been configured and used for
 local processing. Here is a picture of the pattern in action:

The Job is executing on the left hand side as a sequence of Steps,
 and one of the Steps is labelled as a Master. The Slaves in this picture
 are all identical instances of a Step, which could in fact take the place
 of the Master resulting in the same outcome for the Job. The Slaves are
 typically going to be remote services, but could also be local threads of
 execution. The messages sent by the Master to the Slaves in this pattern
 do not need to be durable, or have guaranteed delivery: Spring Batch
 meta-data in the JobRepository will ensure that
 each Slave is executed once and only once for each Job execution.
The SPI in Spring Batch consists of a special implementation of Step
 (the PartitionStep), and two strategy interfaces
 that need to be implemented for the specific environment. The strategy
 interfaces are PartitionHandler and
 StepExecutionSplitter, and their role is show in
 the sequence diagram below:

The Step on the right in this case is the "remote" Slave, so
 potentially there are many objects and or processes playing this role, and
 the PartitionStep is shown driving the execution. The PartitionStep
 configuration looks like this:
<step id="step1.master">
 <partition step="step1" partitioner="partitioner">
 <handler grid-size="10" task-executor="taskExecutor"/>
 </partition>
</step>
Similar to the multi-threaded step's throttle-limit
 attribute, the grid-size attribute prevents the task executor from
 being saturated with requests from a single step.
There is a simple example which can be copied and extended in the
 unit test suite for Spring Batch Samples (see
 *PartitionJob.xml configuration).
Spring Batch creates step executions for the partitions called
 "step1:partition0", etc., so many people prefer to call the master step
 "step1:master" for consistency. With Spring 3.0 you can do this using an
 alias for the step (specifying the name attribute
 instead of the id).
PartitionHandler

The PartitionHandler is the component that
 knows about the fabric of the remoting or grid environment. It is able
 to send StepExecution requests to the remote
 Steps, wrapped in some fabric-specific format, like a DTO. It does not
 have to know how to split up the input data, or how to aggregate the
 result of multiple Step executions. Generally speaking it probably also
 doesn't need to know about resilience or failover, since those are
 features of the fabric in many cases, and anyway Spring Batch always
 provides restartability independent of the fabric: a failed Job can
 always be restarted and only the failed Steps will be
 re-executed.
The PartitionHandler interface can have
 specialized implementations for a variety of fabric types: e.g. simple
 RMI remoting, EJB remoting, custom web service, JMS, Java Spaces, shared
 memory grids (like Terracotta or Coherence), grid execution fabrics
 (like GridGain). Spring Batch does not contain implementations for any
 proprietary grid or remoting fabrics.
Spring Batch does however provide a useful implementation of
 PartitionHandler that executes Steps locally in
 separate threads of execution, using the
 TaskExecutor strategy from Spring. The
 implementation is called
 TaskExecutorPartitionHandler, and it is the
 default for a step configured with the XML namespace as above. It can
 also be configured explicitly like this:
<step id="step1.master">
 <partition step="step1" handler="handler"/>
</step>

<bean class="org.spr...TaskExecutorPartitionHandler">
 <property name="taskExecutor" ref="taskExecutor"/>
 <property name="step" ref="step1" />
 <property name="gridSize" value="10" />
</bean>
The gridSize determines the number of separate
 step executions to create, so it can be matched to the size of the
 thread pool in the TaskExecutor, or else it can
 be set to be larger than the number of threads available, in which case
 the blocks of work are smaller.
The TaskExecutorPartitionHandler is quite
 useful for IO intensive Steps, like copying large numbers of files or
 replicating filesystems into content management systems. It can also be
 used for remote execution by providing a Step implementation that is a
 proxy for a remote invocation (e.g. using Spring Remoting).
Partitioner

The Partitioner has a simpler responsibility: to generate
 execution contexts as input parameters for new step executions only (no
 need to worry about restarts). It has a single method:
public interface Partitioner {
 Map<String, ExecutionContext> partition(int gridSize);
}
The return value from this method associates a unique name for
 each step execution (the String), with input
 parameters in the form of an ExecutionContext.
 The names show up later in the Batch meta data as the step name in the
 partitioned StepExecutions. The
 ExecutionContext is just a bag of name-value
 pairs, so it might contain a range of primary keys, or line numbers, or
 the location of an input file. The remote Step
 then normally binds to the context input using #{...}
 placeholders (late binding in step scope), as illustrated in the next
 section.
The names of the step executions (the keys in the
 Map returned by
 Partitioner) need to be unique amongst the step
 executions of a Job, but do not have any other specific requirements.
 The easiest way to do this, and to make the names meaningful for users,
 is to use a prefix+suffix naming convention, where the prefix is the
 name of the step that is being executed (which itself is unique in the
 Job), and the suffix is just a counter. There is
 a SimplePartitioner in the framework that uses
 this convention.
An optional interface
 PartitioneNameProvider can be used to
 provide the partition names separately from the partitions
 themselves. If a Partitioner implements
 this interface then on a restart only the names will be queried.
 If partitioning is expensive this can be a useful optimisation.
 Obviously the names provided by the
 PartitioneNameProvider must match those
 provided by the Partitioner.
Binding Input Data to Steps

It is very efficient for the steps that are executed by the
 PartitionHandler to have identical configuration, and for their input
 parameters to be bound at runtime from the ExecutionContext. This is
 easy to do with the StepScope feature of Spring Batch (covered in more
 detail in the section on Late Binding). For example
 if the Partitioner creates
 ExecutionContext instances with an attribute key
 fileName, pointing to a different file (or
 directory) for each step invocation, the
 Partitioner output might look like this:
Table 7.1. Example step execution name to execution context provided by
 Partitioner targeting directory processing
	Step Execution Name
 (key)	ExecutionContext
 (value)
	filecopy:partition0	fileName=/home/data/one
	filecopy:partition1	fileName=/home/data/two
	filecopy:partition2	fileName=/home/data/three

Then the file name can be bound to a step using late binding to
 the execution context:
<bean id="itemReader" scope="step"
 class="org.spr...MultiResourceItemReader">
 <property name="resource" value="#{stepExecutionContext[fileName]}/*"/>
</bean>
Chapter 8. Repeat

RepeatTemplate

Batch processing is about repetitive actions - either as a simple
 optimization, or as part of a job. To strategize and generalize the
 repetition as well as to provide what amounts to an iterator framework,
 Spring Batch has the RepeatOperations interface.
 The RepeatOperations interface looks like
 this:
public interface RepeatOperations {

 RepeatStatus iterate(RepeatCallback callback) throws RepeatException;

}
The callback is a simple interface that allows you to insert
 some business logic to be repeated:
public interface RepeatCallback {

 RepeatStatus doInIteration(RepeatContext context) throws Exception;

}
The callback is executed repeatedly until the implementation
 decides that the iteration should end. The return value in these
 interfaces is an enumeration that can either be
 RepeatStatus.CONTINUABLE or
 RepeatStatus.FINISHED. A RepeatStatus
 conveys information to the caller of the repeat operations about whether
 there is any more work to do. Generally speaking, implementations of
 RepeatOperations should inspect the
 RepeatStatus and use it as part of the decision to
 end the iteration. Any callback that wishes to signal to the caller that
 there is no more work to do can return
 RepeatStatus.FINISHED.
The simplest general purpose implementation of
 RepeatOperations is
 RepeatTemplate. It could be used like this:
RepeatTemplate template = new RepeatTemplate();

template.setCompletionPolicy(new FixedChunkSizeCompletionPolicy(2));

template.iterate(new RepeatCallback() {

 public ExitStatus doInIteration(RepeatContext context) {
 // Do stuff in batch...
 return ExitStatus.CONTINUABLE;
 }

});
In the example we return RepeatStatus.CONTINUABLE to
 show that there is more work to do. The callback can also return
 ExitStatus.FINISHED if it wants to signal to the caller that
 there is no more work to do. Some iterations can be terminated by
 considerations intrinsic to the work being done in the callback, others
 are effectively infinite loops as far as the callback is concerned and the
 completion decision is delegated to an external policy as in the case
 above.
RepeatContext

The method parameter for the RepeatCallback
 is a RepeatContext. Many callbacks will simply
 ignore the context, but if necessary it can be used as an attribute bag
 to store transient data for the duration of the iteration. After the
 iterate method returns, the context will no
 longer exist.
A RepeatContext will have a parent context
 if there is a nested iteration in progress. The parent context is
 occasionally useful for storing data that need to be shared between
 calls to iterate. This is the case for instance
 if you want to count the number of occurrences of an event in the
 iteration and remember it across subsequent calls.
RepeatStatus

RepeatStatus is an enumeration used by
 Spring Batch to indicate whether processing has finished. These are
 possible RepeatStatus values:
Table 8.1. ExitStatus Properties
	Value	Description
	CONTINUABLE	There is more work to do.
	FINISHED	No more repetitions should take place.

RepeatStatus values can also be combined
 with a logical AND operation using the and()
 method in RepeatStatus. The effect of this is to
 do a logical AND on the continuable flag. In other words, if either
 status is FINISHED, then the result will be
 FINISHED.
Completion Policies

Inside a RepeatTemplate the termination of
 the loop in the iterate method is determined by a
 CompletionPolicy which is also a factory for the
 RepeatContext. The
 RepeatTemplate has the responsibility to use the
 current policy to create a RepeatContext and pass
 that in to the RepeatCallback at every stage in the
 iteration. After a callback completes its
 doInIteration, the
 RepeatTemplate has to make a call to the
 CompletionPolicy to ask it to update its state
 (which will be stored in the RepeatContext). Then
 it asks the policy if the iteration is complete.
Spring Batch provides some simple general purpose implementations of
 CompletionPolicy. The
 SimpleCompletionPolicy just allows an execution up
 to a fixed number of times (with RepeatStatus.FINISHED
 forcing early completion at any time).
Users might need to implement their own completion policies for more
 complicated decisions. For example, a batch processing window that
 prevents batch jobs from executing once the online systems are in use
 would require a custom policy.
Exception Handling

If there is an exception thrown inside a
 RepeatCallback, the
 RepeatTemplate consults an
 ExceptionHandler which can decide whether or not to
 re-throw the exception.
public interface ExceptionHandler {

 void handleException(RepeatContext context, Throwable throwable)
 throws RuntimeException;

}
A common use case is to count the number of exceptions of a
 given type, and fail when a limit is reached. For this purpose Spring
 Batch provides the SimpleLimitExceptionHandler and
 slightly more flexible
 RethrowOnThresholdExceptionHandler. The
 SimpleLimitExceptionHandler has a limit property
 and an exception type that should be compared with the current exception -
 all subclasses of the provided type are also counted. Exceptions of the
 given type are ignored until the limit is reached, and then rethrown.
 Those of other types are always rethrown.
An important optional property of the
 SimpleLimitExceptionHandler is the boolean flag
 useParent. It is false by default, so the limit is only
 accounted for in the current RepeatContext. When
 set to true, the limit is kept across sibling contexts in a nested
 iteration (e.g. a set of chunks inside a step).
Listeners

Often it is useful to be able to receive additional callbacks for
 cross cutting concerns across a number of different iterations. For this
 purpose Spring Batch provides the RepeatListener
 interface. The RepeatTemplate allows users to
 register RepeatListeners, and they will be given
 callbacks with the RepeatContext and
 RepeatStatus where available during the
 iteration.
The interface looks like this:
public interface RepeatListener {
 void before(RepeatContext context);
 void after(RepeatContext context, RepeatStatus result);
 void open(RepeatContext context);
 void onError(RepeatContext context, Throwable e);
 void close(RepeatContext context);
}
The open and
 close callbacks come before and after the entire
 iteration. before, after
 and onError apply to the individual
 RepeatCallback calls.
Note that when there is more than one listener, they are in a list,
 so there is an order. In this case open and
 before are called in the same order while
 after, onError and
 close are called in reverse order.
Parallel Processing

Implementations of RepeatOperations are not
 restricted to executing the callback sequentially. It is quite important
 that some implementations are able to execute their callbacks in parallel.
 To this end, Spring Batch provides the
 TaskExecutorRepeatTemplate, which uses the Spring
 TaskExecutor strategy to run the
 RepeatCallback. The default is to use a
 SynchronousTaskExecutor, which has the effect of
 executing the whole iteration in the same thread (the same as a normal
 RepeatTemplate).
Declarative Iteration

Sometimes there is some business processing that you know you want
 to repeat every time it happens. The classic example of this is the
 optimization of a message pipeline - it is more efficient to process a
 batch of messages, if they are arriving frequently, than to bear the cost
 of a separate transaction for every message. Spring Batch provides an AOP
 interceptor that wraps a method call in a
 RepeatOperations for just this purpose. The
 RepeatOperationsInterceptor executes the
 intercepted method and repeats according to the
 CompletionPolicy in the provided
 RepeatTemplate.
Here is an example of declarative iteration using the Spring AOP
 namespace to repeat a service call to a method called
 processMessage (for more detail on how to
 configure AOP interceptors see the Spring User Guide):
<aop:config>
 <aop:pointcut id="transactional"
 expression="execution(* com..*Service.processMessage(..))" />
 <aop:advisor pointcut-ref="transactional"
 advice-ref="retryAdvice" order="-1"/>
</aop:config>

<bean id="retryAdvice" class="org.spr...RepeatOperationsInterceptor"/>
The example above uses a default
 RepeatTemplate inside the interceptor. To change
 the policies, listeners etc. you only need to inject an instance of
 RepeatTemplate into the interceptor.
If the intercepted method returns void then the
 interceptor always returns ExitStatus.CONTINUABLE (so there is a danger of
 an infinite loop if the CompletionPolicy does not
 have a finite end point). Otherwise it returns
 ExitStatus.CONTINUABLE until the return value from the
 intercepted method is null, at which point it returns
 ExitStatus.FINISHED. So the business logic inside the target
 method can signal that there is no more work to do by returning
 null, or by throwing an exception that is re-thrown by the
 ExceptionHandler in the provided
 RepeatTemplate.
Chapter 9. Retry

RetryTemplate

	[image: [Note]]	Note
	The retry functionality was pulled out of Spring Batch as of 2.2.0.
		It is now part of a new library, Spring Retry.

To make processing more robust and less prone to failure, sometimes
 it helps to automatically retry a failed operation in case it might
 succeed on a subsequent attempt. Errors that are susceptible to this kind
 of treatment are transient in nature. For example a remote call to a web
 service or RMI service that fails because of a network glitch or a
 DeadLockLoserException in a database update may
 resolve themselves after a short wait. To automate the retry of such
 operations Spring Batch has the RetryOperations
 strategy. The RetryOperations interface looks like
 this:
public interface RetryOperations {

 <T> T execute(RetryCallback<T> retryCallback) throws Exception;

 <T> T execute(RetryCallback<T> retryCallback, RecoveryCallback<T> recoveryCallback)
 throws Exception;

 <T> T execute(RetryCallback<T> retryCallback, RetryState retryState)
 throws Exception, ExhaustedRetryException;

 <T> T execute(RetryCallback<T> retryCallback, RecoveryCallback<T> recoveryCallback,
 RetryState retryState) throws Exception;

}
The basic callback is a simple interface that allows you to
 insert some business logic to be retried:
public interface RetryCallback<T> {

 T doWithRetry(RetryContext context) throws Throwable;

}
The callback is executed and if it fails (by throwing an
 Exception), it will be retried until either it is
 successful, or the implementation decides to abort. There are a number of
 overloaded execute methods in the
 RetryOperations interface dealing with various use
 cases for recovery when all retry attempts are exhausted, and also with
 retry state, which allows clients and implementations to store information
 between calls (more on this later).
The simplest general purpose implementation of
 RetryOperations is
 RetryTemplate. It could be used like this
RetryTemplate template = new RetryTemplate();

TimeoutRetryPolicy policy = new TimeoutRetryPolicy();
policy.setTimeout(30000L);

template.setRetryPolicy(policy);

Foo result = template.execute(new RetryCallback<Foo>() {

 public Foo doWithRetry(RetryContext context) {
 // Do stuff that might fail, e.g. webservice operation
 return result;
 }

});
In the example we execute a web service call and return the result
 to the user. If that call fails then it is retried until a timeout is
 reached.
RetryContext

The method parameter for the RetryCallback
 is a RetryContext. Many callbacks will simply
 ignore the context, but if necessary it can be used as an attribute bag
 to store data for the duration of the iteration.
A RetryContext will have a parent context
 if there is a nested retry in progress in the same thread. The parent
 context is occasionally useful for storing data that need to be shared
 between calls to execute.
RecoveryCallback

When a retry is exhausted the
 RetryOperations can pass control to a different
 callback, the RecoveryCallback. To use this
 feature clients just pass in the callbacks together to the same method,
 for example:
Foo foo = template.execute(new RetryCallback<Foo>() {
 public Foo doWithRetry(RetryContext context) {
 // business logic here
 },
 new RecoveryCallback<Foo>() {
 Foo recover(RetryContext context) throws Exception {
 // recover logic here
 }
});
If the business logic does not succeed before the template
 decides to abort, then the client is given the chance to do some
 alternate processing through the recovery callback.
Stateless Retry

In the simplest case, a retry is just a while loop: the
 RetryTemplate can just keep trying until it
 either succeeds or fails. The RetryContext
 contains some state to determine whether to retry or abort, but this
 state is on the stack and there is no need to store it anywhere
 globally, so we call this stateless retry. The distinction between
 stateless and stateful retry is contained in the implementation of the
 RetryPolicy (the
 RetryTemplate can handle both). In a stateless
 retry, the callback is always executed in the same thread on retry as
 when it failed.
Stateful Retry

Where the failure has caused a transactional resource to become
 invalid, there are some special considerations. This does not apply to a
 simple remote call because there is no transactional resource (usually),
 but it does sometimes apply to a database update, especially when using
 Hibernate. In this case it only makes sense to rethrow the exception
 that called the failure immediately so that the transaction can roll
 back and we can start a new valid one.
In these cases a stateless retry is not good enough because the
 re-throw and roll back necessarily involve leaving the
 RetryOperations.execute() method and potentially losing the
 context that was on the stack. To avoid losing it we have to introduce a
 storage strategy to lift it off the stack and put it (at a minimum) in
 heap storage. For this purpose Spring Batch provides a storage strategy
 RetryContextCache which can be injected into the
 RetryTemplate. The default implementation of the
 RetryContextCache is in memory, using a simple
 Map. Advanced usage with multiple processes in a
 clustered environment might also consider implementing the
 RetryContextCache with a cluster cache of some
 sort (though, even in a clustered environment this might be
 overkill).
Part of the responsibility of the
 RetryOperations is to recognize the failed
 operations when they come back in a new execution (and usually wrapped
 in a new transaction). To facilitate this, Spring Batch provides the
 RetryState abstraction. This works in conjunction
 with a special execute methods in the
 RetryOperations.
The way the failed operations are recognized is by identifying the
 state across multiple invocations of the retry. To identify the state,
 the user can provide an RetryState object that is
 responsible for returning a unique key identifying the item. The
 identifier is used as a key in the
 RetryContextCache.
	[image: [Warning]]	Warning
	Be very careful with the implementation of
 Object.equals() and Object.hashCode() in the
 key returned by RetryState. The best advice is
 to use a business key to identify the items. In the case of a JMS
 message the message ID can be used.

When the retry is exhausted there is also the option to handle the
 failed item in a different way, instead of calling the
 RetryCallback (which is presumed now to be likely
 to fail). Just like in the stateless case, this option is provided by
 the RecoveryCallback, which can be provided by
 passing it in to the execute method of
 RetryOperations.
The decision to retry or not is actually delegated to a regular
 RetryPolicy, so the usual concerns about limits
 and timeouts can be injected there (see below).
Retry Policies

Inside a RetryTemplate the decision to retry
 or fail in the execute method is determined by a
 RetryPolicy which is also a factory for the
 RetryContext. The
 RetryTemplate has the responsibility to use the
 current policy to create a RetryContext and pass
 that in to the RetryCallback at every attempt.
 After a callback fails the RetryTemplate has to
 make a call to the RetryPolicy to ask it to update
 its state (which will be stored in the
 RetryContext), and then it asks the policy if
 another attempt can be made. If another attempt cannot be made (e.g. a
 limit is reached or a timeout is detected) then the policy is also
 responsible for handling the exhausted state. Simple implementations will
 just throw RetryExhaustedException which will cause
 any enclosing transaction to be rolled back. More sophisticated
 implementations might attempt to take some recovery action, in which case
 the transaction can remain intact.
	[image: [Tip]]	Tip
	Failures are inherently either retryable or not - if the same
 exception is always going to be thrown from the business logic, it
 doesn't help to retry it. So don't retry on all exception types - try to
 focus on only those exceptions that you expect to be retryable. It's not
 usually harmful to the business logic to retry more aggressively, but
 it's wasteful because if a failure is deterministic there will be time
 spent retrying something that you know in advance is fatal.

Spring Batch provides some simple general purpose implementations of
 stateless RetryPolicy, for example a
 SimpleRetryPolicy, and the
 TimeoutRetryPolicy used in the example
 above.
The SimpleRetryPolicy just allows a retry on
 any of a named list of exception types, up to a fixed number of times. It
 also has a list of "fatal" exceptions that should never be retried, and
 this list overrides the retryable list so that it can be used to give
 finer control over the retry behavior:
SimpleRetryPolicy policy = new SimpleRetryPolicy();
// Set the max retry attempts
policy.setMaxAttempts(5);
// Retry on all exceptions (this is the default)
policy.setRetryableExceptions(new Class[] {Exception.class});
// ... but never retry IllegalStateException
policy.setFatalExceptions(new Class[] {IllegalStateException.class});

// Use the policy...
RetryTemplate template = new RetryTemplate();
template.setRetryPolicy(policy);
template.execute(new RetryCallback<Foo>() {
 public Foo doWithRetry(RetryContext context) {
 // business logic here
 }
});
There is also a more flexible implementation called
 ExceptionClassifierRetryPolicy, which allows the
 user to configure different retry behavior for an arbitrary set of
 exception types though the ExceptionClassifier
 abstraction. The policy works by calling on the classifier to convert an
 exception into a delegate RetryPolicy, so for
 example, one exception type can be retried more times before failure than
 another by mapping it to a different policy.
Users might need to implement their own retry policies for more
 customized decisions. For instance, if there is a well-known,
 solution-specific, classification of exceptions into retryable and not
 retryable.
Backoff Policies

When retrying after a transient failure it often helps to wait a bit
 before trying again, because usually the failure is caused by some problem
 that will only be resolved by waiting. If a
 RetryCallback fails, the
 RetryTemplate can pause execution according to the
 BackoffPolicy in place.
public interface BackoffPolicy {

 BackOffContext start(RetryContext context);

 void backOff(BackOffContext backOffContext)
 throws BackOffInterruptedException;

}
A BackoffPolicy is free to implement
 the backOff in any way it chooses. The policies provided by Spring Batch
 out of the box all use Object.wait(). A common use case is to
 backoff with an exponentially increasing wait period, to avoid two retries
 getting into lock step and both failing - this is a lesson learned from
 the ethernet. For this purpose Spring Batch provides the
 ExponentialBackoffPolicy.
Listeners

Often it is useful to be able to receive additional callbacks for
 cross cutting concerns across a number of different retries. For this
 purpose Spring Batch provides the RetryListener
 interface. The RetryTemplate allows users to
 register RetryListeners, and they will be given
 callbacks with the RetryContext and
 Throwable where available during the
 iteration.
The interface looks like this:
public interface RetryListener {

 void open(RetryContext context, RetryCallback<T> callback);

 void onError(RetryContext context, RetryCallback<T> callback, Throwable e);

 void close(RetryContext context, RetryCallback<T> callback, Throwable e);
}
The open and
 close callbacks come before and after the entire
 retry in the simplest case and onError applies to
 the individual RetryCallback calls. The
 close method might also receive a
 Throwable; if there has been an error it is the
 last one thrown by the RetryCallback.
Note that when there is more than one listener, they are in a list,
 so there is an order. In this case open will be
 called in the same order while onError and
 close will be called in reverse order.
Declarative Retry

Sometimes there is some business processing that you know you want
 to retry every time it happens. The classic example of this is the remote
 service call. Spring Batch provides an AOP interceptor that wraps a method
 call in a RetryOperations for just this purpose.
 The RetryOperationsInterceptor executes the
 intercepted method and retries on failure according to the
 RetryPolicy in the provided
 RepeatTemplate.
Here is an example of declarative iteration using the Spring AOP
 namespace to repeat a service call to a method called
 remoteCall (for more detail on how to configure
 AOP interceptors see the Spring User Guide):
<aop:config>
 <aop:pointcut id="transactional"
 expression="execution(* com..*Service.remoteCall(..))" />
 <aop:advisor pointcut-ref="transactional"
 advice-ref="retryAdvice" order="-1"/>
</aop:config>

<bean id="retryAdvice"
 class="org.springframework.batch.retry.interceptor.RetryOperationsInterceptor"/>
The example above uses a default
 RetryTemplate inside the interceptor. To change the
 policies or listeners, you only need to inject an instance of
 RetryTemplate into the interceptor.
Chapter 10. Unit Testing

Just as with other application styles, it is extremely important to
 unit test any code written as part of a batch job as well. The Spring core
 documentation covers how to unit and integration test with Spring in great
 detail, so it won't be repeated here. It is important, however, to think
 about how to 'end to end' test a batch job, which is what this chapter will
 focus on. The spring-batch-test project includes classes that will help
 facilitate this end-to-end test approach.
Creating a Unit Test Class

In order for the unit test to run a batch job, the framework must
 load the job's ApplicationContext. Two annotations are used to trigger
 this:
	@RunWith(SpringJUnit4ClassRunner.class):
 Indicates that the class should use Spring's JUnit facilities

	@ContextConfiguration(locations = {...}):
 Indicates which XML files contain the ApplicationContext.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = { "/simple-job-launcher-context.xml",
 "/jobs/skipSampleJob.xml" })
public class SkipSampleFunctionalTests { ... }
End-To-End Testing of Batch Jobs

'End To End' testing can be defined as testing the complete run of a
 batch job from beginning to end. This allows for a test that sets up a
 test condition, executes the job, and verifies the end result.
In the example below, the batch job reads from the database and
 writes to a flat file. The test method begins by setting up the database
 with test data. It clears the CUSTOMER table and then inserts 10 new
 records. The test then launches the Job using the
 launchJob() method. The
 launchJob() method is provided by the
 JobLauncherTestUtils class. Also provided by the
 utils class is launchJob(JobParameters), which
 allows the test to give particular parameters. The
 launchJob() method returns the
 JobExecution object which is useful for asserting
 particular information about the Job run. In the
 case below, the test verifies that the Job ended
 with status "COMPLETED".
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = { "/simple-job-launcher-context.xml",
 "/jobs/skipSampleJob.xml" })
public class SkipSampleFunctionalTests {

 @Autowired
 private JobLauncherTestUtils jobLauncherTestUtils;

 private SimpleJdbcTemplate simpleJdbcTemplate;

 @Autowired
 public void setDataSource(DataSource dataSource) {
 this.simpleJdbcTemplate = new SimpleJdbcTemplate(dataSource);
 }

 @Test
 public void testJob() throws Exception {
 simpleJdbcTemplate.update("delete from CUSTOMER");
 for (int i = 1; i <= 10; i++) {
 simpleJdbcTemplate.update("insert into CUSTOMER values (?, 0, ?, 100000)",
 i, "customer" + i);
 }

 JobExecution jobExecution = jobLauncherTestUtils.launchJob().getStatus();

 Assert.assertEquals("COMPLETED", jobExecution.getExitStatus());
 }
}
Testing Individual Steps

For complex batch jobs, test cases in the end-to-end testing
 approach may become unmanageable. It these cases, it may be more useful to
 have test cases to test individual steps on their own. The
 AbstractJobTests class contains a method
 launchStep that takes a step name and runs just
 that particular Step. This approach allows for more
 targeted tests by allowing the test to set up data for just that step and
 to validate its results directly.
JobExecution jobExecution = jobLauncherTestUtils.launchStep("loadFileStep");
Testing Step-Scoped Components

Often the components that are configured for your steps at runtime
 use step scope and late binding to inject context from the step or job
 execution. These are tricky to test as standalone components unless you
 have a way to set the context as if they were in a step execution. That is
 the goal of two components in Spring Batch: the
 StepScopeTestExecutionListener and the
 StepScopeTestUtils.
The listener is declared at the class level, and its job is to
 create a step execution context for each test method. For example:
@ContextConfiguration
@TestExecutionListeners({ DependencyInjectionTestExecutionListener.class,
 StepScopeTestExecutionListener.class })
@RunWith(SpringJUnit4ClassRunner.class)
public class StepScopeTestExecutionListenerIntegrationTests {

 // This component is defined step-scoped, so it cannot be injected unless
 // a step is active...
 @Autowired
 private ItemReader<String> reader;

 public StepExecution getStepExection() {
 StepExecution execution = MetaDataInstanceFactory.createStepExecution();
 execution.getExecutionContext().putString("input.data", "foo,bar,spam");
 return execution;
 }

 @Test
 public void testReader() {
 // The reader is initialized and bound to the input data
 assertNotNull(reader.read());
 }

}
There are two TestExecutionListeners, one
 from the regular Spring Test framework and handles dependency injection
 from the configured application context, injecting the reader, and the
 other is the Spring Batch
 StepScopeTestExecutionListener. It works by looking
 for a factory method in the test case for a
 StepExecution, and using that as the context for
 the test method, as if that execution was active in a Step at runtime. The
 factory method is detected by its signature (it just has to return a
 StepExecution). If a factory method is not provided
 then a default StepExecution is created.
The listener approach is convenient if you want the duration of the
 step scope to be the execution of the test method. For a more flexible,
 but more invasive approach you can use the
 StepScopeTestUtils. For example, to count the
 number of items available in the reader above:
int count = StepScopeTestUtils.doInStepScope(stepExecution,
 new Callable<Integer>() {
 public Integer call() throws Exception {

 int count = 0;

 while (reader.read() != null) {
 count++;
 }
 return count;
 }
});
Validating Output Files

When a batch job writes to the database, it is easy to query the
 database to verify that the output is as expected. However, if the batch
 job writes to a file, it is equally important that the output be verified.
 Spring Batch provides a class AssertFile to
 facilitate the verification of output files. The method
 assertFileEquals takes two
 File objects (or two
 Resource objects) and asserts, line by line, that
 the two files have the same content. Therefore, it is possible to create a
 file with the expected output and to compare it to the actual
 result:
private static final String EXPECTED_FILE = "src/main/resources/data/input.txt";
private static final String OUTPUT_FILE = "target/test-outputs/output.txt";

AssertFile.assertFileEquals(new FileSystemResource(EXPECTED_FILE),
 new FileSystemResource(OUTPUT_FILE));
Mocking Domain Objects

Another common issue encountered while writing unit and integration
 tests for Spring Batch components is how to mock domain objects. A good
 example is a StepExecutionListener, as illustrated
 below:
public class NoWorkFoundStepExecutionListener extends StepExecutionListenerSupport {

 public ExitStatus afterStep(StepExecution stepExecution) {
 if (stepExecution.getReadCount() == 0) {
 throw new NoWorkFoundException("Step has not processed any items");
 }
 return stepExecution.getExitStatus();
 }
}
The above listener is provided by the framework and checks a
 StepExecution for an empty read count, thus
 signifying that no work was done. While this example is fairly simple, it
 serves to illustrate the types of problems that may be encountered when
 attempting to unit test classes that implement interfaces requiring Spring
 Batch domain objects. Consider the above listener's unit test:
private NoWorkFoundStepExecutionListener tested = new NoWorkFoundStepExecutionListener();

@Test
public void testAfterStep() {
 StepExecution stepExecution = new StepExecution("NoProcessingStep",
 new JobExecution(new JobInstance(1L, new JobParameters(),
 "NoProcessingJob")));

 stepExecution.setReadCount(0);

 try {
 tested.afterStep(stepExecution);
 fail();
 } catch (NoWorkFoundException e) {
 assertEquals("Step has not processed any items", e.getMessage());
 }
}
Because the Spring Batch domain model follows good object orientated
 principles, the StepExecution requires a
 JobExecution, which requires a
 JobInstance and
 JobParameters in order to create a valid
 StepExecution. While this is good in a solid domain
 model, it does make creating stub objects for unit testing verbose. To
 address this issue, the Spring Batch test module includes a factory for
 creating domain objects: MetaDataInstanceFactory.
 Given this factory, the unit test can be updated to be more
 concise:
private NoWorkFoundStepExecutionListener tested = new NoWorkFoundStepExecutionListener();

@Test
public void testAfterStep() {
 StepExecution stepExecution = MetaDataInstanceFactory.createStepExecution();

 stepExecution.setReadCount(0);

 try {
 tested.afterStep(stepExecution);
 fail();
 } catch (NoWorkFoundException e) {
 assertEquals("Step has not processed any items", e.getMessage());
 }
}
The above method for creating a simple
 StepExecution is just one convenience method
 available within the factory. A full method listing can be found in its
 Javadoc.
Chapter 11. Common Batch Patterns

 Some batch jobs can be assembled purely from off-the-shelf components
 in Spring Batch. For instance the ItemReader and
 ItemWriter implementations can be configured to cover
 a wide range of scenarios. However, for the majority of cases, custom code
 will have to be written. The main API entry points for application
 developers are the Tasklet,
 ItemReader, ItemWriter and the
 various listener interfaces. Most simple batch jobs will be able to use
 off-the-shelf input from a Spring Batch ItemReader,
 but it is often the case that there are custom concerns in the processing
 and writing, which require developers to implement an
 ItemWriter or
 ItemProcessor.

 Here, we provide a few examples of common patterns in custom business
 logic. These examples primarily feature the listener interfaces. It should
 be noted that an ItemReader or
 ItemWriter can implement a listener interface as
 well, if appropriate.

 Logging Item Processing and Failures

 A common use case is the need for special handling of errors in a
 step, item by item, perhaps logging to a special channel, or inserting a
 record into a database. A chunk-oriented Step
 (created from the step factory beans) allows users to implement this use
 case with a simple ItemReadListener, for errors on
 read, and an ItemWriteListener, for errors on
 write. The below code snippets illustrate a listener that logs both read
 and write failures:

 public class ItemFailureLoggerListener extends ItemListenerSupport {

 private static Log logger = LogFactory.getLog("item.error");

 public void onReadError(Exception ex) {
 logger.error("Encountered error on read", e);
 }

 public void onWriteError(Exception ex, Object item) {
 logger.error("Encountered error on write", ex);
 }

}

 Having implemented this listener it must be registered with the
 step:

 <step id="simpleStep">
 ...
 <listeners>
 <listener>
 <bean class="org.example...ItemFailureLoggerListener"/>
 </listener>
 </listeners>
</step>

 Remember that if your listener does anything in an
 onError() method, it will be inside a transaction that is
 going to be rolled back. If you need to use a transactional resource such
 as a database inside an onError() method, consider adding a
 declarative transaction to that method (see Spring Core Reference Guide
 for details), and giving its propagation attribute the value
 REQUIRES_NEW.

Stopping a Job Manually for Business Reasons

 Spring Batch provides a stop() method
 through the JobLauncher interface, but this is
 really for use by the operator rather than the application programmer.
 Sometimes it is more convenient or makes more sense to stop a job
 execution from within the business logic.

 The simplest thing to do is to throw a
 RuntimeException (one that isn't retried
 indefinitely or skipped). For example, a custom exception type could be
 used, as in the example below:

 public class PoisonPillItemWriter implements ItemWriter<T> {

 public void write(T item) throws Exception {
 if (isPoisonPill(item)) {
 throw new PoisonPillException("Posion pill detected: " + item);
 }
 }

}

 Another simple way to stop a step from executing is to simply return
 null from the ItemReader:

 public class EarlyCompletionItemReader implements ItemReader<T> {

 private ItemReader<T> delegate;

 public void setDelegate(ItemReader<T> delegate) { ... }

 public T read() throws Exception {
 T item = delegate.read();
 if (isEndItem(item)) {
 return null; // end the step here
 }
 return item;
 }

}

 The previous example actually relies on the fact that there is a
 default implementation of the CompletionPolicy
 strategy which signals a complete batch when the item to be processed is
 null. A more sophisticated completion policy could be implemented and
 injected into the Step through the
 SimpleStepFactoryBean:

 <step id="simpleStep">
 <tasklet>
 <chunk reader="reader" writer="writer" commit-interval="10"
 chunk-completion-policy="completionPolicy"/>
 </tasklet>
</step>

<bean id="completionPolicy" class="org.example...SpecialCompletionPolicy"/>

 An alternative is to set a flag in the
 StepExecution, which is checked by the
 Step implementations in the framework in between
 item processing. To implement this alternative, we need access to the
 current StepExecution, and this can be achieved by
 implementing a StepListener and registering it with
 the Step. Here is an example of a listener that
 sets the flag:

 public class CustomItemWriter extends ItemListenerSupport implements StepListener {

 private StepExecution stepExecution;

 public void beforeStep(StepExecution stepExecution) {
 this.stepExecution = stepExecution;
 }

 public void afterRead(Object item) {
 if (isPoisonPill(item)) {
 stepExecution.setTerminateOnly(true);
 }
 }

}

 The default behavior here when the flag is set is for the step to
 throw a JobInterruptedException. This can be
 controlled through the StepInterruptionPolicy, but
 the only choice is to throw or not throw an exception, so this is always
 an abnormal ending to a job.

 Adding a Footer Record

 Often when writing to flat files, a "footer" record must be appended
 to the end of the file, after all processing has be completed. This can
 also be achieved using the FlatFileFooterCallback
 interface provided by Spring Batch. The
 FlatFileFooterCallback (and its counterpart, the
 FlatFileHeaderCallback) are optional properties of
 the FlatFileItemWriter:

 <bean id="itemWriter" class="org.spr...FlatFileItemWriter">
 <property name="resource" ref="outputResource" />
 <property name="lineAggregator" ref="lineAggregator"/>
 <property name="headerCallback" ref="headerCallback" />
 <property name="footerCallback" ref="footerCallback" />
</bean>

 The footer callback interface is very simple. It has just one method
 that is called when the footer must be written:

 public interface FlatFileFooterCallback {

 void writeFooter(Writer writer) throws IOException;

}

 Writing a Summary Footer

 A very common requirement involving footer records is to aggregate
 information during the output process and to append this information to
 the end of the file. This footer serves as a summarization of the file
 or provides a checksum.

 For example, if a batch job is writing
 Trade records to a flat file, and there is a
 requirement that the total amount from all the
 Trades is placed in a footer, then the following
 ItemWriter implementation can be used:

 public class TradeItemWriter implements ItemWriter<Trade>,
 FlatFileFooterCallback {

 private ItemWriter<Trade> delegate;

 private BigDecimal totalAmount = BigDecimal.ZERO;

 public void write(List<? extends Trade> items) {
 BigDecimal chunkTotal = BigDecimal.ZERO;
 for (Trade trade : items) {
 chunkTotal = chunkTotal.add(trade.getAmount());
 }

 delegate.write(items);

 // After successfully writing all items
 totalAmount = totalAmount.add(chunkTotal);
 }

 public void writeFooter(Writer writer) throws IOException {
 writer.write("Total Amount Processed: " + totalAmount);
 }

 public void setDelegate(ItemWriter delegate) {...}
}

 This TradeItemWriter stores a
 totalAmount value that is increased with the
 amount from each Trade item written.
 After the last Trade is processed, the framework
 will call writeFooter, which will put that
 totalAmount into the file. Note that the
 write method makes use of a temporary variable,
 chunkTotalAmount, that stores the total of the trades
 in the chunk. This is done to ensure that if a skip occurs in the
 write method, that the
 totalAmount will be left unchanged. It is only at
 the end of the write method, once we are
 guaranteed that no exceptions will be thrown, that we update the
 totalAmount.

 In order for the writeFooter method to be
 called, the TradeItemWriter (which implements
 FlatFileFooterCallback) must be wired into the
 FlatFileItemWriter as the
 footerCallback:

 <bean id="tradeItemWriter" class="..TradeItemWriter">
 <property name="delegate" ref="flatFileItemWriter" />
</bean>

<bean id="flatFileItemWriter" class="org.spr...FlatFileItemWriter">
 <property name="resource" ref="outputResource" />
 <property name="lineAggregator" ref="lineAggregator"/>
 <property name="footerCallback" ref="tradeItemWriter" />
</bean>

 The way that the TradeItemWriter has been
 so far will only function correctly if the Step
 is not restartable. This is because the class is stateful (since it
 stores the totalAmount), but the totalAmount
 is not persisted to the database, and therefore, it cannot be retrieved
 in the event of a restart. In order to make this class restartable, the
 ItemStream interface should be implemented along
 with the methods open and
 update:

 public void open(ExecutionContext executionContext) {
 if (executionContext.containsKey("total.amount") {
 totalAmount = (BigDecimal) executionContext.get("total.amount");
 }
}

public void update(ExecutionContext executionContext) {
 executionContext.put("total.amount", totalAmount);
}

 The update method will store the most
 current version of totalAmount to the
 ExecutionContext just before that object is
 persisted to the database. The open method will
 retrieve any existing totalAmount from the
 ExecutionContext and use it as the starting point
 for processing, allowing the TradeItemWriter to
 pick up on restart where it left off the previous time the
 Step was executed.

 Driving Query Based ItemReaders

 In the chapter on readers and writers, database input using paging
 was discussed. Many database vendors, such as DB2, have extremely
 pessimistic locking strategies that can cause issues if the table being
 read also needs to be used by other portions of the online application.
 Furthermore, opening cursors over extremely large datasets can cause
 issues on certain vendors. Therefore, many projects prefer to use a
 'Driving Query' approach to reading in data. This approach works by
 iterating over keys, rather than the entire object that needs to be
 returned, as the following example illustrates:

 As you can see, this example uses the same 'FOO' table as was used
 in the cursor based example. However, rather than selecting the entire
 row, only the ID's were selected in the SQL statement. So, rather than a
 FOO object being returned from read, an Integer
 will be returned. This number can then be used to query for the 'details',
 which is a complete Foo object:

 An ItemProcessor should be used to transform the key obtained from
 the driving query into a full 'Foo' object. An existing DAO can be used to
 query for the full object based on the key.

 Multi-Line Records

 While it is usually the case with flat files that one each record is
 confined to a single line, it is common that a file might have records
 spanning multiple lines with multiple formats. The following excerpt from
 a file illustrates this:

 HEA;0013100345;2007-02-15
NCU;Smith;Peter;;T;20014539;F
BAD;;Oak Street 31/A;;Small Town;00235;IL;US
FOT;2;2;267.34

 Everything between the line starting with 'HEA' and the line
 starting with 'FOT' is considered one record. There are a few
 considerations that must be made in order to handle this situation
 correctly:

 	
 Instead of reading one record at a time, the
 ItemReader must read every line of the
 multi-line record as a group, so that it can be passed to the
 ItemWriter intact.

	
 Each line type may need to be tokenized differently.

 Because a single record spans multiple lines, and we may not know
 how many lines there are, the ItemReader must be
 careful to always read an entire record. In order to do this, a custom
 ItemReader should be implemented as a wrapper for
 the FlatFileItemReader.

 <bean id="itemReader" class="org.spr...MultiLineTradeItemReader">
 <property name="delegate">
 <bean class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="resource" value="data/iosample/input/multiLine.txt" />
 <property name="lineMapper">
 <bean class="org.spr...DefaultLineMapper">
 <property name="lineTokenizer" ref="orderFileTokenizer"/>
 <property name="fieldSetMapper">
 <bean class="org.spr...PassThroughFieldSetMapper" />
 </property>
 </bean>
 </property>
 </bean>
 </property>
</bean>

 To ensure that each line is tokenized properly, which is especially
 important for fixed length input, the
 PatternMatchingCompositeLineTokenizer can be used
 on the delegate FlatFileItemReader. See the section called “Multiple Record Types within a Single File” for more details. The delegate
 reader will then use a PassThroughFieldSetMapper to
 deliver a FieldSet for each line back to the
 wrapping ItemReader.

 <bean id="orderFileTokenizer" class="org.spr...PatternMatchingCompositeLineTokenizer">
 <property name="tokenizers">
 <map>
 <entry key="HEA*" value-ref="headerRecordTokenizer" />
 <entry key="FOT*" value-ref="footerRecordTokenizer" />
 <entry key="NCU*" value-ref="customerLineTokenizer" />
 <entry key="BAD*" value-ref="billingAddressLineTokenizer" />
 </map>
 </property>
</bean>

 This wrapper will have to be able recognize the end of a record so
 that it can continually call read() on its
 delegate until the end is reached. For each line that is read, the wrapper
 should build up the item to be returned. Once the footer is reached, the
 item can be returned for delivery to the
 ItemProcessor and
 ItemWriter.

 private FlatFileItemReader<FieldSet> delegate;

public Trade read() throws Exception {
 Trade t = null;

 for (FieldSet line = null; (line = this.delegate.read()) != null;) {
 String prefix = line.readString(0);
 if (prefix.equals("HEA")) {
 t = new Trade(); // Record must start with header
 }
 else if (prefix.equals("NCU")) {
 Assert.notNull(t, "No header was found.");
 t.setLast(line.readString(1));
 t.setFirst(line.readString(2));
 ...
 }
 else if (prefix.equals("BAD")) {
 Assert.notNull(t, "No header was found.");
 t.setCity(line.readString(4));
 t.setState(line.readString(6));
 ...
 }
 else if (prefix.equals("FOT")) {
 return t; // Record must end with footer
 }
 }
 Assert.isNull(t, "No 'END' was found.");
 return null;
}

 Executing System Commands

 Many batch jobs may require that an external command be called from
 within the batch job. Such a process could be kicked off separately by the
 scheduler, but the advantage of common meta-data about the run would be
 lost. Furthermore, a multi-step job would also need to be split up into
 multiple jobs as well.

 Because the need is so common, Spring Batch provides a
 Tasklet implementation for calling system
 commands:

 <bean class="org.springframework.batch.core.step.tasklet.SystemCommandTasklet">
 <property name="command" value="echo hello" />
 <!-- 5 second timeout for the command to complete -->
 <property name="timeout" value="5000" />
</bean>

 Handling Step Completion When No Input is Found

 In many batch scenarios, finding no rows in a database or file to
 process is not exceptional. The Step is simply
 considered to have found no work and completes with 0 items read. All of
 the ItemReader implementations provided out of the
 box in Spring Batch default to this approach. This can lead to some
 confusion if nothing is written out even when input is present. (which
 usually happens if a file was misnamed, etc) For this reason, the meta
 data itself should be inspected to determine how much work the framework
 found to be processed. However, what if finding no input is considered
 exceptional? In this case, programmatically checking the meta data for no
 items processed and causing failure is the best solution. Because this is
 a common use case, a listener is provided with just this
 functionality:

 public class NoWorkFoundStepExecutionListener extends StepExecutionListenerSupport {

 public ExitStatus afterStep(StepExecution stepExecution) {
 if (stepExecution.getReadCount() == 0) {
 return ExitStatus.FAILED;
 }
 return null;
 }

}

 The above StepExecutionListener inspects the
 readCount property of the StepExecution during the
 'afterStep' phase to determine if no items were read. If that is the case,
 an exit code of FAILED is returned, indicating that the
 Step should fail. Otherwise, null is returned,
 which will not affect the status of the
 Step.

 Passing Data to Future Steps

 It is often useful to pass information from one step to another.
 This can be done using the ExecutionContext. The
 catch is that there are two ExecutionContexts: one
 at the Step level and one at the
 Job level. The Step
 ExecutionContext lives only as long as the step
 while the Job
 ExecutionContext lives through the whole
 Job. On the other hand, the
 Step ExecutionContext is
 updated every time the Step commits a chunk while
 the Job ExecutionContext is
 updated only at the end of each Step.

 The consequence of this separation is that all data must be placed
 in the Step ExecutionContext
 while the Step is executing. This will ensure that
 the data will be stored properly while the Step is
 on-going. If data is stored to the Job
 ExecutionContext, then it will not be persisted
 during Step execution and if the
 Step fails, that data will be lost.

 public class SavingItemWriter implements ItemWriter<Object> {
 private StepExecution stepExecution;

 public void write(List<? extends Object> items) throws Exception {
 // ...

 ExecutionContext stepContext = this.stepExecution.getExecutionContext();
 stepContext.put("someKey", someObject);
 }

 @BeforeStep
 public void saveStepExecution(StepExecution stepExecution) {
 this.stepExecution = stepExecution;
 }
}

 To make the data available to future Steps,
 it will have to be "promoted" to the Job
 ExecutionContext after the step has finished.
 Spring Batch provides the
 ExecutionContextPromotionListener for this purpose.
 The listener must be configured with the keys related to the data in the
 ExecutionContext that must be promoted. It can
 also, optionally, be configured with a list of exit code patterns for
 which the promotion should occur ("COMPLETED" is the default). As with all
 listeners, it must be registered on the
 Step.

 <job id="job1">
 <step id="step1">
 <tasklet>
 <chunk reader="reader" writer="savingWriter" commit-interval="10"/>
 </tasklet>
 <listeners>
 <listener ref="promotionListener"/>
 </listeners>
 </step>

 <step id="step2">
 ...
 </step>
</job>

<beans:bean id="promotionListener" class="org.spr....ExecutionContextPromotionListener">
 <beans:property name="keys" value="someKey"/>
</beans:bean>

 Finally, the saved values must be retrieved from the
 Job ExeuctionContext:

 public class RetrievingItemWriter implements ItemWriter<Object> {
 private Object someObject;

 public void write(List<? extends Object> items) throws Exception {
 // ...
 }

 @BeforeStep
 public void retrieveInterstepData(StepExecution stepExecution) {
 JobExecution jobExecution = stepExecution.getJobExecution();
 ExecutionContext jobContext = jobExecution.getExecutionContext();
 this.someObject = jobContext.get("someKey");
 }
}

 Chapter 12. JSR-352 Support

As of Spring Batch 3.0 support for JSR-352 has been fully implemented. This section is not a replacement for
 the spec itself and instead, intends to explain how the JSR-352 specific concepts apply to Spring Batch.
 Additional information on JSR-352 can be found via the
 JCP here: https://jcp.org/en/jsr/detail?id=352
General Notes Spring Batch and JSR-352

Spring Batch and JSR-352 are structurally the same. They both have jobs that are made up of steps. They
 both have readers, processors, writers, and listeners. However, their interactions are subtly different.
 For example, the org.springframework.batch.core.SkipListener#onSkipInWrite(S item, Throwable t)
 within Spring Batch receives two parameters: the item that was skipped and the Exception that caused the
 skip. The JSR-352 version of the same method
 (javax.batch.api.chunk.listener.SkipWriteListener#onSkipWriteItem(List<Object> items, Exception ex))
 also receives two parameters. However the first one is a List of all the items
 within the current chunk with the second being the Exception that caused the skip.
 Because of these differences, it is important to note that there are two paths to execute a job within
 Spring Batch: either a traditional Spring Batch job or a JSR-352 based job. While the use of Spring Batch
 artifacts (readers, writers, etc) will work within a job configured via JSR-352's JSL and executed via the
 JsrJobOperator, they will behave according to the rules of JSR-352. It is also
 important to note that batch artifacts that have been developed against the JSR-352 interfaces will not work
 within a traditional Spring Batch job.
Setup

Application Contexts

All JSR-352 based jobs within Spring Batch consist of two application contexts. A parent context, that
			contains beans related to the infrastructure of Spring Batch such as the JobRepository,
			PlatformTransactionManager, etc and a child context that consists of the configuration
			of the job to be run. The parent context is defined via the baseContext.xml provided
			by the framework. This context may be overridden via the JSR-352-BASE-CONTEXT system
			property.
	[image: [Note]]	Note
	The base context is not processed by the JSR-352 processors for things like property injection so
				no components requiring that additional processing should be configured there.
			

Launching a JSR-352 based job

JSR-352 requires a very simple path to executing a batch job. The following code is all that is needed to
				execute your first batch job:
			
JobOperator operator = BatchRuntime.getJobOperator();
				jobOperator.start("myJob", new Properties());
While that is convenient for developers, the devil is in the details. Spring Batch bootstraps a bit of
				infrastructure behind the scenes that a developer may want to override. The following is bootstrapped the
				first time BatchRuntime.getJobOperator() is called:
				
	
									Bean Name
									
									Default Configuration
									
									Notes
								
	
									dataSource
									
									Apache DBCP BasicDataSource with configured values.
									
									By default, HSQLDB is bootstrapped.
								
	
									transactionManager
									
									org.springframework.jdbc.datasource.DataSourceTransactionManager
									
									References the dataSource bean defined above.
								
	
									A Datasource initializer
									
									
									This is configured to execute the scripts configured via the
									batch.drop.script and batch.schema.script properties. By
									default, the schema scripts for HSQLDB are executed. This behavior can be disabled via
									batch.data.source.init property.
								
	
									jobRepository
									
									A JDBC based SimpleJobRepository.
									
									This JobRepository uses the previously mentioned data source and transaction
									manager. The schema's table prefix is configurable (defaults to BATCH_) via the
									batch.table.prefix property.
								
	
									jobLauncher
									
									org.springframework.batch.core.launch.support.SimpleJobLauncher
									
									Used to launch jobs.
								
	
									batchJobOperator
									
									org.springframework.batch.core.launch.support.SimpleJobOperator
									
									The JsrJobOperator wraps this to provide most of it's functionality.
								
	
									jobExplorer
									
									org.springframework.batch.core.explore.support.JobExplorerFactoryBean
									
									Used to address lookup functionality provided by the JsrJobOperator.
								
	
									jobParametersConverter
									
									org.springframework.batch.core.jsr.JsrJobParametersConverter
									
									JSR-352 specific implementation of the JobParametersConverter.
								
	
									jobRegistry
									
									org.springframework.batch.core.configuration.support.MapJobRegistry
									
									Used by the SimpleJobOperator.
								
	
									placeholderProperties
									
									org.springframework.beans.factory.config.PropertyPlaceholderConfigure
									
									Loads the properties file batch-${ENVIRONMENT:hsql}.properties to configure
									the properties mentioned above. ENVIRONMENT is a System property (defaults to hsql)
									that can be used to specify any of the supported databases Spring Batch currently
									supports.
								

			
	[image: [Note]]	Note
	None of the above beans are optional for executing JSR-352 based jobs. All may be overriden to
				provide customized functionality as needed.
			

Dependency Injection

JSR-352 is based heavily on the Spring Batch programming model. As such, while not explicitly requiring a
 formal dependency injection implementation, DI of some kind implied. Spring Batch supports all three
 methods for loading batch artifacts defined by JSR-352:
	Implementation Specific Loader - Spring Batch is built upon Spring and so supports Spring
 dependency injection within JSR-352 batch jobs.

	Archive Loader - JSR-352 defines the existing of a batch.xml file that provides mappings between a
 logical name and a class name. This file must be found within the /META-INF/ directory if it is
 used.

	Thread Context Class Loader - JSR-352 allows configurations to specify batch artifact
 implementations in their JSL by providing the fully qualified class name inline. Spring Batch
 supports this as well in JSR-352 configured jobs.

To use Spring dependency injection within a JSR-352 based batch job consists of configuring batch
 artifacts using a Spring application context as beans. Once the beans have been defined, a job can refer to
 them as it would any bean defined within the batch.xml.
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/jobXML_1_0.xsd">

 <!-- javax.batch.api.Batchlet implementation -->
 <bean id="fooBatchlet" class="io.spring.FooBatchlet">
 <property name="prop" value="bar"/>
 </bean>

 <!-- Job is defined using the JSL schema provided in JSR-352 -->
 <job id="fooJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
 <step id="step1">
 <batchlet ref="fooBatchlet"/>
 </step>
 </job>
</beans>

The assembly of Spring contexts (imports, etc) works with JSR-352 jobs just as it would with any other
 Spring based application. The only difference with a JSR-352 based job is that the entry point for the
 context definition will be the job definition found in /META-INF/batch-jobs/.
To use the thread context class loader approach, all you need to do is provide the fully qualified class
 name as the ref. It is important to note that when using this approach or the batch.xml approach, the class
 referenced requires a no argument constructor which will be used to create the bean.
<?xml version="1.0" encoding="UTF-8"?>
<job id="fooJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
 <step id="step1" >
 <batchlet ref="io.spring.FooBatchlet" />
 </step>
</job>

Batch Properties

Property Support

JSR-352 allows for properties to be defined at the Job, Step and batch artifact level by way of
 configuration in the JSL. Batch properties are configured at each level in the following way:
<properties>
 <property name="propertyName1" value="propertyValue1"/>
 <property name="propertyName2" value="propertyValue2"/>
</properties>

 Properties may be configured on any batch artifact.
@BatchProperty annotation

Properties are referenced in batch artifacts by annotating class fields with the
 @BatchProperty and @Inject annotations (both annotations
 are required by the spec). As defined by JSR-352, fields for properties must be String typed. Any type
 conversion is up to the implementing developer to perform.
An javax.batch.api.chunk.ItemReader artifact could be configured with a
 properties block such as the one described above and accessed as such:
public class MyItemReader extends AbstractItemReader {
 @Inject
 @BatchProperty
 private String propertyName1;

 ...
}

 The value of the field "propertyName1" will be "propertyValue1"
Property Substitution

Property substitution is provided by way of operators and simple conditional expressions. The general
 usage is #{operator['key']}.
Supported operators:

	jobParameters - access job parameter values that the job was started/restarted with.

	jobProperties - access properties configured at the job level of the JSL.

	systemProperties - access named system properties.

	partitionPlan - access named property from the partition plan of a partitioned step.

#{jobParameters['unresolving.prop']}?:#{systemProperties['file.separator']}

 The left hand side of the assignment is the expected value, the right hand side is the default value. In
 this example, the result will resolve to a value of the system property file.separator as
 #{jobParameters['unresolving.prop']} is assumed to not be resolvable. If neither expressions can be
 resolved, an empty String will be returned. Multiple conditions can be used, which are separated by a
 ';'.

Processing Models

JSR-352 provides the same two basic processing models that Spring Batch does:

	Item based processing - Using an javax.batch.api.chunk.ItemReader, an
 optional javax.batch.api.chunk.ItemProcessor, and an
 javax.batch.api.chunk.ItemWriter.

	Task based processing - Using a javax.batch.api.Batchlet
 implementation. This processing model is the same as the
 org.springframework.batch.core.step.tasklet.Tasklet based processing
 currently available.

Item based processing

Item based processing in this context is a chunk size being set by the number of items read by an
 ItemReader. To configure a step this way, specify the
 item-count (which defaults to 10) and optionally configure the
 checkpoint-policy as item (this is the default).

...
<step id="step1">
 <chunk checkpoint-policy="item" item-count="3">
 <reader ref="fooReader"/>
 <processor ref="fooProcessor"/>
 <writer ref="fooWriter"/>
 </chunk>
</step>
...

 If item based checkpointing is chosen, an additional attribute time-limit is
 supported. This sets a time limit for how long the number of items specified has to be processed. If
 the timeout is reached, the chunk will complete with however many items have been read by then
 regardless of what the item-count is configured to be.

Custom checkpointing

JSR-352 calls the process around the commit interval within a step "checkpointing". Item based
 checkpointing is one approach as mentioned above. However, this will not be robust enough in many
 cases. Because of this, the spec allows for the implementation of a custom checkpointing algorithm by
 implementing the javax.batch.api.chunk.CheckpointAlgorithm interface. This
 functionality is functionally the same as Spring Batch's custom completion policy. To use an
 implementation of CheckpointAlgorithm, configure your step with the custom
 checkpoint-policy as shown below where fooCheckpointer refers to an
 implementation of CheckpointAlgorithm.

...
<step id="step1">
 <chunk checkpoint-policy="custom">
 <checkpoint-algorithm ref="fooCheckpointer"/>
 <reader ref="fooReader"/>
 <processor ref="fooProcessor"/>
 <writer ref="fooWriter"/>
 </chunk>
</step>
...
Running a job

The entrance to executing a JSR-352 based job is through the
 javax.batch.operations.JobOperator. Spring Batch provides our own implementation to
 this interface (org.springframework.batch.core.jsr.launch.JsrJobOperator). This
 implementation is loaded via the javax.batch.runtime.BatchRuntime. Launching a
 JSR-352 based batch job is implemented as follows:

JobOperator jobOperator = BatchRuntime.getJobOperator();
long jobExecutionId = jobOperator.start("fooJob", new Properties());

The above code does the following:

	Bootstraps a base ApplicationContext - In order to provide batch functionality, the framework
 needs some infrastructure bootstrapped. This occurs once per JVM. The components that are
 bootstrapped are similar to those provided by @EnableBatchProcessing.
 Specific details can be found in the javadoc for the JsrJobOperator.

	Loads an ApplicationContext for the job requested - In the example
 above, the framework will look in /META-INF/batch-jobs for a file named fooJob.xml and load a
 context that is a child of the shared context mentioned previously.

	Launch the job - The job defined within the context will be executed asynchronously. The
 JobExecution's id will be returned.

	[image: [Note]]	Note
	All JSR-352 based batch jobs are executed asynchronously.

When JobOperator#start is called using SimpleJobOperator,
 Spring Batch determines if the call is an initial run or a retry of a previously executed run. Using the
 JSR-352 based JobOpeator#start(String jobXMLName, Properties jobParameters), the
 framework will always create a new JobInstance (JSR-352 job parameters are
 non-identifying). In order to restart a job, a call to
 JobOperator#restart(long executionId, Properties restartParameters) is required.

Contexts

JSR-352 defines two context objects that are used to interact with the meta-data of a job or step from
 within a batch artifact: javax.batch.runtime.context.JobContext and
 javax.batch.runtime.context.StepContext. Both of these are available in any step
 level artifact (Batchlet, ItemReader, etc) with the
 JobContext being available to job level artifacts as well
 (JobListener for example).
To obtain a reference to the JobContext or StepContext
 within the current scope, simply use the @Inject annotation:
@Inject
JobContext jobContext;

	[image: [Note]]	@Autowire for JSR-352 contexts
	Using Spring's @Autowire is not supported for the injection of these contexts.

In Spring Batch, the JobContext and StepContext wrap their
 corresponding execution objects (JobExecution and
 StepExecution respectively). Data stored via
 StepContext#persistent#setPersistentUserData(Serializable data) is stored in the
 Spring Batch StepExecution#executionContext.
Step Flow

Within a JSR-352 based job, the flow of steps works similarly as it does within Spring Batch.
 However, there are a few subtle differences:

	Decision's are steps - In a regular Spring Batch job, a decision is a state that does not
 have an independent StepExecution or any of the rights and
 responsibilities that go along with being a full step.. However, with JSR-352, a decision
 is a step just like any other and will behave just as any other steps (transactionality,
 it gets a StepExecution, etc). This means that they are treated the
 same as any other step on restarts as well.

	next attribute and step transitions - In a regular job, these are
 allowed to appear together in the same step. JSR-352 allows them to both be used in the
 same step with the next attribute taking precedence in evaluation.

	Transition element ordering - In a standard Spring Batch job, transition elements are
 sorted from most specific to least specific and evaluated in that order. JSR-352 jobs
 evaluate transition elements in the order they are specified in the XML.

Scaling a JSR-352 batch job

Traditional Spring Batch jobs have four ways of scaling (the last two capable of being executed across
 multiple JVMs):

	Split - Running multiple steps in parallel.

	Multiple threads - Executing a single step via multiple threads.

	Partitioning - Dividing the data up for parallel processing (master/slave).

	Remote Chunking - Executing the processor piece of logic remotely.

JSR-352 provides two options for scaling batch jobs. Both options support only a single JVM:

	Split - Same as Spring Batch

	Partitioning - Conceptually the same as Spring Batch however implemented slightly different.

Partitioning

Conceptually, partitioning in JSR-352 is the same as it is in Spring Batch. Meta-data is provided
 to each slave to identify the input to be processed with the slaves reporting back to the master the
 results upon completion. However, there are some important differences:

	Partitioned Batchlet - This will run multiple instances of the
 configured Batchlet on multiple threads. Each instance will have
 it's own set of properties as provided by the JSL or the
 PartitionPlan

	PartitionPlan - With Spring Batch's partitioning, an
 ExecutionContext is provided for each partition. With JSR-352, a
 single javax.batch.api.partition.PartitionPlan is provided with an
 array of Properties providing the meta-data for each partition.

	PartitionMapper - JSR-352 provides two ways to generate partition
 meta-data. One is via the JSL (partition properties). The second is via an implementation
 of the javax.batch.api.partition.PartitionMapper interface.
 Functionally, this interface is similar to the
 org.springframework.batch.core.partition.support.Partitioner
 interface provided by Spring Batch in that it provides a way to programmaticaly generate
 meta-data for partitioning.

	StepExecutions - In Spring Batch, partitioned steps are run as
 master/slave. Within JSR-352, the same configuration occurs. However, the slave steps do
 not get official StepExecutions. Because of that, calls to
 JsrJobOperator#getStepExecutions(long jobExecutionId) will only
 return the StepExecution for the master.
	[image: [Note]]	Note
	The child
 StepExecutions still exist in the job repository and are available
 via the JobExplorer and Spring Batch Admin.

	Compensating logic - Since Spring Batch implements the master/slave logic of
 partitioning using steps, StepExecutionListeners can be used to
 handle compensating logic if something goes wrong. However, since the slaves JSR-352
 provides a collection of other components for the ability to provide compensating logic when
 errors occur and to dynamically set the exit status. These components include the following:

	
 Artifact Interface
 	
 Description

	javax.batch.api.partition.PartitionCollector	Provides a way for slave steps to send information back to the
 master. There is one instance per slave thread.
	javax.batch.api.partition.PartitionAnalyzer	End point that receives the information collected by the
 PartitionCollector as well as the resulting
 statuses from a completed partition.
	javax.batch.api.partition.PartitionReducer	Provides the ability to provide compensating logic for a partitioned
 step.

Testing

Since all JSR-352 based jobs are executed asynchronously, it can be difficult to determine when a job has
 completed. To help with testing, Spring Batch provides the
 org.springframework.batch.core.jsr.JsrTestUtils. This utility class provides the
 ability to start a job and restart a job and wait for it to complete. Once the job completes, the
 associated JobExecution is returned.
Chapter 13. Spring Batch Integration

Spring Batch Integration Introduction

			Many users of Spring Batch may encounter requirements that are
			outside the scope of Spring Batch, yet may be efficiently and
			concisely implemented using Spring Integration. Conversely, Spring
			Batch users may encounter Spring Batch requirements and need a way
			to efficiently integrate both frameworks. In this context several
			patterns and use-cases emerge and Spring Batch Integration will
			address those requirements.
		

			The line between Spring Batch and Spring Integration is not always
			clear, but there are guidelines that one can follow. Principally,
			these are: think about granularity, and apply common patterns. Some
			of those common patterns are described in this reference manual
			section.
		

			Adding messaging to a batch process enables automation of
			operations, and also separation and strategizing of key concerns.
			For example a message might trigger a job to execute, and then the
			sending of the message can be exposed in a variety of ways. Or when
			a job completes or fails that might trigger a message to be sent,
			and the consumers of those messages might have operational concerns
			that have nothing to do with the application itself. Messaging can
			also be embedded in a job, for example reading or writing items for
			processing via channels. Remote partitioning and remote chunking
			provide methods to distribute workloads over an number of workers.
		

			Some key concepts that we will cover are:
		
	
					Namespace Support
				

	
					Launching
						Batch Jobs through Messages
				

	
					Providing
						Feedback with Informational Messages
				

	
					Asynchronous
						Processors
				

	
					Externalizing
						Batch Process Execution
				

Namespace Support

				Since Spring Batch Integration 1.3, dedicated XML Namespace
				support was added, with the aim to provide an easier configuration
				experience. In order to activate the namespace, add the following
				namespace declarations to your Spring XML Application Context
				file:
			
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:batch-int="http://www.springframework.org/schema/batch-integration"
 xsi:schemaLocation="
 http://www.springframework.org/schema/batch-integration
 http://www.springframework.org/schema/batch-integration/spring-batch-integration.xsd">

 ...

</beans>

				A fully configured Spring XML Application Context file for Spring
				Batch Integration may look like the following:
			
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:batch-int="http://www.springframework.org/schema/batch-integration"
 xsi:schemaLocation="
 http://www.springframework.org/schema/batch-integration
 http://www.springframework.org/schema/batch-integration/spring-batch-integration.xsd
 http://www.springframework.org/schema/batch
 http://www.springframework.org/schema/batch/spring-batch.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/spring-integration.xsd">

 ...

</beans>

				Appending version numbers to the referenced XSD file is also
				allowed but, as a version-less declaration will always use the
				latest schema, we generally don't recommend appending the version
				number to the XSD name. Adding a version number, for instance,
				would create possibly issues when updating the Spring Batch
				Integration dependencies as they may require more recent versions
				of the XML schema.
			
Launching Batch Jobs through Messages

				When starting batch jobs using the core Spring Batch API you
				basically have 2 options:
			
	
						Command line via the CommandLineJobRunner
					

	
						Programatically via either
						JobOperator.start() or
						JobLauncher.run().
					

				For example, you may want to use the
				CommandLineJobRunner when invoking Batch Jobs
				using a shell script. Alternatively, you may use the
				JobOperator directly, for example when using
				Spring Batch as part of a web application. However, what about
				more complex use-cases? Maybe you need to poll a remote (S)FTP
				server to retrieve the data for the Batch Job. Or your application
				has to support multiple different data sources simultaneously. For
				example, you may receive data files not only via the web, but also
				FTP etc. Maybe additional transformation of the input files is
				needed before invoking Spring Batch.
			

				Therefore, it would be much more powerful to execute the batch job
				using Spring Integration and its numerous adapters. For example,
				you can use a File Inbound Channel Adapter to
				monitor a directory in the file-system and start the Batch Job as
				soon as the input file arrives. Additionally you can create Spring
				Integration flows that use multiple different adapters to easily
				ingest data for your Batch Jobs from multiple sources
				simultaneously using configuration only. Implementing all these
				scenarios with Spring Integration is easy as it allow for an
				decoupled event-driven execution of the
				JobLauncher.
			

				Spring Batch Integration provides the
				JobLaunchingMessageHandler class that you can
				use to launch batch jobs. The input for the
				JobLaunchingMessageHandler is provided by a
				Spring Integration message, which payload is of type
				JobLaunchRequest. This class is a wrapper around the Job
					that needs to be launched as well as the JobParameters
				necessary to launch the Batch job.
			

				The following image illustrates the typical Spring Integration
				message flow in order to start a Batch job. The
				EIP (Enterprise IntegrationPatterns) website
				provides a full overview of messaging icons and their descriptions.
			

Transforming a file into a JobLaunchRequest

package io.spring.sbi;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.integration.launch.JobLaunchRequest;
import org.springframework.integration.annotation.Transformer;
import org.springframework.messaging.Message;

import java.io.File;

public class FileMessageToJobRequest {
 private Job job;
 private String fileParameterName;

 public void setFileParameterName(String fileParameterName) {
 this.fileParameterName = fileParameterName;
 }

 public void setJob(Job job) {
 this.job = job;
 }

 @Transformer
 public JobLaunchRequest toRequest(Message<File> message) {
 JobParametersBuilder jobParametersBuilder =
 new JobParametersBuilder();

 jobParametersBuilder.addString(fileParameterName,
 message.getPayload().getAbsolutePath());

 return new JobLaunchRequest(job, jobParametersBuilder.toJobParameters());
 }
}
The JobExecution Response

					When a Batch Job is being executed, a
					JobExecution instance is returned. This
					instance can be used to determine the status of an execution. If
					a JobExecution was able to be created
					successfully, it will always be returned, regardless of whether
					or not the actual execution was successful.
				

					The exact behavior on how the JobExecution
					instance is returned depends on the provided
					TaskExecutor. If a
					synchronous (single-threaded)
					TaskExecutor implementation is used, the
					JobExecution response is only returned
					after the job completes. When using an
					asynchronous
					TaskExecutor, the
					JobExecution instance is returned
					immediately. Users can then take the id of
					JobExecution instance
					(JobExecution.getJobId()) and query the
					JobRepository for the job's updated status
					using the JobExplorer. For more
					information, please refer to the Spring
					Batch reference documentation on
					Querying
						the Repository.
				

					The following configuration will create a file
					inbound-channel-adapter to listen for CSV
					files in the provided directory, hand them off to our
					transformer (FileMessageToJobRequest),
					launch the job via the Job Launching
					Gateway then simply log the output of the
					JobExecution via the
					logging-channel-adapter.
				
Spring Batch Integration Configuration

<int:channel id="inboundFileChannel"/>
<int:channel id="outboundJobRequestChannel"/>
<int:channel id="jobLaunchReplyChannel"/>

<int-file:inbound-channel-adapter id="filePoller"
 channel="inboundFileChannel"
 directory="file:/tmp/myfiles/"
 filename-pattern="*.csv">
 <int:poller fixed-rate="1000"/>
</int-file:inbound-channel-adapter>

<int:transformer input-channel="inboundFileChannel"
 output-channel="outboundJobRequestChannel">
 <bean class="io.spring.sbi.FileMessageToJobRequest">
 <property name="job" ref="personJob"/>
 <property name="fileParameterName" value="input.file.name"/>
 </bean>
</int:transformer>

<batch-int:job-launching-gateway request-channel="outboundJobRequestChannel"
 reply-channel="jobLaunchReplyChannel"/>

<int:logging-channel-adapter channel="jobLaunchReplyChannel"/>

					Now that we are polling for files and launching jobs, we need to
					configure for example our Spring Batch
					ItemReader to utilize found file
					represented by the job parameter "input.file.name":
				
Example ItemReader Configuration

<bean id="itemReader" class="org.springframework.batch.item.file.FlatFileItemReader"
 scope="step">
 <property name="resource" value="file://#{jobParameters['input.file.name']}"/>
 ...
</bean>

					The main points of interest here are injecting the value of
					#{jobParameters['input.file.name']}
					as the Resource property value and setting the ItemReader bean
					to be of Step scope to take advantage of
					the late binding support which allows access to the
					jobParameters variable.
				
Available Attributes of the Job-Launching Gateway

	
						id Identifies the
						underlying Spring bean definition, which is an instance of
						either:
					
	
								EventDrivenConsumer
							

	
								PollingConsumer
							

						The exact implementation depends on whether the component's
						input channel is a:
					
	
								SubscribableChannel or
							

	
								PollableChannel
							

	
								auto-startup
								Boolean flag to indicate that the endpoint should start automatically on
								startup. The default istrue.
							

	
								request-channel
								The input MessageChannel of this endpoint.
							

	
								reply-channel Message Channel
								to which the resulting JobExecution payload will be sent.
							

	
								reply-timeout
								Allows you to specify how long this gateway will wait for the reply message
								to be sent successfully to the reply channel before throwing
								an exception. This attribute only applies when the channel
								might block, for example when using a bounded queue channel
								that is currently full. Also, keep in mind that when sending to a
								DirectChannel, the invocation will occur
								in the sender's thread. Therefore, the failing of the send
								operation may be caused by other components further downstream.
								The reply-timeout attribute maps to the
								sendTimeout property of the underlying
								MessagingTemplate instance. The attribute
								will default, if not specified, to-1,
								meaning that by default, the Gateway will wait indefinitely.
								The value is specified in milliseconds.
							

	
								job-launcher
								Pass in a
								custom
								JobLauncher
								bean reference. This
								attribute is optional. If not specified the adapter will
								re-use the instance that is registered under the id
								jobLauncher. If no default instance
								exists an exception is thrown.
							

	
								order
								Specifies the order
								for invocation when this endpoint is connected as a subscriber
								to a SubscribableChannel.
							

Sub-Elements

						When this Gateway is receiving messages from a
						PollableChannel, you must either provide
						a global default Poller or provide a Poller sub-element to the
						Job Launching Gateway:
					
<batch-int:job-launching-gateway request-channel="queueChannel"
 reply-channel="replyChannel" job-launcher="jobLauncher">
 <int:poller fixed-rate="1000"/>
</batch-int:job-launching-gateway>
Providing Feedback with Informational Messages

				As Spring Batch jobs can run for long times, providing progress
				information will be critical. For example, stake-holders may want
				to be notified if a some or all parts of a Batch Job has failed.
				Spring Batch provides support for this information being gathered
				through:
			
	
						Active polling or
					

	
						Event-driven, using listeners.
					

				When starting a Spring Batch job asynchronously, e.g. by using the
				Job Launching Gateway, a
				JobExecution instance is returned. Thus,
				JobExecution.getJobId() can be used to
				continuously poll for status updates by retrieving updated
				instances of the JobExecution from the
				JobRepository using the
				JobExplorer. However, this is considered
				sub-optimal and an event-driven approach should be preferred.
			

				Therefore, Spring Batch provides listeners such as:
			
	
						StepListener
					

	
						ChunkListener
					

	
						JobExecutionListener
					

				In the following example, a Spring Batch job was configured with a
				StepExecutionListener. Thus, Spring
				Integration will receive and process any step before/after step
				events. For example, the received
				StepExecution can be inspected using a
				Router. Based on the results of that
				inspection, various things can occur for example routing a message
				to a Mail Outbound Channel Adapter, so that an Email notification
				can be send out based on some condition.
			

				Below is an example of how a listener is configured to send a
				message to a Gateway for
				StepExecution events and log its output to a
				logging-channel-adapter:
			

				First create the notifications integration beans:
			
<int:channel id="stepExecutionsChannel"/>

<int:gateway id="notificationExecutionsListener"
 service-interface="org.springframework.batch.core.StepExecutionListener"
 default-request-channel="stepExecutionsChannel"/>

<int:logging-channel-adapter channel="stepExecutionsChannel"/>

				Then modify your job to add a step level listener:
			
<job id="importPayments">
 <step id="step1">
 <tasklet ../>
 <chunk ../>
 <listeners>
 <listener ref="notificationExecutionsListener"/>
 </listeners>
 </tasklet>
 ...
 </step>
</job>
Asynchronous Processors

				Asynchronous Processors help you to to scale the processing of
				items. In the asynchronous processor use-case, an
				AsyncItemProcessor serves as a dispatcher,
				executing the ItemProcessor's logic for an
				item on a new thread. The Future is passed to
				the AsynchItemWriter to be written once the
				processor completes.
			

				Therefore, you can increase performance by using asynchronous item
				processing, basically allowing you to implement
				fork-join scenarios. The
				AsyncItemWriter will gather the results and
				write back the chunk as soon as all the results become available.
			

				Configuration of both the AsyncItemProcessor
				and AsyncItemWriter are simple, first the
				AsyncItemProcessor:
			
<bean id="processor"
 class="org.springframework.batch.integration.async.AsyncItemProcessor">
 <property name="delegate">
 <bean class="your.ItemProcessor"/>
 </property>
 <property name="taskExecutor">
 <bean class="org.springframework.core.task.SimpleAsyncTaskExecutor"/>
 </property>
</bean>

				The property "delegate" is actually
				a reference to your ItemProcessor bean and
				the "taskExecutor" property is a
				reference to the TaskExecutor of your choice.
			

				Then we configure the AsyncItemWriter:
			
<bean id="itemWriter"
 class="org.springframework.batch.integration.async.AsyncItemWriter">
 <property name="delegate">
 <bean id="itemWriter" class="your.ItemWriter"/>
 </property>
</bean>

				Again, the property "delegate" is
				actually a reference to your ItemWriter bean.
			
Externalizing Batch Process Execution

				The integration approaches discussed so far suggest use-cases
				where Spring Integration wraps Spring Batch like an outer-shell.
				However, Spring Batch can also use Spring Integration internally.
				Using this approach, Spring Batch users can delegate the
				processing of items or even chunks to outside processes. This
				allows you to offload complex processing. Spring Batch Integration
				provides dedicated support for:
			
	
						Remote Chunking
					

	
						Remote Partitioning
					

Remote Chunking

					Taking things one step further, one can also externalize the
					chunk processing using the
					ChunkMessageChannelItemWriter which is
					provided by Spring Batch Integration which will send items out
					and collect the result. Once sent, Spring Batch will continue the
					process of reading and grouping items, without waiting for the results.
					Rather it is the responsibility of the ChunkMessageChannelItemWriter
					to gather the results and integrate them back into the Spring Batch process.
				

					Using Spring Integration you have full
					control over the concurrency of your processes, for instance by
					using a QueueChannel instead of a
					DirectChannel. Furthermore, by relying on
					Spring Integration's rich collection of Channel Adapters (E.g.
					JMS or AMQP), you can distribute chunks of a Batch job to
					external systems for processing.
				

					A simple job with a step to be remotely chunked would have a
					configuration similar to the following:
				
<job id="personJob">
 <step id="step1">
 <tasklet>
 <chunk reader="itemReader" writer="itemWriter" commit-interval="200"/>
 </tasklet>
 ...
 </step>
</job>

					The ItemReader reference would point to the bean you would like
					to use for reading data on the master. The ItemWriter reference
					points to a special ItemWriter
					"ChunkMessageChannelItemWriter"
					as described above. The processor (if any) is left off the
					master configuration as it is configured on the slave. The
					following configuration provides a basic master setup. It's
					advised to check any additional component properties such as
					throttle limits and so on when implementing your use case.
				
<bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

<int-jms:outbound-channel-adapter id="requests" destination-name="requests"/>

<bean id="messagingTemplate"
 class="org.springframework.integration.core.MessagingTemplate">
 <property name="defaultChannel" ref="requests"/>
 <property name="receiveTimeout" value="2000"/>
</bean>

<bean id="itemWriter"
 class="org.springframework.batch.integration.chunk.ChunkMessageChannelItemWriter"
 scope="step">
 <property name="messagingOperations" ref="messagingTemplate"/>
 <property name="replyChannel" ref="replies"/>
</bean>

<bean id="chunkHandler"
 class="org.springframework.batch.integration.chunk.RemoteChunkHandlerFactoryBean">
 <property name="chunkWriter" ref="itemWriter"/>
 <property name="step" ref="step1"/>
</bean>

<int:channel id="replies">
 <int:queue/>
</int:channel>

<int-jms:message-driven-channel-adapter id="jmsReplies"
 destination-name="replies"
 channel="replies"/>

					This configuration provides us with a number of beans. We
					configure our messaging middleware using ActiveMQ and
					inbound/outbound JMS adapters provided by Spring Integration. As
					shown, our itemWriter bean which is
					referenced by our job step utilizes the
					ChunkMessageChannelItemWriter for writing chunks over the
					configured middleware.
				

					Now lets move on to the slave configuration:
				
<bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

<int:channel id="requests"/>
<int:channel id="replies"/>

<int-jms:message-driven-channel-adapter id="jmsIn"
 destination-name="requests"
 channel="requests"/>

<int-jms:outbound-channel-adapter id="outgoingReplies"
 destination-name="replies"
 channel="replies">
</int-jms:outbound-channel-adapter>

<int:service-activator id="serviceActivator"
 input-channel="requests"
 output-channel="replies"
 ref="chunkProcessorChunkHandler"
 method="handleChunk"/>

<bean id="chunkProcessorChunkHandler"
 class="org.springframework.batch.integration.chunk.ChunkProcessorChunkHandler">
 <property name="chunkProcessor">
 <bean class="org.springframework.batch.core.step.item.SimpleChunkProcessor">
 <property name="itemWriter">
 <bean class="io.spring.sbi.PersonItemWriter"/>
 </property>
 <property name="itemProcessor">
 <bean class="io.spring.sbi.PersonItemProcessor"/>
 </property>
 </bean>
 </property>
</bean>

					Most of these configuration items should look familiar from the
					master configuration. Slaves do not need access to things like
					the Spring Batch JobRepository nor access
					to the actual job configuration file. The main bean of interest
					is the
					"chunkProcessorChunkHandler". The
					chunkProcessor property of
					ChunkProcessorChunkHandler takes a
					configured SimpleChunkProcessor which is
					where you would provide a reference to your
					ItemWriter and optionally your
					ItemProcessor that will run on the slave
					when it receives chunks from the master.
				

					For more information, please also consult the Spring Batch
					manual, specifically the chapter on
					Remote
						Chunking.
				
Remote Partitioning

					Remote Partitioning, on the other hand, is useful when the
					problem is not the processing of items, but the associated I/O
					represents the bottleneck. Using Remote Partitioning, work can
					be farmed out to slaves that execute complete Spring Batch
					steps. Thus, each slave has its own
					ItemReader,
					ItemProcessor and
					ItemWriter. For this purpose, Spring Batch
					Integration provides the
					MessageChannelPartitionHandler.
				

					This implementation of the PartitionHandler
					interface uses MessageChannel instances to
					send instructions to remote workers and receive their responses.
					This provides a nice abstraction from the transports (E.g. JMS
					or AMQP) being used to communicate with the remote workers.
				

					The reference manual section
					Remote
						Partitioning provides an overview of the concepts and
					components needed to configure Remote Partitioning and shows an
					example of using the default
					TaskExecutorPartitionHandler to partition
					in separate local threads of execution. For Remote Partitioning
					to multiple JVM's, two additional components are required:
				
	
							Remoting fabric or grid environment
						

	
							A PartitionHandler implementation that supports the desired
							remoting fabric or grid environment
						

					Similar to Remote Chunking JMS can be used as the "remoting
					fabric" and the PartitionHandler implementation to be used
					as described above is the
					MessageChannelPartitionHandler. The example
					shown below assumes an existing partitioned job and focuses on
					the MessageChannelPartitionHandler and JMS
					configuration:
				
<bean id="partitionHandler"
 class="org.springframework.batch.integration.partition.MessageChannelPartitionHandler">
 <property name="stepName" value="step1"/>
 <property name="gridSize" value="3"/>
 <property name="replyChannel" ref="outbound-replies"/>
 <property name="messagingOperations">
 <bean class="org.springframework.integration.core.MessagingTemplate">
 <property name="defaultChannel" ref="outbound-requests"/>
 <property name="receiveTimeout" value="100000"/>
 </bean>
 </property>
</bean>

<int:channel id="outbound-requests"/>
<int-jms:outbound-channel-adapter destination="requestsQueue"
 channel="outbound-requests"/>

<int:channel id="inbound-requests"/>
<int-jms:message-driven-channel-adapter destination="requestsQueue"
 channel="inbound-requests"/>

<bean id="stepExecutionRequestHandler"
 class="org.springframework.batch.integration.partition.StepExecutionRequestHandler">
 <property name="jobExplorer" ref="jobExplorer"/>
 <property name="stepLocator" ref="stepLocator"/>
</bean>

<int:service-activator ref="stepExecutionRequestHandler" input-channel="inbound-requests"
 output-channel="outbound-staging"/>

<int:channel id="outbound-staging"/>
<int-jms:outbound-channel-adapter destination="stagingQueue"
 channel="outbound-staging"/>

<int:channel id="inbound-staging"/>
<int-jms:message-driven-channel-adapter destination="stagingQueue"
 channel="inbound-staging"/>

<int:aggregator ref="partitionHandler" input-channel="inbound-staging"
 output-channel="outbound-replies"/>

<int:channel id="outbound-replies">
 <int:queue/>
</int:channel>

<bean id="stepLocator"
 class="org.springframework.batch.integration.partition.BeanFactoryStepLocator" />

					Also ensure the partition handler attribute
					maps to the partitionHandler bean:
				
<job id="personJob">
 <step id="step1.master">
 <partition partitioner="partitioner" handler="partitionHandler"/>
 ...
 </step>
</job>
Appendix A. List of ItemReaders and ItemWriters

Item Readers

Table A.1. Available Item Readers
	Item Reader	Description
	AbstractItemCountingItemStreamItemReader	Abstract base class that provides basic
 restart capabilities by counting the number of items returned from
 an ItemReader.
	AggregateItemReader	An ItemReader that delivers a list as its
 item, storing up objects from the injected ItemReader until they
 are ready to be packed out as a collection. This ItemReader should
 mark the beginning and end of records with the constant values in
 FieldSetMapper AggregateItemReader#BEGIN_RECORD and
 AggregateItemReader#END_RECORD
	AmqpItemReader	Given a Spring AmqpTemplate it provides
 synchronous receive methods. The receiveAndConvert() method
 lets you receive POJO objects.
	FlatFileItemReader	Reads from a flat file. Includes ItemStream
 and Skippable functionality. See section on Read from a
 File
	HibernateCursorItemReader	Reads from a cursor based on an HQL query. See
 section on Reading from a Database
	HibernatePagingItemReader	Reads from a paginated HQL query
	IbatisPagingItemReader	Reads via iBATIS based on a query. Pages
 through the rows so that large datasets can be read without
 running out of memory. See HOWTO - Read from a Database. This
 ItemReader is now deprecated as of Spring Batch 3.0.
	ItemReaderAdapter	Adapts any class to the
 ItemReader interface.
	JdbcCursorItemReader	Reads from a database cursor via JDBC. See
 HOWTO - Read from a Database
	JdbcPagingItemReader	Given a SQL statement, pages through the rows,
 such that large datasets can be read without running out of
 memory
	JmsItemReader	Given a Spring JmsOperations object and a JMS
 Destination or destination name to send errors, provides items
 received through the injected JmsOperations receive()
 method
	JpaPagingItemReader	Given a JPQL statement, pages through the
 rows, such that large datasets can be read without running out of
 memory
	ListItemReader	Provides the items from a list, one at a
 time
	MongoItemReader	Given a MongoOperations object and JSON based MongoDB
 query, proides items received from the MongoOperations find method
	Neo4jItemReader	Given a Neo4jOperations object and the components of a
 Cyhper query, items are returned as the result of the Neo4jOperations.query
 method
	RepositoryItemReader	Given a Spring Data PagingAndSortingRepository object,
 a Sort and the name of method to execute, returns items provided by the
 Spring Data repository implementation
	StoredProcedureItemReader	Reads from a database cursor resulting from the
 execution of a database stored procedure. See HOWTO - Read from a
 Database
	StaxEventItemReader	Reads via StAX. See HOWTO - Read from a
 File

Item Writers

Table A.2. Available Item Writers
	Item Writer	Description
	AbstractItemStreamItemWriter	Abstract base class that combines the
 ItemStream and
 ItemWriter interfaces.
	AmqpItemWriter	Given a Spring AmqpTemplate it provides
 for synchronous send method. The convertAndSend(Object)
 method lets you send POJO objects.
	CompositeItemWriter	Passes an item to the process method of each
 in an injected List of ItemWriter objects
	FlatFileItemWriter	Writes to a flat file. Includes ItemStream and
 Skippable functionality. See section on Writing to a File
	GemfireItemWriter	Using a GemfireOperations object, items wre either written
 or removed from the Gemfire instance based on the configuration of the delete
 flag
	HibernateItemWriter	This item writer is hibernate session aware
 and handles some transaction-related work that a non-"hibernate
 aware" item writer would not need to know about and then delegates
 to another item writer to do the actual writing.
	IbatisBatchItemWriter	Writes items in a batch using the iBatis API's
 directly. This ItemWriter is deprecated as of Spring Batch 3.0.
	ItemWriterAdapter	Adapts any class to the
 ItemWriter interface.
	JdbcBatchItemWriter	Uses batching features from a
 PreparedStatement, if available, and can
 take rudimentary steps to locate a failure during a
 flush.
	JmsItemWriter	Using a JmsOperations object, items are written
 to the default queue via the JmsOperations.convertAndSend() method
	JpaItemWriter	This item writer is JPA EntityManager aware
 and handles some transaction-related work that a non-"jpa aware"
 ItemWriter would not need to know about and
 then delegates to another writer to do the actual writing.
	MimeMessageItemWriter	Using Spring's JavaMailSender, items of type MimeMessage
 are sent as mail messages
	MongoItemWriter	Given a MongoOperations object, items are written
 via the MongoOperations.save(Object) method. The actual write is delayed
 until the last possible moment before the transaction commits.
	Neo4jItemWriter	Given a Neo4jOperations object, items are persisted via the
 save(Object) method or deleted via the delete(Object) per the
 ItemWriter's configuration
	PropertyExtractingDelegatingItemWriter	Extends AbstractMethodInvokingDelegator
 creating arguments on the fly. Arguments are created by retrieving
 the values from the fields in the item to be processed (via a
 SpringBeanWrapper) based on an injected array of field
 name
	RepositoryItemWriter	Given a Spring Data CrudRepository implementation,
 items are saved via the method specified in the configuration.
	StaxEventItemWriter	Uses an ObjectToXmlSerializer implementation to
 convert each item to XML and then writes it to an XML file using
 StAX.

Appendix B. Meta-Data Schema

Overview

The Spring Batch Meta-Data tables very closely match the Domain
 objects that represent them in Java. For example,
 JobInstance, JobExecution,
 JobParameters, and
 StepExecution map to BATCH_JOB_INSTANCE,
 BATCH_JOB_EXECUTION, BATCH_JOB_EXECUTION_PARAMS, and BATCH_STEP_EXECUTION,
 respectively. ExecutionContext maps to both
 BATCH_JOB_EXECUTION_CONTEXT and BATCH_STEP_EXECUTION_CONTEXT. The
 JobRepository is responsible for saving and storing
 each Java object into its correct table. The following appendix describes
 the meta-data tables in detail, along with many of the design decisions
 that were made when creating them. When viewing the various table creation
 statements below, it is important to realize that the data types used are
 as generic as possible. Spring Batch provides many schemas as examples,
 which all have varying data types due to variations in individual database
 vendors' handling of data types. Below is an ERD model of all 6 tables and
 their relationships to one another:

Example DDL Scripts

The Spring Batch Core JAR file contains example
 scripts to create the relational tables for a number of database
 platforms (which are in turn auto-detected by the job repository factory
 bean or namespace equivalent). These scripts can be used as is, or
 modified with additional indexes and constraints as desired. The file
 names are in the form schema-*.sql, where "*" is the
 short name of the target database platform. The scripts are in
	 the package org.springframework.batch.core.
Version

Many of the database tables discussed in this appendix contain a
 version column. This column is important because Spring Batch employs an
 optimistic locking strategy when dealing with updates to the database.
 This means that each time a record is 'touched' (updated) the value in
 the version column is incremented by one. When the repository goes back
 to try and save the value, if the version number has change it will
 throw OptimisticLockingFailureException,
 indicating there has been an error with concurrent access. This check is
 necessary since, even though different batch jobs may be running in
 different machines, they are all using the same database tables.
Identity

BATCH_JOB_INSTANCE, BATCH_JOB_EXECUTION, and BATCH_STEP_EXECUTION
 each contain columns ending in _ID. These fields act as primary keys for
 their respective tables. However, they are not database generated keys,
 but rather they are generated by separate sequences. This is necessary
 because after inserting one of the domain objects into the database, the
 key it is given needs to be set on the actual object so that they can be
 uniquely identified in Java. Newer database drivers (Jdbc 3.0 and up)
 support this feature with database generated keys, but rather than
 requiring it, sequences were used. Each variation of the schema will
 contain some form of the following:
CREATE SEQUENCE BATCH_STEP_EXECUTION_SEQ;
CREATE SEQUENCE BATCH_JOB_EXECUTION_SEQ;
CREATE SEQUENCE BATCH_JOB_SEQ;
Many database vendors don't support sequences. In these cases,
 work-arounds are used, such as the following for MySQL:
CREATE TABLE BATCH_STEP_EXECUTION_SEQ (ID BIGINT NOT NULL) type=InnoDB;
INSERT INTO BATCH_STEP_EXECUTION_SEQ values(0);
CREATE TABLE BATCH_JOB_EXECUTION_SEQ (ID BIGINT NOT NULL) type=InnoDB;
INSERT INTO BATCH_JOB_EXECUTION_SEQ values(0);
CREATE TABLE BATCH_JOB_SEQ (ID BIGINT NOT NULL) type=InnoDB;
INSERT INTO BATCH_JOB_SEQ values(0);
In the above case, a table is used in place of each sequence. The
 Spring core class MySQLMaxValueIncrementer will
 then increment the one column in this sequence in order to give similar
 functionality.
BATCH_JOB_INSTANCE

The BATCH_JOB_INSTANCE table holds all information relevant to a
 JobInstance, and serves as the top of the overall
 hierarchy. The following generic DDL statement is used to create
 it:
CREATE TABLE BATCH_JOB_INSTANCE (
 JOB_INSTANCE_ID BIGINT PRIMARY KEY ,
 VERSION BIGINT,
 JOB_NAME VARCHAR(100) NOT NULL ,
 JOB_KEY VARCHAR(2500)
);
Below are descriptions of each column in the table:
	JOB_INSTANCE_ID: The unique id that will identify the instance,
 which is also the primary key. The value of this column should be
 obtainable by calling the getId method on
 JobInstance.

	VERSION: See above section.

	JOB_NAME: Name of the job obtained from the
 Job object. Because it is required to identify
 the instance, it must not be null.

	JOB_KEY: A serialization of the
 JobParameters that uniquely identifies separate
 instances of the same job from one another.
 (JobInstances with the same job name must have
 different JobParameters, and thus, different
 JOB_KEY values).

BATCH_JOB_EXECUTION_PARAMS

The BATCH_JOB_EXECUTION_PARAMS table holds all information relevant to the
 JobParameters object. It contains 0 or more
 key/value pairs passed to a Job and serve as a record of the parameters
 a job was run with. For each parameter that contributes to the generation of a job's identity,
 the IDENTIFYING flag is set to true. It should be noted that the table has been
 denormalized. Rather than creating a separate table for each type, there
 is one table with a column indicating the type:
CREATE TABLE BATCH_JOB_EXECUTION_PARAMS (
	JOB_EXECUTION_ID BIGINT NOT NULL ,
	TYPE_CD VARCHAR(6) NOT NULL ,
	KEY_NAME VARCHAR(100) NOT NULL ,
	STRING_VAL VARCHAR(250) ,
	DATE_VAL DATETIME DEFAULT NULL ,
	LONG_VAL BIGINT ,
	DOUBLE_VAL DOUBLE PRECISION ,
	IDENTIFYING CHAR(1) NOT NULL ,
	constraint JOB_EXEC_PARAMS_FK foreign key (JOB_EXECUTION_ID)
	references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
);
Below are descriptions for each column:
	JOB_EXECUTION_ID: Foreign Key from the BATCH_JOB_EXECUTION table
 that indicates the job execution the parameter entry belongs to. It
 should be noted that multiple rows (i.e key/value pairs) may exist for
 each execution.

	TYPE_CD: String representation of the type of value stored,
 which can be either a string, date, long, or double. Because the type
 must be known, it cannot be null.

	KEY_NAME: The parameter key.

	STRING_VAL: Parameter value, if the type is string.

	DATE_VAL: Parameter value, if the type is date.

	LONG_VAL: Parameter value, if the type is a long.

	DOUBLE_VAL: Parameter value, if the type is double.

	IDENTIFYING: Flag indicating if the parameter contributed to the identity of the related JobInstance.

It is worth noting that there is no primary key for this table. This
 is simply because the framework has no use for one, and thus doesn't
 require it. If a user so chooses, one may be added with a database
 generated key, without causing any issues to the framework itself.
BATCH_JOB_EXECUTION

The BATCH_JOB_EXECUTION table holds all information relevant to the
 JobExecution object. Every time a
 Job is run there will always be a new
 JobExecution, and a new row in this table:
CREATE TABLE BATCH_JOB_EXECUTION (
 JOB_EXECUTION_ID BIGINT PRIMARY KEY ,
 VERSION BIGINT,
 JOB_INSTANCE_ID BIGINT NOT NULL,
 CREATE_TIME TIMESTAMP NOT NULL,
 START_TIME TIMESTAMP DEFAULT NULL,
 END_TIME TIMESTAMP DEFAULT NULL,
 STATUS VARCHAR(10),
 EXIT_CODE VARCHAR(20),
 EXIT_MESSAGE VARCHAR(2500),
 LAST_UPDATED TIMESTAMP,
 JOB_CONFIGURATION_LOCATION VARCHAR(2500) NULL,
 constraint JOB_INSTANCE_EXECUTION_FK foreign key (JOB_INSTANCE_ID)
 references BATCH_JOB_INSTANCE(JOB_INSTANCE_ID)
) ;
Below are descriptions for each column:
	JOB_EXECUTION_ID: Primary key that uniquely identifies this
 execution. The value of this column is obtainable by calling the
 getId method of the
 JobExecution object.

	VERSION: See above section.

	JOB_INSTANCE_ID: Foreign key from the BATCH_JOB_INSTANCE table
 indicating the instance to which this execution belongs. There may be
 more than one execution per instance.

	CREATE_TIME: Timestamp representing the time that the execution
 was created.

	START_TIME: Timestamp representing the time the execution was
 started.

	END_TIME: Timestamp representing the time the execution was
 finished, regardless of success or failure. An empty value in this
 column even though the job is not currently running indicates that
 there has been some type of error and the framework was unable to
 perform a last save before failing.

	STATUS: Character string representing the status of the
 execution. This may be COMPLETED, STARTED, etc. The object
 representation of this column is the
 BatchStatus enumeration.

	EXIT_CODE: Character string representing the exit code of the
 execution. In the case of a command line job, this may be converted
 into a number.

	EXIT_MESSAGE: Character string representing a more detailed
 description of how the job exited. In the case of failure, this might
 include as much of the stack trace as is possible.

	LAST_UPDATED: Timestamp representing the last time this
 execution was persisted.

BATCH_STEP_EXECUTION

The BATCH_STEP_EXECUTION table holds all information relevant to the
 StepExecution object. This table is very similar in
 many ways to the BATCH_JOB_EXECUTION table and there will always be at
 least one entry per Step for each
 JobExecution created:
CREATE TABLE BATCH_STEP_EXECUTION (
 STEP_EXECUTION_ID BIGINT PRIMARY KEY ,
 VERSION BIGINT NOT NULL,
 STEP_NAME VARCHAR(100) NOT NULL,
 JOB_EXECUTION_ID BIGINT NOT NULL,
 START_TIME TIMESTAMP NOT NULL ,
 END_TIME TIMESTAMP DEFAULT NULL,
 STATUS VARCHAR(10),
 COMMIT_COUNT BIGINT ,
 READ_COUNT BIGINT ,
 FILTER_COUNT BIGINT ,
 WRITE_COUNT BIGINT ,
 READ_SKIP_COUNT BIGINT ,
 WRITE_SKIP_COUNT BIGINT ,
 PROCESS_SKIP_COUNT BIGINT ,
 ROLLBACK_COUNT BIGINT ,
 EXIT_CODE VARCHAR(20) ,
 EXIT_MESSAGE VARCHAR(2500) ,
 LAST_UPDATED TIMESTAMP,
 constraint JOB_EXECUTION_STEP_FK foreign key (JOB_EXECUTION_ID)
 references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
) ;
Below are descriptions for each column:
	STEP_EXECUTION_ID: Primary key that uniquely identifies this
 execution. The value of this column should be obtainable by calling
 the getId method of the
 StepExecution object.

	VERSION: See above section.

	STEP_NAME: The name of the step to which this execution
 belongs.

	JOB_EXECUTION_ID: Foreign key from the BATCH_JOB_EXECUTION table
 indicating the JobExecution to which this StepExecution belongs. There
 may be only one StepExecution for a given
 JobExecution for a given
 Step name.

	START_TIME: Timestamp representing the time the execution was
 started.

	END_TIME: Timestamp representing the time the execution was
 finished, regardless of success or failure. An empty value in this
 column even though the job is not currently running indicates that
 there has been some type of error and the framework was unable to
 perform a last save before failing.

	STATUS: Character string representing the status of the
 execution. This may be COMPLETED, STARTED, etc. The object
 representation of this column is the
 BatchStatus enumeration.

	COMMIT_COUNT: The number of times in which the step has
 committed a transaction during this execution.

	READ_COUNT: The number of items read during this
 execution.

	FILTER_COUNT: The number of items filtered out of this
 execution.

	WRITE_COUNT: The number of items written and committed during
 this execution.

	READ_SKIP_COUNT: The number of items skipped on read during this
 execution.

	WRITE_SKIP_COUNT: The number of items skipped on write during
 this execution.

	PROCESS_SKIP_COUNT: The number of items skipped during
 processing during this execution.

	ROLLBACK_COUNT: The number of rollbacks during this execution.
 Note that this count includes each time rollback occurs, including
 rollbacks for retry and those in the skip recovery procedure.

	EXIT_CODE: Character string representing the exit code of the
 execution. In the case of a command line job, this may be converted
 into a number.

	EXIT_MESSAGE: Character string representing a more detailed
 description of how the job exited. In the case of failure, this might
 include as much of the stack trace as is possible.

	LAST_UPDATED: Timestamp representing the last time this
 execution was persisted.

BATCH_JOB_EXECUTION_CONTEXT

The BATCH_JOB_EXECUTION_CONTEXT table holds all information relevant
 to an Job's
 ExecutionContext. There is exactly one
 Job ExecutionContext per
 JobExecution, and it contains all of the job-level
 data that is needed for a particular job execution. This data typically
 represents the state that must be retrieved after a failure so that a
 JobInstance can 'start from where it left
 off'.
CREATE TABLE BATCH_JOB_EXECUTION_CONTEXT (
 JOB_EXECUTION_ID BIGINT PRIMARY KEY,
 SHORT_CONTEXT VARCHAR(2500) NOT NULL,
 SERIALIZED_CONTEXT CLOB,
 constraint JOB_EXEC_CTX_FK foreign key (JOB_EXECUTION_ID)
 references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
) ;
Below are descriptions for each column:
	JOB_EXECUTION_ID: Foreign key representing the
 JobExecution to which the context belongs.
 There may be more than one row associated to a given execution.

	SHORT_CONTEXT: A string version of the
 SERIALIZED_CONTEXT.

	SERIALIZED_CONTEXT: The entire context, serialized.

BATCH_STEP_EXECUTION_CONTEXT

The BATCH_STEP_EXECUTION_CONTEXT table holds all information
 relevant to an Step's
 ExecutionContext. There is exactly one
 ExecutionContext per
 StepExecution, and it contains all of the data that
 needs to persisted for a particular step execution. This data typically
 represents the state that must be retrieved after a failure so that a
 JobInstance can 'start from where it left
 off'.
CREATE TABLE BATCH_STEP_EXECUTION_CONTEXT (
 STEP_EXECUTION_ID BIGINT PRIMARY KEY,
 SHORT_CONTEXT VARCHAR(2500) NOT NULL,
 SERIALIZED_CONTEXT CLOB,
 constraint STEP_EXEC_CTX_FK foreign key (STEP_EXECUTION_ID)
 references BATCH_STEP_EXECUTION(STEP_EXECUTION_ID)
) ;
Below are descriptions for each column:
	STEP_EXECUTION_ID: Foreign key representing the
 StepExecution to which the context belongs.
 There may be more than one row associated to a given execution.

	SHORT_CONTEXT: A string version of the
 SERIALIZED_CONTEXT.

	SERIALIZED_CONTEXT: The entire context, serialized.

Archiving

Because there are entries in multiple tables every time a batch job
 is run, it is common to create an archive strategy for the meta-data
 tables. The tables themselves are designed to show a record of what
 happened in the past, and generally won't affect the run of any job, with
 a couple of notable exceptions pertaining to restart:
	The framework will use the meta-data tables to determine if a
 particular JobInstance has been run before. If it has been run, and
 the job is not restartable, then an exception will be thrown.

	If an entry for a JobInstance is removed without having
 completed successfully, the framework will think that the job is new,
 rather than a restart.

	If a job is restarted, the framework will use any data that has
 been persisted to the ExecutionContext to restore the Job's state.
 Therefore, removing any entries from this table for jobs that haven't
 completed successfully will prevent them from starting at the correct
 point if run again.

International and Multi-byte Characters

If you are using multi-byte character sets (e.g. Chines or Cyrillic)
	 in your business processing, then those characters might need to be
	 persisted in the Spring Batch schema. Many users find that
	 simply changing the schema to double the length of the VARCHAR
	 columns is enough. Others prefer to configure the JobRepository with max-varchar-length half the value of the VARCHAR column length is enough. Some users have also reported that
	they use NVARCHAR in place of VARCHAR
	in their schema definitions. The best result will depend on the database
	platform and the way the database server has been configured locally.
Recommendations for Indexing Meta Data Tables

Spring Batch provides DDL samples for the meta-data tables in the
 Core jar file for several common database platforms. Index declarations
 are not included in that DDL because there are too many variations in how
 users may want to index depending on their precise platform, local
 conventions and also the business requirements of how the jobs will be
 operated. The table below provides some indication as to which columns are
 going to be used in a WHERE clause by the Dao implementations provided by
 Spring Batch, and how frequently they might be used, so that individual
 projects can make up their own minds about indexing.
Table B.1. Where clauses in SQL statements (excluding primary keys) and
 their approximate frequency of use.
	Default Table Name	Where Clause	Frequency
	BATCH_JOB_INSTANCE	JOB_NAME = ? and JOB_KEY = ?	Every time a job is launched
	BATCH_JOB_EXECUTION	JOB_INSTANCE_ID = ?	Every time a job is restarted
	BATCH_EXECUTION_CONTEXT	EXECUTION_ID = ? and KEY_NAME = ?	On commit interval, a.k.a. chunk
	BATCH_STEP_EXECUTION	VERSION = ?	On commit interval, a.k.a. chunk (and at start and end of
 step)
	BATCH_STEP_EXECUTION	STEP_NAME = ? and JOB_EXECUTION_ID = ?	Before each step execution

Appendix C. Batch Processing and Transactions

Simple Batching with No Retry

Consider the following simple example of a nested batch with no
			retries. This is a very common scenario for batch processing, where
			an input source is processed until exhausted, but we commit
			periodically at the end of a "chunk" of processing.

1 | REPEAT(until=exhausted) {
|
2 | TX {
3 | REPEAT(size=5) {
3.1 | input;
3.2 | output;
| }
| }
|
| }
		
The input operation (3.1) could be a message-based receive
		(e.g. JMS), or a file-based read, but to recover and continue
		processing with a chance of completing the whole job, it must be
		transactional. The same applies to the operation at (3.2) - it must
		be either transactional or idempotent.
If the chunk at REPEAT(3) fails because of a database exception at
		(3.2), then TX(2) will roll back the whole chunk.
Simple Stateless Retry

It is also useful to use a retry for an operation which is not
			transactional, like a call to a web-service or other remote
			resource. For example:

0 | TX {
1 | input;
1.1 | output;
2 | RETRY {
2.1 | remote access;
| }
| }
		
This is actually one of the most useful applications of a retry,
			since a remote call is much more likely to fail and be retryable
			than a database update. As long as the remote access (2.1)
			eventually succeeds, the transaction TX(0) will commit. If the
			remote access (2.1) eventually fails, then the transaction TX(0) is
			guaranteed to roll back.
Typical Repeat-Retry Pattern

The most typical batch processing pattern is to add a retry to the
			inner block of the chunk in the Simple Batching example.
			Consider this:

1 | REPEAT(until=exhausted, exception=not critical) {
|
2 | TX {
3 | REPEAT(size=5) {
|
4 | RETRY(stateful, exception=deadlock loser) {
4.1 | input;
5 | } PROCESS {
5.1 | output;
6 | } SKIP and RECOVER {
| notify;
| }
|
| }
| }
|
| }
		
The inner RETRY(4) block is marked as "stateful" - see the
			typical use case for a description of a stateful
			retry. This means that if the the retry PROCESS(5) block fails, the
			behaviour of the RETRY(4) is as follows.
	Throw an exception, rolling back the transaction TX(2) at the
					chunk level, and allowing the item to be re-presented to the input
					queue.

	When the item re-appears, it might be retried depending on the
					retry policy in place, executing PROCESS(5) again. The second and
					subsequent attempts might fail again and rethrow the exception.

	Eventually the item re-appears for the final time: the retry
					policy disallows another attempt, so PROCESS(5) is never
					executed. In this case we follow a RECOVER(6) path, effectively
					"skipping" the item that was received and is being processed.

Notice that the notation used for the RETRY(4) in the plan above
			shows explictly that the the input step (4.1) is part of the retry.
			It also makes clear that there are two alternate paths for
			processing: the normal case is denoted by PROCESS(5), and the
			recovery path is a separate block, RECOVER(6). The two alternate
			paths are completely distinct: only one is ever taken in normal
			circumstances.
In special cases (e.g. a special TranscationValidException
			type), the retry policy might be able to determine that the
			RECOVER(6) path can be taken on the last attempt after PROCESS(5)
			has just failed, instead of waiting for the item to be re-presented.
			This is not the default behavior because it requires detailed
			knowledge of what has happened inside the PROCESS(5) block, which is
			not usually available - e.g. if the output included write
			access before the failure, then the exception should be rethrown to
			ensure transactional integrity.
The completion policy in the outer, REPEAT(1) is crucial to the
			success of the above plan. If the output(5.1) fails it may throw an
			exception (it usually does, as described), in which case the
			transaction TX(2) fails and the exception could propagate up through
			the outer batch REPEAT(1). We do not want the whole batch to stop
			because the RETRY(4) might still be successful if we try again, so
			we add the exception=not critical to the outer REPEAT(1).
Note, however, that if the TX(2) fails and we do try again, by
			virtue of the outer completion policy, the item that is next
			processed in the inner REPEAT(3) is not guaranteed to be the one
			that just failed. It might well be, but it depends on the
			implementation of the input(4.1). Thus the output(5.1) might fail
			again, on a new item, or on the old one. The client of the batch
			should not assume that each RETRY(4) attempt is going to process the
			same items as the last one that failed. E.g. if the termination
			policy for REPEAT(1) is to fail after 10 attempts, it will fail
			after 10 consecutive attempts, but not necessarily at the same item.
			This is consistent with the overall retry strategy: it is the inner
			RETRY(4) that is aware of the history of each item, and can decide
			whether or not to have another attempt at it.
Asynchronous Chunk Processing

The inner batches or chunks in the typical example
			above can be executed concurrently by configuring the outer batch to
			use an AsyncTaskExecutor. The outer batch waits for all the
			chunks to complete before completing.

1 | REPEAT(until=exhausted, concurrent, exception=not critical) {
|
2 | TX {
3 | REPEAT(size=5) {
|
4 | RETRY(stateful, exception=deadlock loser) {
4.1 | input;
5 | } PROCESS {
| output;
6 | } RECOVER {
| recover;
| }
|
| }
| }
|
| }
		
Asynchronous Item Processing

The individual items in chunks in the typical
			can also in principle be processed concurrently. In this case the
			transaction boundary has to move to the level of the individual
			item, so that each transaction is on a single thread:
		

1 | REPEAT(until=exhausted, exception=not critical) {
|
2 | REPEAT(size=5, concurrent) {
|
3 | TX {
4 | RETRY(stateful, exception=deadlock loser) {
4.1 | input;
5 | } PROCESS {
| output;
6 | } RECOVER {
| recover;
| }
| }
|
| }
|
| }
		
This plan sacrifices the optimisation benefit, that the simple plan
			had, of having all the transactional resources chunked together. It
			is only useful if the cost of the processing (5) is much higher than
			the cost of transaction management (3).
Interactions Between Batching and Transaction Propagation

There is a tighter coupling between batch-retry and TX management
			than we would ideally like. In particular a stateless retry cannot
			be used to retry database operations with a transaction manager that
			doesn't support NESTED propagation.
		
For a simple example using retry without repeat, consider this:

1 | TX {
|
1.1 | input;
2.2 | database access;
2 | RETRY {
3 | TX {
3.1 | database access;
| }
| }
|
| }
		
Again, and for the same reason, the inner transaction TX(3) can
			cause the outer transaction TX(1) to fail, even if the RETRY(2) is
			eventually successful.
Unfortunately the same effect percolates from the retry block up to
			the surrounding repeat batch if there is one:

1 | TX {
|
2 | REPEAT(size=5) {
2.1 | input;
2.2 | database access;
3 | RETRY {
4 | TX {
4.1 | database access;
| }
| }
| }
|
| }
		
Now if TX(3) rolls back it can pollute the whole batch at TX(1) and
			force it to roll back at the end.
What about non-default propagation?
	In the last example PROPAGATION_REQUIRES_NEW at TX(3) will
					prevent the outer TX(1) from being polluted if both transactions
					are eventually successful. But if TX(3) commits and TX(1) rolls
					back, then TX(3) stays committed, so we violate the transaction
					contract for TX(1). If TX(3) rolls back, TX(1) does not necessarily (but it probably
					will in practice because the retry will throw a roll back
					exception).

	PROPAGATION_NESTED at TX(3) works as we require in the retry
					case (and for a batch with skips): TX(3) can commit, but
					subsequently be rolled back by the outer transaction TX(1). If
					TX(3) rolls back, again TX(1) will roll back in practice. This
					option is only available on some platforms, e.g. not Hibernate or
					JTA, but it is the only one that works consistently.

So NESTED is best if the retry block contains any database access.
Special Case: Transactions with Orthogonal Resources

Default propagation is always OK for simple cases where there are no
			nested database transactions. Consider this (where the SESSION and
			TX are not global XA resources, so their resources are orthogonal):
		

0 | SESSION {
1 | input;
2 | RETRY {
3 | TX {
3.1 | database access;
| }
| }
| }
		
Here there is a transactional message SESSION(0), but it doesn't
			participate in other transactions with
			PlatformTransactionManager, so doesn't propagate when TX(3)
			starts. There is no database access outside the RETRY(2) block. If
			TX(3) fails and then eventually succeeds on a retry, SESSION(0) can
			commit (it can do this independent of a TX block). This is similar
			to the vanilla "best-efforts-one-phase-commit" scenario - the worst
			that can happen is a duplicate message when the RETRY(2) succeeds
			and the SESSION(0) cannot commit, e.g. because the message system is
			unavailable.
Stateless Retry Cannot Recover

The distinction between a stateless and a stateful retry in the
			typical example above is important. It is actually
			ultimately a transactional constraint that forces the distinction,
			and this constraint also makes it obvious why the distinction
			exists.
		
We start with the observation that there is no way to skip an item
			that failed and successfully commit the rest of the chunk unless we
			wrap the item processing in a transaction. So we simplify the
			typical batch execution plan to look like this:

0 | REPEAT(until=exhausted) {
|
1 | TX {
2 | REPEAT(size=5) {
|
3 | RETRY(stateless) {
4 | TX {
4.1 | input;
4.2 | database access;
| }
5 | } RECOVER {
5.1 | skip;
| }
|
| }
| }
|
| }
		
Here we have a stateless RETRY(3) with a RECOVER(5) path that kicks
			in after the final attempt fails. The "stateless" label just means
			that the block will be repeated without rethrowing any exception up
			to some limit. This will only work if the transaction TX(4) has
			propagation NESTED.
If the TX(3) has default propagation properties and it rolls back,
			it will pollute the outer TX(1). The inner transaction is assumed by
			the transaction manager to have corrupted the transactional
			resource, and so it cannot be used again.
Support for NESTED propagation is sufficiently rare that we choose
			not to support recovery with stateless retries in current versions of
			Spring Batch. The same effect can always be achieved (at the
			expense of repeating more processing) using the
			typical pattern above.
Glossary

Spring Batch Glossary
	Batch
	An accumulation of business transactions over time.

	Batch Application Style
	Term used to designate batch as an application style in its own
 right similar to online, Web or SOA. It has standard elements of
 input, validation, transformation of information to business model,
 business processing and output. In addition, it requires monitoring at
 a macro level.

	Batch Processing
	The handling of a batch of many business transactions that have
 accumulated over a period of time (e.g. an hour, day, week, month, or
 year). It is the application of a process, or set of processes, to
 many data entities or objects in a repetitive and predictable fashion
 with either no manual element, or a separate manual element for error
 processing.

	Batch Window
	The time frame within which a batch job must complete. This can
 be constrained by other systems coming online, other dependent jobs
 needing to execute or other factors specific to the batch
 environment.

	Step
	It is the main batch task or unit of work controller. It
 initializes the business logic, and controls the transaction
 environment based on commit interval setting, etc.

	Tasklet
	A component created by application developer to process the
 business logic for a Step.

	Batch Job Type
	Job Types describe application of jobs for particular type of
 processing. Common areas are interface processing (typically flat
 files), forms processing (either for online pdf generation or print
 formats), report processing.

	Driving Query
	A driving query identifies the set of work for a job to do; the
 job then breaks that work into individual units of work. For instance,
 identify all financial transactions that have a status of "pending
 transmission" and send them to our partner system. The driving query
 returns a set of record IDs to process; each record ID then becomes a
 unit of work. A driving query may involve a join (if the criteria for
 selection falls across two or more tables) or it may work with a
 single table.

	Item
	An item represents the smallest ammount of complete data for
 processing. In the simplest terms, this might mean a line in a file, a
 row in a database table, or a particular element in an XML
 file.

	Logicial Unit of Work (LUW)
	A batch job iterates through a driving query (or another input
 source such as a file) to perform the set of work that the job must
 accomplish. Each iteration of work performed is a unit of work.

	Commit Interval
	A set of LUWs processed within a single transaction.

	Partitioning
	Splitting a job into multiple threads where each thread is
 responsible for a subset of the overall data to be processed. The
 threads of execution may be within the same JVM or they may span JVMs
 in a clustered environment that supports workload balancing.

	Staging Table
	A table that holds temporary data while it is being
 processed.

	Restartable
	A job that can be executed again and will assume the same
 identity as when run initially. In othewords, it is has the same job
 instance id.

	Rerunnable
	A job that is restartable and manages its own state in terms of
 previous run's record processing. An example of a rerunnable step is
 one based on a driving query. If the driving query can be formed so
 that it will limit the processed rows when the job is restarted than
 it is re-runnable. This is managed by the application logic. Often
 times a condition is added to the where statement to limit the rows
 returned by the driving query with something like "and processedFlag
 != true".

	Repeat
	One of the most basic units of batch processing, that defines
 repeatability calling a portion of code until it is finished, and
 while there is no error. Typically a batch process would be repeatable
 as long as there is input.

	Retry
	Simplifies the execution of operations with retry semantics most
 frequently associated with handling transactional output exceptions.
 Retry is slightly different from repeat, rather than continually
 calling a block of code, retry is stateful, and continually calls the
 same block of code with the same input, until it either succeeds, or
 some type of retry limit has been exceeded. It is only generally
 useful if a subsequent invocation of the operation might succeed
 because something in the environment has improved.

	Recover
	Recover operations handle an exception in such a way that a
 repeat process is able to continue.

	Skip
	Skip is a recovery strategy often used on file input sources as
 the strategy for ignoring bad input records that failed
 validation.

images/job-repository-advanced.png

images/partitioning-spi.png
PartitionStep =
: PartitionHandler ;
execute() | ; _ |
handie) | StepExecutionSplitter |
split)) : ;
T oxecuteq) | |
3 } repeat
join ;’

images/partitioning-overview.png
Partitioning Overview

Slave

Slave

Slave

Slave

Slave

Slave

images/job-repository.png
runiJob)

ORUD operations

images/launch-from-request.png
run()
JobExecution

images/job-launcher-sequence-async.png
JobExecution

Starts fith / @

Ex\tSta;us UNKNOWN

execute()

ExitStatus

E

images/job-launcher-sequence-sync.png
run()

execute()

ExitStatus le -

JobExecution.

el

With ExitStatus FINISHED or FAILED

=

images/warning.png

images/drivingQueryExample.png
Select ID from FOO
where id > 1 and id < 7

images/tip.png

images/sequential-flow.png

images/drivingQueryJob.png
Job

-

__ Query for details using
key as parameter

Keys obtained at step initialization

images/chunk-oriented-processing.png
write(items) 0

ExitStatus

images/launch-batch-job.png
Fe [l

Inbound Channel Adapter Transtormer
Or E([— | [—)
el
File
JobLaunchRaquest

JobLauncher

images/step.png
ItemReader

ItemProcessor

ItemWriter

images/cursorExample.png
name=foo3

bar=bar3

name=foo4

bar=bar4

Select * from FOO
where id > 1 and id < 7

(]

1
2
3
4
5
6
7
8

images/oxm-fragments.png
Spring OXM

Any binding framework
supported by Spring OXM

images/xmlinput.png
N[

\(

<trade>

<isin>XYZ0001</isin>
<quantity>5</quantity>
<price>11.39</price>
<customer>Customer1</customer>

<itrade>

<trade>
<isin>XYZ0002</isin>
<quantity>2</quantity>
<price>72.99</price>
<customer>Customer2c</customer>

<itrade>

<trade>
<isin>XYZ0003</isin>
<quantity>9</quantity>
<price>99.99</price>
<customer>Customer3</customer>

<ltrade>

images/handling-informational-messages.png
Listener

Relaunch

Stws St Emai
Changes Router Emata Adapter
| =

Launcher

(D

images/remote-chunking-sbi.png
Stepl Step2 Step4
ItemReader ItemReader ItemReader
— — —

Step2a Step2b Step2c

images/remote-partitioning.png
Stepl Master Step3
ItemReader ItemReader

— —_— —_—

) l l

Slave 1 Slave 2 Slave 3

ItemReader ItemReader ItemReader

images/meta-data-erd.png
1 STEP_EXECUTION_ID BIGINT(20)
> SHORT_CONTEXT VARCHAR(2500)
< SERIALIZED_CONTEXT TEXT

1 STEP_EXECUTION_ID BIGINT(20)
> VERSION BIGINT(20)

> STEP_NAME VARCHAR(100)
.JOB_EXECUTION_ID BIGINT0)
 START_TIME DATETIME

< END_TIME DATETIME

< STATUS VARCHAR(10)

< COMMIT_COUNT BIGINT(20)

< READ_COUNT BIGINT0)
 FILTER_COUNT BIGINT(20)
 WRITE_COUNT BIGINT(20)

> READ_SKIP_COUNT BIGINT(20)
> WRITE_SKIP_COUNT BIGINT(20)
< PROCESS_SKIP_COUNT BIGINT(20)
 ROLLBACK_COUNT BIGINT20)
 EXIT_CODE VARCHAR(100)

< EXIT_MESSAGE VARCHAR(2500)
 LAST_UPDATED DATETIME

>
R —

7 JOB_INSTANCE_ID BIGINT(20)
> VERSION BIGINT(20)

> JOB_NAME VARCHAR(100)

5 JOB_KEY VARCHAR(32)

'+ JOB_EXECUTION_ID BIGINT(20)
> VERSION BIGINT(20)
 JOB_INSTANCE ID BIGINT(20)
> CREATE_TIE DATETIME
 START_TIME DATETIME

< END_TIME DATETIME

< STATUS VARCHAR(10)
 EXIT_CODE VARCHAR(100)

< EXIT_MESSAGE VARCHAR(2500)
 LAST_UPDATED DATETIME

'+ JOB_EXECUTION_ID BIGINT(20)
> SHORT_CONTEXT VARCHAR(2500)
< SERIALIZED_CONTEXT TEXT

.JOB_EXECUTION_ID BIGINT0)
 TYPE_CD VARCHAR(E)

> KEY_NAME VARCHAR(100)

> STRING_VAL VARCHAR(250)
 DATE_VAL DATETIME
 LONG_VAL BIGINT(20)

< DOUBLE VAL DOUBLE

> IDENTIFYING CHAR(1)

images/conditional-flow.png

images/partitioned.png
Input > Largo Process > Output

‘Selt Process Paritionsd_ Merge Process.
Process

Controller

Controller

Input Controller Output

Controller

AN
Ny

vy oy oy

Controller

images/spring-batch-layers.png
Batch Core

images/jobHeirarchyWithSteps.png

images/errorOnWrite.png
Htermriter

TransactionManager

[
step : Session
execute(] | ! |
= beging | :
write(itern) | :
F—————["]_update
flush()
iteit 1l B
wite(iter) woiate
flush
rollback() : !

o T

images/note.png

images/errorOnFlush.png
TransactionManager

/1
Sten ' Session
execute(] | ! |
— beging ! :
write(items) | H
| witedems), H

rollback()

o T

images/job-stereotypes-parameters.png
Y The EndOfDay Job
* /

\ The EndOfDay Job

* for 2007/05/05

The first attempt at
+————————— EndOfDay Job
for 2007/05/05

images/job-heirarchy.png
The EndOfDay Job

\ The EndOfDay Job

for 2007/05/05

—
\
===
\

The first attempt at
for 2007/05/05

images/remote-chunking.png
Remote Chunking

Master: Slave:

<<Step>> <<Listener>>

t

ChunkProvider

ChunkProcessor

images/spring-batch-reference-model.png

