Spring Boot for Apache Geode &
Pivotal GemFire Reference Guide

1.1.10.RELEASE

Copyright © 2019

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Table of Contents

... Vi
I 191 (oo 18 ot o o KPP PSP PP PRPP 1
A 1= 11 0T] = T (= To PRSPPI 2
3. Using Spring Boot for Apache Geode and Pivotal GEMFIreooevviiiiiiiiii e, 3
4. Building ClientCache APPlICALIONSccuuiiiiiieiii e e e e e e e e eanns 4
4.1. Building Embedded (Peer & Server) Cache Applicationsc.cocciviiiiiiiiiiiiiiniciieeies 5

5. Externalized CONfIgUIAtIoNooiiuuiiiiiii ettt e e e et e e b s 11
5.1. Externalized Configuration of Spring SESSIONccuiiiiiiiiiiii e, 12

6. Caching using Apache Geode or Pivotal GEMFIreooiiuiiiiiiiii e 14
6.1. Look-Aside Caching, Near Caching and Inline Cachingccccooviiiiiniiiiiiniineees 16

[0 T0] Q7N = [o LI @ Vo o 1] s o PPN 16

[T T O T o1 o o [T TSP UPTRPTN 17

ININE CACNING ...t et e et e e e eean s 18
Implementing CachelLoaders, CacheWriters for Inline Cachingc..cceeeennie. 19

Inline Caching using Spring Data RepOSItOries.c.oviiiiiiiiiiiiiiiei e 21

6.2. Advanced Caching ConfigUIationcc.uiiiiiiiiiiiiii e 23

6.3. DiSAbIE CACNING ...ceviiiii e 23

7. Data Access With GEMFIreTEMPIALEocuniiii e 25
7.1. Explicitly Declared REGIONSoiiiiiiieiiiiii et eaaans 25

7.2. Entity-defined REQIONSiiiiiii e e e e 26

7.3. Caching-defined REQIONSc.uiiiiiiiiiiii e e e e e et e eeaas 26

7.4. Native-defined REGIONScouuiiiiiiii e e 27

7.5. Template Creation RUIESocouiiiiiiiii e e e 28

8. SPring Data REPOSITOMEScetuiiiiieiiii ettt e et e et e et e et e e e e e et e e et e eanaees 30
9. Function Implementations & EXECULIONSuuiiiiiiiieiiiii e 32
LS 0 I = = Vo] (o |0 U Vo PP 32

9.2, APPIYING FUNCLIONS ...ceiiie e ettt e et e et e e e e eaneaees 32

10. CONLNUOUS QUETY ..uietiiti ettt ettt ettt ettt et e e et e e et e e et et s e et et e e e e et e e e e st e e e enaanas 34
11. Data Serialization With PDXoooiiiiiiiiieoiiiiie e e e e neeennnaes 36

11.1. SDG Mappi ngPdxSeri al i zer vs. GemFire/Geode’s

Ref | ecti onBasedAUt 0SEri @l i ZEI oo e 37
YT ol |)Y/ PN 39
12.1. Authentication & AULNOKZAIONoiiuiie e 39
0 11 T {0 TGS T= T Y= 39

AULN FOF CHENES .veecei e e e 40
Non-Managed Auth for CHENSooiiiii e 40

Managed Auth for CHENESoiiiiii e 40

12.2. Transport Layer Security USING SSLuiiiiiiiiiciie e e e e 41
12.3. Securing Data At RESEc.uiiii et 42

13, SPriNG BOOT ACIULOLueeiiiiiei it e et e et e e et e e e et e e e e eba e 43
13.1. Base Heal t hl Ndi CAt OIS ..oioiiiiiiiiii e 43
GeodeCacheHealtNINICALOru i et 43
GeodeRegionsHealthINAICALOrviiiiiii e 45
GeodelndexesHealthINAICALOLuvuuiiiiiiiiiee e e 47
GeodeDiskStoresHealthINdiCAtorvoeuiiii e 48

13.2. dientCache Heal t hI Ndi CAt OF'S ..viiiiiiiiiiii e 49
GeodeContinuousQueriesHealthINndicatorcciiiiiiiiiiii e, 49

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire iii

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

GeodePooISHeAININGICALONcocoviiiii e 51
13.3. Peer Cache Heal t hI ndi CAt OF'S ..ooooviiiiiiiii e 52
GeodeCacheServersHealthINdiCAtoroviiiiiiiiiiiii e 53
GeodeAsyncEventQueuesHealthINdiCatorcocvuuiiiiiiiiiii e 54
GeodeGatewayReceiversHealthINdiCatorccouiiiiiiiiiii e 56
GeodeGatewaySendersHealthINdiCatorvveiiiiiiiiiiiii e 57
Y o] 1 T TS 1= [I 59
I O7e] g1 o [U] 71 1 o] o H PP TP PP 59
14.2. Custom CONFIQUIALIONcouuiiiiiite ettt e e e e e s 60
Custom Configuration uSing Propertiescevvuiiiiiiiiiiii e 60
Custom Configuration using @ CONIQUIETccuuiiiuiiiiiei e 61
14.3. Disabling Session State CacChingoooiiuuiiiiiiiie e 61
ST 1Yo = L @ [0 To | o U gV YN 63
15.1. Running Spring Boot applications as a SPeCifiC USErco.uieiiiiiiiiiiiiiiieiiieeieeeis 63
Overriding Authentication Auto-CONfIQUIationocoeuviiiiiiiiiniii e 65
15.2. Targeting Specific Pivotal Cloud Cache Service INStanCesccocccvveviiiiviiiiiiiiieiinnenns 65
15.3. Using Multiple Pivotal Cloud Cache Service INStanCescccovvveviieiiiiiiiiieiiiieeeieee, 66
15.4. Hybrid Pivotal CloudFoundry & Apache Geode Spring Boot Applications 67
L0] T To TR O T 67
Running an Apache Geode CIUSLENiiiuiiii e 69
Creating a UsSer-Provided SErVICEoiviiiiiiiiiiiii et 71
Push & Bind a Spring Boot appliCationcc.uviiiiiiiiiiiiie e 76
Running the Spring Boot appliCation ... 82
15,5, SUMIMAIY oottt et e e e e e e et e e e r e e e e 86
LTS T 1T o] (= 87
R Y o] o1 o To [PP PRPP 88
17.1. Auto-configuration vs. Annotation-based configurationc.c.ooeeeiiiiiiiiii e, 88
27> Tod (o | {0 [T 88
10701 017/=T 011 o] o 1 TP PRI 89
OVEITIAING vttt ettt e et e et e e et e e e e et e e e e et 90
CBCNES ... 90
Y= To U 1Y TP PPP PR 90
T (= 70 I PP 91
L@ T o 11 o RS 91
CONLINUOUS QUETY .ttt ettt et et e e e et e e et e e e e ea e e ean e 92
L1 Tod 1T 1 93
P D X ettt et 93
Spring Data REPOSITOMESccuuiiiiieiii ettt et e e e e e e 93
EXPlicit CONfIQUIALIONcooutiiiiii et ees 94
U 0 0= Y 95
17.2. Configuration Metadata REfEIrENCEooiuiiiiiiiiii e 95
Spring Data Based PrOPertieScoouuuiiiiiiiiiiiiii et 95
Spring Session Based Propertie€scvuuiiieiiiiiiieiiiee e e e e e e e e e e e eeen 115
Apache Geode Propertiesiiiuiiiiii e 116
17.3. Disabling Auto-CONfIQUIALIONuiiiiieieiii e e e eeeens 116
17.4. Switch from Apache Geode to Pivotal Cloud Cache (a.k.a. Pivotal GemFire) 117
17.5. Running an Apache Geode/Pivotal GemFire cluster using Spring Boot from your IDE
... 119
A TR =11 T 125
L17.7. EXAMPIES oo e 125

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire iv

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

17.8. References

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Welcome to Spring Boot for Apache Geode & Pivotal GemFire.

Spring Boot for Apache Geode & Pivotal GemFire provides the convenience of Spring Boot's convention
over configuration approach using auto-configuration with the Spring Framework’s powerful abstractions
and highly consistent programming model to truly simplify the development of Apache Geode or Pivotal
GempFire applications in a Spring context.

Secondarily, Spring Boot for Apache Geode & Pivotal GemFire aims to provide developers with a
consistent experience whether building and running Spring Boot, Apache Geode/Pivotal GemFire
applications locally or in a managed environment, such as with Pivotal CloudFoundry (PCF).

This project is a continuation and a logical extension to Spring Data for Apache Geode/Pivotal GemFire’s
Annotation-based configuration model and the goals set forth in that model: To enable application
developersto get up and running as quickly and as easily as possible. In fact, Spring Boot for Apache
Geode/Pivotal GemFire builds on this very foundation cemented in Spring Data for Apache Geode/
Pivotal GemFire (SDG 4) since the Spring Data Kay Release Train.

4Spring Data for Apache Geode and Spring Data for Pivotal GemFire are commonly known as SDG.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire vi

https://pivotal.io/platform
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

1. Introduction

Spring Boot for Apache Geode & Pivotal GemFire automatically applies auto-configuration to several
key application concerns (Use Cases) including, but not limited to:

Look-Aside Caching, using either Apache Geode or Pivotal GemFire as a caching provider in Spring’s
Cache Abstraction.

System of Record (SOR), persisting application state reliably in Apache Geode or Pivotal GemFire
using Spring Data Repositories.

Transactions, managing application state consistently with Spring Transaction Management and
SDG® support for both Local Cache and Global JTA Transactions.

Distributed Computations, run with Apache Geode/Pivotal GemFire’'s Function Executions framework
and conveniently implemented and executed with SDG*? POJO-based, annotation support for
Functions.

Continuous Queries, expressing interests in a stream of events, where applications are able to react
to and process changes to data in near real-time using Apache Geode/Pivotal GemFire Continuous
Query (CQ). Handlers are defined as simple Message-Driven POJOs (MDP) using Spring’s Message
Listener Container, which has been extended by SDG*? with its configurable CQ support.

Data Serialization with Apache Geode/Pivotal GemFire PDX, including first-class configuration and
452

support in SDG ™*.

Security, including Authentication & Authorization as well as Transport Layer Security (TLS) using
Apache Geode/Pivotal GemFire’s Secure Socket Layer (SSL). Once again, SDG*? includes first-
class support for configuring Auth and SSL.

HTTP Session state management, by including Spring Session for Apache Geode/Pivotal GemFire
on your application’s classpath.

While Spring Data for Apache Geode & Pivotal GemFire offers a simple, convenient and declarative
approach to configure all these powerful Apache Geode/Pivotal GemFire features, Spring Boot for
Apache Geode & Pivotal Gemfire makes it even easier to do as we will explore throughout this Reference
Documentation.

Spring Boot for Apache

1.1.10.RELEASE Geode & Pivotal GemFire 1

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://en.wikipedia.org/wiki/System_of_record
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:transaction-management
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:global-transaction-management
https://geode.apache.org/docs/guide/16/developing/function_exec/chapter_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-annotations
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-annotations
https://geode.apache.org/docs/guide/16/developing/continuous_querying/chapter_overview.html
https://geode.apache.org/docs/guide/16/developing/continuous_querying/chapter_overview.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-mdp
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-mdp
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:continuous-query
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-continuous-queries
https://geode.apache.org/docs/guide/16/developing/data_serialization/gemfire_pdx_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-pdx
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer
https://geode.apache.org/docs/guide/16/managing/security/authentication_overview.html
https://geode.apache.org/docs/guide/16/managing/security/authorization_overview.html
https://geode.apache.org/docs/guide/16/managing/security/ssl_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-security
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-ssl

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

2. Getting Started

In order to be immediately productive and as effective as possible using Spring Boot for Apache Geode/
Pivotal GemFire, it is helpful to understand the foundation on which this project was built.

Of course, our story begins with the Spring Framework and the core technologies and concepts built
into the Spring container.

Then, our journey continues with the extensions built into Spring Data for Apache Geode & Pivotal
GempFire (SDGZ) to truly simplify the development of Apache Geode & Pivotal GemFire applications in a
Spring context, using Spring’s powerful abstractions and highly consistent programming model. This part
of the story was greatly enhanced in Spring Data Kay, with the SDG**? Annotation-based configuration
model. Though this new configuration approach using annotations provides sensible defaults out-of-
the-box, its use is also very explicit and assumes nothing. If any part of the configuration is ambiguous,

SDG will fail fast. SDG gives you "choice", so you still must tell SDG**2 what you want.

Next, we venture into Spring Boot and all of its wonderfully expressive and highly opinionated
"convention over configuration" approach for getting the most out of your Spring, Apache Geode/Pivotal
GemFire based applications in the easiest, quickest and most reliable way possible. We accomplish this
by combining Spring Data for Apache Geode/Pivotal GemFire’'s Annotation-based configuration with
Spring Boot’s auto-configuration to get you up and running even faster and more reliably so that you
are productive from the start.

As such, it would be pertinent to begin your Spring Boot education here.

Finally, we arrive at Spring Boot for Apache Geode & Pivotal GemFire (SBDG).

2Spring Data for Apache Geode and Spring Data for Pivotal GemFire are commonly known as SDG.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 2

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#spring-core
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#using-boot-auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#getting-started

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

3. Using Spring Boot for Apache Geode and Pivotal
GemFire

To use Spring Boot for Apache Geode, declare the spri ng- geode- st arter on your application
classpath:

Maven.

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. geode</ gr oupl d>
<artifactld>spring-geode-starter</artifactld>
<version>1.1.10. RELEASE</ ver si on>
</ dependency>
</ dependenci es

Gradle.

dependenci es {
conpi l e 'org. springfranmewor k. geode: spring-geode-starter:1.1.10. RELEASE
}

Tip

To use Pivotal GemFire in place of Apache Geode, simply change the artifactld from
spring-geode-starter tospring-genfire-starter.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 3

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

4. Building ClientCache Applications

The first, opinionated option provided to you by Spring Boot for Apache Geode & Pivotal GemFire
(SBDG) out-of-the-box is a ClientCache instance, simply by declaring either Spring Boot for Apache
Geode or Spring Boot for Pivotal GemFire on your application classpath.

It is assumed that most application developers using Spring Boot to build applications backed by either
Apache Geode or Pivotal GemFire will be building cache client applications deployed in an Apache
Geode or Pivotal GemFire Client/Server topology. A client/server topology is the most common and
traditional architecture employed by enterprise applications.

For example, you can begin building a Spring Boot, Apache Geode or Pivotal GemFire, Cl i ent Cache
application with either the spring-geode-starter or spring-genfire-starter on your
application’s classpath:

Spring Boot for Apache Geode on the application classpath.

<dependency>
<groupl d>or g. spri ngf ramewor k. geode</ gr oupl d>
<artifactld>spring-geode-starter</artifactld>

</ dependency>

Then, you configure and bootstrap your Spring Boot, Apache Geode Cl i ent Cache application with
the following main application class:

Spring Boot, Apache Geode C i ent Cache Application.

@pr i ngBoot Appl i cati on
publ i c SpringBoot ApacheGeodeC i ent CacheApplication {

public static void main(String[] args) {
SpringApplication. run(SpringBoot ApacheGeodeC i ent CacheApplication. class, args);
}
}

Your application now has a O i ent Cache instance, which is able to connect to an Apache Geode or
Pivotal GemFire server running on | ocal host , listening on the default CacheSer ver port, 40404.

By default, an Apache Geode or Pivotal GemFire server (i.e. CacheSer ver) must be running in order
to use the d i ent Cache instance. However, it is perfectly valid to create a Cl i ent Cache instance
and perform data access operations using LOCAL Regions. This is very useful during development.

Tip

To develop with LOCAL Regions, you only need to define your cache Regions with the
Cli ent Regi onShort cut . LOCAL data management policy.

When you are ready to switch from your local development environment (IDE) to a client/server
architecture in a managed environment, you simply change the data management policy of the client
Region from LOCAL back to the default PROXY, or even a CACHI NG_PROXY, data management policy
which will cause the data to be sent/received to and from 1 or more servers, respectively.

Tip

Compare and contrast the above configuration with Spring Data for Apache Geode/Pivotal
GempFire’s approach.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 4

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientCache.html
https://geode.apache.org/docs/guide/16/topologies_and_comm/cs_configuration/chapter_overview.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#LOCAL
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-geode-applications

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

It is uncommon to ever need a direct reference to the d i ent Cache instance provided by SBDG
injected into your application components (e.g. @er vi ce or @eposi t or y beans defined in a Spring
Appl i cati onCont ext) whether you are configuring additional GemFire/Geode objects (e.g. Regions,
Indexes, etc) or simply using those objects indirectly in your applications. However, it is also possible
to do so if and when needed.

For example, perhaps you want to perform some additional Cl i ent Cache initialization in a Spring Boot
ApplicationRunner on startup:

Injecting a GenFi r eCache reference.

@Bpr i ngBoot Appl i cati on
publ i c SpringBoot ApacheGeodeCd i ent CacheAppl i cation {

public static void main(String[] args) {
Spri ngAppl i cation. run(SpringBoot ApacheGeodeCd i ent CacheAppl i cation. cl ass, args);
}

@Bean
Appl i cati onRunner runAdditional dientCachelnitialization(CenFireCache genfireCache) {

return args -> {
ClientCache clientCache = (CientCache) genfireCache;

/1 perform additional CientCache initialization as needed

4.1 Building Embedded (Peer & Server) Cache Applications

What if you want to build an embedded, peer Cache application instead?

Perhaps you need an actual peer cache member, configured and bootstrapped with Spring Boot, along
with the ability to join this member to a (possibly) existing cluster (of data servers) as a peer. Well, you
can do that too.

Remember the 2nd goal in Spring Boot’s documentation:

Be opinionated out of the box but get out of the way quickly as requirements start to
diverge from the defaults.

It is the 2nd part, "get out of the way quickly as requirements start to diverge from the defaults" that
| refer to here.

If your application requirements demand you use Spring Boot to configure and bootstrap an embedded,
peer Cache Apache Geode or Pivotal GemFire application, then simply declare your intentions with
either SDG’s @Peer CacheAppl i cat i on annotation, or alternatively, if you need to enable connections
from Cl i ent Cache apps as well, use the SDG @acheSer ver Appl i cat i on annotation:

Spring Boot, Apache Geode/Pivotal GemFire CacheServer Application.

@pr i ngBoot Appl i cati on
@acheSer ver Appl i cati on(nane = "M/ Spri ngBoot ApacheGeodeCacheSer ver Appl i cati on")
publ i c SpringBoot ApacheGeodeCacheSer ver Appl i cation {

public static void main(String[] args) {
SpringAppl i cation. run(SpringBoot ApacheGeodeCacheServer Application. cl ass, args);

}

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 5

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/ApplicationRunner.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#getting-started-introducing-spring-boot
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Tip

An Apache Geode/Pivotal GemFire "server" is not necessarily a “CacheServer” capable of serving
cache clients. Itis merely a peer member in the GemFire/Geode cluster (a.k.a. distributed system)
that stores and manages data.

By explicitly declaring the @acheSer ver Appl i cat i on annotation, you are telling Spring Boot that
you do not want the default, C i ent Cache instance, but rather an embedded, peer Cache instance
with a CacheSer ver component, which enables connections from Cl i ent Cache apps.

You can also enable 2 other GemFire/Geode services, an embedded Locator, which allows clients or
even other peers to "locate" servers in a cluster, as well as an embedded Manager, which allows the
GemFire/Geode application process to be managed and monitored using Gfsh, GemFire/Geode’s shell
tool:

Spring Boot, Apache Geode/Pivotal GemFire CacheServer Application with Locator and Manager
services enabled.

@Bpr i ngBoot Appl i cati on

@cacheSer ver Appl i cati on(nane = " Spri ngBoot ApacheGeodeCacheSer ver Appl i cati on")
@nabl eLocat or

@nabl eManager

publ i c Spri ngBoot ApacheGeodeCacheSer ver Appl i cation {

public static void main(String[] args) {
SpringApplication. run(SpringBoot ApacheGeodeCacheSer ver Appl i cation. cl ass, args);

}

Then, you can use Gfsh to connect to and manage this server:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 6

https://geode.apache.org/docs/guide/16/tools_modules/gfsh/chapter_overview.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

$ echo $GEMFI RE
/ User s/ j bl unt pi vdev/ apache- geode- 1. 2. 1

$ gfsh
/ / / I
I / /
Iy / N
/ /1 / [1 121

Moni t or and Manage Apache Geode

gf sh>connect

Connecting to Locator at [host=Ilocal host, port=10334]
Connecting to Manager at [host=10.0.0.121, port=1099]
Successful ly connected to: [host=10.0.0.121, port=1099]

gf sh>l i st menbers

Spr i ngBoot ApacheGeodeCacheSer ver Appl i cation |
10. 0. 0. 121(Spri ngBoot ApacheGeodeCacheSer ver Appl i cati on: 29798) <ec><v0>: 1024

gf sh>

gf sh>descri be menber --name=Spri ngBoot ApacheGeodeCacheServer Appli cation

Nare : SpringBoot ApacheGeodeCacheSer ver Appl i cati on

Id : 10.0.0.121(SpringBoot ApacheGeodeCacheSer ver Appl i cati on: 29798) <ec><v0>: 1024
Host : 10.0.0.121

Regi ons

PI D 1 29798

G oups :

Used Heap : 168M

Max Heap . 3641M

Working Dir : /Users/jblun pivdev/spring-boot - dat a- geode/ spri ng- geode- docs/ bui | d
Log file : [Users/jblun pi vdev/ spri ng- boot - dat a- geode/ spri ng- geode- docs/ bui | d
Locators : |l ocal host[10334]

Cache Server |nformation

Server Bind :
Server Port : 40404
Runni ng : true
Client Connections 0

You can even start additional servers in Gfsh, which will connect to your Spring Boot configured and
bootstrapped Apache Geode or Pivotal GemFire CacheSer ver application. These additional servers
started in Gfsh know about the Spring Boot, GemFire/Geode server because of the embedded Locator
service, which is running on | ocal host , listening on the default Locator port, 10334:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 7

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

gf sh>start server --name=GfshServer --10g-1evel =config --disabl e-default-server
Starting a Geode Server in /Users/jblun pivdev/lab/ (f shServer. ..

Server in /Users/jblunt pivdev/lab/ G shServer on 10.0.0.121 as G shServer is currently online.
Process | D: 30031
Uptime: 3 seconds
Geode Version: 1.2.1
Java Version: 1.8.0_152
Log File: /Users/jblun pivdev/|ab/ GshServer/ G shServer. | og
JVM Argunents: -Dgenfire.default.locators=10.0.0.121:127.0.0.1[10334] -Dgenfire. use-
cluster-configuration=true -Dgenfire.start-dev-rest-api =false -Dgenfire.log-I|evel =config
- XX: OnQut Of MenoryError=kill -KILL % -Dgenfire.launcher.registerSignal Handl ers=true -
Dj ava. awt . headl ess=true -Dsun.rm . dgc. server. gclnterval =9223372036854775806
Cl ass-Pat h: /Users/jbluni pi vdev/ apache- geode-1. 2. 1/1i b/ geode-core-1.2.1.jar:/Users/jblunl pi vdev/ apache-
geode-1. 2. 1/1i b/ geode- dependenci es. j ar

gf sh>l i st nmenbers

Spr i ngBoot ApacheGeodeCacheSer ver Appl i cation |
10. 0. 0. 121(Spri ngBoot ApacheGeodeCacheSer ver Appl i cati on: 29798) <ec><v0>: 1024
G shServer | 10.0.0.121(G shServer: 30031) <v1>: 1025

Perhaps you want to start the other way around. As developer, | may need to connect my Spring Boot
configured and bootstrapped GemFire/Geode server application to an existing cluster. You can start the
cluster in Gfsh by executing the following commands:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 8

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

gf sh>start |ocator --name=G shLocator --port=11235 --1o0g-1evel =config
Starting a Geode Locator in /Users/jblunipivdev/lab/ G shLocator. ..

Locator in /Users/jblun pivdev/|ab/ G shLocator on 10.0.0.121[11235] as G shLocator is currently online.
Process | D. 30245

Uptime: 3 seconds

Geode Version: 1.2.1

Java Version: 1.8.0_152

Log File: /Users/jblun pivdev/|ab/ GshLocat or/ G shLocat or. | og

JVM Argunents: -Dgenfire.log-level =config -Dgenfire.enable-cluster-configuration=true -

Dgenfire. |l oad-cluster-configuration-fromdir=false -Dgenfire.launcher.registerSignal Handl er s=true -

Dj ava. awt . headl ess=true -Dsun.rm . dgc. server. gcl nterval =9223372036854775806

Cl ass-Pat h: /Users/jblun pi vdev/ apache-geode-1.2.1/1i b/ geode-core-1.2.1.jar:/Users/jblunl pi vdev/ apache-
geode-1. 2. 1/11 b/ geode- dependenci es. j ar

Successful |y connected to: JMX Manager [host=10.0.0.121, port=1099]

Cluster configuration service is up and running.

gf sh>start server --name=GfshServer --10g-|evel =config --disable-default-server
Starting a Geode Server in /Users/jblun pivdev/|ab/ &G shServer. ..

Server in /Users/jblun pivdev/lab/ GshServer on 10.0.0.121 as GishServer is currently online.

Process I D: 30270

Uptinme: 4 seconds

Geode Version: 1.2.1

Java Version: 1.8.0_152

Log File: /Users/jblun pivdev/|ab/ GshServer/ GshServer.| og

JVM Argunents: -Dgenfire.default.|ocators=10.0.0.121[11235] -Dgenfire. use-cluster-configuration=true
-Dgenfire.start-dev-rest-api =fal se -Dgenfire.l og-1evel =config - XX: OnQut Of Menor yErr or =ki | |
-KILL % -Dgenfire.launcher.registerSignal Handl ers=true -0 ava. awt . headl ess=true -

Dsun. rm . dgc. server. gcl nt erval =9223372036854775806

Cl ass-Pat h: /Users/jbl un pi vdev/ apache- geode- 1. 2. 1/1i b/ geode-core-1.2.1.jar:/Users/jblun pi vdev/ apache-

geode-1. 2. 1/1i b/ geode- dependenci es. j ar

gf sh>l i st menbers
Name | Id

G shLocator | 10.0.0.121(G shLocat or: 30245: | ocat or) <ec><v0>: 1024
G shServer | 10.0.0.121(G shServer:30270) <v1>: 1025

Then, modify the Spri ngBoot ApacheGeodeCacheSer ver Appl i cati on class to connect to the
existing cluster, like so:

Spring Boot, Apache Geode/Pivotal GemFire CacheServer Application with Locator and Manager
services enabled.

@spr i ngBoot Appl i cati on

@acheSer ver Appl i cati on(nane = "M/ Spri ngBoot ApacheGeodeCacheServer Application", |ocators =
"l ocal host[11235] ")

publ i c SpringBoot ApacheGeodeCacheSer ver Appl i cation {

public static void main(String[] args) {
Spri ngAppl i cation. run(Spri ngBoot ApacheGeodeCd i ent CacheAppl i cation. cl ass, args);
}

Tip

Notice | configured the SpringBoot ApacheGeodeCacheServer Application class,
@cacheServer Appl i cati on annotation, | ocat ors property with the host and port (i.e.
"localhost[11235]") on which | started my Locator using Gfsh.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 9

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

After running your Spring Boot, Apache Geode CacheSer ver application again, and thenrunning | i st
nmenber s in Gfsh, you should see:

gf sh>l i st menbers

Name | Id
___ |
G shLocat or | 10.0.0.121(G shLocat or: 30245: | ocat or) <ec><v0>: 1024
G shServer | 10.0.0.121(G shServer: 30270) <v1>: 1025

Spri ngBoot ApacheGeodeCacheSer ver Appl i cation |
10. 0. 0. 121(Spr i ngBoot ApacheGeodeCacheSer ver Appl i cati on: 30279) <v2>: 1026

gf sh>descri be nmenber --nanme=Spri ngBoot ApacheGeodeCacheServer Application

Nane : SpringBoot ApacheGeodeCacheSer ver Appl i cati on

Id : 10.0.0.121(Spri ngBoot ApacheGeodeCacheSer ver Appl i cati on: 30279) <v2>: 1026
Host :10.0.0.121

Regi ons

PI D © 30279

G oups :

Used Heap : 165M

Max Heap : 3641M

Working Dir : /Users/jblun pivdev/spring-boot - dat a- geode/ spri ng- geode- docs/ bui | d
Log file : /[Users/jblunt pi vdev/ spri ng- boot - dat a- geode/ spri ng- geode- docs/ bui | d
Locators : local host[11235]

Cache Server Information

Server Bind :
Server Port : 40404
Runni ng : true
Client Connections 0

In both scenarios, the Spring Boot configured and bootstrapped Apache Geode (or Pivotal GemFire)
server and the Gfsh Locator and Server formed a cluster.

While you can use either approach and Spring does not care, it is far more convenient to use Spring
Boot and your IDE to form a small cluster while developing. By leveraging Spring profiles, it is far simpler
and much faster to configure and start a small cluster.

Plus, this is useful for rapidly prototyping, testing and debugging your entire, end-to-end application and
system architecture, all right from the comfort and familiarity of your IDE of choice. No additional tooling
(e.g. Gfsh) or knowledge is required to get started quickly and easily.

Just build and run it!
Tip

Be careful to vary your port numbers for the embedded services, like the CacheServer,
Locators and Manager, especially if you start multiple instances, otherwise you will run into a
j ava. net . Bi ndExcept i on due to port conflicts.

Tip

See the Appendix, Section 17.5, “Running an Apache Geode/Pivotal GemFire cluster using Spring
Boot from your IDE” for more details.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 10

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

5. Externalized Configuration

Like Spring Boot itself (see here), Spring Boot for Apache Geode and Pivotal GemFire (SBDG) supports
externalized configuration.

By externalized configuration, we mean configuration meta-data stored in a Spring Boot
appl i cati on. properti es file, for instance. Properties can even be delineated by concern, broken
out into individual properties files, that are perhaps only enabled by a specific Profile.

There are many other powerful things you can do, such as use placeholders in properties, encrypt
properties, and so on. What we are particularly interested in, in this section, is type-safety.

Like Spring Boot, Spring Boot for Apache Geode/Pivotal GemFire provides a hierarchy of classes used
to capture the configuration of several Apache Geode or Pivotal GemFire features in an associated
@confi gurati onProperti es annotated class. Again, the configuration is specified as well-known,
documented properties in 1 or more Spring Boot appl i cati on. properti es files.

For instance, | may have configured my Spring Boot, C i ent Cache application as follows:

Spring Boot appl i cati on. properti es containing Spring Data properties for Apache Geode /
Pivotal GemFire.

Spring Boot application.properties used to configure Apache Geode
spring. dat a. genfire. name=MySpri ngBoot ApacheGeodeAppl i cati on

Configure general cache properties
spring. data. genfire. cache. copy-on-read=true
spring. data. genfire.cache. | og-1evel =debug

Configure dientCache specific properties
spring. data. genfire.cache.client.durable-client-id=123
spring. data. genfire.cache.client.keep-alive=true

Configure a log file
spring.data.genfire.logging.|og-file=/path/to/geode. | og

Configure the client's connection Pool to the servers in the cluster
spring. data. genfire. pool .| ocators=10. 105. 120. 16[11235] , boonbox[10334]

There are many other properties a user may use to externalize the configuration of their Spring Boot,
Apache Geode application. You may refer to the Spring Data for Apache Geode (SDG) configuration
annotations Javadoc for specific configuration properties as needed. Specifically, review the "enabling”
annotation attributes.

There may be cases where you require access to the configuration meta-data (specified in properties) in
your Spring Boot applications themselves, perhaps to further inspect or act on a particular configuration
setting.

Of course, you can access any property using Spring’s Envi r onnment abstraction, like so:

Using the Spring "Enviornment.

bool ean copyOnRead = environnent. get Property("spring. data.genfire.cache. copy-on-read", Bool ean. TYPE,
fal se);

While using the Envi r onment is a nice approach, you might need access to additional properties
or want to access the property values in a type-safe manner. Therefore, it is now possible, thanks to

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 11

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html#boot-features-external-config-application-property-files
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html#boot-features-external-config-profile-specific-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html#boot-features-external-config-placeholders-in-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html#boot-features-encrypting-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-external-config.html#boot-features-external-config-typesafe-configuration-properties
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/package-frame.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/env/Environment.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

SBDG's auto-configured configuration processor, to access the configuration meta-data using provided
@confi gurati onProperties classes.

Following on to our example above, | can now do the following:

Using GenFi reProperti es.

@onponent
cl ass MyAppl i cati onConponent {

@\ut owi r ed
private GenFireProperties genfireProperties;

public voi d someMet hodUsi ngGenFireProperties() {
bool ean copyOnRead = this.genfireProperties. getCache().i sCopyOnRead();

/1 do sonething with ~copyOnRead”
}

Given a handle to GenFi r ePr operti es, you can access any of the configuration properties used to
configure either Apache Geode or Pivotal GemFire in a Spring context. You simply only need to autowire
an instance of GenFi r eProperti es into your application component.

A complete reference to the SBDG provided @onfi gurati onProperti es classes and supporting
classes is available here.

5.1 Externalized Configuration of Spring Session

The same capability applies to accessing the externalized configuration of Spring Session when using
either Apache Geode or Pivotal GemFire as your (HTTP) Session state caching provider.

In this case, you simply only need to acquire a handle to an instance of the
SpringSessi onProperti es class.

As before, you would specify Spring Session for Apache Geode (SSDG) properties as follows:

Spring Boot appl i cati on. properti es for Spring Session using Apache Geode as the (HTTP)
Session state caching provider.

Spring Boot application.properties used to configure Apache CGeode as a Session state caching provider
in Spring Session

spring. sessi on. data. genfire.session. expiration. max-inactive-interval -seconds=300
spring. sessi on. dat a. genfire. session. regi on. nane=User Sessi ons

Then, in your application:

Using Spri ngSessi onProperti es.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 12

https://docs.spring.io/autorepo/docs/spring-boot-data-geode-build/1.0.0.BUILD-SNAPSHOT/api//org/springframework/geode/boot/autoconfigure/configuration/GemFireProperties.html
https://docs.spring.io/autorepo/docs/spring-boot-data-geode-build/1.0.0.BUILD-SNAPSHOT/api//org/springframework/geode/boot/autoconfigure/configuration/package-frame.html
https://docs.spring.io/autorepo/docs/spring-boot-data-geode-build/1.0.0.BUILD-SNAPSHOT/api//org/springframework/geode/boot/autoconfigure/configuration/SpringSessionProperties.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@Conponent
cl ass MyAppl i cati onConponent {

@\ut owi r ed
private SpringSessionProperties springSessionProperties;

public void someMet hodUsi ngSpri ngSessi onProperties() {
String sessi onRegi onName = this.springSessionProperties. getSession().getRegion().getNane();

/1 do sonething with "sessionRegi onNane®

}

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire

13

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

6. Caching using Apache Geode or Pivotal GemFire

One of the quickest, easiest and least invasive ways to get started using Apache Geode or Pivotal
GemFire in your Spring Boot applications is to use either Apache Geode or Pivotal GemFire as a caching
provider in Spring’s Cache Abstraction. SDG enables Apache Geode or Pivotal GemFire to function as
a caching provider in Spring’s Cache Abstraction.

Tip

See the Spring Data for Apache Geode Reference Guide for more details on the support and
configuration of Apache Geode or Pivotal GemFire as a caching provider in Spring’s Cache
Abstraction.

Tip

Make sure you thoroughly understand the concepts behind Spring’s Cache Abstraction before
you continue.

Tip

You can also refer to the relevant section on Caching in Spring Boot’s Reference Guide. Spring
Boot even provides auto-configuration support for a few, simple caching providers out-of-the-box.

Indeed, caching can be a very effective software design pattern to avoid the cost of invoking a potentially
expensive operation when, given the same input, the operation yields the same output every time.

Some classic examples of caching include, but are not limited to: looking up a customer by name or
account number, looking up a book by ISBN, geocoding a physical address, caching the calculation of
a person'’s credit score when the person applies for a financial loan.

If you need the proven power of an enterprise-class caching solution, with strong consistency, high
availability and multi-site (WAN) capabilities, then you should consider Apache Geode, or alternatively
Pivotal GemFire. Additionally, Pivotal Software, Inc. offers Pivotal GemFire as a service, known as
Pivotal Cloud Cache (PCC), when deploying and running your Spring Boot applications in Pivotal Cloud

Foundry (PCF).

Spring’s declarative, annotation-based caching makes it extremely simple to get started with caching,
which is as easy as annotating your application service components with the appropriate Spring cache
annotations.

Tip
Spring’s declarative, annotation-based caching also supports JCache (JSR-107) annotations.

For example, suppose you want to cache the results of determining a person’s eligibility when applying
for a financial loan. A person'’s financial status is not likely to change in the time that the computer runs
the algorithms to compute a person’s eligibility after all the financial information for the person has been
collected and submitted for review and processing.

Our application might consist of a financial loan service to process a person’s eligibility over a given
period of time:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 14

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-store-configuration
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-store-configuration
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-store-configuration-gemfire
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:spring-cache-abstraction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-caching
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-strategies
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-caching
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#_supported_cache_providers
https://geode.apache.org/
https://pivotal.io/pivotal-gemfire
https://pivotal.io/
https://pivotal.io/platform/services-marketplace/data-management/pivotal-cloud-cache
https://pivotal.io/platform
https://pivotal.io/platform
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-annotations
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-jsr-107

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@ervi ce
cl ass Financi al LoanApplicationService {

@acheabl e("Eli gi bi lityDecisions", ...)
Eli gi bilityDecision processEligility(Person person, Tinespan tinespan) {

}

Notice the @acheabl e annotation on the pr ocessEl i gi bility(: Person, :Ti mespan) method
of our service class.

When the Fi nanci al LoanAppl i cati onServi ce. processEligibility(..) method is called,
Spring’s caching infrastructure first consults the “EligibilityDecisions” cache to determine if a decision
has already been computed for the given person within the given span of time. If the person’s eligibility in
the given time frame has already been determined, then the existing decision is returned from the cache.
Otherwise, the processEl i gi bility(..) method will be invoked and the result of the method will
be cached when the method returns, before returning the value to the caller.

Spring Boot for Apache Geode/Pivotal GemFire auto-configures Apache Geode or Pivotal GemFire
as the caching provider when either one is declared on the application classpath, and when no other
caching provider (e.g. Redis) has been configured.

If Spring Boot for Apache Geode/Pivotal GemFire detects that another cache provider has already been
configured, then neither Apache Geode nor Pivotal GemFire will function as the caching provider. This
allows users to configure, another store, e.g. Redis, as the caching provider and use Apache Geode or
Pivotal GemFire as your application’s persistent store, perhaps.

The only other requirement to enable caching in a Spring Boot application is for the declared caches
(as specified in Spring’s or JSR-107’'s caching annotations) to have been created and already exist,
especially before the operation, on which caching has been applied, is invoked. This means the backend
data store must provide the data structure serving as the "cache". For Apache Geode or Pivotal GemFire,
this means a Regi on.

To configure the necessary Regions backing the caches declared in Spring’s cache
annotations, this is as simple as using Spring Data for Apache Geode or Pivotal GemFire's
@nabl eCachi ngDef i nedRegi ons annotation.

The complete Spring Boot application looks like this:
package exanpl e. app;

i nport ...;

@pr i ngBoot Appl i cati on
@nabl eCachi ngDef i nedRegi ons
cl ass Financi al LoanApplication {

public static void main(String[] args) {
Spri ngAppl i cation. run(Fi nanci al LoanApplication.class, args);

}

Tip

The Fi nanci al LoanAppl i cati onServi ce is picked up by Spring’'s classpath component
scan since this class is annotated with Spring’s @er vi ce stereotype annotation.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 15

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCachingDefinedRegions.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Tip

You <can set the DataPolicy of the Region created through the
@nabl eCachi ngDef i nedRegi ons annotation by setting the cl i ent Regi onShortcut to a
valid enumerated value.

Note

Spring Boot for Apache Geode/Pivotal GemFire does not recognize nor apply
the spring.cache. cache-nanmes property. Instead, you should use SDG’s
@nabl eCachi ngDefi nedRegi ons on an appropriate Spring Boot application
@confi gurati on class.

6.1 Look-Aside Caching, Near Caching and Inline Caching

Three different types of caching patterns can be applied with Spring when using Apace Geode or Pivotal

GempFire for your application caching needs.
The 3 primary caching patterns include:

* Look-Aside Caching

* Near Caching

¢ Inline Caching
Look-Aside Caching

The caching pattern demonstrated in the example above is a form of Look-Aside Caching.

Essentially, the data of interest is searched for in the cache first, before calling a potentially expensive
operation, e.g. like an operation that makes an 10 or network bound request resulting in either a blocking,

or a latency sensitive computation.

If the data can be found in the cache (stored in-memory to reduce latency) then the data is returned
without ever invoking the expensive operation. If the data cannot be found in the cache, then the
operation must be invoked. However, before returning, the result of the operation is cached for
subsequent requests when the the same input is requested again, by another caller resulting in much

improved response times.

Again, typical Look-Aside Caching pattern applied in your application code looks similar to the following:

Look-Aside Caching Pattern Applied.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire

16

https://content.pivotal.io/blog/an-introduction-to-look-aside-vs-inline-caching-patterns

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@ervi ce
cl ass Custoner Service {

private final CustonerRepository customerRepository;

@acheabl e(" Cust oners")
Cust omer findByAcccount (Account account) {

/'l pre-processing |ogic here
Cust omer custoner = custoner Repository. findByAccoundNunber (account. get Nunmber());
/| post-processing |ogic here

return custoner;

In this design, the Cust oner Reposi t ory is perhaps a JDBC or JPA/Hibernate backed implementation
accessing the external data source (i.e. RDBMS) directly. The @acheabl e annotation wraps, or
"decorates"”, the f i ndByAccount (: Account): Cust oner operation to provide caching facilities.

Note

This operation may be expensive because it might validate the Customer’s Account before looking
up the Customer, pull multiple bits of information to retrieve the Customer record, and so on,
hence the need for caching.

Near Caching

Near Caching is another pattern of caching where the cache is collocated with the application. This is
useful when the caching technology is configured using a client/server arrangement.

We already mentioned that Spring Boot for Apache Geode & Pivotal GemFire provides an auto-
configured, Cl i ent Cache instance, out-of-the-box, by default. The O i ent Cache instance is most
effective when the data access operations, including cache access, is distributed to the servers in
a cluster accessible by the client, and in most cases, multiple clients. This allows other cache client
applications to access the same data. However, this also means the application will incur a network hop
penalty to evaluate the presence of the data in the cache.

To help avoid the cost of this network hop in a client/server topology, a local cache can be established,
which maintains a subset of the data in the corresponding server-side cache (i.e. Region). Therefore,
the client cache only contains the data of interests to the application. This "local" cache (i.e. client-side
Region) is consulted before forwarding the lookup request to the server.

To enable Near Caching when using either Apache Geode or Pivotal GemFire, simply change the
Region’s (i.e. the Cache in Spring’s Cache Abstraction) data management policy from PROXY (the
default) to CACHI NG_PROXY, like so:

@Bpr i ngBoot Appl i cati on
@nabl eCachi ngDef i nedRegi ons(cl i ent Regi onShortcut = C i ent Regi onShort cut. CACH NG_PROXY)
cl ass Financi al LoanApplication {

public static void main(String[] args) {
SpringApplication. run(Fi nanci al LoanApplication. cl ass, args);

}

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 17

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Tip

The default, client Region data management policy is C i ent Regi onShort cut . PROXY. As
such, all data access operations are immediately forwarded to the server.

Tip

Also see the Apache Geode documentation concerning Client/Server Event Distribution
and specifically, "Client Interest Registration on the Server" when using local, client
CACHING_PROXY Regions to manage state in addition to the corresponding server-side Region.
This is necessary to receive updates on entries in the Region that might have been changed by
other clients accessing the same data.

Inline Caching
The final pattern of caching we’ll discuss is Inline Caching.

When employing Inline Caching and a cache miss occurs, the application service method may still not
be invoked since the a Region can be configured to invoke a loader to load the missing entry from an
external data source.

With Apache Geode and Pivotal GemFire, the cache, or using Apache Geode/Pivotal GemFire
terminology, the Region, can be configured with a CacheLoader. This CacheLoader is implemented to
retrieve missing values from some external data source, which could be an RDBMS or any other type
of data store (e.g. another NoSQL store like Apache Cassandra, MongoDB or Neo4)).

Tip
See the Apache Geode User Guide on Data Loaders for more details.

Likewise, an Apache Geode or Pivotal Gemfire Region can be configured with a CacheWriter. A
CacheW i t er isresponsible for writing any entry put into the Region to the backend data store, such as
an RDBMS. This is referred to as a "write-through" operations because it is synchronous. If the backend
data store fails to be written to then the entry will not be stored in the Region. This helps to ensure some
level of consistency between the backing data store and the Apache Geode or Pivotal GemFire Region.

Tip
It is also possible to implement Inline-Caching using an asynchronous, write-behind operation by

registering an AsyncEventListener on an AEQ tied to a server-side Region. You should consult
the Apache Geode User Guide for more details.

Note

Since SBDG is currently focused on the client-side, async, write-behind behavior is not currently
covered with extensive, convenient support, although, it is still very much possible to do.

The typical pattern of Inline Caching when applied to application code looks like the following:

Inline Caching Pattern Applied.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 18

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#PROXY
https://geode.apache.org/docs/guide/16/developing/events/how_client_server_distribution_works.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheLoader.html
https://geode.apache.org/docs/guide/16/developing/outside_data_sources/how_data_loaders_work.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheWriter.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/asyncqueue/AsyncEventListener.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/asyncqueue/AsyncEventQueue.html
https://geode.apache.org/docs/guide/16/developing/events/implementing_write_behind_event_handler.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@ervi ce
cl ass Custoner Service {

private Custoner Repository customnerRRepository;

Cust orer findByAccount (Account account) {
/'l pre-processing |ogic here
Cust omer custoner = custoner Repository. findByAccount Nunber (account . get Nunber ());
/| post-processing |ocic here.

return custoner;

The main difference is, there are no Spring or JSR-107 caching annotations applied to the service
methods and the Cust oner Reposi t ory is accessing Apache Geode or Pivotal GemFire directly and
NOT the RDBMS.

Implementing CachelLoaders, CacheWriters for Inline Caching

You can use Spring to configure a CachelLoader or CacheWiter as a bean in the Spring
Appl i cati onCont ext and then wire it to a Region. Given the CachelLoader or CacheWiter isa
Spring bean like any other bean in the Spring Appl i cat i onCont ext , you can inject any Dat aSour ce
you like into the Loader/Writer.

While you can configure client Regions with CachelLoader s and CacheW i t er s, it is typically more
common to configure the corresponding server-side Region; for example:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 19

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@Bpr i ngBoot Appl i cati on
@cacheSer ver Appl i cati on
cl ass Fi nanci al LoanAppl i cati onServer {

public static void main(String[] args) {
Spri ngApplication. run(Fi nanci al LoanAppl i cati onServer.class, args);

@Bean(" Eli gi bi l'i tyDeci si ons")

Partiti onedRegi onFact or yBean<Obj ect, Cbject> eligibilityDecisionsRegion(
GenfireCache genfireCache, CacheLoader decisi onManagenent Syst enloader,
CacheWiter decisionManagenenSystemWNiter) {

Partiti onedRegi onFact or yBean<?, EligibilityDecision> eligibilityDecisionsRegion =
new PartitionedRegi onFact oryBean<>();

eligibilityDecisionsRegi on.set Cache(genfireCache);
eligibilityDecisionsRegi on.set CacheLoader (deci si onManagenent Syst enlLoader) ;
eligibilityDecisionsRegi on.set CacheWiter(deci si onManagenent SystenWiter);
eligibilityDecisionsRegion.setC ose(false);

eligibilityDecisionsRegion. setPersistent(false);

return eligibilityDecisionsRegion;

@ean
CachelLoader <?, EligibilityDecision> decisi onManagenent Syst enLoader (
Dat aSour ce dat aSource) {

return new Deci si onManagenent Syst enlLoader (dat aSour ce) ;
@Bean
CacheWiter<?, EligibilityDecision> decisionManagenent SystenWiter(
Dat aSour ce dat aSource) {
return new Deci si onManagenent Syst em i t er (dat aSour ce) ;

@Bean
Dat aSour ce dataSource(..) {

Then, you would implement the CachelLoader and CacheW i t er interfaces as appropriate:

DecisionManagementSystemLoader.

cl ass Deci si onManagenent Syst enLoader i npl ements CachelLoader<?, EligibilityDecision> {
private final DataSource dataSource;
Deci si onManagenent Syst enlLoader (Dat aSour ce dat aSource) {

this.dataSource = dataSour ce;

}
public EligibilityDecision |oad(LoadHel per<?, EligibilityDecision> helper) {
oj ect key = hel per. getKey();
/1 Use the configured DataSource to | oad the value froman external data store.

return ...

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire

20

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheLoader.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheWriter.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Tip

SBDG provides the
org. spri ngf ramewor k. geode. cache. support. CacheLoader Support
@-unctional | nt er f ace to conveniently implement application CachelLoader s.

If the configured CachelLoader still cannot resolve the value, then the cache lookup operation results
in a miss and the application service method will then be invoked to compute the value.

DecisionManagementSystemWriter.

cl ass Deci si onManagenent SystenmWiter inplenments CacheWiter<?, EligibilityDecision> {
private final DataSource dataSource;

Deci si onManagenent Syst emW i t er (Dat aSour ce dat aSource) {
this. dat aSource = dataSource;

}

public void beforeCreate(EntryEvent<?, EligiblityDecision> entryEvent) {
/'l Use configured DataSource to save (e.g. INSERT) the entry to the backend data store

}

public void beforeUpdat e(EntryEvent<?, EligiblityDecision> entryEvent) {
/'l Use the configured DataSource to save (e.g. UPDATE or UPSERT) the entry in the backend data store

}

public void beforeDestroy(EntryEvent<?, EligiblityDecision> entryEvent) {
/'l Use the configured DataSource to delete (i.e. DELETE) the entry fromthe backend data store

}

Tip

SBDG provides the
org. spri ngframewor k. geode. cache. support. CacheWi t er Support interface to
conveniently implement application CacheWiters.

Note

Of course, your CacheW i t er implementation can use any data access technology to interface
with your backend data store (e.g. JDBC, Spring’s JdbcTenpl at e, JPA/Hibernate, etc). It is not
limited to only using a j avax. sql . Dat aSour ce. In fact, we will present another, more useful
and convenient approach to implementing Inline Caching in the next section.

Inline Caching using Spring Data Repositories.

Spring Boot for Apache Geode & Pivotal GemFire (SBDG) now offers dedicated support and
configuration of Inline Caching using Spring Data Repositories.

This is very powerful because it allows you to:

1. Access any backend data store supported by Spring Data (e.g. Redis for Key/Value or other data
structures, MongoDB for Documents, Neo4j for Graphs, Elasticsearch for Search, and so on).

2. Use complex mapping strategies (e.g. ORM provided by JPA/Hibernate).

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 21

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

It is our belief that users should be putting data where it is most easily accessible. If you are accessing
and processing Documents, then most likely MongoDB (or Couchbase or another document store) might
be the most logical choice to manage your application’s Documents.

However, that does not mean you have to give up Apache Geode or Pivotal GemFire in your application/
system architecture. You can leverage each data store for what it is good at. While MongoDB is good at
Document handling, Apache Geode is a highly valuable choice for consistency, high availability, multi-
site, low-latency/high-throughput scale-out Use Cases.

As such, using Apache Geode and Pivotal GemFire’'s CachelLoader/ CacheW it er mechanism
provides a integration point between itself and other data stores to best serve your Use Case and
application requirements/needs.

And now, SBDG just made this even easier.
EXAMPLE
Let's say you are using JPA/Hibernate to access (store and retrieve) data in a Oracle Database.

Then, you can configure Apache Geode to read/write-through to the backend Oracle Database when
performing cache (Region) operations by delegating to a Spring Data (JPA) Repository.

The configuration might look something like:

Inline Caching configuration using SBDG.

@pr i ngBoot Appl i cati on

@ntityScan(basePackageC asses = Custoner. cl ass)

@nabl eEnti t yDefi nedRegi ons(basePackageC asses = Custoner. cl ass)
@nabl eJpaReposi t ori es(basePackageCl asses = Cust oner Reposi tory. cl ass)
cl ass SpringBoot O acl eDat abaseApacheGeodeAppl i cation {

@ean
I nli neCachi ngRegi onConf i gur er <Cust oner, Long> inlineCachi ngFor Cust onmer sRegi onConfi gurer (
Cust omer Reposi tory custonmer Repository) {

return new I nlineCachi ngRegi onConfi gur er <>(cust oner Reposi tory, Predicate.isEqual ("Custoners"));
}
}

Out-of-the-box, SBDG provides the | nl i neCachi ngRegi onConf i gur er <ENTI TY, | D> interface.

Given a Predi cat e to express and match the target Region by name along with a Spring Data
CrudReposi tory, the I nl i neCachi ngRegi onConfi gur er will configure and adapt the Spring
Data Cr udReposi t ory as a CacheLoader and CacheW i t er for the Region (e.g. "Customers"), i.e.
it enables the Region to use Inline Caching.

You simply only need to declare | nl i neCachi ngRegi onConfi gurer as a bean in the Spring
application context and make the association between the Region (by name) and the appropriate Spring
Data Cr udReposi tory.

In this example, we used JPA and Spring Data JPA to store/retrieve the data in the cache (Region) to/
from a backend database. But, you can inject any Spring Data Repository for any data store (e.g. Redis,
MongoDB, etc) that supports the Spring Data Repository abstraction.

Tip

If you only want to support oneway data access operations when using Inline
Caching, then you can use either the RepositoryCachelLoader Regi onConfi gurer for

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 22

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

reads or the RepositoryCacheWiterRegi onConfigurer for writes, instead of the
I nl i neCachi ngRegi onConf i gur er, which supports both reads and writes.

Tip

To see a similar implementation of Inline Caching using a Database (In-Memory, HSQLDB
Database) in action, have a look at this test class from the SBDG test suite. A dedicated sample
will be provided in a future release.

6.2 Advanced Caching Configuration

Both Apache Geode and Pivotal GemFire support additional caching capabilities to manage the entries
stored in the cache.

As you can imagine, given the cache entries are stored in-memory, it becomes important to monitor and
manage the available memory wisely. After all, by default, both Apache Geode and Pivotal GemFire
store data in the JVM Heap.

Several techniques can be employed to more effectively manage memory, such as using Eviction,
possibly overflowing to disk, configuring both entry Idle-Timeout (TTI) as well as Time-To-Live (TTL)
Expiration policies, configuring Compression, and using Off-Heap, or main memory.

There are several other strategies that can be used as well, as described in Managing Heap and Off-
heap Memory.

While this is well beyond the scope of this document, know that Spring Data for Apache Geode & Pivotal
GemFire make all of these configuration options simple.

6.3 Disable Caching

There may be cases where you do not want your Spring Boot application to cache application state
with Spring’s Cache Abstraction using either Apache Geode or Pivotal GemFire. In certain cases, you
may be using another Spring supported caching provider, such as Redis, to cache and manage your
application state, while, even in other cases, you may not want to use Spring’s Cache Abstraction at all.

Either way, you can specifically call out your Spring Cache Abstraction provider using the
spring. cache. t ype property in appl i cati on. properti es, as follows:

Use Redis as the Spring Cache Abstraction Provider.

#appl i cati on. properties

spring. cache. type=redis

If you prefer not to use Spring’s Cache Abstraction to manage your Spring Boot application’s state at
all, then do the following:

Disable Spring’s Cache Abstraction.

#appl i cati on. properties

spring. cache. t ype=none

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 23

https://github.com/spring-projects/spring-boot-data-geode/blob/master/spring-geode/src/test/java/org/springframework/geode/cache/inline/database/InlineCachingWithDatabaseIntegrationTests.java
https://geode.apache.org/docs/guide/16/developing/eviction/chapter_overview.html
https://geode.apache.org/docs/guide/16/developing/storing_data_on_disk/chapter_overview.html
https://geode.apache.org/docs/guide/16/developing/expiration/chapter_overview.html
https://geode.apache.org/docs/guide/16/managing/region_compression.html
https://geode.apache.org/docs/guide/16/managing/heap_use/off_heap_management.html
https://geode.apache.org/docs/guide/16/managing/heap_use/heap_management.html
https://geode.apache.org/docs/guide/16/managing/heap_use/heap_management.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-regions
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

See Spring Boot docs for more details.
Tip

It is possible to include multiple providers on the classpath of your Spring Boot application. For
instance, you might be using Redis to cache your application’s state while using either Apache
Geode or Pivotal GemFire as your application’s persistent store (System of Record).

Note

Spring Boot does not properly recognize spri ng. cache.type=[genfire| geode] even
though Spring Boot for Apache Geode/Pivotal GemFire is setup to handle either of these property
values (i.e. either “gemfire” or “geode”).

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire

24

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-caching.html#boot-features-caching-provider-none

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

7. Data Access with GemfireTemplate

There are several ways to access data stored in Apache Geode.

For instance, developers may choose to use the Region API directly. If developers are driven by the
application’s domain context, they might choose to leverage the power of Spring Data Repositories
instead.

While using the Region API directly offers flexibility, it couples your application to Apache Geode, which
is usually undesirable and unnecessary. While using Spring Data Repositories provides a very powerful
and convenient abstraction, you give up flexibility provided by a lower level API.

A good comprise is to use the Template pattern. Indeed, this pattern is consistently and widely used
throughout the entire Spring portfolio.

For example, there is the JdbcTemplate and JmsTemplate, which are provided by the core Spring
Framework.

Other Spring Data modules, such as Spring Data Redis, offer the RedisTemplate, and Spring Data for
Apache Geode/Pivotal GemFire (SDG) offers the GemfireTemplate.

The Genf i r eTenpl at e provides a highly consistent and familiar APIto perform data access operations
on Apache Geode or Pivotal GemFire cache Regi ons.

Genfi r eTenpl at e offers:

1. Simple, consistent and convenient data access API to perform CRUD and basic query operations
on cache Regions.

2. Use of Spring Framework’s consistent, data access Exception Hierarchy.

3. Automatic enlistment in the presence of local, cache transactions.
4. Protection from Region API breaking changes.

Given these conveniences, Spring Boot for Apache Geode & Pivotal GemFire (SBDG) will auto-
configure Genf i r eTenpl at e beans for each Region present in the GemFire/Geode cache.

Additionally, SBDG is careful not to create a Genfi r eTenpl at e if the user has already declared a
Genfi reTenpl at e bean in the Spring Appl i cat i onCont ext for a given Region.

7.1 Explicitly Declared Regions

Given an explicitly declared Region bean definition:

@onfi guration
cl ass GenfFireConfiguration {

@ean(" Exanpl e")
Cl i ent Regi onFact or yBean<?, ?> exanpl eRegi on (GenFireCache genfireCache) {

}
}

SBDG will automatically create a GenfireTenpl ate bean for the "Example" Region using a
bean name "exampleTemplate". SBDG will name the Genf i reTenpl at e bean after the Region by
converting the first letter in the Region’s name to lowercase and appending the word "Template" to the
bean name.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 25

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jms/core/JmsTemplate.html
https://docs.spring.io/spring-data/redis/docs/current/api/org/springframework/data/redis/core/RedisTemplate.html
https://docs.spring.io/spring-data/gemfire/docs/current/api/org/springframework/data/gemfire/GemfireTemplate.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#dao-exceptions
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

In a managed Data Access Object (DAO), | can inject the Template, like so:

@Reposi tory
cl ass Exanpl eDat aAccessObj ect {

@\ut owi r ed
@ualifier("exanpl eTenpl ate")
private GenfireTenpl ate exanpl eTenpl at e;

It's advisable, especially if you have more than 1 Region, to use the @ual i f i er annotation to qualify
which Genf i r eTenpl at e bean you are specifically referring as demonstrated above.

7.2 Entity-defined Regions

SBDG auto-configures Genf i r eTenpl at e beans for Entity-defined Regions.

Given the following entity class:

@Regi on(" Cust oners")
cl ass Custonmer {

}

And configuration:

@onfiguration
@Enabl eEnt i t yDef i nedRegi ons(basePackageCl asses = Custoner. cl ass}
cl ass GenfFireConfiguration {

}

SBDG auto-configures a GCenfireTenplate bean for the "Customers" Region named
"customersTemplate”, which you can then inject into an application component:

@ervi ce
cl ass Custoner Service {

@Bean
@ualifier("custonersTenpl ate")
private GenfireTenpl ate custonersTenpl ate;

Again, be careful to qualify the Genf i r eTenpl at e bean injection if you have multiple Regions, whether
declared explicitly or implicitly, such as when using the @nabl eEnt i t yDef i neRegi ons annotation.

7.3 Caching-defined Regions

SBDG auto-configures Genf i r eTenpl at e beans for Caching-defined Regions.

When you are using Spring Framework’s Cache Abstraction backed by either Apache Geode or Pivotal
GemFire, 1 of the requirements is to configure Regions for each of the caches specified in the Caching
Annotations of your application service components.

Fortunately, SBDG makes enabling and configuring caching easy and automatic out-of-the-box.

Given a cacheable application service component:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 26

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-referenceintegration.html#cache-annotations
https://docs.spring.io/spring/docs/current/spring-framework-referenceintegration.html#cache-annotations

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@ervi ce
cl ass Cacheabl eCust onmer Servi ce {

@Bean
@ualifier("custonmersByNaneTenpl ate")
private GenfireTenpl ate custonersByNaneTenpl at e;

@acheabl e(" Cust oner sByNane")
public Custoner findBy(String nane) {
return toCustoner (custonersByNaneTenpl ate. query(“name = " + nane));
}
}

And configuration:

@onfiguration
@nabl eCachi ngDef i nedRegi ons
cl ass GenfFireConfiguration {

@Bean
publ i c CustonerService customnerService() {
return new Custoner Service();
}
}

SBDG auto-configures a GenfireTenpl at e bean named "customersByNameTemplate" used to
perform data access operations on the "CustomersByName" (@acheabl e) Region, which you can
inject into any managed application component, as shown above.

Again, be careful to qualify the Genf i r eTenpl at e bean injection if you have multiple Regions, whether
declared explicitly or implicitly, such as when using the @nabl eCachi ngDef i neRegi ons annotation.

Warning

There are certain cases where autowiring (i.e. injecting) GenfireTenpl at e beans auto-
configured by SBDG for Caching-defined Regions into your application components
will not always work! This has to do with the Spring Container bean creation
process. In those case you may need to lazily lookup the GenfireTenpl ate
as needed, using applicationContext.getBean("customnmersByNanmeTenpl ate",
GenfireTenpl at e. cl ass) . This is certainly not ideal but works when autowiring does not.

7.4 Native-defined Regions

SBDG will even auto-configure Genf i r eTenpl at e beans for Regions defined using Apache Geode
and Pivotal GemFire native configuration meta-data, such as cache. xm .

Given the following GemFire/Geode native cache. xmi :

<?xm version="1.0" encodi ng="UTF-8"?>
<client-cache xm ns="http://geode. apache. or g/ schema/ cache"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"

xsi : schemalLocati on="http://geode. apache. or g/ schema/ cache http://geode. apache. or g/ schema/ cache/
cache-1.0. xsd"

version="1.0">

<regi on name="Exanpl e" refid="LOCAL"/>

</client-cache>

And Spring configuration:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 27

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@onfi guration
@nabl eGenFi reProperties(cacheXm File = "cache. xm ")
cl ass GenFireConfiguration {

}

SBDG will auto-configure a Genf i r eTenpl at e bean named "exampleTemplate" after the "Example”
Region defined in cache. xni . This Template can be injected like any other Spring managed bean:

@ervi ce
cl ass Exanpl eServi ce {

@\ut owi r ed
@ualifier("exanpl eTenpl ate")
private GenfireTenpl ate exanpl eTenpl ate;

The same rules as above apply when multiple Regions are present.

7.5 Template Creation Rules

Fortunately, SBDG is careful not to create a Genfi r eTenpl at e bean for a Region if a Template by
the same name already exists. For example, if you defined and declared the following configuration:

@onfiguration
@nabl eEnti t yDef i nedRegi ons(basePackageCl asses = Custoner. cl ass)

cl ass GenfFireConfiguration {

@Bean
public GenfireTenpl ate custonersTenpl at e(GenFi reCache cache) {
return new GenfireTenpl at e(cache. get Regi on("/ Cust oners");
}
}

Using our same Customers class, as above:

@Regi on(" Cust oners")
cl ass Custoner {

}

Because you explicitly defined the "customersTemplate" bean, SBDG will not create a Template for the
"Customers" Region automatically. This applies regardless of how the Region was created, whether
using @nabl eEnti t yDef i nedRegi ons, @nabl eCachi ngDef i nedRegi ons, declaring Regions
explicitly or defining Regions natively.

Even if you name the Template differently from the Region for which the Template was configured,
SBDG will conserve resources and not create the Template.

For example, suppose you named the GenfireTenpl at e bean, "vipCustomersTemplate", even
though the Region name is "Customers", based on the @Regi on annotated Cust oner class, which
specified Region "Customers".

With the following configuration, SBDG is still careful not to create the Template:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 28

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@onfi guration
@Enabl eEnt i t yDef i nedRegi ons(basePackageCl asses = Custoner. cl ass)
cl ass GenFireConfiguration {

@Bean
public GenfireTenpl ate vi pCust oner sTenpl at e(GenFi reCache cache) {
return new GenfireTenpl at e(cache. get Regi on("/ Cust oners");
}
}

SBDG identifies that your "vipCustomersTemplate" is the Template used with the "Customers" Region
and SBDG will not create the "customersTemplate" bean, which would resultin 2 Genfi r eTenpl at e
beans for the same Region.

Note

The name of your Spring bean defined in JavaConfig is the name of the method if the Spring bean
is not explicitly named using the nane (or val ue) attribute of the @ean annotation.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 29

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

8. Spring Data Repositories

Using Spring Data Repositories with Apache Geode or Pivotal GemFire makes short work of data access
operations when using either Apache Geode or Pivotal GemFire as your System of Record (SOR) to
persist your application’s state.

Spring Data Repositories provides a convenient and highly powerful way to define basic CRUD and
simple query data access operations easily just by specifying the contract of those data access
operations in a Java interface.

Spring Boot for Apache Geode & Pivotal GemFire auto-configures the Spring Data for Apache Geode/
Pivotal GemFire Repository extension when either is declared on your application’s classpath. You do
not need to do anything special to enable it. Simply start coding your application-specific Repository
interfaces and the way you go.

For example:

Define a Cust oner class to model customers and map it to the GemFire/Geode "Customers" Region
using the SDG @Regi on mapping annotation:

Cust omrer entity class.

package exanpl e. app. books. nodel ;

import ...;
@Regi on(" Cust oners")
cl ass Custoner {

@d
private Long id;

private String nane;

Declare your Repository (a.k.a. Data Access Object (DAQ)) for Cust oners...

Cust onmer Reposi t ory for peristing and accessing Cust oner s.
package exanpl e. app. books. r epo;

i nport ...;
i nterface CustonerRepository extends CrudRepository<Custoner, Long> {

Li st <Cust omer > fi ndByLast NanmeLi keOr der ByLast NameDescFi r st NaneAsc(String custonerLast NameW | dcard) ;

Then use the Cust orrer Reposi t ory in an application service class:

Inject and use the Cust orrer Reposi tory.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 30

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#gemfire-repositories
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/annotation/Region.html
https://en.wikipedia.org/wiki/Data_access_object

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

package exanpl e. app;
i nport

@pr i ngBoot Appl i cati on
@nabl eEnt i t yDef i nedRegi ons(basePackageC asses = Custoner. cl ass)
cl ass SpringBoot ApacheGeodeC i ent CacheApplication {

public static void main(String[] args) {
Spri ngAppl i cati on. run(Spri ngBoot ApacheGeodeCd i ent CacheAppl i cation. class, args);
}

@Bean
Appl i cati onRunner runner (Custonmer Repository custonmer Repository) {

/1 Matches WIlianms, WIson, etc.
Li st <Cust omer > custoners =

cust omer Reposi tory. fi ndByLast NaneLi keOr der ByLast NaneDescFi r st NaneAsc("W 1 %) ;

/'l process the list of natching custoners...

Again, see Spring Data Commons' Repositories abstraction in general, and Spring Data for Apache
Geode/Pivotal GemFire Repositories extension in particular, for more details.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 31

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#gemfire-repositories

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

9. Function Implementations & Executions

9.1 Background

Distributed processing, particularly in conjunction with data access and mutation operations, is a very
effective and efficient use of clustered computing resources. This is along the same lines as MapReduce.

A naively conceived query returning potentially hundreds of thousands, or even millions of rows of data
in a result set back to the application that queried and requested the data can be very costly, especially
under load. Therefore, it is typically more efficient to move the processing and computations on the
predicated data set to where the data resides, perform the required computations, summarize the results
and then send the reduced data set back to the client.

Additionally, when the computations are handled in parallel, across the cluster of computing resources,
the operation can be performed much faster. This typically involves intelligently organizing the data using
various partitioning (a.k.a. sharding) strategies to uniformly balance the data set across the cluster.

Well, both Apache Geode and Pivotal GemFire address this very important application concern in its
Function Execution framework.

Spring Data for Apache Geode/Pivotal GemFire builds on this Function Execution framework by
enabling developers to implement and execute GemFire/Geode Functions using a very simple POJO-
based, annotation configuration model.

Tip
See here for the difference between Function implementation & executions.

Taking this 1 step further, Spring Boot for Apache Geode/Pivotal GemFire auto-configures and enables
both Function implementation and execution out-of-the-box. Therefore, you can immediately begin
writing Functions and invoking them without having to worry about all the necessary plumbing to begin
with. You can rest assured that it will just work as expected.

9.2 Applying Functions

Earlier, when we talked about caching, we described a Fi nanci al LoanAppl i cati onSer vi ce class
that could process eligibility when a Per son applied for a financial loan.

This can be a very resource intensive & expensive operation since it might involve collecting credit
and employment history, gathering information on existing, outstanding/unpaid loans, and so on and so
forth. We applied caching in order to not have to recompute, or redetermine eligibility every time a loan
office may want to review the decision with the customer.

But what about the process of computing eligibility in the first place?

Currently the application’s Fi nanci al LoanAppl i cati onSer vi ce class seems to be designed to
fetch the data and perform the eligibility determination in place. However, it might be far better to
distribute the processing and even determine eligibility for a larger group of people all at once, especially
when multiple, related people are involved in a single decision, as is typically the case.

We implement an El i gi bi | i t yDet er mi nati onFuncti on class using SDG very simply as:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 32

https://en.wikipedia.org/wiki/MapReduce
https://geode.apache.org/docs/guide/16/developing/function_exec/chapter_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-annotations
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-implementation
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-execution
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#_implementation_vs_execution

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Function implementation.

@onponent
class EligibilityDetermn nati onFunction {

@zenfireFunction(HA = true, hasResult = true, optim zeForWite=true)
public EligibilityDecision determ neEligibility(FunctionContext functionContext, Person person,

Ti mespan ti mespan) {

}

Using the SDG @zenfir eFuncti on annotation, it is easy to implement our Function as a POJO
method. SDG handles registering this POJO method as a proper Function with GemFire/Geode

appropriately.

If we now want to call this Function from our Spring Boot, Cl i ent Cache application, then we simply
define a Function Execution interface with a method name matching the Function name, and targeting

the execution on the "EligibilityDecisions" Region:

Function execution.

@nRegi on("EligibilityDecisions")
interface EligibilityDeterm nati onExecution {

El i gi bilityDecision determ neEligibility(Person person, Tinespan tinespan);

We can then inject the EligibilityDetern nati onExecution into
Fi nanci al LoanAppl i cat i onSer vi ce like any other object/Spring bean:

Function use.

our

@ervi ce
cl ass Financi al LoanApplicationService {

private final EligibilityDeterm nati onExecution execution;

public LoanApplicationService(EligibilityDetermn nati onExecution execution) {
t his. executi on = execution;

}

@acheabl e("Eli gi bi lityDecisions", ...)
Eli gi bilityDecision processEligility(Person person, Tinespan tinespan) {
return this.execution.determ neEligibility(person, tinespan);

}

Just like caching, no addition configuration is required to enable and find your application Function
implementations and executions. Simply build and run. Spring Boot for Apache Geode/Pivotal GemFire

handles the rest.

Tip

It is common to implement and register your application Functions on the server and execute

them from the client.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire

33

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/function/annotation/GemfireFunction.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

10. Continuous Query

Arguably, the most invaluable of applications are those that can process a stream of events as they
happen, and intelligently react in near real-time to the countless changes in the data over time. The
most useful of frameworks are those that can make processing a stream of events as they happen, as
easy as possible.

Spring Boot for Apache Geode & Pivotal GemFire does just that, without users having to perform
any complex setup or configure any necessary infrastructure components to enable such functionality.
Developers can simply define the criteria for the data they are interested in and implement a handler
to process the stream of events as they occur.

Apache Geode & Pivotal GemFire make defining criteria for data of interests easy when using
Continuous Query (CQ). With CQ, you can express the criteria matching the data of interests using
a query predicate. Apache Geode & Pivotal GemFire implements the Object Query Language (OQL)
for defining and executing queries. OQL is not unlike SQL, and supports projections, query predicates,
ordering and aggregates. And, when used in CQs, they execute continuously, firing events when the
data changes in such ways as to match the criteria expressed in the query predicate.

Spring Boot for Apache Geode/Pivotal GemFire combines the ease of expressing interests in data using
an OQL query statement with implementing the listener handler callback, in 1 easy step.

For example, suppose we want to perform some follow up action anytime a customer’s financial loan
application is either approved or denied.

First, the application model for our El i gi bi | i t yDeci si on class might look something like:

EligibilityDecision class.

@Regi on("El'igibilityDecisions")
class EligibilityDecision {

private final Person person;
private Status status = Status. UNDETERM NED;

private final Tinmespan tinmespan;

enum Status {

APPROVED,
DENI ED,
UNDETERM NED,

Then, we can implement and declare our CQ event handler methods to be notified when a decision is
either APPROVED or DENIED:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 34

https://geode.apache.org/docs/guide/16/developing/continuous_querying/chapter_overview.html
https://geode.apache.org/docs/guide/16/developing/querying_basics/query_basics.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@Conponent
class EligibilityDecisionPostProcessor {

@ont i nuousQuery(name = "ApprovedDeci si onsHandl er",
query = "SELECT deci si ons. *
FROM / El i gi bi l'i t yDeci si ons deci si ons
WHERE deci si ons. get St at us(). name() . equal sl gnoreCase(' APPROVED) ")
public void processApprovedDeci si ons(CqEvent event) {

}

@Cont i nuousQuery(nane = "Deni edDeci si onsHandl er ",
query = "SELECT deci si ons. *
FROM / El'i gi bi i t yDeci si ons deci si ons
WHERE deci si ons. get St atus() . nane() . equal sl gnoreCase(' DENIED)")
public voi d processDeni edDeci si ons(CgEvent event) {

}

Thus, anytime eligibility is processed and a decision as been made, either approved or denied, our
application will get notified, and as an application developer, you are free to code your handler
and respond to the event anyway you like. And, because our Continuous Query handler class is
a component, or bean in the Spring Appl i cati onCont ext, you can auto-wire any other beans
necessary to carry out the application’s intended function.

This is not unlike Spring’s Annotation-driven listener endpoints used in (JMS) message listeners/
handlers, except in Spring Boot for Apache Geode/Pivotal GemFire, you do not need to do anything
special to enable this functionality. Just declare the @ont i nuousQuery annotation on any POJO
method and off you go.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 35

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-annotated

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

11. Data Serialization with PDX

Anytime data is overflowed or persisted to disk, transferred between clients and servers, peers in a
cluster or between different clusters in a multi-site topology, then all data stored in Apache Geode/
Pivotal GemFire must be serializable.

To serialize objects in Java, object types must implement the j ava. i 0. Seri al i zabl e interface.
However, if you have a large number of application domain object types that currently do not implement
java.io. Serializabl e, then refactoring hundreds or even thousands of class types to implement
Seri al i zabl e would be a tedious task just to store and manage those objects in Apache Geode or
Pivotal GemFire.

Additionally, it is not just your application domain object types you necessarily need to worry about
either. If you used 3rd party libraries in your application domain model, any types referred to by your
application domain object types stored in Apache Geode or Pivotal GemFire must be serializable too.
This type explosion may bleed into class types for which you may have no control over.

Furthermore, Java serialization is not the most efficient format given that meta-data about your types is
stored with the data itself. Therefore, even though Java serialized bytes are more descriptive, it adds
a great deal of overhead.

Then, along came serialization using Apache Geode or Pivotal GemFire’s PDX format. PDX stands for
Portable Data Exchange, and achieves 4 goals:

1. Separates type meta-data from the data itself making the bytes more efficient during transfer. Apache
Geode and Pivotal GemFire maintain a type registry storing type meta-data about the objects
serialized using PDX.

2. Supports versioning as your application domain types evolve. It is not uncommon to have old and
new applications deployed to production, running simultaneously, sharing data, and possibly using
different versions of the same domain types. PDX allows fields to be added or removed while still
preserving interoperability between old and new application clients without loss of data.

3. Enables objects stored as PDX bytes to be queried without being de-serialized. Constant de/
serialization of data is a resource intensive task adding to the latency of each data request when
redundancy is enabled. Since data must be replicated across peers in the cluster to preserve High
Availability (HA), and serialized to be transferred, keeping data serialized is more efficient when data
is updated frequently since it will likely need to be transferred again in order to maintain consistency
in the face of redundancy and availability.

4. Enables interoperability between native language clients (e.g. C/C++/C#) and Java language clients,
with each being able to access the same data set regardless from where the data originated.

However, PDX is not without its limitations either.

For instance, unlike Java serialization, PDX does not handle cyclic dependencies. Therefore, you must
be careful how you structure and design your application domain object types.

Also, PDX cannot handle field type changes.

Furthermore, while GemFire/Geode’s general Data Serialization handles deltas, this is not achievable
without de-serializing the object bytes since it involves a method invocation, which defeats 1 of the key
benefits of PDX, preserving format to avoid the cost of de/serialization.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 36

https://geode.apache.org/docs/guide/16/developing/data_serialization/gemfire_pdx_serialization.html
https://geode.apache.org/docs/guide/16/developing/data_serialization/gemfire_data_serialization.html
https://geode.apache.org/docs/guide/16/developing/delta_propagation/chapter_overview.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

However, we think the benefits of using PDX greatly outweigh the limitations and therefore have enabled
PDX by default when using Spring Boot for Apache Geode/Pivotal GemFire.

There is nothing special you need to do. Simply code your types and rest assured that objects of those
types will be properly serialized when overflowed/persisted to disk, transferred between clients and
servers, or peers in a cluster and even when data is transferred over the WAN when using GemFire/
Geode’s multi-site topology.

EligibilityDecision is automatically serialiable without implementing Java Serializable.

@Region("EligibilityDecisions")
class EligibilityDecision {

}
Tip

Apache Geode/Pivotal GemFire does support the standard Java Serialization format.

11.1 SDG Mappi ngPdxSeri al i zer vs. GemFire/Geode’s
Ref | ecti onBasedAut oSeri al i zer
Under-the-hood, Spring Boot for Apache Geode/Pivotal GemFire enables and uses Spring Data for

Apache Geode/Pivotal GemFire’'s MappingPdxSerializer to serialize your application domain objects
using PDX.

Tip

Refer to the SDG Reference Guide for more details on the Mappi ngPdxSeri al i zer class.

The Mappi ngPdxSer i al i zer offers several advantages above and beyond GemFire/Geode’s own
ReflectionBasedAutoSerializer class.

Tip

Refer to Apache Geode's User Guide for more details about the
Ref | ecti onBasedAut oSeri al i zer.

The SDG Mappi ngPdxSeri al i zer offers the following capabilities:

1. PDX serialization is based on Spring Data’'s powerful mapping infrastructure and meta-data, as
such...

2. Includes support for both i ncl udes and excl udes with type filtering. Additionally, type filters
can be implemented using Java’'s j ava. util.function. Predi cat e interface as opposed to
GemFire/Geode’s limited regex capabilities provided by the Ref | ect i onBasedAut oSeri al i zer
class. By default, Mappi ngPdxSeri al i zer excludes all types in the following packages: j ava,
or g. apache. geode, or g. spri ngf ramewor k & com genst one. genfire.

3. Handles transient object fields & properties when either Java’st r ansi ent keyword or Spring Data’s
@t ansi ent annotation is used.

4. Handles read-only object properties.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 37

https://geode.apache.org/docs/guide/16/developing/data_serialization/java_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-pdx
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/MappingPdxSerializer.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/ReflectionBasedAutoSerializer.html
https://geode.apache.org/docs/guide/16/developing/data_serialization/auto_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.type-filtering
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.transient-properties
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.read-only-properties

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

5. Automatically determines the identifier of your entities when you annotate the appropriate entity field
or property with Spring Data’s @Id annotation.

6. Allows 0. a. g. pdx. PdxSeri al i zer s to be registered in order to customize the serialization of
nested entity field/property types.

Number two above deserves special attention since the Mappi ngPdxSeri al i zer "excludes" all Java,
Spring and Apache Geode/Pivotal GemFire types, by default. But, what happens when you need to
serialize 1 of those types?

For example, suppose you need to be able to serialize objects of type j ava. security. Pri nci pal .
Well, then you can override the excludes by registering an "include" type filter, like so:

package exanpl e. app;

i nport java.security. Principal;
i mport ...;

@pr i ngBoot Appl i cati on
@nabl ePdx(serial i zerBeanNane = "nyCust onVappi ngPdxSeri al i zer")
cl ass SpringBoot ApacheGeodeC i ent CacheApplication {

public static void main(String[] args) {
Spri ngAppl i cation. run(SpringBoot ApacheGeodeCd i ent CacheAppl i cation. cl ass, args);
}

@Bean
Mappi ngPdxSeri al i zer myCust omvVlppi ngPdxSeri al i zer () {

Mappi ngPdxSeri al i zer cust omVappi ngPdxSeri al i zer =
Mappi ngPdxSeri al i zer . newMappgi nPdxSeri al i zer () ;

cust omVappi ngPdxSeri al i zer. set | ncl udeTypeFi | ters(
type -> Principal.class.isAssignabl eFron(type));

return custonmMvappi ngPdxSeri al i zer;

Tip

Normally, you do not need to explicitly declare SDG’s @nabl ePdx annotation to enable and
configure PDX. However, if you want to override auto-configuration, as we have demonstrated
above, then this is what you must do.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 38

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/annotation/Id.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.custom-serialization

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

12. Security

This sections covers Security configuration for Apache Geode & Pivotal GemFire, which includes both
Authentication & Authorization (collectively, Auth) as well as Transport Layer Security (TLS) using SSL.

Note

Securing Data at Rest is not generally supported by either Apache Geode, Pivotal GemFire or
Pivotal Cloud Cache (PCC) yet.

12.1 Authentication & Authorization

Apache Geode & Pivotal GemFire employs Username and Password based Authentication along with
Role-based Authorization to secure your client to server data exchanges and operations.

Spring Data for Apache Geode & Pivotal GemFire (SDG) provides first-class support for Apache Geode
& Pivotal GemFire's Security framework, which is based on the SecurityManager interface. Additionally,
Apache Geode’s Security framework is integrated with Apache Shiro, making the security for servers
an even easier and more familiar task.

Note

Eventually, support and integration with Spring Security will be provided by SBDG as well.

When you use Spring Boot for Apache Geode & Pivotal GemFire (SBDG), which builds on the bits
provided in Spring Data for Apache Geode & Pivotal GemFire (SDG), it makes short work of enabling
Auth in both your clients and servers.

Auth for Servers

The easiest and most standard way to enable Auth in the servers of your cluster is to simply define 1 or
more Apache Shiro Realms as beans in the Spring Appl i cat i onCont ext .

For example:

Declaring an Apache Shiro Realm.

@onfiguration
cl ass ApacheGeodeSecurityConfiguration {

@ean

Def aul t LdapReal m | dapReal n(..) {
return new Defaul t LdapReal m();

}

When an Apache Shiro Realm (e.g. Def aul t LdapReal m) is declared and registered in the Spring
Appl i cati onCont ext as a Spring bean, Spring Boot will automatically detect this Real mbean (or
Real mbeans if more than 1 is configured) and the Apache Geode & Pivotal GemFire servers in the
cluster will automatically be configured with Authentication and Authorization enabled.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 39

https://geode.apache.org/docs/guide/16/managing/security/authentication_overview.html
https://geode.apache.org/docs/guide/16/managing/security/authorization_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-security
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/SecurityManager.html
https://shiro.apache.org/
https://spring.io/projects/spring-security
https://shiro.apache.org/realm.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Alternatively, you can provide an custom, application-specific implementation of Apache Geode &
Pivotal GemFire’'s SecurityManager interface, declared and registered as a bean in the Spring
Appl i cati onCont ext :

Declaring a custom Apache Geode or Pivotal GemFire Securi t yManager .

@onfiguration
cl ass ApacheGeodeSecurityConfiguration {

@ean
Cust onSecuri t yManager custonSecurityManager(..) {
return new CustonBecurityManager();

}

Spring Boot will discover your custom, application-specific Secur i t yManager implementation and
configure the servers in the Apache Geode or Pivotal GemFire cluster with Authentication and
Authorization enabled.

Tip

The Spring team recommends that you use Apache Shiro to manage the Authentication &
Authorization of your Apache Geode or Pivotal GemFire servers over implementing Apache
Geode or Pivotal GemFire’s Secur i t yManager interface.

Auth for Clients

When Apache Geode or Pivotal GemFire servers have been configured with Authentication &
Authorization enabled, then clients must authenticate when connecting.

Spring Boot for Apache Geode & Pivotal GemFire (SBDG) makes this easy, regardless of whether you
are running your Spring Boot, Cl i ent Cache applications in a local, nhon-managed environment or even
when running in a managed environment, like Pivotal CloudFoundry (PCF).

Non-Managed Auth for Clients

To enable Auth for clients connecting to a secure Apache Geode or Pivotal GemFire cluster, you simply
only need to set a username and password in your Spring Boot appl i cati on. properti es file:

Spring Boot client application.properties

spring. data.genfire.security.usernane
spring.data.genfire.security.password

j doe
p@5word

Spring Boot for Apache Geode & Pivotal GemFire (SBDG) will handle the rest.
Managed Auth for Clients

Enabling Auth for clients connecting to a Pivotal Cloud Cache (PCC) service instance in Pivotal
CloudFoundry (PCF) is even easier.

You do not need to do anything!

When your Spring Boot application uses SBDG and is bound to PCC, then when you push (i.e. deploy)
your app to PCF, Spring Boot for Apache Geode & Pivotal GemFire (SBDG) will extract the required

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 40

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/SecurityManager.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Auth credentials from the environment that you setup when you provisioned a PCC service instance in
your PCF organization & space. PCC automatically assigns 2 users with roles "cluster_operator" and
"developer", respectively, to any Spring Boot application bound to the PCC service instance.

By default, SBDG will auto-configure your Spring Boot app to run with the user having the
" _cluster_operator" Role. This ensures that your Spring Boot app has the necessary permissions (i.e.
Authorization) to perform all data access operations on the servers in the PCC cluster including, for
example, pushing configuration metadata from the client to the servers in the PCC cluster.

See the section, <<[cloudfoundry-cloudcache-security-auth-runtime-user-configuration,Running Spring
Boot applications as a specific user>>, in the Pivotal Cloud Foundry chapter for additional details on
user authentication and authorization.

See the chapter titled 'Pivotal CloudFoundry' for more general details.

See the Pivotal Cloud Cache documentation for security details when using PCC and PCF.

12.2 Transport Layer Security using SSL

Securing data in motion is also essential to the integrity of your application.

For instance, it would not do much good to send usernames and passwords over plain text Socket
connections between your clients and servers, nor send sensitive data over those same connections.

Therefore, both Apache Geode & Pivotal GemFire support SSL between clients & servers, JMX clients
(e.g. Gfsh) and the Manager, HTTP clients when using the Developer REST API or Pulse, between
peers in the cluster, and when using the WAN Gateway to connect multiple sites (i.e. clusters).

Spring Data for Apache Geode & Pivotal GemFire (SDG) provides first-class support for configuring and
enabling SSL as well. Still, Spring Boot makes it even easier to configure and enable SSL, especially
during development.

Apache Geode & Pivotal GemFire require certain properties to be configured, which translate to the
appropriate j avax. net . ssl . * properties required by the JRE, to create Secure Socket Connections
using JSSE.

But, ensuring that you have set all the required SSL properties correctly is an error prone and
tedious task. Therefore, Spring Boot for Apache Geode & Pivotal GemFire (SBDG) applies some basic
conventions for you, out-of-the-box.

Simply create a trust ed. keyst or e, JKS-based KeySt or e file and place it in 1 of 3 well-known
locations:

1. In your application JAR file at the root of the classpath.
2. In your Spring Boot application’s working directory.
3. In your user home directory (as defined by the user . hone Java System property).

When this file is named t r ust ed. keyst or e and is placed in 1 of these 3 well-known locations, Spring
Boot for Apache Geode & Pivotal GemFire (SBDG) will automatically configure your client to use SSL
Socket connections.

If you are using Spring Boot to configure and bootstrap an Apache Geode or Pivotal GemFire server:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 41

https://docs.pivotal.io/p-cloud-cache/1-8/security.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-ssl
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Spring Boot configured and bootstrapped Apache Geode or Pivotal GemFire server.

@spr i ngBoot Appl i cati on
@acheSer ver Appl i cati on
cl ass SpringBoot ApacheGeodeCacheSer ver Appl i cation {

}

Then, Spring Boot will apply the same procedure to enable SSL on the servers, between peers, as well.
Tip

During development it is convenient not to set a trusted. keystore password when
accessing the keys in the JKS file. However, it is highly recommended that you secure the
t rust ed. keyst or e file when deploying your application to a production environment.

If your t rust ed. keyst or e file is secured with a password, you will need to additionally specify the
following property:

Accessing a secure t rust ed. keyst ore.
Spring Boot application.properties
spring. data.genfire.security.ssl.keystore. password = p@5wor d!

You can also configure the location of the keystore and truststore files, if they are separate, and have
not been placed in 1 of the default, well-known locations searched by Spring Boot:

Accessing a secure t rust ed. keyst ore.

Spring Boot application.properties

spring.data.genfire.security.ssl.keystore = /absolute/file/systen path/to/keystore.jks
spring.data. genfire.security.ssl.keystore. password = keyst or ePasswor d
spring.data.genfire.security.ssl.truststore = /absolute/file/systenm path/to/truststore.jks
spring.data.genfire.security.ssl.truststore. password = truststorePassword

See the SDG EnableSsl annotation for all the configuration attributes and the corresponding properties
expressed in appl i cati on. properties.

12.3 Securing Data at Rest

Currently, neither Apache Geode nor Pivotal GemFire along with Spring Boot or Spring Data for Apache
Geode and Pivotal GemFire offer any support for securing your data while at rest (e.g. when your data
has been overflowed or persisted to disk).

To secure data at rest when using Apache Geode or Pivotal GemFire, with or without Spring, you
must employ 3rd party solutions like disk encryption, which is usually highly contextual and technology
specific.

For example, to secure data at rest using Amazon EC2, see Instance Store Encryption.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 42

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

13. Spring Boot Actuator

Spring Boot for Apache Geode and Pivotal GemFire (SBDG) adds Spring Boot Actuator support
and dedicated Heal t hl ndi cat or s for Apache Geode and Pivotal GemFire. Equally, the provided
Heal t hl ndi cat or s will even work with Pivotal Cloud Cache, which is backed by Pivotal GemFire,
when pushing your Spring Boot applications to Pivotal CloudFoundry (PCC).

Spring Boot Heal t hl ndi cat or s provide details about the runtime operation and behavior of your
Apache Geode or Pivotal GemFire based Spring Boot applications. For instance, by querying the
right Heal t hl ndi cat or endpoint, you would be able to get the current hit/miss count for your
Regi on. get (key) data access operations.

In addition to vital health information, SBDG provides basic, pre-runtime configuration meta-data about
the Apache Geode / Pivotal GemFire components that are monitored by Spring Boot Actuator. This
makes it easier to see how the application was configured all in one place, rather than in properties
files, Spring config, XML, etc.

The provided Spring Boot Heal t hl ndi cat or s fall under one of three categories:

» Base Heal thlndicators that apply to all Apache Geode/Pivotal GemFire, Spring Boot
applications, regardless of cache type, such as Regions, Indexes and DiskStores.

» Peer Cache based Heal t hl ndi cat or s that are only applicable to peer Cache applications, such
as AsyncEvent Queues, CacheSer ver s, Gat ewayRecei ver s and Gat ewaySender s.

» And finally, C i ent Cache based Heal t hl ndi cat or s that are only applicable to Cl i ent Cache
applications, such as Cont i nuousQueri es and connection Pool s.

The following sections give a brief overview of all the available Spring Boot Heal t hl ndi cat or s
provided for Apache Geode/Pivotal GemFire, out-of-the-box.

13.1 Base Heal t hl ndi cat or s

The following section covers Spring Boot Heal t hl ndi cat or s that apply to both peer Cache and
C i ent Cache, Spring Boot applications. That is, these Heal t hl ndi cat or s are not specific to the
cache type.

In both Apache Geode and Pivotal GemFire, the cache instance is either a peer Cache instance,
which makes your Spring Boot application part of a GemFire/Geode cluster, or more commonly, a
Qi ent Cache instance that talks to an existing cluster. Your Spring Boot application can only be one
cache type or the other and can only have a single instance of that cache type.

GeodeCacheHealthIndicator

The GeodeCacheHeal t hl ndi cat or provides essential details about the (single) cache instance
(Client or Peer) along with the underlying Di st ri but edSyst em the Di stri but edMenber and
configuration details of the Resour ceManager .

When your Spring Boot application creates an instance of a peer Cache, the Di stri but edMenber
object represents your application as a peer member/node of the Di st ri but edSyst emformed from
a collection of connected peers (i.e. the cluster), to which your application also has access, indirectly
via the cache instance.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 43

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/production-ready.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Cache.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/distributed/DistributedMember.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/distributed/DistributedSystem.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/GemFireCache.html#getDistributedSystem--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

This is no different for a C i ent Cache even though the client is technically not part of the peer/server
cluster. But, it still creates instances of the Di stri but edSyst emand Di stri but edMenber objects,

respectively.

The following configuration meta-data and health details about each object is covered:

Table 13.1. Cache Details

Name
geode.cache.name

geode.cache.closed

Description
Name of the member in the distributed system.

Determines whether the cache has been closed.

geode.cache.cancel-
in-progress

Cancellation of operations in progress.

Table 13.2. DistributedMember Details

Name

geode.distributed-
member.id

geode.distributed-
member.name

Description

DistributedMember identifier (used in logs internally).

Name of the member in the distributed system.

geode.distributed-
members.groups

geode.distributed-
members.host

Configured groups to which the member belongs.

Name of the machine on which the member is running.

geode.distributed-
members.process-
id

Identifier of the JVM process (PID).

Table 13.3. DistributedSystem Details

Name

geode.distributed-
system.member-
count

geode.distributed-
system.connected

geode.distributed-
system.reconnecting

geode.distributed-
system.properties-
location

Description

Total number of members in the cluster (1 for clients).

Indicates whether the member is currently connected to the cluster.

Indicates whether the member is in a reconnecting state, which
happens when a network partition occurs and the member gets
disconnected from the cluster.

Location of the standard configuration properties.

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

44

https://geode.apache.org/docs/guide/16/topics/gemfire_properties.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name Description

geode.distributed- | Location of the security configuration properties.
system.security-
properties-location

Table 13.4. ResourceManager Details

Name Description

geode.resource- | Percentage of heap at which the cache is in danger of becoming
manager.critical- | inoperable.
heap-percentage

geode.resource- | Percentage of off-heap at which the cache is in danger of becoming
manager.critical- | inoperable.
off-heap-
percentage

geode.resource- | Percentage of heap at which eviction begins on Regions configured
manager.eviction- | with a Heap LRU Eviction policy.
heap-percentage

geode.resource- | Percentage of off-heap at which eviction begins on Regions
manager.eviction- | configured with a Heap LRU Eviction policy.
off-heap-
percentage

GeodeRegionsHealthindicator

The GeodeRegi onsHeal t hl ndi cat or provides details about all the configured and known Regi ons
in the cache. If the cache is a client, then details will include all LOCAL, PROXY and CACHING_PROXY
Regi ons. If the cache is a peer, then the details will include all LOCAL, PARTITION and REPLICATE
Regi ons.

While the configuration meta-data details are not exhaustive, essential details along with basic
performance metrics are covered:

Table 13.5. Region Details

Name Description

geode.cache.regions.<name>|dldnatger Region values are cloned on read (e.g. cl oni ng-
enabled enabl ed is t r ue when cache transactions are used to prevent in-
place modifications).

geode.cache.regions.<name>Ridiey used to manage the data in the Region (e.g. PARTITION,
policy REPLICATE, etc).

geode.cache.regions.<namez> limiii@l-number of entries that can be held by a Region before it needs
capacity to be resized.

geode.cache.regions.<nameplload-factor used to determine when to resize the Region when it
factor nears capacity.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 45

https://geode.apache.org/docs/guide/16/topics/gemfire_properties.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

geode.cache.regions.<name
constraint

geode.cache.regions.<namg
heap

STkpe-constraint for Region keys.

oPeférmines whether this Region will store values in off-heap memory
(NOTE: Keys are always kept on Heap).

geode.cache.regions.<name
name

geode.cache.regions.<name
name

> foiid- Region is a client Region, then this property determines the
configured connection Pool (NOTE: Regions can have and use
dedicated Pool s for their data access operations.)

>[ptelmines the Scope of the Region, which plays a factor in the
Regions consistency-level, as it pertains to acknowledgements for
writes.

geode.cache.regions.<name> Tgheeonstraint for Region values.

constraint

Additionally, when the Region is a peer Cache PARTI TI ON Region, then the following details are also

covered:

Table 13.6. Partition

Region Details

Name

Description

geode.cache.regions.<name>.partitidndichoesatinds Region is collocated with another PARTITION Region,

with

which is necessary when performing equi-joins queries (NOTE:
distributed joins are not supported).

geode.cache.regions.<name>.parfitatallacabunt of Heap memory allowed to be used by this Region on

max-memory

this node.

geode.cache.regions.<name>.partitioduethanddnteplicas for this PARTITION Region, which is useful in

copies

High Availability (HA) use cases.

geode.cache.regions.<name>.parfitidal tmtabunt of Heap memory allowed to be used by this Region

max-memory

across all nodes in the cluster hosting this Region.

geode.cache.regions.<name>.parfiotal totethber of buckets (shards) that this Region is divided up into

number-of-buckets

(NOTE: defaults to 113).

Finally, when statistics are enabled (e.g. using @nabl eSt ati sti cs, (see here for more details), the
following details are available:

Table 13.7. Region Statistic Details

Name

Description

geode.cache.regions.<name>.stahstmbdritef hits for a Region entry.

count

geode.cache.regions.<name>.staRstiics dfitits to the number of Regi on. get (key) calls.

ratio

geode.cache.regions.<name>.statisticariastiry, determines the last time it was accessed with

accessed-time

Regi on. get (key).

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

46

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-statistics

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name Description

geode.cache.regions.<name>.statisiicariasttry, determines the time a Region’s entry value was last
modified-time modified.

geode.cache.regions.<name>.statiRitarmssthie number of times that a Regi on. get was performed
count and no value was found locally.

GeodelndexesHealthIndicator

The Geodel ndexesHeal t hl ndi cat or provides details about the configured Region | ndexes used
in OQL query data access operations.

The following details are covered:

Table 13.8. Index Details

Name Description

geode.index.<name>.fronRRegion from which data is selected.
clause

geode.index.<name>.indexéte Region value fields/properties used in the Index expression.
expression

geode.index.<name>.projecton-all other Indexes, returns "™, but for Map Indexes, returns
attributes either "" or the specific Map keys that were indexed.

geode.index.<name>.regiBegion to which the Index is applied.

Additionally, when statistics are enabled (e.g. using @nabl eSt ati sti cs; (see here for more details),
the following details are available:

Table 13.9. Index Statistic Details

Name Description

geode.index.<name>.statistics|mMumttaer of bucket Indexes created in a Partitioned Region.
of-bucket-indexes

geode.index.<name>.statistics|MNumfdaer of keys in this Index.
of-keys

geode.index.<name>.statistics|mNumfteer of keys in this Index at the highest-level.
of-map-
indexed-keys

geode.index.<name>.statistics|mMNumtteer of values in this Index.
of-values

geode.index.<name>.statistics|Mumtdeer of times this Index has been updated.
of-updates

geode.index.<name>.statisticdNeantber of read locks taken on this Index.
lock-count

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 47

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-statistics

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name Description

geode.index.<name>.statisticsltuttlamount of time (ns) spent updating this Index.
update-time

geode.index.<name>.statisticslttlnumber of times this Index has been accessed by an OQL
uses query.

GeodeDiskStoresHealthIndicator

The GeodeDi skSt or esHeal t hl ndi cat or provides details about the configured Di skSt or es in the
system/application. Remember, Di skSt or es are used to overflow and persist data to disk, including
type meta-data tracked by PDX when the values in the Region(s) have been serialized with PDX and
the Region(s) are persistent.

Most of the tracked health information pertains to configuration:

Table 13.10. DiskStore Details

Name Description

geode.disk- Indicates whether manual compaction of the DiskStore is allowed.
store.<name>.allow-
force-compaction

geode.disk- Indicates if compaction occurs automatically.
store.<name>.auto-
compact

geode.disk- Percentage at which the oplog will become compactable.
store.<name>.compaction-
threshold

geode.disk- Location of the oplog disk files.
store.<name>.disk-
directories

geode.disk- Configured and allowed sizes (MB) for the disk directory storing the
store.<name>.disk- | disk files.
directory-sizes

geode.disk- Critical threshold of disk usage proportional to the total disk volume.
store.<name>.disk-
usage-critical-
percentage

geode.disk- Warning threshold of disk usage proportional to the total disk
store.<name>.disk- | volume.
usage-warning-
percentage

geode.disk- Maximum size (MB) allowed for a single oplog file.
store.<name>.max-
oplog-size

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 48

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name Description
geode.disk- Size of the queue used to batch writes flushed to disk.
store.<name>.queue-
size
geode.disk- Time to wait (ms) before writes are flushed to disk from the queue if
store.<name>.time- | the size limit has not be reached.
interval
geode.disk- Universally Unique ldentifier for the DiskStore across Distributed
store.<name>.uuid | System.
geode.disk- Size the of write buffer the DiskStore uses to write data to disk.
store.<name>.write-
buffer-size

13.2d i ent Cache Heal t hl ndi cat or s

The d i ent Cache based Heal t hl ndi cat or s provide additional details specifically for Spring Boot,
cache client applications. These Heal t hl ndi cat ors are only available when the Spring Boot
application creates a C i ent Cache instance (i.e. is a cache client), which is the default.

GeodeContinuousQueriesHealthIindicator

The GeodeConti nuousQueri esHeal t hl ndi cat or provides details about registered client
Continuous Queries (CQ). CQs enable client applications to receive automatic notification about events
that satisfy some criteria. That criteria can be easily expressed using the predicate of an OQL query (e.g.
“SELECT * FROM /Customers ¢ WHERE c.age > 21"). Anytime data of interests is inserted or updated,
and matches the criteria specified in the OQL query predicate, an event is sent to the registered client.

The following details are covered for CQs by name:
Table 13.11. Continuous Query(CQ) Details
Name Description

geode.continuous- | OQL query constituting the CQ.
query.<name>.oql-
query-string

geode.continuous- | Indicates whether the CQ has been closed.
query.<name>.closed

geode.continuous- | Indicates whether the CQ is the process of closing.
query.<name>.closing

geode.continuous- | Indicates whether the CQ events will be remembered between client
query.<name>.durablesessions.

geode.continuous- | Indicates whether the CQ is currently running.
query.<name>.running

geode.continuous- | Indicates whether the CQ has been stopped.
guery.<name>.stopped

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 49

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

In addition, the following CQ query and statistical data is covered:

Table 13.12. Continu

Name

geode.continuous-
guery.<name>.query.num
of-executions

geode.continuous-
query.<name>.query.tot
execution-time

geode.continuous-
guery.<name>.statistics.nu
of-deletes

ous Query(CQ), Query Details

Description

Total number of times the query has been executed.
ber-

Total amount of time (ns) spent executing the query.
al

mber-

Table 13.13. Continu

Name

geode.continuous-
guery.<name>.statistics.nu
of-deletes

geode.continuous-
guery.<name>.statistics.nu
of-events

ous Query(CQ), Statistic Details

Description

Number of Delete events qualified by this CQ.
mber-

Total number of events qualified by this CQ.
mber-

geode.continuous-
query.<name>.statistics.nu
of-inserts

geode.continuous-
guery.<name>.statistics.nu
of-updates

Number of Insert events qualified by this CQ.
mber-

Number of Update events qualified by this CQ.
mber-

In a more general sense, the GemFire/Geode Continuous Query system is tracked with the following,
additional details on the client:

Table 13.14. Continuous Query(CQ), Statistic Details

Name

geode.continuous-
query.count

Description

Total count of CQs.

geode.continuous-
query.number-
of-active

geode.continuous-
query.number-
of-closed

Number of currently active CQs (if available).

Total number of closed CQs (if available).

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

50

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

geode.continuous-
guery.number-
of-created

Total number of created CQs (if available).

geode.continuous-
qguery.number-
of-stopped

geode.continuous-
qguery.number-
on-client

Number of currently stopped CQs (if available).

Number of CQs that are currently active or stopped (if available).

GeodePoolsHealthIndicator

The GeodePool sHeal t hl ndi cat or provide details about all the configured client connection Pool s.

This Heal t hl ndi cat or primarily provides configuration meta-data for all the configured Pool s.

The following details

are covered:

Table 13.15. Pool Details

Name

geode.pool.count

Description

Total number of client connection Pools.

geode.pool.<name>.destr

olyeticates whether the Pool has been destroyed.

geode.pool.<name>.fre
connection-timeout

geode.pool.<name>.idl
timeout

ec€onfigured amount of time to wait for a free connection from the
Pool.

eThe amount of time to wait before closing unused, idle connections
not exceeding the configured number of minimum required
connections.

geode.pool.<name>.loadeontrols how frequently the Pool will check to see if a connection to

conditioning-
interval

a given server should be moved to a different server to improve the
load balance.

geode.pool.<name>.locatdist of configured Locators.

geode.pool.<name>.maxMaximum number of connections obtainable from the Pool.

connections

geode.pool.<name>.mi
connections

geode.pool.<name>.mu
user-authentication

nMinimum number of connections contained by the Pool.

tDetermines whether the Pool can be used by multiple authenticated
users.

geode.pool.<name>.onli
locators

n&eturns a list of living Locators.

geode.pool.<name>.pendidgproximate number of pending subscription events maintained at

event-count

server for this durable client Pool at the time it (re)connected to the
server.

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

51

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name Description

geode.pool.<name>.pingHow often to ping the servers to verify they are still alive.
interval

geode.pool.<name>.pr-Whether the client will acquire a direct connection to the server
single-hop-enabled | containing the data of interests.

geode.pool.<name>.readNumber of milliseconds to wait for a response from a server before
timeout timing out the operation and trying another server (if any are
available).

geode.pool.<name>.retryNumber of times to retry a request after timeout/exception.
attempts

geode.pool.<name>.servetonfigures the group in which all servers this Pool connects to must
group belong.

geode.pool.<name>.serverist of configured servers.

geode.pool.<name>.sock&ocket buffer size for each connection made in this Pool.
buffer-size

geode.pool.<name>.statistitew often to send client statistics to the server.
interval

geode.pool.<name>.subscridtiterval in milliseconds to wait before sending acknowledgements to
ack-interval the cache server for events received from the server subscriptions.

geode.pool.<name>.subscr|dEoabled server-to-client subscriptions.
enabled

geode.pool.<name>.subscr|pliome-to-Live period (ms), for subscription events the client has
message- received from the server.
tracking-timeout

geode.pool.<name>.subscr|f@edundancy level for this Pools server-to-client subscriptions, which
redundancy is used to ensure clients will not miss potentially important events.

geode.pool.<name>.threa@thread local connection policy for this Pool.
local-connections

13.3 Peer Cache Heal t hl ndi cator s

The peer Cache based Heal t hl ndi cat or s provide additional details specifically for Spring Boot,
peer cache member applications. These Heal t hl ndi cat or s are only available when the Spring Boot
application creates a peer Cache instance.

Note

The default cache instance created by Spring Boot for Apache Geode/Pivotal GemFire is a
d i ent Cache instance.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 52

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Tip

To control what type of cache instance is created, such as a "peer", then you can explicitly declare
either the @Peer CacheAppli cati on, or alternatively, the @acheServer Appli cati on,

annotation on your @pr i ngBoot Appl i cat i on annotated class.

GeodeCacheServersHealthIndicator

The GeodeCacheSer ver sHeal t hl ndi cat or provides details about the configured Apache Geode/
Pivotal GemFire CacheSer vers. CacheSer ver instances are required to enable clients to connect

to the servers in the cluster.

This Heal t hl ndi cat or captures basic configuration meta-data and runtime behavior/characteristics

of the configured Cac

Table 13.16. CacheS

heServers:

erver Details

Name

Description

geode.cache.server.col

geode.cache.server.<index>
address

fotal number of configured CacheServer instances on this peer
member.

> retldress of the NIC to which the CacheServer Ser ver Socket is
bound (useful when the system contains multiple NICs).

geode.cache.server.<index>.h
for-clients

odtaaraesf the host used by clients to connect to the CacheServer
(useful with DNS).

geode.cache.server.<index>.lbad-often (ms) to query the load probe on the CacheServer.

poll-interval

geode.cache.server.<index>.aximum number of connections allowed to this CacheServer.

connections

geode.cache.server.<index>.aximum number of messages that can be enqueued in a client

message-count

queue.

geode.cache.server.<index>.aximum number of Threads allowed in this CacheServer to service

threads

client requests.

geode.cache.server.<index>.laximum time between client pings.

time-
between-pings

geode.cache.server.<index>.mé&ssagéseconds) in which the client queue will expire.

time-to-live

geode.cache.server.<index>Natwtork port to which the CacheServer Ser ver Socket is bound

and listening for the client connections.

geode.cache.server.<index>|rDetémmines whether this CacheServer is currently running and

accepting client connections.

geode.cache.server.<index>.s6okdigured buffer size of the Socket connection used by this

buffer-size

CacheServer.

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

53

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

geode.cache.server.<index>Qopfigures the TCP/IP TCP_NO_DELAY setting on outgoing

no-delay

Sockets.

In addition to the configuration settings shown above, the CacheSer ver’ s Ser ver LoadPr obe tracks
additional details about the runtime characteristics of the CacheSer ver, as follows:

Table 13.17. CacheServer Metrics and Load Details

Name

Description

geode.cache.server.<index>.load|dovackciioiiie server due to client to server connections.

load

geode.cache.server.<index>.Iq
per-connection

&ktoadte of the how much load each new connection will add to this
server.

geode.cache.server.<index>.load.subsacriptidhe server due to subscription connections.

connection-load

geode.cache.server.<index>.Iq
per-subscription-
connection

&btoadte of the how much load each new subscriber will add to this
server.

geode.cache.server.<index>.metridsolentsf connected clients.

count

geode.cache.server.<index>.me
connection-count

thtasdimmaxn number of connections made to this CacheServer.

geode.cache.server.<index>.metisoipenef open connections to this CacheServer.

connection-count

geode.cache.server.<index>.metrics
connection-count

5 Nulbsioeiptibetibscription connections to this CacheServer.

GeodeAsyncEventQueuesHealthindicator

The CeodeAsyncEvent QueuesHeal t hl ndi cat or provides details about the
AsyncEvent Queues. AEQs can be attached to Regions to configure asynchronous, write-behind

behavior.

configured

This Heal t hl ndi cat or captures configuration meta-data and runtime characteristics for all AEQs,

as follows:

Table 13.18. AsyncE

Name

ventQueue Details

Description

geode.async-
event-queue.count

geode.async-
event-
queue.<id>.batch-
conflation-enabled

Total number of configured AEQs.

Indicates whether batch events are conflated when sent.

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

54

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

geode.async-
event-
queue.<id>.batch-
size

Size of the batch that gets delivered over this AEQ.

geode.async-
event-
queue.<id>.batch-
time-interval

geode.async-
event-
queue.<id>.disk-
store-name

geode.async-
event-
queue.<id>.disk-
synchronous

geode.async-
event-
gqueue.<id>.dispatcher
threads

geode.async-
event-
gueue.<id>.forward-
expiration-destroy

geode.async-
event-
gueue.<id>.max-
gueue-memory

geode.async-
event-
gueue.<id>.order-

policy

geode.async-
event-
gueue.<id>.parallel

geode.async-
event-
gueue.<id>.persisten

geode.async-
event-
gqueue.<id>.primary

Max time interval that can elapse before a batch is sent.

Name of the disk store used to overflow & persist events.

Indicates whether disk writes are sync or async.

Number of Threads used to dispatch events.

Indicates whether expiration destroy operations are forwarded to
AsyncEventListener.

Maximum memory used before data needs to be overflowed to disk.

Order policy followed while dispatching the events to
AsyncEventListeners.

Indicates whether this queue is parallel (higher throughput) or serial.

Indicates whether this queue stores events to disk.

Indicates whether this queue is primary or secondary.

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

55

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

geode.async-
event-
gueue.<id>.size

Number of entries in this queue.

GeodeGatewayReceiversHealthindicator

The CGeodeGat ewayRecei ver sHeal t hl ndi cat or provide details about the configured (WAN)
Gat ewayRecei ver s, which are capable of receiving events from remote clusters when using Apache
Geode/Pivotal GemFire’s multi-site, WAN topology.

This Heal t hl ndi cat or captures configuration meta-data along with the running state for each

Gat ewayRecei ver:

Table 13.19. GatewayReceiver Details

Name

geode.gateway-
receiver.count

Description

Total number of configured GatewayReceivers.

geode.gateway-
receiver.<index>.bind-
address

geode.gateway-
receiver.<index>.end-
port

geode.gateway-
receiver.<index>.hos

IP address of the NIC to which the GatewayReceiver
Ser ver Socket is bound (useful when the system contains multiple
NICs).

End value of the port range from which the GatewayReceiver’s port
will be chosen.

IP address or hostname that Locators will tell clients (i.e.
GatewaySenders) that this GatewayReceiver is listening on.

geode.gateway-

receiver.<index>.max-
time-

between-pings

Maximum amount of time between client pings.

geode.gateway-
receiver.<index>.port

geode.gateway-
receiver.<index>.runnir

geode.gateway-
receiver.<index>.socke
buffer-size

geode.gateway-
receiver.<index>.start

Port on which this GatewayReceiver listens for clients (i.e.
GatewaySenders).

Indicates whether this GatewayReceiver is running and accepting
nglient connections (from GatewaySenders).

Configured buffer size for the Socket connections used by this
tGatewayReceiver.

Start value of the port range from which the GatewayReceiver’s port
will be chosen.

port

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

56

https://geode.apache.org/docs/guide/16/topologies_and_comm/multi_site_configuration/chapter_overview.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

GeodeGatewaySendersHealthIndicator

The CeodeGat ewaySender sHeal t hl ndi cator provides details about the configured
Gat ewaySender s. Gat ewaySender s are attached to Regions in order to send Region events to
remote clusters in Apache Geode/Pivotal GemFire’s multi-site, WAN topology.

This Heal t hl ndi cat or captures essential configuration meta-data and runtime characteristics for
each Gat ewaySender :

Table 13.20. GatewaySender Details

Name Description

geode.gateway- | Total number of configured GatewaySenders.
sender.count

geode.gateway- | Alert threshold (ms) for entries in this GatewaySender’s queue.
sender.<id>.alert-
threshold

geode.gateway- | Indicates whether batch events are conflated when sent.
sender.<id>.batch-
conflation-enabled

geode.gateway- | Size of the batches sent.
sender.<id>.batch-
size

geode.gateway- | Max time interval that can elapse before a batch is sent.
sender.<id>.batch-
time-interval

geode.gateway- | Name of the DiskStore used to overflow and persist queue events.
sender.<id>.disk-
store-name

geode.gateway- | Indicates whether disk writes are sync or async.
sender.<id>.disk-
synchronous

geode.gateway- | Number of Threads used to dispatch events.
sender.<id>.dispatcher
threads

geode.gateway- | Maximum amount of memory (MB) usable for this GatewaySender’s
sender.<id>.max- | queue.
gueue-memory

geode.gateway-
sender.<id>.max-

parallelism-for-

replicated-region

geode.gateway- | Order policy followed while dispatching the events to
sender.<id>.order- | GatewayReceivers.

policy

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 57

https://geode.apache.org/docs/guide/16/topologies_and_comm/multi_site_configuration/chapter_overview.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

geode.gateway-
sender.<id>.parallel

geode.gateway-
sender.<id>.paused

Indicates whether this GatewaySender is parallel (higher throughput)
or serial.

Indicates whether this GatewaySender is paused.

geode.gateway-
sender.<id>.persisten

geode.gateway-
sender.<id>.remote-
distributed-
system-id

geode.gateway-
sender.<id>.running

Indicates whether this GatewaySender persists queue events to
tdisk.

Identifier for the remote distributed system.

Indicates whether this GatewaySender is currently running.

geode.gateway-
sender.<id>.socket-
buffer-size

geode.gateway-
sender.<id>.socket-
read-timeout

Configured buffer size for the Socket connections between this
GatewaySender and its receiving GatewayReceiver.

Amount of time (ms) that a Socket read between this sending
GatewaySender and its receiving GatewayReceiver will block.

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

58

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

14. Spring Session

This section covers auto-configuration of Spring Session using either Apache Geode or Pivotal GemFire
to manage (HTTP) Session state in a reliable (consistent), highly-available (replicated) and clustered
manner.

Spring Session provides an APl and several implementations for managing a user’s session information.
It has the ability to replace the j avax. servl et. http. Ht t pSessi on in an application container
neutral way along with proving Session IDs in HTTP headers to work with RESTful APIs.

Furthermore, Spring Session provides the ability to keep the HttpSession alive even when working with
WebSockets and reactive Spring WebFlux WebSessions.

A full discussion of Spring Session is beyond the scope of this document, and the reader is encouraged
to learn more by reading the docs and reviewing the samples.

Of course, Spring Boot for Apache Geode & Pivotal GemFire adds auto-configuration support to
configure either Apache Geode or Pivotal GemFire as the user’'s session information management
provider when Spring Session for Apache Geode or Pivotal GemFire is on your Spring Boot application’s
classpath.

Tip
You can learn more about Spring Session for Apache Geode/Pivotal GemFire in the docs.

14.1 Configuration

There is nothing special that you need to do in order to use either Apache Geode or Pivotal GemFire
as a Spring Session provider, managing the (HTTP) Session state of your Spring Boot application.

Simply include the appropriate Spring Session dependency on your Spring Boot application’s classpath,
for example:

Maven dependency declaration.

<dependency>
<groupl d>or g. spri ngf ramewor k. sessi on</ gr oup! d>
<artifactld>spring-session-data-geode</artifactld>

<versi on>2. 1. 11. RELEASE</ ver si on>
</ dependency>

Tip
You may replace Apache Geode with Pivotal GemFire simply by changing the artifact from

spring- sessi on-dat a- geode to spri ng- sessi on-dat a- genfi re. The version number
is the same.

Then, begin your Spring Boot application as you normally would:

Spring Boot Application.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 59

https://spring.io/projects/spring-session
https://docs.spring.io/spring-session/docs/current/reference/html5
https://docs.spring.io/spring-session/docs/current/reference/html5/#samples
https://github.com/spring-projects/spring-session-data-geode/blob/master/README.adoc
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/reference/html5

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@Bpr i ngBoot Appl i cati on
publ i c MySpri ngBoot Appl i cation {

public static void main(String[] args) {
Spri ngApplication. run(M/SpringBoot Application.class, args);
}

That is it! Of course, you are free to create application-specific, Spring Web MVC Control |l ers to
interact with the Ht t pSessi on as needed by your application:

Application Controller using HttpSession.

@ontroll er
class MyApplicationController {

@et Request (. ..)
public String processGet (HttpSession session) {
/] interact with HttpSession

}

}

The Ht t pSessi on is replaced by a Spring managed Sessi on that will be stored in either Apache
Geode or Pivotal GemFire.

14.2 Custom Configuration

By default, Spring Boot for Apache Geode/Pivotal GemFire (SBDG) applies reasonable and sensible
defaults when configuring Apache Geode or Pivotal GemFire as the provider in Spring Session.

So, for instance, by default, SBDG set the session expiration timeout to 30 minutes. It also uses
a dient Regi onShort cut . PROXY as the client Region data management policy for the Apache
Geode/Pivotal GemFire Region managing the (HTTP) Session state when the Spring Boot application
is using a d i ent Cache, which it does by default.

However, what if the defaults are not sufficient for your application requirements?
Custom Configuration using Properties

Spring Session for Apache Geode/Pivotal GemFire publishes well-known configuration properties for
each of the various Spring Session configuration options when using Apache Geode or Pivotal GemFire
as the (HTTP) Session state management provider.

You may specify any of these properties in a Spring Boot appl i cati on. properti es file to adjust
Spring Session’s configuration when using Apache Geode or Pivotal GemFire.

In addition to the properties provided in and by Spring Session for Apache Geode/Pivotal
GemFire, Spring Boot for Apache Geode/Pivotal GemFire also recognizes and respects the
spring. sessi on. ti neout property aswellasthe server. servl et. sessi on. ti meout property
as discussed here.

Tip

spring. sessi on. dat a. genfire. session. expiration. max-inactive-interval -
seconds takes precedence over spri ng. sessi on. ti neout, which takes precedence over

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 60

https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/reference/html5/#httpsession-gemfire-configuration-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-session.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

server.servl et.session.tineout, when any combination of these properties have been
simultaneously configured in the Spring Envi r onnent of your application.

Custom Configuration using a Configurer

Spring Session for Apache Geode/Pivotal GemkFire also provides the
Spri ngSessi onCGenti r eConf i gur er callback interface, which can be declared in your Spring
Appl i cati onCont ext to programmatically control the configuration of Spring Session when using
Apache Geode or Pivotal GemFire.

The Spri ngSessi onGenti r eConf i gur er, when declared in the Spring Appl i cati onCont ext ,
takes precedence over any of the Spring Session (for Apache Geode/Pivotal GemFire) configuration
properties, and will effectively override them when both are present.

More information on using the Spri ngSessi onGenFi r eConf i gur er can be found in the docs.

14.3 Disabling Session State Caching

There may be cases where you do not want your Spring Boot application to manage (HTTP) Session
state using either Apache Geode or Pivotal GemFire. In certain cases, you may be using another Spring
Session provider, such as Redis, to cache and manage your Spring Boot application’s (HTTP) Session
state, while, even in other cases, you do not want to use Spring Session to manage your (HTTP)
Session state at all. Rather, you prefer to use your Web Server's (e.g. Tomcat) Ht t pSessi on state
management.

Either way, you can specifically call out your Spring Session provider using the
spring. sessi on. store-type property inappl i cati on. properti es, as follows:

Use Redis as the Spring Session Provider.

#appl i cati on. properties

spring. session.store-type=redi s

If you prefer not to use Spring Session to manage your Spring Boot application’s (HTTP) Session state
at all, then do the following:

Use Web Server Session State Management.

#appl i cation. properties

spring. session. store-type=none

Again, see Spring Boot docs for more details.

Tip

It is possible to include multiple providers on the classpath of your Spring Boot application.
For instance, you might be using Redis to cache your application’s (HTTP) Session state while
using either Apache Geode or Pivotal GemFire as your application’s persistent store (System of
Record).

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 61

https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/support/SpringSessionGemFireConfigurer.html
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/reference/html5/#httpsession-gemfire-configuration-configurer
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/boot-features-session.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Note

Spring Boot does not properly recognize spri ng. sessi on. st ore-type=[genfi re| geode]
even though Spring Boot for Apache Geode/Pivotal GemFire is setup to handle either of these
property values (i.e. either “gemfire” or “geode”).

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire

62

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

15. Pivotal CloudFoundry

In most cases, when you "push” (i.e. "deploy") your Spring Boot applications to Pivotal CloudFoundry
(PCF) you will bind your app to 1 or more instances of the Pivotal Cloud Cache (PCC) service.

In a nutshell, Pivotal Cloud Cache is a managed version of Pivotal GemFire running in Pivotal
CloudFoundry. When running in or across cloud environments (e.g. AWS, Azure, GCP or PWS), PCC
with PCF offers several advantages over trying to run and manage your own standalone Apache Geode
or Pivotal GemFir clusters. It handles many of the infrastructure-related, operational concerns so you
do not have to.

15.1 Running Spring Boot applications as a specific user

By default, Spring Boot applications run as a "cluster_operator" Role-based user in Pivotal
CloudFoundry (PCF) when the app is bound to a Pivotal Cloud Cache (PCC) service instance.

A "cluster_operator" has full system privileges (i.e. Authorization) to do whatever that user wishes to
involving the PCC service instance. A "cluster_operator" has read/write access to all the data, can modify
the schema (e.g. create/destroy Regions, add/remove Indexes, change eviction or expiration policies,
etc), start and stop servers in the PCC cluster, or even modify permissions.

About cluster-operator as the default user

1 of the reasons why Spring Boot apps default to running as a "cluster_operator" is to
allow configuration metadata to be sent from the client to the server. Enabling configuration
metadata to be sent from the client to the server is a useful development-time feature
and is as simple as annotating your main @bpri ngBoot Application class with the
@nabl ed ust er Confi gur at i on annotation:

Using @nabl eCl ust er Confi gurati on.

@pr i ngBoot Appl i cati on
@nabl eC ust er Confi gurati on(useH tp = true)
cl ass SpringBoot ApacheGeoded i ent CacheApplication { ... }

With @nabl ed ust er Conf i gur at i on, Region and OQL Index configuration metadata defined
on the client can be sent to servers in the PCC cluster. Apache Geode and Pivotal GemFire
requires matching Regions by name on both the client and servers in order for clients to send and
receive data to and from the cluster.

For example, when you declare the Region where an application entity will be persisted using the
@=egi on mapping annotation and additionally declare the @nabl eEnt i t yDef i nedRegi ons
annotation on the main @pri ngBoot Application class in conjunction with the
@nabl ed ust er Conf i gur at i on annotation, then not only will SBDG create the required client
Region, but it will also send the configuration metadata for this Region to the servers in the cluster
to create the matching, required server Region, where the data for your application entity will be
managed.

However...

With great power comes great responsibility. - Uncle Ben

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 63

https://pivotal.io/pivotal-cloud-cache
https://pivotal.io/pivotal-gemfire
https://pivotal.io/platform
https://pivotal.io/platform

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Not all Spring Boot applications using PCC will need to change the schema, or even modify data. Rather,
certain apps may only need read access. Therefore, it is ideal to be able to configure your Spring Boot
applications to run with a different user at runtime other than the auto-configured "cluster_operator",
by default.

A prerequisite for running a Spring Boot application using PCC with a specific user is to create a user with
restricted permissions using Pivotal CloudFoundry AppsManager while provisioning the PCC service
instance to which the Spring Boot application will be bound.

Configuration metadata for the PCC service instance might appear as follows:

Pivotal Cloud Cache configuration metadata.

{
"p-cl oudcache": [{
"credential s": {
“distributed_systemid": "0",
"locators": ["local host[55221]" 1],
"urls": {
"gfsh": "https://cloudcache-12345. services. cf. pws. confgenfire/vl",
"pul se": "https://cl oudcache-12345. servi ces. cf. pws. conl pul se"
}.
"users": [{
"password": "FxEExn
"roles": ["cluster_operator"],
"usernane": "cluster_operator_user"
boo
"password": "ExEExn
"roles": ["devel oper"],
"usernane": "devel oper_user"
ba
boAo
"password": "EExExT
"roles": ["read-only-user"],
"usernane": "guest"
.,
"wan": {
"sender _credential s": {
"active": {
"password": "ExEExn
"usernane": "gateway-sender-user"
}
}
}
b
“name": "jblumpcc”,
"plan": "small",
"tags": ["genfire", "cloudcache", "database", "pivotal"]
}H
}

In the PCC service instance configuration metadata above, we see a "guest" user with the "read-only-
user” Role. If the "read-only-user" Role is properly configured with "read-only" permissions as the name
implies, then we could configure our Spring Boot application to run as "guest" with read-only access
using:

Configuring a Spring Boot app to run as a specific user.

Spring Boot application.properties for PCF when using PCC

spring. data. genfire.security. usernane=guest

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 64

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Tip

The spring. dat a. genfire.security.usernane property corresponds directly to the SDG
@nabl eSecurity annotation, securityUser nane attribute. See the Javadoc for more
detalils.

The spring. dat a. genfire.security. usernane property is the same property used by Spring
Data for Apache Geode and Pivotal GemFire (SDG) to configure the runtime user of your Spring Data
application when connecting to either an externally managed Apache Geode or Pivotal GemFire cluster.

In this case, SBDG simply uses the configured username to lookup the authentication credentials of the
user to set the username and password used by the Spring Boot, Cl i ent Cache app when connecting
to PCC while running in PCF.

If the username is not valid, then an | | | egal St at eExcepti on is thrown.

By using Spring Profiles, it would be a simple matter to configure the Spring Boot application to run with
a different user depending on environment.

See the Pivotal Cloud Cache documentation on Security for configuring users with assigned roles &
permissions.

Overriding Authentication Auto-configuration

It should be generally understood that auto-configuration for client authentication is only available for
managed environments, like Pivotal CloudFoundry. When running in externally managed environments,
you must explicitly set a username and password to authenticate, as described here.

To completely override the auto-configuration of client authentication, simply set both a username and
password:

Overriding Security Authentication Auto-configuration with explicit username and password.

Spring Boot application.properties

spring.data.genfire.security.username=MyUser
spring. data. genfire.security. passwor d=MyPasswor d

In this case, SBDG's auto-configuration for authentication is effectively disabled and security credentials
will not be extracted from the environment.

15.2 Targeting Specific Pivotal Cloud Cache Service Instances

It is possible to provision multiple instances of the Pivotal Cloud Cache service in your Pivotal
CloudFoundry environment. You can then bind multiple PCC service instances to your Spring Boot app.

However, Spring Boot for Apache Geode & Pivotal GemFire (SBDG) will only auto-configure 1 PCC
service instance for your Spring Boot application. This does not mean it is not possible to use multiple
PCC service instances with your Spring Boot app, just that SBDG only "auto-configures" 1 service
instance for you.

You must select which PCC service instance your Spring Boot app will auto-configure for you
automatically when you have multiple instances and want to target a specific PCC service instance to
use.

To do so, declare the following SBDG property in Spring Boot appl i cati on. properti es:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 65

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityUsername--
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-profiles
https://docs.pivotal.io/p-cloud-cache/1-8/security.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Spring Boot application.properties targeting a specific PCC service instance by name.
Spring Boot application.properties

spring. boot . dat a. genfire. cl oud. cl oudf oundry. servi ce. cl oudcache. nanme=pccSer vi cel nst anceTwo

The spri ng. boot . dat a. genfire. cl oud. cl oudf oundry. servi ce. cl oudcache. nane
property tells SBDG which PCC service instance to auto-configure.

If the named PCC service instance identified by the property does not exist, then SBDG will throw an
Il egal St at eExcepti on stating the PCC service instance by name could not be found.

If you did not set the property and your Spring Boot app is bound to multiple PCC service instances,
then SBDG will auto-configure the first PCC service instance it finds by name, alphabetically.

If you did not set the property and no PCC service instance is found, then SBDG will log a warning.

15.3 Using Multiple Pivotal Cloud Cache Service Instances

If you want to use multiple PCC service instances with your Spring Boot application, then you need
to configure multiple connection Pool s connected to each PCC service instance used by your Spring
Boot application.

The configuration would be similar to the following:

Multple Pivotal Cloud Cache Service Instance Configuration.

@onfi guration

@nabl ePool s(pool s {

@Enabl ePool (nane = "PccOne"),
@nabl ePool (name = "PccTwo"),
@nabl ePool (nane = "PccN'")

}

class PccConfiguration {

}

You would then externalize the configuration for the individually declared Pool s in Spring Boot
application. properties:

Configuring Pool Locator connection endpoints.

Spring Boot "application.properties’

spring. data. genfire.pool.pccone. | ocators=pccOneHost 1[port1], pccOneHost2[port2], ..., pccOneHost N portN
spring. data. genfire. pool.pcctwo. | ocat ors=pccTwoHost 1[port 1], pccTwoHost2[port2], ..., pccTwoHost N portN]
Note

Though less common, you can also configure the Pool of connections to target specific servers
in the cluster using the spri ng. dat a. genfi re. pool . <named- pool >. sever s property.

Tip

Keep in mind that properties in Spring Boot appl i cati on. properti es can refer to other
properties like so: property=${ot her Property}. This allows you to further externalize
properties using Java System properties or Environment Variables.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 66

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Of course, a client Region is then assigned the Pool of connections that are used to send data to/from
the specific PCC service instance (cluster):

Assigning a Pool to a client Region.

@ean(" Exanpl e")
Cl i ent Regi onFact or yBean exanpl eRegi on(Genfi reCache genfireCache,
@ual i fier("PccTwo") Pool pool For PccTwo) {

Cl i ent Regi onFact or yBean exanpl eRegi on = new C i ent Regi onFact or yBean() ;
exanpl eRegi on. set Cache(genfireCache);
exanpl eRegi on. set Pool (pool For PccTwo) ;

exanpl eRegi on. set Short cut (C i ent Regi onShort cut . PROXY) ;

return exanpl eRegi on;

You can configure as many Pools and client Regions as needed by your application. Again, the Pool
determines which Pivotal Cloud Cache service instance and cluster the data for the client Region will
reside.

Note

By default, SBDG configures all Pools declared in a Spring Boot,
Cient Cache application to connect to and wuse a single PCC service
instance. This may be a targeted PCC service instance when using
the spring. boot. data. genfire.cloud. cl oudf oundry. servi ce. cl oudcache. nane
property as discussed above.

15.4 Hybrid Pivotal CloudFoundry & Apache Geode Spring
Boot Applications

Sometimes, it is desirable to deploy (i.e. "push”) and run your Spring Boot applications in Pivotal
CloudFoundry, but still connect your Spring Boot applications to an externally managed, standalone
Apache Geode or Pivotal GemFire cluster.

Spring Boot for Apache Geode & Pivotal GemFire (SBDG) makes this a non-event and honors its "little
to no code or configuration changes necessary" goal, regardless of your runtime choice, "it should just
work!"

To help guide you through this process, we will cover the following topics:
1. Install and Run PCFDev.

2. Start an Apache Geode cluster.

3. Create a User-Provided Service (CUPS).

4. Push and Bind a Spring Boot application.

5. Run the Spring Boot application.
Running PCFDev

For this exercise, we will be using PCF Dev.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 67

https://pivotal.io/pcf-dev

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

PCF Dev, much like PCF, is an elastic application runtime for deploying, running and managing your
Spring Boot applications. However, it does so in the confines of your local development environment,
i.e. your workstation.

Additionally, PCF Dev provides several services out-of-the-box, such as MySQL, Redis and RabbitMQ.
These services can be bound and used by your Spring Boot application to accomplish its tasks.

However, PCF Dev lacks the Pivotal Cloud Cache (PCC) service that is available in PCF. This is
actually ideal for this little exercise since we are trying to build and run Spring Boot applications in a
PCF environment but connect to an externally managed, standalone Apache Geode or Pivotal GemFire
cluster.

As a prerequisite, you will need to follow the steps outlined in the tutorial to get PCF Dev setup and
running on your workstation.

To run PCF Dev, you will execute the following cf CLI command, replacing the path to the TGZ file with
the file you acquired from the download:

Start PCF Dev.
$ cf dev start -f ~/Downl oads/ Pivotal / G oudFoundry/ Dev/ pcfdev-v1. 2. 0-darw n.tgz
You should see output similar to:

Running PCF Dev.

Downl oadi ng Network Hel per. ..

Progress: | | 100. 0%
Installing cfdevd network hel per (requires adm nistrator privileges)...
Passwor d:

Setting up IP aliases for the BOSH Director & CF Router (requires administrator privileges)
Downl oadi ng Resources. . .

Progress: | >| 100. 0%

Setting State...

WARNI NG PCF Dev requires 8192 MB of RAMto run. This machi ne may not have enough free RAM
Creating the VM ..

Starting VPNKi t. ..

Waiting for the VM ..

Depl oyi ng the BOSH Director. ..

Depl oyi ng PAS. ..
Done (14nB4s)
Depl oyi ng Apps- Manager . . .

Done (1mils)

H#Hit#
HHHARHHH HHHHARH HHH HHGRHHHHE HHH #Hit#
HHHHARHE HiH HHHH HHE HHHBHHY HiHE HHHH
HHt#
#it#

i's now running!

To begin using PCF Dev, please run:
cf login -a https://api.dev.cfdev.sh --skip-ssl-validation

Admin user => Emmil: admin / Password: admin
Regul ar user => Emmil: user / Password: pass

To access Apps Manager, navigate here: https://apps.dev.cfdev.sh

To deploy a particul ar service, please run:
cf dev depl oy-service <service-nane> [Avail abl e services: nysql,redis,rabbitng, scs]

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 68

https://pivotal.io/platform/pcf-tutorials/getting-started-with-pivotal-cloud-foundry-dev/introduction
https://network.pivotal.io/products/pcfdev

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

To use the cf CLI tool, you must login to the PCF Dev environment:

Login to PCF Dev using cf CLI.

$ cf login -a https://api.dev.cfdev.sh --skip-ssl-validation

You can also access the PCF Dev Apps Manager tool from your Web browser at the following URL:

apps.dev.cfdev.sh/

Apps Manager provides a nice Ul to manage your org, space, services and apps. It lets you push and
update apps, create services, bind apps to the services and start and stop your deployed applications,
among many other things.

Running an Apache Geode Cluster

Now that PCF Dev is setup and running, we need to start an external, standalone Apache Geode cluster
that our Spring Boot application will connect to and use to manage its data.

You will need to install a distribution of Apache Geode on your workstation. Then you must set the
$CGECDE environment variable. It is also convenient to add $GECDE/ bi n to your system $PATH.

Afterward, you can launch the Geode Shell (Gfsh) tool:

Running Gfsh.

$ echo $GEODE
/ User s/ j bl un pi vdev/ apache- geode-1. 6. 0

$ gfsh

Moni t or and Manage Apache Geode
gf sh>

We have conveniently provided the Gfsh shell script used to start the Apache Geode cluster:

Gfsh shell script to start the Apache Geode cluster.

#!/ bi n/ gf sh
G sh shell script to configure and bootstrap an Apache CGeode cluster.

start |ocator --name=LocatorOne --10g-1evel =config --cl asspat h=@r oj ect -di r @ apache- geode-
ext ensi ons/ bui | d/ | i bs/ apache- geode- ext ensi ons- @r oj ect-version@jar --J=-Dgenfire.security-
manager =or g. spri ngf ramewor k. geode. securi ty. Test SecurityManager --J=-Dgenfire.http-service-port=8080

start server --nanme=ServerOne --1o0g-Ievel =config --user=adni n --password=adnmi n --cl asspat h=@r oj ect -
di r @ apache- geode- ext ensi ons/ bui | d/ | i bs/ apache- geode- ext ensi ons- @r oj ect - versi on@j ar

The start - cl ust er. gf sh shell script starts one Geode Locator and one Geode Server.

A Locator is used by clients to discover and connect to servers in the cluster to manage its data. A
Locator is also used by new servers joining a cluster as a peer member, which allows the cluster to be
elastically scaled-out (or scaled-down, as needed). A Geode Server stores the data for the application.

You can start as many Locators or Servers as necessary to meet the availability and load demands
of your application. Obviously, the more Locators and Servers your cluster has, the more resilient it is

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 69

https://apps.dev.cfdev.sh/
https://apps.dev.cfdev.sh/
https://geode.apache.org//releases/

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

to failure. However, you should size your cluster accordingly, based on your application’s needs since

there is overhead relative to the cluster size.
You will see output similar to the following when starting the Locator and Server:

Starting the Apache Geode cluster.

gf sh>start | ocator --name=LocatorOne --lo0g-Ievel =config --classpath=/Users/jbl un pivdev/spring-boot -
dat a- geode/ apache- geode- ext ensi ons/ bui | d/ | i bs/ apache- geode- ext ensi ons-1. 1. 0. BUl LD- SNAPSHOT. j ar --J=-
Dgenfire. security-nanager =org. spri ngfranmewor k. geode. security. Test SecurityManager --J=-Dgenfire.http-
servi ce- port =8080

Starting a Geode Locator in /Users/jblunl pivdev/lab/LocatorOne...

Locator in /Users/jblun pivdev/|ab/LocatorOne on 10.99.199. 24[10334] as LocatorOne is currently online.
Process | D. 14358

Uptime: 1 minute 1 second

Geode Version: 1.6.0

Java Version: 1.8.0_192

Log File: /Users/jblun pivdev/| ab/Locat or One/ Locat or One. | og

JVM Argunents: -Dgenfire.enabl e-cluster-configuration=true -Dgenfire.l|oad-cluster-
configuration-fromdir=false -Dgenfire.|log-1evel =config -Dgenfire.security-

manager =or g. spri ngf ramewor k. geode. security. Test SecurityManager -Dgenfire.http-service-

port =8080 -Dgenfire.launcher.registerSignal Handl ers=true -Dj ava. aw . headl ess=true -

Dsun. rm . dgc. server. gcl nt erval =9223372036854775806

Cl ass-Path: /Users/jbluni pi vdev/ apache- geode-1. 6. 0/1i b/ geode-core-1.6.0.jar:/Users/jblun pivdev/spring-
boot - dat a- geode/ apache- geode- ext ensi ons/ bui | d/ | i bs/ apache- geode- ext ensi ons- 1. 1. 0. BUI LD- SNAPSHOT. j ar : /
User s/ j bl uni pi vdev/ apache- geode- 1. 6. 0/ | i b/ geode- dependenci es. j ar

Security Manager is enabled - unable to auto-connect. Please use "connect --locator=10.99.199. 24[10334]
--user --password" to connect Gsh to the locator.

Aut henti cation required to connect to the Manager.

gf sh>connect

Connecting to Locator at [host=local host, port=10334]
Connecting to Manager at [host=10.99.199. 24, port=1099]
user: admin

password; *****

Successfully connected to: [host=10.99.199. 24, port=1099]

gf sh>start server --name=ServerOne --10g-1evel =config --user=adm n --password=adni n --classpat h=/
User s/ j bl un pi vdev/ spri ng- boot - dat a- geode/ apache- geode- ext ensi ons/ bui | d/ | i bs/ apache- geode-
extensions-1. 1. 0. BUl LD- SNAPSHOT. j ar

Starting a Geode Server in /Users/jblun pivdev/| ab/ ServerOne. ..

Server in /Users/jblun pivdev/lab/Server One on 10.99. 199. 24[40404] as ServerOne is currently online.
Process I D: 14401
Uptime: 3 seconds
Geode Version: 1.6.0
Java Version: 1.8.0_192
Log File: /Users/jblun pivdev/l ab/ Server One/ Server One. | og
JVM Argunents: -Dgenfire.default.|ocators=10.99.199. 24[10334] -Dgenfire.security-
usernanme=adm n -Dgenfire.start-dev-rest-api =fal se -Dgenfire.security-password=*****xxx _
Dgenfire. use-cluster-configuration=true -Dgenfire.log-I|evel =config -XX: OnQut O Menor yError=Kkill
-KILL % -Dgenfire.launcher.registerSignal Handl ers=true -Dj ava. awt . headl ess=true -
Dsun. rmi . dgc. server. gcl nterval =9223372036854775806
Cl ass-Pat h: /Users/jblun pi vdev/ apache- geode-1.6.0/1i b/ geode-core-1.6.0.jar:/Users/jblun pi vdev/spring-
boot - dat a- geode/ apache- geode- ext ensi ons/ bui | d/ | i bs/ apache- geode- ext ensi ons-1. 1. 0. BUl LD- SNAPSHOT. j ar : /
User s/ j bl uni pi vdev/ apache- geode- 1. 6. 0/ | i b/ geode- dependenci es. j ar

Once the cluster has been started successfully, you can list the members:

List members of the cluster.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire

70

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

gf sh>l i st menbers
Name | Id

LocatorOne | 10.99. 199. 24(Locat or One: 14358: | ocat or) <ec><v0>: 1024 [Coor di nat or]
ServerOne | 10.99.199. 24(Server One: 14401) <v1>: 1025

Currently, we have not defined any Regions in which to store our application’s data:

No Application Regions.

gfsh>list regions
No Regi ons Found

This is deliberate since we are going to let the application drive its schema structure, both on the client
(app) as well as on the server-side (cluster). More on this below.

Creating a User-Provided Service

Now that we have PCF Dev and a small Apache Geode cluster up and running, it is time to create a
User-Provided Service to the external, standalone Apache Geode cluster that we started in step 2.

As mentioned, PCF Dev offers the MySQL, Redis and RabbitMQ services out-of-the-box. However, to
use Apache Geode (or Pivotal GemFire) in the same capacity as you would Pivotal Cloud Cache when
running in a production-grade, PCF environment, you need to create a User-Provided Service for the
standalone Apache Geode cluster.

To do so, execute the following cf CLI command:

cf cups command.

$ cf cups <service-nane> -t "genfire, cloudcache, database, pivotal" -p '<service-credentials-in-json>

Note

Itis important that you specify the tags ("gemfire, cloudcache, database, pivotal") exactly as shown
in the cf CLI command above.

The argument passed to the - p command-line option is a JSON document (object) containing the
“credentials" for our User-Provided Service.

The JSON object is as follows:

User-Provided Service Crendentials JSON.

{

"locators": ["<hostnane>[<port>]"],

"urls": { "gfsh": "https://<hostnanme>/genfire/vl" },

"users": [{ "password": "<password>", "roles": ["cluster_operator"], "usernane": "<username>" }]

}
The complete cf CLI command would be similar to the following:

Example cf cups command.

cf cups apacheGeodeService -t "genfire, cloudcache, database, pivotal" \
-p '{ "locators": ["10.99.199.24[10334]"], "urls": { "gfsh": "https://10.99.199.24/genfire/v1l" },
"users": [{ "password": "admin", "roles": ["cluster_operator"], "username": "admin" }] }'

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 71

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

We replaced the <host name> placeholder tag with the IP address of our external Apache Geode
Locator. The IP address can be found in the Gfsh st art | ocat or output above.

Additionally, the <por t > placeholder tag has been replaced with the default Locator port, 10334,
Finally, we set the user nanme and passwor d accordingly.
Tip

Spring Boot for Apache Geode (SBDG) provides template files in the /opt/jenkins/data/workspace/
spring-boot-data-geode_1.1.x/spring-geode-docs/src/main/resources directory.

Once the service has been created, you can query the details from the cf CLI:

$ cf services
Getting services in org cfdev-org / space cfdev-space as admn...

nanme service pl an bound apps | ast operation br oker

apacheGeodeServi ce user - provi ded boot - pcc- deno

$ cf service apacheGeodeService
Showi ng i nfo of service apacheGeodeService in org cfdev-org / space cfdev-space as admn...

nane: apacheGeodeServi ce

servi ce: user - provi ded

tags: genfire, cloudcache, database, pivotal

bound apps:

nanme bi ndi ng nane st at us message
boot - pcc- deno create succeeded

You can also view the "apacheGeodeService" from Apps Manager, starting from the Ser vi ce tab in
your org and space:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 72

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

P MV EIWNJ I ELET-Igl O Search apps, services, spaces, & orgs

Home Home / cfdev-org / cfdev-space

Marketplace SPACE RUNNING STOPPED CRASHED

, cfdev-space @0 @1 eo0
Accounting Report

App (1) Service (1) Route (1) Member

Services

Service

I I User Provided
N

By clicking on the "apacheGeodeService" service entry in the table you can get all the service details,
such the bound apps:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 73

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

P MVIEIWY TR ELET-IdM O Search apps, services, spaces, & orgs

Home Home / cfdev-org / cfdev-space / apacheGeodeService
Marketplace |j apacheGeodeService
A . :
Accounting Report SERVICE: User Provided
Overview Configuration Settings
Bound Apps

boot-pcc-demo

Bound Routes

Configuration:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 74

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

P MIEIWYJ IR ELET-LIM O Search apps, services, spaces, & orgs

Home Home / cfdev-org / cfdev-space [/ apacheGeodeService

Marketplace |j apacheGeodeService
A

. SERVICE: User Provided
Accounting Report

Overview Configuration Settings

Configuration

Credential Parameters O (Optional)

JSON
1 {"locators":["10.99.199.24[10334]"],"u

Syslog Drain Url ® (Optional)

Route Service Url © (Optional)

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

And so on.
Tip
You can learn more about CUPS in the PCF documentation, here.

Push & Bind a Spring Boot application

Now it is time to push a Spring Boot application to PCF Dev and bind the app to the
"apacheGeodeService".

Any Spring Boot Cl i ent Cache application using SBDG will do. For this example, we will use the
PCCDemo application, available in GitHub.

After cloning the project to your workstation, you must perform a build to produce the artifact to push
to PCF Dev:

Build the PCCDemo app.

$ nvn cl ean package

Then, you can push the app to PCF Dev with the following cf CLI command:

Push app to PCF Dev.

$ cf push boot-pcc-denp -u none --no-start -p target/client-0.0.1- SNAPSHOT. j ar

Once the app has been successfully deployed to PCF Dev, you can get app detalils:

Details for deployed app.

$ cf apps

Getting apps in org cfdev-org / space cfdev-space as admn...

K

nanme requested state i nstances menory di sk urls

boot - pcc- deno st opped 0/1 768M 1G boot - pcc- deno. dev. cf dev. sh

$ cf app boot-pcc-demp
Showi ng health and status for app boot-pcc-denop in org cfdev-org / space cfdev-space as adnmin...

nane: boot - pcc- deno
requested state: st opped
routes: boot - pcc- denp. dev. cfdev. sh
| ast upl oaded: Tue 02 Jul 00:34:09 PDT 2019
st ack: cflinuxfs3
bui | dpacks: https://github. conl cl oudf oundry/java- bui | dpack. gi t
type: web
i nstances: 0/1
menory usage: 768M
state since cpu nmenory di sk details

#0 down 2019-07-02T21:48:25Z 0.0% O of O 0 of O

type: task
i nstances: 0/0
menory usage: 256M

There are no running instances of this process.

You can either bind the PPCDemo app to the "apacheGeodeService" using the cf CLI command:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 76

https://docs.pivotal.io/pivotalcf/2-6/devguide/services/user-provided.html
https://github.com/jxblum/PCCDemo/tree/sbdg-doc-ref

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Bind app to apacheGeodeService using CLI.

cf bind-service boot-pcc-denp apacheGeodeService

Or, alternatively, you can create a YAML file (mani f est . ynm in src/ mai n/ r esour ces) containing
the deployment descriptor:

Example YAML deployment descriptor file.

\---
appl i cations:
- nane: boot-pcc-deno
menory: 768M
instances: 1
path: ./target/client-0.0.1- SNAPSHOT. j ar
services:
- apacheGeodeServi ce
bui | dpacks:
- https://github. conl cl oudf oundry/j ava- bui | dpack. gi t

You can also use Apps Manager to view app details and un/bind additional services. Start by navigating
to the App tab under your org and space:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 7

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

P MWV SR ELET-CIgM O Search apps, services, spaces, & orgs

Home Home / cfdev-org / cfdev-space

Marketplace SPACE RUNNING STOPPED CRASHED

, cfdev-space @0 o1 @0
Accounting Report

App (1) Service (1) Route (1) Membel

Apps
Status Name
® Stopped boot-pcc-demo

From there, you can click on the desired app and navigate to the Over vi ew.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 78

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

P MV EIWNJ I ELET-Idl O Search apps, services, spaces, & orgs

Home Home / cfdev-org / cfdev-space / boot-pcc-demo
Marketplace APP |
_ boot-pcc-demo | * <
Accounting Report |
Overview Service (1) Route (1) Netwc
Events Last Push: 11:49 /

Stopped app

admin 07/02/2019 at 11:49:19 AM

> Started app
admin 07/02/2019 at 12:34:17 AM
Mapped route to a
S PP pPp
admin 07/02/2019 at 12:32:15 AM
Created app
+

admin 07/02/2019 at 12:32:15 AM

Spring Boot Tor Apache
1.1.10.RELEASE Geode & Pivotal GemFire 79

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

You can also review the app Setti ngs. Specifically, we are looking at the configuration of the app
once bound to the "apacheGeodeService" as seen in the VCAP_SERVI CES Environment Variable:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 80

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

P MIEIWY WY L ELET-LIdM O Search apps, services, spaces, & orgs

Home

Environment Variables
Marketplace Defined by the runtime and buildpack. Learn more

Accounting Report

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

This JSON document structure is not unlike the configuration used to bind your Spring Boot,
i ent Cache application to the Pivotal Cloud Cache service when deploying the same app to Pivotal
CloudFoundry. This is actually very key if you want to minimize the amount of boilerplate code and
configuration changes when migrating between different CloudFoundry environments, even Open
Source CloudFoundry.

Again, SBDG's entire goal is to simply the effort for you, as a developer, to build, run and manage your
application, in whatever context your application lands, even if it changes later. If you follow the steps
in this documentation, that goal will be realized.

Running the Spring Boot application
All that is left to do now is run the app.

You can start the PCCDemo app from the cf CLI using the following command:

Start the Spring Boot app.

$ cf start boot-pcc-denp

Alternatively, you can also start the app from Apps Manager. This is convenient since then you can tail
and monitor the application log file.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 82

https://www.cloudfoundry.org/
https://www.cloudfoundry.org/

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

P MIEIW Y LELET-LId O Search apps, services, spaces, & orgs

Home Home / cfdev-org / cfdev-space / boot-pcc-demo
Marketplace APP
) boot-pcc-demo | *» < | @ St
Accounting Report
Overview Service (1) Route (1) Networking
Logs

2019-07-02T00:34:17.584-07:00 [API/0] [OUT] Starting
2019-07-02T00:34:17.751-07:00 [CELL/0] [OUT] Cell df
2019-07-02T00:34:18.105-07:00 [CELL/0] [OUT] Cell df
2019-07-02T00:34:23.924-07:00 [APP/PROC/WEB/@] [OUT]
2019-07-02T00:34:26.420-07:00 [APP/PROC/WEB/@] [OUT]
2019-07-02T00:34:26.420-07:00 [APP/PROC/WEB/@] [OUT]
2019-07-02T00:34:26.421-07:00 [APP/PROC/WEB/@] [OUT]
2019-07-02T00:34:26.421-07:00 [APP/PROC/WEB/@] [OUT]
2019-07-02T00:34:26.421-07:00 [APP/PROC/WEB/@] [OUT]
2019-07-02T00:34:26.422-07:00 [APP/PROC/WEB/@] [OUT]
2019-07-02T00:34:26.424-07:00 [APP/PROC/WEB/@] [OUT]
2019-07-02T00:34:26.806-07:00 [APP/PROC/WEB/@] [OUT]
2019-07-02T00:34:26.809-07:00 [APP/PROC/WEB/@] [OUT]

2019-07-02T00:34:28.991-07:00 [APP/PROC/WEB/0] [OUT]
mode.

2019-07-02T00:34:29.042-07:00 [APP/PROC/WEB/@] [OUT]
Found 1 repository interfaces.

2019-07-02T00:34:29.596-07:00 [APP/PROC/WEB/0] [OUT]
ApacheShiroSecurityConfiguration.shiroGemFireBeanFac
failure to process annotations such as @Autowired, ¢
container lifecycle issues; see @Bean javadoc for cc

2019-07-02T00:34:29.617-07:00 [APP/PROC/WEB/©] [OUT]
non-static and returns an object assignable to Sprin
@PostConstruct within the method's declaring @Config
details.

2019-07-02T00:34:29.864-07:00 [APP/PROC/WEB/0] [OUT]
‘org.springframework.data.gemfire.config.annotation.
[org.springframework.data.gemfire.config.annotation.

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Once the app has started, you can click the VIEW APP link in the upper right corner of the APP screen.

®ece Qglojolole|la/@/@A OIAIO|O|O

C A Not Secure | https://boot-pcc-demo.dev.cfdev.sh

Using Spring Boot for Pivotal GemFir

You can navigate to any of the application Web Service, Controller endpoints. For example, if you know
the ISBN of a Book, you can access it from the Web browser:

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 84

https://boot-pcc-demo.dev.cfdev.sh/

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

®ec® Qo002 |2/ @ @OAIOIO|O

< C A Not Secure | hitps://boot-pcc-demo.dev.cfdev.sh/books/’

It took[68] millis to execute get Book [Book(isbn=1
for ISBN [1235432BMF342]

You can also access the same data from the Gfsh command-line tool. However, the first thing to observe
is that our application informed the cluster that it needed a Region called "Books":

Books Region.

gf sh>l i st regions
Li st of regions

gf sh>descri be regi on --nane=/ Books
Nane . Books

Data Policy : partition
Hosting Menbers : ServerOne

Non- Defaul t Attributes Shared By Hosting Menbers

Regi on | size | 1
| data-policy | PARTITION

The PCCDemo app creates fake data on startup, which we can query in Gfsh like so:

Query Books.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 85

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

gf sh>query --query="SELECT book.isbn, book.title FROM /Books book"
Result : true

Limt : 100

Rows 1

1235432BMF342 | The Torment of Cthers

15.5 Summary

There you have it!

The ability to deploy Spring Boot, Apache Geode or Pivotal GemFire Cl i ent Cache applications to
Pivotal CloudFoundry, yet connect your app to a externally managed, standalone Apache Geode or
Pivotal GemFire cluster.

Indeed, this is will be a useful arrangement and stepping stone for many users as they begin their journey
towards a Cloud-Native platform like Pivotal CloudFoundry (PCF) and using services like Pivotal Cloud
Cache (PCC).

Later, when the time comes and your need is very real, you can simply migrate your Spring Boot
applications to a fully managed and production-grade Pivotal CloudFoundry environment and SBDG
will figure out what to do, leaving you to focus entirely on your application.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 86

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

16. Samples

This section contains working examples demonstrating how to use Spring Boot for Apache Geode and
Pivotal GemFire (SBDG) effectively.

Some examples focus on specific Use Cases (e.g. [(HTTP) Session state] caching) while other examples
demonstrate how SBDG works under-the-hood to give users a better understanding of what is actually
happening and how to debug problems with their Apache Geode / Pivotal GemFire, Spring Boot

applications.

Table 16.1. Example Spring Boot applications using Apache Geode

Guide

Spring Boot Auto-Configuration
for Apache Geode/Pivotal
GemFire

Spring Boot Actuator for
Apache Geode/Pivotal GemFire

Look-Aside Caching with
Spring’s Cache Abstraction and

Apache Geode

Inline Caching with Spring’s
Cache Abstraction and Apache
Geode

Near Caching with Spring’s
Cache Abstraction and Apache
Geode

HTTP Session Caching with
Spring Session and Apache
Geode

Description

Explains what auto-
configuration is provided by
SBDG out-of-the-box and what
the auto-configuration is doing.

Explains how to use Spring
Boot Actuator for Apache
Geode and how it works.

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for Look-Aside
Caching.

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for Inline
Caching. This sample builds

on the Look-Aside Caching
sample above.

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for Near
Caching. This sample builds

on the Look-Aside Caching
sample above and is the 3rd
and final leg in our study on
caching patterns.

Explains how to enable and use
Spring Session with Apache
Geode to manage HTTP
Session state.

Source

Boot Auto-Configuration

Boot Actuator

Look-Aside Caching

Inline Caching

Near Caching

HTTP Session Caching

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

87

guides/boot-configuration.html
guides/boot-configuration.html
guides/boot-configuration.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/boot/configuration
guides/boot-actuator.html
guides/boot-actuator.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/boot/actuator
guides/caching-look-aside.html
guides/caching-look-aside.html
guides/caching-look-aside.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/caching/look-aside
guides/caching-inline.html
guides/caching-inline.html
guides/caching-inline.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/caching/inline
guides/caching-near.html
guides/caching-near.html
guides/caching-near.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/caching/near
guides/caching-http-session.html
guides/caching-http-session.html
guides/caching-http-session.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/spring-geode-samples/caching/http-session

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

17. Appendix

The following appendices provide additional help while developing Spring Boot applications backed by
Apache Geode or Pivotal GemFire.

Table of Contents

1. Section 17.1, “Auto-configuration vs. Annotation-based configuration”

2. Section 17.2, “Configuration Metadata Reference”

3. Section 17.3, “Disabling Auto-configuration”

4. Section 17.4, “Switch from Apache Geode to Pivotal Cloud Cache (a.k.a. Pivotal GemFire)”

5. Section 17.5, “Running an Apache Geode/Pivotal GemFire cluster using Spring Boot from your IDE”
6. Section 17.6, “Testing”

7. Section 17.7, “Examples”

8. Section 17.8, “References”

17.1 Auto-configuration vs. Annotation-based configuration

The question most often asked is, "What Spring Data for Apache Geode/Pivotal GemFire annotations
can | use, or must | use, when developing Apache Geode or Pivotal GemFire applications with Spring
Boot?"

This section will answer this question and more.

Readers should refer to the complimentary sample, Spring Boot Auto-configuration for Apache Geode &
Pivotal GemFire, which showcases the auto-configuration provided by Spring Boot for Apache Geode/
Pivotal GemFire in action.

Background

To help answer this question, we must start by reviewing the complete collection of available
Spring Data for Apache Geode/Pivotal GemFire (SDG) annotations. These annotations are
provided in the org.springframework.data.gemfire.config.annotation package. Most of the pertinent
annotations begin with @nabl e.., except for the base annotations: @ i ent CacheAppl i cati on,
@eer CacheAppl i cati on and @acheSer ver Appl i cati on.

By extension, Spring Boot for Apache Geode/Pivotal GemFire (SBDG) builds on SDG’s Annotation-
based configuration model to implement auto-configuration and apply Spring Boot’s core concepts,
like "convention over configuration”, enabling GemFire/Geode applications to be built with Spring Boot
reliably, quickly and easily.

SDG provides this Annotation-based configuration model to, first and foremost, give application
developers "choice" when building Spring applications using either Apache Geode or Pivotal GemFire.
SDG makes no assumptions about what application developers are trying to do and fails fast anytime
the configuration is ambiguous, giving users immediate feedback.

Second, SDG’s Annotations were meant to get application developers up and running quickly and
reliably with ease. SDG accomplishes this by applying sensible defaults so application developers do

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 88

guides/boot-configuration.html
guides/boot-configuration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/package-summary.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

not need to know, or even have to learn, all the intricate configuration details and tooling provided by
GemFire/Geode to accomplish simple tasks, e.g. build a prototype.

So, SDG is all about "choice" and SBDG is all about "convention". Together these frameworks provide
application developers with convenience and reliability to move quickly and easily.

To learn more about the motivation behind SDG’s Annotation-based configuration model, refer to the
Reference Documentation.

Conventions

Currently, SBDG provides auto-configuration for the following features:
* CientCache

» Caching with Spring’s Cache Abstraction

» Continuous Query

» Function Execution & Implementation

* Logging

 PDX

 GenfireTenpl ate

» Spring Data Repositories

» Security (Client/Server Auth & SSL)

» Spring Session

Technically, this means the following SDG Annotations are not required to use the features above:
* @ ientCacheApplication

e @nabl eGenfi reCachi ng (or by using Spring Framework’s @nabl eCachi ng)
e @nabl eConti nuousQueri es

* @nabl eGenfireFuncti onExecutions

e @Enabl eGenfireFunctions

e @nabl eLoggi ng

* @nabl ePdx

e @nabl eGenfireRepositories

e @nabl eSecurity

e @Enabl eSsl

e @nabl eGenFireHt t pSessi on

Since SBDG auto-configures these features for you, then the above annotations are not strictly required.
Typically, you would only declare one of theses annotations when you want to "override" Spring Boot's
conventions, expressed in auto-configuration, and "customize" the behavior of the feature.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 89

https://docs.spring.io/spring-data/gemfire/docs/current/reference/html/#bootstrap-annotation-config-introduction

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Overriding
In this section, we cover a few examples to make the behavior when overriding more apparent.
Caches

By default, SBDG provides you with a Cl i ent Cache instance. Technically, SBDG accomplishes this
by annotating an auto-configuration class with @ i ent CacheAppl i cati on, internally.

It is by convention that we assume most application developers' will be developing Spring Boot
applications using Apache Geode or Pivotal GemFire as "client" applications in GemFire/Geode’s client/
server topology. This is especially true as users migrate their applications to a managed environment,
such as Pivotal CloudFoundry (PCF) using Pivotal Cloud Cache (PCC).

Still, users are free to "override" the default settings and declare their Spring applications to be actual
peer Cache members of a cluster, instead.

For example:

@pr i ngBoot Appl i cati on
@cacheSer ver Appl i cati on
cl ass MySpri ngBoot Peer CacheSer ver Application { ... }

By declaring the @acheSer ver Appl i cat i on annotation, you effectively override the SBDG default.
Therefore, SBDG will not provide a O i ent Cache instance because you have informed SBDG of
exactly what you want, i.e. a peer Cache instance hosting an embedded CacheSer ver that allows
client connections.

However, you then might ask, "Well, how do | customize the ClientCache instance when developing
client applications without explicitly declaring the @ClientCacheApplication annotation, then?"

First, you are entirely allowed to "customize" the O i ent Cache instance by explicitly declaring the
@ i ent CacheAppl i cati on annotation in your Spring Boot application configuration, and set specific
attributes as needed. However, you should be aware that by explicitly declaring this annotation, or any
of the other auto-configured annotations by default, then you assume all the responsibility that comes
with it since you have effectively overridden the auto-configuration. One example of this is Security,
which we touch on more below.

The most ideal way to "customize" the configuration of any feature is by way of the well-known and
documented Properties, specified in Spring Boot appl i cati on. properti es (the "convention"), or
by using a Configurer.

See the Reference Guide for more details.

Security

Like the @l i ent CacheAppl i cat i on annotation, the @nabl eSecuri ty annotation is not strictly
required, not unless you want to override and customize the defaults.

Outside a managed environment, the only Security configuration required is specifying a username
and password. You do this using the well-known and document SDG username/password properties in
Spring Boot appl i cati on. properti es, like so:

Required Security Properties in a Non-Manage Envionment.

spring. data. genfire.security.username=M/User
spring. data. genfire.security.password=Secr et

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 90

https://docs.spring.io/spring-data/gemfire/docs/current/reference/html/#bootstrap-annotation-config-configurers

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

You do not need to explicitly declare the @nabl eSecurity annotation just to specify Security
configuration (e.g. username/password).

Inside a managed environment, such as Pivotal CloudFoundry (PCF) when using Pivotal Cloud Cache
(PCC), SBDG is able to introspect the environment and configure Security (Auth) completely without
the need to specify any configuration, usernames/passwords, or otherwise. This is due in part because
PCF supplies the security details in the VCAP environment when the app is deployed to PCF and bound
to services (e.g. PCC).

So, in short, you do not need to explicitly declare the @tnabl eSecurity annotation (or the
@ i ent CacheAppl i cati on for that matter).

However, if you do explicitty declare either the @ i ent CacheApplication and/or
@nabl eSecurity annotations, guess what, you are now responsible for this configuration and
SBDG's auto-configuration no longer applies.

While explicitly declaring @nabl eSecur i t y makes more sense when "overriding” the SBDG Security
auto-configuration, explicitly declaring the @ i ent CacheAppl i cat i on annotation most likely makes
less sense with regard to its impact on Security configuration.

This is entirely due to the internals of GemFire/Geode, which in certain cases, like Security, not even
Spring is able to completely shield users from the nuances of GemFire/Geode’s configuration.

Both Auth and SSL must be configured before the cache instance (whether a d i ent Cache or a peer
Cache, it does not matter) is created. Technically, this is because Security is enabled/configured during
the "construction” of the cache. And, the cache pulls the configuration from JVM System properties that
must be set before the cache is constructed.

Structuring the "exact" order of the auto-configuration classes provided by SBDG when the classes
are triggered, is no small feat. Therefore, it should come as no surprise to learn that the Security
auto-configuration classes in SBDG must be triggered before the ClientCache auto-configuration
class, which is why a ClientCache instance cannot "auto" authenticate properly in PCC when the
@ i ent CacheAppl i cation is explicitly declared without some assistance (i.e. you must also
explicitly declare the @Enabl eSecurity annotation in this case since you overrode the auto-
configuration of the cache, and, well, implicitly Security as well).

Again, this is due to the way Security (Auth) and SSL meta-data must be supplied to GemFire/Geode.

See the Reference Guide for more details.

Extension

Most of the time, many of the other auto-configured annotations for CQ, Functions, PDX, Repositories,
and so on, do not need to ever be declared explicitly.

Many of these features are enabled automatically by having SBDG or other libraries (e.g. Spring
Session) on the classpath, or are enabled based on other annotations applied to beans in the Spring
Appl i cati onCont ext.

Let's review a few examples.
Caching

Itis rarely, if ever, necessary to explicitly declare either the Spring Framework’s @nabl eCachi ng, or
the SDG specific @nabl eGenfi r eCachi ng annotation, in Spring configuration when using SBDG.
SBDG automatically "enables" caching and configures the SDG Genf i r eCacheManager for you.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 91

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

You simply only need to focus on which application service components are appropriate for caching:
Service Caching.

@ervi ce
cl ass Custoner Service {

@\ut owi red
private Custoner Repository customnerRRepository;

@Cacheabl e(" Cust oner sByNane")
public Custoner findBy(String nane) {
return custonerRepository. findByNane(nane);
}
}

Of course, it is necessary to create GemFire/Geode Regions backing the caches declared in
your application service components (e.g. "CustomersByName") using Spring’s Caching Annotations
(e.g. @acheable), or alternatively, JSR 107, JCache annotations (e.g.
" @acheResul t).

You can do that by defining each Region explicitly, or more conveniently, you can simply use:
Configuring Caches (Regions).

@Bpr i ngBoot Appl i cati on
@Enabl eCachi ngDef i nedRegi ons
class Application { ... }

@nabl eCachi ngDef i nedRegi ons is optional, provided for convenience, and complimentary to
caching when used rather than necessary.

See the Reference Guide for more details.

Continuous Query

It is rarely, if ever, necessary to explicitly declare the SDG @nabl eCont i nuousQuer i es annotation.
Instead, you should be focused on defining your application queries and worrying less about the
plumbing.

For example:

Defining Queries for CQ.

@onponent
public class Tenperaturelbnitor extends Abstract TenperatureEvent Publisher {

@ont i nuousQuer y(nane = "Boi |l i ngTenper at ur eMoni tor ",
query = "SELECT * FROM / Tenper at ur eReadi ngs WHERE t enper at ur e. neasur enent >= 212.0")
public void boilingTenperatureReadi ngs(CgEvent event) {
publ i sh(event, tenperatureReading -> new BoilingTenperatureEvent(this, tenperatureReading));

}

@Cont i nuousQuer y(nane = "Freezi ngTenper at ur eMoni tor",
query = "SELECT * FROM / Tenper at ur eReadi ngs WHERE t enper at ur e. neasur enment <= 32.0")
public void freezi ngTenper at ur eReadi ngs(CgEvent event) {
publ i sh(event, tenperatureReading -> new Freezi ngTenperatureEvent (this, tenperatureReading));
}
}

Of course, GemFire/Geode CQ only applies to clients.

See the Reference Guide for more details.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 92

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Functions

It is rarely, if ever, necessary to explicitly declare either the @nabl eGenfi r eFuncti onExecut i ons
or @nabl eGenfireFuncti ons annotations. SBDG provides auto-configuration for both Function
implementations and executions. You simply need to define the implementation:

Function Implementation.

@onponent
cl ass GenfFireFunctions {

@zenfireFunction
Obj ect exanpl eFunction(Obj ect arg) {

}

}
And then define the execution:

Function Execution.

@nRegi on(regi on = "Exanpl e")
i nterface GenFireFuncti onExecutions {

Obj ect exanpl eFuncti on(Obj ect arg);
}

SBDG will automatically find, configure and register Function Implementations (POJOs) in GemFire/
Geode as proper Functi ons as well as create Executions proxies for the Interfaces which can then
be injected into application service components to invoke the registered Funct i ons without needing
to explicitly declare the enabling annotations. The application Function Implementations & Executions
(Interfaces) should simply exist below the @pr i ngBoot Appl i cat i on annotated main class.

See the <<[geode-functions,Reference Guide>> for more details.
PDX

It is rarely, if ever, necessary to explicitly declare the @nabl ePdx annotation since SBDG auto-
configures PDX by default. SBDG automatically configures the SDG Mappi ngPdxSeri al i zer as the
default PdxSeri al i zer as well.

It is easy to customize the PDX configuration by setting the appropriate Properties (search for "PDX")
in Spring Boot appl i cati on. properti es.

See the Reference Guide for more details.

Spring Data Repositories

It is rarely, if ever, necessary to explicitly declare the @nabl eGenf i r eReposi t ori es annotation
since SBDG auto-configures Spring Data (SD) Repositories by default.

You simply only need to define your Repositories and get cranking:

Customer’s Repository.

i nterface CustonerRepository extends CrudRepository<Custoner, Long> {

Cust onmer findByName(String nane);

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 93

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

SBDG finds the Repository interfaces defined in your application, proxies them, and registers them as
beans in the Spring Appl i cati onCont ext . The Repositories may be injected into other application
service components.

It is sometimes convenient to use the @nabl eEnt i t yDef i nedRegi ons along with SD Repositories
to identify the entities used by your application and define the Regions used by the SD Repository
infrastructure to persist the entity’s state. The @tnabl eEntit yDefi nedRegi ons annotation is
optional, provided for convenience, and complimentary to the @nabl eGenfireRepositories
annotation.

See the Reference Guide for more details.

Explicit Configuration

Most of the other annotations provided in SDG are focused on particular application concerns, or enable
certain GemFire/Geode features, rather than being a necessity.

A few examples include:

e @nabl eAut oRegi onLookup

» @nabl eBeanFact oryLocat or

» @nabl eCacheServer(s)

e @nabl eCachi ngDef i nedRegi ons
e @nabl ed ust er Confi guration
* @nabl eConpr essi on

* @nabl eDi skSt ore(s)

e @nabl eEnti t yDef i nedRegi ons
e @nabl eEviction

e @nabl eExpiration

* @nabl eGentFi reAsLast Resour ce
» @nabl eHt t pServi ce

e @nabl el ndexi ng

e @nabl e f Heap

e @Enabl eLocat or

» @nabl eManager

e @nabl eMentachedSer ver

e @nabl ePool (s)

* @nabl eRedi sServer

e @nabl eStatistics

e @UseCentireProperties

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 94

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

None of these annotations are necessary and none are auto-configured by SBDG. They are simply at
the application developers disposal if and when needed. This also means none of these annotations
are in conflict with any SBDG auto-configuration.

Summary

In conclusion, it is important to understand where SDG ends and SBDG begins. It all begins with the
auto-configuration provided by SBDG out-of-the-box.

If a feature is not covered by SBDG’s auto-configuration, then you are responsible for enabling and
configuring the feature appropriately, as needed by your application (e.g. @nabl eRedi sSer ver).

In other cases, you might also want to explicitty declare a complimentary annotation (e.g.
@nabl eEnt i t yDef i nedRegi ons) for convenience, since there is no convention or "opinion"
provided by SBDG out-of-the-box.

In all remaining cases, it boils down to understanding how GemFire/Geode works under-the-hood. While
we go to great lengths to shield users from as many details as possible, it is not feasible or practical to
address all matters, e.g. cache creation and Security.

Hope this section provided some relief and clarity.

17.2 Configuration Metadata Reference

The following 2 reference sections cover documented and well-known properties recognized and
processed by Spring Data for Apache Geode/Pivotal GemFire (SDG) as well as Spring Session for
Apache Geode/Pivotal GemFire (SSDG).

These properties may be used in Spring Boot appl i cati on. properti es files, or as JVM System
properties, to configure different aspects of or enable individual features of Apache Geode or Pivotal
GemFire in a Spring application. When combined with the power of Spring Boot, magical things begin
to happen.

Spring Data Based Properties

The following properties all have a spring. data. genfire.* prefix. For example, to set the
cache copy-on-read property, use spring. data. genfire.cache. copy-on-read in Spring
Boot appl i cati on. properti es.

Table 17.1. spri ng. dat a. genfi r e. * properties

Name Description Default From

name Name of the Apache | SpringBasedCacheClicttiépplieatierpplication.name
Geode / Pivotal
GemFire member.

locators Comma-delimited 1 PeerCacheApplication.locators
list of Locator
endpoints formatted
as: locatorl[portl],...

,locatorN[portN].
use-bean-factory- Enable the SDG false ClientCacheApplication.useBeanFactorylL ocator
locator BeanFactoryLocator

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 95

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#locators--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#useBeanFactoryLocator--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default

From

when mixing Spring
config with GemFire/
Geode native config
(e.g. cache.xml)

and you wish to
configure GemkFire
objects declared

in cache.xml with
Spring.

Table 17.2. spri ng. dat a. genfi re. * GemFireCache properties

Name

Description

Default

From

cache.copy-on-read

cache.critical-heap-
percentage

Configure whether
a copy of an object
returned from
Region.get(key) is
made.

Percentage of

heap at or above
which the cache

is considered in
danger of becoming
inoperable.

false

ClientCacheApplication.copyOnRead

ClientCacheApplication.criticalHeapPercentage

cache.critical-off-
heap-percentage

Percentage of off-
heap at or above
which the cache

is considered in
danger of becoming
inoperable.

ClientCacheApplication.criticalOffHeapPercentac

cache.enable-auto-
region-lookup

Configure whether
to lookup Regions
configured in
GempFire/Geode
native config and
declare them as
Spring beans.

false

EnableAutoRegionLookup.enable

cache.eviction-heap-
percentage

cache.eviction-off-
heap-percentage

Percentage of heap
at or above which
the eviction should
begin on Regions
configured for
HeapLRU eviction.

Percentage of off-
heap at or above

ClientCacheApplication.evictionHeapPercentage

ClientCacheApplication.evictionOffHeapPercent:

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

96

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#copyOnRead--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAutoRegionLookup.html#enabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionOffHeapPercentage--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name Description Default From
which the eviction
should begin on
Regions configured
for HeapLRU
eviction.
cache.log-level Configure the log- config ClientCacheApplication.logLevel

level of an Apache
Geode / Pivotal
GemFire cache.

cache.name

cache.compression.bg
name

Alias for
'spring.data.gemfire.n

xdNeme of a Spring
bean implementing
org.apache.geode.con

ame'.

npression.Compressor.

SpringBasedCacheCliegtidpplieatiedpplication.name

EnableCompression.compressorBeanName

cache.compression.re
names

gmmma-delimited list
of Region names for
which compression
will be configured.

I

EnableCompression.regionNames

cache.off-
heap.memory-size

Determines the size
of off-heap memory
used by GemFire/
Geode in megabytes
(m) or gigabytes (g);
for example 120g.

EnableOffHeap.memorySize

cache.off-
heap.region-names

Comma-delimited list
of Region names for
which off-heap will
be configured.

EnableOffHeap.regionNames

Table 17.3. spri ng. dat a. genfi re. * ClientCache properties

Name

cache.client.durable-
client-id

Description

Used only for clients
in a client/server
installation. If set,
this indicates that
the client is durable
and identifies the
client. The ID is
used by servers

to reestablish any
messaging that was
interrupted by client
downtime.

Default

From

ClientCacheApplication.durableClientld

1.1.10.RELEASE

Sprin

g Boot for Apache

Geode & Pivotal GemFire

97

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#logLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#compressorBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#regionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#memorySize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#regionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientId--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default

From

cache.client.durable-
client-timeout

Used only for clients
in a client/server
installation. Number
of seconds this
client can remain
disconnected from
its server and have
the server continue
to accumulate
durable events for it.

300

ClientCacheApplication.durableClientTimeout

cache.client.keep-
alive

Configure whether
the server should
keep the durable
client's queues
alive for the timeout
period.

false

ClientCacheApplication.keepAlive

Table 17.4. spring. d
Name

cache.peer.enable-
auto-reconnect

cache.peer.lock-
lease

cache.peer.lock-
timeout

cache.peer.message-
sync-interval

ata.genfire.* peer
Description

Configure whether
member (Locators &
Servers) will attempt
to reconnect and
reinitialize the cache
after it has been
forced out of the
cluster by a network
partition event or
has otherwise been
shunned by other
members.

Configures the
length, in seconds,
of distributed lock
leases obtained by
this cache.

Configures the
number of seconds
a cache operation
will wait to obtain

a distributed lock
lease.

Configures the
frequency (in
seconds) at which

Cache properties
Default

false

120

60

From

PeerCacheApplication.enableAutoReconnect

PeerCacheApplication.lockLease

PeerCacheApplication.lockTimeout

PeerCacheApplication.messageSyncinterval

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

98

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#keepAlive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#enableAutoReconnect--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockLease--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#messageSyncInterval--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default

From

cache.peer.search-
timeout

cache.peer.use-
cluster-configuration

a message will

be sent by the
primary cache-
server to all the
secondary cache-
server nodes to
remove the events
which have already
been dispatched
from the queue.

Configures the
number of seconds
a cache get
operation can spend
searching for a
value.

Configures whether
this GemFire cache
member node would
pull it's configuration
meta-data from

the cluster-

based Cluster
Configuration
Service.

300

false

PeerCacheApplication.searchTimeout

PeerCacheApplication.useClusterConfiguration

Table 17.5. spring. d
Name

cache.server.auto-
startup

Description

Configures whether
the CacheServer
should be started
automatically at
runtime.

at a. genfire.* CacheServer properties

Default

true

From

CacheServerApplication.autoStartup

cache.server.bind-
address

Configures the

IP address or
hostname that this
cache server will
listen on.

cache.server.hostnamezonfigures the

for-clients

IP address or
hostname that
server locators will
tell clients that this
cache server is
listening on.

CacheServerApplication.bindAddress

CacheServerApplication.hostNameForClients

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

99

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#searchTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#useClusterConfiguration--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#autoStartup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#hostnameForClients--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

CacheServerApplication.loadPollinterval

CacheServerApplication.maxConnections

CacheServerApplication.maxMessageCount

CacheServerApplication.maxThreads

CacheServerApplication.maxTimeBetweenPings

CacheServerApplication.messageTimeToLive

CacheServerApplication.socketBufferSize

Name Description Default From
cache.server.load- Configures the 5000
poll-interval frequency in

milliseconds to poll

the load probe on

this cache server.
cache.server.max- Configures the 800
connections maximum client

connections allowed.
cache.server.max- Configures the 230000
message-count maximum number of

messages that can

be enqueued in a

client queue.
cache.server.max- Configures the
threads maximum number

of threads allowed

in this cache server

to service client

requests.
cache.server.max- Configures the 60000
time-between-pings | maximum amount of

time between client

pings.
cache.server.messageConfigures the time | 180
time-to-live (in seconds) after

which a message in

the client queue will

expire.
cache.server.port Configures the port | 40404 CacheServerApplication.port

on which this cache

server listens for

clients.
cache.server.socket- | Configures buffer 32768
buffer-size size of the socket

connection to this

CacheServer.
cache.server.subscriptiGonfigures the 1

capacity

capacity of the client
queue.

CacheServerApplication.subscriptionCapacity

cache.server.subscrip
disk-store-name

tiGonfigures the name
of the DiskStore for

CacheServerApplication.subscriptionDiskStoreN

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

100

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#loadPollInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxMessageCount--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxThreads--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxTimeBetweenPings--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#messageTimeToLive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionCapacity--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionDiskStoreName--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default

From

client subscription
queue overflow.

cache.server.subscrip
eviction-policy

cache.server.tcp-no-
delay

tiGonfigures the
eviction policy that
is executed when
capacity of the client
subscription queue
is reached.

Configures the
outgoing Socket
connection tcp-no-
delay setting.

none

true

CacheServerApplication.subscriptionEvictionPoli

CacheServerApplication.tcpNoDelay

CacheServer properties can be further targeted at specific CacheServer instances, using an option bean
name of the CacheSer ver bean defined in the Spring application context. For example:

spring. data. genfire. cache. server. [<cacheServer BeanNane>] . bi nd- addr ess=. . .

Table 17.6. spri ng. dat a. genfi r e. * Cluster properties

Name

Description

Default

From

cluster.region.type

Configuration setting
used to specify the
data management
policy used when
creating Regions on
the servers in the
cluster.

RegionShortcut. PARTIEI@KIeClusterConfiguration.serverRegionShortc

Table 17.7. spri ng. dat a. genfi r e. * DiskStore properties

Name

disk.store.allow-
force-compaction

disk.store.auto-
compact

Description

Configures

whether to allow
DiskStore.forceComps
to be called on
Regions using a
DiskStore.

Configures whether
to cause the

disk files to be
automatically
compacted.

disk.store.compaction- Configures the

threshold

threshold at which

Default

false

action()

true

50

From

EnableDiskStore.allowForceCompaction

EnableDiskStore.autoCompact

EnableDiskStore.compactionThreshold

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

101

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionEvictionPolicy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#tcpNoDelay--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#serverRegionShortcut--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#allowForceCompaction--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#autoCompact--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#compactionThreshold--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default

From

an oplog will become
compactable.

disk.store.directory.loc

disk.store.directory.siz

c&@ionfigures the
system directory
where the GemFire/
Geode DiskStore
(oplog) files will be
stored.

eConfigures the
amount of disk
space allowed to
store DiskStore
(oplog) files.

21474883647

EnableDiskStore.diskDirectories.location

EnableDiskStore.diskDirectories.size

disk.store.disk-
usage-critical-
percentage

disk.store.disk-
usage-warning-
percentage

Configures the
critical threshold
for disk usage as a
percentage of the
total disk volume.

Configures the
warning threshold
for disk usage as a
percentage of the
total disk volume.

99.0

90.0

EnableDiskStore.diskUsageCriticalPercentage

EnableDiskStore.diskUsageWarningPercentage

disk.store.max-
oplog-size

disk.store.queue-
size

disk.store.time-
interval

disk.store.write-
buffer-size

Configures the
maximum size in
megabytes a single
oplog (operation log)
is allowed to be.

Configures the
maximum number of
operations that can
be asynchronously
queued.

Configures

the number of
milliseconds

that can elapse
before data written
asynchronously is
flushed to disk.

Configures the write
buffer size in bytes.

1024

1000

32768

EnableDiskStore.maxOplogSize

EnableDiskStore.queueSize

EnableDiskStore.timelnterval

EnableDiskStore.writeBufferSize

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

102

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageCriticalPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageWarningPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#maxOplogSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#queueSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#timeInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#writeBufferSize--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

DiskStore properties can be further targeted at specific DiskStores using the Di skSt or e. nane.

For instance, you may

specify directory location of the files for a specific, named Di skSt or e using:

spring. data. genfire.disk.store. Exanpl e. directory. | ocati on=/path/to/ geode/ di sk- st or es/ Exanpl e/

The directory location and size of the DiskStore files can be further divided into multiple locations and
size using array syntax, as in:

spring. data. genfire.disk.store. Exanpl e.directory[0] .| ocation=/path/to/geode/ di sk-stores/ Exanpl e/ one
spring. data. genfire. di sk. store. Exanpl e. di rectory[0].si ze=4096000
spring. data. genfire.disk.store. Exanpl e.directory[1].|ocation=/path/to/geode/di sk-stores/Exanpl e/ two
spring. data. genfire.di sk.store. Exanpl e. directory[1].si ze=8192000

Both the name and array index are optional and you can use any combination of name and array index.
Without a name, the properties apply to all DiskStores. Without array indexes, all [named] DiskStore

files will be stored in th

Table 17.8. spring. d

e specified location and limited to the defined size.

at a. genfire. * Entity properties

Name

Description Default From

entities.base-
packages

Table 17.9. spring. d
Name

locator.host

Comma-delimited list EnableEntityDefinedRegions.basePackages
of package names
indicating the start
points for the entity
scan.

ata. genfire.* Locator properties
Description Default From

Configures the EnableLocator.host
IP address or
hostname of the
system NIC to which
the embedded
Locator will be
bound to listen for
connections.

locator.port

Table 17.10. spri ng.

Name

Configures the 10334 EnableLocator.port
network port to
which the embedded
Locator will listen for
connections.

dat a. genfi re. * Logging properties

Description Default From

logging.level

Configures the config EnableLogging.logLevel
log-level of an
Apache Geode /
Pivotal GemFire
cache; Alias for

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire 103

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/DiskStore.html#getName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableEntityDefinedRegions.html#basePackages--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLocator.html#host--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLocator.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logLevel--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default

From

'spring.data.gemfire.cq
level'.

ache.log-

logging.log-disk-

Configures the

EnableLogging.logDiskSpaceLimit

space-limit amount of disk
space allowed to
store log files.
logging.log-file Configures the EnablelLogging.logFile

pathname of the
log file used to log
messages.

logging.log-file-size

Configures the
maximum size of a
log file before the log
file is rolled.

EnablelLogging.logFileSize

Table 17.11. spri ng. dat a. genfi r e. * Management properties

Name

management.use-
http

Description

Configures
whether to use the
HTTP protocol to
communicate with
a GemFire/Geode
Manager.

Default

false

From

EnableClusterConfiguration.useHttp

management.http.hos

t Configures the

IP address or
hostname of the
GemFire/Geode
Manager running the
HTTP service.

EnableClusterConfiguration.host

management.http.port

Configures the
port used by the
GemFire/Geode
Manager's HTTP
service to listen for
connections.

7070

Table 17.12. spri ng. dat a. genfi r e. * Manager properties

Name

manager.access-file

Description

Configures the
Access Control

List (ACL) file used
by the Manager to
restrict access to the

Default

EnableClusterConfiguration.port

From

EnableManager.accessFile

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

104

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logDiskSpaceLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFileSizeLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#useHttp--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#host--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#accessFile--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default

From

JMX MBeans by the
clients.

manager.bind-
address

Configures the

IP address or
hostname of the
system NIC used by
the Manager to bind
and listen for IMX
client connections.

EnableManager.bindAddress

manager.hostname-
for-clients

manager.password-
file

manager.port

Configures the
hostname given

to JMX clients to
ask the Locator for
the location of the
Manager.

By default, the
JMX Manager
will allow clients
without credentials
to connect. If this
property is set to
the name of a file
then only clients
that connect with
credentials that
match an entry
in this file will be
allowed.

Configures the port
used by th Manager
to listen for IMX
client connections.

1099

EnableManager.hostNameForClients

EnableManager.passwordFile

EnableManager.port

manager.start

manager.update-
rate

Configures whether
to start the Manager
service at runtime.

Configures the rate,
in milliseconds, at
which this member
will push updates to
any JMX Managers.

false

2000

EnableManager.start

EnableManager.updateRate

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

105

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#passwordFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#start--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#updateRate--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Table 17.13. spri ng. dat a. genfire.* PDX properties

Name

pdx.disk-store-name

pdx.ignore-unread-
fields

Description

Configures the name
of the DiskStore
used to store PDX
type meta-data to
disk when PDX is
persistent.

Configures whether
PDX ignores

fields that were
unread during
deserialization.

Default

false

From

EnablePdx.diskStoreName

EnablePdx.ignoreUnreadFields

pdx.persistent

pdx.read-serialized

pdx.serialize-bean-
name

Configures whether
PDX persists type
meta-data to disk.

Configures whether
a Region entry

is returned as a
PdxInstance or
deserialized back
into object form on
read.

Configures the name
of a custom Spring
bean implementing
org.apache.geode.pd

false

false

.PdxSerializer.

Table 17.14. spri ng. dat a. genfi re. * Pool properties

EnablePdx.persistent

EnablePdx.readSerialized

EnablePdx.serializerBeanName

Name

pool.free-
connection-timeout

pool.idle-timeout

pool.load-
conditioning-interval

Description

Configures the
timeout used to
acquire a free
connection from a
Pool.

Configures the
amount of time a
connection can be
idle before expiring
(and closing) the
connection.

Configures the
interval for how
frequently the pool

Default

10000

5000

300000

From

EnablePool.freeConnectionTimeout

EnablePool.idleTimeout

EnablePool.loadConditioningInterval

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

106

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#diskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#ignoreUnreadFields--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#persistent--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#readSerialized--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#serializerBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#freeConnectionTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#idleTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#loadConditioningInterval--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name Description Default From

will check to see

if a connection

to a given server
should be moved
to a different server
to improve the load
balance.

pool.locators Comma-delimited list EnablePool.locators
of Locator endpoints
in the format:

locatorl[portl],...

JlocatorN[portN]
pool.max- Configures the EnablePool.maxConnections
connections maximum number

of client to server
connections that a
Pool will create.

pool.min- Configures the 1 EnablePool.minConnections
connections minimum number
of client to server
connections that a
Pool will maintain.

pool.multi-user- Configures whether | false EnablePool.multiUserAuthentication
authentication the created Pool can
be used by multiple

authenticated users.

pool.ping-interval Configures how 10000 EnablePool.pinginterval

often to ping servers

to verify that they

are still alive.
pool.pr-single-hop- Configures whether | true EnablePool.prSingleHopEnabled
enabled to perform single-

hop data access
operations between
the client and
servers. When true
the client is aware

of the location of
partitions on servers
hosting Regions with
DataPolicy.PARTITION.

pool.read-timeout Configures 10000 EnablePool.readTimeout
the number of
milliseconds to wait

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 107

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#locators--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#minConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#multiUserAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#pingInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#prSingleHopEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#readTimeout--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default

From

for a response from
a server before
timing out the
operation and trying
another server (if
any are available).

pool.ready-for-
events

pool.retry-attempts

pool.server-group

pool.servers

pool.socket-buffer-
size

pool.statistic-interval

pool.subscription-
ack-interval

Configures whether
to signal the server
that the client is
prepared and ready
to receive events.

Configures the
number of times to
retry a request after
timeout/exception.

Configures the
group that all servers
a Pool connects to
must belong to.

Comma-delimited
list of CacheServer
endpoints in

the format:
serverl[portl],...
,serverN[portN]

Configures the
socket buffer size
for each connection
made in all Pools.

Configures how
often to send client
statistics to the
server.

Configures

the interval in
milliseconds to wait
before sending
acknowledgements
to the CacheServer
for events received
from the server
subscriptions.

false

32768

100

ClientCacheApplication.readyForEvents

EnablePool.retryAttempts

EnablePool.serverGroup

EnablePool.servers

EnablePool.socketBufferSize

EnablePool.statisticlnterval

EnablePool.subscriptionAcklinterval

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

108

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#readyForEvents--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#retryAttempts--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#serverGroup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#servers--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#statisticInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionAckInterval--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

EnablePool.subscriptionMessageTrackingTimeo

EnablePool.threadLocalConnections

Name Description Default From
pool.subscription- Configures whether | false EnablePool.subscriptionEnabled
enabled the created Pool
will have server-to-
client subscriptions
enabled.
pool.subscription- Configures the 900000
message-tracking- messageTrackingTimeout
timeout attribute which is the
time-to-live period,
in milliseconds,
for subscription
events the client has
received from the
server.
pool.subscription- Configures the EnablePool.subsriptionRedundancy
redundancy redundancy level for
all Pools server-to-
client subscriptions.
pool.thread-local- Configures the false
connections thread local
connections policy
for all Pools.

Table 17.15. spri ng. dat a. genfi r e. * Security properties

Name

security.username

security.password

security.properties-
file

Description

Configures the name
of the user used to
authenticate with the
servers.

Configures the user
password used to
authenticate with the
servers.

Configures the
system pathname
to a properties file
containing security
credentials.

Default

From

EnableSecurity.securityUsername

EnableSecurity.securityPassword

EnableAuth.propertiesFile

security.client.accessc

DEX

EnableAuth.clientAccessor

security.client.accessc
post-processor

nfFhe callback that
should be invoked
in the post-operation
phase, which is

EnableAuth.clientAccessorPostProcessor

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

109

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionMessageTrackingTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionRedundancy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#threadLocalConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityUsername--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityPropertiesFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessor--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessorPostProcessor--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default From

when the operation
has completed on
the server but before
the result is sent to
the client.

security.client.authent
initializer

security.client.authent

Citidic- creation
method returning

an Authlnitialize
object, which obtains
credentials for peers
in a cluster.

catatic creation
method returning an
Authenticator object
used by a cluster
member (Locator,
Server) to verify

the credentials of a
connecting client.

EnableSecurity.clientAuthentiationlnitializer

EnableAuth.clientAuthenticator

security.client.diffie-
hellman-algorithm

security.log.file

Used for
authentication. For
secure transmission
of sensitive
credentials like
passwords, you

can encrypt the
credentials using the
Diffie-Hellman key-
exchange algorithm.
Do this by setting
the security-client-
dhalgo system
property on the
clients to the name
of a valid, symmetric
key cipher supported
by the JDK.

Configures the
pathname to a log
file used for security
log messages.

EnableAuth.clientDiffieHellmanAlgorithm

EnableAuth.securityLogFile

security.log.level

Configures the log-
level for security log
messages.

EnableAuth.securityLoglLevel

1.1.10.RELEASE

Spring Boot for Apache

Geode & Pivotal GemFire

110

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#clientAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAuthenticator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientDiffieHellmanAlgorithm--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogLevel--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default From

security.manager.classc€onfigures hame of

name

a class implementing
org.apache.geode.seq

EnableSecurity.securityManagerClassName

urity.SecurityManager.

security.peer.authenti
initializer

security.peer.authenti

security.peer.verify-
member-timeout

security.post-
processor.class-
name

c&iatie creation
method returning
an Authlnitialize
object, which obtains
credentials for peers
in a cluster.

c8tatic creation
method returning
an Authenticator
object, which is used
by a peer to verify
the credentials of a
connecting node.

Configures

the timeout in
milliseconds used
by a peer to verify
membership

of an unknown
authenticated peer
requesting a secure
connection.

Configures the

name of a class
implementing the
org.apache.geode.sec
interface that can

be used to change
the returned results
of Region get
operations.

EnableSecurity.peerAuthenticationlInitializer

EnableAuth.peerAuthenticator

EnableAuth.peerVerifyMemberTimeout

EnableSecurity.securityPostProcessorClassNarr

urity.PostProcessor

security.shiro.ini-
resource-path

Configures the
Apache Geode
System Property
referring to the
location of an
Apache Shiro INI
file that configures
the Apache Shiro
Security Framework

EnableSecurity.shirolniResourcePath

1.1.10.RELEASE

Spring Boot for Apache

Geode & Pivotal GemFire

111

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityManagerClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#peerAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerAuthenticator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerVerifyMemberTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPostProcessorClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#shiroIniResourcePath--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name Description Default From
in order to secure
Apache Geode.
Table 17.16. spri ng. dat a. genfire.* SSL properties
Name Description Default From

security.ssl.certificate jdlasittusts the alias

to the stored SSL
certificate used by
the cluster to secure
communications.

EnableSsl.componentCertificateAliases

security.ssl.certificate |alasfipiaedtthe

alias

default alias

to the stored
SSL certificate
used to secure
communications
across the entire
GemFire/Geode
system.

EnableSsl.defaultCertificateAlias

security.ssl.certificate |alasfigiessthe

alias to the stored
SSL certificate
used by the WAN
Gateway Senders/
Receivers to secure
communications.

EnableSsl.componentCertificateAliases

security.ssl.certificate [alagsfigures the alias

to the stored SSL
certificate used
by the Manager’s
JMX based JVM
MBeanServer
and JMX clients
to secure
communications.

security.ssl.certificate jalasiiocats the

alias to the stored
SSL certificate
used by the
Locator to secure
communications.

security.ssl.certificate |alasfguves the

alias to the stored
SSL certificate

EnableSsl.componentCertificateAliases

EnableSsl.componentCertificateAliases

EnableSsl.componentCertificateAliases

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

112

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#defaultCertificateAlias--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default

From

used by clients and
servers to secure
communications.

security.ssl.certificate.

security.ssl.ciphers

AGasfigebes the alias
to the stored SSL
certificate used by
the embedded HTTP
server to secure
communications
(HTTPS).

Comma-separated
list of SSL ciphers or

any”.

EnableSsl.componentCertificateAliases

EnableSsl.ciphers

security.ssl.componer

security.ssl.keystore

t€omma-delimited
list of GemFire/
Geode components
(e.g. WAN) to be
configured for SSL
communication.

Configures the
system pathname
to the Java
KeyStore file storing
certificates for SSL.

EnableSsl.components

EnableSsl.keystore

security.ssl.keystore.p

security.ssl.keystore.t

security.ssl.protocols

security.ssl.require-
authentication

dSeniigdres the
password used to
access the Java
KeyStore file.

y@onfigures the
password used to
access the Java
KeyStore file (e.qg.
JKS).

Comma-separated
list of SSL protocols
or “any”.

Configures whether
2-way authentication
is required.

EnableSsl.keystorePassword

EnableSsl.keystoreType

EnableSsl.protocols

EnableSsl.requireAuthentication

security.ssl.truststore

Configures the
system pathname to
the trust store (Java

EnableSsl.truststore

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire

113

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#ciphers--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#components--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystore--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#protocols--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#requireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststore--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default

From

KeyStore file) storing
certificates for SSL.

security.ssl.truststore.

security.ssl.truststore.

security.ssl.web-
require-
authentication

pa@ssifiguoies the
password used to
access the trust
store (Java KeyStore
file).

hpenfigures the
password used to

access the trust
store (Java KeyStore
file; e.g. JKS).

Configures whether
2-way HTTP
authentication is
required.

Table 17.17. spri ng. dat a. genfire.* Ser

Name

Description

false

vice properties

Default

EnableSsl.truststorePassword

EnableSsl.truststoreType

EnableSsl.webRequireAuthentication

From

service.http.bind-
address

service.http.port

Configures the

IP address or
hostname of the
system NIC used by
the embedded HTTP
server to bind and
listen for HTTP(S)
connections.

Configures the
port used by

the embedded
HTTP server to
listen for HTTP(S)
connections.

7070

EnableHttpService.bindAddress

EnableHttpService.port

service.http.ssl-
require-
authentication

Configures whether
2-way HTTP
authentication is
required.

false

EnableHttpService.ssIRequireAuthentication

service.http.dev-rest-
api-start

Configures
whether to start the
Developer REST
API web service.

A full installation

of Apache Geode
or Pivotal GemFire

false

EnableHttpService.startDeveloperRestApi

1.1.10.RELEASE

Sprin

g Boot for Apache

Geode & Pivotal GemFire

114

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#webRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#sslRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#startDeveloperRestApi--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name

Description

Default From

is required and
you must set
the $GEODE
environment
variable.

service.memcached.p

o@onfigures the port
of the embedded
Memcached server
(service).

11211 EnableMemcachedServer.port

service.memcached.p

service.redis.bind-
address

service.redis.port

r@onbigures the
protocol used by
the embedded
Memcached server
(service).

Configures the

IP address or
hostname of the
system NIC used
by the embedded
Redis server to
bind an listen for
connections.

Configures the
port used by the
embedded Redis
server to listen for
connections.

ASCI| EnableMemcachedServer.protocol

EnableRedis.bindAddress

6479 EnableRedisServer.port

Spring Session Based Properties

The following properties all have a spri ng. sessi on. data. genfire.* prefix. For example, to
set the Session Region name, use spri ng. sessi on. data. genfire. sessi on. regi on. nane in
Spring Boot appl i cati on. properti es.

Table 17.18. spri ng. sessi on. dat a. genfi re. * properties

Name

Description

Default From

cache.client.pool.nam

cache.client.region.sh

eName of the Pool

used to send data
access operations
between the client
and server(s).

o@oufigures the
DataPolicy used by
the client Region

gemfirePool EnableGemFireHttpSession.poolName

ClientRegionShortcut. FR@BEGemFireHttpSession.clientRegionShortcL

1.1.10.RELEASE

Spring Boot for Apache
Geode & Pivotal GemFire 115

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#protocol--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#port--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#poolName--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#PROXY
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#clientRegionShortcut--

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Name Description Default From

to manage (HTTP)
Session state.

cache.server.region.sh@ueiiigures the RegionShortcut. PARTIEI2Kle GemFireHttpSession.serverRegionShortc
DataPolicy used by
the server Region
to manage (HTTP)
Session state.

session.attributes.indexabitgigures names 1 EnableGemFireHttpSession.indexableSessionAt
of Session attributes
for which an Index
will be created.

session.expiration.maxc€onfigures the 1800 EnableGemFireHttpSession.maxInactivelnterval:
inactive-interval- number of seconds
seconds in which a Session

can remain inactive
before it expires.

session.region.name | Configures hame of | ClusteredSpringSessioBsableGemFireHttpSession.regionName
the (client/server)
Region used to
manage (HTTP)
Session state.

session.serializer.beanConfigures the EnableGemFireHttpSession.sessionSerializerBe
name name of a Spring

bean implementing
org.springframework.session.data.gemfire.serialization.SessionSerializer.

Apache Geode Properties

While is not recommended to use Apache Geode properties directly in your Spring applications, SBDG
will not prevent you from doing so. A complete reference to the Apache Geode specific properties can
be found here.

Warning

Apache Geode (and Pivotal GemFire) are very strict about the properties that maybe
specified in a genfire. properties file. You cannot mix Spring properties with genfire. *
properties in either a Spring Boot appli cation. properties file or an Apache Geode
genfire. properti es file.

17.3 Disabling Auto-configuration

If you would like to disable the auto-configuration of any feature provided by Spring Boot for Apache
Geode/Pivotal GemFire, then you can specify the auto-configuration class in the excl ude attribute of
the @pri ngBoot Appl i cat i on annotation, as follows:

Disable Auto-configuration of PDX.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 116

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#serverRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#indexableSessionAttributes--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#maxInactiveIntervalSeconds--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#regionName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#sessionSerializerBeanName--
https://geode.apache.org/docs/guide/16/18/reference/topics/gemfire_properties.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

@pr i ngBoot Appl i cati on(excl ude = PdxSeri al i zati onAut oConfi gur ati on. cl ass)
public class M/SpringBoot Application {

public static void main(String[] args) {
Spri ngApplication. run(M/SpringBoot Application.class, args);
}

}

Of course, you can disable more than 1 auto-configuration class at a time by specifying each class in
the excl ude attribute using array syntax, as follows:

Disable Auto-configuration of PDX & SSL.

@vpri ngBoot Appl i cation(exclude = { PdxSeri alizationAutoConfiguration.class,
Ssl| Aut oConfi guration.class })
public class MySpringBoot Application {

public static void main(String[] args) {
SpringApplication. run(M/SpringBoot Application.class, args);
}
}

The current set of auto-configuration classes in Spring Boot for Apache Geode & Pivotal GemFire
include:

e CacheNaneAut oConfi gurati on

» Cachi ngProvi der Aut oConfi gurati on

* i ent CacheAut oConfi guration

e« ClientSecurityAut oConfiguration

» Conti nuousQuer yAut oConfi gurati on

* Functi onExecuti onAut oConfi guration
e GentirePropertiesAut oConfiguration
e Loggi ngAut oConfi gurati on

» PdxSeri al i zati onAut oConfi guration
» Peer SecurityAut oConfi guration

* Regi onTenpl at eAut oConfi gurati on

* RepositoriesAut oConfiguration

» SpringSessi onAut oConfi gurati on

» SpringSessi onAut oProperti esConfiguration

e Ssl Aut oConfi guration

17.4 Switch from Apache Geode to Pivotal Cloud Cache (a.k.a.
Pivotal GemFire)
First, understand that Pivotal GemFire is being succeeded by Pivotal Cloud Cache (PCC). Therefore,

all references to Pivotal GemFire (i.e. “gemfire”) also implies for Pivotal Cloud Cache (i.e. “cloudcache”)
as well.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 117

https://pivotal.io/pivotal-gemfire
https://pivotal.io/pivotal-cloud-cache

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

When it comes to Spring’s support, whether you are developing with Open Source Software (OSS)
Apache Geode or developing for Pivotal Cloud Cache, Spring has you covered.

At a strategic-level, this means:
1. From Open Source Software (e.g. Apache Geode) to Commercial (e.g. Pivotal Cloud Cache)

2. From Non-Managed Environments (e.g. Standalone, Externally Managed) to Managed Environments
(e.g. Pivotal Platform)

3. With little to no code or configuration changes necessary. It just works!

You may also go back and migrate your Spring Boot applications away from Pivotal Platform when
using the commercial software offering, Pivotal Cloud Cache, and switch back to Open Source Apache
Geode running in a standalone, externally managed environment.

SBDG will not (ever) lock you in! It is your choice!

Technically, this means to go from Apache Geode to Pivotal Cloud Cache, you only need to change
the SBDG dependency from:

Maven POM with Spring Boot for Apache Geode.

<dependency>
<groupl d>or g. spri ngf ramewor k. geode</ gr oupl d>
<artifactld>spring-geode-starter</artifact|d>
<version>1.1.10. RELEASE</ versi on>

</ dependency>

Gradle build file with Spring Boot for Apache Geode.

dependenci es {
conpi |l e 'org. springframewor k. geode: spri ng- geode-starter:1.1.10. RELEASE
}

To:

Maven POM with Spring Boot for Pivotal GemFire.

<dependency>
<groupl d>or g. spri ngf ramewor k. geode</ gr oupl d>
<artifactld>spring-genfire-starter</artifactld>
<version>1.1.10. RELEASE</ ver si on>

</ dependency>

Gradle build file with Spring Boot for Pivotal GemFire.

dependenci es {
conpi l e 'org. springframework. geode: spring-genfire-starter:1.1.10. RELEASE
}

Tip
To acquire the Pivotal Cloud Cache or Pivotal GemFire bits to use in your Spring Boot

applications in place of Apache Geode, follow these instructions provided in the Pivotal GemFire
documentation.

To go back, simple change spri ng-genfire-starter backtospring-geode-starter. Done!

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 118

https://geode.apache.org/
https://gemfire.docs.pivotal.io/95/gemfire/getting_started/installation/obtain_gemfire_maven.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

Spring Boot’s auto-configuration and convention over configuration approach tries to detect the runtime
environment in order to handle infrastructure logistics so you will not have to. This is true inside or
outside of a managed

It should just work without any code or configuration changes and if this is not the case, for whatever
reason, then we will work to correct it, short of any feature differences between Pivotal Cloud Cache
that cannot be accomplished with Apache Geode by itself.

To go back, simple change spri ng-genfire-starter backtospring-geode-starter.
Done!

Spring Boot’s auto-configuration and convention over configuration approach tries to detect the runtime
environment so that we can provide users with a consistent and reliable experience without all the hassle
and issues that arise by switching environments. Switching environments is especially common as you
migrate your Spring Boot applications from DEV to TEST, into STAGING, and finally, to PRODUCTION.

Of course, it will nearly always be easier to "run" Apache Geode as a "managed" service inside Pivotal
Platform using Pivotal Cloud Cache than it will to manage an externally run Apache Geode cluster,
especially if your Use Case requires maximum performance and high availability. We highly recommend
this approach when and where possible, but it is still your choice.

17.5 Running an Apache Geode/Pivotal GemFire cluster using
Spring Boot from your IDE

As described in Chapter 4, Building ClientCache Applications, it is possible to configure and run a small
Apache Geode or Pivotal GemFire cluster from inside your IDE using Spring Boot. This is extremely
helpful during development since it allows you to manually spin up, test and debug your applications
quickly and easily.

Spring Boot for Apache Geode/Pivotal GemFire includes such a class:

Spring Boot application class used to configure and boostrap an Apache Geode/Pivotal GemFire
server.

@pr i ngBoot Appl i cati on

@acheSer ver Appl i cati on(nane = "Spri ngBoot ApacheCGeodeCacheSer ver Appl i cation")
@uppr essWar ni ngs(" unused")

public class SpringBoot ApacheGeodeCacheSer ver Application {

public static void main(String[] args) {

new Spri ngAppl i cati onBui | der (Spri ngBoot ApacheGeodeCacheSer ver Appl i cati on. cl ass)
. web(WebAppl i cati onType. NONE)
. bui ld()
.run(args);

}

@conf i guration

@JselLocat or s

@rofile("clustered")

static class CusteredConfiguration { }

@Conf i guration

@nabl eLocat or

@Enabl eManager (start = true)
@rofile("!clustered")

static class LonerConfiguration { }

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 119

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

This class is a proper Spring Boot application that can be used to configure and bootstrap multiple
Apache Geode or Pivotal GemFire servers and joining them together to form a small cluster simply by
modifying the runtime configuration of this class ever so slightly.

Initially you will want to start a single, primary server with the embedded Locator and Manager service.

The Locator service enables members in the cluster to locate one another and allows new members
to attempt to join the cluster as a peer. Additionally, the Locator service also allows clients to connect
to the servers in the cluster. When the cache client's Pool is configured to use Locators, then the
Pool can intelligently route data requests directly to the server hosting the data (a.k.a. single-hop
access), especially when the data is partitioned/sharded across servers in the cluster. Locator Pools
include support for load balancing connections and handling automatic fail-over in the event of failed
connections, among other things.

The Manager service enables you to connect to this server using Gfsh (the Apache Geode and Pivotal
GempFire shell tool).

To start our primary server, create a run configuration in your IDE for the
Spr i ngBoot ApacheCGeodeCacheSer ver Appl i cat i on class with the following, recommended JRE
command-line options:

Server 1 run profile configuration.

-server -ea -Dspring.profiles.active=

Start the class. You should see similar output:

Server 1 output on startup.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 120

https://geode.apache.org/docs/guide/16/tools_modules/gfsh/chapter_overview.html

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

/ Li brary/ Javal/ JavaVi r t ual Machi nes/ j dk1. 8. 0_152. j dk/ Cont ent s/ Hore/ bi n/j ava -server -ea -

Dspring. profiles.active= "-javaagent:/Applications/IntelliJ |DEA 17 CE. app/ Contents/|ib/
idea_rt.jar=62866:/Applications/IntelliJ |DEA 17 CE. app/ Contents/bin" -Dfile.encodi ng=UTF-8 -cl asspath /
Li brary/ Java/ JavaVi r t ual Machi nes/j dk1. 8. 0_152.j dk/ Contents/ Hone/jre/lib/charsets.jar:/Library/Javal
JavaVi rt ual Machi nes/ j dk1. 8. 0_152. j dk/ Cont ent s/ Hone/ jre/li b/ depl oy.jar:/Library/Javal/ JavaVirt ual Machi nes/
jdk1.8.0_152.jdk/ Contents/Hone/jrel/libl/ext/cldrdata.jar:/Library/Java/JavaVirtual Machi nes/
jdk1.8.0_152.jdk/ Contents/Hone/jrel/lib/ext/dnsns.jar:/Library/Java/JavaVirtual Machi nes/jdkl. 8. 0_152.j dk/
Contents/ Home/jre/lib/ext/jaccess.jar:/Library/Javal JavaVirtual Machi nes/j dkl. 8. 0_152.] dk/ Cont ent s/
Home/jrel/liblext/jfxrt.jar:/Library/Javal/JavaVirtual Machi nes/jdkl. 8. 0_152.) dk/ Cont ents/ Hone/ jre/
lib/ext/local edata.jar:/Library/Javal JavaVirtual Machi nes/j dkl1.8.0_152.] dk/ Contents/ Hone/jre/lib/ext/
nashorn.jar:/Library/Java/ JavaVi rtual Machi nes/j dkl1. 8. 0_152.j dk/ Cont ent s/ Hone/jre/lib/ext/sunec.jar:/

Li brary/ Java/ JavaVi rt ual Machi nes/ j dk1. 8. 0_152. j dk/ Cont ent s/ Hone/ jre/li b/ ext/sunjce_provider.jar:/

Li brary/ Java/ JavaVi rt ual Machi nes/ j dk1. 8. 0_152. j dk/ Cont ent s/ Hone/ jre/li b/ ext/sunpkcsll.jar:/Library/
Java/ JavaVi rt ual Machi nes/ j dk1. 8. 0_152. j dk/ Cont ent s/ Hone/ jre/li b/ ext/zipfs.jar:/Library/Javal

JavaVi rt ual Machi nes/ j dk1. 8. 0_152. j dk/ Cont ent s/ Hone/jre/lib/javaws.jar:/Library/Javal/ JavaVirtual Machi nes/
jdk1.8.0_152.j dk/ Contents/Home/jre/lib/jce.jar:/Library/Javal/JavaVirtual Machi nes/j dkl.8.0_152.j dk/
Contents/Home/jre/lib/jfr.jar:/Library/Javal/JavaVirtual Machi nes/jdkl.8.0_152.j dk/ Contents/ Home/jrel/lib/
jfxswt.jar:/Library/Java/JavaVirtual Machi nes/jdk1. 8. 0_152.) dk/ Contents/Hone/jre/lib/jsse.jar:/Library/
Java/ JavaVi r t ual Machi nes/ j dk1. 8. 0_152. j dk/ Cont ent s/ Hone/ j re/ | i b/ managenent - agent . j ar:/ Li brary/ Java/
JavaVi r t ual Machi nes/ j dk1. 8. 0_152. j dk/ Cont ent s/ Hone/ jre/li b/ plugin.jar:/Library/Javal/ JavaVirtual Machi nes/
jdk1.8.0_152.) dk/ Contents/Hone/jrel/libl/resources.jar:/Library/Javal/JavaVirtual Machi nes/jdkl. 8. 0_152.j dk/
Contents/Home/jre/lib/rt.jar:/Library/Javal JavaVirtual Machi nes/j dkl1.8.0_152.j dk/ Cont ents/ Hone/ | i b/ ant -
javafx.jar:/Library/Javal/ JavaVirtual Machi nes/j dk1. 8. 0_152. j dk/ Cont ent s/ Hone/ | i b/ dt.jar:/Library/Javal/
JavaVi rt ual Machi nes/j dk1. 8. 0_152.j dk/ Cont ent s/ Horre/ | i b/ j avaf x- nx. j ar:/ Li brary/ Java/ JavaVi r t ual Machi nes/
jdk1.8.0_152.) dk/ Contents/Hone/lib/jconsole.jar:/Library/Javal/JavaVirtual Machi nes/jdk1l. 8.0_152. j dk/
Cont ent s/ Hone/ | i b/ packager.j ar:/Li brary/Javal/ JavaVi rt ual Machi nes/j dk1. 8. 0_152. j dk/ Cont ent s/ Horre/
lib/sa-jdi.jar:/Library/Javal/JavaVirtual Machi nes/j dkl. 8. 0_152.j dk/ Contents/Home/lib/tools.jar:/

User s/ j bl unm pi vdev/ spri ng- boot - dat a- geode/ spri ng- geode- docs/ bui | d/ cl asses/ mai n: / User s/ j bl un pi vdev/

spri ng- boot - dat a- geode/ spri ng- geode- docs/ bui | d/ resour ces/ mai n: / User s/ j bl uni pi vdev/ spri ng- boot - dat a-
geode/ spri ng- geode- aut oconfi gure/ bui |l d/ cl asses/ mai n: / User s/ j bl un pi vdev/ spri ng- boot - dat a- geode/

spring- geode- aut oconfi gure/ buil d/ resources/ mai n: / User s/ j bl un pi vdev/ spri ng- boot - dat a- geode/ spri ng-
geode/ bui | d/ cl asses/ mai n: / User s/ j bl uni . gradl e/ caches/ nodul es-2/fil es-2. 1/ org. spri ngframewor k. boot /
spring-boot-starter/2.0.3. RELEASE f f aa050dbd36b0441645598f 1a7ddaf 67f d5e678/ spri ng- boot -

starter-2.0. 3. RELEASE. j ar:/ Users/j bl un . gradl e/ caches/ nodul es-2/fil es-2.1/org. springfranmework. boot/
spring- boot - aut oconfi gure/ 2. 0. 3. RELEASE/ 11bc4cc96b08f abad2b3186755818f aOb32d83f / spri ng-

boot - aut oconfi gure-2. 0. 3. RELEASE. j ar: / Users/j bl uni . gradl e/ caches/ nodul es-2/fil es-2.1/

or g. spri ngf ramewor k. boot / spri ng- boot /2. 0. 3. RELEASE/ h874870d915adbc3dd932e19077d3d45c8e54aal/
spring-boot-2.0.3. RELEASE. j ar: / Users/j bl uni. gradl e/ caches/ nodul es-2/fil es-2.1/javax. annot ati on/

j avax. annot ati on-api /1. 3. 2/ 934c04d3cf ef 185a8008e7bf 34331b79730a9d43/ j avax. annot at i on-
api-1.3.2.jar:/Users/jblun .gradl e/ caches/ nodul es-2/fil es-2.1/org. springfranmework. dat a/

spri ng- dat a- geode/ 2. 0. 8. RELEASE/ 9e0a3cd2805306d355c77537aea07c¢281f c581b/ spri ng- dat a-

geode- 2. 0. 8. RELEASE. j ar: / Users/j bl un . gradl e/ caches/ nodul es-2/fil es-2.1/org. spri ngfranmework/
spring-cont ext - support/5. 0. 7. RELEASE/ e8ee4902d9d8bf bb21bc5e8f 30cf bb4324adb4f 3/ spri ng-

cont ext-support-5.0.7. RELEASE. j ar:/ Users/j bl uni. gradl e/ caches/ nodul es-2/files-2.1/

or g. springframewor k/ spring-context/5.0.7. RELEASE/ 243a23f 8968de8754d8199d669780d683ab177bd/
spring-context-5.0.7. RELEASE. j ar:/ Users/jblunl . gradl e/ caches/ nodul es-2/files-2.1/

org. springfranmework/ spring-tx/5.0.7. RELEASE/ 4ca59b21c61162adb146ad1b40c30b60d8dc42b8/

spring-tx-5.0.7. RELEASE. j ar:/ Users/jblun.gradl e/ caches/ nodul es-2/files-2.1/

or g. spri ngf ramewor k/ spri ng-web/ 5. 0. 7. RELEASE/ 2e04c6c2922f bf a06b5948bel14a5782db168b6ec/ spri ng-

web-5. 0. 7. RELEASE. j ar: / Users/j bl uni . gradl e/ caches/ nodul es-2/fil es-2. 1/ org. spri ngf ramewor k. dat a/

spri ng-dat a- conmons/ 2. 0. 8. RELEASE/ 5c19af 63b5acb0eab39066684e813d5ecd9d03b7/ spri ng-

dat a- coomons- 2. 0. 8. RELEASE. j ar: / User s/ j bl uni . gradl e/ caches/ nodul es-2/fil es-2. 1/

org. springfranmewor k/ spring-aop/5.0. 7. RELEASE/ f ddOb6aa3c9c7a188c3bf bf 6df d8d40e843be9ef /

spring-aop-5.0.7. RELEASE. j ar:/ Users/jbl uni. gradl e/ caches/ nodul es-2/files-2.1/

or g. spri ngf ramewor k/ spri ng-beans/ 5. 0. 7. RELEASE/ ¢1196ch3e56da83e3c3a02ef 323699f 4b05f eedc/
spring-beans-5.0. 7. RELEASE. j ar: / Users/j bl uni. gradl e/ caches/ nodul es-2/files-2.1/

or g. spri ngf ramewor k/ spri ng- expressi on/ 5. 0. 7. RELEASE/ ca01f b473f 53dd0ee3c85663b26d5dc325602057/
spring-expression-5.0.7. RELEASE. jar:/ Users/jblun .gradl e/ caches/ nodul es-2/files-2.1/

org. springfranmework/ spring-core/5.0.7. RELEASE/ 54b731178d81e66eca9623df 772f f 32718208137/
spring-core-5.0.7. RELEASE. j ar:/ Users/jblun . gradl e/ caches/ nodul es-2/files-2.1/

org. yam / snakeyam / 1. 19/ 2d998d3d674b172a588e54ab619854d073f 555b5/ snakeyam - 1. 19.jar:/

Users/j bl uni . gradl e/ caches/ nodul es-2/fil es-2.1/org. springfranmework/spring-

jcl/5.0.7. RELEASE/ 699016ddf 454c2c167d9f 84ae5777eccadf 54728/ spring-jcl-5.0.7. RELEASE. j ar:/

User s/ j bl unm . gradl e/ caches/ nodul es-2/fil es-2. 1/ org. apache. geode/ geode-

l ucene/ 1. 2. 1/ 3d22a050bd4eb64bd8c82a74677f 45c070f 102d5/ geode- | ucene-1.2. 1.jar:/ Users/jblun . gradl e/
caches/ nodul es-2/fil es-2.1/ org. apache. geode/ geode-core/ 1. 2. 1/ f e853317e33dd2alc291f 29cee3c4be549f 75a69/
geode-core-1.2.1.jar:/Users/jblun.gradl e/ caches/ nodul es-2/fil es-2.1/org. apache. geode/ geode-

cqg/ 1. 2.1/ 69873d6b956bal3b55c894a13e72106f b552e840/ geode-cqg-1. 2. 1.j ar:/ Users/j bl uni . gradl e/ caches/

nodul es- 2/ fil es-2. 1/ or g. apache. geode/ geode-wan/ 1. 2. 1/ df 0dd8516elaf 17790185255f f 21a54b56d94344/
geode-wan-1.2.1.jar:/Users/jblun .gradl e/ caches/ nodul es-2/files-2.1/antlr/
antlr/2.7.7/83cd2cd674a217ade95a4bb83a8al4f 351f 48bd0/ antlr-2.7.7.jar:/Users/jblun.gradl e/ caches/

nmodul es-2/fil es-2.1/org. apache. shiro/shiro-spring/1.3.2/281a6b565f 6¢f 3aebd31ddb004632008d7106f 2d/ shi r o-
spring-1.3.2.jar:/Users/jblun .gradl e/ caches/ nodul es-2/fil es-2.1/org. aspectj/aspectjweaver/1.8.13/

7| ad94df 2a28d658a40dc27bbaf f 6alce5f bf 04e9b/ aspect j weaver-1. 8. 13.jar:/ Users/j bl un . gradl e/ caches/ nodul es-2/ ~

1 files-2.1/comfasterxni.jackson. core/jackson-databi nd/2.9. 6/cfa4f 316351a91bf d95cb0644c6a2c95f 52dblf c/
j ackson-dat abind-2.9.6.jar:/Users/jblun.gradl e/ caches/ nodul es-2/files-2.1/

com fasterxmn .jackson. core/jackson-annotations/2.9.0/7c10d545325e3a6e72e06381af e469f d40eb701/

j ackson-annot ations-2.9.0.jar:/Users/jblun.gradl e/ caches/ nodul es-2/fil es-2. 1/ org. apache. shi ro/ shiro-

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

You can now connect to this server using Gfsh:
Connect with Gfsh.

$ echo $CGEMFI RE

/ User s/ j bl un pi vdev/ apache- geode- 1. 2. 1
j bl um mbpro-2:1ab jblung

j blum nbpro-2:1ab jblunt gfsh

Moni tor and Manage Apache Geode

gf sh>connect

Connecting to Locator at [host=local host, port=10334]
Connecting to Manager at [host=10.0.0.121, port=1099]
Successfully connected to: [host=10.0.0.121, port=1099]

gf sh>l i st nmenbers

Spr i ngBoot ApacheGeodeCacheSer ver Appl i cation |
10. 0. 0. 121(Spri ngBoot ApacheGeodeCacheSer ver Appl i cati on: 41795) <ec><v0>: 1024

gf sh>descri be nmenber --nanme=Spri ngBoot ApacheGeodeCacheServer Appli cation

Nare : SpringBoot ApacheGeodeCacheSer ver Appl i cati on

Id : 10.0.0.121(SpringBoot ApacheGeodeCacheSer ver Appl i cati on: 41795) <ec><v0>: 1024
Host :10.0.0.121

Regi ons

PI D : 41795

G oups :

Used Heap 1 184M

Max Heap : 3641M

Working Dir : /Users/jblun pivdev/spring-boot - dat a- geode/ spri ng- geode- docs/ bui | d
Log file 1 [Users/jblunt pi vdev/ spri ng- boot - dat a- geode/ spri ng- geode- docs/ bui | d
Locators : |l ocal host[10334]

Cache Server |nformation

Server Bind :

Server Port . 40404
Runni ng : true
Client Connections 0

Now, let’s start some additional servers to scale-out our cluster.

To do so, you simply need to vary the name of the members we will add to our cluster as peers. Apache
Geode and Pivotal GemFire require that the members in a cluster be named and the names of each
member in the cluster be unique.

Additionally, since we are running multiple instances of our
Spr i ngBoot ApacheCGeodeCacheSer ver Appl i cat i on class, which also embeds a CacheSer ver
instance enabling cache clients to connect, we need to be careful to vary our ports used by the
embedded services.

Fortunately, we do not need to run another embedded Locator or Manager service (we only need 1
in this case), therefore, we can switch profiles from non-clusted to using the Spring "clustered" profile,
which includes different configuration (the Cl ust er Conf i gur at i on class) to connect another server
as a peer member in the cluster, which currently only has 1 member as shown in the | i st nenbers
Gfsh command output above.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 122

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

To add another server, set the member name and the CacheSer ver port to a different number with

the following run profile configuration:

Run profile configuration for server 2.

-server -ea -Dspring.profiles.active=clustered -Dspring.data.genfire. name=Server Two -
Dspri ng. dat a. genfire. cache. server. port=41414

Notice that we explicitly activated the "clustered" Spring profile, which enables the configuration provided

in the nested Cl ust er edConf i gur at i on class while disabling the Loner Confi gur at i on class.

This d ust eredConfi gurati on class is also annotated with @JselLocat or s, which sets the
GemFire/Geode | ocat or s property to "localhost[10334]". By default, it assumes the Locator process/
service is running on "locahost", listening on the default Locator port of "10334". You can of course adjust
your Locators endpoint if your Locators are running elsewhere in your network by using the "locators"

attribute of the @JselLocat or s annotation.

Tip

Itis common in production environments to run multiple Locators as a separate process. Running
multiple Locators provides redundancy in case a Locator process fails. If all Locator processes
in your network fail, don't fret, your cluster will not go down. It simply means no other members
will be able to join the cluster, allowing you to scale your cluster out, nor will any clients be able
to connect. Simply just restart the Locators if this happens.

Additionally, we set the spri ng. dat a. genfi re. nane property to "ServerTwo" adjusting the name

of our member when it joins the cluster as a peer.

Finally, we set the spring.data.genfire.cache.server.port to "41414" to vary the
CacheSer ver port used by "ServerTwo". The default CacheSer ver port is "40404". If we had not set

this property before starting "ServerTwo" we would have hit aj ava. net . Bi ndExcepti on.

Tip

Both the spring. dat a. genfire. nane and
spring.data.genfire.cache. server.port properties are well-known properties
used by SDG to dynamically configure GemFire/Geode wusing a Spring Boot
application. properties file or Java System properties. You can find these properties
in the Annotation Javadoc in SDG’s Annotation-based Configuration model. For instance, the
spring. dat a. genfire. cache. server. port propertyis documented here. Most of the SDG
annotations include corresponding properties that can be definedinappl i cati on. properti es
and is explained in more detail here.

After starting our second server, "ServerTwo", we should see similar output at the command-line, and

in Gfsh, when we | i st nmenbers and descri be nenber again:

Gfsh output after starting server 2.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-properties

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

gf sh>l i st menbers

Spri ngBoot ApacheGeodeCacheSer ver Appl i cation |
10. 0. 0. 121(Spri ngBoot ApacheGeodeCacheSer ver Appl i cati on: 41795) <ec><v0>: 1024
Server Two | 10.0.0.121(Server Two: 41933) <v1>: 1025

gfsh>describe member --name=ServerTwo Name : ServerTwo Id
10.0.0.121(ServerTwo:41933)<v1>:1025 Host : 10.0.0.121 Regions : PID : 41933 Groups : Used Heap
165M Max Heap : 3641M Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/build Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build Locators :
localhost[10334]

Cache Server Information Server Bind : Server Port : 41414 Running : true Client Connections : 0 ---

When list members, we see "ServerTwo" and when we descri be "ServerTwo", we see that its
CacheSer ver port is appropriately set to "41414".

If we add 1 more server, "ServerThree" using the following run configuration:

Add server 3 to our cluster.

-server -ea -Dspring.profiles.active=clustered -Dspring.data.genfire.name=ServerThree -
Dspri ng. dat a. genfire. cache. server. port=42424

Again, we will see similar output at the command-line and in Gfsh:

Gfsh output after starting server 3.

gf sh>l i st menbers

Spri ngBoot ApacheGeodeCacheSer ver Appl i cation |

10. 0. 0. 121(Spri ngBoot ApacheGeodeCacheSer ver Appl i cati on: 41795) <ec><v0>: 1024
Server Two | 10.0.0.121(Server Two: 41933) <v1>: 1025
Server Three | 10.0.0.121(Server Three: 41965) <v2>: 1026

gf sh>descri be nmenber --nanme=Server Three

Nane . ServerThree

Id : 10.0.0.121(Server Three: 41965) <v2>: 1026

Host :10.0.0.121

Regi ons

PI D : 41965

G oups :

Used Heap : 180M

Max Heap : 3641M

Working Dir : /Users/jblun pivdev/spring-boot-dat a- geode/ spri ng- geode- docs/ bui | d
Log file : [Users/jblun pi vdev/ spri ng- boot - dat a- geode/ spri ng- geode- docs/ bui | d
Locat ors : |l ocal host[10334]

Cache Server |nformation

Server Bind :
Server Port 1 42424
Runni ng © true
Client Connections 0

Congratulations! You just started a small Apache Geode/Pivotal GemFire cluster, with 3 members, using
Spring Boot from inside your IDE.

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 124

Spring Boot for Apache Geode & Pivotal GemFire Reference Guide

It is pretty simple to build and run a Spring Boot, Apache Geode/Pivotal GemFire, C i ent Cache
application that connects to this cluster. Simply include and use Spring Boot for Apache Geode/Pivotal
GempFire, ;-).

17.6 Testing

Spring Test for Apache Geode & Pivotal GemFire is a new, soon to be released and upcoming project
to help developers write both Unit and Integration Tests when using either Apache Geode or Pivotal
GempFire in a Spring context.

In fact, the entire test suite in Spring Boot for Apache Geode & Pivotal GemPFire is based on this project.

All Spring projects integrating with either Apache Geode or Pivotal GemFire will use this new test
framework for all their testing needs, making this new test framework for Apache Geode and Pivotal
GemFire a proven and reliable solution for all your Apache Geode/Pivotal GemFire application testing
needs when using Spring as well.

Later on, this reference guide will include and dedicate an entire chapter on testing.

17.7 Examples

The definitive source of truth on how to best use Spring Boot for Apache Geode & Pivotal GemFire (or
Pivotal Cloud Cache (PCQ)) is to refer to the Samples.

Refer to the Pivotal Cloud Cache (PCC), Pizza Store, Spring Boot application for an example of how to
use Spring Boot for Pivotal GemFire (SBDG) in a C i ent Cache application interfacing with PCC.

Additionally, you may refer to the Temperature Service, Spring Boot application, which implements a
Temperature Sensor and Monitoring, Internet of Things (I0OT) example. The example uses SBDG to
showcase Apache Geode CQ, Function Implementations/Executions and positions Apache Geode as
a caching provider in Spring’s Cache Abstraction. It is a working, sophisticated and complete example,
and is highly recommended as a good starting point for real-world use cases.

You may also refer to the boot-example from the Contact Application Reference Implementation (RI)
for Spring Data for Apache Geode & Pivotal GemFire (SDG) as yet another example.

17.8 References

1. Spring Framework Reference Guide | Javadoc

2. Spring Boot Reference Guide | Javadoc

3. Spring Data Commons Reference Guide | Javadoc

4. Spring Data for Apache Geode Reference Guide | Javadoc

5. Spring Session for Apache Geode Reference Guide | Javadoc

6. Spring Test for Apache Geode README

7. Apache Geode User Guide | Javadoc

8. Pivotal GemFire User Guide | Javadoc

Spring Boot for Apache
1.1.10.RELEASE Geode & Pivotal GemFire 125

https://github.com/spring-projects/spring-test-data-geode
https://github.com/spring-projects/spring-boot-data-geode/tree/1.1.10.RELEASE/tree/master/spring-geode-autoconfigure/src/test/java/org/springframework/geode/boot/autoconfigure
https://github.com/pivotal-cf/PCC-Sample-App-PizzaStore
https://github.com/jxblum/temperature-service
https://github.com/jxblum/contacts-application/tree/master/boot-example
https://docs.spring.io/spring/docs/current/spring-framework-reference
https://docs.spring.io/spring/docs/current/javadoc-api
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle
https://docs.spring.io/spring-boot/docs/current/api
https://docs.spring.io/spring-data/commons/docs/current/reference/html
https://docs.spring.io/spring-data/commons/docs/current/api
https://docs.spring.io/spring-data/geode/docs/current/reference/html
https://docs.spring.io/spring-data/geode/docs/current/api
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/reference/html5
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.1.11.RELEASE/api
https://github.com/spring-projects/spring-test-data-geode#spring-test-framework-for-apache-geode??pivotal-gemfire
https://geode.apache.org/docs/guide/16
https://geode.apache.org/releases/latest/javadoc
https://gemfire.docs.pivotal.io/95/geode/reference
https://gemfire-95-javadocs.docs.pivotal.io/

	Spring Boot for Apache Geode & Pivotal GemFire Reference Guide
	Table of Contents
	
	1. Introduction
	2. Getting Started
	3. Using Spring Boot for Apache Geode and Pivotal GemFire
	4. Building ClientCache Applications
	4.1 Building Embedded (Peer & Server) Cache Applications

	5. Externalized Configuration
	5.1 Externalized Configuration of Spring Session

	6. Caching using Apache Geode or Pivotal GemFire
	6.1 Look-Aside Caching, Near Caching and Inline Caching
	Look-Aside Caching
	Near Caching
	Inline Caching
	Implementing CacheLoaders, CacheWriters for Inline Caching
	Inline Caching using Spring Data Repositories.

	6.2 Advanced Caching Configuration
	6.3 Disable Caching

	7. Data Access with GemfireTemplate
	7.1 Explicitly Declared Regions
	7.2 Entity-defined Regions
	7.3 Caching-defined Regions
	7.4 Native-defined Regions
	7.5 Template Creation Rules

	8. Spring Data Repositories
	9. Function Implementations & Executions
	9.1 Background
	9.2 Applying Functions

	10. Continuous Query
	11. Data Serialization with PDX
	11.1 SDG MappingPdxSerializer vs. GemFire/Geode’s ReflectionBasedAutoSerializer

	12. Security
	12.1 Authentication & Authorization
	Auth for Servers
	Auth for Clients
	Non-Managed Auth for Clients
	Managed Auth for Clients

	12.2 Transport Layer Security using SSL
	12.3 Securing Data at Rest

	13. Spring Boot Actuator
	13.1 Base HealthIndicators
	GeodeCacheHealthIndicator
	GeodeRegionsHealthIndicator
	GeodeIndexesHealthIndicator
	GeodeDiskStoresHealthIndicator

	13.2 ClientCache HealthIndicators
	GeodeContinuousQueriesHealthIndicator
	GeodePoolsHealthIndicator

	13.3 Peer Cache HealthIndicators
	GeodeCacheServersHealthIndicator
	GeodeAsyncEventQueuesHealthIndicator
	GeodeGatewayReceiversHealthIndicator
	GeodeGatewaySendersHealthIndicator

	14. Spring Session
	14.1 Configuration
	14.2 Custom Configuration
	Custom Configuration using Properties
	Custom Configuration using a Configurer

	14.3 Disabling Session State Caching

	15. Pivotal CloudFoundry
	15.1 Running Spring Boot applications as a specific user
	Overriding Authentication Auto-configuration

	15.2 Targeting Specific Pivotal Cloud Cache Service Instances
	15.3 Using Multiple Pivotal Cloud Cache Service Instances
	15.4 Hybrid Pivotal CloudFoundry & Apache Geode Spring Boot Applications
	Running PCFDev
	Running an Apache Geode Cluster
	Creating a User-Provided Service
	Push & Bind a Spring Boot application
	Running the Spring Boot application

	15.5 Summary

	16. Samples
	17. Appendix
	17.1 Auto-configuration vs. Annotation-based configuration
	Background
	Conventions
	Overriding
	Caches
	Security

	Extension
	Caching
	Continuous Query
	Functions
	PDX
	Spring Data Repositories

	Explicit Configuration
	Summary

	17.2 Configuration Metadata Reference
	Spring Data Based Properties
	Spring Session Based Properties
	Apache Geode Properties

	17.3 Disabling Auto-configuration
	17.4 Switch from Apache Geode to Pivotal Cloud Cache (a.k.a. Pivotal GemFire)
	17.5 Running an Apache Geode/Pivotal GemFire cluster using Spring Boot from your IDE
	17.6 Testing
	17.7 Examples
	17.8 References

