
Spring Boot for Apache Geode &
Pivotal GemFire Reference Guide

1.1.10.RELEASE

Copyright © 2019

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire iii

Table of Contents

... vi
1. Introduction .. 1
2. Getting Started ... 2
3. Using Spring Boot for Apache Geode and Pivotal GemFire .. 3
4. Building ClientCache Applications ... 4

4.1. Building Embedded (Peer & Server) Cache Applications .. 5
5. Externalized Configuration .. 11

5.1. Externalized Configuration of Spring Session .. 12
6. Caching using Apache Geode or Pivotal GemFire .. 14

6.1. Look-Aside Caching, Near Caching and Inline Caching .. 16
Look-Aside Caching ... 16
Near Caching ... 17
Inline Caching .. 18

Implementing CacheLoaders, CacheWriters for Inline Caching 19
Inline Caching using Spring Data Repositories. .. 21

6.2. Advanced Caching Configuration .. 23
6.3. Disable Caching .. 23

7. Data Access with GemfireTemplate ... 25
7.1. Explicitly Declared Regions .. 25
7.2. Entity-defined Regions ... 26
7.3. Caching-defined Regions ... 26
7.4. Native-defined Regions .. 27
7.5. Template Creation Rules ... 28

8. Spring Data Repositories .. 30
9. Function Implementations & Executions ... 32

9.1. Background ... 32
9.2. Applying Functions .. 32

10. Continuous Query ... 34
11. Data Serialization with PDX .. 36

11.1. SDG MappingPdxSerializer vs. GemFire/Geode’s
ReflectionBasedAutoSerializer .. 37

12. Security .. 39
12.1. Authentication & Authorization .. 39

Auth for Servers ... 39
Auth for Clients .. 40

Non-Managed Auth for Clients .. 40
Managed Auth for Clients ... 40

12.2. Transport Layer Security using SSL .. 41
12.3. Securing Data at Rest ... 42

13. Spring Boot Actuator .. 43
13.1. Base HealthIndicators .. 43

GeodeCacheHealthIndicator .. 43
GeodeRegionsHealthIndicator ... 45
GeodeIndexesHealthIndicator .. 47
GeodeDiskStoresHealthIndicator ... 48

13.2. ClientCache HealthIndicators .. 49
GeodeContinuousQueriesHealthIndicator ... 49

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire iv

GeodePoolsHealthIndicator ... 51
13.3. Peer Cache HealthIndicators .. 52

GeodeCacheServersHealthIndicator .. 53
GeodeAsyncEventQueuesHealthIndicator .. 54
GeodeGatewayReceiversHealthIndicator ... 56
GeodeGatewaySendersHealthIndicator .. 57

14. Spring Session ... 59
14.1. Configuration ... 59
14.2. Custom Configuration .. 60

Custom Configuration using Properties .. 60
Custom Configuration using a Configurer ... 61

14.3. Disabling Session State Caching .. 61
15. Pivotal CloudFoundry .. 63

15.1. Running Spring Boot applications as a specific user .. 63
Overriding Authentication Auto-configuration .. 65

15.2. Targeting Specific Pivotal Cloud Cache Service Instances .. 65
15.3. Using Multiple Pivotal Cloud Cache Service Instances ... 66
15.4. Hybrid Pivotal CloudFoundry & Apache Geode Spring Boot Applications 67

Running PCFDev ... 67
Running an Apache Geode Cluster ... 69
Creating a User-Provided Service ... 71
Push & Bind a Spring Boot application .. 76
Running the Spring Boot application .. 82

15.5. Summary ... 86
16. Samples ... 87
17. Appendix .. 88

17.1. Auto-configuration vs. Annotation-based configuration .. 88
Background .. 88
Conventions ... 89
Overriding .. 90

Caches .. 90
Security ... 90

Extension ... 91
Caching ... 91
Continuous Query .. 92
Functions ... 93
PDX ... 93
Spring Data Repositories .. 93

Explicit Configuration .. 94
Summary ... 95

17.2. Configuration Metadata Reference .. 95
Spring Data Based Properties ... 95
Spring Session Based Properties .. 115
Apache Geode Properties ... 116

17.3. Disabling Auto-configuration ... 116
17.4. Switch from Apache Geode to Pivotal Cloud Cache (a.k.a. Pivotal GemFire) 117
17.5. Running an Apache Geode/Pivotal GemFire cluster using Spring Boot from your IDE
... 119
17.6. Testing .. 125
17.7. Examples .. 125

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire v

17.8. References .. 125

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire vi

Welcome to Spring Boot for Apache Geode & Pivotal GemFire.

Spring Boot for Apache Geode & Pivotal GemFire provides the convenience of Spring Boot’s convention
over configuration approach using auto-configuration with the Spring Framework’s powerful abstractions
and highly consistent programming model to truly simplify the development of Apache Geode or Pivotal
GemFire applications in a Spring context.

Secondarily, Spring Boot for Apache Geode & Pivotal GemFire aims to provide developers with a
consistent experience whether building and running Spring Boot, Apache Geode/Pivotal GemFire
applications locally or in a managed environment, such as with Pivotal CloudFoundry (PCF).

This project is a continuation and a logical extension to Spring Data for Apache Geode/Pivotal GemFire’s
Annotation-based configuration model and the goals set forth in that model: To enable application
developers to get up and running as quickly and as easily as possible. In fact, Spring Boot for Apache
Geode/Pivotal GemFire builds on this very foundation cemented in Spring Data for Apache Geode/
Pivotal GemFire (SDG 4) since the Spring Data Kay Release Train.

4Spring Data for Apache Geode and Spring Data for Pivotal GemFire are commonly known as SDG.

https://pivotal.io/platform
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 1

1. Introduction

Spring Boot for Apache Geode & Pivotal GemFire automatically applies auto-configuration to several
key application concerns (Use Cases) including, but not limited to:

• Look-Aside Caching, using either Apache Geode or Pivotal GemFire as a caching provider in Spring’s
Cache Abstraction.

• System of Record (SOR), persisting application state reliably in Apache Geode or Pivotal GemFire
using Spring Data Repositories.

• Transactions, managing application state consistently with Spring Transaction Management and
SDG5 support for both Local Cache and Global JTA Transactions.

• Distributed Computations, run with Apache Geode/Pivotal GemFire’s Function Executions framework
and conveniently implemented and executed with SDG452 POJO-based, annotation support for
Functions.

• Continuous Queries, expressing interests in a stream of events, where applications are able to react
to and process changes to data in near real-time using Apache Geode/Pivotal GemFire Continuous
Query (CQ). Handlers are defined as simple Message-Driven POJOs (MDP) using Spring’s Message
Listener Container, which has been extended by SDG452 with its configurable CQ support.

• Data Serialization with Apache Geode/Pivotal GemFire PDX, including first-class configuration and
support in SDG452.

• Security, including Authentication & Authorization as well as Transport Layer Security (TLS) using
Apache Geode/Pivotal GemFire’s Secure Socket Layer (SSL). Once again, SDG452 includes first-
class support for configuring Auth and SSL.

• HTTP Session state management, by including Spring Session for Apache Geode/Pivotal GemFire
on your application’s classpath.

While Spring Data for Apache Geode & Pivotal GemFire offers a simple, convenient and declarative
approach to configure all these powerful Apache Geode/Pivotal GemFire features, Spring Boot for
Apache Geode & Pivotal Gemfire makes it even easier to do as we will explore throughout this Reference
Documentation.

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://en.wikipedia.org/wiki/System_of_record
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:transaction-management
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:global-transaction-management
https://geode.apache.org/docs/guide/16/developing/function_exec/chapter_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-annotations
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-annotations
https://geode.apache.org/docs/guide/16/developing/continuous_querying/chapter_overview.html
https://geode.apache.org/docs/guide/16/developing/continuous_querying/chapter_overview.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-mdp
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-mdp
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:continuous-query
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-continuous-queries
https://geode.apache.org/docs/guide/16/developing/data_serialization/gemfire_pdx_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-pdx
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer
https://geode.apache.org/docs/guide/16/managing/security/authentication_overview.html
https://geode.apache.org/docs/guide/16/managing/security/authorization_overview.html
https://geode.apache.org/docs/guide/16/managing/security/ssl_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-security
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-ssl

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 2

2. Getting Started

In order to be immediately productive and as effective as possible using Spring Boot for Apache Geode/
Pivotal GemFire, it is helpful to understand the foundation on which this project was built.

Of course, our story begins with the Spring Framework and the core technologies and concepts built
into the Spring container.

Then, our journey continues with the extensions built into Spring Data for Apache Geode & Pivotal
GemFire (SDG2) to truly simplify the development of Apache Geode & Pivotal GemFire applications in a
Spring context, using Spring’s powerful abstractions and highly consistent programming model. This part
of the story was greatly enhanced in Spring Data Kay, with the SDG452 Annotation-based configuration
model. Though this new configuration approach using annotations provides sensible defaults out-of-
the-box, its use is also very explicit and assumes nothing. If any part of the configuration is ambiguous,
SDG will fail fast. SDG gives you "choice", so you still must tell SDG452 what you want.

Next, we venture into Spring Boot and all of its wonderfully expressive and highly opinionated
"convention over configuration" approach for getting the most out of your Spring, Apache Geode/Pivotal
GemFire based applications in the easiest, quickest and most reliable way possible. We accomplish this
by combining Spring Data for Apache Geode/Pivotal GemFire’s Annotation-based configuration with
Spring Boot’s auto-configuration to get you up and running even faster and more reliably so that you
are productive from the start.

As such, it would be pertinent to begin your Spring Boot education here.

Finally, we arrive at Spring Boot for Apache Geode & Pivotal GemFire (SBDG).

2Spring Data for Apache Geode and Spring Data for Pivotal GemFire are commonly known as SDG.

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#spring-core
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#using-boot-auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#getting-started

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 3

3. Using Spring Boot for Apache Geode and Pivotal
GemFire

To use Spring Boot for Apache Geode, declare the spring-geode-starter on your application
classpath:

Maven.

<dependencies>

 <dependency>

 <groupId>org.springframework.geode</groupId>

 <artifactId>spring-geode-starter</artifactId>

 <version>1.1.10.RELEASE</version>

 </dependency>

</dependencies

Gradle.

dependencies {

 compile 'org.springframework.geode:spring-geode-starter:1.1.10.RELEASE'

}

Tip

To use Pivotal GemFire in place of Apache Geode, simply change the artifactId from
spring-geode-starter to spring-gemfire-starter.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 4

4. Building ClientCache Applications
The first, opinionated option provided to you by Spring Boot for Apache Geode & Pivotal GemFire
(SBDG) out-of-the-box is a ClientCache instance, simply by declaring either Spring Boot for Apache
Geode or Spring Boot for Pivotal GemFire on your application classpath.

It is assumed that most application developers using Spring Boot to build applications backed by either
Apache Geode or Pivotal GemFire will be building cache client applications deployed in an Apache
Geode or Pivotal GemFire Client/Server topology. A client/server topology is the most common and
traditional architecture employed by enterprise applications.

For example, you can begin building a Spring Boot, Apache Geode or Pivotal GemFire, ClientCache
application with either the spring-geode-starter or spring-gemfire-starter on your
application’s classpath:

Spring Boot for Apache Geode on the application classpath.

<dependency>

 <groupId>org.springframework.geode</groupId>

 <artifactId>spring-geode-starter</artifactId>

</dependency>

Then, you configure and bootstrap your Spring Boot, Apache Geode ClientCache application with
the following main application class:

Spring Boot, Apache Geode ClientCache Application.

@SpringBootApplication

public SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {

 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class, args);

 }

}

Your application now has a ClientCache instance, which is able to connect to an Apache Geode or
Pivotal GemFire server running on localhost, listening on the default CacheServer port, 40404.

By default, an Apache Geode or Pivotal GemFire server (i.e. CacheServer) must be running in order
to use the ClientCache instance. However, it is perfectly valid to create a ClientCache instance
and perform data access operations using LOCAL Regions. This is very useful during development.

Tip

To develop with LOCAL Regions, you only need to define your cache Regions with the
ClientRegionShortcut.LOCAL data management policy.

When you are ready to switch from your local development environment (IDE) to a client/server
architecture in a managed environment, you simply change the data management policy of the client
Region from LOCAL back to the default PROXY, or even a CACHING_PROXY, data management policy
which will cause the data to be sent/received to and from 1 or more servers, respectively.

Tip

Compare and contrast the above configuration with Spring Data for Apache Geode/Pivotal
GemFire’s approach.

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientCache.html
https://geode.apache.org/docs/guide/16/topologies_and_comm/cs_configuration/chapter_overview.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#LOCAL
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-geode-applications

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 5

It is uncommon to ever need a direct reference to the ClientCache instance provided by SBDG
injected into your application components (e.g. @Service or @Repository beans defined in a Spring
ApplicationContext) whether you are configuring additional GemFire/Geode objects (e.g. Regions,
Indexes, etc) or simply using those objects indirectly in your applications. However, it is also possible
to do so if and when needed.

For example, perhaps you want to perform some additional ClientCache initialization in a Spring Boot
ApplicationRunner on startup:

Injecting a GemFireCache reference.

@SpringBootApplication

public SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {

 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class, args);

 }

 @Bean

 ApplicationRunner runAdditionalClientCacheInitialization(GemFireCache gemfireCache) {

 return args -> {

 ClientCache clientCache = (ClientCache) gemfireCache;

 // perform additional ClientCache initialization as needed

 };

 }

}

4.1 Building Embedded (Peer & Server) Cache Applications

What if you want to build an embedded, peer Cache application instead?

Perhaps you need an actual peer cache member, configured and bootstrapped with Spring Boot, along
with the ability to join this member to a (possibly) existing cluster (of data servers) as a peer. Well, you
can do that too.

Remember the 2nd goal in Spring Boot’s documentation:

Be opinionated out of the box but get out of the way quickly as requirements start to
diverge from the defaults.

It is the 2nd part, "get out of the way quickly as requirements start to diverge from the defaults" that
I refer to here.

If your application requirements demand you use Spring Boot to configure and bootstrap an embedded,
peer Cache Apache Geode or Pivotal GemFire application, then simply declare your intentions with
either SDG’s @PeerCacheApplication annotation, or alternatively, if you need to enable connections
from ClientCache apps as well, use the SDG @CacheServerApplication annotation:

Spring Boot, Apache Geode/Pivotal GemFire CacheServer Application.

@SpringBootApplication

@CacheServerApplication(name = "MySpringBootApacheGeodeCacheServerApplication")

public SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {

 SpringApplication.run(SpringBootApacheGeodeCacheServerApplication.class, args);

 }

}

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/ApplicationRunner.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#getting-started-introducing-spring-boot
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 6

Tip

An Apache Geode/Pivotal GemFire "server" is not necessarily a “CacheServer” capable of serving
cache clients. It is merely a peer member in the GemFire/Geode cluster (a.k.a. distributed system)
that stores and manages data.

By explicitly declaring the @CacheServerApplication annotation, you are telling Spring Boot that
you do not want the default, ClientCache instance, but rather an embedded, peer Cache instance
with a CacheServer component, which enables connections from ClientCache apps.

You can also enable 2 other GemFire/Geode services, an embedded Locator, which allows clients or
even other peers to "locate" servers in a cluster, as well as an embedded Manager, which allows the
GemFire/Geode application process to be managed and monitored using Gfsh, GemFire/Geode’s shell
tool:

Spring Boot, Apache Geode/Pivotal GemFire CacheServer Application with Locator and Manager
services enabled.

@SpringBootApplication

@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication")

@EnableLocator

@EnableManager

public SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {

 SpringApplication.run(SpringBootApacheGeodeCacheServerApplication.class, args);

 }

}

Then, you can use Gfsh to connect to and manage this server:

https://geode.apache.org/docs/guide/16/tools_modules/gfsh/chapter_overview.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 7

$ echo $GEMFIRE

/Users/jblum/pivdev/apache-geode-1.2.1

$ gfsh

 _________________________ __

 / _____/ ______/ ______/ /____/ /

 / / __/ /___ /_____ / _____ /

 / /__/ / ____/ _____/ / / / /

/______/_/ /______/_/ /_/ 1.2.1

Monitor and Manage Apache Geode

gfsh>connect

Connecting to Locator at [host=localhost, port=10334] ..

Connecting to Manager at [host=10.0.0.121, port=1099] ..

Successfully connected to: [host=10.0.0.121, port=1099]

gfsh>list members

 Name | Id

--- |

 --

SpringBootApacheGeodeCacheServerApplication |

 10.0.0.121(SpringBootApacheGeodeCacheServerApplication:29798)<ec><v0>:1024

gfsh>

gfsh>describe member --name=SpringBootApacheGeodeCacheServerApplication

Name : SpringBootApacheGeodeCacheServerApplication

Id : 10.0.0.121(SpringBootApacheGeodeCacheServerApplication:29798)<ec><v0>:1024

Host : 10.0.0.121

Regions :

PID : 29798

Groups :

Used Heap : 168M

Max Heap : 3641M

Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build

Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build

Locators : localhost[10334]

Cache Server Information

Server Bind :

Server Port : 40404

Running : true

Client Connections : 0

You can even start additional servers in Gfsh, which will connect to your Spring Boot configured and
bootstrapped Apache Geode or Pivotal GemFire CacheServer application. These additional servers
started in Gfsh know about the Spring Boot, GemFire/Geode server because of the embedded Locator
service, which is running on localhost, listening on the default Locator port, 10334:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 8

gfsh>start server --name=GfshServer --log-level=config --disable-default-server

Starting a Geode Server in /Users/jblum/pivdev/lab/GfshServer...

...

Server in /Users/jblum/pivdev/lab/GfshServer on 10.0.0.121 as GfshServer is currently online.

Process ID: 30031

Uptime: 3 seconds

Geode Version: 1.2.1

Java Version: 1.8.0_152

Log File: /Users/jblum/pivdev/lab/GfshServer/GfshServer.log

JVM Arguments: -Dgemfire.default.locators=10.0.0.121:127.0.0.1[10334] -Dgemfire.use-

cluster-configuration=true -Dgemfire.start-dev-rest-api=false -Dgemfire.log-level=config

 -XX:OnOutOfMemoryError=kill -KILL %p -Dgemfire.launcher.registerSignalHandlers=true -

Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-core-1.2.1.jar:/Users/jblum/pivdev/apache-

geode-1.2.1/lib/geode-dependencies.jar

gfsh>list members

 Name | Id

--- |

 --

SpringBootApacheGeodeCacheServerApplication |

 10.0.0.121(SpringBootApacheGeodeCacheServerApplication:29798)<ec><v0>:1024

GfshServer | 10.0.0.121(GfshServer:30031)<v1>:1025

Perhaps you want to start the other way around. As developer, I may need to connect my Spring Boot
configured and bootstrapped GemFire/Geode server application to an existing cluster. You can start the
cluster in Gfsh by executing the following commands:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 9

gfsh>start locator --name=GfshLocator --port=11235 --log-level=config

Starting a Geode Locator in /Users/jblum/pivdev/lab/GfshLocator...

...

Locator in /Users/jblum/pivdev/lab/GfshLocator on 10.0.0.121[11235] as GfshLocator is currently online.

Process ID: 30245

Uptime: 3 seconds

Geode Version: 1.2.1

Java Version: 1.8.0_152

Log File: /Users/jblum/pivdev/lab/GfshLocator/GfshLocator.log

JVM Arguments: -Dgemfire.log-level=config -Dgemfire.enable-cluster-configuration=true -

Dgemfire.load-cluster-configuration-from-dir=false -Dgemfire.launcher.registerSignalHandlers=true -

Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-core-1.2.1.jar:/Users/jblum/pivdev/apache-

geode-1.2.1/lib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=10.0.0.121, port=1099]

Cluster configuration service is up and running.

gfsh>start server --name=GfshServer --log-level=config --disable-default-server

Starting a Geode Server in /Users/jblum/pivdev/lab/GfshServer...

....

Server in /Users/jblum/pivdev/lab/GfshServer on 10.0.0.121 as GfshServer is currently online.

Process ID: 30270

Uptime: 4 seconds

Geode Version: 1.2.1

Java Version: 1.8.0_152

Log File: /Users/jblum/pivdev/lab/GfshServer/GfshServer.log

JVM Arguments: -Dgemfire.default.locators=10.0.0.121[11235] -Dgemfire.use-cluster-configuration=true

 -Dgemfire.start-dev-rest-api=false -Dgemfire.log-level=config -XX:OnOutOfMemoryError=kill

 -KILL %p -Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true -

Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-core-1.2.1.jar:/Users/jblum/pivdev/apache-

geode-1.2.1/lib/geode-dependencies.jar

gfsh>list members

 Name | Id

----------- | --

GfshLocator | 10.0.0.121(GfshLocator:30245:locator)<ec><v0>:1024

GfshServer | 10.0.0.121(GfshServer:30270)<v1>:1025

Then, modify the SpringBootApacheGeodeCacheServerApplication class to connect to the
existing cluster, like so:

Spring Boot, Apache Geode/Pivotal GemFire CacheServer Application with Locator and Manager
services enabled.

@SpringBootApplication

@CacheServerApplication(name = "MySpringBootApacheGeodeCacheServerApplication", locators =

 "localhost[11235]")

public SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {

 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class, args);

 }

}

Tip

Notice I configured the SpringBootApacheGeodeCacheServerApplication class,
@CacheServerApplication annotation, locators property with the host and port (i.e.
"localhost[11235]") on which I started my Locator using Gfsh.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 10

After running your Spring Boot, Apache Geode CacheServer application again, and then running list
members in Gfsh, you should see:

gfsh>list members

 Name | Id

--- |

 --

GfshLocator | 10.0.0.121(GfshLocator:30245:locator)<ec><v0>:1024

GfshServer | 10.0.0.121(GfshServer:30270)<v1>:1025

SpringBootApacheGeodeCacheServerApplication |

 10.0.0.121(SpringBootApacheGeodeCacheServerApplication:30279)<v2>:1026

gfsh>describe member --name=SpringBootApacheGeodeCacheServerApplication

Name : SpringBootApacheGeodeCacheServerApplication

Id : 10.0.0.121(SpringBootApacheGeodeCacheServerApplication:30279)<v2>:1026

Host : 10.0.0.121

Regions :

PID : 30279

Groups :

Used Heap : 165M

Max Heap : 3641M

Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build

Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build

Locators : localhost[11235]

Cache Server Information

Server Bind :

Server Port : 40404

Running : true

Client Connections : 0

In both scenarios, the Spring Boot configured and bootstrapped Apache Geode (or Pivotal GemFire)
server and the Gfsh Locator and Server formed a cluster.

While you can use either approach and Spring does not care, it is far more convenient to use Spring
Boot and your IDE to form a small cluster while developing. By leveraging Spring profiles, it is far simpler
and much faster to configure and start a small cluster.

Plus, this is useful for rapidly prototyping, testing and debugging your entire, end-to-end application and
system architecture, all right from the comfort and familiarity of your IDE of choice. No additional tooling
(e.g. Gfsh) or knowledge is required to get started quickly and easily.

Just build and run it!

Tip

Be careful to vary your port numbers for the embedded services, like the CacheServer,
Locators and Manager, especially if you start multiple instances, otherwise you will run into a
java.net.BindException due to port conflicts.

Tip

See the Appendix, Section 17.5, “Running an Apache Geode/Pivotal GemFire cluster using Spring
Boot from your IDE” for more details.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 11

5. Externalized Configuration

Like Spring Boot itself (see here), Spring Boot for Apache Geode and Pivotal GemFire (SBDG) supports
externalized configuration.

By externalized configuration, we mean configuration meta-data stored in a Spring Boot
application.properties file, for instance. Properties can even be delineated by concern, broken
out into individual properties files, that are perhaps only enabled by a specific Profile.

There are many other powerful things you can do, such as use placeholders in properties, encrypt
properties, and so on. What we are particularly interested in, in this section, is type-safety.

Like Spring Boot, Spring Boot for Apache Geode/Pivotal GemFire provides a hierarchy of classes used
to capture the configuration of several Apache Geode or Pivotal GemFire features in an associated
@ConfigurationProperties annotated class. Again, the configuration is specified as well-known,
documented properties in 1 or more Spring Boot application.properties files.

For instance, I may have configured my Spring Boot, ClientCache application as follows:

Spring Boot application.properties containing Spring Data properties for Apache Geode /
Pivotal GemFire.

Spring Boot application.properties used to configure Apache Geode

spring.data.gemfire.name=MySpringBootApacheGeodeApplication

Configure general cache properties

spring.data.gemfire.cache.copy-on-read=true

spring.data.gemfire.cache.log-level=debug

Configure ClientCache specific properties

spring.data.gemfire.cache.client.durable-client-id=123

spring.data.gemfire.cache.client.keep-alive=true

Configure a log file

spring.data.gemfire.logging.log-file=/path/to/geode.log

Configure the client's connection Pool to the servers in the cluster

spring.data.gemfire.pool.locators=10.105.120.16[11235],boombox[10334]

There are many other properties a user may use to externalize the configuration of their Spring Boot,
Apache Geode application. You may refer to the Spring Data for Apache Geode (SDG) configuration
annotations Javadoc for specific configuration properties as needed. Specifically, review the "enabling"
annotation attributes.

There may be cases where you require access to the configuration meta-data (specified in properties) in
your Spring Boot applications themselves, perhaps to further inspect or act on a particular configuration
setting.

Of course, you can access any property using Spring’s Environment abstraction, like so:

Using the Spring `Enviornment.

 boolean copyOnRead = environment.getProperty("spring.data.gemfire.cache.copy-on-read", Boolean.TYPE,

 false);

While using the Environment is a nice approach, you might need access to additional properties
or want to access the property values in a type-safe manner. Therefore, it is now possible, thanks to

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html#boot-features-external-config-application-property-files
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html#boot-features-external-config-profile-specific-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html#boot-features-external-config-placeholders-in-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html#boot-features-encrypting-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html#boot-features-external-config-typesafe-configuration-properties
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/package-frame.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/env/Environment.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 12

SBDG’s auto-configured configuration processor, to access the configuration meta-data using provided
@ConfigurationProperties classes.

Following on to our example above, I can now do the following:

Using GemFireProperties.

@Component

class MyApplicationComponent {

 @Autowired

 private GemFireProperties gemfireProperties;

 public void someMethodUsingGemFireProperties() {

 boolean copyOnRead = this.gemfireProperties.getCache().isCopyOnRead();

 // do something with `copyOnRead`

 }

 ...

}

Given a handle to GemFireProperties, you can access any of the configuration properties used to
configure either Apache Geode or Pivotal GemFire in a Spring context. You simply only need to autowire
an instance of GemFireProperties into your application component.

A complete reference to the SBDG provided @ConfigurationProperties classes and supporting
classes is available here.

5.1 Externalized Configuration of Spring Session

The same capability applies to accessing the externalized configuration of Spring Session when using
either Apache Geode or Pivotal GemFire as your (HTTP) Session state caching provider.

In this case, you simply only need to acquire a handle to an instance of the
SpringSessionProperties class.

As before, you would specify Spring Session for Apache Geode (SSDG) properties as follows:

Spring Boot application.properties for Spring Session using Apache Geode as the (HTTP)
Session state caching provider.

Spring Boot application.properties used to configure Apache Geode as a Session state caching provider

 in Spring Session

spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds=300

spring.session.data.gemfire.session.region.name=UserSessions

Then, in your application:

Using SpringSessionProperties.

https://docs.spring.io/autorepo/docs/spring-boot-data-geode-build/1.0.0.BUILD-SNAPSHOT/api//org/springframework/geode/boot/autoconfigure/configuration/GemFireProperties.html
https://docs.spring.io/autorepo/docs/spring-boot-data-geode-build/1.0.0.BUILD-SNAPSHOT/api//org/springframework/geode/boot/autoconfigure/configuration/package-frame.html
https://docs.spring.io/autorepo/docs/spring-boot-data-geode-build/1.0.0.BUILD-SNAPSHOT/api//org/springframework/geode/boot/autoconfigure/configuration/SpringSessionProperties.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 13

@Component

class MyApplicationComponent {

 @Autowired

 private SpringSessionProperties springSessionProperties;

 public void someMethodUsingSpringSessionProperties() {

 String sessionRegionName = this.springSessionProperties.getSession().getRegion().getName();

 // do something with `sessionRegionName`

 }

 ...

}

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 14

6. Caching using Apache Geode or Pivotal GemFire

One of the quickest, easiest and least invasive ways to get started using Apache Geode or Pivotal
GemFire in your Spring Boot applications is to use either Apache Geode or Pivotal GemFire as a caching
provider in Spring’s Cache Abstraction. SDG enables Apache Geode or Pivotal GemFire to function as
a caching provider in Spring’s Cache Abstraction.

Tip

See the Spring Data for Apache Geode Reference Guide for more details on the support and
configuration of Apache Geode or Pivotal GemFire as a caching provider in Spring’s Cache
Abstraction.

Tip

Make sure you thoroughly understand the concepts behind Spring’s Cache Abstraction before
you continue.

Tip

You can also refer to the relevant section on Caching in Spring Boot’s Reference Guide. Spring
Boot even provides auto-configuration support for a few, simple caching providers out-of-the-box.

Indeed, caching can be a very effective software design pattern to avoid the cost of invoking a potentially
expensive operation when, given the same input, the operation yields the same output every time.

Some classic examples of caching include, but are not limited to: looking up a customer by name or
account number, looking up a book by ISBN, geocoding a physical address, caching the calculation of
a person’s credit score when the person applies for a financial loan.

If you need the proven power of an enterprise-class caching solution, with strong consistency, high
availability and multi-site (WAN) capabilities, then you should consider Apache Geode, or alternatively
Pivotal GemFire. Additionally, Pivotal Software, Inc. offers Pivotal GemFire as a service, known as
Pivotal Cloud Cache (PCC), when deploying and running your Spring Boot applications in Pivotal Cloud
Foundry (PCF).

Spring’s declarative, annotation-based caching makes it extremely simple to get started with caching,
which is as easy as annotating your application service components with the appropriate Spring cache
annotations.

Tip

Spring’s declarative, annotation-based caching also supports JCache (JSR-107) annotations.

For example, suppose you want to cache the results of determining a person’s eligibility when applying
for a financial loan. A person’s financial status is not likely to change in the time that the computer runs
the algorithms to compute a person’s eligibility after all the financial information for the person has been
collected and submitted for review and processing.

Our application might consist of a financial loan service to process a person’s eligibility over a given
period of time:

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-store-configuration
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-store-configuration
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-store-configuration-gemfire
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:spring-cache-abstraction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-caching
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-strategies
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-caching
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#_supported_cache_providers
https://geode.apache.org/
https://pivotal.io/pivotal-gemfire
https://pivotal.io/
https://pivotal.io/platform/services-marketplace/data-management/pivotal-cloud-cache
https://pivotal.io/platform
https://pivotal.io/platform
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-annotations
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-jsr-107

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 15

@Service

class FinancialLoanApplicationService {

 @Cacheable("EligibilityDecisions", ...)

 EligibilityDecision processEligility(Person person, Timespan timespan) {

 ...

 }

}

Notice the @Cacheable annotation on the processEligibility(:Person, :Timespan) method
of our service class.

When the FinancialLoanApplicationService.processEligibility(..) method is called,
Spring’s caching infrastructure first consults the “EligibilityDecisions” cache to determine if a decision
has already been computed for the given person within the given span of time. If the person’s eligibility in
the given time frame has already been determined, then the existing decision is returned from the cache.
Otherwise, the processEligibility(..) method will be invoked and the result of the method will
be cached when the method returns, before returning the value to the caller.

Spring Boot for Apache Geode/Pivotal GemFire auto-configures Apache Geode or Pivotal GemFire
as the caching provider when either one is declared on the application classpath, and when no other
caching provider (e.g. Redis) has been configured.

If Spring Boot for Apache Geode/Pivotal GemFire detects that another cache provider has already been
configured, then neither Apache Geode nor Pivotal GemFire will function as the caching provider. This
allows users to configure, another store, e.g. Redis, as the caching provider and use Apache Geode or
Pivotal GemFire as your application’s persistent store, perhaps.

The only other requirement to enable caching in a Spring Boot application is for the declared caches
(as specified in Spring’s or JSR-107’s caching annotations) to have been created and already exist,
especially before the operation, on which caching has been applied, is invoked. This means the backend
data store must provide the data structure serving as the "cache". For Apache Geode or Pivotal GemFire,
this means a Region.

To configure the necessary Regions backing the caches declared in Spring’s cache
annotations, this is as simple as using Spring Data for Apache Geode or Pivotal GemFire’s
@EnableCachingDefinedRegions annotation.

The complete Spring Boot application looks like this:

package example.app;

import ...;

@SpringBootApplication

@EnableCachingDefinedRegions

class FinancialLoanApplication {

 public static void main(String[] args) {

 SpringApplication.run(FinancialLoanApplication.class, args);

 }

}

Tip

The FinancialLoanApplicationService is picked up by Spring’s classpath component
scan since this class is annotated with Spring’s @Service stereotype annotation.

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCachingDefinedRegions.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 16

Tip

You can set the DataPolicy of the Region created through the
@EnableCachingDefinedRegions annotation by setting the clientRegionShortcut to a
valid enumerated value.

Note

Spring Boot for Apache Geode/Pivotal GemFire does not recognize nor apply
the spring.cache.cache-names property. Instead, you should use SDG’s
@EnableCachingDefinedRegions on an appropriate Spring Boot application
@Configuration class.

6.1 Look-Aside Caching, Near Caching and Inline Caching

Three different types of caching patterns can be applied with Spring when using Apace Geode or Pivotal
GemFire for your application caching needs.

The 3 primary caching patterns include:

• Look-Aside Caching

• Near Caching

• Inline Caching

Look-Aside Caching

The caching pattern demonstrated in the example above is a form of Look-Aside Caching.

Essentially, the data of interest is searched for in the cache first, before calling a potentially expensive
operation, e.g. like an operation that makes an IO or network bound request resulting in either a blocking,
or a latency sensitive computation.

If the data can be found in the cache (stored in-memory to reduce latency) then the data is returned
without ever invoking the expensive operation. If the data cannot be found in the cache, then the
operation must be invoked. However, before returning, the result of the operation is cached for
subsequent requests when the the same input is requested again, by another caller resulting in much
improved response times.

Again, typical Look-Aside Caching pattern applied in your application code looks similar to the following:

Look-Aside Caching Pattern Applied.

https://content.pivotal.io/blog/an-introduction-to-look-aside-vs-inline-caching-patterns

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 17

@Service

class CustomerService {

 private final CustomerRepository customerRepository;

 @Cacheable("Customers")

 Customer findByAcccount(Account account) {

 // pre-processing logic here

 Customer customer = customerRepository.findByAccoundNumber(account.getNumber());

 // post-processing logic here

 return customer;

 }

}

In this design, the CustomerRepository is perhaps a JDBC or JPA/Hibernate backed implementation
accessing the external data source (i.e. RDBMS) directly. The @Cacheable annotation wraps, or
"decorates", the findByAccount(:Account):Customer operation to provide caching facilities.

Note

This operation may be expensive because it might validate the Customer’s Account before looking
up the Customer, pull multiple bits of information to retrieve the Customer record, and so on,
hence the need for caching.

Near Caching

Near Caching is another pattern of caching where the cache is collocated with the application. This is
useful when the caching technology is configured using a client/server arrangement.

We already mentioned that Spring Boot for Apache Geode & Pivotal GemFire provides an auto-
configured, ClientCache instance, out-of-the-box, by default. The ClientCache instance is most
effective when the data access operations, including cache access, is distributed to the servers in
a cluster accessible by the client, and in most cases, multiple clients. This allows other cache client
applications to access the same data. However, this also means the application will incur a network hop
penalty to evaluate the presence of the data in the cache.

To help avoid the cost of this network hop in a client/server topology, a local cache can be established,
which maintains a subset of the data in the corresponding server-side cache (i.e. Region). Therefore,
the client cache only contains the data of interests to the application. This "local" cache (i.e. client-side
Region) is consulted before forwarding the lookup request to the server.

To enable Near Caching when using either Apache Geode or Pivotal GemFire, simply change the
Region’s (i.e. the Cache in Spring’s Cache Abstraction) data management policy from PROXY (the
default) to CACHING_PROXY, like so:

@SpringBootApplication

@EnableCachingDefinedRegions(clientRegionShortcut = ClientRegionShortcut.CACHING_PROXY)

class FinancialLoanApplication {

 public static void main(String[] args) {

 SpringApplication.run(FinancialLoanApplication.class, args);

 }

}

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 18

Tip

The default, client Region data management policy is ClientRegionShortcut.PROXY. As
such, all data access operations are immediately forwarded to the server.

Tip

Also see the Apache Geode documentation concerning Client/Server Event Distribution
and specifically, "Client Interest Registration on the Server" when using local, client
CACHING_PROXY Regions to manage state in addition to the corresponding server-side Region.
This is necessary to receive updates on entries in the Region that might have been changed by
other clients accessing the same data.

Inline Caching

The final pattern of caching we’ll discuss is Inline Caching.

When employing Inline Caching and a cache miss occurs, the application service method may still not
be invoked since the a Region can be configured to invoke a loader to load the missing entry from an
external data source.

With Apache Geode and Pivotal GemFire, the cache, or using Apache Geode/Pivotal GemFire
terminology, the Region, can be configured with a CacheLoader. This CacheLoader is implemented to
retrieve missing values from some external data source, which could be an RDBMS or any other type
of data store (e.g. another NoSQL store like Apache Cassandra, MongoDB or Neo4j).

Tip

See the Apache Geode User Guide on Data Loaders for more details.

Likewise, an Apache Geode or Pivotal Gemfire Region can be configured with a CacheWriter. A
CacheWriter is responsible for writing any entry put into the Region to the backend data store, such as
an RDBMS. This is referred to as a "write-through" operations because it is synchronous. If the backend
data store fails to be written to then the entry will not be stored in the Region. This helps to ensure some
level of consistency between the backing data store and the Apache Geode or Pivotal GemFire Region.

Tip

It is also possible to implement Inline-Caching using an asynchronous, write-behind operation by
registering an AsyncEventListener on an AEQ tied to a server-side Region. You should consult
the Apache Geode User Guide for more details.

Note

Since SBDG is currently focused on the client-side, async, write-behind behavior is not currently
covered with extensive, convenient support, although, it is still very much possible to do.

The typical pattern of Inline Caching when applied to application code looks like the following:

Inline Caching Pattern Applied.

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#PROXY
https://geode.apache.org/docs/guide/16/developing/events/how_client_server_distribution_works.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheLoader.html
https://geode.apache.org/docs/guide/16/developing/outside_data_sources/how_data_loaders_work.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheWriter.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/asyncqueue/AsyncEventListener.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/asyncqueue/AsyncEventQueue.html
https://geode.apache.org/docs/guide/16/developing/events/implementing_write_behind_event_handler.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 19

@Service

class CustomerService {

 private CustomerRepository customerRepository;

 Customer findByAccount(Account account) {

 // pre-processing logic here

 Customer customer = customerRepository.findByAccountNumber(account.getNumber());

 // post-processing locic here.

 return customer;

 }

}

The main difference is, there are no Spring or JSR-107 caching annotations applied to the service
methods and the CustomerRepository is accessing Apache Geode or Pivotal GemFire directly and
NOT the RDBMS.

Implementing CacheLoaders, CacheWriters for Inline Caching

You can use Spring to configure a CacheLoader or CacheWriter as a bean in the Spring
ApplicationContext and then wire it to a Region. Given the CacheLoader or CacheWriter is a
Spring bean like any other bean in the Spring ApplicationContext, you can inject any DataSource
you like into the Loader/Writer.

While you can configure client Regions with CacheLoaders and CacheWriters, it is typically more
common to configure the corresponding server-side Region; for example:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 20

@SpringBootApplication

@CacheServerApplication

class FinancialLoanApplicationServer {

 public static void main(String[] args) {

 SpringApplication.run(FinancialLoanApplicationServer.class, args);

 }

 @Bean("EligibilityDecisions")

 PartitionedRegionFactoryBean<Object, Object> eligibilityDecisionsRegion(

 GemFireCache gemfireCache, CacheLoader decisionManagementSystemLoader,

 CacheWriter decisionManagemenSystemWriter) {

 PartitionedRegionFactoryBean<?, EligibilityDecision> eligibilityDecisionsRegion =

 new PartitionedRegionFactoryBean<>();

 eligibilityDecisionsRegion.setCache(gemfireCache);

 eligibilityDecisionsRegion.setCacheLoader(decisionManagementSystemLoader);

 eligibilityDecisionsRegion.setCacheWriter(decisionManagementSystemWriter);

 eligibilityDecisionsRegion.setClose(false);

 eligibilityDecisionsRegion.setPersistent(false);

 return eligibilityDecisionsRegion;

 }

 @Bean

 CacheLoader<?, EligibilityDecision> decisionManagementSystemLoader(

 DataSource dataSource) {

 return new DecisionManagementSystemLoader(dataSource);

 }

 @Bean

 CacheWriter<?, EligibilityDecision> decisionManagementSystemWriter(

 DataSource dataSource) {

 return new DecisionManagementSystemWriter(dataSource);

 }

 @Bean

 DataSource dataSource(..) {

 ...

 }

}

Then, you would implement the CacheLoader and CacheWriter interfaces as appropriate:

DecisionManagementSystemLoader.

class DecisionManagementSystemLoader implements CacheLoader<?, EligibilityDecision> {

 private final DataSource dataSource;

 DecisionManagementSystemLoader(DataSource dataSource) {

 this.dataSource = dataSource;

 }

 public EligibilityDecision load(LoadHelper<?, EligibilityDecision> helper) {

 Object key = helper.getKey();

 // Use the configured DataSource to load the value from an external data store.

 return ...

 }

}

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheLoader.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheWriter.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 21

Tip

SBDG provides the
org.springframework.geode.cache.support.CacheLoaderSupport

@FunctionalInterface to conveniently implement application CacheLoaders.

If the configured CacheLoader still cannot resolve the value, then the cache lookup operation results
in a miss and the application service method will then be invoked to compute the value.

DecisionManagementSystemWriter.

class DecisionManagementSystemWriter implements CacheWriter<?, EligibilityDecision> {

 private final DataSource dataSource;

 DecisionManagementSystemWriter(DataSource dataSource) {

 this.dataSource = dataSource;

 }

 public void beforeCreate(EntryEvent<?, EligiblityDecision> entryEvent) {

 // Use configured DataSource to save (e.g. INSERT) the entry to the backend data store

 }

 public void beforeUpdate(EntryEvent<?, EligiblityDecision> entryEvent) {

 // Use the configured DataSource to save (e.g. UPDATE or UPSERT) the entry in the backend data store

 }

 public void beforeDestroy(EntryEvent<?, EligiblityDecision> entryEvent) {

 // Use the configured DataSource to delete (i.e. DELETE) the entry from the backend data store

 }

 ...

}

Tip

SBDG provides the
org.springframework.geode.cache.support.CacheWriterSupport interface to
conveniently implement application CacheWriters.

Note

Of course, your CacheWriter implementation can use any data access technology to interface
with your backend data store (e.g. JDBC, Spring’s JdbcTemplate, JPA/Hibernate, etc). It is not
limited to only using a javax.sql.DataSource. In fact, we will present another, more useful
and convenient approach to implementing Inline Caching in the next section.

Inline Caching using Spring Data Repositories.

Spring Boot for Apache Geode & Pivotal GemFire (SBDG) now offers dedicated support and
configuration of Inline Caching using Spring Data Repositories.

This is very powerful because it allows you to:

1. Access any backend data store supported by Spring Data (e.g. Redis for Key/Value or other data
structures, MongoDB for Documents, Neo4j for Graphs, Elasticsearch for Search, and so on).

2. Use complex mapping strategies (e.g. ORM provided by JPA/Hibernate).

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 22

It is our belief that users should be putting data where it is most easily accessible. If you are accessing
and processing Documents, then most likely MongoDB (or Couchbase or another document store) might
be the most logical choice to manage your application’s Documents.

However, that does not mean you have to give up Apache Geode or Pivotal GemFire in your application/
system architecture. You can leverage each data store for what it is good at. While MongoDB is good at
Document handling, Apache Geode is a highly valuable choice for consistency, high availability, multi-
site, low-latency/high-throughput scale-out Use Cases.

As such, using Apache Geode and Pivotal GemFire’s CacheLoader/CacheWriter mechanism
provides a integration point between itself and other data stores to best serve your Use Case and
application requirements/needs.

And now, SBDG just made this even easier.

EXAMPLE

Let’s say you are using JPA/Hibernate to access (store and retrieve) data in a Oracle Database.

Then, you can configure Apache Geode to read/write-through to the backend Oracle Database when
performing cache (Region) operations by delegating to a Spring Data (JPA) Repository.

The configuration might look something like:

Inline Caching configuration using SBDG.

@SpringBootApplication

@EntityScan(basePackageClasses = Customer.class)

@EnableEntityDefinedRegions(basePackageClasses = Customer.class)

@EnableJpaRepositories(basePackageClasses = CustomerRepository.class)

class SpringBootOracleDatabaseApacheGeodeApplication {

 @Bean

 InlineCachingRegionConfigurer<Customer, Long> inlineCachingForCustomersRegionConfigurer(

 CustomerRepository customerRepository) {

 return new InlineCachingRegionConfigurer<>(customerRepository, Predicate.isEqual("Customers"));

 }

}

Out-of-the-box, SBDG provides the InlineCachingRegionConfigurer<ENTITY, ID> interface.

Given a Predicate to express and match the target Region by name along with a Spring Data
CrudRepository, the InlineCachingRegionConfigurer will configure and adapt the Spring
Data CrudRepository as a CacheLoader and CacheWriter for the Region (e.g. "Customers"), i.e.
it enables the Region to use Inline Caching.

You simply only need to declare InlineCachingRegionConfigurer as a bean in the Spring
application context and make the association between the Region (by name) and the appropriate Spring
Data CrudRepository.

In this example, we used JPA and Spring Data JPA to store/retrieve the data in the cache (Region) to/
from a backend database. But, you can inject any Spring Data Repository for any data store (e.g. Redis,
MongoDB, etc) that supports the Spring Data Repository abstraction.

Tip

If you only want to support oneway data access operations when using Inline
Caching, then you can use either the RepositoryCacheLoaderRegionConfigurer for

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 23

reads or the RepositoryCacheWriterRegionConfigurer for writes, instead of the
InlineCachingRegionConfigurer, which supports both reads and writes.

Tip

To see a similar implementation of Inline Caching using a Database (In-Memory, HSQLDB
Database) in action, have a look at this test class from the SBDG test suite. A dedicated sample
will be provided in a future release.

6.2 Advanced Caching Configuration

Both Apache Geode and Pivotal GemFire support additional caching capabilities to manage the entries
stored in the cache.

As you can imagine, given the cache entries are stored in-memory, it becomes important to monitor and
manage the available memory wisely. After all, by default, both Apache Geode and Pivotal GemFire
store data in the JVM Heap.

Several techniques can be employed to more effectively manage memory, such as using Eviction,
possibly overflowing to disk, configuring both entry Idle-Timeout (TTI) as well as Time-To-Live (TTL)
Expiration policies, configuring Compression, and using Off-Heap, or main memory.

There are several other strategies that can be used as well, as described in Managing Heap and Off-
heap Memory.

While this is well beyond the scope of this document, know that Spring Data for Apache Geode & Pivotal
GemFire make all of these configuration options simple.

6.3 Disable Caching

There may be cases where you do not want your Spring Boot application to cache application state
with Spring’s Cache Abstraction using either Apache Geode or Pivotal GemFire. In certain cases, you
may be using another Spring supported caching provider, such as Redis, to cache and manage your
application state, while, even in other cases, you may not want to use Spring’s Cache Abstraction at all.

Either way, you can specifically call out your Spring Cache Abstraction provider using the
spring.cache.type property in application.properties, as follows:

Use Redis as the Spring Cache Abstraction Provider.

#application.properties

spring.cache.type=redis

...

If you prefer not to use Spring’s Cache Abstraction to manage your Spring Boot application’s state at
all, then do the following:

Disable Spring’s Cache Abstraction.

#application.properties

spring.cache.type=none

...

https://github.com/spring-projects/spring-boot-data-geode/blob/master/spring-geode/src/test/java/org/springframework/geode/cache/inline/database/InlineCachingWithDatabaseIntegrationTests.java
https://geode.apache.org/docs/guide/16/developing/eviction/chapter_overview.html
https://geode.apache.org/docs/guide/16/developing/storing_data_on_disk/chapter_overview.html
https://geode.apache.org/docs/guide/16/developing/expiration/chapter_overview.html
https://geode.apache.org/docs/guide/16/managing/region_compression.html
https://geode.apache.org/docs/guide/16/managing/heap_use/off_heap_management.html
https://geode.apache.org/docs/guide/16/managing/heap_use/heap_management.html
https://geode.apache.org/docs/guide/16/managing/heap_use/heap_management.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-regions
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 24

See Spring Boot docs for more details.

Tip

It is possible to include multiple providers on the classpath of your Spring Boot application. For
instance, you might be using Redis to cache your application’s state while using either Apache
Geode or Pivotal GemFire as your application’s persistent store (System of Record).

Note

Spring Boot does not properly recognize spring.cache.type=[gemfire|geode] even
though Spring Boot for Apache Geode/Pivotal GemFire is setup to handle either of these property
values (i.e. either “gemfire” or “geode”).

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-caching.html#boot-features-caching-provider-none

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 25

7. Data Access with GemfireTemplate
There are several ways to access data stored in Apache Geode.

For instance, developers may choose to use the Region API directly. If developers are driven by the
application’s domain context, they might choose to leverage the power of Spring Data Repositories
instead.

While using the Region API directly offers flexibility, it couples your application to Apache Geode, which
is usually undesirable and unnecessary. While using Spring Data Repositories provides a very powerful
and convenient abstraction, you give up flexibility provided by a lower level API.

A good comprise is to use the Template pattern. Indeed, this pattern is consistently and widely used
throughout the entire Spring portfolio.

For example, there is the JdbcTemplate and JmsTemplate, which are provided by the core Spring
Framework.

Other Spring Data modules, such as Spring Data Redis, offer the RedisTemplate, and Spring Data for
Apache Geode/Pivotal GemFire (SDG) offers the GemfireTemplate.

The GemfireTemplate provides a highly consistent and familiar API to perform data access operations
on Apache Geode or Pivotal GemFire cache Regions.

GemfireTemplate offers:

1. Simple, consistent and convenient data access API to perform CRUD and basic query operations
on cache Regions.

2. Use of Spring Framework’s consistent, data access Exception Hierarchy.

3. Automatic enlistment in the presence of local, cache transactions.

4. Protection from Region API breaking changes.

Given these conveniences, Spring Boot for Apache Geode & Pivotal GemFire (SBDG) will auto-
configure GemfireTemplate beans for each Region present in the GemFire/Geode cache.

Additionally, SBDG is careful not to create a GemfireTemplate if the user has already declared a
GemfireTemplate bean in the Spring ApplicationContext for a given Region.

7.1 Explicitly Declared Regions

Given an explicitly declared Region bean definition:

@Configuration

class GemFireConfiguration {

 @Bean("Example")

 ClientRegionFactoryBean<?, ?> exampleRegion (GemFireCache gemfireCache) {

 ...

 }

}

SBDG will automatically create a GemfireTemplate bean for the "Example" Region using a
bean name "exampleTemplate". SBDG will name the GemfireTemplate bean after the Region by
converting the first letter in the Region’s name to lowercase and appending the word "Template" to the
bean name.

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jms/core/JmsTemplate.html
https://docs.spring.io/spring-data/redis/docs/current/api/org/springframework/data/redis/core/RedisTemplate.html
https://docs.spring.io/spring-data/gemfire/docs/current/api/org/springframework/data/gemfire/GemfireTemplate.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#dao-exceptions
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 26

In a managed Data Access Object (DAO), I can inject the Template, like so:

@Repository

class ExampleDataAccessObject {

 @Autowired

 @Qualifier("exampleTemplate")

 private GemfireTemplate exampleTemplate;

}

It’s advisable, especially if you have more than 1 Region, to use the @Qualifier annotation to qualify
which GemfireTemplate bean you are specifically referring as demonstrated above.

7.2 Entity-defined Regions

SBDG auto-configures GemfireTemplate beans for Entity-defined Regions.

Given the following entity class:

@Region("Customers")

class Customer {

 ...

}

And configuration:

@Configuration

@EnableEntityDefinedRegions(basePackageClasses = Customer.class}

class GemFireConfiguration {

 ...

}

SBDG auto-configures a GemfireTemplate bean for the "Customers" Region named
"customersTemplate", which you can then inject into an application component:

@Service

class CustomerService {

 @Bean

 @Qualifier("customersTemplate")

 private GemfireTemplate customersTemplate;

}

Again, be careful to qualify the GemfireTemplate bean injection if you have multiple Regions, whether
declared explicitly or implicitly, such as when using the @EnableEntityDefineRegions annotation.

7.3 Caching-defined Regions

SBDG auto-configures GemfireTemplate beans for Caching-defined Regions.

When you are using Spring Framework’s Cache Abstraction backed by either Apache Geode or Pivotal
GemFire, 1 of the requirements is to configure Regions for each of the caches specified in the Caching
Annotations of your application service components.

Fortunately, SBDG makes enabling and configuring caching easy and automatic out-of-the-box.

Given a cacheable application service component:

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-referenceintegration.html#cache-annotations
https://docs.spring.io/spring/docs/current/spring-framework-referenceintegration.html#cache-annotations

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 27

@Service

class CacheableCustomerService {

 @Bean

 @Qualifier("customersByNameTemplate")

 private GemfireTemplate customersByNameTemplate;

 @Cacheable("CustomersByName")

 public Customer findBy(String name) {

 return toCustomer(customersByNameTemplate.query("name = " + name));

 }

}

And configuration:

@Configuration

@EnableCachingDefinedRegions

class GemFireConfiguration {

 @Bean

 public CustomerService customerService() {

 return new CustomerService();

 }

}

SBDG auto-configures a GemfireTemplate bean named "customersByNameTemplate" used to
perform data access operations on the "CustomersByName" (@Cacheable) Region, which you can
inject into any managed application component, as shown above.

Again, be careful to qualify the GemfireTemplate bean injection if you have multiple Regions, whether
declared explicitly or implicitly, such as when using the @EnableCachingDefineRegions annotation.

Warning

There are certain cases where autowiring (i.e. injecting) GemfireTemplate beans auto-
configured by SBDG for Caching-defined Regions into your application components
will not always work! This has to do with the Spring Container bean creation
process. In those case you may need to lazily lookup the GemfireTemplate

as needed, using applicationContext.getBean("customersByNameTemplate",

GemfireTemplate.class). This is certainly not ideal but works when autowiring does not.

7.4 Native-defined Regions

SBDG will even auto-configure GemfireTemplate beans for Regions defined using Apache Geode
and Pivotal GemFire native configuration meta-data, such as cache.xml.

Given the following GemFire/Geode native cache.xml:

<?xml version="1.0" encoding="UTF-8"?>

<client-cache xmlns="http://geode.apache.org/schema/cache"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/schema/cache/

cache-1.0.xsd"

 version="1.0">

 <region name="Example" refid="LOCAL"/>

</client-cache>

And Spring configuration:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 28

@Configuration

@EnableGemFireProperties(cacheXmlFile = "cache.xml")

class GemFireConfiguration {

 ...

}

SBDG will auto-configure a GemfireTemplate bean named "exampleTemplate" after the "Example"
Region defined in cache.xml. This Template can be injected like any other Spring managed bean:

@Service

class ExampleService {

 @Autowired

 @Qualifier("exampleTemplate")

 private GemfireTemplate exampleTemplate;

}

The same rules as above apply when multiple Regions are present.

7.5 Template Creation Rules

Fortunately, SBDG is careful not to create a GemfireTemplate bean for a Region if a Template by
the same name already exists. For example, if you defined and declared the following configuration:

@Configuration

@EnableEntityDefinedRegions(basePackageClasses = Customer.class)

class GemFireConfiguration {

 @Bean

 public GemfireTemplate customersTemplate(GemFireCache cache) {

 return new GemfireTemplate(cache.getRegion("/Customers");

 }

}

Using our same Customers class, as above:

@Region("Customers")

class Customer {

 ...

}

Because you explicitly defined the "customersTemplate" bean, SBDG will not create a Template for the
"Customers" Region automatically. This applies regardless of how the Region was created, whether
using @EnableEntityDefinedRegions, @EnableCachingDefinedRegions, declaring Regions
explicitly or defining Regions natively.

Even if you name the Template differently from the Region for which the Template was configured,
SBDG will conserve resources and not create the Template.

For example, suppose you named the GemfireTemplate bean, "vipCustomersTemplate", even
though the Region name is "Customers", based on the @Region annotated Customer class, which
specified Region "Customers".

With the following configuration, SBDG is still careful not to create the Template:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 29

@Configuration

@EnableEntityDefinedRegions(basePackageClasses = Customer.class)

class GemFireConfiguration {

 @Bean

 public GemfireTemplate vipCustomersTemplate(GemFireCache cache) {

 return new GemfireTemplate(cache.getRegion("/Customers");

 }

}

SBDG identifies that your "vipCustomersTemplate" is the Template used with the "Customers" Region
and SBDG will not create the "customersTemplate" bean, which would result in 2 GemfireTemplate
beans for the same Region.

Note

The name of your Spring bean defined in JavaConfig is the name of the method if the Spring bean
is not explicitly named using the name (or value) attribute of the @Bean annotation.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 30

8. Spring Data Repositories

Using Spring Data Repositories with Apache Geode or Pivotal GemFire makes short work of data access
operations when using either Apache Geode or Pivotal GemFire as your System of Record (SOR) to
persist your application’s state.

Spring Data Repositories provides a convenient and highly powerful way to define basic CRUD and
simple query data access operations easily just by specifying the contract of those data access
operations in a Java interface.

Spring Boot for Apache Geode & Pivotal GemFire auto-configures the Spring Data for Apache Geode/
Pivotal GemFire Repository extension when either is declared on your application’s classpath. You do
not need to do anything special to enable it. Simply start coding your application-specific Repository
interfaces and the way you go.

For example:

Define a Customer class to model customers and map it to the GemFire/Geode "Customers" Region
using the SDG @Region mapping annotation:

Customer entity class.

package example.app.books.model;

import ...;

@Region("Customers")

class Customer {

 @Id

 private Long id;

 private String name;

}

Declare your Repository (a.k.a. Data Access Object (DAO)) for Customers…

CustomerRepository for peristing and accessing Customers.

package example.app.books.repo;

import ...;

interface CustomerRepository extends CrudRepository<Customer, Long> {

 List<Customer> findByLastNameLikeOrderByLastNameDescFirstNameAsc(String customerLastNameWildcard);

}

Then use the CustomerRepository in an application service class:

Inject and use the CustomerRepository.

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#gemfire-repositories
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/annotation/Region.html
https://en.wikipedia.org/wiki/Data_access_object

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 31

package example.app;

import ...;

@SpringBootApplication

@EnableEntityDefinedRegions(basePackageClasses = Customer.class)

class SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {

 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class, args);

 }

 @Bean

 ApplicationRunner runner(CustomerRepository customerRepository) {

 // Matches Williams, Wilson, etc.

 List<Customer> customers =

 customerRepository.findByLastNameLikeOrderByLastNameDescFirstNameAsc("Wil%");

 // process the list of matching customers...

 }

}

Again, see Spring Data Commons' Repositories abstraction in general, and Spring Data for Apache
Geode/Pivotal GemFire Repositories extension in particular, for more details.

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#gemfire-repositories

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 32

9. Function Implementations & Executions

9.1 Background

Distributed processing, particularly in conjunction with data access and mutation operations, is a very
effective and efficient use of clustered computing resources. This is along the same lines as MapReduce.

A naively conceived query returning potentially hundreds of thousands, or even millions of rows of data
in a result set back to the application that queried and requested the data can be very costly, especially
under load. Therefore, it is typically more efficient to move the processing and computations on the
predicated data set to where the data resides, perform the required computations, summarize the results
and then send the reduced data set back to the client.

Additionally, when the computations are handled in parallel, across the cluster of computing resources,
the operation can be performed much faster. This typically involves intelligently organizing the data using
various partitioning (a.k.a. sharding) strategies to uniformly balance the data set across the cluster.

Well, both Apache Geode and Pivotal GemFire address this very important application concern in its
Function Execution framework.

Spring Data for Apache Geode/Pivotal GemFire builds on this Function Execution framework by
enabling developers to implement and execute GemFire/Geode Functions using a very simple POJO-
based, annotation configuration model.

Tip

See here for the difference between Function implementation & executions.

Taking this 1 step further, Spring Boot for Apache Geode/Pivotal GemFire auto-configures and enables
both Function implementation and execution out-of-the-box. Therefore, you can immediately begin
writing Functions and invoking them without having to worry about all the necessary plumbing to begin
with. You can rest assured that it will just work as expected.

9.2 Applying Functions

Earlier, when we talked about caching, we described a FinancialLoanApplicationService class
that could process eligibility when a Person applied for a financial loan.

This can be a very resource intensive & expensive operation since it might involve collecting credit
and employment history, gathering information on existing, outstanding/unpaid loans, and so on and so
forth. We applied caching in order to not have to recompute, or redetermine eligibility every time a loan
office may want to review the decision with the customer.

But what about the process of computing eligibility in the first place?

Currently the application’s FinancialLoanApplicationService class seems to be designed to
fetch the data and perform the eligibility determination in place. However, it might be far better to
distribute the processing and even determine eligibility for a larger group of people all at once, especially
when multiple, related people are involved in a single decision, as is typically the case.

We implement an EligibilityDeterminationFunction class using SDG very simply as:

https://en.wikipedia.org/wiki/MapReduce
https://geode.apache.org/docs/guide/16/developing/function_exec/chapter_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-annotations
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-implementation
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-execution
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#_implementation_vs_execution

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 33

Function implementation.

@Component

class EligibilityDeterminationFunction {

 @GemfireFunction(HA = true, hasResult = true, optimizeForWrite=true)

 public EligibilityDecision determineEligibility(FunctionContext functionContext, Person person,

 Timespan timespan) {

 ...

 }

}

Using the SDG @GemfireFunction annotation, it is easy to implement our Function as a POJO
method. SDG handles registering this POJO method as a proper Function with GemFire/Geode
appropriately.

If we now want to call this Function from our Spring Boot, ClientCache application, then we simply
define a Function Execution interface with a method name matching the Function name, and targeting
the execution on the "EligibilityDecisions" Region:

Function execution.

@OnRegion("EligibilityDecisions")

interface EligibilityDeterminationExecution {

 EligibilityDecision determineEligibility(Person person, Timespan timespan);

}

We can then inject the EligibilityDeterminationExecution into our
FinancialLoanApplicationService like any other object/Spring bean:

Function use.

@Service

class FinancialLoanApplicationService {

 private final EligibilityDeterminationExecution execution;

 public LoanApplicationService(EligibilityDeterminationExecution execution) {

 this.execution = execution;

 }

 @Cacheable("EligibilityDecisions", ...)

 EligibilityDecision processEligility(Person person, Timespan timespan) {

 return this.execution.determineEligibility(person, timespan);

 }

}

Just like caching, no addition configuration is required to enable and find your application Function
implementations and executions. Simply build and run. Spring Boot for Apache Geode/Pivotal GemFire
handles the rest.

Tip

It is common to implement and register your application Functions on the server and execute
them from the client.

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/function/annotation/GemfireFunction.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 34

10. Continuous Query

Arguably, the most invaluable of applications are those that can process a stream of events as they
happen, and intelligently react in near real-time to the countless changes in the data over time. The
most useful of frameworks are those that can make processing a stream of events as they happen, as
easy as possible.

Spring Boot for Apache Geode & Pivotal GemFire does just that, without users having to perform
any complex setup or configure any necessary infrastructure components to enable such functionality.
Developers can simply define the criteria for the data they are interested in and implement a handler
to process the stream of events as they occur.

Apache Geode & Pivotal GemFire make defining criteria for data of interests easy when using
Continuous Query (CQ). With CQ, you can express the criteria matching the data of interests using
a query predicate. Apache Geode & Pivotal GemFire implements the Object Query Language (OQL)
for defining and executing queries. OQL is not unlike SQL, and supports projections, query predicates,
ordering and aggregates. And, when used in CQs, they execute continuously, firing events when the
data changes in such ways as to match the criteria expressed in the query predicate.

Spring Boot for Apache Geode/Pivotal GemFire combines the ease of expressing interests in data using
an OQL query statement with implementing the listener handler callback, in 1 easy step.

For example, suppose we want to perform some follow up action anytime a customer’s financial loan
application is either approved or denied.

First, the application model for our EligibilityDecision class might look something like:

EligibilityDecision class.

@Region("EligibilityDecisions")

class EligibilityDecision {

 private final Person person;

 private Status status = Status.UNDETERMINED;

 private final Timespan timespan;

 ...

 enum Status {

 APPROVED,

 DENIED,

 UNDETERMINED,

 }

}

Then, we can implement and declare our CQ event handler methods to be notified when a decision is
either APPROVED or DENIED:

https://geode.apache.org/docs/guide/16/developing/continuous_querying/chapter_overview.html
https://geode.apache.org/docs/guide/16/developing/querying_basics/query_basics.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 35

@Component

class EligibilityDecisionPostProcessor {

 @ContinuousQuery(name = "ApprovedDecisionsHandler",

 query = "SELECT decisions.*

 FROM /EligibilityDecisions decisions

 WHERE decisions.getStatus().name().equalsIgnoreCase('APPROVED')")

 public void processApprovedDecisions(CqEvent event) {

 ...

 }

 @ContinuousQuery(name = "DeniedDecisionsHandler",

 query = "SELECT decisions.*

 FROM /EligibilityDecisions decisions

 WHERE decisions.getStatus().name().equalsIgnoreCase('DENIED')")

 public void processDeniedDecisions(CqEvent event) {

 ...

 }

}

Thus, anytime eligibility is processed and a decision as been made, either approved or denied, our
application will get notified, and as an application developer, you are free to code your handler
and respond to the event anyway you like. And, because our Continuous Query handler class is
a component, or bean in the Spring ApplicationContext, you can auto-wire any other beans
necessary to carry out the application’s intended function.

This is not unlike Spring’s Annotation-driven listener endpoints used in (JMS) message listeners/
handlers, except in Spring Boot for Apache Geode/Pivotal GemFire, you do not need to do anything
special to enable this functionality. Just declare the @ContinuousQuery annotation on any POJO
method and off you go.

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-annotated

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 36

11. Data Serialization with PDX

Anytime data is overflowed or persisted to disk, transferred between clients and servers, peers in a
cluster or between different clusters in a multi-site topology, then all data stored in Apache Geode/
Pivotal GemFire must be serializable.

To serialize objects in Java, object types must implement the java.io.Serializable interface.
However, if you have a large number of application domain object types that currently do not implement
java.io.Serializable, then refactoring hundreds or even thousands of class types to implement
Serializable would be a tedious task just to store and manage those objects in Apache Geode or
Pivotal GemFire.

Additionally, it is not just your application domain object types you necessarily need to worry about
either. If you used 3rd party libraries in your application domain model, any types referred to by your
application domain object types stored in Apache Geode or Pivotal GemFire must be serializable too.
This type explosion may bleed into class types for which you may have no control over.

Furthermore, Java serialization is not the most efficient format given that meta-data about your types is
stored with the data itself. Therefore, even though Java serialized bytes are more descriptive, it adds
a great deal of overhead.

Then, along came serialization using Apache Geode or Pivotal GemFire’s PDX format. PDX stands for
Portable Data Exchange, and achieves 4 goals:

1. Separates type meta-data from the data itself making the bytes more efficient during transfer. Apache
Geode and Pivotal GemFire maintain a type registry storing type meta-data about the objects
serialized using PDX.

2. Supports versioning as your application domain types evolve. It is not uncommon to have old and
new applications deployed to production, running simultaneously, sharing data, and possibly using
different versions of the same domain types. PDX allows fields to be added or removed while still
preserving interoperability between old and new application clients without loss of data.

3. Enables objects stored as PDX bytes to be queried without being de-serialized. Constant de/
serialization of data is a resource intensive task adding to the latency of each data request when
redundancy is enabled. Since data must be replicated across peers in the cluster to preserve High
Availability (HA), and serialized to be transferred, keeping data serialized is more efficient when data
is updated frequently since it will likely need to be transferred again in order to maintain consistency
in the face of redundancy and availability.

4. Enables interoperability between native language clients (e.g. C/C++/C#) and Java language clients,
with each being able to access the same data set regardless from where the data originated.

However, PDX is not without its limitations either.

For instance, unlike Java serialization, PDX does not handle cyclic dependencies. Therefore, you must
be careful how you structure and design your application domain object types.

Also, PDX cannot handle field type changes.

Furthermore, while GemFire/Geode’s general Data Serialization handles deltas, this is not achievable
without de-serializing the object bytes since it involves a method invocation, which defeats 1 of the key
benefits of PDX, preserving format to avoid the cost of de/serialization.

https://geode.apache.org/docs/guide/16/developing/data_serialization/gemfire_pdx_serialization.html
https://geode.apache.org/docs/guide/16/developing/data_serialization/gemfire_data_serialization.html
https://geode.apache.org/docs/guide/16/developing/delta_propagation/chapter_overview.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 37

However, we think the benefits of using PDX greatly outweigh the limitations and therefore have enabled
PDX by default when using Spring Boot for Apache Geode/Pivotal GemFire.

There is nothing special you need to do. Simply code your types and rest assured that objects of those
types will be properly serialized when overflowed/persisted to disk, transferred between clients and
servers, or peers in a cluster and even when data is transferred over the WAN when using GemFire/
Geode’s multi-site topology.

EligibilityDecision is automatically serialiable without implementing Java Serializable.

@Region("EligibilityDecisions")

class EligibilityDecision {

 ...

}

Tip

Apache Geode/Pivotal GemFire does support the standard Java Serialization format.

11.1 SDG MappingPdxSerializer vs. GemFire/Geode’s
ReflectionBasedAutoSerializer

Under-the-hood, Spring Boot for Apache Geode/Pivotal GemFire enables and uses Spring Data for
Apache Geode/Pivotal GemFire’s MappingPdxSerializer to serialize your application domain objects
using PDX.

Tip

Refer to the SDG Reference Guide for more details on the MappingPdxSerializer class.

The MappingPdxSerializer offers several advantages above and beyond GemFire/Geode’s own
ReflectionBasedAutoSerializer class.

Tip

Refer to Apache Geode’s User Guide for more details about the
ReflectionBasedAutoSerializer.

The SDG MappingPdxSerializer offers the following capabilities:

1. PDX serialization is based on Spring Data’s powerful mapping infrastructure and meta-data, as
such…

2. Includes support for both includes and excludes with type filtering. Additionally, type filters
can be implemented using Java’s java.util.function.Predicate interface as opposed to
GemFire/Geode’s limited regex capabilities provided by the ReflectionBasedAutoSerializer
class. By default, MappingPdxSerializer excludes all types in the following packages: java,
org.apache.geode, org.springframework & com.gemstone.gemfire.

3. Handles transient object fields & properties when either Java’s transient keyword or Spring Data’s
@Transient annotation is used.

4. Handles read-only object properties.

https://geode.apache.org/docs/guide/16/developing/data_serialization/java_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-pdx
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/MappingPdxSerializer.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/ReflectionBasedAutoSerializer.html
https://geode.apache.org/docs/guide/16/developing/data_serialization/auto_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.type-filtering
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.transient-properties
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.read-only-properties

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 38

5. Automatically determines the identifier of your entities when you annotate the appropriate entity field
or property with Spring Data’s @Id annotation.

6. Allows o.a.g.pdx.PdxSerializers to be registered in order to customize the serialization of
nested entity field/property types.

Number two above deserves special attention since the MappingPdxSerializer "excludes" all Java,
Spring and Apache Geode/Pivotal GemFire types, by default. But, what happens when you need to
serialize 1 of those types?

For example, suppose you need to be able to serialize objects of type java.security.Principal.
Well, then you can override the excludes by registering an "include" type filter, like so:

package example.app;

import java.security.Principal;

import ...;

@SpringBootApplication

@EnablePdx(serializerBeanName = "myCustomMappingPdxSerializer")

class SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {

 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class, args);

 }

 @Bean

 MappingPdxSerializer myCustomMappingPdxSerializer() {

 MappingPdxSerializer customMappingPdxSerializer =

 MappingPdxSerializer.newMappginPdxSerializer();

 customMappingPdxSerializer.setIncludeTypeFilters(

 type -> Principal.class.isAssignableFrom(type));

 return customMappingPdxSerializer;

 }

}

Tip

Normally, you do not need to explicitly declare SDG’s @EnablePdx annotation to enable and
configure PDX. However, if you want to override auto-configuration, as we have demonstrated
above, then this is what you must do.

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/annotation/Id.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.custom-serialization

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 39

12. Security

This sections covers Security configuration for Apache Geode & Pivotal GemFire, which includes both
Authentication & Authorization (collectively, Auth) as well as Transport Layer Security (TLS) using SSL.

Note

Securing Data at Rest is not generally supported by either Apache Geode, Pivotal GemFire or
Pivotal Cloud Cache (PCC) yet.

12.1 Authentication & Authorization

Apache Geode & Pivotal GemFire employs Username and Password based Authentication along with
Role-based Authorization to secure your client to server data exchanges and operations.

Spring Data for Apache Geode & Pivotal GemFire (SDG) provides first-class support for Apache Geode
& Pivotal GemFire’s Security framework, which is based on the SecurityManager interface. Additionally,
Apache Geode’s Security framework is integrated with Apache Shiro, making the security for servers
an even easier and more familiar task.

Note

Eventually, support and integration with Spring Security will be provided by SBDG as well.

When you use Spring Boot for Apache Geode & Pivotal GemFire (SBDG), which builds on the bits
provided in Spring Data for Apache Geode & Pivotal GemFire (SDG), it makes short work of enabling
Auth in both your clients and servers.

Auth for Servers

The easiest and most standard way to enable Auth in the servers of your cluster is to simply define 1 or
more Apache Shiro Realms as beans in the Spring ApplicationContext.

For example:

Declaring an Apache Shiro Realm.

@Configuration

class ApacheGeodeSecurityConfiguration {

 @Bean

 DefaultLdapRealm ldapRealm(..) {

 return new DefaultLdapRealm();

 }

 ...

}

When an Apache Shiro Realm (e.g. DefaultLdapRealm) is declared and registered in the Spring
ApplicationContext as a Spring bean, Spring Boot will automatically detect this Realm bean (or
Realm beans if more than 1 is configured) and the Apache Geode & Pivotal GemFire servers in the
cluster will automatically be configured with Authentication and Authorization enabled.

https://geode.apache.org/docs/guide/16/managing/security/authentication_overview.html
https://geode.apache.org/docs/guide/16/managing/security/authorization_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-security
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/SecurityManager.html
https://shiro.apache.org/
https://spring.io/projects/spring-security
https://shiro.apache.org/realm.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 40

Alternatively, you can provide an custom, application-specific implementation of Apache Geode &
Pivotal GemFire’s SecurityManager interface, declared and registered as a bean in the Spring
ApplicationContext:

Declaring a custom Apache Geode or Pivotal GemFire SecurityManager.

@Configuration

class ApacheGeodeSecurityConfiguration {

 @Bean

 CustomSecurityManager customSecurityManager(..) {

 return new CustomSecurityManager();

 }

 ...

}

Spring Boot will discover your custom, application-specific SecurityManager implementation and
configure the servers in the Apache Geode or Pivotal GemFire cluster with Authentication and
Authorization enabled.

Tip

The Spring team recommends that you use Apache Shiro to manage the Authentication &
Authorization of your Apache Geode or Pivotal GemFire servers over implementing Apache
Geode or Pivotal GemFire’s SecurityManager interface.

Auth for Clients

When Apache Geode or Pivotal GemFire servers have been configured with Authentication &
Authorization enabled, then clients must authenticate when connecting.

Spring Boot for Apache Geode & Pivotal GemFire (SBDG) makes this easy, regardless of whether you
are running your Spring Boot, ClientCache applications in a local, non-managed environment or even
when running in a managed environment, like Pivotal CloudFoundry (PCF).

Non-Managed Auth for Clients

To enable Auth for clients connecting to a secure Apache Geode or Pivotal GemFire cluster, you simply
only need to set a username and password in your Spring Boot application.properties file:

Spring Boot client application.properties

spring.data.gemfire.security.username = jdoe

spring.data.gemfire.security.password = p@55w0rd

Spring Boot for Apache Geode & Pivotal GemFire (SBDG) will handle the rest.

Managed Auth for Clients

Enabling Auth for clients connecting to a Pivotal Cloud Cache (PCC) service instance in Pivotal
CloudFoundry (PCF) is even easier.

You do not need to do anything!

When your Spring Boot application uses SBDG and is bound to PCC, then when you push (i.e. deploy)
your app to PCF, Spring Boot for Apache Geode & Pivotal GemFire (SBDG) will extract the required

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/SecurityManager.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 41

Auth credentials from the environment that you setup when you provisioned a PCC service instance in
your PCF organization & space. PCC automatically assigns 2 users with roles "cluster_operator" and
"developer", respectively, to any Spring Boot application bound to the PCC service instance.

By default, SBDG will auto-configure your Spring Boot app to run with the user having the
"_cluster_operator" Role. This ensures that your Spring Boot app has the necessary permissions (i.e.
Authorization) to perform all data access operations on the servers in the PCC cluster including, for
example, pushing configuration metadata from the client to the servers in the PCC cluster.

See the section, <<[cloudfoundry-cloudcache-security-auth-runtime-user-configuration,Running Spring
Boot applications as a specific user>>, in the Pivotal Cloud Foundry chapter for additional details on
user authentication and authorization.

See the chapter titled 'Pivotal CloudFoundry' for more general details.

See the Pivotal Cloud Cache documentation for security details when using PCC and PCF.

12.2 Transport Layer Security using SSL

Securing data in motion is also essential to the integrity of your application.

For instance, it would not do much good to send usernames and passwords over plain text Socket
connections between your clients and servers, nor send sensitive data over those same connections.

Therefore, both Apache Geode & Pivotal GemFire support SSL between clients & servers, JMX clients
(e.g. Gfsh) and the Manager, HTTP clients when using the Developer REST API or Pulse, between
peers in the cluster, and when using the WAN Gateway to connect multiple sites (i.e. clusters).

Spring Data for Apache Geode & Pivotal GemFire (SDG) provides first-class support for configuring and
enabling SSL as well. Still, Spring Boot makes it even easier to configure and enable SSL, especially
during development.

Apache Geode & Pivotal GemFire require certain properties to be configured, which translate to the
appropriate javax.net.ssl.* properties required by the JRE, to create Secure Socket Connections
using JSSE.

But, ensuring that you have set all the required SSL properties correctly is an error prone and
tedious task. Therefore, Spring Boot for Apache Geode & Pivotal GemFire (SBDG) applies some basic
conventions for you, out-of-the-box.

Simply create a trusted.keystore, JKS-based KeyStore file and place it in 1 of 3 well-known
locations:

1. In your application JAR file at the root of the classpath.

2. In your Spring Boot application’s working directory.

3. In your user home directory (as defined by the user.home Java System property).

When this file is named trusted.keystore and is placed in 1 of these 3 well-known locations, Spring
Boot for Apache Geode & Pivotal GemFire (SBDG) will automatically configure your client to use SSL
Socket connections.

If you are using Spring Boot to configure and bootstrap an Apache Geode or Pivotal GemFire server:

https://docs.pivotal.io/p-cloud-cache/1-8/security.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-ssl
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 42

Spring Boot configured and bootstrapped Apache Geode or Pivotal GemFire server.

@SpringBootApplication

@CacheServerApplication

class SpringBootApacheGeodeCacheServerApplication {

 ...

}

Then, Spring Boot will apply the same procedure to enable SSL on the servers, between peers, as well.

Tip

During development it is convenient not to set a trusted.keystore password when
accessing the keys in the JKS file. However, it is highly recommended that you secure the
trusted.keystore file when deploying your application to a production environment.

If your trusted.keystore file is secured with a password, you will need to additionally specify the
following property:

Accessing a secure trusted.keystore.

Spring Boot application.properties

spring.data.gemfire.security.ssl.keystore.password = p@55w0rd!

You can also configure the location of the keystore and truststore files, if they are separate, and have
not been placed in 1 of the default, well-known locations searched by Spring Boot:

Accessing a secure trusted.keystore.

Spring Boot application.properties

spring.data.gemfire.security.ssl.keystore = /absolute/file/system/path/to/keystore.jks

spring.data.gemfire.security.ssl.keystore.password = keystorePassword

spring.data.gemfire.security.ssl.truststore = /absolute/file/system/path/to/truststore.jks

spring.data.gemfire.security.ssl.truststore.password = truststorePassword

See the SDG EnableSsl annotation for all the configuration attributes and the corresponding properties
expressed in application.properties.

12.3 Securing Data at Rest

Currently, neither Apache Geode nor Pivotal GemFire along with Spring Boot or Spring Data for Apache
Geode and Pivotal GemFire offer any support for securing your data while at rest (e.g. when your data
has been overflowed or persisted to disk).

To secure data at rest when using Apache Geode or Pivotal GemFire, with or without Spring, you
must employ 3rd party solutions like disk encryption, which is usually highly contextual and technology
specific.

For example, to secure data at rest using Amazon EC2, see Instance Store Encryption.

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 43

13. Spring Boot Actuator

Spring Boot for Apache Geode and Pivotal GemFire (SBDG) adds Spring Boot Actuator support
and dedicated HealthIndicators for Apache Geode and Pivotal GemFire. Equally, the provided
HealthIndicators will even work with Pivotal Cloud Cache, which is backed by Pivotal GemFire,
when pushing your Spring Boot applications to Pivotal CloudFoundry (PCC).

Spring Boot HealthIndicators provide details about the runtime operation and behavior of your
Apache Geode or Pivotal GemFire based Spring Boot applications. For instance, by querying the
right HealthIndicator endpoint, you would be able to get the current hit/miss count for your
Region.get(key) data access operations.

In addition to vital health information, SBDG provides basic, pre-runtime configuration meta-data about
the Apache Geode / Pivotal GemFire components that are monitored by Spring Boot Actuator. This
makes it easier to see how the application was configured all in one place, rather than in properties
files, Spring config, XML, etc.

The provided Spring Boot HealthIndicators fall under one of three categories:

• Base HealthIndicators that apply to all Apache Geode/Pivotal GemFire, Spring Boot
applications, regardless of cache type, such as Regions, Indexes and DiskStores.

• Peer Cache based HealthIndicators that are only applicable to peer Cache applications, such
as AsyncEventQueues, CacheServers, GatewayReceivers and GatewaySenders.

• And finally, ClientCache based HealthIndicators that are only applicable to ClientCache
applications, such as ContinuousQueries and connection Pools.

The following sections give a brief overview of all the available Spring Boot HealthIndicators
provided for Apache Geode/Pivotal GemFire, out-of-the-box.

13.1 Base HealthIndicators

The following section covers Spring Boot HealthIndicators that apply to both peer Cache and
ClientCache, Spring Boot applications. That is, these HealthIndicators are not specific to the
cache type.

In both Apache Geode and Pivotal GemFire, the cache instance is either a peer Cache instance,
which makes your Spring Boot application part of a GemFire/Geode cluster, or more commonly, a
ClientCache instance that talks to an existing cluster. Your Spring Boot application can only be one
cache type or the other and can only have a single instance of that cache type.

GeodeCacheHealthIndicator

The GeodeCacheHealthIndicator provides essential details about the (single) cache instance
(Client or Peer) along with the underlying DistributedSystem, the DistributedMember and
configuration details of the ResourceManager.

When your Spring Boot application creates an instance of a peer Cache, the DistributedMember
object represents your application as a peer member/node of the DistributedSystem formed from
a collection of connected peers (i.e. the cluster), to which your application also has access, indirectly
via the cache instance.

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/production-ready.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Cache.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/distributed/DistributedMember.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/distributed/DistributedSystem.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/GemFireCache.html#getDistributedSystem--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 44

This is no different for a ClientCache even though the client is technically not part of the peer/server
cluster. But, it still creates instances of the DistributedSystem and DistributedMember objects,
respectively.

The following configuration meta-data and health details about each object is covered:

Table 13.1. Cache Details

Name Description

geode.cache.name Name of the member in the distributed system.

geode.cache.closed Determines whether the cache has been closed.

geode.cache.cancel-
in-progress

Cancellation of operations in progress.

Table 13.2. DistributedMember Details

Name Description

geode.distributed-
member.id

DistributedMember identifier (used in logs internally).

geode.distributed-
member.name

Name of the member in the distributed system.

geode.distributed-
members.groups

Configured groups to which the member belongs.

geode.distributed-
members.host

Name of the machine on which the member is running.

geode.distributed-
members.process-

id

Identifier of the JVM process (PID).

Table 13.3. DistributedSystem Details

Name Description

geode.distributed-
system.member-

count

Total number of members in the cluster (1 for clients).

geode.distributed-
system.connected

Indicates whether the member is currently connected to the cluster.

geode.distributed-
system.reconnecting

Indicates whether the member is in a reconnecting state, which
happens when a network partition occurs and the member gets
disconnected from the cluster.

geode.distributed-
system.properties-

location

Location of the standard configuration properties.

https://geode.apache.org/docs/guide/16/topics/gemfire_properties.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 45

Name Description

geode.distributed-
system.security-

properties-location

Location of the security configuration properties.

Table 13.4. ResourceManager Details

Name Description

geode.resource-
manager.critical-
heap-percentage

Percentage of heap at which the cache is in danger of becoming
inoperable.

geode.resource-
manager.critical-

off-heap-
percentage

Percentage of off-heap at which the cache is in danger of becoming
inoperable.

geode.resource-
manager.eviction-
heap-percentage

Percentage of heap at which eviction begins on Regions configured
with a Heap LRU Eviction policy.

geode.resource-
manager.eviction-

off-heap-
percentage

Percentage of off-heap at which eviction begins on Regions
configured with a Heap LRU Eviction policy.

GeodeRegionsHealthIndicator

The GeodeRegionsHealthIndicator provides details about all the configured and known Regions
in the cache. If the cache is a client, then details will include all LOCAL, PROXY and CACHING_PROXY
Regions. If the cache is a peer, then the details will include all LOCAL, PARTITION and REPLICATE
Regions.

While the configuration meta-data details are not exhaustive, essential details along with basic
performance metrics are covered:

Table 13.5. Region Details

Name Description

geode.cache.regions.<name>.cloning-
enabled

Whether Region values are cloned on read (e.g. cloning-
enabled is true when cache transactions are used to prevent in-
place modifications).

geode.cache.regions.<name>.data-
policy

Policy used to manage the data in the Region (e.g. PARTITION,
REPLICATE, etc).

geode.cache.regions.<name>.initial-
capacity

Initial number of entries that can be held by a Region before it needs
to be resized.

geode.cache.regions.<name>.load-
factor

Load factor used to determine when to resize the Region when it
nears capacity.

https://geode.apache.org/docs/guide/16/topics/gemfire_properties.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 46

Name Description

geode.cache.regions.<name>.key-
constraint

Type constraint for Region keys.

geode.cache.regions.<name>.off-
heap

Determines whether this Region will store values in off-heap memory
(NOTE: Keys are always kept on Heap).

geode.cache.regions.<name>.pool-
name

If this Region is a client Region, then this property determines the
configured connection Pool (NOTE: Regions can have and use
dedicated Pools for their data access operations.)

geode.cache.regions.<name>.pool-
name

Determines the Scope of the Region, which plays a factor in the
Regions consistency-level, as it pertains to acknowledgements for
writes.

geode.cache.regions.<name>.value-
constraint

Type constraint for Region values.

Additionally, when the Region is a peer Cache PARTITION Region, then the following details are also
covered:

Table 13.6. Partition Region Details

Name Description

geode.cache.regions.<name>.partition.collocated-
with

Indicates this Region is collocated with another PARTITION Region,
which is necessary when performing equi-joins queries (NOTE:
distributed joins are not supported).

geode.cache.regions.<name>.partition.local-
max-memory

Total amount of Heap memory allowed to be used by this Region on
this node.

geode.cache.regions.<name>.partition.redundant-
copies

Number of replicas for this PARTITION Region, which is useful in
High Availability (HA) use cases.

geode.cache.regions.<name>.partition.total-
max-memory

Total amount of Heap memory allowed to be used by this Region
across all nodes in the cluster hosting this Region.

geode.cache.regions.<name>.partition.total-
number-of-buckets

Total number of buckets (shards) that this Region is divided up into
(NOTE: defaults to 113).

Finally, when statistics are enabled (e.g. using @EnableStatistics, (see here for more details), the
following details are available:

Table 13.7. Region Statistic Details

Name Description

geode.cache.regions.<name>.statistics.hit-
count

Number of hits for a Region entry.

geode.cache.regions.<name>.statistics.hit-
ratio

Ratio of hits to the number of Region.get(key) calls.

geode.cache.regions.<name>.statistics.last-
accessed-time

For an entry, determines the last time it was accessed with
Region.get(key).

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-statistics

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 47

Name Description

geode.cache.regions.<name>.statistics.last-
modified-time

For an entry, determines the time a Region’s entry value was last
modified.

geode.cache.regions.<name>.statistics.miss-
count

Returns the number of times that a Region.get was performed
and no value was found locally.

GeodeIndexesHealthIndicator

The GeodeIndexesHealthIndicator provides details about the configured Region Indexes used
in OQL query data access operations.

The following details are covered:

Table 13.8. Index Details

Name Description

geode.index.<name>.from-
clause

Region from which data is selected.

geode.index.<name>.indexed-
expression

The Region value fields/properties used in the Index expression.

geode.index.<name>.projection-
attributes

For all other Indexes, returns "", but for Map Indexes, returns
either "" or the specific Map keys that were indexed.

geode.index.<name>.regionRegion to which the Index is applied.

Additionally, when statistics are enabled (e.g. using @EnableStatistics; (see here for more details),
the following details are available:

Table 13.9. Index Statistic Details

Name Description

geode.index.<name>.statistics.number-
of-bucket-indexes

Number of bucket Indexes created in a Partitioned Region.

geode.index.<name>.statistics.number-
of-keys

Number of keys in this Index.

geode.index.<name>.statistics.number-
of-map-

indexed-keys

Number of keys in this Index at the highest-level.

geode.index.<name>.statistics.number-
of-values

Number of values in this Index.

geode.index.<name>.statistics.number-
of-updates

Number of times this Index has been updated.

geode.index.<name>.statistics.read-
lock-count

Number of read locks taken on this Index.

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-statistics

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 48

Name Description

geode.index.<name>.statistics.total-
update-time

Total amount of time (ns) spent updating this Index.

geode.index.<name>.statistics.total-
uses

Total number of times this Index has been accessed by an OQL
query.

GeodeDiskStoresHealthIndicator

The GeodeDiskStoresHealthIndicator provides details about the configured DiskStores in the
system/application. Remember, DiskStores are used to overflow and persist data to disk, including
type meta-data tracked by PDX when the values in the Region(s) have been serialized with PDX and
the Region(s) are persistent.

Most of the tracked health information pertains to configuration:

Table 13.10. DiskStore Details

Name Description

geode.disk-
store.<name>.allow-

force-compaction

Indicates whether manual compaction of the DiskStore is allowed.

geode.disk-
store.<name>.auto-

compact

Indicates if compaction occurs automatically.

geode.disk-
store.<name>.compaction-

threshold

Percentage at which the oplog will become compactable.

geode.disk-
store.<name>.disk-

directories

Location of the oplog disk files.

geode.disk-
store.<name>.disk-

directory-sizes

Configured and allowed sizes (MB) for the disk directory storing the
disk files.

geode.disk-
store.<name>.disk-

usage-critical-
percentage

Critical threshold of disk usage proportional to the total disk volume.

geode.disk-
store.<name>.disk-

usage-warning-
percentage

Warning threshold of disk usage proportional to the total disk
volume.

geode.disk-
store.<name>.max-

oplog-size

Maximum size (MB) allowed for a single oplog file.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 49

Name Description

geode.disk-
store.<name>.queue-

size

Size of the queue used to batch writes flushed to disk.

geode.disk-
store.<name>.time-

interval

Time to wait (ms) before writes are flushed to disk from the queue if
the size limit has not be reached.

geode.disk-
store.<name>.uuid

Universally Unique Identifier for the DiskStore across Distributed
System.

geode.disk-
store.<name>.write-

buffer-size

Size the of write buffer the DiskStore uses to write data to disk.

13.2 ClientCache HealthIndicators

The ClientCache based HealthIndicators provide additional details specifically for Spring Boot,
cache client applications. These HealthIndicators are only available when the Spring Boot
application creates a ClientCache instance (i.e. is a cache client), which is the default.

GeodeContinuousQueriesHealthIndicator

The GeodeContinuousQueriesHealthIndicator provides details about registered client
Continuous Queries (CQ). CQs enable client applications to receive automatic notification about events
that satisfy some criteria. That criteria can be easily expressed using the predicate of an OQL query (e.g.
“SELECT * FROM /Customers c WHERE c.age > 21”). Anytime data of interests is inserted or updated,
and matches the criteria specified in the OQL query predicate, an event is sent to the registered client.

The following details are covered for CQs by name:

Table 13.11. Continuous Query(CQ) Details

Name Description

geode.continuous-
query.<name>.oql-

query-string

OQL query constituting the CQ.

geode.continuous-
query.<name>.closed

Indicates whether the CQ has been closed.

geode.continuous-
query.<name>.closing

Indicates whether the CQ is the process of closing.

geode.continuous-
query.<name>.durable

Indicates whether the CQ events will be remembered between client
sessions.

geode.continuous-
query.<name>.running

Indicates whether the CQ is currently running.

geode.continuous-
query.<name>.stopped

Indicates whether the CQ has been stopped.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 50

In addition, the following CQ query and statistical data is covered:

Table 13.12. Continuous Query(CQ), Query Details

Name Description

geode.continuous-
query.<name>.query.number-

of-executions

Total number of times the query has been executed.

geode.continuous-
query.<name>.query.total-

execution-time

Total amount of time (ns) spent executing the query.

geode.continuous-
query.<name>.statistics.number-

of-deletes

Table 13.13. Continuous Query(CQ), Statistic Details

Name Description

geode.continuous-
query.<name>.statistics.number-

of-deletes

Number of Delete events qualified by this CQ.

geode.continuous-
query.<name>.statistics.number-

of-events

Total number of events qualified by this CQ.

geode.continuous-
query.<name>.statistics.number-

of-inserts

Number of Insert events qualified by this CQ.

geode.continuous-
query.<name>.statistics.number-

of-updates

Number of Update events qualified by this CQ.

In a more general sense, the GemFire/Geode Continuous Query system is tracked with the following,
additional details on the client:

Table 13.14. Continuous Query(CQ), Statistic Details

Name Description

geode.continuous-
query.count

Total count of CQs.

geode.continuous-
query.number-

of-active

Number of currently active CQs (if available).

geode.continuous-
query.number-

of-closed

Total number of closed CQs (if available).

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 51

Name Description

geode.continuous-
query.number-

of-created

Total number of created CQs (if available).

geode.continuous-
query.number-

of-stopped

Number of currently stopped CQs (if available).

geode.continuous-
query.number-

on-client

Number of CQs that are currently active or stopped (if available).

GeodePoolsHealthIndicator

The GeodePoolsHealthIndicator provide details about all the configured client connection Pools.
This HealthIndicator primarily provides configuration meta-data for all the configured Pools.

The following details are covered:

Table 13.15. Pool Details

Name Description

geode.pool.count Total number of client connection Pools.

geode.pool.<name>.destroyedIndicates whether the Pool has been destroyed.

geode.pool.<name>.free-
connection-timeout

Configured amount of time to wait for a free connection from the
Pool.

geode.pool.<name>.idle-
timeout

The amount of time to wait before closing unused, idle connections
not exceeding the configured number of minimum required
connections.

geode.pool.<name>.load-
conditioning-

interval

Controls how frequently the Pool will check to see if a connection to
a given server should be moved to a different server to improve the
load balance.

geode.pool.<name>.locatorsList of configured Locators.

geode.pool.<name>.max-
connections

Maximum number of connections obtainable from the Pool.

geode.pool.<name>.min-
connections

Minimum number of connections contained by the Pool.

geode.pool.<name>.multi-
user-authentication

Determines whether the Pool can be used by multiple authenticated
users.

geode.pool.<name>.online-
locators

Returns a list of living Locators.

geode.pool.<name>.pending-
event-count

Approximate number of pending subscription events maintained at
server for this durable client Pool at the time it (re)connected to the
server.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 52

Name Description

geode.pool.<name>.ping-
interval

How often to ping the servers to verify they are still alive.

geode.pool.<name>.pr-
single-hop-enabled

Whether the client will acquire a direct connection to the server
containing the data of interests.

geode.pool.<name>.read-
timeout

Number of milliseconds to wait for a response from a server before
timing out the operation and trying another server (if any are
available).

geode.pool.<name>.retry-
attempts

Number of times to retry a request after timeout/exception.

geode.pool.<name>.server-
group

Configures the group in which all servers this Pool connects to must
belong.

geode.pool.<name>.serversList of configured servers.

geode.pool.<name>.socket-
buffer-size

Socket buffer size for each connection made in this Pool.

geode.pool.<name>.statistic-
interval

How often to send client statistics to the server.

geode.pool.<name>.subscription-
ack-interval

Interval in milliseconds to wait before sending acknowledgements to
the cache server for events received from the server subscriptions.

geode.pool.<name>.subscription-
enabled

Enabled server-to-client subscriptions.

geode.pool.<name>.subscription-
message-

tracking-timeout

Time-to-Live period (ms), for subscription events the client has
received from the server.

geode.pool.<name>.subscription-
redundancy

Redundancy level for this Pools server-to-client subscriptions, which
is used to ensure clients will not miss potentially important events.

geode.pool.<name>.thread-
local-connections

Thread local connection policy for this Pool.

13.3 Peer Cache HealthIndicators

The peer Cache based HealthIndicators provide additional details specifically for Spring Boot,
peer cache member applications. These HealthIndicators are only available when the Spring Boot
application creates a peer Cache instance.

Note

The default cache instance created by Spring Boot for Apache Geode/Pivotal GemFire is a
ClientCache instance.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 53

Tip

To control what type of cache instance is created, such as a "peer", then you can explicitly declare
either the @PeerCacheApplication, or alternatively, the @CacheServerApplication,
annotation on your @SpringBootApplication annotated class.

GeodeCacheServersHealthIndicator

The GeodeCacheServersHealthIndicator provides details about the configured Apache Geode/
Pivotal GemFire CacheServers. CacheServer instances are required to enable clients to connect
to the servers in the cluster.

This HealthIndicator captures basic configuration meta-data and runtime behavior/characteristics
of the configured CacheServers:

Table 13.16. CacheServer Details

Name Description

geode.cache.server.countTotal number of configured CacheServer instances on this peer
member.

geode.cache.server.<index>.bind-
address

IP address of the NIC to which the CacheServer ServerSocket is
bound (useful when the system contains multiple NICs).

geode.cache.server.<index>.hostname-
for-clients

Name of the host used by clients to connect to the CacheServer
(useful with DNS).

geode.cache.server.<index>.load-
poll-interval

How often (ms) to query the load probe on the CacheServer.

geode.cache.server.<index>.max-
connections

Maximum number of connections allowed to this CacheServer.

geode.cache.server.<index>.max-
message-count

Maximum number of messages that can be enqueued in a client
queue.

geode.cache.server.<index>.max-
threads

Maximum number of Threads allowed in this CacheServer to service
client requests.

geode.cache.server.<index>.max-
time-

between-pings

Maximum time between client pings.

geode.cache.server.<index>.message-
time-to-live

Time (seconds) in which the client queue will expire.

geode.cache.server.<index>.portNetwork port to which the CacheServer ServerSocket is bound
and listening for the client connections.

geode.cache.server.<index>.runningDetermines whether this CacheServer is currently running and
accepting client connections.

geode.cache.server.<index>.socket-
buffer-size

Configured buffer size of the Socket connection used by this
CacheServer.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 54

Name Description

geode.cache.server.<index>.tcp-
no-delay

Configures the TCP/IP TCP_NO_DELAY setting on outgoing
Sockets.

In addition to the configuration settings shown above, the CacheServer’s ServerLoadProbe tracks
additional details about the runtime characteristics of the CacheServer, as follows:

Table 13.17. CacheServer Metrics and Load Details

Name Description

geode.cache.server.<index>.load.connection-
load

Load on the server due to client to server connections.

geode.cache.server.<index>.load.load-
per-connection

Estimate of the how much load each new connection will add to this
server.

geode.cache.server.<index>.load.subscription-
connection-load

Load on the server due to subscription connections.

geode.cache.server.<index>.load.load-
per-subscription-

connection

Estimate of the how much load each new subscriber will add to this
server.

geode.cache.server.<index>.metrics.client-
count

Number of connected clients.

geode.cache.server.<index>.metrics.max-
connection-count

Maximum number of connections made to this CacheServer.

geode.cache.server.<index>.metrics.open-
connection-count

Number of open connections to this CacheServer.

geode.cache.server.<index>.metrics.subscription-
connection-count

Number of subscription connections to this CacheServer.

GeodeAsyncEventQueuesHealthIndicator

The GeodeAsyncEventQueuesHealthIndicator provides details about the configured
AsyncEventQueues. AEQs can be attached to Regions to configure asynchronous, write-behind
behavior.

This HealthIndicator captures configuration meta-data and runtime characteristics for all AEQs,
as follows:

Table 13.18. AsyncEventQueue Details

Name Description

geode.async-
event-queue.count

Total number of configured AEQs.

geode.async-
event-

queue.<id>.batch-
conflation-enabled

Indicates whether batch events are conflated when sent.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 55

Name Description

geode.async-
event-

queue.<id>.batch-
size

Size of the batch that gets delivered over this AEQ.

geode.async-
event-

queue.<id>.batch-
time-interval

Max time interval that can elapse before a batch is sent.

geode.async-
event-

queue.<id>.disk-
store-name

Name of the disk store used to overflow & persist events.

geode.async-
event-

queue.<id>.disk-
synchronous

Indicates whether disk writes are sync or async.

geode.async-
event-

queue.<id>.dispatcher-
threads

Number of Threads used to dispatch events.

geode.async-
event-

queue.<id>.forward-
expiration-destroy

Indicates whether expiration destroy operations are forwarded to
AsyncEventListener.

geode.async-
event-

queue.<id>.max-
queue-memory

Maximum memory used before data needs to be overflowed to disk.

geode.async-
event-

queue.<id>.order-
policy

Order policy followed while dispatching the events to
AsyncEventListeners.

geode.async-
event-

queue.<id>.parallel

Indicates whether this queue is parallel (higher throughput) or serial.

geode.async-
event-

queue.<id>.persistent

Indicates whether this queue stores events to disk.

geode.async-
event-

queue.<id>.primary

Indicates whether this queue is primary or secondary.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 56

Name Description

geode.async-
event-

queue.<id>.size

Number of entries in this queue.

GeodeGatewayReceiversHealthIndicator

The GeodeGatewayReceiversHealthIndicator provide details about the configured (WAN)
GatewayReceivers, which are capable of receiving events from remote clusters when using Apache
Geode/Pivotal GemFire’s multi-site, WAN topology.

This HealthIndicator captures configuration meta-data along with the running state for each
GatewayReceiver:

Table 13.19. GatewayReceiver Details

Name Description

geode.gateway-
receiver.count

Total number of configured GatewayReceivers.

geode.gateway-
receiver.<index>.bind-

address

IP address of the NIC to which the GatewayReceiver
ServerSocket is bound (useful when the system contains multiple
NICs).

geode.gateway-
receiver.<index>.end-

port

End value of the port range from which the GatewayReceiver’s port
will be chosen.

geode.gateway-
receiver.<index>.host

IP address or hostname that Locators will tell clients (i.e.
GatewaySenders) that this GatewayReceiver is listening on.

geode.gateway-
receiver.<index>.max-

time-
between-pings

Maximum amount of time between client pings.

geode.gateway-
receiver.<index>.port

Port on which this GatewayReceiver listens for clients (i.e.
GatewaySenders).

geode.gateway-
receiver.<index>.running

Indicates whether this GatewayReceiver is running and accepting
client connections (from GatewaySenders).

geode.gateway-
receiver.<index>.socket-

buffer-size

Configured buffer size for the Socket connections used by this
GatewayReceiver.

geode.gateway-
receiver.<index>.start-

port

Start value of the port range from which the GatewayReceiver’s port
will be chosen.

https://geode.apache.org/docs/guide/16/topologies_and_comm/multi_site_configuration/chapter_overview.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 57

GeodeGatewaySendersHealthIndicator

The GeodeGatewaySendersHealthIndicator provides details about the configured
GatewaySenders. GatewaySenders are attached to Regions in order to send Region events to
remote clusters in Apache Geode/Pivotal GemFire’s multi-site, WAN topology.

This HealthIndicator captures essential configuration meta-data and runtime characteristics for
each GatewaySender:

Table 13.20. GatewaySender Details

Name Description

geode.gateway-
sender.count

Total number of configured GatewaySenders.

geode.gateway-
sender.<id>.alert-

threshold

Alert threshold (ms) for entries in this GatewaySender’s queue.

geode.gateway-
sender.<id>.batch-
conflation-enabled

Indicates whether batch events are conflated when sent.

geode.gateway-
sender.<id>.batch-

size

Size of the batches sent.

geode.gateway-
sender.<id>.batch-

time-interval

Max time interval that can elapse before a batch is sent.

geode.gateway-
sender.<id>.disk-

store-name

Name of the DiskStore used to overflow and persist queue events.

geode.gateway-
sender.<id>.disk-

synchronous

Indicates whether disk writes are sync or async.

geode.gateway-
sender.<id>.dispatcher-

threads

Number of Threads used to dispatch events.

geode.gateway-
sender.<id>.max-

queue-memory

Maximum amount of memory (MB) usable for this GatewaySender’s
queue.

geode.gateway-
sender.<id>.max-

parallelism-for-
replicated-region

geode.gateway-
sender.<id>.order-

policy

Order policy followed while dispatching the events to
GatewayReceivers.

https://geode.apache.org/docs/guide/16/topologies_and_comm/multi_site_configuration/chapter_overview.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 58

Name Description

geode.gateway-
sender.<id>.parallel

Indicates whether this GatewaySender is parallel (higher throughput)
or serial.

geode.gateway-
sender.<id>.paused

Indicates whether this GatewaySender is paused.

geode.gateway-
sender.<id>.persistent

Indicates whether this GatewaySender persists queue events to
disk.

geode.gateway-
sender.<id>.remote-

distributed-
system-id

Identifier for the remote distributed system.

geode.gateway-
sender.<id>.running

Indicates whether this GatewaySender is currently running.

geode.gateway-
sender.<id>.socket-

buffer-size

Configured buffer size for the Socket connections between this
GatewaySender and its receiving GatewayReceiver.

geode.gateway-
sender.<id>.socket-

read-timeout

Amount of time (ms) that a Socket read between this sending
GatewaySender and its receiving GatewayReceiver will block.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 59

14. Spring Session

This section covers auto-configuration of Spring Session using either Apache Geode or Pivotal GemFire
to manage (HTTP) Session state in a reliable (consistent), highly-available (replicated) and clustered
manner.

Spring Session provides an API and several implementations for managing a user’s session information.
It has the ability to replace the javax.servlet.http.HttpSession in an application container
neutral way along with proving Session IDs in HTTP headers to work with RESTful APIs.

Furthermore, Spring Session provides the ability to keep the HttpSession alive even when working with
WebSockets and reactive Spring WebFlux WebSessions.

A full discussion of Spring Session is beyond the scope of this document, and the reader is encouraged
to learn more by reading the docs and reviewing the samples.

Of course, Spring Boot for Apache Geode & Pivotal GemFire adds auto-configuration support to
configure either Apache Geode or Pivotal GemFire as the user’s session information management
provider when Spring Session for Apache Geode or Pivotal GemFire is on your Spring Boot application’s
classpath.

Tip

You can learn more about Spring Session for Apache Geode/Pivotal GemFire in the docs.

14.1 Configuration

There is nothing special that you need to do in order to use either Apache Geode or Pivotal GemFire
as a Spring Session provider, managing the (HTTP) Session state of your Spring Boot application.

Simply include the appropriate Spring Session dependency on your Spring Boot application’s classpath,
for example:

Maven dependency declaration.

 <dependency>

 <groupId>org.springframework.session</groupId>

 <artifactId>spring-session-data-geode</artifactId>

 <version>2.1.11.RELEASE</version>

 </dependency>

Tip

You may replace Apache Geode with Pivotal GemFire simply by changing the artifact from
spring-session-data-geode to spring-session-data-gemfire. The version number
is the same.

Then, begin your Spring Boot application as you normally would:

Spring Boot Application.

https://spring.io/projects/spring-session
https://docs.spring.io/spring-session/docs/current/reference/html5
https://docs.spring.io/spring-session/docs/current/reference/html5/#samples
https://github.com/spring-projects/spring-session-data-geode/blob/master/README.adoc
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/reference/html5

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 60

@SpringBootApplication

public MySpringBootApplication {

 public static void main(String[] args) {

 SpringApplication.run(MySpringBootApplication.class, args);

 }

 ...

}

That is it! Of course, you are free to create application-specific, Spring Web MVC Controllers to
interact with the HttpSession as needed by your application:

Application Controller using HttpSession.

@Controller

class MyApplicationController {

 @GetRequest(...)

 public String processGet(HttpSession session) {

 // interact with HttpSession

 }

}

The HttpSession is replaced by a Spring managed Session that will be stored in either Apache
Geode or Pivotal GemFire.

14.2 Custom Configuration

By default, Spring Boot for Apache Geode/Pivotal GemFire (SBDG) applies reasonable and sensible
defaults when configuring Apache Geode or Pivotal GemFire as the provider in Spring Session.

So, for instance, by default, SBDG set the session expiration timeout to 30 minutes. It also uses
a ClientRegionShortcut.PROXY as the client Region data management policy for the Apache
Geode/Pivotal GemFire Region managing the (HTTP) Session state when the Spring Boot application
is using a ClientCache, which it does by default.

However, what if the defaults are not sufficient for your application requirements?

Custom Configuration using Properties

Spring Session for Apache Geode/Pivotal GemFire publishes well-known configuration properties for
each of the various Spring Session configuration options when using Apache Geode or Pivotal GemFire
as the (HTTP) Session state management provider.

You may specify any of these properties in a Spring Boot application.properties file to adjust
Spring Session’s configuration when using Apache Geode or Pivotal GemFire.

In addition to the properties provided in and by Spring Session for Apache Geode/Pivotal
GemFire, Spring Boot for Apache Geode/Pivotal GemFire also recognizes and respects the
spring.session.timeout property as well as the server.servlet.session.timeout property
as discussed here.

Tip

spring.session.data.gemfire.session.expiration.max-inactive-interval-

seconds takes precedence over spring.session.timeout, which takes precedence over

https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/reference/html5/#httpsession-gemfire-configuration-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-session.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 61

server.servlet.session.timeout, when any combination of these properties have been
simultaneously configured in the Spring Environment of your application.

Custom Configuration using a Configurer

Spring Session for Apache Geode/Pivotal GemFire also provides the
SpringSessionGemFireConfigurer callback interface, which can be declared in your Spring
ApplicationContext to programmatically control the configuration of Spring Session when using
Apache Geode or Pivotal GemFire.

The SpringSessionGemFireConfigurer, when declared in the Spring ApplicationContext,
takes precedence over any of the Spring Session (for Apache Geode/Pivotal GemFire) configuration
properties, and will effectively override them when both are present.

More information on using the SpringSessionGemFireConfigurer can be found in the docs.

14.3 Disabling Session State Caching

There may be cases where you do not want your Spring Boot application to manage (HTTP) Session
state using either Apache Geode or Pivotal GemFire. In certain cases, you may be using another Spring
Session provider, such as Redis, to cache and manage your Spring Boot application’s (HTTP) Session
state, while, even in other cases, you do not want to use Spring Session to manage your (HTTP)
Session state at all. Rather, you prefer to use your Web Server’s (e.g. Tomcat) HttpSession state
management.

Either way, you can specifically call out your Spring Session provider using the
spring.session.store-type property in application.properties, as follows:

Use Redis as the Spring Session Provider.

#application.properties

spring.session.store-type=redis

...

If you prefer not to use Spring Session to manage your Spring Boot application’s (HTTP) Session state
at all, then do the following:

Use Web Server Session State Management.

#application.properties

spring.session.store-type=none

...

Again, see Spring Boot docs for more details.

Tip

It is possible to include multiple providers on the classpath of your Spring Boot application.
For instance, you might be using Redis to cache your application’s (HTTP) Session state while
using either Apache Geode or Pivotal GemFire as your application’s persistent store (System of
Record).

https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/support/SpringSessionGemFireConfigurer.html
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/reference/html5/#httpsession-gemfire-configuration-configurer
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-session.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 62

Note

Spring Boot does not properly recognize spring.session.store-type=[gemfire|geode]
even though Spring Boot for Apache Geode/Pivotal GemFire is setup to handle either of these
property values (i.e. either “gemfire” or “geode”).

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 63

15. Pivotal CloudFoundry

In most cases, when you "push" (i.e. "deploy") your Spring Boot applications to Pivotal CloudFoundry
(PCF) you will bind your app to 1 or more instances of the Pivotal Cloud Cache (PCC) service.

In a nutshell, Pivotal Cloud Cache is a managed version of Pivotal GemFire running in Pivotal
CloudFoundry. When running in or across cloud environments (e.g. AWS, Azure, GCP or PWS), PCC
with PCF offers several advantages over trying to run and manage your own standalone Apache Geode
or Pivotal GemFir clusters. It handles many of the infrastructure-related, operational concerns so you
do not have to.

15.1 Running Spring Boot applications as a specific user

By default, Spring Boot applications run as a "cluster_operator" Role-based user in Pivotal
CloudFoundry (PCF) when the app is bound to a Pivotal Cloud Cache (PCC) service instance.

A "cluster_operator" has full system privileges (i.e. Authorization) to do whatever that user wishes to
involving the PCC service instance. A "cluster_operator" has read/write access to all the data, can modify
the schema (e.g. create/destroy Regions, add/remove Indexes, change eviction or expiration policies,
etc), start and stop servers in the PCC cluster, or even modify permissions.

About cluster-operator as the default user

1 of the reasons why Spring Boot apps default to running as a "cluster_operator" is to
allow configuration metadata to be sent from the client to the server. Enabling configuration
metadata to be sent from the client to the server is a useful development-time feature
and is as simple as annotating your main @SpringBootApplication class with the
@EnableClusterConfiguration annotation:

Using @EnableClusterConfiguration.

@SpringBootApplication

@EnableClusterConfiguration(useHttp = true)

class SpringBootApacheGeodeClientCacheApplication { ... }

With @EnableClusterConfiguration, Region and OQL Index configuration metadata defined
on the client can be sent to servers in the PCC cluster. Apache Geode and Pivotal GemFire
requires matching Regions by name on both the client and servers in order for clients to send and
receive data to and from the cluster.

For example, when you declare the Region where an application entity will be persisted using the
@Region mapping annotation and additionally declare the @EnableEntityDefinedRegions
annotation on the main @SpringBootApplication class in conjunction with the
@EnableClusterConfiguration annotation, then not only will SBDG create the required client
Region, but it will also send the configuration metadata for this Region to the servers in the cluster
to create the matching, required server Region, where the data for your application entity will be
managed.

However…

With great power comes great responsibility. - Uncle Ben

https://pivotal.io/pivotal-cloud-cache
https://pivotal.io/pivotal-gemfire
https://pivotal.io/platform
https://pivotal.io/platform

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 64

Not all Spring Boot applications using PCC will need to change the schema, or even modify data. Rather,
certain apps may only need read access. Therefore, it is ideal to be able to configure your Spring Boot
applications to run with a different user at runtime other than the auto-configured "cluster_operator",
by default.

A prerequisite for running a Spring Boot application using PCC with a specific user is to create a user with
restricted permissions using Pivotal CloudFoundry AppsManager while provisioning the PCC service
instance to which the Spring Boot application will be bound.

Configuration metadata for the PCC service instance might appear as follows:

Pivotal Cloud Cache configuration metadata.

{

 "p-cloudcache":[{

 "credentials": {

 "distributed_system_id": "0",

 "locators": ["localhost[55221]"],

 "urls": {

 "gfsh": "https://cloudcache-12345.services.cf.pws.com/gemfire/v1",

 "pulse": "https://cloudcache-12345.services.cf.pws.com/pulse"

 },

 "users": [{

 "password": "*****",

 "roles": ["cluster_operator"],

 "username": "cluster_operator_user"

 }, {

 "password": "*****",

 "roles": ["developer"],

 "username": "developer_user"

 },

 }, {

 "password": "*****",

 "roles": ["read-only-user"],

 "username": "guest"

 }],

 "wan": {

 "sender_credentials": {

 "active": {

 "password": "*****",

 "username": "gateway-sender-user"

 }

 }

 }

 },

 ...

 "name": "jblum-pcc",

 "plan": "small",

 "tags": ["gemfire", "cloudcache", "database", "pivotal"]

 }]

}

In the PCC service instance configuration metadata above, we see a "guest" user with the "read-only-
user" Role. If the "read-only-user" Role is properly configured with "read-only" permissions as the name
implies, then we could configure our Spring Boot application to run as "guest" with read-only access
using:

Configuring a Spring Boot app to run as a specific user.

Spring Boot application.properties for PCF when using PCC

spring.data.gemfire.security.username=guest

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 65

Tip

The spring.data.gemfire.security.username property corresponds directly to the SDG
@EnableSecurity annotation, securityUsername attribute. See the Javadoc for more
details.

The spring.data.gemfire.security.username property is the same property used by Spring
Data for Apache Geode and Pivotal GemFire (SDG) to configure the runtime user of your Spring Data
application when connecting to either an externally managed Apache Geode or Pivotal GemFire cluster.

In this case, SBDG simply uses the configured username to lookup the authentication credentials of the
user to set the username and password used by the Spring Boot, ClientCache app when connecting
to PCC while running in PCF.

If the username is not valid, then an IllegalStateException is thrown.

By using Spring Profiles, it would be a simple matter to configure the Spring Boot application to run with
a different user depending on environment.

See the Pivotal Cloud Cache documentation on Security for configuring users with assigned roles &
permissions.

Overriding Authentication Auto-configuration

It should be generally understood that auto-configuration for client authentication is only available for
managed environments, like Pivotal CloudFoundry. When running in externally managed environments,
you must explicitly set a username and password to authenticate, as described here.

To completely override the auto-configuration of client authentication, simply set both a username and
password:

Overriding Security Authentication Auto-configuration with explicit username and password.

Spring Boot application.properties

spring.data.gemfire.security.username=MyUser

spring.data.gemfire.security.password=MyPassword

In this case, SBDG’s auto-configuration for authentication is effectively disabled and security credentials
will not be extracted from the environment.

15.2 Targeting Specific Pivotal Cloud Cache Service Instances

It is possible to provision multiple instances of the Pivotal Cloud Cache service in your Pivotal
CloudFoundry environment. You can then bind multiple PCC service instances to your Spring Boot app.

However, Spring Boot for Apache Geode & Pivotal GemFire (SBDG) will only auto-configure 1 PCC
service instance for your Spring Boot application. This does not mean it is not possible to use multiple
PCC service instances with your Spring Boot app, just that SBDG only "auto-configures" 1 service
instance for you.

You must select which PCC service instance your Spring Boot app will auto-configure for you
automatically when you have multiple instances and want to target a specific PCC service instance to
use.

To do so, declare the following SBDG property in Spring Boot application.properties:

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityUsername--
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-profiles
https://docs.pivotal.io/p-cloud-cache/1-8/security.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 66

Spring Boot application.properties targeting a specific PCC service instance by name.

Spring Boot application.properties

spring.boot.data.gemfire.cloud.cloudfoundry.service.cloudcache.name=pccServiceInstanceTwo

The spring.boot.data.gemfire.cloud.cloudfoundry.service.cloudcache.name

property tells SBDG which PCC service instance to auto-configure.

If the named PCC service instance identified by the property does not exist, then SBDG will throw an
IllegalStateException stating the PCC service instance by name could not be found.

If you did not set the property and your Spring Boot app is bound to multiple PCC service instances,
then SBDG will auto-configure the first PCC service instance it finds by name, alphabetically.

If you did not set the property and no PCC service instance is found, then SBDG will log a warning.

15.3 Using Multiple Pivotal Cloud Cache Service Instances

If you want to use multiple PCC service instances with your Spring Boot application, then you need
to configure multiple connection Pools connected to each PCC service instance used by your Spring
Boot application.

The configuration would be similar to the following:

Multple Pivotal Cloud Cache Service Instance Configuration.

@Configuration

@EnablePools(pools = {

 @EnablePool(name = "PccOne"),

 @EnablePool(name = "PccTwo"),

 ...,

 @EnablePool(name = "PccN")

})

class PccConfiguration {

 ...

}

You would then externalize the configuration for the individually declared Pools in Spring Boot
application.properties:

Configuring Pool Locator connection endpoints.

Spring Boot `application.properties`

spring.data.gemfire.pool.pccone.locators=pccOneHost1[port1], pccOneHost2[port2], ..., pccOneHostN[portN]

spring.data.gemfire.pool.pcctwo.locators=pccTwoHost1[port1], pccTwoHost2[port2], ..., pccTwoHostN[portN]

Note

Though less common, you can also configure the Pool of connections to target specific servers
in the cluster using the spring.data.gemfire.pool.<named-pool>.severs property.

Tip

Keep in mind that properties in Spring Boot application.properties can refer to other
properties like so: property=${otherProperty}. This allows you to further externalize
properties using Java System properties or Environment Variables.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 67

Of course, a client Region is then assigned the Pool of connections that are used to send data to/from
the specific PCC service instance (cluster):

Assigning a Pool to a client Region.

@Bean("Example")

ClientRegionFactoryBean exampleRegion(GemFireCache gemfireCache,

 @Qualifier("PccTwo") Pool poolForPccTwo) {

 ClientRegionFactoryBean exampleRegion = new ClientRegionFactoryBean();

 exampleRegion.setCache(gemfireCache);

 exampleRegion.setPool(poolForPccTwo);

 exampleRegion.setShortcut(ClientRegionShortcut.PROXY);

 return exampleRegion;

}

You can configure as many Pools and client Regions as needed by your application. Again, the Pool
determines which Pivotal Cloud Cache service instance and cluster the data for the client Region will
reside.

Note

By default, SBDG configures all Pools declared in a Spring Boot,
ClientCache application to connect to and use a single PCC service
instance. This may be a targeted PCC service instance when using
the spring.boot.data.gemfire.cloud.cloudfoundry.service.cloudcache.name

property as discussed above.

15.4 Hybrid Pivotal CloudFoundry & Apache Geode Spring
Boot Applications

Sometimes, it is desirable to deploy (i.e. "push") and run your Spring Boot applications in Pivotal
CloudFoundry, but still connect your Spring Boot applications to an externally managed, standalone
Apache Geode or Pivotal GemFire cluster.

Spring Boot for Apache Geode & Pivotal GemFire (SBDG) makes this a non-event and honors its "little
to no code or configuration changes necessary" goal, regardless of your runtime choice, "it should just
work!"

To help guide you through this process, we will cover the following topics:

1. Install and Run PCFDev.

2. Start an Apache Geode cluster.

3. Create a User-Provided Service (CUPS).

4. Push and Bind a Spring Boot application.

5. Run the Spring Boot application.

Running PCFDev

For this exercise, we will be using PCF Dev.

https://pivotal.io/pcf-dev

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 68

PCF Dev, much like PCF, is an elastic application runtime for deploying, running and managing your
Spring Boot applications. However, it does so in the confines of your local development environment,
i.e. your workstation.

Additionally, PCF Dev provides several services out-of-the-box, such as MySQL, Redis and RabbitMQ.
These services can be bound and used by your Spring Boot application to accomplish its tasks.

However, PCF Dev lacks the Pivotal Cloud Cache (PCC) service that is available in PCF. This is
actually ideal for this little exercise since we are trying to build and run Spring Boot applications in a
PCF environment but connect to an externally managed, standalone Apache Geode or Pivotal GemFire
cluster.

As a prerequisite, you will need to follow the steps outlined in the tutorial to get PCF Dev setup and
running on your workstation.

To run PCF Dev, you will execute the following cf CLI command, replacing the path to the TGZ file with
the file you acquired from the download:

Start PCF Dev.

$ cf dev start -f ~/Downloads/Pivotal/CloudFoundry/Dev/pcfdev-v1.2.0-darwin.tgz

You should see output similar to:

Running PCF Dev.

Downloading Network Helper...

Progress: |====================>| 100.0%

Installing cfdevd network helper (requires administrator privileges)...

Password:

Setting up IP aliases for the BOSH Director & CF Router (requires administrator privileges)

Downloading Resources...

Progress: |====================>| 100.0%

Setting State...

WARNING: PCF Dev requires 8192 MB of RAM to run. This machine may not have enough free RAM.

Creating the VM...

Starting VPNKit...

Waiting for the VM...

Deploying the BOSH Director...

Deploying PAS...

 Done (14m34s)

Deploying Apps-Manager...

 Done (1m41s)

 ####### ###################### ########### ###

 ### ###

 ########### ###### ### ######### ### ###

 ####### ### ###### ### ######### #### ####

 ### ########### ################ #######

 ### ########## ####### ######## #####

 is now running!

 To begin using PCF Dev, please run:

 cf login -a https://api.dev.cfdev.sh --skip-ssl-validation

 Admin user => Email: admin / Password: admin

 Regular user => Email: user / Password: pass

 To access Apps Manager, navigate here: https://apps.dev.cfdev.sh

 To deploy a particular service, please run:

 cf dev deploy-service <service-name> [Available services: mysql,redis,rabbitmq,scs]

https://pivotal.io/platform/pcf-tutorials/getting-started-with-pivotal-cloud-foundry-dev/introduction
https://network.pivotal.io/products/pcfdev

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 69

To use the cf CLI tool, you must login to the PCF Dev environment:

Login to PCF Dev using cf CLI.

$ cf login -a https://api.dev.cfdev.sh --skip-ssl-validation

You can also access the PCF Dev Apps Manager tool from your Web browser at the following URL:

apps.dev.cfdev.sh/

Apps Manager provides a nice UI to manage your org, space, services and apps. It lets you push and
update apps, create services, bind apps to the services and start and stop your deployed applications,
among many other things.

Running an Apache Geode Cluster

Now that PCF Dev is setup and running, we need to start an external, standalone Apache Geode cluster
that our Spring Boot application will connect to and use to manage its data.

You will need to install a distribution of Apache Geode on your workstation. Then you must set the
$GEODE environment variable. It is also convenient to add $GEODE/bin to your system $PATH.

Afterward, you can launch the Geode Shell (Gfsh) tool:

Running Gfsh.

$ echo $GEODE

/Users/jblum/pivdev/apache-geode-1.6.0

$ gfsh

 _________________________ __

 / _____/ ______/ ______/ /____/ /

 / / __/ /___ /_____ / _____ /

 / /__/ / ____/ _____/ / / / /

/______/_/ /______/_/ /_/ 1.6.0

Monitor and Manage Apache Geode

gfsh>

We have conveniently provided the Gfsh shell script used to start the Apache Geode cluster:

Gfsh shell script to start the Apache Geode cluster.

#!/bin/gfsh

Gfsh shell script to configure and bootstrap an Apache Geode cluster.

start locator --name=LocatorOne --log-level=config --classpath=@project-dir@/apache-geode-

extensions/build/libs/apache-geode-extensions-@project-version@.jar --J=-Dgemfire.security-

manager=org.springframework.geode.security.TestSecurityManager --J=-Dgemfire.http-service-port=8080

start server --name=ServerOne --log-level=config --user=admin --password=admin --classpath=@project-

dir@/apache-geode-extensions/build/libs/apache-geode-extensions-@project-version@.jar

The start-cluster.gfsh shell script starts one Geode Locator and one Geode Server.

A Locator is used by clients to discover and connect to servers in the cluster to manage its data. A
Locator is also used by new servers joining a cluster as a peer member, which allows the cluster to be
elastically scaled-out (or scaled-down, as needed). A Geode Server stores the data for the application.

You can start as many Locators or Servers as necessary to meet the availability and load demands
of your application. Obviously, the more Locators and Servers your cluster has, the more resilient it is

https://apps.dev.cfdev.sh/
https://apps.dev.cfdev.sh/
https://geode.apache.org//releases/

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 70

to failure. However, you should size your cluster accordingly, based on your application’s needs since
there is overhead relative to the cluster size.

You will see output similar to the following when starting the Locator and Server:

Starting the Apache Geode cluster.

gfsh>start locator --name=LocatorOne --log-level=config --classpath=/Users/jblum/pivdev/spring-boot-

data-geode/apache-geode-extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-SNAPSHOT.jar --J=-

Dgemfire.security-manager=org.springframework.geode.security.TestSecurityManager --J=-Dgemfire.http-

service-port=8080

Starting a Geode Locator in /Users/jblum/pivdev/lab/LocatorOne...

..

Locator in /Users/jblum/pivdev/lab/LocatorOne on 10.99.199.24[10334] as LocatorOne is currently online.

Process ID: 14358

Uptime: 1 minute 1 second

Geode Version: 1.6.0

Java Version: 1.8.0_192

Log File: /Users/jblum/pivdev/lab/LocatorOne/LocatorOne.log

JVM Arguments: -Dgemfire.enable-cluster-configuration=true -Dgemfire.load-cluster-

configuration-from-dir=false -Dgemfire.log-level=config -Dgemfire.security-

manager=org.springframework.geode.security.TestSecurityManager -Dgemfire.http-service-

port=8080 -Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true -

Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-core-1.6.0.jar:/Users/jblum/pivdev/spring-

boot-data-geode/apache-geode-extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-SNAPSHOT.jar:/

Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-dependencies.jar

Security Manager is enabled - unable to auto-connect. Please use "connect --locator=10.99.199.24[10334]

 --user --password" to connect Gfsh to the locator.

Authentication required to connect to the Manager.

gfsh>connect

Connecting to Locator at [host=localhost, port=10334] ..

Connecting to Manager at [host=10.99.199.24, port=1099] ..

user: admin

password: *****

Successfully connected to: [host=10.99.199.24, port=1099]

gfsh>start server --name=ServerOne --log-level=config --user=admin --password=admin --classpath=/

Users/jblum/pivdev/spring-boot-data-geode/apache-geode-extensions/build/libs/apache-geode-

extensions-1.1.0.BUILD-SNAPSHOT.jar

Starting a Geode Server in /Users/jblum/pivdev/lab/ServerOne...

....

Server in /Users/jblum/pivdev/lab/ServerOne on 10.99.199.24[40404] as ServerOne is currently online.

Process ID: 14401

Uptime: 3 seconds

Geode Version: 1.6.0

Java Version: 1.8.0_192

Log File: /Users/jblum/pivdev/lab/ServerOne/ServerOne.log

JVM Arguments: -Dgemfire.default.locators=10.99.199.24[10334] -Dgemfire.security-

username=admin -Dgemfire.start-dev-rest-api=false -Dgemfire.security-password=******** -

Dgemfire.use-cluster-configuration=true -Dgemfire.log-level=config -XX:OnOutOfMemoryError=kill

 -KILL %p -Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true -

Dsun.rmi.dgc.server.gcInterval=9223372036854775806

Class-Path: /Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-core-1.6.0.jar:/Users/jblum/pivdev/spring-

boot-data-geode/apache-geode-extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-SNAPSHOT.jar:/

Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-dependencies.jar

Once the cluster has been started successfully, you can list the members:

List members of the cluster.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 71

gfsh>list members

 Name | Id

---------- | ---

LocatorOne | 10.99.199.24(LocatorOne:14358:locator)<ec><v0>:1024 [Coordinator]

ServerOne | 10.99.199.24(ServerOne:14401)<v1>:1025

Currently, we have not defined any Regions in which to store our application’s data:

No Application Regions.

gfsh>list regions

No Regions Found

This is deliberate since we are going to let the application drive its schema structure, both on the client
(app) as well as on the server-side (cluster). More on this below.

Creating a User-Provided Service

Now that we have PCF Dev and a small Apache Geode cluster up and running, it is time to create a
User-Provided Service to the external, standalone Apache Geode cluster that we started in step 2.

As mentioned, PCF Dev offers the MySQL, Redis and RabbitMQ services out-of-the-box. However, to
use Apache Geode (or Pivotal GemFire) in the same capacity as you would Pivotal Cloud Cache when
running in a production-grade, PCF environment, you need to create a User-Provided Service for the
standalone Apache Geode cluster.

To do so, execute the following cf CLI command:

cf cups command.

$ cf cups <service-name> -t "gemfire, cloudcache, database, pivotal" -p '<service-credentials-in-json>'

Note

It is important that you specify the tags ("gemfire, cloudcache, database, pivotal") exactly as shown
in the cf CLI command above.

The argument passed to the -p command-line option is a JSON document (object) containing the
"credentials" for our User-Provided Service.

The JSON object is as follows:

User-Provided Service Crendentials JSON.

{

 "locators": ["<hostname>[<port>]"],

 "urls": { "gfsh": "https://<hostname>/gemfire/v1" },

 "users": [{ "password": "<password>", "roles": ["cluster_operator"], "username": "<username>" }]

}

The complete cf CLI command would be similar to the following:

Example cf cups command.

cf cups apacheGeodeService -t "gemfire, cloudcache, database, pivotal" \

 -p '{ "locators": ["10.99.199.24[10334]"], "urls": { "gfsh": "https://10.99.199.24/gemfire/v1" },

 "users": [{ "password": "admin", "roles": ["cluster_operator"], "username": "admin" }] }'

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 72

We replaced the <hostname> placeholder tag with the IP address of our external Apache Geode
Locator. The IP address can be found in the Gfsh start locator output above.

Additionally, the <port> placeholder tag has been replaced with the default Locator port, 10334,

Finally, we set the username and password accordingly.

Tip

Spring Boot for Apache Geode (SBDG) provides template files in the /opt/jenkins/data/workspace/
spring-boot-data-geode_1.1.x/spring-geode-docs/src/main/resources directory.

Once the service has been created, you can query the details from the cf CLI:

$ cf services

Getting services in org cfdev-org / space cfdev-space as admin...

name service plan bound apps last operation broker

apacheGeodeService user-provided boot-pcc-demo

$ cf service apacheGeodeService

Showing info of service apacheGeodeService in org cfdev-org / space cfdev-space as admin...

name: apacheGeodeService

service: user-provided

tags: gemfire, cloudcache, database, pivotal

bound apps:

name binding name status message

boot-pcc-demo create succeeded

You can also view the "apacheGeodeService" from Apps Manager, starting from the Service tab in
your org and space:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 73

By clicking on the "apacheGeodeService" service entry in the table you can get all the service details,
such the bound apps:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 74

Configuration:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 75

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 76

And so on.

Tip

You can learn more about CUPS in the PCF documentation, here.

Push & Bind a Spring Boot application

Now it is time to push a Spring Boot application to PCF Dev and bind the app to the
"apacheGeodeService".

Any Spring Boot ClientCache application using SBDG will do. For this example, we will use the
PCCDemo application, available in GitHub.

After cloning the project to your workstation, you must perform a build to produce the artifact to push
to PCF Dev:

Build the PCCDemo app.

$ mvn clean package

Then, you can push the app to PCF Dev with the following cf CLI command:

Push app to PCF Dev.

$ cf push boot-pcc-demo -u none --no-start -p target/client-0.0.1-SNAPSHOT.jar

Once the app has been successfully deployed to PCF Dev, you can get app details:

Details for deployed app.

$ cf apps

Getting apps in org cfdev-org / space cfdev-space as admin...

OK

name requested state instances memory disk urls

boot-pcc-demo stopped 0/1 768M 1G boot-pcc-demo.dev.cfdev.sh

$ cf app boot-pcc-demo

Showing health and status for app boot-pcc-demo in org cfdev-org / space cfdev-space as admin...

name: boot-pcc-demo

requested state: stopped

routes: boot-pcc-demo.dev.cfdev.sh

last uploaded: Tue 02 Jul 00:34:09 PDT 2019

stack: cflinuxfs3

buildpacks: https://github.com/cloudfoundry/java-buildpack.git

type: web

instances: 0/1

memory usage: 768M

 state since cpu memory disk details

#0 down 2019-07-02T21:48:25Z 0.0% 0 of 0 0 of 0

type: task

instances: 0/0

memory usage: 256M

There are no running instances of this process.

You can either bind the PPCDemo app to the "apacheGeodeService" using the cf CLI command:

https://docs.pivotal.io/pivotalcf/2-6/devguide/services/user-provided.html
https://github.com/jxblum/PCCDemo/tree/sbdg-doc-ref

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 77

Bind app to apacheGeodeService using CLI.

cf bind-service boot-pcc-demo apacheGeodeService

Or, alternatively, you can create a YAML file (manifest.yml in src/main/resources) containing
the deployment descriptor:

Example YAML deployment descriptor file.

\---

applications:

 - name: boot-pcc-demo

 memory: 768M

 instances: 1

 path: ./target/client-0.0.1-SNAPSHOT.jar

 services:

 - apacheGeodeService

 buildpacks:

 - https://github.com/cloudfoundry/java-buildpack.git

You can also use Apps Manager to view app details and un/bind additional services. Start by navigating
to the App tab under your org and space:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 78

From there, you can click on the desired app and navigate to the Overview:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 79

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 80

You can also review the app Settings. Specifically, we are looking at the configuration of the app
once bound to the "apacheGeodeService" as seen in the VCAP_SERVICES Environment Variable:

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 81

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 82

This JSON document structure is not unlike the configuration used to bind your Spring Boot,
ClientCache application to the Pivotal Cloud Cache service when deploying the same app to Pivotal
CloudFoundry. This is actually very key if you want to minimize the amount of boilerplate code and
configuration changes when migrating between different CloudFoundry environments, even Open
Source CloudFoundry.

Again, SBDG’s entire goal is to simply the effort for you, as a developer, to build, run and manage your
application, in whatever context your application lands, even if it changes later. If you follow the steps
in this documentation, that goal will be realized.

Running the Spring Boot application

All that is left to do now is run the app.

You can start the PCCDemo app from the cf CLI using the following command:

Start the Spring Boot app.

$ cf start boot-pcc-demo

Alternatively, you can also start the app from Apps Manager. This is convenient since then you can tail
and monitor the application log file.

https://www.cloudfoundry.org/
https://www.cloudfoundry.org/

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 83

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 84

Once the app has started, you can click the VIEW APP link in the upper right corner of the APP screen.

You can navigate to any of the application Web Service, Controller endpoints. For example, if you know
the ISBN of a Book, you can access it from the Web browser:

https://boot-pcc-demo.dev.cfdev.sh/

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 85

You can also access the same data from the Gfsh command-line tool. However, the first thing to observe
is that our application informed the cluster that it needed a Region called "Books":

Books Region.

gfsh>list regions

List of regions

Books

gfsh>describe region --name=/Books

..

Name : Books

Data Policy : partition

Hosting Members : ServerOne

Non-Default Attributes Shared By Hosting Members

 Type | Name | Value

------ | ----------- | ---------

Region | size | 1

 | data-policy | PARTITION

The PCCDemo app creates fake data on startup, which we can query in Gfsh like so:

Query Books.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 86

gfsh>query --query="SELECT book.isbn, book.title FROM /Books book"

Result : true

Limit : 100

Rows : 1

 isbn | title

------------- | ---------------------

1235432BMF342 | The Torment of Others

15.5 Summary

There you have it!

The ability to deploy Spring Boot, Apache Geode or Pivotal GemFire ClientCache applications to
Pivotal CloudFoundry, yet connect your app to a externally managed, standalone Apache Geode or
Pivotal GemFire cluster.

Indeed, this is will be a useful arrangement and stepping stone for many users as they begin their journey
towards a Cloud-Native platform like Pivotal CloudFoundry (PCF) and using services like Pivotal Cloud
Cache (PCC).

Later, when the time comes and your need is very real, you can simply migrate your Spring Boot
applications to a fully managed and production-grade Pivotal CloudFoundry environment and SBDG
will figure out what to do, leaving you to focus entirely on your application.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 87

16. Samples

This section contains working examples demonstrating how to use Spring Boot for Apache Geode and
Pivotal GemFire (SBDG) effectively.

Some examples focus on specific Use Cases (e.g. [(HTTP) Session state] caching) while other examples
demonstrate how SBDG works under-the-hood to give users a better understanding of what is actually
happening and how to debug problems with their Apache Geode / Pivotal GemFire, Spring Boot
applications.

Table 16.1. Example Spring Boot applications using Apache Geode

Guide Description Source

Spring Boot Auto-Configuration
for Apache Geode/Pivotal
GemFire

Explains what auto-
configuration is provided by
SBDG out-of-the-box and what
the auto-configuration is doing.

Boot Auto-Configuration

Spring Boot Actuator for
Apache Geode/Pivotal GemFire

Explains how to use Spring
Boot Actuator for Apache
Geode and how it works.

Boot Actuator

Look-Aside Caching with
Spring’s Cache Abstraction and
Apache Geode

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for Look-Aside
Caching.

Look-Aside Caching

Inline Caching with Spring’s
Cache Abstraction and Apache
Geode

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for Inline
Caching. This sample builds
on the Look-Aside Caching
sample above.

Inline Caching

Near Caching with Spring’s
Cache Abstraction and Apache
Geode

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for Near
Caching. This sample builds
on the Look-Aside Caching
sample above and is the 3rd
and final leg in our study on
caching patterns.

Near Caching

HTTP Session Caching with
Spring Session and Apache
Geode

Explains how to enable and use
Spring Session with Apache
Geode to manage HTTP
Session state.

HTTP Session Caching

guides/boot-configuration.html
guides/boot-configuration.html
guides/boot-configuration.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/boot/configuration
guides/boot-actuator.html
guides/boot-actuator.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/boot/actuator
guides/caching-look-aside.html
guides/caching-look-aside.html
guides/caching-look-aside.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/caching/look-aside
guides/caching-inline.html
guides/caching-inline.html
guides/caching-inline.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/caching/inline
guides/caching-near.html
guides/caching-near.html
guides/caching-near.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/caching/near
guides/caching-http-session.html
guides/caching-http-session.html
guides/caching-http-session.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/caching/http-session

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 88

17. Appendix
The following appendices provide additional help while developing Spring Boot applications backed by
Apache Geode or Pivotal GemFire.

Table of Contents

1. Section 17.1, “Auto-configuration vs. Annotation-based configuration”

2. Section 17.2, “Configuration Metadata Reference”

3. Section 17.3, “Disabling Auto-configuration”

4. Section 17.4, “Switch from Apache Geode to Pivotal Cloud Cache (a.k.a. Pivotal GemFire)”

5. Section 17.5, “Running an Apache Geode/Pivotal GemFire cluster using Spring Boot from your IDE”

6. Section 17.6, “Testing”

7. Section 17.7, “Examples”

8. Section 17.8, “References”

17.1 Auto-configuration vs. Annotation-based configuration

The question most often asked is, "What Spring Data for Apache Geode/Pivotal GemFire annotations
can I use, or must I use, when developing Apache Geode or Pivotal GemFire applications with Spring
Boot?"

This section will answer this question and more.

Readers should refer to the complimentary sample, Spring Boot Auto-configuration for Apache Geode &
Pivotal GemFire, which showcases the auto-configuration provided by Spring Boot for Apache Geode/
Pivotal GemFire in action.

Background

To help answer this question, we must start by reviewing the complete collection of available
Spring Data for Apache Geode/Pivotal GemFire (SDG) annotations. These annotations are
provided in the org.springframework.data.gemfire.config.annotation package. Most of the pertinent
annotations begin with @Enable…, except for the base annotations: @ClientCacheApplication,
@PeerCacheApplication and @CacheServerApplication.

By extension, Spring Boot for Apache Geode/Pivotal GemFire (SBDG) builds on SDG’s Annotation-
based configuration model to implement auto-configuration and apply Spring Boot’s core concepts,
like "convention over configuration", enabling GemFire/Geode applications to be built with Spring Boot
reliably, quickly and easily.

SDG provides this Annotation-based configuration model to, first and foremost, give application
developers "choice" when building Spring applications using either Apache Geode or Pivotal GemFire.
SDG makes no assumptions about what application developers are trying to do and fails fast anytime
the configuration is ambiguous, giving users immediate feedback.

Second, SDG’s Annotations were meant to get application developers up and running quickly and
reliably with ease. SDG accomplishes this by applying sensible defaults so application developers do

guides/boot-configuration.html
guides/boot-configuration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/package-summary.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 89

not need to know, or even have to learn, all the intricate configuration details and tooling provided by
GemFire/Geode to accomplish simple tasks, e.g. build a prototype.

So, SDG is all about "choice" and SBDG is all about "convention". Together these frameworks provide
application developers with convenience and reliability to move quickly and easily.

To learn more about the motivation behind SDG’s Annotation-based configuration model, refer to the
Reference Documentation.

Conventions

Currently, SBDG provides auto-configuration for the following features:

• ClientCache

• Caching with Spring’s Cache Abstraction

• Continuous Query

• Function Execution & Implementation

• Logging

• PDX

• GemfireTemplate

• Spring Data Repositories

• Security (Client/Server Auth & SSL)

• Spring Session

Technically, this means the following SDG Annotations are not required to use the features above:

• @ClientCacheApplication

• @EnableGemfireCaching (or by using Spring Framework’s @EnableCaching)

• @EnableContinuousQueries

• @EnableGemfireFunctionExecutions

• @EnableGemfireFunctions

• @EnableLogging

• @EnablePdx

• @EnableGemfireRepositories

• @EnableSecurity

• @EnableSsl

• @EnableGemFireHttpSession

Since SBDG auto-configures these features for you, then the above annotations are not strictly required.
Typically, you would only declare one of theses annotations when you want to "override" Spring Boot’s
conventions, expressed in auto-configuration, and "customize" the behavior of the feature.

https://docs.spring.io/spring-data/gemfire/docs/current/reference/html/#bootstrap-annotation-config-introduction

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 90

Overriding

In this section, we cover a few examples to make the behavior when overriding more apparent.

Caches

By default, SBDG provides you with a ClientCache instance. Technically, SBDG accomplishes this
by annotating an auto-configuration class with @ClientCacheApplication, internally.

It is by convention that we assume most application developers' will be developing Spring Boot
applications using Apache Geode or Pivotal GemFire as "client" applications in GemFire/Geode’s client/
server topology. This is especially true as users migrate their applications to a managed environment,
such as Pivotal CloudFoundry (PCF) using Pivotal Cloud Cache (PCC).

Still, users are free to "override" the default settings and declare their Spring applications to be actual
peer Cache members of a cluster, instead.

For example:

@SpringBootApplication

@CacheServerApplication

class MySpringBootPeerCacheServerApplication { ... }

By declaring the @CacheServerApplication annotation, you effectively override the SBDG default.
Therefore, SBDG will not provide a ClientCache instance because you have informed SBDG of
exactly what you want, i.e. a peer Cache instance hosting an embedded CacheServer that allows
client connections.

However, you then might ask, "Well, how do I customize the ClientCache instance when developing
client applications without explicitly declaring the @ClientCacheApplication annotation, then?"

First, you are entirely allowed to "customize" the ClientCache instance by explicitly declaring the
@ClientCacheApplication annotation in your Spring Boot application configuration, and set specific
attributes as needed. However, you should be aware that by explicitly declaring this annotation, or any
of the other auto-configured annotations by default, then you assume all the responsibility that comes
with it since you have effectively overridden the auto-configuration. One example of this is Security,
which we touch on more below.

The most ideal way to "customize" the configuration of any feature is by way of the well-known and
documented Properties, specified in Spring Boot application.properties (the "convention"), or
by using a Configurer.

See the Reference Guide for more details.

Security

Like the @ClientCacheApplication annotation, the @EnableSecurity annotation is not strictly
required, not unless you want to override and customize the defaults.

Outside a managed environment, the only Security configuration required is specifying a username
and password. You do this using the well-known and document SDG username/password properties in
Spring Boot application.properties, like so:

Required Security Properties in a Non-Manage Envionment.

spring.data.gemfire.security.username=MyUser

spring.data.gemfire.security.password=Secret

https://docs.spring.io/spring-data/gemfire/docs/current/reference/html/#bootstrap-annotation-config-configurers

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 91

You do not need to explicitly declare the @EnableSecurity annotation just to specify Security
configuration (e.g. username/password).

Inside a managed environment, such as Pivotal CloudFoundry (PCF) when using Pivotal Cloud Cache
(PCC), SBDG is able to introspect the environment and configure Security (Auth) completely without
the need to specify any configuration, usernames/passwords, or otherwise. This is due in part because
PCF supplies the security details in the VCAP environment when the app is deployed to PCF and bound
to services (e.g. PCC).

So, in short, you do not need to explicitly declare the @EnableSecurity annotation (or the
@ClientCacheApplication for that matter).

However, if you do explicitly declare either the @ClientCacheApplication and/or
@EnableSecurity annotations, guess what, you are now responsible for this configuration and
SBDG’s auto-configuration no longer applies.

While explicitly declaring @EnableSecurity makes more sense when "overriding" the SBDG Security
auto-configuration, explicitly declaring the @ClientCacheApplication annotation most likely makes
less sense with regard to its impact on Security configuration.

This is entirely due to the internals of GemFire/Geode, which in certain cases, like Security, not even
Spring is able to completely shield users from the nuances of GemFire/Geode’s configuration.

Both Auth and SSL must be configured before the cache instance (whether a ClientCache or a peer
Cache, it does not matter) is created. Technically, this is because Security is enabled/configured during
the "construction" of the cache. And, the cache pulls the configuration from JVM System properties that
must be set before the cache is constructed.

Structuring the "exact" order of the auto-configuration classes provided by SBDG when the classes
are triggered, is no small feat. Therefore, it should come as no surprise to learn that the Security
auto-configuration classes in SBDG must be triggered before the ClientCache auto-configuration
class, which is why a ClientCache instance cannot "auto" authenticate properly in PCC when the
@ClientCacheApplication is explicitly declared without some assistance (i.e. you must also
explicitly declare the @EnableSecurity annotation in this case since you overrode the auto-
configuration of the cache, and, well, implicitly Security as well).

Again, this is due to the way Security (Auth) and SSL meta-data must be supplied to GemFire/Geode.

See the Reference Guide for more details.

Extension

Most of the time, many of the other auto-configured annotations for CQ, Functions, PDX, Repositories,
and so on, do not need to ever be declared explicitly.

Many of these features are enabled automatically by having SBDG or other libraries (e.g. Spring
Session) on the classpath, or are enabled based on other annotations applied to beans in the Spring
ApplicationContext.

Let’s review a few examples.

Caching

It is rarely, if ever, necessary to explicitly declare either the Spring Framework’s @EnableCaching, or
the SDG specific @EnableGemfireCaching annotation, in Spring configuration when using SBDG.
SBDG automatically "enables" caching and configures the SDG GemfireCacheManager for you.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 92

You simply only need to focus on which application service components are appropriate for caching:

Service Caching.

@Service

class CustomerService {

 @Autowired

 private CustomerRepository customerRepository;

 @Cacheable("CustomersByName")

 public Customer findBy(String name) {

 return customerRepository.findByName(name);

 }

}

Of course, it is necessary to create GemFire/Geode Regions backing the caches declared in
your application service components (e.g. "CustomersByName") using Spring’s Caching Annotations
(e.g. @Cacheable), or alternatively, JSR-107, JCache annotations (e.g.

`@CacheResult).

You can do that by defining each Region explicitly, or more conveniently, you can simply use:

Configuring Caches (Regions).

@SpringBootApplication

@EnableCachingDefinedRegions

class Application { ... }

@EnableCachingDefinedRegions is optional, provided for convenience, and complimentary to
caching when used rather than necessary.

See the Reference Guide for more details.

Continuous Query

It is rarely, if ever, necessary to explicitly declare the SDG @EnableContinuousQueries annotation.
Instead, you should be focused on defining your application queries and worrying less about the
plumbing.

For example:

Defining Queries for CQ.

@Component

public class TemperatureMonitor extends AbstractTemperatureEventPublisher {

 @ContinuousQuery(name = "BoilingTemperatureMonitor",

 query = "SELECT * FROM /TemperatureReadings WHERE temperature.measurement >= 212.0")

 public void boilingTemperatureReadings(CqEvent event) {

 publish(event, temperatureReading -> new BoilingTemperatureEvent(this, temperatureReading));

 }

 @ContinuousQuery(name = "FreezingTemperatureMonitor",

 query = "SELECT * FROM /TemperatureReadings WHERE temperature.measurement <= 32.0")

 public void freezingTemperatureReadings(CqEvent event) {

 publish(event, temperatureReading -> new FreezingTemperatureEvent(this, temperatureReading));

 }

}

Of course, GemFire/Geode CQ only applies to clients.

See the Reference Guide for more details.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 93

Functions

It is rarely, if ever, necessary to explicitly declare either the @EnableGemfireFunctionExecutions
or @EnableGemfireFunctions annotations. SBDG provides auto-configuration for both Function
implementations and executions. You simply need to define the implementation:

Function Implementation.

@Component

class GemFireFunctions {

 @GemfireFunction

 Object exampleFunction(Object arg) {

 ...

 }

}

And then define the execution:

Function Execution.

@OnRegion(region = "Example")

interface GemFireFunctionExecutions {

 Object exampleFunction(Object arg);

}

SBDG will automatically find, configure and register Function Implementations (POJOs) in GemFire/
Geode as proper Functions as well as create Executions proxies for the Interfaces which can then
be injected into application service components to invoke the registered Functions without needing
to explicitly declare the enabling annotations. The application Function Implementations & Executions
(Interfaces) should simply exist below the @SpringBootApplication annotated main class.

See the <<[geode-functions,Reference Guide>> for more details.

PDX

It is rarely, if ever, necessary to explicitly declare the @EnablePdx annotation since SBDG auto-
configures PDX by default. SBDG automatically configures the SDG MappingPdxSerializer as the
default PdxSerializer as well.

It is easy to customize the PDX configuration by setting the appropriate Properties (search for "PDX")
in Spring Boot application.properties.

See the Reference Guide for more details.

Spring Data Repositories

It is rarely, if ever, necessary to explicitly declare the @EnableGemfireRepositories annotation
since SBDG auto-configures Spring Data (SD) Repositories by default.

You simply only need to define your Repositories and get cranking:

Customer’s Repository.

interface CustomerRepository extends CrudRepository<Customer, Long> {

 Customer findByName(String name);

}

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 94

SBDG finds the Repository interfaces defined in your application, proxies them, and registers them as
beans in the Spring ApplicationContext. The Repositories may be injected into other application
service components.

It is sometimes convenient to use the @EnableEntityDefinedRegions along with SD Repositories
to identify the entities used by your application and define the Regions used by the SD Repository
infrastructure to persist the entity’s state. The @EnableEntityDefinedRegions annotation is
optional, provided for convenience, and complimentary to the @EnableGemfireRepositories
annotation.

See the Reference Guide for more details.

Explicit Configuration

Most of the other annotations provided in SDG are focused on particular application concerns, or enable
certain GemFire/Geode features, rather than being a necessity.

A few examples include:

• @EnableAutoRegionLookup

• @EnableBeanFactoryLocator

• @EnableCacheServer(s)

• @EnableCachingDefinedRegions

• @EnableClusterConfiguration

• @EnableCompression

• @EnableDiskStore(s)

• @EnableEntityDefinedRegions

• @EnableEviction

• @EnableExpiration

• @EnableGemFireAsLastResource

• @EnableHttpService

• @EnableIndexing

• @EnableOffHeap

• @EnableLocator

• @EnableManager

• @EnableMemcachedServer

• @EnablePool(s)

• @EnableRedisServer

• @EnableStatistics

• @UseGemFireProperties

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 95

None of these annotations are necessary and none are auto-configured by SBDG. They are simply at
the application developers disposal if and when needed. This also means none of these annotations
are in conflict with any SBDG auto-configuration.

Summary

In conclusion, it is important to understand where SDG ends and SBDG begins. It all begins with the
auto-configuration provided by SBDG out-of-the-box.

If a feature is not covered by SBDG’s auto-configuration, then you are responsible for enabling and
configuring the feature appropriately, as needed by your application (e.g. @EnableRedisServer).

In other cases, you might also want to explicitly declare a complimentary annotation (e.g.
@EnableEntityDefinedRegions) for convenience, since there is no convention or "opinion"
provided by SBDG out-of-the-box.

In all remaining cases, it boils down to understanding how GemFire/Geode works under-the-hood. While
we go to great lengths to shield users from as many details as possible, it is not feasible or practical to
address all matters, e.g. cache creation and Security.

Hope this section provided some relief and clarity.

17.2 Configuration Metadata Reference

The following 2 reference sections cover documented and well-known properties recognized and
processed by Spring Data for Apache Geode/Pivotal GemFire (SDG) as well as Spring Session for
Apache Geode/Pivotal GemFire (SSDG).

These properties may be used in Spring Boot application.properties files, or as JVM System
properties, to configure different aspects of or enable individual features of Apache Geode or Pivotal
GemFire in a Spring application. When combined with the power of Spring Boot, magical things begin
to happen.

Spring Data Based Properties

The following properties all have a spring.data.gemfire.* prefix. For example, to set the
cache copy-on-read property, use spring.data.gemfire.cache.copy-on-read in Spring
Boot application.properties.

Table 17.1. spring.data.gemfire.* properties

Name Description Default From

name Name of the Apache
Geode / Pivotal
GemFire member.

SpringBasedCacheClientApplicationClientCacheApplication.name

locators Comma-delimited
list of Locator
endpoints formatted
as: locator1[port1],…
,locatorN[portN].

[] PeerCacheApplication.locators

use-bean-factory-
locator

Enable the SDG
BeanFactoryLocator

false ClientCacheApplication.useBeanFactoryLocator

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#locators--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#useBeanFactoryLocator--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 96

Name Description Default From

when mixing Spring
config with GemFire/
Geode native config
(e.g. cache.xml)
and you wish to
configure GemFire
objects declared
in cache.xml with
Spring.

Table 17.2. spring.data.gemfire.* GemFireCache properties

Name Description Default From

cache.copy-on-read Configure whether
a copy of an object
returned from
Region.get(key) is
made.

false ClientCacheApplication.copyOnRead

cache.critical-heap-
percentage

Percentage of
heap at or above
which the cache
is considered in
danger of becoming
inoperable.

 ClientCacheApplication.criticalHeapPercentage

cache.critical-off-
heap-percentage

Percentage of off-
heap at or above
which the cache
is considered in
danger of becoming
inoperable.

 ClientCacheApplication.criticalOffHeapPercentage

cache.enable-auto-
region-lookup

Configure whether
to lookup Regions
configured in
GemFire/Geode
native config and
declare them as
Spring beans.

false EnableAutoRegionLookup.enable

cache.eviction-heap-
percentage

Percentage of heap
at or above which
the eviction should
begin on Regions
configured for
HeapLRU eviction.

 ClientCacheApplication.evictionHeapPercentage

cache.eviction-off-
heap-percentage

Percentage of off-
heap at or above

 ClientCacheApplication.evictionOffHeapPercentage

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#copyOnRead--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAutoRegionLookup.html#enabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionOffHeapPercentage--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 97

Name Description Default From

which the eviction
should begin on
Regions configured
for HeapLRU
eviction.

cache.log-level Configure the log-
level of an Apache
Geode / Pivotal
GemFire cache.

config ClientCacheApplication.logLevel

cache.name Alias for
'spring.data.gemfire.name'.

SpringBasedCacheClientApplicationClientCacheApplication.name

cache.compression.bean-
name

Name of a Spring
bean implementing
org.apache.geode.compression.Compressor.

 EnableCompression.compressorBeanName

cache.compression.region-
names

Comma-delimited list
of Region names for
which compression
will be configured.

[] EnableCompression.regionNames

cache.off-
heap.memory-size

Determines the size
of off-heap memory
used by GemFire/
Geode in megabytes
(m) or gigabytes (g);
for example 120g.

 EnableOffHeap.memorySize

cache.off-
heap.region-names

Comma-delimited list
of Region names for
which off-heap will
be configured.

[] EnableOffHeap.regionNames

Table 17.3. spring.data.gemfire.* ClientCache properties

Name Description Default From

cache.client.durable-
client-id

Used only for clients
in a client/server
installation. If set,
this indicates that
the client is durable
and identifies the
client. The ID is
used by servers
to reestablish any
messaging that was
interrupted by client
downtime.

 ClientCacheApplication.durableClientId

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#logLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#compressorBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#regionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#memorySize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#regionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientId--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 98

Name Description Default From

cache.client.durable-
client-timeout

Used only for clients
in a client/server
installation. Number
of seconds this
client can remain
disconnected from
its server and have
the server continue
to accumulate
durable events for it.

300 ClientCacheApplication.durableClientTimeout

cache.client.keep-
alive

Configure whether
the server should
keep the durable
client’s queues
alive for the timeout
period.

false ClientCacheApplication.keepAlive

Table 17.4. spring.data.gemfire.* peer Cache properties

Name Description Default From

cache.peer.enable-
auto-reconnect

Configure whether
member (Locators &
Servers) will attempt
to reconnect and
reinitialize the cache
after it has been
forced out of the
cluster by a network
partition event or
has otherwise been
shunned by other
members.

false PeerCacheApplication.enableAutoReconnect

cache.peer.lock-
lease

Configures the
length, in seconds,
of distributed lock
leases obtained by
this cache.

120 PeerCacheApplication.lockLease

cache.peer.lock-
timeout

Configures the
number of seconds
a cache operation
will wait to obtain
a distributed lock
lease.

60 PeerCacheApplication.lockTimeout

cache.peer.message-
sync-interval

Configures the
frequency (in
seconds) at which

1 PeerCacheApplication.messageSyncInterval

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#keepAlive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#enableAutoReconnect--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockLease--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#messageSyncInterval--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 99

Name Description Default From

a message will
be sent by the
primary cache-
server to all the
secondary cache-
server nodes to
remove the events
which have already
been dispatched
from the queue.

cache.peer.search-
timeout

Configures the
number of seconds
a cache get
operation can spend
searching for a
value.

300 PeerCacheApplication.searchTimeout

cache.peer.use-
cluster-configuration

Configures whether
this GemFire cache
member node would
pull it’s configuration
meta-data from
the cluster-
based Cluster
Configuration
Service.

false PeerCacheApplication.useClusterConfiguration

Table 17.5. spring.data.gemfire.* CacheServer properties

Name Description Default From

cache.server.auto-
startup

Configures whether
the CacheServer
should be started
automatically at
runtime.

true CacheServerApplication.autoStartup

cache.server.bind-
address

Configures the
IP address or
hostname that this
cache server will
listen on.

 CacheServerApplication.bindAddress

cache.server.hostname-
for-clients

Configures the
IP address or
hostname that
server locators will
tell clients that this
cache server is
listening on.

 CacheServerApplication.hostNameForClients

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#searchTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#useClusterConfiguration--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#autoStartup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#hostnameForClients--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 100

Name Description Default From

cache.server.load-
poll-interval

Configures the
frequency in
milliseconds to poll
the load probe on
this cache server.

5000 CacheServerApplication.loadPollInterval

cache.server.max-
connections

Configures the
maximum client
connections allowed.

800 CacheServerApplication.maxConnections

cache.server.max-
message-count

Configures the
maximum number of
messages that can
be enqueued in a
client queue.

230000 CacheServerApplication.maxMessageCount

cache.server.max-
threads

Configures the
maximum number
of threads allowed
in this cache server
to service client
requests.

 CacheServerApplication.maxThreads

cache.server.max-
time-between-pings

Configures the
maximum amount of
time between client
pings.

60000 CacheServerApplication.maxTimeBetweenPings

cache.server.message-
time-to-live

Configures the time
(in seconds) after
which a message in
the client queue will
expire.

180 CacheServerApplication.messageTimeToLive

cache.server.port Configures the port
on which this cache
server listens for
clients.

40404 CacheServerApplication.port

cache.server.socket-
buffer-size

Configures buffer
size of the socket
connection to this
CacheServer.

32768 CacheServerApplication.socketBufferSize

cache.server.subscription-
capacity

Configures the
capacity of the client
queue.

1 CacheServerApplication.subscriptionCapacity

cache.server.subscription-
disk-store-name

Configures the name
of the DiskStore for

 CacheServerApplication.subscriptionDiskStoreName

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#loadPollInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxMessageCount--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxThreads--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxTimeBetweenPings--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#messageTimeToLive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionCapacity--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionDiskStoreName--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 101

Name Description Default From

client subscription
queue overflow.

cache.server.subscription-
eviction-policy

Configures the
eviction policy that
is executed when
capacity of the client
subscription queue
is reached.

none CacheServerApplication.subscriptionEvictionPolicy

cache.server.tcp-no-
delay

Configures the
outgoing Socket
connection tcp-no-
delay setting.

true CacheServerApplication.tcpNoDelay

CacheServer properties can be further targeted at specific CacheServer instances, using an option bean
name of the CacheServer bean defined in the Spring application context. For example:

spring.data.gemfire.cache.server.[<cacheServerBeanName>].bind-address=...

Table 17.6. spring.data.gemfire.* Cluster properties

Name Description Default From

cluster.region.type Configuration setting
used to specify the
data management
policy used when
creating Regions on
the servers in the
cluster.

RegionShortcut.PARTITIONEnableClusterConfiguration.serverRegionShortcut

Table 17.7. spring.data.gemfire.* DiskStore properties

Name Description Default From

disk.store.allow-
force-compaction

Configures
whether to allow
DiskStore.forceCompaction()
to be called on
Regions using a
DiskStore.

false EnableDiskStore.allowForceCompaction

disk.store.auto-
compact

Configures whether
to cause the
disk files to be
automatically
compacted.

true EnableDiskStore.autoCompact

disk.store.compaction-
threshold

Configures the
threshold at which

50 EnableDiskStore.compactionThreshold

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionEvictionPolicy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#tcpNoDelay--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#serverRegionShortcut--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#allowForceCompaction--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#autoCompact--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#compactionThreshold--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 102

Name Description Default From

an oplog will become
compactable.

disk.store.directory.locationConfigures the
system directory
where the GemFire/
Geode DiskStore
(oplog) files will be
stored.

[] EnableDiskStore.diskDirectories.location

disk.store.directory.sizeConfigures the
amount of disk
space allowed to
store DiskStore
(oplog) files.

21474883647 EnableDiskStore.diskDirectories.size

disk.store.disk-
usage-critical-
percentage

Configures the
critical threshold
for disk usage as a
percentage of the
total disk volume.

99.0 EnableDiskStore.diskUsageCriticalPercentage

disk.store.disk-
usage-warning-
percentage

Configures the
warning threshold
for disk usage as a
percentage of the
total disk volume.

90.0 EnableDiskStore.diskUsageWarningPercentage

disk.store.max-
oplog-size

Configures the
maximum size in
megabytes a single
oplog (operation log)
is allowed to be.

1024 EnableDiskStore.maxOplogSize

disk.store.queue-
size

Configures the
maximum number of
operations that can
be asynchronously
queued.

 EnableDiskStore.queueSize

disk.store.time-
interval

Configures
the number of
milliseconds
that can elapse
before data written
asynchronously is
flushed to disk.

1000 EnableDiskStore.timeInterval

disk.store.write-
buffer-size

Configures the write
buffer size in bytes.

32768 EnableDiskStore.writeBufferSize

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageCriticalPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageWarningPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#maxOplogSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#queueSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#timeInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#writeBufferSize--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 103

DiskStore properties can be further targeted at specific DiskStores using the DiskStore.name.

For instance, you may specify directory location of the files for a specific, named DiskStore using:

spring.data.gemfire.disk.store.Example.directory.location=/path/to/geode/disk-stores/Example/

The directory location and size of the DiskStore files can be further divided into multiple locations and
size using array syntax, as in:

spring.data.gemfire.disk.store.Example.directory[0].location=/path/to/geode/disk-stores/Example/one

spring.data.gemfire.disk.store.Example.directory[0].size=4096000

spring.data.gemfire.disk.store.Example.directory[1].location=/path/to/geode/disk-stores/Example/two

spring.data.gemfire.disk.store.Example.directory[1].size=8192000

Both the name and array index are optional and you can use any combination of name and array index.
Without a name, the properties apply to all DiskStores. Without array indexes, all [named] DiskStore
files will be stored in the specified location and limited to the defined size.

Table 17.8. spring.data.gemfire.* Entity properties

Name Description Default From

entities.base-
packages

Comma-delimited list
of package names
indicating the start
points for the entity
scan.

 EnableEntityDefinedRegions.basePackages

Table 17.9. spring.data.gemfire.* Locator properties

Name Description Default From

locator.host Configures the
IP address or
hostname of the
system NIC to which
the embedded
Locator will be
bound to listen for
connections.

 EnableLocator.host

locator.port Configures the
network port to
which the embedded
Locator will listen for
connections.

10334 EnableLocator.port

Table 17.10. spring.data.gemfire.* Logging properties

Name Description Default From

logging.level Configures the
log-level of an
Apache Geode /
Pivotal GemFire
cache; Alias for

config EnableLogging.logLevel

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/DiskStore.html#getName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableEntityDefinedRegions.html#basePackages--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLocator.html#host--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLocator.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logLevel--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 104

Name Description Default From

'spring.data.gemfire.cache.log-
level'.

logging.log-disk-
space-limit

Configures the
amount of disk
space allowed to
store log files.

 EnableLogging.logDiskSpaceLimit

logging.log-file Configures the
pathname of the
log file used to log
messages.

 EnableLogging.logFile

logging.log-file-size Configures the
maximum size of a
log file before the log
file is rolled.

 EnableLogging.logFileSize

Table 17.11. spring.data.gemfire.* Management properties

Name Description Default From

management.use-
http

Configures
whether to use the
HTTP protocol to
communicate with
a GemFire/Geode
Manager.

false EnableClusterConfiguration.useHttp

management.http.host Configures the
IP address or
hostname of the
GemFire/Geode
Manager running the
HTTP service.

 EnableClusterConfiguration.host

management.http.port Configures the
port used by the
GemFire/Geode
Manager’s HTTP
service to listen for
connections.

7070 EnableClusterConfiguration.port

Table 17.12. spring.data.gemfire.* Manager properties

Name Description Default From

manager.access-file Configures the
Access Control
List (ACL) file used
by the Manager to
restrict access to the

 EnableManager.accessFile

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logDiskSpaceLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFileSizeLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#useHttp--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#host--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#accessFile--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 105

Name Description Default From

JMX MBeans by the
clients.

manager.bind-
address

Configures the
IP address or
hostname of the
system NIC used by
the Manager to bind
and listen for JMX
client connections.

 EnableManager.bindAddress

manager.hostname-
for-clients

Configures the
hostname given
to JMX clients to
ask the Locator for
the location of the
Manager.

 EnableManager.hostNameForClients

manager.password-
file

By default, the
JMX Manager
will allow clients
without credentials
to connect. If this
property is set to
the name of a file
then only clients
that connect with
credentials that
match an entry
in this file will be
allowed.

 EnableManager.passwordFile

manager.port Configures the port
used by th Manager
to listen for JMX
client connections.

1099 EnableManager.port

manager.start Configures whether
to start the Manager
service at runtime.

false EnableManager.start

manager.update-
rate

Configures the rate,
in milliseconds, at
which this member
will push updates to
any JMX Managers.

2000 EnableManager.updateRate

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#passwordFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#start--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#updateRate--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 106

Table 17.13. spring.data.gemfire.* PDX properties

Name Description Default From

pdx.disk-store-name Configures the name
of the DiskStore
used to store PDX
type meta-data to
disk when PDX is
persistent.

 EnablePdx.diskStoreName

pdx.ignore-unread-
fields

Configures whether
PDX ignores
fields that were
unread during
deserialization.

false EnablePdx.ignoreUnreadFields

pdx.persistent Configures whether
PDX persists type
meta-data to disk.

false EnablePdx.persistent

pdx.read-serialized Configures whether
a Region entry
is returned as a
PdxInstance or
deserialized back
into object form on
read.

false EnablePdx.readSerialized

pdx.serialize-bean-
name

Configures the name
of a custom Spring
bean implementing
org.apache.geode.pdx.PdxSerializer.

 EnablePdx.serializerBeanName

Table 17.14. spring.data.gemfire.* Pool properties

Name Description Default From

pool.free-
connection-timeout

Configures the
timeout used to
acquire a free
connection from a
Pool.

10000 EnablePool.freeConnectionTimeout

pool.idle-timeout Configures the
amount of time a
connection can be
idle before expiring
(and closing) the
connection.

5000 EnablePool.idleTimeout

pool.load-
conditioning-interval

Configures the
interval for how
frequently the pool

300000 EnablePool.loadConditioningInterval

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#diskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#ignoreUnreadFields--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#persistent--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#readSerialized--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#serializerBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#freeConnectionTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#idleTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#loadConditioningInterval--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 107

Name Description Default From

will check to see
if a connection
to a given server
should be moved
to a different server
to improve the load
balance.

pool.locators Comma-delimited list
of Locator endpoints
in the format:
locator1[port1],…
,locatorN[portN]

 EnablePool.locators

pool.max-
connections

Configures the
maximum number
of client to server
connections that a
Pool will create.

 EnablePool.maxConnections

pool.min-
connections

Configures the
minimum number
of client to server
connections that a
Pool will maintain.

1 EnablePool.minConnections

pool.multi-user-
authentication

Configures whether
the created Pool can
be used by multiple
authenticated users.

false EnablePool.multiUserAuthentication

pool.ping-interval Configures how
often to ping servers
to verify that they
are still alive.

10000 EnablePool.pingInterval

pool.pr-single-hop-
enabled

Configures whether
to perform single-
hop data access
operations between
the client and
servers. When true
the client is aware
of the location of
partitions on servers
hosting Regions with
DataPolicy.PARTITION.

true EnablePool.prSingleHopEnabled

pool.read-timeout Configures
the number of
milliseconds to wait

10000 EnablePool.readTimeout

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#locators--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#minConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#multiUserAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#pingInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#prSingleHopEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#readTimeout--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 108

Name Description Default From

for a response from
a server before
timing out the
operation and trying
another server (if
any are available).

pool.ready-for-
events

Configures whether
to signal the server
that the client is
prepared and ready
to receive events.

false ClientCacheApplication.readyForEvents

pool.retry-attempts Configures the
number of times to
retry a request after
timeout/exception.

 EnablePool.retryAttempts

pool.server-group Configures the
group that all servers
a Pool connects to
must belong to.

 EnablePool.serverGroup

pool.servers Comma-delimited
list of CacheServer
endpoints in
the format:
server1[port1],…
,serverN[portN]

 EnablePool.servers

pool.socket-buffer-
size

Configures the
socket buffer size
for each connection
made in all Pools.

32768 EnablePool.socketBufferSize

pool.statistic-interval Configures how
often to send client
statistics to the
server.

 EnablePool.statisticInterval

pool.subscription-
ack-interval

Configures
the interval in
milliseconds to wait
before sending
acknowledgements
to the CacheServer
for events received
from the server
subscriptions.

100 EnablePool.subscriptionAckInterval

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#readyForEvents--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#retryAttempts--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#serverGroup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#servers--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#statisticInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionAckInterval--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 109

Name Description Default From

pool.subscription-
enabled

Configures whether
the created Pool
will have server-to-
client subscriptions
enabled.

false EnablePool.subscriptionEnabled

pool.subscription-
message-tracking-
timeout

Configures the
messageTrackingTimeout
attribute which is the
time-to-live period,
in milliseconds,
for subscription
events the client has
received from the
server.

900000 EnablePool.subscriptionMessageTrackingTimeout

pool.subscription-
redundancy

Configures the
redundancy level for
all Pools server-to-
client subscriptions.

 EnablePool.subsriptionRedundancy

pool.thread-local-
connections

Configures the
thread local
connections policy
for all Pools.

false EnablePool.threadLocalConnections

Table 17.15. spring.data.gemfire.* Security properties

Name Description Default From

security.username Configures the name
of the user used to
authenticate with the
servers.

 EnableSecurity.securityUsername

security.password Configures the user
password used to
authenticate with the
servers.

 EnableSecurity.securityPassword

security.properties-
file

Configures the
system pathname
to a properties file
containing security
credentials.

 EnableAuth.propertiesFile

security.client.accessorX X EnableAuth.clientAccessor

security.client.accessor-
post-processor

The callback that
should be invoked
in the post-operation
phase, which is

 EnableAuth.clientAccessorPostProcessor

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionMessageTrackingTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionRedundancy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#threadLocalConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityUsername--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityPropertiesFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessor--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessorPostProcessor--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 110

Name Description Default From

when the operation
has completed on
the server but before
the result is sent to
the client.

security.client.authentication-
initializer

Static creation
method returning
an AuthInitialize
object, which obtains
credentials for peers
in a cluster.

 EnableSecurity.clientAuthentiationInitializer

security.client.authenticatorStatic creation
method returning an
Authenticator object
used by a cluster
member (Locator,
Server) to verify
the credentials of a
connecting client.

 EnableAuth.clientAuthenticator

security.client.diffie-
hellman-algorithm

Used for
authentication. For
secure transmission
of sensitive
credentials like
passwords, you
can encrypt the
credentials using the
Diffie-Hellman key-
exchange algorithm.
Do this by setting
the security-client-
dhalgo system
property on the
clients to the name
of a valid, symmetric
key cipher supported
by the JDK.

 EnableAuth.clientDiffieHellmanAlgorithm

security.log.file Configures the
pathname to a log
file used for security
log messages.

 EnableAuth.securityLogFile

security.log.level Configures the log-
level for security log
messages.

 EnableAuth.securityLogLevel

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#clientAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAuthenticator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientDiffieHellmanAlgorithm--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogLevel--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 111

Name Description Default From

security.manager.class-
name

Configures name of
a class implementing
org.apache.geode.security.SecurityManager.

 EnableSecurity.securityManagerClassName

security.peer.authentication-
initializer

Static creation
method returning
an AuthInitialize
object, which obtains
credentials for peers
in a cluster.

 EnableSecurity.peerAuthenticationInitializer

security.peer.authenticatorStatic creation
method returning
an Authenticator
object, which is used
by a peer to verify
the credentials of a
connecting node.

 EnableAuth.peerAuthenticator

security.peer.verify-
member-timeout

Configures
the timeout in
milliseconds used
by a peer to verify
membership
of an unknown
authenticated peer
requesting a secure
connection.

 EnableAuth.peerVerifyMemberTimeout

security.post-
processor.class-
name

Configures the
name of a class
implementing the
org.apache.geode.security.PostProcessor
interface that can
be used to change
the returned results
of Region get
operations.

 EnableSecurity.securityPostProcessorClassName

security.shiro.ini-
resource-path

Configures the
Apache Geode
System Property
referring to the
location of an
Apache Shiro INI
file that configures
the Apache Shiro
Security Framework

 EnableSecurity.shiroIniResourcePath

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityManagerClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#peerAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerAuthenticator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerVerifyMemberTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPostProcessorClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#shiroIniResourcePath--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 112

Name Description Default From

in order to secure
Apache Geode.

Table 17.16. spring.data.gemfire.* SSL properties

Name Description Default From

security.ssl.certificate.alias.clusterConfigures the alias
to the stored SSL
certificate used by
the cluster to secure
communications.

 EnableSsl.componentCertificateAliases

security.ssl.certificate.alias.default-
alias

Configures the
default alias
to the stored
SSL certificate
used to secure
communications
across the entire
GemFire/Geode
system.

 EnableSsl.defaultCertificateAlias

security.ssl.certificate.alias.gatewayConfigures the
alias to the stored
SSL certificate
used by the WAN
Gateway Senders/
Receivers to secure
communications.

 EnableSsl.componentCertificateAliases

security.ssl.certificate.alias.jmxConfigures the alias
to the stored SSL
certificate used
by the Manager’s
JMX based JVM
MBeanServer
and JMX clients
to secure
communications.

 EnableSsl.componentCertificateAliases

security.ssl.certificate.alias.locatorConfigures the
alias to the stored
SSL certificate
used by the
Locator to secure
communications.

 EnableSsl.componentCertificateAliases

security.ssl.certificate.alias.serverConfigures the
alias to the stored
SSL certificate

 EnableSsl.componentCertificateAliases

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#defaultCertificateAlias--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 113

Name Description Default From

used by clients and
servers to secure
communications.

security.ssl.certificate.alias.webConfigures the alias
to the stored SSL
certificate used by
the embedded HTTP
server to secure
communications
(HTTPS).

 EnableSsl.componentCertificateAliases

security.ssl.ciphers Comma-separated
list of SSL ciphers or
“any”.

 EnableSsl.ciphers

security.ssl.componentsComma-delimited
list of GemFire/
Geode components
(e.g. WAN) to be
configured for SSL
communication.

 EnableSsl.components

security.ssl.keystore Configures the
system pathname
to the Java
KeyStore file storing
certificates for SSL.

 EnableSsl.keystore

security.ssl.keystore.passwordConfigures the
password used to
access the Java
KeyStore file.

 EnableSsl.keystorePassword

security.ssl.keystore.typeConfigures the
password used to
access the Java
KeyStore file (e.g.
JKS).

 EnableSsl.keystoreType

security.ssl.protocols Comma-separated
list of SSL protocols
or “any”.

 EnableSsl.protocols

security.ssl.require-
authentication

Configures whether
2-way authentication
is required.

 EnableSsl.requireAuthentication

security.ssl.truststore Configures the
system pathname to
the trust store (Java

 EnableSsl.truststore

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#ciphers--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#components--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystore--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#protocols--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#requireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststore--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 114

Name Description Default From

KeyStore file) storing
certificates for SSL.

security.ssl.truststore.passwordConfigures the
password used to
access the trust
store (Java KeyStore
file).

 EnableSsl.truststorePassword

security.ssl.truststore.typeConfigures the
password used to
access the trust
store (Java KeyStore
file; e.g. JKS).

 EnableSsl.truststoreType

security.ssl.web-
require-
authentication

Configures whether
2-way HTTP
authentication is
required.

false EnableSsl.webRequireAuthentication

Table 17.17. spring.data.gemfire.* Service properties

Name Description Default From

service.http.bind-
address

Configures the
IP address or
hostname of the
system NIC used by
the embedded HTTP
server to bind and
listen for HTTP(S)
connections.

 EnableHttpService.bindAddress

service.http.port Configures the
port used by
the embedded
HTTP server to
listen for HTTP(S)
connections.

7070 EnableHttpService.port

service.http.ssl-
require-
authentication

Configures whether
2-way HTTP
authentication is
required.

false EnableHttpService.sslRequireAuthentication

service.http.dev-rest-
api-start

Configures
whether to start the
Developer REST
API web service.
A full installation
of Apache Geode
or Pivotal GemFire

false EnableHttpService.startDeveloperRestApi

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#webRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#sslRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#startDeveloperRestApi--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 115

Name Description Default From

is required and
you must set
the $GEODE
environment
variable.

service.memcached.portConfigures the port
of the embedded
Memcached server
(service).

11211 EnableMemcachedServer.port

service.memcached.protocolConfigures the
protocol used by
the embedded
Memcached server
(service).

ASCII EnableMemcachedServer.protocol

service.redis.bind-
address

Configures the
IP address or
hostname of the
system NIC used
by the embedded
Redis server to
bind an listen for
connections.

 EnableRedis.bindAddress

service.redis.port Configures the
port used by the
embedded Redis
server to listen for
connections.

6479 EnableRedisServer.port

Spring Session Based Properties

The following properties all have a spring.session.data.gemfire.* prefix. For example, to
set the Session Region name, use spring.session.data.gemfire.session.region.name in
Spring Boot application.properties.

Table 17.18. spring.session.data.gemfire.* properties

Name Description Default From

cache.client.pool.nameName of the Pool
used to send data
access operations
between the client
and server(s).

gemfirePool EnableGemFireHttpSession.poolName

cache.client.region.shortcutConfigures the
DataPolicy used by
the client Region

ClientRegionShortcut.PROXYEnableGemFireHttpSession.clientRegionShortcut

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#protocol--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#port--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#poolName--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#PROXY
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#clientRegionShortcut--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 116

Name Description Default From

to manage (HTTP)
Session state.

cache.server.region.shortcutConfigures the
DataPolicy used by
the server Region
to manage (HTTP)
Session state.

RegionShortcut.PARTITIONEnableGemFireHttpSession.serverRegionShortcut

session.attributes.indexableConfigures names
of Session attributes
for which an Index
will be created.

[] EnableGemFireHttpSession.indexableSessionAttributes

session.expiration.max-
inactive-interval-
seconds

Configures the
number of seconds
in which a Session
can remain inactive
before it expires.

1800 EnableGemFireHttpSession.maxInactiveIntervalSeconds

session.region.name Configures name of
the (client/server)
Region used to
manage (HTTP)
Session state.

ClusteredSpringSessionsEnableGemFireHttpSession.regionName

session.serializer.bean-
name

Configures the
name of a Spring
bean implementing
org.springframework.session.data.gemfire.serialization.SessionSerializer.

 EnableGemFireHttpSession.sessionSerializerBeanName

Apache Geode Properties

While is not recommended to use Apache Geode properties directly in your Spring applications, SBDG
will not prevent you from doing so. A complete reference to the Apache Geode specific properties can
be found here.

Warning

Apache Geode (and Pivotal GemFire) are very strict about the properties that maybe
specified in a gemfire.properties file. You cannot mix Spring properties with gemfire.*
properties in either a Spring Boot application.properties file or an Apache Geode
gemfire.properties file.

17.3 Disabling Auto-configuration

If you would like to disable the auto-configuration of any feature provided by Spring Boot for Apache
Geode/Pivotal GemFire, then you can specify the auto-configuration class in the exclude attribute of
the @SpringBootApplication annotation, as follows:

Disable Auto-configuration of PDX.

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#serverRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#indexableSessionAttributes--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#maxInactiveIntervalSeconds--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#regionName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#sessionSerializerBeanName--
https://geode.apache.org/docs/guide/16/18/reference/topics/gemfire_properties.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 117

@SpringBootApplication(exclude = PdxSerializationAutoConfiguration.class)

public class MySpringBootApplication {

 public static void main(String[] args) {

 SpringApplication.run(MySpringBootApplication.class, args);

 }

}

Of course, you can disable more than 1 auto-configuration class at a time by specifying each class in
the exclude attribute using array syntax, as follows:

Disable Auto-configuration of PDX & SSL.

@SpringBootApplication(exclude = { PdxSerializationAutoConfiguration.class,

 SslAutoConfiguration.class })

public class MySpringBootApplication {

 public static void main(String[] args) {

 SpringApplication.run(MySpringBootApplication.class, args);

 }

}

The current set of auto-configuration classes in Spring Boot for Apache Geode & Pivotal GemFire
include:

• CacheNameAutoConfiguration

• CachingProviderAutoConfiguration

• ClientCacheAutoConfiguration

• ClientSecurityAutoConfiguration

• ContinuousQueryAutoConfiguration

• FunctionExecutionAutoConfiguration

• GemFirePropertiesAutoConfiguration

• LoggingAutoConfiguration

• PdxSerializationAutoConfiguration

• PeerSecurityAutoConfiguration

• RegionTemplateAutoConfiguration

• RepositoriesAutoConfiguration

• SpringSessionAutoConfiguration

• SpringSessionAutoPropertiesConfiguration

• SslAutoConfiguration

17.4 Switch from Apache Geode to Pivotal Cloud Cache (a.k.a.
Pivotal GemFire)

First, understand that Pivotal GemFire is being succeeded by Pivotal Cloud Cache (PCC). Therefore,
all references to Pivotal GemFire (i.e. “gemfire”) also implies for Pivotal Cloud Cache (i.e. “cloudcache”)
as well.

https://pivotal.io/pivotal-gemfire
https://pivotal.io/pivotal-cloud-cache

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 118

When it comes to Spring’s support, whether you are developing with Open Source Software (OSS)
Apache Geode or developing for Pivotal Cloud Cache, Spring has you covered.

At a strategic-level, this means:

1. From Open Source Software (e.g. Apache Geode) to Commercial (e.g. Pivotal Cloud Cache)

2. From Non-Managed Environments (e.g. Standalone, Externally Managed) to Managed Environments
(e.g. Pivotal Platform)

3. With little to no code or configuration changes necessary. It just works!

You may also go back and migrate your Spring Boot applications away from Pivotal Platform when
using the commercial software offering, Pivotal Cloud Cache, and switch back to Open Source Apache
Geode running in a standalone, externally managed environment.

SBDG will not (ever) lock you in! It is your choice!

Technically, this means to go from Apache Geode to Pivotal Cloud Cache, you only need to change
the SBDG dependency from:

Maven POM with Spring Boot for Apache Geode.

<dependency>

 <groupId>org.springframework.geode</groupId>

 <artifactId>spring-geode-starter</artifactId>

 <version>1.1.10.RELEASE</version>

</dependency>

Gradle build file with Spring Boot for Apache Geode.

dependencies {

 compile 'org.springframework.geode:spring-geode-starter:1.1.10.RELEASE'

}

To:

Maven POM with Spring Boot for Pivotal GemFire.

<dependency>

 <groupId>org.springframework.geode</groupId>

 <artifactId>spring-gemfire-starter</artifactId>

 <version>1.1.10.RELEASE</version>

</dependency>

Gradle build file with Spring Boot for Pivotal GemFire.

dependencies {

 compile 'org.springframework.geode:spring-gemfire-starter:1.1.10.RELEASE'

}

Tip

To acquire the Pivotal Cloud Cache or Pivotal GemFire bits to use in your Spring Boot
applications in place of Apache Geode, follow these instructions provided in the Pivotal GemFire
documentation.

To go back, simple change spring-gemfire-starter back to spring-geode-starter. Done!

https://geode.apache.org/
https://gemfire.docs.pivotal.io/95/gemfire/getting_started/installation/obtain_gemfire_maven.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 119

Spring Boot’s auto-configuration and convention over configuration approach tries to detect the runtime
environment in order to handle infrastructure logistics so you will not have to. This is true inside or
outside of a managed

It should just work without any code or configuration changes and if this is not the case, for whatever
reason, then we will work to correct it, short of any feature differences between Pivotal Cloud Cache
that cannot be accomplished with Apache Geode by itself.

To go back, simple change spring-gemfire-starter back to spring-geode-starter.

Done!

Spring Boot’s auto-configuration and convention over configuration approach tries to detect the runtime
environment so that we can provide users with a consistent and reliable experience without all the hassle
and issues that arise by switching environments. Switching environments is especially common as you
migrate your Spring Boot applications from DEV to TEST, into STAGING, and finally, to PRODUCTION.

Of course, it will nearly always be easier to "run" Apache Geode as a "managed" service inside Pivotal
Platform using Pivotal Cloud Cache than it will to manage an externally run Apache Geode cluster,
especially if your Use Case requires maximum performance and high availability. We highly recommend
this approach when and where possible, but it is still your choice.

17.5 Running an Apache Geode/Pivotal GemFire cluster using
Spring Boot from your IDE

As described in Chapter 4, Building ClientCache Applications, it is possible to configure and run a small
Apache Geode or Pivotal GemFire cluster from inside your IDE using Spring Boot. This is extremely
helpful during development since it allows you to manually spin up, test and debug your applications
quickly and easily.

Spring Boot for Apache Geode/Pivotal GemFire includes such a class:

Spring Boot application class used to configure and boostrap an Apache Geode/Pivotal GemFire
server.

@SpringBootApplication

@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication")

@SuppressWarnings("unused")

public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(SpringBootApacheGeodeCacheServerApplication.class)

 .web(WebApplicationType.NONE)

 .build()

 .run(args);

 }

 @Configuration

 @UseLocators

 @Profile("clustered")

 static class ClusteredConfiguration { }

 @Configuration

 @EnableLocator

 @EnableManager(start = true)

 @Profile("!clustered")

 static class LonerConfiguration { }

}

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 120

This class is a proper Spring Boot application that can be used to configure and bootstrap multiple
Apache Geode or Pivotal GemFire servers and joining them together to form a small cluster simply by
modifying the runtime configuration of this class ever so slightly.

Initially you will want to start a single, primary server with the embedded Locator and Manager service.

The Locator service enables members in the cluster to locate one another and allows new members
to attempt to join the cluster as a peer. Additionally, the Locator service also allows clients to connect
to the servers in the cluster. When the cache client’s Pool is configured to use Locators, then the
Pool can intelligently route data requests directly to the server hosting the data (a.k.a. single-hop
access), especially when the data is partitioned/sharded across servers in the cluster. Locator Pools
include support for load balancing connections and handling automatic fail-over in the event of failed
connections, among other things.

The Manager service enables you to connect to this server using Gfsh (the Apache Geode and Pivotal
GemFire shell tool).

To start our primary server, create a run configuration in your IDE for the
SpringBootApacheGeodeCacheServerApplication class with the following, recommended JRE
command-line options:

Server 1 run profile configuration.

-server -ea -Dspring.profiles.active=

Start the class. You should see similar output:

Server 1 output on startup.

https://geode.apache.org/docs/guide/16/tools_modules/gfsh/chapter_overview.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 121

/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/bin/java -server -ea -

Dspring.profiles.active= "-javaagent:/Applications/IntelliJ IDEA 17 CE.app/Contents/lib/

idea_rt.jar=62866:/Applications/IntelliJ IDEA 17 CE.app/Contents/bin" -Dfile.encoding=UTF-8 -classpath /

Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/charsets.jar:/Library/Java/

JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/deploy.jar:/Library/Java/JavaVirtualMachines/

jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/cldrdata.jar:/Library/Java/JavaVirtualMachines/

jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/dnsns.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/

Contents/Home/jre/lib/ext/jaccess.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/

Home/jre/lib/ext/jfxrt.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/

lib/ext/localedata.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/

nashorn.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/sunec.jar:/

Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/sunjce_provider.jar:/

Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/sunpkcs11.jar:/Library/

Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/zipfs.jar:/Library/Java/

JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/javaws.jar:/Library/Java/JavaVirtualMachines/

jdk1.8.0_152.jdk/Contents/Home/jre/lib/jce.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/

Contents/Home/jre/lib/jfr.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/

jfxswt.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/jsse.jar:/Library/

Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/management-agent.jar:/Library/Java/

JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/plugin.jar:/Library/Java/JavaVirtualMachines/

jdk1.8.0_152.jdk/Contents/Home/jre/lib/resources.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/

Contents/Home/jre/lib/rt.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/ant-

javafx.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/dt.jar:/Library/Java/

JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/javafx-mx.jar:/Library/Java/JavaVirtualMachines/

jdk1.8.0_152.jdk/Contents/Home/lib/jconsole.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/

Contents/Home/lib/packager.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/

lib/sa-jdi.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/tools.jar:/

Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build/classes/main:/Users/jblum/pivdev/

spring-boot-data-geode/spring-geode-docs/build/resources/main:/Users/jblum/pivdev/spring-boot-data-

geode/spring-geode-autoconfigure/build/classes/main:/Users/jblum/pivdev/spring-boot-data-geode/

spring-geode-autoconfigure/build/resources/main:/Users/jblum/pivdev/spring-boot-data-geode/spring-

geode/build/classes/main:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.springframework.boot/

spring-boot-starter/2.0.3.RELEASE/ffaa050dbd36b0441645598f1a7ddaf67fd5e678/spring-boot-

starter-2.0.3.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.springframework.boot/

spring-boot-autoconfigure/2.0.3.RELEASE/11bc4cc96b08fabad2b3186755818fa0b32d83f/spring-

boot-autoconfigure-2.0.3.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

org.springframework.boot/spring-boot/2.0.3.RELEASE/b874870d915adbc3dd932e19077d3d45c8e54aa0/

spring-boot-2.0.3.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/javax.annotation/

javax.annotation-api/1.3.2/934c04d3cfef185a8008e7bf34331b79730a9d43/javax.annotation-

api-1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.springframework.data/

spring-data-geode/2.0.8.RELEASE/9e0a3cd2805306d355c77537aea07c281fc581b/spring-data-

geode-2.0.8.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.springframework/

spring-context-support/5.0.7.RELEASE/e8ee4902d9d8bfbb21bc5e8f30cfbb4324adb4f3/spring-

context-support-5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

org.springframework/spring-context/5.0.7.RELEASE/243a23f8968de8754d8199d669780d683ab177bd/

spring-context-5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

org.springframework/spring-tx/5.0.7.RELEASE/4ca59b21c61162adb146ad1b40c30b60d8dc42b8/

spring-tx-5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

org.springframework/spring-web/5.0.7.RELEASE/2e04c6c2922fbfa06b5948be14a5782db168b6ec/spring-

web-5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.springframework.data/

spring-data-commons/2.0.8.RELEASE/5c19af63b5acb0eab39066684e813d5ecd9d03b7/spring-

data-commons-2.0.8.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

org.springframework/spring-aop/5.0.7.RELEASE/fdd0b6aa3c9c7a188c3bfbf6dfd8d40e843be9ef/

spring-aop-5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

org.springframework/spring-beans/5.0.7.RELEASE/c1196cb3e56da83e3c3a02ef323699f4b05feedc/

spring-beans-5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

org.springframework/spring-expression/5.0.7.RELEASE/ca01fb473f53dd0ee3c85663b26d5dc325602057/

spring-expression-5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

org.springframework/spring-core/5.0.7.RELEASE/54b731178d81e66eca9623df772ff32718208137/

spring-core-5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

org.yaml/snakeyaml/1.19/2d998d3d674b172a588e54ab619854d073f555b5/snakeyaml-1.19.jar:/

Users/jblum/.gradle/caches/modules-2/files-2.1/org.springframework/spring-

jcl/5.0.7.RELEASE/699016ddf454c2c167d9f84ae5777eccadf54728/spring-jcl-5.0.7.RELEASE.jar:/

Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-

lucene/1.2.1/3d22a050bd4eb64bd8c82a74677f45c070f102d5/geode-lucene-1.2.1.jar:/Users/jblum/.gradle/

caches/modules-2/files-2.1/org.apache.geode/geode-core/1.2.1/fe853317e33dd2a1c291f29cee3c4be549f75a69/

geode-core-1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-

cq/1.2.1/69873d6b956ba13b55c894a13e72106fb552e840/geode-cq-1.2.1.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/org.apache.geode/geode-wan/1.2.1/df0dd8516e1af17790185255ff21a54b56d94344/

geode-wan-1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/antlr/

antlr/2.7.7/83cd2cd674a217ade95a4bb83a8a14f351f48bd0/antlr-2.7.7.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/org.apache.shiro/shiro-spring/1.3.2/281a6b565f6cf3aebd31ddb004632008d7106f2d/shiro-

spring-1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.aspectj/aspectjweaver/1.8.13/

ad94df2a28d658a40dc27bbaff6a1ce5fbf04e9b/aspectjweaver-1.8.13.jar:/Users/jblum/.gradle/caches/modules-2/

files-2.1/com.fasterxml.jackson.core/jackson-databind/2.9.6/cfa4f316351a91bfd95cb0644c6a2c95f52db1fc/

jackson-databind-2.9.6.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

com.fasterxml.jackson.core/jackson-annotations/2.9.0/7c10d545325e3a6e72e06381afe469fd40eb701/

jackson-annotations-2.9.0.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.shiro/shiro-

web/1.3.2/725be023e1c65a0fd70c01b8c0c13a2936c23315/shiro-web-1.3.2.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/org.apache.shiro/shiro-core/1.3.2/b5dede9d890f335998a8ebf479809fe365b927fc/

shiro-core-1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.slf4j/slf4j-

api/1.7.25/da76ca59f6a57ee3102f8f9bd9cee742973efa8a/slf4j-api-1.7.25.jar:/Users/jblum/.gradle/

caches/modules-2/files-2.1/com.github.stephenc.findbugs/findbugs-annotations/1.3.9-1/

a6b11447635d80757d64b355bed3c00786d86801/findbugs-annotations-1.3.9-1.jar:/Users/jblum/.gradle/

caches/modules-2/files-2.1/org.jgroups/jgroups/3.6.10.Final/fc0ff5a8a9de27ab62939956f705c2909bf86bc2/

jgroups-3.6.10.Final.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-io/commons-

io/2.5/2852e6e05fbb95076fc091f6d1780f1f8fe35e0f/commons-io-2.5.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/commons-lang/commons-lang/2.6/ce1edb914c94ebc388f086c6827e8bdeec71ac2/

commons-lang-2.6.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/it.unimi.dsi/

fastutil/7.1.0/9835253257524c1be7ab50c057aa2d418fb72082/fastutil-7.1.0.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/javax.resource/javax.resource-api/1.7/ae40e0864eb1e92c48bf82a2a3399cbbf523fb79/

javax.resource-api-1.7.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/net.java.dev.jna/

jna/4.5.1/65bd0cacc9c79a21c6ed8e9f588577cd3c2f85b9/jna-4.5.1.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/net.sf.jopt-simple/jopt-simple/5.0.3/cdd846cfc4e0f7eefafc02c0f5dce32b9303aa2a/

jopt-simple-5.0.3.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.logging.log4j/log4j-

core/2.10.0/c90b597163cd28ab6d9687edd53db601b6ea75a1/log4j-core-2.10.0.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/org.apache.logging.log4j/log4j-api/2.10.0/fec5797a55b786184a537abd39c3fa1449d752d6/

log4j-api-2.10.0.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-beanutils/commons-

beanutils/1.9.3/c845703de334ddc6b4b3cd26835458cb1cba1f3d/commons-beanutils-1.9.3.jar:/Users/

jblum/.gradle/caches/modules-2/files-2.1/io.github.lukehutch/fast-classpath-scanner/2.0.11/

ae34a7a5e6de8ad1f86e12f6f7ae1869fcfe9987/fast-classpath-scanner-2.0.11.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/org.apache.geode/geode-common/1.2.1/9db253081d33f424f6e3ce0cde4b306e23e3420b/

geode-common-1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/

geode-json/1.2.1/bdb4c262e4ce6bb3b22e0f511cfb133a65fa0c04/geode-json-1.2.1.jar:/Users/

jblum/.gradle/caches/modules-2/files-2.1/org.apache.lucene/lucene-analyzers-common/6.4.1/

c6f0f593503080204e9d33189cdc59320f55db37/lucene-analyzers-common-6.4.1.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/org.apache.lucene/lucene-queryparser/6.4.1/1fc5795a072770a2c47dce11a3c85a80f3437af6/

lucene-queryparser-6.4.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.lucene/lucene-

queries/6.4.1/6de41d984c16185a244b52c4d069b00f5b2b120f/lucene-queries-6.4.1.jar:/Users/jblum/.gradle/

caches/modules-2/files-2.1/org.apache.lucene/lucene-core/6.4.1/2a18924b9e0ed86b318902cb475a0b9ca4d7be5b/

lucene-core-6.4.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/com.fasterxml.jackson.core/

jackson-core/2.9.6/4e393793c37c77e042ccc7be5a914ae39251b365/jackson-core-2.9.6.jar:/Users/

jblum/.gradle/caches/modules-2/files-2.1/javax.transaction/javax.transaction-api/1.2/

d81aff979d603edd90dcd8db2abc1f4ce6479e3e/javax.transaction-api-1.2.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/commons-logging/commons-logging/1.2/4bfc12adfe4842bf07b657f0369c4cb522955686/

commons-logging-1.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-

collections/commons-collections/3.2.2/8ad72fe39fa8c91eaaf12aadb21e0c3661fe26d5/

commons-collections-3.2.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/

org.springframework.shell/spring-shell/1.2.0.RELEASE/d94047721f292bd5334b5654e8600cef4b845049/

spring-shell-1.2.0.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/com.google.guava/

guava/17.0/9c6ef172e8de35fd8d4d8783e4821e57cdef7445/guava-17.0.jar:/Users/jblum/.gradle/caches/

modules-2/files-2.1/jline/jline/2.12/ce9062c6a125e0f9ad766032573c041ae8ecc986/jline-2.12.jar

 org.springframework.geode.docs.example.app.server.SpringBootApacheGeodeCacheServerApplication

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See https://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v2.0.3.RELEASE)

[info 2018/06/24 21:42:28.183 PDT <main> tid=0x1] Starting SpringBootApacheGeodeCacheServerApplication

 on jblum-mbpro-2.local with PID 41795 (/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/

build/classes/main started by jblum in /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/

build)

[info 2018/06/24 21:42:28.186 PDT <main> tid=0x1] No active profile set, falling back to default

 profiles: default

[info 2018/06/24 21:42:28.278 PDT <main> tid=0x1] Refreshing

 org.springframework.context.annotation.AnnotationConfigApplicationContext@6fa51cd4: startup date [Sun

 Jun 24 21:42:28 PDT 2018]; root of context hierarchy

[warn 2018/06/24 21:42:28.962 PDT <main> tid=0x1] @Bean method

 PdxConfiguration.pdxDiskStoreAwareBeanFactoryPostProcessor is non-static and returns an object

 assignable to Spring's BeanFactoryPostProcessor interface. This will result in a failure to

 process annotations such as @Autowired, @Resource and @PostConstruct within the method's declaring

 @Configuration class. Add the 'static' modifier to this method to avoid these container lifecycle

 issues; see @Bean javadoc for complete details.

[info 2018/06/24 21:42:30.036 PDT <main> tid=0x1]

 Licensed to the Apache Software Foundation (ASF) under one or more

 contributor license agreements. See the NOTICE file distributed with this

 work for additional information regarding copyright ownership.

 The ASF licenses this file to You under the Apache License, Version 2.0

 (the "License"); you may not use this file except in compliance with the

 License. You may obtain a copy of the License at

 https://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS, WITHOUT

 WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the

 License for the specific language governing permissions and limitations

 under the License.

Build-Date: 2017-09-16 07:20:46 -0700

Build-Id: abaker 0

Build-Java-Version: 1.8.0_121

Build-Platform: Mac OS X 10.12.3 x86_64

Product-Name: Apache Geode

Product-Version: 1.2.1

Source-Date: 2017-09-08 11:57:38 -0700

Source-Repository: release/1.2.1

Source-Revision: 0b881b515eb1dcea974f0f5c1b40da03d42af9cf

Native version: native code unavailable

Running on: /10.0.0.121, 8 cpu(s), x86_64 Mac OS X 10.10.5

Communications version: 65

Process ID: 41795

User: jblum

Current dir: /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build

Home dir: /Users/jblum

Command Line Parameters:

 -ea

 -Dspring.profiles.active=

 -javaagent:/Applications/IntelliJ IDEA 17 CE.app/Contents/lib/idea_rt.jar=62866:/Applications/IntelliJ

 IDEA 17 CE.app/Contents/bin

 -Dfile.encoding=UTF-8

Class Path:

 /Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/charsets.jar

 ...

Library Path:

 /Users/jblum/Library/Java/Extensions

 /Library/Java/Extensions

 /Network/Library/Java/Extensions

 /System/Library/Java/Extensions

 /usr/lib/java

 .

System Properties:

 PID = 41795

 ...

[info 2018/06/24 21:42:30.045 PDT <main> tid=0x1] Startup Configuration:

 ### GemFire Properties defined with api ###

disable-auto-reconnect=true

jmx-manager=true

jmx-manager-port=1099

jmx-manager-start=true

jmx-manager-update-rate=2000

log-level=config

mcast-port=0

name=SpringBootApacheGeodeCacheServerApplication

start-locator=localhost[10334]

use-cluster-configuration=false

GemFire Properties using default values

ack-severe-alert-threshold=0

...

[info 2018/06/24 21:42:30.090 PDT <main> tid=0x1] Starting peer location for Distribution Locator on

 localhost/127.0.0.1

[info 2018/06/24 21:42:30.093 PDT <main> tid=0x1] Starting Distribution Locator on localhost/127.0.0.1

[info 2018/06/24 21:42:30.094 PDT <main> tid=0x1] Locator was created at Sun Jun 24 21:42:30 PDT 2018

[info 2018/06/24 21:42:30.094 PDT <main> tid=0x1] Listening on port 10334 bound on address

 localhost/127.0.0.1

...

[info 2018/06/24 21:42:30.685 PDT <main> tid=0x1] Initializing region

 _monitoringRegion_10.0.0.121<v0>1024

[info 2018/06/24 21:42:30.688 PDT <main> tid=0x1] Initialization of region

 _monitoringRegion_10.0.0.121<v0>1024 completed

...

[info 2018/06/24 21:42:31.570 PDT <main> tid=0x1] CacheServer Configuration: port=40404 max-

connections=800 max-threads=0 notify-by-subscription=true socket-buffer-size=32768 maximum-time-between-

pings=60000 maximum-message-count=230000 message-time-to-live=180 eviction-policy=none capacity=1

 overflow directory=. groups=[] loadProbe=ConnectionCountProbe loadPollInterval=5000 tcpNoDelay=true

[info 2018/06/24 21:42:31.588 PDT <main> tid=0x1] Started SpringBootApacheGeodeCacheServerApplication in

 3.77 seconds (JVM running for 5.429)

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 122

You can now connect to this server using Gfsh:

Connect with Gfsh.

$ echo $GEMFIRE

/Users/jblum/pivdev/apache-geode-1.2.1

jblum-mbpro-2:lab jblum$

jblum-mbpro-2:lab jblum$ gfsh

 _________________________ __

 / _____/ ______/ ______/ /____/ /

 / / __/ /___ /_____ / _____ /

 / /__/ / ____/ _____/ / / / /

/______/_/ /______/_/ /_/ 1.2.1

Monitor and Manage Apache Geode

gfsh>connect

Connecting to Locator at [host=localhost, port=10334] ..

Connecting to Manager at [host=10.0.0.121, port=1099] ..

Successfully connected to: [host=10.0.0.121, port=1099]

gfsh>list members

 Name | Id

--- |

 --

SpringBootApacheGeodeCacheServerApplication |

 10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024

gfsh>describe member --name=SpringBootApacheGeodeCacheServerApplication

Name : SpringBootApacheGeodeCacheServerApplication

Id : 10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024

Host : 10.0.0.121

Regions :

PID : 41795

Groups :

Used Heap : 184M

Max Heap : 3641M

Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build

Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build

Locators : localhost[10334]

Cache Server Information

Server Bind :

Server Port : 40404

Running : true

Client Connections : 0

Now, let’s start some additional servers to scale-out our cluster.

To do so, you simply need to vary the name of the members we will add to our cluster as peers. Apache
Geode and Pivotal GemFire require that the members in a cluster be named and the names of each
member in the cluster be unique.

Additionally, since we are running multiple instances of our
SpringBootApacheGeodeCacheServerApplication class, which also embeds a CacheServer
instance enabling cache clients to connect, we need to be careful to vary our ports used by the
embedded services.

Fortunately, we do not need to run another embedded Locator or Manager service (we only need 1
in this case), therefore, we can switch profiles from non-clusted to using the Spring "clustered" profile,
which includes different configuration (the ClusterConfiguration class) to connect another server
as a peer member in the cluster, which currently only has 1 member as shown in the list members
Gfsh command output above.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 123

To add another server, set the member name and the CacheServer port to a different number with
the following run profile configuration:

Run profile configuration for server 2.

-server -ea -Dspring.profiles.active=clustered -Dspring.data.gemfire.name=ServerTwo -

Dspring.data.gemfire.cache.server.port=41414

Notice that we explicitly activated the "clustered" Spring profile, which enables the configuration provided
in the nested ClusteredConfiguration class while disabling the LonerConfiguration class.

This ClusteredConfiguration class is also annotated with @UseLocators, which sets the
GemFire/Geode locators property to "localhost[10334]". By default, it assumes the Locator process/
service is running on "locahost", listening on the default Locator port of "10334". You can of course adjust
your Locators endpoint if your Locators are running elsewhere in your network by using the "locators"
attribute of the @UseLocators annotation.

Tip

It is common in production environments to run multiple Locators as a separate process. Running
multiple Locators provides redundancy in case a Locator process fails. If all Locator processes
in your network fail, don’t fret, your cluster will not go down. It simply means no other members
will be able to join the cluster, allowing you to scale your cluster out, nor will any clients be able
to connect. Simply just restart the Locators if this happens.

Additionally, we set the spring.data.gemfire.name property to "ServerTwo" adjusting the name
of our member when it joins the cluster as a peer.

Finally, we set the spring.data.gemfire.cache.server.port to "41414" to vary the
CacheServer port used by "ServerTwo". The default CacheServer port is "40404". If we had not set
this property before starting "ServerTwo" we would have hit a java.net.BindException.

Tip

Both the spring.data.gemfire.name and
spring.data.gemfire.cache.server.port properties are well-known properties
used by SDG to dynamically configure GemFire/Geode using a Spring Boot
application.properties file or Java System properties. You can find these properties
in the Annotation Javadoc in SDG’s Annotation-based Configuration model. For instance, the
spring.data.gemfire.cache.server.port property is documented here. Most of the SDG
annotations include corresponding properties that can be defined in application.properties
and is explained in more detail here.

After starting our second server, "ServerTwo", we should see similar output at the command-line, and
in Gfsh, when we list members and describe member again:

Gfsh output after starting server 2.

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-properties

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 124

gfsh>list members

 Name | Id

--- |

 --

SpringBootApacheGeodeCacheServerApplication |

 10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024

ServerTwo | 10.0.0.121(ServerTwo:41933)<v1>:1025

gfsh>describe member --name=ServerTwo Name : ServerTwo Id :
10.0.0.121(ServerTwo:41933)<v1>:1025 Host : 10.0.0.121 Regions : PID : 41933 Groups : Used Heap :
165M Max Heap : 3641M Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/build Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build Locators :
localhost[10334]

Cache Server Information Server Bind : Server Port : 41414 Running : true Client Connections : 0 ---

When list members, we see "ServerTwo" and when we describe "ServerTwo", we see that its
CacheServer port is appropriately set to "41414".

If we add 1 more server, "ServerThree" using the following run configuration:

Add server 3 to our cluster.

-server -ea -Dspring.profiles.active=clustered -Dspring.data.gemfire.name=ServerThree -

Dspring.data.gemfire.cache.server.port=42424

Again, we will see similar output at the command-line and in Gfsh:

Gfsh output after starting server 3.

gfsh>list members

 Name | Id

--- |

 --

SpringBootApacheGeodeCacheServerApplication |

 10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024

ServerTwo | 10.0.0.121(ServerTwo:41933)<v1>:1025

ServerThree | 10.0.0.121(ServerThree:41965)<v2>:1026

gfsh>describe member --name=ServerThree

Name : ServerThree

Id : 10.0.0.121(ServerThree:41965)<v2>:1026

Host : 10.0.0.121

Regions :

PID : 41965

Groups :

Used Heap : 180M

Max Heap : 3641M

Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build

Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build

Locators : localhost[10334]

Cache Server Information

Server Bind :

Server Port : 42424

Running : true

Client Connections : 0

Congratulations! You just started a small Apache Geode/Pivotal GemFire cluster, with 3 members, using
Spring Boot from inside your IDE.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1.1.10.RELEASE
Spring Boot for Apache

Geode & Pivotal GemFire 125

It is pretty simple to build and run a Spring Boot, Apache Geode/Pivotal GemFire, ClientCache
application that connects to this cluster. Simply include and use Spring Boot for Apache Geode/Pivotal
GemFire, ;-).

17.6 Testing

Spring Test for Apache Geode & Pivotal GemFire is a new, soon to be released and upcoming project
to help developers write both Unit and Integration Tests when using either Apache Geode or Pivotal
GemFire in a Spring context.

In fact, the entire test suite in Spring Boot for Apache Geode & Pivotal GemFire is based on this project.

All Spring projects integrating with either Apache Geode or Pivotal GemFire will use this new test
framework for all their testing needs, making this new test framework for Apache Geode and Pivotal
GemFire a proven and reliable solution for all your Apache Geode/Pivotal GemFire application testing
needs when using Spring as well.

Later on, this reference guide will include and dedicate an entire chapter on testing.

17.7 Examples

The definitive source of truth on how to best use Spring Boot for Apache Geode & Pivotal GemFire (or
Pivotal Cloud Cache (PCC)) is to refer to the Samples.

Refer to the Pivotal Cloud Cache (PCC), Pizza Store, Spring Boot application for an example of how to
use Spring Boot for Pivotal GemFire (SBDG) in a ClientCache application interfacing with PCC.

Additionally, you may refer to the Temperature Service, Spring Boot application, which implements a
Temperature Sensor and Monitoring, Internet of Things (IOT) example. The example uses SBDG to
showcase Apache Geode CQ, Function Implementations/Executions and positions Apache Geode as
a caching provider in Spring’s Cache Abstraction. It is a working, sophisticated and complete example,
and is highly recommended as a good starting point for real-world use cases.

You may also refer to the boot-example from the Contact Application Reference Implementation (RI)
for Spring Data for Apache Geode & Pivotal GemFire (SDG) as yet another example.

17.8 References

1. Spring Framework Reference Guide | Javadoc

2. Spring Boot Reference Guide | Javadoc

3. Spring Data Commons Reference Guide | Javadoc

4. Spring Data for Apache Geode Reference Guide | Javadoc

5. Spring Session for Apache Geode Reference Guide | Javadoc

6. Spring Test for Apache Geode README

7. Apache Geode User Guide | Javadoc

8. Pivotal GemFire User Guide | Javadoc

https://github.com/spring-projects/spring-test-data-geode
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/tree/master/spring-geode-autoconfigure/src/test/java/org/springframework/geode/boot/autoconfigure
https://github.com/pivotal-cf/PCC-Sample-App-PizzaStore
https://github.com/jxblum/temperature-service
https://github.com/jxblum/contacts-application/tree/master/boot-example
https://docs.spring.io/spring/docs/current/spring-framework-reference
https://docs.spring.io/spring/docs/current/javadoc-api
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle
https://docs.spring.io/spring-boot/docs/current/api
https://docs.spring.io/spring-data/commons/docs/current/reference/html
https://docs.spring.io/spring-data/commons/docs/current/api
https://docs.spring.io/spring-data/geode/docs/current/reference/html
https://docs.spring.io/spring-data/geode/docs/current/api
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/reference/html5
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api
https://github.com/spring-projects/spring-test-data-geode#spring-test-framework-for-apache-geode??pivotal-gemfire
https://geode.apache.org/docs/guide/16
https://geode.apache.org/releases/latest/javadoc
https://gemfire.docs.pivotal.io/95/geode/reference
https://gemfire-95-javadocs.docs.pivotal.io/

	Spring Boot for Apache Geode & Pivotal GemFire Reference Guide
	Table of Contents
	
	1. Introduction
	2. Getting Started
	3. Using Spring Boot for Apache Geode and Pivotal GemFire
	4. Building ClientCache Applications
	4.1 Building Embedded (Peer & Server) Cache Applications

	5. Externalized Configuration
	5.1 Externalized Configuration of Spring Session

	6. Caching using Apache Geode or Pivotal GemFire
	6.1 Look-Aside Caching, Near Caching and Inline Caching
	Look-Aside Caching
	Near Caching
	Inline Caching
	Implementing CacheLoaders, CacheWriters for Inline Caching
	Inline Caching using Spring Data Repositories.

	6.2 Advanced Caching Configuration
	6.3 Disable Caching

	7. Data Access with GemfireTemplate
	7.1 Explicitly Declared Regions
	7.2 Entity-defined Regions
	7.3 Caching-defined Regions
	7.4 Native-defined Regions
	7.5 Template Creation Rules

	8. Spring Data Repositories
	9. Function Implementations & Executions
	9.1 Background
	9.2 Applying Functions

	10. Continuous Query
	11. Data Serialization with PDX
	11.1 SDG MappingPdxSerializer vs. GemFire/Geode’s ReflectionBasedAutoSerializer

	12. Security
	12.1 Authentication & Authorization
	Auth for Servers
	Auth for Clients
	Non-Managed Auth for Clients
	Managed Auth for Clients

	12.2 Transport Layer Security using SSL
	12.3 Securing Data at Rest

	13. Spring Boot Actuator
	13.1 Base HealthIndicators
	GeodeCacheHealthIndicator
	GeodeRegionsHealthIndicator
	GeodeIndexesHealthIndicator
	GeodeDiskStoresHealthIndicator

	13.2 ClientCache HealthIndicators
	GeodeContinuousQueriesHealthIndicator
	GeodePoolsHealthIndicator

	13.3 Peer Cache HealthIndicators
	GeodeCacheServersHealthIndicator
	GeodeAsyncEventQueuesHealthIndicator
	GeodeGatewayReceiversHealthIndicator
	GeodeGatewaySendersHealthIndicator

	14. Spring Session
	14.1 Configuration
	14.2 Custom Configuration
	Custom Configuration using Properties
	Custom Configuration using a Configurer

	14.3 Disabling Session State Caching

	15. Pivotal CloudFoundry
	15.1 Running Spring Boot applications as a specific user
	Overriding Authentication Auto-configuration

	15.2 Targeting Specific Pivotal Cloud Cache Service Instances
	15.3 Using Multiple Pivotal Cloud Cache Service Instances
	15.4 Hybrid Pivotal CloudFoundry & Apache Geode Spring Boot Applications
	Running PCFDev
	Running an Apache Geode Cluster
	Creating a User-Provided Service
	Push & Bind a Spring Boot application
	Running the Spring Boot application

	15.5 Summary

	16. Samples
	17. Appendix
	17.1 Auto-configuration vs. Annotation-based configuration
	Background
	Conventions
	Overriding
	Caches
	Security

	Extension
	Caching
	Continuous Query
	Functions
	PDX
	Spring Data Repositories

	Explicit Configuration
	Summary

	17.2 Configuration Metadata Reference
	Spring Data Based Properties
	Spring Session Based Properties
	Apache Geode Properties

	17.3 Disabling Auto-configuration
	17.4 Switch from Apache Geode to Pivotal Cloud Cache (a.k.a. Pivotal GemFire)
	17.5 Running an Apache Geode/Pivotal GemFire cluster using Spring Boot from your IDE
	17.6 Testing
	17.7 Examples
	17.8 References

