
Spring Boot for Apache Geode
Reference Guide

John Blum

Version 1.5.2, 2021-06-25

Table of Contents
1. Introduction. 2

2. Getting Started . 4

3. Using Spring Boot for Apache Geode . 5

4. Building ClientCache Applications . 11

5. Auto-configuration. 30

6. Declarative Configuration . 43

7. Externalized Configuration . 58

8. Using Geode Properties. 61

9. Caching with Apache Geode . 68

10. Data Access with GemfireTemplate . 90

11. Spring Data Repositories . 96

12. Function Implementations & Executions . 98

13. Continuous Query . 101

14. Using Data . 103

15. Data Serialization with PDX . 118

16. Logging . 121

17. Security. 130

18. Testing . 135

19. Apache Geode API Extensions . 141

20. Spring Boot Actuator. 149

21. Spring Session. 167

22. Pivotal CloudFoundry . 173

23. Docker. 194

24. Samples . 203

25. Appendix . 205

Spring Boot for Apache Geode provides the convenience of Spring Boot’s
convention over configuration approach by using auto-configuration with Spring
Framework’s powerful abstractions and highly consistent programming model
to simplify the development of Apache Geode applications in a Spring context.

Secondarily, Spring Boot for Apache Geode provides developers with a consistent experience
whether building and running Spring Boot, Apache Geode applications locally or in a managed
environment, such as with VMware Tanzu Application Service (TAS).

This project is a continuation and a logical extension to Spring Data for Apache Geode’s Annotation-
based configuration model, and the goals set forth in that model: To enable application developers to
get up and running as quickly, reliably, and as easily as possible. In fact, Spring Boot for Apache
Geode builds on this very foundation cemented in Spring Data for Apache Geode since the Spring
Data Kay (2.0) Release Train.

1

https://tanzu.vmware.com/tanzu
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config

Chapter 1. Introduction
Spring Boot for Apache Geode automatically applies auto-configuration to several key application
concerns (use cases) including, but not limited to:

• Look-Aside, [Async] Inline, Near and Multi-Site Caching, by using Apache Geode as a caching
provider in Spring’s Cache Abstraction. For more information, see Caching with Apache Geode.

• System of Record (SOR), persisting application state in Apache Geode by using Spring Data
Repositories. For more information, see Spring Data Repositories.

• Transactions, managing application state consistently with Spring Transaction Management
with support for both Local Cache and Global JTA Transactions.

• Distributed Computations, run with Apache Geode’s Function Execution framework and
conveniently implemented and executed with POJO-based, annotation support for Functions.
For more information, see Function Implementations & Executions.

• Continuous Queries, expressing interests in a stream of events and letting applications react to
and process changes to data in near real-time with Apache Geode’s Continuous Query (CQ).
Listeners/Handlers are defined as simple Message-Driven POJOs (MDP) with Spring’s Message
Listener Container, which has been extended with its configurable CQ support. For more
information, see Continuous Query.

• Data Serialization using Apache Geode PDX with first-class configuration and support. For more
information, see Data Serialization with PDX.

• Data Initialization to quickly load (import) data to hydrate the cache during application startup
or write (export) data on application shutdown to move data between environments (for
example, TEST to DEV). For more information, see Using Data.

• Actuator, to gain insight into the runtime behavior and operation of your cache, whether a
client or a peer. For more information, see Spring Boot Actuator.

• Logging, to quickly and conveniently enable or adjust Apache Geode log levels in your Spring
Boot application to gain insight into the runtime operations of the application as they occur. For
more information, see Logging.

• Security, including Authentication & Authorization, and Transport Layer Security (TLS) with
Apache Geode Secure Socket Layer (SSL). Once more, Spring Data for Apache Geode includes
first-class support for configuring Auth and SSL. For more information, see Security.

• HTTP Session state management, by including Spring Session for Apache Geode on your
application’s classpath. For more information, see Spring Session.

• Testing. Whether you write Unit or Integration Tests for Apache Geode in a Spring context,
SBDG covers all your testing needs with the help of STDG.

While Spring Data for Apache Geode offers a simple, consistent, convenient and declarative
approach to configure all these powerful Apache Geode features, Spring Boot for Apache Geode
makes it even easier to do, as we will explore throughout this reference documentation.

2

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://en.wikipedia.org/wiki/System_of_record
https://en.wikipedia.org/wiki/System_of_record
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:transaction-management
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:global-transaction-management
https://geode.apache.org/docs/guide/113/developing/function_exec/chapter_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-annotations
https://geode.apache.org/docs/guide/113/developing/continuous_querying/chapter_overview.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-mdp
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-mdp
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:continuous-query
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-continuous-queries
https://geode.apache.org/docs/guide/113/developing/data_serialization/gemfire_pdx_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-pdx
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer
https://geode.apache.org/docs/guide/113/managing/security/authentication_overview.html
https://geode.apache.org/docs/guide/113/managing/security/authorization_overview.html
https://geode.apache.org/docs/guide/113/managing/security/ssl_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-security
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-ssl
https://github.com/spring-projects/spring-test-data-geode#spring-test-framework-for-apache-geode—vmware-tanzu-gemfire

1.1. Goals
While the SBDG project has many goals and objectives, the primary goals of this project centers
around three key principles:

1. From Open Source (Apache Geode) to Commercial (VMware Tanzu GemFire).

2. From Non-Managed (self-managed/hosted or on-premise installations) to Managed (VMware
Tanzu GemFire for VMs, VMware Tanzu GemFire for K8S) environments.

3. With little to no code or configuration changes necessary.

It is also possible to go in the reverse direction, from Managed back to a Non-Managed environment
and even from Commercial back to the Open Source offering, again, with little to no code or
configuration changes.

SBDG’s promise is to deliver on these principles as much as is technically possible
and as is technically allowed by Apache Geode.

3

Chapter 2. Getting Started
To be immediately productive and as effective as possible when you use Spring Boot for Apache
Geode, it helps to understand the foundation on which this project is built.

The story begins with the Spring Framework and the core technologies and concepts built into the
Spring container.

Then our journey continues with the extensions built into Spring Data for Apache Geode to simplify
the development of Apache Geode applications in a Spring context, using Spring’s powerful
abstractions and highly consistent programming model. This part of the story was greatly enhanced
in Spring Data Kay, with the Annotation-based configuration model. Though this new configuration
approach uses annotations and provides sensible defaults, its use is also very explicit and assumes
nothing. If any part of the configuration is ambiguous, SDG will fail fast. SDG gives you “_choice_”,
so you still must tell SDG what you want.

Next, we venture into Spring Boot and all of its wonderfully expressive and highly opinionated
“_convention over configuration_” approach for getting the most out of your Spring Apache Geode
applications in the easiest, quickest, and most reliable way possible. We accomplish this by
combining Spring Data for Apache Geode’s annotation-based configuration with Spring Boot’s auto-
configuration to get you up and running even faster and more reliably so that you are productive
from the start.

As a result, it would be pertinent to begin your Spring Boot education with Spring Boot’s
documentation.

Finally, we arrive at Spring Boot for Apache Geode (SBDG).

See the corresponding Sample Guide and Code to see Spring Boot for Apache
Geode in action.

4

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#spring-core
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/#getting-started
https://docs.spring.io/spring-boot/docs/current/reference/html/#getting-started
guides/getting-started.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/intro/getting-started

Chapter 3. Using Spring Boot for Apache
Geode
To use Spring Boot for Apache Geode, declare the spring-geode-starter on your Spring Boot
application classpath:

Example 1. Maven

<dependencies>
 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter</artifactId>
 <version>1.5.2</version>
 </dependency>
</dependencies>

Gradle

dependencies {
 compile 'org.springframework.geode:spring-geode-starter:1.5.2'
}

3.1. Maven BOM
If you anticipate using more than one Spring Boot for Apache Geode (SBDG) module in your Spring
Boot application, you can also declare the new org.springframework.geode:spring-geode-bom Maven
BOM in your application Maven POM.

Your application use case may require more than one module if (for example, you need (HTTP)
Session state management and replication with, for example, spring-geode-starter-session), if you
need to enable Spring Boot Actuator endpoints for Apache Geode (for example, spring-geode-
starter-actuator), or if you need assistance writing complex Unit and (Distributed) Integration
Tests with Spring Test for Apache Geode (STDG) (for example, spring-geode-starter-test).

You can declare and use any one of the SBDG modules:

• spring-geode-starter

• spring-geode-starter-actuator

• spring-geode-starter-logging

• spring-geode-starter-session

• spring-geode-starter-test

When more than one SBDG module is in use, it makes sense to declare the spring-geode-bom to
manage all the dependencies such that the versions and transitive dependencies necessarily align

5

properly.

A Spring Boot application Maven POM that declares the spring-geode-bom along with two or more
module dependencies might appear as follows:

6

Example 2. Spring Boot application Maven POM

<project xmlns="http://maven.apache.org/POM/4.0.0">

 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.5.2</version>
 </parent>

 <artifactId>my-spring-boot-application</artifactId>

 <properties>
 <spring-geode.version>1.5.2</spring-geode.version>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-bom</artifactId>
 <version>${spring-geode.version}</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter-session</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

</project>

Notice that:

7

• The Spring Boot application Maven POM (pom.xml) contains a <dependencyManagement> section
that declares the org.springframework.geode:spring-geode-bom.

• None of the spring-geode-starter[-xyz] dependencies explicitly specify a <version>. The version
is managed by the spring-geode.version property, making it easy to switch between versions of
SBDG as needed and use it in all the SBDG modules declared and used in your application
Maven POM.

If you change the version of SBDG, be sure to change the org.springframework.boot:spring-boot-
starter-parent POM version to match. SBDG is always one major version behind but matches on
minor version and patch version (and version qualifier — SNAPSHOT, M#, RC#, or RELEASE, if applicable).

For example, SBDG 1.4.0 is based on Spring Boot 2.4.0. SBDG 1.3.5.RELEASE is based on Spring Boot
2.3.5.RELEASE, and so on. It is important that the versions align.

All of these concerns are handled for you by going to start.spring.io and adding the
"Spring for Apache Geode" dependency to a project. For convenience, you can click
this link to get started.

3.2. Gradle Dependency Management
Using Gradle is similar to using Maven.

Again, if you declare and use more than one SBDG module in your Spring Boot application (for
example, the spring-geode-starter along with the spring-geode-starter-actuator dependency),
declaring the spring-geode-bom inside your application Gradle build file helps.

Your application Gradle build file configuration (roughly) appears as follows:

8

https://start.spring.io
https://start.spring.io/#!platformVersion=2.5.2&dependencies=geode

Example 3. Spring Boot application Gradle build file

plugins {
 id 'org.springframework.boot' version '2.5.2'
 id 'io.spring.dependency-management' version '1.0.10.RELEASE'
 id 'java'
}

// ...

ext {
 set('springGeodeVersion', "1.5.2")
}

dependencies {
 implementation 'org.springframework.geode:spring-geode-starter'
 implementation 'org.springframework.geode:spring-geode-starter-actuator'
 testImplementation 'org.springframework.boot:spring-boot-starter-test'
}

dependencyManagement {
 imports {
 mavenBom "org.springframework.geode:spring-geode-bom:${springGeodeVersion}"
 }
}

A combination of the Spring Boot Gradle Plugin and the Spring Dependency Management Gradle
Plugin manages the application dependencies for you.

In a nutshell, the Spring Dependency Management Gradle Plugin provides dependency management
capabilities for Gradle, much like Maven. The Spring Boot Gradle Plugin defines a curated and
tested set of versions for many third party Java libraries. Together, they make adding dependencies
and managing (compatible) versions easier.

Again, you need not explicitly declare the version when adding a dependency, including a new
SBDG module dependency (for example, spring-geode-starter-session), since this has already been
determined for you. You can declare the dependency as follows:

implementation 'org.springframework.geode:spring-geode-starter-session'

The version of SBDG is controlled by the extension property (springGeodeVersion) in the application
Gradle build file.

To use a different version of SBDG, set the springGeodeVersion property to the desired version (for
example, 1.3.5.RELEASE). Remember to be sure that the version of Spring Boot matches.

9

https://docs.spring.io/spring-boot/docs/current/reference/html/using-spring-boot.html#using-boot-gradle
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin

SBDG is always one major version behind but matches on minor version and patch version (and
version qualifier, such as SNAPSHOT, M#, RC#, or RELEASE, if applicable). For example, SBDG 1.4.0 is
based on Spring Boot 2.4.0, SBDG 1.3.5.RELEASE is based on Spring Boot 2.3.5.RELEASE, and so on. It
is important that the versions align.

All of these concerns are handled for you by going to start.spring.io and adding the
"Spring for Apache Geode" dependency to a project. For convenience, you can click
this link to get started.

3.3. Repository declaration
Since you are using a Milestone version, you need to add the Spring Milestone Maven Repository.

If you use Maven, include the following repository declaration in your pom.xml:

Example 4. Maven

<repositories>
 <repository>
 <id>spring-milestone</id>
 <url>https://repo.spring.io/milestone</url>
 </repository>
</repositories>

If you use Gradle, include the following repository declaration in your build.gradle:

Example 5. Gradle

repositories {
 maven { url: 'https://repo.spring.io/milestone' }
}

10

https://start.spring.io
https://start.spring.io/#!platformVersion=2.5.2&dependencies=geode

Chapter 4. Building ClientCache Applications
The first opinionated option provided to you by Spring Boot for Apache Geode (SBDG) out-of-the-
box is a ClientCache instance simply by declaring Spring Boot for Apache Geode on your application
classpath.

It is assumed that most application developers using Spring Boot to build applications backed by
Apache Geode will be building cache client applications deployed in an Apache Geode Client/Server
Topology. The client/server topology is the most common and traditional architecture employed by
enterprise applications when using Apache Geode.

For example, you can begin building a Spring Boot, Apache Geode ClientCache application by
declaring the spring-geode-starter on your application’s classpath:

Spring Boot for Apache Geode on the application classpath

<dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter</artifactId>
</dependency>

Then, you configure and bootstrap your Spring Boot, Apache Geode ClientCache application with
the following main application class:

Spring Boot, Apache Geode ClientCache Application

@SpringBootApplication
public class SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class,
args);
 }
}

Your application now has a ClientCache instance, which is able to connect to an Apache Geode
server running on localhost, listening on the default CacheServer port, 40404.

By default, an Apache Geode server (i.e. CacheServer) must be running in order to use the
ClientCache instance. However, it is perfectly valid to create a ClientCache instance and perform
data access operations using LOCAL Regions. This is very useful during development.

To develop with LOCAL Regions, you only need to configure your cache Regions with
the ClientRegionShortcut.LOCAL data management policy.

When you are ready to switch from your local development environment (IDE) to a client/server
architecture in a managed environment, you simply change the data management policy of the
client Region from LOCAL back to the default PROXY, or even a CACHING_PROXY, which will cause the

11

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientCache.html
https://geode.apache.org/docs/guide/113/topologies_and_comm/cs_configuration/chapter_overview.html
https://geode.apache.org/docs/guide/113/topologies_and_comm/cs_configuration/chapter_overview.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#LOCAL

data to be sent/received to and from 1 or more servers, respectively.

Compare and contrast the above configuration with Spring Data for Apache Geode
approach.

It is uncommon to ever need a direct reference to the ClientCache instance provided by SBDG
injected into your application components (e.g. @Service or @Repository beans defined in a Spring
ApplicationContext) whether you are configuring additional Apache Geode objects (e.g. Regions,
Indexes, etc) or simply using those objects indirectly in your applications. However, it is also
possible to do so if and when needed.

For example, perhaps you want to perform some additional ClientCache initialization in a Spring
Boot ApplicationRunner on startup:

Injecting a GemFireCache reference

@SpringBootApplication
public class SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class,
args);
 }

 @Bean
 ApplicationRunner runAdditionalClientCacheInitialization(GemFireCache
gemfireCache) {

 return args -> {

 ClientCache clientCache = (ClientCache) gemfireCache;

 // perform additional ClientCache initialization as needed
 };
 }
}

4.1. Building Embedded (Peer & Server) Cache
Applications
What if you want to build an embedded, peer Cache application instead?

Perhaps you need an actual peer cache member, configured and bootstrapped with Spring Boot,
along with the ability to join this member to an existing cluster (of data servers) as a peer node.
Well, you can do that too.

Remember the 2nd goal in Spring Boot’s documentation:

12

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-geode-applications
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/ApplicationRunner.html
https://docs.spring.io/spring-boot/docs/current/reference/html/#getting-started-introducing-spring-boot

Be opinionated out of the box but get out of the way quickly as requirements
start to diverge from the defaults.

It is the 2nd part, "get out of the way quickly as requirements start to diverge from the defaults" that
we refer to here.

If your application requirements demand you use Spring Boot to configure and bootstrap an
embedded, peer Cache instance, then simply declare your intention with either SDG’s
@PeerCacheApplication annotation, or alternatively, if you need to enable connections from
ClientCache apps as well, use SDG’s @CacheServerApplication annotation:

Spring Boot, Apache Geode CacheServer Application

@SpringBootApplication
@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication")
public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeCacheServerApplication.class,
args);
 }
}

An Apache Geode "server" is not necessarily a CacheServer capable of serving cache
clients. It is merely a peer member node in an Apache Geode cluster (a.k.a.
distributed system) that stores and manages data.

By explicitly declaring the @CacheServerApplication annotation, you are telling Spring Boot that you
do not want the default, ClientCache instance, but rather an embedded, peer Cache instance with a
CacheServer component, which enables connections from ClientCache apps.

You can also enable 2 other Apache Geode services, an embedded Locator, which allows clients or
even other peers to "locate" servers in the cluster, as well as an embedded Manager, which allows
the Apache Geode application process to be managed and monitored using Gfsh, Apache Geode’s
command-line shell tool:

13

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html
https://geode.apache.org/docs/guide/113/tools_modules/gfsh/chapter_overview.html

Spring Boot, Apache Geode CacheServer Application with Locator and Manager services enabled

@SpringBootApplication
@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication")
@EnableLocator
@EnableManager
public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeCacheServerApplication.class,
args);
 }
}

Then, you can use Gfsh to connect to and manage this server:

14

$ echo $GEMFIRE
/Users/jblum/pivdev/apache-geode-1.2.1

$ gfsh
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.2.1

Monitor and Manage Apache Geode

gfsh>connect
Connecting to Locator at [host=localhost, port=10334] ..
Connecting to Manager at [host=10.0.0.121, port=1099] ..
Successfully connected to: [host=10.0.0.121, port=1099]

gfsh>list members
 Name | Id

SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:29798)<ec><v0>:1024

gfsh>
gfsh>describe member --name=SpringBootApacheGeodeCacheServerApplication
Name : SpringBootApacheGeodeCacheServerApplication
Id :
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:29798)<ec><v0>:1024
Host : 10.0.0.121
Regions :
PID : 29798
Groups :
Used Heap : 168M
Max Heap : 3641M
Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Locators : localhost[10334]

Cache Server Information
Server Bind :
Server Port : 40404
Running : true
Client Connections : 0

You can even start additional servers in Gfsh, which will connect to your Spring Boot configured
and bootstrapped Apache Geode CacheServer application. These additional servers started in Gfsh
know about the Spring Boot, Apache Geode server because of the embedded Locator service, which

15

is running on localhost, listening on the default Locator port, 10334:

gfsh>start server --name=GfshServer --log-level=config --disable-default-server
Starting a Geode Server in /Users/jblum/pivdev/lab/GfshServer...
...
Server in /Users/jblum/pivdev/lab/GfshServer on 10.0.0.121 as GfshServer is currently
online.
Process ID: 30031
Uptime: 3 seconds
Geode Version: 1.2.1
Java Version: 1.8.0_152
Log File: /Users/jblum/pivdev/lab/GfshServer/GfshServer.log
JVM Arguments: -Dgemfire.default.locators=10.0.0.121:127.0.0.1[10334] -Dgemfire.use
-cluster-configuration=true -Dgemfire.start-dev-rest-api=false -Dgemfire.log
-level=config -XX:OnOutOfMemoryError=kill -KILL %p
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-core-
1.2.1.jar:/Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-dependencies.jar

gfsh>list members
 Name | Id

SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:29798)<ec><v0>:1024
GfshServer | 10.0.0.121(GfshServer:30031)<v1>:1025

Perhaps you want to start the other way around. As developer, I may need to connect my Spring
Boot configured and bootstrapped Apache Geode server application to an existing cluster. You can
start the cluster in Gfsh by executing the following commands:

16

gfsh>start locator --name=GfshLocator --port=11235 --log-level=config
Starting a Geode Locator in /Users/jblum/pivdev/lab/GfshLocator...
...
Locator in /Users/jblum/pivdev/lab/GfshLocator on 10.0.0.121[11235] as GfshLocator is
currently online.
Process ID: 30245
Uptime: 3 seconds
Geode Version: 1.2.1
Java Version: 1.8.0_152
Log File: /Users/jblum/pivdev/lab/GfshLocator/GfshLocator.log
JVM Arguments: -Dgemfire.log-level=config -Dgemfire.enable-cluster-configuration=true
-Dgemfire.load-cluster-configuration-from-dir=false
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-core-
1.2.1.jar:/Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=10.0.0.121, port=1099]

Cluster configuration service is up and running.

gfsh>start server --name=GfshServer --log-level=config --disable-default-server
Starting a Geode Server in /Users/jblum/pivdev/lab/GfshServer...
....
Server in /Users/jblum/pivdev/lab/GfshServer on 10.0.0.121 as GfshServer is currently
online.
Process ID: 30270
Uptime: 4 seconds
Geode Version: 1.2.1
Java Version: 1.8.0_152
Log File: /Users/jblum/pivdev/lab/GfshServer/GfshServer.log
JVM Arguments: -Dgemfire.default.locators=10.0.0.121[11235] -Dgemfire.use-cluster
-configuration=true -Dgemfire.start-dev-rest-api=false -Dgemfire.log-level=config
-XX:OnOutOfMemoryError=kill -KILL %p -Dgemfire.launcher.registerSignalHandlers=true
-Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-core-
1.2.1.jar:/Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-dependencies.jar

gfsh>list members
Name	Id
GfshLocator | 10.0.0.121(GfshLocator:30245:locator)<ec><v0>:1024
GfshServer | 10.0.0.121(GfshServer:30270)<v1>:1025

Then, modify the SpringBootApacheGeodeCacheServerApplication class to connect to the existing
cluster, like so:

17

Spring Boot, Apache Geode CacheServer Application connecting to an external cluster

@SpringBootApplication
@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication", locators
= "localhost[11235]")
public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class,
args);
 }
}

Notice I configured the SpringBootApacheGeodeCacheServerApplication class,
@CacheServerApplication annotation’s locators property with the host and port (i.e.
"localhost[11235]") on which I started my Locator using Gfsh.

After running your Spring Boot, Apache Geode CacheServer application again, and then running
list members in Gfsh, you should see:

18

gfsh>list members
 Name | Id

GfshLocator |
10.0.0.121(GfshLocator:30245:locator)<ec><v0>:1024
GfshServer | 10.0.0.121(GfshServer:30270)<v1>:1025
SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:30279)<v2>:1026

gfsh>describe member --name=SpringBootApacheGeodeCacheServerApplication
Name : SpringBootApacheGeodeCacheServerApplication
Id : 10.0.0.121(SpringBootApacheGeodeCacheServerApplication:30279)<v2>:1026
Host : 10.0.0.121
Regions :
PID : 30279
Groups :
Used Heap : 165M
Max Heap : 3641M
Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Locators : localhost[11235]

Cache Server Information
Server Bind :
Server Port : 40404
Running : true
Client Connections : 0

In both scenarios, the Spring Boot configured and bootstrapped Apache Geode server and the Gfsh
Locator and Gfsh Server formed a cluster.

While you can use either approach and Spring does not care, it is far more convenient to use Spring
Boot and your IDE to form a small cluster while developing. By leveraging Spring profiles, it is far
simpler and much faster to configure and start a small cluster.

Plus, this is useful for rapidly prototyping, testing and debugging your entire, end-to-end
application and system architecture, all right from the comfort and familiarity of your IDE of
choice. No additional tooling (e.g. Gfsh) or knowledge is required to get started quickly and easily.

Just build and run!

Be careful to vary your port numbers for the embedded services, like the
CacheServer, Locators and Manager, especially if you start multiple instances,
otherwise you will run into a java.net.BindException due to port conflicts.

19

See the Appendix, Running an Apache Geode cluster using Spring Boot from your
IDE for more details.

4.2. Building Locator Applications
In addition to ClientCache, CacheServer and peer Cache applications, SDG, and by extension SBDG,
now supports Locator-based, Spring Boot applications.

An Apache Geode Locator is a location-based service, or alternatively and more typically, a
standalone process enabling clients to "locate" a cluster of Apache Geode servers to manage data.
Many cache clients can connect to the same cluster in order to share data. Running multiple clients
is common in a Microservices architecture where you need to scale-up the number of app instances
to satisfy the demand.

A Locator is also used by joining members of an existing cluster to scale-out and increase capacity
of the logically pooled system resources (i.e. Memory, CPU and Disk). A Locator maintains metadata
that is sent to the clients to enable capabilities like single-hop data access, routing data access
operations to the data node in the cluster maintaining the data of interests. A Locator also
maintains load information for servers in the cluster, which enables the load to be uniformly
distributed across the cluster while also providing fail-over services to a redundant member if the
primary fails. A Locator provides many more benefits and you are encouraged to read the
documentation for more details.

As shown above, a Locator service can be embedded within either a peer Cache or CacheServer,
Spring Boot application using the SDG @EnableLocator annotation:

Embedded Locator Service

@SpringBootApplication
@CacheServerApplication
@EnableLocator
class SpringBootCacheServerWithEmbeddedLocatorApplication {
 // ...
}

However, it is more common to start standalone Locator JVM processes. This is useful when you
want to increase the resiliency of your cluster in face of network and process failures, which are
bound to happen. If a Locator JVM process crashes or gets severed from the cluster due to a
network failure, then having multiple Locators provides a higher degree of availability (HA)
through redundancy.

Not to worry though, if all Locators in the cluster go down, then the cluster will still remain intact.
You simply won’t be able to add more peer members (i.e. scale-up the number of data nodes in the
cluster) or connect any more clients. If all the Locators in the cluster go down, then it is safe to
simply restart them only after a thorough diagnosis.

20

https://geode.apache.org/docs/guide/113/configuring/running/running_the_locator.html

Once a client receives metadata about the cluster of servers, then all data access
operations are sent directly to servers in the cluster, not a Locator. Therefore,
existing, connected clients will remain connected and operable.

To configure and bootstrap Locator-based, Spring Boot applications as standalone JVM processes,
use the following configuration:

Standalone Locator Process

@SpringBootApplication
@LocatorApplication
class SpringBootApacheGeodeLocatorApplication {
 // ...
}

Instead of using the @EnableLocator annotation, you now use the @LocatorApplication annotation.

The @LocatorApplication annotation works in the same way as the @PeerCacheApplication and
@CacheServerApplication annotations, bootstrapping an Apache Geode process, overriding the
default ClientCache instance provided by SBDG out-of-the-box.

If your @SpringBootApplication class is annotated with @LocatorApplication, then it
can only be a Locator and not a ClientCache, CacheServer or peer Cache application.
If you need the application to function as a peer Cache, perhaps with an embedded
CacheServer components and embedded Locator, then you need to follow the
approach shown above using the @EnableLocator annotation with either the
@PeerCacheApplication or @CacheServerApplication annotation.

With our Spring Boot, Apache Geode Locator application, we can connect both Spring Boot
configured and bootstrapped peer members (peer Cache, CacheServer and Locator applications) as
well as Gfsh started Locators and Servers.

First, let’s startup 2 Locators using our Apache Geode Locator, Spring Boot application class.

21

SpringBootApacheGeodeLocatorApplication class

@UseLocators
@SpringBootApplication
@LocatorApplication(name = "SpringBootApacheGeodeLocatorApplication")
public class SpringBootApacheGeodeLocatorApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(SpringBootApacheGeodeLocatorApplication.class)
 .web(WebApplicationType.NONE)
 .build()
 .run(args);

 System.err.println("Press <enter> to exit!");

 new Scanner(System.in).nextLine();
 }

 @Configuration
 @EnableManager(start = true)
 @Profile("manager")
 @SuppressWarnings("unused")
 static class ManagerConfiguration { }

}

We also need to vary the configuration for each Locator app instance.

Apache Geode requires each peer member in the cluster to be uniquely named. We can set the
name of the Locator by using the spring.data.gemfire.locator.name SDG property set as a JVM
System Property in your IDE’s Run Configuration Profile for the application main class like so:
-Dspring.data.gemfire.locator.name=SpringLocatorOne. We name the second Locator app instance,
"SpringLocatorTwo".

Additionally, we must vary the port numbers that the Locators use to listen for connections. By
default, an Apache Geode Locator listens on port 10334. We can set the Locator port using the
spring.data.gemfire.locator.port SDG property.

For our first Locator app instance (i.e. "SpringLocatorOne"), we also enable the "manager" Profile so
that we can connect to the Locator using Gfsh.

Our IDE Run Configuration Profile for our first Locator app instance appears as:

-server -ea -Dspring.profiles.active=manager
-Dspring.data.gemfire.locator.name=SpringLocatorOne -Dlogback.log.level=INFO

And our IDE Run Configuration Profile for our second Locator app instance appears as:

-server -ea -Dspring.profiles.active= -Dspring.data.gemfire.locator.name=SpringLocatorTwo
-Dspring.data.gemfire.locator.port=11235 -Dlogback.log.level=INFO

22

You should see log output similar to the following when you start a Locator app instance:

Spring Boot, Apache Geode Locator log output

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.2.0.BUILD-SNAPSHOT)

2019-09-01 11:02:48,707 INFO .SpringBootApacheGeodeLocatorApplication: 55 - Starting
SpringBootApacheGeodeLocatorApplication on jblum-mbpro-2.local with PID 30077
(/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/out/production/classes
started by jblum in /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/build)
2019-09-01 11:02:48,711 INFO .SpringBootApacheGeodeLocatorApplication: 651 - No
active profile set, falling back to default profiles: default
2019-09-01 11:02:49,374 INFO xt.annotation.ConfigurationClassEnhancer: 355 - @Bean
method
LocatorApplicationConfiguration.exclusiveLocatorApplicationBeanFactoryPostProcessor is
non-static and returns an object assignable to Spring's BeanFactoryPostProcessor
interface. This will result in a failure to process annotations such as @Autowired,
@Resource and @PostConstruct within the method's declaring @Configuration class. Add
the 'static' modifier to this method to avoid these container lifecycle issues; see
@Bean javadoc for complete details.
2019-09-01 11:02:49,919 INFO ode.distributed.internal.InternalLocator: 530 - Starting
peer location for Distribution Locator on 10.99.199.24[11235]
2019-09-01 11:02:49,925 INFO ode.distributed.internal.InternalLocator: 498 - Starting
Distribution Locator on 10.99.199.24[11235]
2019-09-01 11:02:49,926 INFO distributed.internal.tcpserver.TcpServer: 242 - Locator
was created at Sun Sep 01 11:02:49 PDT 2019
2019-09-01 11:02:49,927 INFO distributed.internal.tcpserver.TcpServer: 243 -
Listening on port 11235 bound on address 0.0.0.0/0.0.0.0
2019-09-01 11:02:49,928 INFO ternal.membership.gms.locator.GMSLocator: 162 - GemFire
peer location service starting. Other locators: localhost[10334] Locators preferred
as coordinators: true Network partition detection enabled: true View persistence
file: /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/build/locator11235view.dat
2019-09-01 11:02:49,928 INFO ternal.membership.gms.locator.GMSLocator: 416 - Peer
locator attempting to recover from localhost/127.0.0.1:10334
2019-09-01 11:02:49,963 INFO ternal.membership.gms.locator.GMSLocator: 422 - Peer
locator recovered initial membership of
View[10.99.199.24(SpringLocatorOne:30043:locator)<ec><v0>:41000|0] members:
[10.99.199.24(SpringLocatorOne:30043:locator)<ec><v0>:41000]
2019-09-01 11:02:49,963 INFO ternal.membership.gms.locator.GMSLocator: 407 - Peer
locator recovered state from LocatorAddress
[socketInetAddress=localhost/127.0.0.1:10334, hostname=localhost, isIpString=false]
2019-09-01 11:02:49,965 INFO ode.distributed.internal.InternalLocator: 644 - Starting
distributed system

23

2019-09-01 11:02:50,007 INFO he.geode.internal.logging.LoggingSession: 82 -

 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with this
 work for additional information regarding copyright ownership.

 The ASF licenses this file to You under the Apache License, Version 2.0
 (the "License"); you may not use this file except in compliance with the
 License. You may obtain a copy of the License at

 https://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the specific language governing permissions and limitations
 under the License.

Build-Date: 2019-04-19 11:49:13 -0700
Build-Id: onichols 0
Build-Java-Version: 1.8.0_192
Build-Platform: Mac OS X 10.14.4 x86_64
Product-Name: Apache Geode
Product-Version: 1.9.0
Source-Date: 2019-04-19 11:11:31 -0700
Source-Repository: release/1.9.0
Source-Revision: c0a73d1cb84986d432003bd12e70175520e63597
Native version: native code unavailable
Running on: 10.99.199.24/10.99.199.24, 8 cpu(s), x86_64 Mac OS X 10.13.6
Communications version: 100
Process ID: 30077
User: jblum
Current dir: /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Home dir: /Users/jblum
Command Line Parameters:
 -ea
 -Dspring.profiles.active=
 -Dspring.data.gemfire.locator.name=SpringLocatorTwo
 -Dspring.data.gemfire.locator.port=11235
 -Dlogback.log.level=INFO
 -javaagent:/Applications/IntelliJ IDEA 19
CE.app/Contents/lib/idea_rt.jar=51961:/Applications/IntelliJ IDEA 19
CE.app/Contents/bin
 -Dfile.encoding=UTF-8
Class Path:
...
..
.
2019-09-01 11:02:54,112 INFO ode.distributed.internal.InternalLocator: 661 - Locator

24

started on 10.99.199.24[11235]
2019-09-01 11:02:54,113 INFO ode.distributed.internal.InternalLocator: 769 - Starting
server location for Distribution Locator on 10.99.199.24[11235]
2019-09-01 11:02:54,134 INFO nt.internal.locator.wan.LocatorDiscovery: 138 - Locator
discovery task exchanged locator information 10.99.199.24[11235] with
localhost[10334]: {-1=[10.99.199.24[10334]]}.
2019-09-01 11:02:54,242 INFO .SpringBootApacheGeodeLocatorApplication: 61 - Started
SpringBootApacheGeodeLocatorApplication in 6.137470354 seconds (JVM running for 6.667)
Press <enter> to exit!

Next, start up the second Locator app instance (you should see log output similar to above). Then,
connect to the cluster of Locators using Gfsh:

Cluster of Locators

$ echo $GEMFIRE
/Users/jblum/pivdev/apache-geode-1.9.0

$ gfsh
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.9.0

Monitor and Manage Apache Geode

gfsh>connect
Connecting to Locator at [host=localhost, port=10334] ..
Connecting to Manager at [host=10.99.199.24, port=1099] ..
Successfully connected to: [host=10.99.199.24, port=1099]

gfsh>list members
 Name | Id

SpringLocatorOne | 10.99.199.24(SpringLocatorOne:30043:locator)<ec><v0>:41000
[Coordinator]
SpringLocatorTwo | 10.99.199.24(SpringLocatorTwo:30077:locator)<ec><v1>:41001

Using our SpringBootApacheGeodeCacheServerApplication main class from the previous section, we
can configure and bootstrap an Apache Geode CacheServer application with Spring Boot and
connect it to our cluster of Locators.

25

SpringBootApacheGeodeCacheServerApplication class

@SpringBootApplication
@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication")
@SuppressWarnings("unused")
public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {

 new
SpringApplicationBuilder(SpringBootApacheGeodeCacheServerApplication.class)
 .web(WebApplicationType.NONE)
 .build()
 .run(args);
 }

 @Configuration
 @UseLocators
 @Profile("clustered")
 static class ClusteredConfiguration { }

 @Configuration
 @EnableLocator
 @EnableManager(start = true)
 @Profile("!clustered")
 static class LonerConfiguration { }

}

Simply enable the "clustered" Profile by using a IDE Run Profile Configuration similar to:

-server -ea -Dspring.profiles.active=clustered -Dspring.data.gemfire.name=SpringServer
-Dspring.data.gemfire.cache.server.port=41414 -Dlogback.log.level=INFO

After the server starts up, you should see the new peer member in the cluster:

Cluster with Spring Boot configured and bootstrapped Apache Geode CacheServer

gfsh>list members
 Name | Id

SpringLocatorOne | 10.99.199.24(SpringLocatorOne:30043:locator)<ec><v0>:41000
[Coordinator]
SpringLocatorTwo | 10.99.199.24(SpringLocatorTwo:30077:locator)<ec><v1>:41001
SpringServer | 10.99.199.24(SpringServer:30216)<v2>:41002

Finally, we can even start additional Locators and Servers connected to this cluster using Gfsh:

26

Gfsh started Locators and Servers

gfsh>start locator --name=GfshLocator --port=12345 --log-level=config
Starting a Geode Locator in /Users/jblum/pivdev/lab/GfshLocator...
......
Locator in /Users/jblum/pivdev/lab/GfshLocator on 10.99.199.24[12345] as GfshLocator
is currently online.
Process ID: 30259
Uptime: 5 seconds
Geode Version: 1.9.0
Java Version: 1.8.0_192
Log File: /Users/jblum/pivdev/lab/GfshLocator/GfshLocator.log
JVM Arguments: -Dgemfire.default.locators=10.99.199.24[11235],10.99.199.24[10334]
-Dgemfire.enable-cluster-configuration=true -Dgemfire.load-cluster-configuration-from
-dir=false -Dgemfire.log-level=config -Dgemfire.launcher.registerSignalHandlers=true
-Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.9.0/lib/geode-core-
1.9.0.jar:/Users/jblum/pivdev/apache-geode-1.9.0/lib/geode-dependencies.jar

gfsh>start server --name=GfshServer --server-port=45454 --log-level=config
Starting a Geode Server in /Users/jblum/pivdev/lab/GfshServer...
...
Server in /Users/jblum/pivdev/lab/GfshServer on 10.99.199.24[45454] as GfshServer is
currently online.
Process ID: 30295
Uptime: 2 seconds
Geode Version: 1.9.0
Java Version: 1.8.0_192
Log File: /Users/jblum/pivdev/lab/GfshServer/GfshServer.log
JVM Arguments:
-Dgemfire.default.locators=10.99.199.24[11235],10.99.199.24[12345],10.99.199.24[10334]
-Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true
-Dgemfire.log-level=config -XX:OnOutOfMemoryError=kill -KILL %p
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.9.0/lib/geode-core-
1.9.0.jar:/Users/jblum/pivdev/apache-geode-1.9.0/lib/geode-dependencies.jar

gfsh>list members
 Name | Id

SpringLocatorOne | 10.99.199.24(SpringLocatorOne:30043:locator)<ec><v0>:41000
[Coordinator]
SpringLocatorTwo | 10.99.199.24(SpringLocatorTwo:30077:locator)<ec><v1>:41001
SpringServer | 10.99.199.24(SpringServer:30216)<v2>:41002
GfshLocator | 10.99.199.24(GfshLocator:30259:locator)<ec><v3>:41003
GfshServer | 10.99.199.24(GfshServer:30295)<v4>:41004

You must be careful to vary the ports and name of your peer members appropriately. With Spring,

27

and Spring Boot for Apache Geode (SBDG) in particular, it really is that easy!

4.3. Building Manager Applications
As discussed in the previous sections above, it is possible to enable a Spring Boot configured and
bootstrapped Apache Geode peer member node in the cluster to function as a Manager.

An Apache Geode Manager is a peer member node in the cluster running the Management Service,
allowing the cluster to be managed and monitored using JMX based tools, like Gfsh, JConsole or
JVisualVM, for instance. Any tool that uses the JMX API can connect to and manage an Apache
Geode cluster for whatever purpose.

The cluster may have more than 1 Manager for redundancy. Only server-side, peer member nodes
in the cluster may function as a Manager. Therefore, a ClientCache application cannot be a
Manager.

To create a Manager, you use the SDG @EnableManager annotation.

The 3 primary uses of the @EnableManager annotation to create a Manager is:

1 - CacheServer Manager Application

@SpringBootApplication
@CacheServerApplication(name = "CacheServerManagerApplication")
@EnableManager(start = true)
class CacheServerManagerApplication {
 // ...
}

2 - Peer Cache Manager Application

@SpringBootApplication
@PeerCacheApplication(name = "PeerCacheManagerApplication")
@EnableManager(start = "true")
class SpringBootPeerCacheManagerApplication {
 // ...
}

3 - Locator Manager Application

@SpringBootApplication
@LocatorApplication(name = "LocatorManagerApplication")
@EnableManager(start = true)
class LocatorManagerApplication {
 // ...
}

#1 creates a peer Cache instance with a CacheServer component accepting client connections along
with an embedded Manager enabling JMX clients to connect.

28

#2 creates only a peer Cache instance along with an embedded Manager. As a peer Cache with NO
CacheServer component, clients are not able to connect to this node. It is merely a server managing
data.

#3 creates a Locator instance with an embedded Manager.

In all configuration arrangements, the Manager was configured to start immediately.

 See the @EnableManager annotation Javadoc for additional configuration options.

As of Apache Geode 1.11.0, you must now include additional Apache Geode dependencies on your
Spring Boot application classpath to make your application a proper Apache Geode Manager in the
cluster, particularly if you are also enabling the embedded HTTP service in the Manager.

The required dependencies are:

Additional Manager dependencies expressed in Gradle

runtime "org.apache.geode:geode-http-service"
runtime "org.apache.geode:geode-web"
runtime "org.springframework.boot:spring-boot-starter-jetty"

The embedded HTTP service (implemented with the Eclipse Jetty Servlet Container), runs the
Management (Admin) REST API, which is used by tooling, such as Gfsh, to connect to the cluster
over HTTP. In addition, it also runs the Pulse Monitoring Tool.

Even if you do not start the embedded HTTP service (Jetty Servlet Container), a Manager still
requires the geode-http-service, geode-web and spring-boot-starter-jetty dependencies.

29

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html
https://geode.apache.org/docs/guide/113/tools_modules/pulse/pulse-overview.html

Chapter 5. Auto-configuration
The following Spring Framework, Spring Data for Apache Geode (SDG) and Spring Session for
Apache Geode (SSDG) Annotations are implicitly declared by Spring Boot for Apache Geode’s (SBDG)
Auto-configuration.

• @ClientCacheApplication

• @EnableGemfireCaching (or alternatively, Spring Framework’s @EnableCaching)

• @EnableContinuousQueries

• @EnableGemfireFunctionExecutions

• @EnableGemfireFunctions

• @EnableGemfireRepositories

• @EnableLogging

• @EnablePdx

• @EnableSecurity

• @EnableSsl

• @EnableGemFireHttpSession

This means you DO NOT need to explicitly declare any of these Annotations on
your @SpringBootApplication class since they are provided by SBDG already. The
only reason you would explicitly declare any of these Annotations is if you wanted
to "override" Spring Boot’s, and in particular, SBDG’s Auto-configuration.
Otherwise, it is unnecessary!

You should read the chapter in Spring Boot’s Reference Documentation on Auto-
configuration.

You should review the chapter in Spring Data for Apache Geode’s (SDG) Reference
Documentation on Annotation-based Configuration. For a quick reference, or an
overview of Annotation-based Configuration, see here.

Refer to the corresponding Sample Guide and Code to see Spring Boot Auto-
configuration for Apache Geode in action!

5.1. Customizing Auto-configuration
You might ask how I can customize the Auto-configuration provided by SBDG if I do not explicitly
declare the annotation?

For example, you may want to customize the member’s "name". You know that the
@ClientCacheApplication annotation provides the name attribute so you can set the client member’s
"name". But SBDG has already implicitly declared the @ClientCacheApplication annotation via Auto-

30

https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-auto-configuration
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstap-annotations-quickstart
guides/boot-configuration.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/boot/configuration
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableGemFireProperties.html#name--

configuration on your behalf. What do you do?

Well, SBDG supplies a few very useful Annotations in this case.

For example, to set the (client or peer) member’s name, you can use the @UseMemberName annotation,
like so:

Setting the member’s name using @UseMemberName

@SpringBootApplication
@UseMemberName("MyMemberName")
class SpringBootClientCacheApplication {
 ///...
}

Alternatively, you could set the spring.application.name or the spring.data.gemfire.name property in
Spring Boot application.properties

Setting the member’s name using the spring.application.name property

Spring Boot application.properties

spring.application.name = MyMemberName

Or:

Setting the member’s name using the spring.data.gemfire.cache.name property

Spring Boot application.properties

spring.data.gemfire.cache.name = MyMemberName

In general, there are 3 ways to customize configuration, even in the context of SBDG’s Auto-
configuration:

1. Using Annotations provided by SBDG for common and popular concerns (e.g. naming client or
peer members with @UseMemberName, or enabling durable clients with @EnableDurableClient).

2. Using well-known and documented Properties (e.g. spring.application.name, or
spring.data.gemfire.name, or spring.data.gemfire.cache.name).

3. Using Configurers (e.g. ClientCacheConfigurer).

 For the complete list of documented Properties, see here.

5.2. Disabling Auto-configuration
Disabling Spring Boot Auto-configuration is explained in detail in Spring Boot’s Reference Guide.

Disabling SBDG Auto-confiugration was also explained in detail.

31

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/config/annotation/package-summary.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-properties
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-configurers
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheConfigurer.html
https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-disabling-specific-auto-configuration

In a nutshell, if you want to disable any Auto-configuration provided by either Spring Boot or SBDG,
then you can declare your intent in the @SpringBootApplication annotation, like so:

Disabling Specific Auto-configuration Classes

@SpringBootApplication(
 exclude = { DataSourceAutoConfiguration.class, PdxAutoConfiguration.class }
)
class SpringBootClientCacheApplication {
 // ...
}

Make sure you understand what you are doing when you are "disabling" Auto-
configuration.

5.3. Overriding Auto-configuration
Overriding SBDG Auto-configuration was explained in detail as well.

In a nutshell, if you want to override the default Auto-configuration provided by SBDG then you
must annotate your @SpringBootApplication class with your intent.

For example, say you want to configure and bootstrap an Apache Geode CacheServer application (a
peer; not a client), then you would:

Overriding the default ClientCache Auto-Configuration by configuring & bootstrapping a CacheServer
application

@SpringBootApplication
@CacheServerApplication
class SpringBootCacheServerApplication {
 // ...
}

Even when you explicitly declare the @ClientCacheApplication annotation on your
@SpringBootApplication class, like so:

Overriding by explicitly declaring @ClientCacheApplication

@SpringBootApplication
@ClientCacheApplication
class SpringBootClientCacheApplication {
 // ...
}

You are overriding SBDG’s Auto-configuration of the ClientCache instance. As a result, you now have
also implicitly consented to being responsible for other aspects of the configuration (e.g. Security)!
Why?

32

This is because in certain cases, like Security, certain aspects of Security configuration (e.g. SSL)
must be configured before the cache instance is created. And, Spring Boot always applies user
configuration before Auto-configuration partially to determine what needs to be auto-configured in
the first place.

Especially make sure you understand what you are doing when you are
"overriding" Auto-configuration.

5.4. Replacing Auto-configuration
We will simply refer you to the Spring Boot Reference Guide on replacing Auto-configuration. See
here.

5.5. Auto-configuration Explained
This section covers the SBDG provided Auto-configuration classes corresponding to the SDG
Annotations in more detail.

To review the complete list of SBDG Auto-confiugration classes, see here.

5.5.1. @ClientCacheApplication

The ClientCacheAutoConfiguration class corresponds to the @ClientCacheApplication
annotation.

SBDG starts with the opinion that application developers will primarily be building Apache Geode
client applications using Spring Boot.

Technically, this means building Spring Boot applications with an Apache Geode ClientCache
instance connected to a dedicated cluster of Apache Geode servers that manage the data as part of a
client/server topology.

By way of example, this means you do not need to explicitly declare and annotate your
@SpringBootApplication class with SDG’s @ClientCacheApplication annotation, like so:

Do Not Do This

@SpringBootApplication
@ClientCacheApplication
class SpringBootClientCacheApplication {
 // ...
}

This is because SBDG’s provided Auto-configuration class is already meta-annotated with SDG’s
@ClientCacheApplication annotation. Therefore, you simply need:

33

https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-replacing-auto-configuration
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/ClientCacheAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html
https://geode.apache.org/docs/guide/113/topologies_and_comm/cs_configuration/chapter_overview.html

Do This

@SpringBootApplication
class SpringBootClientCacheApplication {
 // ...
}

Refer to SDG’s Reference Documentation for more details on Apache Geode cache
applications, and client/server applications in particular.

5.5.2. @EnableGemfireCaching

The CachingProviderAutoConfiguration class corresponds to the
@EnableGemfireCaching annotation.

If you simply used the core Spring Framework to configure Apache Geode as a caching provider in
Spring’s Cache Abstraction, you would need to do this:

Configuring caching using the Spring Framework

@SpringBootApplication
@EnableCaching
class CachingUsingApacheGeodeConfiguration {

 @Bean
 GemfireCacheManager cacheManager(GemFireCache cache) {

 GemfireCacheManager cacheManager = new GemfireCacheManager();

 cacheManager.setCache(cache);

 return cacheManager;
 }
}

If you were using Spring Data for Apache Geode’s @EnableGemfireCaching annotation, then the above
configuration could be simplified to:

Configuring caching using Spring Data Geode

@SpringBootApplication
@EnableGemfireCaching
class CachingUsingApacheGeodeConfiguration {

}

And, if you use SBDG, then you only need to do this:

34

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-geode-applications
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-geode-applications
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-client-server-applications
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/CachingProviderAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/cache/config/EnableGemfireCaching.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache

Configuring caching using Spring Data Geode

@SpringBootApplication
class CachingUsingApacheGeodeConfiguration {

}

This allows you to focus on the areas in your application that would benefit from caching without
having to enable the plumbing. Simply demarcate the service methods in your application that are
good candidates for caching:

Using caching in your application

@Service
class CustomerService {

 @Caching("CustomersByName")
 Customer findBy(String name) {
 // ...
 }
}

 Refer to the documentation for more details.

5.5.3. @EnableContinuousQueries

The ContinuousQueryAutoConfiguration class corresponds to the
@EnableContinuousQueries annotation.

Without having to enable anything, you simply annotate your application (POJO) component
method(s) with the SDG @ContinuousQuery annotation to register a CQ and start receiving events. The
method acts as a CqEvent handler, or in Apache Geode’s case, the method would be an
implementation of CqListener.

Declare application CQs

@Component
class MyCustomerApplicationContinuousQueries {

 @ContinuousQuery("SELECT customer.* FROM /Customers customers"
 + " WHERE customer.getSentiment().name().equalsIgnoreCase('UNHAPPY')")
 public void handleUnhappyCustomers(CqEvent event) {
 // ...
 }
}

As shown above, you define the events you are interested in receiving by using a OQL query with a
finely tuned query predicate describing the events of interests and implement the handler method

35

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/ContinuousQueryAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableContinuousQueries.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/listener/annotation/ContinuousQuery.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/CqListener.html

to process the events (e.g. apply a credit to the customer’s account and follow up in email).

 Refer to the documentation for more details.

5.5.4. @EnableGemfireFunctionExecutions & @EnableGemfireFunctions

The FunctionExecutionAutoConfiguration class corresponds to both the
@EnableGemfireFunctionExecutions and @EnableGemfireFunctions annotations.

Whether you need to execute a Function or implement a Function, SBDG will detect the Function
definition and auto-configure it appropriately for use in your Spring Boot application. You only
need to define the Function execution or implementation in a package below the main
@SpringBootApplication class.

Declare a Function Execution

package example.app.functions;

@OnRegion("Accounts")
interface MyCustomerApplicationFunctions {

 void applyCredit(Customer customer);

}

Then you can inject the Function execution into any application component and use it:

Use the Function

package example.app.service;

@Service
class CustomerService {

 @Autowired
 private MyCustomerapplicationFunctions customerFunctions;

 void analyzeCustomerSentiment(Customer customer) {

 // ...

 this.customerFunctions.applyCredit(customer);

 // ...
 }
}

The same pattern basically applies to Function implementations, except in the implementation
case, SBDG "registers" the Function implementation for use (i.e. to be called by a Function

36

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/FunctionExecutionAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/function/config/EnableGemfireFunctionExecutions.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/function/config/EnableGemfireFunctions.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-execution
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-implementation

execution).

The point is, you are simply focusing on defining the logic required by your application, and not
worrying about how Functions are registered, called, etc. SBDG is handling this concern for you!

 Function implementations are typically defined and registered on the server-side.

 Refer to the documentation for more details.

5.5.5. @EnableGemfireRepositories

The GemFireRepositoriesAutoConfigurationRegistrar class corresponds to the
@EnableGemfireRepositories annotation.

Like Functions, you are only concerned with the data access operations (e.g. basic CRUD and simple
Queries) required by your application to carry out its functions, not how to create and perform
them (e.g. Region.get(key) & Region.put(key, obj)) or execute (e.g. Query.execute(arguments)).

Simply define your Spring Data Repository:

Define an application-specific Repository

package example.app.repo;

interface CustomerRepository extends CrudRepository<Customer, Long> {

 List<Customer> findBySentimentEqualTo(Sentiment sentiment);

}

And use it:

37

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/GemFireRepositoriesAutoConfigurationRegistrar.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.html

Using the application-specific Repository

package example.app.sevice;

@Service
class CustomerService {

 @Autowired
 private CustomerRepository repository;

 public void processCustomersWithSentiment(Sentiment sentiment) {

 this.repository.findBySentimentEqualTo(sentiment).forEach(customer -> { /* ... */
});

 // ...
 }
}

Your application-specific Repository simply needs to be declared in a package below the main
@SpringBootApplication class. Again, you are only focusing on the data access operations and
queries required to carry out the functions of your application, nothing more.

 Refer to the documentation for more details.

5.5.6. @EnableLogging

 The LoggingAutoConfiguration class corresponds to the @EnableLogging annotation.

Logging is an essential application concern to understand what is happening in the system along
with when and where the event occurred. As such, SBDG auto-configures logging for Apache Geode
by default, using the default log-level, "config".

If you wish to change an aspect of logging, such as the log-level, you would typically do this in
Spring Boot application.properties:

Change the log-level for Apache Geode

Spring Boot application.properites.

spring.data.gemfire.cache.log-level=debug

Other aspects may be configured as well, such as the log file size and disk space limits for the file
system location used to store the Apache Geode log files at runtime.

Under-the-hood, Apache Geode’s logging is based on Log4j. Therefore, you can configure Apache
Geode logging using any logging provider (e.g. Logback) and configuration metadata appropriate
for that logging provider so long as you supply the necessary adapter between Log4j and whatever

38

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/LoggingAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html

logging system you are using. For instance, if you include org.springframework.boot:spring-boot-
starter-logging then you will be using Logback and you will need the
org.apache.logging.log4j:log4j-to-slf4j adapter.

5.5.7. @EnablePdx

The PdxSerializationAutoConfiguration class corresponds to the @EnablePdx
annotation.

Anytime you need to send an object over the network, overflow or persist an object to disk, then
your application domain object must be serializable. It would be painful to have to implement
java.io.Serializable in everyone of your application domain objects (e.g. Customer) that would
potentially need to be serialized.

Furthermore, using Java Serialization may not be ideal (e.g. the most portable or efficient) in all
cases, or even possible in other cases (e.g. when you are using a 3rd party library for which you
have no control over).

In these situations, you need to be able to send your object anywhere without unduly requiring the
class type to be serializable as well as to exist on the classpath for every place it is sent. Indeed, the
final destination may not even be a Java application! This is where Apache Geode PDX Serialization
steps into help.

However, you don’t have to figure out how to configure PDX to identify the application class types
that will need to be serialized. You simply define your class type:

Customer class

@Region("Customers")
class Customer {

 @Id
 private Long id;

 @Indexed
 private String name;

 // ...
}

And, SBDG’s Auto-configuration will handle the rest!

 Refer to the documentation for more details.

5.5.8. @EnableSecurity

39

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/PdxSerializationAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html
https://geode.apache.org/docs/guide/113/developing/data_serialization/gemfire_pdx_serialization.html

The ClientSecurityAutoConfiguration class and PeerSecurityAutoConfiguration class
corresponds to the @EnableSecurity annotation, but applies Security, and
specifically, Authentication/Authorization configuration for both clients and
servers.

Configuring your Spring Boot, Apache Geode ClientCache application to properly authenticate with
a cluster of secure Apache Geode servers is as simple as setting a username and password in Spring
Boot application.properties:

Supplying Authentication Credentials

Spring Boot application.properties

spring.data.gemfire.security.username=Batman
spring.data.gemfire.security.password=r0b!n5ucks

Authentication is even easier to configure in a managed environment like PCF
when using PCC; you don’t have to do anything!

Authorization is configured on the server-side and is made simple with SBDG and the help of
Apache Shiro. Of course, this assumes you are using SBDG to configure and bootstrap your Apache
Geode cluster in the first place, which is possible, and made even easier with SBDG.

 Refer to the documentation for more details.

5.5.9. @EnableSsl

 The SslAutoConfiguration class corresponds to the @EnableSsl annotation.

Configuring SSL for secure transport (TLS) between your Spring Boot, Apache Geode ClientCache
application and the cluster can be a real problematic task, especially to get correct from the start.
So, it is something that SBDG makes simple to do out-of-the-box.

Simply supply a trusted.keystore file containing the certificates in a well-known location (e.g. root
of your application classpath) and SBDG’s Auto-configuration will kick in and handle of the rest.

This is useful during development, but we highly recommend using a more secure procedure (e.g.
integrating with a secure credential store like LDAP, CredHub or Vault) when deploying your Spring
Boot application to production.

 Refer to the documentation for more details.

5.5.10. @EnableGemFireHttpSession

The SpringSessionAutoConfiguration class corresponds to the @EnableSsl
annotation.

40

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/ClientSecurityAutoConfiguration.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/PeerSecurityAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html
https://shiro.apache.org/
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/SslAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/SpringSessionAutoConfiguration.html
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/EnableSsl.html

Configuring Apache Geode to serve as the (HTTP) Session state caching provider using Spring
Session is as simple as including the correct starter, e.g. spring-geode-starter-session.

Using Spring Session

<dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter-session</artifactId>
 <version>1.5.2</version>
</dependency>

With Spring Session, and specifically Spring Session for Apache Geode (SSDG), on the classpath of
your Spring Boot, Apache Geode ClientCache Web application, you can manage your (HTTP) Session
state with Apache Geode. No further configuration is needed. SBDG Auto-configuration detects
Spring Session on the application classpath and does the right thing.

 Refer to the documentation for more details.

5.5.11. RegionTemplateAutoConfiguration

The SBDG RegionTemplateAutoConfiguration class has no corresponding SDG Annotation. However,
the Auto-configuration of a GemfireTemplate for every single Apache Geode Region defined and
declared in your Spring Boot application is supplied by SBDG never-the-less.

For example, if you defined a Region using:

Region definition using JavaConfig

@Configuration
class GeodeConfiguration {

 @Bean("Customers")
 ClientRegionFactoryBean<Long, Customer> customersRegion(GemFireCache cache) {

 ClientRegionFactoryBean<Long, Customer> customersRegion =
 new ClientRegionFactoryBean<>();

 customersRegion.setCache(cache);
 customersRegion.setShortcut(ClientRegionShortcut.PROXY);

 return customersRegion;
 }
}

Alternatively, you could define the "Customers" Region using:

41

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/RegionTemplateAutoConfiguration.html

Region definition using @EnableEntityDefinedRegions

@Configuration
@EnableEntityDefinedRegion(basePackageClasses = Customer.class)
class GeodeConfiguration {

}

Then, SBDG will supply a GemfireTemplate instance that you can use to perform low-level, data
access operations (indirectly) on the "Customers" Region:

Use the GemfireTemplate to access the "Customers" Region

@Repository
class CustomersDao {

 @Autowired
 @Qualifier("customersTemplate")
 private GemfireTemplate customersTemplate;

 Customer findById(Long id) {
 return this.customerTemplate.get(id);
 }
}

You do not need to explicitly configure GemfireTemplates for each Region you need to have low-level
data access to (e.g. such as when you are not using the Spring Data Repository abstraction).

Be careful to "qualify" the GemfireTemplate for the Region you need data access to, especially given
that you will probably have more than 1 Region defined in your Spring Boot application.

 Refer to the documentation for more details.

42

Chapter 6. Declarative Configuration
The primary purpose of any software development framework is to help you be productive as
quickly and as easily as possible, and to do so in a reliable manner.

As application developers, we want a framework to provide constructs that are both intuitive and
familiar so that their behaviors are boringly predictable. This provided convenience not only helps
you hit the ground running in the right direction sooner but increases your focus on the application
domain so you are able to better understand the problem you are trying to solve in the first place.
Once the problem domain is well understood, you are more apt to make informed decisions about
the design, which leads to better outcomes, faster.

This is exactly what Spring Boot’s auto-configuration provides for you… enabling features, services
and supporting infrastructure for Spring applications in a loosely integrated way by using
conventions (e.g. classpath) that ultimately helps you keep your attention and focus on solving the
problem at hand and not on the plumbing.

For example, if you are building a Web application, simply include the
org.springframework.boot:spring-boot-starter-web dependency on your application classpath. Not
only will Spring Boot enable you to build Spring Web MVC Controllers appropriate to your
application UC (your responsibility), but will also bootstrap your Web app in an embedded Servlet
Container on startup (Boot’s responsibility).

This saves you from having to handle many low-level, repetitive and tedious development tasks
that are highly error-prone when you are simply trying to solve problems. You don’t have to care
how the plumbing works until you do. And, when you do, you will be better informed and prepared
to do so.

It is also equally essential that frameworks, like Spring Boot, get out of the way quickly when
application requirements diverge from the provided defaults. The is the beautiful and powerful
thing about Spring Boot and why it is second to none in its class.

Still, auto-configuration does not solve every problem all the time. Therefore, you will need to use
declarative configuration in some cases, whether expressed as bean definitions, in properties or by
some other means. This is so frameworks don’t leave things to chance, especially when they are
ambiguous. The framework simply gives you a choice.

Now, that we explained the motivation behind this chapter, let’s outline what we will discuss:

• Refer you to the SDG Annotations covered by SBDG’s Auto-configuration

• List all SDG Annotations not covered by SBDG’s Auto-configuration

• Cover the SBDG, SSDG and SDG Annotations that must be declared explicitly and that provide
the most value and productivity when getting started using either Apache Geode in Spring
[Boot] applications.

SDG refers to Spring Data for Apache Geode. SSDG refers to Spring Session for
Apache Geode and SBDG refers to Spring Boot for Apache Geode, this project.

43

https://spring.io/projects/spring-data-geode
https://spring.io/projects/spring-session-data-geode
https://spring.io/projects/spring-session-data-geode

The list of SDG Annotations covered by SBDG’s Auto-configuration is discussed in
detail in the Appendix, in the section, Auto-configuration vs. Annotation-based
configuration.

To be absolutely clear about which SDG Annotations we are referring to, we mean the SDG
Annotations in the package: org.springframework.data.gemfire.config.annotation.

Additionally, in subsequent sections, we will cover which Annotations are added by SBDG.

6.1. Auto-configuration
Auto-configuration was explained in complete detail in the chapter, "Auto-configuration".

6.2. Annotations not covered by Auto-configuration
The following SDG Annotations are not implicitly applied by SBDG’s Auto-configuration:

• @EnableAutoRegionLookup

• @EnableBeanFactoryLocator

• @EnableCacheServer(s)

• @EnableCachingDefinedRegions

• @EnableClusterConfiguration

• @EnableClusterDefinedRegions

• @EnableCompression

• @EnableDiskStore(s)

• @EnableEntityDefinedRegions

• @EnableEviction

• @EnableExpiration

• @EnableGatewayReceiver

• @EnableGatewaySender(s)

• @EnableGemFireAsLastResource

• @EnableGemFireMockObjects

• @EnableHttpService

• @EnableIndexing

• @EnableOffHeap

• @EnableLocator

• @EnableManager

• @EnableMemcachedServer

• @EnablePool(s)

44

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/package-summary.html

• @EnableRedisServer

• @EnableStatistics

• @UseGemFireProperties

 This was also covered here.

Part of the reason for this is because several of the Annotations are server-specific:

• @EnableCacheServer(s)

• @EnableGatewayReceiver

• @EnableGatewaySender(s).

• @EnableHttpService

• @EnableLocator

• @EnableManager

• @EnableMemcachedServer

• @EnableRedisServer

And, we already stated that SBDG is opinionated about providing a ClientCache instance out-of-the-
box.

Other Annotations are driven by need, for example:

• @EnableAutoRegionLookup & @EnableBeanFactoryLocator - really only useful when mixing
configuration metadata formats, e.g. Spring config with Apache Geode cache.xml. This is usually
only the case if you have legacy cache.xml config to begin with, otherwise, don’t do this!

• @EnableCompression - requires the Snappy Compression Library on your application classpath.

• @EnableDiskStore(s) - only used for overflow and persistence.

• @EnableOffHeap - enables data to be stored in main memory, which is only useful when your
application data (i.e. Objects stored in Apache Geode) are generally uniform in size.

• @EnableGemFireAsLastResource - only needed in the context of JTA Transactions.

• @EnableStatistics - useful if you need runtime metrics, however enabling statistics gathering
does consume considerable system resources (e.g. CPU & Memory).

While still other Annotations require more careful planning, for example:

• @EnableEviction

• @EnableExpiration

• @EnableIndexing

One in particular is used exclusively for Unit Testing:

• @EnableGemFireMockObjects

The bottom-line is, a framework should not Auto-configure every possible feature, especially when

45

the features consume additional system resources, or requires more careful planning as
determined by the use case.

Still, all of these Annotations are available for the application developer to use when needed.

6.3. Productivity Annotations
This section calls out the Annotations we believe to be most beneficial for your application
development purposes when using Apache Geode in Spring Boot applications.

6.3.1. @EnableClusterAware (SBDG)

The @EnableClusterAware annotation is arguably the most powerful and valuable Annotation in the
set of Annotations!

When you annotate your main @SpringBootApplication class with @EnableClusterAware:

Declaring @EnableClusterAware

@SpringBootApplication
@EnableClusterAware
class SpringBootApacheGeodeClientCacheApplication { }

Your Spring Boot, Apache Geode ClientCache application is able to seamlessly switch between
client/server and local-only topologies with no code or configuration changes, regardless of the
runtime environment (e.g. local/standalone vs. cloud-managed environments).

When a cluster of Apache Geode servers is detected, the client application will send and receive
data to and from the cluster. If a cluster is not available, then the client automatically switches to
storing data locally on the client using LOCAL Regions.

Additionally, the @EnableClusterAware annotation is meta-annotated with SDG’s
@EnableClusterConfiguration annotation.

The @EnableClusterConfiguration enables configuration metadata defined on the client (e.g. Region
and Index definitions) as needed by the application based on requirements and use cases, to be sent
to the cluster of servers. If those schema objects are not already present, they will be created by the
servers in the cluster in such a way that the servers will remember the configuration on restart as
well as provide the configuration to new servers joining the cluster when scaling out. This feature is
careful not to stomp on any existing Region or Index objects already present on the servers,
particularly since you may already have data stored in the Regions.

The primary motivation behind the @EnableClusterAware annotation is to allow you to switch
environments with very little effort. It is a very common development practice to debug and test
your application locally, in your IDE, then push up to a production-like environment for more
rigorous integration testing.

By default, the configuration metadata is sent to the cluster using a non-secure HTTP connection.
Using HTTPS, changing host and port, and configuring the data management policy used by the

46

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html

servers when creating Regions is all configurable.

Refer to the section in the SDG Reference Guide on Configuring Cluster
Configuration Push for more details.

@EnableClusterAware, strictMatch

The strictMatch attribute has been added to the @EnableClusterAware annotation to enable fail-fast
behavior. strictMatch is set to false by default.

Essentially, when you set strictMatch to true, then you are saying that your Spring Boot, Apache
Geode ClientCache application requires an Apache Geode cluster to exist, i.e. the application
requires a client/server topology to operate and that the application should fail to start and run if a
cluster is not present. The application should not startup in a LOCAL-only capacity.

When strictMatch is set to true and an Apache Geode cluster is not present, then your Spring Boot,
Apache Geode ClientCache application will fail to start with a ClusterNotFoundException. The
application will not attempt to startup in a LOCAL-only capacity.

You can explicitly set the strictMatch attribute programmatically using the @EnableClusterAware
annotation:

Set @EnableClusterAware.strictMatch

@SpringBootApplication
@EnableClusterAware(strictMatch = true)
class SpringBootApacheGeodeClientCacheApplication { }

Alternatively, you can set strictMatch using the corresponding property in Spring Boot
application.properties:

Set strictMatch using a property

Spring Boot application.properties

spring.boot.data.gemfire.cluster.condition.match.strict=true

This is convenient when you need to apply this configuration setting conditionally based on a
Spring Profile.

When you adjust the log-level of the
org.springframework.geode.config.annotation.ClusterAwareConfiguration Logger to INFO, then you
will get more details from the @EnableClusterAware functionality when applying the logic to
determine the presence of an Apache Geode cluster, such as which explicitly or implicitly
configured connections were successful.

For example:

47

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-cluster
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-cluster

@EnableClusterAware INFO log output

2021-01-20 14:02:28,740 INFO fig.annotation.ClusterAwareConfiguration: 476 - Failed
to connect to localhost[40404]
2021-01-20 14:02:28,745 INFO fig.annotation.ClusterAwareConfiguration: 476 - Failed
to connect to localhost[10334]
2021-01-20 14:02:28,746 INFO fig.annotation.ClusterAwareConfiguration: 470 -
Successfully connected to localhost[57649]
2021-01-20 14:02:28,746 INFO fig.annotation.ClusterAwareConfiguration: 576 - Cluster
was found; Auto-configuration made [1] successful connection(s);
2021-01-20 14:02:28,746 INFO fig.annotation.ClusterAwareConfiguration: 586 - Spring
Boot application is running in a client/server topology, using a standalone Apache
Geode-based cluster

An attempt is always made to connect to localhost on the default Locator port,
10334, as well as the default CacheServer port, 40404.

You can force a successful match always by setting the
spring.boot.data.gemfire.cluster.condition.match property to true in Spring Boot
application.properties. This is sometimes useful for testing purposes.

6.3.2. @EnableCachingDefinedRegions, @EnableClusterDefinedRegions &
@EnableEntityDefinedRegions (SDG)

These Annotations are used to create Regions in the cache to manage your application data.

Of course, you can create Regions using Java configuration and the Spring API as follows:

Creating a Region with Spring JavaConfig

@Configuration
class GeodeConfiguration {

 @Bean("Customers")
 ClientRegionFactoryBean<Long, Customer> customersRegion(GemFireCache cache) {

 ClientRegionFactoryBean<Long, Customer> customers = new
ClientRegionFactoryBean<>();

 customers.setCache(cache);
 customers.setShortcut(ClientRegionShortcut.PROXY);

 return customers;
 }
}

Or XML:

48

Creating a client Region using Spring XML

<gfe:client-region id="Customers" shorcut="PROXY"/>

However, using the provided Annotations is far easier, especially during development when the
complete Region configuration may be unknown and you simply want to create a Region to persist
your application data and move on.

@EnableCachingDefinedRegions

The @EnableCachingDefinedRegions annotation is used when you have application components
registered in the Spring Container that are annotated with Spring or JSR-107, JCache annotations.

Caches that identified by name in the caching annotations are used to create Regions holding the
data you want cached.

For example, given:

Defining Regions based on Spring or JSR-107 JCache Annotations

@Service
class CustomerService {

 @Cacheable(cacheNames = "CustomersByAccountNumber", key = "#account.number")
 Customer findBy(Account account) {
 // ...
 }
}

When your main @SpringBootApplication class is annotated with @EnableCachingDefinedRegions:

Using @EnableCachingDefinedRegions

@SpringBootApplication
@EnableCachingDefineRegions
class SpringBootApacheGeodeClientCacheApplication { }

Then, SBDG would create a client PROXY Region (or PARTITION_REGION if your application were a peer
member of the cluster) with the name "CustomersByAccountNumber" as if you created the Region
using either the JavaConfig or XML approaches shown above.

You can use the clientRegionShortcut or serverRegionShortcut attribute to change the data
management policy of the Regions created on the client or servers, respectively.

For client Regions, you can additionally assign a specific Pool of connections used by the client
*PROXY Regions to send data to the cluster by setting the poolName attribute.

49

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-jsr-107

@EnableEntityDefinedRegions

Like @EnableCachingDefinedRegions, @EnableEntityDefinedRegions allows you to create Regions based
on the entity classes you have defined in your application domain model.

For instance, if you have entity class annotated with SDG’s @Region mapping annotation:

Customer entity class annotated with @Region

@Region("Customers")
class Customer {

 @Id
 private Long id;

 @Indexed
 private String name;

}

Then SBDG will create Regions from the name specified in the @Region mapping annotation on the
entity class. In this case, the Customer application-defined entity class will result in the creation of a
Region named "Customers" when the main @SpringBootApplication class is annotated with
@EnableEntityDefinedRegions:

Using @EnableEntityDefinedRegions

@SpringBootApplication
@EnableEntityDefinedRegions(basePackageClasses = Customer.class,
 clientRegionShortcut = ClientRegionShortcut.CACHING_PROXY)
class SpringBootApacheGeodeClientCacheApplication { }

Like the @EnableCachingDefinedRegions annotation, you can set the client and server Region data
management policy using the clientRegionShortcut and serverRegionShortcut attributes,
respectively, as well as set a dedicated Pool of connections used by client Regions with the poolName
attribute.

However, unlike the @EnableCachingDefinedRegions annotation, users are required to specify either
the basePackage, or the type-safe alternative, basePackageClasses attribute (recommended) when
using the @EnableEntityDefinedRegions annotation.

Part of the reason for this is that @EnableEntityDefinedRegions performs a component scan for the
entity classes defined by your application. The component scan loads each class to inspect the
Annotation metadata for that class. This is not unlike the JPA entity scan when working with JPA
providers like Hibernate.

Therefore, it is customary to limit the scope of the scan, otherwise you end up potentially loading
many classes unnecessarily so. After all, the JVM uses dynamic linking to only load classes when
needed.

50

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/annotation/Region.html

Both the basePackages and basePackageClasses attributes accept an array of values. With
basePackageClasses you only need to refer to a single class type in that package and every class in
that package as well as classes in the sub-packages will be scanned to determine if the class type
represents an entity. A class type is an entity if it is annotated with the @Region mapping annotation,
otherwise it is not considered an entity.

By example, suppose you had the following structure:

Entity Scan

- example.app.crm.model
 |- Customer.class
 |- NonEntity.class
 |- contact
 |- Address.class
 |- PhoneNumber.class
 |- AnotherNonEntity.class
- example.app.accounts.model
 |- Account.class
...
..
.

Then, you could configure the @EnableEntityDefinedRegions as follows:

Targeting with @EnableEntityDefinedRegions

@SpringBootApplication
@EnableEntityDefinedRegions(basePackageClasses = { NonEntity.class, Account.class })
class SpringBootApacheGeodeClientCacheApplication { }

If Customer, Address, PhoneNumber and Account were all entity classes properly annotated with @Region,
then the component scan would pick up all these classes and create Regions for them. The NonEntity
class only serves as a marker in this case pointing to where (i.e. what package) the scan should
begin.

Additionally, the @EnableEntityDefinedRegions annotation provides include and exclude filters, the
same as the core Spring Frameworks @ComponentScan annotation.

 Refer to the SDG Reference Guide on Configuring Regions for more details.

@EnableClusterDefinedRegions

Sometimes it is ideal or even necessary to pull configuration from the cluster (rather than push to
the cluster). That is, you want the Regions defined on the servers to be created on the client and
used by your application.

This is as simple as annotating your main @SpringBootApplication class with
@EnableClusterDefinedRegions:

51

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-regions

Using @EnableClusterDefinedRegions

@SpringBootApplication
@EnableClusterDefinedRegions
class SpringBootApacheGeodeClientCacheApplication { }

Every Region that exists on the cluster of servers will have a corresponding PROXY Region defined
and created on the client as a bean in your Spring Boot application.

If the cluster of servers defines a Region called "ServerRegion" you can inject the client PROXY Region
by the same name (i.e. "ServerRegion") into your Spring Boot application and use it:

Using a server-side Region on the client

@Component
class SomeApplicationComponent {

 @Resource(name = "ServerRegion")
 private Region<Integer, EntityType> serverRegion;

 public void someMethod() {

 EntityType entity = new EntityType();

 this.serverRegion.put(1, entity);

 // ...
 }
}

Of course, SBDG auto-configures a GemfireTemplate for the "ServerRegion" Region (as described
here), so a better way to interact with the client PROXY Region corresponding to the "ServerRegion"
Region on the server is to inject the template:

52

Using a server-side Region on the client with a template

@Component
class SomeApplicationComponent {

 @Autowired
 @Qualifier("serverRegionTemplate")
 private GemfireTemplate serverRegionTemplate;

 public void someMethod() {

 EntityType entity = new EntityType();

 this.serverRegionTemplate.put(1, entity);

 //...
 }
}

Refer to the SDG Reference Guide on Configuring Cluster-defined Regions for more
details.

6.3.3. @EnableIndexing (SDG)

Only when using @EnableEntityDefinedRegions can you also use the @EnableIndexing annotation. This
is because @EnableIndexing requires the entities to be scanned and analyzed for mapping metadata
defined on the class type of the entity. This includes annotations like Spring Data Commons @Id
annotation as well as SDG provided annotations, @Indexed and @LuceneIndexed.

The @Id annotation identifies the (primary) key of the entity. The @Indexed defines OQL Indexes on
object fields which are used in the predicates of your OQL Queries. The @LuceneIndexed annotation
is used to define Apache Lucene Indexes required for searches.

Lucene Indexes can only be created on PARTITION Regions, and PARTITION Regions
are only defined on the server-side.

You may have noticed that the Customer entity class’s name field was annotated with @Indexed.

53

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-cluster-defined

Customer entity class with @Indexed annotated name field

@Region("Customers")
class Customer {

 @Id
 private Long id;

 @Indexed
 private String name;

}

As a result, when our main @SpringBootApplication class is annotated with @EnableIndexing:

Using @EnableIndexing

@SpringBootApplication
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
@EnableIndexing
class SpringBootApacheGeodeClientCacheApplication { }

An Apache Geode OQL Index for the Customer.name field will be created thereby making OQL
Queries on Customers by name use this Index.

Keep in mind that OQL Indexes are not persistent between restarts (i.e. Apache
Geode maintains Indexes in-memory only). An OQL Index is always rebuilt when
the node is restarted.

When you combine @EnableIndexing with either @EnableClusterConfiguration or
@EnableClusterAware, then the Index definitions will be pushed to the server-side Regions where
OQL Queries are generally executed.

 Refer to the SDG Reference Guide on Configuring Indexes for more details.

6.3.4. @EnableExpiration (SDG)

It is often useful to define both Eviction and Expiration policies, particularly with a system like
Apache Geode, especially given it primarily keeps data in-memory, on the JVM Heap. As you can
imagine your data volume size may far exceed the amount of available JVM Heap memory and/or
keeping too much data on the JVM Heap can cause Garbage Collection (GC) issues.

You can enable off-heap (or main memory usage) capabilities by declaring SDG’s
@EnableOffHeap annotation. Refer to the SDG Reference Guide on Configuring Off-
Heap Memory for more details.

Defining Eviction and Expiration policies is a useful for limiting what is kept in memory and for
how long.

54

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-indexes
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-off-heap
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-off-heap

While configuring Eviction is easy with SDG, we particularly want to call out Expiration since
configuring Expiration has special support in SDG.

With SDG, it is possible to define the Expiration policies associated with a particular application
class type on the class type itself, using the @Expiration, @IdleTimeoutExpiration and
@TimeToLiveExpiration annotations.

Refer to the Apache Geode User Guide for more details on the different Expiration
Types (i.e. Idle Timeout (TTI) vs. Time-To-Live (TTL)).

For example, suppose we want to limit the number of Customers maintained in memory for a period
of time (measured in seconds) based on the last time a Customer was accessed (e.g. read). We can the
define an Idle Timeout Expiration policy on our Customer class type, like so:

Customer entity class with @Indexed annotated name field

@Region("Customers")
@IdleTimeoutExpiration(action = "INVALIDATE", timeout = "300")
class Customer {

 @Id
 private Long id;

 @Indexed
 private String name;

}

The Customer entry in the "Customers" Region will be invalidated after 300 seconds (or 5 minutes).

All we need to do to enable annotation-based Expiration policies is annotate our main
@SpringBootApplication class with @EnableExpiration:

Enabling Expiration

@SpringBootApplication
@EnableExpiration
class SpringBootApacheGeodeApplication { }

Technically, this entity class specific Annotation-based Expiration policy is
implemented using Apache Geode’s CustomExpiry interface.

Refer to the SDG Reference Guide for more details on configuring Expiration, along
with Annotation-based Data Expiration in particular.

6.3.5. @EnableGemFireMockObjects (STDG)

Software Testing in general, and Unit Testing in particular, are a very important development tasks

55

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-eviction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-eviction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-expiration
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-expiration
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/expiration/Expiration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/expiration/IdleTimeoutExpiration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/expiration/TimeToLiveExpiration.html
https://geode.apache.org/docs/guide/113/developing/expiration/how_expiration_works.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CustomExpiry.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-expiration
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap:region:expiration:annotation

to ensure the quality of your Spring Boot applications.

Apache Geode can make testing difficult in some cases, especially when tests have to be written as
Integration Tests in order to assert the correct behavior. This can be very costly and lengthens the
feedback cycle. Fortunately, it is possible to write Unit Tests as well!

Spring has your back and once again provides a framework for testing Spring Boot applications
using Apache Geode. This is where the Spring Test for Apache Geode (STDG) project can help,
particularly with Unit Testing.

For example, if you do not care what Apache Geode would actually do in certain cases and only
care about the "contract", which is what mocking a collaborator is all about, then you could
effectively mock Apache Geode objects in order to isolate the "Subject Under Test" (SUT) and focus
on the interaction(s) or outcomes you expect to happen.

With STDG, you don’t have to change a bit of configuration to enable mocks in the Unit Tests for
your Spring Boot applications. You simply only need to annotate the test class with
@EnableGemFireMockObjects, like so:

Using Mock Apache Geode Objects

@RunWith(SpringRunner.class)
@SpringBootTest
class MyApplicationTestClass {

 @Test
 public void someTestCase() {
 // ...
 }

 @Configuration
 @EnableGemFireMockObjects
 static class GeodeConfiguration { }

}

Your Spring Boot configuration of Apache Geode will return mock objects for all Apache Geode
objects, such as Regions.

Mocking Apache Geode objects even works for objects created from the productivity annotations
discussed in the previous sections above.

For example, given the following Spring Boot, Apache Geode ClientCache application class:

Main @SpringBootApplication class under test

@SpringBootApplication
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
class SpringBootApacheGeodeClientCacheApplication { }

56

https://github.com/spring-projects/spring-test-data-geode#spring-test-framework-for-apache-geode—vmware-tanzu-gemfire

The "Customers" Region defined by the Customer entity class and created by the
@EnableEntityDefinedRegions annotation would be a "mock" Region and not an actual Region. You
can still inject the Region in your test as before and assert interactions on the Region based on your
application workflows:

Using Mock Apache Geode Objects

@RunWith(SpringRunner.class)
@SpringBootTest
class MyApplicationTestClass {

 @Resource(name = "Customers")
 private Region<Long, Customer> customers;

 @Test
 public void someTestCase() {

 Customer jonDoe = new Customer(1, "Jon Doe");

 // Use the application in some way and test the interaction on the "Customers"
Region

 assertThat(this.customers).containsValue(jonDoe);

 // ...
 }
}

There are many more things that STDG can do for you in both Unit & Integration Testing.

Refer to the documentation on Unit Testing for more details.

It is possible to write Integration Tests using STDG as well. Writing Integration Tests is an essential
concern when you need to assert whether your application OQL Queries are well-formed, for
instance. There are many other valid cases where Integration Testing is also applicable.

57

https://github.com/spring-projects/spring-test-data-geode#unit-testing-with-stdg
https://github.com/spring-projects/spring-test-data-geode#integration-testing-with-stdg
https://github.com/spring-projects/spring-test-data-geode#integration-testing-with-stdg

Chapter 7. Externalized Configuration
Like Spring Boot itself (see here), Spring Boot for Apache Geode (SBDG) supports externalized
configuration.

By externalized configuration, we mean configuration metadata stored in a Spring Boot
application.properties file, for instance. Properties can even be delineated by concern, broken out
into individual properties files, that are perhaps only enabled by a specific Profile.

There are many other powerful things you can do, such as, but not limited to, using placeholders in
properties, encrypting properties, and so on. What we are particularly interested in, in this section,
is type-safety.

Like Spring Boot, Spring Boot for Apache Geode provides a hierarchy of classes used to capture
configuration for several Apache Geode features in an associated @ConfigurationProperties
annotated class. Again, the configuration metadata is specified as well-known, documented
properties in 1 or more Spring Boot application.properties files.

For instance, I may have configured my Spring Boot, ClientCache application as follows:

Spring Boot application.properties containing Spring Data properties for Apache Geode

Spring Boot application.properties used to configure {geode-name}

spring.data.gemfire.name=MySpringBootApacheGeodeApplication

Configure general cache properties
spring.data.gemfire.cache.copy-on-read=true
spring.data.gemfire.cache.log-level=debug

Configure ClientCache specific properties
spring.data.gemfire.cache.client.durable-client-id=123
spring.data.gemfire.cache.client.keep-alive=true

Configure a log file
spring.data.gemfire.logging.log-file=/path/to/geode.log

Configure the client's connection Pool to the servers in the cluster
spring.data.gemfire.pool.locators=10.105.120.16[11235],boombox[10334]

There are many other properties a user may use to externalize the configuration of their Spring
Boot, Apache Geode applications. You may refer to the Spring Data for Apache Geode (SDG)
configuration annotations Javadoc for specific configuration properties as needed. Specifically,
review the "enabling" annotation attributes.

There may be cases where you require access to the configuration metadata (specified in
properties) in your Spring Boot applications themselves, perhaps to further inspect or act on a
particular configuration setting.

58

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-application-property-files
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-application-property-files
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-profile-specific-properties
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-placeholders-in-properties
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-encrypting-properties
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-typesafe-configuration-properties
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/package-frame.html

Of course, you can access any property using Spring’s Environment abstraction, like so:

Using the Spring Environment

@Configuration
class GeodeConfiguration {
 void readConfigurationFromEnvironment(Environment environment) {
 boolean copyOnRead = environment.getProperty("spring.data.gemfire.cache.copy-on-
read", Boolean.TYPE, false);
 }
}

While using the Environment is a nice approach, you might need access to additional properties or
want to access the property values in a type-safe manner. Therefore, it is now possible, thanks to
SBDG’s auto-configured configuration processor, to access the configuration metadata using
provided @ConfigurationProperties classes.

Following on to our example above, I can now do the following:

Using GemFireProperties

@Component
class MyApplicationComponent {

 @Autowired
 private GemFireProperties gemfireProperties;

 public void someMethodUsingGemFireProperties() {

 boolean copyOnRead = this.gemfireProperties.getCache().isCopyOnRead();

 // do something with `copyOnRead`
 }
}

Given a handle to GemFireProperties, you can access any of the configuration properties used to
configure Apache Geode in a Spring context. You simply only need to autowire an instance of
GemFireProperties into your application component.

A complete reference to the SBDG provided @ConfigurationProperties classes and supporting classes
is available here.

7.1. Externalized Configuration of Spring Session
The same capability applies to accessing the externalized configuration of Spring Session when
using Apache Geode as your (HTTP) Session state caching provider.

In this case, you simply only need to acquire a reference to an instance of the
SpringSessionProperties class.

59

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/env/Environment.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/configuration/GemFireProperties.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/configuration/package-frame.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/configuration/SpringSessionProperties.html

As before, you would specify Spring Session for Apache Geode (SSDG) properties as follows:

Spring Boot application.properties for Spring Session using Apache Geode as the (HTTP) Session state
caching provider

Spring Boot application.properties used to configure {geode-name} as a Session state
caching provider in Spring Session

spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds=300
spring.session.data.gemfire.session.region.name=UserSessions

Then, in your application:

Using SpringSessionProperties

@Component
class MyApplicationComponent {

 @Autowired
 private SpringSessionProperties springSessionProperties;

 public void someMethodUsingSpringSessionProperties() {

 String sessionRegionName =
this.springSessionProperties.getSession().getRegion().getName();

 // do something with `sessionRegionName`
 }
}

60

Chapter 8. Using Geode Properties
As of Spring Boot for Apache Geode (SBDG) 1.3, it is possible to declare Apache Geode properties
from gemfire.properties in a Spring Boot application.properties file.

 A complete list of valid Apache Geode properties can be found in the User Guide.

It should be known that only valid Geode Properties can be declared in gemfire.properties, or
alternatively, gfsecurity.properties.

For example:

Valid gemfire.properties

Geode Properties in gemfire.properties

name=ExampleCacheName
log-level=TRACE
enable-time-statistics=true
durable-client-id=123
...

All of the properties declared in the gemfire.properties file shown above correspond to valid Geode
Properties. It is illegal to declare properties in a gemfire.properties file that are not valid Geode
Properties, even if those properties are prefixed with a different qualifier (e.g. "spring.*"). Apache
Geode is very particular about this and will throw an IllegalArgumentException for invalid
properties.

For example, given the following gemfire.properties file with "invalid-property" declared:

Invalid gemfire.properties

Geode Properties in gemfire.properties

name=ExampleCacheName
invalid-property=TEST

Apache Geode throws an IllegalArgumentException:

61

https://geode.apache.org/docs/guide/113/reference/topics/gemfire_properties.html

Apache Geode Exception for Invalid Property (Full Text Omitted)

Exception in thread "main" java.lang.IllegalArgumentException: Unknown configuration
attribute name invalid-property.
Valid attribute names are: ack-severe-alert-threshold ack-wait-threshold archive-disk-
space-limit ...
 at o.a.g.internal.AbstractConfig.checkAttributeName(AbstractConfig.java:333)
 at
o.a.g.distributed.internal.AbstractDistributionConfig.checkAttributeName(AbstractDistr
ibutionConfig.java:725)
 at
o.a.g.distributed.internal.AbstractDistributionConfig.getAttributeType(AbstractDistrib
utionConfig.java:887)
 at o.a.g.internal.AbstractConfig.setAttribute(AbstractConfig.java:222)
 at
o.a.g.distributed.internal.DistributionConfigImpl.initialize(DistributionConfigImpl.ja
va:1632)
 at
o.a.g.distributed.internal.DistributionConfigImpl.<init>(DistributionConfigImpl.java:9
94)
 at
o.a.g.distributed.internal.DistributionConfigImpl.<init>(DistributionConfigImpl.java:9
03)
 at
o.a.g.distributed.internal.ConnectionConfigImpl.lambdanew2(ConnectionConfigImpl.java
:37)
 at
o.a.g.distributed.internal.ConnectionConfigImpl.convert(ConnectionConfigImpl.java:73)
 at
o.a.g.distributed.internal.ConnectionConfigImpl.<init>(ConnectionConfigImpl.java:36)
 at
o.a.g.distributed.internal.InternalDistributedSystem$Builder.build(InternalDistributed
System.java:3004)
 at
o.a.g.distributed.internal.InternalDistributedSystem.connectInternal(InternalDistribut
edSystem.java:269)
 at
o.a.g.cache.client.ClientCacheFactory.connectInternalDistributedSystem(ClientCacheFact
ory.java:280)
 at o.a.g.cache.client.ClientCacheFactory.basicCreate(ClientCacheFactory.java:250)
 at o.a.g.cache.client.ClientCacheFactory.create(ClientCacheFactory.java:216)
 at org.example.app.ApacheGeodeClientCacheApplication.main(...)

It is inconvenient to have to separate Apache Geode properties from other application properties,
or to have to declare only Apache Geode properties in a gemfire.properties file and application
properties in a separate properties file, such as Spring Boot application.properties.

Additionally, because of Apache Geode’s constraint on properties, you are not able to leverage the
full power of Spring Boot when composing application.properties.

62

It is well-known that you can include certain properties based on a Spring Profile while excluding
other properties. This is essential when properties are environment or context specific.

Of course, users should be aware that Spring Data for Apache Geode (SDG) provide a wide range of
properties mapping to Apache Geode properties already.

For example, the SDG spring.data.gemfire.locators property maps to the gemfire.locators property
(or simply, locators in gemfire.properties) from Apache Geode. Likewise, there are a full set of SDG
properties mapping to the corresponding Apache Geode properties in the Appendix.

The Geode Properties shown above can be expressed as SDG Properties in Spring Boot
application.properties as follows:

Configurring Geode Properties using SDG Properties

Spring Data for {geode-name} properties in application.properties

spring.data.gemfire.name=ExampleCacheName
spring.data.gemfire.cache.log-level=TRACE
spring.data.gemfire.stats.enable-time-statistics=true
spring.data.gemfire.cache.client.durable-client-id=123
...

However, there are some Apache Geode properties that have no equivalent SDG property, such as
gemfire.groups (or simply, groups in gemfire.properties). This is partly due to the fact that many
Apache Geode properties are applicable only configured on the server (e.g. groups or enforce-
unique-host).

See the @EnableGemFireProperties annotation (attributes) from SDG for a complete
list of Apache Geode properties, which have no corresponding SDG property.

Furthermore, many of the SDG properties also correspond to API calls.

For example, spring.data.gemfire.cache.client.keep-alive (see here) actually translates to the call,
ClientCache.close(boolean keepAlive) (see here).

Still, it would be convenient to be able to declare application and Apache Geode properties
together, in a single properties file, such as Spring Boot application.properties. After all, it is not
uncommon to declare JDBC Connection properties in a Spring Boot application.properties file.

Therefore, as of SBDG 1.3, it is now possible to declare Apache Geode properties in Spring Boot
application.properties directly.

For example:

63

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableGemFireProperties.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#keepAlive--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientCache.html#close-boolean-

Geode Properties declared in Spring Boot application.properties

Spring Boot application.properties

server.port=8181
spring.application.name=ExampleApp
gemfire.durable-client-id=123
gemfire.enable-time-statistics=true

This is convenient and ideal for several reasons:

1. If you already have a large number of Apache Geode properties declared as gemfire. properties,
either in gemfire.properties or gfsecurity.properties, or declared on the Java command-line as
JVM System Properties (e.g. -Dgemfire.name=ExampleCacheName), then you can reuse these
property declarations as is.

2. If you are unfamiliar with SDG’s corresponding properties, then you can simply declare Geode
Properties instead.

3. You can take advantage of Spring features, such as Spring Profiles.

4. You can also use Property Placeholders with Geode Properties, e.g. gemfire.log-
level=${external.log-level.property}

 As much as possible, we encourage users to use the SDG provided properties.

However, 1 strict requirement imposed by SBDG is that the Geode Property must have the "
gemfire." prefix in a Spring Boot application.properties file. This qualifies that the property belongs
to Apache Geode. Without, the "gemfire." prefix, the property will not be appropriately applied to
the Apache Geode cache instance.

It would be ambiguous if your Spring Boot applications integrated with several technologies,
including Apache Geode, and they too had matching properties, e.g. bind-address or log-file,
perhaps.

SBDG makes a best attempt to log warnings when the Geode Property is invalid or not set. For
example, the following Geode Property would result in a log warning:

Invalid Apache Geode Property

Spring Boot application.properties

spring.application.name=ExampleApp
gemfire.non-existing-property=TEST

The resulting warning appearing in the log would read:

[gemfire.non-existing-property] is not a valid Apache Geode property

If a Geode Property is not properly set, then the following warning will be logged:

64

Apache Geode Property [gemfire.security-manager] was not set

With regards to the 3rd point, you can now compose and declare Geode Properties based on context
(e.g. your application environment) with Spring Profiles.

For example, you might start with a base set of properties in Spring Boot application.properties:

Base Properties

server.port=8181
spring.application.name=ExampleApp
gemfire.durable-client-id=123
gemfire.enable-time-statistics=false

And then begin to vary the properties by environment:

QA Properties

Spring Boot application-qa.properties

server.port=9191
spring.application.name=TestApp
gemfire.enable-time-statistics=true
gemfire.enable-network-partition-detection=true
gemfire.groups=QA
...

Or in production:

PROD Properties

Spring Boot application-prod.properties

server.port=80
spring.application.name=ProductionApp
gemfire.archive-disk-space-limit=1000
gemfire.archive-file-size-limit=50
gemfire.enforce-unique-host=true
gemfire.groups=PROD
...

It is then a simple matter to apply the appropriate set of properties by configuring the Spring
Profile by using: -Dspring.profiles.active=prod. It is also possible to enable more than 1 profile at a
time by using: -Dspring.profiles.active=profile1,profile2,…,profileN

If both spring.data.gemfire.* properties and the matching Apache Geode properties are declared in
Spring Boot application.properties, then the SDG properties take precedence.

65

If a property is specified more than once, as would potentially be the case when composing
multiple application.properties files and you enable more than 1 Spring Profile at time, then the
last property declaration wins. In the example shown above, the value for gemfire.groups would be
PROD when -Dspring.profiles.active=qa,prod is configured.

For example, given the following Spring Boot application.properties:

Property Precedence

Spring Boot application.properties

gemfire.durable-client-id=123
spring.data.gemfire.cache.client.durable-client-id=987

Then the durable-client-id will be 987. It does not matter which order the SDG or Apache Geode
properties are declared in application.properties, the matching SDG property will override the
Apache Geode property when duplicates are found.

Finally, it is not possible to refer to Geode Properties declared in Spring Boot application.properties
with the SBDG GemFireProperties class (See Javadoc).

For example, given:

Geode Properties declared in Spring Boot application.properties

Spring Boot application.properties

gemfire.name=TestCacheName

The following assertion holds:

import org.springframework.geode.boot.autoconfigure.configuration.GemFireProperties;

@RunWith(SpringRunner.class)
@SpringBootTest
class GemFirePropertiesTestSuite {

 @Autowired
 private GemFireProperties gemfireProperties;

 @Test
 public void gemfirePropertiesTestCase() {

assertThat(this.gemfireProperties.getCache().getName()).isNotEqualTo("TestCacheName");
 }
}

66

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/configuration/GemFireProperties.html

application.properties can be declared in the @SpringBootTest annotation. For
example, gemfire.name could have been declared in the annotation using the
declaration, @SpringBootTest(properties = { "gemfire.name=TestCacheName" }), for
testing purposes instead of declaring the property in a separate
application.properties file.

Only spring.data.gemfire.* prefixed properties are mapped to the SBDG GemFireProperties class
hierarchy.

Again, prefer SDG Properties over Geode Properties. See SDG properties reference
in the Appendix.

67

Chapter 9. Caching with Apache Geode
One of the easiest, quickest and least invasive ways to get started using Apache Geode in your
Spring Boot applications is to use Apache Geode as a caching provider in Spring’s Cache Abstraction.
SDG enables Apache Geode to function as a caching provider in Spring’s Cache Abstraction.

See the Spring Data for Apache Geode Reference Guide for more details on the
support and configuration of Apache Geode as a caching provider in Spring’s Cache
Abstraction.

Make sure you thoroughly understand the concepts behind Spring’s Cache
Abstraction before you continue.

You can also refer to the relevant section on Caching in Spring Boot’s Reference
Documentation. Spring Boot even provides auto-configuration support for a few,
simple caching providers out-of-the-box.

Indeed, caching can be a very effective software design pattern to avoid the cost of invoking a
potentially expensive operation when, given the same input, the operation yields the same output
every time.

Some classic examples of caching include, but are not limited to: looking up a customer by name or
account number, looking up a book by ISBN, geocoding a physical address, caching the calculation
of a person’s credit score when the person applies for a financial loan.

If you need the proven power of an enterprise-class caching solution, with strong consistency, high
availability, low latency and multi-site (WAN) capabilities, then you should consider Apache Geode,
or alternatively, VMWare, Inc. offers a commercial solution built on Apache Geode called, VMware
Tanzu GemFire.

Spring’s declarative, annotation-based caching makes it extremely simple to get started with
caching, which is as easy as annotating your application components with the appropriate Spring
cache annotations.

Spring’s declarative, annotation-based caching also supports JCache (JSR-107)
annotations.

For example, suppose you want to cache the results of determining a person’s eligibility when
applying for a financial loan. A person’s financial status is unlikely to change in the time that the
computer runs the algorithms to compute a person’s eligibility after all the financial information
for the person has been collected and submitted for review and processing.

Our application might consist of a financial loan service to process a person’s eligibility over a
given period of time:

68

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-store-configuration
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-store-configuration-gemfire
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:spring-cache-abstraction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-caching
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-strategies
https://docs.spring.io/spring-boot/docs/current/reference/html/#boot-features-caching
https://docs.spring.io/spring-boot/docs/current/reference/html/#_supported_cache_providers
https://geode.apache.org/
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-annotations
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-jsr-107

Spring application service component applicable to caching

@Service
class FinancialLoanApplicationService {

 @Cacheable("EligibilityDecisions")
 EligibilityDecision processEligibility(Person person, Timespan timespan) {
 // ...
 }
}

Notice the @Cacheable annotation declared on the processEligibility(:Person, :Timespan) method
of our service class.

When the FinancialLoanApplicationService.processEligibility(..) method is called, Spring’s
caching infrastructure first consults the "EligibilityDecisions" cache to determine if a decision has
already been computed for the given person within the given span of time. If the person’s eligibility
in the given time frame has already been determined, then the existing decision is returned from
the cache. Otherwise, the processEligibility(..) method will be invoked and the result of the
method will be cached when the method returns, before returning the decision to the caller.

Spring Boot for Apache Geode auto-configures Apache Geode as the caching provider when Apache
Geode is declared on the application classpath, and when no other caching provider (e.g. Redis) has
been configured.

If Spring Boot for Apache Geode detects that another cache provider has already been configured,
then Apache Geode will not function as the caching provider for the application. This allows users to
configure another store, e.g. Redis, as the caching provider and perhaps use Apache Geode as your
application’s persistent store.

The only other requirement to enable caching in a Spring Boot application is for the declared
caches (as specified in Spring’s or JSR-107’s caching annotations) to have been created and already
exist, especially before the operation on which caching has been applied is invoked. This means the
backend data store must provide the data structure serving as the "cache". For Apache Geode this
means a cache Region.

To configure the necessary Regions backing the caches declared in Spring’s cache annotations, this
is as simple as using Spring Data for Apache Geode’s @EnableCachingDefinedRegions annotation.

The complete Spring Boot application looks like this:

69

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCachingDefinedRegions.html

package example.app;

@SpringBootApplication
@EnableCachingDefinedRegions
class FinancialLoanApplication {

 public static void main(String[] args) {
 SpringApplication.run(FinancialLoanApplication.class, args);
 }
}

The FinancialLoanApplicationService is picked up by Spring’s classpath component
scan since this class is annotated with Spring’s @Service stereotype annotation.

You can set the DataPolicy of the Region created through the
@EnableCachingDefinedRegions annotation by setting the clientRegionShortcut to a
valid enumerated value.

Spring Boot for Apache Geode does not recognize nor apply the
spring.cache.cache-names property. Instead, you should use SDG’s
@EnableCachingDefinedRegions on an appropriate Spring Boot application
@Configuration class.

9.1. Look-Aside Caching, Near Caching, Inline Caching
and Multi-Site Caching
Four different types of caching patterns can be applied with Spring when using Apache Geode for
your application caching needs.

The 4 primary caching patterns include:

• Look-Aside Caching

• Near Caching

• Inline Caching

• Multi-Site Caching

Typically, when most users think of caching, they are thinking of Look-Aside Caching. This is the
default caching pattern applied by Spring’s Cache Abstraction.

In a nutshell, Near Caching keeps the data closer to where the data is used thereby improving on
performance due to lower latencies when data is needed (i.e. no extra network hops). This also
improves application throughput, i.e. the amount of work completed in a given period of time.

Within Inline Caching, developers have a choice between synchronous (Read/Write-Through) and
asynchronous (Write-Behind) configurations depending on the application use case and

70

requirements. Synchronous, Read/Write-Through Inline Caching is necessary if consistency is a
concern. Asynchronous, Write-Behind Inline Caching is applicable if throughput and low-latency
are a priority.

Within Multi-Site Caching, there are Active-Passive and Active-Active arrangements. More details on
Multi-Site Caching will be presented in a later release.

9.1.1. Look-Aside Caching

Refer to the corresponding Sample Guide and Code to see Look-Aside Caching
using Apache Geode in action!

The caching pattern demonstrated in the example above is a form of Look-Aside Caching.

Essentially, the data of interest is searched for in the cache first, before calling a potentially
expensive operation, e.g. like an operation that makes an IO or network bound request resulting in
either a blocking, or a latency sensitive computation.

If the data can be found in the cache (stored in-memory to reduce latency) then the data is returned
without ever invoking the expensive operation. If the data cannot be found in the cache, then the
operation must be invoked. However, before returning, the result of the operation is cached for
subsequent requests when the the same input is requested again, by another caller resulting in
much improved response times.

Again, typical Look-Aside Caching pattern applied in your application code looks similar to the
following:

Look-Aside Caching Pattern Applied

@Service
class CustomerService {

 private final CustomerRepository customerRepository;

 @Cacheable("Customers")
 Customer findByAcccount(Account account) {

 // pre-processing logic here

 Customer customer = customerRepository.findByAccoundNumber(account.getNumber());

 // post-processing logic here

 return customer;
 }
}

In this design, the CustomerRepository is perhaps a JDBC or JPA/Hibernate backed implementation
accessing the external data source (i.e. RDBMS) directly. The @Cacheable annotation wraps, or

71

guides/caching-look-aside.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/look-aside
https://content.pivotal.io/blog/an-introduction-to-look-aside-vs-inline-caching-patterns

"decorates", the findByAccount(:Account):Customer operation to provide caching facilities.

This operation may be expensive because it might validate the Customer’s Account
before looking up the Customer, pull multiple bits of information to retrieve the
Customer record, and so on, hence the need for caching.

9.1.2. Near Caching

Refer to the corresponding Sample Guide and Code to see Near Caching using
Apache Geode in action!

Near Caching is another pattern of caching where the cache is collocated with the application. This
is useful when the caching technology is configured using a client/server arrangement.

We already mentioned that Spring Boot for Apache Geode provides an auto-configured, ClientCache
instance, out-of-the-box, by default. A ClientCache instance is most effective when the data access
operations, including cache access, is distributed to the servers in a cluster accessible by the client,
and in most cases, multiple clients. This allows other cache client applications to access the same
data. However, this also means the application will incur a network hop penalty to evaluate the
presence of the data in the cache.

To help avoid the cost of this network hop in a client/server topology, a local cache can be
established, which maintains a subset of the data in the corresponding server-side cache (i.e.
Region). Therefore, the client cache only contains the data of interests to the application. This
"local" cache (i.e. client-side Region) is consulted before forwarding the lookup request to the
server.

To enable Near Caching when using either Apache Geode, simply change the Region’s (i.e. the Cache
in Spring’s Cache Abstraction) data management policy from PROXY (the default) to CACHING_PROXY,
like so:

Enabling Near Caching using Apache Geode

@SpringBootApplication
@EnableCachingDefinedRegions(clientRegionShortcut =
ClientRegionShortcut.CACHING_PROXY)
class FinancialLoanApplication {

 public static void main(String[] args) {
 SpringApplication.run(FinancialLoanApplication.class, args);
 }
}

The default, client Region data management policy is ClientRegionShortcut.PROXY.
As such, all data access operations are immediately forwarded to the server.

72

guides/caching-near.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/near
clientcache-applications.pdf#geode-clientcache-applications
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#PROXY

Also see the Apache Geode documentation concerning Client/Server Event
Distribution and specifically, "Client Interest Registration on the Server" when client
CACHING_PROXY Regions to manage state in addition to the corresponding server-
side Region. This is necessary to receive updates on entries in the Region that
might have been changed by other clients accessing the same data.

9.1.3. Inline Caching

The next pattern of caching we will discuss in this chapter is Inline Caching.

There are two different configurations of Inline Caching that developers can apply to their Spring
Boot applications when using the Inline Caching pattern: Synchronous (Read/Write-Through) and
Asynchronous (Write-Behind).

Asynchronous (currently) only offers write capabilities, from the cache to the
backend, external data source. There is no option to asynchronously and
automatically load the cache when the value becomes available in the backend,
external data source.

Synchronous Inline Caching

Refer to the corresponding Sample Guide and Code to see Inline Caching using
Apache Geode in action!

When employing Inline Caching and a cache miss occurs, the application service method may still
not be invoked since a cache can be configured to invoke a loader to load the missing entry from an
backend, external data source.

With Apache Geode the cache, or using Apache Geode terminology, the Region, can be configured
with a CacheLoader. A CacheLoader is implemented to retrieve missing values from an external data
source, which could be an RDBMS or any other type of data store (e.g. another NoSQL data store
like Apache Cassandra, MongoDB or Neo4j), when a cache miss occurs.

 See the Apache Geode User Guide on Data Loaders for more details.

Likewise, an Apache Geode Region can also be configured with a CacheWriter. A CacheWriter is
responsible for writing an entry put into the Region to the backend data store, such as an RDBMS.
This is referred to as a "write-through" operation because it is synchronous. If the backend data
store fails to be updated then the entry will not be stored in the Region. This helps to ensure
consistency between the backend data store and the Apache Geode Region.

It is also possible to implement Inline-Caching using asynchronous, write-behind
operations by registering an AsyncEventListener on an AEQ attached to a server-
side Region. You should consult the Apache Geode User Guide for more details. We
cover asynchronous, write-behind Inline Caching in the next section.

The typical pattern of Inline Caching when applied to application code looks similar to the

73

https://geode.apache.org/docs/guide/113/developing/events/how_client_server_distribution_works.html
https://geode.apache.org/docs/guide/113/developing/events/how_client_server_distribution_works.html
guides/caching-inline.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/inline
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheLoader.html
https://geode.apache.org/docs/guide/113/developing/outside_data_sources/how_data_loaders_work.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheWriter.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/asyncqueue/AsyncEventListener.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/asyncqueue/AsyncEventQueue.html
https://geode.apache.org/docs/guide/113/developing/events/implementing_write_behind_event_handler.html

following:

Inline Caching Pattern Applied

@Service
class CustomerService {

 private CustomerRepository customerRepository;

 Customer findByAccount(Account account) {

 // pre-processing logic here

 Customer customer = customerRepository.findByAccountNumber(account.getNumber());

 // post-processing logic here.

 return customer;
 }
}

The main difference is, there are no Spring or JSR-107 caching annotations applied to the
application’s service methods and the CustomerRepository is accessing Apache Geode directly and
NOT the RDBMS.

Implementing CacheLoaders & CacheWriters for Inline Caching

You can use Spring to configure a CacheLoader or CacheWriter as a bean in the Spring
ApplicationContext and then wire the loader and/or writer to a Region. Given the CacheLoader or
CacheWriter is a Spring bean like any other bean in the Spring ApplicationContext, you can inject
any DataSource you like into the Loader/Writer.

While you can configure client Regions with CacheLoaders and CacheWriters, it is typically more
common to configure the corresponding server-side Region; for example:

74

@SpringBootApplication
@CacheServerApplication
class FinancialLoanApplicationServer {

 public static void main(String[] args) {
 SpringApplication.run(FinancialLoanApplicationServer.class, args);
 }

 @Bean("EligibilityDecisions")
 PartitionedRegionFactoryBean<Object, Object> eligibilityDecisionsRegion(
 GemFireCache gemfireCache, CacheLoader decisionManagementSystemLoader,
 CacheWriter decisionManagementSystemWriter) {

 PartitionedRegionFactoryBean<?, EligibilityDecision>
eligibilityDecisionsRegion =
 new PartitionedRegionFactoryBean<>();

 eligibilityDecisionsRegion.setCache(gemfireCache);
 eligibilityDecisionsRegion.setCacheLoader(decisionManagementSystemLoader);
 eligibilityDecisionsRegion.setCacheWriter(decisionManagementSystemWriter);
 eligibilityDecisionsRegion.setPersistent(false);

 return eligibilityDecisionsRegion;
 }

 @Bean
 CacheLoader<?, EligibilityDecision> decisionManagementSystemLoader(
 DataSource dataSource) {

 return new DecisionManagementSystemLoader(dataSource);
 }

 @Bean
 CacheWriter<?, EligibilityDecision> decisionManagementSystemWriter(
 DataSource dataSource) {

 return new DecisionManagementSystemWriter(dataSource);
 }

 @Bean
 DataSource dataSource() {
 // ...
 }
}

Then, you would implement the CacheLoader and CacheWriter interfaces as appropriate:

75

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheLoader.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheWriter.html

DecisionManagementSystemLoader

class DecisionManagementSystemLoader implements CacheLoader<?, EligibilityDecision> {

 private final DataSource dataSource;

 DecisionManagementSystemLoader(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 public EligibilityDecision load(LoadHelper<?, EligibilityDecision> helper) {

 Object key = helper.getKey();

 // Use the configured DataSource to load the value identified by the key from a
backend, external data store.
 }
}

SBDG provides the org.springframework.geode.cache.support.CacheLoaderSupport
@FunctionalInterface to conveniently implement application CacheLoaders.

If the configured CacheLoader still cannot resolve the value, then the cache lookup operation results
in a miss and the application service method will then be invoked to compute the value.

76

DecisionManagementSystemWriter

class DecisionManagementSystemWriter implements CacheWriter<?, EligibilityDecision> {

 private final DataSource dataSource;

 DecisionManagementSystemWriter(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 public void beforeCreate(EntryEvent<?, EligiblityDecision> entryEvent) {
 // Use configured DataSource to save (e.g. INSERT) the entry value into the
backend data store
 }

 public void beforeUpdate(EntryEvent<?, EligiblityDecision> entryEvent) {
 // Use the configured DataSource to save (e.g. UPDATE or UPSERT) the entry value
into the backend data store
 }

 public void beforeDestroy(EntryEvent<?, EligiblityDecision> entryEvent) {
 // Use the configured DataSource to delete (i.e. DELETE) the entry value from the
backend data store
 }

 // ...
}

SBDG provides the org.springframework.geode.cache.support.CacheWriterSupport
interface to conveniently implement application CacheWriters.

Of course, your CacheWriter implementation can use any data access technology to
interface with your backend data store (e.g. JDBC, Spring’s JdbcTemplate,
JPA/Hibernate, etc). It is not limited to only using a javax.sql.DataSource. In fact,
we will present another, more useful and convenient approach to implementing
Inline Caching in the next section.

Inline Caching using Spring Data Repositories

Spring Boot for Apache Geode (SBDG) offers dedicated support to configure Inline Caching using
Spring Data Repositories.

This is very powerful because it allows you to:

1. Access any backend data store supported by Spring Data (e.g. Redis for Key/Value or other data
structures, MongoDB for Documents, Neo4j for Graphs, Elasticsearch for Search, and so on).

2. Use complex mapping strategies (e.g. ORM provided by JPA/Hibernate).

It is our belief that users should be storing data where it is most easily accessible. If you are

77

accessing and processing Documents, then MongoDB, Couchbase or another document store is
probably going to be the most logical choice to manage your application’s Documents.

However, this does not mean you have to give up Apache Geode in your application/system
architecture. You can leverage each data store for what it is good at. While MongoDB is excellent at
handling documents, Apache Geode is a highly valuable choice for consistency, high availability,
low-latency/high-throughput, multi-site, scale-out application use cases.

As such, using Apache Geode’s CacheLoader/CacheWriter functionality provides a nice integration
point between itself and other data stores to best serve your application’s use case and
requirements.

EXAMPLE

Let’s say you are using JPA/Hibernate to access (store and read) data managed in an Oracle
Database. Then, you can configure Apache Geode to read/write-through to the backend Oracle
Database when performing cache (Region) operations by delegating to a Spring Data JPA Repository.

The configuration might look something like:

Inline Caching configuration using SBDG

@SpringBootApplication
@EntityScan(basePackageClasses = Customer.class)
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
@EnableJpaRepositories(basePackageClasses = CustomerRepository.class)
class SpringBootOracleDatabaseApacheGeodeApplication {

 @Bean
 InlineCachingRegionConfigurer<Customer, Long>
inlineCachingForCustomersRegionConfigurer(
 CustomerRepository customerRepository) {

 return new InlineCachingRegionConfigurer<>(customerRepository,
Predicate.isEqual("Customers"));
 }
}

Out-of-the-box, SBDG provides the InlineCachingRegionConfigurer<ENTITY, ID> interface.

Given a Predicate to express the criteria used to match the target Region by name and a Spring Data
CrudRepository, the InlineCachingRegionConfigurer will configure and adapt the Spring Data
CrudRepository as a CacheLoader and CacheWriter registered on the Region (e.g. "Customers") to
enable Inline Caching functionality.

You simply only need to declare InlineCachingRegionConfigurer as a bean in the Spring
ApplicationContext and make the association between the Region (by name) and the appropriate
Spring Data CrudRepository.

In this example, we used JPA and Spring Data JPA to store/retrieve the data in the cache (Region)

78

to/from a backend database. But, you can inject any Spring Data Repository for any data store (e.g.
Redis, MongoDB, etc) that supports the Spring Data Repository abstraction.

If you only want to support one way data access operations when using Inline
Caching, then you can use either the RepositoryCacheLoaderRegionConfigurer for
reads or the RepositoryCacheWriterRegionConfigurer for writes, instead of the
InlineCachingRegionConfigurer, which supports both reads and writes.

To see a similar implementation of Inline Caching using a Database (In-Memory,
HSQLDB Database) in action, have a look at this test class from the SBDG test suite.
A dedicated sample will be provided in a future release.

Asynchronous Inline Caching

Refer to the corresponding Sample Guide and Code to see Asynchronous Inline
Caching using Apache Geode in action!

If consistency between the cache and your external, backend data source is not a concern, and you
only need to write from the cache to the backend data store periodically, then you can employ
asynchronous (Write-Behind) Inline Caching.

As the term "Write-Behind" implies, a write to the backend data store is asynchronous and not
strictly tied to the cache operation. As a result, the backend data store will be in an "eventually
consistent" state since the cache is primarily used by the application at runtime to access and
manage data. In this case, the backend data store is used to persist the state of the cache, and that of
the application, at periodic intervals.

Of course, if multiple applications are updating the backend data store concurrently, you could
combine a CacheLoader to synchronously "Read-Through" to the backend data store and keep the
cache up-to-date as well as asynchronously Write-Behind from the cache to the backend data store
when the cache is updated to eventually inform other interested applications of data changes. In
this capacity, the backend data store is still the primary System of Record (SOR).

If data processing is not time sensitive, you can gain a performance advantage from periodic,
quantity and/or time-based batch updates.

Implementing an AsyncEventListener for Inline Caching

If you were to configure asynchronous (Write-Behind) Inline Caching by hand, then you would need
to do all of the following yourself:

1. Implement an AsyncEventListener to write to an external, backend data source on cache events

2. Configure, create and register the listener with an AsyncEventQueue (AEQ)

3. Create a Region serving as the source of cache events and attach the AEQ

The advantage of this approach is you have access to and control over low-level configuration
details. The disadvantage, of course, is with more moving parts, it is easier to mess things up.

79

https://github.com/spring-projects/spring-boot-data-geode/blob/master/spring-geode/src/test/java/org/springframework/geode/cache/inline/database/InlineCachingWithDatabaseIntegrationTests.java
guides/caching-inline-async.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/inline-async

Following on from our synchronous (Read/Write-Through) Inline Caching examples from the prior
sections above, our AsyncEventListener implementation might appear as follows:

Example AsyncEventListener for Async Inline Caching

@Component
class ExampleAsyncEventListener implements AsyncEventListener {

 private final DataSource dataSource;

 ExampleAsyncEventListener(DataSoruce dataSource) {
 this.dataSource = dataSource;
 }

 @Override
 public boolean processEvents(List<AsyncEvent> events) {

 // Iterate over the ordered AsyncEvents and use the DataSource
 // to write to the external, backend DataSource

 }
}

Instead of injecting a DataSource into your AsyncEventListener directly, you could
use JDBC, Spring’s JdbcTemplate, JPA/Hibernate or another data access
API/Framework. Further below, we will show how SBDG simplifies the
AsyncEventListener implementation by using Spring Data Repositories.

Then, we need to register this listener with a AsyncEventQueue (AEQ) (#2) and attach it to the target
Region that will be the source of the cache events we want to persist asynchronously (#3):

80

Configure and Create an AsyncEventQueue

@Configuration
@PeerCacheApplication
class GeodeConfiguration {

 @Bean
 DataSource exampleDataSource() {
 // Configure and construct a data store specific DataSource
 }

 @Bean
 ExampleAsyncEventListener exampleAsyncEventListener(DataSource dataSource) {
 return new ExampleAsyncEventListener(dataSource);
 }

 @Bean
 AsyncEventQueueFactoryBean exampleAsyncEventQueue(Cache peerCache,
ExampleAsyncEventListener listener) {

 AsyncEventQueueFactoryBean asyncEventQueue = new
AsyncEventQueueFactoryBean(peerCache, listener);

 asyncEventQueue.setBatchConflationEnabled(true);
 asyncEventQueue.setBatchSize(50);
 asyncEventQueue.setBatchTimeInterval(15000); // 15 seconds
 asyncEventQueue.setMaximumQueueMemory(64); // 64 MB
 // ...

 return asyncEventQueue;
 }

 @Bean("Example")
 PartitionedRegionFactoryBean<?, ?> exampleRegion(Cache peerCache, AsyncEventQueue
queue) {

 PartitionedRegionFactoryBean<?, ?> exampleRegion = new
PartitionedRegionFactoryBean<>();

 exampleRegion.setAsyncEventQueues(ArrayUtils.asArray(queue));
 exampleRegion.setCache(peerCache);
 // ...

 return exampleRegion;
 }
}

While this approach affords you the developer a lot of control over the (low-level) configuration, in
addition to your AsyncEventListener implementation, this is a lot of boilerplate code.

81

See the Javadoc on SDG’s AsyncEventQueueFactoryBean for more details on the
configuration of the AEQ.

 See Apache Geode’s User Guide for more details on AEQs and listeners.

Fortunately, with SBDG, there is a better way!

Asynchronous Inline Caching using Spring Data Repositories

The implementation and configuration of the AsyncEventListener as well as the AEQ shown above
can be simplified as follows:

Using SBDG to configure Asynchronous (Write-Behind) Inline Caching

@SpringBootApplication
@EntityScan(basePackageClasses = ExampleEntity.class)
@EnableJpaRepositories(basePackageClasses = ExampleRepository.class)
@EnableEntityDefinedRegions(basePackageClasses = ExampleEnity.class)
class ExampleSpringBootApacheGeodeAsyncInlineCachingApplication {

 @Bean
 AsyncInlineCachingRegionConfigurer asyncInlineCachingRegionConfigurer(
 CrudRepository<ExampleEntity, Long> repository) {

 return AsyncInlineCachingRegionConfigurer.create(repository, "Example")
 .withQueueBatchConflationEnabled()
 .withQueueBatchSize(50)
 .withQueueBatchTimeInterval(Duration.ofSeconds(15))
 .withQueueMaxMemory(64);
 }
}

The AsyncInlineCachingRegionConfigurer.create(..) method is overloaded to accept a Predicate in
place of the String in order to express more powerful matching logic, programmatically, identifying
the target Region (by name) on which to configure asynchronous Inline Caching functionality.

The AsyncInlineCachingRegionConfigurer uses the Builder Software Design Pattern and
withQueue*(..) builder methods to configure the underlying AsyncEventQueue (AEQ) when the
queue’s configuration deviates from the defaults, as specified by Apache Geode.

Under-the-hood, the AsyncInlineCachingRegionConfigurer constructs a new instance of the
RepositoryAsyncEventListener class initialized with the given Spring Data CrudRepository. The
RegionConfigurer then registers the listener with the AEQ and attaches it to the target Region.

With the power of Spring Boot auto-configuration and SBDG, the configuration is much more
concise and intuitive.

About RepositoryAsyncEventListener

The SBDG RepositoryAsyncEventListener class is the magic sauce behind the integration of the cache

82

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/wan/AsyncEventQueueFactoryBean.html
https://geode.apache.org/docs/guide/113/developing/events/implementing_write_behind_event_handler.html
https://en.wikipedia.org/wiki/Builder_pattern

with an external, backend data source.

The listener is a specialized Adpater that processes AsyncEvents by invoking an appropriate
CrudRepository method based on the cache operation. The listener requires an instance of
CrudRepository. As such, the listener supports any external, backend data source supported by
Spring Data’s Repository abstraction.

Of course, backend data store, data access operations (e.g. INSERT, UPDATE, DELETE, etc) triggered
by cache events are performed asynchronously from the cache operation. This means the state of
the cache and backend data store will be "eventually consistent".

ERROR HANDLING

Given the complex nature of "eventually consistent" systems and asynchronous concurrent
processing, the RepositoryAsyncEventListener allows users to register a custom
AsyncEventErrorHandler to handle the errors that occur during processing of AsyncEvents, perhaps
due to a faulty backend data store data access operation (e.g. OptimisticLockingFailureException), in
an application relevant way.

The AsyncEventErrorHandler interface is a java.util.function.Function implementation and
@FunctionalInterface defined as:

AsyncEventErrorHandler interface definition

@FunctionalInterface
interface AsyncEventErrorHandler implements Function<AsyncEventError, Boolean> { }

The AsyncEventError class encapsulates AsyncEvent along with the Throwable that was thrown while
processing the event.

Since the AsyncEventErrorHandler interface implements Function, then you would override the
apply(:AsyncEventError) method to handle the error with application-specific actions. The handler
returns a Boolean to indicate whether it was able to handle the error or not.

83

https://en.wikipedia.org/wiki/Adapter_pattern

Custom AsyncEventErrorHandler implementation

class CustomAsyncEventErrorHandler implements AsyncEventErrorHandler {

 @Override
 public Boolean apply(AsyncEventError error) {

 if (error.getCause() instanceof OptimisticLockingFailureException) {
 // handle optimistic locking failure if you can
 return true; // if error was successfully handled.
 }
 else if (error.getCause() instanceof IncorrectResultSizeDataAccessException) {
 // handle no row or too many row update if you can
 return true; // if error was successfully handled.
 }

 return false;
 }
}

It is easy to configure the RepositoryAsyncEventListener with your custom AsyncEventErrorHandler
using the AsyncInlineCachingRegionConfigurer, like so:

Configuring a custom AsyncEventErrorHandler

@Configuration
class GeodeConfiguration {

 @Bean
 CustomAsyncEventErrorHandler customAsyncEventErrorHandler() {
 return new CustomAsyncEventErrorHandler();
 }

 @Bean
 AsyncInlineCachingRegionConfigurer asyncInlineCachingRegionConfigurer(
 CrudRepository<?, ?> repository,
 CustomAsyncEventErrorHandler errorHandler
) {

 return AsyncInlineCachingRegionConfigurer.create(repository, "Example")
 .withAsyncEventErrorHandler(errorHandler);
 }
}

Also, since AsyncEventErrorHandler implements Function, you can "compose" multiple error handlers
using Function.andThen(:Function).

SUPPORTED CACHE OPERATIONS

By default, the RepositoryAsyncEventListener handles CREATE, UPDATE and REMOVE cache event, entry

84

https://en.wikipedia.org/wiki/Composite_pattern
https://en.wikipedia.org/wiki/Composite_pattern
https://en.wikipedia.org/wiki/Composite_pattern
https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html#andThen-java.util.function.Function-

operations.

CREATE and UPDATE translates to CrudRepository.save(entity) where the entity is derived from
AsyncEvent.getDeserializedValue().

REMOVE translates to CrudRepository.delete(entity) where the entity is derived from
AsyncEvent.getDeserializedValue().

The cache Operation to CrudRepository method is supported by the
AsyncEventOperationRepositoryFunction interface, which implements java.util.function.Function
and is a @FunctionalInterface.

This interface becomes useful if and when you want to implement CrudRepository method
invocations for other AsyncEvent Operations not handled by SBDG’s RepositoryAsyncEventListener
out-of-the-box.

The AsyncEventOperationRepositoryFunction interface is defined as:

AsyncEventOperationRepositoryFunction interface definition

@FunctionalInterface
interface AsyncEventOperationRepositoryFunction<T, ID> implements
Function<AsyncEvent<ID, T>, Boolean> {

 default boolean canProcess(AsyncEvent<ID, T> event) {
 return false;
 }
}

T is the class type of the entity and ID is the class type of the entity’s identifier (ID), possibly declared
with Spring Data’s org.springframework.data.annotation.Id annotation.

For convenience, SBDG provides the AbstractAsyncEventOperationRepositoryFunction class for
extension, where you would provide implementations for the cacheProcess(:AsyncEvent) and
doRepositoryOp(entity) methods.

The AsyncEventOperationRepositoryFunction.apply(:AsyncEvent) method is already
implemented in terms of canProcess(:AsyncEvent), resolveEntity(:AsyncEvent),
doRepositoryOp(entity), and catching and handling any Throwable (errors) by
calling the configured AsyncEventErrorHandler.

For example, you might want to handle Operation.INVALIDATE cache events as well, deleting the
entity from the backend data store by invoking the CrudRepository.delete(entity) method:

85

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Operation.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/annotation/Id.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Operation.html#INVALIDATE

Handling AsyncEvent, Operation.INVALIDATE

@Component
class InvalidateAsyncEventRepositoryFunction
 extends
RepositoryAsyncEventListener.AbstractAsyncEventOperationRepositoryFunction<?, ?> {

 InvalidateAsyncEventRepositoryFunction(RepositoryAsyncEventListener<?, ?>
listener) {
 super(listener);
 }

 @Override
 public boolean canProcess(AsyncEvent<?, ?> event) {
 return event != null && Operation.INVALIDATE.equals(event.getOperation());
 }

 @Override
 protected Object doRepositoryOperation(Object entity) {
 getRepository().delete(entity);
 return null;
 }
}

You can then register your user-defined, AsyncEventOperationRepositoryFunction (i.e.
InvalidateAsyncEventRepositoryFunction) with the RepositoryAsyncEventListener by using the
AsyncInlineCachingRegionConfigurer, like so:

86

Configuring a user-defined AsyncEventOperationRepositoryFunction

import org.springframework.geode.cache.RepositoryAsyncEventListener;@Configuration
class GeodeConfiguration {

 @Bean
 AsyncInlineCachingRegionConfigurer asyncInlineCachingRegionConfigurer(
 CrudRepository<?, ?> repository,
 CustomerAsyncEventErrorHandler errorHandler
) {

 return AsyncInlineCachingRegionConfigurer.create(repository, "ExampleRegion")
 .applyToListener(listener -> {

 if (listener instanceof RepositoryAsyncEventListener) {

 RepositoryAsyncEventListener<?, ?> repositoryListener =
 (RepositoryAsyncEventListener<?, ?>) listener;

 repositoryListener.register(new
InvalidAsyncEventRepositoryFunction(repositoryListener));
 }

 return listener;
 });
 }
}

This same technique can be applied to CREATE, UPDATE and REMOVE cache operations as well,
effectively overriding the default behavior for this cache operations handled by SBDG out-of-the-
box.

About AsyncInlineCachingRegionConfigurer

As we saw in the previous section, it is possible to intercept and post-process key components
constructed and configured by the AsyncInlineCachingRegionConfigurer class during initialization.

Out-of-the-box, SBDG’s allows you to intercept and post-process the AsyncEventListener (e.g.
RepositoryAsyncEventListener), AsyncEventQueueFactory and even the AsyncEventQueue, created by the
AsyncInlineCachingRegionConfigurer (a SDG RegionConfigurer) during Spring ApplicationContext,
bean initialization.

The AsyncInlineCachingRegionConfigurer class provides the builder methods listed below to
intercept and post-process any of the following Apache Geode objects:

• applyToListener(:Function<AsyncEventListener, AsyncEventListener>)

• applyToQueue(:Function<AsyncEventQueue, AsyncEventQueue>)

• applyToQueueFactory(:Function<AsyncEventQueueFactory, AsyncEventQueueFactory>)

All of these "apply" methods accept a java.util.function.Function that "applies" the logic of the

87

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/RegionConfigurer.html

Function to the Apache Geode object (e.g. AsyncEventListener), returning the object as a result.

The Apache Geode object returned by the Function may be the same object, a
proxy, or a completely new object. Essentially, the returned object can be anything
you want. This is the fundamental premise behind Aspect-Oriented Programming
(AOP) and the Decorator Software Design Pattern.

These "apply" methods and the supplied Function allow you to decorate, enhance, post-process,
whatever you want to, to the Apache Geode objects created by the listener.

Of course, the AsyncInlineCachingRegionConfigurer strictly adheres to the Open/Close Principle as
well, and is therefore flexibly extensible.

9.1.4. Multi-Site Caching

The final pattern of caching presented in this chapter is Multi-Site Caching.

As described above, there are 2 configuration arrangements depending on your application usage
patterns, requirements and user demographic: Active-Active & Active-Passive.

Multi-Site Caching along with Active-Active and Active-Passive configuration arrangements will be
described in more detail in the Sample Guide. Also, be sure to review the Sample Code.

9.2. Advanced Caching Configuration
Apache Geode supports additional caching capabilities to manage the entries stored in the cache.

As you can imagine, given that cache entries are stored in-memory, it becomes important to
monitor and manage the available memory wisely. After all, by default, Apache Geode stores data
in the JVM Heap.

Several techniques can be employed to more effectively manage memory, such as using Eviction,
possibly overflowing data to disk, configuring both entry Idle-Timeout (TTI) as well as Time-To-Live
(TTL) Expiration policies, configuring Compression, and using Off-Heap, or main memory.

There are several other strategies that can be used as well, as described in Managing Heap and Off-
heap Memory.

While this is well beyond the scope of this document, know that Spring Data for Apache Geode
makes all of these configuration options available and simple to use.

9.3. Disable Caching
There may be cases where you do not want your Spring Boot application to cache application state
with Spring’s Cache Abstraction using Apache Geode. In certain cases, you may be using another
Spring supported caching provider, such as Redis, to cache and manage your application state,
while, even in other cases, you may not want to use Spring’s Cache Abstraction at all.

Either way, you can specifically call out your Spring Cache Abstraction provider using the

88

https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
guides/caching-multi-site.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/multi-site
https://geode.apache.org/docs/guide/113/developing/eviction/chapter_overview.html
https://geode.apache.org/docs/guide/113/developing/storing_data_on_disk/chapter_overview.html
https://geode.apache.org/docs/guide/113/developing/expiration/chapter_overview.html
https://geode.apache.org/docs/guide/113/managing/region_compression.html
https://geode.apache.org/docs/guide/113/managing/heap_use/off_heap_management.html
https://geode.apache.org/docs/guide/113/managing/heap_use/heap_management.html
https://geode.apache.org/docs/guide/113/managing/heap_use/heap_management.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-regions
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache

spring.cache.type property in application.properties, as follows:

Use Redis as the Spring Cache Abstraction Provider

#application.properties

spring.cache.type=redis
...

If you prefer not to use Spring’s Cache Abstraction to manage your Spring Boot application’s state at
all, then do the following:

Disable Spring’s Cache Abstraction

#application.properties

spring.cache.type=none
...

See Spring Boot docs for more details.

It is possible to include multiple providers on the classpath of your Spring Boot
application. For instance, you might be using Redis to cache your application’s
state while using Apache Geode as your application’s persistent data store (System
of Record).

Spring Boot does not properly recognize spring.cache.type=[gemfire|geode] even
though Spring Boot for Apache Geode is setup to handle either of these property
values (i.e. either “gemfire” or “geode”).

89

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-caching.html#boot-features-caching-provider-none

Chapter 10. Data Access with
GemfireTemplate
There are several ways to access data stored in Apache Geode.

For instance, developers may choose to use the Region API directly. If developers are driven by the
application’s domain context, they might choose to leverage the power of Spring Data Repositories
instead.

While using the Region API directly offers flexibility, it couples your application to Apache Geode,
which is usually undesirable and unnecessary. While using Spring Data Repositories provides a
very powerful and convenient abstraction, you give up flexibility provided by a lower level API.

A good comprise is to use the Template pattern. Indeed, this pattern is consistently and widely used
throughout the entire Spring portfolio.

For example, there is the JdbcTemplate and JmsTemplate, which are provided by the core Spring
Framework.

Other Spring Data modules, such as Spring Data Redis, offer the RedisTemplate, and Spring Data for
Apache Geode (SDG) offers the GemfireTemplate.

The GemfireTemplate provides a highly consistent and familiar API to perform data access
operations on Apache Geode cache Regions.

GemfireTemplate offers:

1. Simple, consistent and convenient data access API to perform CRUD and basic query operations
on cache Regions.

2. Use of Spring Framework’s consistent, data access Exception Hierarchy.

3. Automatic enlistment in the presence of local, cache transactions.

4. Protection from Region API breaking changes.

Given these conveniences, Spring Boot for Apache Geode (SBDG) will auto-configure
GemfireTemplate beans for each Region present in the Apache Geode cache.

Additionally, SBDG is careful not to create a GemfireTemplate if the user has already declared a
GemfireTemplate bean in the Spring ApplicationContext for a given Region.

10.1. Explicitly Declared Regions
Given an explicitly declared Region bean definition:

90

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jms/core/JmsTemplate.html
https://docs.spring.io/spring-data/redis/docs/current/api/org/springframework/data/redis/core/RedisTemplate.html
https://docs.spring.io/spring-data/gemfire/docs/current/api/org/springframework/data/gemfire/GemfireTemplate.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#dao-exceptions
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html

@Configuration
class GemFireConfiguration {

 @Bean("Example")
 ClientRegionFactoryBean<?, ?> exampleRegion (GemFireCache gemfireCache) {
 // ...
 }
}

SBDG will automatically create a GemfireTemplate bean for the "Example" Region using a bean name
"exampleTemplate". SBDG will name the GemfireTemplate bean after the Region by converting the
first letter in the Region’s name to lowercase and appending the word "Template" to the bean name.

In a managed Data Access Object (DAO), I can inject the Template, like so:

@Repository
class ExampleDataAccessObject {

 @Autowired
 @Qualifier("exampleTemplate")
 private GemfireTemplate exampleTemplate;

}

It’s advisable, especially if you have more than 1 Region, to use the @Qualifier annotation to qualify
which GemfireTemplate bean you are specifically referring as demonstrated above.

10.2. Entity-defined Regions
SBDG auto-configures GemfireTemplate beans for Entity-defined Regions.

Given the following entity class:

@Region("Customers")
class Customer {
 // ...
}

And configuration:

@Configuration
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
class GeodeConfiguration {
 // ...
}

91

SBDG auto-configures a GemfireTemplate bean for the "Customers" Region named
"customersTemplate", which you can then inject into an application component:

@Service
class CustomerService {

 @Bean
 @Qualifier("customersTemplate")
 private GemfireTemplate customersTemplate;

}

Again, be careful to qualify the GemfireTemplate bean injection if you have multiple Regions,
whether declared explicitly or implicitly, such as when using the @EnableEntityDefineRegions
annotation.

10.3. Caching-defined Regions
SBDG auto-configures GemfireTemplate beans for Caching-defined Regions.

When you are using Spring Framework’s Cache Abstraction backed by Apache Geode, 1 of the
requirements is to configure Regions for each of the caches specified in the Caching Annotations of
your application service components.

Fortunately, SBDG makes enabling and configuring caching easy and automatic out-of-the-box.

Given a cacheable application service component:

@Service
class CacheableCustomerService {

 @Bean
 @Qualifier("customersByNameTemplate")
 private GemfireTemplate customersByNameTemplate;

 @Cacheable("CustomersByName")
 public Customer findBy(String name) {
 return toCustomer(customersByNameTemplate.query("name = " + name));
 }
}

And configuration:

92

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-referenceintegration.html#cache-annotations

@Configuration
@EnableCachingDefinedRegions
class GemFireConfiguration {

 @Bean
 public CustomerService customerService() {
 return new CustomerService();
 }
}

SBDG auto-configures a GemfireTemplate bean named "customersByNameTemplate" used to perform
data access operations on the "CustomersByName" (@Cacheable) Region, which you can inject into
any managed application component, as shown above.

Again, be careful to qualify the GemfireTemplate bean injection if you have multiple Regions,
whether declared explicitly or implicitly, such as when using the @EnableCachingDefineRegions
annotation.

There are certain cases where autowiring (i.e. injecting) GemfireTemplate beans
auto-configured by SBDG for Caching-defined Regions into your application
components will not always work! This has to do with the Spring Container bean
creation process. In those case you may need to lazily lookup the GemfireTemplate
as needed, using applicationContext.getBean("customersByNameTemplate",
GemfireTemplate.class). This is certainly not ideal but works when autowiring does
not.

10.4. Native-defined Regions
SBDG will even auto-configure GemfireTemplate beans for Regions defined using Apache Geode
native configuration metadata, such as cache.xml.

Given the following Apache Geode native cache.xml:

<?xml version="1.0" encoding="UTF-8"?>
<client-cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache
http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <region name="Example" refid="LOCAL"/>

</client-cache>

And Spring configuration:

93

@Configuration
@EnableGemFireProperties(cacheXmlFile = "cache.xml")
class GemFireConfiguration {
 // ...
}

SBDG will auto-configure a GemfireTemplate bean named "exampleTemplate" after the "Example"
Region defined in cache.xml. This Template can be injected like any other Spring managed bean:

@Service
class ExampleService {

 @Autowired
 @Qualifier("exampleTemplate")
 private GemfireTemplate exampleTemplate;

}

The same rules as above apply when multiple Regions are present.

10.5. Template Creation Rules
Fortunately, SBDG is careful not to create a GemfireTemplate bean for a Region if a Template by the
same name already exists. For example, if you defined and declared the following configuration:

@Configuration
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
class GemFireConfiguration {

 @Bean
 public GemfireTemplate customersTemplate(GemFireCache cache) {
 return new GemfireTemplate(cache.getRegion("/Customers"));
 }
}

Using our same Customers class, as above:

@Region("Customers")
class Customer {
 // ...
}

Because you explicitly defined the "customersTemplate" bean, SBDG will not create a Template for
the "Customers" Region automatically. This applies regardless of how the Region was created,
whether using @EnableEntityDefinedRegions, @EnableCachingDefinedRegions, declaring Regions

94

explicitly or defining Regions natively.

Even if you name the Template differently from the Region for which the Template was configured,
SBDG will conserve resources and not create the Template.

For example, suppose you named the GemfireTemplate bean, "vipCustomersTemplate", even though
the Region name is "Customers", based on the @Region annotated Customer class, which specified
Region "Customers".

With the following configuration, SBDG is still careful not to create the Template:

@Configuration
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
class GeodeConfiguration {

 @Bean
 public GemfireTemplate vipCustomersTemplate(GemFireCache cache) {
 return new GemfireTemplate(cache.getRegion("/Customers"));
 }
}

SBDG identifies that your "vipCustomersTemplate" is the Template used with the "Customers"
Region and SBDG will not create the "customersTemplate" bean, which would result in 2
GemfireTemplate beans for the same Region.

The name of your Spring bean defined in JavaConfig is the name of the method if
the Spring bean is not explicitly named using the name (or value) attribute of the
@Bean annotation.

95

Chapter 11. Spring Data Repositories
Using Spring Data Repositories with Apache Geode makes short work of data access operations
when using Apache Geode as your System of Record (SOR) to persist your application’s state.

Spring Data Repositories provides a convenient and highly powerful way to define basic CRUD and
simple query data access operations easily just by specifying the contract of those data access
operations in a Java interface.

Spring Boot for Apache Geode auto-configures the Spring Data for Apache Geode Repository
extension when either is declared on your application’s classpath. You do not need to do anything
special to enable it. Simply start coding your application-specific Repository interfaces and the way
you go.

For example:

Define a Customer class to model customers and map it to the Apache Geode "Customers" Region
using the SDG @Region mapping annotation:

Customer entity class

package example.app.books.model;

@Region("Customers")
class Customer {

 @Id
 private Long id;

 private String name;

}

Declare your Repository (a.k.a. Data Access Object (DAO)) for Customers…

CustomerRepository for peristing and accessing Customers

package example.app.books.repo;

interface CustomerRepository extends CrudRepository<Customer, Long> {

 List<Customer> findByLastNameLikeOrderByLastNameDescFirstNameAsc(String
customerLastNameWildcard);

}

Then use the CustomerRepository in an application service class:

96

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#gemfire-repositories
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#gemfire-repositories
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/annotation/Region.html
https://en.wikipedia.org/wiki/Data_access_object

Inject and use the CustomerRepository

package example.app;

@SpringBootApplication
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
class SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class,
args);
 }

 @Bean
 ApplicationRunner runner(CustomerRepository customerRepository) {

 // Matches Williams, Wilson, etc.
 List<Customer> customers =

customerRepository.findByLastNameLikeOrderByLastNameDescFirstNameAsc("Wil%");

 // process the list of matching customers...
 }
}

Again, see Spring Data Commons' Repositories abstraction in general, and Spring Data for Apache
Geode’s Repositories extension in particular, for more details.

97

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#gemfire-repositories

Chapter 12. Function Implementations &
Executions
This chapter is about using Apache Geode in a Spring context for distributed compute use cases.

12.1. Background
Distributed processing, particularly in conjunction with data access and mutation operations, is a
very effective and efficient use of clustered computing resources. This is along the same lines as
MapReduce.

A naively conceived query returning potentially hundreds of thousands, or even millions of rows of
data in a result set back to the application that queried and requested the data can be very costly,
especially under load. Therefore, it is typically more efficient to move the processing and
computations on the predicated data set to where the data resides, perform the required
computations, summarize the results and then send the reduced data set back to the client.

Additionally, when the computations are handled in parallel, across the cluster of computing
resources, the operation can be performed much faster. This typically involves intelligently
organizing the data using various partitioning (a.k.a. sharding) strategies to uniformly balance the
data set across the cluster.

Well, Apache Geode addresses this very important application concern in its Function Execution
framework.

Spring Data for Apache Geode builds on this Function Execution framework by enabling developers
to implement and execute Apache Geode Functions using a very simple POJO-based, annotation
configuration model.

 See here for the difference between Function implementation & executions.

Taking this 1 step further, Spring Boot for Apache Geode auto-configures and enables both Function
implementation and execution out-of-the-box. Therefore, you can immediately begin writing
Functions and invoking them without having to worry about all the necessary plumbing to begin
with. You can rest assured that it will just work as expected.

12.2. Applying Functions
Earlier, when we talked about caching, we described a FinancialLoanApplicationService class that
could process eligibility when a Person applied for a financial loan.

This can be a very resource intensive & expensive operation since it might involve collecting credit
and employment history, gathering information on existing, outstanding/unpaid loans, and so on
and so forth. We applied caching in order to not have to recompute, or redetermine eligibility every
time a loan office may want to review the decision with the customer.

But what about the process of computing eligibility in the first place?

98

https://en.wikipedia.org/wiki/MapReduce
https://geode.apache.org/docs/guide/113/developing/function_exec/chapter_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-annotations
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-implementation
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-execution
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#_implementation_vs_execution

Currently the application’s FinancialLoanApplicationService class seems to be designed to fetch the
data and perform the eligibility determination in place. However, it might be far better to distribute
the processing and even determine eligibility for a larger group of people all at once, especially
when multiple, related people are involved in a single decision, as is typically the case.

We implement an EligibilityDeterminationFunction class using SDG very simply as:

Function implementation

@Component
class EligibilityDeterminationFunction {

 @GemfireFunction(HA = true, hasResult = true, optimizeForWrite=true)
 public EligibilityDecision determineEligibility(FunctionContext functionContext,
Person person, Timespan timespan) {
 // ...
 }
}

Using the SDG @GemfireFunction annotation, it is easy to implement our Function as a POJO method.
SDG handles registering this POJO method as a proper Function with Apache Geode appropriately.

If we now want to call this Function from our Spring Boot, ClientCache application, then we simply
define a Function Execution interface with a method name matching the Function name, and
targeting the execution on the "EligibilityDecisions" Region:

Function execution

@OnRegion("EligibilityDecisions")
interface EligibilityDeterminationExecution {

 EligibilityDecision determineEligibility(Person person, Timespan timespan);

}

We can then inject the EligibilityDeterminationExecution into our FinancialLoanApplicationService
like any other object/Spring bean:

99

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/function/annotation/GemfireFunction.html

Function use

@Service
class FinancialLoanApplicationService {

 private final EligibilityDeterminationExecution execution;

 public LoanApplicationService(EligibilityDeterminationExecution execution) {
 this.execution = execution;
 }

 @Cacheable("EligibilityDecisions")
 EligibilityDecision processEligibility(Person person, Timespan timespan) {
 return this.execution.determineEligibility(person, timespan);
 }
}

Just like caching, no addition configuration is required to enable and find your application Function
implementations and executions. Simply build and run. Spring Boot for Apache Geode handles the
rest.

It is common to implement and register your application Functions on the server
and execute them from the client.

100

Chapter 13. Continuous Query
Arguably, the most invaluable of applications are those that can process a stream of events as they
happen, and intelligently react in near real-time to the countless changes in the data over time. The
most useful of frameworks are those that can make processing a stream of events as they happen,
as easy as possible.

Spring Boot for Apache Geode does just that, without users having to perform any complex setup or
configure any necessary infrastructure components to enable such functionality. Developers can
simply define the criteria for the data they are interested in and implement a handler to process the
stream of events as they occur.

Apache Geode make defining criteria for data of interests easy when using Continuous Query (CQ).
With CQ, you can express the criteria matching the data of interests using a query predicate.
Apache Geode implements the Object Query Language (OQL) for defining and executing queries.
OQL is not unlike SQL, and supports projections, query predicates, ordering and aggregates. And,
when used in CQs, they execute continuously, firing events when the data changes in such ways as
to match the criteria expressed in the query predicate.

Spring Boot for Apache Geode combines the ease of expressing interests in data using an OQL
query statement with implementing the listener handler callback, in 1 easy step.

For example, suppose we want to perform some follow up action anytime a customer’s financial
loan application is either approved or denied.

First, the application model for our EligibilityDecision class might look something like:

EligibilityDecision class

@Region("EligibilityDecisions")
class EligibilityDecision {

 private final Person person;

 private Status status = Status.UNDETERMINED;

 private final Timespan timespan;

 enum Status {

 APPROVED,
 DENIED,
 UNDETERMINED,

 }
}

Then, we can implement and declare our CQ event handler methods to be notified when a decision
is either APPROVED or DENIED:

101

https://geode.apache.org/docs/guide/113/developing/continuous_querying/chapter_overview.html
https://geode.apache.org/docs/guide/113/developing/querying_basics/query_basics.html

@Component
class EligibilityDecisionPostProcessor {

 @ContinuousQuery(name = "ApprovedDecisionsHandler",
 query = "SELECT decisions.*
 FROM /EligibilityDecisions decisions
 WHERE decisions.getStatus().name().equalsIgnoreCase('APPROVED')")
 public void processApprovedDecisions(CqEvent event) {
 // ...
 }

 @ContinuousQuery(name = "DeniedDecisionsHandler",
 query = "SELECT decisions.*
 FROM /EligibilityDecisions decisions
 WHERE decisions.getStatus().name().equalsIgnoreCase('DENIED')")
 public void processDeniedDecisions(CqEvent event) {
 // ...
 }
}

Thus, anytime eligibility is processed and a decision as been made, either approved or denied, our
application will get notified, and as an application developer, you are free to code your handler and
respond to the event anyway you like. And, because our Continuous Query handler class is a
component, or bean in the Spring ApplicationContext, you can auto-wire any other beans necessary
to carry out the application’s intended function.

This is not unlike Spring’s Annotation-driven listener endpoints used in (JMS) message
listeners/handlers, except in Spring Boot for Apache Geode, you do not need to do anything special
to enable this functionality. Just declare the @ContinuousQuery annotation on any POJO method and
off you go.

102

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-annotated

Chapter 14. Using Data
One of the most important tasks during development is ensuring your Spring Boot application
handles data correctly. In order to verify the accuracy, integrity and availability of your data, your
application needs data to work with.

For those already familiar with Spring Boot’s support for SQL database initialization, the approach
when using Apache Geode should be easy to understand.

Apache Geode provides built-in support, similar in function to Spring Boot’s SQL database
initialization, by using:

• Gfsh’s import/export data commands.

• Snapshot Service

• Persistence with Disk Storage

For example, by enabling Persistence with Disk Storage, you could backup and restore persistent
DiskStore files from one cluster to another.

Alternatively, using Apache Geode’s Snapshot Service, you can export data contained in targeted
Regions from one cluster during shutdown and import the data into another cluster on startup. The
Snapshot Service allows you to filter data while its being imported and exported.

Finally, Apache Geode Shell (Gfsh) commands can be used to export data and import data.

Spring Data for Apache Geode (SDG) contains dedicated support for Persistence
and the Snapshot Service.

In all cases, the files generated by persistence, the Snapshot Service and Gfsh’s export command are
in a proprietary, binary format.

Furthermore, none of these approaches are as convenient as Spring Boot’s database initialization
automation. Therefore, Spring Boot for Apache Geode (SBDG) offers support to import data from
JSON into Apache Geode as PDX.

Unlike Spring Boot, SBDG offers support to export data as well. Data is imported and exported in
JSON format, by default.

SBDG does not provide an equivalent to Spring Boot’s schema.sql file. The best way
to define the data structures (i.e. Regions) managing your data is with SDG’s
Annotation-based configuration support for defining cache Regions from your
application’s entity classes or indirectly from Spring and JSR-107, JCache caching
annotations.

 Refer to SBDG’s documentation on the same.

103

https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-initialize-a-database-using-spring-jdbc
https://geode.apache.org/docs/guide/113/tools_modules/gfsh/quick_ref_commands_by_area.html#topic_C7DB8A800D6244AE8FF3ADDCF139DCE4
https://geode.apache.org/docs/guide/113/managing/cache_snapshots/chapter_overview.html
https://geode.apache.org/docs/guide/113/developing/storing_data_on_disk/chapter_overview.html
https://geode.apache.org/docs/guide/113/managing/disk_storage/chapter_overview.html
https://geode.apache.org/docs/guide/113/managing/disk_storage/backup_restore_disk_store.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/tools_modules/gfsh/command-pages/export.html#topic_263B70069BFC4A7185F86B3272011734
https://geode.apache.org/docs/guide/113/tools_modules/gfsh/command-pages/import.html#topic_jw2_2ld_2l
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap:region:persistence
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap:snapshot
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-regions
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-caching
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-caching

While this feature has utility and many edge cases were thought through and
tested thoroughly, there are still some limitations that need to be ironed out. See
Issue-82 and Issue-83 for more details. The Spring team strongly recommends that
this feature only be used for development and testing purposes.

14.1. Importing Data
You can import data into a Region by defining a JSON file containing the JSON object(s) you wish to
load. The JSON file must follow the naming convention below and be placed in the root of your
application classpath:

data-<regionName>.json

<regionName> refers to the lowercase "name" of the Region as defined by
Region.getName().

For example, if you have a Region named "Orders", then you would create a JSON file called data-
orders.json and place it in the root of your application classpath (e.g. in src/test/resources).

Create JSON files for each Region implicitly defined (e.g. by using @EnableEntityDefinedRegions) or
explicitly defined (i.e. with ClientRegionFactoryBean in JavaConfig) in your Spring Boot application
configuration that you want to load with data.

The JSON file containing JSON data for Orders might appear as follows:

104

https://github.com/spring-projects/spring-boot-data-geode/issues/82
https://github.com/spring-projects/spring-boot-data-geode/issues/83
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html#getName--

data-orders.json

[{
 "@type": "example.app.pos.model.PurchaseOrder",
 "id": 1,
 "lineItems": [
 {
 "@type": "example.app.pos.model.LineItem",
 "product": {
 "@type": "example.app.pos.model.Product",
 "name": "Apple iPad Pro",
 "price": 1499.00,
 "category": "SHOPPING"
 },
 "quantity": 1
 },
 {
 "@type": "example.app.pos.model.LineItem",
 "product": {
 "@type": "example.app.pos.model.Product",
 "name": "Apple iPhone 11 Pro Max",
 "price": 1249.00,
 "category": "SHOPPING"
 },
 "quantity": 2
 }
]
}, {
 "@type": "example.app.pos.model.PurchaseOrder",
 "id": 2,
 "lineItems": [
 {
 "@type": "example.app.pos.model.LineItem",
 "product": {
 "@type": "example.app.pos.model.Product",
 "name": "Starbucks Vente Carmel Macchiato",
 "price": 5.49,
 "category": "SHOPPING"
 },
 "quantity": 1
 }
]
}]

The application entity classes matching the JSON data might look something like:

105

Point-of-Sale (POS) Application Model Classes

@Region("Orders")
class PurchaseOrder {

 @Id
 Long id;

 List<LineItem> lineItems;

}

class LineItem {

 Product product;
 Integer quantity;

}

@Region("Products")
class Product {

 String name;
 Category category;
 BigDecimal price;

}

As seen above, the object model and corresponding JSON can be arbitrarily complex with a
hierarchy of objects having complex types.

14.1.1. JSON metadata

You will notice a few other details contained in the object model and JSON shown above.

The @type metadata field

First, we declared an @type JSON metadata field. This field does not map to any specific field or
property of the application domain model class (e.g. PurchaseOrder). Rather, it tells the framework
and Apache Geode’s JSON/PDX converter the type of object the JSON data would map to if you were
to request an object (i.e. by calling PdxInstance.getObject()).

For example:

106

Deserializing PDX as an Object

@Repository
class OrdersRepository {

 @Resource(name = "Orders")
 Region<Long, PurchaseOrder> orders;

 PurchaseOrder findBy(Long id) {

 Object value = this.orders.get(id);

 return value instanceof PurchaseOrder ? (PurchaseOrder) value
 : value instanceof PdxInstance ? ((PdxInstance) value).getObject()
 : null;
 }
}

Basically, the @type JSON metadata field informs the PdxInstance.getObject() method about the type
of Java object the JSON object will map to. Otherwise, the PdxInstance.getObject() method would
silently return a PdxInstance.

It is possible for Apache Geode’s PDX serialization framework to return a PurchaseOrder from
Region.get(key) as well, but it depends on the value of PDX’s read-serialized, cache-level
configuration setting, among other factors.

When JSON is imported into a Region as PDX, the PdxInstance.getClassName() does
not refer to a valid Java class. It is JSONFormatter.JSON_CLASSNAME. As a result,
Region data access operations, such as Region.get(key), return a PdxInstance and
not a Java object.

You may need to proxy Region "read" data access operations (e.g. Region.get(key))
by setting the SBDG property
spring.boot.data.gemfire.cache.region.advice.enabled to true. When this property
is set, Regions are proxied to wrap a PdxInstance in a PdxInstanceWrapper in order to
appropriately handle the PdxInstance.getObject() call in your application code.

The id field & @identifier metadata field

The top-level objects in your JSON must have an identifier, such as an "id" field. This identifier is
used as the object’s (or PdxInstance’s) identity and "key" when stored in the `Region (e.g.
Region.put(key, object)).

You will have noticed the the JSON for the Orders above declared an "id" field as the identifier:

107

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxInstance.html#getClassName--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/JSONFormatter.html#JSON_CLASSNAME

PurchaseOrder identifier ("id")

[{
 "@type": "example.app.pos.model.PurchaseOrder",
 "id": 1,
 ...

This follows the same convention used in Spring Data. Typically, Spring Data mapping
infrastructure looks for a POJO field or property annotated with @Id. If no field or property is
annotated with @Id, then the framework falls back to searching for a field or property named "id".

In Spring Data for Apache Geode (SDG), this @Id annotated, or "id" named field or property is used
as the identifier, and as the key for the object when storing it into a Region.

However, what happens when an object, or entity does not have a surrogate id defined? Perhaps
the application domain model class is appropriately and simply using "natural" identifiers, which is
quite common in practice.

Consider a Book class defined as follows:

Book class

@Region("Books")
class Book {

 Author author;

 @Id
 ISBN isbn;

 LocalDate publishedDate;

 Sring title;

}

As declared in the Book class above, the identifier for Book is its ISBN since the isbn field was
annotated with Spring Data’s @Id mapping annotation. However, we cannot know this by searching
for an @Id annotation in JSON.

You might be tempted to argue that if the @type metadata field is set, we would know the class type
and could load the class definition to learn about the identifier. That is all fine until the class is not
actually on the application classpath in the first place. This is one of the reasons why SBDG’s JSON
support serializes JSON to Apache Geode’s PDX format. There might not be a class definition, which
would lead to a NoClassDefFoundError or ClassNotFoundException.

So, what then?

In this case, SBDG allows you to declare the @identifier JSON metadata field to inform the
framework what to use as the identifier for the object.

108

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/annotation/Id.html

For example:

Using "@identifer"

{
 "@type": "example.app.books.model.Book",
 "@identifier": "isbn",
 "author": {
 "id": 1,
 "name": "Josh Long"
 },
 "isbn": "978-1-449-374640-8",
 "publishedDate": "2017-08-01",
 "title": "Cloud Native Java"
}

Here, the @identifier JSON metadata field informs the framework that the "isbn" field is the
identifier for a Book.

14.1.2. Conditionally Importing Data

While the Spring team recommends that users should only use this feature when developing and
testing their Spring Boot applications with Apache Geode, a user may occasionally use this feature
in production.

Users might use this feature in production to preload a (REPLICATE) Region with "reference" data.
Reference data is largely static, infrequently changing and non-transactional. Preloading reference
data is particularly useful in caching use cases, where you want to "warm" the cache.

When using this feature for development and testing purposes, you can simply put your Region
specific JSON files in src/test/resources. This ensures the files will not be included in your
application artifact (e.g. JAR, WAR) when deployed to production.

However, if you must use this feature to preload data in your production environment, then you
can still "conditionally" load data from JSON. To do so configure the
spring.boot.data.gemfire.cache.data.import.active-profiles property set to the Spring profile(s)
that must be active for the import to take effect.

For example:

Conditional Importing JSON

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.import.active-profiles=DEV, QA

In order for import to have an effect in this example, you must specifically set the
spring.profiles.active property to 1 of the valid, "active-profiles" listed in the import property (e.g.
QA). Only 1 needs to match.

109

There are many ways to conditionally build application artifacts. Some users might
prefer to handle this concern in their Gradle or Maven builds.

14.2. Exporting Data
Certain data stored in your application’s Regions may be sensitive or confidential and keeping the
data secure is of the utmost concern and priority. Therefore, exporting data is disabled by default.

However, if you are using this feature for development and testing purposes then enabling the
export capability may be useful to move data from 1 environment to another. For example, if your
QA team finds a bug in the application using a particular data set, then they can export the data and
pass it back to the development team to import in their local development environment to help
debug the issue.

To enable export, set the spring.boot.data.gemfire.cache.data.export.enabled property to true:

Enable Export

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.export.enabled=true

SBDG is careful to export data to JSON in a format that Apache Geode expects on import and
includes things such as @type metadata fields.

The @identifier metadata field is not generated automatically. While it is possible
for POJOs stored in a Region to include an @identifier metadata field when
exported to JSON it is not possible when the Region value is a PdxInstance that did
not originate from JSON. In this case, you must manually ensure the PdxInstance
includes an @identifier metadata field before it is exported to JSON if necessary
(e.g. Book.isbn). This is only necessary if your entity classes do not declare an
explicit identifier field, such as with the @Id mapping annotation, or do not have an
"id" field. This scenario can also occur when inter-operating with native clients
that model the application domain objects differently, then serialize the objects
using PDX storing them in Regions on the server that are then later consumed by
your Spring Boot application.

It may be necessary to set the -Dgemfire.disableShutdownHook JVM System property
to true before your Spring Boot application starts up when using Export.
Unfortunately, this Java Runtime shutdown hook is registered and enabled in
Apache Geode by default, which results in the cache and Regions being closed
before the SBDG Export functionality can "export the data", thereby resulting in a
CacheClosedException. SBDG makes a best effort to disable the Apache Geode
shutdown hook when export is enabled, but it is at the mercy of the JVM
ClassLoader since Apache Geode’s JVM shutdown hook registration is declared in a
static initializer.

110

https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-autoconfigure/src/main/java/org/springframework/geode/boot/autoconfigure/DataImportExportAutoConfiguration.java#L173-L183
https://github.com/apache/geode/blob/rel/v1.13.2/geode-core/src/main/java/org/apache/geode/distributed/internal/InternalDistributedSystem.java#L2185-L2223

14.3. Import/Export API Extensions
The API in SBDG for Import/Export functionality is separated into the following concerns:

• Data Format

• Resource Resolving

• Resource Reading

• Resource Writing

By breaking each of these functions apart into separate concerns, it affords a developer the ability
to customize each aspect of the Import/Export functions.

For example, you could import XML from the filesystem and then export JSON to a REST-based Web
Service. By default, SBDG imports JSON from the classpath and exports JSON to the filesystem.

However, not all environments expose the filesystem, such as cloud environments like PCF.
Therefore, giving users control over each aspect of import/export process is essential for
performing the functions in any environment.

14.3.1. Data Format

The primary interface to import data into a Region is the CacheDataImporter.

CacheDataImporter is a @FunctionalInterface extending Spring’s BeanPostProcessor interface to
trigger the import of data after the Region has been initialized.

The interface is defined as:

CacheDataImporter

interface CacheDataImporter extends BeanPostProcessor {

 Region importInto(Region region);

}

The importInto(..) method can be coded to handle any data format (JSON, XML, etc) you prefer.
Simply register a bean implementing the CacheDataImporter interface in the Spring container and
the importer will do its job.

On the flip-side, the primary interface to export data from a Region is the CacheDataExporter.

CacheDataExporter is a @FunctionalInterface extending Spring’s DestructionAwareBeanPostProcessor
interface to trigger the export of data before the Region is destroyed.

The interface is defined as:

111

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/config/BeanPostProcessor.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/config/DestructionAwareBeanPostProcessor.html

CacheDataExporter

interface CacheDataExporter extends DestructionAwareBeanPostProcessor {

 Region exportFrom(Region region);

}

The exportFrom(..) method can be coded to handle any data format (JSON, XML, etc) you prefer.
Simply register a bean implementing the CacheDataExporter interface in the Spring container and
the exporter will do its job.

For convenience when you want to implement both import and export functionality, SBDG provides
the CacheDataImporterExporter interface, which extends both CacheDataImporter and
CacheDataExporter.

CacheDataImporterExporter

interface CacheDataImporterExporter extends CacheDataExporter, CacheDataImporter { }

For support, SBDG also provides the AbstractCacheDataImporterExporter abstract base class to
simplify the implementation of your importer/exporter.

Lifecycle Management

Sometimes it is necessary to control precisely when data is imported or exported.

This is especially true on import since different Regions maybe collocated or tied together via a
cache callback like a CacheListener. In these cases, the other Region may need to exist before the
import on the dependent Region proceeds, particularly if the dependencies were loosely defined.

Another case when controlling the import is important is when you are using SBDG’s
@EnableClusterAware annotation to push configuration metadata from the client to the cluster in
order to define server-side Regions matching the client-side Regions, especially client Regions
targeted for import. The matching Regions on the server-side must exist before data is imported into
client (PROXY) Regions.

In all cases, SBDG provides the LifecycleAwareCacheDataImporterExporter class to wrap your
CacheDataImporterExporter implementation. This class implements Spring’s SmartLifecycle
interface.

By implementing the SmartLifecycle interface, it allows you to control which phase of the Spring
container the import occurs. As such SBDG exposes two more properties to control the lifecycle:

112

https://docs.spring.io/spring/docs/current/javadoc-api/https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/SmartLifecycle.html

Lifecycle Management Properties

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.import.lifecycle=[EAGER|LAZY]
spring.boot.data.gemfire.cache.data.import.phase=1000000

EAGER acts immediately, after the Region is initialized (the default behavior). LAZY delays the import
until the start() method is called, which is invoked according to the phase, thereby ordering the
import relative to other "lifecycle-aware" components registered in the Spring container.

To make your CacheDataImporterExporter "lifecycle-aware" simply do:

@Configuration
class MyApplicationConfiguration {

 @Bean
 CacheDataImporterExporter importerExporter() {
 return new LifecycleAwareCacheDataImporterExporter(new
MyCacheDataImporterExporter());
 }
}

14.3.2. Resource Resolution

Resolving resources used for import and export results in the creation of a Spring Resource handle.

Resource resolution is a vital step to qualify a resource, especially if the resource requires special
logic or permissions to access it. In this case, specific Resource handles can be returned and used by
the reader and writer of the Resource as is appropriate for import or export operation.

SBDG encapsulates the algorithm for resolving Resources in the ResourceResolver (Strategy)
interface:

ResourceResolver

@FunctionalInterface
interface ResourceResolver {

 Optional<Resource> resolve(String location);

 default Resouce required(String location) {
 // ...
 }
}

Additionally, SBDG provides the ImportResourceResolver and ExportResourceResolver marker
interfaces along with the AbstractImportResourceResolver and AbstractExportResourceResolver

113

https://docs.spring.io/spring/docs/current/javadoc-api/https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/io/Resource.html
https://en.wikipedia.org/wiki/Strategy_pattern

abstract base classes for implementing resource resolution logic used by both import and export
operations, for your convenience.

If you wish to customize the resolution of Resources used for import and/or export, your
CacheDataImporterExporter implementation can extend the
ResourceCapableCacheDataImporterExporter abstract base class, which provides the aforementioned
interfaces and base classes.

As stated above, SBDG resolves resources on import from the classpath and resources on export to
the filesystem.

It is easy to customize this behavior simply by providing an implementation of either or both the
ImportResourceResolver and ExportResourceResolver interfaces and declare instances as beans in the
Spring context:

Import & Export ResourceResolver beans

@Configuration
class MyApplicationConfiguration {

 @Bean
 ImportResourceResolver importResourceResolver() {
 return new MyImportResourceResolver();
 }

 @Bean
 ExportResourceResolver exportResourceResolver() {
 return new MyExportResourceResolver();
 }
}

If you need to customize the resource resolution process per location (or Region)
on import or export, then you could use the Composite Software Design Pattern.

Customize Default Resource Resolution

If you are content with the provided defaults, but want to target specific locations on the classpath
or filesystem used by the import or export, then SBDG additionally provides the following
properties:

Import/Export Resource Location Properties

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.import.resource.location=...
spring.boot.data.gemfire.cache.data.export.resource.location=...

The properties accept any valid resource string as specified in the Spring documentation (See Table
10. Resource strings).

114

https://en.wikipedia.org/wiki/Composite_pattern
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#resources-resourceloader

This means even though the import defaults from the classpath, it is simple to change the location
from classpath to filesystem, or even network (e.g. https://) simply by changing the prefix (or
protocol).

Of course, import/export resource location properties can refer to other properties via property
placeholders, but SBDG further allows users to use SpEL inside the property values.

For example:

Using SpEL

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.import.resource.location=\

https://#{#env['user.name']}:#{someBean.lookupPassword(#env['user.name'])}@#{host}:#{p
ort}/cache/#{#regionName}/data/import

The import resource location in this case refers to a rather sophisticated resource string using a
complex SpEL expression.

Out-of-the-box, SBDG populates the SpEL EvaluationContext with 3 sources of information:

• Access to the Spring BeanFactory

• Access to the Spring Environment

• Access to the current Region

Simple Java System properties or environment variables can be accessed with the expression:

#{propertyName}

For more complex property names (e.g. properties using dot notation, such as the user.home Java
System property), users can access these properties directly from the Environment using map style
syntax as follows:

#{#env['property.name']}

The #env variable is set in the SpEL EvaluationContext to the Spring Environment.

Because the SpEL EvaluationContext is evaluated with the Spring ApplicationContext as the root
object, you also have access to the beans declared and registered in the Spring context and can
invoke methods on them, as shown above with someBean.lookupPassword(..). "someBean" must be
the name of the bean as declared/registered in the Spring context.

Be careful when accessing beans declared in the Spring context with SpEL,
particularly when using EAGER import as it may force those beans to be eagerly (or
even, prematurely) initialized.

115

SBDG also sets the #regionName variable in the EvaluationContext to the name of the Region, as
determined by Region.getName(), targeted for import/export.

This allows you to not only change the location of the resource but also change the resource name
(e.g. filename).

For example:

Using #regionName

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.export.resource.location=\
 file://#{#env['user.home']}/gemfire/cache/data/custom-filename-for-
#{#regionName}.json

By default, the exported file is stored in the working directory (i.e.
System.getProperty("user.dir")) of the Spring Boot application process.

 See the Spring documentation for more information on SpEL.

14.3.3. Reading & Writing Resources

The Spring Resource handle specifies the location of a resource, not how to read or write it. Even the
Spring ResourceLoader, which is an interface for "loading" Resources, does not specifically read or
write any content to the Resource.

As such, SBDG separates these concerns into two interfaces: ResourceReader and ResourceWriter,
respectively. The design follows the same pattern used by Java’s InputStream/OutputStream and
Reader/Writer classes in the java.io package.

The interfaces are basically defined as:

ResourceReader

@FunctionalInterface
interface ResourceReader {

 byte[] read(Resource resource);

}

And…

116

https://geode.apache.org/releases/latest/javadoc/https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html#getName--
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/io/Resource.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/io/ResourceLoader.html

ResourceWriter

@FunctionalInterface
interface ResourceWriter {

 void write(Resource resource, byte[] data);

}

Both of interfaces provide additional methods to compose readers and writers, much like Java’s
own Consumer and Function interfaces in the java.util.function package. If a particular reader or
writer is used in a composition and is unable to handle the given Resource, then it should throw a
UnhandledResourceException to allow the next reader or writer in the composition to try and read
from or write to the Resource.

Of course, the reader or writer are free to throw a ResourceReadException or ResourceWriteException
to break the chain of reader and writer invocations in the composition.

To override the default export/import reader and writer used by SBDG out-of-the-box, simply
implement the ResourceReader and/or ResourceWriter interfaces as appropriate and declare
instances of these classes as beans in the Spring context:

Custom ResourceReader & ResourceWriter beans

@Configuration
class MyApplicationConfiguration {

 @Bean
 ResourceReader myResourceReader() {
 return new MyResourceReader()
 .thenReadFrom(new MyOtherResourceReader());
 }

 @Bean
 ResourceWriter myResourceWriter() {
 return new MyResourceWriter();
 }
}

117

Chapter 15. Data Serialization with PDX
Anytime data is overflowed or persisted to disk, transferred between clients and servers, peers in a
cluster or between different clusters in a multi-site topology, then all data stored in Apache Geode
must be serializable.

To serialize objects in Java, object types must implement the java.io.Serializable interface.
However, if you have a large number of application domain object types that currently do not
implement java.io.Serializable, then refactoring hundreds or even thousands of class types to
implement Serializable would be a tedious task just to store and manage those objects in Apache
Geode.

Additionally, it is not just your application domain object types you necessarily need to worry about
either. If you used 3rd party libraries in your application domain model, any types referred to by
your application domain object types stored in Apache Geode must be serializable too. This type
explosion may bleed into class types for which you may have no control over.

Furthermore, Java serialization is not the most efficient format given that meta-data about your
types is stored with the data itself. Therefore, even though Java serialized bytes are more
descriptive, it adds a great deal of overhead.

Then, along came serialization using Apache Geode’s PDX format. PDX stands for Portable Data
Exchange, and achieves 4 goals:

1. Separates type meta-data from the data itself making the bytes more efficient during transfer.
Apache Geode maintains a type registry storing type meta-data about the objects serialized
using PDX.

2. Supports versioning as your application domain types evolve. It is not uncommon to have old
and new applications deployed to production, running simultaneously, sharing data, and
possibly using different versions of the same domain types. PDX allows fields to be added or
removed while still preserving interoperability between old and new application clients
without loss of data.

3. Enables objects stored as PDX bytes to be queried without being de-serialized. Constant
de/serialization of data is a resource intensive task adding to the latency of each data request
when redundancy is enabled. Since data must be replicated across peers in the cluster to
preserve High Availability (HA), and serialized to be transferred, keeping data serialized is more
efficient when data is updated frequently since it will likely need to be transferred again in
order to maintain consistency in the face of redundancy and availability.

4. Enables interoperability between native language clients (e.g. C/C++/C#) and Java language
clients, with each being able to access the same data set regardless from where the data
originated.

However, PDX is not without its limitations either.

For instance, unlike Java serialization, PDX does not handle cyclic dependencies. Therefore, you
must be careful how you structure and design your application domain object types.

Also, PDX cannot handle field type changes.

118

https://geode.apache.org/docs/guide/113/developing/data_serialization/gemfire_pdx_serialization.html

Furthermore, while Apache Geode’s general Data Serialization handles deltas, this is not achievable
without de-serializing the object bytes since it involves a method invocation, which defeats 1 of the
key benefits of PDX, preserving format to avoid the cost of de/serialization.

However, we think the benefits of using PDX greatly outweigh the limitations and therefore have
enabled PDX by default when using Spring Boot for Apache Geode.

There is nothing special you need to do. Simply code your types and rest assured that objects of
those types will be properly serialized when overflowed/persisted to disk, transferred between
clients and servers, or peers in a cluster and even when data is transferred over the WAN when
using Apache Geode’s multi-site topology.

EligibilityDecision is automatically serialiable without implementing Java Serializable.

@Region("EligibilityDecisions")
class EligibilityDecision {
 // ...
}

 Apache Geode does support the standard Java Serialization format.

15.1. SDG MappingPdxSerializer vs. Apache Geode’s
ReflectionBasedAutoSerializer
Under-the-hood, Spring Boot for Apache Geode enables and uses Spring Data for Apache Geode’s
MappingPdxSerializer to serialize your application domain objects using PDX.

Refer to the SDG Reference Guide for more details on the MappingPdxSerializer
class.

The MappingPdxSerializer offers several advantages above and beyond Apache Geode’s own
ReflectionBasedAutoSerializer class.

Refer to Apache Geode’s User Guide for more details about the
ReflectionBasedAutoSerializer.

The SDG MappingPdxSerializer offers the following capabilities:

1. PDX serialization is based on Spring Data’s powerful mapping infrastructure and meta-data, as
such…

2. Includes support for both includes and excludes with type filtering. Additionally, type filters can
be implemented using Java’s java.util.function.Predicate interface as opposed to Apache
Geode’s limited regex capabilities provided by the ReflectionBasedAutoSerializer class. By
default, MappingPdxSerializer excludes all types in the following packages: java,
org.apache.geode, org.springframework & com.gemstone.gemfire.

3. Handles transient object fields & properties when either Java’s transient keyword or Spring
Data’s @Transient annotation is used.

119

https://geode.apache.org/docs/guide/113/developing/data_serialization/gemfire_data_serialization.html
https://geode.apache.org/docs/guide/113/developing/delta_propagation/chapter_overview.html
https://geode.apache.org/docs/guide/113/developing/data_serialization/java_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-pdx
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/MappingPdxSerializer.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/ReflectionBasedAutoSerializer.html
https://geode.apache.org/docs/guide/113/developing/data_serialization/auto_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.type-filtering
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.transient-properties

4. Handles read-only object properties.

5. Automatically determines the identifier of your entities when you annotate the appropriate
entity field or property with Spring Data’s @Id annotation.

6. Allows o.a.g.pdx.PdxSerializers to be registered in order to customize the serialization of
nested entity field/property types.

Number two above deserves special attention since the MappingPdxSerializer "excludes" all Java,
Spring and Apache Geode types, by default. But, what happens when you need to serialize 1 of
those types?

For example, suppose you need to be able to serialize objects of type java.security.Principal. Well,
then you can override the excludes by registering an "include" type filter, like so:

package example.app;

import java.security.Principal;

@SpringBootApplication
@EnablePdx(serializerBeanName = "myCustomMappingPdxSerializer")
class SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class,
args);
 }

 @Bean
 MappingPdxSerializer myCustomMappingPdxSerializer() {

 MappingPdxSerializer customMappingPdxSerializer =
 MappingPdxSerializer.newMappginPdxSerializer();

 customMappingPdxSerializer.setIncludeTypeFilters(
 type -> Principal.class.isAssignableFrom(type));

 return customMappingPdxSerializer;
 }
}

Normally, you do not need to explicitly declare SDG’s @EnablePdx annotation to
enable and configure PDX. However, if you want to override auto-configuration, as
we have demonstrated above, then this is what you must do.

120

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.read-only-properties
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/annotation/Id.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.custom-serialization

Chapter 16. Logging
Apache Geode 1.9.2 was modularized to separate its use of the Apache Log4j API to log output in
Geode code from the underlying implementation of logging, which uses Apache Log4j as the logging
provider by default.

Prior to 1.9.2, the Apache Log4j API (i.e. log4j-api) along with the Apache Log4j provider (i.e. log4j-
core) were automatically pulled in by Apache Geode core (i.e. org.apache.geode:geode-core) thereby
making it problematic to change logging providers when using Apache Geode in Spring Boot
applications.

However, now, in order to get any log output from Apache Geode whatsoever, Apache Geode
requires a logging provider on your Spring Boot application classpath. Consequently, this also
means the old Apache Geode Properties, e.g. log-level no longer have any effect, regardless of
whether the property (e.g. log-level) is specified in gemfire.properties, in Spring Boot
application.properties or even as a JVM System Property, -Dgemfire.log-level.

Refer to Apache Geode’s Documentation for a complete list of valid Properties,
including the Properties used to configure logging.

Unfortunately, this also means the Spring Data for Apache Geode (SDG) @EnableLogging annotation
no longer has any effect on Apache Geode logging either and is the reason it has been deprecated.
The reason @EnableLogging no longer has any effect on logging is because this annotation’s
attributes and associated SDG properties indirectly sets the corresponding Apache Geode
properties, which again, are useless from Apache Geode 1.9.2 onward.

By way of example, and to make this concrete, none of the following approaches have any effect on
Apache Geode logging:

Command-line configuration

$ java -classpath ...:/path/to/MySpringBootApacheGeodeClientCacheApplication.jar
-Dgemfire.log-level=DEBUG
 example.app.MySpringBootApacheGeodeClientCacheApplication

Externalized configuration using Apache Geode gemfire.properties

{geode-name} only/specific properties
log-level=INFO

Externalized configuration using Spring Boot application.properties

spring.data.gemfire.cache.log-level=DEBUG

Or:

121

https://geode.apache.org/docs/guide/113/reference/topics/gemfire_properties.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html
https://jira.spring.io/browse/DATAGEODE-299

spring.data.gemfire.logging.level=DEBUG

Java configuration using SDG’s @EnableLogging annotation

@SpringBootApplication
@EnableLogging(logLevel = "DEBUG")
class MySpringBootApacheGeodeClientApplication {
 // ...
}

That is to say, none of the approaches above have any effect without the new SBDG logging starter.

16.1. Configure Apache Geode Logging
So, how do you configure logging for Apache Geode?

Effectively, 3 things are required to get Apache Geode to log output:

1) First, you must declare a logging provider on your Spring Boot application classpath (e.g.
Logback).

2) (optional) Next, you must declare an adapter, or bridge JAR, between Log4j and your logging
provider if your declared logging provider is not Apache Log4j.

For example, if you use the SLF4J API to log output from your Spring Boot application along with
Logback as your logging provider/implementation, then you must include the
org.apache.logging.log4j.log4j-to-slf4j adapter/bridge JAR dependency as well.

Internally, Apache Geode uses the Apache Log4j API to log output from Geode components.
Therefore, you must bridge Log4j to any other logging provider (e.g. Logback) that is not Log4j (i.e.
log4j-core). If you are using Log4j as your logging provider then you do not need to declare an
adapter/bridge JAR on your Spring Boot application classpath.

3) Finally, you must supply logging provider configuration to configure Loggers, Appenders, log
levels, etc.

For example, when using Logback, you must provide a logback.xml configuration file on your
Spring Boot application classpath, or in the filesystem. Alternatively, you can use other means to
configure your logging provider and get Apache Geode to log output.

Apache Geode’s geode-log4j module covers the required configuration for steps 1-3
above and uses Apache Log4j (i.e. org.apache.logging.log4j:log4j-core) as the
logging provider. The geode-log4j module even provides a default, log4j2.xml
configuration file to configure Loggers, Appenders and log levels for Apache
Geode.

If you declare Spring Boot’s own org.springframework.boot:spring-boot-starter-logging on your
application classpath then this will cover Steps 1 and 2 above.

122

The spring-boot-starter-logging dependency declares Logback as the logging provider and
automatically adapts, or bridges java.util.logging (JUL) and Apache Log4j to SLF4J. However, you
still need to supply logging provider configuration, such as a logback.xml file for Logback, to
configure logging not only for your Spring Boot application, but also for Apache Geode as well.

SBDG has simplified the setup of Apache Geode logging. Simply declare the
org.springframework.geode:spring-geode-starter-logging dependency on your Spring Boot
application classpath!

Unlike Apache Geode’s default Log4j XML configuration file (i.e. log4j2.xml), SBDG’s provided
logback.xml configuration file is properly parameterized enabling you to adjust log levels as well as
add Appenders.

In addition, SBDG’s provided Logback configuration uses templates so you can compose your own
logging configuration while still "including" snippets from SBDG’s provided logging configuration
metadata, such as Loggers and Appenders.

16.1.1. Configuring Log Levels

One of the most common logging tasks is to adjust the log-level of one or more Loggers, or the ROOT
Logger. However, a user may only want to adjust the log-level for specific components of his/her
Spring Boot application, such as for Apache Geode, by setting the log-level for only the Logger that
logs Apache Geode events.

SBDG’s Logback configuration defines 3 Loggers to control the log output from Apache Geode:

Apache Geode Loggers by name

<comfiguration>
 <logger name="com.gemstone.gemfire" level="${spring.boot.data.gemfire.log.level:-
INFO}"/>
 <logger name="org.apache.geode" level="${spring.boot.data.gemfire.log.level:-
INFO}"/>
 <logger name="org.jgroups" level="${spring.boot.data.gemfire.jgroups.log.level:-
ERROR}"/>
</comfiguration>

The com.gemstone.gemfire Logger is a legacy Logger covering old GemFire bits still present in
Apache Geode for backwards compatibility reasons. This Logger’s use should be largely
unnecessary.

The org.apache.geode Logger is the primary Logger used to control log output from all Apache
Geode components during the runtime operation of Apache Geode. Both this Logger and the legacy
com.gemstone.gemfire Logger default log output to INFO.

The org.jgroups Logger is used to log output from Apache Geode’s message distribution and
membership system. Apache Geode uses JGroups for membership and message distribution
between peer members (nodes) in the cluster (distributed system). By default, JGroups log messages
are logged at ERROR.

123

The log-level for the com.gemstone.gemfire and org.apache.geode Loggers are configured with the
spring.boot.data.gemfire.log.level property. The org.jgroups Logger is independently configured
with the spring.boot.data.gemfire.jgroups.log.level property.

The SBDG logging properties can be set on the command-line as JVM System Properties when
running your Spring Boot application:

Setting the log-level from the command-line

$ java -classpath ...:/path/to/MySpringBootApplication.jar
-Dspring.boot.data.gemfire.log.level=DEBUG
 package.to.MySpringBootApplicationClass

Setting JVM System Properties using $ java -jar MySpringBootApplication.jar
-Dspring.boot.data.gemfire.log.level=DEBUG is not supported by the Java Runtime
Environment (JRE).

Alternatively, you can configure and control Apache Geode logging in Spring Boot
application.properties:

Setting the log-level in application.properties

spring.boot.data.gemfire.log.level=DEBUG

For backwards compatibility, SBDG additionally supports the old Spring Data for Apache Geode
(SDG) logging properties as well, using either:

spring.data.gemfire.cache.log-level=DEBUG

Or:

spring.data.gemfire.logging.level=DEBUG

If you previously used either of these SDG based logging properties, they will continue to work as
designed in SBDG 1.3 or later.

16.1.2. Composing Logging Configuration

As mentioned earlier, SBDG allows you to compose your own logging configuration from SBDG’s
default, provided Logback configuration metadata.

SBDG conveniently bundles the Loggers and Appenders from SBDG’s logging starter into a template
file that you can include into your own, custom Logback XML configuration file.

The Logback template file appears as follows:

124

logback-include.xml

<?xml version="1.0" encoding="UTF-8"?>
<included>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d %5p %40.40c:%4L - %m%n</pattern>
 </encoder>
 </appender>

 <appender name="delegate"
class="org.springframework.geode.logging.slf4j.logback.DelegatingAppender"/>

 <logger name="com.gemstone.gemfire" level="${spring.boot.data.gemfire.log.level:-
INFO}"/>
 <logger name="org.apache.geode" level="${spring.boot.data.gemfire.log.level:-
INFO}"/>
 <logger name="org.jgroups" level="${spring.boot.data.gemfire.jgroups.log.level:-
ERROR}"/>

</included>

Then, this Logback configuration snippet can be included in an application-specific, Logback XML
configuration file as follows:

logback.xml

<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false">

 <statusListener class="ch.qos.logback.core.status.NopStatusListener"/>

 <include resource="logback-include.xml"/>

 <root level="${logback.root.log.level:-INFO}">
 <appender-ref ref="console"/>
 <appender-ref ref="delegate"/>
 </root>

</configuration>

16.2. SLF4J & Logback API Support
SBDG provides additional support when working with the SLF4J and Logback APIs. This support is
available when you declare the org.springframework.geode:spring-geode-starter-logging
dependency on your Spring Boot application classpath.

One of the main supporting classes from the spring-geode-starter-logger is the

125

org.springframework.geode.logging.slf4j.logback.LogbackSupport class. This class provides methods
to:

• Resolve a reference to the Logback LoggingContext

• Resolve the SLF4J ROOT Logger as a Logback Logger

• Lookup Appenders by name and required type

• Add/Remove Appenders to Loggers

• And even reset the state of the Logback logging system, which can prove to be most useful
during testing

LogbackSupport can even suppress the auto-configuration of Logback performed by Spring Boot on
startup, another useful utility during automated testing.

In addition to the LogbackSupport class, SBDG also provides some custom Logback Appenders.

16.2.1. CompositeAppender

The org.springframework.geode.logging.slf4j.logback.CompositeAppender class is an implementation
of Logback Appender and the Composite Software Design Pattern.

CompositeAppender enables developers to compose multiple Appenders and use them as if they were a
single Appender.

For example, you could compose both the Logback ConsoleAppender and FileAppender into one using:

Composing multiple Appenders

class LoggingConfiguration {
 void composeApenders() {

 ConsoleAppender<ILoggingEvent> consoleAppender = new ConsoleAppender<>();

 FileAppender<ILoggingEvent> fileAppender = new FileApender<>();

 Appender<ILoggingEvent> compositeAppender =
CompositeAppender.compose(consoleAppender, fileAppender);
 }
}

// do something with the compositeAppender

You could then add the CompositeAppender to a "named" Logger by doing:

126

https://en.wikipedia.org/wiki/Composite_pattern

Register CompositeAppender on "named" Logger

class LoggerConfiguration {
 void registerAppenderOnLogger() {

 Logger namedLogger = LoggerFactory.getLogger("loggerName");

 LogbackSupport.toLogbackLogger(namedLogger)
 .ifPresent(it -> LogbackSupport.addAppender(it, compositeAppender));
 }
}

In this case, the "named" Logger will log events (or log messages) to both the Console and File
Appenders.

It is simple to compose an array or Iterable of Appenders by using either the
CompositeAppender.compose(:Appender<T>[]) method or the
CompositeAppender.compose(:Iterable<Appender<T>>) method.

16.2.2. DelegatingAppender

The org.springframework.geode.logging.slf4j.logback.DelegatingAppender is a pass-through
Logback Appender implementation wrapping another Logback Appender, or collection of Appenders
doing actual work, like the ConsoleAppender, a FileAppender or a SocketAppender, etc. By default, the
DelegatingAppender delegates to the NOPAppender thereby doing no actual work.

By default, SBDG registers the org.springframework.geode.logging.slfj4.logback.DelegatingAppender
with the ROOT Logger, which can be useful for testing purposes.

With a reference to a DelegatingAppender, you can add any Appender as the delegate, even a
CompositeAppender:

127

Add ConsoleAppender as the "delegate" for the DelegatingAppender

class LoggerConfiguration {
 void setupDelegation() {

 ConsoleAppender consoleAppender = new ConsoleAppender();

 LogbackSupport.resolveLoggerContext().ifPresent(consoleAppender::setContext);

 consoleAppender.setImmediateFlush(true);
 consoleAppender.start();

 LogbackSupport.resolveRootLogger()
 .flatMap(LogbackSupport::toLogbackLogger)
 .flatMap(rootLogger -> LogbackSupport.resolveAppender(rootLogger,
 LogbackSupport.DELEGATE_APPENDER_NAME, DelegatingAppender.class))
 .ifPresent(delegateAppender -> delegateAppender.setAppender(consoleAppender));
 }
}

16.2.3. StringAppender

The org.springframework.geode.logging.slf4j.logback.StringAppender stores log message in-
memory, appended to a String.

The StringAppender is very useful for testing purposes. For instance, you can use the StringAppender
to assert that a Logger used by certain application components logged messages at the appropriately
configured log level while other log messages were not logged.

For example:

StringAppender in Action

class ApplicationComponent {

 private final Logger logger = LoggerFactory.getLogger(getClass());

 public void someMethod() {
 logger.debug("Some debug message");
 // ...
 }

 public void someOtherMethod() {
 logger.info("Some info message");
 }
}

// Assuming the ApplicationComponent Logger was configured with log-level 'INFO',
then...
class ApplicationComponentUnitTests {

128

 private final ApplicationComponent applicationComponent = new
ApplicationComponent();

 private final Logger logger = LoggerFactory.getLogger(ApplicationComponent.class);

 private StringAppender stringAppender;

 @Before
 public void setup() {

 LogbackSupport.toLogbackLogger(logger)
 .map(Logger::getLevel)
 .ifPresent(level -> assertThat(level).isEqualTo(Level.INFO));

 stringAppender = new StringAppender.Builder()
 .applyTo(logger)
 .build();
 }

 @Test
 public void someMethodDoesNotLogDebugMessage() {

 applicationComponent.someMethod();

 assertThat(stringAppender.getLogOutput).doesNotContain("Some debug message");
 }

 @Test
 public void someOtherMethodLogsInfoMessage() {

 applicationComponent.someOtherMethod();

 assertThat(stringAppender.getLogOutput()).contains("Some info message");
 }
}

There are many other uses for the StringAppender and it can be used safely in a multi-Threaded
context by calling StringAppender.Builder.useSynchronization().

When combined with other SBDG provided Appenders in conjunction with the LogbackSupport class,
you have a lot of power both in application code as well as your tests.

129

Chapter 17. Security
This sections covers Security configuration for Apache Geode, which includes both Authentication
& Authorization (collectively, Auth) as well as Transport Layer Security (TLS) using SSL.

 Securing Data at Rest is not supported by Apache Geode.

Refer to the corresponding Sample Guide and Code to see Spring Boot Security for
Apache Geode in action!

17.1. Authentication & Authorization
Apache Geode employs Username and Password based Authentication along with Role-based
Authorization to secure your client to server data exchanges and operations.

Spring Data for Apache Geode provides first-class support for Apache Geode’s Security framework,
which is based on the SecurityManager interface. Additionally, Apache Geode’s Security framework
is integrated with Apache Shiro, making the security for servers an even easier and more familiar
task.

Eventually, support and integration with Spring Security will be provided by SBDG
as well.

When you use Spring Boot for Apache Geode, which builds on the bits provided in Spring Data for
Apache Geode, it makes short work of enabling Auth in both your clients and servers.

17.1.1. Auth for Servers

The easiest and most standard way to enable Auth in the servers of your cluster is to simply define
1 or more Apache Shiro Realms as beans in the Spring ApplicationContext.

For example:

Declaring an Apache Shiro Realm

@Configuration
class ApacheGeodeSecurityConfiguration {

 @Bean
 DefaultLdapRealm ldapRealm() {
 return new DefaultLdapRealm();
 }

 // ...
}

When an Apache Shiro Realm (e.g. DefaultLdapRealm) is declared and registered in the Spring

130

guides/boot-security.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/boot/security
https://geode.apache.org/docs/guide/113/managing/security/authentication_overview.html
https://geode.apache.org/docs/guide/113/managing/security/authorization_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-security
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/SecurityManager.html
https://shiro.apache.org/
https://spring.io/projects/spring-security
https://shiro.apache.org/realm.html

ApplicationContext as a Spring bean, Spring Boot will automatically detect this Realm bean (or Realm
beans if more than 1 is configured) and the Apache Geode servers in the cluster will automatically
be configured with Authentication and Authorization enabled.

Alternatively, you can provide an custom, application-specific implementation of Apache Geode’s
SecurityManager interface, declared and registered as a bean in the Spring ApplicationContext:

Declaring a custom Apache Geode SecurityManager

@Configuration
class ApacheGeodeSecurityConfiguration {

 @Bean
 CustomSecurityManager customSecurityManager() {
 return new CustomSecurityManager();
 }

 // ...
}

Spring Boot will discover your custom, application-specific SecurityManager implementation and
configure the servers in the Apache Geode cluster with Authentication and Authorization enabled.

The Spring team recommends that you use Apache Shiro to manage the
Authentication & Authorization of your Apache Geode servers over implementing
Apache Geode’s SecurityManager interface.

17.1.2. Auth for Clients

When Apache Geode servers have been configured with Authentication & Authorization enabled,
then clients must authenticate when connecting.

Spring Boot for Apache Geode makes this easy, regardless of whether you are running your Spring
Boot, ClientCache applications in a local, non-managed environment or even when running in a
cloud managed environment.

Non-Managed Auth for Clients

To enable Auth for clients connecting to a secure Apache Geode cluster, you simply only need to set
a username and password in your Spring Boot application.properties file:

Spring Boot client application.properties

spring.data.gemfire.security.username = jdoe
spring.data.gemfire.security.password = p@55w0rd

Spring Boot for Apache Geode will handle the rest.

131

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/SecurityManager.html

Managed Auth for Clients

Enabling Auth for clients connecting to a Pivotal Cloud Cache (PCC) service instance in Pivotal
CloudFoundry (PCF) is even easier.

You do not need to do anything!

When your Spring Boot application uses SBDG and is bound to PCC, then when you push (i.e.
deploy) your app to PCF, Spring Boot for Apache Geode will extract the required Auth credentials
from the environment that you setup when you provisioned a PCC service instance in your PCF
organization & space. PCC automatically assigns 2 users with roles "cluster_operator" and
"developer", respectively, to any Spring Boot application bound to the PCC service instance.

By default, SBDG will auto-configure your Spring Boot app to run with the user having the
"_cluster_operator" Role. This ensures that your Spring Boot app has the necessary permissions (i.e.
Authorization) to perform all data access operations on the servers in the PCC cluster including, for
example, pushing configuration metadata from the client to the servers in the PCC cluster.

See the section, <<[cloudfoundry-cloudcache-security-auth-runtime-user-configuration,Running
Spring Boot applications as a specific user>>, in the Pivotal Cloud Foundry chapter for additional
details on user authentication and authorization.

See the chapter titled 'Pivotal CloudFoundry' for more general details.

See the Pivotal Cloud Cache documentation for security details when using PCC and PCF.

17.2. Transport Layer Security using SSL
Securing data in motion is also essential to the integrity of your application.

For instance, it would not do much good to send usernames and passwords over plain text Socket
connections between your clients and servers, nor send sensitive data over those same connections.

Therefore, Apache Geode supports SSL between clients & servers, JMX clients (e.g. Gfsh) and the
Manager, HTTP clients when using the Developer REST API or Pulse, between peers in the cluster,
and when using the WAN Gateway to connect multiple sites (i.e. clusters).

Spring Data for Apache Geode provides first-class support for configuring and enabling SSL as well.
Still, Spring Boot makes it even easier to configure and enable SSL, especially during development.

Apache Geode requires certain properties to be configured, which translate to the appropriate
javax.net.ssl.* properties required by the JRE, to create Secure Socket Connections using JSSE.

But, ensuring that you have set all the required SSL properties correctly is an error prone and
tedious task. Therefore, Spring Boot for Apache Geode applies some basic conventions for you, out-
of-the-box.

Simply create a trusted.keystore, JKS-based KeyStore file and place it in 1 of 3 well-known locations:

1. In your application JAR file at the root of the classpath.

132

https://docs.pivotal.io/p-cloud-cache/1-13/security.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-ssl
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html

2. In your Spring Boot application’s working directory.

3. In your user home directory (as defined by the user.home Java System property).

When this file is named trusted.keystore and is placed in 1 of these 3 well-known locations, Spring
Boot for Apache Geode will automatically configure your client to use SSL Socket connections.

If you are using Spring Boot to configure and bootstrap an Apache Geode server:

Spring Boot configured and bootstrapped Apache Geode server

@SpringBootApplication
@CacheServerApplication
class SpringBootApacheGeodeCacheServerApplication {
 // ...
}

Then, Spring Boot will apply the same procedure to enable SSL on the servers, between peers, as
well.

During development it is convenient not to set a trusted.keystore password when
accessing the keys in the JKS file. However, it is highly recommended that you
secure the trusted.keystore file when deploying your application to a production
environment.

If your trusted.keystore file is secured with a password, you will need to additionally specify the
following property:

Accessing a secure trusted.keystore

Spring Boot application.properties

spring.data.gemfire.security.ssl.keystore.password = p@55w0rd!

You can also configure the location of the keystore and truststore files, if they are separate, and
have not been placed in 1 of the default, well-known locations searched by Spring Boot:

Accessing a secure trusted.keystore

Spring Boot application.properties

spring.data.gemfire.security.ssl.keystore = /absolute/file/system/path/to/keystore.jks
spring.data.gemfire.security.ssl.keystore.password = keystorePassword
spring.data.gemfire.security.ssl.truststore =
/absolute/file/system/path/to/truststore.jks
spring.data.gemfire.security.ssl.truststore.password = truststorePassword

See the SDG EnableSsl annotation for all the configuration attributes and the corresponding
properties expressed in application.properties.

133

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html

17.3. Securing Data at Rest
Currently, neither Apache Geode nor Spring Boot or Spring Data for Apache Geode offer any
support for securing your data while at rest (e.g. when your data has been overflowed or persisted
to disk).

To secure data at rest when using Apache Geode, with or without Spring, you must employ 3rd
party solutions like disk encryption, which is usually highly contextual and technology specific.

For example, to secure data at rest using Amazon EC2, see Instance Store Encryption.

134

https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/

Chapter 18. Testing
Spring Boot for Apache Geode (SBDG), with help from Spring Test for Apache Geode (STDG), offers
first-class support for both Unit & Integration Testing of Apache Geode in your Spring Boot
applications.

 See the Spring Test for Apache Geode (STDG) documentation for more details.

18.1. Unit Testing
Unit Testing with Apache Geode using mock objects in a Spring Boot Test is as simple as declaring
the STDG @EnableGemFireMockObjects annotation in your test configuration:

135

https://github.com/spring-projects/spring-test-data-geode
https://github.com/spring-projects/spring-test-data-geode/#stdg-in-a-nutshell

Unit Test with Apache Geode using Spring Boot

@SpringBootTest
@RunWith(SpringRunner.class)
public class SpringBootApacheGeodeUnitTest extends IntegrationTestsSupport {

 @Autowired
 private UserRepository userRepository;

 @Test
 public void saveAndFindUserIsSuccessful() {

 User jonDoe = User.as("jonDoe");

 assertThat(this.userRepository.save(jonDoe)).isNotNull();

 User jonDoeFoundById =
this.userRepository.findById(jonDoe.getName()).orElse(null);

 assertThat(jonDoeFoundById).isEqualTo(jonDoe);
 }

 @SpringBootApplication
 @EnableGemFireMockObjects
 @EnableEntityDefinedRegions(basePackageClasses = User.class)
 static class TestConfiguration { }

}

@Getter
@ToString
@EqualsAndHashCode
@RequiredArgsConstructor(staticName = "as")
@Region("Users")
class User {

 @Id
 @lombok.NonNull
 private String name;

}

interface UserRepository extends CrudRepository<User, String> { }

While this test class is not a "pure" Unit Test, particularly since it bootstraps an actual Spring
ApplicationContext using Spring Boot, it does, however, "mock" all Apache Geode objects, such as
the "Users" Region declared by the User application entity class, which was annotated with SDG’s
@Region mapping annotation.

This test class conveniently uses Spring Boot’s auto-configuration to auto-configure an Apache

136

Geode ClientCache instance. In addition, SDG’s @EnableEntityDefinedRegions annotation was used to
conveniently create the Apache Geode "Users" Region to store instances of User.

Finally, Spring Data’s Repository abstraction was used to conveniently perform basic CRUD (e.g.
save) and simple (OQL) query (e.g. findById) data access operations on the "Users" Region.

Even though the Apache Geode objects (e.g. "Users" Region) are "mock objects", you can still perform
many of the data access operations required by your Spring Boot application’s business logic in a
Apache Geode API agnostic way, that is, using Spring’s powerful programming model and
constructs!

By extending STDG’s
org.springframework.data.gemfire.tests.integration.IntegrationTestSupport class,
you ensure that all Apache Geode mock objects and resources are properly
released after the test class runs, thereby preventing any interference with
downstream tests.

While STDG tries to mock the functionality and behavior for many Region operations, it is simply
not pragmatic to mock them all. For example, it would not be practical to mock Region query
operations involving complex OQL statements having sophisticated predicates.

If such functional testing is required, then the test might be better suited as an Integration Test.
Alternatively, you can follow the advice in this section.

In general, STDG provides the following capabilities when mocking Apache Geode objects out-of-
the-box:

• Mock Object Scope & Lifecycle Management

• Support for Mock Regions with Data

• Support for Mocking Region Callbacks

• Support for Mocking Unsupported Region Operations

 See documentation on Unit Testing with STDG for more details.

18.2. Integration Testing
Integration Testing with Apache Geode in a Spring Boot Test is as simple as not declaring STDG’s
@EnableGemFireMockObjects annotation in your test configuration. Of course, you may then want to
additionally use SBDG’s @EnableClusterAware annotation to conditionally detect the presence of a
Apache Geode cluster:

Using @EnableClusterAware in test configuration

@SpringBootApplication
@EnableClusterAware
@EnableEntityDefinedRegions(basePackageClasses = User.class)
static class TestConfiguration { }

137

https://github.com/spring-projects/spring-test-data-geode/#mock-regions-with-data
https://github.com/spring-projects/spring-test-data-geode/#mocking-unsupported-region-operations
https://github.com/spring-projects/spring-test-data-geode#mock-object-scope—lifecycle-management
https://github.com/spring-projects/spring-test-data-geode#mock-regions-with-data
https://github.com/spring-projects/spring-test-data-geode#mock-region-callbacks
https://github.com/spring-projects/spring-test-data-geode#mocking-unsupported-region-operations
https://github.com/spring-projects/spring-test-data-geode/#unit-testing-with-stdg

The SBDG @EnableClusterAware annotation will conveniently toggle your auto-configured
ClientCache instance between local-only mode and client/server. Additionally, it will even push
configuration metadata (e.g. Region definitions) up to the server(s) in the cluster required by the
application to persist data.

In most cases, in addition to testing with "live" Apache Geode objects (e.g. Regions), we also want to
test in a client/server capacity. This unlocks the full capabilities of the Apache Geode data
management system in a Spring context, and gets you as close as possible to production from the
comfort of your IDE.

Building on our example from the section on Unit Testing, you can modify the test to use "live"
Apache Geode objects in a client/server topology as follows:

Integration Test with Apache Geode using Spring Boot

@ActiveProfiles("client")
@RunWith(SpringRunner.class)
@SpringBootTest(properties = "spring.data.gemfire.management.use-http=false")
public class SpringBootApacheGeodeIntegrationTest extends
ForkingClientServerIntegrationTestsSupport {

 @BeforeClass
 public static void startGeodeServer() throws IOException {
 startGemFireServer(TestGeodeServerConfiguration.class);
 }

 @Autowired
 private UserRepository userRepository;

 @Test
 public void saveAndFindUserIsSuccessful() {

 User jonDoe = User.as("jonDoe");

 assertThat(this.userRepository.save(jonDoe)).isNotNull();

 User jonDoeFoundById =
this.userRepository.findById(jonDoe.getName()).orElse(null);

 assertThat(jonDoeFoundById).isEqualTo(jonDoe);
 assertThat(jonDoeFoundById).isNotSameAs(jonDoe);
 }

 @SpringBootApplication
 @EnableClusterAware
 @EnableEntityDefinedRegions(basePackageClasses = User.class)
 @Profile("client")
 static class TestGeodeClientConfiguration { }

 @CacheServerApplication
 @Profile("server")

138

 static class TestGeodeServerConfiguration {

 public static void main(String[] args) {

 new SpringApplicationBuilder(TestGeodeServerConfiguration.class)
 .web(WebApplicationType.NONE)
 .profiles("server")
 .build()
 .run(args);
 }
 }
}

@Getter
@ToString
@EqualsAndHashCode
@RequiredArgsConstructor(staticName = "as")
@Region("Users")
class User {

 @Id
 @lombok.NonNull
 private String name;

}

interface UserRepository extends CrudRepository<User, String> { }

The application client/server-based Integration Test class extend STDG’s
org.springframework.data.gemfire.tests.integration.ForkingClientServerIntegrationTestsSupport
class. This ensures that all Apache Geode objects and resources are properly cleaned up after the
test class runs. In addition, it coordinates the client & server components of the test (e.g. connecting
the client to the server using a random port).

The server is started in a @BeforeClass setup method:

Start the Apache Geode server

class SpringBootApacheGeodeIntegrationTest extends
ForkingClientServerIntegrationTestsSupport {

 @BeforeClass
 public static void startGeodeServer() throws IOException {
 startGemFireServer(TestGeodeServerConfiguration.class);
 }
}

STDG allows you to configure the server with Spring config, specified in the
TestGeodeServerConfiguration class. The Java class needs to provide a main method. It uses the
SpringApplicationBuilder to bootstrap the Apache Geode CacheServer application.

139

Apache Geode server configuration

@CacheServerApplication
@Profile("server")
static class TestGeodeServerConfiguration {

 public static void main(String[] args) {

 new SpringApplicationBuilder(TestGeodeServerConfiguration.class)
 .web(WebApplicationType.NONE)
 .profiles("server")
 .build()
 .run(args);
 }
}

In this case, we provide very minimal configuration since the configuration is determined and
pushed up to the server by the client. For example, we do not need to explicitly create the "Users"
Region on the server-side since it is implicitly handled for you by the SBDG/STDG frameworks from
the client.

We take advantage of Spring Profiles in the test setup to distinguish between the client & server
configuration. Keep in mind that the test is the "client" in this arrangement.

The STDG framework is doing as the supporting class states, "forking" the Spring Boot-based,
Apache Geode CacheServer application in a separate JVM process. Subsequently, the STDG
framework will stop the server upon completion of the tests in the test class.

Of course, you are free to start your server(s) or cluster however you choose. STDG simply and
conveniently provides this capability for you since it is a common concern.

This test class is very simple and much more complex test scenarios can be easily handled by STDG.

Review SBDG’s test suite to witness the full power and functionality of the STDG
framework for yourself.

 See documentation on Integration Testing with STDG for more details.

140

https://github.com/spring-projects/spring-test-data-geode/#integration-testing-with-stdg

Chapter 19. Apache Geode API Extensions
When using the Spring programming model and abstractions, it should not be necessary to use
Apache Geode APIs at all — for example, when using the Spring Cache Abstraction for caching or
the Spring Data Repository abstraction for DAO development. There are many more examples.

For certain use cases, users may require low level access to fine-grained functionally. Spring Boot
for Apache Geode’s org.springframework.geode:apache-geode-extensions module and library builds
on Apache Geode’s APIs by including several extensions with enhanced functionality to offer an
experience familiar to Spring users inside a Spring context.

Spring Data for Apache Geode (SDG) also includes additional extensions to Apache
Geode’s APIs.

19.1. SimpleCacheResolver
In some cases, it is necessary to acquire a reference to the cache instance in your application
components at runtime. For example, you might want to create a temporary Region on the fly in
order to aggregate data for analysis.

Typically, you already know the type of cache your application is using since you must declare your
application to be either a client (i.e. ClientCache) in the client/server topology, or a peer
member/node in the cluster (i.e. Cache) on startup. This is expressed in configuration when creating
the cache instance required to interact with the Apache Geode data management system. In most
cases, your application will be a client and SBDG makes this decision easy since it auto-configures a
ClientCache instance, by default.

In a Spring context, the cache instance created by the framework is a managed bean in the Spring
container. As such, it is a simple matter to inject a reference to the Singleton cache bean into any
other managed application component.

Autowired Cache Reference using Dependency Injection (DI)

@Service
class CacheMonitoringService {

 @Autowired
 ClientCache clientCache;

 // use the clientCache object reference to monitor the cache as necessary

}

However, in cases where your application component or class is not managed by Spring and you
need a reference to the cache instance at runtime, SBDG provides the abstract
org.springframework.geode.cache.SimpleCacheResolver class (see Javadoc).

141

https://geode.apache.org/releases/latest/javadoc
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis
https://geode.apache.org/docs/guide/113/topologies_and_comm/cs_configuration/chapter_overview.html
https://geode.apache.org/docs/guide/113/topologies_and_comm/p2p_configuration/chapter_overview.html
https://geode.apache.org/docs/guide/113/topologies_and_comm/p2p_configuration/chapter_overview.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/cache/SimpleCacheResolver.html

SimpleCacheResolver API

package org.springframework.geode.cache;

abstract class SimpleCacheResolver {

 <T extends GemFireCache> T require() { }

 <T extends GemFireCache> Optional<T> resolve() { }

 Optional<ClientCache> resolveClientCache() { }

 Optional<Cache> resolvePeerCache() { }

}

SimpleCacheResolver adheres to SOLID OO Principles. This class is abstract and extensible so users
can change the algorithm used to resolve client or peer cache instances as well as mock its methods
in Unit Tests.

Additionally, each method is precise. For example, resolveClientCache() will only resolve a
reference to a cache if the cache instance is a "client"! If a cache exists, but is a "peer" instance, then
resolveClientCache() returns Optional.EMPTY. The behavior of resolvePeerCache() is similar.

require() returns a non-Optional reference to a cache instance throwing an IllegalStateException if
a cache is not present.

19.2. CacheUtils
Under-the-hood, SimpleCacheResolver delegates some of its functions to the CacheUtils abstract
utility class, which provides additional, convenient capabilities when using a cache.

While there are utility methods to determine whether a cache instance (i.e. GemFireCache) or Region
is a client or a peer, one of the more useful functions is to extract all the values from a Region.

To extract all the values stored in a Region call CacheUtils.collectValues(:Region<?, T>). This
method returns a Collection<T> containing all the values stored in the given Region. The method is
smart, and knows how to handle the Region appropriately regardless of whether the Region is a
client or peer Region. This distinction is important since client PROXY Regions store no values.

Caution is advised when getting all values from a Region. While getting filtered
reference values from a non-transactional, reference data only [REPLICATE] Region
is quite useful, getting all values from a transactional, [PARTITION] Region can prove
quite detrimental, especially in production. Getting all values from a Region can be
useful during testing.

142

https://en.wikipedia.org/wiki/SOLID
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/util/CacheUtils.html

19.3. MembershipListenerAdapter & MembershipEvent
Another useful API hidden by Apache Geode is the membership events and listener interface. This
API is especially useful on the server-side when your Spring Boot application is serving as a peer
member of an Apache Geode distributed system.

When a peer member is disconnected from the distributed system, perhaps due to a network
failure, the member is forcibly removed from the cluster. This node immediately enters a
reconnecting state, trying to establish a connection back to the cluster. Once reconnected, the peer
member must rebuild all cache objects (i.e. Cache, Regions, Indexes, DiskStores, etc). All previous
cache objects are now invalid and their references stale.

As you can imagine, in a Spring context this is particularly problematic since most Apache Geode
objects are Singleton beans declared in and managed by the Spring container. Those beans may be
injected and used in other framework and application components. For instance, Regions are
injected into SDG’s GemfireTemplate, Spring Data Repositories and possibly application-specific Data
Access Objects (DAO).

If references to those cache objects become stale on a forced disconnect event, then there is no way
to auto-wire fresh object references into the dependent application or framework components
when the peer member is reconnected unless the Spring ApplicationContext is "refreshed". In fact,
there is no way to even know that this event has occurred since the Apache Geode
MembershipListener API and corresponding events are "internal".

The Spring team have explored the idea of creating proxies for all types of cache
objects (i.e. Cache, Regions, Indexes, DiskStores, AsyncEventQueues, GatewayReceivers,
GatewaySenders, etc) used by Spring. The proxies would know how to obtain a
"fresh" reference on a reconnect event. However, this turns out to be more
problematic than it is worth. It is simply easier to "refresh" the Spring
ApplicationContext, although no less cheap. Neither way is ideal. See SGF-921 and
SGF-227 for further details.

In the case where membership events are useful to the Spring Boot application, SBDG provides the
following API:

• MembershipListenerAdapter

• MembershipEvent

The abstract MembershipListenerAdapter class implements Apache Geode’s
org.apache.geode.distributed.internal.MembershipListener interface to simplify the event handler
method signatures by using an appropriate MembershipEvent type to encapsulate the actors in the
event.

The abstract MembershipEvent class is further subclassed to represent specific membership event
types that occur within the Apache Geode system:

• MemberDepartedEvent

• MemberJoinedEvent

143

https://en.wikipedia.org/wiki/Data_access_object
https://jira.spring.io/browse/SGF-921
https://jira.spring.io/browse/SGF-227
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/package-frame.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/MembershipListenerAdapter.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/MembershipEvent.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/support/MemberDepartedEvent.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/support/MemberJoinedEvent.html

• MemberSuspectEvent

• QuorumLostEvent

The API is depicted in this UML diagram:

The membership event type is further categorized with an appropriate enumerated value,
MembershipEvent.Type, as a property of the MembershipEvent itself (see getType()).

The type hierarchy is useful in instanceof expressions while the Enum is useful in switch statements.

You can see 1 particular implementation of the MembershipListenerAdapter with the
ApplicationContextMembershipListener class, which does exactly as we described above, handling
forced-disconnect/auto-reconnect membership events inside a Spring context in order to refresh
the Spring ApplicationContext.

19.4. PDX
Apache Geode’s PDX serialization framework is yet another API that falls short of a complete stack.

For instance, there is no easy or direct way to serialize an object as PDX bytes. It is also not possible
to modify an existing PdxInstance by adding or removing fields since it requires a new PDX type. In
this case, you must create a new PdxInstance and copy from the existing PdxInstance. Unfortunately,
the Apache Geode API offers no assistance. It is also not possible to use PDX in a client, local-only
mode without a server since the PDX type registry is only available and managed on servers in a
cluster. All of this leaves much to be desired.

19.4.1. PdxInstanceBuilder

In such cases, SBDG conveniently provides the PdxInstanceBuilder class, appropriately named after
the Builder Software Design Pattern. The PdxInstanceBuilder also offers a fluent API for constructing

144

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/support/MemberSuspectEvent.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/support/QuorumLostEvent.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/MembershipEvent.Type.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/MembershipEvent.html#getType--
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/ApplicationContextMembershipListener.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/pdx/PdxInstanceBuilder.html
https://en.wikipedia.org/wiki/Builder_pattern

PdxInstances.

PdxInstanceBuilder API

class PdxInstanceBuilder {

 PdxInstanceFactory copy(PdxInstance pdx);

 Factory from(Object target);

}

For example, you could serialize an application domain object as PDX bytes with the following code:

Serializing an Object to PDX

@Component
class CustomerSerializer {

 PdxInstance serialize(Customer customer) {

 return PdxInstanceBuilder.create()
 .from(customer)
 .create();
 }
}

You could then modify the PdxInstance by copying from the original:

Copy PdxInstance

@Component
class CustomerDecorator {

 @Autowired
 CustomerSerializer serializer;

 PdxIntance decorate(Customer customer) {

 PdxInstance pdxCustomer = serializer.serialize(customer);

 return PdxInstanceBuilder.create()
 .copy(pdxCustomer)
 .writeBoolean("vip", isImportant(customer))
 .create();
 }
}

145

19.4.2. PdxInstanceWrapper

SBDG also provides the PdxInstanceWrapper class to wrap an existing PdxInstance in order to provide
more control during the conversion from PDX to JSON and from JSON back into a POJO. Specifically,
the wrapper gives users more control over the configuration of Jackson’s ObjectMapper.

The ObjectMapper constructed by Apache Geode’s own PdxInstance implementation (
PdxInstanceImpl) is not configurable nor was it configured correctly. And unfortunately, since
PdxInstance is not extensible, the getObject() method fails miserably when converting the JSON
generated from PDX back into a POJO for any practical application domain model type.

Wrapping an existing PdxInstance

PdxInstanceWrapper wrapper = PdxInstanceWrapper.from(pdxInstance);

For all operations on PdxInstance except getObject(), the wrapper delegates to the underlying
PdxInstance method implementation called by the user.

In addition to the decorated getObject() method, the PdxInstanceWrapper provides a thorough
implementation of the toString() method. The state of the PdxInstance is output in a JSON-like
String.

Finally, the PdxInstanceWrapper class adds a getIdentifier() method. Rather than put the burden on
the user to have to iterate the field names of the PdxInstance to determine whether a field is the
identity field, and then call getField(..) with the field name to get the ID (value), assuming an
identity field was marked in the first place, the PdxInstanceWrapper class provides the
getIdentifier() method to return the ID of the PdxInstance directly.

The getIdentifier() method is smart in that it first iterates the fields of the PdxInstance asking if the
field is the identity field. If no field was marked as the "identity" field, then the algorithm searches
for a field named "id". If no field with the name "id" exists, then the algorithm searches for a
metadata field called "@identifier", which refers to the field that is the identity field of the
PdxInstance.

The @identifier metadata field is useful in cases where the PdxInstance originated from JSON and
the application domain object uses a natural identifier, rather than a surrogate ID, such as
Book.isbn.

Apache Geode’s JSONFormatter is not capable of marking the identity field of a
PdxInstance originating from JSON.

It is not currently possible to implement the PdxInstance interface and store
instances of this type as a value in a Region. Apache Geode naively assumes that all
PdxInstance objects are an implementation created by Apache Geode itself (i.e.
PdxInstanceImpl), which has a tight coupling to the PDX type registry. An Exception
is thrown if you try to store instances of your own PdxInstance implementation.

146

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/pdx/PdxInstanceWrapper.html

19.4.3. ObjectPdxInstanceAdapter

In rare cases, it might be necessary to treat an Object as a PdxInstance depending on the context
without incurring the overhead of serializing an Object to PDX. For such cases, SBDG offers the
ObjectPdxInstanceAdapter class.

This might be true when calling a method with a parameter expecting an argument, or returning
an instance, of type PdxInstance, particularly when Apache Geode’s read-serialized PDX
configuration property is set to true, and only an object is available in the current context.

Under-the-hood, SBDG’s ObjectPdxInstanceAdapter class uses Spring’s BeanWrapper class along with
Java’s Introspection & Reflection functionality to adapt the given Object in order to access it using
the full PdxInstance API. This includes the use of the WritablePdxInstance API, obtained from
PdxInstance.createWriter(), to modify the underlying Object as well.

Like the PdxInstanceWrapper class, ObjectPdxInstanceAdapter contains special logic to resolve the
identity field and ID of the PdxInstance, including consideration for Spring Data’s @Id mapping
annotation, which can be introspected in this case given the underlying Object backing the
PdxInstance is a POJO.

Clearly, the ObjectPdxInstanceAdapter.getObject() method will return the given, wrapped Object
used to construct the ObjectPdxInstanceAdapter, and is therefore, automatically "deserializable", as
determined by the PdxInstance.isDeseriable() method, which always returns true.

To adapt any Object as a PdxInstance, simply do:

Adapt an Object as a PdxInstance

class OfflineObjectToPdxInstanceConverter {

 @NonNull PdxInstance convert(@NonNull Object target) {
 return ObjectPdxInstanceAdapter.from(target);
 }
}

Once the adapter is created, you can use it to access data on the underlying Object.

For example, given a Customer class:

147

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/BeanWrapper.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxInstance.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/WritablePdxInstance.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxInstance.html#createWriter--
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/annotation/Id.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxInstance.html#isDeserializable--

Customer class

@Region("Customers")
class Customer {

 @Id
 private Long id;

 String name;

 // constructors, getters and setters omitted

}

Then accessing an instance of Customer using the PdxInstance API is as easy as:

Accessing an Object using the PdxInstance API

class ObjectPdxInstanceAdapterTest {

 @Test
 public void getAndSetObjectProperties() {

 Customer jonDoe = new Customer(1L, "Jon Doe");

 PdxInstance adapter = ObjectPdxInstanceAdapter.from(jonDoe);

 assertThat(jonDoe.getName()).isEqualTo("Jon Doe");
 assertThat(adapter.getField("name")).isEqualTo("Jon Doe");

 adapter.createWriter().setField("name", "Jane Doe");

 assertThat(adapter.getField("name")).isEqualTo("Jane Doe");
 assertThat(jonDoe.getName()).isEqualTo("Jane Doe");
 }
}

19.5. Security
For testing purposes, SBDG provides a test implementation of Apache Geode’s SecurityManager
interface that simply expects the password to match the username (case-sensitive) when
authenticating.

By default, all operations are authorized.

To match the expectations of SBDG’s TestSecurityManager, SBDG additionally provides a test
implementation of Apache Geode’s AuthInitialize interface that supplies matching credentials for
both the username and password.

148

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/SecurityManager.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/AuthInitialize.html

Chapter 20. Spring Boot Actuator
Spring Boot for Apache Geode and VMware Tanzu GemFire (SBDG) adds Spring Boot Actuator
support and dedicated HealthIndicators for Apache Geode and VMware Tanzu GemFire. Equally,
the provided HealthIndicators will even work with Pivotal Cloud Cache, which is backed by
VMware Tanzu GemFire, when pushing your Spring Boot applications to Pivotal CloudFoundry
(PCC).

Spring Boot HealthIndicators provide details about the runtime operation and behavior of your
Apache Geode based Spring Boot applications. For instance, by querying the right HealthIndicator
endpoint, you would be able to get the current hit/miss count for your Region.get(key) data access
operations.

In addition to vital health information, SBDG provides basic, pre-runtime configuration meta-data
about the Apache Geode components that are monitored by Spring Boot Actuator. This makes it
easier to see how the application was configured all in one place, rather than in properties files,
Spring config, XML, etc.

The provided Spring Boot HealthIndicators fall under one of three categories:

• Base HealthIndicators that apply to all Apache Geode, Spring Boot applications, regardless of
cache type, such as Regions, Indexes and DiskStores.

• Peer Cache based HealthIndicators that are only applicable to peer Cache applications, such as
AsyncEventQueues, CacheServers, GatewayReceivers and GatewaySenders.

• And finally, ClientCache based HealthIndicators that are only applicable to ClientCache
applications, such as ContinuousQueries and connection Pools.

The following sections give a brief overview of all the available Spring Boot HealthIndicators
provided for Apache Geode out-of-the-box.

Refer to the corresponding Sample Guide and Code to see the Spring Boot Actuator
for Apache Geode in action!

20.1. Base HealthIndicators
The following section covers Spring Boot HealthIndicators that apply to both peer Cache and
ClientCache, Spring Boot applications. That is, these HealthIndicators are not specific to the cache
type.

In Apache Geode, the cache instance is either a peer Cache instance, which makes your Spring Boot
application part of a Apache Geode cluster, or more commonly, a ClientCache instance that talks to
an existing cluster. Your Spring Boot application can only be one cache type or the other and can
only have a single instance of that cache type.

20.1.1. GeodeCacheHealthIndicator

The GeodeCacheHealthIndicator provides essential details about the (single) cache instance (Client or

149

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready.html
guides/boot-actuator.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/boot/actuator

Peer) along with the underlying DistributedSystem, the DistributedMember and configuration details
of the ResourceManager.

When your Spring Boot application creates an instance of a peer Cache, the DistributedMember object
represents your application as a peer member/node of the DistributedSystem formed from a
collection of connected peers (i.e. the cluster), to which your application also has access, indirectly
via the cache instance.

This is no different for a ClientCache even though the client is technically not part of the peer/server
cluster. But, it still creates instances of the DistributedSystem and DistributedMember objects,
respectively.

The following configuration meta-data and health details about each object is covered:

Table 1. Cache Details

Name Description

geode.cache.name Name of the member in the distributed system.

geode.cache.closed Determines whether the cache has been closed.

geode.cache.cancel-
in-progress

Cancellation of operations in progress.

Table 2. DistributedMember Details

Name Description

geode.distributed-
member.id

DistributedMember identifier (used in logs internally).

geode.distributed-
member.name

Name of the member in the distributed system.

geode.distributed-
members.groups

Configured groups to which the member belongs.

geode.distributed-
members.host

Name of the machine on which the member is running.

geode.distributed-
members.process-

id

Identifier of the JVM process (PID).

Table 3. DistributedSystem Details

Name Description

geode.distributed-
system.member-

count

Total number of members in the cluster (1 for clients).

geode.distributed-
system.connected

Indicates whether the member is currently connected to the cluster.

150

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Cache.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/distributed/DistributedMember.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/distributed/DistributedSystem.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/GemFireCache.html#getDistributedSystem--

Name Description

geode.distributed-
system.reconnectin

g

Indicates whether the member is in a reconnecting state, which
happens when a network partition occurs and the member gets
disconnected from the cluster.

geode.distributed-
system.properties-

location

Location of the standard configuration properties.

geode.distributed-
system.security-

properties-location

Location of the security configuration properties.

Table 4. ResourceManager Details

Name Description

geode.resource-
manager.critical-
heap-percentage

Percentage of heap at which the cache is in danger of becoming
inoperable.

geode.resource-
manager.critical-

off-heap-
percentage

Percentage of off-heap at which the cache is in danger of becoming
inoperable.

geode.resource-
manager.eviction-
heap-percentage

Percentage of heap at which eviction begins on Regions configured
with a Heap LRU Eviction policy.

geode.resource-
manager.eviction-

off-heap-
percentage

Percentage of off-heap at which eviction begins on Regions
configured with a Heap LRU Eviction policy.

20.1.2. GeodeRegionsHealthIndicator

The GeodeRegionsHealthIndicator provides details about all the configured and known Regions in the
cache. If the cache is a client, then details will include all LOCAL, PROXY and CACHING_PROXY
Regions. If the cache is a peer, then the details will include all LOCAL, PARTITION and REPLICATE
Regions.

While the configuration meta-data details are not exhaustive, essential details along with basic
performance metrics are covered:

Table 5. Region Details

Name Description

geode.cache.region
s.<name>.cloning-

enabled

Whether Region values are cloned on read (e.g. cloning-enabled is
true when cache transactions are used to prevent in-place
modifications).

151

https://geode.apache.org/docs/guide/113/topics/gemfire_properties.html
https://geode.apache.org/docs/guide/113/topics/gemfire_properties.html

Name Description

geode.cache.region
s.<name>.data-

policy

Policy used to manage the data in the Region (e.g. PARTITION,
REPLICATE, etc).

geode.cache.region
s.<name>.initial-

capacity

Initial number of entries that can be held by a Region before it
needs to be resized.

geode.cache.region
s.<name>.load-

factor

Load factor used to determine when to resize the Region when it
nears capacity.

geode.cache.region
s.<name>.key-

constraint

Type constraint for Region keys.

geode.cache.region
s.<name>.off-heap

Determines whether this Region will store values in off-heap
memory (NOTE: Keys are always kept on Heap).

geode.cache.region
s.<name>.pool-

name

If this Region is a client Region, then this property determines the
configured connection Pool (NOTE: Regions can have and use
dedicated Pools for their data access operations.)

geode.cache.region
s.<name>.pool-

name

Determines the Scope of the Region, which plays a factor in the
Regions consistency-level, as it pertains to acknowledgements for
writes.

geode.cache.region
s.<name>.value-

constraint

Type constraint for Region values.

Additionally, when the Region is a peer Cache PARTITION Region, then the following details are also
covered:

Table 6. Partition Region Details

Name Description

geode.cache.region
s.<name>.partition.

collocated-with

Indicates this Region is collocated with another PARTITION Region,
which is necessary when performing equi-joins queries (NOTE:
distributed joins are not supported).

geode.cache.region
s.<name>.partition.
local-max-memory

Total amount of Heap memory allowed to be used by this Region on
this node.

geode.cache.region
s.<name>.partition.
redundant-copies

Number of replicas for this PARTITION Region, which is useful in
High Availability (HA) use cases.

geode.cache.region
s.<name>.partition.
total-max-memory

Total amount of Heap memory allowed to be used by this Region
across all nodes in the cluster hosting this Region.

152

Name Description

geode.cache.region
s.<name>.partition.

total-number-of-
buckets

Total number of buckets (shards) that this Region is divided up into
(NOTE: defaults to 113).

Finally, when statistics are enabled (e.g. using @EnableStatistics, (see here for more details), the
following details are available:

Table 7. Region Statistic Details

Name Description

geode.cache.region
s.<name>.statistics.

hit-count

Number of hits for a Region entry.

geode.cache.region
s.<name>.statistics.

hit-ratio

Ratio of hits to the number of Region.get(key) calls.

geode.cache.region
s.<name>.statistics.
last-accessed-time

For an entry, determines the last time it was accessed with
Region.get(key).

geode.cache.region
s.<name>.statistics.
last-modified-time

For an entry, determines the time a Region’s entry value was last
modified.

geode.cache.region
s.<name>.statistics.

miss-count

Returns the number of times that a Region.get was performed and
no value was found locally.

20.1.3. GeodeIndexesHealthIndicator

The GeodeIndexesHealthIndicator provides details about the configured Region Indexes used in OQL
query data access operations.

The following details are covered:

Table 8. Index Details

Name Description

geode.index.<name
>.from-clause

Region from which data is selected.

geode.index.<name
>.indexed-
expression

The Region value fields/properties used in the Index expression.

geode.index.<name
>.projection-

attributes

For all other Indexes, returns "", but for Map Indexes, returns
either "" or the specific Map keys that were indexed.

153

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-statistics

Name Description

geode.index.<name
>.region

Region to which the Index is applied.

Additionally, when statistics are enabled (e.g. using @EnableStatistics; (see here for more details),
the following details are available:

Table 9. Index Statistic Details

Name Description

geode.index.<name
>.statistics.number-
of-bucket-indexes

Number of bucket Indexes created in a Partitioned Region.

geode.index.<name
>.statistics.number-

of-keys

Number of keys in this Index.

geode.index.<name
>.statistics.number-

of-map-indexed-
keys

Number of keys in this Index at the highest-level.

geode.index.<name
>.statistics.number-

of-values

Number of values in this Index.

geode.index.<name
>.statistics.number-

of-updates

Number of times this Index has been updated.

geode.index.<name
>.statistics.read-

lock-count

Number of read locks taken on this Index.

geode.index.<name
>.statistics.total-

update-time

Total amount of time (ns) spent updating this Index.

geode.index.<name
>.statistics.total-

uses

Total number of times this Index has been accessed by an OQL
query.

20.1.4. GeodeDiskStoresHealthIndicator

The GeodeDiskStoresHealthIndicator provides details about the configured DiskStores in the
system/application. Remember, DiskStores are used to overflow and persist data to disk, including
type meta-data tracked by PDX when the values in the Region(s) have been serialized with PDX and
the Region(s) are persistent.

Most of the tracked health information pertains to configuration:

154

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-statistics

Table 10. DiskStore Details

Name Description

geode.disk-
store.<name>.allow
-force-compaction

Indicates whether manual compaction of the DiskStore is allowed.

geode.disk-
store.<name>.auto-

compact

Indicates if compaction occurs automatically.

geode.disk-
store.<name>.comp

action-threshold

Percentage at which the oplog will become compactable.

geode.disk-
store.<name>.disk-

directories

Location of the oplog disk files.

geode.disk-
store.<name>.disk-

directory-sizes

Configured and allowed sizes (MB) for the disk directory storing the
disk files.

geode.disk-
store.<name>.disk-

usage-critical-
percentage

Critical threshold of disk usage proportional to the total disk
volume.

geode.disk-
store.<name>.disk-

usage-warning-
percentage

Warning threshold of disk usage proportional to the total disk
volume.

geode.disk-
store.<name>.max-

oplog-size

Maximum size (MB) allowed for a single oplog file.

geode.disk-
store.<name>.queu

e-size

Size of the queue used to batch writes flushed to disk.

geode.disk-
store.<name>.time-

interval

Time to wait (ms) before writes are flushed to disk from the queue
if the size limit has not be reached.

geode.disk-
store.<name>.uuid

Universally Unique Identifier for the DiskStore across Distributed
System.

geode.disk-
store.<name>.write

-buffer-size

Size the of write buffer the DiskStore uses to write data to disk.

155

20.2. ClientCache HealthIndicators
The ClientCache based HealthIndicators provide additional details specifically for Spring Boot,
cache client applications. These HealthIndicators are only available when the Spring Boot
application creates a ClientCache instance (i.e. is a cache client), which is the default.

20.2.1. GeodeContinuousQueriesHealthIndicator

The GeodeContinuousQueriesHealthIndicator provides details about registered client Continuous
Queries (CQ). CQs enable client applications to receive automatic notification about events that
satisfy some criteria. That criteria can be easily expressed using the predicate of an OQL query (e.g.
“SELECT * FROM /Customers c WHERE c.age > 21”). Anytime data of interests is inserted or updated,
and matches the criteria specified in the OQL query predicate, an event is sent to the registered
client.

The following details are covered for CQs by name:

Table 11. Continuous Query(CQ) Details

Name Description

geode.continuous-
query.<name>.oql-

query-string

OQL query constituting the CQ.

geode.continuous-
query.<name>.clos

ed

Indicates whether the CQ has been closed.

geode.continuous-
query.<name>.closi

ng

Indicates whether the CQ is the process of closing.

geode.continuous-
query.<name>.dur

able

Indicates whether the CQ events will be remembered between
client sessions.

geode.continuous-
query.<name>.run

ning

Indicates whether the CQ is currently running.

geode.continuous-
query.<name>.stop

ped

Indicates whether the CQ has been stopped.

In addition, the following CQ query and statistical data is covered:

Table 12. Continuous Query(CQ), Query Details

156

Name Description

geode.continuous-
query.<name>.quer

y.number-of-
executions

Total number of times the query has been executed.

geode.continuous-
query.<name>.quer

y.total-execution-
time

Total amount of time (ns) spent executing the query.

geode.continuous-
query.<name>.stati

stics.number-of-
deletes

Table 13. Continuous Query(CQ), Statistic Details

Name Description

geode.continuous-
query.<name>.stati

stics.number-of-
deletes

Number of Delete events qualified by this CQ.

geode.continuous-
query.<name>.stati

stics.number-of-
events

Total number of events qualified by this CQ.

geode.continuous-
query.<name>.stati

stics.number-of-
inserts

Number of Insert events qualified by this CQ.

geode.continuous-
query.<name>.stati

stics.number-of-
updates

Number of Update events qualified by this CQ.

In a more general sense, the Apache Geode Continuous Query system is tracked with the following,
additional details on the client:

Table 14. Continuous Query(CQ), Statistic Details

Name Description

geode.continuous-
query.count

Total count of CQs.

geode.continuous-
query.number-of-

active

Number of currently active CQs (if available).

157

Name Description

geode.continuous-
query.number-of-

closed

Total number of closed CQs (if available).

geode.continuous-
query.number-of-

created

Total number of created CQs (if available).

geode.continuous-
query.number-of-

stopped

Number of currently stopped CQs (if available).

geode.continuous-
query.number-on-

client

Number of CQs that are currently active or stopped (if available).

20.2.2. GeodePoolsHealthIndicator

The GeodePoolsHealthIndicator provide details about all the configured client connection Pools. This
HealthIndicator primarily provides configuration meta-data for all the configured Pools.

The following details are covered:

Table 15. Pool Details

Name Description

geode.pool.count Total number of client connection Pools.

geode.pool.<name>
.destroyed

Indicates whether the Pool has been destroyed.

geode.pool.<name>
.free-connection-

timeout

Configured amount of time to wait for a free connection from the
Pool.

geode.pool.<name>
.idle-timeout

The amount of time to wait before closing unused, idle connections
not exceeding the configured number of minimum required
connections.

geode.pool.<name>
.load-conditioning-

interval

Controls how frequently the Pool will check to see if a connection to
a given server should be moved to a different server to improve the
load balance.

geode.pool.<name>
.locators

List of configured Locators.

geode.pool.<name>
.max-connections

Maximum number of connections obtainable from the Pool.

geode.pool.<name>
.min-connections

Minimum number of connections contained by the Pool.

158

Name Description

geode.pool.<name>
.multi-user-

authentication

Determines whether the Pool can be used by multiple authenticated
users.

geode.pool.<name>
.online-locators

Returns a list of living Locators.

geode.pool.<name>
.pending-event-

count

Approximate number of pending subscription events maintained at
server for this durable client Pool at the time it (re)connected to the
server.

geode.pool.<name>
.ping-interval

How often to ping the servers to verify they are still alive.

geode.pool.<name>
.pr-single-hop-

enabled

Whether the client will acquire a direct connection to the server
containing the data of interests.

geode.pool.<name>
.read-timeout

Number of milliseconds to wait for a response from a server before
timing out the operation and trying another server (if any are
available).

geode.pool.<name>
.retry-attempts

Number of times to retry a request after timeout/exception.

geode.pool.<name>
.server-group

Configures the group in which all servers this Pool connects to must
belong.

geode.pool.<name>
.servers

List of configured servers.

geode.pool.<name>
.socket-buffer-size

Socket buffer size for each connection made in this Pool.

geode.pool.<name>
.statistic-interval

How often to send client statistics to the server.

geode.pool.<name>
.subscription-ack-

interval

Interval in milliseconds to wait before sending acknowledgements
to the cache server for events received from the server
subscriptions.

geode.pool.<name>
.subscription-

enabled

Enabled server-to-client subscriptions.

geode.pool.<name>
.subscription-

message-tracking-
timeout

Time-to-Live period (ms), for subscription events the client has
received from the server.

geode.pool.<name>
.subscription-
redundancy

Redundancy level for this Pools server-to-client subscriptions,
which is used to ensure clients will not miss potentially important
events.

159

Name Description

geode.pool.<name>
.thread-local-
connections

Thread local connection policy for this Pool.

20.3. Peer Cache HealthIndicators
The peer Cache based HealthIndicators provide additional details specifically for Spring Boot, peer
cache member applications. These HealthIndicators are only available when the Spring Boot
application creates a peer Cache instance.

The default cache instance created by Spring Boot for Apache Geode is a
ClientCache instance.

To control what type of cache instance is created, such as a "peer", then you can
explicitly declare either the @PeerCacheApplication, or alternatively, the
@CacheServerApplication, annotation on your @SpringBootApplication annotated
class.

20.3.1. GeodeCacheServersHealthIndicator

The GeodeCacheServersHealthIndicator provides details about the configured Apache Geode
CacheServers. CacheServer instances are required to enable clients to connect to the servers in the
cluster.

This HealthIndicator captures basic configuration meta-data and runtime behavior/characteristics
of the configured CacheServers:

Table 16. CacheServer Details

Name Description

geode.cache.server.
count

Total number of configured CacheServer instances on this peer
member.

geode.cache.server.
<index>.bind-

address

IP address of the NIC to which the CacheServer ServerSocket is
bound (useful when the system contains multiple NICs).

geode.cache.server.
<index>.hostname-

for-clients

Name of the host used by clients to connect to the CacheServer
(useful with DNS).

geode.cache.server.
<index>.load-poll-

interval

How often (ms) to query the load probe on the CacheServer.

geode.cache.server.
<index>.max-
connections

Maximum number of connections allowed to this CacheServer.

160

Name Description

geode.cache.server.
<index>.max-

message-count

Maximum number of messages that can be enqueued in a client
queue.

geode.cache.server.
<index>.max-

threads

Maximum number of Threads allowed in this CacheServer to
service client requests.

geode.cache.server.
<index>.max-time-

between-pings

Maximum time between client pings.

geode.cache.server.
<index>.message-

time-to-live

Time (seconds) in which the client queue will expire.

geode.cache.server.
<index>.port

Network port to which the CacheServer ServerSocket is bound and
listening for the client connections.

geode.cache.server.
<index>.running

Determines whether this CacheServer is currently running and
accepting client connections.

geode.cache.server.
<index>.socket-

buffer-size

Configured buffer size of the Socket connection used by this
CacheServer.

geode.cache.server.
<index>.tcp-no-

delay

Configures the TCP/IP TCP_NO_DELAY setting on outgoing Sockets.

In addition to the configuration settings shown above, the CacheServer’s ServerLoadProbe tracks
additional details about the runtime characteristics of the CacheServer, as follows:

Table 17. CacheServer Metrics and Load Details

Name Description

geode.cache.server.
<index>.load.conne

ction-load

Load on the server due to client to server connections.

geode.cache.server.
<index>.load.load-

per-connection

Estimate of the how much load each new connection will add to this
server.

geode.cache.server.
<index>.load.subsc
ription-connection-

load

Load on the server due to subscription connections.

161

Name Description

geode.cache.server.
<index>.load.load-
per-subscription-

connection

Estimate of the how much load each new subscriber will add to this
server.

geode.cache.server.
<index>.metrics.cli

ent-count

Number of connected clients.

geode.cache.server.
<index>.metrics.ma
x-connection-count

Maximum number of connections made to this CacheServer.

geode.cache.server.
<index>.metrics.op

en-connection-
count

Number of open connections to this CacheServer.

geode.cache.server.
<index>.metrics.su

bscription-
connection-count

Number of subscription connections to this CacheServer.

20.3.2. GeodeAsyncEventQueuesHealthIndicator

The GeodeAsyncEventQueuesHealthIndicator provides details about the configured AsyncEventQueues.
AEQs can be attached to Regions to configure asynchronous, write-behind behavior.

This HealthIndicator captures configuration meta-data and runtime characteristics for all AEQs, as
follows:

Table 18. AsyncEventQueue Details

Name Description

geode.async-event-
queue.count

Total number of configured AEQs.

geode.async-event-
queue.<id>.batch-
conflation-enabled

Indicates whether batch events are conflated when sent.

geode.async-event-
queue.<id>.batch-

size

Size of the batch that gets delivered over this AEQ.

geode.async-event-
queue.<id>.batch-

time-interval

Max time interval that can elapse before a batch is sent.

162

Name Description

geode.async-event-
queue.<id>.disk-

store-name

Name of the disk store used to overflow & persist events.

geode.async-event-
queue.<id>.disk-

synchronous

Indicates whether disk writes are sync or async.

geode.async-event-
queue.<id>.dispatc

her-threads

Number of Threads used to dispatch events.

geode.async-event-
queue.<id>.forwar

d-expiration-
destroy

Indicates whether expiration destroy operations are forwarded to
AsyncEventListener.

geode.async-event-
queue.<id>.max-
queue-memory

Maximum memory used before data needs to be overflowed to disk.

geode.async-event-
queue.<id>.order-

policy

Order policy followed while dispatching the events to
AsyncEventListeners.

geode.async-event-
queue.<id>.parallel

Indicates whether this queue is parallel (higher throughput) or
serial.

geode.async-event-
queue.<id>.persiste

nt

Indicates whether this queue stores events to disk.

geode.async-event-
queue.<id>.primar

y

Indicates whether this queue is primary or secondary.

geode.async-event-
queue.<id>.size

Number of entries in this queue.

20.3.3. GeodeGatewayReceiversHealthIndicator

The GeodeGatewayReceiversHealthIndicator provide details about the configured (WAN)
GatewayReceivers, which are capable of receiving events from remote clusters when using Apache
Geode’s multi-site, WAN topology.

This HealthIndicator captures configuration meta-data along with the running state for each
GatewayReceiver:

Table 19. GatewayReceiver Details

163

https://geode.apache.org/docs/guide/113/topologies_and_comm/multi_site_configuration/chapter_overview.html

Name Description

geode.gateway-
receiver.count

Total number of configured GatewayReceivers.

geode.gateway-
receiver.<index>.bi

nd-address

IP address of the NIC to which the GatewayReceiver ServerSocket is
bound (useful when the system contains multiple NICs).

geode.gateway-
receiver.<index>.e

nd-port

End value of the port range from which the GatewayReceiver’s port
will be chosen.

geode.gateway-
receiver.<index>.h

ost

IP address or hostname that Locators will tell clients (i.e.
GatewaySenders) that this GatewayReceiver is listening on.

geode.gateway-
receiver.<index>.m
ax-time-between-

pings

Maximum amount of time between client pings.

geode.gateway-
receiver.<index>.p

ort

Port on which this GatewayReceiver listens for clients (i.e.
GatewaySenders).

geode.gateway-
receiver.<index>.ru

nning

Indicates whether this GatewayReceiver is running and accepting
client connections (from GatewaySenders).

geode.gateway-
receiver.<index>.so

cket-buffer-size

Configured buffer size for the Socket connections used by this
GatewayReceiver.

geode.gateway-
receiver.<index>.st

art-port

Start value of the port range from which the GatewayReceiver’s
port will be chosen.

20.3.4. GeodeGatewaySendersHealthIndicator

The GeodeGatewaySendersHealthIndicator provides details about the configured GatewaySenders.
GatewaySenders are attached to Regions in order to send Region events to remote clusters in Apache
Geode’s multi-site, WAN topology.

This HealthIndicator captures essential configuration meta-data and runtime characteristics for
each GatewaySender:

Table 20. GatewaySender Details

Name Description

geode.gateway-
sender.count

Total number of configured GatewaySenders.

164

https://geode.apache.org/docs/guide/113/topologies_and_comm/multi_site_configuration/chapter_overview.html

Name Description

geode.gateway-
sender.<id>.alert-

threshold

Alert threshold (ms) for entries in this GatewaySender’s queue.

geode.gateway-
sender.<id>.batch-
conflation-enabled

Indicates whether batch events are conflated when sent.

geode.gateway-
sender.<id>.batch-

size

Size of the batches sent.

geode.gateway-
sender.<id>.batch-

time-interval

Max time interval that can elapse before a batch is sent.

geode.gateway-
sender.<id>.disk-

store-name

Name of the DiskStore used to overflow and persist queue events.

geode.gateway-
sender.<id>.disk-

synchronous

Indicates whether disk writes are sync or async.

geode.gateway-
sender.<id>.dispatc

her-threads

Number of Threads used to dispatch events.

geode.gateway-
sender.<id>.max-
queue-memory

Maximum amount of memory (MB) usable for this
GatewaySender’s queue.

geode.gateway-
sender.<id>.max-
parallelism-for-

replicated-region

geode.gateway-
sender.<id>.order-

policy

Order policy followed while dispatching the events to
GatewayReceivers.

geode.gateway-
sender.<id>.paralle

l

Indicates whether this GatewaySender is parallel (higher
throughput) or serial.

geode.gateway-
sender.<id>.paused

Indicates whether this GatewaySender is paused.

geode.gateway-
sender.<id>.persist

ent

Indicates whether this GatewaySender persists queue events to
disk.

165

Name Description

geode.gateway-
sender.<id>.remote
-distributed-system

-id

Identifier for the remote distributed system.

geode.gateway-
sender.<id>.runnin

g

Indicates whether this GatewaySender is currently running.

geode.gateway-
sender.<id>.socket-

buffer-size

Configured buffer size for the Socket connections between this
GatewaySender and its receiving GatewayReceiver.

geode.gateway-
sender.<id>.socket-

read-timeout

Amount of time (ms) that a Socket read between this sending
GatewaySender and its receiving GatewayReceiver will block.

166

Chapter 21. Spring Session
This chapter covers auto-configuration of Spring Session using Apache Geode to manage (HTTP)
Session state in a reliable (consistent), highly-available (replicated) and clustered manner.

Spring Session provides an API and several implementations for managing a user’s session
information. It has the ability to replace the javax.servlet.http.HttpSession in an application
container neutral way along with providing Session IDs in HTTP headers to work with RESTful
APIs.

Furthermore, Spring Session provides the ability to keep the HttpSession alive even when working
with WebSockets and reactive Spring WebFlux WebSessions.

A full discussion of Spring Session is beyond the scope of this document, and the reader is
encouraged to learn more by reading the docs and reviewing the samples.

Of course, Spring Boot for Apache Geode provides auto-configuration support to configure Apache
Geode as the user’s session information management provider and store when Spring Session for
Apache Geode is on your Spring Boot application’s classpath.

 You can learn more about Spring Session for Apache Geode in the docs.

Refer to the corresponding Sample Guide and Code to see Spring Session for
Apache Geode in action!

21.1. Configuration
There is nothing special that you need to do in order to use Apache Geode as a Spring Session
provider, managing the (HTTP) Session state of your Spring Boot application.

Simply include the appropriate Spring Session dependency on your Spring Boot application’s
classpath, for example:

Maven dependency declaration

 <dependency>
 <groupId>org.springframework.session</groupId>
 <artifactId>spring-session-data-geode</artifactId>
 <version>2.5.2</version>
 </dependency>

Alternatively, you may declare the provided spring-geode-starter-session dependency in your
Spring Boot application Maven POM or Gradle build file:

167

https://spring.io/projects/spring-session
https://docs.spring.io/spring-session/docs/current/reference/html5
https://docs.spring.io/spring-session/docs/current/reference/html5/#samples
https://spring.io/projects/spring-session-data-geode
https://spring.io/projects/spring-session-data-geode
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/reference/html5
guides/caching-http-session.html.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/http-session

Maven dependency declaration

 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter-session</artifactId>
 <version>1.5.2</version>
 </dependency>

After declaring the required Spring Session dependency, then begin your Spring Boot application as
you normally would:

Spring Boot Application

@SpringBootApplication
public class MySpringBootApplication {

 public static void main(String[] args) {
 SpringApplication.run(MySpringBootApplication.class, args);
 }

 // ...
}

That is it!

Of course, you are free to create application-specific, Spring Web MVC Controllers to interact with
the HttpSession as needed by your application:

Application Controller using HttpSession

@Controller
class MyApplicationController {

 @GetRequest("...")
 public String processGet(HttpSession session) {
 // interact with HttpSession
 }
}

The HttpSession is replaced by a Spring managed Session that will be stored in Apache Geode.

21.2. Custom Configuration
By default, Spring Boot for Apache Geode (SBDG) applies reasonable and sensible defaults when
configuring Apache Geode as the provider in Spring Session.

So, for instance, by default, SBDG set the session expiration timeout to 30 minutes. It also uses a
ClientRegionShortcut.PROXY as the client Region data management policy for the Apache Geode
Region managing the (HTTP) Session state when the Spring Boot application is using a ClientCache,

168

which it does by default.

However, what if the defaults are not sufficient for your application requirements?

21.2.1. Custom Configuration using Properties

Spring Session for Apache Geode publishes well-known configuration properties for each of the
various Spring Session configuration options when using Apache Geode as the (HTTP) Session state
management provider.

You may specify any of these properties in a Spring Boot application.properties file to adjust Spring
Session’s configuration when using Apache Geode.

In addition to the properties provided in and by Spring Session for Apache Geode, Spring Boot for
Apache Geode also recognizes and respects the spring.session.timeout property as well as the
server.servlet.session.timeout property as discussed here.

spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds
takes precedence over spring.session.timeout, which takes precedence over
server.servlet.session.timeout, when any combination of these properties have
been simultaneously configured in the Spring Environment of your application.

21.2.2. Custom Configuration using a Configurer

Spring Session for Apache Geode also provides the SpringSessionGemFireConfigurer callback
interface, which can be declared in your Spring ApplicationContext to programmatically control the
configuration of Spring Session when using Apache Geode.

The SpringSessionGemFireConfigurer, when declared in the Spring ApplicationContext, takes
precedence over any of the Spring Session (for Apache Geode) configuration properties, and will
effectively override them when both are present.

More information on using the SpringSessionGemFireConfigurer can be found in the docs.

21.3. Disabling Session State Caching
There may be cases where you do not want your Spring Boot application to manage (HTTP) Session
state using Apache Geode. In certain cases, you may be using another Spring Session provider, such
as Redis, to cache and manage your Spring Boot application’s (HTTP) Session state, while, even in
other cases, you do not want to use Spring Session to manage your (HTTP) Session state at all.
Rather, you prefer to use your Web Server’s (e.g. Tomcat) HttpSession state management.

Either way, you can specifically call out your Spring Session provider using the
spring.session.store-type property in application.properties, as follows:

169

https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/reference/html5/#httpsession-gemfire-configuration-properties
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-session.html
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/support/SpringSessionGemFireConfigurer.html
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/reference/html5/#httpsession-gemfire-configuration-configurer

Use Redis as the Spring Session Provider

#application.properties

spring.session.store-type=redis
...

If you prefer not to use Spring Session to manage your Spring Boot application’s (HTTP) Session
state at all, then do the following:

Use Web Server Session State Management

#application.properties

spring.session.store-type=none
...

Again, see Spring Boot docs for more details.

It is possible to include multiple providers on the classpath of your Spring Boot
application. For instance, you might be using Redis to cache your application’s
(HTTP) Session state while using Apache Geode as your application’s persistent
store (System of Record).

Spring Boot does not properly recognize spring.session.store-
type=[gemfire|geode] even though Spring Boot for Apache Geode is setup to handle
either of these property values (i.e. either “gemfire” or “geode”).

21.4. Using Spring Session with Pivotal Cloud Cache
(PCC)
Whether you are using Spring Session in a Spring Boot ClientCache application connecting to an
externally managed cluster of Apache Geode servers, or connecting to a cluster of servers in a
Pivotal Cloud Cache service instance managed by a VMware Tanzu Application Service (TAS)
environment, the setup is the same.

Spring Session for Apache Geode expects there to exist a cache Region in the cluster that will store
and manage (HTTP) Session state when your Spring Boot application is a ClientCache application in
a client/server topology.

By default, the cache Region used to store and manage (HTTP) Session state is called
"ClusteredSpringSessions".

You can set the name of the cache Region used to store and manage (HTTP) Session state either by
explicitly declaring the @EnableGemFireHttpSession annotation on your main @SpringBootApplication
class, like so:

170

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-session.html

Using `@EnableGemfireHttpSession

@SpringBootApplication
@EnableGemFireHttpSession(regionName = "MySessions")
class MySpringBootSpringSessionApplication {
 // ...
}

Or alternatively, we recommend users to configure the cache Region name using the well-known
and documented property in Spring Boot application.properties:

Using properties

spring.session.data.gemfire.session.region.name=MySessions

Once you decide on the cache Region name used to store and manage (HTTP) Sessions, you must
create the Region in the cluster somehow.

On the client, this is simple since SBDG’s auto-configuration will automatically create the client
PROXY Region used to send/receive (HTTP) Session state between the client and server for you, when
either Spring Session is on the application classpath (e.g. spring-geode-starter-session), or you
explicitly declare the @EnableGemFireHttpSession annotation on your main @SpringBootApplication
class.

However, on the server-side, you currently have a couple of options.

First, you can create the cache Region manually using Gfsh, like so:

Create the Sessions Region using Gfsh

gfsh> create region --name=MySessions --type=PARTITION --entry-idle-time
-expiration=1800
 --entry-idle-time-expiration-action=INVALIDATE

You must create the cache Region with the appropriate name and an expiration policy.

In this case, we created an Idle Expiration Policy with a timeout of 1800 seconds (30 minutes), after
which, the entry (i.e. Session object) will be "invalidated".

Session expiration is managed by the Expiration Policy set on the cache Region
used to store Session state. The Servlet Container’s (HTTP) Session expiration
configuration is not used since Spring Session is replacing the Servlet Container’s
Session management capabilities with its own and Spring Session delegates this
behavior to the individual providers, like Apache Geode.

Alternatively, you could send the definition for the cache Region from your Spring Boot ClientCache
application to the cluster using the SBDG @EnableClusterAware annotation, which is meta-annotated
with SDG’s @EnableClusterConfiguration annotation.

171

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/config/annotation/EnableClusterAware.html

See the Javadoc on the @EnableClusterConfiguration annotation as well as the
documentation for more details.

Using @EnableClusterAware

@SpringBootApplication
@EnableClusterAware
class MySpringBootSpringSessionApplication {
 // ...
}

However, it is not currently possible to send Expiration Policy configuration metadata to the cluster
yet. Therefore, you must manually alter the cache Region to set the Expiration Policy, like so:

Using Gfsh to Alter Region

gfsh> alter region --name=MySessions --entry-idle-time-expiration=1800
 --entry-idle-time-expiration-action=INVALIDATE

That is it!

Now your Spring Boot ClientCache application using Spring Session in a client/server topology is
configured to store and manage user (HTTP) Session state in the cluster. This works for either
standalone, externally managed Apache Geode clusters, or when using PCC running in a VMware
Tanzu Application Service environment.

172

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-cluster

Chapter 22. Pivotal CloudFoundry

As of the VMware, Inc acquisition of Pivotal Software, Inc, Pivotal CloudFoundry
(PCF) is now known as VMware Tanzu Application Service (TAS) for VMs. Also,
Pivotal Cloud Cache (PCC) has been rebranded as VMware Tanzu GemFire for VMS.
This documentation will eventually be updated to reflect the rebranding.

In most cases, when you deploy (i.e. "push") your Spring Boot applications to Pivotal CloudFoundry
(PCF) you will bind your app to 1 or more instances of the Pivotal Cloud Cache (PCC) service.

In a nutshell, Pivotal Cloud Cache (PCC) is a managed version of Pivotal GemFire running in Pivotal
CloudFoundry (PCF). When running in or across cloud environments (e.g. AWS, Azure, GCP or
PWS), PCC with PCF offers several advantages over trying to run and manage your own standalone
Apache Geode clusters. It handles many of the infrastructure-related, operational concerns so you
do not have to.

22.1. Running Spring Boot applications as a specific
user
By default, Spring Boot applications run as a "cluster_operator" Role-based user in Pivotal
CloudFoundry when the app is bound to a Pivotal Cloud Cache service instance.

A "cluster_operator" has full system privileges (i.e. Authorization) to do whatever that user wishes
to involving the PCC service instance. A "cluster_operator" has read/write access to all the data, can
modify the schema (e.g. create/destroy Regions, add/remove Indexes, change eviction or expiration
policies, etc), start and stop servers in the PCC cluster, or even modify permissions.

173

https://pivotal.io/pivotal-cloud-cache
https://pivotal.io/pivotal-gemfire
https://pivotal.io/platform
https://pivotal.io/platform

About cluster-operator as the default user

1 of the reasons why Spring Boot apps default to running as a "cluster_operator" is to allow
configuration metadata to be sent from the client to the server. Enabling configuration
metadata to be sent from the client to the server is a useful development-time feature and is
as simple as annotating your main @SpringBootApplication class with the
@EnableClusterConfiguration annotation:

Using @EnableClusterConfiguration

@SpringBootApplication
@EnableClusterConfiguration(useHttp = true)
class SpringBootApacheGeodeClientCacheApplication { }

With @EnableClusterConfiguration, Region and OQL Index configuration metadata defined on
the client can be sent to servers in the PCC cluster. Apache Geode requires matching Regions
by name on both the client and servers in order for clients to send and receive data to and
from the cluster.

For example, when you declare the Region where an application entity will be persisted using
the @Region mapping annotation and additionally declare the @EnableEntityDefinedRegions
annotation on the main @SpringBootApplication class in conjunction with the
@EnableClusterConfiguration annotation, then not only will SBDG create the required client
Region, but it will also send the configuration metadata for this Region to the servers in the
cluster to create the matching, required server Region, where the data for your application
entity will be managed.

However…

With great power comes great responsibility. - Uncle Ben

Not all Spring Boot applications using PCC will need to change the schema, or even modify data.
Rather, certain apps may only need read access. Therefore, it is ideal to be able to configure your
Spring Boot applications to run with a different user at runtime other than the auto-configured
"cluster_operator", by default.

A prerequisite for running a Spring Boot application using PCC with a specific user is to create a
user with restricted permissions using Pivotal CloudFoundry AppsManager while provisioning the
PCC service instance to which the Spring Boot app will be bound.

Configuration metadata for the PCC service instance might appear as follows:

174

Pivotal Cloud Cache configuration metadata

{
 "p-cloudcache":[{
 "credentials": {
 "distributed_system_id": "0",
 "locators": ["localhost[55221]"],
 "urls": {
 "gfsh": "https://cloudcache-12345.services.cf.pws.com/gemfire/v1",
 "pulse": "https://cloudcache-12345.services.cf.pws.com/pulse"
 },
 "users": [{
 "password": "*****",
 "roles": ["cluster_operator"],
 "username": "cluster_operator_user"
 }, {
 "password": "*****",
 "roles": ["developer"],
 "username": "developer_user"
 }, {
 "password": "*****",
 "roles": ["read-only-user"],
 "username": "guest"
 }],
 "wan": {
 "sender_credentials": {
 "active": {
 "password": "*****",
 "username": "gateway-sender-user"
 }
 }
 }
 },
 "name": "jblum-pcc",
 "plan": "small",
 "tags": ["gemfire", "cloudcache", "database", "pivotal"]
 }]
}

In the PCC service instance configuration metadata above, we see a "guest" user with the "read-only-
user" Role. If the "read-only-user" Role is properly configured with "read-only" permissions as the
name implies, then we could configure our Spring Boot application to run as "guest" with read-only
access using:

Configuring a Spring Boot app to run as a specific user

Spring Boot application.properties for PCF when using PCC

spring.data.gemfire.security.username=guest

175

The spring.data.gemfire.security.username property corresponds directly to the
SDG @EnableSecurity annotation, securityUsername attribute. See the Javadoc for
more details.

The spring.data.gemfire.security.username property is the same property used by Spring Data for
Apache Geode (SDG) to configure the runtime user of your Spring Data application when
connecting to an externally managed Apache Geode cluster.

In this case, SBDG simply uses the configured username to lookup the authentication credentials of
the user to set the username and password used by the Spring Boot, ClientCache app when
connecting to PCC while running in PCF.

If the username is not valid, then an IllegalStateException is thrown.

By using Spring Profiles, it would be a simple matter to configure the Spring Boot application to run
with a different user depending on environment.

See the Pivotal Cloud Cache documentation on Security for configuring users with assigned roles &
permissions.

22.1.1. Overriding Authentication Auto-configuration

It should be generally understood that auto-configuration for client authentication is only available
for managed environments, like Pivotal CloudFoundry. When running in externally managed
environments, you must explicitly set a username and password to authenticate, as described here.

To completely override the auto-configuration of client authentication, simply set both a username
and password:

Overriding Security Authentication Auto-configuration with explicit username and password

Spring Boot application.properties

spring.data.gemfire.security.username=MyUser
spring.data.gemfire.security.password=MyPassword

In this case, SBDG’s auto-configuration for authentication is effectively disabled and security
credentials will not be extracted from the environment.

22.2. Targeting Specific Pivotal Cloud Cache Service
Instances
It is possible to provision multiple instances of the Pivotal Cloud Cache service in your Pivotal
CloudFoundry environment. You can then bind multiple PCC service instances to your Spring Boot
app.

However, Spring Boot for Apache Geode (SBDG) will only auto-configure 1 PCC service instance for
your Spring Boot application. This does not mean it is not possible to use multiple PCC service

176

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityUsername--
https://docs.spring.io/spring-boot/docs/current/reference/html/#boot-features-profiles
https://docs.pivotal.io/p-cloud-cache/1-13/security.html

instances with your Spring Boot app, just that SBDG only "auto-configures" 1 service instance for
you.

You must select which PCC service instance your Spring Boot app will auto-configure for you
automatically when you have multiple instances and want to target a specific PCC service instance
to use.

To do so, declare the following SBDG property in Spring Boot application.properties:

Spring Boot application.properties targeting a specific PCC service instance by name

Spring Boot application.properties

spring.boot.data.gemfire.cloud.cloudfoundry.service.cloudcache.name=pccServiceInstance
Two

The spring.boot.data.gemfire.cloud.cloudfoundry.service.cloudcache.name property tells SBDG
which PCC service instance to auto-configure.

If the named PCC service instance identified by the property does not exist, then SBDG will throw
an IllegalStateException stating the PCC service instance by name could not be found.

If you did not set the property and your Spring Boot app is bound to multiple PCC service instances,
then SBDG will auto-configure the first PCC service instance it finds by name, alphabetically.

If you did not set the property and no PCC service instance is found, then SBDG will log a warning.

22.3. Using Multiple Pivotal Cloud Cache Service
Instances
If you want to use multiple PCC service instances with your Spring Boot application, then you need
to configure multiple connection Pools connected to each PCC service instance used by your Spring
Boot application.

The configuration would be similar to the following:

Multiple Pivotal Cloud Cache Service Instance Configuration

@Configuration
@EnablePools(pools = {
 @EnablePool(name = "PccOne"),
 @EnablePool(name = "PccTwo"),
 ...,
 @EnablePool(name = "PccN")
})
class PccConfiguration {
 // ...
}

177

You would then externalize the configuration for the individually declared Pools in Spring Boot
application.properties:

Configuring Pool Locator connection endpoints

Spring Boot `application.properties`

spring.data.gemfire.pool.pccone.locators=pccOneHost1[port1], pccOneHost2[port2], ...,
pccOneHostN[portN]

spring.data.gemfire.pool.pcctwo.locators=pccTwoHost1[port1], pccTwoHost2[port2], ...,
pccTwoHostN[portN]

Though less common, you can also configure the Pool of connections to target
specific servers in the cluster using the spring.data.gemfire.pool.<named-
pool>.severs property.

Keep in mind that properties in Spring Boot application.properties can refer to
other properties like so: property=${otherProperty}. This allows you to further
externalize properties using Java System properties or Environment Variables.

Of course, a client Region is then assigned the Pool of connections that are used to send data
to/from the specific PCC service instance (cluster):

Assigning a Pool to a client Region

@Configuration
class GeodeConfiguration {

 @Bean("Example")
 ClientRegionFactoryBean exampleRegion(GemFireCache gemfireCache,
 @Qualifier("PccTwo") Pool poolForPccTwo) {

 ClientRegionFactoryBean exampleRegion = new ClientRegionFactoryBean();

 exampleRegion.setCache(gemfireCache);
 exampleRegion.setPool(poolForPccTwo);
 exampleRegion.setShortcut(ClientRegionShortcut.PROXY);

 return exampleRegion;
 }
}

You can configure as many Pools and client Regions as needed by your application. Again, the Pool
determines which Pivotal Cloud Cache service instance and cluster the data for the client Region
will reside.

178

By default, SBDG configures all Pools declared in a Spring Boot, ClientCache
application to connect to and use a single PCC service instance. This may be a
targeted PCC service instance when using the
spring.boot.data.gemfire.cloud.cloudfoundry.service.cloudcache.name property as
discussed above.

22.4. Hybrid Pivotal CloudFoundry & Apache Geode
Spring Boot Applications
Sometimes, it is desirable to deploy (i.e. "push") and run your Spring Boot applications in Pivotal
CloudFoundry, but still connect your Spring Boot applications to an externally managed, standalone
Apache Geode cluster.

Spring Boot for Apache Geode (SBDG) makes this a non-event and honors its "little to no code or
configuration changes necessary" goal, regardless of your runtime choice, "it should just work!"

To help guide you through this process, we will cover the following topics:

1. Install and Run PCFDev.

2. Start an Apache Geode cluster.

3. Create a User-Provided Service (CUPS).

4. Push and Bind a Spring Boot application.

5. Run the Spring Boot application.

22.4.1. Running PCFDev

For this exercise, we will be using PCF Dev.

PCF Dev, much like PCF, is an elastic application runtime for deploying, running and managing
your Spring Boot applications. However, it does so in the confines of your local development
environment, i.e. your workstation.

Additionally, PCF Dev provides several services out-of-the-box, such as MySQL, Redis and RabbitMQ.
These services can be bound and used by your Spring Boot application to accomplish its tasks.

However, PCF Dev lacks the Pivotal Cloud Cache service that is available in PCF. This is actually
ideal for this little exercise since we are trying to build and run Spring Boot applications in a PCF
environment but connect to an externally managed, standalone Apache Geode cluster.

As a prerequisite, you will need to follow the steps outlined in the tutorial to get PCF Dev setup and
running on your workstation.

To run PCF Dev, you will execute the following cf CLI command, replacing the path to the TGZ file
with the file you acquired from the download:

179

https://pivotal.io/pcf-dev
https://pivotal.io/platform/pcf-tutorials/getting-started-with-pivotal-cloud-foundry-dev/introduction
https://network.pivotal.io/products/pcfdev

Start PCF Dev

$ cf dev start -f ~/Downloads/Pivotal/CloudFoundry/Dev/pcfdev-v1.2.0-darwin.tgz

You should see output similar to:

Running PCF Dev

Downloading Network Helper...
Progress: |====================>| 100.0%
Installing cfdevd network helper (requires administrator privileges)...
Password:
Setting up IP aliases for the BOSH Director & CF Router (requires administrator
privileges)
Downloading Resources...
Progress: |====================>| 100.0%
Setting State...
WARNING: PCF Dev requires 8192 MB of RAM to run. This machine may not have enough free
RAM.
Creating the VM...
Starting VPNKit...
Waiting for the VM...
Deploying the BOSH Director...

Deploying PAS...
 Done (14m34s)
Deploying Apps-Manager...
 Done (1m41s)

 ██████╗ ██████╗███████╗██████╗ ███████╗██╗ ██╗
 ██╔══██╗██╔════╝██╔════╝██╔══██╗██╔════╝██║ ██║
 ██████╔╝██║ █████╗ ██║ ██║█████╗ ██║ ██║
 ██╔═══╝ ██║ ██╔══╝ ██║ ██║██╔══╝ ╚██╗ ██╔╝
 ██║ ╚██████╗██║ ██████╔╝███████╗ ╚████╔╝
 ╚═╝ ╚═════╝╚═╝ ╚═════╝ ╚══════╝ ╚═══╝
 is now running!

 To begin using PCF Dev, please run:
 cf login -a https://api.dev.cfdev.sh --skip-ssl-validation

 Admin user => Email: admin / Password: admin
 Regular user => Email: user / Password: pass

 To access Apps Manager, navigate here: https://apps.dev.cfdev.sh

 To deploy a particular service, please run:
 cf dev deploy-service <service-name> [Available services:
mysql,redis,rabbitmq,scs]

To use the cf CLI tool, you must login to the PCF Dev environment:

180

Login to PCF Dev using cf CLI

$ cf login -a https://api.dev.cfdev.sh --skip-ssl-validation

You can also access the PCF Dev Apps Manager tool from your Web browser at the following URL:

apps.dev.cfdev.sh/

Apps Manager provides a nice UI to manage your org, space, services and apps. It lets you push and
update apps, create services, bind apps to the services and start and stop your deployed
applications, among many other things.

22.4.2. Running an Apache Geode Cluster

Now that PCF Dev is setup and running, we need to start an external, standalone Apache Geode
cluster that our Spring Boot application will connect to and use to manage its data.

You will need to install a distribution of Apache Geode on your workstation. Then you must set the
$GEODE environment variable. It is also convenient to add $GEODE/bin to your system $PATH.

Afterward, you can launch the Geode Shell (Gfsh) tool:

Running Gfsh

$ echo $GEODE
/Users/jblum/pivdev/apache-geode-1.6.0

$ gfsh
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.6.0

Monitor and Manage Apache Geode
gfsh>

We have conveniently provided the Gfsh shell script used to start the Apache Geode cluster:

181

https://apps.dev.cfdev.sh/
https://apps.dev.cfdev.sh/
https://geode.apache.org//releases/

Gfsh shell script to start the Apache Geode cluster

#!/bin/gfsh
Gfsh shell script to configure and bootstrap an Apache Geode cluster.

start locator --name=LocatorOne --log-level=config --classpath=@project-dir@/apache
-geode-extensions/build/libs/apache-geode-extensions-@project-version@.jar --J=
-Dgemfire.security-manager=org.springframework.geode.security.TestSecurityManager --J=
-Dgemfire.http-service-port=8080

start server --name=ServerOne --log-level=config --user=admin --password=admin
--classpath=@project-dir@/apache-geode-extensions/build/libs/apache-geode-extensions
-@project-version@.jar

The start-cluster.gfsh shell script starts one Geode Locator and one Geode Server.

A Locator is used by clients to discover and connect to servers in the cluster to manage its data. A
Locator is also used by new servers joining a cluster as a peer member, which allows the cluster to
be elastically scaled-out (or scaled-down, as needed). A Geode Server stores the data for the
application.

You can start as many Locators or Servers as necessary to meet the availability and load demands
of your application. Obviously, the more Locators and Servers your cluster has, the more resilient it
is to failure. However, you should size your cluster accordingly, based on your application’s needs
since there is overhead relative to the cluster size.

You will see output similar to the following when starting the Locator and Server:

Starting the Apache Geode cluster

gfsh>start locator --name=LocatorOne --log-level=config
--classpath=/Users/jblum/pivdev/spring-boot-data-geode/apache-geode
-extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-SNAPSHOT.jar --J=
-Dgemfire.security-manager=org.springframework.geode.security.TestSecurityManager --J=
-Dgemfire.http-service-port=8080
Starting a Geode Locator in /Users/jblum/pivdev/lab/LocatorOne...
..
Locator in /Users/jblum/pivdev/lab/LocatorOne on 10.99.199.24[10334] as LocatorOne is
currently online.
Process ID: 14358
Uptime: 1 minute 1 second
Geode Version: 1.6.0
Java Version: 1.8.0_192
Log File: /Users/jblum/pivdev/lab/LocatorOne/LocatorOne.log
JVM Arguments: -Dgemfire.enable-cluster-configuration=true -Dgemfire.load-cluster
-configuration-from-dir=false -Dgemfire.log-level=config -Dgemfire.security
-manager=org.springframework.geode.security.TestSecurityManager -Dgemfire.http-service
-port=8080 -Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-core-

182

1.6.0.jar:/Users/jblum/pivdev/spring-boot-data-geode/apache-geode-
extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-
SNAPSHOT.jar:/Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-dependencies.jar

Security Manager is enabled - unable to auto-connect. Please use "connect
--locator=10.99.199.24[10334] --user --password" to connect Gfsh to the locator.

Authentication required to connect to the Manager.

gfsh>connect
Connecting to Locator at [host=localhost, port=10334] ..
Connecting to Manager at [host=10.99.199.24, port=1099] ..
user: admin
password: *****
Successfully connected to: [host=10.99.199.24, port=1099]

gfsh>start server --name=ServerOne --log-level=config --user=admin --password=admin
--classpath=/Users/jblum/pivdev/spring-boot-data-geode/apache-geode
-extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-SNAPSHOT.jar
Starting a Geode Server in /Users/jblum/pivdev/lab/ServerOne...
....
Server in /Users/jblum/pivdev/lab/ServerOne on 10.99.199.24[40404] as ServerOne is
currently online.
Process ID: 14401
Uptime: 3 seconds
Geode Version: 1.6.0
Java Version: 1.8.0_192
Log File: /Users/jblum/pivdev/lab/ServerOne/ServerOne.log
JVM Arguments: -Dgemfire.default.locators=10.99.199.24[10334] -Dgemfire.security
-username=admin -Dgemfire.start-dev-rest-api=false -Dgemfire.security
-password=******** -Dgemfire.use-cluster-configuration=true -Dgemfire.log-level=config
-XX:OnOutOfMemoryError=kill -KILL %p -Dgemfire.launcher.registerSignalHandlers=true
-Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-core-
1.6.0.jar:/Users/jblum/pivdev/spring-boot-data-geode/apache-geode-
extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-
SNAPSHOT.jar:/Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-dependencies.jar

Once the cluster has been started successfully, you can list the members:

List members of the cluster

gfsh>list members
Name	Id
LocatorOne | 10.99.199.24(LocatorOne:14358:locator)<ec><v0>:1024 [Coordinator]
ServerOne | 10.99.199.24(ServerOne:14401)<v1>:1025

Currently, we have not defined any Regions in which to store our application’s data:

183

No Application Regions

gfsh>list regions
No Regions Found

This is deliberate since we are going to let the application drive its schema structure, both on the
client (app) as well as on the server-side (cluster). More on this below.

22.4.3. Creating a User-Provided Service

Now that we have PCF Dev and a small Apache Geode cluster up and running, it is time to create a
User-Provided Service to the external, standalone Apache Geode cluster that we started in step 2.

As mentioned, PCF Dev offers the MySQL, Redis and RabbitMQ services out-of-the-box. However, to
use Apache Geode in the same capacity as you would Pivotal Cloud Cache when running in a
production-grade, PCF environment, you need to create a User-Provided Service for the standalone
Apache Geode cluster.

To do so, execute the following cf CLI command:

cf cups command

$ cf cups <service-name> -t "gemfire, cloudcache, database, pivotal" -p '<service-
credentials-in-json>'

It is important that you specify the tags ("gemfire, cloudcache, database, pivotal")
exactly as shown in the cf CLI command above.

The argument passed to the -p command-line option is a JSON document (object) containing the
"credentials" for our User-Provided Service.

The JSON object is as follows:

User-Provided Service Crendentials JSON

{
 "locators": ["<hostname>[<port>]"],
 "urls": { "gfsh": "https://<hostname>/gemfire/v1" },
 "users": [{ "password": "<password>", "roles": ["cluster_operator"], "username":
"<username>" }]
}

The complete cf CLI command would be similar to the following:

184

Example cf cups command

cf cups apacheGeodeService -t "gemfire, cloudcache, database, pivotal" \
 -p '{ "locators": ["10.99.199.24[10334]"], "urls": { "gfsh":
"https://10.99.199.24/gemfire/v1" }, "users": [{ "password": "admin", "roles": [
"cluster_operator"], "username": "admin" }] }'

We replaced the <hostname> placeholder tag with the IP address of our external Apache Geode
Locator. The IP address can be found in the Gfsh start locator output above.

Additionally, the <port> placeholder tag has been replaced with the default Locator port, 10334,

Finally, we set the username and password accordingly.

Spring Boot for Apache Geode (SBDG) provides template files in the
/opt/jenkins/data/workspace/spring-boot-data-geode_1.5.x/spring-geode-
docs/src/main/resources directory.

Once the service has been created, you can query the details from the cf CLI:

$ cf services
Getting services in org cfdev-org / space cfdev-space as admin...

name service plan bound apps last operation broker
apacheGeodeService user-provided boot-pcc-demo

$ cf service apacheGeodeService
Showing info of service apacheGeodeService in org cfdev-org / space cfdev-space as
admin...

name: apacheGeodeService
service: user-provided
tags: gemfire, cloudcache, database, pivotal

bound apps:
name binding name status message
boot-pcc-demo create succeeded

You can also view the "apacheGeodeService" from Apps Manager, starting from the Service tab in
your org and space:

185

By clicking on the "apacheGeodeService" service entry in the table you can get all the service
details, such the bound apps:

Configuration:

And so on.

186

 You can learn more about CUPS in the PCF documentation, here.

22.4.4. Push & Bind a Spring Boot application

Now it is time to push a Spring Boot application to PCF Dev and bind the app to the
"apacheGeodeService".

Any Spring Boot ClientCache application using SBDG will do. For this example, we will use the
PCCDemo application, available in GitHub.

After cloning the project to your workstation, you must perform a build to produce the artifact to
push to PCF Dev:

Build the PCCDemo app

$ mvn clean package

Then, you can push the app to PCF Dev with the following cf CLI command:

Push app to PCF Dev

$ cf push boot-pcc-demo -u none --no-start -p target/client-0.0.1-SNAPSHOT.jar

Once the app has been successfully deployed to PCF Dev, you can get app details:

187

https://docs.pivotal.io/platform/application-service/2-10/devguide/services/user-provided.html
https://github.com/jxblum/PCCDemo/tree/sbdg-doc-ref

Details for deployed app

$ cf apps
Getting apps in org cfdev-org / space cfdev-space as admin...
OK

name requested state instances memory disk urls
boot-pcc-demo stopped 0/1 768M 1G boot-pcc-
demo.dev.cfdev.sh

$ cf app boot-pcc-demo
Showing health and status for app boot-pcc-demo in org cfdev-org / space cfdev-space
as admin...

name: boot-pcc-demo
requested state: stopped
routes: boot-pcc-demo.dev.cfdev.sh
last uploaded: Tue 02 Jul 00:34:09 PDT 2019
stack: cflinuxfs3
buildpacks: https://github.com/cloudfoundry/java-buildpack.git

type: web
instances: 0/1
memory usage: 768M
 state since cpu memory disk details
#0 down 2019-07-02T21:48:25Z 0.0% 0 of 0 0 of 0

type: task
instances: 0/0
memory usage: 256M

There are no running instances of this process.

You can either bind the PPCDemo app to the "apacheGeodeService" using the cf CLI command:

Bind app to apacheGeodeService using CLI

cf bind-service boot-pcc-demo apacheGeodeService

Or, alternatively, you can create a YAML file (manifest.yml in src/main/resources) containing the
deployment descriptor:

188

Example YAML deployment descriptor file

\---
applications:
 - name: boot-pcc-demo
 memory: 768M
 instances: 1
 path: ./target/client-0.0.1-SNAPSHOT.jar
 services:
 - apacheGeodeService
 buildpacks:
 - https://github.com/cloudfoundry/java-buildpack.git

You can also use Apps Manager to view app details and un/bind additional services. Start by
navigating to the App tab under your org and space:

From there, you can click on the desired app and navigate to the Overview:

You can also review the app Settings. Specifically, we are looking at the configuration of the app
once bound to the "apacheGeodeService" as seen in the VCAP_SERVICES Environment Variable:

189

This JSON document structure is not unlike the configuration used to bind your Spring Boot,
ClientCache application to the Pivotal Cloud Cache service when deploying the same app to Pivotal
CloudFoundry. This is actually very key if you want to minimize the amount of boilerplate code and
configuration changes when migrating between different CloudFoundry environments, even Open
Source CloudFoundry.

Again, SBDG’s entire goal is to simply the effort for you, as a developer, to build, run and manage
your application, in whatever context your application lands, even if it changes later. If you follow
the steps in this documentation, that goal will be realized.

22.4.5. Running the Spring Boot application

All that is left to do now is run the app.

You can start the PCCDemo app from the cf CLI using the following command:

Start the Spring Boot app

$ cf start boot-pcc-demo

Alternatively, you can also start the app from Apps Manager. This is convenient since then you can
tail and monitor the application log file.

190

https://www.cloudfoundry.org/
https://www.cloudfoundry.org/

Once the app has started, you can click the VIEW APP link in the upper right corner of the APP
screen.

You can navigate to any of the application Web Service, Controller endpoints. For example, if you
know the ISBN of a Book, you can access it from the Web browser:

191

https://boot-pcc-demo.dev.cfdev.sh/

You can also access the same data from the Gfsh command-line tool. However, the first thing to
observe is that our application informed the cluster that it needed a Region called "Books":

Books Region

gfsh>list regions
List of regions

Books

gfsh>describe region --name=/Books
..
Name : Books
Data Policy : partition
Hosting Members : ServerOne

Non-Default Attributes Shared By Hosting Members

Type	Name	Value
Region	size	1
data-policy	PARTITION	

The PCCDemo app creates fake data on startup, which we can query in Gfsh like so:

Query Books

gfsh>query --query="SELECT book.isbn, book.title FROM /Books book"
Result : true
Limit : 100
Rows : 1

isbn	title
1235432BMF342 | The Torment of Others

22.5. Summary
There you have it!

The ability to deploy Spring Boot, Apache Geode ClientCache applications to Pivotal CloudFoundry,
yet connect your app to an externally managed, standalone Apache Geode cluster is powerful.

Indeed, this is will be a useful arrangement and stepping stone for many users as they begin their
journey towards Cloud-Native platforms like Pivotal CloudFoundry and using services like Pivotal
Cloud Cache.

Later, when the time comes and your need is real, you can simply migrate your Spring Boot

192

applications to a fully managed and production-grade Pivotal CloudFoundry environment and
SBDG will figure out what to do, leaving you to focus entirely on your application.

193

Chapter 23. Docker
The state of modern software application development is moving towards containerization.
Containers offer a controlled environment to predictably build (configure & package), run and
manage your applications in a reliable and repeatable manner regardless of context. The intrinsic
benefit of using Containers is a no brainer.

Understandably, Docker’s popularity took off like wildfire given its highly powerful and simplified
model for creating, using and managing Containers to run packaged applications.

Docker’s ecosystem is also quite impressive, with the event of Testcontainers along with Spring
Boot’s now dedicated support to create packaged Spring Boot apps in Docker Images that are then
later run in a Docker Container.

 Also see Deploying to Containers to learn more.

Apache Geode is no exception to being able to run in a controlled, containerized environment. The
goal of this chapter is to get you started running Apache Geode in a Container and interfacing to a
containerized Apache Geode cluster from your Spring Boot, Apache Geode client applications.

This chapter does not cover how to run your Spring Boot, Apache Geode client applications in a
Container since that is already covered by Spring Boot (again, see here and here, along with
Docker’s docs). Instead, our focus is on how to run an Apache Geode cluster in a Container and
connect to it from a Spring Boot, Apache Geode client application, regardless of whether the app is
running in a Container or not.

Let’s get started.

23.1. Acquiring the Apache Geode Docker Image
To run an Apache Geode cluster inside a Docker Container you must first acquire the Docker Image.
The Apache Geode Docker Image can be acquired from Docker Hub.

While Apache Geode’s official documentation is less than clear on how to use Apache Geode in
Docker, we find a bit of relief in the Wiki. However, for a complete and comprehensive write up,
please refer to the instructions in the README from this GitHub Repo.

You must have Docker installed on your local system to complete the following
steps.

Effectively, the high-level steps are as follows:

1) Acquire the Apache Geode Docker Image from Docker Hub using the docker pull command from
the command-line:

194

https://www.docker.com/resources/what-container
https://www.docker.com/
https://www.testcontainers.org
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#building-docker-images
https://docs.docker.com/get-started/overview/#docker-objects
https://docs.spring.io/spring-boot/docs/current/reference/html/deployment.html#containers-deployment
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#building-docker-images
https://docs.spring.io/spring-boot/docs/current/reference/html/deployment.html#containers-deployment
https://docs.docker.com/get-started/overview/
https://hub.docker.com/r/apachegeode/geode/
https://geode.apache.org/docs/guide/113
https://cwiki.apache.org/confluence/display/GEODE/How+to+use+Geode+on+Docker
https://github.com/markito/geode-docker#building-the-container-image
https://github.com/markito/geode-docker
https://docs.docker.com/get-docker

Download/Install the Apache Geode Docker Image

$ docker pull apachegeode/geode
Using default tag: latest
latest: Pulling from apachegeode/geode
Digest: sha256:6a6218f22a2895bb706175727c7d76f654f9162acac22b2d950d09a2649f9cf4
Status: Image is up to date for apachegeode/geode:latest
docker.io/apachegeode/geode:latest

Instead of pulling from the nightly TAG as suggested, the Spring team highly recommends that you
pull from the latest TAG, which pulls a stable, production-ready Apache Geode Docker Image based
on the latest Apache Geode GA version.

2) Verify the Apache Geode Docker Image was downloaded and installed successfully:

$ docker image ls
REPOSITORY TAG IMAGE ID
CREATED SIZE
apachegeode/geode latest a2e210950712 2
months ago 224MB
cloudfoundry/run base-cnb 3a7d172559c2 8
weeks ago 71.2MB
open-liberty 19.0.0.9-webProfile8 dece75feff1a 3
months ago 364MB
tomee 11-jre-8.0.0-M3-webprofile 0d03e4d395e6 3
months ago 678MB
...

Now, you are ready to run Apache Geode in a Docker Container.

23.2. Running Apache Geode in a Docker Container
Now that we have acquired the Apache Geode Docker Image, we can run Apache Geode in a Docker
Container. Use the following docker run command to start Apache Geode in a Docker Container:

Start the Apache Geode Docker Container

$ docker run -it -p 10334:10334 -p 40404:40404 -p 1099:1099 -p 7070:7070 -p 7575:7575
apachegeode/geode
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.12.0

Monitor and Manage Apache Geode
gfsh>

195

Since the Apache Geode Docker Container was started in interactive mode, you must open a
separate command-line shell to verify the Apache Geode Docker Container is in fact running:

Verify the Apache Geode Docker Container is Running

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS
NAMES
3b30b9ffc5dc apachegeode/geode "gfsh" 44 seconds ago Up 43
seconds 0.0.0.0:1099->1099/tcp, 0.0.0.0:7070->7070/tcp, 0.0.0.0:7575->7575/tcp,
0.0.0.0:10334->10334/tcp, 0.0.0.0:40404->40404/tcp, 8080/tcp awesome_khorana

Of course, we know that the Apache Geode Docker Container is running since we ended up at a
Gfsh command prompt in the interactive shell.

We also mapped ports between the Docker Container and the host system, exposing well-known
ports used by Apache Geode server-side, cluster processes, such as Locators and Cache Servers.

Table 21. Apache Geode Ports

Process Port

HTTP 7070

Locator 10334

Manager 1099

Server 40404

It is unfortunate that the Apache Geode Docker Image only gives you a Gfsh command prompt,
leaving you with the task of provisioning a cluster. It would have been more useful to provide
preconfigured Docker Images with different Apache Geode cluster configurations, such as 1 Locator
+ 1 Server, or 2 Locators + 4 Servers, etc. But, no matter, we can start the cluster ourselves.

23.3. Start an Apache Geode Cluster in Docker
From inside the Apache Geode Docker Container we can start a Locator and a Server.

Start Apache Geode Locator & Server

gfsh>start locator --name=LocatorOne --log-level=config --hostname-for
-clients=localhost
Starting a Geode Locator in /LocatorOne...
.........
Locator in /LocatorOne on 3b30b9ffc5dc[10334] as LocatorOne is currently online.
Process ID: 167
Uptime: 9 seconds
Geode Version: 1.12.0
Java Version: 1.8.0_212
Log File: /LocatorOne/LocatorOne.log

196

JVM Arguments: -Dgemfire.enable-cluster-configuration=true -Dgemfire.load-cluster
-configuration-from-dir=false -Dgemfire.log-level=config
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /geode/lib/geode-core-1.12.0.jar:/geode/lib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=3b30b9ffc5dc, port=1099]

Cluster configuration service is up and running.

gfsh>start server --name=ServerOne --log-level=config --hostname-for-clients=localhost
Starting a Geode Server in /ServerOne...
.......
Server in /ServerOne on 3b30b9ffc5dc[40404] as ServerOne is currently online.
Process ID: 267
Uptime: 7 seconds
Geode Version: 1.12.0
Java Version: 1.8.0_212
Log File: /ServerOne/ServerOne.log
JVM Arguments: -Dgemfire.default.locators=172.17.0.2[10334] -Dgemfire.start-dev-rest
-api=false -Dgemfire.use-cluster-configuration=true -Dgemfire.log-level=config
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /geode/lib/geode-core-1.12.0.jar:/geode/lib/geode-dependencies.jar

gfsh>list members
Member Count : 2

Name	Id
LocatorOne | 172.17.0.2(LocatorOne:167:locator)<ec><v0>:41000 [Coordinator]
ServerOne | 172.17.0.2(ServerOne:267)<v1>:41001

gfsh>describe member --name=LocatorOne
Name : LocatorOne
Id : 172.17.0.2(LocatorOne:167:locator)<ec><v0>:41000
Host : 3b30b9ffc5dc
Regions :
PID : 167
Groups :
Used Heap : 50M
Max Heap : 443M
Working Dir : /LocatorOne
Log file : /LocatorOne/LocatorOne.log
Locators : 172.17.0.2[10334]

gfsh>describe member --name=ServerOne

197

Name : ServerOne
Id : 172.17.0.2(ServerOne:267)<v1>:41001
Host : 3b30b9ffc5dc
Regions :
PID : 267
Groups :
Used Heap : 77M
Max Heap : 443M
Working Dir : /ServerOne
Log file : /ServerOne/ServerOne.log
Locators : 172.17.0.2[10334]

Cache Server Information
Server Bind :
Server Port : 40404
Running : true

Client Connections : 0

We now have an Apache Geode cluster running with 1 Locator and 1 Server inside a Docker
Container. We deliberately started the cluster with a minimal configuration. For example, we have
no Regions in which to store data:

gfsh>list regions
No Regions Found

But, that is OK. Once more, we want to showcase the full power of SBDG and let the Spring Boot
application drive the configuration of the Apache Geode cluster running in the Docker Container as
required by the application.

Let’s have a quick look at our Spring Boot application.

23.4. Spring Boot, Apache Geode client application
explained
The Spring Boot, Apache Geode ClientCache application we will use to connect to our Apache Geode
cluster running in the Docker Container appears as follows:

Spring Boot, Apache Geode Docker client application

@SpringBootApplication
@EnableClusterAware
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
@UseMemberName("SpringBootApacheGeodeDockerClientCacheApplication")
public class SpringBootApacheGeodeDockerClientCacheApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeDockerClientCacheApplication.class,

198

args);
 }

 @Bean
 @SuppressWarnings("unused")
 ApplicationRunner runner(GemFireCache cache, CustomerRepository
customerRepository) {

 return args -> {

 assertClientCacheAndConfigureMappingPdxSerializer(cache);
 assertThat(customerRepository.count()).isEqualTo(0);

 Customer jonDoe = Customer.newCustomer(1L, "Jon Doe");

 log("Saving Customer [%s]...%n", jonDoe);

 jonDoe = customerRepository.save(jonDoe);

 assertThat(jonDoe).isNotNull();
 assertThat(jonDoe.getId()).isEqualTo(1L);
 assertThat(jonDoe.getName()).isEqualTo("Jon Doe");
 assertThat(customerRepository.count()).isEqualTo(1);

 log("Querying for Customer [SELECT * FROM /Customers WHERE name LIKE
'%s']...%n", "%Doe");

 Customer queriedJonDoe = customerRepository.findByNameLike("%Doe");

 assertThat(queriedJonDoe).isEqualTo(jonDoe);

 log("Customer was [%s]%n", queriedJonDoe);
 };
 }

 private void assertClientCacheAndConfigureMappingPdxSerializer(GemFireCache cache)
{

 assertThat(cache).isNotNull();
 assertThat(cache.getName())

.isEqualTo(SpringBootApacheGeodeDockerClientCacheApplication.class.getSimpleName());
 assertThat(cache.getPdxSerializer()).isInstanceOf(MappingPdxSerializer.class);

 MappingPdxSerializer serializer = (MappingPdxSerializer)
cache.getPdxSerializer();

 serializer.setIncludeTypeFilters(type -> Optional.ofNullable(type)
 .map(Class::getPackage)
 .map(Package::getName)
 .filter(packageName ->

199

packageName.startsWith(this.getClass().getPackage().getName()))
 .isPresent());
 }

 private void log(String message, Object... args) {
 System.err.printf(message, args);
 System.err.flush();
 }
}

Our Customer application domain model object type is defined as:

Customer class

@Region("Customers")
class Customer {

 @Id
 private Long id;

 private String name;

}

And, we define a Spring Data CRUD Repository to persist and access Customers stored in the
"/Customers" Region:

CustomerRepository interface

interface CustomerRepository extends CrudRepository<Customer, Long> {

 Customer findByNameLike(String name);

}

Our main class is annotated with @SpringBootApplication making it a proper Spring Boot
application.

We additionally annotate the main class with SBDG’s @EnableClusterAware to automatically detect
the Apache Geode cluster running in the Docker Container as well as to push cluster configuration
metadata from the application to the cluster as required by the application.

Specifically, the application requires that a Region called "Customers", as defined by the @Region
mapping annotation on the Customer application domain model class, exists on the server(s) in the
cluster to persist Customer data.

We use the SDG @EnableEntityDefinedRegions annotation to define the matching, client PROXY
"Customers" Region.

200

Optionally, we have also annotated our main class with SBDG’s @UseMemberName annotation to give
the ClientCache a name, which we assert in the
assertClientCacheAndConfigureMappingPdxSerializer(:ClientCache) method.

The primary work performed by this application is done in the Spring Boot ApplicationRunner bean
definition. We essentially create a Customer instance, "Jon Doe", save "Jon Doe" to the "Customers"
Region managed by the server(s) in the cluster, and then query for "Jon Doe" using OQL, asserting
that the result is equal to the expected.

We log the output from the application’s operations to see the application in action.

23.5. Running the Spring Boot, Apache Geode client
application
When you run the Spring Boot, Apache Geode client application, you should see output similar to:

Application log output

/Library/Java/JavaVirtualMachines/jdk1.8.0_241.jdk/Contents/Home/bin/java ...

org.springframework.geode.docs.example.app.docker.SpringBootApacheGeodeDockerClientCac
heApplication

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.3.0.RELEASE)

Saving Customer [Customer(name=Jon Doe)]...
Querying for Customer [SELECT * FROM /Customers WHERE name LIKE '%Doe']...
Customer was [Customer(name=Jon Doe)]

Process finished with exit code 0

Now when we review the configuration of the cluster, we see that the "/Customers" Region was
created once the application has run:

201

/Customers Region Configuration

gfsh>list regions
List of regions

Customers

gfsh>describe region --name=/Customers
Name : Customers
Data Policy : partition
Hosting Members : ServerOne

Non-Default Attributes Shared By Hosting Members

Type	Name	Value
Region	size	1
data-policy	PARTITION	

Our "/Customers" Region contains a value, "Jon Doe", and we can verify this by running the
following OQL Query with Gfsh:

Query the "/Customers" Region

gfsh>query --query="SELECT customer.name FROM /Customers customer"
Result : true
Limit : 100
Rows : 1

Result

Jon Doe

Indeed, our application ran successfully!

23.6. Conclusion
In this chapter, we saw how to connect a Spring Boot, Apache Geode ClientCache application to an
Apache Geode cluster running in a Docker Container.

Later, we will provide more information on how to scale up, or rather scale out, our Apache Geode
cluster running in Docker. Additionally, we will provide details on how you can use Apache Geode’s
Docker Image with Testcontainers when writing Integration Tests, which will formally become
part of the Spring Test for Apache Geode (STDG) project.

202

Chapter 24. Samples
This section contains working examples demonstrating how to use Spring Boot for Apache Geode
(SBDG) effectively.

Some examples focus on specific Use Cases (e.g. [(HTTP) Session state] caching) while other
examples demonstrate how SBDG works under-the-hood to give users a better understanding of
what is actually happening and how to debug problems with their Apache Geode, Spring Boot
applications.

Table 22. Example Spring Boot applications using Apache Geode

Guide Description Source

Getting Started with Spring
Boot for Apache Geode

Explains how to get started
quickly, easily and reliably
building Apache Geode and
Pivotal Cloud Cache powered
applications with Spring Boot.

Getting Started

Spring Boot Auto-Configuration
for Apache Geode

Explains what auto-
configuration is provided by
SBDG out-of-the-box and what
the auto-configuration is doing.

Boot Auto-Configuration

Spring Boot Actuator for
Apache Geode

Explains how to use Spring Boot
Actuator for Apache Geode and
how it works.

Boot Actuator

Spring Boot Security for Apache
Geode

Explains how to configure Auth
and TLS with SSL when using
Apache Geode and Pivotal
Cloud Cache in Spring Boot
applications.

Boot Security

Look-Aside Caching with
Spring’s Cache Abstraction and
Apache Geode

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for Look-Aside
Caching.

Look-Aside Caching

Inline Caching with Spring’s
Cache Abstraction and Apache
Geode

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for Inline
Caching. This sample builds on
the Look-Aside Caching
sample above.

Inline Caching

203

guides/getting-started.html
guides/getting-started.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/intro/getting-started
guides/boot-configuration.html
guides/boot-configuration.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/boot/configuration
guides/boot-actuator.html
guides/boot-actuator.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/boot/actuator
guides/boot-security.html
guides/boot-security.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/boot/security
guides/caching-look-aside.html
guides/caching-look-aside.html
guides/caching-look-aside.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/look-aside
guides/caching-inline.html
guides/caching-inline.html
guides/caching-inline.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/inline

Guide Description Source

Asynchronous Inline Caching
with Spring’s Cache Abstraction
and Apache Geode

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for
Asynchronous Inline Caching.
This sample builds on the Look-
Aside Caching and Inline
Caching samples above.

Asynchronous Inline Caching

Near Caching with Spring’s
Cache Abstraction and Apache
Geode

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for Near
Caching. This sample builds on
the Look-Aside Caching
sample above

Near Caching

Multi-Site Caching with Spring’s
Cache Abstraction and Apache
Geode

Explains how to enable and use
the Spring Cache Abstraction
with Apache Geode as the
caching provider for Multi-Site
Caching. This sample builds on
the Look-Aside Caching
sample above and is the 4th and
final leg in our study of caching
patterns.

Multi-Site Caching

HTTP Session Caching with
Spring Session and Apache
Geode

Explains how to enable and use
Spring Session with Apache
Geode to manage HTTP Session
state.

HTTP Session Caching

204

guides/caching-inline-async.html
guides/caching-inline-async.html
guides/caching-inline-async.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/inline-async
guides/caching-near.html
guides/caching-near.html
guides/caching-near.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/near
guides/caching-multi-site.html
guides/caching-multi-site.html
guides/caching-multi-site.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/multi-site
guides/caching-http-session.html
guides/caching-http-session.html
guides/caching-http-session.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/spring-geode-samples/caching/http-session

Chapter 25. Appendix
The following appendices provide additional help while developing Spring Boot applications
backed by Apache Geode.

Table of Contents

1. Auto-configuration vs. Annotation-based configuration

2. Configuration Metadata Reference

3. Disabling Auto-configuration

4. Switching from Apache Geode to Pivotal GemFire or Pivotal Cloud Cache (PCC)

5. Running an Apache Geode cluster using Spring Boot from your IDE

6. Testing

7. Examples

8. References

Auto-configuration vs. Annotation-based
configuration
The question most often asked is, "What Spring Data for Apache Geode (SDG) annotations can I use,
or must I use, when developing Apache Geode applications with Spring Boot?"

This section will answer this question and more.

Readers should refer to the complimentary sample, Spring Boot Auto-configuration for Apache
Geode, which showcases the auto-configuration provided by Spring Boot for Apache Geode in
action.

Background

To help answer this question, we must start by reviewing the complete collection of available
Spring Data for Apache Geode (SDG) annotations. These annotations are provided in the
org.springframework.data.gemfire.config.annotation package. Most of the pertinent annotations
begin with @Enable…, except for the base annotations: @ClientCacheApplication,
@PeerCacheApplication and @CacheServerApplication.

By extension, Spring Boot for Apache Geode (SBDG) builds on SDG’s Annotation-based
configuration model to implement auto-configuration and apply Spring Boot’s core concepts, like
"convention over configuration", enabling Apache Geode applications to be built with Spring Boot
reliably, quickly and easily.

SDG provides this Annotation-based configuration model to, first and foremost, give application
developers "choice" when building Spring applications using Apache Geode. SDG makes no
assumptions about what application developers are trying to do and fails fast anytime the
configuration is ambiguous, giving users immediate feedback.

205

guides/boot-configuration.html
guides/boot-configuration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/package-summary.html

Second, SDG’s Annotations were meant to get application developers up and running quickly and
reliably with ease. SDG accomplishes this by applying sensible defaults so application developers do
not need to know, or even have to learn, all the intricate configuration details and tooling provided
by Apache Geode to accomplish simple tasks, e.g. build a prototype.

So, SDG is all about "choice" and SBDG is all about "convention". Together these frameworks
provide application developers with convenience and reliability to move quickly and easily.

To learn more about the motivation behind SDG’s Annotation-based configuration model, refer to
the Reference Documentation.

Conventions

Currently, SBDG provides auto-configuration for the following features:

• ClientCache

• Caching with Spring’s Cache Abstraction

• Continuous Query

• Function Execution & Implementation

• Logging

• PDX

• GemfireTemplate

• Spring Data Repositories

• Security (Client/Server Auth & SSL)

• Spring Session

Technically, this means the following SDG Annotations are not required to use the features above:

• @ClientCacheApplication

• @EnableGemfireCaching (or by using Spring Framework’s @EnableCaching)

• @EnableContinuousQueries

• @EnableGemfireFunctionExecutions

• @EnableGemfireFunctions

• @EnableLogging

• @EnablePdx

• @EnableGemfireRepositories

• @EnableSecurity

• @EnableSsl

• @EnableGemFireHttpSession

Since SBDG auto-configures these features for you, then the above annotations are not strictly
required. Typically, you would only declare one of theses annotations when you want to "override"

206

https://docs.spring.io/spring-data/gemfire/docs/current/reference/html/#bootstrap-annotation-config-introduction

Spring Boot’s conventions, expressed in auto-configuration, and "customize" the behavior of the
feature.

Overriding

In this section, we cover a few examples to make the behavior when overriding more apparent.

Caches

By default, SBDG provides you with a ClientCache instance. Technically, SBDG accomplishes this by
annotating an auto-configuration class with @ClientCacheApplication, internally.

It is by convention that we assume most application developers' will be developing Spring Boot
applications using Apache Geode as "client" applications in Apache Geode’s client/server topology.
This is especially true as users migrate their applications to a managed cloud environment.

Still, users are free to "override" the default settings and declare their Spring applications to be
actual peer Cache members of a cluster, instead.

For example:

@SpringBootApplication
@CacheServerApplication
class MySpringBootPeerCacheServerApplication { }

By declaring the @CacheServerApplication annotation, you effectively override the SBDG default.
Therefore, SBDG will not provide a ClientCache instance because you have informed SBDG of
exactly what you want, i.e. a peer Cache instance hosting an embedded CacheServer that allows
client connections.

However, you then might ask, "Well, how do I customize the ClientCache instance when developing
client applications without explicitly declaring the @ClientCacheApplication annotation, then?"

First, you are entirely allowed to "customize" the ClientCache instance by explicitly declaring the
@ClientCacheApplication annotation in your Spring Boot application configuration, and set specific
attributes as needed. However, you should be aware that by explicitly declaring this annotation, or
any of the other auto-configured annotations by default, then you assume all the responsibility that
comes with it since you have effectively overridden the auto-configuration. One example of this is
Security, which we touch on more below.

The most ideal way to "customize" the configuration of any feature is by way of the well-known and
documented Properties, specified in Spring Boot application.properties (the "convention"), or by
using a Configurer.

See the Reference Guide for more details.

Security

Like the @ClientCacheApplication annotation, the @EnableSecurity annotation is not strictly required,

207

https://docs.spring.io/spring-data/gemfire/docs/current/reference/html/#bootstrap-annotation-config-configurers

not unless you want to override and customize the defaults.

Outside a managed environment, the only Security configuration required is specifying a username
and password. You do this using the well-known and document SDG username/password properties
in Spring Boot application.properties, like so:

Required Security Properties in a Non-Manage Envionment

spring.data.gemfire.security.username=MyUser
spring.data.gemfire.security.password=Secret

You do not need to explicitly declare the @EnableSecurity annotation just to specify Security
configuration (e.g. username/password).

Inside a managed environment, such as the VMware Tanzu Application Service (TAS) when using
VMware Tanzu GemFire, SBDG is able to introspect the environment and configure Security (Auth)
completely without the need to specify any configuration, usernames / passwords, or otherwise.
This is due in part because PCF supplies the security details in the VCAP environment when the app
is deployed to TAS and bound to services (e.g. VMware Tanzu GemFire).

So, in short, you do not need to explicitly declare the @EnableSecurity annotation (or the
@ClientCacheApplication for that matter).

However, if you do explicitly declare either the @ClientCacheApplication and/or @EnableSecurity
annotations, guess what, you are now responsible for this configuration and SBDG’s auto-
configuration no longer applies.

While explicitly declaring @EnableSecurity makes more sense when "overriding" the SBDG Security
auto-configuration, explicitly declaring the @ClientCacheApplication annotation most likely makes
less sense with regard to its impact on Security configuration.

This is entirely due to the internals of Apache Geode, which in certain cases, like Security, not even
Spring is able to completely shield users from the nuances of Apache Geode’s configuration.

Both Auth and SSL must be configured before the cache instance (whether a ClientCache or a peer
Cache, it does not matter) is created. Technically, this is because Security is enabled/configured
during the "construction" of the cache. And, the cache pulls the configuration from JVM System
properties that must be set before the cache is constructed.

Structuring the "exact" order of the auto-configuration classes provided by SBDG when the classes
are triggered, is no small feat. Therefore, it should come as no surprise to learn that the Security
auto-configuration classes in SBDG must be triggered before the ClientCache auto-configuration
class, which is why a ClientCache instance cannot "auto" authenticate properly in PCC when the
@ClientCacheApplication is explicitly declared without some assistance (i.e. you must also explicitly
declare the @EnableSecurity annotation in this case since you overrode the auto-configuration of the
cache, and, well, implicitly Security as well).

Again, this is due to the way Security (Auth) and SSL metadata must be supplied to Apache Geode.

See the Reference Guide for more details.

208

Extension

Most of the time, many of the other auto-configured annotations for CQ, Functions, PDX,
Repositories, and so on, do not need to ever be declared explicitly.

Many of these features are enabled automatically by having SBDG or other libraries (e.g. Spring
Session) on the classpath, or are enabled based on other annotations applied to beans in the Spring
ApplicationContext.

Let’s review a few examples.

Caching

It is rarely, if ever, necessary to explicitly declare either the Spring Framework’s @EnableCaching, or
the SDG specific @EnableGemfireCaching annotation, in Spring configuration when using SBDG. SBDG
automatically "enables" caching and configures the SDG GemfireCacheManager for you.

You simply only need to focus on which application service components are appropriate for
caching:

Service Caching

@Service
class CustomerService {

 @Autowired
 private CustomerRepository customerRepository;

 @Cacheable("CustomersByName")
 public Customer findBy(String name) {
 return customerRepository.findByName(name);
 }
}

Of course, it is necessary to create Apache Geode Regions backing the caches declared in your
application service components (e.g. "CustomersByName") using Spring’s Caching Annotations (e.g.
@Cacheable), or alternatively, JSR-107, JCache annotations (e.g. `@CacheResult).

You can do that by defining each Region explicitly, or more conveniently, you can simply use:

Configuring Caches (Regions)

@SpringBootApplication
@EnableCachingDefinedRegions
class Application { }

@EnableCachingDefinedRegions is optional, provided for convenience, and complimentary to caching
when used rather than necessary.

See the Reference Guide for more details.

209

Continuous Query

It is rarely, if ever, necessary to explicitly declare the SDG @EnableContinuousQueries annotation.
Instead, you should be focused on defining your application queries and worrying less about the
plumbing.

For example:

Defining Queries for CQ

@Component
public class TemperatureMonitor extends AbstractTemperatureEventPublisher {

 @ContinuousQuery(name = "BoilingTemperatureMonitor",
 query = "SELECT * FROM /TemperatureReadings WHERE temperature.measurement >=
212.0")
 public void boilingTemperatureReadings(CqEvent event) {
 publish(event, temperatureReading -> new BoilingTemperatureEvent(this,
temperatureReading));
 }

 @ContinuousQuery(name = "FreezingTemperatureMonitor",
 query = "SELECT * FROM /TemperatureReadings WHERE temperature.measurement <=
32.0")
 public void freezingTemperatureReadings(CqEvent event) {
 publish(event, temperatureReading -> new FreezingTemperatureEvent(this,
temperatureReading));
 }
}

Of course, Apache Geode CQ only applies to clients.

See the Reference Guide for more details.

Functions

It is rarely, if ever, necessary to explicitly declare either the @EnableGemfireFunctionExecutions or
@EnableGemfireFunctions annotations. SBDG provides auto-configuration for both Function
implementations and executions. You simply need to define the implementation:

Function Implementation

@Component
class GeodeFunctions {

 @GemfireFunction
 Object exampleFunction(Object arg) {
 // ...
 }
}

210

And then define the execution:

Function Execution

@OnRegion(region = "Example")
interface GeodeFunctionExecutions {

 Object exampleFunction(Object arg);
}

SBDG will automatically find, configure and register Function Implementations (POJOs) in Apache
Geode as proper Functions as well as create Executions proxies for the Interfaces which can then be
injected into application service components to invoke the registered Functions without needing to
explicitly declare the enabling annotations. The application Function Implementations &
Executions (Interfaces) should simply exist below the @SpringBootApplication annotated main class.

See the <<[geode-functions,Reference Guide>> for more details.

PDX

It is rarely, if ever, necessary to explicitly declare the @EnablePdx annotation since SBDG auto-
configures PDX by default. SBDG automatically configures the SDG MappingPdxSerializer as the
default PdxSerializer as well.

It is easy to customize the PDX configuration by setting the appropriate Properties (search for
"PDX") in Spring Boot application.properties.

See the Reference Guide for more details.

Spring Data Repositories

It is rarely, if ever, necessary to explicitly declare the @EnableGemfireRepositories annotation since
SBDG auto-configures Spring Data (SD) Repositories by default.

You simply only need to define your Repositories and get cranking:

Customer’s Repository

interface CustomerRepository extends CrudRepository<Customer, Long> {

 Customer findByName(String name);

}

SBDG finds the Repository interfaces defined in your application, proxies them, and registers them
as beans in the Spring ApplicationContext. The Repositories may be injected into other application
service components.

It is sometimes convenient to use the @EnableEntityDefinedRegions along with SD Repositories to
identify the entities used by your application and define the Regions used by the SD Repository

211

infrastructure to persist the entity’s state. The @EnableEntityDefinedRegions annotation is optional,
provided for convenience, and complimentary to the @EnableGemfireRepositories annotation.

See the Reference Guide for more details.

Explicit Configuration

Most of the other annotations provided in SDG are focused on particular application concerns, or
enable certain Apache Geode features, rather than being a necessity.

A few examples include:

• @EnableAutoRegionLookup

• @EnableBeanFactoryLocator

• @EnableCacheServer(s)

• @EnableCachingDefinedRegions

• @EnableClusterConfiguration

• @EnableClusterDefinedRegions

• @EnableCompression

• @EnableDiskStore(s)

• @EnableEntityDefinedRegions

• @EnableEviction

• @EnableExpiration

• @EnableGatewayReceiver

• @EnableGatewaySender(s)

• @EnableGemFireAsLastResource

• @EnableHttpService

• @EnableIndexing

• @EnableOffHeap

• @EnableLocator

• @EnableManager

• @EnableMemcachedServer

• @EnablePool(s)

• @EnableRedisServer

• @EnableStatistics

• @UseGemFireProperties

None of these annotations are necessary and none are auto-configured by SBDG. They are simply at
the application developers disposal if and when needed. This also means none of these annotations
are in conflict with any SBDG auto-configuration.

212

Summary

In conclusion, it is important to understand where SDG ends and SBDG begins. It all begins with the
auto-configuration provided by SBDG out-of-the-box.

If a feature is not covered by SBDG’s auto-configuration, then you are responsible for enabling and
configuring the feature appropriately, as needed by your application (e.g. @EnableRedisServer).

In other cases, you might also want to explicitly declare a complimentary annotation (e.g.
@EnableEntityDefinedRegions) for convenience, since there is no convention or "opinion" provided
by SBDG out-of-the-box.

In all remaining cases, it boils down to understanding how Apache Geode works under-the-hood.
While we go to great lengths to shield users from as many details as possible, it is not feasible or
practical to address all matters, e.g. cache creation and Security.

Hope this section provided some relief and clarity.

Configuration Metadata Reference
The following 2 reference sections cover documented and well-known properties recognized and
processed by Spring Data for Apache Geode (SDG) as well as Spring Session for Apache Geode (SSDG).

These properties may be used in Spring Boot application.properties files, or as JVM System
properties, to configure different aspects of or enable individual features of Apache Geode in a
Spring application. When combined with the power of Spring Boot, magical things begin to happen.

Spring Data Based Properties

The following properties all have a spring.data.gemfire.* prefix. For example, to set the cache copy-
on-read property, use spring.data.gemfire.cache.copy-on-read in Spring Boot
application.properties.

Table 23. spring.data.gemfire.* properties

Name Description Default From

name Name of the Apache
Geode.

SpringBasedCacheCli
entApplication

ClientCacheApplicati
on.name

locators Comma-delimited list
of Locator endpoints
formatted as:
locator1[port1],…
,locatorN[portN].

[] PeerCacheApplicatio
n.locators

213

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#locators--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#locators--

Name Description Default From

use-bean-factory-
locator

Enable the SDG
BeanFactoryLocator
when mixing Spring
config with Apache
Geode native config
(e.g. cache.xml) and
you wish to
configure Apache
Geode objects
declared in cache.xml
with Spring.

false ClientCacheApplicati
on.useBeanFactoryL
ocator

Table 24. spring.data.gemfire.* GemFireCache properties

Name Description Default From

cache.copy-on-read Configure whether a
copy of an object
returned from
Region.get(key) is
made.

false ClientCacheApplicati
on.copyOnRead

cache.critical-heap-
percentage

Percentage of heap
at or above which
the cache is
considered in danger
of becoming
inoperable.

ClientCacheApplicati
on.criticalHeapPerce
ntage

cache.critical-off-
heap-percentage

Percentage of off-
heap at or above
which the cache is
considered in danger
of becoming
inoperable.

ClientCacheApplicati
on.criticalOffHeapPe
rcentage

cache.enable-auto-
region-lookup

Configure whether to
lookup Regions
configured in
Apache Geode native
config and declare
them as Spring
beans.

false EnableAutoRegionLo
okup.enable

cache.eviction-heap-
percentage

Percentage of heap
at or above which
the eviction should
begin on Regions
configured for
HeapLRU eviction.

ClientCacheApplicati
on.evictionHeapPerc
entage

214

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#useBeanFactoryLocator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#useBeanFactoryLocator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#useBeanFactoryLocator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#copyOnRead--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#copyOnRead--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAutoRegionLookup.html#enabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAutoRegionLookup.html#enabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionHeapPercentage--

Name Description Default From

cache.eviction-off-
heap-percentage

Percentage of off-
heap at or above
which the eviction
should begin on
Regions configured
for HeapLRU
eviction.

ClientCacheApplicati
on.evictionOffHeapP
ercentage

cache.log-level Configure the log-
level of an Apache
Geode cache.

config ClientCacheApplicati
on.logLevel

cache.name Alias for
'spring.data.gemfire.
name'.

SpringBasedCacheCli
entApplication

ClientCacheApplicati
on.name

cache.compression.b
ean-name

Name of a Spring
bean implementing
org.apache.geode.co
mpression.Compress
or.

EnableCompression.
compressorBeanNa
me

cache.compression.r
egion-names

Comma-delimited list
of Region names for
which compression
will be configured.

[] EnableCompression.r
egionNames

cache.off-
heap.memory-size

Determines the size
of off-heap memory
used by Apache
Geode in megabytes
(m) or gigabytes (g);
for example 120g.

EnableOffHeap.mem
orySize

cache.off-
heap.region-names

Comma-delimited list
of Region names for
which off-heap will
be configured.

[] EnableOffHeap.regio
nNames

Table 25. spring.data.gemfire.* ClientCache properties

215

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#logLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#logLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#compressorBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#compressorBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#compressorBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#regionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#regionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#memorySize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#memorySize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#regionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#regionNames--

Name Description Default From

cache.client.durable-
client-id

Used only for clients
in a client/server
installation. If set,
this indicates that
the client is durable
and identifies the
client. The ID is used
by servers to
reestablish any
messaging that was
interrupted by client
downtime.

ClientCacheApplicati
on.durableClientId

cache.client.durable-
client-timeout

Used only for clients
in a client/server
installation. Number
of seconds this client
can remain
disconnected from
its server and have
the server continue
to accumulate
durable events for it.

300 ClientCacheApplicati
on.durableClientTim
eout

cache.client.keep-
alive

Configure whether
the server should
keep the durable
client’s queues alive
for the timeout
period.

false ClientCacheApplicati
on.keepAlive

Table 26. spring.data.gemfire.* peer Cache properties

Name Description Default From

cache.peer.enable-
auto-reconnect

Configure whether
member (Locators &
Servers) will attempt
to reconnect and
reinitialize the cache
after it has been
forced out of the
cluster by a network
partition event or
has otherwise been
shunned by other
members.

false PeerCacheApplicatio
n.enableAutoReconn
ect

216

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientId--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientId--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#keepAlive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#keepAlive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#enableAutoReconnect--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#enableAutoReconnect--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#enableAutoReconnect--

Name Description Default From

cache.peer.lock-lease Configures the
length, in seconds, of
distributed lock
leases obtained by
this cache.

120 PeerCacheApplicatio
n.lockLease

cache.peer.lock-
timeout

Configures the
number of seconds a
cache operation will
wait to obtain a
distributed lock
lease.

60 PeerCacheApplicatio
n.lockTimeout

cache.peer.message-
sync-interval

Configures the
frequency (in
seconds) at which a
message will be sent
by the primary
cache-server to all
the secondary cache-
server nodes to
remove the events
which have already
been dispatched
from the queue.

1 PeerCacheApplicatio
n.messageSyncInterv
al

cache.peer.search-
timeout

Configures the
number of seconds a
cache get operation
can spend searching
for a value.

300 PeerCacheApplicatio
n.searchTimeout

cache.peer.use-
cluster-configuration

Configures whether
this cache member
node would pull it’s
configuration meta-
data from the
cluster-based Cluster
Configuration
Service.

false PeerCacheApplicatio
n.useClusterConfigur
ation

Table 27. spring.data.gemfire.* CacheServer properties

Name Description Default From

cache.server.auto-
startup

Configures whether
the CacheServer
should be started
automatically at
runtime.

true CacheServerApplicat
ion.autoStartup

217

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockLease--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockLease--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#messageSyncInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#messageSyncInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#messageSyncInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#searchTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#searchTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#useClusterConfiguration--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#useClusterConfiguration--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#useClusterConfiguration--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#autoStartup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#autoStartup--

Name Description Default From

cache.server.bind-
address

Configures the IP
address or hostname
that this cache server
will listen on.

CacheServerApplicat
ion.bindAddress

cache.server.hostna
me-for-clients

Configures the IP
address or hostname
that server locators
will tell clients that
this cache server is
listening on.

CacheServerApplicat
ion.hostNameForClie
nts

cache.server.load-
poll-interval

Configures the
frequency in
milliseconds to poll
the load probe on
this cache server.

5000 CacheServerApplicat
ion.loadPollInterval

cache.server.max-
connections

Configures the
maximum client
connections allowed.

800 CacheServerApplicat
ion.maxConnections

cache.server.max-
message-count

Configures the
maximum number
of messages that can
be enqueued in a
client queue.

230000 CacheServerApplicat
ion.maxMessageCou
nt

cache.server.max-
threads

Configures the
maximum number
of threads allowed in
this cache server to
service client
requests.

CacheServerApplicat
ion.maxThreads

cache.server.max-
time-between-pings

Configures the
maximum amount of
time between client
pings.

60000 CacheServerApplicat
ion.maxTimeBetwee
nPings

cache.server.messag
e-time-to-live

Configures the time
(in seconds) after
which a message in
the client queue will
expire.

180 CacheServerApplicat
ion.messageTimeToL
ive

cache.server.port Configures the port
on which this cache
server listens for
clients.

40404 CacheServerApplicat
ion.port

218

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#loadPollInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#loadPollInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxMessageCount--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxMessageCount--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxMessageCount--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxThreads--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxThreads--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxTimeBetweenPings--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxTimeBetweenPings--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxTimeBetweenPings--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#messageTimeToLive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#messageTimeToLive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#messageTimeToLive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--

Name Description Default From

cache.server.socket-
buffer-size

Configures buffer
size of the socket
connection to this
CacheServer.

32768 CacheServerApplicat
ion.socketBufferSize

cache.server.subscri
ption-capacity

Configures the
capacity of the client
queue.

1 CacheServerApplicat
ion.subscriptionCapa
city

cache.server.subscri
ption-disk-store-
name

Configures the name
of the DiskStore for
client subscription
queue overflow.

CacheServerApplicat
ion.subscriptionDisk
StoreName

cache.server.subscri
ption-eviction-policy

Configures the
eviction policy that is
executed when
capacity of the client
subscription queue is
reached.

none CacheServerApplicat
ion.subscriptionEvict
ionPolicy

cache.server.tcp-no-
delay

Configures the
outgoing Socket
connection tcp-no-
delay setting.

true CacheServerApplicat
ion.tcpNoDelay

CacheServer properties can be further targeted at specific CacheServer instances, using an option
bean name of the CacheServer bean defined in the Spring application context. For example:

spring.data.gemfire.cache.server.[<cacheServerBeanName>].bind-address=...

Table 28. spring.data.gemfire.* Cluster properties

Name Description Default From

cluster.region.type Configuration setting
used to specify the
data management
policy used when
creating Regions on
the servers in the
cluster.

RegionShortcut.PART
ITION

EnableClusterConfig
uration.serverRegion
Shortcut

Table 29. spring.data.gemfire.* DiskStore properties

219

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionCapacity--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionCapacity--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionCapacity--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionDiskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionDiskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionDiskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionEvictionPolicy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionEvictionPolicy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionEvictionPolicy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#tcpNoDelay--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#tcpNoDelay--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#serverRegionShortcut--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#serverRegionShortcut--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#serverRegionShortcut--

Name Description Default From

disk.store.allow-
force-compaction

Configures whether
to allow
DiskStore.forceComp
action() to be called
on Regions using a
DiskStore.

false EnableDiskStore.allo
wForceCompaction

disk.store.auto-
compact

Configures whether
to cause the disk files
to be automatically
compacted.

true EnableDiskStore.aut
oCompact

disk.store.compactio
n-threshold

Configures the
threshold at which
an oplog will become
compactable.

50 EnableDiskStore.com
pactionThreshold

disk.store.directory.l
ocation

Configures the
system directory
where the DiskStore
(oplog) files will be
stored.

[] EnableDiskStore.disk
Directories.location

disk.store.directory.s
ize

Configures the
amount of disk space
allowed to store
DiskStore (oplog)
files.

21474883647 EnableDiskStore.disk
Directories.size

disk.store.disk-usage-
critical-percentage

Configures the
critical threshold for
disk usage as a
percentage of the
total disk volume.

99.0 EnableDiskStore.disk
UsageCriticalPercent
age

disk.store.disk-usage-
warning-percentage

Configures the
warning threshold
for disk usage as a
percentage of the
total disk volume.

90.0 EnableDiskStore.disk
UsageWarningPerce
ntage

disk.store.max-oplog-
size

Configures the
maximum size in
megabytes a single
oplog (operation log)
is allowed to be.

1024 EnableDiskStore.max
OplogSize

220

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#allowForceCompaction--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#allowForceCompaction--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#autoCompact--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#autoCompact--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#compactionThreshold--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#compactionThreshold--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageCriticalPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageCriticalPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageCriticalPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageWarningPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageWarningPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageWarningPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#maxOplogSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#maxOplogSize--

Name Description Default From

disk.store.queue-size Configures the
maximum number
of operations that
can be
asynchronously
queued.

EnableDiskStore.que
ueSize

disk.store.time-
interval

Configures the
number of
milliseconds that can
elapse before data
written
asynchronously is
flushed to disk.

1000 EnableDiskStore.tim
eInterval

disk.store.write-
buffer-size

Configures the write
buffer size in bytes.

32768 EnableDiskStore.writ
eBufferSize

DiskStore properties can be further targeted at specific DiskStores using the DiskStore.name.

For instance, you may specify directory location of the files for a specific, named DiskStore using:

spring.data.gemfire.disk.store.Example.directory.location=/path/to/geode/disk-
stores/Example/

The directory location and size of the DiskStore files can be further divided into multiple locations
and size using array syntax, as in:

spring.data.gemfire.disk.store.Example.directory[0].location=/path/to/geode/disk-
stores/Example/one
spring.data.gemfire.disk.store.Example.directory[0].size=4096000
spring.data.gemfire.disk.store.Example.directory[1].location=/path/to/geode/disk-
stores/Example/two
spring.data.gemfire.disk.store.Example.directory[1].size=8192000

Both the name and array index are optional and you can use any combination of name and array
index. Without a name, the properties apply to all DiskStores. Without array indexes, all [named]
DiskStore files will be stored in the specified location and limited to the defined size.

Table 30. spring.data.gemfire.* Entity properties

221

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#queueSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#queueSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#timeInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#timeInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#writeBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#writeBufferSize--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/DiskStore.html#getName--

Name Description Default From

entities.base-
packages

Comma-delimited list
of package names
indicating the start
points for the entity
scan.

EnableEntityDefined
Regions.basePackage
s

Table 31. spring.data.gemfire.* Locator properties

Name Description Default From

locator.host Configures the IP
address or hostname
of the system NIC to
which the embedded
Locator will be
bound to listen for
connections.

EnableLocator.host

locator.port Configures the
network port to
which the embedded
Locator will listen
for connections.

10334 EnableLocator.port

Table 32. spring.data.gemfire.* Logging properties

Name Description Default From

logging.level Configures the log-
level of an Apache
Geode cache; Alias
for
'spring.data.gemfire.
cache.log-level'.

config EnableLogging.logLe
vel

logging.log-disk-
space-limit

Configures the
amount of disk space
allowed to store log
files.

EnableLogging.logDi
skSpaceLimit

logging.log-file Configures the
pathname of the log
file used to log
messages.

EnableLogging.logFil
e

logging.log-file-size Configures the
maximum size of a
log file before the log
file is rolled.

EnableLogging.logFil
eSize

Table 33. spring.data.gemfire.* Management properties

222

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableEntityDefinedRegions.html#basePackages--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableEntityDefinedRegions.html#basePackages--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableEntityDefinedRegions.html#basePackages--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLocator.html#host--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLocator.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logDiskSpaceLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logDiskSpaceLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFileSizeLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFileSizeLimit--

Name Description Default From

management.use-
http

Configures whether
to use the HTTP
protocol to
communicate with a
Apache Geode
Manager.

false EnableClusterConfig
uration.useHttp

management.http.ho
st

Configures the IP
address or hostname
of the Apache Geode
Manager running the
HTTP service.

EnableClusterConfig
uration.host

management.http.po
rt

Configures the port
used by the Apache
Geode Manager’s
HTTP service to
listen for
connections.

7070 EnableClusterConfig
uration.port

Table 34. spring.data.gemfire.* Manager properties

Name Description Default From

manager.access-file Configures the
Access Control List
(ACL) file used by the
Manager to restrict
access to the JMX
MBeans by the
clients.

EnableManager.acce
ssFile

manager.bind-
address

Configures the IP
address or hostname
of the system NIC
used by the Manager
to bind and listen for
JMX client
connections.

EnableManager.bind
Address

manager.hostname-
for-clients

Configures the
hostname given to
JMX clients to ask the
Locator for the
location of the
Manager.

EnableManager.host
NameForClients

223

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#useHttp--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#useHttp--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#host--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#host--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#accessFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#accessFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#hostnameForClients--

Name Description Default From

manager.password-
file

By default, the JMX
Manager will allow
clients without
credentials to
connect. If this
property is set to the
name of a file then
only clients that
connect with
credentials that
match an entry in
this file will be
allowed.

EnableManager.pass
wordFile

manager.port Configures the port
used by th Manager
to listen for JMX
client connections.

1099 EnableManager.port

manager.start Configures whether
to start the Manager
service at runtime.

false EnableManager.start

manager.update-rate Configures the rate,
in milliseconds, at
which this member
will push updates to
any JMX Managers.

2000 EnableManager.upda
teRate

Table 35. spring.data.gemfire.* PDX properties

Name Description Default From

pdx.disk-store-name Configures the name
of the DiskStore used
to store PDX type
meta-data to disk
when PDX is
persistent.

EnablePdx.diskStore
Name

pdx.ignore-unread-
fields

Configures whether
PDX ignores fields
that were unread
during
deserialization.

false EnablePdx.ignoreUn
readFields

pdx.persistent Configures whether
PDX persists type
meta-data to disk.

false EnablePdx.persistent

224

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#passwordFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#passwordFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#start--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#updateRate--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#updateRate--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#diskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#diskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#ignoreUnreadFields--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#ignoreUnreadFields--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#persistent--

Name Description Default From

pdx.read-serialized Configures whether
a Region entry is
returned as a
PdxInstance or
deserialized back
into object form on
read.

false EnablePdx.readSeria
lized

pdx.serialize-bean-
name

Configures the name
of a custom Spring
bean implementing
org.apache.geode.pd
x.PdxSerializer.

EnablePdx.serializer
BeanName

Table 36. spring.data.gemfire.* Pool properties

Name Description Default From

pool.free-connection-
timeout

Configures the
timeout used to
acquire a free
connection from a
Pool.

10000 EnablePool.freeConn
ectionTimeout

pool.idle-timeout Configures the
amount of time a
connection can be
idle before expiring
(and closing) the
connection.

5000 EnablePool.idleTime
out

pool.load-
conditioning-interval

Configures the
interval for how
frequently the pool
will check to see if a
connection to a given
server should be
moved to a different
server to improve
the load balance.

300000 EnablePool.loadCond
itioningInterval

pool.locators Comma-delimited list
of Locator endpoints
in the format:
locator1[port1],…
,locatorN[portN]

EnablePool.locators

225

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#readSerialized--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#readSerialized--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#serializerBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#serializerBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#freeConnectionTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#freeConnectionTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#idleTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#idleTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#loadConditioningInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#loadConditioningInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#locators--

Name Description Default From

pool.max-
connections

Configures the
maximum number
of client to server
connections that a
Pool will create.

EnablePool.maxConn
ections

pool.min-
connections

Configures the
minimum number of
client to server
connections that a
Pool will maintain.

1 EnablePool.minConn
ections

pool.multi-user-
authentication

Configures whether
the created Pool can
be used by multiple
authenticated users.

false EnablePool.multiUse
rAuthentication

pool.ping-interval Configures how
often to ping servers
to verify that they
are still alive.

10000 EnablePool.pingInter
val

pool.pr-single-hop-
enabled

Configures whether
to perform single-
hop data access
operations between
the client and
servers. When true
the client is aware of
the location of
partitions on servers
hosting Regions with
DataPolicy.PARTITIO
N.

true EnablePool.prSingle
HopEnabled

pool.read-timeout Configures the
number of
milliseconds to wait
for a response from
a server before
timing out the
operation and trying
another server (if
any are available).

10000 EnablePool.readTime
out

226

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#minConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#minConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#multiUserAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#multiUserAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#pingInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#pingInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#prSingleHopEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#prSingleHopEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#readTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#readTimeout--

Name Description Default From

pool.ready-for-events Configures whether
to signal the server
that the client is
prepared and ready
to receive events.

false ClientCacheApplicati
on.readyForEvents

pool.retry-attempts Configures the
number of times to
retry a request after
timeout/exception.

EnablePool.retryAtte
mpts

pool.server-group Configures the group
that all servers a
Pool connects to
must belong to.

EnablePool.serverGr
oup

pool.servers Comma-delimited list
of CacheServer
endpoints in the
format:
server1[port1],…
,serverN[portN]

EnablePool.servers

pool.socket-buffer-
size

Configures the socket
buffer size for each
connection made in
all Pools.

32768 EnablePool.socketBu
fferSize

pool.statistic-interval Configures how
often to send client
statistics to the
server.

EnablePool.statisticI
nterval

pool.subscription-
ack-interval

Configures the
interval in
milliseconds to wait
before sending
acknowledgements
to the CacheServer
for events received
from the server
subscriptions.

100 EnablePool.subscript
ionAckInterval

pool.subscription-
enabled

Configures whether
the created Pool will
have server-to-client
subscriptions
enabled.

false EnablePool.subscript
ionEnabled

227

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#readyForEvents--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#readyForEvents--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#retryAttempts--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#retryAttempts--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#serverGroup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#serverGroup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#servers--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#statisticInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#statisticInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionAckInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionAckInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionEnabled--

Name Description Default From

pool.subscription-
message-tracking-
timeout

Configures the
messageTrackingTim
eout attribute which
is the time-to-live
period, in
milliseconds, for
subscription events
the client has
received from the
server.

900000 EnablePool.subscript
ionMessageTracking
Timeout

pool.subscription-
redundancy

Configures the
redundancy level for
all Pools server-to-
client subscriptions.

EnablePool.subsripti
onRedundancy

pool.thread-local-
connections

Configures the
thread local
connections policy
for all Pools.

false EnablePool.threadLo
calConnections

Table 37. spring.data.gemfire.* Security properties

Name Description Default From

security.username Configures the name
of the user used to
authenticate with the
servers.

EnableSecurity.secur
ityUsername

security.password Configures the user
password used to
authenticate with the
servers.

EnableSecurity.secur
ityPassword

security.properties-
file

Configures the
system pathname to
a properties file
containing security
credentials.

EnableAuth.properti
esFile

security.client.access
or

X X EnableAuth.clientAcc
essor

228

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionMessageTrackingTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionMessageTrackingTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionMessageTrackingTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionRedundancy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionRedundancy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#threadLocalConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#threadLocalConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityUsername--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityUsername--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityPropertiesFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityPropertiesFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessor--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessor--

Name Description Default From

security.client.access
or-post-processor

The callback that
should be invoked in
the post-operation
phase, which is when
the operation has
completed on the
server but before the
result is sent to the
client.

EnableAuth.clientAcc
essorPostProcessor

security.client.authe
ntication-initializer

Static creation
method returning an
AuthInitialize object,
which obtains
credentials for peers
in a cluster.

EnableSecurity.client
AuthentiationInitiali
zer

security.client.authe
nticator

Static creation
method returning an
Authenticator object
used by a cluster
member (Locator,
Server) to verify the
credentials of a
connecting client.

EnableAuth.clientAut
henticator

security.client.diffie-
hellman-algorithm

Used for
authentication. For
secure transmission
of sensitive
credentials like
passwords, you can
encrypt the
credentials using the
Diffie-Hellman key-
exchange algorithm.
Do this by setting the
security-client-
dhalgo system
property on the
clients to the name
of a valid, symmetric
key cipher supported
by the JDK.

EnableAuth.clientDif
fieHellmanAlgorithm

229

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessorPostProcessor--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessorPostProcessor--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#clientAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#clientAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#clientAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAuthenticator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAuthenticator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientDiffieHellmanAlgorithm--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientDiffieHellmanAlgorithm--

Name Description Default From

security.log.file Configures the
pathname to a log
file used for security
log messages.

EnableAuth.security
LogFile

security.log.level Configures the log-
level for security log
messages.

EnableAuth.security
LogLevel

security.manager.cla
ss-name

Configures name of a
class implementing
org.apache.geode.sec
urity.SecurityManag
er.

EnableSecurity.secur
ityManagerClassNam
e

security.peer.authent
ication-initializer

Static creation
method returning an
AuthInitialize object,
which obtains
credentials for peers
in a cluster.

EnableSecurity.peer
AuthenticationInitial
izer

security.peer.authent
icator

Static creation
method returning an
Authenticator object,
which is used by a
peer to verify the
credentials of a
connecting node.

EnableAuth.peerAut
henticator

security.peer.verify-
member-timeout

Configures the
timeout in
milliseconds used by
a peer to verify
membership of an
unknown
authenticated peer
requesting a secure
connection.

EnableAuth.peerVeri
fyMemberTimeout

230

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityManagerClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityManagerClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityManagerClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#peerAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#peerAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#peerAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerAuthenticator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerAuthenticator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerVerifyMemberTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerVerifyMemberTimeout--

Name Description Default From

security.post-
processor.class-name

Configures the name
of a class
implementing the
org.apache.geode.sec
urity.PostProcessor
interface that can be
used to change the
returned results of
Region get
operations.

EnableSecurity.secur
ityPostProcessorClas
sName

security.shiro.ini-
resource-path

Configures the
Apache Geode
System Property
referring to the
location of an
Apache Shiro INI file
that configures the
Apache Shiro
Security Framework
in order to secure
Apache Geode.

EnableSecurity.shiro
IniResourcePath

Table 38. spring.data.gemfire.* SSL properties

Name Description Default From

security.ssl.certificat
e.alias.cluster

Configures the alias
to the stored SSL
certificate used by
the cluster to secure
communications.

EnableSsl.componen
tCertificateAliases

security.ssl.certificat
e.alias.default-alias

Configures the
default alias to the
stored SSL certificate
used to secure
communications
across the entire
Apache Geode
system.

EnableSsl.defaultCert
ificateAlias

security.ssl.certificat
e.alias.gateway

Configures the alias
to the stored SSL
certificate used by
the WAN Gateway
Senders/Receivers to
secure
communications.

EnableSsl.componen
tCertificateAliases

231

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPostProcessorClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPostProcessorClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPostProcessorClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#shiroIniResourcePath--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#shiroIniResourcePath--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#defaultCertificateAlias--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#defaultCertificateAlias--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--

Name Description Default From

security.ssl.certificat
e.alias.jmx

Configures the alias
to the stored SSL
certificate used by
the Manager’s JMX
based JVM
MBeanServer and
JMX clients to secure
communications.

EnableSsl.componen
tCertificateAliases

security.ssl.certificat
e.alias.locator

Configures the alias
to the stored SSL
certificate used by
the Locator to secure
communications.

EnableSsl.componen
tCertificateAliases

security.ssl.certificat
e.alias.server

Configures the alias
to the stored SSL
certificate used by
clients and servers to
secure
communications.

EnableSsl.componen
tCertificateAliases

security.ssl.certificat
e.alias.web

Configures the alias
to the stored SSL
certificate used by
the embedded HTTP
server to secure
communications
(HTTPS).

EnableSsl.componen
tCertificateAliases

security.ssl.ciphers Comma-separated
list of SSL ciphers or
“any”.

EnableSsl.ciphers

security.ssl.compone
nts

Comma-delimited list
of Apache Geode
components (e.g.
WAN) to be
configured for SSL
communication.

EnableSsl.componen
ts

security.ssl.keystore Configures the
system pathname to
the Java KeyStore file
storing certificates
for SSL.

EnableSsl.keystore

232

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#ciphers--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#components--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#components--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystore--

Name Description Default From

security.ssl.keystore.
password

Configures the
password used to
access the Java
KeyStore file.

EnableSsl.keystorePa
ssword

security.ssl.keystore.t
ype

Configures the
password used to
access the Java
KeyStore file (e.g.
JKS).

EnableSsl.keystoreTy
pe

security.ssl.protocols Comma-separated
list of SSL protocols
or “any”.

EnableSsl.protocols

security.ssl.require-
authentication

Configures whether
2-way authentication
is required.

EnableSsl.requireAut
hentication

security.ssl.truststore Configures the
system pathname to
the trust store (Java
KeyStore file) storing
certificates for SSL.

EnableSsl.truststore

security.ssl.truststore
.password

Configures the
password used to
access the trust store
(Java KeyStore file).

EnableSsl.truststoreP
assword

security.ssl.truststore
.type

Configures the
password used to
access the trust store
(Java KeyStore file;
e.g. JKS).

EnableSsl.truststoreT
ype

security.ssl.web-
require-
authentication

Configures whether
2-way HTTP
authentication is
required.

false EnableSsl.webRequir
eAuthentication

Table 39. spring.data.gemfire.* Service properties

233

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#protocols--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#requireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#requireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststore--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#webRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#webRequireAuthentication--

Name Description Default From

service.http.bind-
address

Configures the IP
address or hostname
of the system NIC
used by the
embedded HTTP
server to bind and
listen for HTTP(S)
connections.

EnableHttpService.bi
ndAddress

service.http.port Configures the port
used by the
embedded HTTP
server to listen for
HTTP(S) connections.

7070 EnableHttpService.p
ort

service.http.ssl-
require-
authentication

Configures whether
2-way HTTP
authentication is
required.

false EnableHttpService.ss
lRequireAuthenticati
on

service.http.dev-rest-
api-start

Configures whether
to start the
Developer REST API
web service. A full
installation of
Apache Geode is
required and you
must set the $GEODE
environment
variable.

false EnableHttpService.st
artDeveloperRestApi

service.memcached.
port

Configures the port
of the embedded
Memcached server
(service).

11211 EnableMemcachedSe
rver.port

service.memcached.
protocol

Configures the
protocol used by the
embedded
Memcached server
(service).

ASCII EnableMemcachedSe
rver.protocol

234

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#sslRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#sslRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#sslRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#startDeveloperRestApi--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#startDeveloperRestApi--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#protocol--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#protocol--

Name Description Default From

service.redis.bind-
address

Configures the IP
address or hostname
of the system NIC
used by the
embedded Redis
server to bind an
listen for
connections.

EnableRedis.bindAd
dress

service.redis.port Configures the port
used by the
embedded Redis
server to listen for
connections.

6479 EnableRedisServer.p
ort

Spring Session Based Properties

The following properties all have a spring.session.data.gemfire.* prefix. For example, to set the
Session Region name, use spring.session.data.gemfire.session.region.name in Spring Boot
application.properties.

Table 40. spring.session.data.gemfire.* properties

Name Description Default From

cache.client.pool.na
me

Name of the Pool
used to send data
access operations
between the client
and server(s).

gemfirePool EnableGemFireHttpS
ession.poolName

cache.client.region.s
hortcut

Configures the
DataPolicy used by
the client Region to
manage (HTTP)
Session state.

ClientRegionShortcut
.PROXY

EnableGemFireHttpS
ession.clientRegionS
hortcut

cache.server.region.s
hortcut

Configures the
DataPolicy used by
the server Region to
manage (HTTP)
Session state.

RegionShortcut.PART
ITION

EnableGemFireHttpS
ession.serverRegionS
hortcut

session.attributes.ind
exable

Configures names of
Session attributes for
which an Index will
be created.

[] EnableGemFireHttpS
ession.indexableSess
ionAttributes

235

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#port--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#poolName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#poolName--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#PROXY
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#PROXY
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#clientRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#clientRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#clientRegionShortcut--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#serverRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#serverRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#serverRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#indexableSessionAttributes--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#indexableSessionAttributes--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#indexableSessionAttributes--

Name Description Default From

session.expiration.m
ax-inactive-interval-
seconds

Configures the
number of seconds
in which a Session
can remain inactive
before it expires.

1800 EnableGemFireHttpS
ession.maxInactiveIn
tervalSeconds

session.region.name Configures name of
the (client/server)
Region used to
manage (HTTP)
Session state.

ClusteredSpringSessi
ons

EnableGemFireHttpS
ession.regionName

session.serializer.bea
n-name

Configures the name
of a Spring bean
implementing
org.springframewor
k.session.data.gemfir
e.serialization.Sessio
nSerializer.

EnableGemFireHttpS
ession.sessionSeriali
zerBeanName

Apache Geode Properties

While it is not recommended to use Apache Geode properties directly in your Spring applications,
SBDG will not prevent you from doing so. A complete reference to the Apache Geode specific
properties can be found here.

Apache Geode is very strict about the properties that maybe specified in a
gemfire.properties file. You cannot mix Spring properties with gemfire.*
properties in an Apache Geode gemfire.properties file.

Disabling Auto-configuration
If you would like to disable the auto-configuration of any feature provided by Spring Boot for
Apache Geode, then you can specify the auto-configuration class in the exclude attribute of the
@SpringBootApplication annotation, as follows:

Disable Auto-configuration of PDX

@SpringBootApplication(exclude = PdxSerializationAutoConfiguration.class)
public class MySpringBootApplication {

 public static void main(String[] args) {
 SpringApplication.run(MySpringBootApplication.class, args);
 }
}

Of course, you can disable more than 1 auto-configuration class at a time by specifying each class in

236

https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#maxInactiveIntervalSeconds--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#maxInactiveIntervalSeconds--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#maxInactiveIntervalSeconds--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#regionName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#regionName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#sessionSerializerBeanName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#sessionSerializerBeanName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#sessionSerializerBeanName--
https://geode.apache.org/docs/guide/113/reference/topics/gemfire_properties.html

the exclude attribute using array syntax, as follows:

Disable Auto-configuration of PDX & SSL

@SpringBootApplication(exclude = { PdxSerializationAutoConfiguration.class,
SslAutoConfiguration.class })
public class MySpringBootApplication {

 public static void main(String[] args) {
 SpringApplication.run(MySpringBootApplication.class, args);
 }
}

Complete Set of Auto-configuration Classes

The current set of auto-configuration classes in Spring Boot for Apache Geode include:

• CacheNameAutoConfiguration

• CachingProviderAutoConfiguration

• ClientCacheAutoConfiguration

• ClientSecurityAutoConfiguration

• ContinuousQueryAutoConfiguration

• FunctionExecutionAutoConfiguration

• GemFirePropertiesAutoConfiguration

• LoggingAutoConfiguration

• PdxSerializationAutoConfiguration

• PeerSecurityAutoConfiguration

• RegionTemplateAutoConfiguration

• RepositoriesAutoConfiguration

• SpringSessionAutoConfiguration

• SpringSessionPropertiesAutoConfiguration

• SslAutoConfiguration

Switching from Apache Geode to Pivotal GemFire or
Pivotal Cloud Cache (PCC)

237

This section is now deprecated! Spring Boot for Apache Geode (SBDG) no longer
provides the spring-gemfire-starter and related starter modules. As of SBDG 1.4,
SBDG is based on Apache Geode 1.13. Standalone GemFire bits based on Apache
Geode are no longer being released by VMware, Inc. after GemFire 9.10. GemFire
9.10 was based on Apache Geode 1.12, and as such, SBDG can longer properly
support standalone GemFire bits (i.e. ⇐ 9.10).

What was "Pivotal GemFire" has now been rebranded as VMware Tanzu GemFire
and what was Pivotal Cloud Cache (PCC) running on Pivotal CloudFoundry (PCF)
has been rebranded as VMware Tanzu GemFire for VMs and VMware Tanzu
Application Service (TAS), respectively.

Running an Apache Geode cluster using Spring Boot
from your IDE
As described in Building ClientCache Applications, it is possible to configure and run a small Apache
Geode cluster from inside your IDE using Spring Boot. This is extremely helpful during
development since it allows you to manually spin up, test and debug your applications quickly and
easily.

Spring Boot for Apache Geode includes such a class:

238

https://pivotal.io/pivotal-gemfire
https://pivotal.io/pivotal-cloud-cache
https://pivotal.io/platform
https://pivotal.io/platform

Spring Boot application class used to configure and bootstrap an Apache Geode server

@SpringBootApplication
@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication")
@SuppressWarnings("unused")
public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {

 new
SpringApplicationBuilder(SpringBootApacheGeodeCacheServerApplication.class)
 .web(WebApplicationType.NONE)
 .build()
 .run(args);
 }

 @Configuration
 @UseLocators
 @Profile("clustered")
 static class ClusteredConfiguration { }

 @Configuration
 @EnableLocator
 @EnableManager(start = true)
 @Profile("!clustered")
 static class LonerConfiguration { }

}

This class is a proper Spring Boot application that can be used to configure and bootstrap multiple
Apache Geode servers and joining them together to form a small cluster simply by modifying the
runtime configuration of this class ever so slightly.

Initially you will want to start a single, primary server with the embedded Locator and Manager
service.

The Locator service enables members in the cluster to locate one another and allows new members
to attempt to join the cluster as a peer. Additionally, the Locator service also allows clients to
connect to the servers in the cluster. When the cache client’s Pool is configured to use Locators,
then the Pool can intelligently route data requests directly to the server hosting the data (a.k.a.
single-hop access), especially when the data is partitioned/sharded across servers in the cluster.
Locator Pools include support for load balancing connections and handling automatic fail-over in
the event of failed connections, among other things.

The Manager service enables you to connect to this server using Gfsh (the Apache Geode command-
line shell tool).

To start our primary server, create a run configuration in your IDE for the
SpringBootApacheGeodeCacheServerApplication class with the following, recommended JRE
command-line options:

239

https://geode.apache.org/docs/guide/113/tools_modules/gfsh/chapter_overview.html
https://geode.apache.org/docs/guide/113/tools_modules/gfsh/chapter_overview.html

Server 1 run profile configuration

-server -ea -Dspring.profiles.active=

Start the class. You should see similar output:

Server 1 output on startup

/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/bin/java -server -ea
-Dspring.profiles.active= "-javaagent:/Applications/IntelliJ IDEA 17
CE.app/Contents/lib/idea_rt.jar=62866:/Applications/IntelliJ IDEA 17
CE.app/Contents/bin" -Dfile.encoding=UTF-8 -classpath
/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/charsets.jar:
/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/deploy.jar:/L
ibrary/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/cldrdata.ja
r:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/dnsns.j
ar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/jacces
s.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/jfx
rt.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/lo
caledata.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/
ext/nashorn.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/l
ib/ext/sunec.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/
lib/ext/sunjce_provider.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Content
s/Home/jre/lib/ext/sunpkcs11.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Co
ntents/Home/jre/lib/ext/zipfs.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/C
ontents/Home/jre/lib/javaws.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Con
tents/Home/jre/lib/jce.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents
/Home/jre/lib/jfr.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home
/jre/lib/jfxswt.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/j
re/lib/jsse.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/l
ib/management-
agent.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/plu
gin.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/resou
rces.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/rt.j
ar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/ant-
javafx.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/dt.jar
:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/javafx-
mx.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/jconsole.j
ar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/packager.jar:/
Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/sa-
jdi.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/tools.jar
:/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/build/classes/main:/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/build/resources/main:/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
autoconfigure/build/classes/main:/Users/jblum/pivdev/spring-boot-data-geode/spring-
geode-autoconfigure/build/resources/main:/Users/jblum/pivdev/spring-boot-data-
geode/spring-geode/build/classes/main:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework.boot/spring-boot-
starter/2.0.3.RELEASE/ffaa050dbd36b0441645598f1a7ddaf67fd5e678/spring-boot-starter-
2.0.3.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-

240

2.1/org.springframework.boot/spring-boot-
autoconfigure/2.0.3.RELEASE/11bc4cc96b08fabad2b3186755818fa0b32d83f/spring-boot-
autoconfigure-2.0.3.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework.boot/spring-
boot/2.0.3.RELEASE/b874870d915adbc3dd932e19077d3d45c8e54aa0/spring-boot-
2.0.3.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/javax.annotation/javax.annotation-
api/1.3.2/934c04d3cfef185a8008e7bf34331b79730a9d43/javax.annotation-api-
1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework.data/spring-data-
geode/2.0.8.RELEASE/9e0a3cd2805306d355c77537aea07c281fc581b/spring-data-geode-
2.0.8.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-context-
support/5.0.7.RELEASE/e8ee4902d9d8bfbb21bc5e8f30cfbb4324adb4f3/spring-context-support-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
context/5.0.7.RELEASE/243a23f8968de8754d8199d669780d683ab177bd/spring-context-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
tx/5.0.7.RELEASE/4ca59b21c61162adb146ad1b40c30b60d8dc42b8/spring-tx-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
web/5.0.7.RELEASE/2e04c6c2922fbfa06b5948be14a5782db168b6ec/spring-web-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework.data/spring-data-
commons/2.0.8.RELEASE/5c19af63b5acb0eab39066684e813d5ecd9d03b7/spring-data-commons-
2.0.8.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
aop/5.0.7.RELEASE/fdd0b6aa3c9c7a188c3bfbf6dfd8d40e843be9ef/spring-aop-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
beans/5.0.7.RELEASE/c1196cb3e56da83e3c3a02ef323699f4b05feedc/spring-beans-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
expression/5.0.7.RELEASE/ca01fb473f53dd0ee3c85663b26d5dc325602057/spring-expression-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
core/5.0.7.RELEASE/54b731178d81e66eca9623df772ff32718208137/spring-core-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.yaml/snakeyaml/1.19/2d998d3d674b172a588e54ab619854d073f555b5/snakeyaml-
1.19.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.springframework/spring-
jcl/5.0.7.RELEASE/699016ddf454c2c167d9f84ae5777eccadf54728/spring-jcl-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.geode/geode-
lucene/1.2.1/3d22a050bd4eb64bd8c82a74677f45c070f102d5/geode-lucene-
1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-
core/1.2.1/fe853317e33dd2a1c291f29cee3c4be549f75a69/geode-core-
1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-
cq/1.2.1/69873d6b956ba13b55c894a13e72106fb552e840/geode-cq-
1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-
wan/1.2.1/df0dd8516e1af17790185255ff21a54b56d94344/geode-wan-

241

1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/antlr/antlr/2.7.7/83cd2cd674a217ade95a4bb83a8a14f351f48bd0/antlr-
2.7.7.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.shiro/shiro-
spring/1.3.2/281a6b565f6cf3aebd31ddb004632008d7106f2d/shiro-spring-
1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.aspectj/aspectjweaver/1.8.13/ad94df2a28d658a40dc27bbaff6a1ce5fbf04e9b/aspectjw
eaver-1.8.13.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/com.fasterxml.jackson.core/jackson-
databind/2.9.6/cfa4f316351a91bfd95cb0644c6a2c95f52db1fc/jackson-databind-
2.9.6.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/com.fasterxml.jackson.core/jackson-
annotations/2.9.0/7c10d545325e3a6e72e06381afe469fd40eb701/jackson-annotations-
2.9.0.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.shiro/shiro-
web/1.3.2/725be023e1c65a0fd70c01b8c0c13a2936c23315/shiro-web-
1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.shiro/shiro-
core/1.3.2/b5dede9d890f335998a8ebf479809fe365b927fc/shiro-core-
1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.slf4j/slf4j-
api/1.7.25/da76ca59f6a57ee3102f8f9bd9cee742973efa8a/slf4j-api-
1.7.25.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/com.github.stephenc.findbugs/findbugs-annotations/1.3.9-
1/a6b11447635d80757d64b355bed3c00786d86801/findbugs-annotations-1.3.9-
1.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.jgroups/jgroups/3.6.10.Final/fc0ff5a8a9de27ab62939956f705c2909bf86bc2/jgroups-
3.6.10.Final.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-io/commons-
io/2.5/2852e6e05fbb95076fc091f6d1780f1f8fe35e0f/commons-io-
2.5.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-lang/commons-
lang/2.6/ce1edb914c94ebc388f086c6827e8bdeec71ac2/commons-lang-
2.6.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/it.unimi.dsi/fastutil/7.1.0/9835253257524c1be7ab50c057aa2d418fb72082/fastutil-
7.1.0.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/javax.resource/javax.resource-
api/1.7/ae40e0864eb1e92c48bf82a2a3399cbbf523fb79/javax.resource-api-
1.7.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/net.java.dev.jna/jna/4.5.1/65bd0cacc9c79a21c6ed8e9f588577cd3c2f85b9/jna-
4.5.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/net.sf.jopt-simple/jopt-
simple/5.0.3/cdd846cfc4e0f7eefafc02c0f5dce32b9303aa2a/jopt-simple-
5.0.3.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.logging.log4j/log4j-
core/2.10.0/c90b597163cd28ab6d9687edd53db601b6ea75a1/log4j-core-
2.10.0.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.logging.log4j/log4j-
api/2.10.0/fec5797a55b786184a537abd39c3fa1449d752d6/log4j-api-
2.10.0.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-beanutils/commons-
beanutils/1.9.3/c845703de334ddc6b4b3cd26835458cb1cba1f3d/commons-beanutils-
1.9.3.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/io.github.lukehutch/fast-
classpath-scanner/2.0.11/ae34a7a5e6de8ad1f86e12f6f7ae1869fcfe9987/fast-classpath-
scanner-2.0.11.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.geode/geode-
common/1.2.1/9db253081d33f424f6e3ce0cde4b306e23e3420b/geode-common-
1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-
json/1.2.1/bdb4c262e4ce6bb3b22e0f511cfb133a65fa0c04/geode-json-

242

1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.lucene/lucene-
analyzers-common/6.4.1/c6f0f593503080204e9d33189cdc59320f55db37/lucene-analyzers-
common-6.4.1.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.lucene/lucene-
queryparser/6.4.1/1fc5795a072770a2c47dce11a3c85a80f3437af6/lucene-queryparser-
6.4.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.lucene/lucene-
queries/6.4.1/6de41d984c16185a244b52c4d069b00f5b2b120f/lucene-queries-
6.4.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.lucene/lucene-
core/6.4.1/2a18924b9e0ed86b318902cb475a0b9ca4d7be5b/lucene-core-
6.4.1.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/com.fasterxml.jackson.core/jackson-
core/2.9.6/4e393793c37c77e042ccc7be5a914ae39251b365/jackson-core-
2.9.6.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/javax.transaction/javax.transaction-
api/1.2/d81aff979d603edd90dcd8db2abc1f4ce6479e3e/javax.transaction-api-
1.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-logging/commons-
logging/1.2/4bfc12adfe4842bf07b657f0369c4cb522955686/commons-logging-
1.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-collections/commons-
collections/3.2.2/8ad72fe39fa8c91eaaf12aadb21e0c3661fe26d5/commons-collections-
3.2.2.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework.shell/spring-
shell/1.2.0.RELEASE/d94047721f292bd5334b5654e8600cef4b845049/spring-shell-
1.2.0.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/com.google.guava/guava/17.0/9c6ef172e8de35fd8d4d8783e4821e57cdef7445/guava-
17.0.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/jline/jline/2.12/ce9062c6a125e0f9ad766032573c041ae8ecc986/jline-2.12.jar
org.springframework.geode.docs.example.app.server.SpringBootApacheGeodeCacheServerAppl
ication
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See https://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.0.3.RELEASE)

[info 2018/06/24 21:42:28.183 PDT <main> tid=0x1] Starting
SpringBootApacheGeodeCacheServerApplication on jblum-mbpro-2.local with PID 41795
(/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build/classes/main
started by jblum in /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/build)

[info 2018/06/24 21:42:28.186 PDT <main> tid=0x1] No active profile set, falling back
to default profiles: default

[info 2018/06/24 21:42:28.278 PDT <main> tid=0x1] Refreshing
org.springframework.context.annotation.AnnotationConfigApplicationContext@6fa51cd4:

243

startup date [Sun Jun 24 21:42:28 PDT 2018]; root of context hierarchy

[warn 2018/06/24 21:42:28.962 PDT <main> tid=0x1] @Bean method
PdxConfiguration.pdxDiskStoreAwareBeanFactoryPostProcessor is non-static and returns
an object assignable to Spring's BeanFactoryPostProcessor interface. This will result
in a failure to process annotations such as @Autowired, @Resource and @PostConstruct
within the method's declaring @Configuration class. Add the 'static' modifier to this
method to avoid these container lifecycle issues; see @Bean javadoc for complete
details.

[info 2018/06/24 21:42:30.036 PDT <main> tid=0x1]

 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with this
 work for additional information regarding copyright ownership.

 The ASF licenses this file to You under the Apache License, Version 2.0
 (the "License"); you may not use this file except in compliance with the
 License. You may obtain a copy of the License at

 https://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the specific language governing permissions and limitations
 under the License.

Build-Date: 2017-09-16 07:20:46 -0700
Build-Id: abaker 0
Build-Java-Version: 1.8.0_121
Build-Platform: Mac OS X 10.12.3 x86_64
Product-Name: Apache Geode
Product-Version: 1.2.1
Source-Date: 2017-09-08 11:57:38 -0700
Source-Repository: release/1.2.1
Source-Revision: 0b881b515eb1dcea974f0f5c1b40da03d42af9cf
Native version: native code unavailable
Running on: /10.0.0.121, 8 cpu(s), x86_64 Mac OS X 10.10.5
Communications version: 65
Process ID: 41795
User: jblum
Current dir: /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Home dir: /Users/jblum
Command Line Parameters:
 -ea
 -Dspring.profiles.active=
 -javaagent:/Applications/IntelliJ IDEA 17
CE.app/Contents/lib/idea_rt.jar=62866:/Applications/IntelliJ IDEA 17

244

CE.app/Contents/bin
 -Dfile.encoding=UTF-8
Class Path:

/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/charsets.jar
 ...
Library Path:
 /Users/jblum/Library/Java/Extensions
 /Library/Java/Extensions
 /Network/Library/Java/Extensions
 /System/Library/Java/Extensions
 /usr/lib/java
 .
System Properties:
 PID = 41795
 ...
[info 2018/06/24 21:42:30.045 PDT <main> tid=0x1] Startup Configuration:
 ### GemFire Properties defined with api ###
disable-auto-reconnect=true
jmx-manager=true
jmx-manager-port=1099
jmx-manager-start=true
jmx-manager-update-rate=2000
log-level=config
mcast-port=0
name=SpringBootApacheGeodeCacheServerApplication
start-locator=localhost[10334]
use-cluster-configuration=false
GemFire Properties using default values
ack-severe-alert-threshold=0
...

[info 2018/06/24 21:42:30.090 PDT <main> tid=0x1] Starting peer location for
Distribution Locator on localhost/127.0.0.1

[info 2018/06/24 21:42:30.093 PDT <main> tid=0x1] Starting Distribution Locator on
localhost/127.0.0.1

[info 2018/06/24 21:42:30.094 PDT <main> tid=0x1] Locator was created at Sun Jun 24
21:42:30 PDT 2018

[info 2018/06/24 21:42:30.094 PDT <main> tid=0x1] Listening on port 10334 bound on
address localhost/127.0.0.1

...

[info 2018/06/24 21:42:30.685 PDT <main> tid=0x1] Initializing region
_monitoringRegion_10.0.0.121<v0>1024

[info 2018/06/24 21:42:30.688 PDT <main> tid=0x1] Initialization of region
_monitoringRegion_10.0.0.121<v0>1024 completed

245

...

[info 2018/06/24 21:42:31.570 PDT <main> tid=0x1] CacheServer Configuration:
port=40404 max-connections=800 max-threads=0 notify-by-subscription=true socket-
buffer-size=32768 maximum-time-between-pings=60000 maximum-message-count=230000
message-time-to-live=180 eviction-policy=none capacity=1 overflow directory=.
groups=[] loadProbe=ConnectionCountProbe loadPollInterval=5000 tcpNoDelay=true

[info 2018/06/24 21:42:31.588 PDT <main> tid=0x1] Started
SpringBootApacheGeodeCacheServerApplication in 3.77 seconds (JVM running for 5.429)

You can now connect to this server using Gfsh:

246

Connect with Gfsh

$ echo $GEMFIRE
/Users/jblum/pivdev/apache-geode-1.2.1
jblum-mbpro-2:lab jblum$
jblum-mbpro-2:lab jblum$ gfsh
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.2.1

Monitor and Manage Apache Geode

gfsh>connect
Connecting to Locator at [host=localhost, port=10334] ..
Connecting to Manager at [host=10.0.0.121, port=1099] ..
Successfully connected to: [host=10.0.0.121, port=1099]

gfsh>list members
 Name | Id

SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024

gfsh>describe member --name=SpringBootApacheGeodeCacheServerApplication
Name : SpringBootApacheGeodeCacheServerApplication
Id :
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024
Host : 10.0.0.121
Regions :
PID : 41795
Groups :
Used Heap : 184M
Max Heap : 3641M
Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Locators : localhost[10334]

Cache Server Information
Server Bind :
Server Port : 40404
Running : true
Client Connections : 0

Now, let’s start some additional servers to scale-out our cluster.

247

To do so, you simply need to vary the name of the members we will add to our cluster as peers.
Apache Geode requires that the members in a cluster be named and the names of each member in
the cluster be unique.

Additionally, since we are running multiple instances of our
SpringBootApacheGeodeCacheServerApplication class, which also embeds a CacheServer instance
enabling cache clients to connect, we need to be careful to vary our ports used by the embedded
services.

Fortunately, we do not need to run another embedded Locator or Manager service (we only need 1
in this case), therefore, we can switch profiles from non-clusted to using the Spring "clustered"
profile, which includes different configuration (the ClusterConfiguration class) to connect another
server as a peer member in the cluster, which currently only has 1 member as shown in the list
members Gfsh command output above.

To add another server, set the member name and the CacheServer port to a different number with
the following run profile configuration:

Run profile configuration for server 2

-server -ea -Dspring.profiles.active=clustered -Dspring.data.gemfire.name=ServerTwo
-Dspring.data.gemfire.cache.server.port=41414

Notice that we explicitly activated the "clustered" Spring profile, which enables the configuration
provided in the nested ClusteredConfiguration class while disabling the LonerConfiguration class.

This ClusteredConfiguration class is also annotated with @UseLocators, which sets the Apache Geode
locators property to "localhost[10334]". By default, it assumes the Locator process/service is
running on "locahost", listening on the default Locator port of "10334". You can of course adjust
your Locators endpoint if your Locators are running elsewhere in your network by using the
"locators" attribute of the @UseLocators annotation.

It is common in production environments to run multiple Locators as a separate
process. Running multiple Locators provides redundancy in case a Locator process
fails. If all Locator processes in your network fail, don’t fret, your cluster will not
go down. It simply means no other members will be able to join the cluster,
allowing you to scale your cluster out, nor will any clients be able to connect.
Simply just restart the Locators if this happens.

Additionally, we set the spring.data.gemfire.name property to "ServerTwo" adjusting the name of
our member when it joins the cluster as a peer.

Finally, we set the spring.data.gemfire.cache.server.port to "41414" to vary the CacheServer port
used by "ServerTwo". The default CacheServer port is "40404". If we had not set this property before
starting "ServerTwo" we would have hit a java.net.BindException.

248

Both the spring.data.gemfire.name and spring.data.gemfire.cache.server.port
properties are well-known properties used by SDG to dynamically configure
Apache Geode using a Spring Boot application.properties file or Java System
properties. You can find these properties in the Annotation Javadoc in SDG’s
Annotation-based Configuration model. For instance, the
spring.data.gemfire.cache.server.port property is documented here. Most of the
SDG annotations include corresponding properties that can be defined in
application.properties and is explained in more detail here.

After starting our second server, "ServerTwo", we should see similar output at the command-line,
and in Gfsh, when we list members and describe member again:

Gfsh output after starting server 2

gfsh>list members
 Name | Id

SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024
ServerTwo | 10.0.0.121(ServerTwo:41933)<v1>:1025

gfsh>describe member --name=ServerTwo
Name : ServerTwo
Id : 10.0.0.121(ServerTwo:41933)<v1>:1025
Host : 10.0.0.121
Regions :
PID : 41933
Groups :
Used Heap : 165M
Max Heap : 3641M
Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Locators : localhost[10334]

Cache Server Information
Server Bind :
Server Port : 41414
Running : true
Client Connections : 0

When list members, we see "ServerTwo" and when we describe "ServerTwo", we see that its
CacheServer port is appropriately set to "41414".

If we add 1 more server, "ServerThree" using the following run configuration:

249

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-properties

Add server 3 to our cluster

-server -ea -Dspring.profiles.active=clustered -Dspring.data.gemfire.name=ServerThree
-Dspring.data.gemfire.cache.server.port=42424

Again, we will see similar output at the command-line and in Gfsh:

Gfsh output after starting server 3

gfsh>list members
 Name | Id

SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024
ServerTwo | 10.0.0.121(ServerTwo:41933)<v1>:1025
ServerThree | 10.0.0.121(ServerThree:41965)<v2>:1026

gfsh>describe member --name=ServerThree
Name : ServerThree
Id : 10.0.0.121(ServerThree:41965)<v2>:1026
Host : 10.0.0.121
Regions :
PID : 41965
Groups :
Used Heap : 180M
Max Heap : 3641M
Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Locators : localhost[10334]

Cache Server Information
Server Bind :
Server Port : 42424
Running : true
Client Connections : 0

Congratulations! You just started a small Apache Geode cluster, with 3 members, using Spring Boot
from inside your IDE.

It is pretty simple to build and run a Spring Boot, Apache Geode ClientCache application that
connects to this cluster. Simply include and use Spring Boot for Apache Geode.

Testing
Spring Test for Apache Geode is a new, soon to be released and upcoming project to help developers
write both Unit and Integration Tests when using Apache Geode in a Spring context.

250

https://github.com/spring-projects/spring-test-data-geode

In fact, the entire test suite in Spring Boot for Apache Geode is based on this project.

All Spring projects integrating with Apache Geode will use this new test framework for all their
testing needs, making this new test framework for Apache Geode a proven and reliable solution for
all your Apache Geode application testing needs when using Spring as well.

Later on, this reference guide will include and dedicate an entire chapter on testing.

Examples
The definitive source of truth on how to best use Spring Boot for Apache Geode is to refer to the
Samples.

Additionally, you may refer to the Temperature Service, Spring Boot application implementing a
Temperature Sensor and Monitoring, Internet of Things (IOT) example. The example uses SBDG to
showcase Apache Geode CQ, Function Implementations/Executions and positions Apache Geode as
a caching provider in Spring’s Cache Abstraction. It is a working, sophisticated and complete
example, and is highly recommended as a good starting point for real-world use cases.

You may also refer to the boot-example from the Contact Application Reference Implementation (RI)
for Spring Data for Apache Geode (SDG) as yet another example.

References
1. Spring Framework Reference Guide | Javadoc

2. Spring Boot Reference Guide | Javadoc

3. Spring Data Commons Reference Guide | Javadoc

4. Spring Data for Apache Geode Reference Guide | Javadoc

5. Spring Session for Apache Geode Reference Guide | Javadoc

6. Spring Test for Apache Geode README

7. Apache Geode User Guide | Javadoc

251

https://github.com/spring-projects/spring-boot-data-geode/tree/1.5.2/tree/master/spring-geode-autoconfigure/src/test/java/org/springframework/geode/boot/autoconfigure
https://github.com/jxblum/temperature-service
https://github.com/jxblum/contacts-application/tree/master/boot-example
https://docs.spring.io/spring/docs/current/spring-framework-reference
https://docs.spring.io/spring/docs/current/javadoc-api
https://docs.spring.io/spring-boot/docs/current/reference/html
https://docs.spring.io/spring-boot/docs/current/api
https://docs.spring.io/spring-data/commons/docs/current/reference/html
https://docs.spring.io/spring-data/commons/docs/current/api
https://docs.spring.io/spring-data/geode/docs/current/reference/html
https://docs.spring.io/spring-data/geode/docs/current/api
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/reference/html5
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.5.2/api
https://github.com/spring-projects/spring-test-data-geode#spring-test-framework-for-apache-geode—vmware-tanzu-gemfire
https://geode.apache.org/docs/guide/113
https://geode.apache.org/releases/latest/javadoc

	Spring Boot for Apache Geode Reference Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	Chapter 3. Using Spring Boot for Apache Geode
	Chapter 4. Building ClientCache Applications
	Chapter 5. Auto-configuration
	Chapter 6. Declarative Configuration
	Chapter 7. Externalized Configuration
	Chapter 8. Using Geode Properties
	Chapter 9. Caching with Apache Geode
	Chapter 10. Data Access with GemfireTemplate
	Chapter 11. Spring Data Repositories
	Chapter 12. Function Implementations & Executions
	Chapter 13. Continuous Query
	Chapter 14. Using Data
	Chapter 15. Data Serialization with PDX
	Chapter 16. Logging
	Chapter 17. Security
	Chapter 18. Testing
	Chapter 19. Apache Geode API Extensions
	Chapter 20. Spring Boot Actuator
	Chapter 21. Spring Session
	Chapter 22. Pivotal CloudFoundry
	Chapter 23. Docker
	Chapter 24. Samples
	Chapter 25. Appendix

