
Spring Boot for Apache Geode
Reference Guide

John Blum

Version 1.6.0-RC1, 2021-10-22

Table of Contents
1. Introduction. 2

2. Getting Started . 4

3. Using Spring Boot for Apache Geode . 5

4. Building ClientCache Applications . 11

5. Auto-configuration. 33

6. Declarative Configuration . 48

7. Externalized Configuration . 64

8. Using Geode Properties. 67

9. Caching with Apache Geode . 74

10. Data Access with GemfireTemplate . 97

11. Spring Data Repositories . 104

12. Function Implementations & Executions. 106

13. Continuous Query . 109

14. Using Data . 111

15. Data Serialization with PDX . 127

16. Logging . 130

17. Security. 140

18. Testing . 145

19. Apache Geode API Extensions . 152

20. Spring Boot Actuator. 161

21. Spring Session. 178

22. Pivotal CloudFoundry . 184

23. Docker. 207

24. Samples . 219

25. Appendix . 221

Spring Boot for Apache Geode provides the convenience of Spring Boot’s
convention over configuration approach by using auto-configuration with Spring
Framework’s powerful abstractions and highly consistent programming model
to simplify the development of Apache Geode applications in a Spring context.

Secondarily, Spring Boot for Apache Geode provides developers with a consistent experience
whether building and running Spring Boot, Apache Geode applications locally or in a managed
environment, such as with VMware Tanzu Application Service (TAS).

This project is a continuation and a logical extension to Spring Data for Apache Geode’s Annotation-
based configuration model, and the goals set forth in that model: To enable application developers to
get up and running as quickly, reliably, and as easily as possible. In fact, Spring Boot for Apache
Geode builds on this very foundation cemented in Spring Data for Apache Geode since the Spring
Data Kay (2.0) Release Train.

1

https://tanzu.vmware.com/tanzu
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config

Chapter 1. Introduction
Spring Boot for Apache Geode automatically applies auto-configuration to several key application
concerns (use cases) including, but not limited to:

• Look-Aside, [Async] Inline, Near and Multi-Site Caching, by using Apache Geode as a caching
provider in Spring’s Cache Abstraction. For more information, see Caching with Apache Geode.

• System of Record (SOR), persisting application state in Apache Geode by using Spring Data
Repositories. For more information, see Spring Data Repositories.

• Transactions, managing application state consistently with Spring Transaction Management
with support for both Local Cache and Global JTA Transactions.

• Distributed Computations, run with Apache Geode’s Function Execution framework and
conveniently implemented and executed with POJO-based, annotation support for Functions.
For more information, see Function Implementations & Executions.

• Continuous Queries, expressing interests in a stream of events and letting applications react to
and process changes to data in near real-time with Apache Geode’s Continuous Query (CQ).
Listeners/Handlers are defined as simple Message-Driven POJOs (MDP) with Spring’s Message
Listener Container, which has been extended with its configurable CQ support. For more
information, see Continuous Query.

• Data Serialization using Apache Geode PDX with first-class configuration and support. For more
information, see Data Serialization with PDX.

• Data Initialization to quickly load (import) data to hydrate the cache during application startup
or write (export) data on application shutdown to move data between environments (for
example, TEST to DEV). For more information, see Using Data.

• Actuator, to gain insight into the runtime behavior and operation of your cache, whether a
client or a peer. For more information, see Spring Boot Actuator.

• Logging, to quickly and conveniently enable or adjust Apache Geode log levels in your Spring
Boot application to gain insight into the runtime operations of the application as they occur. For
more information, see Logging.

• Security, including Authentication & Authorization, and Transport Layer Security (TLS) with
Apache Geode Secure Socket Layer (SSL). Once more, Spring Data for Apache Geode includes
first-class support for configuring Auth and SSL. For more information, see Security.

• HTTP Session state management, by including Spring Session for Apache Geode on your
application’s classpath. For more information, see Spring Session.

• Testing. Whether you write Unit or Integration Tests for Apache Geode in a Spring context,
SBDG covers all your testing needs with the help of STDG.

While Spring Data for Apache Geode offers a simple, consistent, convenient and declarative
approach to configure all these powerful Apache Geode features, Spring Boot for Apache Geode
makes it even easier to do, as we will explore throughout this reference documentation.

2

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://en.wikipedia.org/wiki/System_of_record
https://en.wikipedia.org/wiki/System_of_record
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:transaction-management
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:global-transaction-management
https://geode.apache.org/docs/guide/113/developing/function_exec/chapter_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-annotations
https://geode.apache.org/docs/guide/113/developing/continuous_querying/chapter_overview.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-mdp
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-mdp
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:continuous-query
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-continuous-queries
https://geode.apache.org/docs/guide/113/developing/data_serialization/gemfire_pdx_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-pdx
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer
https://geode.apache.org/docs/guide/113/managing/security/authentication_overview.html
https://geode.apache.org/docs/guide/113/managing/security/authorization_overview.html
https://geode.apache.org/docs/guide/113/managing/security/ssl_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-security
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-ssl
https://github.com/spring-projects/spring-test-data-geode#spring-test-framework-for-apache-geode—​vmware-tanzu-gemfire

1.1. Goals
While the SBDG project has many goals and objectives, the primary goals of this project centers
around three key principles:

1. From Open Source (Apache Geode) to Commercial (VMware Tanzu GemFire).

2. From Non-Managed (self-managed/hosted or on-premise installations) to Managed (VMware
Tanzu GemFire for VMs, VMware Tanzu GemFire for K8S) environments.

3. With little to no code or configuration changes necessary.

It is also possible to go in the reverse direction, from Managed back to a Non-Managed environment
and even from Commercial back to the Open Source offering, again, with little to no code or
configuration changes.


SBDG’s promise is to deliver on these principles as much as is technically possible
and as is technically allowed by Apache Geode.

3

Chapter 2. Getting Started
To be immediately productive and as effective as possible when you use Spring Boot for Apache
Geode, it helps to understand the foundation on which this project is built.

The story begins with the Spring Framework and the core technologies and concepts built into the
Spring container.

Then our journey continues with the extensions built into Spring Data for Apache Geode to simplify
the development of Apache Geode applications in a Spring context, using Spring’s powerful
abstractions and highly consistent programming model. This part of the story was greatly enhanced
in Spring Data Kay, with the Annotation-based configuration model. Though this new configuration
approach uses annotations and provides sensible defaults, its use is also very explicit and assumes
nothing. If any part of the configuration is ambiguous, SDG will fail fast. SDG gives you choice, so
you still must tell SDG what you want.

Next, we venture into Spring Boot and all of its wonderfully expressive and highly opinionated
“convention over configuration” approach for getting the most out of your Spring Apache Geode
applications in the easiest, quickest, and most reliable way possible. We accomplish this by
combining Spring Data for Apache Geode’s annotation-based configuration with Spring Boot’s auto-
configuration to get you up and running even faster and more reliably so that you are productive
from the start.

As a result, it would be pertinent to begin your Spring Boot education with Spring Boot’s
documentation.

Finally, we arrive at Spring Boot for Apache Geode (SBDG).


See the corresponding Sample Guide and Code to see Spring Boot for Apache
Geode in action.

4

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#spring-core
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/#getting-started
https://docs.spring.io/spring-boot/docs/current/reference/html/#getting-started
guides/getting-started.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/intro/getting-started

Chapter 3. Using Spring Boot for Apache
Geode
To use Spring Boot for Apache Geode, declare the spring-geode-starter on your Spring Boot
application classpath:

Example 1. Maven

<dependencies>
 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter</artifactId>
 <version>1.6.0-RC1</version>
 </dependency>
</dependencies>

Gradle

dependencies {
 compile 'org.springframework.geode:spring-geode-starter:1.6.0-RC1'
}

3.1. Maven BOM
If you anticipate using more than one Spring Boot for Apache Geode (SBDG) module in your Spring
Boot application, you can also declare the new org.springframework.geode:spring-geode-bom Maven
BOM in your application Maven POM.

Your application use case may require more than one module if (for example, you need (HTTP)
Session state management and replication with, for example, spring-geode-starter-session), if you
need to enable Spring Boot Actuator endpoints for Apache Geode (for example, spring-geode-
starter-actuator), or if you need assistance writing complex Unit and (Distributed) Integration
Tests with Spring Test for Apache Geode (STDG) (for example, spring-geode-starter-test).

You can declare and use any one of the SBDG modules:

• spring-geode-starter

• spring-geode-starter-actuator

• spring-geode-starter-logging

• spring-geode-starter-session

• spring-geode-starter-test

When more than one SBDG module is in use, it makes sense to declare the spring-geode-bom to
manage all the dependencies such that the versions and transitive dependencies necessarily align

5

properly.

A Spring Boot application Maven POM that declares the spring-geode-bom along with two or more
module dependencies might appear as follows:

6

Example 2. Spring Boot application Maven POM

<project xmlns="http://maven.apache.org/POM/4.0.0">

 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.6.0-RC1</version>
 </parent>

 <artifactId>my-spring-boot-application</artifactId>

 <properties>
 <spring-geode.version>1.6.0-RC1</spring-geode.version>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-bom</artifactId>
 <version>${spring-geode.version}</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter-session</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

</project>

Notice that:

7

• The Spring Boot application Maven POM (pom.xml) contains a <dependencyManagement> section
that declares the org.springframework.geode:spring-geode-bom.

• None of the spring-geode-starter[-xyz] dependencies explicitly specify a <version>. The version
is managed by the spring-geode.version property, making it easy to switch between versions of
SBDG as needed and use it in all the SBDG modules declared and used in your application
Maven POM.

If you change the version of SBDG, be sure to change the org.springframework.boot:spring-boot-
starter-parent POM version to match. SBDG is always one major version behind but matches on
minor version and patch version (and version qualifier — SNAPSHOT, M#, RC#, or RELEASE, if applicable).

For example, SBDG 1.4.0 is based on Spring Boot 2.4.0. SBDG 1.3.5.RELEASE is based on Spring Boot
2.3.5.RELEASE, and so on. It is important that the versions align.


All of these concerns are handled for you by going to start.spring.io and adding the
“_Spring for Apache Geode_” dependency to a project. For convenience, you can
click this link to get started.

3.2. Gradle Dependency Management
Using Gradle is similar to using Maven.

Again, if you declare and use more than one SBDG module in your Spring Boot application (for
example, the spring-geode-starter along with the spring-geode-starter-actuator dependency),
declaring the spring-geode-bom inside your application Gradle build file helps.

Your application Gradle build file configuration (roughly) appears as follows:

8

https://start.spring.io
https://start.spring.io/#!platformVersion=2.6.0-RC1&dependencies=geode

Example 3. Spring Boot application Gradle build file

plugins {
 id 'org.springframework.boot' version '2.6.0-RC1'
 id 'io.spring.dependency-management' version '1.0.10.RELEASE'
 id 'java'
}

// ...

ext {
 set('springGeodeVersion', "1.6.0-RC1")
}

dependencies {
 implementation 'org.springframework.geode:spring-geode-starter'
 implementation 'org.springframework.geode:spring-geode-starter-actuator'
 testImplementation 'org.springframework.boot:spring-boot-starter-test'
}

dependencyManagement {
 imports {
 mavenBom "org.springframework.geode:spring-geode-bom:${springGeodeVersion}"
 }
}

A combination of the Spring Boot Gradle Plugin and the Spring Dependency Management Gradle
Plugin manages the application dependencies for you.

In a nutshell, the Spring Dependency Management Gradle Plugin provides dependency management
capabilities for Gradle, much like Maven. The Spring Boot Gradle Plugin defines a curated and
tested set of versions for many third party Java libraries. Together, they make adding dependencies
and managing (compatible) versions easier.

Again, you need not explicitly declare the version when adding a dependency, including a new
SBDG module dependency (for example, spring-geode-starter-session), since this has already been
determined for you. You can declare the dependency as follows:

implementation 'org.springframework.geode:spring-geode-starter-session'

The version of SBDG is controlled by the extension property (springGeodeVersion) in the application
Gradle build file.

To use a different version of SBDG, set the springGeodeVersion property to the desired version (for
example, 1.3.5.RELEASE). Remember to be sure that the version of Spring Boot matches.

9

https://docs.spring.io/spring-boot/docs/current/reference/html/using-spring-boot.html#using-boot-gradle
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin

SBDG is always one major version behind but matches on minor version and patch version (and
version qualifier, such as SNAPSHOT, M#, RC#, or RELEASE, if applicable). For example, SBDG 1.4.0 is
based on Spring Boot 2.4.0, SBDG 1.3.5.RELEASE is based on Spring Boot 2.3.5.RELEASE, and so on. It
is important that the versions align.


All of these concerns are handled for you by going to start.spring.io and adding the
“_Spring for Apache Geode_” dependency to a project. For convenience, you can
click this link to get started.

3.3. Repository declaration
Since you are using a Milestone version, you need to add the Spring Milestone Maven Repository.

If you use Maven, include the following repository declaration in your pom.xml:

Example 4. Maven

<repositories>
 <repository>
 <id>spring-milestone</id>
 <url>https://repo.spring.io/milestone</url>
 </repository>
</repositories>

If you use Gradle, include the following repository declaration in your build.gradle:

Example 5. Gradle

repositories {
 maven { url: 'https://repo.spring.io/milestone' }
}

10

https://start.spring.io
https://start.spring.io/#!platformVersion=2.6.0-RC1&dependencies=geode

Chapter 4. Building ClientCache Applications
The first opinionated option provided to you by Spring Boot for Apache Geode (SBDG) is a
ClientCache instance that you get by declaring Spring Boot for Apache Geode on your application
classpath.

It is assumed that most application developers who use Spring Boot to build applications backed by
Apache Geode are building cache client applications deployed in an Apache Geode Client/Server
Topology. The client/server topology is the most common and traditional architecture employed by
enterprise applications that use Apache Geode.

For example, you can begin building a Spring Boot Apache Geode ClientCache application by
declaring the spring-geode-starter on your application’s classpath:

Example 6. Spring Boot for Apache Geode on the application classpath

<dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter</artifactId>
</dependency>

Then you configure and bootstrap your Spring Boot, Apache Geode ClientCache application with the
following main application class:

Example 7. Spring Boot, Apache Geode ClientCache Application

@SpringBootApplication
public class SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class,
args);
 }
}

Your application now has a ClientCache instance that can connect to an Apache Geode server
running on localhost and listening on the default CacheServer port, 40404.

By default, an Apache Geode server (that is, CacheServer) must be running for the application to use
the ClientCache instance. However, it is perfectly valid to create a ClientCache instance and perform
data access operations by using LOCAL Regions. This is useful during development.


To develop with LOCAL Regions, configure your cache Regions with the
ClientRegionShortcut.LOCAL data management policy.

11

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientCache.html
https://geode.apache.org/docs/guide/113/topologies_and_comm/cs_configuration/chapter_overview.html
https://geode.apache.org/docs/guide/113/topologies_and_comm/cs_configuration/chapter_overview.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#LOCAL

When you are ready to switch from your local development environment (IDE) to a client/server
architecture in a managed environment, change the data management policy of the client Region
from LOCAL back to the default (PROXY) or even a CACHING_PROXY, which causes the data to be sent to
and received from one or more servers.


Compare and contrast the preceding configuration with the Spring Data for
Apache Geode approach.

It is uncommon to ever need a direct reference to the ClientCache instance provided by SBDG
injected into your application components (for example, @Service or @Repository beans defined in a
Spring ApplicationContext), whether you are configuring additional Apache Geode objects (Regions,
Indexes, and so on) or are using those objects indirectly in your applications. However, it is possible
to do so if and when needed.

For example, perhaps you want to perform some additional ClientCache initialization in a Spring
Boot ApplicationRunner on startup:

Example 8. Injecting a GemFireCache reference

@SpringBootApplication
public class SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class,
args);
 }

 @Bean
 ApplicationRunner runAdditionalClientCacheInitialization(GemFireCache
gemfireCache) {

 return args -> {

 ClientCache clientCache = (ClientCache) gemfireCache;

 // perform additional ClientCache initialization as needed
 };
 }
}

4.1. Building Embedded (Peer & Server) Cache
Applications
What if you want to build an embedded peer Cache application instead?

Perhaps you need an actual peer cache member, configured and bootstrapped with Spring Boot,
along with the ability to join this member to an existing cluster (of data servers) as a peer node.

12

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-geode-applications
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/ApplicationRunner.html

Remember the second goal in Spring Boot’s documentation:

Be opinionated out of the box but get out of the way quickly as
requirements start to diverge from the defaults.

Here, we focus on the second part of the goal: "get out of the way quickly as requirements start to
diverge from the defaults".

If your application requirements demand you use Spring Boot to configure and bootstrap an
embedded peer Cache instance, declare your intention with either SDG’s @PeerCacheApplication
annotation, or, if you also need to enable connections from ClientCache applications, use SDG’s
@CacheServerApplication annotation:

Example 9. Spring Boot, Apache Geode CacheServer Application

@SpringBootApplication
@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication")
public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeCacheServerApplication.class,
args);
 }
}


An Apache Geode server is not necessarily a CacheServer capable of serving cache
clients. It is merely a peer member node in an Apache Geode cluster (that is, a
distributed system) that stores and manages data.

By explicitly declaring the @CacheServerApplication annotation, you tell Spring Boot that you do not
want the default ClientCache instance but rather want an embedded peer Cache instance with a
CacheServer component, which enables connections from ClientCache applications.

You can also enable two other Apache Geode services: * An embedded Locator, which allows clients
or even other peers to locate servers in the cluster. * An embedded Manager, which allows the
Apache Geode application process to be managed and monitored by using Gfsh, Apache Geode’s
command-line shell tool:

13

https://docs.spring.io/spring-boot/docs/current/reference/html/#getting-started-introducing-spring-boot
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html
https://geode.apache.org/docs/guide/113/tools_modules/gfsh/chapter_overview.html

Example 10. Spring Boot Apache Geode CacheServer Application with Locator and Manager services
enabled

@SpringBootApplication
@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication")
@EnableLocator
@EnableManager
public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeCacheServerApplication.class,
args);
 }
}

Then you can use Gfsh to connect to and manage this server:

14

$ echo $GEMFIRE
/Users/jblum/pivdev/apache-geode-1.2.1

$ gfsh
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.2.1

Monitor and Manage Apache Geode

gfsh>connect
Connecting to Locator at [host=localhost, port=10334] ..
Connecting to Manager at [host=10.0.0.121, port=1099] ..
Successfully connected to: [host=10.0.0.121, port=1099]

gfsh>list members
 Name | Id

SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:29798)<ec><v0>:1024

gfsh>describe member --name=SpringBootApacheGeodeCacheServerApplication
Name : SpringBootApacheGeodeCacheServerApplication
Id :
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:29798)<ec><v0>:1024
Host : 10.0.0.121
Regions :
PID : 29798
Groups :
Used Heap : 168M
Max Heap : 3641M
Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Locators : localhost[10334]

Cache Server Information
Server Bind :
Server Port : 40404
Running : true
Client Connections : 0

You can even start additional servers in Gfsh. These additional servers connect to your Spring Boot
configured and bootstrapped Apache Geode CacheServer application. These additional servers

15

started in Gfsh know about the Spring Boot, Apache Geode server because of the embedded Locator
service, which is running on localhost and listening on the default Locator port, 10334:

gfsh>start server --name=GfshServer --log-level=config --disable-default-server
Starting a Geode Server in /Users/jblum/pivdev/lab/GfshServer...
...
Server in /Users/jblum/pivdev/lab/GfshServer on 10.0.0.121 as GfshServer is
currently online.
Process ID: 30031
Uptime: 3 seconds
Geode Version: 1.2.1
Java Version: 1.8.0_152
Log File: /Users/jblum/pivdev/lab/GfshServer/GfshServer.log
JVM Arguments: -Dgemfire.default.locators=10.0.0.121:127.0.0.1[10334]
-Dgemfire.use-cluster-configuration=true -Dgemfire.start-dev-rest-api=false
-Dgemfire.log-level=config -XX:OnOutOfMemoryError=kill -KILL %p
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-core-
1.2.1.jar:/Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-dependencies.jar

gfsh>list members
 Name | Id

SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:29798)<ec><v0>:1024
GfshServer |
10.0.0.121(GfshServer:30031)<v1>:1025

Perhaps you want to start the other way around. You may need to connect a Spring Boot configured
and bootstrapped Apache Geode server application to an existing cluster. You can start the cluster
in Gfsh with the following commands (shown with partial typical output):

16

gfsh>start locator --name=GfshLocator --port=11235 --log-level=config
Starting a Geode Locator in /Users/jblum/pivdev/lab/GfshLocator...
...
Locator in /Users/jblum/pivdev/lab/GfshLocator on 10.0.0.121[11235] as GfshLocator
is currently online.
Process ID: 30245
Uptime: 3 seconds
Geode Version: 1.2.1
Java Version: 1.8.0_152
Log File: /Users/jblum/pivdev/lab/GfshLocator/GfshLocator.log
JVM Arguments: -Dgemfire.log-level=config -Dgemfire.enable-cluster
-configuration=true -Dgemfire.load-cluster-configuration-from-dir=false
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-core-
1.2.1.jar:/Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=10.0.0.121, port=1099]

Cluster configuration service is up and running.

gfsh>start server --name=GfshServer --log-level=config --disable-default-server
Starting a Geode Server in /Users/jblum/pivdev/lab/GfshServer...
....
Server in /Users/jblum/pivdev/lab/GfshServer on 10.0.0.121 as GfshServer is
currently online.
Process ID: 30270
Uptime: 4 seconds
Geode Version: 1.2.1
Java Version: 1.8.0_152
Log File: /Users/jblum/pivdev/lab/GfshServer/GfshServer.log
JVM Arguments: -Dgemfire.default.locators=10.0.0.121[11235] -Dgemfire.use-cluster
-configuration=true -Dgemfire.start-dev-rest-api=false -Dgemfire.log-level=config
-XX:OnOutOfMemoryError=kill -KILL %p
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-core-
1.2.1.jar:/Users/jblum/pivdev/apache-geode-1.2.1/lib/geode-dependencies.jar

gfsh>list members
Name	Id
GfshLocator | 10.0.0.121(GfshLocator:30245:locator)<ec><v0>:1024
GfshServer | 10.0.0.121(GfshServer:30270)<v1>:1025

Then modify the SpringBootApacheGeodeCacheServerApplication class to connect to the existing

17

cluster:

Example 11. Spring Boot Apache Geode CacheServer Application connecting to an external cluster

@SpringBootApplication
@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication",
locators = "localhost[11235]")
public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class,
args);
 }
}


Notice that the SpringBootApacheGeodeCacheServerApplication class,
@CacheServerApplication annotation’s locators property are configured with the
host and port (localhost[11235]), on which the Locator was started by using Gfsh.

After running your Spring Boot Apache Geode CacheServer application again and executing the list
members command in Gfsh again, you should see output similar to the following:

18

gfsh>list members
 Name | Id

GfshLocator |
10.0.0.121(GfshLocator:30245:locator)<ec><v0>:1024
GfshServer |
10.0.0.121(GfshServer:30270)<v1>:1025
SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:30279)<v2>:1026

gfsh>describe member --name=SpringBootApacheGeodeCacheServerApplication
Name : SpringBootApacheGeodeCacheServerApplication
Id :
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:30279)<v2>:1026
Host : 10.0.0.121
Regions :
PID : 30279
Groups :
Used Heap : 165M
Max Heap : 3641M
Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Locators : localhost[11235]

Cache Server Information
Server Bind :
Server Port : 40404
Running : true
Client Connections : 0

In both scenarios, the Spring Boot configured and bootstrapped Apache Geode server, the Gfsh
Locator and Gfsh server formed a cluster.

While you can use either approach and Spring does not care, it is far more convenient to use Spring
Boot and your IDE to form a small cluster while developing. Spring profiles make it far simpler and
much faster to configure and start a small cluster.

Also, this approach enables rapidly prototyping, testing, and debugging your entire end-to-end
application and system architecture right from the comfort and familiarity of your IDE. No
additional tooling (such as Gfsh) or knowledge is required to get started quickly and easily. Just
build and run.

19



Be careful to vary your port numbers for the embedded services, like the
CacheServer, Locators, and the Manager, especially if you start multiple instances
on the same machine. Otherwise, you are likely to run into a
java.net.BindException caused by port conflicts.


See the Running an Apache Geode cluster with Spring Boot from your IDE
appendix for more details.

4.2. Building Locator Applications
In addition to ClientCache, CacheServer, and peer Cache applications, SDG, and by extension SBDG,
now supports Spring Boot Apache Geode Locator applications.

An Apache Geode Locator is a location-based service or, more typically, a standalone process that
lets clients locate a cluster of Apache Geode servers to manage data. Many cache clients can connect
to the same cluster to share data. Running multiple clients is common in a Microservices
architecture where you need to scale-up the number of application instances to satisfy the demand.

An Apache Geode Locator is also used by joining members of an existing cluster to scale-out and
increase capacity of the logically pooled system resources (memory, CPU, network and disk). A
Locator maintains metadata that is sent to the clients to enable such capabilities as single-hop data
access to route data access operations to the data node in the cluster maintaining the data of
interests. A Locator also maintains load information for servers in the cluster, which enables the
load to be uniformly distributed across the cluster while also providing fail-over services to a
redundant member if the primary fails. A Locator provides many more benefits, and we encourage
you to read the documentation for more details.

As shown earlier, you can embed a Locator service within either a Spring Boot peer Cache or a
CacheServer application by using the SDG @EnableLocator annotation:

Example 12. Embedded Locator Service

@SpringBootApplication
@CacheServerApplication
@EnableLocator
class SpringBootCacheServerWithEmbeddedLocatorApplication {
 // ...
}

However, it is more common to start standalone Locator JVM processes. This is useful when you
want to increase the resiliency of your cluster in the face of network and process failures, which
are bound to happen. If a Locator JVM process crashes or gets severed from the cluster due to a
network failure or partition, having multiple Locators provides a higher degree of availability (HA)
through redundancy.

Even if all Locators in the cluster go down, the cluster still remains intact. You cannot add more

20

https://geode.apache.org/docs/guide/113/configuring/running/running_the_locator.html

peer members (that is, scale-up the number of data nodes in the cluster) or connect any more
clients, but the cluster is fine. If all the locators in the cluster go down, it is safe to restart them only
after a thorough diagnosis.


Once a client receives metadata about the cluster of servers, all data-access
operations are sent directly to servers in the cluster, not a Locator. Therefore,
existing, connected clients remain connected and operable.

To configure and bootstrap Spring Boot Apache Geode Locator applications as standalone JVM
processes, use the following configuration:

Example 13. Standalone Locator Process

@SpringBootApplication
@LocatorApplication
class SpringBootApacheGeodeLocatorApplication {
 // ...
}

Instead of using the @EnableLocator annotation, you now use the @LocatorApplication annotation.

The @LocatorApplication annotation works in the same way as the @PeerCacheApplication and
@CacheServerApplication annotations, bootstrapping an Apache Geode process and overriding the
default ClientCache instance provided by SBDG.



If your @SpringBootApplication class is annotated with @LocatorApplication, it must
be a Locator and not a ClientCache, CacheServer, or peer Cache application. If you
need the application to function as a peer Cache, perhaps with embedded
CacheServer components and an embedded Locator, you need to follow the
approach shown earlier: using the @EnableLocator annotation with either the
@PeerCacheApplication or @CacheServerApplication annotation.

With our Spring Boot Apache Geode Locator application, we can connect both Spring Boot
configured and bootstrapped peer members (peer Cache, CacheServer and Locator applications) as
well as Gfsh started Locators and servers.

First, we need to start two Locators by using our Spring Boot Apache Geode Locator application
class:

21

Example 14. SpringBootApacheGeodeLocatorApplication class

@UseLocators
@SpringBootApplication
@LocatorApplication(name = "SpringBootApacheGeodeLocatorApplication")
public class SpringBootApacheGeodeLocatorApplication {

 public static void main(String[] args) {

 new
SpringApplicationBuilder(SpringBootApacheGeodeLocatorApplication.class)
 .web(WebApplicationType.NONE)
 .build()
 .run(args);

 System.err.println("Press <enter> to exit!");

 new Scanner(System.in).nextLine();
 }

 @Configuration
 @EnableManager(start = true)
 @Profile("manager")
 @SuppressWarnings("unused")
 static class ManagerConfiguration { }

}

We also need to vary the configuration for each Locator application instance.

Apache Geode requires each peer member in the cluster to be uniquely named. We can set the
name of the Locator by using the spring.data.gemfire.locator.name SDG property set as a JVM
System Property in your IDE’s run configuration profile for the main application class:
-Dspring.data.gemfire.locator.name=SpringLocatorOne. We name the second Locator application
instance SpringLocatorTwo.

Additionally, we must vary the port numbers that the Locators use to listen for connections. By
default, an Apache Geode Locator listens on port 10334. We can set the Locator port by using the
spring.data.gemfire.locator.port SDG property.

For our first Locator application instance (SpringLocatorOne), we also enable the "manager" profile
so that we can connect to the Locator by using Gfsh.

Our IDE run configuration profile for our first Locator application instance appears as:

-server -ea -Dspring.profiles.active=manager
-Dspring.data.gemfire.locator.name=SpringLocatorOne -Dlogback.log.level=INFO

And our IDE run configuration profile for our second Locator application instance appears as:

22

-server -ea -Dspring.profiles.active= -Dspring.data.gemfire.locator.name=SpringLocatorTwo
-Dspring.data.gemfire.locator.port=11235 -Dlogback.log.level=INFO

You should see log output similar to the following when you start a Locator application instance:

23

Example 15. Spring Boot Apache Geode Locator log output

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.2.0.BUILD-SNAPSHOT)

2019-09-01 11:02:48,707 INFO .SpringBootApacheGeodeLocatorApplication: 55 -
Starting SpringBootApacheGeodeLocatorApplication on jblum-mbpro-2.local with PID
30077 (/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/out/production/classes started by jblum in /Users/jblum/pivdev/spring-boot-
data-geode/spring-geode-docs/build)
2019-09-01 11:02:48,711 INFO .SpringBootApacheGeodeLocatorApplication: 651 - No
active profile set, falling back to default profiles: default
2019-09-01 11:02:49,374 INFO xt.annotation.ConfigurationClassEnhancer: 355 -
@Bean method
LocatorApplicationConfiguration.exclusiveLocatorApplicationBeanFactoryPostProcesso
r is non-static and returns an object assignable to Spring's
BeanFactoryPostProcessor interface. This will result in a failure to process
annotations such as @Autowired, @Resource and @PostConstruct within the method's
declaring @Configuration class. Add the 'static' modifier to this method to avoid
these container lifecycle issues; see @Bean javadoc for complete details.
2019-09-01 11:02:49,919 INFO ode.distributed.internal.InternalLocator: 530 -
Starting peer location for Distribution Locator on 10.99.199.24[11235]
2019-09-01 11:02:49,925 INFO ode.distributed.internal.InternalLocator: 498 -
Starting Distribution Locator on 10.99.199.24[11235]
2019-09-01 11:02:49,926 INFO distributed.internal.tcpserver.TcpServer: 242 -
Locator was created at Sun Sep 01 11:02:49 PDT 2019
2019-09-01 11:02:49,927 INFO distributed.internal.tcpserver.TcpServer: 243 -
Listening on port 11235 bound on address 0.0.0.0/0.0.0.0
2019-09-01 11:02:49,928 INFO ternal.membership.gms.locator.GMSLocator: 162 -
GemFire peer location service starting. Other locators: localhost[10334]
Locators preferred as coordinators: true Network partition detection enabled:
true View persistence file: /Users/jblum/pivdev/spring-boot-data-geode/spring-
geode-docs/build/locator11235view.dat
2019-09-01 11:02:49,928 INFO ternal.membership.gms.locator.GMSLocator: 416 - Peer
locator attempting to recover from localhost/127.0.0.1:10334
2019-09-01 11:02:49,963 INFO ternal.membership.gms.locator.GMSLocator: 422 - Peer
locator recovered initial membership of
View[10.99.199.24(SpringLocatorOne:30043:locator)<ec><v0>:41000|0] members:
[10.99.199.24(SpringLocatorOne:30043:locator)<ec><v0>:41000]
2019-09-01 11:02:49,963 INFO ternal.membership.gms.locator.GMSLocator: 407 - Peer
locator recovered state from LocatorAddress
[socketInetAddress=localhost/127.0.0.1:10334, hostname=localhost,
isIpString=false]
2019-09-01 11:02:49,965 INFO ode.distributed.internal.InternalLocator: 644 -
Starting distributed system

24

2019-09-01 11:02:50,007 INFO he.geode.internal.logging.LoggingSession: 82 -

 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with this
 work for additional information regarding copyright ownership.

 The ASF licenses this file to You under the Apache License, Version 2.0
 (the "License"); you may not use this file except in compliance with the
 License. You may obtain a copy of the License at

 https://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the specific language governing permissions and limitations
 under the License.

Build-Date: 2019-04-19 11:49:13 -0700
Build-Id: onichols 0
Build-Java-Version: 1.8.0_192
Build-Platform: Mac OS X 10.14.4 x86_64
Product-Name: Apache Geode
Product-Version: 1.9.0
Source-Date: 2019-04-19 11:11:31 -0700
Source-Repository: release/1.9.0
Source-Revision: c0a73d1cb84986d432003bd12e70175520e63597
Native version: native code unavailable
Running on: 10.99.199.24/10.99.199.24, 8 cpu(s), x86_64 Mac OS X 10.13.6
Communications version: 100
Process ID: 30077
User: jblum
Current dir: /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Home dir: /Users/jblum
Command Line Parameters:
 -ea
 -Dspring.profiles.active=
 -Dspring.data.gemfire.locator.name=SpringLocatorTwo
 -Dspring.data.gemfire.locator.port=11235
 -Dlogback.log.level=INFO
 -javaagent:/Applications/IntelliJ IDEA 19
CE.app/Contents/lib/idea_rt.jar=51961:/Applications/IntelliJ IDEA 19
CE.app/Contents/bin
 -Dfile.encoding=UTF-8
Class Path:
...
..
.
2019-09-01 11:02:54,112 INFO ode.distributed.internal.InternalLocator: 661 -

25

Locator started on 10.99.199.24[11235]
2019-09-01 11:02:54,113 INFO ode.distributed.internal.InternalLocator: 769 -
Starting server location for Distribution Locator on 10.99.199.24[11235]
2019-09-01 11:02:54,134 INFO nt.internal.locator.wan.LocatorDiscovery: 138 -
Locator discovery task exchanged locator information 10.99.199.24[11235] with
localhost[10334]: {-1=[10.99.199.24[10334]]}.
2019-09-01 11:02:54,242 INFO .SpringBootApacheGeodeLocatorApplication: 61 -
Started SpringBootApacheGeodeLocatorApplication in 6.137470354 seconds (JVM
running for 6.667)
Press <enter> to exit!

Next, start up the second Locator application instance (you should see log output similar to the
preceding list). Then connect to the cluster of Locators by using Gfsh:

Example 16. Cluster of Locators

$ echo $GEMFIRE
/Users/jblum/pivdev/apache-geode-1.9.0

$ gfsh
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.9.0

Monitor and Manage Apache Geode

gfsh>connect
Connecting to Locator at [host=localhost, port=10334] ..
Connecting to Manager at [host=10.99.199.24, port=1099] ..
Successfully connected to: [host=10.99.199.24, port=1099]

gfsh>list members
 Name | Id

SpringLocatorOne | 10.99.199.24(SpringLocatorOne:30043:locator)<ec><v0>:41000
[Coordinator]
SpringLocatorTwo | 10.99.199.24(SpringLocatorTwo:30077:locator)<ec><v1>:41001

By using our SpringBootApacheGeodeCacheServerApplication main class from the previous section, we
can configure and bootstrap an Apache Geode CacheServer application with Spring Boot and
connect it to our cluster of Locators:

26

Example 17. SpringBootApacheGeodeCacheServerApplication class

@SpringBootApplication
@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication")
@SuppressWarnings("unused")
public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {

 new
SpringApplicationBuilder(SpringBootApacheGeodeCacheServerApplication.class)
 .web(WebApplicationType.NONE)
 .build()
 .run(args);
 }

 @Configuration
 @UseLocators
 @Profile("clustered")
 static class ClusteredConfiguration { }

 @Configuration
 @EnableLocator
 @EnableManager(start = true)
 @Profile("!clustered")
 static class LonerConfiguration { }

}

To do so, enable the "clustered" profile by using an IDE run profile configuration similar to:

-server -ea -Dspring.profiles.active=clustered -Dspring.data.gemfire.name=SpringServer
-Dspring.data.gemfire.cache.server.port=41414 -Dlogback.log.level=INFO

After the server starts up, you should see the new peer member in the cluster:

Example 18. Cluster with Spring Boot configured and bootstrapped Apache Geode CacheServer

gfsh>list members
 Name | Id

SpringLocatorOne | 10.99.199.24(SpringLocatorOne:30043:locator)<ec><v0>:41000
[Coordinator]
SpringLocatorTwo | 10.99.199.24(SpringLocatorTwo:30077:locator)<ec><v1>:41001
SpringServer | 10.99.199.24(SpringServer:30216)<v2>:41002

27

Finally, we can even start additional Locators and servers connected to this cluster by using Gfsh:

28

Example 19. Gfsh started Locators and Servers

gfsh>start locator --name=GfshLocator --port=12345 --log-level=config
Starting a Geode Locator in /Users/jblum/pivdev/lab/GfshLocator...
......
Locator in /Users/jblum/pivdev/lab/GfshLocator on 10.99.199.24[12345] as
GfshLocator is currently online.
Process ID: 30259
Uptime: 5 seconds
Geode Version: 1.9.0
Java Version: 1.8.0_192
Log File: /Users/jblum/pivdev/lab/GfshLocator/GfshLocator.log
JVM Arguments: -Dgemfire.default.locators=10.99.199.24[11235],10.99.199.24[10334]
-Dgemfire.enable-cluster-configuration=true -Dgemfire.load-cluster-configuration
-from-dir=false -Dgemfire.log-level=config
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.9.0/lib/geode-core-
1.9.0.jar:/Users/jblum/pivdev/apache-geode-1.9.0/lib/geode-dependencies.jar

gfsh>start server --name=GfshServer --server-port=45454 --log-level=config
Starting a Geode Server in /Users/jblum/pivdev/lab/GfshServer...
...
Server in /Users/jblum/pivdev/lab/GfshServer on 10.99.199.24[45454] as GfshServer
is currently online.
Process ID: 30295
Uptime: 2 seconds
Geode Version: 1.9.0
Java Version: 1.8.0_192
Log File: /Users/jblum/pivdev/lab/GfshServer/GfshServer.log
JVM Arguments:
-Dgemfire.default.locators=10.99.199.24[11235],10.99.199.24[12345],10.99.199.24[10
334] -Dgemfire.start-dev-rest-api=false -Dgemfire.use-cluster-configuration=true
-Dgemfire.log-level=config -XX:OnOutOfMemoryError=kill -KILL %p
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.9.0/lib/geode-core-
1.9.0.jar:/Users/jblum/pivdev/apache-geode-1.9.0/lib/geode-dependencies.jar

gfsh>list members
 Name | Id

SpringLocatorOne | 10.99.199.24(SpringLocatorOne:30043:locator)<ec><v0>:41000
[Coordinator]
SpringLocatorTwo | 10.99.199.24(SpringLocatorTwo:30077:locator)<ec><v1>:41001
SpringServer | 10.99.199.24(SpringServer:30216)<v2>:41002
GfshLocator | 10.99.199.24(GfshLocator:30259:locator)<ec><v3>:41003
GfshServer | 10.99.199.24(GfshServer:30295)<v4>:41004

29

You must be careful to vary the ports and name of your peer members appropriately. Spring, and
Spring Boot for Apache Geode (SBDG) in particular, make doing so easy.

4.3. Building Manager Applications
As discussed in the previous sections, you can enable a Spring Boot configured and bootstrapped
Apache Geode peer member node in the cluster to function as a Manager.

An Apache Geode Manager is a peer member node in the cluster that runs the management service,
letting the cluster be managed and monitored with JMX-based tools, such as Gfsh, JConsole, or
JVisualVM. Any tool using the JMX API can connect to and manage an Apache Geode cluster for
whatever purpose.

Like Locators, the cluster may have more than one Manager for redundancy. Only server-side, peer
member nodes in the cluster may function Managers. Therefore, a ClientCache application cannot
be a Manager.

To create a Manager, use the SDG @EnableManager annotation.

The three primary uses of the @EnableManager annotation to create a Manager are:

1 - CacheServer Manager Application

@SpringBootApplication
@CacheServerApplication(name = "CacheServerManagerApplication")
@EnableManager(start = true)
class CacheServerManagerApplication {
 // ...
}

2 - Peer Cache Manager Application

@SpringBootApplication
@PeerCacheApplication(name = "PeerCacheManagerApplication")
@EnableManager(start = "true")
class PeerCacheManagerApplication {
 // ...
}

3 - Locator Manager Application

30

@SpringBootApplication
@LocatorApplication(name = "LocatorManagerApplication")
@EnableManager(start = true)
class LocatorManagerApplication {
 // ...
}

#1 creates a peer Cache instance with a CacheServer component that accepts client connections along
with an embedded Manager that lets JMX clients connect.

#2 creates only a peer Cache instance along with an embedded Manager. As a peer Cache with no
CacheServer component, clients are not able to connect to this node. It is merely a server managing
data.

#3 creates a Locator instance with an embedded Manager.

In all configuration arrangements, the Manager is configured to start immediately.


See the Javadoc for the @EnableManager annotation for additional configuration
options.

As of Apache Geode 1.11.0, you must include additional Apache Geode dependencies on your Spring
Boot application classpath to make your application a proper Apache Geode Manager in the cluster,
particularly if you also enable the embedded HTTP service in the Manager.

The required dependencies are:

Example 20. Additional Manager dependencies expressed in Gradle

runtime "org.apache.geode:geode-http-service"
runtime "org.apache.geode:geode-web"
runtime "org.springframework.boot:spring-boot-starter-jetty"

The embedded HTTP service (implemented with the Eclipse Jetty Servlet Container), runs the
Management (Admin) REST API, which is used by Apache Geode tooling, such as Gfsh, to connect to
an Apache Geode cluster over HTTP. In addition, it also enables the Apache Geode Pulse Monitoring
Tool (and Web application) to run.

Even if you do not start the embedded HTTP service, a Manager still requires the geode-http-
service, geode-web and spring-boot-starter-jetty dependencies.

Optionally, you may also include the geode-pulse dependency, as follows:

31

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html
https://geode.apache.org/docs/guide/113/tools_modules/pulse/pulse-overview.html

Example 21. Additional, optional Manager depdendencies expressed in Gradle

runtime "org.apache.geode:geode-pulse"

The geode-pulse dependency is only required if you want the Manager to automatically start the
Apache Geode Pulse Monitoring Tool. Pulse enables you to view the nodes of your Apache Geode
cluster and monitor them in realtime.

32

https://geode.apache.org/docs/guide/113/tools_modules/pulse/pulse-overview.html

Chapter 5. Auto-configuration
The following Spring Framework, Spring Data for Apache Geode (SDG) and Spring Session for
Apache Geode (SSDG) annotations are implicitly declared by Spring Boot for Apache Geode’s (SBDG)
auto-configuration.

• @ClientCacheApplication

• @EnableGemfireCaching (alternatively, Spring Framework’s @EnableCaching)

• @EnableContinuousQueries

• @EnableGemfireFunctions

• @EnableGemfireFunctionExecutions

• @EnableGemfireRepositories

• @EnableLogging

• @EnablePdx

• @EnableSecurity

• @EnableSsl

• @EnableGemFireHttpSession



This means that you need not explicitly declare any of these annotations on your
@SpringBootApplication class, since they are provided by SBDG already. The only
reason you would explicitly declare any of these annotations is to override Spring
Boot’s, and in particular, SBDG’s auto-configuration. Otherwise, doing so is
unnecessary.


You should read the chapter in Spring Boot’s reference documentation on auto-
configuration.


You should review the chapter in Spring Data for Apache Geode’s (SDG) reference
documentation on annotation-based configuration. For a quick reference and
overview of annotation-based configuration, see the annotations quickstart.


See the corresponding sample guide and code to see Spring Boot auto-
configuration for Apache Geode in action.

5.1. Customizing Auto-configuration
You might ask, “How do I customize the auto-configuration provided by SBDG if I do not explicitly
declare the annotation?”

For example, you may want to customize the member’s name. You know that the
@ClientCacheApplication annotation provides the name attribute so that you can set the client
member’s name. However, SBDG has already implicitly declared the @ClientCacheApplication

33

https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-auto-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-auto-configuration
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstap-annotations-quickstart
guides/boot-configuration.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/boot/configuration
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableGemFireProperties.html#name--

annotation through auto-configuration on your behalf. What do you do?

In this case, SBDG supplies a few additional annotations.

For example, to set the (client or peer) member’s name, you can use the @UseMemberName annotation:

Example 22. Setting the member’s name using @UseMemberName

@SpringBootApplication
@UseMemberName("MyMemberName")
class SpringBootApacheGeodeClientCacheApplication {
 //...
}

Alternatively, you could set the spring.application.name or the spring.data.gemfire.name property in
Spring Boot application.properties:

Example 23. Setting the member’s name using the spring.application.name property

Spring Boot application.properties

spring.application.name = MyMemberName

Example 24. Setting the member’s name using the spring.data.gemfire.cache.name property

Spring Boot application.properties

spring.data.gemfire.cache.name = MyMemberName


The spring.data.gemfire.cache.name property is an alias for the
spring.data.gemfire.name property. Both properties do the same thing (set the
name of the client or peer member node).

In general, there are three ways to customize configuration, even in the context of SBDG’s auto-
configuration:

• Using annotations provided by SBDG for common and popular concerns (such as naming client
or peer members with the @UseMemberName annotation or enabling durable clients with the
@EnableDurableClient annotation).

• Using well-known and documented properties (such as spring.application.name, or
spring.data.gemfire.name, or spring.data.gemfire.cache.name).

• Using configurers (such as ClientCacheConfigurer).

34

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/config/annotation/package-summary.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-properties
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-configurers
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheConfigurer.html


For the complete list of documented properties, see Configuration Metadata
Reference.

5.2. Disabling Auto-configuration
Spring Boot’s reference documentation explains how to disable Spring Boot auto-configuration.

Disabling Auto-configuration also explains how to disable SBDG auto-configuration.

In a nutshell, if you want to disable any auto-configuration provided by either Spring Boot or SBDG,
declare your intent in the @SpringBootApplication annotation:

Example 25. Disabling Specific Auto-configuration Classes

@SpringBootApplication(
 exclude = { DataSourceAutoConfiguration.class, PdxAutoConfiguration.class }
)
class SpringBootApacheGeodeClientCacheApplication {
 // ...
}


Make sure you understand what you are doing when you disable auto-
configuration.

5.3. Overriding Auto-configuration
Overriding explains how to override SBDG auto-configuration.

In a nutshell, if you want to override the default auto-configuration provided by SBDG, you must
annotate your @SpringBootApplication class with your intent.

For example, suppose you want to configure and bootstrap an Apache Geode CacheServer
application (a peer, not a client):

Example 26. Overriding the default ClientCache Auto-Configuration by configuring & bootstrapping a
CacheServer application

@SpringBootApplication
@CacheServerApplication
class SpringBootApacheGeodeCacheServerApplication {
 // ...
}

You can also explicitly declare the @ClientCacheApplication annotation on your

35

https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-disabling-specific-auto-configuration

@SpringBootApplication class:

Example 27. Overriding by explicitly declaring @ClientCacheApplication

@SpringBootApplication
@ClientCacheApplication
class SpringBootApacheGeodeClientCacheApplication {
 // ...
}

You are overriding SBDG’s auto-configuration of the ClientCache instance. As a result, you have now
also implicitly consented to being responsible for other aspects of the configuration (such as
security).

Why does that happen?

It happens because, in certain cases, such as security, certain aspects of security configuration (such
as SSL) must be configured before the cache instance is created. Also, Spring Boot always applies
user configuration before auto-configuration partially to determine what needs to be auto-
configured in the first place.


Make sure you understand what you are doing when you override auto-
configuration.

5.4. Replacing Auto-configuration
See the Spring Boot reference documentation on replacing auto-configuration.

5.5. Understanding Auto-configuration
This section covers the SBDG provided auto-configuration classes that correspond to the SDG
annotations in more detail.

To review the complete list of SBDG auto-confiugration classes, see Complete Set of Auto-
configuration Classes.

5.5.1. @ClientCacheApplication


The SBDG ClientCacheAutoConfiguration class corresponds to the SDG
@ClientCacheApplication annotation.

As explained in Getting Started SBDG starts with the opinion that application developers primarily
build Apache Geode client applications by using Spring Boot.

Technically, this means building Spring Boot applications with an Apache Geode ClientCache
instance connected to a dedicated cluster of Apache Geode servers that manage the data as part of a

36

https://docs.spring.io/spring-boot/docs/current/reference/html/#using-boot-replacing-auto-configuration
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/ClientCacheAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html

client/server topology.

By way of example, this means that you need not explicitly declare and annotate your
@SpringBootApplication class with SDG’s @ClientCacheApplication annotation, as the following
example shows:

Example 28. Do Not Do This

@SpringBootApplication
@ClientCacheApplication
class SpringBootApacheGeodeClientCacheApplication {
 // ...
}

SBDG’s provided auto-configuration class is already meta-annotated with SDG’s
@ClientCacheApplication annotation. Therefore, you need only do:

Example 29. Do This

@SpringBootApplication
class SpringBootApacheGeodeClientCacheApplication {
 // ...
}


See SDG’s reference documentation for more details on Apache Geode cache
applications and client/server applications in particular.

5.5.2. @EnableGemfireCaching


The SBDG CachingProviderAutoConfiguration class corresponds to the SDG
@EnableGemfireCaching annotation.

If you used the core Spring Framework to configure Apache Geode as a caching provider in Spring’s
Cache Abstraction, you need to:

37

https://geode.apache.org/docs/guide/113/topologies_and_comm/cs_configuration/chapter_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-geode-applications
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-geode-applications
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-client-server-applications
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/CachingProviderAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/cache/config/EnableGemfireCaching.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache

Example 30. Configuring caching using the Spring Framework

@SpringBootApplication
@EnableCaching
class CachingUsingApacheGeodeConfiguration {

 @Bean
 GemfireCacheManager cacheManager(GemFireCache cache) {

 GemfireCacheManager cacheManager = new GemfireCacheManager();

 cacheManager.setCache(cache);

 return cacheManager;
 }
}

If you use Spring Data for Apache Geode’s @EnableGemfireCaching annotation, you can simplify the
preceding configuration:

Example 31. Configuring caching using Spring Data for Apache Geode

@SpringBootApplication
@EnableGemfireCaching
class CachingUsingApacheGeodeConfiguration {

}

Also, if you use SBDG, you need only do:

Example 32. Configuring caching using Spring Boot for Apache Geode

@SpringBootApplication
class CachingUsingApacheGeodeConfiguration {

}

This lets you focus on the areas in your application that would benefit from caching without having
to enable the plumbing. You can then demarcate the service methods in your application that are
good candidates for caching:

38

Example 33. Using caching in your application

@Service
class CustomerService {

 @Caching("CustomersByName")
 Customer findBy(String name) {
 // ...
 }
}

 See documentation on caching for more details.

5.5.3. @EnableContinuousQueries


The SBDG ContinuousQueryAutoConfiguration class corresponds to the SDG
@EnableContinuousQueries annotation.

Without having to enable anything, you can annotate your application (POJO) component
method(s) with the SDG @ContinuousQuery annotation to register a CQ and start receiving events. The
method acts as a CqEvent handler or, in Apache Geode’s terminology, the method is an
implementation of the CqListener interface.

Example 34. Declare application CQs

@Component
class MyCustomerApplicationContinuousQueries {

 @ContinuousQuery("SELECT customer.* "
 + " FROM /Customers customers"
 + " WHERE customer.getSentiment().name().equalsIgnoreCase('UNHAPPY')")
 public void handleUnhappyCustomers(CqEvent event) {
 // ...
 }
}

As the preceding example shows, you can define the events you are interested in receiving by using
an OQL query with a finely tuned query predicate that describes the events of interests and
implements the handler method to process the events (such as applying a credit to the customer’s
account and following up in email).

 See Continuous Query for more details.

39

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/ContinuousQueryAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableContinuousQueries.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/listener/annotation/ContinuousQuery.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/CqListener.html

5.5.4. @EnableGemfireFunctionExecutions & @EnableGemfireFunctions


The SBDG FunctionExecutionAutoConfiguration class corresponds to both the SDG
@EnableGemfireFunctionExecutions and SDG @EnableGemfireFunctions annotations.

Whether you need to execute or implement a Function, SBDG detects the Function definition and
auto-configures it appropriately for use in your Spring Boot application. You need only define the
Function execution or implementation in a package below the main @SpringBootApplication class:

Example 35. Declare a Function Execution

package example.app.functions;

@OnRegion("Accounts")
interface MyCustomerApplicationFunctions {

 void applyCredit(Customer customer);

}

Then you can inject the Function execution into any application component and use it:

Example 36. Use the Function

package example.app.service;

@Service
class CustomerService {

 @Autowired
 private MyCustomerApplicationFunctions customerFunctions;

 void analyzeCustomerSentiment(Customer customer) {

 // ...

 this.customerFunctions.applyCredit(customer);

 // ...
 }
}

The same pattern basically applies to Function implementations, except in the implementation
case, SBDG registers the Function implementation for use (that is, to be called by a Function
execution).

40

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/FunctionExecutionAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/function/config/EnableGemfireFunctionExecutions.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/function/config/EnableGemfireFunctions.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-execution
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-implementation

Doing so lets you focus on defining the logic required by your application and not worry about how
Functions are registered, called, and so on. SBDG handles this concern for you.

 Function implementations are typically defined and registered on the server-side.

 See Function Implementations & Executions for more details.

5.5.5. @EnableGemfireRepositories


The SBDG GemFireRepositoriesAutoConfigurationRegistrar class corresponds to the
SDG @EnableGemfireRepositories annotation.

As with Functions, you need concern yourself only with the data access operations (such as basic
CRUD and simple queries) required by your application to carry out its operation, not with how to
create and perform them (for example, Region.get(key) and Region.put(key, obj)) or execute them
(for example, Query.execute(arguments)).

Start by defining your Spring Data Repository:

Example 37. Define an application-specific Repository

package example.app.repo;

interface CustomerRepository extends CrudRepository<Customer, Long> {

 List<Customer> findBySentimentEqualTo(Sentiment sentiment);

}

Then you can inject the Repository into an application component and use it:

41

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/GemFireRepositoriesAutoConfigurationRegistrar.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.html

Example 38. Using the application-specific Repository

package example.app.sevice;

@Service
class CustomerService {

 @Autowired
 private CustomerRepository repository;

 public void processCustomersWithSentiment(Sentiment sentiment) {

 this.repository.findBySentimentEqualTo(sentiment)
 .forEach(customer -> { /* ... */ });

 // ...
 }
}

Your application-specific Repository simply needs to be declared in a package below the main
@SpringBootApplication class. Again, you are focusing only on the data access operations and
queries required to carry out the operatinons of your application, nothing more.

 See Spring Data Repositories for more details.

5.5.6. @EnableLogging


The SBDG LoggingAutoConfiguration class corresponds to the SDG @EnableLogging
annotation.

Logging is an essential application concern to understand what is happening in the system along
with when and where the events occurred. By default, SBDG auto-configures logging for Apache
Geode with the default log-level, “config”.

You can change any aspect of logging, such as the log-level, in Spring Boot application.properties:

Example 39. Change the log-level for Apache Geode

Spring Boot application.properites.

spring.data.gemfire.cache.log-level=debug


The 'spring.data.gemfire.logging.level' property is an alias for
spring.data.gemfire.cache.log-level.

42

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/LoggingAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html

You can also configure other aspects, such as the log file size and disk space limits for the filesystem
location used to store the Apache Geode log files at runtime.

Under the hood, Apache Geode’s logging is based on Log4j. Therefore, you can configure Apache
Geode logging to use any logging provider (such as Logback) and configuration metadata
appropriate for that logging provider so long as you supply the necessary adapter between Log4j
and whatever logging system you use. For instance, if you include org.springframework.boot:spring-
boot-starter-logging, you are using Logback and you will need the org.apache.logging.log4j:log4j-
to-slf4j adapter.

5.5.7. @EnablePdx


The SBDG PdxSerializationAutoConfiguration class corresponds to the SDG
@EnablePdx annotation.

Any time you need to send an object over the network or overflow or persist an object to disk, your
application domain model object must be serializable. It would be painful to have to implement
java.io.Serializable in every one of your application domain model objects (such as Customer) that
would potentially need to be serialized.

Furthermore, using Java Serialization may not be ideal (it may not be the most portable or efficient
solution) in all cases or even possible in other cases (such as when you use a third party library
over which you have no control).

In these situations, you need to be able to send your object anywhere, anytime without unduly
requiring the class type to be serializable and exist on the classpath in every place it is sent. Indeed,
the final destination may not even be a Java application. This is where Apache Geode PDX
Serialization steps in to help.

However, you need not figure out how to configure PDX to identify the application class types that
needs to be serialized. Instead, you can define your class type as follows:

Example 40. Customer class

@Region("Customers")
class Customer {

 @Id
 private Long id;

 @Indexed
 private String name;

 // ...
}

SBDG’s auto-configuration handles the rest.

43

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/PdxSerializationAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html
https://geode.apache.org/docs/guide/113/developing/data_serialization/gemfire_pdx_serialization.html
https://geode.apache.org/docs/guide/113/developing/data_serialization/gemfire_pdx_serialization.html

 See Data Serialization with PDX for more details.

5.5.8. @EnableSecurity



The SBDG ClientSecurityAutoConfiguration class and
PeerSecurityAutoConfiguration class correspond to the SDG @EnableSecurity
annotation, but they apply security (specifically, authentication and authorization
(auth) configuration) for both clients and servers.

Configuring your Spring Boot, Apache Geode ClientCache application to properly authenticate with
a cluster of secure Apache Geode servers is as simple as setting a username and a password in
Spring Boot application.properties:

Example 41. Supplying Authentication Credentials

Spring Boot application.properties

spring.data.gemfire.security.username=Batman
spring.data.gemfire.security.password=r0b!n5ucks


Authentication is even easier to configure in a managed environment, such as PCF
when using PCC. You need not do anything.

Authorization is configured on the server-side and is made simple with SBDG and the help of
Apache Shiro. Of course, this assumes you use SBDG to configure and bootstrap your Apache Geode
cluster in the first place, which is even easier with SBDG. See Running an Apache Geode cluster
with Spring Boot from your IDE.

 See Security for more details.

5.5.9. @EnableSsl


The SBDG SslAutoConfiguration class corresponds to the SDG @EnableSsl
annotation.

Configuring SSL for secure transport (TLS) between your Spring Boot, Apache Geode ClientCache
application and an Apache Geode cluster can be a real problem, especially to get right from the
start. So, it is something that SBDG makes as simple as possible.

You can supply a trusted.keystore file containing the certificates in a well-known location (such as
the root of your application classpath), and SBDG’s auto-configuration steps in to handle the rest.

This is useful during development, but we highly recommend using a more secure procedure (such
as integrating with a secure credential store like LDAP, CredHub or Vault) when deploying your
Spring Boot application to production.

44

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/ClientSecurityAutoConfiguration.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/PeerSecurityAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html
https://shiro.apache.org/
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/SslAutoConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html

 See Transport Layer Security using SSL for more details.

5.5.10. @EnableGemFireHttpSession


The SBDG SpringSessionAutoConfiguration class corresponds to the SSDG
@EnableGemFireHttpSession annotation.

Configuring Apache Geode to serve as the (HTTP) session state caching provider by using Spring
Session requires that you only include the correct starter, that is spring-geode-starter-session:

Example 42. Using Spring Session

<dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter-session</artifactId>
 <version>1.6.0-RC1</version>
</dependency>

With Spring Session — and specifically Spring Session for Apache Geode (SSDG) — on the classpath
of your Spring Boot, Apache Geode ClientCache Web application, you can manage your (HTTP)
session state with Apache Geode. No further configuration is needed. SBDG auto-configuration
detects Spring Session on the application classpath and does the rest.

 See Spring Session for more details.

5.5.11. RegionTemplateAutoConfiguration

The SBDG RegionTemplateAutoConfiguration class has no corresponding SDG annotation. However,
the auto-configuration of a GemfireTemplate for every Apache Geode Region defined and declared in
your Spring Boot application is still supplied by SBDG.

For example, you can define a Region by using:

45

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/SpringSessionAutoConfiguration.html
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/EnableGemFireHttpSession.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/RegionTemplateAutoConfiguration.html

Example 43. Region definition using JavaConfig

@Configuration
class GeodeConfiguration {

 @Bean("Customers")
 ClientRegionFactoryBean<Long, Customer> customersRegion(GemFireCache cache) {

 ClientRegionFactoryBean<Long, Customer> customersRegion =
 new ClientRegionFactoryBean<>();

 customersRegion.setCache(cache);
 customersRegion.setShortcut(ClientRegionShortcut.PROXY);

 return customersRegion;
 }
}

Alternatively, you can define the Customers Region by using @EnableEntityDefinedRegions:

Example 44. Region definition using @EnableEntityDefinedRegions

@Configuration
@EnableEntityDefinedRegion(basePackageClasses = Customer.class)
class GeodeConfiguration {

}

Then SBDG supplies a GemfireTemplate instance that you can use to perform low-level data-access
operations (indirectly) on the Customers Region:

Example 45. Use the GemfireTemplate to access the "Customers" Region

@Repository
class CustomersDao {

 @Autowired
 @Qualifier("customersTemplate")
 private GemfireTemplate customersTemplate;

 Customer findById(Long id) {
 return this.customerTemplate.get(id);
 }
}

46

You need not explicitly configure GemfireTemplates for each Region to which you need low-level
data access (such as when you are not using the Spring Data Repository abstraction).

Be careful to qualify the GemfireTemplate for the Region to which you need data access, especially
given that you probably have more than one Region defined in your Spring Boot application.

 See Data Access with GemfireTemplate for more details.

47

Chapter 6. Declarative Configuration
The primary purpose of any software development framework is to help you be productive as
quickly and as easily as possible and to do so in a reliable manner.

As application developers, we want a framework to provide constructs that are both intuitive and
familiar so that their behaviors are predictable. This provided convenience not only helps you hit
the ground running in the right direction sooner but increases your focus on the application
domain so that you can better understand the problem you are trying to solve in the first place.
Once the problem domain is well understood, you are more apt to make informed decisions about
the design, which leads to better outcomes, faster.

This is exactly what Spring Boot’s auto-configuration provides for you. It enables features,
functionality, services and supporting infrastructure for Spring applications in a loosely integrated
way by using conventions (such as the classpath) that ultimately help you keep your attention and
focus on solving the problem at hand and not on the plumbing.

For example, if you are building a web application, you can include the
org.springframework.boot:spring-boot-starter-web dependency on your application classpath. Not
only does Spring Boot enable you to build Spring Web MVC Controllers appropriate to your
application UC (your responsibility), but it also bootstraps your web application in an embedded
Servlet container on startup (Spring Boot’s responsibility).

This saves you from having to handle many low-level, repetitive, and tedious development tasks
that are error-prone and easy to get wrong when you are trying to solve problems. You need not
care how the plumbing works until you need to customize something. And, when you do, you are
better informed and prepared to do so.

It is also equally essential that frameworks, such as Spring Boot, get out of the way quickly when
application requirements diverge from the provided defaults. This is the beautiful and powerful
thing about Spring Boot and why it is second to none in its class.

Still, auto-configuration does not solve every problem all the time. Therefore, you need to use
declarative configuration in some cases, whether expressed as bean definitions, in properties, or by
some other means. This is so that frameworks do not leave things to chance, especially when things
are ambiguous. The framework gives you choice.

Keeping our goals in mind, this chapter:

• Refers you to the SDG annotations covered by SBDG’s auto-configuration.

• Lists all SDG annotations not covered by SBDG’s auto-configuration.

• Covers the SBDG, SSDG and SDG annotations that you must explicitly declare and that provide
the most value and productivity when getting started with Apache Geode in Spring [Boot]
applications.


SDG refers to Spring Data for Apache Geode. SSDG refers to Spring Session for
Apache Geode. SBDG refers to Spring Boot for Apache Geode (this project).

48

https://spring.io/projects/spring-data-geode
https://spring.io/projects/spring-session-data-geode
https://spring.io/projects/spring-session-data-geode


The list of SDG annotations covered by SBDG’s auto-configuration is discussed in
detail in the Appendix, in the Auto-configuration vs. Annotation-based
configuration section.

To be absolutely clear about which SDG annotations we are referring to, we mean the SDG
annotations in the org.springframework.data.gemfire.config.annotation package.

In subsequent sections, we also cover which annotations are added by SBDG.

6.1. Auto-configuration
We explained auto-configuration in detail in the Auto-configuration chapter.

6.2. Annotations Not Covered by Auto-configuration
The following SDG annotations are not implicitly applied by SBDG’s auto-configuration:

• @EnableAutoRegionLookup

• @EnableBeanFactoryLocator

• @EnableCacheServer(s)

• @EnableCachingDefinedRegions

• @EnableClusterConfiguration

• @EnableClusterDefinedRegions

• @EnableCompression

• @EnableDiskStore(s)

• @EnableEntityDefinedRegions

• @EnableEviction

• @EnableExpiration

• @EnableGatewayReceiver

• @EnableGatewaySender(s)

• @EnableGemFireAsLastResource

• @EnableGemFireMockObjects

• @EnableHttpService

• @EnableIndexing

• @EnableOffHeap

• @EnableLocator

• @EnableManager

• @EnableMemcachedServer

• @EnablePool(s)

49

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/package-summary.html

• @EnableRedisServer

• @EnableStatistics

• @UseGemFireProperties

 This content was also covered in Explicit Configuration.

One reason SBDG does not provide auto-configuration for several of the annotations is because the
annotations are server-specific:

• @EnableCacheServer(s)

• @EnableGatewayReceiver

• @EnableGatewaySender(s).

• @EnableHttpService

• @EnableLocator

• @EnableManager

• @EnableMemcachedServer

• @EnableRedisServer

Also, we already stated that SBDG is opinionated about providing a ClientCache instance.

Other annotations are driven by need, including:

• @EnableAutoRegionLookup and @EnableBeanFactoryLocator: Really useful only when mixing
configuration metadata formats, such as Spring config with Apache Geode cache.xml. This is
usually the case only if you have legacy cache.xml config to begin with. Otherwise, you should
not use these annotations.

• @EnableCompression: Requires the Snappy Compression Library to be on your application
classpath.

• @EnableDiskStore(s) Used only for overflow and persistence.

• @EnableOffHeap: Enables data to be stored in main memory, which is useful only when your
application data (that is, objects stored in Apache Geode) are generally uniform in size.

• @EnableGemFireAsLastResource: Needed only in the context of JTA Transactions.

• @EnableStatistics: Useful if you need runtime metrics. However, enabling statistics gathering
does consume considerable system resources (CPU & Memory).

Still other annotations require more careful planning:

• @EnableEviction

• @EnableExpiration

• @EnableIndexing

One annotation is used exclusively for unit testing:

50

• @EnableGemFireMockObjects

The bottom-line is that a framework should not auto-configure every possible feature, especially
when the features consume additional system resources or require more careful planning (as
determined by the use case).

However, all of these annotations are available for the application developer to use when needed.

6.3. Productivity Annotations
This section calls out the annotations we believe to be most beneficial for your application
development purposes when using Apache Geode in Spring [Boot] applications.

6.3.1. @EnableClusterAware (SBDG)

The @EnableClusterAware annotation is arguably the most powerful and valuable annotation.

Example 46. Declaring @EnableClusterAware

@SpringBootApplication
@EnableClusterAware
class SpringBootApacheGeodeClientCacheApplication { }

When you annotate your main @SpringBootApplication class with @EnableClusterAware, your Spring
Boot, Apache Geode ClientCache application is able to seamlessly switch between client/server and
local-only topologies with no code or configuration changes, regardless of the runtime environment
(such as local/standalone versus cloud-managed environments).

When a cluster of Apache Geode servers is detected, the client application sends and receives data
to and from the Apache Geode cluster. If a cluster is not available, the client automatically switches
to storing data locally on the client by using LOCAL Regions.

Additionally, the @EnableClusterAware annotation is meta-annotated with SDG’s
@EnableClusterConfiguration annotation.

The @EnableClusterConfiguration annotation lets configuration metadata defined on the client (such
as Region and Index definitions, as needed by the application based on requirements and use cases)
be sent to the cluster of servers. If those schema objects are not already present, they are created by
the servers in the cluster in such a way that the servers remember the configuration on restart as
well as provide the configuration to new servers that join the cluster when it is scaled out. This
feature is careful not to stomp on any existing Region or Index objects already defined on the
servers, particularly since you may already have critical data stored in the Regions.

The primary motivation for the @EnableClusterAware annotation is to let you switch environments
with minimal effort. It is a common development practice to debug and test your application locally
(in your IDE) and then push up to a production-like (staging) environment for more rigorous
integration testing.

51

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html

By default, the configuration metadata is sent to the cluster by using a non-secure HTTP connection.
However, you can configure HTTPS, change the host and port, and configure the data management
policy used by the servers when creating Regions.


See the section in the SDG reference documentation on Configuring Cluster
Configuration Push for more details.

@EnableClusterAware, strictMatch

The strictMatch attribute has been added to the @EnableClusterAware annotation to enable fail-fast
behavior. strictMatch is set to false by default.

Essentially, when you set strictMatch to true, your Spring Boot, Apache Geode ClientCache
application requires an Apache Geode cluster to exist. That is, the application requires a
client/server topology to operate, and the application should fail to start if a cluster is not present.
The application should not startup in a local-only capacity.

When strictMatch is set to true and an Apache Geode cluster is not available, your Spring Boot,
Apache Geode ClientCache application fails to start with a ClusterNotFoundException. The application
does not attempt to start in a local-only capacity.

You can explicitly set the strictMatch attribute programmatically by using the @EnableClusterAware
annotation:

Example 47. Set @EnableClusterAware.strictMatch

@SpringBootApplication
@EnableClusterAware(strictMatch = true)
class SpringBootApacheGeodeClientCacheApplication { }

Alternatively, you can set strictMatch attribute by using the corresponding property in Spring Boot
application.properties:

Example 48. Set strictMatch using a property

Spring Boot application.properties

spring.boot.data.gemfire.cluster.condition.match.strict=true

This is convenient when you need to apply this configuration setting conditionally, based on a
Spring profile.

When you adjust the log level of the
org.springframework.geode.config.annotation.ClusterAwareConfiguration logger to INFO, you get
more details from the @EnableClusterAware functionality when applying the logic to determine the
presence of an Apache Geode cluster, such as which explicitly or implicitly configured connections

52

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-cluster
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-cluster

were successful.

The following example shows typical output:

Example 49. @EnableClusterAware INFO log output

2021-01-20 14:02:28,740 INFO fig.annotation.ClusterAwareConfiguration: 476 -
Failed to connect to localhost[40404]
2021-01-20 14:02:28,745 INFO fig.annotation.ClusterAwareConfiguration: 476 -
Failed to connect to localhost[10334]
2021-01-20 14:02:28,746 INFO fig.annotation.ClusterAwareConfiguration: 470 -
Successfully connected to localhost[57649]
2021-01-20 14:02:28,746 INFO fig.annotation.ClusterAwareConfiguration: 576 -
Cluster was found; Auto-configuration made [1] successful connection(s);
2021-01-20 14:02:28,746 INFO fig.annotation.ClusterAwareConfiguration: 586 -
Spring Boot application is running in a client/server topology, using a standalone
Apache Geode-based cluster


An attempt is always made to connect to localhost on the default Locator port,
10334, and the default CacheServer port, 40404.


You can force a successful match by setting the
spring.boot.data.gemfire.cluster.condition.match property to true in Spring Boot
application.properties. This is sometimes useful for testing purposes.

6.3.2. @EnableCachingDefinedRegions, @EnableClusterDefinedRegions and
@EnableEntityDefinedRegions (SDG)

These annotations are used to create Regions in the cache to manage your application data.

You can create Regions by using Java configuration and the Spring API as follows:

53

Example 50. Creating a Region with Spring JavaConfig

@Configuration
class GeodeConfiguration {

 @Bean("Customers")
 ClientRegionFactoryBean<Long, Customer> customersRegion(GemFireCache cache) {

 ClientRegionFactoryBean<Long, Customer> customers =
 new ClientRegionFactoryBean<>();

 customers.setCache(cache);
 customers.setShortcut(ClientRegionShortcut.PROXY);

 return customers;
 }
}

You can do the same in XML:

Example 51. Creating a client Region using Spring XML

<gfe:client-region id="Customers" shorcut="PROXY"/>

However, using the provided annotations is far easier, especially during development, when the
complete Region configuration may be unknown and you want only to create a Region to persist
your application data and move on.

@EnableCachingDefinedRegions

The @EnableCachingDefinedRegions annotation is used when you have application components
registered in the Spring container that are annotated with Spring or JSR-107 JCache annotations.

Caches that are identified by name in the caching annotations are used to create Regions that hold
the data you want cached.

Consider the following example:

54

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-jsr-107

Example 52. Defining Regions based on Spring or JSR-107 JCache Annotations

@Service
class CustomerService {

 @Cacheable(cacheNames = "CustomersByAccountNumber", key = "#account.number")
 Customer findBy(Account account) {
 // ...
 }
}

Further consider the following example, in which the main @SpringBootApplication class is
annotated with @EnableCachingDefinedRegions:

Example 53. Using @EnableCachingDefinedRegions

@SpringBootApplication
@EnableCachingDefineRegions
class SpringBootApacheGeodeClientCacheApplication { }

With this setup, SBDG would create a client PROXY Region (or PARTITION_REGION if your application
were a peer member of the Apache Geode cluster) with a name of “CustomersByAccountNumber”,
as though you created the Region by using either the Java configuration or XML approaches shown
earlier.

You can use the clientRegionShortcut or serverRegionShortcut attribute to change the data
management policy of the Regions created on the client or servers, respectively.

For client Regions, you can also set the poolName attribute to assign a specific Pool of connections to
be used by the client *PROXY Regions to send data to the cluster.

@EnableEntityDefinedRegions

As with @EnableCachingDefinedRegions, @EnableEntityDefinedRegions lets you create Regions based on
the entity classes you have defined in your application domain model.

For instance, consider an entity class annotated with SDG’s @Region mapping annotation:

55

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/annotation/Region.html

Example 54. Customer entity class annotated with @Region

@Region("Customers")
class Customer {

 @Id
 private Long id;

 @Indexed
 private String name;

}

For this class, SBDG creates Regions from the name specified in the @Region mapping annotation on
the entity class. In this case, the Customer application-defined entity class results in the creation of a
Region named “Customers” when the main @SpringBootApplication class is annotated with
@EnableEntityDefinedRegions:

Example 55. Using @EnableEntityDefinedRegions

@SpringBootApplication
@EnableEntityDefinedRegions(basePackageClasses = Customer.class,
 clientRegionShortcut = ClientRegionShortcut.CACHING_PROXY)
class SpringBootApacheGeodeClientCacheApplication { }

As with the @EnableCachingDefinedRegions annotation, you can set the client and server Region data
management policy by using the clientRegionShortcut and serverRegionShortcut attributes,
respectively, and set a dedicated Pool of connections used by client Regions with the poolName
attribute.

However, unlike the @EnableCachingDefinedRegions annotation, you must specify either the
basePackage attribute or the type-safe basePackageClasses attribute (recommended) when you use
the @EnableEntityDefinedRegions annotation.

Part of the reason for this is that @EnableEntityDefinedRegions performs a component scan for the
entity classes defined by your application. The component scan loads each class to inspect the
annotation metadata for that class. This is not unlike the JPA entity scan when working with JPA
providers, such as Hibernate.

Therefore, it is customary to limit the scope of the scan. Otherwise, you end up potentially loading
many classes unnecessarily. After all, the JVM uses dynamic linking to load classes only when
needed.

Both the basePackages and basePackageClasses attributes accept an array of values. With
basePackageClasses, you need only refer to a single class type in that package and every class in that
package as well as classes in the sub-packages are scanned to determine if the class type represents

56

an entity. A class type is an entity if it is annotated with the @Region mapping annotation. Otherwise,
it is not considered to be an entity.

For example, suppose you had the following structure:

Example 56. Entity Scan

- example.app.crm.model
 |- Customer.class
 |- NonEntity.class
 |- contact
 |- Address.class
 |- PhoneNumber.class
 |- AnotherNonEntity.class
- example.app.accounts.model
 |- Account.class
...
..
.

Then you could configure the @EnableEntityDefinedRegions as follows:

Example 57. Targeting with @EnableEntityDefinedRegions

@SpringBootApplication
@EnableEntityDefinedRegions(basePackageClasses = { NonEntity.class, Account.class
})
class SpringBootApacheGeodeClientCacheApplication { }

If Customer, Address, PhoneNumber and Account were all entity classes properly annotated with @Region,
the component scan would pick up all these classes and create Regions for them. The NonEntity
class serves only as a marker in this case, to point to where (that is, which package) the scan should
begin.

Additionally, the @EnableEntityDefinedRegions annotation provides include and exclude filters, the
same as the core Spring Frameworks @ComponentScan annotation.

 See the SDG reference documentation on Configuring Regions for more details.

@EnableClusterDefinedRegions

Sometimes, it is ideal or even necessary to pull configuration from the cluster (rather than push
configuration to the cluster). That is, you want the Regions defined on the servers to be created on
the client and used by your application.

To do so, annotate your main @SpringBootApplication class with @EnableClusterDefinedRegions:

57

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-regions

Example 58. Using @EnableClusterDefinedRegions

@SpringBootApplication
@EnableClusterDefinedRegions
class SpringBootApacheGeodeClientCacheApplication { }

Every Region that exists on the servers in the Apache Geode cluster will have a corresponding PROXY
Region defined and created on the client as a bean in your Spring Boot application.

If the cluster of servers defines a Region called “ServerRegion”, you can inject a client PROXY Region
with the same name (“ServerRegion”) into your Spring Boot application:

Example 59. Using a server-side Region on the client

@Component
class SomeApplicationComponent {

 @Resource(name = "ServerRegion")
 private Region<Integer, EntityType> serverRegion;

 public void someMethod() {

 EntityType entity = new EntityType();

 this.serverRegion.put(1, entity);

 // ...
 }
}

SBDG auto-configures a GemfireTemplate for the “ServerRegion” Region (see
RegionTemplateAutoConfiguration), so a better way to interact with the client PROXY Region that
corresponds to the “ServerRegion” Region on the server is to inject the template:

58

Example 60. Using a server-side Region on the client with a template

@Component
class SomeApplicationComponent {

 @Autowired
 @Qualifier("serverRegionTemplate")
 private GemfireTemplate serverRegionTemplate;

 public void someMethod() {

 EntityType entity = new EntityType();

 this.serverRegionTemplate.put(1, entity);

 //...
 }
}


See the SDG reference documentation on Configuring Cluster-defined Regions for
more details.

6.3.3. @EnableIndexing (SDG)

You can also use the @EnableIndexing annotation — but only when you use
@EnableEntityDefinedRegions. This is because @EnableIndexing requires the entities to be scanned
and analyzed for mapping metadata (defined on the class type of the entity). This includes
annotations such as the Spring Data Commons @Id annotation and the annotations provided by
SDG, such as @Indexed and @LuceneIndexed.

The @Id annotation identifies the (primary) key of the entity. The @Indexed annotation defines OQL
indexes on object fields, which can be used in the predicates of your OQL queries. The
@LuceneIndexed annotation is used to define the Apache Lucene Indexes required for searches.


Lucene Indexes can only be created on PARTITION Regions, and PARTITION Regions
can only be defined on the server side.

You may have noticed that the Customer entity class’s name field was annotated with @Indexed.

Consider the following listing:

59

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-cluster-defined

Example 61. Customer entity class with @Indexed annotated name field

@Region("Customers")
class Customer {

 @Id
 private Long id;

 @Indexed
 private String name;

}

As a result, when our main @SpringBootApplication class is annotated with @EnableIndexing, an
Apache Geode OQL Index for the Customer.name field is created, allowing OQL queries on customers
by name to use this Index:

Example 62. Using @EnableIndexing

@SpringBootApplication
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
@EnableIndexing
class SpringBootApacheGeodeClientCacheApplication { }


Keep in mind that OQL Indexes are not persistent between restarts (that is, Apache
Geode maintains Indexes in memory only). An OQL Index is always rebuilt when
the node is restarted.

When you combine @EnableIndexing with either @EnableClusterConfiguration or
@EnableClusterAware, the Index definitions are pushed to the server-side Regions where OQL queries
are generally executed.

 See the SDG reference documentation on Configuring Indexes for more details.

6.3.4. @EnableExpiration (SDG)

It is often useful to define both eviction and expiration policies, particularly with a system like
Apache Geode, because it primarily keeps data in memory (on the JVM Heap). Your data volume
size may far exceed the amount of available JVM Heap memory, and keeping too much data on the
JVM Heap can cause Garbage Collection (GC) issues.


You can enable off-heap (or main memory usage) capabilities by declaring SDG’s
@EnableOffHeap annotation. See the SDG reference documentation on Configuring
Off-Heap Memory for more details.

60

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-indexes
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-off-heap
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-off-heap

Defining eviction and expiration policies lets you limit what is kept in memory and for how long.

While configuring eviction is easy with SDG, we particularly want to call out expiration since
configuring expiration has special support in SDG.

With SDG, you can define the expiration policies associated with a particular application class type
on the class type itself, by using the @Expiration, @IdleTimeoutExpiration and @TimeToLiveExpiration
annotations.


See the Apache Geode User Guide for more details on the different expiration
types — that is Idle Timeout (TTI) versus Time-to-Live (TTL).

For example, suppose we want to limit the number of Customers maintained in memory for a period
of time (measured in seconds) based on the last time a Customer was accessed (for example, the last
time a Customer was read). To do so, we can define an idle timeout expiration (TTI) policy on our
Customer class type:

Example 63. Customer entity class with Idle Timeout Expiration (TTI)

@Region("Customers")
@IdleTimeoutExpiration(action = "INVALIDATE", timeout = "300")
class Customer {

 @Id
 private Long id;

 @Indexed
 private String name;

}

The Customer entry in the Customers Region is invalidated after 300 seconds (5 minutes).

To enable annotation-based expiration policies, we need to annotate our main
@SpringBootApplication class with @EnableExpiration:

Example 64. Enabling Expiration

@SpringBootApplication
@EnableExpiration
class SpringBootApacheGeodeApplication { }


Technically, this entity-class-specific annotation-based expiration policy is
implemented by using Apache Geode’s CustomExpiry interface.

61

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-eviction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-expiration
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/expiration/Expiration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/expiration/IdleTimeoutExpiration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/expiration/TimeToLiveExpiration.html
https://geode.apache.org/docs/guide/113/developing/expiration/how_expiration_works.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CustomExpiry.html


See the SDG reference doccumentation for more details on configuring expiration,
along with annotation-based data expiration in particular.

6.3.5. @EnableGemFireMockObjects (STDG)

Software testing in general and unit testing in particular are a very important development tasks to
ensure the quality of your Spring Boot applications.

Apache Geode can make testing difficult in some cases, especially when tests have to be written as
integration tests to assert the correct behavior. This can be very costly and lengthens the feedback
cycle. Fortunately, you can write unit tests as well.

Spring provides a framework for testing Spring Boot applications that use Apache Geode. This is
where the Spring Test for Apache Geode (STDG) project can help, particularly with unit testing.

For example, if you do not care what Apache Geode would actually do in certain cases and only
care about the “contract”, which is what mocking a collaborator is all about, you could effectively
mock Apache Geode objects to isolate the SUT, or “Subject Under Test”, and focus on the
interactions or outcomes you expect to happen.

With STDG, you need not change a bit of configuration to enable mock objects in the unit tests for
your Spring Boot applications. You need only annotate the test class with
@EnableGemFireMockObjects:

Example 65. Using Mock Apache Geode Objects

@RunWith(SpringRunner.class)
@SpringBootTest
class MyApplicationTestClass {

 @Test
 public void someTestCase() {
 // ...
 }

 @Configuration
 @EnableGemFireMockObjects
 static class GeodeConfiguration { }

}

Your Spring Boot configuration of Apache Geode returns mock objects for all Apache Geode objects,
such as Regions.

Mocking Apache Geode objects even works for objects created from the productivity annotations
discussed in the previous sections.

For example, consider the following Spring Boot, Apache Geode ClientCache application class:

62

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-region-expiration
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap:region:expiration:annotation
https://github.com/spring-projects/spring-test-data-geode#spring-test-framework-for-apache-geode—​vmware-tanzu-gemfire

Example 66. Main @SpringBootApplication class under test

@SpringBootApplication
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
class SpringBootApacheGeodeClientCacheApplication { }

In the preceding example, the "Customers`" Region defined by the `Customer entity class and
created by the @EnableEntityDefinedRegions annotation would be a mock Region and not an actual
Region. You can still inject the Region in your test and assert interactions on the Region based on
your application workflows:

Example 67. Using Mock Apache Geode Objects

@RunWith(SpringRunner.class)
@SpringBootTest
class MyApplicationTestClass {

 @Resource(name = "Customers")
 private Region<Long, Customer> customers;

 @Test
 public void someTestCase() {

 Customer jonDoe = new Customer(1, "Jon Doe");

 // Use the application in some way and test the interaction on the
"Customers" Region

 assertThat(this.customers).containsValue(jonDoe);

 // ...
 }
}

There are many more things that STDG can do for you in both unit testing and integration testing.

See the documentation on unit testing for more details.

You can write integration tests that use STDG as well. Writing integration tests is an essential
concern when you need to assert whether your application OQL queries are well-formed, for
instance. There are many other valid cases where integration testing is also applicable.

63

https://github.com/spring-projects/spring-test-data-geode#unit-testing-with-stdg
https://github.com/spring-projects/spring-test-data-geode#integration-testing-with-stdg

Chapter 7. Externalized Configuration
Like Spring Boot itself (see Spring Boot’s documentation), Spring Boot for Apache Geode (SBDG)
supports externalized configuration.

By externalized configuration, we mean configuration metadata stored in Spring Boot
application.properties. You can even separate concerns by addressing each concern in an
individual properties file. Optionally, you could also enable any given property file for only a
specific profile.

You can do many other powerful things, such as (but not limited to) using placeholders in
properties, encrypting properties, and so on. In this section, we focus particularly on type safety.

Like Spring Boot, Spring Boot for Apache Geode provides a hierarchy of classes that captures
configuration for several Apache Geode features in an associated @ConfigurationProperties
annotated class. Again, the configuration metadata is specified as well-known, documented
properties in one or more Spring Boot application.properties files.

For instance, a Spring Boot, Apache Geode ClientCache application might be configured as follows:

Example 68. Spring Boot application.properties containing Spring Data properties for Apache Geode

Spring Boot application.properties used to configure {geode-name}

spring.data.gemfire.name=MySpringBootApacheGeodeApplication

Configure general cache properties
spring.data.gemfire.cache.copy-on-read=true
spring.data.gemfire.cache.log-level=debug

Configure ClientCache specific properties
spring.data.gemfire.cache.client.durable-client-id=123
spring.data.gemfire.cache.client.keep-alive=true

Configure a log file
spring.data.gemfire.logging.log-file=/path/to/geode.log

Configure the client's connection Pool to the servers in the cluster
spring.data.gemfire.pool.locators=10.105.120.16[11235],boombox[10334]

You can use many other properties to externalize the configuration of your Spring Boot, Apache
Geode applications. See the Javadoc for specific configuration properties. Specifically, review the
enabling annotation attributes.

You may sometimes require access to the configuration metadata (specified in properties) in your
Spring Boot applications themselves, perhaps to further inspect or act on a particular configuration
setting. You can access any property by using Spring’s Environment abstraction:

64

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-application-property-files
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-profile-specific-properties
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-placeholders-in-properties
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-encrypting-properties
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-typesafe-configuration-properties
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/package-frame.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/env/Environment.html

Example 69. Using the Spring Environment

@Configuration
class GeodeConfiguration {

 void readConfigurationFromEnvironment(Environment environment) {
 boolean copyOnRead =
environment.getProperty("spring.data.gemfire.cache.copy-on-read",
 Boolean.TYPE, false);
 }
}

While using Environment is a nice approach, you might need access to additional properties or want
to access the property values in a type-safe manner. Therefore, you can now, thanks to SBDG’s auto-
configured configuration processor, access the configuration metadata by using
@ConfigurationProperties classes.

To add to the preceding example, you can now do the following:

Example 70. Using GemFireProperties

@Component
class MyApplicationComponent {

 @Autowired
 private GemFireProperties gemfireProperties;

 public void someMethodUsingGemFireProperties() {

 boolean copyOnRead = this.gemfireProperties.getCache().isCopyOnRead();

 // do something with `copyOnRead`
 }
}

Given a handle to GemFireProperties, you can access any of the configuration properties that are
used to configure Apache Geode in a Spring context. You need only autowire an instance of
GemFireProperties into your application component.

See the complete reference for the SBDG @ConfigurationProperties classes and supporting classes.

7.1. Externalized Configuration of Spring Session
You can access the externalized configuration of Spring Session when you use Apache Geode as
your (HTTP) session state caching provider.

65

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/configuration/GemFireProperties.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/configuration/package-frame.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/configuration/package-frame.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/configuration/package-frame.html

In this case, you need only acquire a reference to an instance of the SpringSessionProperties class.

As shown earlier in this chapter, you can specify Spring Session for Apache Geode (SSDG)
properties as follows:

Example 71. Spring Boot application.properties for Spring Session using Apache Geode as the (HTTP)
session state caching provider

Spring Boot application.properties used to configure {geode-name} as a (HTTP)
session state caching provider
in Spring Session

spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds=300
spring.session.data.gemfire.session.region.name=UserSessions

Then, in your application, you can do something similar to the following example:

Example 72. Using SpringSessionProperties

@Component
class MyApplicationComponent {

 @Autowired
 private SpringSessionProperties springSessionProperties;

 public void someMethodUsingSpringSessionProperties() {

 String sessionRegionName = this.springSessionProperties
 .getSession().getRegion().getName();

 // do something with `sessionRegionName`
 }
}

66

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/configuration/SpringSessionProperties.html

Chapter 8. Using Geode Properties
As of Spring Boot for Apache Geode (SBDG) 1.3, you can declare Apache Geode properties from
gemfire.properties in Spring Boot application.properties.

 See the User Guide for a complete list of valid Apache Geode properties.

Note that you can declare only valid Geode properties in gemfire.properties or, alternatively,
gfsecurity.properties.

The following example shows how to declare properties in gemfire.properties:

Example 73. Valid gemfire.properties

Geode Properties in gemfire.properties

name=ExampleCacheName
log-level=TRACE
enable-time-statistics=true
durable-client-id=123
...

All of the properties declared in the preceding example correspond to valid Geode properties. It is
illegal to declare properties in gemfire.properties that are not valid Geode properties, even if those
properties are prefixed with a different qualifier (such as spring.*). Apache Geode throws an
IllegalArgumentException for invalid properties.

Consider the following gemfire.properties file with an invalid-property:

Example 74. Invalid gemfire.properties

Geode Properties in gemfire.properties

name=ExampleCacheName
invalid-property=TEST

Apache Geode throws an IllegalArgumentException:

67

https://geode.apache.org/docs/guide/113/reference/topics/gemfire_properties.html

Example 75. IllegalArgumentException thrown by Apache Geode for Invalid Property (Full Text Omitted)

Exception in thread "main" java.lang.IllegalArgumentException: Unknown
configuration attribute name invalid-property.
Valid attribute names are: ack-severe-alert-threshold ack-wait-threshold archive-
disk-space-limit ...
 at o.a.g.internal.AbstractConfig.checkAttributeName(AbstractConfig.java:333)
 at
o.a.g.distributed.internal.AbstractDistributionConfig.checkAttributeName(AbstractD
istributionConfig.java:725)
 at
o.a.g.distributed.internal.AbstractDistributionConfig.getAttributeType(AbstractDis
tributionConfig.java:887)
 at o.a.g.internal.AbstractConfig.setAttribute(AbstractConfig.java:222)
 at
o.a.g.distributed.internal.DistributionConfigImpl.initialize(DistributionConfigImp
l.java:1632)
 at
o.a.g.distributed.internal.DistributionConfigImpl.<init>(DistributionConfigImpl.ja
va:994)
 at
o.a.g.distributed.internal.DistributionConfigImpl.<init>(DistributionConfigImpl.ja
va:903)
 at
o.a.g.distributed.internal.ConnectionConfigImpl.lambdanew2(ConnectionConfigImpl.
java:37)
 at
o.a.g.distributed.internal.ConnectionConfigImpl.convert(ConnectionConfigImpl.java:
73)
 at
o.a.g.distributed.internal.ConnectionConfigImpl.<init>(ConnectionConfigImpl.java:3
6)
 at
o.a.g.distributed.internal.InternalDistributedSystem$Builder.build(InternalDistrib
utedSystem.java:3004)
 at
o.a.g.distributed.internal.InternalDistributedSystem.connectInternal(InternalDistr
ibutedSystem.java:269)
 at
o.a.g.cache.client.ClientCacheFactory.connectInternalDistributedSystem(ClientCache
Factory.java:280)
 at
o.a.g.cache.client.ClientCacheFactory.basicCreate(ClientCacheFactory.java:250)
 at o.a.g.cache.client.ClientCacheFactory.create(ClientCacheFactory.java:216)
 at org.example.app.ApacheGeodeClientCacheApplication.main(...)

It is inconvenient to have to separate Apache Geode properties from other application properties,
or to have to declare only Apache Geode properties in a gemfire.properties file and application
properties in a separate properties file, such as Spring Boot application.properties.

68

Additionally, because of Apache Geode’s constraint on properties, you cannot use the full power of
Spring Boot when you compose application.properties.

You can include certain properties based on a Spring profile while excluding other properties. This
is essential when properties are environment- or context-specific.

Spring Data for Apache Geode already provides a wide range of properties mapping to Apache
Geode properties.

For example, the SDG spring.data.gemfire.locators property maps to the gemfire.locators property
(locators in gemfire.properties) from Apache Geode. Likewise, there are a full set of SDG properties
that map to the corresponding Apache Geode properties in the Appendix.

You can express the Geode properties shown earlier as SDG properties in Spring Boot
application.properties, as follows:

Example 76. Configuring Geode Properties using SDG Properties

Spring Data for {geode-name} properties in application.properties

spring.data.gemfire.name=ExampleCacheName
spring.data.gemfire.cache.log-level=TRACE
spring.data.gemfire.cache.client.durable-client-id=123
spring.data.gemfire.stats.enable-time-statistics=true
...

However, some Apache Geode properties have no equivalent SDG property, such as gemfire.groups
(groups in gemfire.properties). This is partly due to the fact that many Apache Geode properties are
applicable only when configured on the server (such as groups or enforce-unique-host).


See the @EnableGemFireProperties annotation (attributes) from SDG for a complete
list of Apache Geode properties with no corresponding SDG property.

Furthermore, many of the SDG properties also correspond to API calls.

For example, spring.data.gemfire.cache.client.keep-alive translates to the
ClientCache.close(boolean keepAlive) API call.

Still, it would be convenient to be able to declare application and Apache Geode properties
together, in a single properties file, such as Spring Boot application.properties. After all, it is not
uncommon to declare JDBC Connection properties in a Spring Boot application.properties file.

Therefore, as of SBDG 1.3, you can now declare Apache Geode properties in Spring Boot
application.properties directly, as follows:

69

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableGemFireProperties.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#keepAlive
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientCache.html#close-boolean

Example 77. Geode Properties declared in Spring Boot application.properties

Spring Boot application.properties

server.port=8181
spring.application.name=ExampleApp
gemfire.durable-client-id=123
gemfire.enable-time-statistics=true

This is convenient and ideal for several reasons:

• If you already have a large number of Apache Geode properties declared as gemfire. properties
(either in gemfire.properties or gfsecurity.properties) or declared on the Java command-line as
JVM System properties (such as -Dgemfire.name=ExampleCacheName), you can reuse these property
declarations.

• If you are unfamiliar with SDG’s corresponding properties, you can declare Geode properties
instead.

• You can take advantage of Spring features, such as Spring profiles.

• You can also use property placeholders with Geode properties (such as gemfire.log-
level=${external.log-level.property}).


We encourage you to use the SDG properties, which cover more than Apache
Geode properties.

However, SBDG requires that the Geode property must have the gemfire. prefix in Spring Boot
application.properties. This indicates that the property belongs to Apache Geode. Without the
gemfire. prefix, the property is not appropriately applied to the Apache Geode cache instance.

It would be ambiguous if your Spring Boot applications integrated with several technologies,
including Apache Geode, and they too had matching properties, such as bind-address or log-file.

SBDG makes a best attempt to log warnings when a Geode property is invalid or is not set. For
example, the following Geode property would result in logging a warning:

Example 78. Invalid Apache Geode Property

Spring Boot application.properties

spring.application.name=ExampleApp
gemfire.non-existing-property=TEST

The resulting warning in the log would read:

70

Example 79. Invalid Geode Property Warning Message

[gemfire.non-existing-property] is not a valid Apache Geode property

If a Geode Property is not properly set, the following warning is logged:

Example 80. Invalide Geode Property Value Warning Message

Apache Geode Property [gemfire.security-manager] was not set

With regards to the third point mentioned earlier, you can now compose and declare Geode
properties based on a context (such as your application environment) using Spring profiles.

For example, you might start with a base set of properties in Spring Boot application.properties:

Example 81. Base Properties

server.port=8181
spring.application.name=ExampleApp
gemfire.durable-client-id=123
gemfire.enable-time-statistics=false

Then you can vary the properties by environment, as the next two listings (for QA and production)
show:

Example 82. QA Properties

Spring Boot application-qa.properties

server.port=9191
spring.application.name=TestApp
gemfire.enable-time-statistics=true
gemfire.enable-network-partition-detection=true
gemfire.groups=QA
...

71

Example 83. Production Properties

Spring Boot application-prod.properties

server.port=80
spring.application.name=ProductionApp
gemfire.archive-disk-space-limit=1000
gemfire.archive-file-size-limit=50
gemfire.enforce-unique-host=true
gemfire.groups=PROD
...

You can then apply the appropriate set of properties by configuring the Spring profile with
-Dspring.profiles.active=prod. You can also enable more than one profile at a time with
-Dspring.profiles.active=profile1,profile2,…,profileN

If both spring.data.gemfire.* properties and the matching Apache Geode properties are declared in
Spring Boot application.properties, the SDG properties take precedence.

If a property is specified more than once, as would potentially be the case when composing
multiple Spring Boot application.properties files and you enable more than one Spring profile at
time, the last property declaration wins. In the example shown earlier, the value for gemfire.groups
would be PROD when -Dspring.profiles.active=qa,prod is configured.

Consider the following Spring Boot application.properties:

Example 84. Property Precedence

Spring Boot application.properties

gemfire.durable-client-id=123
spring.data.gemfire.cache.client.durable-client-id=987

The durable-client-id is 987. It does not matter which order the SDG or Apache Geode properties
are declared in Spring Boot application.properties. The matching SDG property overrides the
Apache Geode property when duplicates are found.

Finally, you cannot refer to Geode properties declared in Spring Boot application.properties with
the SBDG GemFireProperties class (see the Javadoc).

Consider the following example:

72

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/boot/autoconfigure/configuration/GemFireProperties.html

Example 85. Geode Properties declared in Spring Boot application.properties

Spring Boot application.properties

gemfire.name=TestCacheName

Given the preceding property, the following assertion holds:

import
org.springframework.geode.boot.autoconfigure.configuration.GemFireProperties;

@RunWith(SpringRunner.class)
@SpringBootTest
class GemFirePropertiesTestSuite {

 @Autowired
 private GemFireProperties gemfireProperties;

 @Test
 public void gemfirePropertiesTestCase() {

assertThat(this.gemfireProperties.getCache().getName()).isNotEqualTo("TestCacheNam
e");
 }
}



You can declare application.properties in the @SpringBootTest annotation. For
example, you could have declared gemfire.name in the annotation by setting
@SpringBootTest(properties = { "gemfire.name=TestCacheName" }) for testing
purposes instead of declaring the property in a separate Spring Boot
application.properties file.

Only spring.data.gemfire.* prefixed properties are mapped to the SBDG GemFireProperties class
hierarchy.


Prefer SDG properties over Geode properties. See the SDG properties reference in
the Appendix.

73

Chapter 9. Caching with Apache Geode
One of the easiest, quickest and least invasive ways to start using Apache Geode in your Spring Boot
applications is to use Apache Geode as a caching provider in Spring’s Cache Abstraction. SDG
enables Apache Geode to function as a caching provider in Spring’s Cache Abstraction.


See the Spring Data for Apache Geode Reference Guide for more details on the
support and configuration of Apache Geode as a caching provider in Spring’s
Cache Abstraction.


Make sure you thoroughly understand the concepts behind Spring’s Cache
Abstraction before you continue.


See also the relevant section on caching in Spring Boot’s reference documentation.
Spring Boot even provides auto-configuration support for a few of the simple
caching providers.

Indeed, caching can be an effective software design pattern to avoid the cost of invoking a
potentially expensive operation when, given the same input, the operation yields the same output,
every time.

Some classic examples of caching include, but are not limited to, looking up a customer by name or
account number, looking up a book by ISBN, geocoding a physical address, and caching the
calculation of a person’s credit score when the person applies for a financial loan.

If you need the proven power of an enterprise-class caching solution, with strong consistency, high
availability, low latency, and multi-site (WAN) capabilities, then you should consider Apache Geode.
Alternatively, VMWare, Inc. offers a commercial solution, built on Apache Geode, called VMware
Tanzu GemFire.

Spring’s declarative, annotation-based caching makes it simple to get started with caching, which is
as easy as annotating your application components with the appropriate Spring cache annotations.


Spring’s declarative, annotation-based caching also supports JSR-107 JCache
annotations.

For example, suppose you want to cache the results of determining a person’s eligibility when
applying for a loan. A person’s financial status is unlikely to change in the time that the computer
runs the algorithms to compute a person’s eligibility after all the financial information for the
person has been collected, submitted for review and processed.

Our application might consist of a financial loan service to process a person’s eligibility over a
given period of time:

74

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-store-configuration
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-store-configuration-gemfire
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis:spring-cache-abstraction
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-caching
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-strategies
https://docs.spring.io/spring-boot/docs/current/reference/html/#boot-features-caching
https://docs.spring.io/spring-boot/docs/current/reference/html/#_supported_cache_providers
https://geode.apache.org/
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-annotations
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-jsr-107

Example 86. Spring application service component applicable to caching

@Service
class FinancialLoanApplicationService {

 @Cacheable("EligibilityDecisions")
 EligibilityDecision processEligibility(Person person, Timespan timespan) {
 // ...
 }
}

Notice the @Cacheable annotation declared on the processEligibility(:Person, :Timespan) method
of our service class.

When the FinancialLoanApplicationService.processEligibility(..) method is called, Spring’s
caching infrastructure first consults the "EligibilityDecisions" cache to determine if a decision has
already been computed for the given person within the given span of time. If the person’s eligibility
in the given time frame has already been determined, the existing decision is returned from the
cache. Otherwise, the processEligibility(..) method is invoked and the result of the method is
cached when the method returns, before returning the decision to the caller.

Spring Boot for Apache Geode auto-configures Apache Geode as the caching provider when Apache
Geode is declared on the application classpath and when no other caching provider (such as Redis)
has been configured.

If Spring Boot for Apache Geode detects that another cache provider has already been configured,
then Apache Geode will not function as the caching provider for the application. This lets you
configure another store, such as Redis, as the caching provider and perhaps use Apache Geode as
your application’s persistent store.

The only other requirement to enable caching in a Spring Boot application is for the declared
caches (as specified in Spring’s or JSR-107’s caching annotations) to have been created and already
exist, especially before the operation on which caching was applied is invoked. This means the
backend data store must provide the data structure that serves as the cache. For Apache Geode, this
means a cache Region.

To configure the necessary Regions that back the caches declared in Spring’s cache annotations, use
Spring Data for Apache Geode’s @EnableCachingDefinedRegions annotation.

The following listing shows a complete Spring Boot application:

75

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCachingDefinedRegions.html

Example 87. Spring Boot cache enabled application using Apache Geode

package example.app;

@SpringBootApplication
@EnableCachingDefinedRegions
class FinancialLoanApplication {

 public static void main(String[] args) {
 SpringApplication.run(FinancialLoanApplication.class, args);
 }
}


The FinancialLoanApplicationService is picked up by Spring’s classpath component
scan, since this class is annotated with Spring’s @Service stereotype annotation.


You can set the DataPolicy of the Region created through the
@EnableCachingDefinedRegions annotation by setting the clientRegionShortcut
attribute to a valid enumerated value.



Spring Boot for Apache Geode does not recognize nor apply the
spring.cache.cache-names property. Instead, you should use SDG’s
@EnableCachingDefinedRegions on an appropriate Spring Boot application
@Configuration class.

9.1. Look-Aside Caching, Near Caching, Inline Caching,
and Multi-Site Caching
Four different types of caching patterns can be applied with Spring when using Apache Geode for
your application caching needs:

• Look-aside caching

• Near caching

• [Async] Inline caching

• Multi-site caching

Typically, when most users think of caching, they think of Look-aside caching. This is the default
caching pattern applied by Spring’s Cache Abstraction.

In a nutshell, Near caching keeps the data closer to where the data is used, thereby improving on
performance due to lower latencies when data is needed (no extra network hops). This also
improves application throughput — that is, the amount of work completed in a given period of time.

Within Inline caching_, developers have a choice between synchronous (read/write-through) and

76

asynchronous (write-behind) configurations depending on the application use case and
requirements. Synchronous, read/write-through Inline caching is necessary if consistency is a
concern. Asynchronous, write-behind Inline caching is applicable if throughput and low-latency are
a priority.

Within Multi-site caching, there are active-active and active-passive arrangements. More details on
Multi-site caching will be presented in a later release.

9.1.1. Look-Aside Caching


See the corresponding sample guide and code to see Look-aside caching with
Apache Geode in action.

The caching pattern demonstrated in the preceding example is a form of Look-aside caching (or
"Cache Aside").

Essentially, the data of interest is searched for in the cache first, before calling a potentially
expensive operation, such as an operation that makes an IO- or network-bound request that results
in either a blocking or a latency-sensitive computation.

If the data can be found in the cache (stored in-memory to reduce latency), the data is returned
without ever invoking the expensive operation. If the data cannot be found in the cache, the
operation must be invoked. However, before returning, the result of the operation is cached for
subsequent requests when the same input is requested again by another caller, resulting in much
improved response times.

The typical Look-aside caching pattern applied in your Spring application code looks similar to the
following:

77

guides/caching-look-aside.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/look-aside
https://content.pivotal.io/blog/an-introduction-to-look-aside-vs-inline-caching-patterns

Example 88. Look-Aside Caching Pattern Applied

@Service
class CustomerService {

 private final CustomerRepository customerRepository;

 @Cacheable("Customers")
 Customer findByAcccount(Account account) {

 // pre-processing logic here

 Customer customer =
customerRepository.findByAccoundNumber(account.getNumber());

 // post-processing logic here

 return customer;
 }
}

In this design, the CustomerRepository is perhaps a JDBC- or JPA/Hibernate-backed implementation
that accesses the external data source (for example, an RDBMS) directly. The @Cacheable annotation
wraps, or "decorates", the findByAccount(:Account):Customer operation (method) to provide caching
behavior.


This operation may be expensive because it may validate the customer’s account
before looking up the customer, pull multiple bits of information to retrieve the
customer record, and so on — hence the need for caching.

9.1.2. Near Caching


See the corresponding sample guide and code to see Near caching with Apache
Geode in action.

Near caching is another pattern of caching where the cache is collocated with the application. This
is useful when the caching technology is configured in a client/server arrangement.

We already mentioned that Spring Boot for Apache Geode provides an auto-configured ClientCache
instance by default. A ClientCache instance is most effective when the data access operations,
including cache access, are distributed to the servers in a cluster that is accessible to the client and,
in most cases, multiple clients. This lets other cache client applications access the same data.
However, this also means the application incurs a network hop penalty to evaluate the presence of
the data in the cache.

To help avoid the cost of this network hop in a client/server topology, a local cache can be
established to maintain a subset of the data in the corresponding server-side cache (that is, a

78

guides/caching-near.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/near
clientcache-applications.pdf#geode-clientcache-applications

Region). Therefore, the client cache contains only the data of interest to the application. This "local"
cache (that is, a client-side Region) is consulted before forwarding the lookup request to the server.

To enable Near caching when using Apache Geode, change the Region’s (that is the Cache in Spring’s
Cache Abstraction) data management policy from PROXY (the default) to CACHING_PROXY:

Example 89. Enable Near Caching with Apache Geode

@SpringBootApplication
@EnableCachingDefinedRegions(clientRegionShortcut =
ClientRegionShortcut.CACHING_PROXY)
class FinancialLoanApplication {

 public static void main(String[] args) {
 SpringApplication.run(FinancialLoanApplication.class, args);
 }
}


The default client Region data management policy is ClientRegionShortcut.PROXY.
As a result, all data access operations are immediately forwarded to the server.



See also the Apache Geode documentation concerning client/server event
distribution and, specifically, “Client Interest Registration on the Server,” which
applies when you use client CACHING_PROXY Regions to manage state in addition to
the corresponding server-side Region. This is necessary to receive updates on
entries in the Region that might have been changed by other clients that have
access to the same data.

9.1.3. Inline Caching

The next pattern of caching covered in this chapter is Inline caching.

You can apply two different configurations of Inline caching to your Spring Boot applications when
you use the Inline caching pattern: synchronous (read/write-through) and asynchronous (write-
behind).


Asynchronous (currently) offers only write capabilities, from the cache to the
external data source. There is no option to asynchronously and automatically load
the cache when the value becomes available in the external data source.

Synchronous Inline Caching


See the corresponding sample guide and code to see Inline caching with Apache
Geode in action.

When employing Inline caching and a cache miss occurs, the application service method might not

79

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#PROXY
https://geode.apache.org/docs/guide/113/developing/events/how_client_server_distribution_works.html
https://geode.apache.org/docs/guide/113/developing/events/how_client_server_distribution_works.html
guides/caching-inline.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/inline

be invoked still, since a cache can be configured to invoke a loader to load the missing entry from
an external data source.

With Apache Geode, you can configure the cache (or, to use Apache Geode terminology, the Region)
with a CacheLoader. A CacheLoader is implemented to retrieve missing values from an external data
source when a cache miss occurs. The external data source could be an RDBMS or any other type of
data store (for example, another NoSQL data store, such as Apache Cassandra, MongoDB, or Neo4j).

 See Apache Geode’s User Guide on data loaders for more details.

Likewise, you can also configure an Apache Geode Region with a CacheWriter. A CacheWriter is
responsible for writing an entry that has been put into the Region to the backend data store, such as
an RDBMS. This is referred to as a write-through operation, because it is synchronous. If the
backend data store fails to be updated, the entry is not stored in the Region. This helps to ensure
consistency between the backend data store and the Apache Geode Region.



You can also implement Inline caching using asynchronous write-behind
operations by registering an AsyncEventListener on an AsyncEventQueue attached to
a server-side Region. See Apache Geode’s User Guide for more details. We cover
asynchronous write-behind Inline caching in the next section.

The typical pattern of Inline caching when applied to application code looks similar to the
following:

Example 90. Inline Caching Pattern Applied

@Service
class CustomerService {

 private CustomerRepository customerRepository;

 Customer findByAccount(Account account) {

 // pre-processing logic here

 Customer customer =
customerRepository.findByAccountNumber(account.getNumber());

 // post-processing logic here.

 return customer;
 }
}

The main difference is that no Spring or JSR-107 caching annotations are applied to the
application’s service methods, and the CustomerRepository accesses Apache Geode directly and the
RDBMS indirectly.

80

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheLoader.html
https://geode.apache.org/docs/guide/113/developing/outside_data_sources/how_data_loaders_work.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheWriter.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/asyncqueue/AsyncEventListener.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/asyncqueue/AsyncEventQueue.html
https://geode.apache.org/docs/guide/113/developing/events/implementing_write_behind_event_handler.html

Implementing CacheLoaders and CacheWriters for Inline Caching

You can use Spring to configure a CacheLoader or CacheWriter as a bean in the Spring
ApplicationContext and then wire the loader or writer to a Region. Given that the CacheLoader or
CacheWriter is a Spring bean like any other bean in the Spring ApplicationContext, you can inject
any DataSource you like into the loader or writer.

While you can configure client Regions with CacheLoaders and CacheWriters, it is more common to
configure the corresponding server-side Region:

81

@SpringBootApplication
@CacheServerApplication
class FinancialLoanApplicationServer {

 public static void main(String[] args) {
 SpringApplication.run(FinancialLoanApplicationServer.class, args);
 }

 @Bean("EligibilityDecisions")
 PartitionedRegionFactoryBean<Object, Object> eligibilityDecisionsRegion(
 GemFireCache gemfireCache, CacheLoader eligibilityDecisionLoader,
 CacheWriter eligibilityDecisionWriter) {

 PartitionedRegionFactoryBean<?, EligibilityDecision>
eligibilityDecisionsRegion =
 new PartitionedRegionFactoryBean<>();

 eligibilityDecisionsRegion.setCache(gemfireCache);
 eligibilityDecisionsRegion.setCacheLoader(eligibilityDecisionLoader);
 eligibilityDecisionsRegion.setCacheWriter(eligibilityDecisionWriter);
 eligibilityDecisionsRegion.setPersistent(false);

 return eligibilityDecisionsRegion;
 }

 @Bean
 CacheLoader<?, EligibilityDecision> eligibilityDecisionLoader(
 DataSource dataSource) {

 return new EligibilityDecisionLoader(dataSource);
 }

 @Bean
 CacheWriter<?, EligibilityDecision> eligibilityDecisionWriter(
 DataSource dataSource) {

 return new EligibilityDecisionWriter(dataSource);
 }

 @Bean
 DataSource dataSource() {
 // ...
 }
}

Then you could implement the CacheLoader and CacheWriter interfaces, as appropriate:

82

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheLoader.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheWriter.html

Example 91. EligibilityDecisionLoader

class EligibilityDecisionLoader implements CacheLoader<?, EligibilityDecision> {

 private final DataSource dataSource;

 EligibilityDecisionLoader(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 public EligibilityDecision load(LoadHelper<?, EligibilityDecision> helper) {

 Object key = helper.getKey();

 // Use the configured DataSource to load the EligibilityDecision identified by
the key
 // from a backend, external data store.
 }
}


SBDG provides the org.springframework.geode.cache.support.CacheLoaderSupport
@FunctionalInterface to conveniently implement application CacheLoaders.

If the configured CacheLoader still cannot resolve the value, the cache lookup operation results in a
cache miss and the application service method is then invoked to compute the value:

83

Example 92. EligibilityDecisionWriter

class EligibilityDecisionWriter implements CacheWriter<?, EligibilityDecision> {

 private final DataSource dataSource;

 EligibilityDecisionWriter(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 public void beforeCreate(EntryEvent<?, EligiblityDecision> entryEvent) {
 // Use configured DataSource to save (e.g. INSERT) the entry value into the
backend data store
 }

 public void beforeUpdate(EntryEvent<?, EligiblityDecision> entryEvent) {
 // Use the configured DataSource to save (e.g. UPDATE or UPSERT) the entry
value into the backend data store
 }

 public void beforeDestroy(EntryEvent<?, EligiblityDecision> entryEvent) {
 // Use the configured DataSource to delete (i.e. DELETE) the entry value from
the backend data store
 }

 // ...
}


SBDG provides the org.springframework.geode.cache.support.CacheWriterSupport
interface to conveniently implement application CacheWriters.



Your CacheWriter implementation can use any data access technology to interface
with your backend data store (for example JDBC, Spring’s JdbcTemplate, JPA with
Hibernate, and others). It is not limited to using only a javax.sql.DataSource. In
fact, we present another, more useful and convenient approach to implementing
Inline caching in the next section.

Inline Caching with Spring Data Repositories

Spring Boot for Apache Geode offers dedicated support to configure Inline caching with Spring Data
Repositories.

This is powerful, because it lets you:

• Access any backend data store supported by Spring Data (such as Redis for key-value or other
distributed data structures, MongoDB for documents, Neo4j for graphs, Elasticsearch for search,
and so on).

84

• Use complex mapping strategies (such as ORM provided by JPA with Hibernate).

We believe that users should store data where it is most easily accessible. If you access and process
documents, then MongoDB, Couchbase, or another document store is probably going to be the most
logical choice to manage your application’s documents.

However, this does not mean that you have to give up Apache Geode in your application/system
architecture. You can use each data store for what it is good at. While MongoDB is excellent at
handling documents, Apache Geode is a valuable choice for consistency, high-availability/low-
latency, high-throughput, multi-site, scale-out application use cases.

As such, using Apache Geode’s CacheLoader and CacheWriter provides a nice integration point
between itself and other data stores to best serve your application’s use case and requirements.

Suppose you use JPA and Hibernate to access data managed in an Oracle database. Then, you can
configure Apache Geode to read/write-through to the backend Oracle database when performing
cache (Region) operations by delegating to a Spring Data JPA Repository.

The configuration might look something like:

Example 93. Inline caching configuration using SBDG

@SpringBootApplication
@EntityScan(basePackageClasses = Customer.class)
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
@EnableJpaRepositories(basePackageClasses = CustomerRepository.class)
class SpringBootOracleDatabaseApacheGeodeApplication {

 @Bean
 InlineCachingRegionConfigurer<Customer, Long>
inlineCachingForCustomersRegionConfigurer(
 CustomerRepository customerRepository) {

 return new InlineCachingRegionConfigurer<>(customerRepository,
Predicate.isEqual("Customers"));
 }
}

SBDG provides the InlineCachingRegionConfigurer<ENTITY, ID> interface.

Given a Predicate to express the criteria used to match the target Region by name and a Spring Data
CrudRepository, the InlineCachingRegionConfigurer configures and adapts the Spring Data
CrudRepository as a CacheLoader and CacheWriter registered on the Region (for example,
"Customers") to enable Inline caching functionality.

You need only declare InlineCachingRegionConfigurer as a bean in the Spring ApplicationContext
and make the association between the Region (by name) and the appropriate Spring Data
CrudRepository.

85

In this example, we used JPA and Spring Data JPA to store and retrieve data stored in the cache
(Region) to and from a backend database. However, you can inject any Spring Data Repository for
any data store (Redis, MongoDB, and others) that supports the Spring Data Repository abstraction.



If you want only to support one-way data access operations when you use Inline
caching, you can use either the RepositoryCacheLoaderRegionConfigurer for reads or
the RepositoryCacheWriterRegionConfigurer for writes, instead of the
InlineCachingRegionConfigurer, which supports both reads and writes.



To see a similar implementation of Inline caching with a database (an in-memory
HSQLDB database) in action, see the InlineCachingWithDatabaseIntegrationTests
test class from the SBDG test suite. A dedicated sample will be provided in a future
release.

Asynchronous Inline Caching


See the corresponding sample guide and code to see asynchronous Inline caching
with Apache Geode in action.

If consistency between the cache and your external data source is not a concern, and you need only
write from the cache to the backend data store periodically, you can employ asynchronous (write-
behind) Inline caching.

As the term, "write-behind", implies, a write to the backend data store is asynchronous and not
strictly tied to the cache operation. As a result, the backend data store is in an "eventually
consistent" state, since the cache is primarily used by the application at runtime to access and
manage data. In this case, the backend data store is used to persist the state of the cache (and that of
the application) at periodic intervals.

If multiple applications are updating the backend data store concurrently, you could combine a
CacheLoader to synchronously read through to the backend data store and keep the cache up-to-date
as well as asynchronously write behind from the cache to the backend data store when the cache is
updated to eventually inform other interested applications of data changes. In this capacity, the
backend data store is still the primary System of Record (SoR).

If data processing is not time sensitive, you can gain a performance advantage from quantity-based
or time-based batch updates.

Implementing an AsyncEventListener for Inline Caching

If you were to configure asynchronous, write-behind Inline caching by hand, you would need to do
the following yourself:

1. Implement an AsyncEventListener to write to an external data source on cache events.

2. Configure and register the listener with an AsyncEventQueue (AEQ).

3. Create a Region to serve as the source of cache events and attach the AEQ to the Region.

The advantage of this approach is that you have access to and control over low-level configuration

86

https://github.com/spring-projects/spring-boot-data-geode/blob/master/spring-geode/src/test/java/org/springframework/geode/cache/inline/database/InlineCachingWithDatabaseIntegrationTests.java
guides/caching-inline-async.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/inline-async

details. The disadvantage is that with more moving parts, it is easier to make errors.

Following on from our synchronous, read/write-through, Inline caching examples from the prior
sections, our AsyncEventListener implementation might appear as follows:

Example 94. Example AsyncEventListener for Asynchronous, Write-Behind Inline Caching

@Component
class ExampleAsyncEventListener implements AsyncEventListener {

 private final DataSource dataSource;

 ExampleAsyncEventListener(DataSoruce dataSource) {
 this.dataSource = dataSource;
 }

 @Override
 public boolean processEvents(List<AsyncEvent> events) {

 // Iterate over the ordered AsyncEvents and use the configured DataSource
 // to write to the external, backend DataSource

 }
}



Instead of directly injecting a DataSource into your AsyncEventListener, you could
use JDBC, Spring’s JdbcTemplate, JPA and Hibernate, or another data access API or
framework. Later in this chapter, we show how SBDG simplifies the
AsyncEventListener implementation by using Spring Data Repositories.

Then we need to register this listener with an AsyncEventQueue (step 2 from the procedure shown
earlier) and attach it to the target Region that will be the source of the cache events we want to
persist asynchronously (step 3):

87

Example 95. Create and Configure an AsyncEventQueue

@Configuration
@PeerCacheApplication
class GeodeConfiguration {

 @Bean
 DataSource exampleDataSource() {
 // Construct and configure a data store specific DataSource
 }

 @Bean
 ExampleAsyncEventListener exampleAsyncEventListener(DataSource dataSource) {
 return new ExampleAsyncEventListener(dataSource);
 }

 @Bean
 AsyncEventQueueFactoryBean exampleAsyncEventQueue(Cache peerCache,
ExampleAsyncEventListener listener) {

 AsyncEventQueueFactoryBean asyncEventQueue = new
AsyncEventQueueFactoryBean(peerCache, listener);

 asyncEventQueue.setBatchConflationEnabled(true);
 asyncEventQueue.setBatchSize(50);
 asyncEventQueue.setBatchTimeInterval(15000); // 15 seconds
 asyncEventQueue.setMaximumQueueMemory(64); // 64 MB
 // ...

 return asyncEventQueue;
 }

 @Bean("Example")
 PartitionedRegionFactoryBean<?, ?> exampleRegion(Cache peerCache,
AsyncEventQueue queue) {

 PartitionedRegionFactoryBean<?, ?> exampleRegion = new
PartitionedRegionFactoryBean<>();

 exampleRegion.setAsyncEventQueues(ArrayUtils.asArray(queue));
 exampleRegion.setCache(peerCache);
 // ...

 return exampleRegion;
 }
}

While this approach affords you a lot of control over the low-level configuration, in addition to
your AsyncEventListener implementation, this is a lot of boilerplate code.

88


See the Javadoc for SDG’s AsyncEventQueueFactoryBean for more detail on the
configuration of the AEQ.

 See Apache Geode’s User Guide for more details on AEQs and listeners.

Fortunately, with SBDG, there is a better way.

Asynchronous Inline Caching with Spring Data Repositories

The implementation and configuration of the AsyncEventListener as well as the AEQ shown in the
preceding section can be simplified as follows:

Example 96. Using SBDG to configure Asynchronous, Write-Behind Inline Caching

@SpringBootApplication
@EntityScan(basePackageClasses = ExampleEntity.class)
@EnableJpaRepositories(basePackageClasses = ExampleRepository.class)
@EnableEntityDefinedRegions(basePackageClasses = ExampleEnity.class)
class ExampleSpringBootApacheGeodeAsyncInlineCachingApplication {

 @Bean
 AsyncInlineCachingRegionConfigurer asyncInlineCachingRegionConfigurer(
 CrudRepository<ExampleEntity, Long> repository) {

 return AsyncInlineCachingRegionConfigurer.create(repository, "Example")
 .withQueueBatchConflationEnabled()
 .withQueueBatchSize(50)
 .withQueueBatchTimeInterval(Duration.ofSeconds(15))
 .withQueueMaxMemory(64);
 }
}

The AsyncInlineCachingRegionConfigurer.create(..) method is overloaded to accept a Predicate in
place of the String to programmatically express more powerful matching logic and identify the
target Region (by name) on which to configure asynchronous Inline caching functionality.

The AsyncInlineCachingRegionConfigurer uses the Builder software design pattern and
withQueue*(..) builder methods to configure the underlying AsyncEventQueue (AEQ) when the
queue’s configuration deviates from the defaults, as specified by Apache Geode.

Under the hood, the AsyncInlineCachingRegionConfigurer constructs a new instance of the
RepositoryAsyncEventListener class initialized with the given Spring Data CrudRepository. The
RegionConfigurer then registers the listener with the AEQ and attaches it to the target Region.

With the power of Spring Boot auto-configuration and SBDG, the configuration is much more
concise and intuitive.

89

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/wan/AsyncEventQueueFactoryBean.html
https://geode.apache.org/docs/guide/113/developing/events/implementing_write_behind_event_handler.html
https://en.wikipedia.org/wiki/Builder_pattern

About RepositoryAsyncEventListener

The SBDG RepositoryAsyncEventListener class is the magic ingredient behind the integration of the
cache with an external data source.

The listener is a specialized adapter that processes AsyncEvents by invoking an appropriate
CrudRepository method based on the cache operation. The listener requires an instance of
CrudRepository. The listener supports any external data source supported by Spring Data’s
Repository abstraction.

Backend data store, data access operations (such as INSERT, UPDATE, DELETE, and so on) triggered
by cache events are performed asynchronously from the cache operation. This means the state of
the cache and backend data store will be "eventually consistent".

Given the complex nature of "eventually consistent" systems and asynchronous concurrent
processing, the RepositoryAsyncEventListener lets you register a custom AsyncEventErrorHandler to
handle the errors that occur during processing of AsyncEvents, perhaps due to a faulty backend data
store data access operation (such as OptimisticLockingFailureException), in an application-relevant
way.

The AsyncEventErrorHandler interface is a java.util.function.Function implementation and
@FunctionalInterface defined as:

Example 97. AsyncEventErrorHandler interface definition

@FunctionalInterface
interface AsyncEventErrorHandler implements Function<AsyncEventError, Boolean> { }

The AsyncEventError class encapsulates AsyncEvent along with the Throwable that was thrown while
processing the AsyncEvent.

Since the AsyncEventErrorHandler interface implements Function, you should override the
apply(:AsyncEventError) method to handle the error with application-specific actions. The handler
returns a Boolean to indicate whether it was able to handle the error or not:

90

https://en.wikipedia.org/wiki/Adapter_pattern

Example 98. Custom AsyncEventErrorHandler implementation

class CustomAsyncEventErrorHandler implements AsyncEventErrorHandler {

 @Override
 public Boolean apply(AsyncEventError error) {

 if (error.getCause() instanceof OptimisticLockingFailureException) {
 // handle optimistic locking failure if you can
 return true; // if error was successfully handled
 }
 else if (error.getCause() instanceof
IncorrectResultSizeDataAccessException) {
 // handle no row or too many row update if you can
 return true; // if error was successfully handled
 }
 else {
 // ...
 }

 return false;
 }
}

You can configure the RepositoryAsyncEventListener with your custom AsyncEventErrorHandler by
using the AsyncInlineCachingRegionConfigurer:

Example 99. Configuring a custom AsyncEventErrorHandler

@Configuration
class GeodeConfiguration {

 @Bean
 CustomAsyncEventErrorHandler customAsyncEventErrorHandler() {
 return new CustomAsyncEventErrorHandler();
 }

 @Bean
 AsyncInlineCachingRegionConfigurer asyncInlineCachingRegionConfigurer(
 CrudRepository<?, ?> repository,
 CustomAsyncEventErrorHandler errorHandler) {

 return AsyncInlineCachingRegionConfigurer.create(repository, "Example")
 .withAsyncEventErrorHandler(errorHandler);
 }
}

91

Also, since AsyncEventErrorHandler implements Function, you can compose multiple error handlers
by using Function.andThen(:Function).

By default, the RepositoryAsyncEventListener handles CREATE, UPDATE, and REMOVE cache event, entry
operations.

CREATE and UPDATE translate to CrudRepository.save(entity). The entity is derived from
AsyncEvent.getDeserializedValue().

REMOVE translates to CrudRepository.delete(entity). The entity is derived from
AsyncEvent.getDeserializedValue().

The cache Operation to CrudRepository method is supported by the
AsyncEventOperationRepositoryFunction interface, which implements java.util.function.Function
and is a @FunctionalInterface.

This interface becomes useful if and when you want to implement CrudRepository method
invocations for other AsyncEvent Operations not handled by SBDG’s RepositoryAsyncEventListener.

The AsyncEventOperationRepositoryFunction interface is defined as follows:

Example 100. AsyncEventOperationRepositoryFunction interface definition

@FunctionalInterface
interface AsyncEventOperationRepositoryFunction<T, ID> implements
Function<AsyncEvent<ID, T>, Boolean> {

 default boolean canProcess(AsyncEvent<ID, T> event) {
 return false;
 }
}

T is the class type of the entity and ID is the class type of the entity’s identifier (ID), possibly declared
with Spring Data’s org.springframework.data.annotation.Id annotation.

For convenience, SBDG provides the AbstractAsyncEventOperationRepositoryFunction class for
extension, where you can provide implementations for the cacheProcess(:AsyncEvent) and
doRepositoryOp(entity) methods.



The AsyncEventOperationRepositoryFunction.apply(:AsyncEvent) method is already
implemented in terms of canProcess(:AsyncEvent), resolveEntity(:AsyncEvent),
doRepositoryOp(entity), and catching and handling any Throwable (errors) by
calling the configured AsyncEventErrorHandler.

For example, you may want to handle Operation.INVALIDATE cache events as well, deleting the entity
from the backend data store by invoking the CrudRepository.delete(entity) method:

92

https://en.wikipedia.org/wiki/Composite_pattern
https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html#andThen-java.util.function.Function-
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Operation.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/annotation/Id.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Operation.html#INVALIDATE

Example 101. Handling AsyncEvent, Operation.INVALIDATE

@Component
class InvalidateAsyncEventRepositoryFunction
 extends
RepositoryAsyncEventListener.AbstractAsyncEventOperationRepositoryFunction<?, ?> {

 InvalidateAsyncEventRepositoryFunction(RepositoryAsyncEventListener<?, ?>
listener) {
 super(listener);
 }

 @Override
 public boolean canProcess(AsyncEvent<?, ?> event) {
 return event != null && Operation.INVALIDATE.equals(event.getOperation());
 }

 @Override
 protected Object doRepositoryOperation(Object entity) {
 getRepository().delete(entity);
 return null;
 }
}

You can then register your user-defined, AsyncEventOperationRepositoryFunction (that is,
InvalidateAsyncEventRepositoryFunction) with the RepositoryAsyncEventListener by using the
AsyncInlineCachingRegionConfigurer:

93

Example 102. Configuring a user-defined AsyncEventOperationRepositoryFunction

import org.springframework.geode.cache.RepositoryAsyncEventListener;

@Configuration
class GeodeConfiguration {

 @Bean
 AsyncInlineCachingRegionConfigurer asyncInlineCachingRegionConfigurer(
 CrudRepository<?, ?> repository,
 CustomAsyncEventErrorHandler errorHandler) {

 return AsyncInlineCachingRegionConfigurer.create(repository,
"ExampleRegion")
 .applyToListener(listener -> {

 if (listener instanceof RepositoryAsyncEventListener) {

 RepositoryAsyncEventListener<?, ?> repositoryListener =
 (RepositoryAsyncEventListener<?, ?>) listener;

 repositoryListener.register(new
InvalidAsyncEventRepositoryFunction(repositoryListener));
 }

 return listener;
 });
 }
}

This same technique can be applied to CREATE, UPDATE, and REMOVE cache operations as well,
effectively overriding the default behavior for these cache operations handled by SBDG.

About AsyncInlineCachingRegionConfigurer

As we saw in the previous section, you can intercept and post-process the essential components
that are constructed and configured by the AsyncInlineCachingRegionConfigurer class during
initialization.

SBDG’s lets you intercept and post-process the AsyncEventListener (such as
RepositoryAsyncEventListener), the AsyncEventQueueFactory and even the AsyncEventQueue created by
the AsyncInlineCachingRegionConfigurer (a SDG RegionConfigurer) during Spring ApplicationContext
bean initialization.

The AsyncInlineCachingRegionConfigurer class provides the following builder methods to intercept
and post-process any of the following Apache Geode objects:

• applyToListener(:Function<AsyncEventListener, AsyncEventListener>)

94

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/RegionConfigurer.html

• applyToQueue(:Function<AsyncEventQueue, AsyncEventQueue>)

• applyToQueueFactory(:Function<AsyncEventQueueFactory, AsyncEventQueueFactory>)

All of these apply* methods accept a java.util.function.Function that applies the logic of the
Function to the Apache Geode object (such as AsyncEventListener), returning the object as a result.



The Apache Geode object returned by the Function may be the same object, a
proxy, or a completely new object. Essentially, the returned object can be anything
you want. This is the fundamental premise behind Aspect-Oriented Programming
(AOP) and the Decorator software design pattern.

The apply* methods and the supplied Function let you decorate, enhance, post-process, or otherwise
modify the Apache Geode objects created by the configurer.

The AsyncInlineCachingRegionConfigurer strictly adheres to the open/close principle and is,
therefore, flexibly extensible.

9.1.4. Multi-Site Caching

The final pattern of caching presented in this chapter is Multi-site caching.

As described earlier, there are two configuration arrangements, depending on your application
usage patterns, requirements and user demographic: active-active and active-passive.

Multi-site caching, along with active-active and active-passive configuration arrangements, are
described in more detail in the sample guide. Also, be sure to review the sample code.

9.2. Advanced Caching Configuration
Apache Geode supports additional caching capabilities to manage the entries stored in the cache.

As you can imagine, given that cache entries are stored in-memory, it becomes important to
manage and monitor the available memory used by the cache. After all, by default, Apache Geode
stores data in the JVM Heap.

You can employ several techniques to more effectively manage memory, such as using eviction,
possibly overflowing data to disk, configuring both entry Idle-Timeout_ (TTI) and Time-to-Live_
(TTL) expiration policies, configuring compression, and using off-heap or main memory.

You can use several other strategies as well, as described in Managing Heap and Off-heap Memory.

While this is beyond the scope of this document, know that Spring Data for Apache Geode makes all
of these configuration options available to you.

9.3. Disable Caching
There may be cases where you do not want your Spring Boot application to cache application state
with Spring’s Cache Abstraction using Apache Geode. In certain cases, you may use another Spring
supported caching provider, such as Redis, to cache and manage your application state. In other

95

https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
guides/caching-multi-site.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/multi-site
https://geode.apache.org/docs/guide/113/developing/eviction/chapter_overview.html
https://geode.apache.org/docs/guide/113/developing/storing_data_on_disk/chapter_overview.html
https://geode.apache.org/docs/guide/113/developing/expiration/chapter_overview.html
https://geode.apache.org/docs/guide/113/managing/region_compression.html
https://geode.apache.org/docs/guide/113/managing/heap_use/off_heap_management.html
https://geode.apache.org/docs/guide/113/managing/heap_use/heap_management.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-regions
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache

cases, you may not want to use Spring’s Cache Abstraction at all.

Either way, you can specifically call out your Spring Cache Abstraction provider by using the
spring.cache.type property in application.properties:

Example 103. Use Redis as the Spring Cache Abstraction Provider

#application.properties

spring.cache.type=redis
...

If you prefer not to use Spring’s Cache Abstraction to manage your Spring Boot application’s state at
all, then set the spring.cache.type property to "none":

Example 104. Disable Spring’s Cache Abstraction

#application.properties

spring.cache.type=none
...

See the Spring Boot documentation for more detail.



You can include multiple caching providers on the classpath of your Spring Boot
application. For instance, you might use Redis to cache your application’s state
while using Apache Geode as your application’s persistent data store (that is, the
System of Record (SOR)).


Spring Boot does not properly recognize spring.cache.type=[gemfire|geode], even
though Spring Boot for Apache Geode is set up to handle either of these property
values (that is, either gemfire or geode).

96

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-caching.html#boot-features-caching-provider-none

Chapter 10. Data Access with
GemfireTemplate
There are several ways to access data stored in Apache Geode.

For instance, you can use the Region API directly. If you are driven by the application’s domain
context, you can use the power of Spring Data Repositories instead.

While the Region API offers flexibility, it couples your application to Apache Geode, which is usually
undesirable and unnecessary. While using Spring Data Repositories provides a very powerful and
convenient abstraction, you give up the flexibility provided by a lower-level Region API.

A good compromise is to use the Template software design pattern. This pattern is consistently and
widely used throughout the entire Spring portfolio.

For example, the Spring Framework provides JdbcTemplate and JmsTemplate.

Other Spring Data modules, such as Spring Data Redis, offer the RedisTemplate, and Spring Data for
Apache Geode (SDG) itself offers the GemfireTemplate.

The GemfireTemplate provides a highly consistent and familiar API to perform data access
operations on Apache Geode cache Regions.

GemfireTemplate offers:

• A simple and convenient data access API to perform basic CRUD and simple query operations
on cache Regions.

• Use of Spring Framework’s consistent data access Exception hierarchy.

• Automatic enlistment in the presence of local cache transactions.

• Consistency and protection from Region API breaking changes.

Given these advantages, Spring Boot for Apache Geode (SBDG) auto-configures GemfireTemplate
beans for each Region present in the Apache Geode cache.

Additionally, SBDG is careful not to create a GemfireTemplate if you have already declared a
GemfireTemplate bean in the Spring ApplicationContext for a given Region.

10.1. Explicitly Declared Regions
Consider an explicitly declared Region bean definition:

1. Explicitly Declared Region Bean Definition

97

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://en.wikipedia.org/wiki/Template_method_pattern
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jms/core/JmsTemplate.html
https://docs.spring.io/spring-data/redis/docs/current/api/org/springframework/data/redis/core/RedisTemplate.html
https://docs.spring.io/spring-data/gemfire/docs/current/api/org/springframework/data/gemfire/GemfireTemplate.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#dao-exceptions
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html

@Configuration
class GeodeConfiguration {

 @Bean("Example")
 ClientRegionFactoryBean<?, ?> exampleRegion(GemFireCache gemfireCache) {
 // ...
 }
}

SBDG automatically creates a GemfireTemplate bean for the Example Region by using the bean name
exampleTemplate. SBDG names the GemfireTemplate bean after the Region by converting the first
letter in the Region’s name to lower case and appending Template to the bean name.

In a managed Data Access Object (DAO), you can inject the Template:

@Repository
class ExampleDataAccessObject {

 @Autowired
 @Qualifier("exampleTemplate")
 private GemfireTemplate exampleTemplate;

}

You should use the @Qualifier annotation to qualify which GemfireTemplate bean you are specifically
referring, especially if you have more than one Region bean definition.

10.2. Entity-defined Regions
SBDG auto-configures GemfireTemplate beans for entity-defined Regions.

Consider the following entity class:

Example 105. Customer class

@Region("Customers")
class Customer {
 // ...
}

Further consider the following configuration:

98

Example 106. Apache Geode Configuration

@Configuration
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
class GeodeConfiguration {
 // ...
}

SBDG auto-configures a GemfireTemplate bean for the Customers Region named customersTemplate,
which you can then inject into an application component:

Example 107. CustomerService application component

@Service
class CustomerService {

 @Bean
 @Qualifier("customersTemplate")
 private GemfireTemplate customersTemplate;

}

Again, be careful to qualify the GemfireTemplate bean injection if you have multiple Regions,
whether declared explicitly or implicitly, such as when you use the @EnableEntityDefineRegions
annotation.

10.3. Caching-defined Regions
SBDG auto-configures GemfireTemplate beans for caching-defined Regions.

When you use Spring Framework’s Cache Abstraction backed by Apache Geode, one requirement is
to configure Regions for each of the caches specified in the caching annotations of your application
service components.

Fortunately, SBDG makes enabling and configuring caching easy and automatic.

Consider the following cacheable application service component:

99

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-referenceintegration.html#cache-annotations

Example 108. Cacheable CustomerService class

@Service
class CacheableCustomerService {

 @Bean
 @Qualifier("customersByNameTemplate")
 private GemfireTemplate customersByNameTemplate;

 @Cacheable("CustomersByName")
 public Customer findBy(String name) {
 return toCustomer(customersByNameTemplate.query("name = " + name));
 }
}

Further consider the following configuration:

Example 109. Apache Geode Configuration

@Configuration
@EnableCachingDefinedRegions
class GeodeConfiguration {

 @Bean
 public CustomerService customerService() {
 return new CustomerService();
 }
}

SBDG auto-configures a GemfireTemplate bean named customersByNameTemplate to perform data
access operations on the CustomersByName (@Cacheable) Region. You can then inject the bean into any
managed application component, as shown in the preceding application service component
example.

Again, be careful to qualify the GemfireTemplate bean injection if you have multiple Regions,
whether declared explicitly or implicitly, such as when you use the @EnableCachingDefineRegions
annotation.



Autowiring (that is, injecting) GemfireTemplate beans auto-configured by SBDG for
caching-defined Regions into your application components does not always work.
This has to do with the Spring container bean creation process. In those cases, you
may need to lazily lookup the GemfireTemplate by using
applicationContext.getBean("customersByNameTemplate", GemfireTemplate.class).
This is not ideal, but it works when autowiring does not.

100

10.4. Native-defined Regions
SBDG even auto-configures GemfireTemplate beans for Regions that have been defined with Apache
Geode native configuration metadata, such as cache.xml.

Consider the following Apache Geode native cache.xml:

Example 110. Client cache.xml

<?xml version="1.0" encoding="UTF-8"?>
<client-cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache
http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <region name="Example" refid="LOCAL"/>

</client-cache>

Further consider the following Spring configuration:

Example 111. Apache Geode Configuration

@Configuration
@EnableGemFireProperties(cacheXmlFile = "cache.xml")
class GeodeConfiguration {
 // ...
}

SBDG auto-configures a GemfireTemplate bean named exampleTemplate after the Example Region
defined in cache.xml. You can inject this template as you would any other Spring-managed bean:

Example 112. Injecting the GemfireTemplate

@Service
class ExampleService {

 @Autowired
 @Qualifier("exampleTemplate")
 private GemfireTemplate exampleTemplate;

}

101

The rules described earlier apply when multiple Regions are present.

10.5. Template Creation Rules
Fortunately, SBDG is careful not to create a GemfireTemplate bean for a Region if a template by the
same name already exists.

For example, consider the following configuration:

Example 113. Apache Geode Configuration

@Configuration
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
class GeodeConfiguration {

 @Bean
 public GemfireTemplate customersTemplate(GemFireCache cache) {
 return new GemfireTemplate(cache.getRegion("/Customers"));
 }
}

Further consider the following example:

Example 114. Customer class

@Region("Customers")
class Customer {
 // ...
}

Because you explicitly defined and declared the customersTemplate bean, SBDG does not
automatically create a template for the Customers Region. This applies regardless of how the Region
was created, whether by using @EnableEntityDefinedRegions, @EnableCachingDefinedRegions,
explicitly declaring Regions, or natively defining Regions.

Even if you name the template differently from the Region for which the template was configured,
SBDG conserves resources and does not create the template.

For example, suppose you named the GemfireTemplate bean vipCustomersTemplate, even though the
Region name is Customers, based on the @Region annotated Customer class, which specified the
Customers Region.

With the following configuration, SBDG is still careful not to create the template:

102

Example 115. Apache Geode Configuration

@Configuration
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
class GeodeConfiguration {

 @Bean
 public GemfireTemplate vipCustomersTemplate(GemFireCache cache) {
 return new GemfireTemplate(cache.getRegion("/Customers"));
 }
}

SBDG identifies that your vipCustomersTemplate is the template used with the Customers Region, and
SBDG does not create the customersTemplate bean, which would result in two GemfireTemplate beans
for the same Region.


The name of your Spring bean defined in Java configuration is the name of the
method if the Spring bean is not explicitly named by using the name attribute or the
value attribute of the @Bean annotation.

103

Chapter 11. Spring Data Repositories
Using Spring Data Repositories with Apache Geode makes short work of data access operations
when you use Apache Geode as your System of Record (SoR) to persist your application’s state.

Spring Data Repositories provide a convenient and powerful way to define basic CRUD and simple
query data access operations by specifying the contract of those data access operations in a Java
interface.

Spring Boot for Apache Geode auto-configures the Spring Data for Apache Geode Repository
extension when either is declared on your application’s classpath. You need not do anything special
to enable it. You can start coding your application-specific Repository interfaces.

The following example defines a Customer class to model customers and map it to the Apache Geode
Customers Region by using the SDG @Region mapping annotation:

Example 116. Customer entity class

package example.app.crm.model;

@Region("Customers")
class Customer {

 @Id
 private Long id;

 private String name;

}

The following example shows how to declare your Repository (a.k.a. Data Access Object (DAO)) for
Customers:

Example 117. CustomerRepository for peristing and accessing Customers

package example.app.crm.repo;

interface CustomerRepository extends CrudRepository<Customer, Long> {

 List<Customer> findByLastNameLikeOrderByLastNameDescFirstNameAsc(String
customerLastNameWildcard);

}

Then you can use the CustomerRepository in an application service class:

104

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#gemfire-repositories
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#gemfire-repositories
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/annotation/Region.html
https://en.wikipedia.org/wiki/Data_access_object

Example 118. Inject and use the CustomerRepository

package example.app;

@SpringBootApplication
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
class SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class,
args);
 }

 @Bean
 ApplicationRunner runner(CustomerRepository customerRepository) {

 // Matches Williams, Wilson, etc.
 List<Customer> customers =

customerRepository.findByLastNameLikeOrderByLastNameDescFirstNameAsc("Wil%");

 // process the list of matching customers...
 }
}

See Spring Data Commons' Repositories abstraction and Spring Data for Apache Geode’s
Repositories extension for more detail.

105

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#gemfire-repositories

Chapter 12. Function Implementations &
Executions
This chapter is about using Apache Geode in a Spring context for distributed computing use cases.

12.1. Background
Distributed computing, particularly in conjunction with data access and mutation operations, is a
very effective and efficient use of clustered computing resources. This is similar to MapReduce.

A naively conceived query returning potentially hundreds of thousands (or even millions) of rows
of data in a result set to the application that queried and requested the data can be very costly,
especially under load. Therefore, it is typically more efficient to move the processing and
computations on the predicated data set to where the data resides, perform the required
computations, summarize the results, and then send the reduced data set back to the client.

Additionally, when the computations are handled in parallel, across the cluster of computing
resources, the operation can be performed much more quickly. This typically involves intelligently
organizing the data using various partitioning (a.k.a. sharding) strategies to uniformly balance the
data set across the cluster.

Apache Geode addresses this very important application concern in its Function execution
framework.

Spring Data for Apache Geode builds on this Function execution framework by letting developers
implement and execute Apache Geode functions with a simple POJO-based annotation
configuration model.


See the section about implementation versus execution for the difference between
Function implementation and execution.

Taking this a step further, Spring Boot for Apache Geode auto-configures and enables both Function
implementation and execution out-of-the-box. Therefore, you can immediately begin writing
Functions and invoking them without having to worry about all the necessary plumbing to begin
with. You can rest assured that it works as expected.

12.2. Applying Functions
Earlier, when we talked about caching, we described a FinancialLoanApplicationService class that
could process eligibility when someone (represented by a Person object) applied for a financial loan.

This can be a very resource intensive and expensive operation, since it might involve collecting
credit and employment history, gathering information on outstanding loans, and so on. We applied
caching in order to not have to recompute or redetermine eligibility every time a loan office may
want to review the decision with the customer.

But, what about the process of computing eligibility in the first place?

106

https://en.wikipedia.org/wiki/MapReduce
https://geode.apache.org/docs/guide/113/developing/function_exec/chapter_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-annotations
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-implementation
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#function-execution
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#_implementation_vs_execution

Currently, the application’s FinancialLoanApplicationService class seems to be designed to fetch the
data and perform the eligibility determination in place. However, it might be far better to distribute
the processing and even determine eligibility for a larger group of people all at once, especially
when multiple, related people are involved in a single decision, as is typically the case.

We can implement an EligibilityDeterminationFunction class by using SDG:

Example 119. Function implementation

@Component
class EligibilityDeterminationFunction {

 @GemfireFunction(HA = true, hasResult = true, optimizeForWrite=true)
 public EligibilityDecision determineEligibility(FunctionContext
functionContext, Person person, Timespan timespan) {
 // ...
 }
}

By using the SDG @GemfireFunction annotation, we can implement our Function as a POJO method.
SDG appropriately handles registering this POJO method as a proper Function with Apache Geode.

If we now want to call this function from our Spring Boot ClientCache application, we can define a
function execution interface with a method name that matches the function name and that targets
the execution on the EligibilityDecisions Region:

Example 120. Function execution

@OnRegion("EligibilityDecisions")
interface EligibilityDeterminationExecution {

 EligibilityDecision determineEligibility(Person person, Timespan timespan);

}

We can then inject an instance of the EligibilityDeterminationExecution interface into our
FinancialLoanApplicationService, as we would any other object or Spring bean:

107

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/function/annotation/GemfireFunction.html

Example 121. Function use

@Service
class FinancialLoanApplicationService {

 private final EligibilityDeterminationExecution execution;

 public LoanApplicationService(EligibilityDeterminationExecution execution) {
 this.execution = execution;
 }

 @Cacheable("EligibilityDecisions")
 EligibilityDecision processEligibility(Person person, Timespan timespan) {
 return this.execution.determineEligibility(person, timespan);
 }
}

As with caching, no additional configuration is required to enable and find your application
Function implementations and executions. You can simply build and run. Spring Boot for Apache
Geode handles the rest.


It is common to "implement" and register your application Functions on the server
and "execute" them from the client.

108

Chapter 13. Continuous Query
Some applications must process a stream of events as they happen and intelligently react in (near)
real-time to the countless changes in the data over time. Those applications need frameworks that
can make processing a stream of events as they happen as easy as possible.

Spring Boot for Apache Geode does just that, without users having to perform any complex setup or
configure any necessary infrastructure components to enable such functionality. Developers can
define the criteria for the data of interest and implement a handler (listener) to process the stream
of events as they occur.

Continuous Query (CQ) lets you easily define your criteria for the data you need. With CQ, you can
express the criteria that match the data you need by specifying a query predicate. Apache Geode
implements the Object Query Language (OQL) for defining and executing queries. OQL resembles
SQL and supports projections, query predicates, ordering, and aggregates. Also, when used in CQs,
they execute continuously, firing events when the data changes in such ways as to match the
criteria expressed in the query predicate.

Spring Boot for Apache Geode combines the ease of identifying the data you need by using an OQL
query statement with implementing the listener callback (handler) in one easy step.

For example, suppose you want to perform some follow-up action when a customer’s financial loan
application is either approved or denied.

First, the application model for our EligibilityDecision class might look something like the
following:

Example 122. EligibilityDecision class

@Region("EligibilityDecisions")
class EligibilityDecision {

 private final Person person;

 private Status status = Status.UNDETERMINED;

 private final Timespan timespan;

 enum Status {

 APPROVED,
 DENIED,
 UNDETERMINED,

 }
}

Then we can implement and declare our CQ event handler methods to be notified when an

109

https://geode.apache.org/docs/guide/113/developing/continuous_querying/chapter_overview.html
https://geode.apache.org/docs/guide/113/developing/querying_basics/query_basics.html

eligibility decision is either APPROVED or DENIED:

@Component
class EligibilityDecisionPostProcessor {

 @ContinuousQuery(name = "ApprovedDecisionsHandler",
 query = "SELECT decisions.*
 FROM /EligibilityDecisions decisions
 WHERE decisions.getStatus().name().equalsIgnoreCase('APPROVED')")
 public void processApprovedDecisions(CqEvent event) {
 // ...
 }

 @ContinuousQuery(name = "DeniedDecisionsHandler",
 query = "SELECT decisions.*
 FROM /EligibilityDecisions decisions
 WHERE decisions.getStatus().name().equalsIgnoreCase('DENIED')")
 public void processDeniedDecisions(CqEvent event) {
 // ...
 }
}

Thus, when eligibility is processed and a decision has been made, either approved or denied, our
application gets notified, and as an application developer, you are free to code your handler and
respond to the event any way you like. Also, because our Continuous Query (CQ) handler class is a
component (or a bean in the Spring ApplicationContext) you can auto-wire any other beans
necessary to carry out the application’s intended function.

This is not unlike Spring’s annotation-driven listener endpoints, which are used in (JMS) message
listeners and handlers, except in Spring Boot for Apache Geode, you need not do anything special to
enable this functionality. You can declare the @ContinuousQuery annotation on any POJO method and
go to work on other things.

110

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#jms-annotated

Chapter 14. Using Data
One of the most important tasks during development is ensuring your Spring Boot application
handles data correctly. To verify the accuracy, integrity, and availability of your data, your
application needs data with which to work.

For those of you already familiar with Spring Boot’s support for SQL database initialization, the
approach when using Apache Geode should be easy to understand.

Apache Geode provides built-in support, similar in function to Spring Boot’s SQL database
initialization, by using:

• Gfsh’s import/export data commands.

• Snapshot service

• Persistence with disk storage

For example, by enabling persistence with disk storage, you could backup and restore persistent
DiskStore files from one cluster to another.

Alternatively, using Apache Geode’s Snapshot Service, you can export data contained in targeted
Regions from one cluster during shutdown and import the data into another cluster on startup. The
Snapshot Service lets you filter data while it is being imported and exported.

Finally, you can use Apache Geode shell (Gfsh) commands to export data and import data.


Spring Data for Apache Geode (SDG) contains dedicated support for persistence
and the Snapshot Service.

In all cases, the files generated by persistence, the Snapshot Service and Gfsh’s export command are
in a proprietary binary format.

Furthermore, none of these approaches are as convenient as Spring Boot’s database initialization
automation. Therefore, Spring Boot for Apache Geode (SBDG) offers support to import data from
JSON into Apache Geode as PDX.

Unlike Spring Boot, SBDG offers support to export data as well. By default, data is imported and
exported in JSON format.



SBDG does not provide an equivalent to Spring Boot’s schema.sql file. The best way
to define the data structures (the Region instances) that manage your data is with
SDG’s annotation-based configuration support for defining cache Region instances
from your application’s entity classes or indirectly from Spring and JSR-107 or
JCache caching annotations.

 See SBDG’s documentation on the same.

111

https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-initialize-a-database-using-spring-jdbc
https://geode.apache.org/docs/guide/113/tools_modules/gfsh/quick_ref_commands_by_area.html#topic_C7DB8A800D6244AE8FF3ADDCF139DCE4
https://geode.apache.org/docs/guide/113/managing/cache_snapshots/chapter_overview.html
https://geode.apache.org/docs/guide/113/developing/storing_data_on_disk/chapter_overview.html
https://geode.apache.org/docs/guide/113/managing/disk_storage/chapter_overview.html
https://geode.apache.org/docs/guide/113/managing/disk_storage/backup_restore_disk_store.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/tools_modules/gfsh/command-pages/export.html#topic_263B70069BFC4A7185F86B3272011734
https://geode.apache.org/docs/guide/113/tools_modules/gfsh/command-pages/import.html#topic_jw2_2ld_2l
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap:region:persistence
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap:snapshot
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-regions
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-caching



While this feature works and many edge cases were thought through and tested
thoroughly, there are still some limitations that need to be ironed out. See issue-82
and issue-83 for more details. The Spring team strongly recommends that this
feature be used only for development and testing purposes.

14.1. Importing Data
You can import data into a Region by defining a JSON file that contain the JSON objects you wish to
load. The JSON file must follow a predefined naming convention and be placed in the root of your
application classpath:

data-<regionName>.json


<regionName> refers to the lowercase "name" of the Region, as defined by
Region.getName().

For example, if you have a Region named "Orders", you would create a JSON file called data-
orders.json and place it in the root of your application classpath (for example, in
src/test/resources).

Create JSON files for each Region that is implicitly defined (for example, by using
@EnableEntityDefinedRegions) or explicitly defined (with ClientRegionFactoryBean in Java
configuration) in your Spring Boot application configuration that you want to load with data.

The JSON file that contains JSON data for the "Orders" Region might appear as follows:

112

https://github.com/spring-projects/spring-boot-data-geode/issues/82
https://github.com/spring-projects/spring-boot-data-geode/issues/83
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html#getName--

Example 123. data-orders.json

[{
 "@type": "example.app.pos.model.PurchaseOrder",
 "id": 1,
 "lineItems": [
 {
 "@type": "example.app.pos.model.LineItem",
 "product": {
 "@type": "example.app.pos.model.Product",
 "name": "Apple iPad Pro",
 "price": 1499.00,
 "category": "SHOPPING"
 },
 "quantity": 1
 },
 {
 "@type": "example.app.pos.model.LineItem",
 "product": {
 "@type": "example.app.pos.model.Product",
 "name": "Apple iPhone 11 Pro Max",
 "price": 1249.00,
 "category": "SHOPPING"
 },
 "quantity": 2
 }
]
}, {
 "@type": "example.app.pos.model.PurchaseOrder",
 "id": 2,
 "lineItems": [
 {
 "@type": "example.app.pos.model.LineItem",
 "product": {
 "@type": "example.app.pos.model.Product",
 "name": "Starbucks Vente Carmel Macchiato",
 "price": 5.49,
 "category": "SHOPPING"
 },
 "quantity": 1
 }
]
}]

The application entity classes that matches the JSON data from the JSON file might look something
like the following listing:

113

Example 124. Point-of-Sale (POS) Application Domain Model Classes

@Region("Orders")
class PurchaseOrder {

 @Id
 Long id;

 List<LineItem> lineItems;

}

class LineItem {

 Product product;
 Integer quantity;

}

@Region("Products")
class Product {

 String name;
 Category category;
 BigDecimal price;

}

As the preceding listings show, the object model and corresponding JSON can be arbitrarily
complex with a hierarchy of objects that have complex types.

14.1.1. JSON metadata

We want to draw your attention to a few other details contained in the object model and JSON
shown earlier.

The @type metadata field

First, we declared a @type JSON metadata field. This field does not map to any specific field or
property of the application domain model class (such as PurchaseOrder). Rather, it tells the
framework and Apache Geode’s JSON/PDX converter the type of object the JSON data would map to
if you were to request an object (by calling PdxInstance.getObject()).

Consider the following example:

114

Example 125. Deserializing PDX as an Object

@Repository
class OrdersRepository {

 @Resource(name = "Orders")
 Region<Long, PurchaseOrder> orders;

 PurchaseOrder findBy(Long id) {

 Object value = this.orders.get(id);

 return value instanceof PurchaseOrder ? (PurchaseOrder) value
 : value instanceof PdxInstance ? ((PdxInstance) value).getObject()
 : null;
 }
}

Basically, the @type JSON metadata field informs the PdxInstance.getObject() method about the type
of Java object to which the JSON object maps. Otherwise, the PdxInstance.getObject() method
would silently return a PdxInstance.

It is possible for Apache Geode’s PDX serialization framework to return a PurchaseOrder from
Region.get(key) as well, but it depends on the value of PDX’s read-serialized, cache-level
configuration setting, among other factors.



When JSON is imported into a Region as PDX, the PdxInstance.getClassName() does
not refer to a valid Java class. It is JSONFormatter.JSON_CLASSNAME. As a result, Region
data access operations, such as Region.get(key), return a PdxInstance and not a
Java object.



You may need to proxy Region read data access operations (such as
Region.get(key)) by setting the SBDG property
spring.boot.data.gemfire.cache.region.advice.enabled to true. When this property
is set, Region instances are proxied to wrap a PdxInstance in a PdxInstanceWrapper to
appropriately handle the PdxInstance.getObject() call in your application code.

The id field and the @identifier metadata field

Top-level objects in your JSON must have an identifier, such as an id field. This identifier is used as
the identity and key of the object (or PdxInstance) when stored in the Region (for example,
Region.put(key, object)).

You may have noticed that the JSON for the "Orders" Region shown earlier declared an id field as
the identifier:

115

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxInstance.html#getClassName--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/JSONFormatter.html#JSON_CLASSNAME

Example 126. PurchaseOrder identifier ("id")

[{
 "@type": "example.app.pos.model.PurchaseOrder",
 "id": 1,
 ...

This follows the same convention used in Spring Data. Typically, Spring Data mapping
infrastructure looks for a POJO field or property annotated with @Id. If no field or property is
annotated with @Id, the framework falls back to searching for a field or property named id.

In Spring Data for Apache Geode, this @Id-annotated or id-named field or property is used as the
identifier and as the key for the object when storing it into a Region.

However, what happens when an object or entity does not have a surrogate ID defined? Perhaps
the application domain model class is appropriately using natural identifiers, which is quite
common in practice.

Consider a Book class defined as follows:

Example 127. Book class

@Region("Books")
class Book {

 Author author;

 @Id
 ISBN isbn;

 LocalDate publishedDate;

 Sring title;

}

As declared in the Book class, the identifier for Book is its ISBN, since the isbn field was annotated
with Spring Data’s @Id mapping annotation. However, we cannot know this by searching for an @Id
annotation in JSON.

You might be tempted to argue that if the @type metadata field is set, we would know the class type
and could load the class definition to learn about the identifier. That is all fine until the class is not
actually on the application classpath in the first place. This is one of the reasons why SBDG’s JSON
support serializes JSON to Apache Geode’s PDX format. There might not be a class definition, which
would lead to a NoClassDefFoundError or ClassNotFoundException.

116

https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/annotation/Id.html

So, what then?

In this case, SBDG lets you declare the @identifier JSON metadata field to inform the framework
what to use as the identifier for the object.

Consider the following example:

Example 128. Using "@identifer"

{
 "@type": "example.app.books.model.Book",
 "@identifier": "isbn",
 "author": {
 "id": 1,
 "name": "Josh Long"
 },
 "isbn": "978-1-449-374640-8",
 "publishedDate": "2017-08-01",
 "title": "Cloud Native Java"
}

The @identifier JSON metadata field informs the framework that the isbn field is the identifier for a
Book.

14.1.2. Conditionally Importing Data

While the Spring team recommends that users should only use this feature when developing and
testing their Spring Boot applications with Apache Geode, you may still occasionally use this feature
in production.

You might use this feature in production to preload a (REPLICATE) Region with reference data.
Reference data is largely static, infrequently changing, and non-transactional. Preloading reference
data is particularly useful when you want to warm the cache.

When you use this feature for development and testing purposes, you can put your Region-specific
JSON files in src/test/resources. This ensures that the files are not included in your application
artifact (such as a JAR or WAR) when built and deployed to production.

However, if you must use this feature to preload data in your production environment, you can still
conditionally load data from JSON. To do so, configure the
spring.boot.data.gemfire.cache.data.import.active-profiles property set to the Spring profiles that
must be active for the import to take effect.

Consider the following example:

117

Example 129. Conditional Importing JSON

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.import.active-profiles=DEV, QA

For import to have an effect in this example, you must specifically set the spring.profiles.active
property to one of the valid, active-profiles listed in the import property (such as QA). Only one
needs to match.


There are many ways to conditionally build application artifacts. You might prefer
to handle this concern in your Gradle or Maven build.

14.2. Exporting Data
Certain data stored in your application’s Regions may be sensitive or confidential, and keeping the
data secure is of the utmost concern and priority. Therefore, exporting data is disabled by default.

However, if you use this feature for development and testing purposes, enabling the export
capability may be useful to move data from one environment to another. For example, if your QA
team finds a bug in the application that uses a particular data set, they can export the data and pass
it back to the development team to import in their local development environment to help debug
the issue.

To enable export, set the spring.boot.data.gemfire.cache.data.export.enabled property to true:

Example 130. Enable Export

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.export.enabled=true

SBDG is careful to export data to JSON in a format that Apache Geode expects on import and
includes things such as @type metadata fields.

118



The @identifier metadata field is not generated automatically. While it is possible
for POJOs stored in a Region to include an @identifier metadata field when
exported to JSON, it is not possible when the Region value is a PdxInstance that did
not originate from JSON. In this case, you must manually ensure that the
PdxInstance includes an @identifier metadata field before it is exported to JSON if
necessary (for example, Book.isbn). This is only necessary if your entity classes do
not declare an explicit identifier field, such as with the @Id mapping annotation, or
do not have an id field. This scenario can also occur when inter-operating with
native clients that model the application domain objects differently and then
serialize the objects by using PDX, storing them in Regions on the server that are
then later consumed by your Java-based, Spring Boot application.



You may need to set the -Dgemfire.disableShutdownHook JVM System property to
true before your Spring Boot application starts up when using export.
Unfortunately, this Java runtime shutdown hook is registered and enabled in
Apache Geode by default, which results in the cache and the Regions being closed
before the SBDG Export functionality can export the data, thereby resulting in a
CacheClosedException. SBDG makes a best effort to disable the Apache Geode JVM
shutdown hook when export is enabled, but it is at the mercy of the JVM
ClassLoader, since Apache Geode’s JVM shutdown hook registration is declared in a
static initializer.

14.3. Import/Export API Extensions
The API in SBDG for import and export functionality is separated into the following concerns:

• Data Format

• Resource Resolving

• Resource Reading

• Resource Writing

By breaking each of these functions apart into separate concerns, a developer can customize each
aspect of the import and export functions.

For example, you could import XML from the filesystem and then export JSON to a REST-based Web
Service. By default, SBDG imports JSON from the classpath and exports JSON to the filesystem.

However, not all environments expose a filesystem, such as cloud environments like PCF.
Therefore, giving users control over each aspect of the import and export processes is essential for
performing the functions in any environment.

14.3.1. Data Format

The primary interface to import data into a Region is CacheDataImporter.

CacheDataImporter is a @FunctionalInterface that extends Spring’s BeanPostProcessor interface to
trigger the import of data after the Region has been initialized.

119

https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-autoconfigure/src/main/java/org/springframework/geode/boot/autoconfigure/DataImportExportAutoConfiguration.java#L173-L183
https://github.com/apache/geode/blob/rel/v1.14.0/geode-core/src/main/java/org/apache/geode/distributed/internal/InternalDistributedSystem.java#L2185-L2223
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/config/BeanPostProcessor.html

The interface is defined as follows:

Example 131. CacheDataImporter

interface CacheDataImporter extends BeanPostProcessor {

 Region importInto(Region region);

}

You can code the importInto(:Region) method to handle any data format (JSON, XML, and others)
you prefer. Register a bean that implements the CacheDataImporter interface in the Spring container,
and the importer does its job.

On the flip side, the primary interface to export data from a Region is the CacheDataExporter.

CacheDataExporter is a @FunctionalInterface that extends Spring’s
DestructionAwareBeanPostProcessor interface to trigger the export of data before the Region is
destroyed.

The interface is defined as follows:

Example 132. CacheDataExporter

interface CacheDataExporter extends DestructionAwareBeanPostProcessor {

 Region exportFrom(Region region);
}

You can code the exportFrom(:Region) method to handle any data format (JSON, XML, and others)
you prefer. Register a bean implementing the CacheDataExporter interface in the Spring container,
and the exporter does its job.

For convenience, when you want to implement both import and export functionality, SBDG
provides the CacheDataImporterExporter interface, which extends both CacheDataImporter and
CacheDataExporter:

Example 133. CacheDataImporterExporter

interface CacheDataImporterExporter extends CacheDataExporter, CacheDataImporter {
}

For added support, SBDG also provides the AbstractCacheDataImporterExporter abstract base class to
simplify the implementation of your importer/exporter.

120

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/config/DestructionAwareBeanPostProcessor.html

Lifecycle Management

Sometimes, it is necessary to precisely control when data is imported or exported.

This is especially true on import, since different Region instances may be collocated or tied together
through a cache callback, such as a CacheListener. In these cases, the other Region may need to exist
before the import on the dependent Region proceeds, particularly if the dependencies were loosely
defined.

Controlling the import is also important when you use SBDG’s @EnableClusterAware annotation to
push configuration metadata from the client to the cluster in order to define server-side Region
instances that match the client-side Region instances, especially client Region instances targeted for
import. The matching Region instances on the server side must exist before data is imported into
client (PROXY) Region instances.

In all cases, SBDG provides the LifecycleAwareCacheDataImporterExporter class to wrap your
CacheDataImporterExporter implementation. This class implements Spring’s SmartLifecycle
interface.

By implementing the SmartLifecycle interface, you can control in which phase of the Spring
container the import occurs. SBDG also exposes two more properties to control the lifecycle:

Example 134. Lifecycle Management Properties

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.import.lifecycle=[EAGER|LAZY]
spring.boot.data.gemfire.cache.data.import.phase=1000000

EAGER acts immediately, after the Region is initialized (the default behavior). LAZY delays the import
until the start() method is called, which is invoked according to the phase, thereby ordering the
import relative to the other lifecycle-aware components that are registered in the Spring container.

The following example shows how to make your CacheDataImporterExporter lifecycle-aware:

@Configuration
class MyApplicationConfiguration {

 @Bean
 CacheDataImporterExporter importerExporter() {
 return new LifecycleAwareCacheDataImporterExporter(new
MyCacheDataImporterExporter());
 }
}

121

https://docs.spring.io/spring/docs/current/javadoc-api/https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/SmartLifecycle.html

14.3.2. Resource Resolution

Resolving resources used for import and export results in the creation of a Spring Resource handle.

Resource resolution is a vital step to qualifying a resource, especially if the resource requires
special logic or permissions to access it. In this case, specific Resource handles can be returned and
used by the reader and writer of the Resource as appropriate for import or export operation.

SBDG encapsulates the algorithm for resolving Resources in the ResourceResolver (Strategy)
interface:

Example 135. ResourceResolver

@FunctionalInterface
interface ResourceResolver {

 Optional<Resource> resolve(String location);

 default Resouce required(String location) {
 // ...
 }
}

Additionally, SBDG provides the ImportResourceResolver and ExportResourceResolver marker
interfaces and the AbstractImportResourceResolver and AbstractExportResourceResolver abstract
base classes for implementing the resource resolution logic used by both import and export
operations.

If you wish to customize the resolution of Resources used for import or export, your
CacheDataImporterExporter implementation can extend the
ResourceCapableCacheDataImporterExporter abstract base class, which provides the aforementioned
interfaces and base classes.

As stated earlier, SBDG resolves resources on import from the classpath and resources on export to
the filesystem.

You can customize this behavior by providing an implementation of ImportResourceResolver,
ExportResourceResolver, or both interfaces and declare instances as beans in the Spring context:

122

https://docs.spring.io/spring/docs/current/javadoc-api/https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/io/Resource.html
https://en.wikipedia.org/wiki/Strategy_pattern

Example 136. Import & Export ResourceResolver beans

@Configuration
class MyApplicationConfiguration {

 @Bean
 ImportResourceResolver importResourceResolver() {
 return new MyImportResourceResolver();
 }

 @Bean
 ExportResourceResolver exportResourceResolver() {
 return new MyExportResourceResolver();
 }
}


If you need to customize the resource resolution process for each location (or
Region) on import or export, you can use the Composite software design pattern.

Customize Default Resource Resolution

If you are content with the provided defaults but want to target specific locations on the classpath
or filesystem used by the import or export, SBDG additionally provides the following properties:

Example 137. Import/Export Resource Location Properties

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.import.resource.location=...
spring.boot.data.gemfire.cache.data.export.resource.location=...

The properties accept any valid resource string, as specified in the Spring documentation (see Table
10. Resource strings).

This means that, even though import defaults from the classpath, you can change the location from
classpath to filesystem, or even network (for example, https://) by changing the prefix (or protocol).

Import/export resource location properties can refer to other properties through property
placeholders, but SBDG further lets you use SpEL inside the property values.

Consider the following example:

123

https://en.wikipedia.org/wiki/Composite_pattern
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#resources-resourceloader

Example 138. Using SpEL

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.import.resource.location=\

https://#{#env['user.name']}:#{someBean.lookupPassword(#env['user.name'])}@#{host}
:#{port}/cache/#{#regionName}/data/import

In this case, the import resource location refers to a rather sophisticated resource string by using a
complex SpEL expression.

SBDG populates the SpEL EvaluationContext with three sources of information:

• Access to the Spring BeanFactory

• Access to the Spring Environment

• Access to the current Region

Simple Java System properties or environment variables can be accessed with the following
expression:

#{propertyName}

You can access more complex property names (including properties that use dot notation, such as
the user.home Java System property), directly from the Environment by using map style syntax as
follows:

#{#env['property.name']}

The #env variable is set in the SpEL EvaluationContext to the Spring Environment.

Because the SpEL EvaluationContext is evaluated with the Spring ApplicationContext as the root
object, you also have access to the beans declared and registered in the Spring container and can
invoke methods on them, as shown earlier with someBean.lookupPassword(..). someBean must be the
name of the bean as declared and registered in the Spring container.


Be careful when accessing beans declared in the Spring container with SpEL,
particularly when using EAGER import, as it may force those beans to be eagerly (or
even prematurely) initialized.

SBDG also sets the #regionName variable in the EvaluationContext to the name of the Region, as
determined by Region.getName(), targeted for import and export.

124

https://geode.apache.org/releases/latest/javadoc/https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Region.html#getName--

This lets you not only change the location of the resource but also change the resource name (such
as a filename).

Consider the following example:

Example 139. Using #regionName

Spring Boot application.properties

spring.boot.data.gemfire.cache.data.export.resource.location=\
 file://#{#env['user.home']}/gemfire/cache/data/custom-filename-for-
#{#regionName}.json


By default, the exported file is stored in the working directory
(System.getProperty("user.dir")) of the Spring Boot application process.

 See the Spring Framework documentation for more information on SpEL.

14.3.3. Reading & Writing Resources

The Spring Resource handle specifies tion of a resource, not how the resource is read or written.
Even the Spring ResourceLoader, which is an interface for loading Resources, does not specifically
read or write any content to the Resource.

SBDG separates these concerns into two interfaces: ResourceReader and ResourceWriter, respectively.
The design follows the same pattern used by Java’s InputStream/OutputStream and Reader/Writer
classes in the java.io package.

The ResourceReader interfaces is defined as:

Example 140. ResourceReader

@FunctionalInterface
interface ResourceReader {

 byte[] read(Resource resource);

}

The ResourceWriter interfaces is defined as:

125

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/io/Resource.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/io/ResourceLoader.html

Example 141. ResourceWriter

@FunctionalInterface
interface ResourceWriter {

 void write(Resource resource, byte[] data);

}

Both interfaces provide additional methods to compose readers and writers, much like Java’s
Consumer and Function interfaces in the java.util.function package. If a particular reader or writer
is used in a composition and is unable to handle the given Resource, it should throw a
UnhandledResourceException to let the next reader or writer in the composition try to read from or
write to the Resource.

The reader or writer are free to throw a ResourceReadException or ResourceWriteException to break
the chain of reader and writer invocations in the composition.

To override the default export/import reader and writer used by SBDG, you can implement the
ResourceReader or ResourceWriter interfaces as appropriate and declare instances of these classes as
beans in the Spring container:

Example 142. Custom ResourceReader & ResourceWriter beans

@Configuration
class MyApplicationConfiguration {

 @Bean
 ResourceReader myResourceReader() {
 return new MyResourceReader()
 .thenReadFrom(new MyOtherResourceReader());
 }

 @Bean
 ResourceWriter myResourceWriter() {
 return new MyResourceWriter();
 }
}

126

Chapter 15. Data Serialization with PDX
Anytime data is overflowed or persisted to disk, transferred between clients and servers,
transferred between peers in a cluster or between different clusters in a multi-site WAN topology,
all data stored in Apache Geode must be serializable.

To serialize objects in Java, object types must implement the java.io.Serializable interface.
However, if you have a large number of application domain object types that currently do not
implement java.io.Serializable, refactoring hundreds or even thousands of class types to
implement java.io.Serializable would be a tedious task just to store and manage those objects in
Apache Geode.

Additionally, it is not only your application domain object types you necessarily need to consider. If
you used third-party libraries in your application domain model, any types referred to by your
application domain object types stored in Apache Geode must also be serializable. This type
explosion may bleed into class types for which you may have no control over.

Furthermore, Java serialization is not the most efficient format, given that metadata about your
types is stored with the data itself. Therefore, even though Java serialized bytes are more
descriptive, it adds a great deal of overhead.

Then, along came serialization using Apache Geode’s PDX format. PDX stands for Portable Data
Exchange and achieves four goals:

• Separates type metadata from the data itself, streamlining the bytes during transfer. Apache
Geode maintains a type registry that stores type metadata about the objects serialized with PDX.

• Supports versioning as your application domain types evolve. It is common to have old and new
versions of the same application deployed to production, running simultaneously, sharing data,
and possibly using different versions of the same domain types. PDX lets fields be added or
removed while still preserving interoperability between old and new application clients
without loss of data.

• Enables objects stored as PDX to be queried without being de-serialized. Constant serialization
and deserialization of data is a resource-intensive task that adds to the latency of each data
request when redundancy is enabled. Since data is replicated across peers in the cluster to
preserve High Availability (HA) and must be serialized to be transferred, keeping data serialized
is more efficient when data is updated frequently, since it is likely the data will need to be
transferred again in order to maintain consistency in the face of redundancy and availability.

• Enables interoperability between native language clients (such as C, C++ and C#) and Java
language clients, with each being able to access the same data set regardless from where the
data originated.

However, PDX does have limitations.

For instance, unlike Java serialization, PDX does not handle cyclic dependencies. Therefore, you
must be careful how you structure and design your application domain object types.

Also, PDX cannot handle field type changes.

127

https://geode.apache.org/docs/guide/113/developing/data_serialization/gemfire_pdx_serialization.html

Furthermore, while Apache Geode’s general Data Serialization handles Deltas, this is not achievable
without de-serializing the object, since it involves a method invocation, which defeats one of the
key benefits of PDX: preserving format to avoid the cost of serialization and deserialization.

However, we think the benefits of using PDX outweigh the limitations and, therefore, have enabled
PDX by default.

You need do nothing special. You can code your domain types and rest assured that objects of those
domain types are properly serialized when overflowed and persisted to disk, transferred between
clients and servers, transferred between peers in a cluster, and even when data is transferred over
the network when you use Apache Geode’s multi-site WAN topology.

Example 143. EligibilityDecision is automatically serialiable without implementing Java Serializable.

@Region("EligibilityDecisions")
class EligibilityDecision {
 // ...
}

 Apache Geode does support the standard Java Serialization format.

15.1. SDG MappingPdxSerializer vs. Apache Geode’s
ReflectionBasedAutoSerializer
Under-the-hood, Spring Boot for Apache Geode enables and uses Spring Data for Apache Geode’s
MappingPdxSerializer to serialize your application domain objects with PDX.

 See the SDG Reference Guide for more details on the MappingPdxSerializer class.

The MappingPdxSerializer class offers several advantages above and beyond Apache Geode’s own
ReflectionBasedAutoSerializer class.


See Apache Geode’s User Guide for more details about the
ReflectionBasedAutoSerializer.

The SDG MappingPdxSerializer class offers the following benefits and capabilities:

• PDX serialization is based on Spring Data’s powerful mapping infrastructure and metadata.

• Includes support for both includes and excludes with first-class type filtering. Additionally, you
can implement type filters by using Java’s java.util.function.Predicate interface as opposed to
the limited regex capabilities provided by Apache Geode’s ReflectionBasedAutoSerializer class.
By default, MappingPdxSerializer excludes all types in the following packages: java,
org.apache.geode, org.springframework and com.gemstone.gemfire.

• Handles transient object fields and properties when either Java’s transient keyword or Spring
Data’s @Transient annotation is used.

128

https://geode.apache.org/docs/guide/113/developing/data_serialization/gemfire_data_serialization.html
https://geode.apache.org/docs/guide/113/developing/delta_propagation/chapter_overview.html
https://geode.apache.org/docs/guide/113/developing/data_serialization/java_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-pdx
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/MappingPdxSerializer.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/ReflectionBasedAutoSerializer.html
https://geode.apache.org/docs/guide/113/developing/data_serialization/auto_serialization.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.type-filtering
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.transient-properties

• Handles read-only object properties.

• Automatically determines the identifier of your entities when you annotate the appropriate
entity field or property with Spring Data’s @Id annotation.

• Lets additional o.a.g.pdx.PdxSerializers be registered to customize the serialization of nested
entity/object field and property types.

The support for includes and excludes deserves special attention, since the MappingPdxSerializer
excludes all Java, Spring, and Apache Geode types, by default. However, what happens when you
need to serialize one of those types?

For example, suppose you need to serialize objects of type java.security.Principal. Then you can
override the excludes by registering an include type filter:

package example.app;

import java.security.Principal;

@SpringBootApplication
@EnablePdx(serializerBeanName = "myCustomMappingPdxSerializer")
class SpringBootApacheGeodeClientCacheApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootApacheGeodeClientCacheApplication.class,
args);
 }

 @Bean
 MappingPdxSerializer myCustomMappingPdxSerializer() {

 MappingPdxSerializer customMappingPdxSerializer =
 MappingPdxSerializer.newMappginPdxSerializer();

 customMappingPdxSerializer.setIncludeTypeFilters(
 type -> Principal.class.isAssignableFrom(type));

 return customMappingPdxSerializer;
 }
}


Normally, you need not explicitly declare SDG’s @EnablePdx annotation to enable
and configure PDX. However, if you want to override auto-configuration, as we
have demonstrated above, you must do this.

129

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.read-only-properties
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/annotation/Id.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#mapping.pdx-serializer.custom-serialization

Chapter 16. Logging
Apache Geode 1.9.2 was modularized to separate its use of the Apache Log4j API to log output in
Apache Geode code from the underlying implementation of logging, which uses Apache Log4j as
the logging provider by default.

Prior to 1.9.2, the Apache Log4j API (log4j-api) and the Apache Log4j service provider (log4j-core)
were automatically pulled in by Apache Geode core (org.apache.geode:geode-core), thereby making
it problematic to change logging providers when using Apache Geode in Spring Boot applications.

However, now, in order to get any log output from Apache Geode whatsoever, Apache Geode
requires a logging provider declared on your Spring Boot application classpath. Consequently, this
also means the old Apache Geode Properties (such as log-level) no longer have any effect,
regardless of whether the property is specified in gemfire.properties, in Spring Boot
application.properties, or even as a JVM System Property (-Dgemfire.log-level).


See Apache Geode’s documentation for a complete list of valid Properties,
including the Properties used to configure logging.

Unfortunately, this also means the Spring Data for Apache Geode @EnableLogging annotation no
longer has any effect on Apache Geode logging either. Consequently, it has been deprecated. The
reason @EnableLogging no longer has any effect on logging is because this annotation’s attributes
and associated SDG properties indirectly set the corresponding Apache Geode properties, which,
again, are useless from Apache Geode 1.9.2 onward.

By way of example, and to make this concrete, none of the following approaches have any effect on
Apache Geode logging:

Example 144. Command-line configuration

$ java -classpath ...:/path/to/MySpringBootApacheGeodeClientCacheApplication.jar
-Dgemfire.log-level=DEBUG
 example.app.MySpringBootApacheGeodeClientCacheApplication

Example 145. Externalized configuration using Apache Geode gemfire.properties

{geode-name} only/specific properties
log-level=INFO

Example 146. Externalized configuration using Spring Boot application.properties

spring.data.gemfire.cache.log-level=DEBUG
spring.data.gemfire.logging.level=DEBUG

130

https://geode.apache.org/docs/guide/113/reference/topics/gemfire_properties.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html
https://jira.spring.io/browse/DATAGEODE-299

Example 147. Java configuration using SDG’s @EnableLogging annotation

@SpringBootApplication
@EnableLogging(logLevel = "DEBUG")
class MySpringBootApacheGeodeClientApplication {

}

None of the preceding approaches have any effect without the new SBDG logging starter.

16.1. Configure Apache Geode Logging
So, how do you configure logging for Apache Geode?

Three things are required to get Apache Geode to log output:

1. You must declare a logging provider (such as Logback) on your Spring Boot application
classpath.

2. (optional) You can declare an adapter (a bridge JAR) between Log4j and your logging provider if
your declared logging provider is not Apache Log4j.

For example, if you use the SLF4J API to log output from your Spring Boot application and use
Logback as your logging provider or implementation, you must include the
org.apache.logging.log4j.log4j-to-slf4j adapter or bridge JAR as well.

Internally, Apache Geode uses the Apache Log4j API to log output from Geode components.
Therefore, you must bridge Log4j to any other logging provider (such as Logback) that is not
Log4j (log4j-core). If you use Log4j as your logging provider, you need not declare an adapter or
bridge JAR on your Spring Boot application classpath.

3. Finally, you must supply logging provider configuration to configure Loggers, Appenders, log
levels, and other details.

For example, when you use Logback, you must provide a logback.xml configuration file on your
Spring Boot application classpath or in the filesystem. Alternatively, you can use other means to
configure your logging provider and get Apache Geode to log output.



Apache Geode’s geode-log4j module covers the required configuration for steps 1-3
above and uses Apache Log4j (org.apache.logging.log4j:log4j-core) as the logging
provider. The geode-log4j module even provides a default log4j2.xml
configuration file to configure Loggers, Appenders, and log levels for Apache
Geode.

If you declare Spring Boot’s own org.springframework.boot:spring-boot-starter-logging on your
application classpath, it covers steps 1 and 2 above.

The spring-boot-starter-logging dependency declares Logback as the logging provider and

131

automatically adapts (bridges) java.util.logging (JUL) and Apache Log4j to SLF4J. However, you
still need to supply logging provider configuration (such as a logback.xml file for Logback) to
configure logging not only for your Spring Boot application but for Apache Geode as well.

SBDG has simplified the setup of Apache Geode logging. You need only declare the
org.springframework.geode:spring-geode-starter-logging dependency on your Spring Boot
application classpath.

Unlike Apache Geode’s default Log4j XML configuration file (log4j2.xml), SBDG’s provided
logback.xml configuration file is properly parameterized, letting you adjust log levels as well as add
Appenders.

In addition, SBDG’s provided Logback configuration uses templates so that you can compose your
own logging configuration while still including snippets from SBDG’s provided logging
configuration metadata, such as Loggers and Appenders.

16.1.1. Configuring Log Levels

One of the most common logging tasks is to adjust the log level of one or more Loggers or the ROOT
Logger. However, you may want to only adjust the log level for specific components of your Spring
Boot application, such as for Apache Geode, by setting the log level for only the Logger that logs
Apache Geode events.

SBDG’s Logback configuration defines three Loggers to control the log output from Apache Geode:

Example 148. Apache Geode Loggers by Name

<comfiguration>
 <logger name="com.gemstone.gemfire"
level="${spring.boot.data.gemfire.log.level:-INFO}"/>
 <logger name="org.apache.geode" level="${spring.boot.data.gemfire.log.level:-
INFO}"/>
 <logger name="org.jgroups" level="${spring.boot.data.gemfire.jgroups.log.level:-
ERROR}"/>
</comfiguration>

The com.gemstone.gemfire Logger covers old GemFire components that are still present in Apache
Geode for backwards compatibility. By default, it logs output at INFO. This Logger’s use should be
mostly unnecessary.

The org.apache.geode Logger is the primary Logger used to control log output from all Apache
Geode components during the runtime operation of Apache Geode. By default, it logs output at INFO.

The org.jgroups Logger is used to log output from Apache Geode’s message distribution and
membership system. Apache Geode uses JGroups for membership and message distribution
between peer members (nodes) in the cluster (distributed system). By default, JGroups logs output
at ERROR.

132

You can configure the log level for the com.gemstone.gemfire and org.apache.geode Loggers by setting
the spring.boot.data.gemfire.log.level property. You can independently configure the org.jgroups
Logger by setting the spring.boot.data.gemfire.jgroups.log.level property.

You can set the SBDG logging properties on the command line as JVM System properties when you
run your Spring Boot application:

Example 149. Setting the log-level from the CLI

$ java -classpath ...:/path/to/MySpringBootApplication.jar
-Dspring.boot.data.gemfire.log.level=DEBUG
 package.to.MySpringBootApplicationClass


Setting JVM System properties by using $ java -jar MySpringBootApplication.jar
-Dspring.boot.data.gemfire.log.level=DEBUG is not supported by the Java Runtime
Environment (JRE).

Alternatively, you can configure and control Apache Geode logging in Spring Boot
application.properties:

Example 150. Setting the log-level in Spring Boot application.properties

spring.boot.data.gemfire.log.level=DEBUG

For backwards compatibility, SBDG additionally supports the Spring Data for Apache Geode (SDG)
logging properties as well, by using either of the following properties:

Example 151. Setting log-level using SDG Properties

spring.data.gemfire.cache.log-level=DEBUG
spring.data.gemfire.logging.level=DEBUG

If you previously used either of these SDG-based logging properties, they continue to work as
designed in SBDG 1.3 or later.

16.1.2. Composing Logging Configuration

As mentioned earlier, SBDG lets you compose your own logging configuration from SBDG’s default
Logback configuration metadata.

SBDG conveniently bundles the Loggers and Appenders from SBDG’s logging starter into a template
file that you can include into your own custom Logback XML configuration file.

The Logback template file appears as follows:

133

Example 152. logback-include.xml

<?xml version="1.0" encoding="UTF-8"?>
<included>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d %5p %40.40c:%4L - %m%n</pattern>
 </encoder>
 </appender>

 <appender name="delegate"
class="org.springframework.geode.logging.slf4j.logback.DelegatingAppender"/>

 <logger name="com.gemstone.gemfire"
level="${spring.boot.data.gemfire.log.level:-INFO}"/>
 <logger name="org.apache.geode" level="${spring.boot.data.gemfire.log.level:-
INFO}"/>
 <logger name="org.jgroups"
level="${spring.boot.data.gemfire.jgroups.log.level:-ERROR}"/>

</included>

Then you can include this Logback configuration snippet in an application-specific Logback XML
configuration file, as follows:

Example 153. logback.xml

<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false">

 <statusListener class="ch.qos.logback.core.status.NopStatusListener"/>

 <include resource="logback-include.xml"/>

 <root level="${logback.root.log.level:-INFO}">
 <appender-ref ref="console"/>
 <appender-ref ref="delegate"/>
 </root>

</configuration>

16.2. SLF4J and Logback API Support
SBDG provides additional support when working with the SLF4J and Logback APIs. This support is
available when you declare the org.springframework.geode:spring-geode-starter-logging

134

dependency on your Spring Boot application classpath.

One of the main supporting classes from the spring-geode-starter-logger is the
org.springframework.geode.logging.slf4j.logback.LogbackSupport class. This class provides methods
to:

• Resolve a reference to the Logback LoggingContext.

• Resolve the SLF4J ROOT Logger as a Logback Logger.

• Look up Appenders by name and required type.

• Add or remove Appenders to Loggers.

• Reset the state of the Logback logging system, which can prove to be most useful during testing.

LogbackSupport can even suppress the auto-configuration of Logback performed by Spring Boot on
startup, which is another useful utility during automated testing.

In addition to the LogbackSupport class, SBDG also provides some custom Logback Appenders.

16.2.1. CompositeAppender

The org.springframework.geode.logging.slf4j.logback.CompositeAppender class is an implementation
of the Logback Appender interface and the Composite software design pattern.

CompositeAppender lets developers compose multiple Appenders and use them as if they were a
single Appender.

For example, you could compose both the Logback ConsoleAppender and FileAppender into one
Appender:

Example 154. Composing multiple Appenders

class LoggingConfiguration {

 Appender<ILoggingEvent> compositeAppender() {

 ConsoleAppender<ILoggingEvent> consoleAppender = new ConsoleAppender<>();

 FileAppender<ILoggingEvent> fileAppender = new FileApender<>();

 Appender<ILoggingEvent> compositeAppender =
CompositeAppender.compose(consoleAppender, fileAppender);

 return compositeAppender;
 }
}

// do something with the compositeAppender

135

https://en.wikipedia.org/wiki/Composite_pattern

You could then add the CompositeAppender to a named Logger:

Example 155. Register CompositeAppender on "named" Logger

class LoggerConfiguration {

 void registerAppenderOnLogger() {

 Logger namedLogger = LoggerFactory.getLogger("loggerName");

 LogbackSupport.toLogbackLogger(namedLogger)
 .ifPresent(it -> LogbackSupport.addAppender(it, compositeAppender));
 }
}

In this case, the named Logger logs events (or log messages) to both the console and file Appenders.

You can compose an array or Iterable of Appenders by using either the
CompositeAppender.compose(:Appender<T>[]) method or the
CompositeAppender.compose(:Iterable<Appender<T>>) method.

16.2.2. DelegatingAppender

The org.springframework.geode.logging.slf4j.logback.DelegatingAppender is a pass-through
Logback Appender implementation that wraps another Logback Appender or collection of Appenders,
such as the ConsoleAppender, a FileAppender, a SocketAppender, or others. By default, the
DelegatingAppender delegates to the NOPAppender, thereby doing no actual work.

By default, SBDG registers the org.springframework.geode.logging.slfj4.logback.DelegatingAppender
with the ROOT Logger, which can be useful for testing purposes.

With a reference to a DelegatingAppender, you can add any Appender (even a CompositeAppender) as
the delegate:

136

Example 156. Add ConsoleAppender as the "delegate" for the DelegatingAppender

class LoggerConfiguration {

 void setupDelegation() {

 ConsoleAppender consoleAppender = new ConsoleAppender();

 LogbackSupport.resolveLoggerContext().ifPresent(consoleAppender::setContext);

 consoleAppender.setImmediateFlush(true);
 consoleAppender.start();

 LogbackSupport.resolveRootLogger()
 .flatMap(LogbackSupport::toLogbackLogger)
 .flatMap(rootLogger -> LogbackSupport.resolveAppender(rootLogger,
 LogbackSupport.DELEGATE_APPENDER_NAME, DelegatingAppender.class))
 .ifPresent(delegateAppender ->
delegateAppender.setAppender(consoleAppender));
 }
}

16.2.3. StringAppender

The org.springframework.geode.logging.slf4j.logback.StringAppender stores a log message in-
memory, appended to a String.

The StringAppender is useful for testing purposes. For instance, you can use the StringAppender to
assert that a Logger used by certain application components logged messages at the appropriately
configured log level while other log messages were not logged.

Consider the following example:

137

Example 157. StringAppender in Action

class ApplicationComponent {

 private final Logger logger = LoggerFactory.getLogger(getClass());

 public void someMethod() {
 logger.debug("Some debug message");
 // ...
 }

 public void someOtherMethod() {
 logger.info("Some info message");
 }
}

// Assuming the ApplicationComponent Logger was configured with log-level 'INFO',
then...
class ApplicationComponentUnitTests {

 private final ApplicationComponent applicationComponent = new
ApplicationComponent();

 private final Logger logger =
LoggerFactory.getLogger(ApplicationComponent.class);

 private StringAppender stringAppender;

 @Before
 public void setup() {

 LogbackSupport.toLogbackLogger(logger)
 .map(Logger::getLevel)
 .ifPresent(level -> assertThat(level).isEqualTo(Level.INFO));

 stringAppender = new StringAppender.Builder()
 .applyTo(logger)
 .build();
 }

 @Test
 public void someMethodDoesNotLogDebugMessage() {

 applicationComponent.someMethod();

 assertThat(stringAppender.getLogOutput).doesNotContain("Some debug
message");
 }

 @Test

138

 public void someOtherMethodLogsInfoMessage() {

 applicationComponent.someOtherMethod();

 assertThat(stringAppender.getLogOutput()).contains("Some info message");
 }
}

There are many other uses for the StringAppender and you can use it safely in a multi-Threaded
context by calling StringAppender.Builder.useSynchronization().

When combined with other SBDG provided Appenders in conjunction with the LogbackSupport class,
you have a lot of power both in application code as well as in your tests.

139

Chapter 17. Security
This chapter covers security configuration for Apache Geode, which includes both authentication
and authorization (collectively, auth) as well as Transport Layer Security (TLS) using SSL.

 Securing data at rest is not supported by Apache Geode.


See the corresponding sample guide and code to see Spring Boot Security for
Apache Geode in action.

17.1. Authentication and Authorization
Apache Geode employs username- and password-based authentication and role-based
authorization to secure your client to server data exchanges and operations.

Spring Data for Apache Geode provides first-class support for Apache Geode’s Security framework,
which is based on the SecurityManager interface. Additionally, Apache Geode’s Security framework
is integrated with Apache Shiro.

 SBDG will eventually provide support for and integration with Spring Security.

When you use Spring Boot for Apache Geode, which builds Spring Data for Apache Geode, it makes
short work of enabling auth in both your clients and servers.

17.1.1. Auth for Servers

The easiest and most standard way to enable auth in the servers of your cluster is to simply define
one or more Apache Shiro Realms as beans in the Spring ApplicationContext.

Consider the following example:

Example 158. Declaring an Apache Shiro Realm

@Configuration
class ApacheGeodeSecurityConfiguration {

 @Bean
 DefaultLdapRealm ldapRealm() {
 return new DefaultLdapRealm();
 }

 // ...
}

When an Apache Shiro Realm (such as DefaultLdapRealm) is declared and registered in the Spring
ApplicationContext as a Spring bean, Spring Boot automatically detects this Realm bean (or Realm

140

guides/boot-security.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/boot/security
https://geode.apache.org/docs/guide/113/managing/security/authentication_overview.html
https://geode.apache.org/docs/guide/113/managing/security/authorization_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-security
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/SecurityManager.html
https://shiro.apache.org/
https://spring.io/projects/spring-security
https://shiro.apache.org/realm.html

beans if more than one is configured), and the servers in the Apache Geode cluster are
automatically configured with authentication and authorization enabled.

Alternatively, you can provide a custom, application-specific implementation of Apache Geode’s
SecurityManager interface, declared and registered as a bean in the Spring ApplicationContext:

Example 159. Declaring a custom Apache Geode SecurityManager

@Configuration
class ApacheGeodeSecurityConfiguration {

 @Bean
 CustomSecurityManager customSecurityManager() {
 return new CustomSecurityManager();
 }

 // ...
}

Spring Boot discovers your custom, application-specific SecurityManager implementation and
configures the servers in the Apache Geode cluster with authentication and authorization enabled.


The Spring team recommends that you use Apache Shiro to manage the
authentication and authorization of your servers over implementing Apache
Geode’s SecurityManager interface.

17.1.2. Auth for Clients

When servers in an Apache Geode cluster have been configured with authentication and
authorization enabled, clients must authenticate when connecting.

Spring Boot for Apache Geode makes this easy, regardless of whether you run your Spring Boot
ClientCache applications in a local, non-managed environment or run in a cloud-managed
environment.

Non-Managed Auth for Clients

To enable auth for clients that connect to a secure Apache Geode cluster, you need only set a
username and password in Spring Boot application.properties:

Example 160. Spring Boot application.properties for the client

Spring Boot client application.properties

spring.data.gemfire.security.username = jdoe
spring.data.gemfire.security.password = p@55w0rd

141

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/SecurityManager.html

Spring Boot for Apache Geode handles the rest.

Managed Auth for Clients

Enabling auth for clients that connect to a VMware Tanzu GemFire for VMs service instance (PCC)
in VMware Tanzu Application Service (TAS) (PCF) is even easier: You need do nothing.

If your Spring Boot application uses SBDG and is bound to PCC, when you deploy (that is, cf push)
your application to PCF, Spring Boot for Apache Geode extracts the required auth credentials from
the environment that you set up when you provisioned a PCC service instance in your PCF
organization and space. PCC automatically assigns two users with roles of cluster_operator and
developer, respectively, to any Spring Boot application bound to the PCC service instance.

By default, SBDG auto-configures your Spring Boot application to run with the user that has the
cluster_operator role. This ensures that your Spring Boot application has the necessary permission
(authorization) to perform all data access operations on the servers in the PCC cluster, including,
for example, pushing configuration metadata from the client to the servers in the PCC cluster.

See the Running Spring Boot applications as a specific user section in the Pivotal CloudFoundry
chapter for additional details on user authentication and authorization.

See the chapter (titled “Pivotal CloudFoundry”) for more general details.

See the Pivotal Cloud Cache documentation for security details when you use PCC and PCF.

17.2. Transport Layer Security using SSL
Securing data in motion is also essential to the integrity of your Spring [Boot] applications.

For instance, it would not do much good to send usernames and passwords over plain text socket
connections between your clients and servers nor to send other sensitive data over those same
connections.

Therefore, Apache Geode supports SSL between clients and servers, between JMX clients (such as
Gfsh) and the Manager, between HTTP clients when you use the Developer REST API or Pulse,
between peers in the cluster, and when you use the WAN Gateway to connect multiple sites
(clusters).

Spring Data for Apache Geode provides first-class support for configuring and enabling SSL as well.
Still, Spring Boot makes it even easier to configure and enable SSL, especially during development.

Apache Geode requires certain properties to be configured. These properties translate to the
appropriate javax.net.ssl.* properties required by the JRE to create secure socket connections by
using JSSE.

However, ensuring that you have set all the required SSL properties correctly is an error prone and
tedious task. Therefore, Spring Boot for Apache Geode applies some basic conventions for you.

You can create a trusted.keystore as a JKS-based KeyStore file and place it in one of three well-
known locations:

142

https://docs.pivotal.io/p-cloud-cache/1-13/security.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-ssl
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html

• In your application JAR file at the root of the classpath.

• In your Spring Boot application’s working directory.

• In your user home directory (as defined by the user.home Java System property).

When this file is named trusted.keystore and is placed in one of these three well-known locations,
Spring Boot for Apache Geode automatically configures your client to use SSL socket connections.

If you use Spring Boot to configure and bootstrap an Apache Geode server:

Example 161. Spring Boot configured and bootstrapped Apache Geode server

@SpringBootApplication
@CacheServerApplication
class SpringBootApacheGeodeCacheServerApplication {
 // ...
}

Then Spring Boot also applies the same procedure to enable SSL on the servers (between peers).



During development, it is convenient to not set a trusted.keystore password when
accessing the keys in the JKS file. However, it is highly recommended that you
secure the trusted.keystore file when deploying your application to a production
environment.

If your trusted.keystore file is secured with a password, you need to additionally specify the
following property:

Example 162. Accessing a secure trusted.keystore

Spring Boot application.properties

spring.data.gemfire.security.ssl.keystore.password=p@55w0rd!

You can also configure the location of the keystore and truststore files, if they are separate and have
not been placed in one of the default, well-known locations searched by Spring Boot:

143

Example 163. Accessing a secure trusted.keystore by location

Spring Boot application.properties

spring.data.gemfire.security.ssl.keystore =
/absolute/file/system/path/to/keystore.jks
spring.data.gemfire.security.ssl.keystore.password = keystorePassword
spring.data.gemfire.security.ssl.truststore =
/absolute/file/system/path/to/truststore.jks
spring.data.gemfire.security.ssl.truststore.password = truststorePassword

See the SDG EnableSsl annotation for all the configuration attributes and the corresponding
properties expressed in application.properties.

17.3. Securing Data at Rest
Currently, neither Apache Geode nor Spring Boot nor Spring Data for Apache Geode offer any
support for securing your data while at rest (for example, when your data has been overflowed or
persisted to disk).

To secure data at rest when using Apache Geode, with or without Spring, you must employ third-
party solutions, such as disk encryption, which is usually highly contextual and technology-specific.

For example, to secure data at rest when you use Amazon EC2, see Instance Store Encryption.

144

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/

Chapter 18. Testing
Spring Boot for Apache Geode (SBDG), with help from Spring Test for Apache Geode (STDG), offers
first-class support for both unit and integration testing with Apache Geode in your Spring Boot
applications.

 See the Spring Test for Apache Geode (STDG) documentation for more details.

18.1. Unit Testing
Unit testing with Apache Geode using mock objects in a Spring Boot Test requires only that you
declare the STDG @EnableGemFireMockObjects annotation in your test configuration:

145

https://github.com/spring-projects/spring-test-data-geode
https://github.com/spring-projects/spring-test-data-geode/#stdg-in-a-nutshell

Example 164. Unit Test with Apache Geode using Spring Boot

@SpringBootTest
@RunWith(SpringRunner.class)
public class SpringBootApacheGeodeUnitTest extends IntegrationTestsSupport {

 @Autowired
 private UserRepository userRepository;

 @Test
 public void saveAndFindUserIsSuccessful() {

 User jonDoe = User.as("jonDoe");

 assertThat(this.userRepository.save(jonDoe)).isNotNull();

 User jonDoeFoundById =
this.userRepository.findById(jonDoe.getName()).orElse(null);

 assertThat(jonDoeFoundById).isEqualTo(jonDoe);
 }

 @SpringBootApplication
 @EnableGemFireMockObjects
 @EnableEntityDefinedRegions(basePackageClasses = User.class)
 static class TestConfiguration { }

}

@Getter
@ToString
@EqualsAndHashCode
@RequiredArgsConstructor(staticName = "as")
@Region("Users")
class User {

 @Id
 @lombok.NonNull
 private String name;

}

interface UserRepository extends CrudRepository<User, String> { }

This test class is not a “pure” unit test, particularly since it bootstraps an actual Spring
ApplicationContext using Spring Boot. However, it does mock all Apache Geode objects, such as the
Users Region declared by the User application entity class, which was annotated with SDG’s @Region
mapping annotation.

146

This test class conveniently uses Spring Boot’s auto-configuration to auto-configure an Apache
Geode ClientCache instance. In addition, SDG’s @EnableEntityDefinedRegions annotation was used to
conveniently create the Apache Geode "Users` Region to store instances of User.

Finally, Spring Data’s Repository abstraction was used to conveniently perform basic CRUD (such as
save) and simple (OQL) query (such as findById) data access operations on the Users Region.

Even though the Apache Geode objects (such as the Users Region) are “mock objects”, you can still
perform many of the data access operations required by your Spring Boot application’s components
in an Apache Geode API-agnostic way — that is, by using Spring’s powerful programming model
and constructs.



By extending STDG’s
org.springframework.data.gemfire.tests.integration.IntegrationTestSupport class,
you ensure that all Apache Geode mock objects and resources are properly
released after the test class runs, thereby preventing any interference with
downstream tests.

While STDG tries to mock the functionality and behavior for many Region operations, it is not
pragmatic to mock them all. For example, it would not be practical to mock Region query operations
involving complex OQL statements that have sophisticated predicates.

If such functional testing is required, the test might be better suited as an integration test.
Alternatively, you can follow the advice in this section about unsupported Region operations.

In general, STDG provides the following capabilities when mocking Apache Geode objects:

• Mock Object Scope & Lifecycle Management

• Support for Mock Regions with Data

• Support for Mocking Region Callbacks

• Support for Mocking Unsupported Region Operations

 See the documentation on Unit Testing with STDG for more details.

18.2. Integration Testing
Integration testing with Apache Geode in a Spring Boot Test is as simple as not declaring STDG’s
@EnableGemFireMockObjects annotation in your test configuration. You may then want to use SBDG’s
@EnableClusterAware annotation to conditionally detect the presence of a Apache Geode cluster:

147

https://github.com/spring-projects/spring-test-data-geode/#mock-regions-with-data
https://github.com/spring-projects/spring-test-data-geode/#mocking-unsupported-region-operations
https://github.com/spring-projects/spring-test-data-geode#mock-object-scope—​lifecycle-management
https://github.com/spring-projects/spring-test-data-geode#mock-regions-with-data
https://github.com/spring-projects/spring-test-data-geode#mock-region-callbacks
https://github.com/spring-projects/spring-test-data-geode#mocking-unsupported-region-operations
https://github.com/spring-projects/spring-test-data-geode/#unit-testing-with-stdg

Example 165. Using @EnableClusterAware in test configuration

@SpringBootApplication
@EnableClusterAware
@EnableEntityDefinedRegions(basePackageClasses = User.class)
static class TestConfiguration { }

The SBDG @EnableClusterAware annotation conveniently toggles your auto-configured ClientCache
instance between local-only mode and client/server. It even pushes configuration metadata (such as
Region definitions) up to the servers in the cluster that are required by the application to store data.

In most cases, in addition to testing with “live” Apache Geode objects (such as Regions), we also
want to test in a client/server capacity. This unlocks the full capabilities of the Apache Geode data
management system in a Spring context and gets you as close as possible to production from the
comfort of your IDE.

Building on our example from the section on Unit Testing, you can modify the test to use “live”
Apache Geode objects in a client/server topology as follows:

148

Example 166. Integration Test with Apache Geode using Spring Boot

@ActiveProfiles("client")
@RunWith(SpringRunner.class)
@SpringBootTest(properties = "spring.data.gemfire.management.use-http=false")
public class SpringBootApacheGeodeIntegrationTest extends
ForkingClientServerIntegrationTestsSupport {

 @BeforeClass
 public static void startGeodeServer() throws IOException {
 startGemFireServer(TestGeodeServerConfiguration.class);
 }

 @Autowired
 private UserRepository userRepository;

 @Test
 public void saveAndFindUserIsSuccessful() {

 User jonDoe = User.as("jonDoe");

 assertThat(this.userRepository.save(jonDoe)).isNotNull();

 User jonDoeFoundById =
this.userRepository.findById(jonDoe.getName()).orElse(null);

 assertThat(jonDoeFoundById).isEqualTo(jonDoe);
 assertThat(jonDoeFoundById).isNotSameAs(jonDoe);
 }

 @SpringBootApplication
 @EnableClusterAware
 @EnableEntityDefinedRegions(basePackageClasses = User.class)
 @Profile("client")
 static class TestGeodeClientConfiguration { }

 @CacheServerApplication
 @Profile("server")
 static class TestGeodeServerConfiguration {

 public static void main(String[] args) {

 new SpringApplicationBuilder(TestGeodeServerConfiguration.class)
 .web(WebApplicationType.NONE)
 .profiles("server")
 .build()
 .run(args);
 }
 }
}

149

@Getter
@ToString
@EqualsAndHashCode
@RequiredArgsConstructor(staticName = "as")
@Region("Users")
class User {

 @Id
 @lombok.NonNull
 private String name;

}

interface UserRepository extends CrudRepository<User, String> { }

The application client/server-based integration test class extend STDG’s
org.springframework.data.gemfire.tests.integration.ForkingClientServerIntegrationTestsSupport
class. This ensures that all Apache Geode objects and resources are properly cleaned up after the
test class runs. In addition, it coordinates the client and server components of the test (for example
connecting the client to the server using a random port).

The Apache Geode server is started in a @BeforeClass setup method:

Start the Apache Geode server

class SpringBootApacheGeodeIntegrationTest extends
ForkingClientServerIntegrationTestsSupport {

 @BeforeClass
 public static void startGeodeServer() throws IOException {
 startGemFireServer(TestGeodeServerConfiguration.class);
 }
}

STDG lets you configure the Apache Geode server with Spring configuration, specified in the
TestGeodeServerConfiguration class. The Java class needs to provide a main method. It uses the
SpringApplicationBuilder to bootstrap the Apache Geode CacheServer application:

150

Example 167. Apache Geode server configuration

@CacheServerApplication
@Profile("server")
static class TestGeodeServerConfiguration {

 public static void main(String[] args) {

 new SpringApplicationBuilder(TestGeodeServerConfiguration.class)
 .web(WebApplicationType.NONE)
 .profiles("server")
 .build()
 .run(args);
 }
}

In this case, we provide minimal configuration, since the configuration is determined and pushed
up to the server by the client. For example, we do not need to explicitly create the Users Region on
the server since it is implicitly handled for you by the SBDG/STDG frameworks from the client.

We take advantage of Spring profiles in the test setup to distinguish between the client and server
configuration. Keep in mind that the test is the “client” in this arrangement.

The STDG framework does what the supporting class demands: “forking” the Spring Boot-based,
Apache Geode CacheServer application in a separate JVM process. Subsequently, the STDG
framework stops the server upon completion of the tests in the test class.

You are free to start your servers or cluster however you choose. STDG provides this capability as a
convenience for you, since it is a common concern.

This test class is simple. STDG can handle much more complex test scenarios.


Review SBDG’s test suite to witness the full power and functionality of the STDG
framework for yourself.

 See the documentation on Integration Testing with STDG for more details.

151

https://github.com/spring-projects/spring-test-data-geode/#integration-testing-with-stdg

Chapter 19. Apache Geode API Extensions
When using the Spring programming model and abstractions, it should not be necessary to use
Apache Geode APIs at all — for example, when using the Spring Cache Abstraction for caching or
the Spring Data Repository abstraction for DAO development. There are many more examples.

For certain use cases, users may require low level access to fine-grained functionally. Spring Boot
for Apache Geode’s org.springframework.geode:apache-geode-extensions module and library builds
on Apache Geode’s APIs by including several extensions with enhanced functionality to offer an
experience familiar to Spring users inside a Spring context.


Spring Data for Apache Geode (SDG) also includes additional extensions to Apache
Geode’s APIs.

19.1. SimpleCacheResolver
In some cases, it is necessary to acquire a reference to the cache instance in your application
components at runtime. For example, you might want to create a temporary Region on the fly to
aggregate data for analysis.

Typically, you already know the type of cache your application is using, since you must declare
your application to be either a client (ClientCache) in the client/server topology, or a peer member
or node (Cache) in the cluster on startup. This is expressed in configuration when creating the cache
instance required to interact with the Apache Geode data management system. In most cases, your
application will be a client. SBDG makes this decision easy, since it auto-configures a ClientCache
instance, by default.

In a Spring context, the cache instance created by the framework is a managed bean in the Spring
container. You can inject a reference to the Singleton cache bean into any other managed
application component:

Example 168. Autowired Cache Reference using Dependency Injection (DI)

@Service
class CacheMonitoringService {

 @Autowired
 ClientCache clientCache;

 // use the clientCache object reference to monitor the cache as necessary

}

However, in cases where your application component or class is not managed by Spring and you
need a reference to the cache instance at runtime, SBDG provides the abstract
org.springframework.geode.cache.SimpleCacheResolver class (see its Javadoc).

152

https://geode.apache.org/releases/latest/javadoc
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#apis
https://geode.apache.org/docs/guide/113/topologies_and_comm/cs_configuration/chapter_overview.html
https://geode.apache.org/docs/guide/113/topologies_and_comm/p2p_configuration/chapter_overview.html
https://geode.apache.org/docs/guide/113/topologies_and_comm/p2p_configuration/chapter_overview.html
https://en.wikipedia.org/wiki/Singleton_pattern
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/cache/SimpleCacheResolver.html

Example 169. SimpleCacheResolver API

package org.springframework.geode.cache;

abstract class SimpleCacheResolver {

 <T extends GemFireCache> T require() { }

 <T extends GemFireCache> Optional<T> resolve() { }

 Optional<ClientCache> resolveClientCache() { }

 Optional<Cache> resolvePeerCache() { }

}

SimpleCacheResolver adheres to SOLID OO Principles. This class is abstract and extensible so that
you can change the algorithm used to resolve client or peer cache instances as well as mock its
methods in unit tests.

Additionally, each method is precise. For example, resolveClientCache() resolves a reference to a
cache only if the cache instance is a “client.” If a cache exists but is a “peer” cache instance,
resolveClientCache() returns Optional.EMPTY. The behavior of resolvePeerCache() is similar.

require() returns a non-Optional reference to a cache instance and throws an
IllegalStateException if a cache is not present.

19.2. CacheUtils
Under the hood, SimpleCacheResolver delegates some of its functions to the CacheUtils abstract
utility class, which provides additional, convenient capabilities when you use a cache.

While there are utility methods to determine whether a cache instance (that is, a GemFireCache) or
Region is a client or a peer, one of the more useful functions is to extract all the values from a
Region.

To extract all the values stored in a Region, call CacheUtils.collectValues(:Region<?, T>). This
method returns a Collection<T> that contains all the values stored in the given Region. The method
is smart and knows how to handle the Region appropriately regardless of whether the Region is a
client or a peer. This distinction is important, since client PROXY Regions store no values.



Caution is advised when you get all values from a Region. While getting filtered
reference values from a non-transactional, reference data only [REPLICATE] Region
is quite useful, getting all values from a transactional, [PARTITION] Region can prove
quite detrimental, especially in production. Getting all values from a Region can be
useful during testing.

153

https://en.wikipedia.org/wiki/SOLID
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/util/CacheUtils.html

19.3. MembershipListenerAdapter and MembershipEvent
Another useful API hidden by Apache Geode is the membership events and listener interface. This
API is especially useful on the server side when your Spring Boot application serves as a peer
member of an Apache Geode distributed system.

When a peer member is disconnected from the distributed system, perhaps due to a network
failure, the member is forcibly removed from the cluster. This node immediately enters a
reconnecting state, trying to establish a connection back to the cluster. Once reconnected, the peer
member must rebuild all cache objects (Cache, Region instances, Index instances, DiskStore instances,
and so on). All previous cache objects are now invalid, and their references are stale.

In a Spring context, this is particularly problematic since most Apache Geode objects are Singleton
beans declared in and managed by the Spring container. Those beans may be injected and used in
other framework and application components. For instance, Region instances are injected into
SDG’s GemfireTemplate, Spring Data Repositories and possibly application-specific data access
objects (DAOs).

If references to those cache objects become stale on a forced disconnect event, there is no way to
auto-wire fresh object references into the dependent application or framework components when
the peer member is reconnected, unless the Spring ApplicationContext is “refreshed”. In fact, there
is no way to even know that this event has occurred, since the Apache Geode MembershipListener
API and corresponding events are “internal”.



The Spring team explored the idea of creating proxies for all types of cache objects
(Cache, Region, Index, DiskStore, AsyncEventQueue, GatewayReceiver, GatewaySender,
and others) used by Spring. The proxies would know how to obtain a fresh
reference on a reconnect event. However, this turns out to be more problematic
than it is worth. It is easier to “refresh” the Spring ApplicationContext, although
doing so is no less expensive. Neither way is ideal. See SGF-921 and SGF-227 for
further details.

In the case where membership events are useful to the Spring Boot application, SBDG provides the
following API:

• MembershipListenerAdapter

• MembershipEvent

The abstract MembershipListenerAdapter class implements Apache Geode’s
org.apache.geode.distributed.internal.MembershipListener interface to simplify the event handler
method signatures by using an appropriate MembershipEvent type to encapsulate the actors in the
event.

The abstract MembershipEvent class is further subclassed to represent specific membership event
types that occur within the Apache Geode system:

• MemberDepartedEvent

• MemberJoinedEvent

154

https://en.wikipedia.org/wiki/Data_access_object
https://jira.spring.io/browse/SGF-921
https://jira.spring.io/browse/SGF-227
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/package-frame.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/MembershipListenerAdapter.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/MembershipEvent.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/support/MemberDepartedEvent.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/support/MemberJoinedEvent.html

• MemberSuspectEvent

• QuorumLostEvent

The API is depicted in the following UML diagram:

The membership event type is further categorized with an appropriate enumerated value,
MembershipEvent.Type, as a property of the MembershipEvent itself (see getType()).

The type hierarchy is useful in instanceof expressions, while the Enum is useful in switch statements.

You can see one particular implementation of the MembershipListenerAdapter with the
ApplicationContextMembershipListener class, which does exactly as we described earlier, handling
forced-disconnect/auto-reconnect membership events inside a Spring container in order to refresh
the Spring ApplicationContext.

19.4. PDX
Apache Geode’s PDX serialization framework is yet another API that falls short of a complete stack.

For instance, there is no easy or direct way to serialize an object as PDX bytes. It is also not possible
to modify an existing PdxInstance by adding or removing fields, since doing so would require a new
PDX type. In this case, you must create a new PdxInstance and copy from an existing PdxInstance.
Unfortunately, the Apache Geode API offers no help in this regard. It is also not possible to use PDX
in a client, local-only mode without a server, since the PDX type registry is only available and
managed on servers in a cluster.

19.4.1. PdxInstanceBuilder

In such cases, SBDG conveniently provides the PdxInstanceBuilder class, appropriately named after
the Builder software design pattern. The PdxInstanceBuilder also offers a fluent API for constructing

155

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/support/MemberSuspectEvent.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/support/QuorumLostEvent.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/MembershipEvent.Type.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/MembershipEvent.html#getType--
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/distributed/event/ApplicationContextMembershipListener.html
https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/pdx/PdxInstanceBuilder.html
https://en.wikipedia.org/wiki/Builder_pattern

PdxInstances:

Example 170. PdxInstanceBuilder API

class PdxInstanceBuilder {

 PdxInstanceFactory copy(PdxInstance pdx);

 Factory from(Object target);

}

For example, you could serialize an application domain object as PDX bytes with the following code:

Example 171. Serializing an Object to PDX

@Component
class CustomerSerializer {

 PdxInstance serialize(Customer customer) {

 return PdxInstanceBuilder.create()
 .from(customer)
 .create();
 }
}

You could then modify the PdxInstance by copying from the original:

156

Example 172. Copy PdxInstance

@Component
class CustomerDecorator {

 @Autowired
 CustomerSerializer serializer;

 PdxIntance decorate(Customer customer) {

 PdxInstance pdxCustomer = serializer.serialize(customer);

 return PdxInstanceBuilder.create()
 .copy(pdxCustomer)
 .writeBoolean("vip", isImportant(customer))
 .create();
 }
}

19.4.2. PdxInstanceWrapper

SBDG also provides the PdxInstanceWrapper class to wrap an existing PdxInstance in order to provide
more control during the conversion from PDX to JSON and from JSON back into a POJO. Specifically,
the wrapper gives you more control over the configuration of Jackson’s ObjectMapper.

The ObjectMapper constructed by Apache Geode’s own PdxInstance implementation (
PdxInstanceImpl) is not configurable, nor was it configured correctly. Unfortunately, since
PdxInstance is not extensible, the getObject() method fails when converting the JSON generated
from PDX back into a POJO for any practical application domain model type.

The following example wraps an existing PdxInstance:

Example 173. Wrapping an existing PdxInstance

PdxInstanceWrapper wrapper = PdxInstanceWrapper.from(pdxInstance);

For all operations on PdxInstance except getObject(), the wrapper delegates to the underlying
PdxInstance method implementation called by the user.

In addition to the decorated getObject() method, the PdxInstanceWrapper provides a thorough
implementation of the toString() method. The state of the PdxInstance is output in a JSON-like
String.

Finally, the PdxInstanceWrapper class adds a getIdentifier() method. Rather than put the burden on
the user to have to iterate the field names of the PdxInstance to determine whether a field is the
identity field and then call getField(name) with the field name to get the ID (value) — assuming an

157

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/pdx/PdxInstanceWrapper.html

identity field was marked in the first place — the PdxInstanceWrapper class provides the
getIdentifier() method to return the ID of the PdxInstance directly.

The getIdentifier() method is smart in that it first iterates the fields of the PdxInstance, asking each
field if it is the identity field. If no field was marked as the identity field, the algorithm searches for
a field named id. If no field with the name id exists, the algorithm searches for a metadata field
called @identifier, which refers to the field that is the identity field of the PdxInstance.

The @identifier metadata field is useful in cases where the PdxInstance originated from JSON and
the application domain object uses a natural identifier, rather than a surrogate ID, such as
Book.isbn.


Apache Geode’s JSONFormatter class is not capable of marking the identity field of a
PdxInstance originating from JSON.



It is not currently possible to implement the PdxInstance interface and store
instances of this type as a value in a Region. Apache Geode assumes all PdxInstance
objects are an implementation created by Apache Geode itself (that is,
PdxInstanceImpl), which has a tight coupling to the PDX type registry. An Exception
is thrown if you try to store instances of your own PdxInstance implementation.

19.4.3. ObjectPdxInstanceAdapter

In rare cases, you may need to treat an Object as a PdxInstance, depending on the context without
incurring the overhead of serializing an Object to PDX. For such cases, SBDG offers the
ObjectPdxInstanceAdapter class.

This might be true when calling a method with a parameter expecting an argument of, or returning
an instance of, type PdxInstance, particularly when Apache Geode’s read-serialized PDX
configuration property is set to true and only an object is available in the current context.

Under the hood, SBDG’s ObjectPdxInstanceAdapter class uses Spring’s BeanWrapper class along with
Java’s introspection and reflection functionality to adapt the given Object and access it with the full
PdxInstance API. This includes the use of the WritablePdxInstance API, obtained from
PdxInstance.createWriter(), to modify the underlying Object as well.

Like the PdxInstanceWrapper class, ObjectPdxInstanceAdapter contains special logic to resolve the
identity field and ID of the PdxInstance, including consideration for Spring Data’s @Id mapping
annotation, which can be introspected in this case, given that the underlying Object backing the
PdxInstance is a POJO.

The ObjectPdxInstanceAdapter.getObject() method returns the wrapped Object used to construct the
ObjectPdxInstanceAdapter and is, therefore, automatically deserializable, as determined by the
PdxInstance.isDeseriable() method, which always returns true.

You can adapt any Object as a PdxInstance:

158

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/BeanWrapper.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxInstance.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/WritablePdxInstance.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxInstance.html#createWriter--
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/annotation/Id.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxInstance.html#isDeserializable--

Example 174. Adapt an Object as a PdxInstance

class OfflineObjectToPdxInstanceConverter {

 @NonNull PdxInstance convert(@NonNull Object target) {
 return ObjectPdxInstanceAdapter.from(target);
 }
}

Once the Adapter is created, you can use it to access data on the underlying Object.

Consider the following example of a Customer class:

Example 175. Customer class

@Region("Customers")
class Customer {

 @Id
 private Long id;

 String name;

 // constructors, getters and setters omitted

}

Then you can access an instance of Customer by using the PdxInstance API:

159

https://en.wikipedia.org/wiki/Adapter_pattern

Example 176. Accessing an Object using the PdxInstance API

class ObjectPdxInstanceAdapterTest {

 @Test
 public void getAndSetObjectProperties() {

 Customer jonDoe = new Customer(1L, "Jon Doe");

 PdxInstance adapter = ObjectPdxInstanceAdapter.from(jonDoe);

 assertThat(jonDoe.getName()).isEqualTo("Jon Doe");
 assertThat(adapter.getField("name")).isEqualTo("Jon Doe");

 adapter.createWriter().setField("name", "Jane Doe");

 assertThat(adapter.getField("name")).isEqualTo("Jane Doe");
 assertThat(jonDoe.getName()).isEqualTo("Jane Doe");
 }
}

19.5. Security
For testing purposes, SBDG provides a test implementation of Apache Geode’s SecurityManager
interface, which expects the password to match the username (case-sensitive) when authenticating.

By default, all operations are authorized.

To match the expectations of SBDG’s TestSecurityManager, SBDG additionally provides a test
implementation of Apache Geode’s AuthInitialize interface, which supplies matching credentials
for both the username and password.

160

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/SecurityManager.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/AuthInitialize.html

Chapter 20. Spring Boot Actuator
Spring Boot for Apache Geode (SBDG) adds Spring Boot Actuator support and dedicated
HealthIndicators for Apache Geode. Equally, the provided HealthIndicators even work with Tanzu
Cache (which is backed by VMware Tanzu GemFire) when you push your Spring Boot applications
using Apache Geode to {VMware Tanzu Application Service (TAS)} platform.

Spring Boot HealthIndicators provide details about the runtime operation and behavior of your
Apache Geode-based Spring Boot applications. For instance, by querying the right HealthIndicator
endpoint, you can get the current hit/miss count for your Region.get(key) data access operations.

In addition to vital health information, SBDG provides basic, pre-runtime configuration metadata
about the Apache Geode components that are monitored by Spring Boot Actuator. This makes it
easier to see how the application was configured all in one place, rather than in properties files,
Spring configuration, XML, and so on.

The provided Spring Boot HealthIndicators fall into three categories:

• Base HealthIndicators that apply to all Apache Geode, Spring Boot applications, regardless of
cache type, such as Regions, Indexes, and DiskStores.

• Peer Cache-based HealthIndicators that apply only to peer Cache applications, such as
AsyncEventQueues, CacheServers, GatewayReceivers, and GatewaySenders.

• ClientCache-based HealthIndicators that apply only to ClientCache applications, such as
ContinuousQuery and connection Pools.

The following sections give a brief overview of all the available Spring Boot HealthIndicators
provided for Apache Geode.


See the corresponding sample guide and code to see Spring Boot Actuator for
Apache Geode in action.

20.1. Base HealthIndicators
This section covers Spring Boot HealthIndicators that apply to both Apache Geode peer Cache and
ClientCache, Spring Boot applications. That is, these HealthIndicators are not specific to the cache
type.

In Apache Geode, the cache instance is either a peer Cache instance (which makes your Spring Boot
application part of a Apache Geode cluster) or, more commonly, a ClientCache instance (which talks
to an existing cluster). Your Spring Boot application can only be one cache type or the other and can
only have a single instance of that cache type.

20.1.1. GeodeCacheHealthIndicator

GeodeCacheHealthIndicator provides essential details about the (single) cache instance (client or
peer) and the underlying DistributedSystem, the DistributedMember and configuration details of the
ResourceManager.

161

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready.html
guides/boot-actuator.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/boot/actuator

When your Spring Boot application creates an instance of a peer Cache, the DistributedMember object
represents your application as a peer member or node of the DistributedSystem. The distributed
system (that is, the cluster) is formed from a collection of connected peers, to which your
application also has access — indirectly, through the cache instance.

This is no different for a ClientCache even though the client is technically not part of the peer/server
cluster. However, it still creates instances of the DistributedSystem and DistributedMember objects,
respectively.

Each object has the following configuration metadata and health details:

Table 1. Cache Details

Name Description

geode.cache.name Name of the member in the distributed system.

geode.cache.closed Determines whether the cache has been closed.

geode.cache.cancel-
in-progress

Indicates whether cancellation of operations is in progress.

Table 2. DistributedMember Details

Name Description

geode.distributed-
member.id

DistributedMember identifier (used in logs internally).

geode.distributed-
member.name

Name of the member in the distributed system.

geode.distributed-
members.groups

Configured groups to which the member belongs.

geode.distributed-
members.host

Name of the machine on which the member is running.

geode.distributed-
members.process-

id

Identifier of the JVM process (PID).

Table 3. DistributedSystem Details

Name Description

geode.distributed-
system.connected

Indicates whether the member is currently connected to the cluster.

geode.distributed-
system.member-

count

Total number of members in the cluster (1 for clients).

geode.distributed-
system.reconnectin

g

Indicates whether the member is in a reconnecting state, which
happens when a network partition occurs and the member gets
disconnected from the cluster.

162

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Cache.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/distributed/DistributedMember.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/distributed/DistributedSystem.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/GemFireCache.html#getDistributedSystem--

Name Description

geode.distributed-
system.properties-

location

Location of the standard configuration properties.

geode.distributed-
system.security-

properties-location

Location of the security configuration properties.

Table 4. ResourceManager Details

Name Description

geode.resource-
manager.critical-
heap-percentage

Percentage of heap at which the cache is in danger of becoming
inoperable.

geode.resource-
manager.critical-

off-heap-
percentage

Percentage of off-heap at which the cache is in danger of becoming
inoperable.

geode.resource-
manager.eviction-
heap-percentage

Percentage of heap at which eviction begins on Regions configured
with a heap LRU eviction policy.

geode.resource-
manager.eviction-

off-heap-
percentage

Percentage of off-heap at which eviction begins on Regions
configured with a heap LRU eviction policy.

20.1.2. GeodeRegionsHealthIndicator

GeodeRegionsHealthIndicator provides details about all the configured and known Regions in the
cache. If the cache is a client, details include all LOCAL, PROXY, and CACHING_PROXY Regions. If the cache
is a peer then details include all LOCAL, PARTITION, and REPLICATE Region instances.

The following table describes the essential details and basic performance metrics:

Table 5. Region Details

Name Description

geode.cache.region
s.<name>.cloning-

enabled

Whether Region values are cloned on read (for example, cloning-
enabled is true when cache transactions are used to prevent in-place
modifications).

geode.cache.region
s.<name>.data-

policy

Policy used to manage data in the Region (PARTITION, REPLICATE, and
others).

163

https://geode.apache.org/docs/guide/113/topics/gemfire_properties.html
https://geode.apache.org/docs/guide/113/topics/gemfire_properties.html

Name Description

geode.cache.region
s.<name>.initial-

capacity

Initial number of entries that can be held by a Region before it
needs to be resized.

geode.cache.region
s.<name>.load-

factor

Load factor used to determine when to resize the Region when it
nears capacity.

geode.cache.region
s.<name>.key-

constraint

Type constraint for Region keys.

geode.cache.region
s.<name>.off-heap

Determines whether this Region stores values in off-heap memory
(NOTE: Keys are always kept on the JVM heap).

geode.cache.region
s.<name>.pool-

name

If this Region is a client Region, this property determines the
configured connection Pool. (NOTE: Regions can have and use
dedicated Pools for their data access operations.)

geode.cache.region
s.<name>.pool-

name

Determines the Scope of the Region, which plays a factor in the
Region’s consistency-level, as it pertains to acknowledgements for
writes.

geode.cache.region
s.<name>.value-

constraint

Type constraint for Region values.

The following details also apply when the Region is a peer Cache PARTITION Region:

Table 6. Partition Region Details

Name Description

geode.cache.region
s.<name>.partition.

collocated-with

Indicates whether this Region is collocated with another PARTITION
Region, which is necessary when performing equi-joins queries
(NOTE: distributed joins are not supported).

geode.cache.region
s.<name>.partition.
local-max-memory

Total amount of heap memory allowed to be used by this Region on
this node.

geode.cache.region
s.<name>.partition.
redundant-copies

Number of replicas for this PARTITION Region, which is useful in
high availability (HA) use cases.

geode.cache.region
s.<name>.partition.
total-max-memory

Total amount of heap memory allowed to be used by this Region
across all nodes in the cluster hosting this Region.

geode.cache.region
s.<name>.partition.

total-number-of-
buckets

Total number of buckets (shards) into which this Region is divided
(defaults to 113).

164

Finally, when statistics are enabled (for example, when you use @EnableStatistics — (see doc for
more details), the following metadata is available:

Table 7. Region Statistic Details

Name Description

geode.cache.region
s.<name>.statistics.

hit-count

Number of hits for a region entry.

geode.cache.region
s.<name>.statistics.

hit-ratio

Ratio of hits to the number of Region.get(key) calls.

geode.cache.region
s.<name>.statistics.
last-accessed-time

For an entry, indicates the last time it was accessed with
Region.get(key).

geode.cache.region
s.<name>.statistics.
last-modified-time

For an entry, indicates the time when a Region’s entry value was
last modified.

geode.cache.region
s.<name>.statistics.

miss-count

Returns the number of times that a Region.get was performed and
no value was found locally.

20.1.3. GeodeIndexesHealthIndicator

GeodeIndexesHealthIndicator provides details about the configured Region Indexes used by OQL
query data access operations.

The following details are covered:

Table 8. Index Details

Name Description

geode.index.<name
>.from-clause

Region from which data is selected.

geode.index.<name
>.indexed-
expression

Region value fields and properties used in the Index expression.

geode.index.<name
>.projection-

attributes

For Map Indexes, returns either or the specific Map keys that were
indexed. For all other Indexes, returns .

geode.index.<name
>.region

Region to which the Index is applied.

Additionally, when statistics are enabled (for example, when you use @EnableStatistics — see
Configuring Statistics for more details), the following metadata is available:

165

https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-statistics
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-statistics

Table 9. Index Statistic Details

Name Description

geode.index.<name
>.statistics.number-
of-bucket-indexes

Number of bucket Indexes created in a PARTITION Region.

geode.index.<name
>.statistics.number-

of-keys

Number of keys in this Index.

geode.index.<name
>.statistics.number-

of-map-indexed-
keys

Number of keys in this Index at the highest level.

geode.index.<name
>.statistics.number-

of-values

Number of values in this Index.

geode.index.<name
>.statistics.number-

of-updates

Number of times this Index has been updated.

geode.index.<name
>.statistics.read-

lock-count

Number of read locks taken on this Index.

geode.index.<name
>.statistics.total-

update-time

Total amount of time (ns) spent updating this Index.

geode.index.<name
>.statistics.total-

uses

Total number of times this Index has been accessed by an OQL
query.

20.1.4. GeodeDiskStoresHealthIndicator

The GeodeDiskStoresHealthIndicator provides details about the configured DiskStores in the system
or application. Remember, DiskStores are used to overflow and persist data to disk, including type
metadata tracked by PDX when the values in the Regions have been serialized with PDX and the
Regions are persistent.

Most of the tracked health information pertains to configuration:

Table 10. DiskStore Details

Name Description

geode.disk-
store.<name>.allow
-force-compaction

Indicates whether manual compaction of the DiskStore is allowed.

166

Name Description

geode.disk-
store.<name>.auto-

compact

Indicates whether compaction occurs automatically.

geode.disk-
store.<name>.comp

action-threshold

Percentage at which the oplog becomes compactible.

geode.disk-
store.<name>.disk-

directories

Location of the oplog disk files.

geode.disk-
store.<name>.disk-

directory-sizes

Configured and allowed sizes (MB) for the disk directory that stores
the disk files.

geode.disk-
store.<name>.disk-

usage-critical-
percentage

Critical threshold of disk usage proportional to the total disk
volume.

geode.disk-
store.<name>.disk-

usage-warning-
percentage

Warning threshold of disk usage proportional to the total disk
volume.

geode.disk-
store.<name>.max-

oplog-size

Maximum size (MB) allowed for a single oplog file.

geode.disk-
store.<name>.queu

e-size

Size of the queue used to batch writes that are flushed to disk.

geode.disk-
store.<name>.time-

interval

Time to wait (ms) before writes are flushed to disk from the queue
if the size limit has not be reached.

geode.disk-
store.<name>.uuid

Universally unique identifier for the DiskStore across a distributed
system.

geode.disk-
store.<name>.write

-buffer-size

Size the of write buffer the DiskStore uses to write data to disk.

20.2. ClientCache HealthIndicators
The ClientCache-based HealthIndicators provide additional details specifically for Spring Boot,
cache client applications. These HealthIndicators are available only when the Spring Boot
application creates a ClientCache instance (that is, the application is a cache client), which is the
default.

167

20.2.1. GeodeContinuousQueriesHealthIndicator

GeodeContinuousQueriesHealthIndicator provides details about registered client Continuous Queries
(CQs). CQs let client applications receive automatic notification about events that satisfy some
criteria. That criteria can be easily expressed by using the predicate of an OQL query (for example,
SELECT * FROM /Customers c WHERE c.age > 21). When data is inserted or updated and the data
matches the criteria specified in the OQL query predicate (data of interests), an event is sent to the
registered client.

The following details are covered for CQs by name:

Table 11. Continuous Query (CQ) Details

Name Description

geode.continuous-
query.<name>.oql-

query-string

OQL query constituting the CQ.

geode.continuous-
query.<name>.clos

ed

Indicates whether the CQ has been closed.

geode.continuous-
query.<name>.closi

ng

Indicates whether the CQ is in the process of closing.

geode.continuous-
query.<name>.dur

able

Indicates whether the CQ events are remembered between client
sessions.

geode.continuous-
query.<name>.run

ning

Indicates whether the CQ is currently running.

geode.continuous-
query.<name>.stop

ped

Indicates whether the CQ has been stopped.

In addition, the following CQ query and statistical data is covered:

Table 12. Continuous Query (CQ), Query Details

Name Description

geode.continuous-
query.<name>.quer

y.number-of-
executions

Total number of times the query has been executed.

geode.continuous-
query.<name>.quer

y.total-execution-
time

Total amount of time (ns) spent executing the query.

168

Table 13. Continuous Query(CQ), Statistic Details

Name Description

geode.continuous-
query.<name>.stati

stics.number-of-
deletes

Number of delete events qualified by this CQ.

geode.continuous-
query.<name>.stati

stics.number-of-
events

Total number of events qualified by this CQ.

geode.continuous-
query.<name>.stati

stics.number-of-
inserts

Number of insert events qualified by this CQ.

geode.continuous-
query.<name>.stati

stics.number-of-
updates

Number of update events qualified by this CQ.

The Apache Geode Continuous Query system is also tracked with the following additional details on
the client:

Table 14. Continuous Query (CQ), Additional Statistic Details

Name Description

geode.continuous-
query.count

Total count of CQs.

geode.continuous-
query.number-of-

active

Number of currently active CQs (if available).

geode.continuous-
query.number-of-

closed

Total number of closed CQs (if available).

geode.continuous-
query.number-of-

created

Total number of created CQs (if available).

geode.continuous-
query.number-of-

stopped

Number of currently stopped CQs (if available).

geode.continuous-
query.number-on-

client

Number of CQs that are currently active or stopped (if available).

169

20.2.2. GeodePoolsHealthIndicator

GeodePoolsHealthIndicator provides details about all the configured client connection Pools. This
HealthIndicator primarily provides configuration metadata for all the configured Pools.

The following details are covered:

Table 15. Pool Details

Name Description

geode.pool.count Total number of client connection pools.

geode.pool.<name>
.destroyed

Indicates whether the pool has been destroyed.

geode.pool.<name>
.free-connection-

timeout

Configured amount of time to wait for a free connection from the
Pool.

geode.pool.<name>
.idle-timeout

The amount of time to wait before closing unused, idle connections,
not exceeding the configured number of minimum required
connections.

geode.pool.<name>
.load-conditioning-

interval

How frequently the Pool checks to see whether a connection to a
given server should be moved to a different server to improve the
load balance.

geode.pool.<name>
.locators

List of configured Locators.

geode.pool.<name>
.max-connections

Maximum number of connections obtainable from the Pool.

geode.pool.<name>
.min-connections

Minimum number of connections contained by the Pool.

geode.pool.<name>
.multi-user-

authentication

Determines whether the Pool can be used by multiple authenticated
users.

geode.pool.<name>
.online-locators

Returns a list of living Locators.

geode.pool.<name>
.pending-event-

count

Approximate number of pending subscription events maintained at
the server for this durable client Pool at the time it (re)connected to
the server.

geode.pool.<name>
.ping-interval

How often to ping the servers to verify they are still alive.

geode.pool.<name>
.pr-single-hop-

enabled

Whether the client acquires a direct connection to the server.

170

Name Description

geode.pool.<name>
.read-timeout

Number of milliseconds to wait for a response from a server before
timing out the operation and trying another server (if any are
available).

geode.pool.<name>
.retry-attempts

Number of times to retry a request after a timeout or an exception.

geode.pool.<name>
.server-group

All servers must belong to the same group, and this value sets the
name of that group.

geode.pool.<name>
.servers

List of configured servers.

geode.pool.<name>
.socket-buffer-size

Socket buffer size for each connection made in this pool.

geode.pool.<name>
.statistic-interval

How often to send client statistics to the server.

geode.pool.<name>
.subscription-ack-

interval

Interval in milliseconds to wait before sending acknowledgements
to the cache server for events received from the server
subscriptions.

geode.pool.<name>
.subscription-

enabled

Enabled server-to-client subscriptions.

geode.pool.<name>
.subscription-

message-tracking-
timeout

Time-to-Live (TTL) period (ms) for subscription events the client has
received from the server.

geode.pool.<name>
.subscription-
redundancy

Redundancy level for this Pool’s server-to-client subscriptions,
which is used to ensure clients do not miss potentially important
events.

geode.pool.<name>
.thread-local-
connections

Thread local connection policy for this Pool.

20.3. Peer Cache HealthIndicators
The peer Cache-based HealthIndicators provide additional details specifically for Spring Boot peer
cache member applications. These HealthIndicators are available only when the Spring Boot
application creates a peer Cache instance.


The default cache instance created by Spring Boot for Apache Geode is a
ClientCache instance.

171



To control what type of cache instance is created, such as a “peer”, you can
explicitly declare either the @PeerCacheApplication or, alternatively, the
@CacheServerApplication annotation on your @SpringBootApplication-annotated
class.

20.3.1. GeodeCacheServersHealthIndicator

The GeodeCacheServersHealthIndicator provides details about the configured Apache Geode
CacheServer instances. CacheServer instances are required to enable clients to connect to the servers
in the cluster.

This HealthIndicator captures basic configuration metadata and the runtime behavior and
characteristics of the configured CacheServer instances:

Table 16. CacheServer Details

Name Description

geode.cache.server.
count

Total number of configured CacheServer instances on this peer
member.

geode.cache.server.
<index>.bind-

address

IP address of the NIC to which the CacheServer ServerSocket is
bound (useful when the system contains multiple NICs).

geode.cache.server.
<index>.hostname-

for-clients

Name of the host used by clients to connect to the CacheServer
(useful with DNS).

geode.cache.server.
<index>.load-poll-

interval

How often (ms) to query the load probe on the CacheServer.

geode.cache.server.
<index>.max-
connections

Maximum number of connections allowed to this CacheServer.

geode.cache.server.
<index>.max-

message-count

Maximum number of messages that can be put in a client queue.

geode.cache.server.
<index>.max-

threads

Maximum number of threads allowed in this CacheServer to service
client requests.

geode.cache.server.
<index>.max-time-

between-pings

Maximum time between client pings.

geode.cache.server.
<index>.message-

time-to-live

Time (seconds) in which the client queue expires.

172

Name Description

geode.cache.server.
<index>.port

Network port to which the CacheServer ServerSocket is bound and
on which it listens for client connections.

geode.cache.server.
<index>.running

Determines whether this CacheServer is currently running and
accepting client connections.

geode.cache.server.
<index>.socket-

buffer-size

Configured buffer size of the socket connection used by this
CacheServer.

geode.cache.server.
<index>.tcp-no-

delay

Configures the TCP/IP TCP_NO_DELAY setting on outgoing sockets.

In addition to the configuration settings shown in the preceding table, the ServerLoadProbe of the
CacheServer tracks additional details about the runtime characteristics of the CacheServer:

Table 17. CacheServer Metrics and Load Details

Name Description

geode.cache.server.
<index>.load.conne

ction-load

Load on the server due to client-to-server connections.

geode.cache.server.
<index>.load.load-

per-connection

Estimate of how much load each new connection adds to this
server.

geode.cache.server.
<index>.load.subsc
ription-connection-

load

Load on the server due to subscription connections.

geode.cache.server.
<index>.load.load-
per-subscription-

connection

Estimate of how much load each new subscriber adds to this server.

geode.cache.server.
<index>.metrics.cli

ent-count

Number of connected clients.

geode.cache.server.
<index>.metrics.ma
x-connection-count

Maximum number of connections made to this CacheServer.

geode.cache.server.
<index>.metrics.op

en-connection-
count

Number of open connections to this CacheServer.

173

Name Description

geode.cache.server.
<index>.metrics.su

bscription-
connection-count

Number of subscription connections to this CacheServer.

20.3.2. GeodeAsyncEventQueuesHealthIndicator

GeodeAsyncEventQueuesHealthIndicator provides details about the configured AsyncEventQueues. AEQs
can be attached to Regions to configure asynchronous write-behind behavior.

This HealthIndicator captures configuration metadata and runtime characteristics for all AEQs:

Table 18. AsyncEventQueue Details

Name Description

geode.async-event-
queue.count

Total number of configured AEQs.

geode.async-event-
queue.<id>.batch-
conflation-enabled

Indicates whether batch events are conflated when sent.

geode.async-event-
queue.<id>.batch-

size

Size of the batch that gets delivered over this AEQ.

geode.async-event-
queue.<id>.batch-

time-interval

Maximum time interval that can elapse before a batch is sent.

geode.async-event-
queue.<id>.disk-

store-name

Name of the disk store used to overflow and persist events.

geode.async-event-
queue.<id>.disk-

synchronous

Indicates whether disk writes are synchronous or asynchronous.

geode.async-event-
queue.<id>.dispatc

her-threads

Number of threads used to dispatch events.

geode.async-event-
queue.<id>.forwar

d-expiration-
destroy

Indicates whether expiration destroy operations are forwarded to
AsyncEventListener.

geode.async-event-
queue.<id>.max-
queue-memory

Maximum memory used before data needs to be overflowed to disk.

174

Name Description

geode.async-event-
queue.<id>.order-

policy

Order policy followed while dispatching the events to
AsyncEventListeners.

geode.async-event-
queue.<id>.parallel

Indicates whether this queue is parallel (higher throughput) or
serial.

geode.async-event-
queue.<id>.persiste

nt

Indicates whether this queue stores events to disk.

geode.async-event-
queue.<id>.primar

y

Indicates whether this queue is primary or secondary.

geode.async-event-
queue.<id>.size

Number of entries in this queue.

20.3.3. GeodeGatewayReceiversHealthIndicator

GeodeGatewayReceiversHealthIndicator provides details about the configured (WAN)
GatewayReceivers, which are capable of receiving events from remote clusters when using Apache
Geode’s multi-site, WAN topology.

This HealthIndicator captures configuration metadata along with the running state for each
GatewayReceiver:

Table 19. GatewayReceiver Details

Name Description

geode.gateway-
receiver.count

Total number of configured GatewayReceiver instances.

geode.gateway-
receiver.<index>.bi

nd-address

IP address of the NIC to which the GatewayReceiver ServerSocket is
bound (useful when the system contains multiple NICs).

geode.gateway-
receiver.<index>.e

nd-port

End value of the port range from which the port of the
GatewayReceiver is chosen.

geode.gateway-
receiver.<index>.h

ost

IP address or hostname that Locators tell clients (that is,
GatewaySender instances) on which this GatewayReceiver listens.

geode.gateway-
receiver.<index>.m
ax-time-between-

pings

Maximum amount of time between client pings.

175

https://geode.apache.org/docs/guide/113/topologies_and_comm/multi_site_configuration/chapter_overview.html

Name Description

geode.gateway-
receiver.<index>.p

ort

Port on which this GatewayReceiver listens for clients (that is,
GatewaySender instances).

geode.gateway-
receiver.<index>.ru

nning

Indicates whether this GatewayReceiver is running and accepting
client connections (from GatewaySender instances).

geode.gateway-
receiver.<index>.so

cket-buffer-size

Configured buffer size for the socket connections used by this
GatewayReceiver.

geode.gateway-
receiver.<index>.st

art-port

Start value of the port range from which the port of the
GatewayReceiver is chosen.

20.3.4. GeodeGatewaySendersHealthIndicator

The GeodeGatewaySendersHealthIndicator provides details about the configured GatewaySenders.
GatewaySender instances are attached to Regions in order to send Region events to remote clusters in
Apache Geode’s multi-site, WAN topology.

This HealthIndicator captures essential configuration metadata and runtime characteristics for
each GatewaySender:

Table 20. GatewaySender Details

Name Description

geode.gateway-
sender.count

Total number of configured GatewaySender instances.

geode.gateway-
sender.<id>.alert-

threshold

Alert threshold (ms) for entries in this GatewaySender instances
queue.

geode.gateway-
sender.<id>.batch-
conflation-enabled

Indicates whether batch events are conflated when sent.

geode.gateway-
sender.<id>.batch-

size

Size of the batches sent.

geode.gateway-
sender.<id>.batch-

time-interval

Maximum time interval that can elapse before a batch is sent.

geode.gateway-
sender.<id>.disk-

store-name

Name of the DiskStore used to overflow and persist queued events.

176

https://geode.apache.org/docs/guide/113/topologies_and_comm/multi_site_configuration/chapter_overview.html

Name Description

geode.gateway-
sender.<id>.disk-

synchronous

Indicates whether disk writes are synchronous or asynchronous.

geode.gateway-
sender.<id>.dispatc

her-threads

Number of threads used to dispatch events.

geode.gateway-
sender.<id>.max-
parallelism-for-

replicated-region

geode.gateway-
sender.<id>.max-
queue-memory

Maximum amount of memory (MB) usable for this GatewaySender
instance’s queue.

geode.gateway-
sender.<id>.order-

policy

Order policy followed while dispatching the events to
GatewayReceiver instances.

geode.gateway-
sender.<id>.paralle

l

Indicates whether this GatewaySender is parallel (higher throughput)
or serial.

geode.gateway-
sender.<id>.paused

Indicates whether this GatewaySender is paused.

geode.gateway-
sender.<id>.persist

ent

Indicates whether this GatewaySender persists queue events to disk.

geode.gateway-
sender.<id>.remote
-distributed-system

-id

Identifier for the remote distributed system.

geode.gateway-
sender.<id>.runnin

g

Indicates whether this GatewaySender is currently running.

geode.gateway-
sender.<id>.socket-

buffer-size

Configured buffer size for the socket connections between this
GatewaySender and the receiving GatewayReceiver.

geode.gateway-
sender.<id>.socket-

read-timeout

Amount of time (ms) that a socket read between this sending
GatewaySender and the receiving GatewayReceiver blocks.

177

Chapter 21. Spring Session
This chapter covers auto-configuration of Spring Session for Apache Geode to manage (HTTP)
session state in a reliable (consistent), highly available (replicated), and clustered manner.

Spring Session provides an API and several implementations for managing a user’s session
information. It has the ability to replace the javax.servlet.http.HttpSession in an application
container-neutral way and provide session IDs in HTTP headers to work with RESTful APIs.

Furthermore, Spring Session provides the ability to keep the HttpSession alive even when working
with WebSockets and reactive Spring WebFlux WebSessions.

A complete discussion of Spring Session is beyond the scope of this document. You can learn more
by reading the docs and reviewing the samples.

Spring Boot for Apache Geode provides auto-configuration support to configure Apache Geode as
the session management provider and store when Spring Session for Apache Geode is on your
Spring Boot application’s classpath.

 You can learn more about Spring Session for Apache Geode in the docs.


See the corresponding sample guide and code to see Spring Session for Apache
Geode in action.

21.1. Configuration
You need do nothing special to use Apache Geode as a Spring Session provider implementation,
managing the (HTTP) session state of your Spring Boot application.

To do so, include the appropriate Spring Session dependency on your Spring Boot application’s
classpath:

Example 177. Maven dependency declaration

 <dependency>
 <groupId>org.springframework.session</groupId>
 <artifactId>spring-session-data-geode</artifactId>
 <version>2.6.0-RC1</version>
 </dependency>

Alternatively, you may declare the provided spring-geode-starter-session dependency in your
Spring Boot application Maven POM (shown here) or Gradle build file:

178

https://spring.io/projects/spring-session
https://docs.spring.io/spring-session/docs/current/reference/html5
https://docs.spring.io/spring-session/docs/current/reference/html5/#samples
https://spring.io/projects/spring-session-data-geode
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/reference/html5
guides/caching-http-session.html.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/http-session

Example 178. Maven dependency declaration

 <dependency>
 <groupId>org.springframework.geode</groupId>
 <artifactId>spring-geode-starter-session</artifactId>
 <version>1.6.0-RC1</version>
 </dependency>

After declaring the required Spring Session dependency, you can begin your Spring Boot
application as you normally would:

Example 179. Spring Boot Application

@SpringBootApplication
public class MySpringBootApplication {

 public static void main(String[] args) {
 SpringApplication.run(MySpringBootApplication.class, args);
 }

 // ...
}

You can then create application-specific Spring Web MVC Controllers to interact with the
HttpSession as needed by your application:

Example 180. Spring Boot Application Controller using HttpSession

@Controller
class MyApplicationController {

 @GetRequest("...")
 public String processGet(HttpSession session) {
 // interact with HttpSession
 }
}

The HttpSession is replaced by a Spring managed Session that is stored in Apache Geode.

21.2. Custom Configuration
By default, Spring Boot for Apache Geode (SBDG) applies reasonable and sensible defaults when
configuring Apache Geode as the provider in Spring Session.

179

For instance, by default, SBDG sets the session expiration timeout to 30 minutes. It also uses a
ClientRegionShortcut.PROXY as the data management policy for the Apache Geode client Region that
managing the (HTTP) session state when the Spring Boot application is using a ClientCache, which it
does by default.

However, what if the defaults are not sufficient for your application requirements?

In that case, see the next section.

21.2.1. Custom Configuration using Properties

Spring Session for Apache Geode publishes well-known configuration properties for each of the
various Spring Session configuration options when you use Apache Geode as the (HTTP) session
state management provider.

You can specify any of these properties in Spring Boot application.properties to adjust Spring
Session’s configuration when using Apache Geode.

In addition to the properties provided in and by Spring Session for Apache Geode, Spring Boot for
Apache Geode also recognizes and respects the spring.session.timeout property and the
server.servlet.session.timeout property, as discussed the Spring Boot documentation.



spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds
takes precedence over spring.session.timeout, which takes precedence over
server.servlet.session.timeout when any combination of these properties have
been simultaneously configured in the Spring Environment of your application.

21.2.2. Custom Configuration using a Configurer

Spring Session for Apache Geode also provides the SpringSessionGemFireConfigurer callback
interface, which you can declare in your Spring ApplicationContext to programmatically control the
configuration of Spring Session when you use Apache Geode.

The SpringSessionGemFireConfigurer, when declared in the Spring ApplicationContext, takes
precedence over any of the Spring Session (for Apache Geode) configuration properties and
effectively overrides them when both are present.

More information on using the SpringSessionGemFireConfigurer can be found in the docs.

21.3. Disabling Session State Caching
There may be cases where you do not want your Spring Boot application to manage (HTTP) session
state by using Apache Geode.

In certain cases, you may be using another Spring Session provider implementation, such as Redis,
to cache and manage your Spring Boot application’s (HTTP) session state. In other cases, you do not
want to use Spring Session to manage your (HTTP) session state at all. Rather, you prefer to use
your Web Server’s (such as Tomcat’s) built-in HttpSession state management capabilities.

180

https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/reference/html5/#httpsession-gemfire-configuration-properties
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-session.html
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/support/SpringSessionGemFireConfigurer.html
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/reference/html5/#httpsession-gemfire-configuration-configurer

Either way, you can specifically call out your Spring Session provider implementation by using the
spring.session.store-type property in Spring Boot application.properties:

Example 181. Use Redis as the Spring Session Provider Implementation

#application.properties

spring.session.store-type=redis
...

If you prefer not to use Spring Session to manage your Spring Boot application’s (HTTP) session
state at all, you can do the following:

Example 182. Use Web Server Session State Management

#application.properties

spring.session.store-type=none
...

Again, see the Spring Boot documentation for more detail.



You can include multiple provider implementations on the classpath of your
Spring Boot application. For instance, you might use Redis to cache your
application’s (HTTP) session state while using Apache Geode as your application’s
transactional persistent store (System of Record).


Spring Boot does not properly recognize spring.session.store-
type=[gemfire|geode] even though Spring Boot for Apache Geode is set up to
handle either of these property values (that is, either gemfire or geode).

21.4. Using Spring Session with VMware Tanzu
GemFire for VMs (PCC)
Whether you use Spring Session in a Spring Boot, Apache Geode ClientCache application to connect
to an standalone, externally managed cluster of Apache Geode servers or to connect to a cluster of
servers in a VMware Tanzu GemFire for VMs service instance managed by a VMware Tanzu
Application Service (TAS) environment, the setup is the same.

Spring Session for Apache Geode expects there to be a cache Region in the cluster that can store and
manage (HTTP) session state when your Spring Boot application is a ClientCache application in the
client/server topology.

By default, the cache Region used to store and manage (HTTP) session state is called

181

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-session.html

ClusteredSpringSessions.

We recommend that you configure the cache Region name by using the well-known and
documented property in Spring Boot application.properties:

Example 183. Using properties

spring.session.data.gemfire.session.region.name=MySessions

Alternatively, you can set the name of the cache Region used to store and manage (HTTP) session
state by explicitly declaring the @EnableGemFireHttpSession annotation on your main
@SpringBootApplication class:

Example 184. Using `@EnableGemfireHttpSession

@SpringBootApplication
@EnableGemFireHttpSession(regionName = "MySessions")
class MySpringBootSpringSessionApplication {
 // ...
}

Once you decide on the cache Region name used to store and manage (HTTP) sessions, you must
create the cache Region in the cluster somehow.

On the client, doing so is simple, since SBDG’s auto-configuration automatically creates the client
PROXY Region that is used to send and receive (HTTP) session state between the client and server for
you when either Spring Session is on the application classpath (for example, spring-geode-starter-
session) or you explicitly declare the @EnableGemFireHttpSession annotation on your main
@SpringBootApplication class.

However, on the server side, you currently have a couple of options.

First, you can manually create the cache Region by using Gfsh:

Example 185. Create the Sessions Region using Gfsh

gfsh> create region --name=MySessions --type=PARTITION --entry-idle-time
-expiration=1800
 --entry-idle-time-expiration-action=INVALIDATE

You must create the cache Region with the appropriate name and an expiration policy.

In this case, we created an idle expiration policy with a timeout of 1800 seconds (30 minutes), after
which the entry (session object) is invalidated.

182



Session expiration is managed by the Expiration Policy set on the cache Region
that is used to store session state. The Servlet container’s (HTTP) session expiration
configuration is not used, since Spring Session replaces the Servlet container’s
session management capabilities with its own, and Spring Session delegates this
behavior to the individual providers, such as Apache Geode.

Alternatively, you could send the definition for the cache Region from your Spring Boot ClientCache
application to the cluster by using the SBDG @EnableClusterAware annotation, which is meta-
annotated with SDG’s @EnableClusterConfiguration annotation:

Example 186. Using @EnableClusterAware

@SpringBootApplication
@EnableClusterAware
class MySpringBootSpringSessionApacheGeodeApplication {
 // ...
}


See the Javadoc on the @EnableClusterConfiguration annotation and the
documentation for more detail.

However, you cannot currently send expiration policy configuration metadata to the cluster.
Therefore, you must manually alter the cache Region to set the expiration policy:

Example 187. Using Gfsh to Alter Region

gfsh> alter region --name=MySessions --entry-idle-time-expiration=1800
 --entry-idle-time-expiration-action=INVALIDATE

Now your Spring Boot ClientCache application that uses Spring Session in a client/server topology is
configured to store and manage user (HTTP) session state in the cluster. This works for either
standalone, externally managed Apache Geode clusters or when you use PCC running in a VMware
Tanzu Application Service (TAS) environment.

183

https://docs.spring.io/spring-boot-data-geode-build/current/api//org/springframework/geode/config/annotation/EnableClusterAware.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-cluster

Chapter 22. Pivotal CloudFoundry



As of the VMware, Inc. acquisition of Pivotal Software, Inc., Pivotal CloudFoundry
(PCF) is now known as VMware Tanzu Application Service (TAS) for VMs. Also,
Pivotal Cloud Cache (PCC) has been rebranded as VMware Tanzu GemFire for VMS.
This documentation will eventually be updated to reflect the rebranding.

In most cases, when you deploy (that is, cf push) your Spring Boot applications to Pivotal
CloudFoundry (PCF), you bind your application to one or more instances of the Pivotal Cloud Cache
(PCC) service.

In a nutshell, Pivotal Cloud Cache (PCC) is a managed version of VMware Tanzu GemFire that runs
in Pivotal CloudFoundry (PCF). When running in or across cloud environments (such as AWS,
Azure, GCP, or PWS), PCC with PCF offers several advantages over trying to run and manage your
own standalone Apache Geode clusters. It handles many of the infrastructure-related, operational
concerns so that you need not do so.

22.1. Running a Spring Boot application as a specific
user
By default, Spring Boot applications run as a cluster_operator role-based user in Pivotal
CloudFoundry when the application is bound to a Pivotal Cloud Cache service instance.

A cluster_operator has full system privileges (that is, authorization) to do whatever that user
wishes to involving the PCC service instance. A cluster_operator has read and write access to all the
data, can modify the schema (for example, create and destroy Regions, add and remove Indexes,
change eviction or expiration policies, and so on), start and stop servers in the PCC cluster, or even
modify permissions.

184

https://pivotal.io/pivotal-cloud-cache
https://pivotal.io/pivotal-gemfire
https://pivotal.io/platform

About cluster_operator as the default user

One of the reasons why Spring Boot applications default to running as a cluster_operator is to
allow configuration metadata to be sent from the client to the server. Enabling configuration
metadata to be sent from the client to the server is a useful development-time feature and is
as simple as annotating your main @SpringBootApplication class with the
@EnableClusterConfiguration annotation:

Example 188. Using @EnableClusterConfiguration

@SpringBootApplication
@EnableClusterConfiguration(useHttp = true)
class SpringBootApacheGeodeClientCacheApplication { }

With @EnableClusterConfiguration, Region and OQL Index configuration metadata that is
defined on the client can be sent to servers in the PCC cluster. Apache Geode requires
matching Regions by name on both the client and the servers in order for clients to send and
receive data to and from the cluster.

For example, when you declare the Region where an application entity is persisted by using
the @Region mapping annotation and declare the @EnableEntityDefinedRegions annotation on
the main @SpringBootApplication class in conjunction with the @EnableClusterConfiguration
annotation, not only does SBDG create the required client Region, but it also sends the
configuration metadata for this Region to the servers in the cluster to create the matching,
required server Region, where the data for your application entity is managed.

However…

With great power comes great responsibility. - Uncle Ben

Not all Spring Boot applications using PCC need to change the schema or even modify data. Rather,
certain applications may need only read access. Therefore, it is ideal to be able to configure your
Spring Boot applications to run with a different user at runtime other than the auto-configured
cluster_operator, by default.

A prerequisite for running a Spring Boot application in PCC with a specific user is to create a user
with restricted permissions by using Pivotal CloudFoundry AppsManager while provisioning the
PCC service instance to which the Spring Boot application is bound.

Configuration metadata for the PCC service instance might appear as follows:

185

Example 189. Pivotal Cloud Cache configuration metadata

{
 "p-cloudcache":[{
 "credentials": {
 "distributed_system_id": "0",
 "locators": ["localhost[55221]"],
 "urls": {
 "gfsh": "https://cloudcache-12345.services.cf.pws.com/gemfire/v1",
 "pulse": "https://cloudcache-12345.services.cf.pws.com/pulse"
 },
 "users": [{
 "password": "*****",
 "roles": ["cluster_operator"],
 "username": "cluster_operator_user"
 }, {
 "password": "*****",
 "roles": ["developer"],
 "username": "developer_user"
 }, {
 "password": "*****",
 "roles": ["read-only-user"],
 "username": "guest"
 }],
 "wan": {
 "sender_credentials": {
 "active": {
 "password": "*****",
 "username": "gateway-sender-user"
 }
 }
 }
 },
 "name": "jblum-pcc",
 "plan": "small",
 "tags": ["gemfire", "cloudcache", "database", "pivotal"]
 }]
}

In the PCC service instance configuration metadata shown in the preceding example, we see a guest
user with the read-only-user role. If the read-only-user role is properly configured with read-only
permissions as the name implies, we could configure our Spring Boot application to run as guest
with read-only access:

186

Example 190. Configuring a Spring Boot application to run as a specific user

Spring Boot application.properties for PCF when using PCC

spring.data.gemfire.security.username=guest


The spring.data.gemfire.security.username property corresponds directly to the
SDG @EnableSecurity annotation’s securityUsername attribute. See the Javadoc for
more details.

The spring.data.gemfire.security.username property is the same property used by Spring Data for
Apache Geode (SDG) to configure the runtime user of your Spring Data application when you
connect to an externally managed Apache Geode cluster.

In this case, SBDG uses the configured username to look up the authentication credentials of the
user to set the username and password used by the Spring Boot ClientCache application when
connecting to PCC while running in PCF.

If the username is not valid, an IllegalStateException is thrown.

By using Spring profiles, it would be a simple matter to configure the Spring Boot application to run
with a different user depending on environment.

See the Pivotal Cloud Cache documentation on security for configuring users with assigned roles
and permissions.

22.1.1. Overriding Authentication Auto-configuration

It should be understood that auto-configuration for client authentication is available only for
managed environments, such as Pivotal CloudFoundry. When running in externally managed
environments, you must explicitly set a username and password to authenticate, as described in
Non-Managed Auth for Clients.

To completely override the auto-configuration of client authentication, you can set both a username
and a password:

Example 191. Overriding Security Authentication Auto-configuration with explicit username and password

Spring Boot application.properties

spring.data.gemfire.security.username=MyUser
spring.data.gemfire.security.password=MyPassword

In this case, SBDG’s auto-configuration for authentication is effectively disabled and security
credentials are not extracted from the environment.

187

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityUsername--
https://docs.spring.io/spring-boot/docs/current/reference/html/#boot-features-profiles
https://docs.pivotal.io/p-cloud-cache/1-13/security.html

22.2. Targeting Specific Pivotal Cloud Cache Service
Instances
It is possible to provision multiple instances of the Pivotal Cloud Cache service in your Pivotal
CloudFoundry environment. You can then bind multiple PCC service instances to your Spring Boot
application.

However, Spring Boot for Apache Geode (SBDG) only auto-configures one PCC service instance for
your Spring Boot application. This does not mean that it is not possible to use multiple PCC service
instances with your Spring Boot application, just that SBDG only auto-configures one service
instance for you.

You must select which PCC service instance your Spring Boot application automatically auto-
configures for you when you have multiple instances and want to target a specific PCC service
instance to use.

To do so, declare the following SBDG property in Spring Boot application.properties:

Example 192. Spring Boot application.properties targeting a specific PCC service instance by name

Spring Boot application.properties

spring.boot.data.gemfire.cloud.cloudfoundry.service.cloudcache.name=pccServiceInst
anceTwo

The spring.boot.data.gemfire.cloud.cloudfoundry.service.cloudcache.name property tells SBDG
which PCC service instance to auto-configure.

If the PCC service instance identified by the property does not exist, SBDG throws an
IllegalStateException stating the PCC service instance by name could not be found.

If you did not set the property and your Spring Boot application is bound to multiple PCC service
instances, SBDG auto-configures the first PCC service instance it finds by name, alphabetically.

If you did not set the property and no PCC service instance is found, SBDG logs a warning.

22.3. Using Multiple Pivotal Cloud Cache Service
Instances
If you want to use multiple PCC service instances with your Spring Boot application, you need to
configure multiple connection Pools connected to each PCC service instance used by your Spring
Boot application.

The configuration would be similar to the following:

188

Example 193. Multiple Pivotal Cloud Cache Service Instance Configuration

@Configuration
@EnablePools(pools = {
 @EnablePool(name = "PccOne"),
 @EnablePool(name = "PccTwo"),
 ...,
 @EnablePool(name = "PccN")
})
class PccConfiguration {
 // ...
}

You would then externalize the configuration for the individually declared Pools in Spring Boot
application.properties:

Example 194. Configuring Locator-based Pool connections

Spring Boot `application.properties`

spring.data.gemfire.pool.pccone.locators=pccOneHost1[port1], pccOneHost2[port2],
..., pccOneHostN[portN]

spring.data.gemfire.pool.pcctwo.locators=pccTwoHost1[port1], pccTwoHost2[port2],
..., pccTwoHostN[portN]


Though less common, you can also configure the Pool of connections to target
specific servers in the cluster by setting the spring.data.gemfire.pool.<named-
pool>.severs property.


Keep in mind that properties in Spring Boot application.properties can refer to
other properties: property=${otherProperty}. This lets you further externalize
properties by using Java System properties or environment variables.

A client Region is then assigned the Pool of connections that are used to send data to and from the
specific PCC service instance (cluster):

189

Example 195. Assigning a Pool to a client Region

@Configuration
class GeodeConfiguration {

 @Bean("Example")
 ClientRegionFactoryBean exampleRegion(GemFireCache gemfireCache,
 @Qualifier("PccTwo") Pool poolForPccTwo) {

 ClientRegionFactoryBean exampleRegion = new ClientRegionFactoryBean();

 exampleRegion.setCache(gemfireCache);
 exampleRegion.setPool(poolForPccTwo);
 exampleRegion.setShortcut(ClientRegionShortcut.PROXY);

 return exampleRegion;
 }
}

You can configure as many Pools and client Regions as your application needs. Again, the Pool
determines the Pivotal Cloud Cache service instance and cluster in which the data for the client
Region resides.



By default, SBDG configures all Pools declared in a Spring Boot ClientCache
application to connect to and use a single PCC service instance. This may be a
targeted PCC service instance when you use the
spring.boot.data.gemfire.cloud.cloudfoundry.service.cloudcache.name property as
discussed earlier.

22.4. Hybrid Pivotal CloudFoundry and Apache Geode
Spring Boot Applications
Sometimes, it is desirable to deploy (that is, cf push) and run your Spring Boot applications in
Pivotal CloudFoundry but still connect your Spring Boot applications to an externally managed,
standalone Apache Geode cluster.

Spring Boot for Apache Geode (SBDG) makes this a non-event and honors its "little to no code or
configuration changes necessary" goal. Regardless of your runtime choice, it should just work!

To help guide you through this process, we cover the following topics:

1. Install and Run PCFDev.

2. Start an Apache Geode cluster.

3. Create a User-Provided Service (CUPS).

4. Push and Bind a Spring Boot application.

190

5. Run the Spring Boot application.

22.4.1. Running PCFDev

For this exercise, we use PCF Dev.

PCF Dev, much like PCF, is an elastic application runtime for deploying, running, and managing
your Spring Boot applications. However, it does so in the confines of your local development
environment — that is, your workstation.

Additionally, PCF Dev provides several services, such as MySQL, Redis, and RabbitMQ. You Spring
Boot application can bind to and use these services to accomplish its tasks.

However, PCF Dev lacks the Pivotal Cloud Cache service that is available in PCF. This is actually
ideal for this exercise since we are trying to build and run Spring Boot applications in a PCF
environment but connect to an externally managed, standalone Apache Geode cluster.

As a prerequisite, you need to follow the steps outlined in the tutorial to get PCF Dev set up and
running on your workstation.

To run PCF Dev, execute the following cf CLI command, replacing the path to the TGZ file with the
file you acquired from the download:

Example 196. Start PCF Dev

$ cf dev start -f ~/Downloads/Pivotal/CloudFoundry/Dev/pcfdev-v1.2.0-darwin.tgz

You should see output similar to the following:

191

https://docs.pivotal.io/pcf-dev/install-osx.html
https://pivotal.io/platform/pcf-tutorials/getting-started-with-pivotal-cloud-foundry-dev/introduction
https://network.pivotal.io/products/pcfdev

Example 197. Running PCF Dev

Downloading Network Helper...
Progress: |====================>| 100.0%
Installing cfdevd network helper (requires administrator privileges)...
Password:
Setting up IP aliases for the BOSH Director & CF Router (requires administrator
privileges)
Downloading Resources...
Progress: |====================>| 100.0%
Setting State...
WARNING: PCF Dev requires 8192 MB of RAM to run. This machine may not have enough
free RAM.
Creating the VM...
Starting VPNKit...
Waiting for the VM...
Deploying the BOSH Director...

Deploying PAS...
 Done (14m34s)
Deploying Apps-Manager...
 Done (1m41s)

 ██████╗ ██████╗███████╗██████╗ ███████╗██╗ ██╗
 ██╔══██╗██╔════╝██╔════╝██╔══██╗██╔════╝██║ ██║
 ██████╔╝██║ █████╗ ██║ ██║█████╗ ██║ ██║
 ██╔═══╝ ██║ ██╔══╝ ██║ ██║██╔══╝ ╚██╗ ██╔╝
 ██║ ╚██████╗██║ ██████╔╝███████╗ ╚████╔╝
 ╚═╝ ╚═════╝╚═╝ ╚═════╝ ╚══════╝
╚═══╝
 is now running!

 To begin using PCF Dev, please run:
 cf login -a https://api.dev.cfdev.sh --skip-ssl-validation

 Admin user => Email: admin / Password: admin
 Regular user => Email: user / Password: pass

 To access Apps Manager, navigate here: https://apps.dev.cfdev.sh

 To deploy a particular service, please run:
 cf dev deploy-service <service-name> [Available services:
mysql,redis,rabbitmq,scs]

To use the cf CLI tool, you must login to the PCF Dev environment:

192

Example 198. Login to PCF Dev using cf CLI

$ cf login -a https://api.dev.cfdev.sh --skip-ssl-validation

You can also access the PCF Dev Apps Manager tool from your Web browser at the following URL:

apps.dev.cfdev.sh/

Apps Manager provides a nice UI to manage your org, space, services and apps. It lets you push and
update apps, create services, bind apps to the services, and start and stop your deployed
applications, among many other things.

22.4.2. Running an Apache Geode Cluster

Now that PCF Dev is set up and running, you need to start an external, standalone Apache Geode
cluster to which our Spring Boot application connects and uses to manage its data.

You need to install a distribution of Apache Geode on your computer. Then you must set the $GEODE
environment variable. It is also convenient to add $GEODE/bin to your system $PATH.

Afterward, you can launch the Geode Shell (Gfsh) tool:

Example 199. Running Gfsh

$ echo $GEODE
/Users/jblum/pivdev/apache-geode-1.6.0

$ gfsh
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.6.0

Monitor and Manage Apache Geode
gfsh>

We have provided the Gfsh shell script that you can use to start the Apache Geode cluster:

193

https://apps.dev.cfdev.sh/
https://apps.dev.cfdev.sh/
https://geode.apache.org//releases/

Example 200. Gfsh shell script to start the Apache Geode cluster

#!/bin/gfsh
Gfsh shell script to configure and bootstrap an Apache Geode cluster.

start locator --name=LocatorOne --log-level=config --classpath=@project
-dir@/apache-geode-extensions/build/libs/apache-geode-extensions-@project
-version@.jar --J=-Dgemfire.security
-manager=org.springframework.geode.security.TestSecurityManager --J=-Dgemfire.http
-service-port=8080

start server --name=ServerOne --log-level=config --user=admin --password=admin
--classpath=@project-dir@/apache-geode-extensions/build/libs/apache-geode
-extensions-@project-version@.jar

The start-cluster.gfsh shell script starts one Geode Locator and one Geode server.

A Locator is used by clients to discover and connect to servers in a cluster to manage its data. A
Locator is also used by new servers that join a cluster as peer members, which lets the cluster be
elastically scaled out (or scaled down, as needed). A Geode server stores the data for the
application.

You can start as many Locators or servers as necessary to meet the availability and load demands
of your application. The more Locators and servers your cluster has, the more resilient it is to
failure. However, you should size your cluster accordingly, based on your application’s needs, since
there is overhead relative to the cluster size.

You see output similar to the following when starting the Locator and server:

194

Example 201. Starting the Apache Geode cluster

gfsh>start locator --name=LocatorOne --log-level=config
--classpath=/Users/jblum/pivdev/spring-boot-data-geode/apache-geode
-extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-SNAPSHOT.jar --J=
-Dgemfire.security-manager=org.springframework.geode.security.TestSecurityManager
--J=-Dgemfire.http-service-port=8080
Starting a Geode Locator in /Users/jblum/pivdev/lab/LocatorOne...
..
Locator in /Users/jblum/pivdev/lab/LocatorOne on 10.99.199.24[10334] as LocatorOne
is currently online.
Process ID: 14358
Uptime: 1 minute 1 second
Geode Version: 1.6.0
Java Version: 1.8.0_192
Log File: /Users/jblum/pivdev/lab/LocatorOne/LocatorOne.log
JVM Arguments: -Dgemfire.enable-cluster-configuration=true -Dgemfire.load-cluster
-configuration-from-dir=false -Dgemfire.log-level=config -Dgemfire.security
-manager=org.springframework.geode.security.TestSecurityManager -Dgemfire.http
-service-port=8080 -Dgemfire.launcher.registerSignalHandlers=true
-Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-core-
1.6.0.jar:/Users/jblum/pivdev/spring-boot-data-geode/apache-geode-
extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-
SNAPSHOT.jar:/Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-dependencies.jar

Security Manager is enabled - unable to auto-connect. Please use "connect
--locator=10.99.199.24[10334] --user --password" to connect Gfsh to the locator.

Authentication required to connect to the Manager.

gfsh>connect
Connecting to Locator at [host=localhost, port=10334] ..
Connecting to Manager at [host=10.99.199.24, port=1099] ..
user: admin
password: *****
Successfully connected to: [host=10.99.199.24, port=1099]

gfsh>start server --name=ServerOne --log-level=config --user=admin
--password=admin --classpath=/Users/jblum/pivdev/spring-boot-data-geode/apache
-geode-extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-SNAPSHOT.jar
Starting a Geode Server in /Users/jblum/pivdev/lab/ServerOne...
....
Server in /Users/jblum/pivdev/lab/ServerOne on 10.99.199.24[40404] as ServerOne is
currently online.
Process ID: 14401
Uptime: 3 seconds
Geode Version: 1.6.0
Java Version: 1.8.0_192
Log File: /Users/jblum/pivdev/lab/ServerOne/ServerOne.log

195

JVM Arguments: -Dgemfire.default.locators=10.99.199.24[10334] -Dgemfire.security
-username=admin -Dgemfire.start-dev-rest-api=false -Dgemfire.security
-password=******** -Dgemfire.use-cluster-configuration=true -Dgemfire.log
-level=config -XX:OnOutOfMemoryError=kill -KILL %p
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-core-
1.6.0.jar:/Users/jblum/pivdev/spring-boot-data-geode/apache-geode-
extensions/build/libs/apache-geode-extensions-1.1.0.BUILD-
SNAPSHOT.jar:/Users/jblum/pivdev/apache-geode-1.6.0/lib/geode-dependencies.jar

Once the cluster has been started successfully, you can list the members:

Example 202. List members of the cluster

gfsh>list members
Name	Id
LocatorOne | 10.99.199.24(LocatorOne:14358:locator)<ec><v0>:1024 [Coordinator]
ServerOne | 10.99.199.24(ServerOne:14401)<v1>:1025

Currently, we have not defined any Regions in which to store our application’s data:

Example 203. No Application Regions

gfsh>list regions
No Regions Found

This is deliberate, since we are going to let the application drive its schema structure, both on the
client (application) as well as on the server-side (cluster). We cover this in more detail later in this
chapter.

22.4.3. Creating a User-Provided Service

Now that we have PCF Dev and a small Apache Geode cluster up and running, it is time to create a
user-provided service to the external, standalone Apache Geode cluster that we started in step 2.

As mentioned, PCF Dev offers MySQL, Redis and RabbitMQ services (among others). However, to
use Apache Geode in the same capacity as you would Pivotal Cloud Cache when running in a
production-grade PCF environment, you need to create a user-provided service for the standalone
Apache Geode cluster.

To do so, run the following cf CLI command:

196

Example 204. cf cups command

$ cf cups <service-name> -t "gemfire, cloudcache, database, pivotal" -p '<service-
credentials-in-json>'


It is important that you specify the tags (gemfire, cloudcache, database, pivotal)
exactly as shown in the preceding cf CLI command.

The argument passed to the -p command-line option is a JSON document (object) containing the
credentials for our user-provided service.

The JSON object is as follows:

Example 205. User-Provided Service Crendentials JSON

{
 "locators": ["<hostname>[<port>]"],
 "urls": { "gfsh": "https://<hostname>/gemfire/v1" },
 "users": [{ "password": "<password>", "roles": ["cluster_operator"],
"username": "<username>" }]
}

The complete cf CLI command would be similar to the following:

Example 206. Example cf cups command

cf cups apacheGeodeService -t "gemfire, cloudcache, database, pivotal" \
 -p '{ "locators": ["10.99.199.24[10334]"], "urls": { "gfsh":
"https://10.99.199.24/gemfire/v1" }, "users": [{ "password": "admin", "roles": [
"cluster_operator"], "username": "admin" }] }'

We replaced the <hostname> placeholder with the IP address of our standalone Apache Geode
Locator. You can find the IP address in the Gfsh start locator command output shown in the
preceding example.

Additionally, the <port> placeholder has been replaced with the default Locator port, 10334,

Finally, we set the username and password accordingly.


Spring Boot for Apache Geode (SBDG) provides template files in the
/opt/jenkins/data/workspace/spring-boot-data-geode_main/spring-geode-
docs/src/main/resources directory.

Once the service has been created, you can query the details of the service from the cf CLI:

197

Example 207. Query the CF Dev Services

$ cf services
Getting services in org cfdev-org / space cfdev-space as admin...

name service plan bound apps last operation
broker
apacheGeodeService user-provided boot-pcc-demo

$ cf service apacheGeodeService
Showing info of service apacheGeodeService in org cfdev-org / space cfdev-space as
admin...

name: apacheGeodeService
service: user-provided
tags: gemfire, cloudcache, database, pivotal

bound apps:
name binding name status message
boot-pcc-demo create succeeded

You can also view the "apacheGeodeService" from Apps Manager, starting from the Service tab in
your org and space:

By clicking on the "apacheGeodeService" service entry in the table, you can get all the service
details, such as the bound apps:

198

You can also view and set the configuration:

This brief section did not cover all the capabilities of the Apps Manager. We suggest you explore its
UI to see all that is possible.

 You can learn more about CUPS in the PCF documentation.

22.4.4. Push and Bind a Spring Boot application

Now it is time to push a Spring Boot application to PCF Dev and bind the application to the
apacheGeodeService.

Any Spring Boot ClientCache application that uses SBDG works for this purpose. For this example,
we use the PCCDemo application, which is available in GitHub.

After cloning the project to your computer, you must run a build to produce the artifact to push to
PCF Dev:

199

https://docs.pivotal.io/platform/application-service/2-11/devguide/services/user-provided.html
https://github.com/jxblum/PCCDemo/tree/sbdg-doc-ref

Example 208. Build the PCCDemo application

$ mvn clean package

Then you can push the application to PCF Dev with the following cf CLI command:

Example 209. Push the application to PCF Dev

$ cf push boot-pcc-demo -u none --no-start -p target/client-0.0.1-SNAPSHOT.jar

Once the application has been successfully deployed to PCF Dev, you can get the application details:

200

Example 210. Get details for the deployed application

$ cf apps
Getting apps in org cfdev-org / space cfdev-space as admin...
OK

name requested state instances memory disk urls
boot-pcc-demo stopped 0/1 768M 1G boot-pcc-
demo.dev.cfdev.sh

$ cf app boot-pcc-demo
Showing health and status for app boot-pcc-demo in org cfdev-org / space cfdev-
space as admin...

name: boot-pcc-demo
requested state: stopped
routes: boot-pcc-demo.dev.cfdev.sh
last uploaded: Tue 02 Jul 00:34:09 PDT 2019
stack: cflinuxfs3
buildpacks: https://github.com/cloudfoundry/java-buildpack.git

type: web
instances: 0/1
memory usage: 768M
 state since cpu memory disk details
#0 down 2019-07-02T21:48:25Z 0.0% 0 of 0 0 of 0

type: task
instances: 0/0
memory usage: 256M

There are no running instances of this process.

You can bind the PPCDemo application to the apacheGeodeService using the cf CLI command:

Example 211. Bind application to apacheGeodeService using CLI

cf bind-service boot-pcc-demo apacheGeodeService

Alternatively, you can create a YAML file (manifest.yml in src/main/resources) that contains the
deployment descriptor:

201

Example 212. Example YAML deployment descriptor

\---
applications:
 - name: boot-pcc-demo
 memory: 768M
 instances: 1
 path: ./target/client-0.0.1-SNAPSHOT.jar
 services:
 - apacheGeodeService
 buildpacks:
 - https://github.com/cloudfoundry/java-buildpack.git

You can also use Apps Manager to view application details and bind and unbind additional services.
Start by navigating to the App tab under your org and space:

From there, you can click on the desired application and navigate to the Overview:

You can also review the application Settings. Specifically, we are looking at the configuration of the

202

applicatinon once it is bound to the apacheGeodeService, as seen in the VCAP_SERVICES environment
variable:

This JSON document structure is not unlike the configuration used to bind your Spring Boot
ClientCache application to the Pivotal Cloud Cache service when deploying the same application to
Pivotal CloudFoundry. This is actually key if you want to minimize the amount of boilerplate code
and configuration changes when you migrate between different CloudFoundry environments, even
Open Source CloudFoundry.

Again, SBDG’s goal is to simply the effort for you to build, run, and manage your application, in
whatever context your application lands, even if it changes later. If you follow the steps in this
documentation, you can realize that goal.

22.4.5. Running the Spring Boot application

All that is left to do now is run the application.

You can start the PCCDemo application from the cf CLI by using the following command:

Example 213. Start the Spring Boot application

$ cf start boot-pcc-demo

Alternatively, you can also start the application from Apps Manager. This is convenient, since you
can then tail and monitor the application log file.

203

https://www.cloudfoundry.org/

Once the application has started, you can click the VIEW APP link in the upper right corner of the
APP screen.

You can navigate to any of the application Web Service, Controller endpoints. For example, if you
know the ISBN of a book, you can access it from your Web browser:

204

https://boot-pcc-demo.dev.cfdev.sh/

You can also access the same data from the Gfsh command-line tool. However, the first thing to
observe is that our application informed the cluster that it needed a Region called Books:

Example 214. Books Region

gfsh>list regions
List of regions

Books

gfsh>describe region --name=/Books
..
Name : Books
Data Policy : partition
Hosting Members : ServerOne

Non-Default Attributes Shared By Hosting Members

Type	Name	Value
Region	size	1
data-policy	PARTITION	

The PCCDemo app creates fake data on startup, which we can query in Gfsh:

Example 215. Query Books

gfsh>query --query="SELECT book.isbn, book.title FROM /Books book"
Result : true
Limit : 100
Rows : 1

isbn	title
1235432BMF342 | The Torment of Others

22.5. Summary
The ability to deploy Spring Boot, Apache Geode ClientCache applications to Pivotal CloudFoundry
yet connect your application to an externally managed, standalone Apache Geode cluster is
powerful.

Indeed, this is a useful arrangement and stepping stone for many users as they begin their journey
towards Cloud-Native platforms such as Pivotal CloudFoundry and using services such as Pivotal
Cloud Cache.

205

Later, when you need to work with real (rather than sample) applications, you can migrate your
Spring Boot applications to a fully managed and production-grade Pivotal CloudFoundry
environment, and SBDG figures out what to do, leaving you to focus entirely on your application.

206

Chapter 23. Docker
The state of modern software application development is moving towards containerization.
Containers offer a controlled environment to predictably build (compile, configure and package),
run, and manage your applications in a reliable and repeatable manner, regardless of context. In
many situations, the intrinsic benefit of using containers is obvious.

Understandably, Docker’s popularity took off like wildfire, given its highly powerful and simplified
model for creating, using and managing containers to run packaged applications.

Docker’s ecosystem is also quite impressive, with the advent of Testcontainers and Spring Boot’s
now dedicated support to create packaged Spring Boot applications in Docker images that are then
later run in a Docker container.

 See also “Deploying to Containers” to learn more.

Apache Geode can also run in a controlled, containerized environment. The goal of this chapter is
to get you started running Apache Geode in a container and interfacing to a containerized Apache
Geode cluster from your Spring Boot, Apache Geode client applications.

This chapter does not cover how to run your Spring Boot, Apache Geode client applications in a
container, since that is already covered by Spring Boot (again, see the Spring Boot documentation
for Docker images and container deployment, along with Docker’s documentation). Instead, our
focus is on how to run an Apache Geode cluster in a container and connect to it from a Spring Boot,
Apache Geode client application, regardless of whether the application runs in a container or not.

23.1. Acquiring the Apache Geode Docker Image
To run an Apache Geode cluster inside a Docker container, you must first acquire the Docker image.
You can get the Apache Geode Docker image from Docker Hub.

While Apache Geode’s official documentation is less than clear on how to use Apache Geode in
Docker, we find a bit of relief in the Wiki. However, for a complete and comprehensive write up,
see the instructions in the README from this GitHub Repo.

 You must have Docker installed on your computer to complete the following steps.

Effectively, the high-level steps are as follows:

1) Acquire the Apache Geode Docker image from Docker Hub by using the docker pull command
(shown with typical output) from the command-line:

207

https://www.docker.com/resources/what-container
https://www.docker.com/
https://www.testcontainers.org
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#building-docker-images
https://docs.docker.com/get-started/overview/#docker-objects
https://docs.spring.io/spring-boot/docs/current/reference/html/deployment.html#containers-deployment
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#building-docker-images
https://docs.spring.io/spring-boot/docs/current/reference/html/deployment.html#containers-deployment
https://docs.docker.com/get-started/overview/
https://hub.docker.com/r/apachegeode/geode/
https://geode.apache.org/docs/guide/113
https://cwiki.apache.org/confluence/display/GEODE/How+to+use+Geode+on+Docker
https://github.com/markito/geode-docker#building-the-container-image
https://github.com/markito/geode-docker
https://docs.docker.com/get-docker

Example 216. Download/Install the Apache Geode Docker Image

$ docker pull apachegeode/geode
Using default tag: latest
latest: Pulling from apachegeode/geode
Digest: sha256:6a6218f22a2895bb706175727c7d76f654f9162acac22b2d950d09a2649f9cf4
Status: Image is up to date for apachegeode/geode:latest
docker.io/apachegeode/geode:latest

Instead of pulling from the nightly tag as suggested, the Spring team highly recommends that you
pull from the latest tag, which pulls a stable, production-ready Apache Geode Docker image based
on the latest Apache Geode GA version.

2) Verify that the Apache Geode Docker image was downloaded and installed successfully:

$ docker image ls
REPOSITORY TAG IMAGE ID
CREATED SIZE
apachegeode/geode latest a2e210950712
2 months ago 224MB
cloudfoundry/run base-cnb 3a7d172559c2
8 weeks ago 71.2MB
open-liberty 19.0.0.9-webProfile8 dece75feff1a
3 months ago 364MB
tomee 11-jre-8.0.0-M3-webprofile 0d03e4d395e6
3 months ago 678MB
...

Now you are ready to run Apache Geode in a Docker container.

23.2. Running Apache Geode in a Docker Container
Now that you have acquired the Apache Geode Docker image, you can run Apache Geode in a
Docker container. Use the following docker run command to start Apache Geode in a Docker
container:

208

Example 217. Start the Apache Geode Docker Container

$ docker run -it -p 10334:10334 -p 40404:40404 -p 1099:1099 -p 7070:7070 -p
7575:7575 apachegeode/geode
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.12.0

Monitor and Manage Apache Geode
gfsh>

Since the Apache Geode Docker container was started in interactive mode, you must open a
separate command-line shell to verify that the Apache Geode Docker container is in fact running:

Example 218. Verify the Apache Geode Docker Container is Running

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
NAMES
3b30b9ffc5dc apachegeode/geode "gfsh" 44 seconds ago Up
43 seconds 0.0.0.0:1099->1099/tcp, 0.0.0.0:7070->7070/tcp, 0.0.0.0:7575-
>7575/tcp, 0.0.0.0:10334->10334/tcp, 0.0.0.0:40404->40404/tcp, 8080/tcp
awesome_khorana

You know that the Apache Geode Docker container is running since we ended up at a Gfsh
command prompt in the interactive shell.

We also mapped ports between the Docker container and the host system, exposing well-known
ports used by Apache Geode server-side cluster processes, such as Locators and CacheServers:

Table 21. Apache Geode Ports

Process Port

HTTP 7070

Locator 10334

Manager 1099

Server 40404

It is unfortunate that the Apache Geode Docker image gives you only a Gfsh command prompt,
leaving you with the task of provisioning a cluster. It would have been more useful to provide
preconfigured Docker images with different Apache Geode cluster configurations, such as one
Locator and one server or two Locators and four servers, and so on. However, we can start the

209

cluster ourselves.

23.3. Start an Apache Geode Cluster in Docker
From inside the Apache Geode Docker container, we can start a Locator and a server:

210

Example 219. Start Apache Geode Locator & Server

gfsh>start locator --name=LocatorOne --log-level=config --hostname-for
-clients=localhost
Starting a Geode Locator in /LocatorOne...
.........
Locator in /LocatorOne on 3b30b9ffc5dc[10334] as LocatorOne is currently online.
Process ID: 167
Uptime: 9 seconds
Geode Version: 1.12.0
Java Version: 1.8.0_212
Log File: /LocatorOne/LocatorOne.log
JVM Arguments: -Dgemfire.enable-cluster-configuration=true -Dgemfire.load-cluster
-configuration-from-dir=false -Dgemfire.log-level=config
-Dgemfire.launcher.registerSignalHandlers=true -Djava.awt.headless=true
-Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /geode/lib/geode-core-1.12.0.jar:/geode/lib/geode-dependencies.jar

Successfully connected to: JMX Manager [host=3b30b9ffc5dc, port=1099]

Cluster configuration service is up and running.

gfsh>start server --name=ServerOne --log-level=config --hostname-for
-clients=localhost
Starting a Geode Server in /ServerOne...
.......
Server in /ServerOne on 3b30b9ffc5dc[40404] as ServerOne is currently online.
Process ID: 267
Uptime: 7 seconds
Geode Version: 1.12.0
Java Version: 1.8.0_212
Log File: /ServerOne/ServerOne.log
JVM Arguments: -Dgemfire.default.locators=172.17.0.2[10334] -Dgemfire.start-dev
-rest-api=false -Dgemfire.use-cluster-configuration=true -Dgemfire.log
-level=config -Dgemfire.launcher.registerSignalHandlers=true
-Djava.awt.headless=true -Dsun.rmi.dgc.server.gcInterval=9223372036854775806
Class-Path: /geode/lib/geode-core-1.12.0.jar:/geode/lib/geode-dependencies.jar

gfsh>list members
Member Count : 2

Name	Id
LocatorOne | 172.17.0.2(LocatorOne:167:locator)<ec><v0>:41000 [Coordinator]
ServerOne | 172.17.0.2(ServerOne:267)<v1>:41001

gfsh>describe member --name=LocatorOne

211

Name : LocatorOne
Id : 172.17.0.2(LocatorOne:167:locator)<ec><v0>:41000
Host : 3b30b9ffc5dc
Regions :
PID : 167
Groups :
Used Heap : 50M
Max Heap : 443M
Working Dir : /LocatorOne
Log file : /LocatorOne/LocatorOne.log
Locators : 172.17.0.2[10334]

gfsh>describe member --name=ServerOne
Name : ServerOne
Id : 172.17.0.2(ServerOne:267)<v1>:41001
Host : 3b30b9ffc5dc
Regions :
PID : 267
Groups :
Used Heap : 77M
Max Heap : 443M
Working Dir : /ServerOne
Log file : /ServerOne/ServerOne.log
Locators : 172.17.0.2[10334]

Cache Server Information
Server Bind :
Server Port : 40404
Running : true

Client Connections : 0

We now have an Apache Geode cluster running with one Locator and one server inside a Docker
container. We deliberately started the cluster with a minimal configuration. For example, we have
no Regions in which to store data:

gfsh>list regions
No Regions Found

However, that is OK. Once more, we want to show the full power of SBDG and let the Spring Boot
application drive the configuration of the Apache Geode cluster that runs in the Docker container,
as required by the application.

Let’s have a quick look at our Spring Boot application.

212

23.4. Spring Boot, Apache Geode Client Application
Explained
The Spring Boot, Apache Geode ClientCache application we use to connect to our Apache Geode
cluster that runs in the Docker container appears as follows:

213

Example 220. Spring Boot, Apache Geode Docker client application

@SpringBootApplication
@EnableClusterAware
@EnableEntityDefinedRegions(basePackageClasses = Customer.class)
@UseMemberName("SpringBootApacheGeodeDockerClientCacheApplication")
public class SpringBootApacheGeodeDockerClientCacheApplication {

 public static void main(String[] args) {

SpringApplication.run(SpringBootApacheGeodeDockerClientCacheApplication.class,
args);
 }

 @Bean
 @SuppressWarnings("unused")
 ApplicationRunner runner(GemFireCache cache, CustomerRepository
customerRepository) {

 return args -> {

 assertClientCacheAndConfigureMappingPdxSerializer(cache);
 assertThat(customerRepository.count()).isEqualTo(0);

 Customer jonDoe = Customer.newCustomer(1L, "Jon Doe");

 log("Saving Customer [%s]...%n", jonDoe);

 jonDoe = customerRepository.save(jonDoe);

 assertThat(jonDoe).isNotNull();
 assertThat(jonDoe.getId()).isEqualTo(1L);
 assertThat(jonDoe.getName()).isEqualTo("Jon Doe");
 assertThat(customerRepository.count()).isEqualTo(1);

 log("Querying for Customer [SELECT * FROM /Customers WHERE name LIKE
'%s']...%n", "%Doe");

 Customer queriedJonDoe = customerRepository.findByNameLike("%Doe");

 assertThat(queriedJonDoe).isEqualTo(jonDoe);

 log("Customer was [%s]%n", queriedJonDoe);
 };
 }

 private void assertClientCacheAndConfigureMappingPdxSerializer(GemFireCache
cache) {

 assertThat(cache).isNotNull();

214

 assertThat(cache.getName())

.isEqualTo(SpringBootApacheGeodeDockerClientCacheApplication.class.getSimpleName()
);

assertThat(cache.getPdxSerializer()).isInstanceOf(MappingPdxSerializer.class);

 MappingPdxSerializer serializer = (MappingPdxSerializer)
cache.getPdxSerializer();

 serializer.setIncludeTypeFilters(type -> Optional.ofNullable(type)
 .map(Class::getPackage)
 .map(Package::getName)
 .filter(packageName ->
packageName.startsWith(this.getClass().getPackage().getName()))
 .isPresent());
 }

 private void log(String message, Object... args) {
 System.err.printf(message, args);
 System.err.flush();
 }
}

Our Customer application domain model object type is defined as:

Example 221. Customer class

@Region("Customers")
class Customer {

 @Id
 private Long id;

 private String name;

}

Also, we define a Spring Data CRUD Repository to persist and access Customers stored in the
/Customers Region:

215

Example 222. CustomerRepository interface

interface CustomerRepository extends CrudRepository<Customer, Long> {

 Customer findByNameLike(String name);

}

Our main class is annotated with @SpringBootApplication, making it be a proper Spring Boot
application.

We additionally annotate the main class with SBDG’s @EnableClusterAware annotation to
automatically detect the Apache Geode cluster that runs in the Docker container and to push cluster
configuration metadata from the application to the cluster as required by the application.

Specifically, the application requires that a Region called “Customers”, as defined by the @Region
mapping annotation on the Customer application domain model class, exists on the servers in the
cluster, to store Customer data.

We use the SDG @EnableEntityDefinedRegions annotation to define the matching client PROXY
“Customers” Region.

Optionally, we have also annotated our main class with SBDG’s @UseMemberName annotation to give
the ClientCache a name, which we assert in the
assertClientCacheAndConfigureMappingPdxSerializer(:ClientCache) method.

The primary work performed by this application is done in the Spring Boot ApplicationRunner bean
definition. We create a Customer instance (Jon Doe), save it to the “Customers” Region that is
managed by the server in the cluster, and then query for Jon Doe using OQL, asserting that the
result is equal to what we expect.

We log the output from the application’s operations to see the application in action.

23.5. Running the Spring Boot, Apache Geode client
application
When you run the Spring Boot, Apache Geode client application, you should see output similar to
the following:

216

Example 223. Application log output

/Library/Java/JavaVirtualMachines/jdk1.8.0_241.jdk/Contents/Home/bin/java ...

org.springframework.geode.docs.example.app.docker.SpringBootApacheGeodeDockerClien
tCacheApplication

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.3.0.RELEASE)

Saving Customer [Customer(name=Jon Doe)]...
Querying for Customer [SELECT * FROM /Customers WHERE name LIKE '%Doe']...
Customer was [Customer(name=Jon Doe)]

Process finished with exit code 0

When we review the configuration of the cluster, we see that the /Customers Region was created
when the application ran:

Example 224. /Customers Region Configuration

gfsh>list regions
List of regions

Customers

gfsh>describe region --name=/Customers
Name : Customers
Data Policy : partition
Hosting Members : ServerOne

Non-Default Attributes Shared By Hosting Members

Type	Name	Value
Region	size	1
data-policy	PARTITION	

Our /Customers Region contains a value (Jon Doe), and we can verify this by running the following
OQL Query with Gfsh:

217

Example 225. Query the /Customers Region

gfsh>query --query="SELECT customer.name FROM /Customers customer"
Result : true
Limit : 100
Rows : 1

Result

Jon Doe

Our application ran successfully.

23.6. Conclusion
In this chapter, we saw how to connect a Spring Boot, Apache Geode ClientCache application to an
Apache Geode cluster that runs in a Docker container.

Later, we provide more information on how to scale up, or rather scale out, our Apache Geode
cluster that runs in Docker. Additionally, we provide details on how you can use Apache Geode’s
Docker image with Testcontainers when you write integration tests, which formally became part of
the Spring Test for Apache Geode (STDG) project.

218

Chapter 24. Samples
This section contains working examples that show how to use Spring Boot for Apache Geode (SBDG)
effectively.

Some examples focus on specific use cases (such as (HTTP) session state caching), while other
examples show how SBDG works under the hood, to give you a better understanding of what is
actually happening and how to debug problems with your Spring Boot Apache Geode applications.

Table 22. Example Spring Boot applications using Apache Geode

Guide Description Source

Getting Started with Spring
Boot for Apache Geode

Explains how to get started
quickly, easily, and reliably
building Apache Geode
powered applications with
Spring Boot.

Getting Started

Spring Boot Auto-Configuration
for Apache Geode

Explains what auto-
configuration is provided by
SBDG and what the auto-
configuration does.

Spring Boot Auto-Configuration

Spring Boot Actuator for
Apache Geode

Explains how to use Spring Boot
Actuator for Apache Geode and
how it works.

Spring Boot Actuator

Spring Boot Security for Apache
Geode

Explains how to configure auth
and TLS with SSL when you use
Apache Geode in your Spring
Boot applications.

Spring Boot Security

Look-Aside Caching with
Spring’s Cache Abstraction and
Apache Geode

Explains how to enable and use
Spring’s Cache Abstraction with
Apache Geode as the caching
provider for look-aside caching.

Look-Aside Caching

Inline Caching with Spring’s
Cache Abstraction and Apache
Geode

Explains how to enable and use
Spring’s Cache Abstraction with
Apache Geode as the caching
provider for inline caching. This
sample builds on the look-aside
caching sample.

Inline Caching

Asynchronous Inline Caching
with Spring’s Cache Abstraction
and Apache Geode

Explains how to enable and use
Spring’s Cache Abstraction with
Apache Geode as the caching
provider for asynchronous
inline caching. This sample
builds on the look-aside and
inline caching samples.

Asynchronous Inline Caching

219

guides/getting-started.html
guides/getting-started.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/intro/getting-started
guides/boot-configuration.html
guides/boot-configuration.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/boot/configuration
guides/boot-actuator.html
guides/boot-actuator.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/boot/actuator
guides/boot-security.html
guides/boot-security.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/boot/security
guides/caching-look-aside.html
guides/caching-look-aside.html
guides/caching-look-aside.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/look-aside
guides/caching-inline.html
guides/caching-inline.html
guides/caching-inline.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/inline
guides/caching-inline-async.html
guides/caching-inline-async.html
guides/caching-inline-async.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/inline-async

Guide Description Source

Near Caching with Spring’s
Cache Abstraction and Apache
Geode

Explains how to enable and use
Spring’s Cache Abstraction with
Apache Geode as the caching
provider for near caching. This
sample builds on the look-aside
caching sample.

Near Caching

Multi-Site Caching with Spring’s
Cache Abstraction and Apache
Geode

Explains how to enable and use
Spring’s Cache Abstraction with
Apache Geode as the caching
provider for multi-site caching.
This sample builds on the look-
aside caching sample.

Multi-Site Caching

HTTP Session Caching with
Spring Session and Apache
Geode

Explains how to enable and use
Spring Session with Apache
Geode to manage HTTP session
state.

HTTP Session Caching

220

guides/caching-near.html
guides/caching-near.html
guides/caching-near.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/near
guides/caching-multi-site.html
guides/caching-multi-site.html
guides/caching-multi-site.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/multi-site
guides/caching-http-session.html
guides/caching-http-session.html
guides/caching-http-session.html
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/spring-geode-samples/caching/http-session

Chapter 25. Appendix
The following appendices provide additional help while developing Spring Boot applications
backed by Apache Geode:

1. Auto-configuration vs. Annotation-based configuration

2. Configuration Metadata Reference

3. Disabling Auto-configuration

4. Switching from Apache Geode to VMware Tanzu GemFire or VMware Tanzu GemFire for VMs

5. Running an Apache Geode cluster with Spring Boot from your IDE

6. Testing

7. Examples

8. References

Auto-configuration vs. Annotation-based
configuration
The question most often asked is, “What Spring Data for Apache Geode (SDG) annotations can I use,
or must I use, when developing Apache Geode applications with Spring Boot?”

This section answers this question and more.

See the complementary sample, Spring Boot Auto-configuration for Apache Geode, which shows the
auto-configuration provided by Spring Boot for Apache Geode in action.

Background

To help answer this question, you must start by reviewing the complete collection of available
Spring Data for Apache Geode (SDG) annotations. These annotations are provided in the
org.springframework.data.gemfire.config.annotation package. Most of the essential annotations
begin with @Enable…, except for the base annotations: @ClientCacheApplication,
@PeerCacheApplication and @CacheServerApplication.

By extension, Spring Boot for Apache Geode (SBDG) builds on SDG’s annotation-based configuration
model to implement auto-configuration and apply Spring Boot’s core concepts, such as “convention
over configuration”, letting Apache Geode applications be built with Spring Boot reliably, quickly,
and easily.

SDG provides this annotation-based configuration model to, first and foremost, give application
developers “choice” when building Spring applications with Apache Geode. SDG makes no
assumptions about what application developers are trying to create and fails fast anytime the
configuration is ambiguous, giving users immediate feedback.

Second, SDG’s annotations were meant to get application developers up and running quickly and
reliably with ease. SDG accomplishes this by applying sensible defaults so that application

221

guides/boot-configuration.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/package-summary.html

developers need not know, or even have to learn, all the intricate configuration details and tooling
provided by Apache Geode to accomplish simple tasks, such as building a prototype.

So, SDG is all about “choice” and SBDG is all about “convention”. Together these frameworks
provide application developers with convenience and ease to move quickly and reliably.

To learn more about the motivation behind SDG’s annotation-based configuration model, see the
Reference Documentation.

Conventions

Currently, SBDG provides auto-configuration for the following features:

• ClientCache

• Caching with Spring’s Cache Abstraction

• Continuous Query

• Function Execution and Implementation

• Logging

• PDX

• GemfireTemplate

• Spring Data Repositories

• Security (Client/server auth and SSL)

• Spring Session

This means the following SDG annotations are not required to use the features above:

• @ClientCacheApplication

• @EnableGemfireCaching (or by using Spring Framework’s @EnableCaching annotation)

• @EnableContinuousQueries

• @EnableGemfireFunctionExecutions

• @EnableGemfireFunctions

• @EnableLogging

• @EnablePdx

• @EnableGemfireRepositories

• @EnableSecurity

• @EnableSsl

• @EnableGemFireHttpSession

Since SBDG auto-configures these features for you, the above annotations are not strictly required.
Typically, you would only declare one of these annotations when you want to “override” Spring
Boot’s conventions, as expressed in auto-configuration, and “customize” the behavior of the feature.

222

https://docs.spring.io/spring-data/gemfire/docs/current/reference/html/#bootstrap-annotation-config-introduction

Overriding

In this section, we cover a few examples to make the behavior when overriding more apparent.

Caches

By default, SBDG provides you with a ClientCache instance. SBDG accomplishes this by annotating
an auto-configuration class with @ClientCacheApplication internally.

By convention, we assume most application developers' are developing Spring Boot applications by
using Apache Geode as “client” applications in Apache Geode’s client/server topology. This is
especially true as users migrate their applications to a managed cloud environment.

Still, you can “override” the default settings (convention) and declare your Spring applications to be
actual peer Cache members (nodes) of a Apache Geode cluster, instead:

Example 226. Spring Boot, Apache Geode Peer Cache Application

@SpringBootApplication
@CacheServerApplication
class SpringBootApacheGeodePeerCacheServerApplication { }

By declaring the @CacheServerApplication annotation, you effectively override the SBDG default.
Therefore, SBDG does not provide you with a ClientCache instance by default, because you have
informed SBDG of exactly what you want: a peer Cache instance hosting an embedded CacheServer
that allows client connections.

However, you then might ask, “Well, how do I customize the ClientCache instance when developing
client applications without explicitly declaring the @ClientCacheApplication annotation?”

First, you can “customize” the ClientCache instance by explicitly declaring the
@ClientCacheApplication annotation in your Spring Boot application configuration and setting
specific attributes as needed. However, you should be aware that, by explicitly declaring this
annotation, (or, by default, any of the other auto-configured annotations), you assume all the
responsibility that comes with it, since you have effectively overridden the auto-configuration. One
example of this is security, which we touch on more later.

The most ideal way to “customize” the configuration of any feature is by way of the well-known and
documented properties, specified in Spring Boot application.properties (the “convention”), or by
using a Configurer.

See the Reference Guide for more detail.

Security

As with the @ClientCacheApplication annotation, the @EnableSecurity annotation is not strictly
required, unless you want to override and customize the defaults.

Outside a managed environment, the only security configuration required is specifying a username

223

https://docs.spring.io/spring-data/gemfire/docs/current/reference/html/#bootstrap-annotation-config-configurers

and password. You do this by using the well-known and documented SDG username and password
properties in Spring Boot application.properties:

Example 227. Required Security Properties in a Non-Manage Envionment

spring.data.gemfire.security.username=MyUser
spring.data.gemfire.security.password=Secret

You need not explicitly declare the @EnableSecurity annotation just to specify security configuration
(such as username and password).

Inside a managed environment, such as the VMware Tanzu Application Service (TAS) when using
VMware Tanzu GemFire, SBDG is able to introspect the environment and configure security (auth)
completely without the need to specify any configuration, usernames and passwords, or otherwise.
This is due, in part, because TAS supplies the security details in the VCAP environment when the
application is deployed to TAS and bound to services (such as VMware Tanzu GemFire).

So, in short, you need not explicitly declare the @EnableSecurity annotation (or
@ClientCacheApplication).

However, if you do explicitly declare the @ClientCacheApplication or @EnableSecurity annotations,
you are now responsible for this configuration, and SBDG’s auto-configuration no longer applies.

While explicitly declaring @EnableSecurity makes more sense when “overriding” the SBDG security
auto-configuration, explicitly declaring the @ClientCacheApplication annotation most likely makes
less sense with regard to its impact on security configuration.

This is entirely due to the internals of Apache Geode, because, in certain cases (such as security),
not even Spring is able to completely shield you from the nuances of Apache Geode’s configuration.
No framework can.

You must configure both auth and SSL before the cache instance (whether a ClientCache or a peer
Cache) is created. This is because security is enabled and configured during the “construction” of the
cache. Also,, the cache pulls the configuration from JVM System properties that must be set before
the cache is constructed.

Structuring the “exact” order of the auto-configuration classes provided by SBDG when the classes
are triggered, is no small feat. Therefore, it should come as no surprise to learn that the security
auto-configuration classes in SBDG must be triggered before the ClientCache auto-configuration
class, which is why a ClientCache instance cannot “auto” authenticate properly in PCC when the
@ClientCacheApplication is explicitly declared without some assistance. In other words you must
also explicitly declare the @EnableSecurity annotation in this case, since you overrode the auto-
configuration of the cache, and implicitly security, as well.

Again, this is due to the way security (auth) and SSL metadata must be supplied to Apache Geode on
startup.

See the Reference Guide for more details.

224

Extension

Most of the time, many of the other auto-configured annotations for CQ, Functions, PDX,
Repositories, and so on need not ever be declared explicitly.

Many of these features are enabled automatically by having SBDG or other libraries (such as Spring
Session) on the application classpath or are enabled based on other annotations applied to beans in
the Spring ApplicationContext.

We review a few examples in the following sections.

Caching

It is rarely, if ever, necessary to explicitly declare either the Spring Framework’s @EnableCaching or
the SDG-specific @EnableGemfireCaching annotation in Spring configuration when you use SBDG.
SBDG automatically enables caching and configures the SDG GemfireCacheManager for you.

You need only focus on which application service components are appropriate for caching:

Example 228. Service Caching

@Service
class CustomerService {

 @Autowired
 private CustomerRepository customerRepository;

 @Cacheable("CustomersByName")
 public Customer findBy(String name) {
 return customerRepository.findByName(name);
 }
}

You need to create Apache Geode Regions that back the caches declared in your application service
components (CustomersByName in the preceding example) by using Spring’s caching annotations
(such as @Cacheable), or alternatively, JSR-107 JCache annotations (such as @CacheResult).

You can do that by defining each Region explicitly or, more conveniently, you can use the following
approach:

Example 229. Configuring Caches (Regions)

@SpringBootApplication
@EnableCachingDefinedRegions
class Application { }

@EnableCachingDefinedRegions is optional, provided for convenience, and complementary to caching

225

when used rather than being necessary.

See the Reference Guide for more detail.

Continuous Query

It is rarely, if ever, necessary to explicitly declare the SDG @EnableContinuousQueries annotation.
Instead, you should focus on defining your application queries and worry less about the plumbing.

Consider the following example:

Example 230. Defining Queries for CQ

@Component
public class TemperatureMonitor extends AbstractTemperatureEventPublisher {

 @ContinuousQuery(name = "BoilingTemperatureMonitor",
 query = "SELECT * FROM /TemperatureReadings WHERE temperature.measurement
>= 212.0")
 public void boilingTemperatureReadings(CqEvent event) {
 publish(event, temperatureReading -> new BoilingTemperatureEvent(this,
temperatureReading));
 }

 @ContinuousQuery(name = "FreezingTemperatureMonitor",
 query = "SELECT * FROM /TemperatureReadings WHERE temperature.measurement
<= 32.0")
 public void freezingTemperatureReadings(CqEvent event) {
 publish(event, temperatureReading -> new FreezingTemperatureEvent(this,
temperatureReading));
 }
}

Apache Geode CQ applies only to clients.

See the Reference Guide for more detail.

Functions

You rarely, if ever, need to explicitly declare either the @EnableGemfireFunctionExecutions or
@EnableGemfireFunctions annotations. SBDG provides auto-configuration for both Function
implementations and executions.

You need to define the implementation:

226

Example 231. Function Implementation

@Component
class GeodeFunctions {

 @GemfireFunction
 Object exampleFunction(Object arg) {
 // ...
 }
}

Then you need to define the execution:

Example 232. Function Execution

@OnRegion(region = "Example")
interface GeodeFunctionExecutions {

 Object exampleFunction(Object arg);

}

SBDG automatically finds, configures, and registers Function implementations (POJOs) in Apache
Geode as proper Functions and creates execution proxies for the interfaces, which can then be
injected into application service components to invoke the registered Functions without needing to
explicitly declare the enabling annotations. The application Function implementations (POJOs) and
executions (interfaces) should exist below the @SpringBootApplication annotated main class.

See the Reference Guide for more detail.

PDX

You rarely, if ever, need to explicitly declare the @EnablePdx annotation, since SBDG auto-configures
PDX by default. SBDG also automatically configures the SDG MappingPdxSerializer as the default
PdxSerializer.

It is easy to customize the PDX configuration by setting the appropriate properties (search for
“PDX”) in Spring Boot application.properties.

See the Reference Guide for more detail.

Spring Data Repositories

You rarely, if ever, need to explicitly declare the @EnableGemfireRepositories annotation, since SBDG
auto-configures Spring Data (SD) Repositories by default.

You need only define your Repositories:

227

Example 233. Customer’s Repository

interface CustomerRepository extends CrudRepository<Customer, Long> {

 Customer findByName(String name);

}

SBDG finds the Repository interfaces defined in your application, proxies them, and registers them
as beans in the Spring ApplicationContext. The Repositories can be injected into other application
service components.

It is sometimes convenient to use the @EnableEntityDefinedRegions along with Spring Data
Repositories to identify the entities used by your application and define the Regions used by the
Spring Data Repository infrastructure to persist the entity’s state. The @EnableEntityDefinedRegions
annotation is optional, provided for convenience, and complementary to the
@EnableGemfireRepositories annotation.

See the Reference Guide for more detail.

Explicit Configuration

Most of the other annotations provided in SDG are focused on particular application concerns or
enable certain Apache Geode features, rather than being a necessity, including:

• @EnableAutoRegionLookup

• @EnableBeanFactoryLocator

• @EnableCacheServer(s)

• @EnableCachingDefinedRegions

• @EnableClusterConfiguration

• @EnableClusterDefinedRegions

• @EnableCompression

• @EnableDiskStore(s)

• @EnableEntityDefinedRegions

• @EnableEviction

• @EnableExpiration

• @EnableGatewayReceiver

• @EnableGatewaySender(s)

• @EnableGemFireAsLastResource

• @EnableHttpService

• @EnableIndexing

228

• @EnableOffHeap

• @EnableLocator

• @EnableManager

• @EnableMemcachedServer

• @EnablePool(s)

• @EnableRedisServer

• @EnableStatistics

• @UseGemFireProperties

None of these annotations are necessary and none are auto-configured by SBDG. They are at your
disposal when and if you need them. This also means that none of these annotations are in conflict
with any SBDG auto-configuration.

Summary

In conclusion, you need to understand where SDG ends and SBDG begins. It all begins with the
auto-configuration provided by SBDG.

If a feature or function is not covered by SBDG’s auto-configuration, you are responsible for
enabling and configuring the feature appropriately, as needed by your application (for example,
@EnableRedisServer).

In other cases, you might also want to explicitly declare a complimentary annotation (such as
@EnableEntityDefinedRegions) for convenience, since SBDG provides no convention or opinion.

In all remaining cases, it boils down to understanding how Apache Geode works under the hood.
While we go to great lengths to shield you from as many details as possible, it is not feasible or
practical to address all matters, such as cache creation and security.

Configuration Metadata Reference
The following reference sections cover documented and well-known properties recognized and
processed by Spring Data for Apache Geode (SDG) and Spring Session for Apache Geode (SSDG).

These properties may be used in Spring Boot application.properties or as JVM System properties,
to configure different aspects of or enable individual features of Apache Geode in a Spring
application. When combined with the power of Spring Boot, they give you the ability to quickly
create an application that uses Apache Geode.

Spring Data Based Properties

The following properties all have a spring.data.gemfire.* prefix. For example, to set the cache copy-
on-read property, use spring.data.gemfire.cache.copy-on-read in Spring Boot
application.properties.

Table 23. spring.data.gemfire.* properties

229

Name Description Default From

name Name of the Apache
Geode.

SpringBasedCacheClie
ntApplication

ClientCacheApplicati
on.name

locators Comma-delimited list
of Locator endpoints
formatted as:
locator1[port1],…
,locatorN[portN].

[] PeerCacheApplication
.locators

use-bean-factory-
locator

Enable the SDG
BeanFactoryLocator
when mixing Spring
config with Apache
Geode native config
(such as cache.xml)
and you wish to
configure Apache
Geode objects
declared in cache.xml
with Spring.

false ClientCacheApplicati
on.useBeanFactoryLoc
ator

Table 24. spring.data.gemfire.* GemFireCache properties

Name Description Default From

cache.copy-on-read Configure whether a
copy of an object
returned from
Region.get(key) is
made.

false ClientCacheApplicati
on.copyOnRead

cache.critical-heap-
percentage

Percentage of heap
at or above which
the cache is
considered in danger
of becoming
inoperable.

ClientCacheApplicati
on.criticalHeapPerce
ntage

cache.critical-off-
heap-percentage

Percentage of off-
heap at or above
which the cache is
considered in danger
of becoming
inoperable.

ClientCacheApplicati
on.criticalOffHeapPe
rcentage

230

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#locators--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#locators--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#useBeanFactoryLocator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#useBeanFactoryLocator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#useBeanFactoryLocator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#copyOnRead--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#copyOnRead--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#criticalOffHeapPercentage--

Name Description Default From

cache.enable-auto-
region-lookup

Whether to lookup
Regions configured
in Apache Geode
native configuration
and declare them as
Spring beans.

false EnableAutoRegionLook
up.enable

cache.eviction-heap-
percentage

Percentage of heap
at or above which
the eviction should
begin on Regions
configured for
HeapLRU eviction.

ClientCacheApplicati
on.evictionHeapPerce
ntage

cache.eviction-off-
heap-percentage

Percentage of off-
heap at or above
which the eviction
should begin on
Regions configured
for HeapLRU
eviction.

ClientCacheApplicati
on.evictionOffHeapPe
rcentage

cache.log-level Configure the log-
level of an Apache
Geode cache.

config ClientCacheApplicati
on.logLevel

cache.name Alias for
spring.data.gemfire.
name.

SpringBasedCacheClie
ntApplication

ClientCacheApplicati
on.name

cache.compression.be
an-name

Name of a Spring
bean that
implements
org.apache.geode.com
pression.Compressor.

EnableCompression.co
mpressorBeanName

cache.compression.re
gion-names

Comma-delimited list
of Region names for
which compression
is configured.

[] EnableCompression.
RegionNames

cache.off-
heap.memory-size

Determines the size
of off-heap memory
used by Apache
Geode in megabytes
(m) or gigabytes
(g) — for example,
120g

EnableOffHeap.memory
Size

231

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAutoRegionLookup.html#enabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAutoRegionLookup.html#enabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#evictionOffHeapPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#logLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#logLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#name--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#compressorBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#compressorBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#RegionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableCompression.html#RegionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#memorySize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#memorySize--

Name Description Default From

cache.off-
heap.region-names

Comma-delimited list
of Region names for
which off-heap is
configured.

[] EnableOffHeap.Region
Names

Table 25. spring.data.gemfire.* ClientCache properties

Name Description Default From

cache.client.durable
-client-id

Used only for clients
in a client/server
installation. If set,
this indicates that
the client is durable
and identifies the
client. The ID is used
by servers to
reestablish any
messaging that was
interrupted by client
downtime.

ClientCacheApplicati
on.durableClientId

cache.client.durable
-client-timeout

Used only for clients
in a client/server
installation. Number
of seconds this client
can remain
disconnected from
its server and have
the server continue
to accumulate
durable events for it.

300 ClientCacheApplicati
on.durableClientTime
out

cache.client.keep-
alive

Whether the server
should keep the
durable client’s
queues alive for the
timeout period.

false ClientCacheApplicati
on.keepAlive

Table 26. spring.data.gemfire.* peer Cache properties

232

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#RegionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableOffHeap.html#RegionNames--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientId--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientId--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#durableClientTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#keepAlive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#keepAlive--

Name Description Default From

cache.peer.enable-
auto-reconnect

Whether a member
(a Locator or Server)
try to reconnect and
reinitialize the cache
after it has been
forced out of the
cluster by a network
partition event or
has otherwise been
shunned by other
members.

false PeerCacheApplication
.enableAutoReconnect

cache.peer.lock-
lease

The length, in
seconds, of
distributed lock
leases obtained by
this cache.

120 PeerCacheApplication
.lockLease

cache.peer.lock-
timeout

The number of
seconds a cache
operation waits to
obtain a distributed
lock lease.

60 PeerCacheApplication
.lockTimeout

cache.peer.message-
sync-interval

The frequency (in
seconds) at which a
message is sent by
the primary cache-
server to all the
secondary cache-
server nodes to
remove the events
that have already
been dispatched
from the queue.

1 PeerCacheApplication
.messageSyncInterval

cache.peer.search-
timeout

The number of
seconds a cache get
operation can spend
searching for a
value.

300 PeerCacheApplication
.searchTimeout

cache.peer.use-
cluster-
configuration

Whether this cache
member node pulls
its configuration
metadata from the
cluster-based cluster
configuration
service.

false PeerCacheApplication
.useClusterConfigura
tion

233

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#enableAutoReconnect--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#enableAutoReconnect--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockLease--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockLease--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#lockTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#messageSyncInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#messageSyncInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#searchTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#searchTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#useClusterConfiguration--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#useClusterConfiguration--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/PeerCacheApplication.html#useClusterConfiguration--

Table 27. spring.data.gemfire.* CacheServer properties

Name Description Default From

cache.server.auto-
startup

Whether the
CacheServer should
be started
automatically at
runtime.

true CacheServerApplicati
on.autoStartup

cache.server.bind-
address

The IP address or
hostname on which
this cache server
listens.

CacheServerApplicati
on.bindAddress

cache.server.hostnam
e-for-clients

The IP address or
hostname that server
locators tell to clients
to indicate the IP
address on which the
cache server listens.

CacheServerApplicati
on.hostNameForClient
s

cache.server.load-
poll-interval

The frequency in
milliseconds at
which to poll the
load probe on this
cache server.

5000 CacheServerApplicati
on.loadPollInterval

cache.server.max-
connections

The maximum client
connections.

800 CacheServerApplicati
on.maxConnections

cache.server.max-
message-count

The maximum
number of messages
that can be in a
client queue.

230000 CacheServerApplicati
on.maxMessageCount

cache.server.max-
threads

The maximum
number of threads
allowed in this cache
server to service
client requests.

CacheServerApplicati
on.maxThreads

cache.server.max-
time-between-pings

The maximum
amount of time
between client pings.

60000 CacheServerApplicati
on.maxTimeBetweenPin
gs

cache.server.message
-time-to-live

The time (in seconds)
after which a
message in the client
queue expires.

180 CacheServerApplicati
on.messageTimeToLive

cache.server.port The port on which
this cache server
listens for clients.

40404 CacheServerApplicati
on.port

234

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#autoStartup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#autoStartup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#loadPollInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#loadPollInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxMessageCount--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxMessageCount--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxThreads--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxThreads--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxTimeBetweenPings--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxTimeBetweenPings--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#maxTimeBetweenPings--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#messageTimeToLive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#messageTimeToLive--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--

Name Description Default From

cache.server.socket-
buffer-size

The buffer size of the
socket connection to
this CacheServer.

32768 CacheServerApplicati
on.socketBufferSize

cache.server.subscri
ption-capacity

The capacity of the
client queue.

1 CacheServerApplicati
on.subscriptionCapac
ity

cache.server.subscri
ption-disk-store-
name

The name of the disk
store for client
subscription queue
overflow.

CacheServerApplicati
on.subscriptionDiskS
toreName

cache.server.subscri
ption-eviction-
policy

The eviction policy
that is executed
when the capacity of
the client
subscription queue is
reached.

none CacheServerApplicati
on.subscriptionEvict
ionPolicy

cache.server.tcp-no-
delay

The outgoing socket
connection tcp-no-
delay setting.

true CacheServerApplicati
on.tcpNoDelay

CacheServer properties can be further targeted at specific CacheServer instances by using an optional
bean name of the CacheServer bean defined in the Spring ApplicationContext. Consider the following
example:

spring.data.gemfire.cache.server.[<cacheServerBeanName>].bind-address=...

Table 28. spring.data.gemfire.* Cluster properties

Name Description Default From

cluster.Region.type Specifies the data
management policy
used when creating
Regions on the
servers in the
cluster.

RegionShortcut.PARTI
TION

EnableClusterConfigu
ration.serverRegionS
hortcut

Table 29. spring.data.gemfire.* DiskStore properties

235

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionCapacity--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionCapacity--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionCapacity--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionDiskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionDiskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionDiskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionEvictionPolicy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionEvictionPolicy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#subscriptionEvictionPolicy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#tcpNoDelay--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#tcpNoDelay--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#serverRegionShortcut--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#serverRegionShortcut--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#serverRegionShortcut--

Name Description Default From

disk.store.allow-
force-compaction

Whether to allow
DiskStore.forceCompa
ction() to be called
on Regions that use a
disk store.

false EnableDiskStore.allo
wForceCompaction

disk.store.auto-
compact

Whether to cause the
disk files to be
automatically
compacted.

true EnableDiskStore.auto
Compact

disk.store.compactio
n-threshold

The threshold at
which an oplog
becomes
compactible.

50 EnableDiskStore.comp
actionThreshold

disk.store.directory
.location

The system directory
where the DiskStore
(oplog) files are
stored.

[] EnableDiskStore.disk
Directories.location

disk.store.directory
.size

The amount of disk
space allowed to
store disk store
(oplog) files.

21474883647 EnableDiskStore.disk
Directories.size

disk.store.disk-
usage-critical-
percentage

The critical threshold
for disk usage as a
percentage of the
total disk volume.

99.0 EnableDiskStore.disk
UsageCriticalPercent
age

disk.store.disk-
usage-warning-
percentage

The warning
threshold for disk
usage as a
percentage of the
total disk volume.

90.0 EnableDiskStore.disk
UsageWarningPercenta
ge

disk.store.max-
oplog-size

The maximum size
(in megabytes) a
single oplog
(operation log) can
be.

1024 EnableDiskStore.maxO
plogSize

disk.store.queue-
size

The maximum
number of
operations that can
be asynchronously
queued.

EnableDiskStore.queu
eSize

236

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#allowForceCompaction--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#allowForceCompaction--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#autoCompact--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#autoCompact--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#compactionThreshold--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#compactionThreshold--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskDirectories--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageCriticalPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageCriticalPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageCriticalPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageWarningPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageWarningPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#diskUsageWarningPercentage--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#maxOplogSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#maxOplogSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#queueSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#queueSize--

Name Description Default From

disk.store.time-
interval

The number of
milliseconds that can
elapse before data
written
asynchronously is
flushed to disk.

1000 EnableDiskStore.time
Interval

disk.store.write-
buffer-size

Configures the write
buffer size in bytes.

32768 EnableDiskStore.writ
eBufferSize

DiskStore properties can be further targeted at specific DiskStore instances by setting the
DiskStore.name property.

For example, you can specify directory location of the files for a specific, named DiskStore by using:

spring.data.gemfire.disk.store.Example.directory.location=/path/to/geode/disk-
stores/Example/

The directory location and size of the DiskStore files can be further divided into multiple locations
and size using array syntax:

spring.data.gemfire.disk.store.Example.directory[0].location=/path/to/geode/disk-
stores/Example/one
spring.data.gemfire.disk.store.Example.directory[0].size=4096000
spring.data.gemfire.disk.store.Example.directory[1].location=/path/to/geode/disk-
stores/Example/two
spring.data.gemfire.disk.store.Example.directory[1].size=8192000

Both the name and array index are optional, and you can use any combination of name and array
index. Without a name, the properties apply to all DiskStore instances. Without array indexes, all
named DiskStore files are stored in the specified location and limited to the defined size.

Table 30. spring.data.gemfire.* Entity properties

Name Description Default From

entities.base-
packages

Comma-delimited list
of package names
indicating the start
points for the entity
scan.

EnableEntityDefinedR
egions.basePackages

Table 31. spring.data.gemfire.* Locator properties

237

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#timeInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#timeInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#writeBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableDiskStore.html#writeBufferSize--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/DiskStore.html#getName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableEntityDefinedRegions.html#basePackages--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableEntityDefinedRegions.html#basePackages--

Name Description Default From

locator.host The IP address or
hostname of the
system NIC to which
the embedded
Locator is bound to
listen for
connections.

EnableLocator.host

locator.port The network port to
which the embedded
Locator will listen
for connections.

10334 EnableLocator.port

Table 32. spring.data.gemfire.* Logging properties

Name Description Default From

logging.level The log level of an
Apache Geode cache.
Alias for
'spring.data.gemfire.
cache.log-level'.

config EnableLogging.logLev
el

logging.log-disk-
space-limit

The amount of disk
space allowed to
store log files.

EnableLogging.logDis
kSpaceLimit

logging.log-file The pathname of the
log file used to log
messages.

EnableLogging.logFil
e

logging.log-file-
size

The maximum size
of a log file before
the log file is rolled.

EnableLogging.logFil
eSize

Table 33. spring.data.gemfire.* Management properties

Name Description Default From

management.use-http Whether to use the
HTTP protocol to
communicate with
an Apache Geode
Manager.

false EnableClusterConfigu
ration.useHttp

management.http.host The IP address or
hostname of the
Apache Geode
Manager that runs
the HTTP service.

EnableClusterConfigu
ration.host

238

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLocator.html#host--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLocator.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logDiskSpaceLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logDiskSpaceLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFileSizeLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableLogging.html#logFileSizeLimit--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#useHttp--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#useHttp--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#host--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#host--

Name Description Default From

management.http.port The port used by the
Apache Geode
Manager’s HTTP
service to listen for
connections.

7070 EnableClusterConfigu
ration.port

Table 34. spring.data.gemfire.* Manager properties

Name Description Default From

manager.access-file The access control
list (ACL) file used by
the Manager to
restrict access to the
JMX MBeans by the
clients.

EnableManager.access
File

manager.bind-
address

The IP address or
hostname of the
system NIC used by
the Manager to bind
and listen for JMX
client connections.

EnableManager.bindAd
dress

manager.hostname-
for-clients

The hostname given
to JMX clients to ask
the Locator for the
location of the
Manager.

EnableManager.hostNa
meForClients

manager.password-
file

By default, the JMX
Manager lets clients
without credentials
connect. If this
property is set to the
name of a file, only
clients that connect
with credentials that
match an entry in
this file are allowed.

EnableManager.passwo
rdFile

manager.port The port used by the
Manager to listen for
JMX client
connections.

1099 EnableManager.port

manager.start Whether to start the
Manager service at
runtime.

false EnableManager.start

239

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableClusterConfiguration.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#accessFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#accessFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#hostnameForClients--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#passwordFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#passwordFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#start--

Name Description Default From

manager.update-rate The rate, in
milliseconds, at
which this member
pushes updates to
any JMX Managers.

2000 EnableManager.update
Rate

Table 35. spring.data.gemfire.* PDX properties

Name Description Default From

pdx.disk-store-name The name of the
DiskStore used to
store PDX type
metadata to disk
when PDX is
persistent.

EnablePdx.diskStoreN
ame

pdx.ignore-unread-
fields

Whether PDX
ignores fields that
were unread during
deserialization.

false EnablePdx.ignoreUnre
adFields

pdx.persistent Whether PDX
persists type
metadata to disk.

false EnablePdx.persistent

pdx.read-serialized Whether a Region
entry is returned as a
PdxInstance or
deserialized back
into object form on
read.

false EnablePdx.readSerial
ized

pdx.serialize-bean-
name

The name of a
custom Spring bean
that implements
org.apache.geode.pdx
.PdxSerializer.

EnablePdx.serializer
BeanName

Table 36. spring.data.gemfire.* Pool properties

Name Description Default From

pool.free-
connection-timeout

The timeout used to
acquire a free
connection from a
Pool.

10000 EnablePool.freeConne
ctionTimeout

240

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#updateRate--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableManager.html#updateRate--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#diskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#diskStoreName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#ignoreUnreadFields--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#ignoreUnreadFields--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#persistent--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#readSerialized--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#readSerialized--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#serializerBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePdx.html#serializerBeanName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#freeConnectionTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#freeConnectionTimeout--

Name Description Default From

pool.idle-timeout The amount of time a
connection can be
idle before expiring
(and closing) the
connection.

5000 EnablePool.idleTimeo
ut

pool.load-
conditioning-
interval

The interval for how
frequently the Pool
checks to see if a
connection to a given
server should be
moved to a different
server to improve
the load balance.

300000 EnablePool.loadCondi
tioningInterval

pool.locators Comma-delimited list
of locator endpoints
in the format of
locator1[port1],…
,locatorN[portN]

EnablePool.locators

pool.max-connections The maximum
number of client to
server connections
that a Pool will
create.

EnablePool.maxConn
ections

pool.min-connections The minimum
number of client to
server connections
that a Pool
maintains.

1 EnablePool.minConnec
tions

pool.multi-user-
authentication

Whether the created
Pool can be used by
multiple
authenticated users.

false EnablePool.multiUser
Authentication

pool.ping-interval How often to ping
servers to verify that
they are still alive.

10000 EnablePool.pingInter
val

241

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#idleTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#idleTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#loadConditioningInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#loadConditioningInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#locators--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#maxConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#minConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#minConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#multiUserAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#multiUserAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#pingInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#pingInterval--

Name Description Default From

pool.pr-single-hop-
enabled

Whether to perform
single-hop data
access operations
between the client
and servers. When
true, the client is
aware of the location
of partitions on
servers that host
Regions with
DataPolicy.PARTITION
.

true EnablePool.prSingleH
opEnabled

pool.read-timeout The number of
milliseconds to wait
for a response from
a server before
timing out the
operation and trying
another server (if
any are available).

10000 EnablePool.readTimeo
ut

pool.ready-for-
events

Whether to signal
the server that the
client is prepared
and ready to receive
events.

false ClientCacheApplicati
on.readyForEvents

pool.retry-attempts The number of times
to retry a request
after
timeout/exception.

EnablePool.retryAtte
mpts

pool.server-group The group that all
servers to which a
Pool connects must
belong.

EnablePool.serverGro
up

pool.servers Comma-delimited list
of CacheServer
endpoints in the
format of
server1[port1],…
,serverN[portN]

EnablePool.servers

pool.socket-buffer-
size

The socket buffer
size for each
connection made in
all Pools.

32768 EnablePool.socketBuf
ferSize

242

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#prSingleHopEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#prSingleHopEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#readTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#readTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#readyForEvents--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/ClientCacheApplication.html#readyForEvents--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#retryAttempts--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#retryAttempts--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#serverGroup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#serverGroup--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#servers--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#socketBufferSize--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#socketBufferSize--

Name Description Default From

pool.statistic-
interval

How often to send
client statistics to the
server.

EnablePool.statistic
Interval

pool.subscription-
ack-interval

The interval in
milliseconds to wait
before sending
acknowledgements
to the CacheServer for
events received from
the server
subscriptions.

100 EnablePool.subscript
ionAckInterval

pool.subscription-
enabled

Whether the created
Pool has server-to-
client subscriptions
enabled.

false EnablePool.subscript
ionEnabled

pool.subscription-
message-tracking-
timeout

The
messageTrackingTimeo
ut attribute, which is
the time-to-live
period, in
milliseconds, for
subscription events
the client has
received from the
server.

900000 EnablePool.subscript
ionMessageTrackingTi
meout

pool.subscription-
redundancy

The redundancy
level for all Pools
server-to-client
subscriptions.

EnablePool.subsripti
onRedundancy

pool.thread-local-
connections

The thread local
connections policy
for all Pools.

false EnablePool.threadLoc
alConnections

Table 37. spring.data.gemfire.* Security properties

Name Description Default From

security.username The name of the user
used to authenticate
with the servers.

EnableSecurity.secur
ityUsername

security.password The user password
used to authenticate
with the servers.

EnableSecurity.secur
ityPassword

243

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#statisticInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#statisticInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionAckInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionAckInterval--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionEnabled--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionMessageTrackingTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionMessageTrackingTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionMessageTrackingTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionRedundancy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#subscriptionRedundancy--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#threadLocalConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnablePool.html#threadLocalConnections--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityUsername--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityUsername--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPassword--

Name Description Default From

security.properties-
file

The system
pathname to a
properties file that
contains security
credentials.

EnableAuth.propertie
sFile

security.client.acce
ssor

X X EnableAuth.clientAcc
essor

security.client.acce
ssor-post-processor

The callback that
should be invoked in
the post-operation
phase, which is when
the operation has
completed on the
server but before the
result is sent to the
client.

EnableAuth.clientAcc
essorPostProcessor

security.client.auth
entication-
initializer

Static creation
method that returns
an AuthInitialize
object, which obtains
credentials for peers
in a cluster.

EnableSecurity.clien
tAuthentiationInitia
lizer

security.client.auth
enticator

Static creation
method that returns
an Authenticator
object used by a
cluster member
(Locator or Server)
to verify the
credentials of a
connecting client.

EnableAuth.clientAut
henticator

244

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityPropertiesFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityPropertiesFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessor--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessor--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessorPostProcessor--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAccessorPostProcessor--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#clientAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#clientAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#clientAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAuthenticator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientAuthenticator--

Name Description Default From

security.client.diff
ie-hellman-algorithm

Used for
authentication. For
secure transmission
of sensitive
credentials (such as
passwords), you can
encrypt the
credentials by using
the Diffie-Hellman
key-exchange
algorithm. You can
do so by setting the
security-client-
dhalgo system
property on the
clients to the name
of a valid, symmetric
key cipher supported
by the JDK.

EnableAuth.clientDif
fieHellmanAlgorithm

security.log.file The pathname to a
log file used for
security log
messages.

EnableAuth.securityL
ogFile

security.log.level The log level for
security log
messages.

EnableAuth.securityL
ogLevel

security.manager.cla
ss-name

The name of a class
that implements
org.apache.geode.sec
urity.SecurityManage
r.

EnableSecurity.secur
ityManagerClassName

security.peer.authen
tication-initializer

Static creation
method that returns
an AuthInitialize
object, which obtains
credentials for peers
in a cluster.

EnableSecurity.peerA
uthenticationInitial
izer

security.peer.authen
ticator

Static creation
method that returns
an Authenticator
object, which is used
by a peer to verify
the credentials of a
connecting node.

EnableAuth.peerAuthe
nticator

245

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientDiffieHellmanAlgorithm--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#clientDiffieHellmanAlgorithm--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogFile--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#securityLogLevel--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityManagerClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityManagerClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#peerAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#peerAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#peerAuthenticationInitializer--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerAuthenticator--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerAuthenticator--

Name Description Default From

security.peer.verify-
member-timeout

The timeout in
milliseconds used by
a peer to verify
membership of an
unknown
authenticated peer
requesting a secure
connection.

EnableAuth.peerVerif
yMemberTimeout

security.post-
processor.class-name

The name of a class
that implements the
org.apache.geode.sec
urity.PostProcessor
interface that can be
used to change the
returned results of
Region get
operations.

EnableSecurity.secur
ityPostProcessorClas
sName

security.shiro.ini-
resource-path

The Apache Geode
System property that
refers to the location
of an Apache Shiro
INI file that
configures the
Apache Shiro
Security Framework
in order to secure
Apache Geode.

EnableSecurity.shiro
IniResourcePath

Table 38. spring.data.gemfire.* SSL properties

Name Description Default From

security.ssl.certifi
cate.alias.cluster

The alias to the
stored SSL certificate
used by the cluster to
secure
communications.

EnableSsl.componentC
ertificateAliases

security.ssl.certifi
cate.alias.default-
alias

The default alias to
the stored SSL
certificate used to
secure
communications
across the entire
Apache Geode
system.

EnableSsl.defaultCer
tificateAlias

246

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerVerifyMemberTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableAuth.html#peerVerifyMemberTimeout--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPostProcessorClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPostProcessorClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#securityPostProcessorClassName--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#shiroIniResourcePath--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSecurity.html#shiroIniResourcePath--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#defaultCertificateAlias--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#defaultCertificateAlias--

Name Description Default From

security.ssl.certifi
cate.alias.gateway

The alias to the
stored SSL certificate
used by the WAN
Gateway
Senders/Receivers to
secure
communications.

EnableSsl.componentC
ertificateAliases

security.ssl.certifi
cate.alias.jmx

The alias to the
stored SSL certificate
used by the
Manager’s JMX-
based JVM
MBeanServer and
JMX clients to secure
communications.

EnableSsl.componentC
ertificateAliases

security.ssl.certifi
cate.alias.locator

The alias to the
stored SSL certificate
used by the Locator
to secure
communications.

EnableSsl.componentC
ertificateAliases

security.ssl.certifi
cate.alias.server

The alias to the
stored SSL certificate
used by clients and
servers to secure
communications.

EnableSsl.componentC
ertificateAliases

security.ssl.certifi
cate.alias.web

The alias to the
stored SSL certificate
used by the
embedded HTTP
server to secure
communications
(HTTPS).

EnableSsl.componentC
ertificateAliases

security.ssl.ciphers Comma-separated
list of SSL ciphers or
any.

EnableSsl.ciphers

security.ssl.compone
nts

Comma-delimited list
of Apache Geode
components (for
example, WAN) to be
configured for SSL
communication.

EnableSsl.components

247

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#componentCertificateAliases--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#ciphers--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#components--

Name Description Default From

security.ssl.keystor
e

The system
pathname to the Java
KeyStore file storing
certificates for SSL.

EnableSsl.keystore

security.ssl.keystor
e.password

The password used
to access the Java
KeyStore file.

EnableSsl.keystorePa
ssword

security.ssl.keystor
e.type

The password used
to access the Java
KeyStore file (for
example, JKS).

EnableSsl.keystoreTy
pe

security.ssl.protoco
ls

Comma-separated
list of SSL protocols
or any.

EnableSsl.protocols

security.ssl.require
-authentication

Whether two-way
authentication is
required.

EnableSsl.requireAut
hentication

security.ssl.trustst
ore

The system
pathname to the
trust store (Java
KeyStore file) that
stores certificates for
SSL.

EnableSsl.truststore

security.ssl.trustst
ore.password

The password used
to access the trust
store (Java KeyStore
file).

EnableSsl.truststore
Password

security.ssl.trustst
ore.type

The password used
to access the trust
store (Java KeyStore
file — for example,
JKS).

EnableSsl.truststore
Type

security.ssl.web-
require-
authentication

Whether two-way
HTTP authentication
is required.

false EnableSsl.webRequire
Authentication

Table 39. spring.data.gemfire.* Service properties

248

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystore--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#keystoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#protocols--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#requireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#requireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststore--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststorePassword--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#truststoreType--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#webRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableSsl.html#webRequireAuthentication--

Name Description Default From

service.http.bind-
address

The IP address or
hostname of the
system NIC used by
the embedded HTTP
server to bind and
listen for HTTP(S)
connections.

EnableHttpService.bi
ndAddress

service.http.port The port used by the
embedded HTTP
server to listen for
HTTP(S) connections.

7070 EnableHttpService.po
rt

service.http.ssl-
require-
authentication

Whether two-way
HTTP authentication
is required.

false EnableHttpService.ss
lRequireAuthenticati
on

service.http.dev-
rest-api-start

Whether to start the
Developer REST API
web service. A full
installation of
Apache Geode is
required, and you
must set the $GEODE
environment
variable.

false EnableHttpService.st
artDeveloperRestApi

service.memcached.po
rt

The port of the
embedded
Memcached server
(service).

11211 EnableMemcachedServe
r.port

service.memcached.pr
otocol

The protocol used by
the embedded
Memcached server
(service).

ASCII EnableMemcachedServe
r.protocol

service.redis.bind-
address

The IP address or
hostname of the
system NIC used by
the embedded Redis
server to bind and
listen for
connections.

EnableRedis.bindAddr
ess

service.redis.port The port used by the
embedded Redis
server to listen for
connections.

6479 EnableRedisServer.po
rt

249

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#sslRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#sslRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#sslRequireAuthentication--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#startDeveloperRestApi--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableHttpService.html#startDeveloperRestApi--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#protocol--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableMemcachedServer.html#protocol--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#bindAddress--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/EnableRedisServer.html#port--

Spring Session Based Properties

The following properties all have a spring.session.data.gemfire.* prefix. For example, to set the
session Region name, set spring.session.data.gemfire.session.region.name in Spring Boot
application.properties.

Table 40. spring.session.data.gemfire.* properties

Name Description Default From

cache.client.pool.na
me

Name of the pool
used to send data
access operations
between the client
and servers.

gemfirePool EnableGemFireHttpSes
sion.poolName

cache.client.Region.
shortcut

The DataPolicy used
by the client Region
to manage (HTTP)
session state.

ClientRegionShortcut
.PROXY

EnableGemFireHttpSes
sion.clientRegionSho
rtcut

cache.server.Region.
shortcut

The DataPolicy used
by the server Region
to manage (HTTP)
session state.

RegionShortcut.PARTI
TION

EnableGemFireHttpSes
sion.serverRegionSho
rtcut

session.attributes.i
ndexable

The names of session
attributes for which
an Index is created.

[] EnableGemFireHttpSes
sion.indexableSessio
nAttributes

session.expiration.m
ax-inactive-
interval-seconds

Configures the
number of seconds
in which a session
can remain inactive
before it expires.

1800 EnableGemFireHttpSes
sion.maxInactiveInte
rvalSeconds

session.Region.name The name of the
(client/server) Region
used to manage
(HTTP) session state.

ClusteredSpringSessi
ons

EnableGemFireHttpSes
sion.RegionName

session.serializer.b
ean-name

The name of a Spring
bean that
implements
org.springframework.
session.data.gemfire
.serialization.Sessi
onSerializer.

EnableGemFireHttpSes
sion.sessionSerializ
erBeanName

Apache Geode Properties

While we do not recommend using Apache Geode properties directly in your Spring applications,
SBDG does not prevent you from doing so. See the complete reference to the Apache Geode specific

250

https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#poolName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#poolName--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#PROXY
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html#PROXY
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#clientRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#clientRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#clientRegionShortcut--
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html#PARTITION
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#serverRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#serverRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#serverRegionShortcut--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#indexableSessionAttributes--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#indexableSessionAttributes--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#indexableSessionAttributes--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#maxInactiveIntervalSeconds--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#maxInactiveIntervalSeconds--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#maxInactiveIntervalSeconds--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#RegionName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#RegionName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#sessionSerializerBeanName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#sessionSerializerBeanName--
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api/org/springframework/session/data/gemfire/config/annotation/web/http/EnableGemFireHttpSession.html#sessionSerializerBeanName--
https://geode.apache.org/docs/guide/113/reference/topics/gemfire_properties.html

properties.


Apache Geode is very strict about the properties that may be specified in a
gemfire.properties file. You cannot mix Spring properties with gemfire.*
properties in an Apache Geode gemfire.properties file.

Disabling Auto-configuration
If you would like to disable the auto-configuration of any feature provided by Spring Boot for
Apache Geode, you can specify the auto-configuration class in the exclude attribute of the
@SpringBootApplication annotation:

Example 234. Disable Auto-configuration of PDX

@SpringBootApplication(exclude = PdxSerializationAutoConfiguration.class)
public class MySpringBootApplication {

 public static void main(String[] args) {
 SpringApplication.run(MySpringBootApplication.class, args);
 }
}

You can disable more than one auto-configuration class at a time by specifying each class in the
exclude attribute using array syntax:

Example 235. Disable Auto-configuration of PDX & SSL

@SpringBootApplication(exclude = { PdxSerializationAutoConfiguration.class,
SslAutoConfiguration.class })
public class MySpringBootApplication {

 public static void main(String[] args) {
 SpringApplication.run(MySpringBootApplication.class, args);
 }
}

Complete Set of Auto-configuration Classes

The current set of auto-configuration classes in Spring Boot for Apache Geode includes:

• CacheNameAutoConfiguration

• CachingProviderAutoConfiguration

• ClientCacheAutoConfiguration

• ClientSecurityAutoConfiguration

251

https://geode.apache.org/docs/guide/113/reference/topics/gemfire_properties.html

• ContinuousQueryAutoConfiguration

• FunctionExecutionAutoConfiguration

• GemFirePropertiesAutoConfiguration

• LoggingAutoConfiguration

• PdxSerializationAutoConfiguration

• PeerSecurityAutoConfiguration

• RegionTemplateAutoConfiguration

• RepositoriesAutoConfiguration

• SpringSessionAutoConfiguration

• SpringSessionPropertiesAutoConfiguration

• SslAutoConfiguration

Switching from Apache Geode to VMware Tanzu
GemFire or VMware Tanzu GemFire for VMs
Spring Boot for Apache Geode (SBDG) stopped providing support for VMware Tanzu GemFire after
SBDG 1.3. SBDG 1.3 was the last version to support both Apache Geode and VMware Tanzu
GemFire. If you need support for VMware Tanzu GemFire in Spring Boot, then you will need to
downgrade to SBDG 1.3.



This section is now deprecated. Spring Boot for Apache Geode (SBDG) no longer
provides the spring-gemfire-starter or related starter modules. As of SBDG 1.4,
SBDG is based on Apache Geode 1.13. Standalone GemFire bits based on Apache
Geode are no longer being released by VMware, Inc. after GemFire 9.10. GemFire
9.10 was based on Apache Geode 1.12, and SBDG can no longer properly support
standalone GemFire bits (version ⇐ 9.10).



What was Pivotal GemFire has now been rebranded as VMware Tanzu GemFire
and what was Pivotal Cloud Cache (PCC) running on Pivotal CloudFoundry (PCF)
has been rebranded as VMware Tanzu GemFire for VMs and VMware Tanzu
Application Service (TAS) (TAS), respectively.

Running an Apache Geode cluster with Spring Boot
from your IDE
As described in Building ClientCache Applications, you can configure and run a small Apache Geode
cluster from inside your IDE using Spring Boot. This is extremely helpful during development
because it enables you to manually run, test, and debug your applications quickly and easily.

Spring Boot for Apache Geode includes such a class:

252

https://pivotal.io/pivotal-gemfire
https://pivotal.io/pivotal-cloud-cache
https://pivotal.io/platform
https://pivotal.io/platform

Example 236. Spring Boot application class used to configure and bootstrap an Apache Geode server

@SpringBootApplication
@CacheServerApplication(name = "SpringBootApacheGeodeCacheServerApplication")
@SuppressWarnings("unused")
public class SpringBootApacheGeodeCacheServerApplication {

 public static void main(String[] args) {

 new
SpringApplicationBuilder(SpringBootApacheGeodeCacheServerApplication.class)
 .web(WebApplicationType.NONE)
 .build()
 .run(args);
 }

 @Configuration
 @UseLocators
 @Profile("clustered")
 static class ClusteredConfiguration { }

 @Configuration
 @EnableLocator
 @EnableManager(start = true)
 @Profile("!clustered")
 static class LonerConfiguration { }

}

This class is a proper Spring Boot application that you can use to configure and bootstrap multiple
Apache Geode servers and join them together to form a small cluster. You only need to modify the
runtime configuration of this class to startup multiple servers.

Initially, you will need to start a single (primary) server with an embedded Locator and Manager.

The Locator enables members in the cluster to locate one another and lets new members join the
cluster as a peer. The Locator also lets clients connect to the servers in the cluster. When the cache
client’s connection pool is configured to use Locators, the pool of connections can intelligently route
data requests directly to the server hosting the data (a.k.a. single-hop access), especially when the
data is partitioned/sharded across multiple servers in the cluster. Locator-based connection pools
include support for load balancing connections and handling automatic fail-over in the event of
failed connections, among other things.

The Manager lets you connect to this server using Gfsh (Apache Geode’s command-line shell tool).

To start your primary server, create a run configuration in your IDE for the
SpringBootApacheGeodeCacheServerApplication class using the following, recommended JRE
command-line options:

253

https://geode.apache.org/docs/guide/113/tools_modules/gfsh/chapter_overview.html

Example 237. Server 1 run profile configuration

-server -ea -Dspring.profiles.active=

Run the class. You should see output similar to the following:

254

Example 238. Server 1 output on startup

/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/bin/java -server
-ea -Dspring.profiles.active= "-javaagent:/Applications/IntelliJ IDEA 17
CE.app/Contents/lib/idea_rt.jar=62866:/Applications/IntelliJ IDEA 17
CE.app/Contents/bin" -Dfile.encoding=UTF-8 -classpath
/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/charsets.
jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/deplo
y.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext
/cldrdata.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre
/lib/ext/dnsns.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Hom
e/jre/lib/ext/jaccess.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Conte
nts/Home/jre/lib/ext/jfxrt.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/
Contents/Home/jre/lib/ext/localedata.jar:/Library/Java/JavaVirtualMachines/jdk1.8.
0_152.jdk/Contents/Home/jre/lib/ext/nashorn.jar:/Library/Java/JavaVirtualMachines/
jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/sunec.jar:/Library/Java/JavaVirtualMach
ines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/sunjce_provider.jar:/Library/Java/
JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/sunpkcs11.jar:/Libr
ary/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/ext/zipfs.jar:
/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/javaws.ja
r:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/jce.jar
:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/jfr.jar:
/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/jfxswt.ja
r:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/jsse.ja
r:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/managem
ent-
agent.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib
/plugin.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/l
ib/resources.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/
jre/lib/rt.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/li
b/ant-
javafx.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/dt
.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/javafx-
mx.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/jconso
le.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/packag
er.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/sa-
jdi.jar:/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/lib/tools
.jar:/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/build/classes/main:/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/build/resources/main:/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
autoconfigure/build/classes/main:/Users/jblum/pivdev/spring-boot-data-
geode/spring-geode-autoconfigure/build/resources/main:/Users/jblum/pivdev/spring-
boot-data-geode/spring-
geode/build/classes/main:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework.boot/spring-boot-
starter/2.0.3.RELEASE/ffaa050dbd36b0441645598f1a7ddaf67fd5e678/spring-boot-
starter-2.0.3.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework.boot/spring-boot-
autoconfigure/2.0.3.RELEASE/11bc4cc96b08fabad2b3186755818fa0b32d83f/spring-boot-
autoconfigure-2.0.3.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-

255

2.1/org.springframework.boot/spring-
boot/2.0.3.RELEASE/b874870d915adbc3dd932e19077d3d45c8e54aa0/spring-boot-
2.0.3.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/javax.annotation/javax.annotation-
api/1.3.2/934c04d3cfef185a8008e7bf34331b79730a9d43/javax.annotation-api-
1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework.data/spring-data-
geode/2.0.8.RELEASE/9e0a3cd2805306d355c77537aea07c281fc581b/spring-data-geode-
2.0.8.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-context-
support/5.0.7.RELEASE/e8ee4902d9d8bfbb21bc5e8f30cfbb4324adb4f3/spring-context-
support-5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
context/5.0.7.RELEASE/243a23f8968de8754d8199d669780d683ab177bd/spring-context-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
tx/5.0.7.RELEASE/4ca59b21c61162adb146ad1b40c30b60d8dc42b8/spring-tx-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
web/5.0.7.RELEASE/2e04c6c2922fbfa06b5948be14a5782db168b6ec/spring-web-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework.data/spring-data-
commons/2.0.8.RELEASE/5c19af63b5acb0eab39066684e813d5ecd9d03b7/spring-data-
commons-2.0.8.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
aop/5.0.7.RELEASE/fdd0b6aa3c9c7a188c3bfbf6dfd8d40e843be9ef/spring-aop-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
beans/5.0.7.RELEASE/c1196cb3e56da83e3c3a02ef323699f4b05feedc/spring-beans-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
expression/5.0.7.RELEASE/ca01fb473f53dd0ee3c85663b26d5dc325602057/spring-
expression-5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
core/5.0.7.RELEASE/54b731178d81e66eca9623df772ff32718208137/spring-core-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.yaml/snakeyaml/1.19/2d998d3d674b172a588e54ab619854d073f555b5/snakeyaml-
1.19.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework/spring-
jcl/5.0.7.RELEASE/699016ddf454c2c167d9f84ae5777eccadf54728/spring-jcl-
5.0.7.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.geode/geode-
lucene/1.2.1/3d22a050bd4eb64bd8c82a74677f45c070f102d5/geode-lucene-
1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-
core/1.2.1/fe853317e33dd2a1c291f29cee3c4be549f75a69/geode-core-
1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-
cq/1.2.1/69873d6b956ba13b55c894a13e72106fb552e840/geode-cq-
1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-
wan/1.2.1/df0dd8516e1af17790185255ff21a54b56d94344/geode-wan-
1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/antlr/antlr/2.7.7/83cd2cd674a217ade95a4bb83a8a14f351f48bd0/antlr-

256

2.7.7.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.shiro/shiro-
spring/1.3.2/281a6b565f6cf3aebd31ddb004632008d7106f2d/shiro-spring-
1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.aspectj/aspectjweaver/1.8.13/ad94df2a28d658a40dc27bbaff6a1ce5fbf04e9b/aspe
ctjweaver-1.8.13.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/com.fasterxml.jackson.core/jackson-
databind/2.9.6/cfa4f316351a91bfd95cb0644c6a2c95f52db1fc/jackson-databind-
2.9.6.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/com.fasterxml.jackson.core/jackson-
annotations/2.9.0/7c10d545325e3a6e72e06381afe469fd40eb701/jackson-annotations-
2.9.0.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.shiro/shiro-
web/1.3.2/725be023e1c65a0fd70c01b8c0c13a2936c23315/shiro-web-
1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.shiro/shiro-
core/1.3.2/b5dede9d890f335998a8ebf479809fe365b927fc/shiro-core-
1.3.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.slf4j/slf4j-
api/1.7.25/da76ca59f6a57ee3102f8f9bd9cee742973efa8a/slf4j-api-
1.7.25.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/com.github.stephenc.findbugs/findbugs-annotations/1.3.9-
1/a6b11447635d80757d64b355bed3c00786d86801/findbugs-annotations-1.3.9-
1.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.jgroups/jgroups/3.6.10.Final/fc0ff5a8a9de27ab62939956f705c2909bf86bc2/jgro
ups-3.6.10.Final.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-
io/commons-io/2.5/2852e6e05fbb95076fc091f6d1780f1f8fe35e0f/commons-io-
2.5.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-lang/commons-
lang/2.6/ce1edb914c94ebc388f086c6827e8bdeec71ac2/commons-lang-
2.6.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/it.unimi.dsi/fastutil/7.1.0/9835253257524c1be7ab50c057aa2d418fb72082/fastutil-
7.1.0.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/javax.resource/javax.resource-
api/1.7/ae40e0864eb1e92c48bf82a2a3399cbbf523fb79/javax.resource-api-
1.7.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/net.java.dev.jna/jna/4.5.1/65bd0cacc9c79a21c6ed8e9f588577cd3c2f85b9/jna-
4.5.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/net.sf.jopt-simple/jopt-
simple/5.0.3/cdd846cfc4e0f7eefafc02c0f5dce32b9303aa2a/jopt-simple-
5.0.3.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.logging.log4j/log4j-
core/2.10.0/c90b597163cd28ab6d9687edd53db601b6ea75a1/log4j-core-
2.10.0.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.logging.log4j/log4j-
api/2.10.0/fec5797a55b786184a537abd39c3fa1449d752d6/log4j-api-
2.10.0.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-
beanutils/commons-
beanutils/1.9.3/c845703de334ddc6b4b3cd26835458cb1cba1f3d/commons-beanutils-
1.9.3.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/io.github.lukehutch/fast-classpath-
scanner/2.0.11/ae34a7a5e6de8ad1f86e12f6f7ae1869fcfe9987/fast-classpath-scanner-
2.0.11.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-
common/1.2.1/9db253081d33f424f6e3ce0cde4b306e23e3420b/geode-common-
1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/org.apache.geode/geode-
json/1.2.1/bdb4c262e4ce6bb3b22e0f511cfb133a65fa0c04/geode-json-
1.2.1.jar:/Users/jblum/.gradle/caches/modules-2/files-

257

2.1/org.apache.lucene/lucene-analyzers-
common/6.4.1/c6f0f593503080204e9d33189cdc59320f55db37/lucene-analyzers-common-
6.4.1.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.lucene/lucene-
queryparser/6.4.1/1fc5795a072770a2c47dce11a3c85a80f3437af6/lucene-queryparser-
6.4.1.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.lucene/lucene-
queries/6.4.1/6de41d984c16185a244b52c4d069b00f5b2b120f/lucene-queries-
6.4.1.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.apache.lucene/lucene-
core/6.4.1/2a18924b9e0ed86b318902cb475a0b9ca4d7be5b/lucene-core-
6.4.1.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/com.fasterxml.jackson.core/jackson-
core/2.9.6/4e393793c37c77e042ccc7be5a914ae39251b365/jackson-core-
2.9.6.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/javax.transaction/javax.transaction-
api/1.2/d81aff979d603edd90dcd8db2abc1f4ce6479e3e/javax.transaction-api-
1.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-logging/commons-
logging/1.2/4bfc12adfe4842bf07b657f0369c4cb522955686/commons-logging-
1.2.jar:/Users/jblum/.gradle/caches/modules-2/files-2.1/commons-
collections/commons-
collections/3.2.2/8ad72fe39fa8c91eaaf12aadb21e0c3661fe26d5/commons-collections-
3.2.2.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/org.springframework.shell/spring-
shell/1.2.0.RELEASE/d94047721f292bd5334b5654e8600cef4b845049/spring-shell-
1.2.0.RELEASE.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/com.google.guava/guava/17.0/9c6ef172e8de35fd8d4d8783e4821e57cdef7445/guava-
17.0.jar:/Users/jblum/.gradle/caches/modules-2/files-
2.1/jline/jline/2.12/ce9062c6a125e0f9ad766032573c041ae8ecc986/jline-2.12.jar
org.springframework.geode.docs.example.app.server.SpringBootApacheGeodeCacheServer
Application
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See https://www.slf4j.org/codes.html#StaticLoggerBinder for further
details.

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.0.3.RELEASE)

[info 2018/06/24 21:42:28.183 PDT <main> tid=0x1] Starting
SpringBootApacheGeodeCacheServerApplication on jblum-mbpro-2.local with PID 41795
(/Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build/classes/main
started by jblum in /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-
docs/build)

[info 2018/06/24 21:42:28.186 PDT <main> tid=0x1] No active profile set, falling

258

back to default profiles: default

[info 2018/06/24 21:42:28.278 PDT <main> tid=0x1] Refreshing
org.springframework.context.annotation.AnnotationConfigApplicationContext@6fa51cd4
: startup date [Sun Jun 24 21:42:28 PDT 2018]; root of context hierarchy

[warn 2018/06/24 21:42:28.962 PDT <main> tid=0x1] @Bean method
PdxConfiguration.pdxDiskStoreAwareBeanFactoryPostProcessor is non-static and
returns an object assignable to Spring's BeanFactoryPostProcessor interface. This
will result in a failure to process annotations such as @Autowired, @Resource and
@PostConstruct within the method's declaring @Configuration class. Add the
'static' modifier to this method to avoid these container lifecycle issues; see
@Bean javadoc for complete details.

[info 2018/06/24 21:42:30.036 PDT <main> tid=0x1]

 Licensed to the Apache Software Foundation (ASF) under one or more
 contributor license agreements. See the NOTICE file distributed with this
 work for additional information regarding copyright ownership.

 The ASF licenses this file to You under the Apache License, Version 2.0
 (the "License"); you may not use this file except in compliance with the
 License. You may obtain a copy of the License at

 https://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the specific language governing permissions and limitations
 under the License.

Build-Date: 2017-09-16 07:20:46 -0700
Build-Id: abaker 0
Build-Java-Version: 1.8.0_121
Build-Platform: Mac OS X 10.12.3 x86_64
Product-Name: Apache Geode
Product-Version: 1.2.1
Source-Date: 2017-09-08 11:57:38 -0700
Source-Repository: release/1.2.1
Source-Revision: 0b881b515eb1dcea974f0f5c1b40da03d42af9cf
Native version: native code unavailable
Running on: /10.0.0.121, 8 cpu(s), x86_64 Mac OS X 10.10.5
Communications version: 65
Process ID: 41795
User: jblum
Current dir: /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Home dir: /Users/jblum
Command Line Parameters:

259

 -ea
 -Dspring.profiles.active=
 -javaagent:/Applications/IntelliJ IDEA 17
CE.app/Contents/lib/idea_rt.jar=62866:/Applications/IntelliJ IDEA 17
CE.app/Contents/bin
 -Dfile.encoding=UTF-8
Class Path:

/Library/Java/JavaVirtualMachines/jdk1.8.0_152.jdk/Contents/Home/jre/lib/charsets.
jar
 ...
Library Path:
 /Users/jblum/Library/Java/Extensions
 /Library/Java/Extensions
 /Network/Library/Java/Extensions
 /System/Library/Java/Extensions
 /usr/lib/java
 .
System Properties:
 PID = 41795
 ...
[info 2018/06/24 21:42:30.045 PDT <main> tid=0x1] Startup Configuration:
 ### GemFire Properties defined with api ###
disable-auto-reconnect=true
jmx-manager=true
jmx-manager-port=1099
jmx-manager-start=true
jmx-manager-update-rate=2000
log-level=config
mcast-port=0
name=SpringBootApacheGeodeCacheServerApplication
start-locator=localhost[10334]
use-cluster-configuration=false
GemFire Properties using default values
ack-severe-alert-threshold=0
...

[info 2018/06/24 21:42:30.090 PDT <main> tid=0x1] Starting peer location for
Distribution Locator on localhost/127.0.0.1

[info 2018/06/24 21:42:30.093 PDT <main> tid=0x1] Starting Distribution Locator on
localhost/127.0.0.1

[info 2018/06/24 21:42:30.094 PDT <main> tid=0x1] Locator was created at Sun Jun
24 21:42:30 PDT 2018

[info 2018/06/24 21:42:30.094 PDT <main> tid=0x1] Listening on port 10334 bound on
address localhost/127.0.0.1

...

260

[info 2018/06/24 21:42:30.685 PDT <main> tid=0x1] Initializing region
_monitoringRegion_10.0.0.121<v0>1024

[info 2018/06/24 21:42:30.688 PDT <main> tid=0x1] Initialization of region
_monitoringRegion_10.0.0.121<v0>1024 completed

...

[info 2018/06/24 21:42:31.570 PDT <main> tid=0x1] CacheServer Configuration:
port=40404 max-connections=800 max-threads=0 notify-by-subscription=true socket-
buffer-size=32768 maximum-time-between-pings=60000 maximum-message-count=230000
message-time-to-live=180 eviction-policy=none capacity=1 overflow directory=.
groups=[] loadProbe=ConnectionCountProbe loadPollInterval=5000 tcpNoDelay=true

[info 2018/06/24 21:42:31.588 PDT <main> tid=0x1] Started
SpringBootApacheGeodeCacheServerApplication in 3.77 seconds (JVM running for
5.429)

You can now connect to this server by using Gfsh:

261

Example 239. Connect with Gfsh

$ echo $GEMFIRE
/Users/jblum/pivdev/apache-geode-1.2.1
jblum-mbpro-2:lab jblum$
jblum-mbpro-2:lab jblum$ gfsh
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.2.1

Monitor and Manage Apache Geode

gfsh>connect
Connecting to Locator at [host=localhost, port=10334] ..
Connecting to Manager at [host=10.0.0.121, port=1099] ..
Successfully connected to: [host=10.0.0.121, port=1099]

gfsh>list members
 Name | Id

SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024

gfsh>describe member --name=SpringBootApacheGeodeCacheServerApplication
Name : SpringBootApacheGeodeCacheServerApplication
Id :
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024
Host : 10.0.0.121
Regions :
PID : 41795
Groups :
Used Heap : 184M
Max Heap : 3641M
Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Locators : localhost[10334]

Cache Server Information
Server Bind :
Server Port : 40404
Running : true
Client Connections : 0

Now you can run additional servers to scale-out your cluster.

262

To do so, you must vary the name of the members you add to your cluster as peers. Apache Geode
requires members in a cluster to be named and for the names of each member in the cluster to be
unique.

Additionally, since we are running multiple instances of our
SpringBootApacheGeodeCacheServerApplication class, which also embeds a CacheServer component
enabling cache clients to connect. Therefore, you must vary the ports used by the embedded
services.

Fortunately, you do not need to run another embedded Locator or Manager (you need only one of
each in this case). Therefore, you can switch profiles from non-clustered to using the Spring
"clustered" profile, which includes different configuration (the ClusterConfiguration class) to
connect another server as a peer member in the cluster, which currently has only one member, as
shown in Gfsh with the list members command (shown earlier).

To add another server, set the member name and CacheServer port to different values with the
following run configuration:

Example 240. Run profile configuration for server 2

-server -ea -Dspring.profiles.active=clustered
-Dspring.data.gemfire.name=ServerTwo -Dspring.data.gemfire.cache.server.port=41414

Notice that we explicitly activated the "clustered" Spring profile, which enables the configuration
provided in the nested ClusteredConfiguration class while disabling the configuration provided in
the LonerConfiguration class.

The ClusteredConfiguration class is also annotated with @UseLocators, which sets the Apache Geode
locators property to "localhost[10334]". By default, it assumes that the Locator runs on localhost,
listening on the default Locator port of 10334. You can adjust your locators connection endpoint if
your Locators run elsewhere in your network by using the locators attribute of the @UseLocators
annotation.



In production environments, it is common to run multiple Locators in separate
processes. Running multiple Locators provides redundancy in case a Locator fails.
If all Locators in your cluster fail, then your cluster will continue to run, but no
other members will be able to join the cluster, which is important when scaling
out the cluster. Clients also will not be able to connect. Restart the Locators if this
happens.

Also, we set the spring.data.gemfire.name property to ServerTwo, adjusting the name of our member
when it joins the cluster as a peer.

Finally, we set the spring.data.gemfire.cache.server.port property to 41414 to vary the CacheServer
port used by ServerTwo. The default CacheServer port is 40404. If we had not set this property before
starting ServerTwo, we would have encounter a java.net.BindException.

263



Both spring.data.gemfire.name and spring.data.gemfire.cache.server.port are
well-known properties used by SDG to dynamically configure Apache Geode with a
Spring Boot application.properties file or by using Java System properties. You
can find these properties in the annotation Javadoc in SDG’s annotation-based
configuration model. For example, see the Javadoc for the
spring.data.gemfire.cache.server.port property. Most SDG annotations include
corresponding properties that can be defined in Spring Boot
application.properties, which is explained in detail in the documentation.

After starting our second server, ServerTwo, we should see output similar to the following at the
command-line and in Gfsh when we again list members and describe member:

Example 241. Gfsh output after starting server 2

gfsh>list members
 Name | Id

SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024
ServerTwo | 10.0.0.121(ServerTwo:41933)<v1>:1025

gfsh>describe member --name=ServerTwo
Name : ServerTwo
Id : 10.0.0.121(ServerTwo:41933)<v1>:1025
Host : 10.0.0.121
Regions :
PID : 41933
Groups :
Used Heap : 165M
Max Heap : 3641M
Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Locators : localhost[10334]

Cache Server Information
Server Bind :
Server Port : 41414
Running : true
Client Connections : 0

When we list the members of the cluster, we see ServerTwo, and when we describe ServerTwo, we see
that its CacheServer port is appropriately set to 41414.

We can add one more server, ServerThree, by using the following run configuration:

264

https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/config/annotation/CacheServerApplication.html#port--
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap-annotation-config-properties

Example 242. Add server three to our cluster

-server -ea -Dspring.profiles.active=clustered
-Dspring.data.gemfire.name=ServerThree
-Dspring.data.gemfire.cache.server.port=42424

We again see similar output at the command-line and in Gfsh:

Example 243. Gfsh output after starting server 3

gfsh>list members
 Name | Id

SpringBootApacheGeodeCacheServerApplication |
10.0.0.121(SpringBootApacheGeodeCacheServerApplication:41795)<ec><v0>:1024
ServerTwo | 10.0.0.121(ServerTwo:41933)<v1>:1025
ServerThree |
10.0.0.121(ServerThree:41965)<v2>:1026

gfsh>describe member --name=ServerThree
Name : ServerThree
Id : 10.0.0.121(ServerThree:41965)<v2>:1026
Host : 10.0.0.121
Regions :
PID : 41965
Groups :
Used Heap : 180M
Max Heap : 3641M
Working Dir : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Log file : /Users/jblum/pivdev/spring-boot-data-geode/spring-geode-docs/build
Locators : localhost[10334]

Cache Server Information
Server Bind :
Server Port : 42424
Running : true
Client Connections : 0

Congratulations. You have just started a small Apache Geode cluster with 3 members by using
Spring Boot from inside your IDE.

Now you can build and run a Spring Boot, Apache Geode ClientCache application that connects to
this cluster. To do so, include and use Spring Boot for Apache Geode.

265

Testing
Spring Test for Apache Geode (STDG) is a relatively new project to help you write both unit and
integration tests when you use Apache Geode in a Spring context. In fact, the entire test suite in
Spring Boot for Apache Geode is based on this project.

All Spring projects that integrate with Apache Geode will use this new test framework for all their
testing needs, making this new test framework for Apache Geode a proven and reliable solution for
all your Apache Geode application testing needs when using Spring as well.

In future versions, this reference guide will include an entire chapter on testing along with
samples. In the meantime, look to the STDG README.

Examples
The definitive source of truth on how to best use Spring Boot for Apache Geode is to refer to the
samples.

See also the Temperature Service, Spring Boot application that implements a temperature sensor
and monitoring, Internet of Things (IOT) example. The example uses SBDG to showcase Apache
Geode CQ, function implementations and executions, and positions Apache Geode as a caching
provider in Spring’s Cache Abstraction. It is a working, sophisticated, and complete example, and
we highly recommend it as a good starting point for real-world use cases.

See the Boot example from the contact application reference implementation (RI) for Spring Data
for Apache Geode (SDG) as yet another example.

References
1. Spring Framework Reference Guide | Javadoc

2. Spring Boot Reference Guide | Javadoc

3. Spring Data Commons Reference Guide | Javadoc

4. Spring Data for Apache Geode Reference Guide | Javadoc

5. Spring Session for Apache Geode Reference Guide | Javadoc

6. Spring Test for Apache Geode README

7. Apache Geode User Guide | Javadoc

266

https://github.com/spring-projects/spring-test-data-geode
https://github.com/spring-projects/spring-boot-data-geode/tree/1.6.0-RC1/tree/master/spring-geode-autoconfigure/src/test/java/org/springframework/geode/boot/autoconfigure
https://github.com/spring-projects/spring-test-data-geode#stdg-in-a-nutshell
https://github.com/jxblum/temperature-service
https://github.com/jxblum/contacts-application/tree/master/boot-example
https://docs.spring.io/spring/docs/current/spring-framework-reference
https://docs.spring.io/spring/docs/current/javadoc-api
https://docs.spring.io/spring-boot/docs/current/reference/html
https://docs.spring.io/spring-boot/docs/current/api
https://docs.spring.io/spring-data/commons/docs/current/reference/html
https://docs.spring.io/spring-data/commons/docs/current/api
https://docs.spring.io/spring-data/geode/docs/current/reference/html
https://docs.spring.io/spring-data/geode/docs/current/api
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/reference/html5
https://docs.spring.io/autorepo/docs/spring-session-data-geode-build/2.6.0-RC1/api
https://github.com/spring-projects/spring-test-data-geode#spring-test-framework-for-apache-geode—​vmware-tanzu-gemfire
https://geode.apache.org/docs/guide/113
https://geode.apache.org/releases/latest/javadoc

	Spring Boot for Apache Geode Reference Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	Chapter 3. Using Spring Boot for Apache Geode
	Chapter 4. Building ClientCache Applications
	Chapter 5. Auto-configuration
	Chapter 6. Declarative Configuration
	Chapter 7. Externalized Configuration
	Chapter 8. Using Geode Properties
	Chapter 9. Caching with Apache Geode
	Chapter 10. Data Access with GemfireTemplate
	Chapter 11. Spring Data Repositories
	Chapter 12. Function Implementations & Executions
	Chapter 13. Continuous Query
	Chapter 14. Using Data
	Chapter 15. Data Serialization with PDX
	Chapter 16. Logging
	Chapter 17. Security
	Chapter 18. Testing
	Chapter 19. Apache Geode API Extensions
	Chapter 20. Spring Boot Actuator
	Chapter 21. Spring Session
	Chapter 22. Pivotal CloudFoundry
	Chapter 23. Docker
	Chapter 24. Samples
	Chapter 25. Appendix

