Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT

Phillip Webb , Dave Syer , Josh Long , Stéphane Nicoll , Rob Winch

Copyright © 2013-2014

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Boot Reference Guide

Table of Contents

[. Spring BOOt DOCUMENTALIONiit ittt et e e et e et e et e e et e eeaeeeanss 1
1. About the dOCUMENTALIONccueiiii e et e e e et e e e e en s 2
22 €1~ 111 To T 1Yo 3
T TS B 1= oL PP 4
4. Working With SPring BOOtoiiiiiiiiiii e 5
5. Learning about Spring BOOt FEATUIESuiiiiiiiiii e e e e 6
6. MOVING t0 PrOGUCTIONiit ittt e e et e e et e et e e et e e e e eanaaes 7
A Yo A= TaTod=To IR o] o (ol PP PP PT 8

TR =Y 1] o =] = U =T o 9
8. INtroducing SPriNG BOOLc.uuiiiiiiiii et ees 10
9. INStalling SPriNG BOOLiiiiiiii ettt e eee 11

9.1. Installation instructions for the Java developerccooveiviiieiii e 11
Maven INSTAIATION ... e 11

Gradle INSTAllAtiONcoueiiie e 12

9.2. Installing the Spring BOOt CLIccouuiiiiiiiiii e e e e 13
Manual INSTAIALION e e 13
Installation With GVIMuei e e 13

OSX Homebrew installationcooiiiiiiiii e 14
Command-line COMPIELIONiiiii e 14

Quick start Spring CLI @XamPleiiiiiiiiiiiiiii e 15

10. Developing your first Spring Boot applicationccoviviiiiiiiiiie e 16
10.1. Creating the POM ... e 16
10.2. Adding classpath dependenCiesc..uviiiiiiiiiiiii e 17
10.3. WIEING the COUE ...ovviiiii i e e e e e e e e e ees 18

The @RestController and @RequestMapping annotationscccoceevvvveeneeennnnns 18

The @EnableAutoConfiguration annotationoovviiiiiiiiiiin e, 18

The “Main” MEthOdiiiiii e 19

10.4. RUNNINg the eXampPle ... e 19
10.5. Creating an executable Jar ... 19

T o A (o B Y= To [1= PSPPI 21

1. USING SPIING BOOL ...ttt et e et et et e e e et e et e eeaaeeees 22

12, BUIlA SYSEEIMIS ..ttt e e et e e 23

L2.0. IMTAVEN .ttt et ae 23
Inheriting the Starter PArent ..o 23

Using your own parent POM ..o 23

Changing the Java VEISIONciiiiiiiii e e e e 24

Using the Spring Boot Maven plugin ... 24

D2 €1 = To | [P 24
I L o | ST PPPPTTT 25
12,4, SEAMEr POMS ...t et ans 25

13, SErUCKUING YOUE COOR ...uniiiiiiii ettt e e et e e e e 28
13.1. Using the “default” packageccocovuiiiiiiiii e 28
13.2. Locating the main application Classoooeu i 28

14. CoNfIQUIALION CIASSES ...iitiiieiiiii ettt e et e e a e eeeaanns 30
14.1. Importing additional configuration ClasSescocvuiiiiiiiiiiiiiei e 30
14.2. Importing XML CONfIQUIALIONoiueniii i 30

15, AULO-CONTIGUIATION ...ceittii ittt e ettt e et e e e e et e e e enba e eees 31

1.0.3.BUILD-SNAPSHOT Spring Boot ii

Spring Boot Reference Guide

15.1. Gradually replacing auto-CoONfigUIationcccuiieiiiiiiiieiiii e 31
15.2. Disabling specific auto-configurationcccooiieiiiiiiiii e 31

16. Spring Beans and dependency iNJECHIONc...iiiiiiiiiiiieii e e 32
17. RUNNING YOUI APPIICALION ...ceeviiiiiieie ettt e e 33
17.1. RUNNINg from @Nn IDEooiiiiiiiiiiii e 33
17.2. Running as a packaged appliCationc.cciiiiiiieiiiiicii e 33
17.3. Using the Maven PIUGINc.uuuiiiiiiieiiii et e eeeees 33
17.4. Using the Gradle PlUuGinioiiiiiii e e eeees 33
A ST o (o A =.17= T o] o1 o 34

18. Packaging your application for producCtionceuuieieeiiieieiie e 35
S VLY o= L (o T == Vo I g =« 36
V. SPring BOOt fEALUIMESu.iiiiiiiii e e e e e e e e et e e et e e e e et e e et e e et 37
20. SPHNGAPPICALIONeiitieeeiit e ettt e e et e e et e e e e et e e e et e e e eab e een 38
20.1. Customizing SpringAPPLCALIONoviiiiiiie i 38
20.2. Fluent BUIlder APL e 39
20.3. Application events and lISTENEISuiiiiiiiiieeii e 39
20.4. WED ENVIFONMENTiiiiiii e e e e e e e e e e e e et e e eaneeenes 39
20.5. Using the CommandLiNERUNNETccouuiiiiiiiiii e e e e e 40
20.6. APPHCALION EXIT ...t 40

21. Externalized CoNnfiQUIratioNooiiiuiioiiiii et eea e e eaa e eens 41
21.1. Accessing command liNe ProPEILIESiciuuieiiiieiiiiieiiiee e e e e e e e e eaes 42
21.2. Application property fileS ..o 42
21.3. Profile Specific PrOPEItIESiieeiiieieii e e 42
21.4. Placeholders in ProPEIHIESc..uieiiiniiiii e e e e e e e ees 43
21.5. Using YAML instead Of Propertiesccoouuiieiiiiiiieiiiiiieeci e 43
LOAAING YAML ottt et e e e e e e e 43

Exposing YAML as properties in the Spring Environmentcccooeviiieiiinennnnn. 44
Multi-profile YAML dOCUMENTScoouiiiiiiiiii ittt e 44

YAML SROMCOMINGS ...eiiiiiieieii et e et e eeaes 44

21.6. Typesafe Configuration PrOPErtiESccceuiiiiiiiiiii e 44
Relaxed DINAINGcoouuiiiii e e 45
@ConfigurationProperties Validationccooviiiiiiiiiii e 46

22, PrOfIlES et e et e e e e ennne 47
22.1. Adding active Profilesoouuiiiiiiiiieiii e a7
22.2. Programmatically setting profiles ..o 47
22.3. Profile specific configuration filescooiiiiiiiiiiiii 47

P22 T Moo o1 o RP OO P PP UPPRTTRPPPITN 48
P22 0 I e T I (0] 1 11 - | A PP 48

2 B O 41T LT 0T U 11 o1 | 48
23.3. FlE QUIPUL ..ottt e e 49
23.4. Custom 10g CONFIGUIALIONuiiiiiii e 49

24, Developing Web appliCatiONSoiiuiiiiiiiiii e 50
24.1. The “Spring Web MVC framework”oov oo 50
Spring MVC auto-configUuIationoviieiiiiiiiiii e 50
HUPMESSAGECONVEITEIS ..vuiiiiiiiiiiiie ittt e e e e ana e 51

S = L (o3 O 1 1= o | (PP 51

TEMPIAE ENGINES ...t 51

24.2. Embedded servlet container SUPPOITcouuiiiiieiiiicii e e e e e e e 52
Servlets and FIlEIS ... e e 52

The EmbeddedWebApplicatioNCONIEXEccuuuiiiiiiiiiiiiii e 52

1.0.3.BUILD-SNAPSHOT Spring Boot iii

Spring Boot Reference Guide

Customizing embedded servlet CONLAINEISccoviveiiiiiiiieiii e 52
Programmatic CUSIOMIZALIONcoeiuiiiiiiiii e 53

Customizing ConfigurableEmbeddedServietContainerFactory directly 53

JSP IIMILALIONS ..ot e e 53

PSS T o 1Y PO P 54
26. Working with SQL databasescccuiiiiiiiiiiiiii e e 55
26.1. Configure @ DataSOUICEoiiiiiiiieiiii et 55
Embedded Database SUPPOIoviiiiiiii e 55
Connection to a production databasec.ccoevviiiiiiiiiiin e 55

26.2. USING JADCTEMPIALEeuniiiiiiieieet et ettt e s 56
26.3. JPA and “Spring Data”cccouiiiiiiiiieii e 56
01 1] YA O = 1T~ 57

Spring Data JPA REPOSITOMNEScceuuuiiiiiiieeiiii ettt e 58

Creating and dropping JPA databasescceeuuiiiiiiiiiiiiiiii e 58

27. Working with NOSQL teChNOIOGIESiiiiiiiii e 59
27. 1. MONGODB ...t 59
Connecting to a MongoDB databasecc.oiviiiiiiiiiiiii e 59

o] aTe Tl =T 4 a] o] =1 = 59

Spring Data MoNgODB rePOSILONIEScceeutuieiiiii et e e e e 60

P22 T =1 1] o o PP 61
28.1. Test SCOPE AEPENUENCIESuuiiiiiieiii et e e e e e e e et e e e e e e aens 61
28.2. Testing SPring appliCALIONScc.uuiiiiiii e 61
28.3. Testing Spring Boot appliCatioNSiviiiiiiiieii e 61
28.4. TS ULIILIES ...ieeiieiieiite et e e e e e e e e e e e e e nnnan s 62
ConfigFileApplicationContextInitializer ..o 62
ENVIronmMeNntTEStULISiiie i e e e e e e e e een 62

(O 1011 o 18| (@F=T o] U] £ P 63
TESIRESITEMPIALE ...t enanns 63

29. Developing auto-configuration and using coNditionScccoovuiviiiiiiiiii e 64
29.1. Understanding auto-configured beansccccccoiiiiiiiiiin i 64
29.2. Locating auto-configuration Candidatescccooiveiiiiiiiieiiiiin e 64
&S IS T @do) Lo 11 To =T 0 Te) = 140] 1 1 64
ClasS CONAILIONSvueieeeei ettt e et e e e e e een bbb 64

Bean CONItIONSiei e 64

S TST o]0 o= ot Lo 11 1o 65

Web Application CoNditioNSoiiiiiiiiiieiii e e e e 65

SPEL expression CONAItIONSuuiiiiiiiieiiii et 65

1T IV g o A (o T == Lo I 1= 66
V. Production-ready fEAtUIESiiiiiiiiii i e e e e et e e e eaa s 67
31. Enabling production-ready fEALUIES.coeuuiiiiiiiiei e 68
K2 =1 0o [0] 1 £ USRI 69
32.1. Customizing €NAPOINTScivuuiiiiieiie e e e e e e e e et e e e et e eaaaee 69
32.2. Custom health informationcoooiiiiii e 70
32.3. Custom application info INfOrmation ..o 70

Git commit INFOIMALION ...oeveiiiiiiii e e 71

33. Monitoring and management oVer HTTPiiiiiiiiiii et 72
33.1. EXpOSiNg SENSItiVe ENAPOINTS ...oouuuiiiiiiiie e 72
33.2. Customizing the management server context pathcccoeviiiiiiiin i, 72
33.3. Customizing the management SEIVEr POITcoveiuiiiiiiiiieeeie e 72
33.4. Customizing the management server addreSSvvvveiieeiiieiiiieriie e eeeeeeaeeens 73

1.0.3.BUILD-SNAPSHOT Spring Boot iv

Spring Boot Reference Guide

33.5. Disabling HTTP €ndPOINTSccuuuiiiiiiieeiiii et e e 73

34. Monitoring and management OVEN JMXciiiiii i 74
34.1. Customizing MBEAN NAIMESicvuuieiiiieiiiie e e e e e e e e e e e et e e e e eaanas 74
34.2. Disabling JMX endPOINtSccouuuiiiiiiiiieiii e e 74
34.3. Using Jolokia for IMX oVer HTTP ... 74
(1013 (o] 321741 ao N o] (o] (- 74

Disabling JOIOKIAccouuuiiiiiii e 74

35. Monitoring and management using a remote shellccoooiiiii 76
35.1. Connecting to the remote Shell ... 76
Remote shell CredentialScoouuiiiiiiii e 76

35.2. Extending the remote Shell ... 76
Remote shell COMMANASoovviiiiiii e 77

Remote Shell PIUGINScooiiii e 77

BTG 1V = Tt 78
36.1. Recording YOUr OWN MELHCS ..ovuiiiiiiiii i e e e e e e e e e e e e e e e e et e e e eanaees 78
36.2. MELIC MEPOSITONIESieieiti ettt e ettt e ettt e e et e e et e e et e e e eeb e e e eeb e e eentaaaeeee 79
36.3. Coda Hale MELIIICS ...oeuuiiiiiii e 79
36.4. Message channel iNtegrationooiviiiiiiiiieiii e e 79

I R Y o 111 o T PSP PSPPPTTRN 80
1S T = (o o Vo PP P 81
TS 0 T O 1) (0] ¢ I 1 -V T [81

39, ErTOr HANAING ..oeiiieeei ettt e e et e b s 82
40. ProCess MONILOMING ..ccuuuniiiiti ettt e e et e et e e e et e e e e et e e e eat e e e e eatn s e eeeetn e eeentnaeeees 83
40.1. EXtend CONfIQUIAtIONcouuiiiii i e e e e e e e e e e e e eeaes 83
40.2. ProgrammatiCallycoouuuiiiiiiiiie e 83
T = (o I =Y To 1= A 84
V1. Deploying t0 the ClOUouii e e e e e aaas 85
A2, ClOUT FOUNAIY ...iiiiiii ettt ettt et et e et e et e e e e rae e e eenes 86
42.1. BINAING 10 SEIVICES ..iiiiiiiiiii ettt e et e et e e e e s 87

T o =T (0] (U PP P U PPPTTTTR 88
2 O (o 18 o | ST=T =S PSP 20
T = L (o I =T To 1= A 91
RV LIRS o o T = Yo L A PPN 92
46. INSEAllING The CLI ... ettt e et e e et e e e e eeens 93
A7, USING thE CLI et ettt e e e e e e eneans 94
47.1. Running applications using the CLIcccoiiiiiiiiiii e 94
Deduced “grab” dependencCiesocoeuuiiiiiiiiiiiei e 95

Default import STAtEMENTScooiiiiieii e 95

Automatic main MEethodcooviiiiiii e 96

A7.2. TESHNG YOUI COURuiiiiiii ittt ettt ettt ettt e et e e ae e e ennes 96
47.3. Applications with multiple source filescooviiiiiiiii 96
47.4. Packaging your appliCationccccouiiiiiiiiiiii e e e 96
47.5. Using the embedded Shell ... 97

48. Developing application with the Groovy beans DSLccooooviiiiiiiiiiiiii e, 98
49. WHALt 10 AN NEXLE ..eiiitiiiiii ettt e e et e e e e e e e e e nnr e e e 99
VI BUIld tOO] PIUGINS ...ttt ettt ettt e ettt e et eeenaa s 100
50. Spring BOOt MavVEN PIUGIN ... cceeiiiiiiii et e e e e et e e et e e e eaanaeeees 101
50.1. Including the PIUGINcovn e e 101
50.2. Packaging executable jar and war filescooiiiiiiiii 102
50.3. Repackage CONfIQUIAtIONcoouuuiiiiiiiiiiei e e 102

1.0.3.BUILD-SNAPSHOT Spring Boot v

Spring Boot Reference Guide

REqUIred Par@meterSuu ittt 102

OPLIONAl PAFAMELEIS ...t et 103

50.4. RUNNING @PPlICALIONSiiviiiii e e e e e aens 103
50.5. RUN CONTIGUIALION ...ceiiiiiiii ettt ettt e s 104
50.6. ReqUIrEd PAramMeELEIScouuuiiiiii et e e 104
50.7. Optional PAramMELEISciiiiiiiiiiii et e et e e e e e e e e e e et e e e e 104

51. Spring Boot Gradle PIUGINc.uuuiiiiiieieii ettt e e 105
51.1. Including the PIUGINuuiii et 105
51.2. Declaring dependencies without VErsionscc.ccoiveiiiniiiiin e, 105
51.3. Packaging executable jar and war filescooiiiiiiiiii 106
51.4. RUNNING @ Project iN-PlacCeiiiiiiiiiiiii e 106
51.5. Repackage Configurationooveiiiiiiiiiiiiii e e e e 106
51.6. Repackage with custom Gradle configurationcccooveviiiiniiiiiiinieiiiieeenenn, 107
Configuration OPLIONSccoeuuiieiii e 107

51.7. Understanding how the Gradle plugin Worksccccooiiiiiiiiiiini e, 108

52. Supporting other BUild SYSIEMSuiiiiiii e 109
52.1. Repackaging @rChiVESiiiiiiiieiiii et e eeeens 109
52.2. NeSted IDIAIESiiiieiii i 109
52.3. FINAING & MAIN ClASS ...covtiiiiiiiiiee et ea e 109
52.4. Example repackage implementationccooiiiiiiiinneii 109

53. WHaAL 10 FEAU NEXL ...ttt e et e e e et e e e b e e e e e e eeennnees 110
IX. “HOW-TO" QUITES ..ottt ettt e et e et et e e et et e e et et e e e e naa s 111
54. Spring BOOt @pPPlICALIONcouuiiiiiiii e 112
54.1. Troubleshoot auto-configurationcciiiiiiiiiiiie e 112
54.2. Customize the Environment or ApplicationContext before it starts 112
54.3. Build an ApplicationContext hierarchy (adding a parent or root context) 113
54.4. Create a non-web appliCationooiiiiiiiiii i 113

55. Properties & CONFIQUIALIONiiieiiiiiiii ettt 114
55.1. Externalize the configuration of SpringApplicationcccoevveiiiniiiiiiie, 114
55.2. Change the location of external properties of an applicationccoeeeeenee. 114
55.3. Use “short” command line argumMENtSccouuuiiiiiiiiiiiiiiineeeie e 114
55.4. Use YAML for external Properti€sooveeeuuiiiiiiiinieeiii e 115
55.5. Set the active Spring profiles ..o 115
55.6. Change configuration depending on the environmentcccoevveiiiiieeiiiinneees 116
55.7. Discover built-in options for external Propertiescoooevveieeiiiiinneiiiineeecien 116

56. Embedded Servlet CONTAINETScooiiiiiiiiiei et e e e e e e eeenes 117
56.1. Add a Servlet, Filter or ServletContextListener to an application 117
56.2. Change the HTTP POITcooiiiiiii e 117
56.3. Use a random unassigned HTTP POItcc.oieiiiiiiiiiiiiie e 117
56.4. Discover the HTTP port at runtimeooveiiiiiioiiiii e 117
56.5. CONfIQUIE TOMCAL ...couuniiiiiii ettt e e 118
56.6. Terminate SSL iN TOMCALooeeiiiiiiiiiiie e 118
56.7. Enable Multiple CONNECLOrS TOMCALviiiiiiiiiiiiiii e eeai e 118
56.8. Use Tomcat behind a front-end proxy SErverocoeoiieieiiinieieiiin e 119
56.9. Use Jetty instead of TOMCALcoeiiiiiiiiiiiiii e 119
56.10. CONTIGUIE JEILY ..oovuniiiiiii ettt ettt e e et e e e et eeeeba e eeees 120
56.11. USE TOMCAL 8iiiiiiiiieii ettt e e e e e ena s 120
56.12. USE JEY O .oeuiiiiiieiiiiiiitii ettt 120

B57. SPIING MV C oo et ettt e e et e e e e et et e e e eee 122
57.1. Write @ JSON REST SEIVICEuiiiiiiiiiiiiii e 122

1.0.3.BUILD-SNAPSHOT Spring Boot Vi

Spring Boot Reference Guide

57.2. Write an XML REST SEIVICEciuuuiiitiiiiieei ettt e e e e et e e e eeneas 122
57.3. Customize the Jackson ObJECIMAPPETc.uuiiiiiiiiiiiiii e 122
57.4. Customize the @ResponseBody renderingccoveviiiieiiiieiiiieiie e 123
57.5. Switch off the Spring MVC DispatcherServietccoooiiiiiiiiiiii e, 123
57.6. Switch off the Default MVC configurationccccooiviiiiiineiiiiine e 123
57.7. Customize VIEWRESOIVEISccciiiiiiiiiiiiie et 123

o1 T Moo o1 o RN PP SPPPTRR 125
58.1. Configure Logback for 10ggingccuuiiiiiiiiiiiiiiee e 125
58.2. Configure Log4j fOr l0ggiNgoevunieiiii e 125

5O, DALA ACCESS ...uitiiiiiiiie ittt e ettt e e e e e eans 127
59.1. Configure @ DAtaSOUICEc.uuiiiiiiiieeeiiii e e e e 127
59.2. Use Spring Data rePOSItONESccvuuiiiiieiiieeiii e e e e e e e e e e e e e eeen 127
59.3. Separate @Entity definitions from Spring configurationc.cccooeviiiiiiininnnn. 127
59.4. Configure JPA PrOPEITIESuuiiiiiii ettt e e et e et e e e e eaaens 127
59.5. Use a custom EntityManagerFacCtoryccoeevviiieiiin i eee e e 128
59.6. Use a traditional persiStenCe.Xmlcoiiiiiiiiiiiiiieci e 128

60. Database INItIAlIZAIONcouiiiii e e 129
60.1. Initialize a database USING JPA ..o 129
60.2. Initialize a database using HIibernateccoeiiiiiiiiiici e, 129
60.3. Initialize a database using Spring JDBCoiiiiiiiiiiiiiiieeei e 129
60.4. Initialize a Spring Batch databaseccooceiiiiiiiiii e, 129
60.5. Use a higher level database migration toolcccoviiiiiiiiiiiiiiinee e 130

L == (ol g =T o] o] o%= 4o PRSPPI 131
61.1. Execute Spring Batch jobs on Startupccoeeviiiiiiiiiii e 131

B2, ACTUBTOL .. ettt e et e ettt ettt et e et e e et aaas 132
62.1. Change the HTTP port or address of the actuator endpointscccceeevnnneee. 132
62.2. Customize the “whitelabel” error Pageccoeeviiiiiiiii i, 132

LSS T ST T 1 PP STP PP PRTTR 133
63.1. Switch off the Spring Boot security configurationccccevveiiiiinieiiiiinieeennnn, 133
63.2. Change the AuthenticationManager and add user accountscccceeevnnnenn. 133
63.3. Enable HTTPS when running behind a proxy Servercccccoovviviiiieeiiinneeennnnn. 133

Lo o o) ATV To] o1 o P TSPPTTR 135
64.1. Reload StatiC CONLENTccciiiiiiiiii e e e e e e e e e eeenes 135
64.2. Reload Thymeleaf templates without restarting the containerc.......... 135
64.3. Reload Java classes without restarting the containercccooevveiiiineeiininnnnn. 135

B5. BUIIL ettt a e et e e e e e reanre 136
65.1. Customize dependency versions with Mavenccccooiviviiiniiiiiiiniei e 136
65.2. Remote debug a Spring Boot application started with Mavencccoeeeeen. 136
65.3. Build an executable archive wWith ANt ..., 136

66. Traditional deplOYMENTiiii e e 138
66.1. Create a deployable war file ... 138
66.2. Create a deployable war file for older servlet containerscc.ccooeeveiiiiieennnnn. 138
66.3. Convert an existing application to Spring BOOLcoviiiiiiiiiiiiiiieecciieeece 138

D O N o] o 1= (o o7 =SOSR 140
A. Common appliCation PrOPEILIESuuiiiiiiiiii e e e e e 141
B. AULO-CONFIQUIALION CIASSESiiiiiiiiiiii ettt e e et e e e e eeees 145
B.1. From the “spring-boot-autoconfigure” modulecccoiiiiiiiiiiiiii e, 145

B.2. From the “spring-boot-actuator” modulecccooooiiiiiiiiin e, 146

C. The executable jar FOrMALuuiiiiii e e 147
L I (N =] 1T IO 1 L 147

1.0.3.BUILD-SNAPSHOT Spring Boot Vii

Spring Boot Reference Guide

The executable jar file SIrUCIUIEcooiiiiiiiiii e 147
The executable war file StTUCIUIEcooiiiiiii e 147
C.2. Spring Boot’'s “JArFile” Classc.oieiiiiiiiiiiiii e 148
Compatibility with the standard Java “JarFile”occiiiiiiiiiii s 148
C.3. Launching eXeCUtable JAISoiiiiiiiieiiii e 148
Launcher Manifestoooiiiiii e e 149
EXPloded arChiVESccooiiiiiii e 149
C.4. PropertiesLauncher FEAtUIESc..uiiiiiiiiiiiii e 149
C.5. Executable jar restriCtionScccouiiiiiiiiiii e e e 150
ZiP €NEIY COMPIESSION ...iiitiieeiiti e et e ettt e et e et e et e e et e e e et e e e eanannes 150
SYStEM ClAaSSLOAUETueiiiiiiiee e 150
C.6. Alternative single jar SOIULIONSc.uiiiiiiiiii e 150

1.0.3.BUILD-SNAPSHOT Spring Boot viii

Part |. Spring Boot Documentation

This section provides a brief overview of Spring Boot reference documentation. Think of it as map for
the rest of the document. You can read this reference guide in a linear fashion, or you can skip sections
if something doesn't interest you.

Spring Boot Reference Guide

1. About the documentation

The Spring Boot reference guide is available as html, pdf and epub documents. The latest copy is
available at http://docs.spring.io/spring-boot/docs/current/reference.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

1.0.3.BUILD-SNAPSHOT Spring Boot

http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/reference/html
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/reference/pdf/spring-boot-reference.pdf
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/reference/epub/spring-boot-reference.epub
http://docs.spring.io/spring-boot/docs/current/reference

Spring Boot Reference Guide

2. Getting help

Having trouble with Spring Boot, We'd like to help!
e Try the How-to’s — they provide solutions to the most common questions.

» Learn the Spring basics — Spring Boot is builds on many other Spring projects, check the spring.io
web-site for a wealth of reference documentation. If you are just starting out with Spring, try one of

the guides.

» Ask a question - we monitor stackoverflow.com for questions tagged with spri ng- boot .

» Report bugs with Spring Boot at https://github.com/spring-projects/spring-boot/issues.

Note

All of Spring Boot is open source, including the documentation! If you find problems with the docs;
or if you just want to improve them, please get involved.

1.0.3.BUILD-SNAPSHOT Spring Boot 3

http://spring.io
http://spring.io/guides
http://stackoverflow.com
http://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
http://github.com/spring-projects/spring-boot/tree/master

Spring Boot Reference Guide

3. First steps

If you're just getting started with Spring Boot, or Spring in general, this is the place to start!

» From scratch: Overview | Installation

* Tutorial: Part 1 | Part 2

* Running your example: Part 1 | Part 2

1.0.3.BUILD-SNAPSHOT Spring Boot

Spring Boot Reference Guide

4. Working with Spring Boot

Ready to actually start using Spring Boot? We've got you covered.

» Build systems: Maven | Gradle | Ant | Starter POMs

» Best practices: Code Structure | @Configuration | @EnableAutoConfiguration | Beans and
Dependency Injection

* Running your code IDE | Packaged | Maven | Gradle

» Packaging your app: Production jars

» Spring Boot CLI: Using the CLI

1.0.3.BUILD-SNAPSHOT Spring Boot 5

Spring Boot Reference Guide

5. Learning about Spring Boot features

Need more details about Spring Boot's core features? This is for you!

« Core Features: SpringApplication | External Configuration | Profiles | Logging

Web Applications: MVC | Embedded Containers

» Working with data: SQL | NO-SQL

¢ Testing: Overview | Boot Applications | Utils

« Extending: Auto-configuration | @Conditions

1.0.3.BUILD-SNAPSHOT Spring Boot

Spring Boot Reference Guide

6. Moving to production

When you're ready to push your Spring Boot application to production, we've got some tricks that you
might like!

* Management endpoints: Overview | Customization

» Connection options: HTTP | JMX | SSH

* Monitoring: Metrics | Auditing | Tracing | Process

1.0.3.BUILD-SNAPSHOT Spring Boot 7

Spring Boot Reference Guide

7. Advanced topics

Lastly, we have a few topics for the more advanced user.

e Deploy to the cloud: Cloud Foundry | Heroku | CloudBees

» Build tool plugins: Maven | Gradle

e Appendix: Application Properties | Auto-configuration classes | Executable Jars

1.0.3.BUILD-SNAPSHOT Spring Boot

Part Il. Getting started

If you're just getting started with Spring Boot, or Spring in general, this is the section for you! Here we
answer the basic “what?”, “how?” and “why?” questions. You'll find a gentle introduction to Spring Boot
along with installation instructions. We'll then build our first Spring Boot application, discussing some
core principles as we go.

Spring Boot Reference Guide

8. Introducing Spring Boot

Spring Boot makes it easy to create stand-alone, production-grade Spring based Applications that you
can “just run”. We take an opinionated view of the Spring platform and third-party libraries so you can
get started with minimum fuss. Most Spring Boot applications need very little Spring configuration.

You can use Spring Boot to create Java applications that can be started using j ava -j ar or more
traditional war deployments. We also provide a command line tool that runs “spring scripts”.

Our primary goals are:
» Provide a radically faster and widely accessible getting started experience for all Spring development.

» Be opinionated out of the box, but get out of the way quickly as requirements start to diverge from
the defaults.

* Provide a range of non-functional features that are common to large classes of projects (e.g.
embedded servers, security, metrics, health checks, externalized configuration).

» Absolutely no code generation and no requirement for XML configuration.

1.0.3.BUILD-SNAPSHOT Spring Boot 10

Spring Boot Reference Guide

9. Installing Spring Boot

Spring Boot can be used with “classic” Java development tools or installed as a command line tool.
Regardless, you will need Java SDK v1.6 or higher. You should check your current Java installation
before you begin:

$ java -version

If you are new to Java development, or if you just want to experiment with Spring Boot you might want
to try the Spring Boot CLI first, otherwise, read on for “classic” installation instructions.

Tip

Although Spring Boot is compatible with Java 1.6, if possible, you should consider using the latest
version of Java.

9.1 Installation instructions for the Java developer

You can use Spring Boot in the same way as any standard Java library. Simply include the appropriate
spring-boot-*.jar files on your classpath. Spring Boot does not require any special tools
integration, so you can use any IDE or text editor; and there is nothing special about a Spring Boot
application, so you can run and debug as you would any other Java program.

Although you could just copy Spring Boot jars, we generally recommend that you use a build tool that
supports dependency management (such as Maven or Gradle).

Maven installation

Spring Boot is compatible with Apache Maven 3.0 or above. If you don't already have Maven installed
you can follow the instructions at http://maven.apache.org.

Tip

On many operating systems Maven can be installed via a package manager. If you're an OSX
Homebrew user try brew i nstal | naven. Ubuntu users can run sudo apt-get install
maven.

Spring Boot dependencies use the or g. spri ngf ramewor k. boot groupl d. Typically your Maven
POM file will inherit from the spri ng- boot - st art er - par ent project and declare dependencies to
one or more “Starter POMs”. Spring Boot also provides an optional Maven plugin to create executable
jars.

Here is a typical pom xm file:

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="htt p: // ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://maven. apache. org/ POM 4. 0. 0 http:// nmaven. apache. or g/ xsd/ maven-4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifact!ld>nmyproject</artifactld>
<ver si on>0. 0. 1- SNAPSHOT</ ver si on>

<l-- Inherit defaults from Spring Boot -->

1.0.3.BUILD-SNAPSHOT Spring Boot 11

http://www.java.com
http://maven.apache.org

Spring Boot Reference Guide

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactl|d>
<version>1.0. 3. BUl LD- SNAPSHOT</ ver si on>

</ par ent >

<I-- Add typical dependencies for a web application -->
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
</ dependenci es>

<l-- Package as an executable jar -->
<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactl|d>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>
<l-- Add Spring repoistories -->
<l-- (you don't need this if you are using a .RELEASE version) -->

<repositories>
<repository>
<i d>spri ng-snapshots</i d>
<url >http://repo.spring.iol/snapshot</url >
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
<repository>
<i d>spring-m | estones</id>
<url >http://repo.spring.io/mlestone</url>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>spri ng-snapshot s</i d>
<url >http://repo.spring.iol/snapshot</url>
</ pl ugi nReposi t ory>
<pl ugi nReposi t ory>
<i d>spring-m | estones</id>
<url>http://repo.spring.io/mlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>
</ proj ect >

Gradle installation

Spring Boot is compatible with Gradle 1.6 or above. If you don’t already have Gradle installed you can
follow the instructions at http://www.gradle.org/.

Spring Boot dependencies can be declared using the or g. spri ngf r anmewor k. boot gr oup. Typically
your project will declare dependencies to one or more “Starter POMs”. Spring Boot provides a useful
Gradle plugin that can be used to simplify dependency declarations and to create executable jars.

Gradle Wrapper

The Gradle Wrapper provides a nice way of “obtaining” Gradle when you need to build a project.
It's a small script and library that you commit alongside your code to bootstrap the build process.
See http://www.gradle.org/docs/current/userguide/gradle_wrapper.html for details.

Here is a typical bui | d. gr adl e file:

1.0.3.BUILD-SNAPSHOT Spring Boot 12

http://www.gradle.org/
http://www.gradle.org/docs/current/userguide/gradle_wrapper.html

Spring Boot Reference Guide

bui I dscript {
repositories {
mavenCentral ()
maven { url "http://repo.spring.io/snapshot" }
maven { url "http://repo.spring.io/mlestone" }
}
dependenci es {
cl asspat h("org. spri ngf ramewor k. boot : spri ng- boot - gr adl e- pl ugi n: 1. 0. 3. BUI LD- SNAPSHOT")
}
}

apply plugin: 'java'
apply plugin: '"spring-boot’

jar {
baseNanme = 'nyproj ect’
version = '0.0.1- SNAPSHOT'

}

repositories {
mavenCentral ()
maven { url "http://repo.spring.io/snapshot" }
maven { url "http://repo.spring.io/mlestone" }

}

dependenci es {
conpi | e("org. springframework. boot : spring-boot -starter-web")
test Conpile("junit:junit")

9.2 Installing the Spring Boot CLI

The Spring Boot CLI is a command line tool that can be used if you want to quickly prototype with Spring.
It allows you to run Groovy scripts, which means that you have a familiar Java-like syntax, without so
much boilerplate code.

You don't need to use the CLI to work with Spring Boot but it's definitely the quickest way to get a Spring
application off the ground.

Manual installation

You can download the Spring CLI distribution from the Spring software repository:

» spring-boot-cli-1.0.3.BUILD-SNAPSHOT-bin.zip

» spring-boot-cli-1.0.3.BUILD-SNAPSHOT-bin.tar.gz

Cutting edge snapshot distributions are also available.

Once downloaded, follow the INSTALL.txt instructions from the unpacked archive. In summary: there
isaspring script (spri ng. bat for Windows) in a bi n/ directory in the . zi p file, or alternatively you
canusej ava -j ar withthe. j ar file (the script helps you to be sure that the classpath is set correctly).

Installation with GVM

GVM (the Groovy Environment Manager) can be used for managing multiple versions of various Groovy
and Java binary packages, including Groovy itself and the Spring Boot CLI. Get gvm from http://
gvmtool.net and install Spring Boot with

$ gvminstall springboot

$ spring --version
Spring Boot v1.0.3.BU LD SNAPSHOT

1.0.3.BUILD-SNAPSHOT Spring Boot 13

http://groovy.codehaus.org/
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/1.0.3.BUILD-SNAPSHOT/spring-boot-cli-1.0.3.BUILD-SNAPSHOT-bin.zip
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/1.0.3.BUILD-SNAPSHOT/spring-boot-cli-1.0.3.BUILD-SNAPSHOT-bin.tar.gz
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
http://raw.github.com/spring-projects/spring-boot/master/spring-boot-cli/src/main/content/INSTALL.txt
http://gvmtool.net
http://gvmtool.net

Spring Boot Reference Guide

If you are developing features for the CLI and want easy access to the version you just built, follow
these extra instructions.

$ gvminstall springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-cli-1.0.3.BU LD
SNAPSHOT- bi n/ spri ng- 1. 0. 3. BUI LD- SNAPSHOT/

$ gvm use springboot dev

$ spring --version

Spring CLI v1.0. 3. BU LD SNAPSHOT

This will install a local instance of spri ng called the dev instance inside your gvm repository. It points
at your target build location, so every time you rebuild Spring Boot, spr i ng will be up-to-date.

You can see it by doing this:

$ gvm s springboot

Avai | abl e Springboot Versions

> + dev
* 1. 0. 3. BUl LD- SNAPSHOT

Es

- local version
- installed
> - currently in use

*

OSX Homebrew installation

If you are on a Mac and using Homebrew, all you need to do to install the Spring Boot CLI is:

$ brew tap pivotal /tap
$ brew install springboot

Homebrew will install spri ng to/ usr/1 ocal / bi n.

Note

If you don't see the formula, your installation of brew might be out-of-date. Just execute br ew
updat e and try again.

Command-line completion

Spring Boot CLI ships with scripts that provide command completion for BASH and zsh shells. You can
sour ce the script (also named spri ng) in any shell, or put it in your personal or system-wide bash
completion initialization. On a Debian system the system-wide scripts are in / shel | - conpl et i on/
bash and all scripts in that directory are executed when a new shell starts. To run the script manually,
e.g. if you have installed using GYM

$. ~/.gvm springboot/current/shell-conpletion/bash/spring
$ spring <H T TAB HERE>
grab help jar run test version

Note

If you install Spring Boot CLI using Homebrew, the command-line completion scripts are
automatically registered with your shell.

1.0.3.BUILD-SNAPSHOT Spring Boot 14

http://brew.sh/
http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://en.wikipedia.org/wiki/Zsh

Spring Boot Reference Guide

Quick start Spring CLI example

Here’s a really simple web application that you can use to test you installation. Create a file called
app. gr oovy:

@rest Control | er
class ThisWI | Actual | yRun {

@Request Mappi ng("/")
String hone() {
"Hello World!"

}

Then simply run it from a shell:

$ spring run app. groovy

Note

It will take some time when you first run the application as dependencies are downloaded,
subsequent runs will be much quicker.

Open http://localhost:8080 in your favorite web browser and you should see the following output:

Hell o Worl d!

1.0.3.BUILD-SNAPSHOT Spring Boot 15

http://localhost:8080

Spring Boot Reference Guide

10. Developing your first Spring Boot application

Let's develop a simple “Hello World!” web application in Java that highlights some of Spring Boot's key
features. We’'ll use Maven to build this project since most IDEs support it.

Tip

The spring.io web site contains many “Getting Started” guides that use Spring Boot. If you're
looking to solve a specific problem; check there first.

Before we begin, open a terminal to check that you have valid versions of Java and Maven installed.

$ java -version

java version "1.7.0_51"

Java(TM SE Runtine Environnment (build 1.7.0_51-b13)

Java Hot Spot (TM) 64-Bit Server VM (build 24.51-b03, mi xed node)

$ nvn -v

Apache Maven 3.1.1 (0728685237757f f bf 44136acec0402957f 723d9a; 2013-09-17 08: 22: 22- 0700)
Maven hone: /Users/user/tool s/ apache-maven-3. 1.1

Java version: 1.7.0_51, vendor: Oracle Corporation

Note

This sample needs to be created in its own folder. Subsequent instructions assume that you have
created a suitable folder and that it is your “current directory”.

10.1 Creating the POM

We need to start by creating a Maven pom xmi file. The pom xmi is the recipe that will be used to build
your project. Open you favorite text editor and add the following:

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // www. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocation="http://maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifactld>nmyproject</artifactld>
<ver si on>0. 0. 1- SNAPSHOT</ ver si on>

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<version>1. 0. 3. BUl LD- SNAPSHOT</ ver si on>

</ par ent >
<l-- Additional lines to be added here... -->
<l-- (you don't need this if you are using a .RELEASE version) -->

<repositories>
<reposi tory>
<i d>spri ng- snapshot s</i d>
<url>http://repo.spring.iolsnapshot</url>
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
<reposi tory>
<i d>spring-m|estones</id>
<url>http://repo.spring.io/mlestone</url>
</repository>
</repositories>

1.0.3.BUILD-SNAPSHOT Spring Boot 16

http://spring.io

Spring Boot Reference Guide

<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>spring-snapshot s</i d>
<url >http://repo.spring.iol/snapshot</url >
</ pl ugi nReposi t ory>
<pl ugi nReposi tory>
<i d>spring-m|estones</id>
<url>http://repo.spring.io/mlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>
</ proj ect >

This should give you a working build, you can test it out by running mvn package (you can ignore the
“jar will be empty - no content was marked for inclusion!” warning for now).

Note

At this point you could import the project into an IDE (most modern Java IDE’s include built-in
support for Maven). For simplicity, we will continue to use a plain text editor for this example.

10.2 Adding classpath dependencies

Spring Boot provides a humber of “Starter POMs” that make easy to add jars to your classpath. Our
sample application has already used spri ng- boot - st art er - par ent in the par ent section of the
POM. The spri ng- boot - st art er - par ent is a special starter that provides useful Maven defaults.
It also provides a dependency- nanagenent section so that you can omit ver si on tags for “blessed”
dependencies.

Other “Starter POMs” simply provide dependencies that you are likely to need when developing a
specific type of application. Since we are developing a web application, we will add a spri ng- boot -
st art er - web dependency — but before that, let's look at what we currently have.

$ nvn dependency:tree

I NFQ com exanpl e: nyproj ect:jar:0.0. 1- SNAPSHOT
INFQ +- junit:junit:jar:4.11:test

INFQ | \- org.hantrest: hantrest-core:jar:1.3:test
INFQ +- org.nockito:nockito-core:jar:1.9.5:test
INFQ | \- org.objenesis:objenesis:jar:1.0:test

[
[
[
[
[
[

INFQ \- org. hantrest: hantrest-library:jar:1.3:test

The nvn dependency: t r ee command prints tree representation of your project dependencies. You
can see that spri ng- boot - st art er - par ent has already provided some useful test dependencies.
Let's editour pom xm and add the spri ng- boot - st ar t er - web dependency just below the par ent
section:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!ld>spring-boot-starter-web</artifactld>
</ dependency>
</ dependenci es>

If you run mvn dependency: tree again, you will see that there are now a number of additional
dependencies, including the Tomcat web server and Spring Boot itself.

1.0.3.BUILD-SNAPSHOT Spring Boot 17

Spring Boot Reference Guide

10.3 Writing the code

To finish our application we need to create a single Java file. Maven will compile sources from sr c/
mai n/ j ava by default so you need to create that folder structure, then add a file named sr ¢/ mai n/
j aval Exanpl e. j ava:

i nport org.springfranmework. boot . *;

i mport org.springframework. boot . aut oconfigure.*;
i nport org.springframework. stereotype. *;

i nport org.springframework. web. bi nd. annot ati on. *;

@Rest Control | er
@nabl eAut oConf i guration
public class Exanple {

@Request Mappi ng("/")
String home() {
return "Hello World!'";

}

public static void main(String[] args) throws Exception {
Spri ngApplication. run(Exanpl e.cl ass, args);
}

}
Although there isn't much code here, quite a lot is going on. Let's step though the important parts.

The @RestController and @RequestMapping annotations

The first annotation on our Exanpl e class is @Rest Control | er. This is known as a stereotype
annotation. It provides hints for people reading the code, and for Spring, that the class plays a specific
role. In this case, our class is a web @ont r ol | er so Spring will consider it when handling incoming
web requests.

The @Request Mappi ng annotation provides “routing” information. It is telling Spring that any HTTP
request with the path "/ " should be mapped to the hone method. The @Rest Cont r ol | er annotation
tells Spring to render the resulting string directly back to the caller.

Tip

The @Rest Control | er and @equest Mappi ng annotations are Spring MVC annotations (they
are not specific to Spring Boot). See the MVC section in the Spring Reference Documentation
for more details.

The @EnableAutoConfiguration annotation

The second class-level annotation is @nabl eAut oConf i gur ati on. This annotation tells Spring
Boot to “guess” how you will want to configure Spring, based on the jar dependencies that you have
added. Since spri ng- boot - st art er - web added Tomcat and Spring MVC, the auto-configuration
will assume that you are developing a web application and setup Spring accordingly.

Starter POMs and Auto-Configuration

Auto-configuration is designed to work well with “Starter POMSs”, but the two concepts are not
directly tied. You are free to pick-and-choose jar dependencies outside of the starter POMs and
Spring Boot will still do its best to auto-configure your application.

1.0.3.BUILD-SNAPSHOT Spring Boot 18

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc

Spring Boot Reference Guide

The “main” method

The final part of our application is the mai n method. This is just a standard method that follows
the Java convention for an application entry point. Our main method delegates to Spring Boot’s
Spri ngAppl i cation class by calling run. Spri ngAppl i cati on will bootstrap our application,
starting Spring which will in turn start the auto-configured Tomcat web server. We need to pass
Exanmpl e. cl ass as an argument to the r un method to tell Spri ngAppl i cat i on which is the primary
Spring component. The ar gs array is also passed through to expose any command-line arguments.

10.4 Running the example

At this point our application should work. Since we have used the spri ng- boot - st art er - par ent
POM we have a useful r un goal that we can use to start the application. Type mvn spri ng-boot: run
from the root project directory to start the application:

$ nvn spring-boot:run

N () v
CON_ | "1 LW/ I U U U
W/) 1O [[))))
0 || | /11
=]
1 Spring Boot :: (vi.0.3.BU LD SNAPSHOT)

. (1 og output here)

........ Started Exanple in 2.222 seconds (JVMrunning for 6.514)

If you open a web browser to http://localhost:8080 you should see the following output:

‘Hello Wor | d!

To gracefully exit the application hitctr| - c.

10.5 Creating an executable jar

Let’s finish our example by creating a completely self-contained executable jar file that we could run in
production. Executable jars (sometimes called “fat jars”) are archives containing your compiled classes
along with all of the jar dependencies that your code needs to run.

Executable jars and Java

Java does not provide any standard way to load nested jar files (i.e. jar files that are themselves
contained within a jar). This can be problematic if you are looking to distribute a self-contained
application.

To solve this problem, many developers use “shaded” jars. A shaded jar simply packages all
classes, from all jars, into a single “uber jar”. The problem with shaded jars is that it becomes hard
to see which libraries you are actually using in your application. It can also be problematic if the
the same filename is used (but with different content) in multiple jars.

Spring Boot takes a different approach and allows you to actually nest jars directly.

To create an executable jar we need to add the spri ng- boot - maven- pl ugi nto our pom xm . Insert
the following lines just below the dependenci es section:

1.0.3.BUILD-SNAPSHOT Spring Boot 19

http://localhost:8080

Spring Boot Reference Guide

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Save your pom xnl and run nvn package from the command line:

$ nvn package

[INFQ Scanning for projects..

[INFO

[INEGY - - - - oo oo o

[INFQ Building nyproject 0.0.1-SNAPSHOT

[INEG] ==ssssc55555050505055005055555555959555955595555595959595959555959595955

[INFQ

[INFQ --- maven-jar-plugin:2.4:jar (default-jar) @nyproject ---

[INFQ Building jar: /Users/devel oper/exanpl e/ spring-boot - exanpl e/t ar get/ nypr oj ect - 0. 0. 1- SNAPSHOT. j ar
[INFO

[INFQ --- spring-boot-maven-plugin: 1. 0. 3. BUI LD- SNAPSHOT: r epackage (default) @ nyproject ---
[INEG] ==ssssc55555050505055005055555555959555955595555595959595959555959595955

[INFOQ BU LD SUCCESS

T0NEG] =s=sc=cssssscccosssscccassssccsaoscscosaoscs00cao5c0000a000000000005000s

If you look in the t ar get directory you should see mypr oj ect-0. 0. 1- SNAPSHOT. j ar . The file
should be around 10 Mb in size. If you want to peek inside, you can use j ar t vf:

$ jar tvf target/nyproject-0.0.1- SNAPSHOT. j ar

You should also see a much smaller file named nypr oj ect - 0. 0. 1- SNAPSHOT. j ar. ori gi nal in
the t ar get directory. This is the original jar file that Maven created before it was repackaged by Spring
Boot.

To run that application, use the j ava -j ar command:
$ java -jar target/ nyproject-0.0.1- SNAPSHOT. j ar

INN L () v v
CON— N vy
LSV B B O D I B
S [[I I [I [I PR B A
| | | 1=_1_1_1
Spring Boot :: (v1.0.3.BU LD SNAPSHOT)

....... . . . (log output here)

........ Started Exanple in 3.236 seconds (JVMrunning for 3.764)

As before, to gracefully exit the application hitctrl - c.

1.0.3.BUILD-SNAPSHOT Spring Boot 20

Spring Boot Reference Guide

11. What to read next

Hopefully this section has provided you with some of the Spring Boot basics, and got you on your way
to writing your own applications. If you're a task-oriented type of developer you might want to jump over
to http://spring.io and check out some of the getting started guides that solve specific “How do | do that
with Spring” problems; we also have Spring Boot-specific How-to reference documentation.

Otherwise, the next logical step is to read Part I, “Using Spring Boot”. If you're really impatient, you
could also jump ahead and read about Spring Boot features.

1.0.3.BUILD-SNAPSHOT Spring Boot 21

http://spring.io
http://spring.io/guides/

Part lll. Using Spring Boot

This section goes into more detail about how you should use Spring Boot. It covers topics such as
build systems, auto-configuration and run/deployment options. We also cover some Spring Boot best
practices. Although there is nothing particularly special about Spring Boot (it is just another library that
you can consume), there are a few recommendations that, when followed, will make your development
process just a little easier.

If you're just starting out with Spring Boot, you should probably read the Getting Started guide before
diving into this section.

Spring Boot Reference Guide

12. Build systems

It is strongly recommended that you choose a build system that supports dependency management,
and one that can consume artifacts published to the “Maven Central” repository. We would recommend
that you choose Maven or Gradle. It is possible to get Spring Boot to work with other build systems (Ant
for example), but they will not be particularly well supported.

12.1 Maven

Maven users can inherit from the spri ng- boot - st art er - par ent project to obtain sensible defaults.
The parent project provides the following features:

» Java 1.6 as the default compiler level.
» UTF-8 source encoding.

* A Dependency Management section, allowing you to omit <version> tags for common
dependencies.

Generally useful test dependencies (JUnit, Hamcrest, Mockito).

Sensible resource filtering.

Sensible plugin configuration (exec plugin, surefire, Git commit ID, shade).

Inheriting the starter parent

To configure your project to inherit from the spri ng- boot - st art er - par ent simply set the par ent :

<I-- Inherit defaults from Spring Boot -->

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<version>1. 0. 3. BUl LD- SNAPSHOT</ ver si on>

</ par ent >

Note

You should only need to specify the Spring Boot version number on this dependency. If you import
additional starters, you can safely omit the version number.

Using your own parent POM

If you don’t want to use the Spring Boot starter parent, you can use your own and still keep the benefit of
the dependency management (but not the plugin management) using a scope=i nport dependency:

<dependencyManagenent >
<dependenci es>

<dependency>
<l-- Inport dependency managenent from Spring Boot -->
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<version>1.0. 3. BUl LD- SNAPSHOT</ ver si on>
<t ype>ponk/type>
<scope>i nport </ scope>

</ dependency>

</ dependenci es>

1.0.3.BUILD-SNAPSHOT Spring Boot 23

http://junit.org/
https://code.google.com/p/hamcrest/
https://code.google.com/p/mockito/
https://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
http://mojo.codehaus.org/exec-maven-plugin/
http://maven.apache.org/surefire/maven-surefire-plugin/
https://github.com/ktoso/maven-git-commit-id-plugin
http://maven.apache.org/plugins/maven-shade-plugin/

Spring Boot Reference Guide

‘ </ dependencyManagenent >

Changing the Java version

The spri ng- boot - st art er - par ent chooses fairly conservative Java compatibility. If you want to
follow our recommendation and use a later Java version you can add a j ava. ver si on property:

<properties>
<j ava. versi on>1. 8</j ava. versi on>
</ properties>

Using the Spring Boot Maven plugin

Spring Boot includes a Maven plugin that can package the project as an executable jar. Add the plugin
to your <pl ugi ns> section if you want to use it:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Note

You only need to add the plugin, there is no need for to configure it unless you want to change
the settings defined in the parent.

12.2 Gradle

Gradle users can directly import “starter POMs” in their dependenci es section. Unlike Maven, there
is no “super parent” to import to share some configuration.

apply plugin: 'java'

repositories { mavenCentral () }
dependenci es {

conpi | e("org. springframework. boot : spring-boot-starter-web: 1. 0. 3. BUl LD- SNAPSHOT")
}

The spri ng- boot - gr adl e- pl ugi nis also available and provides tasks to create executable jars and
run projects from source. It also adds a Resol uti onSt r at egy that enables you to omit the version
number for “blessed” dependencies:

bui I dscri pt {
repositories { mavenCentral () }
dependenci es {
cl asspat h("org. springframewor k. boot : spri ng- boot - gradl e- pl ugi n: 1. 0. 3. BUl LD- SNAPSHOT")
}
}

apply plugin: '"java'
apply plugin: 'spring-boot'

repositories { mavenCentral () }
dependenci es {
conpi | e("org. springframework. boot : spri ng-boot -starter-web")
t est Conpi | e("org. spri ngfranmewor k. boot : spri ng-boot-starter-test")

1.0.3.BUILD-SNAPSHOT Spring Boot 24

Spring Boot Reference Guide

12.3 Ant

It is possible to build a Spring Boot project using Apache Ant, however, no special support or plugins
are provided. Ant scripts can use the Ivy dependency system to import starter POMs.

See the Section 65.3, “Build an executable archive with Ant” “How-to” for more complete instructions.

12.4 Starter POMs

Starter POMs are a set of convenient dependency descriptors that you can include in your application.
You get a one-stop-shop for all the Spring and related technology that you need, without having to hunt
through sample code and copy paste loads of dependency descriptors. For example, if you want to get
started using Spring and JPA for database access, just include the spri ng- boot - st art er - dat a-
j pa dependency in your project, and you are good to go.

The starters contain a lot of the dependencies that you need to get a project up and running quickly and
with a consistent, supported set of managed transitive dependencies.

What's in a name

All starters follow a similar naming pattern; spri ng- boot - st art er-*, where * is a particular
type of application. This naming structure is intended to help when you need to find a starter. The
Maven integration in many IDEs allow you to search dependencies by name. For example, with
the appropriate Eclipse or STS plugin installed, you can simply hitct r | - space in the POM editor
and type 'spring-boot-starter' for a complete list.

The following application starters are provided by Spring Boot under the
org. spri ngfranmewor k. boot group:

Table 12.1. Spring Boot application starters

Name Description

spring-boot-starter The core Spring Boot starter, including auto-
configuration support, logging and YAML.

spring-boot -starter-anmgp Support for the “Advanced Message Queuing
Protocol” via spri ng-r abbi t .

spring-boot -starter-aop Full AOP programming support including
spri ng- aop and AspectJ.

spring-boot-starter-batch Support for “Spring Batch” including HSQLDB
database.

spring-boot -starter-data-jpa Full support for the “Java Persistence API”
including spri ng- dat a-j pa, spri ng- or mand
Hibernate.

spri ng-boot - st art er - dat a- nongodb Support for the MongoDB NoSQL Database,

including spri ng- dat a- nongodb.

1.0.3.BUILD-SNAPSHOT Spring Boot 25

Spring Boot Reference Guide

Name

spring-boot - starter-data-rest

Description

Support for exposing Spring Data repositories
over REST via spri ng- dat a- r est - webmvc.

spring-boot-starter-integration

spring-boot-starter-jdbc
spring-boot-starter-nobile

spring-boot-starter-redis

Support for common spri ng-i ntegrati on
modules.

JDBC Database support.
Support for spri ng- nobi | e

Support for the REDIS key-value data store,
including spri ng-redi s.

spring-boot-starter-security

Support for spri ng-security.

spring-boot-starter-test

Support for common test dependencies,
including JUnit, Hamcrest and Mockito along
with the spri ng-t est module.

spring-boot -starter-thynel eaf

spring-boot-starter-web

spring-boot - st art er-websocket

Support for the Thymeleaf templating engine,
including integration with Spring.

Support for full-stack web development,
including Tomcat and spri ng- webnvc.

Support for websocket development with
Tomcat.

In addition to the application starters, the following starters can be used to add production ready features.

Table 12.2. Spring Boot production ready starters

Name

Description

spring-boot -starter-actuator

spring-boot-starter-renote-shell

Adds production ready features such as metrics
and monitoring.

Adds remote ssh shell support.

Finally, Spring Boot includes some starters that can be used if you want to exclude or swap specific

technical facets.
Table 12.3. Spring Boot technical starters
Name

spring-boot-starter-jetty

Description

Imports the Jetty HTTP engine (to be used as an
alternative to Tomcat)

spring-boot -starter-1o0g4j

Support the Log4J logging framework

spring-boot -starter-1ogging

spring-boot -starter-toncat

Import Spring Boot’'s default logging framework
(Logback).

Import Spring Boot’'s default HTTP engine
(Tomcat).

1.0.3.BUILD-SNAPSHOT

Spring Boot 26

Spring Boot Reference Guide

Tip

For a list of additional community contributed starter POMs, see the README file in the spri ng-
boot - st art er s module on GitHub.

1.0.3.BUILD-SNAPSHOT Spring Boot

27

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/README.adoc

Spring Boot Reference Guide

13. Structuring your code

Spring Boot does not require any specific code layout to work, however, there are some best practices
that help.

13.1 Using the “default” package

When a class doesn’tinclude a package declaration it is considered to be in the “default package”. The
use of the “default package” is generally discouraged, and should be avoided. It can cause particular
problems for Spring Boot applications that use @onponent Scan or @nt i t yScan annotations, since
every class from every jar, will be read.

Tip

We recommend that you follow Java’s recommended package naming conventions and use a
reversed domain name (for example, com exanpl e. pr oj ect).

13.2 Locating the main application class

We generally recommend that you locate your main application class in a root package above other
classes. The @nabl eAut oConfi gur ati on annotation is often placed on your main class, and it
implicitly defines a base “search package” for certain items. For example, if you are writing a JPA
application, the package of the @nabl eAut oConf i gur at i on annotated class will be used to search
for @&nt ity items.

Using a root package also allows the @onponent Scan annotation to be used without needing to
specify a basePackage attribute.

Here is a typical layout:

com
+- exanpl e
+- myproj ect
+- Application.java

|

+- domain
| +- Custoner.java
| +- Cust omer Repository.java
|

+- service
| +- Cust oner Service.java

|

+- web

+- CustomerController.java

The Appl i cat i on. j ava file would declare the mai n method, along with the basic @onf i gur ati on.

package com exanpl e. nyproj ect ;

i nport org.springfranework. boot. Spri ngAppl i cation;

i nport org. springframework. boot . aut oconfi gure. Enabl eAut oConfi gurati on;
i nport org.springfranework. cont ext. annot ati on. Conponent Scan;

i mport org.springfranework. cont ext.annot ati on. Confi guration;

@onfiguration

@nabl eAut oConf i guration
@onponent Scan

public class Application {

1.0.3.BUILD-SNAPSHOT Spring Boot 28

Spring Boot Reference Guide

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

1.0.3.BUILD-SNAPSHOT Spring Boot

29

Spring Boot Reference Guide

14. Configuration classes

Spring Boot favors Java-based configuration. Although it is possible to call
Spri ngAppl i cation. run() with an XML source, we generally recommend that your primary source
is a @onf i gurati on class. Usually the class that defines the mai n method is also a good candidate
as the primary @onfi gurati on.

Tip

Many Spring configuration examples have been published on the Internet that use XML
configuration. Always try to use the equivalent Java-base configuration if possible. Searching for
enabl e* annotations can be a good starting point.

14.1 Importing additional configuration classes

You don't need to put all your @onfi gurati on into a single class. The @ nport annotation can
be used to import additional configuration classes. Alternatively, you can use @onponent Scan to
automatically pickup all Spring components, including @onf i gur at i on classes.

14.2 Importing XML configuration

If you absolutely must use XML based configuration, we recommend that you still start with a
@confi gur ati on class. You can then use an additional @ npor t Resour ce annotation to load XML
configuration files.

1.0.3.BUILD-SNAPSHOT Spring Boot 30

Spring Boot Reference Guide

15. Auto-configuration

Spring Boot auto-configuration attempts to automatically configure your Spring application based on the
jar dependencies that you have added. For example, If HSQLDB is on your classpath, and you have
not manually configured any database connection beans, then we will auto-configure an in-memory
database.

You need to opt-in to auto-configuration by adding the @nabl eAut oConf i gur ati on annotation to
one of your @onf i gur at i on classes.

Tip

You should only ever add one @tnabl eAut oConfi gurati on annotation. We generally
recommend that you add it to your primary @onf i gur ati on class.

15.1 Gradually replacing auto-configuration

Auto-configuration is noninvasive, at any point you can start to define your own configuration to replace
specific parts of the auto-configuration. For example, if you add your own Dat aSour ce bean, the default
embedded database support will back away.

If you need to find out what auto-configuration is currently being applied, and why, starting your
application with the - - debug switch. This will log an auto-configuration report to the console.

15.2 Disabling specific auto-configuration

If you find that specific auto-configure classes are being applied that you don’t want, you can use the
exclude attribute of @nabl eAut oConfi gur at i on to disable them.

i nport org.springfranmework. boot. aut oconfi gure. *;
i mport org.springframework. boot . aut oconfigure.jdbc.*;
i nport org.springframework. cont ext.annotation.*;

@onfi guration
@Enabl eAut oConf i gur at i on(excl ude={ EnbeddedDat abaseConf i gur ati on. cl ass})
public class MyConfiguration {

}

1.0.3.BUILD-SNAPSHOT Spring Boot 31

Spring Boot Reference Guide

16. Spring Beans and dependency injection

You are free to use any of the standard Spring Framework techniques to define your beans and their
injected dependencies. For simplicity, we often find that using @onponent Scan to find your beans, in
combination with @\ut owi r ed constructor injection works well.

If you structure your code as suggested above (locating your application class in a root package), you
can add @onponent Scan without any arguments. All of your application components (@onponent ,
@ber vi ce, @Reposi tory, @ontrol | er etc.)will be automatically registered as Spring Beans.

Here is an example @ber vi ce Bean that uses constructor injection to obtain a required Ri skAssessor
bean.

package com exanpl e. service;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. stereotype. Servi ce;

@ber vi ce
public class DatabaseAccount Service inpl enents Account Service {

private final Ri skAssessor riskAssessor;
@\ut owi red
publ i ¢ Dat abaseAccount Servi ce(Ri skAssessor riskAssessor) {

this.riskAssessor = riskAssessor;

}

N/

Tip

Notice how using constructor injection allows the ri skAssessor field to be marked as f i nal ,
indicating that it cannot be subsequently changed.

1.0.3.BUILD-SNAPSHOT Spring Boot 32

Spring Boot Reference Guide

17. Running your application

One of the biggest advantages of packaging your application as jar and using an embedded HTTP
server is that you can run your application as you would any other. Debugging Spring Boot applications
is also easy; you don’t need any special IDE plugins or extensions.

Note

This section only covers jar based packaging, If you choose to package your application as a war
file you should refer to your server and IDE documentation.

17.1 Running from an IDE

You can run a Spring Boot application from your IDE as a simple Java application, however, first you will
need to import your project. Import steps will vary depending on your IDE and build system. Most IDEs
can import Maven projects directly, for example Eclipse users can select | nport... _ EXisting
Maven Proj ects from the Fi | e menu.

If you can't directly import your project into your IDE, you may be able to generate IDE meta-data using
a build plugin. Maven includes plugins for Eclipse and IDEA; Gradle offers plugins for various IDEs.

Tip

If you accidentally run a web application twice you will see a “Port already in use” error. STS users
can use the Rel auch button rather than Run to ensure that any existing instance is closed.

17.2 Running as a packaged application

If you use the Spring Boot Maven or Gradle plugins to create an executable jar you can run your
application using j ava -j ar . For example:

‘ $ java -jar target/ nmyproject-0.0.1- SNAPSHOT. j ar

It is also possible to run a packaged application with remote debugging support enabled. This allows
you to attach a debugger to your packaged application:

$ java - Xdebug - Xrunj dwp: server =y, transport=dt_socket, addr ess=8000, suspend=n \
-jar target/nmyproject-0.0.1- SNAPSHOT. j ar

17.3 Using the Maven plugin

The Spring Boot Maven plugin includes a r un goal which can be used to quickly compile and run your
application. Applications run in an exploded form, and you can edit resources for instant “hot” reload.

‘ $ nvn spring-boot:run

17.4 Using the Gradle plugin

The Spring Boot Gradle plugin also includes a r un goal which can be used to run your application in
an exploded form. The boot Run task is added whenever you import the spri ng- boot - pl ugi n

$ gradl e boot Run

1.0.3.BUILD-SNAPSHOT Spring Boot 33

http://maven.apache.org/plugins/maven-eclipse-plugin/
http://maven.apache.org/plugins/maven-idea-plugin/
http://www.gradle.org/docs/current/userguide/ide_support.html

Spring Boot Reference Guide

17.5 Hot swapping

Since Spring Boot applications are just plain Java applications, JVM hot-swapping should work out of the
box. JVM hot swapping is somewhat limited with the bytecode that it can replace, for a more complete

solution the Spring Loaded project, or JRebel can be used.

See the Hot swapping “How-t0” section for details.

1.0.3.BUILD-SNAPSHOT Spring Boot

34

https://github.com/spring-projects/spring-loaded
http://zeroturnaround.com/software/jrebel/

Spring Boot Reference Guide

18. Packaging your application for production

Executable jars can be used for production deployment. As they are self contained, they are also ideally
suited for cloud-based deployment.

For additional “production ready” features, such as health, auditing and metric REST or JMX end-points;
consider adding spr i ng- boot - act uat or . See Part V, “Production-ready features” for details.

1.0.3.BUILD-SNAPSHOT Spring Boot 35

Spring Boot Reference Guide

19. What to read next

You should now have good understanding of how you can use Spring Boot along with some best
practices that you should follow. You can now go on to learn about specific Spring Boot features in
depth, or you could skip ahead and read about the “production ready” aspects of Spring Boot.

1.0.3.BUILD-SNAPSHOT Spring Boot 36

Part IV. Spring Boot features

This section dives into the details of Spring Boot. Here you can learn about the key features that you will
want to use and customize. If you haven't already, you might want to read the Part I, “Getting started”
and Part Ill, “Using Spring Boot” sections so that you have a good grounding of the basics.

Spring Boot Reference Guide

20. SpringApplication

The Spri ngAppl i cati on class provides a convenient way to bootstrap a Spring application that
will be started from a nmai n() method. In many situations you can just delegate to the static
Spri ngAppl i cati on. run method:

public static void main(String[] args) {
Spri ngApplication. run(MSpringConfiguration.class, args);
}

When your application starts you should see something similar to the following:

N\

S G D U U W
CON— Ny vy
W DI r e ro)y)))
S S [) O W B A Y
|| | /=l_1_1_1
Spring Boot :: v1. 0. 3. BU LD SNAPSHOT
2013-07-31 00:08:16.117 | NFO 56603 --- [mai n] o.s.b.s.app. Sanpl eApplication
Starting Sanpl eApplication v0.1.0 on nyconputer with PI D 56603 (/apps/nyapp.jar started by pwebb)
2013-07-31 00: 08: 16. 166 | NFO 56603 --- [mai n] ati onConfi gEmbeddedWebAppl i cati onCont ext
Ref reshi ng

org. spri ngframewor k. boot . cont ext . embedded. Annot at i onConf i gEmbeddedWebAppl i cati onCont ext @e5a8246:
startup date [Wed Jul 31 00:08:16 PDT 2013]; root of context hierarchy

2014-03-04 13:09:54.912 | NFO 41370 --- [mai n] .t.Tontat EnbeddedSer vl et Cont ai ner Factory :
Server initialized with port: 8080
2014-03-04 13: 09:56.501 |NFO 41370 --- [mai n] o.s.b.s.app. Sanpl eAppl i cation

Started Sanpl eApplication in 2.992 seconds (JVM running for 3.658)

By default | NFOlogging messages will be shown, including some relevant startup details such as the
user that launched the application.

20.1 Customizing SpringApplication

If the Spri ngAppl i cati on defaults aren’t to your taste you can instead create a local instance and
customize it. For example, to turn off the banner you would write:

public static void main(String[] args) {
Spri ngApplication app = new SpringApplication(MSpringConfiguration.class);
app. set ShowBanner (f al se) ;
app. run(args);

Note

The constructor arguments passed to Spri ngAppl i cat i on are configuration sources for spring
beans. In most cases these will be references to @onf i gur ati on classes, but they could also
be references to XML configuration or to packages that should be scanned.

It is also possible to configure the Spri ngAppl i cati on using an appl i cati on. properti es file.
See Chapter 21, Externalized Configuration for details.

For a complete list of the configuration options, see the Spri ngAppl i cati on Javadoc.

1.0.3.BUILD-SNAPSHOT Spring Boot 38

http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/SpringApplication.html

Spring Boot Reference Guide

20.2 Fluent builder API

If you need to build an Applicati onContext hierarchy (multiple contexts with a parent/
child relationship), or if you just prefer using a “fluent” builder API, you can use the
Spri ngAppl i cati onBui | der.

The Spri ngAppl i cati onBui | der allows you to chain together multiple method calls, and includes
par ent and chi | d methods that allow you to create a hierarchy.

For example:

new Spri ngAppl i cati onBuil der ()
. showBanner (f al se)
. sources(Parent. cl ass)
.chil d(Application.class)
.run(args);

Note

There are some restrictions when creating an Appl i cati onCont ext hierarchy, e.g. Web
components must be contained within the child context, and the same Envi r onment will be
used for both parent and child contexts. See the Spri ngAppl i cati onBui | der javadoc for full
details.

20.3 Application events and listeners

In addition to the usual Spring Framework events, such as Cont ext RefreshedEvent, a
Spri ngAppl i cati on sends some additional application events. Some events are actually triggered
before the Appl i cati onCont ext is created.

You can register event listeners in a number of ways, the most common being
SpringAppl i cation. addLi steners(...) method.

Application events are sent in the following order, as your application runs:

1. An Appl i cati onSt art edEvent is sent at the start of a run, but before any processing except the
registration of listeners and initializers.

2. An Appl i cati onEnvi r onment Pr epar edEvent is sentwhen the Envi r onnment to be used in the
context is known, but before the context is created.

3. AnAppl i cati onPr epar edEvent is sentjust before the refresh is started, but after bean definitions
have been loaded.

4. An Appl i cati onFai | edEvent is sent if there is an exception on startup.
Tip

You often won't need to use application events, but it can be handy to know that they exist.
Internally, Spring Boot uses events to handle a variety of tasks.

20.4 Web environment

A SpringApplication wil attempt to create the right type of Applicati onContext
on your behalf. By default, an AnnotationConfi gApplicati onCont ext or

1.0.3.BUILD-SNAPSHOT Spring Boot 39

http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/builder/SpringApplication.{dc-edit}
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/event/ContextRefreshedEvent.html

Spring Boot Reference Guide

Annot at i onConf i gEnbeddedWebAppl i cati onCont ext will be used, depending on whether you
are developing a web application or not.

The algorithm used to determine a “web environment” is fairly simplistic (based on the presence of a few
classes). You can use set WebEnvi r onnent (bool ean webEnvi ronnent) if you need to override
the default.

It is also possible to take complete control of the Appl i cati onCont ext type that will be used by
calling set Appl i cati onContext d ass(...).

Tip

It is often desirable to call set WebEnvi r onnment (f al se) when using Spri ngAppl i cati on
within a JUnit test.

20.5 Using the CommandLineRunner

If you want access to the raw command line arguments, or you need to run some specific code once
the Spri ngAppl i cati on has started you can implement the CommandLi neRunner interface. The
run(String... args) method will be called on all Spring beans implementing this interface.

i nport org.springframework. boot . *
i nport org.springfranework. stereotype. *

@onponent
public class MyBean inplenents CommandLi neRunner {

public void run(String... args) {
/1 Do sonething...
}

You can additionally implement the or g. spri ngf ramewor k. cor e. Or der ed interface or use the
or g. spri ngframewor k. core. annot ati on. O der annotation if several CommandLi neRunner
beans are defined that must be called in a specific order.

20.6 Application exit

Each SpringApplication will register a shutdown hook with the JVM to ensure that the
Appl i cati onCont ext is closed gracefully on exit. All the standard Spring lifecycle callbacks (such
as the Di sposabl eBean interface, or the @' eDest r oy annotation) can be used.

In addition, beans may implement the org. spri ngframework. boot. Exi t CodeCener at or
interface if they wish to return a specific exit code when the application ends.

1.0.3.BUILD-SNAPSHOT Spring Boot 40

Spring Boot Reference Guide

21. Externalized Configuration

Spring Boot allows you to externalize your configuration so you can work with the same application
code in different environments. You can use properties files, YAML files, environment variables and
command-line arguments to externalize configuration. Property values can be injected directly into your
beans using the @/al ue annotation, accessed via Spring’s Envi r onnent abstraction or bound to
structured objects.

Spring Boot uses a very particular Pr oper t ySour ce order that is designed to allow sensible overriding
of values, properties are considered in the the following order:

1. Command line arguments.

2. Java System properties (Syst em get Properti es()).

3. OS environment variables.

4. A RandonVal uePr opert ySour ce that only has properties inr andom *.
5. @r oper t ySour ce annotations on your @onf i gur at i on classes.

6. Application properties outside of your packaged jar (appl i cati on. properti es including YAML
and profile variants).

7. Application properties packaged inside your jar (appl i cati on. properti es including YAML and
profile variants).

8. Default properties (specified using Spri ngAppl i cati on. set Def aul t Properti es).

To provide a concrete example, suppose you develop a @Conponent that uses a nhane property:

i nport org.springframework. stereotype. *
i nport org.springfranework. beans. factory. annot ati on. *

@onponent
public class MyBean {

@al ue(" ${ nane}")
private String nane;

N/

You can bundle an appl i cati on. properti es inside your jar that provides a sensible default nane.
When running in production, an appl i cat i on. properti es can be provided outside of your jar that
overrides nane; and for one-off testing, you can launch with a specific command line switch (e.g. j ava
-jar app.jar --nane="Spring").

The RandonVal uePr opert ySour ce is useful for injecting random values (e.g. into secrets or test
cases). It can produce integers, longs or strings, e.g.

. secret =${random val ue}

. nunber =${random i nt }

. bi gnunber =${random | ong}

.nunber . | ess. t han. t en=${random i nt (10) }
.nunber . in.range=${random i nt[1024, 65536] }

33333

1.0.3.BUILD-SNAPSHOT Spring Boot 41

Spring Boot Reference Guide

Therandom i nt * syntax is OPEN val ue (, max) CLOSE where the OPEN, CLOSE are any character
and val ue, max are integers. If max is provided then val ue is the minimum value and max is the
maximum (exclusive).

21.1 Accessing command line properties

By default Spri ngAppl i cati on will convert any command line option arguments (starting with “--",
e.g. --server. port=9000) to a property and add it to the Spring Envi r onnent . As mentioned
above, command line properties always take precedence over other property sources.

If you don’t want command line properties to be added to the Envi r onnment you can disable them using
Spri ngAppl i cati on. set AddCommandLi neProperties(false).

21.2 Application property files

SpringAppl i cati on will load properties from appl i cati on. properti es files in the following
locations and add them to the Spring Envi r onnent :

1. A/ confi g subdir of the current directory.
2. The current directory

3. Aclasspath / conf i g package

4. The classpath root

The list is ordered by precedence (locations higher in the list override lower items).

Note

You can also use YAML (.yml) files as an alternative to .properties.

If you don't like appli cation. properties as the configuration file name you can switch to
another by specifying a spri ng. confi g. nane environment property. You can also refer to an
explicit location using the spri ng. confi g. | ocati on environment property (comma-separated list
of directory locations, or file paths).

‘ $ java -jar myproject.jar --spring.config.name=nyproj ect

or

$ java -jar nyproject.jar --spring.config.location=classpath:/default.properties,classpath:/
override. properties

If spring.config.location contains directories (as opposed to files) they should end in / (and
will be appended with the names generated from spri ng. confi g. nane before being loaded). The
default search path cl asspat h:, cl asspath:/config,file:,file:config/ is always used,
irrespective of the value of spring. config. | ocation. In that way you can set up default values
for your application in appl i cati on. properti es (or whatever other basename you choose with
spring. confi g. nane) and override it at runtime with a different file, keeping the defaults.

21.3 Profile specific properties

In addition to appl i cati on. properti es files, profile specific properties can also be defined using
the naming convention appl i cati on-{profil e}. properties.

1.0.3.BUILD-SNAPSHOT Spring Boot 42

Spring Boot Reference Guide

Profile specific properties are loaded from the same locations as standard
appl i cation. properti es, with profiles specific files overriding the default ones.

21.4 Placeholders in properties

The values in appl i cati on. properti es are filtered through the existing Envi r onment when they
are used so you can refer back to previously defined values (e.g. from System properties).

app. name=MyApp
app. descri ption=${app. nane} is a Spring Boot application

Tip

You can also use this technique to create “short” variants of existing Spring Boot properties. See
the Section 55.3, “Use “short” command line arguments” how-to for details.

21.5 Using YAML instead of Properties

YAML is a superset of JSON, and as such is a very convenient format for specifying hierarchical
configuration data. The Spri ngAppl i cat i on class will automatically support YAML as an alternative
to properties whenever you have the SnakeYAML library on your classpath.

Note

If you use “starter POMs” SnakeYAML will be automatically provided via spri ng- boot -
starter.

Loading YAML

Spring Boot provides two convenient classes that can be used to load YAML documents. The
Yam Properti esFact or yBean willload YAML as Pr oper ti es and the Yam MapFact or yBean will
load YAML as a Map.

For example, the following YAML document:

dev:
url: http://dev.bar.com
nane: Devel oper Setup
prod:
url: http://foo.bar.com

nane: My Cool App

Would be transformed into these properties:

envi ronnments. dev. url =http://dev. bar. com
envi ronnment s. dev. nanme=Devel oper Setup
environnents. prod. url =http://foo. bar.com
envi ronnents. prod. nane=My Cool App

YAML lists are represented as property keys with [i ndex] dereferencers, for example this YAML:

ny:
servers:

- dev. bar.com

- foo.bar.com

1.0.3.BUILD-SNAPSHOT Spring Boot 43

http://yaml.org
http://code.google.com/p/snakeyaml/

Spring Boot Reference Guide

Would be transformed into these properties:

ny. server s[0] =dev. bar. com
ny. server s[1] =f 0o. bar. com

To bind to properties like that using the Spring DataBi nder utilities (which is what
@confi gurati onProperties does) you need to have a property in the target bean of type
java.util.List (orSet)and you either need to provide a setter, or initialize it with a mutable value,
e.g. this will bind to the properties above

@onfi gurationProperties(prefix="ny")
public class Config {
private List<String> servers = new Arraylist<String>();

public List<String> getServers() {
return this.servers;

}

Exposing YAML as properties in the Spring Environment

The Yanl Pr opert ySour ceLoader class can be used to expose YAML as a Pr opert ySour ce inthe
Spring Envi r onment . This allows you to use the familiar @/al ue annotation with placeholders syntax
to access YAML properties.

Multi-profile YAML documents

You can specify multiple profile-specific YAML document in a single file by by using a
spring. profil es key to indicate when the document applies. For example:

server:
address: 192.168.1.100

spring:

profiles: devel opnent
server:

address: 127.0.0.1

spring:

profiles: production
server:

address: 192.168.1.120

YAML shortcomings

YAML files can't be loaded via the @Pr oper t ySour ce annotation. So in the case that you need to load
values that way, you need to use a properties file.

21.6 Typesafe Configuration Properties

Using the @/al ue(" ${ property}") annotation to inject configuration properties can sometimes be
cumbersome, especially if you are working with multiple properties or your data is hierarchical in nature.
Spring Boot provides an alternative method of working with properties that allows strongly typed beans
to govern and validate the configuration of your application. For example:

@onponent
@onfi gurationProperties(prefix="connection")
public class ConnectionSettings {

1.0.3.BUILD-SNAPSHOT Spring Boot 44

Spring Boot Reference Guide

private String usernamne;
private |netAddress renpteAddress;

/1 ... getters and setters

When the @nabl eConfi gurati onProperti es annotation is applied to your @onfi gurati on,
any beans annotated with @Confi gurati onProperties will be automatically configured from
the Environnent properties. This style of configuration works particularly well with the
Spri ngAppl i cati on external YAML configuration:

application.ynl

connecti on:
usernane: admn
renot eAddress: 192.168.1.1

additional configuration as required

To work with @onf i gur at i onPr operti es beans you can just inject them in the same way as any
other bean.

@ervi ce
public class MyService {

@\ut owi r ed
private ConnectionSettings connection;

/...

@Post Const r uct
public voi d openConnection() {
Server server = new Server();
t hi s. connecti on. confi gure(server);

It is also possible to shortcut the registration of @onfi gurati onProperti es bean definitions by
simply listing the properties classes directly in the @nabl eConf i gur at i onPr operti es annotation:

@onfi guration

@nabl eConfi gurationProperties(ConnectionSettings.class)
public class MyConfiguration {

}

Relaxed binding

Spring Boot uses some relaxed rules for binding Environnment properties to
@Confi gurationProperties beans, so there doesn't need to be an exact match between the
Envi ronnent property name and the bean property name. Common examples where this is useful
include underscore separated (e.g. cont ext _pat h bindsto cont ext Pat h), and capitalized (e.g. PORT
binds to por t) environment properties.

Spring will attempt to coerce the external application properties to the right type when it binds to
the @onfi gurati onProperties beans. If you need custom type conversion you can provide a
Conver si onSer vi ce bean (with bean id conver si onSer vi ce) or custom property editors (via a
Cust onEdi t or Conf i gur er bean).

1.0.3.BUILD-SNAPSHOT Spring Boot 45

Spring Boot Reference Guide

@ConfigurationProperties Validation

Spring Boot will attempt to validate external configuration, by default using JSR-303 (if it is on
the classpath). You can simply add JSR-303 j avax. val i dat i on constraint annotations to your
@confi gurati onProperti es class:

@onponent
@Confi gurationProperties(prefix="connection")
public class ConnectionSettings {

@\ot Nul |
private |netAddress renpteAddress;

/1 ... getters and setters

You can also add a custom Spring Validator by creating a bean definition called
confi gurationPropertiesValidator.

Tip

The spring-boot-actuator module includes an endpoint that exposes all
@confi gurati onProperti es beans. Simply point your web browserto/ conf i gpr ops or use
the equivalent JIMX endpoint. See the Production ready features. section for details.

1.0.3.BUILD-SNAPSHOT Spring Boot 46

Spring Boot Reference Guide

22. Profiles

Spring Profiles provide a way to segregate parts of your application configuration and make it
only available in certain environments. Any @onponent or @onfi gurati on can be marked with
@r of i | e to limit when it is loaded:

@onfiguration
@rofile("production")
public class ProductionConfiguraiton {

N/

}

In the normal Spring way, you can use a spring. profil es. active Environnent property to
specify which profiles are active. You can specify the property in any of the usual ways, for example
you could include it in your appl i cati on. properti es:

spring. profiles.active=dev, hsql db

or specify on the command line using the switch - - spri ng. profil es. acti ve=dev, hsql db.

22.1 Adding active profiles

The spring. profiles.active property follows the same ordering rules as other properties,
the highest PropertySource will win. This means that you can specify active profiles in
appl i cation. properti es then replace them using the command line switch.

Sometimes it is useful to have profile specific properties that add to the active profiles rather than replace
them. The spri ng. profil es. i ncl ude property can be used to unconditionally add active profiles.
The Spri ngAppl i cati on entry point also has a Java API for setting additional profiles (i.e. on top of
those activated by the spri ng. profil es. acti ve property): see the set Addi ti onal Profil es()
method.

For example, when an application with following properties is run using the switch --
spring. profil es.active=prod the proddb and pr odny profiles will also be activated:

ny.property: fronyanfile
spring.profiles: prod

spring. profiles.include: proddb, prodng

22.2 Programmatically setting profiles

You can programmatically set active profiles by calling
SpringApplication.set Additional Profiles(...) before your application runs. It is also
possible to activate profiles using Spring’s Conf i gur abl eEnvi r onnent interface.

22.3 Profile specific configuration files

Profile specific variants of both application. properties (or application.ym) and files
referenced via @onf i gurati onProperti es are considered as files are loaded. See Section 21.3,
“Profile specific properties” for detalils.

1.0.3.BUILD-SNAPSHOT Spring Boot a7

Spring Boot Reference Guide

23. Logging

Spring Boot uses Commons Logging for all internal logging, but leaves the underlying log implementation
open. Default configurations are provided for Java Util Logging, Log4J and Logback. In each case there
is console output and file output (rotating, 10 Mb file size).

By default, If you use the “Starter POMs”, Logback will be used for logging. Appropriate Logback routing
is also included to ensure that dependent libraries that use Java Util Logging, Commons Logging, Log4J
or SLF4J will all work correctly.

Tip
There are a lot of logging frameworks available for Java. Don't worry if the above list seems

confusing, generally you won't need to change your logging dependencies and the Spring Boot
defaults will work just fine.

23.1 Log format

The default log output from Spring Boot looks like this:

2014-03-05 10:57:51.112 | NFO 45469 --- [mai n] org. apache. cat al i na. core. St andar dEngi ne
Starting Servlet Engine: Apache Tontat/7.0.52

2014- 03-05 10:57:51.253 | NFO 45469 --- [ost-startStop-1] o.a.c.c.C [Tontat].[local host].[/]
Initializing Spring enmbedded WebAppl i cati onCont ext

2014-03-05 10:57:51.253 | NFO 45469 --- [ost-startStop-1] o.s.web. context. ContextLoader
Root WebApplicationContext: initialization conpleted in 1358 ns

2014-03-05 10:57:51.698 |NFO 45469 --- [ost-startStop-1] o.s.b.c.e.Servl etRegistrati onBean
Mappi ng servlet: 'dispatcherServiet' to [/]

2014- 03-05 10:57:51. 702 | NFO 45469 --- [ost-startStop-1] o.s.b.c.enbedded. FilterRegi strati onBean
Mapping filter: 'hiddenHttpMethodFilter' to: [/*]

The following items are output:

Date and Time — Millesecond precision and easily sortable.

* Log Level — ERROR, WARN, | NFO, DEBUG or TRACE.

Process ID.
» A--- separator to distinguish the start of actual log messages.
» Logger name — This is usually the source class name (often abbreviated).

» The log message.

23.2 Console output

The default log configuration will echo messages to the console as they written. By default ERROR, WARN
and | NFOlevel messages are logged. To also log DEBUG level messages to the console you can start
your application with a - - debug flag.

$ java -jar nyapp.jar --debug

If your terminal supports ANSI, color output will be used to aid readability.

1.0.3.BUILD-SNAPSHOT Spring Boot 48

http://commons.apache.org/logging
http://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html
http://logging.apache.org/log4j/
http://logback.qos.ch/

Spring Boot Reference Guide

23.3 File output

By default, log files are written to spri ng. | og in your t enp directory and rotate at 10 Mb. You
can easily customize the output folder by setting the | oggi ng. pat h property (for example in your
application. properties). It is also possible to change the filename using a | oggi ng.file

property.

As with console output, ERROR, WARN and | NFOlevel messages are logged by default.

23.4 Custom log configuration

The various logging systems can be activated by including the appropriate libraries on the classpath,
and further customized by providing a suitable configuration file in the root of the classpath, or in a
location specified by the Spring Envi r onnent property | oggi ng. confi g.

Depending on your logging system, the following files will be loaded:

Logging System Customization

Logback | ogback. xm

Log4j | og4j . propertiesorlog4j.xmn
JDK (Java Util Logging) | oggi ng. properties

To help with the customization some other properties are transferred from the Spring Envi r onnent
to System properties:

Spring Environment System Property Comments

| ogging.file LOG FI LE Used in default log
configuration if defined.

| oggi ng. pat h LOG _PATH Used in default log
configuration if defined.

PI D PI D The current process 1D
(discovered if possible and
when not already defined as an
OS environment variable).

All the logging systems supported can consult System properties when parsing their configuration files.
See the default configurations in spri ng- boot . j ar for examples.

Warning

There are know classloading issues with Java Util Logging that cause problems when running
from an “executable jar”. We recommend that you avoid it if at all possible.

1.0.3.BUILD-SNAPSHOT Spring Boot 49

Spring Boot Reference Guide

24. Developing web applications

Spring Boot is well suited for web application development. You can easily create a self-contained HTTP
server using embedded Tomcat or Jetty. Most web applications will use the spri ng- boot - starter -
web module to get up and running quickly.

If you haven’t yet developed a Spring Boot web application you can follow the "Hello World!" example
in the Getting started section.

24.1 The “Spring Web MVC framework”

The Spring Web MVC framework (often referred to as simply “Spring MVC”) is a rich “model view
controller” web framework. Spring MVC lets you create special @ont rol | er or @Rest Control | er
beans to handle incoming HTTP requests. Methods in your controller are mapped to HTTP using
@Request Mappi ng annotations.

Here is a typical example @Rest Cont r ol | er to serve JSON data:

@Rest Control | er
@Request Mappi ng(val ue="/users")
public class MyRestController {

@Request Mappi ng(val ue="/{user}", nethod=Request Met hod. GET)
public User getUser(@athVariable Long user) {
...

}

@Request Mappi ng(val ue="/{user}/custoners", nethod=Request Met hod. GET)
Li st <Cust oner > get User Cust oner s(@at hVari abl e Long user) {
...

}

@Request Mappi ng(val ue="/{user}", nethod=Request Met hod. DELETE)
public User del eteUser(@athVariable Long user) {
...

}

Spring MVC is part of the core Spring Framework and detailed information is available in the reference
documentation. There are also several guides available at http://spring.io/guides that cover Spring MVC.

Spring MVC auto-configuration

Spring Boot provides auto-configuration for Spring MVC that works well with most applications.
The auto-configuration adds the following features on top of Spring’s defaults:

* Inclusion of Cont ent Negot i ati ngVi ewResol ver and BeanNaneVi ewResol ver beans.
» Support for serving static resources, including support for WebJars (see below).

» Automatic registration of Convert er, Generi cConverter, Formatter beans.

» Support for Ht t pMessageConvert er s (see below).

» Statici ndex. ht m support.

» Custom Favi con support.

1.0.3.BUILD-SNAPSHOT Spring Boot 50

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle#mvc
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle#mvc
http://spring.io/guides

Spring Boot Reference Guide

If you want to take complete control of Spring MVC, you can add your own @Conf i gur at i on annotated
with @nabl eWebMc. If you want to keep Spring Boot MVC features, and you just want to add additional
MVC configuration (interceptors, formatters, view controllers etc.) you can add your own @ean of type
WebMscConfi gur er Adapt er, but without @nabl eWebM/c.

HttpMessageConverters

Spring MVC uses the Ht t pMessageConvert er interface to convert HTTP requests and responses.
Sensible defaults are included out of the box, for example Objects can be automatically converted to
JSON (using the Jackson library) or XML (using JAXB).

If you need to add or customize converters you can use Spring Boot's Ht t pMessageConverters
class:

i nport org.springframework. boot . aut oconfi gure. web. H t pMessageConverters;
i nport org.springframework. context.annotation.*;
i nport org.springfranework. http.converter.*;

@onfi guration
public class MyConfiguration {

@Bean
public HttpMessageConverters custonConverters() {
Ht t pMessageConverter<?> additional = ...
Ht t pMessageConverter<?> another = ...
return new Htt pMessageConverters(additional, another);

Static Content

By default Spring Boot will serve static content from a folder called /static (or /public or/
resour ces or / META- | NF/ r esour ces) in the classpath or from the root of the Ser vel t Cont ext .
It uses the Resour ceHt t pRequest Handl er from Spring MVC so you can modify that behavior by
adding your own WebMvcConf i gur er Adapt er and overriding the addResour ceHandl er s method.

In a stand-alone web application the default servlet from the container is also enabled, and acts as a
fallback, serving content from the root of the Ser vl et Cont ext if Spring decides not to handle it. Most
of the time this will not happen (unless you modify the default MVC configuration) because Spring will
always be able to handle requests through the Di spat cher Ser vl et .

In addition to the “standard” static resource locations above, a special case is made for Webjars content.
Any resources with a path in / webj ar s/ ** will be served from jar files if they are packaged in the
Webijars format.

Tip

Do not use the sr c/ mai n/ webapp folder if your application will be packaged as a jar. Although
this folder is a common standard, it will only work with war packaging and it will be silently ignored
by most build tools if you generate a jar.

Template engines

As well as REST web services, you can also use Spring MVC to serve dynamic HTML content. Spring
MVC supports a variety of templating technologies including: velocity, freemarker, and JSPs. Many other
templating engines also ship their own Spring MVC integrations.

1.0.3.BUILD-SNAPSHOT Spring Boot 51

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle#mvc
http://www.webjars.org/

Spring Boot Reference Guide

Spring Boot includes auto-configuration support for the Thymeleaf templating engine. Thymeleaf is an
XML/XHTML/HTML5 template engine that can work both in web and non-web environments. It allows
you to create natural templates that can be correctly displayed by browsers and therefore work also as
static prototypes. Thymeleaf templates will be picked up automatically from sr ¢/ mai n/ r esour ces/
t enpl at es.

Tip

JSPs should be avoided if possible, there are several known limitations when using them with
embedded servlet containers.

24.2 Embedded servlet container support

Spring Boot includes support for embedded Tomcat and Jetty servers. Most developers will simply use
the appropriate “Starter POM” to obtain a fully configured instance. By default both Tomcat and Jetty
will listen for HTTP requests on port 8080.

Servlets and Filters

When using an embedded servlet container you can register Servlets and Filters directly as
Spring beans. This can be particularly convenient if you want to refer to a value from your
appl i cation. properti es during configuration.

By default, if the context contains only a single Servlet it will be mapped to / . In the case of multiple
Servlets beans the bean name will be used as a path prefix. Filters will map to / *.

If convention-based mapping is not flexible enough you can use the Ser vl et Regi st r ati onBean and
Fi | t er Regi strati onBean classes for complete control. You can also register items directly if your
bean implements the Ser vl et Context I niti ali zer interface.

The EmbeddedWebApplicationContext

Under the hood Spring Boot uses a new type of Appl i cat i onCont ext for embedded servlet container
support. The EnbeddedWebAppl i cati onCont ext is a special type of WebAppl i cati onCont ext
that bootstraps itself by searching for a single EnbeddedSer vl et Cont ai ner Fact or y bean. Usually a
Tontat EnbeddedSer vl et Cont ai ner Fact ory or Jett yEnbeddedSer vl et Cont ai ner Fact ory
will have been auto-configured.

Note

You wusually won't need to be aware of these implementation classes. Most
applications will be auto-configured and the appropriate Appli cati onCont ext and
EnbeddedSer vl et Cont ai ner Fact or y will be created on your behalf.

Customizing embedded servlet containers

Common servlet container settings can be configured using Spring Envi r onment properties. Usually
you would define the properties in your appl i cati on. properti es file.

Common server settings include:

* server. port —The listen port for incoming HTTP requests.

1.0.3.BUILD-SNAPSHOT Spring Boot 52

Spring Boot Reference Guide

e server. addr ess — The interface address to bind to.
* server. sessi onTi neout — A session timeout.

See the Ser ver Properti es class for a complete list.

Programmatic customization

If you need to configure your embdedded servlet container programmatically you can
register a Spring bean that implements the EnbeddedServl et Contai ner Custoni zer
interface. EnbeddedSer vl et Cont ai ner Cust oni zer provides access to the
Confi gur abl eEnbeddedSer vl et Cont ai ner Fact ory which includes numerous customization
setter methods.

i nport org.springframework. boot . cont ext. enbedded. *;
i nport org.springfranework. st ereotype. Conponent ;

@onponent
public class Custom zationBean inpl enents EnbeddedSer vl et Cont ai ner Cust om zer {

@verride
public void custom ze(Confi gurabl eEnbeddedSer vl et Cont ai ner cont ai ner) {
cont ai ner. set Port (9000) ;

}

Customizing ConfigurableEmbeddedServietContainerFactory directly

If the above customization techniques are too limited, you can register the
Tonctat EnbeddedSer vl et Cont ai ner Fact ory or Jett yEnbeddedSer vl et Cont ai ner Fact ory
bean yourself.

@Bean
publ i ¢ EnbeddedSer vl et Cont ai ner Fact ory servl et Cont ai ner () {
Tontat EnbeddedSer vl et Cont ai ner Factory factory = new Tontat EnbeddedSer vl et Cont ai ner Fact ory() ;
factory. set Port (9000);
factory. set Sessi onTi meout (10, Ti meUnit. M NUTES);
factory. addErr or Pages(new Error Page(H t pSt at us. 404, "/notfound. htm");
return factory;

Setters are provided for many configuration options. Several protected method “hooks” are also provided
should you need to do something more exotic. See the source code documentation for details.

JSP limitations

When running a Spring Boot application that uses an embedded servlet container (and is packaged as
an executable archive), there are some limitations in the JSP support.

» With Tomcat it should work if you use war packaging, i.e. an executable war will work, and will also
be deployable to a standard container (not limited to, but including Tomcat). An executable jar will not
work because of a hard coded file pattern in Tomcat.

» Jetty does not currently work as an embedded container with JSPs.

There is a JSP sample so you can see how to set things up.

1.0.3.BUILD-SNAPSHOT Spring Boot 53

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-web-jsp

Spring Boot Reference Guide

25. Security

If Spring Security is on the classpath then web applications will be secure by default with “basic”
authentication on all HTTP endpoints. To add method-level security to a web application you can also
add @nabl ed obal Met hodSecur i t y with your desired settings. Additional information can be found
in the Spring Security Reference.

The default Aut hent i cati onManager has a single user (“user” username and random password,
printed at INFO level when the application starts up). You can change the password by
providing a security. user.password. This and other useful properties are externalized via
Securi tyProperties (properties prefix "security").

The default security configuration is implemented in Securit yAut oConfi gurati on and in the
classes imported from there (Spri ngBoot WebSecurityConfi guration for web security and
Aut hent i cati onManager Confi gur ati on for authentication configuration which is also relevant in
non-web applications). To switch off the Boot default configuration completely in a web application you
can add a bean with @nabl eWebSecurity. To customize it you normally use external properties
and beans of type WebConf i gur er Adapt er (e.g. to add form-based login). There are several secure
applications in the Spring Boot samples to get you started with common use cases.

The basic features you get out of the box in a web application are:

« An Aut henticationManager bean with in-memory store and a single user (see
SecurityProperties. User for the properties of the user).

 Ignored (unsecure) paths for common static resource locations (/ css/ **,/j s/ **, /i mages/ **
and **/favi con. i co).

» HTTP Basic security for all other endpoints.

e Security events published to Spring’'s Applicati onEvent Publisher (successful and
unsuccessful authentication and access denied).

e Common low-level features (HSTS, XSS, CSRF, caching) provided by Spring Security are on by
default.

All of the above can be switched on and off or modified using external properties (security. *).
If the Actuator is also in use, you will find:

» The management endpoints are secure even if the application endpoints are unsecure.

» Security events are transformed into Audi t Event s and published to the Audi t Ser vi ce.

» The default user will have the "ADMIN" role as well as the "USER" role.

The Actuator security features can be modified using external properties (managenent . security. *).

1.0.3.BUILD-SNAPSHOT Spring Boot 54

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle#jc-method
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/

Spring Boot Reference Guide

26. Working with SQL databases

The Spring Framework provides extensive support for working with SQL databases. From direct JDBC
access using JdbcTenpl at e to complete “object relational mapping” technologies such as Hibernate.
Spring Data provides an additional level of functionality, creating Reposi t or y implementations directly
from interfaces and using conventions to generate queries from your method names.

26.1 Configure a DataSource

Java’s j avax. sql . Dat aSour ce interface provides a standard method of working with database
connections. Traditionally a DataSource uses a URL along with some credentials to establish a database
connection.

Embedded Database Support

It's often convenient to develop applications using an in-memory embedded database. Obviously, in-
memory databases do not provide persistent storage; you will need to populate your database when
your application starts and be prepared to throw away data when your application ends.

Tip

The “How-to” section includes a section on how to initialize a database

Spring Boot can auto-configure embedded H2, HSQL and Derby databases. You don’t need to provide
any connection URLs, simply include a build dependency to the embedded database that you want to
use.

For example, typical POM dependencies would be:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-data-jpa</artifactld>
</ dependency>
<dependency>
<groupl d>or g. hsql db</ gr oupl d>
<artifactld>hsqgl db</artifactld>
<scope>runti me</ scope>
</ dependency>

Note

You need a dependency on spri ng-j dbc for an embedded database to be auto-configured. In
this example it’s pulled in transitively via spri ng- boot - st art er - dat a- j pa.

Connection to a production database

Production database connections can also be auto-configured using a pooling Dat aSour ce. Here's the
algorithm for choosing a specific implementation.

» We prefer the Tomcat pooling Dat aSour ce for its performance and concurrency, so if that is available
we always choose it.

» If commons-dbcp is available we will use that, but we don’t recommend it in production.

1.0.3.BUILD-SNAPSHOT Spring Boot 55

http://www.h2database.com
http://hsqldb.org/
http://db.apache.org/derby/

Spring Boot Reference Guide

If youusethespri ng-boot-starter-jdbcorspring-boot-starter-data-jpa“starter POMs”
you will automcatically get a dependency to t ontat - j dbc.

Note

Additional connection pools can always be configured manually. If you define your own
Dat aSour ce bean, auto-configuration will not occur.

DataSource configuration is controlled by external configuration propertiesinspri ng. dat asour ce. *.
For example, you might declare the following section in appl i cati on. properti es:

spring. dat asour ce. url =j dbc: mysql : / /1 ocal host/t est
spring. dat asour ce. user nane=dbuser

spring. dat asour ce. passwor d=dbpass

spring. datasource. driver Cl assNane=com nysql . j dbc. Dri ver

See Abst r act Dat aSour ceConf i gur at i on for more of the supported options.

Note

For a pooling Dat aSource to be created we need to be able to verify that a valid
Driver class is available, so we check for that before doing anything. l.e. if you set
spring. dat asour ce. dri ver G assName=com mysgqgl . j dbc. Dri ver then that class has to
be loadable.

26.2 Using JdbcTemplate

Spring’s JdbcTenpl at e and NanedPar anet er JdbcTenpl at e classes are auto-configured and you
can @\ut ow r e them directly into your own beans:

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i mport org.springframework.jdbc. core.JdbcTenpl at e;
i nport org.springfranework. stereotype. Conponent ;

@Conponent
public class MyBean {

private final JdbcTenpl ate jdbcTenpl ate;

@\ut owi r ed

publ i c MyBean(JdbcTenpl ate jdbcTenpl ate) {
this.jdbcTenpl ate = jdbcTenpl at e;

}

...

26.3 JPA and “Spring Data”

The Java Persistence API is a standard technology that allows you to “map” objects to relational
databases. The spri ng-boot -starter-data-jpa POM provides a quick way to get started. It
provides the following key dependencies:

» Hibernate — One of the most popular JPA implementations.

» Spring Data JPA — Makes it easy to easily implement JPA-based repositories.

1.0.3.BUILD-SNAPSHOT Spring Boot 56

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/AbstractDataSourceConfiguration.java

Spring Boot Reference Guide

* Spring ORMs — Core ORM support from the Spring Framework.

Tip
We won’t go into too many details of JPA or Spring Data here. You can follow the “Accessing
Data with JPA” guide from http://spring.io and read the Spring Data JPA and Hibernate reference

documentation.

Entity Classes

Traditionally, JPA “Entity” classes are specified in a per si st ence. xm file. With Spring Boot this
file is not necessary and instead “Entity Scanning” is used. By default all packages below your main
configuration class (the one annotated with @nabl eAut oConf i gur at i on) will be searched.

Any classes annotated with @nt i ty, @nbeddabl e or @/appedSuper cl ass will be considered. A
typical entity class would look something like this:

package com exanpl e. nyapp. donai n;

inport java.io.Serializable;
i nport javax. persistence. *;

@ntity
public class City inplenents Serializable {

@d
@zener at edVal ue
private Long id;

@ol um(nul | abl e = fal se)
private String nane;

@ol um(nul | abl e = fal se)
private String state;

/1 ... additional nenbers, often include @neToMany nappi ngs

protected City() {
/'l no-args constructor required by JPA spec
/1 this one is protected since it shouldn't be used directly

}

public Cty(String nanme, String state) {
this.name = nane,;
this.country = country;

}

public String getNane() {
return this.naneg;

}

public String getState() {
return this.state;

}

/Il ... etc

Tip

You can customize entity scanning locations using the @entityScan annotation. See the
Section 59.3, “Separate @Entity definitions from Spring configuration” how-to.

1.0.3.BUILD-SNAPSHOT Spring Boot 57

http://spring.io/guides/gs/accessing-data-jpa/
http://spring.io/guides/gs/accessing-data-jpa/
http://spring.io
http://projects.spring.io/spring-data-jpa/
http://hibernate.org/orm/documentation/

Spring Boot Reference Guide

Spring Data JPA Repositories

Spring Data JPA repositories are interfaces that you can define to access data. JPA queries are created
automatically from your method names. For example, a Ci t yReposi t ory interface might declare a
findAl I ByState(String state) method to find all cities in a given state.

For more complex queries you can annotate your method using Spring Data’s Quer y annotation.

Spring Data repositories usually extend from the Reposi t ory or Cr udReposi t ory interfaces. If you
are using auto-configuration, repositories will be searched from the package containing your main
configuration class (the one annotated with @nabl eAut oConf i gur ati on) down.

Here is a typical Spring Data repository:

package com exanpl e. nyapp. donai n;

i nport org.springframework. data. domai n. *;
i mport org.springframework. data.repository.*;

public interface CityRepository extends Repository<City, Long> {
Page<Ci ty> findAl | (Pageabl e pageabl e);

City findByNaneAndCountryAl |l gnoringCase(String nane, String country);

Tip

We have barely scratched the surface of Spring Data JPA. For complete details check their
reference documentation.

Creating and dropping JPA databases

By default JPA database will be automatically created only if you use an embedded database (H2, HSQL
or Derby). You can explicitly configure JPA settings using spri ng. j pa. * properties. For example, to
create and drop tables you can add the following to your appl i cati on. properti es.

spring.j pa. hi bernate. ddl - aut o=cr eat e- dr op

Note

Hibernate's own internal property name for this (if you happen to remember it better) is
hi ber nat e. hbnRddl . aut 0. You can set it, along with other Hibernate native properties, using
spring.jpa. properties.* (the prefix is stripped before adding them to the entity manager).
Alternatively, spri ng. j pa. gener at e- ddl =f al se switches off all DDL generation.

1.0.3.BUILD-SNAPSHOT Spring Boot 58

http://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/Query.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
http://projects.spring.io/spring-data-jpa/

Spring Boot Reference Guide

27. Working with NoSQL technologies

Spring Data provides additional projects that help you access a variety of NoSQL technologies including
MongoDB, Neo4J, Redis, Gemfire, Couchbase and Cassandra. Spring Boot provides auto-configuration
for MongoDB; you can make use of the other projects, but you will need to configure them yourself.
Refer to the appropriate reference documentation at http://projects.spring.io/spring-data.

27.1 MongoDB

MongoDB is an open-source NoSQL document database that uses a JSON-like schema instead
of traditional table-based relational data. Spring Boot offers several conveniences for working with
MongoDB, including the The spri ng- boot - st art er - dat a- nongodb “Starter POM”.

Connecting to a MongoDB database

You can inject an auto-configured com nongodb. Mongo instance as you would any other Spring Bean.
By default the instance will attempt to connect to a MongoDB server using the URL nongodb: //
| ocal host/test:

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i mport org.springframework. stereotype. Conponent ;

i nport com nongodb. Mbngo;

@onponent
public class MyBean {

private final Mngo nobngo;
@\ut owi r ed
publi c MyBean(Mongo nongo) {

t hi s. nongo = nongo;

}

...

You can set spring. dat a. nongodb. uri property to change the url, or alternatively specify a
host /por t . For example, you might declare the following in your appl i cati on. properti es:

spring. dat a. nongodb. host =nobngoser ver
spring. dat a. nrongodb. port =27017

Tip

If spri ng. dat a. nongodb. port is not specified the default of 27017 is used. You could simply
delete this line from the sample above.

You can also declare your own Mongo @ean if you want to take complete control of establishing the
MongoDB connection.

MongoTemplate

Spring Data Mongo provides a MongoTenpl at e class that is very similar in its design to Spring’'s
JdbcTenpl at e. As with JdbcTenpl at e Spring Boot auto-configures a bean for you to simply inject:

1.0.3.BUILD-SNAPSHOT Spring Boot 59

http://projects.spring.io/spring-data-mongodb/
http://projects.spring.io/spring-data-neo4j/
http://projects.spring.io/spring-data-redis/
http://projects.spring.io/spring-data-gemfire/
http://projects.spring.io/spring-data-couchbase/
http://projects.spring.io/spring-data-cassandra/
http://projects.spring.io/spring-data
http://www.mongodb.com/
http://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoTemplate.html

Spring Boot Reference Guide

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springframework. dat a. nongodb. cor e. MongoTenpl at e;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class MyBean {

private final MngoTenpl ate nongoTenpl at e;

@\ut owi r ed
publ i c MyBean(MongoTenpl ate nongoTenpl ate) {
t hi s. nongoTenpl ate = nongoTenpl at e;

}

Il

See the MongoQper at i ons Javadoc for complete details.
Spring Data MongoDB repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data MongoDB share the same common infrastructure; so
you could take the JPA example from earlier and, assuming that G t y is now a Mongo data class rather
than a JPA @nt i ty, it will work in the same way.

package com exanpl e. myapp. domai n;

i nport org.springfranework. dat a. donai n. *;
i nport org.springfranework. data.repository.*;

public interface G tyRepository extends Repository<City, Long> {
Page<Ci ty> findAl | (Pageabl e pageabl e);

Gty findByNameAndCountryAl |l gnoringCase(String name, String country);

Tip

For complete details of Spring Data MongoDB, including its rich object mapping technologies,
refer to their reference documentation.

1.0.3.BUILD-SNAPSHOT Spring Boot 60

http://projects.spring.io/spring-data-mongodb/

Spring Boot Reference Guide

28. Testing

Spring Boot provides a number of useful tools for testing your application. The spri ng-
boot - starter-parent POM provides JUnit, Hamcrest and Mockito “test” scope dependencies.
There are also wuseful test utilities in the core spring-boot module under the
org. spri ngframewor k. boot . t est package. There is also a spring-boot-starter-test
“Starter POM”.

28.1 Test scope dependencies

If you extend your Maven project from the spri ng-boot-starter-parent POM, or use the
spring-boot -starter-test “Starter POM” (inthet est scope), you will find the following provided
libraries:

» JUnit— The de-facto standard for unit testing Java applications.

e Hamcrest—A library of matcher objects (also known as constraints or predicates) allowing
assert That style JUnit assertions.

e Mockito — A Java mocking framework.

These are common libraries that we generally find useful when writing tests. You are free to add
additional test dependencies of your own if these don’t suit your needs.

28.2 Testing Spring applications

One of the major advantages of dependency injection is that it should make your code easier to unit
test. You can simply instantiate objects using the new operator without even involving Spring. You can
also use mock objects instead of real dependencies.

Often you need to move beyond “unit testing” and start “integration testing” (with a Spring
Appl i cati onCont ext actually involved in the process). It's useful to be able to perform integration
testing without requiring deployment of your application or needing to connect to other infrastructure.

The Spring Framework includes a dedicated test module for just such integration testing. You can
declare a dependency directly to or g. spri ngf ranmewor k: spri ng-t est oruse the spri ng- boot -
starter-test “Starter POM” to pull it in transitively.

If you have not used the spri ng-t est module before you should start by reading the relevant section
of the Spring Framework reference documentation.

28.3 Testing Spring Boot applications

A Spring Boot application is just a Spring Appl i cati onCont ext so nothing very special has to be
done to test it beyond what you would normally do with a vanilla Spring context. One thing to watch out
for though is that the external properties, logging and other features of Spring Boot are only installed in
the context by default if you use Spri ngAppl i cati on to create it.

Spring Boot provides a @Bpri ngAppl i cationConfiguration annotation as an alternative
to the standard spring-test (@ContextConfiguration annotation. If you use
@pri ngAppl i cati onConfi gurati on to configure the Appl i cati onCont ext used in your tests,
it will be created via Spri ngAppl i cat i on and you will get the additional Spring Boot features.

For example:

1.0.3.BUILD-SNAPSHOT Spring Boot 61

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#testing

Spring Boot Reference Guide

@RunW t h(SpringJUnit4d assRunner. cl ass)
@pri ngAppl i cati onConfi guration(classes = Sanpl eDat aJpaAppl i cati on. cl ass)
public class CityRepositorylntegrationTests {

@\ut owi r ed
Ci tyRepository repository;

...

Tip

The context loader guesses whether you want to test a web application or not (e.g.
with MockMVC) by looking for the @webAppConfi gurati on annotation. (MockMVC and
@\ebAppConfi gurati on are part of spri ng-test).

If you want a web application to start up and listen on its normal port, so you can test it with HTTP (e.g.
using Rest Tenpl at e), annotate your test class (or one of its superclasses) with @ nt egr ati onTest .
This can be very useful because it means you can test the full stack of your application, but also inject
its components into the test class and use them to assert the internal state of the application after an
HTTP interaction. For Example:

@unW t h(SpringJUnit4d assRunner. cl ass)

@pri ngAppl i cationConfiguration(classes = Sanpl eDat aJpaAppl i cati on. cl ass)
@\ebAppConfi guration

@nt egr ati onTest

public class CityRepositorylntegrationTests {

@\ut owi r ed
CityRepository repository;

Rest Tenpl ate rest Tenpl ate = new Test Rest Tenpl at e() ;

/1 ... interact with the running server

To change the port you can add environment properties to @ nt egr at i onTest as colon- or equals-
separated name-value pairs, e.g. @ nt egrati onTest ("server. port: 9000").

28.4 Test utilities

A few test utility classes are packaged as part of spri ng- boot that are generally useful when testing
your application.

ConfigFileApplicationContextlinitializer

Confi gFil eApplicationContextlnitializerisanApplicationContextlnitializer that
can apply to your tests to load Spring Boot appl i cati on. properti es files. You can use this when
you don’t need the full features provided by @pri ngAppl i cati onConfi gurati on.

@ont ext Confi guration(cl asses = Config.cl ass,
initializers = ConfigFileApplicationContextlnitializer.class)

EnvironmentTestUtils

Envi ronnment Test Ut i | s allows you to quickly add properties to a Conf i gur abl eEnvi r onnent or
Conf i gur abl eAppl i cat i onCont ext . Simply call it with key=val ue strings:

1.0.3.BUILD-SNAPSHOT Spring Boot 62

Spring Boot Reference Guide

Envi ronnent Test Uti | s. addEnvi ronnent (env, "org=Spring", "nanme=Boot");

OutputCapture

Qut put Capt ur e is a JUnit Rul e that you can use to capture Syst em out and Syst em err output.
Simply declare the capture as a @ul e then uset oSt ri ng() for assertions:

inmport org.junit.Rule;
inmport org.junit. Test;
i nport org.springfranework. boot . t est. Qut put Capt ur e;

inport static org.hancrest. Matchers. *;
inport static org.junit.Assert.*;

public class MyTest {

@rul e
publ i c QutputCapture capture = new Qutput Capture();

@est

public void testName() throws Exception {
Systemout.printin("Hello Wrld!");

assert That (capture.toString(), containsString("Wrld"));

}

TestRestTemplate

Test Rest Tenpl at e is a convenience subclass of Spring’s Rest Tenpl at e that is useful in integration
tests. You can get a vanilla template or one that sends Basic HTTP authentication (with a username
and password). In either case the template will behave in a test-friendly way: not following redirects (so
you can assert the response location), ignoring cookies (so the template is stateless), and not throwing
exceptions on server-side errors. It is recommended, but not mandatory, to use Apache HTTP Client
(version 4.3.2 or better), and if you have that on your classpath the Test Rest Tenpl at e will respond
by configuring the client appropriately.

public class MyTest {

Rest Tenpl ate tenpl ate = new Test Rest Tenpl ate();

@est

public void testRequest() throws Exception {
Ht t pHeaders headers = tenpl ate.get ForEntity("http://nyhost.conl, String.class).getHeaders();
assert That (headers. get Location().toString(), containsString("nmyotherhost"));

}

1.0.3.BUILD-SNAPSHOT Spring Boot 63

Spring Boot Reference Guide

29. Developing auto-configuration and using
conditions

If you work in a company that develops shared libraries, or if you work on an open-source or commercial
library, you might want to develop your own auto-configuration. Auto-configuration classes can be
bundled in external jars and still be picked-up by Spring Boot.

29.1 Understanding auto-configured beans

Under the hood, auto-configuration is implemented with standard @onf i gur at i on classes. Additional
@Condi ti onal annotations are used to constrain when the auto-configuration should apply. Usually
auto-configuration classes use @onditional OnCl ass and @Conditi onal OnM ssi ngBean
annotations. This ensures that auto-configuration only applies when relevant classes are found and
when you have not declared your own @onf i gur ati on.

You can browse the source code of spri ng- boot - aut oconfi gur e to see the @onfi guration
classes that we provide (see the META- | NF/ spri ng. fact ori es file).

29.2 Locating auto-configuration candidates

Spring Boot checks for the presence of a META- | NF/ spri ng. f act ori es file within your published
jar. The file should list your configuration classes under the Enabl eAut oConf i gur at i on key.

or g. springfranmewor k. boot . aut oconfi gur e. Enabl eAut oConfi gur ati on=\
com nycorp. | i bx. aut oconfi gure. Li bXAut oConfi guration, \
com mycorp. | i bx. aut oconfi gur e. Li bXWWbAut oConfi gurati on

You can use the @AutoConfigureAfter or @\utoConfigureBefore annotations if your
configuration needs to be applied in a specific order. For example, if you provide web specific
configuration, your class may need to be applied after WebMvcAut oConf i gur ati on.

29.3 Condition annotations

You almost always want to include one or more @ondi t i on annotations on your auto-configuration
class. The @ondi t i onal OnM ssi ngBean is one common example that is used to allow developers
to “override” auto-configuration if they are not happy with your defaults.

Spring Boot includes a number of @ondi t i onal annotations that you can reuse in your own code by
annotating @onf i gur at i on classes or individual @ean methods.

Class conditions

The @onditional OnC ass and @onditional OnM ssi ngC ass annotations allows
configuration to be skipped based on the presence or absence of specific classes. Due to the fact that
annotation meta-data is parsed using ASM you can actually use the val ue attribute to refer to the real
class, even though that class might not actually appear on the running application classpath. You can
also use the nane attribute if you prefer to specify the class name using a St ri ng value.

Bean conditions

The @Condi ti onal OnBean and @ondi ti onal OnM ssi ngBean annotations allow configurations
to be skipped based on the presence or absence of specific beans. You can use the val ue attribute to

1.0.3.BUILD-SNAPSHOT Spring Boot 64

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureAfter.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureBefore.java
http://asm.ow2.org/

Spring Boot Reference Guide

specify beans by type, or nane to specify beans by name. The sear ch attribute allows you to limit the
Appl i cati onCont ext hierarchy that should be considered when searching for beans.

Note

@condi ti onal annotations are processed when @onf i gur ati on classes are parsed. Auto-
configure @onfi gur ati on is always parsed last (after any user defined beans), however, if
you are using these annotations on regular @onf i gur at i on classes, care must be taken not
to refer to bean definitions that have not yet been created.

Resource conditions

The @ondi ti onal OnResour ce annotation allows configuration to be included only when a specific
resource is present. Resources can be specified using the usual Spring conventions, for example,
file:/home/user/test. dat.

Web Application Conditions

The @ondi ti onal OnWWbAppl i cati on and @ondi ti onal OnNot WebAppl i cat i on annotations
allow configuration to be skipped depending on whether the application is a web application. A web
application is any application that is using a Spring WebAppl i cati onCont ext, defines a sessi on
scope or has a St andar dSer vl et Envi r onnent .

SpEL expression conditions

The @ondi t i onal OnExpr essi on annotation allows configuration to be skipped based on the result
of a SpEL expression.

1.0.3.BUILD-SNAPSHOT Spring Boot 65

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#expressions

Spring Boot Reference Guide

30. What to read next

If you want to learn more about any of the classes discussed in this section you can check out the Spring
Boot API documentation or you can browse the source code directly. If you have specific questions,
take a look at the how-to section.

If you are comfortable with Spring Boot's core features, you can carry on and read about production-
ready features.

1.0.3.BUILD-SNAPSHOT Spring Boot 66

http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api
http://github.com/spring-projects/spring-boot/tree/master

Part V. Production-ready features

Spring Boot includes a number of additional features to help you monitor and manage your application
when it's pushed to production. You can choose to manage and monitor your application using HTTP
endpoints, with JMX or even by remote shell (SSH or Telnet). Auditing, health and metrics gathering
can be automatically applied to your application.

Spring Boot Reference Guide

31. Enabling production-ready features.

The spri ng- boot - act uat or module provides all of Spring Boot’s production-ready features. The
simplest way to enable the features is to add a dependency to the spri ng- boot - st art er - act uat or
“Starter POM”.

Definition of Actuator

An actuator is a manufacturing term, referring to a mechanical device for moving or controlling
something. Actuators can generate a large amount of motion from a small change.

To add the actuator to a Maven based project, add the following “starter” dependency:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-actuator</artifactld>
</ dependency>
</ dependenci es>

For Gradle, use the declaration:

dependenci es {
conpi | e("org. springframework. boot: spring-boot-starter-actuator")

}

1.0.3.BUILD-SNAPSHOT Spring Boot 68

Spring Boot Reference Guide

32. Endpoints

Actuator endpoints allow you to monitor and interact with your application. Spring Boot includes a
number of built-in endpoints and you can also add your own. For example the heal t h endpoint provides
basic application health information.

The way that endpoints are exposed will depend on the type of technology that you choose. Most
applications choose HTTP monitoring, where the ID of the endpoint is mapped to a URL. For example,
by default, the heal t h endpoint will be mapped to / heal t h.

The following endpoints are available:

ID Description Sensitive

aut oconfig Displays an auto-configuration report showing all auto- true
configuration candidates and the reason why they “were” or
“were not” applied.

beans Displays a complete list of all the Spring Beans in your true
application.

confi gprops Displays a collated list of all @onf i gur ati onProperties. true

dunp Performs a thread dump. true

env Exposes properties from Spring’s true
Confi gur abl eEnvi r onnment .

heal th Shows application health information (defaulting to a simple false
“OK” message).

info Displays arbitrary application info. false

metrics Shows “metrics” information for the current application. true

mappi ngs Displays a collated list of all @Request Mappi ng paths. true

shut down Allows the application to be gracefully shutdown (not enabled true
by default).

trace Displays trace information (by default the last few HTTP true
requests).

Note

Depending on how an endpoint is exposed, the sensi t i ve parameter may be used as a security
hint. For example, sensitive endpoints will require a username/password when they are accessed
over HTTP (or simply disabled if web security is not enabled).

32.1 Customizing endpoints

Endpoints can be customized using Spring properties. You can change if an endpoint is enabl ed, if it

is considered sensi ti ve

and even itsi d.

1.0.3.BUILD-SNAPSHOT

Spring Boot

69

Spring Boot Reference Guide

For example, here is an appl i cati on. properti es that changes the sensitivity and id of the beans
endpoint and also enables shut down.

endpoi nts. beans. i d=spri nghbeans
endpoi nts. beans. sensi tive=fal se
endpoi nt s. shut down. enabl ed=t r ue

Note
The prefix "endpoi nts + . + nane" is used to uniquely identify the endpoint that is being

configured.

32.2 Custom health information

The default information exposed by the heal t h endpoint is a simple “OK” message. It is often useful to
perform some additional health checks, for example you might check that a database connection works,
or that a remote REST endpoint is functioning.

To provide custom health information you can register a Spring bean that implements the
Heal t hl ndi cat or interface.

i nport org.springframework. boot. actuate. heal th. Heal t hl ndi cat or;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class MyHeal th i npl enents Heal t hl ndi cator<String> {

@verride

public String health() {
/| perform sone specific health check
return ...

Spring Boot also provides a Si npl eHeal t hl ndi cat or implementation that attempts a simple
database test.

32.3 Custom application info information

You can customize the data exposed by the i nf o endpoint by setting i nf 0. * Spring properties. All
Envi ronnent properties under the info key will be automatically exposed. For example, you could add
the following to your appl i cati on. properti es:

i nfo. app. name=My/Ser vi ce
i nf o. app. descri pti on=My awesone service
i nfo. app. version=1.0.0

If you are using Maven, you can automatically expand info properties from the Maven project using
resource filtering. In your pom xnl you have (inside the <bui | d/ > element):

<resour ces>
<resource>
<di rectory>src/ mai n/resources</directory>
<filtering>true</filtering>
</resource>
</ resour ces>

You can then refer to your Maven “project properties” via placeholders, e.g.

1.0.3.BUILD-SNAPSHOT Spring Boot 70

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/SimpleHealthIndicator.java

Spring Boot Reference Guide

project.artifact!d=nyproject

proj ect . name=Deno

proj ect.version=X X X X

proj ect.descripti on=Denp project for info endpoint
info.build. artifact=${project.artifactld}

i nfo. build. name=${ pr oj ect . nare}

i nfo. build.description=${project.description}

i nfo. build. versi on=${project.version}

Note

In the above example we used proj ect.* to set some values to be used as fallbacks if the
Maven resource filtering has not been switched on for some reason.

Git commit information

Another useful feature of the i nf o endpoint is its ability to publish information about the state of your
gi t source code repository when the project was built. If a gi t. properti es file is contained in your
jarthe git. branchandgit. comm t properties will be loaded.

For Maven users the spri ng-boot -starter-parent POM includes a pre-configured plugin to
generate agi t. properti es file. Simply add the following declaration to your POM:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>pl . proj ect 13. maven</ gr oupl d>
<artifactld>git-commit-id-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

A similar gr adl e- gi t plugin is also available for Gradle users, although a little more work is required
to generate the properties file.

1.0.3.BUILD-SNAPSHOT Spring Boot 71

https://github.com/ajoberstar/gradle-git

Spring Boot Reference Guide

33. Monitoring and management over HTTP

If you are developing a Spring MVC application, Spring Boot Actuator will auto-configure all non-sensitive
endpoints to be exposed over HTTP. The default convention is to use the i d of the endpoint as the URL
path. For example, heal t h is exposed as / heal t h.

33.1 Exposing sensitive endpoints

If you use “Spring Security” sensitive endpoints will be exposed over HTTP, but also protected. By
default “basic” authentication will be used with the username user and a generated password (which
is printed on the console when the application starts).

Tip

Generated passwords are logged as the application starts. Search for “Using default password
for application endpoints”.

You can use Spring properties to change the username and passsword and to change the
security role required to access the endpoints. For example, you might set the following in your
application. properties:

security. user.nane=admni n
security. user. password=secret
managenent . security. r ol e=SUPERUSER

33.2 Customizing the management server context path

Sometimes it is useful to group all management endpoints under a single path. For
example, your application might already use /info for another purpose. You can use the
managenent . cont ext Pat h property to set a prefix for your manangement endpoint:

‘ managenent . cont ext - pat h=/ manage

The appl i cati on. properti es example above will change the endpoint from / {i d} to/ nanage/
{id} (e.g./ manage/ i nf o).

33.3 Customizing the management server port

Exposing management endpoints using the default HTTP port is a sensible choice for cloud based
deployments. If, however, your application runs inside your own data center you may prefer to expose
endpoints using a different HTTP port.

The managenent . port property can be used to change the HTTP port.

managenent . por t =8081

Since your management port is often protected by a firewall, and not exposed to the public you might
not need security on the management endpoints, even if your main application is secure. In that case
you will have Spring Security on the classpath, and you can disable management security like this:

managenent . security. enabl ed=f al se

(If you don’t have Spring Security on the classpath then there is no need to explicitly disable the
management security in this way, and it might even break the application.)

1.0.3.BUILD-SNAPSHOT Spring Boot 72

Spring Boot Reference Guide

33.4 Customizing the management server address
You can customize the address that the management endpoints are available on by setting the

managenent . addr ess property. This can be useful if you want to listen only on an internal or ops-
facing network, or to only listen for connections from | ocal host .

Note

You can only listen on a different address if the port is different to the main server port.

Here is an example appl i cati on. properti es that will not allow remote management connections:

managenent . por t =8081
managenent . addr ess=127.0.0. 1

33.5 Disabling HTTP endpoints

If you don’t want to expose endpoints over HTTP you can set the management port to - 1:

‘ managenent . port=-1

1.0.3.BUILD-SNAPSHOT Spring Boot 73

Spring Boot Reference Guide

34. Monitoring and management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default Spring Boot will expose management endpoints as JMX MBeans under the
org. spri ngfranmewor k. boot domain.

34.1 Customizing MBean names

The name of the MBean is usually generated from the i d of the endpoint. For example the heal t h
endpoint is exposed as or g. spri ngf r amewor k. boot / Endpoi nt / Heal t hEndpoi nt .

If your application contains more than one Spring Appl i cat i onCont ext you may find that names
clash. To solve this problem you can set the endpoi nt s. j nx. uni queNanes property tot r ue so that
MBean names are always unique.

You can also customize the JMX domain under which endpoints are exposed. Here is an example
application. properties:

endpoi nt s. j nx. domai n=nyapp
endpoi nts. j nx. uni queNames=tr ue

34.2 Disabling JMX endpoints

If you don’t want to expose endpoints over JMX you can set the spri ng. j nx. enabl ed property to
fal se:

spring. j nx. enabl ed=f al se

34.3 Using Jolokia for IMX over HTTP

Jolokia is a JMX-HTTP bridge giving an alternative method of accessing JMX beans. To use Jolokia,
simply include a dependency to or g. j ol oki a: j ol oki a- cor e. For example, using Maven you would
add the following:

<dependency>
<groupl d>org. j ol oki a</ gr oupl d>
<artifact!|d>jol okia-core</artifactld>

</ dependency>

Jolokia can then be accessed using / j ol oki a on your management HTTP server.

Customizing Jolokia

Jolokia has a number of settings that you would traditionally configure using servlet parameters.
With Spring Boot you can use your appl i cati on. properti es, simply prefix the parameter with
j ol okia.config.:

j ol oki a. confi g. debug=t rue

Disabling Jolokia

If you are using Jolokia but you don't want Spring Boot to configure it, simply set the
endpoi nt s. j ol oki a. enabl ed property to f al se:

1.0.3.BUILD-SNAPSHOT Spring Boot 74

Spring Boot Reference Guide

endpoi nts. j ol oki a. enabl ed=f al se

1.0.3.BUILD-SNAPSHOT

Spring Boot

75

Spring Boot Reference Guide

35. Monitoring and management using a remote
shell

Spring Boot supports an integrated Java shell called “CRaSH”". You can use CRaSH to ssh ort el net
into your running application. To enable remote shell support add a dependency to spri ng- boot -
starter-renote-shell:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-starter-renote-shell</artifactld>
</ dependency>

Tip

If you want to also enable telnet access your will additionally need a dependency on
org.crsh:crsh.shell.tel net.

35.1 Connecting to the remote shell

By default the remote shell will listen for connections on port 2000. The default user is user and the
default password will be randomly generated and displayed in the log output, you should see a message
like this:

Usi ng default password for shell access: ec03el6c-4cf4-49ee-b745-7c8255c1dd7e

Linux and OSX users can use ssh to connect to the remote shell, Windows users can download and
install PUTTY.

$ ssh -p 2000 user @ ocal host

user @ocal host's password:

I\ () __ _
CON_ N vy
W DI r o))

' [S
=11
: Spring Boot :: (v1.0.3.BU LD SNAPSHOT) on nyhost

\
|

Type hel p for alist of commands. Spring boot provides net ri ¢cs, beans, aut oconf i g and endpoi nt
commands.

Remote shell credentials

You canusetheshel | . aut h. si npl e. user nane andshel | . aut h. si npl e. passwor d properties
to configure custom connection credentials. It is also possible to use a “Spring Security”
Aut hent i cati onManager to handle login duties. See the CrshAut oConfiguration and
Shel | Properti es Javadoc for full details.

35.2 Extending the remote shell

The remote shell can be extended in a number of interesting ways.

1.0.3.BUILD-SNAPSHOT Spring Boot 76

http://www.putty.org/
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.html
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/ShellProperties.html

Spring Boot Reference Guide

Remote shell commands

You can write additional shell commands using Groovy or Java (see the CRaSH documentation for
details). By default Spring Boot will search for commands in the following locations:

» cl asspat h*:/ comuands/ **
e cl asspat h*:/crash/ cormands/ **
Tip
You can change the search path by settings a shel | . cormandPat hPat t er ns property.

Here is a simple “hello world” command that could be loaded from sr ¢/ nai n/ r esour ces/ cormands/
hel | 0. gr oovy

package conmands

i nport org.crsh.cli.Usage
i mport org.crsh.cli.Comand

class hello {

@Jsage(" Say Hel |l o")

@ommand

def main(lnvocationContext context) {
return "Hello"

}

Spring Boot adds some additional attributes to | nvocat i onCont ext that you can access from your
command:

Attribute Name Description

spring. boot . version The version of Spring Boot

Spring. version The version of the core Spring Framework
spring. beanfactory Access to the Spring BeanFact ory
spring. envi ronnent Access to the Spring Envi r onnent

Remote shell plugins

In addition to new commands, it is also possible to extend other CRaSH shell features. All Spring Beans
that extends or g. cr sh. pl ugi n. CRaSHPI ugi n will be automatically registered with the shell.

For more information please refer to the CRaSH reference documentation.

1.0.3.BUILD-SNAPSHOT Spring Boot 7

http://www.crashub.org/

Spring Boot Reference Guide

36. Metrics

Spring Boot Actuator includes a metrics service with “gauge” and “counter” support. A “gauge” records a
single value; and a “counter” records a delta (an increment or decrement). Metrics for all HTTP requests
are automatically recorded, so if you hit the net ri cs endpoint should should see a response similar
to this:

"count er.status.200.root": 20,
"counter.status.200.metrics": 3,
"counter.status.401.root": 4,
"gauge. response.root": 2,
"gauge. response. metrics": 3,
"menl': 466944,

"mem free": 410117,
"processors": 8

Here we can see basic nenory and processor information along with some HTTP metrics. In this
instance the root (*/") and / et ri cs URLs have returned HTTP 200 responses 20 and 3 times
respectively. It also appears that the r oot URL returned HTTP 401 (unauthorized) 4 times.

The gauge shows the last response time for a request. So the last request to r oot took 2ns to respond
and the lastto / netri cs took 3ms.

Note

In this example we are actually accessing the endpoint over HTTP using the / net ri ¢cs URL, this
explains why et r i cs appears in the response.

36.1 Recording your own metrics

To record your own metrics inject a Count er Servi ce and/or GaugeServi ce into your bean.
The Count er Ser vi ce exposes i ncr enent , decr emrent and r eset methods; the GaugeSer vi ce
provides a subm t method.

Here is a simple example that counts the number of times that a method is invoked:

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. boot. actuate. netrics. Count er Ser vi ce;
i nport org.springfranmework. stereotype. Servi ce;

@er vi ce
public class MyService {

private final CounterService counterService;

@\ut owi r ed
public MyService(CounterService counterService) {
this.counterService = counterService;

}

public void exanpl eMet hod() {
this.counterService.increnment("services.system nyservice.invoked");

}

1.0.3.BUILD-SNAPSHOT Spring Boot 78

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/CounterService.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/GaugeService.java

Spring Boot Reference Guide

Tip

You can use any string as a metric name but you should follow guidelines of your chosen store/
graphing technology. Some good guidelines for Graphite are available on Matt Aimonetti's Blog.

36.2 Metric repositories

Metric service implementations are usually bound to a Met ri cRepository. A Metri cRepository
is responsible for storing and retrieving metric information. Spring Boot provides an
| nMenor yMessageResposi t ory and a Redi sMet ri cReposi t ory out of the box (the in-memory
repository is the default) but you can also write your own. The Met ri cReposi t ory interface is actually
composed of higher level Met ri cReader and Metri cWi t er interfaces. For full details refer to the
Javadoc.

36.3 Coda Hale Metrics

User of the Coda Hale “Metrics” library will automatically find that Spring
Boot metrics are published to com codahal e.netrics. MetricRegistry. A default
com codahal e. metrics. Metri cRegi stry Spring bean will be created when you declare a
dependency to the com codahal e. metri cs: metri cs-cor e library; you can also register you own
@ean instance if you need customizations.

Users can create Coda Hale metrics by prefixing their metric names with the appropriate type (e.g.
hi st ogram *, et er. *).

36.4 Message channel integration

If the “Spring Messaging” jar is on your classpath a MessageChannel called net ri csChannel is
automatically created (unless one already exists). All metric update events are additionally published
as “messages” on that channel. Additional analysis or actions can be taken by clients subscribing to
that channel.

1.0.3.BUILD-SNAPSHOT Spring Boot 79

http://matt.aimonetti.net/posts/2013/06/26/practical-guide-to-graphite-monitoring/
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/repository/MetricRepository.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/metrics/repository/MetricRepository.html
http://metrics.codahale.com/

Spring Boot Reference Guide

37. Auditing

Spring Boot Actuator has a flexible audit framework that will publish events once Spring Security is in
play (“authentication success”, “failure” and “access denied” exceptions by default). This can be very
useful for reporting, and also to implement a lock-out policy based on authentication failures.

You can also choose to use the audit services for your own business events. To do that you can either
inject the existing Audi t Event Reposi t ory into your own components and use that directly, or you
can simply publish Audi t Appl i cat i onEvent viathe Spring Appl i cati onEvent Publ i sher (using
Appl i cati onEvent Publ i sher Awar e).

1.0.3.BUILD-SNAPSHOT Spring Boot 80

Spring Boot Reference Guide

38. Tracing

Tracing is automatically enabled for all HTTP requests. You can view the t r ace endpoint and obtain
basic information about the last few requests:

[{
"timestanp": 1394343677415,
"info": {
"met hod": "CET",
"path": "/trace",
"headers": {
"request": {
"Accept": "text/htm , application/xhtm +xm , application/xm;g=0.9,*/*;g=0.8",
"Connection": "keep-alive",
"Accept - Encodi ng": "gzip, deflate",
"User-Agent": "Mozillal/5.0 Gecko/Firefox",
"Accept - Language": "en-US, en; q=0. 5",
"Cooki e": "_ga=GAl. 1. 827067509. 1390890128;
"Aut hori zation": "Basic ..."
"Host": "l ocal host: 8080"

}

esponse": {
"Strict-Transport-Security": "max-age=31536000 ; incl udeSubDonai ns",
"X-Application-Context": "application:8080",
"Content-Type": "application/json; charset=UTF-8",
"status": "200"

}
ol
"tinmestanp": 1394343684465,

H

38.1 Custom tracing

If you need to trace additional events you can inject a Tr aceReposi t or y into your Spring Beans. The
add method accepts a single Map structure that will be converted to JSON and logged.

By defaultan | nMenor yTr aceReposi t or y will be used that stores the last 100 events. You can define
your own instance of the | nMenor yTr aceReposi t or y bean if you need to expand the capacity. You
can also create your own alternative Tr aceReposi t or y implementation if needed.

1.0.3.BUILD-SNAPSHOT Spring Boot 81

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/trace/TraceRepository.java

Spring Boot Reference Guide

39. Error Handling

Spring Boot Actuator provides an / er r or mapping by default that handles all errors in a sensible way,
and it is registered as a “global” error page in the servlet container. For machine clients it will produce
a JSON response with details of the error, the HTTP status and the exception message. For browser
clients there is a “whitelabel” error view that renders the same data in HTML format (to customize it just

add a Vi ewthat resolves to “error”).

If you want more specific error pages for some conditions, the embedded servlet containers support a

uniform Java DSL for customizing the error handling. For example:

@Bean
publ i ¢ EnbeddedSer vl et Cont ai ner Cust onmi zer cont ai ner Cust omi zer () {
return new MyCustonmi zer();

}

11
private static class MyCustom zer inplenments EnbeddedServl et Cont ai ner Cust om zer {

@verride
public void custom ze(Confi gurabl eEnbeddedSer vl et Cont ai ner factory) {
factory. addErr or Pages(new Error Page(H t pSt at us. BAD_REQUEST, "/400"));

}

You can also use regular Spring MVC features like @Excepti onHandl er methods and
@Cont r ol | er Advi ce.
1.0.3.BUILD-SNAPSHOT Spring Boot 82

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-exception-handlers
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-ann-controller-advice

Spring Boot Reference Guide

40. Process monitoring

In Spring Boot Actuator you can find Appl i cati onPi dLi st ener which creates file containing
application PID (by default in application directory and file name is appli cati on. pi d). It's not
activated by default, but you can do it in two simple ways described below.

40.1 Extend configuration

In META- | NF/ spri ng. fact ori es file you have to activate the listener:

or g. spri ngfranmewor k. cont ext . Appl i cati onLi st ener =\
or g. springfranework. boot . act uat e. syst em Appl i cati onPi dLi st ener

40.2 Programmatically

You can also activate this listener by invoking Spri ngAppl i cati on. addLi st eners(...) method
and passing Appl i cati onPi dLi st ener object. You can also customize file name and path through
constructor.

1.0.3.BUILD-SNAPSHOT Spring Boot 83

Spring Boot Reference Guide

41. What to read next

If you want to explore some of the concepts discussed in this chapter, you can take a look at the actuator
sample applications. You also might want to read about graphing tools such as Graphite.

Otherwise, you can continue on, to read about “cloud deployment options” or jump ahead for some in
depth information about Spring Boot’s build tool plugins.

1.0.3.BUILD-SNAPSHOT Spring Boot 84

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples
http://graphite.wikidot.com/

Part VI. Deploying to the cloud

Spring Boot’s executable jars are ready-made for most popular cloud PaaS (platform-as-a-service)
providers. These providers tend to require that you “bring your own container'; they manage application
processes (not Java applications specifically), so they need some intermediary layer that adapts your
application to the cloud’s notion of a running process.

Two popular cloud providers, Heroku and Cloud Foundry, employ a “buildpack” approach. The buildpack
wraps your deployed code in whatever is needed to start your application: it might be a JDK and a call to
j ava, it might be an embedded webserver, or it might be a full fledged application server. A buildpack
is pluggable, but ideally you should be able to get by with as few customizations to it as possible. This
reduces the footprint of functionality that is not under your control. It minimizes divergence between
deployment and production environments.

Ideally, your application, like a Spring Boot executable jar, has everything that it needs to run packaged
within it.

In this section we’ll look at what it takes to get the simple application that we developed in the “Getting
Started” section up and running in the Cloud.

Spring Boot Reference Guide

42. Cloud Foundry

Cloud Foundry provides default buildpacks that come into play if no other buildpack is specified. The
Cloud Foundry Java buildpack has excellent support for Spring applications, including Spring Boot. You
can deploy stand-alone executable jar applications, as well as traditional . war packaged applications.

Once you've built your application (using, for example, nvn cl ean package) and installed the cf
command line tool, simply deploy your application using the cf push command as follows, substituting
the path to your compiled . j ar . Be sure to have logged in with your cf _command line client before
pushing an application.

$ cf push acl oudyspringtinme -p target/denp-0.0.1- SNAPSHOT. j ar

See the cf push documentation for more options. If there is a Cloud Foundry mani f est . ym file
present in the same directory, it will be consulted.

Note

Here we are substituting acl oudyspri ngti me for whatever value you give cf as the name of
your application.

At this point cf will start uploading your application:

Upl oadi ng acl oudyspringtine... OK
Preparing to start acloudyspringtine... OK
————— > Downl oaded app package (8.9M
————— > Java Bui |l dpack source: system
----- > Downl oadi ng Open JDK 1.7.0_51 from.../x86_64/openjdk-1.7.0_51.tar.gz (1.8s)
Expandi ng Open JDK to .java-buil dpack/open_j dk (1.2s)

----- > Downl oadi ng Spring Auto Reconfiguration from 0.8.7 .../auto-reconfiguration-0.8.7.jar (0.1s)
————— > Upl oadi ng dropl et (44M
Checki ng status of app acl oudyspringtine...

0 of 1 instances running (1 starting)

0 of 1 instances running (1 down)
0 of 1 instances running (1 starting)

1 of 1 instances running (1 running)

App started

Congratulations! The application is now live!

It's easy to then verify the status of the deployed application:

$ cf apps

Getting applications in ...

K

nanme requested state i nstances menory di sk urls

acl oudyspringti me started 1/1 512M 1G acl oudyspri ngti me. cfapps.io

Once Cloud Foundry acknowledges that your application has been deployed, you should be able to hit
the application at the URI given, in this case htt p: // acl oudyspri ngti me. cfapps.io/.

1.0.3.BUILD-SNAPSHOT Spring Boot 86

https://github.com/cloudfoundry/java-buildpack
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#login
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#push
http://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

Spring Boot Reference Guide

42.1 Binding to services

By default, meta-data about the running application as well as service connection information is exposed
to the application as environment variables (for example: $VCAP_SERVI CES). This architecture decision
is due to Cloud Foundry’s polyglot (any language and platform can be supported as a buildpack) nature;
process-scoped environment variables are language agnostic.

Environment variables don't always make for the easiest API so Spring Boot automatically extracts them
and flattens the data into properties that can be accessed through Spring’s Envi r onnent abstraction:

@onponent
cl ass MyBean i npl ements Environnent Anare {

private String instanceld;

@verride
public voi d setEnvironnment (Environment environment) {
this.instanceld = environnment. getProperty("vcap.application.instance_id");

}

N/

All Cloud Foundry properties are prefixed with vcap. You can use vcap properties to access application
information (such as the public URL of the application) and service information (such as database
credentials). See VcapAppl i cati onLi st ener Javdoc for complete details.

Tip

The Spring Cloud project is a better fit for tasks such as configuring a DataSource; it also lets
you use Spring Cloud with Heroku.

1.0.3.BUILD-SNAPSHOT Spring Boot 87

https://github.com/spring-projects/spring-cloud

Spring Boot Reference Guide

43. Heroku

Heroku is another popular PaaS platform. To customize Heroku builds, you provide a Procfil e,
which provides the incantation required to deploy an application. Heroku assigns a port for the Java
application to use and then ensures that routing to the external URI works.

You must configure your application to listen on the correct port. Here’s the Pr ocf i | e for our starter
REST application:

web: java -Dserver.port=$PORT -jar target/denp-0.0.1- SNAPSHOT. j ar

Spring Boot makes - D arguments available as properties accessible from a Spring Envi r onnent
instance. The server. port configuration property is fed to the embedded Tomcat or Jetty instance
which then uses it when it starts up. The $PORT environment variable is assigned to us by the Heroku
PaaS.

Heroku by default will use Java 1.6. This is fine as long as your Maven or Gradle build is set to use
the same version (Maven users can use the j ava. ver si on property). If you want to use JDK 1.7,
create a new file adjacent to your pom xm and Procfil e, called syst em properti es. In this file
add the following:

java.runtime. version=1.7

This should be everything you need. The most common workflow for Heroku deployments is to gi t
push the code to production.

$ git push heroku master

Initializing repository, done.

Counti ng objects: 95, done.

Del ta conpression using up to 8 threads.

Conpr essi ng obj ects: 100% (78/78), done.

Witing objects: 100% (95/95), 8.66 MB | 606.00 KiB/s, done.
Total 95 (delta 31), reused O (delta 0)

----- > Java app detected
----- > Installing OpenJDK 1.7... done
----- > Installing Maven 3.0.3... done
————— > Installing settings.xnm ... done
————— > executing /app/tnp/cache/.maven/ bin/nmvn -B
- Duser . hone=/t np/ bui | d_0c35a5d2- a067- 4abc- a232- 14b1f b7a8229
- Dmaven. repo. | ocal =/ app/ t np/ cache/ . n2/ repository
-s /app/tnp/cache/.n2/settings.xm -DskipTests=true clean install

[INFOQ Scanning for projects...
Downl oadi ng: http://repo.spring.iol...
Downl oaded: http://repo.spring.io/... (818 B at 1.8 KB/ sec)

Downl oaded: http://s3pository. heroku.com jvm ... (152 KB at 595.3 KB/ sec)
[INFQ Installing /tnp/build_0c35a5d2-a067-4abc-a232-14bif b7a8229/target/. ..
[INFO Installing /tnp/build_0c35a5d2-a067-4abc-a232-14b1f b7a8229/ pom xm ...

L RO R e T
[INFQ BU LD SUCCESS

[RO R e
[INFQ Total tinme: 59.358s

[INFQ Finished at: Fri Mar 07 07:28:25 UTC 2014

[INFO Final Menory: 20M 493M

L RO R e T

----- > Di scovering process types
Procfile declares types -> web

1.0.3.BUILD-SNAPSHOT Spring Boot 88

Spring Boot Reference Guide

————— > Conpressing... done, 70.4M
----- > Launching... done, v6
http://agil e-sierra-1405. her okuapp. conl depl oyed to Heroku

To git @eroku.com agil e-sierra-1405. git
* [new branch] master -> master

Your application should now be up and running on Heroku.

1.0.3.BUILD-SNAPSHOT Spring Boot

89

Spring Boot Reference Guide

44. CloudBees

CloudBees provides cloud-based “continuous integration” and “continuous delivery” services as well as
Java PaaS hosting. Sean Gilligan has contributed an excellent Spring Boot sample application to the
CloudBees community GitHub repository. The project includes an extensive README that covers the
steps that you need to follow when deploying to CloudBees.

1.0.3.BUILD-SNAPSHOT Spring Boot 90

https://github.com/msgilligan
https://github.com/CloudBees-community/springboot-gradle-cloudbees-sample
https://github.com/CloudBees-community/springboot-gradle-cloudbees-sample/blob/master/README.asciidoc

Spring Boot Reference Guide

45. What to read next

Check out the Cloud Foundry, Heroku and CloudBees web sites for more information about the kinds
of features that a PaaS can offer. These are just three of the most popular Java PaaS providers, since
Spring Boot is so amenable to cloud-based deployment you're free to consider other providers as well.

The next section goes on to cover the Spring Boot CLI; or you can jump ahead to read about build
tool plugins.

1.0.3.BUILD-SNAPSHOT Spring Boot 91

http://www.cloudfoundry.com/
https://www.heroku.com/
http://www.cloudbees.com

Part VII. Spring Boot CLI

The Spring Boot CLI is a command line tool that can be used if you want to quickly prototype with Spring.
It allows you to run Groovy scripts, which means that you have a familiar Java-like syntax, without so
much boilerplate code.

Spring Boot Reference Guide

46. Installing the CLI

The Spring Boot CLI can be installed manually; using GVM (the Groovy Environment Manually) or using
Homebrew if you are an OSX user. See Section 9.2, “Installing the Spring Boot CLI” in the “Getting
started” section for comprehensive installation instructions.

1.0.3.BUILD-SNAPSHOT Spring Boot 93

Spring Boot Reference Guide

47. Using the CLI

Once you have installed the CLI you can run it by typing spri ng. If you run spri ng without any
arguments, a simple help screen is displayed:

$ spring
usage: spring [--help] [--version]
<command> [<ar gs>]

Avai | abl e comrands are:

run [options] <files> [--] [args]
Run a spring groovy scri pt

nmore command hel p is shown here

You can use hel p to get more details about any of the supported commands. For example:

$ spring help run
spring run - Run a spring groovy script

usage: spring run [options] <files> [--] [args]

Option Descri ption

--autoconfigure [Bool ean] Add autoconfigure conpiler
transfornations (default: true)

--classpath, -cp Addi tional classpath entries

-e, --edit Open the file with the default system
editor

--no- guess- dependenci es Do not attenpt to guess dependencies

--no-guess-inports Do not attenpt to guess inports

-g, --quiet Qui et | oggi ng

-V, --verbose Ver bose | oggi ng of dependency
resol ution

--wat ch Watch the specified file for changes

The ver si on command provides a quick way to check which version of Spring Boot you are using.

$ spring version
Spring CLI v1.0.3.BU LD SNAPSHOT

47.1 Running applications using the CLI

You can compile and run Groovy source code using the run command. The Spring Boot CLI is
completely self contained so you don't need any external Groovy installation.

Here is an example “hello world” web application written in Groovy:

@rest Control | er
cl ass WebApplication {

@Request Mappi ng("/")
String home() {
"Hello World!"

}

1.0.3.BUILD-SNAPSHOT Spring Boot 94

Spring Boot Reference Guide

Deduced “grab” dependencies

Standard Groovy includes a @x ab annotation which allows you to declare dependencies on a third-
party libraries. This useful technique allows Groovy to download jars in the same way as Maven or
Gradle would; but without requiring you to use a build tool.

Spring Boot extends this technique further, and will attempt to deduce which libraries to “grab”
based on your code. For example, since the WebAppl i cat i on code above uses @est Control | er
annotations, “Tomcat” and “Spring MVC” will be grabbed.

The following items are used as “grab hints”:

Items

Grabs

JdbcTenpl at g,
NanedPar aret er JdbcTenpl at e,
Dat aSour ce

JDBC Application.

@nabl eJnsMessagi ng

JMS Application.

@est

JUnit.

@nabl eRabbi t Messagi ng

RabbitMQ.

@nabl eReact or
extends Speci fication
@nabl eBat chProcessi ng

@kssageEndpoi nt
@nabl el nt egrati onPatterns

Project Reactor.
Spock test.
Spring Batch.

Spring Integration.

@nabl eDevi ceResol ver

Spring Mobile.

@ontrol | er @Rest Control | er
@nabl eWWebM/c

@nabl eWebSecurity

@nabl eTr ansact i onManagenent

Tip

Spring MVC + Embedded Tomcat.

Spring Security.

Spring Transaction Management.

See subclasses of Conpi |l er Aut oConfi gurati on in the Spring Boot CLI source code to
understand exactly how customizations are applied.

Default import statements

To help reduce the size of your Groovy code, several i mport statements are automatically included.
Notice how the example above refers to @onponent , @Rest Contr ol | er and @Request Mappi ng
without needing to use fully-qualified names or i nport statements.

1.0.3.BUILD-SNAPSHOT Spring Boot 95

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-cli/src/main/java/org/springframework/boot/cli/compiler/CompilerAutoConfiguration.java

Spring Boot Reference Guide

Tip

Many Spring annotations will work without using i mport statements. Try running your application
to see what fails before adding imports.

Automatic main method

Unlike the equilvement Java application, you do not need to include a public static void
mai n(String[] args) method with your G oovy scripts. A Spri ngAppl i cat i on is automatically
created, with your compiled code acting as the sour ce.

47.2 Testing your code

The t est command allows you to compile and run tests for your application. Typical usage looks like
this:

$ spring test app.groovy tests.groovy
Total: 1, Success: 1, : Failures: 0
Passed? true

In this example, t est s. gr oovy contains JUnit @est methods or Spock Speci fi cati on classes.
All the common framework annotations and static methods should be available to you without having
toi nport them.

Here is the t est . gr oovy file that we used above (with a JUnit test):

class ApplicationTests {

@est
voi d honeSaysHel | o() {
assert Equal s("Hell o Worl d", new WebApplication().home())

}

Tip
If you have more than one test source files, you might prefer to organize them into a t est

directory.

47.3 Applications with multiple source files

You can use “shell globbing” with all commands that accept file input. This allows you to easily use
multiple files from a single directory, e.g.

‘$ spring run *.groovy

This technique can also be useful if you want to segregate your “test” or “spec” code from the main
application code:

‘$ spring test app/*.groovy test/*.groovy

47.4 Packaging your application

You can use the j ar command to package your application into a self-contained executable jar file.
For example:

1.0.3.BUILD-SNAPSHOT Spring Boot 96

Spring Boot Reference Guide

$ spring jar my-app.jar *.groovy

The resulting jar will contain the classes produced by compiling the application and all of the application’s
dependencies so that it can then be run using j ava -j ar. The jar file will also contain entries from
the application’s classpath.

See the output of spri ng hel p j ar for more information.

47.5 Using the embedded shell

Spring Boot includes command-line completion scripts for BASH and zsh shells. If you don't use either
of these shells (perhaps you are a Windows user) then you can use the shel | command to launch
an integrated shell.

$ spring shell
Spring Boot (v1.0.3.BU LD SNAPSHOT)
Ht TAB to conplete. Type 'help' and hit RETURN for help, and "exit' to quit.

From inside the embedded shell you can run other commands directly:

$ version
Spring CLI v1.0.3.BU LD SNAPSHOT

The embedded shell supports ANSI color output as well as t ab completion. If you need to run a native
command you can use the $ prefix. Hitting ct r | - ¢ will exit the embedded shell.

1.0.3.BUILD-SNAPSHOT Spring Boot 97

Spring Boot Reference Guide

48. Developing application with the Groovy beans
DSL

Spring Framework 4.0 has native support for a beans{} “DSL” (borrowed from Grails), and you can
embed bean definitions in your Groovy application scripts using the same format. This is sometimes a
good way to include external features like middleware declarations. For example:

@onfiguration
class Application inplenments CommandLi neRunner {

@\ut owi r ed
Shar edSer vi ce service

@verride
void run(String... args) {
println service. message

}
}
i nport ny.conpany. SharedServi ce
beans {

servi ce(SharedService) {
nessage "Hello World"

}

You can mix class declarations with beans{} in the same file as long as they stay at the top level, or
you can put the beans DSL in a separate file if you prefer.

1.0.3.BUILD-SNAPSHOT Spring Boot 98

http://grails.org/

Spring Boot Reference Guide

49. What to read next

There are some sample groovy scripts available from the GitHub repository that you can use to try out
the Spring Boot CLI. There is also extensive javadoc throughout the source code.

If you find that you reach the limit of the CLI tool, you will probably want to look at converting your
application to full Gradle or Maven built “groovy project”. The next section covers Spring Boot’'s Build
tool plugins that you can use with Gradle or Maven.

1.0.3.BUILD-SNAPSHOT Spring Boot 99

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-cli/samples
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-cli/src/main/java/org/springframework/boot/cli

Part VIII. Build tool plugins

Spring Boot provides build tool plugins for Maven and Gradle. The plugins offer a variety of features,
including the packaging of executable jars. This section provides more details on both plugins, as well
as some help should you need to extend an unsupported build system. If you are just getting started,
you might want to read “Chapter 12, Build systems” from the Part Ill, “Using Spring Boot” section first.

Spring Boot Reference Guide

50. Spring Boot Maven plugin

The Spring Boot Maven Plugin provides Spring Boot support in Maven, allowing you to package
executable jar or war archives and run an application “in-place”. To use it you must be using Maven
3 (or better).

50.1 Including the plugin

To use the Spring Boot Maven Plugin simply include the appropriate XML in the pl ugi ns section of
your pom X

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: //ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://maven. apache. org/ POM 4. 0. 0 http:// naven. apache. or g/ xsd/ maven-4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<l-- ... -->
<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-maven-plugin</artifactld>
<versi on>1. 0. 3. BUl LD- SNAPSHOT</ ver si on>
<executi ons>
<executi on>
<goal s>
<goal >r epackage</ goal >
</ goal s>
</ executi on>
</ execut i ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

This configuration will repackage a jar or war that is built during the package phase of the Maven
lifecycle. The following example shows both the repackaged jar, as well as the original jar, inthe t ar get
directory:

$ nvn package
$ |Is target/*.jar
target/nyproject-1.0.0.jar target/nyproject-1.0.0.jar.origina

If you don't include the <execut i on/ > configuration as above, you can run the plugin on its own (but
only if the package goal is used as well). For example:

$ nvn package spring-boot:repackage
$ |s target/*.jar
target/nmyproject-1.0.0.jar target/nyproject-1.0.0.jar.original

If you are using a milestone or snapshot release you will also need to add appropriate
pl ugi nReposi t ory elements:

<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>spring-snapshot s</i d>
<url >http://repo.spring.iol/snapshot</url>
</ pl ugi nReposi t ory>
<pl ugi nReposi tory>
<i d>spring-m|estones</id>
<url>http://repo.spring.io/mlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>

1.0.3.BUILD-SNAPSHOT Spring Boot 101

Spring Boot Reference Guide

50.2 Packaging executable jar and war files

Once spri ng- boot - maven- pl ugi n has been included in your pom xn it will automatically attempt
to rewrite archives to make them executable using the spri ng- boot : r epackage goal. You should
configure your project to build a jar or war (as appropriate) using the usual packagi ng element:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >

<l-- ... -->
<packagi ng>j ar </ packagi ng>
<l-- ... -->

</ proj ect >

Your existing archive will be enhanced by Spring Boot during the package phase. The main class that
you want to launch can either be specified using a configuration option, or by adding a Mai n- Cl ass
attribute to the manifest in the usual way. If you don’t specify a main class the plugin will search for a
classwitha public static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ nvn package
$ java -jar target/ mynodul e-0. 0. 1- SNAPSHOT. j ar

To build a war file that is both executable and deployable into an external container you need to mark
the embedded container dependencies as “provided”, e.qg:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<l-- ... -->
<packagi ng>war </ packagi ng>
<l-- ... -->
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!ld>spring-boot-starter-web</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactld>
<scope>provi ded</ scope>
</ dependency>
<l-- ... -->
</ dependenci es>
</ proj ect >

50.3 Repackage configuration

The following configuration options are available for the spri ng- boot : r epackage goal:

Required parameters

Name Description

out put Di rectory Directory containing the generated archive (defaults to
${project.build. directory}).

fi nal Name Name of the generated archive (defaults to
${proj ect. buil d. final Nane}).

1.0.3.BUILD-SNAPSHOT Spring Boot 102

Spring Boot Reference Guide

Optional parameters

Name Description

classifier Classifier to add to the generated artifact. If given, the artifact
will be attached. If this is not given, it will merely be written to
the output directory according to the f i nal Nane. Attaching the
artifact allows to deploy it alongside to the original one, see the
maven documentation for more details

mai nCl ass The name of the main class. If not specified will search for a
single compiled class that contains a nai n method.

| ayout The type of archive (which corresponds to how the dependencies
are laid out inside it). Defaults to a guess based on the archive

type.

The plugin rewrites your manifest, and in particular it manages the Mai n- Cl ass and St art - C ass
entries, so if the defaults don’t work you have to configure those there (not in the jar plugin). The Mai n-
C ass in the manifest is actually controlled by the | ayout property of the boot plugin, e.g.

<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>

<ver si on>1. 0. 3. BUl LD- SNAPSHOT</ ver si on>
<confi gurati on>
<mai nCl ass>${start-cl ass} </ nmai nCl ass>
<l ayout >ZI P</ | ayout >
</ confi guration>
<executions>
<executi on>
<goal s>
<goal >r epackage</ goal >
</ goal s>
</ execut i on>
</ executi ons>
</ pl ugi n>

The layout property defaults to a guess based on the archive type (jar or war). For the
Properti esLauncher the layout is “ZIP” (even though the output might be a jar file).

Tip

The executable jar format is described in the appendix.

50.4 Running applications

The Spring Boot Maven Plugin includes a r un goal which can be used to launch your application from
the command line. Type the following from the root of your Maven project:

$ nvn spring-boot:run

By default, any sr ¢/ mai n/ r esour ces folder will be added to the application classpath when you run
via the maven plugin. This allows hot refreshing of resources which can be very useful when developing
web applications. For example, you can work on HTML, CSS or JavaScipt files and see your changes
immediately without recompiling your application. It is also a helpful way of allowing your front end
developers to work without needing to download and install a Java IDE.

1.0.3.BUILD-SNAPSHOT Spring Boot 103

http://maven.apache.org/plugins/maven-deploy-plugin/examples/deploying-with-classifiers.html
http://maven.apache.org/plugins/maven-deploy-plugin/examples/deploying-with-classifiers.html

Spring Boot Reference Guide

50.5 Run configuration

The following configuration options are available for the spri ng- boot : r un goal:

50.6 Required parameters

Name Description

cl assesDirectrory Directory containing the classes and resource files
that should be packaged into the archive (defaults to
${proj ect.buil d. out putDi rectory}).

50.7 Optional parameters

Name Description

argunent s or - Arguments that should be passed to the application (comma-
Drun. argunent s separated).

addResour ces or - Add Maven resources to the classpath directly, this allows live
Dr un. addResour ces in-place editing or resources. Since resources will be added

directly, and via the target/classes folder they will appear twice if
Cl assLoader. get Resour ces() is called. In practice, however,
most applications call Cl assLoader . get Resour ce() which
will always return the first resource (defaults to t r ue).

mai nCl ass The name of the main class. If not specified the first compiled
class found that contains a main method will be used.

fol ders Folders that should be added to the classpath (defaults to
${ proj ect. bui | d. out put Di rect or y}).

1.0.3.BUILD-SNAPSHOT Spring Boot 104

Spring Boot Reference Guide

51. Spring Boot Gradle plugin

The Spring Boot Gradle Plugin provides Spring Boot support in Gradle, allowing you to package
executable jar or war archives, run Spring Boot applications and omit version information from your
bui | d. gr adl e file for “blessed” dependencies.

51.1 Including the plugin

To use the Spring Boot Gradle Plugin simply include a bui | dscri pt dependency and apply the
spri ng- boot plugin:

bui l dscript {
dependenci es {
cl asspat h("org. spri ngf ramewor k. boot : spri ng- boot - gr adl e- pl ugi n: 1. 0. 3. BUI LD- SNAPSHOT")

}
}
apply plugin: 'spring-boot'

If you are using a milestone or snapshot release you will also need to add appropriate r eposi t ori es
reference:

bui l dscript {
repositories {
maven. url "http://repo.spring.iol/snapshot”
maven. url "http://repo.spring.io/mlestone"

51.2 Declaring dependencies without versions

The spring-boot plugin will register a custom Gradle Resol uti onStrategy with your build
that allows you to omit version numbers when declaring dependencies to “blessed” artifacts. All
artifacts with a or g. spri ngf ramewor k. boot group ID, and any of the artifacts declared in the
managenent Dependenci es section of the spri ng- dependenci es POM can have their version
number resolved automatically.

Simply declare dependencies in the usual way, but leave the version number empty:

dependenci es {
conpi | e("org. springfranmework. boot: spri ng-boot -starter-web")
conpi |l e("org. thynel eaf : t hynel eaf - spri ng4")
conpi l e("nz.net.ul trag. thynel eaf : t hynel eaf - | ayout - di al ect")

Note

The version of the spr i ng- boot gradle plugin that you declare determines the actual versions of
the “blessed” dependencies (this ensures that builds are always repeatable). You should always
set the version of the spri ng- boot gradle plugin to the actual Spring Boot version that you wish
to use.

1.0.3.BUILD-SNAPSHOT Spring Boot 105

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-dependencies/pom.xml

Spring Boot Reference Guide

51.3 Packaging executable jar and war files

Once the spri ng- boot plugin has been applied to your project it will automatically attempt to rewrite
archives to make them executable using the boot Repackage task. You should configure your project
to build a jar or war (as appropriate) in the usual way.

The main class that you want to launch can either be specified using a configuration option, or by adding
a Mai n- d ass attribute to the manifest. If you don’t specify a main class the plugin will search for a
classwithapublic static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ gradle build
$ java -jar build/libs/nynodul e-0.0. 1- SNAPSHOT. j ar

To build a war file that is both executable and deployable into an external container, you need to mark
the embedded container dependencies as belonging to a configuration named "providedRuntime”, e.g:

apply plugin: "war'

war {
baseNanme = 'nyapp'
version = '0.5.0

}

repositories {
mavenCentral ()
maven { url "http://repo.spring.iol/libs-snapshot" }

}

configurations {
provi dedRunt i ne
}

dependenci es {
conpi | e("org. springframework. boot : spri ng-boot - starter-web")
provi dedRunt i me("org. spri ngf ramewor k. boot : spri ng- boot-starter-tontat")

51.4 Running a project in-place

To run a project in place without building a jar first you can use the "bootRun" task:

‘ $ gradl e boot Run

Running this way makes your static classpath resources (i.e. in src/ mai n/ r esour ces by default)
reloadable in the live application, which can be helpful at development time.

51.5 Repackage configuration

The gradle plugin automatically extends your build script DSL with a spri ngBoot element for
configuration. Simply set the appropriate properties as you would with any other Gradle extension (see
below for a list of configuration options):

springBoot {
backupSource = fal se

}

1.0.3.BUILD-SNAPSHOT Spring Boot 106

Spring Boot Reference Guide

51.6 Repackage with custom Gradle configuration

Sometimes it may be more appropriate to not package default dependencies resolved from conpi | e,
runti me and provi ded scopes. If the created executable jar file is intended to be run as it is, you
need to have all dependencies nested inside it; however, if the plan is to explode a jar file and run the
main class manually, you may already have some of the libraries available via CLASSPATH. This is a
situation where you can repackage your jar with a different set of dependencies.

Using a custom configuration will automatically disable dependency resolving from conpi | e, runti e
and pr ovi ded scopes. Custom configuration can be either defined globally (inside the spri ngBoot
section) or per task.

task clientJar(type: Jar) {
appendi x = 'client’
from sour ceSet s. mai n. out put
excl ude(' **/*Sonet hi ng*')

}

task clientBoot(type: Boot Repackage, dependsOn: clientJar) {
wi thJar Task = clientJar
cust onConfi guration = "nycustontonfi guration”

In above example, we created a new cl i ent Jar Jar task to package a customized file set from your
compiled sources. Then we created a new cl i ent Boot BootRepackage task and instructed it to work
with only cl i ent Jar task and nycust ontonfi gurati on.

configurations {
nmycust ontonfi guration. exclude group: 'l og4j"’

}

dependenci es {
nycustontonfiguration configurations.runtine

}

The configuration that we are referring to in Boot Repackage is a normal Gradle configuration. In
the above example we created a new configuration named mycust onconf i gur ati on instructing it
to derive from a runti me and exclude the | og4j group. If the cl i ent Boot task is executed, the
repackaged boot jar will have all dependencies from r unt i me but no | og4j jars.

Configuration options

The following configuration options are available:

Name Description

mai nCl ass The main class that should be run. If not specified the value from
the manifest will be used, or if no manifest entry is the archive will
be searched for a suitable class.

provi dedConfi guration The name of the provided configuration (defaults to
provi dedRunt i ne).

backupSour ce If the original source archive should be backed-up before being
repackaged (defaults to t r ue).

cust onConfi gurati on The name of the custom configuration.

1.0.3.BUILD-SNAPSHOT Spring Boot 107

http://www.gradle.org/docs/current/dsl/org.gradle.api.artifacts.Configuration.html

Spring Boot Reference Guide

Name Description

| ayout The type of archive, corresponding to how the dependencies are
laid out inside (defaults to a guess based on the archive type).

51.7 Understanding how the Gradle plugin works

When spri ng- boot is applied to your Gradle project a default task named boot Repackage is created
automatically. The boot Repackage task depends on Gradle assenbl e task, and when executed, it
tries to find all jar artifacts whose qualifier is empty (i.e. tests and sources jars are automatically skipped).

Due to the fact that boot Repackage finds all created jar artifacts, the order of Gradle task execution is
important. Most projects only create a single jar file, so usually this is not an issue; however, if you are
planning to create a more complex project setup, with custom Jar and Boot Repackage tasks, there
are few tweaks to consider.

If you are just creating custom jar files from your project you can simply disables default j ar and
boot Repackage tasks:

jar.enabled = fal se
boot Repackage. enabl ed = fal se

Another option is to instruct the default boot Repackage task to only work with a default j ar task.

‘ boot Repackage. wi t hJar Task = jar

If you have a default project setup where the main jar file is created and repackaged, and you still
want to create additional custom jars, you can combine your custom repackage tasks together and use
dependsOn so that the boot Jar s task will run after the default boot Repackage task is executed:

task bootJars
boot Jars. dependsOn = [clientBoot 1, clientBoot 2, cl i ent Boot 3]
bui | d. dependsOn(boot Jar s)

All the above tweaks are usually used to avoid situations where an already created boot jar is repackaged
again. Repackaging an existing boot jar will not break anything, but you may find that it includes
unnecessary dependencies.

1.0.3.BUILD-SNAPSHOT Spring Boot 108

Spring Boot Reference Guide

52. Supporting other build systems

If you want to use a build tool other than Maven or Gradle, you will likely need to develop your own
plugin. Executable jars need to follow a specific format and certain entries need to be written in an
uncompressed form (see the executable jar format section in the appendix for details).

The Spring Boot Maven and Gradle plugins both make use of spri ng-boot -1 oader-tool s to
actually generate jars. You are also free to use this library directly yourself if you need to.

52.1 Repackaging archives

To repackage an existing archive so that it becomes a self-contained executable archive use
org. spri ngframewor k. boot . | oader . t ool s. Repackager. The Repackager class takes a
single constructor argument that refers to an existing jar or war archive. Use one of the two available
repackage() methods to either replace the original file or write to a new destination. Various settings
can also be configured on the repackager before it is run.

52.2 Nested libraries

When repackaging an archive you can include references to dependency files using the
org. springframework. boot . | oader.tool s. Li brari es interface. We don't provide any
concrete implementations of Li br ari es here as they are usually build system specific.

If your archive already includes libraries you can use Li br ari es. NONE.

52.3 Finding a main class

If you don't use Repackager . set Mai nCl ass() to specify a main class, the repackager will use ASM
to read class files and attempt to find a suitable class with a publ i ¢ static void mai n(String[]
ar gs) method. An exception is thrown if more than one candidate is found.

52.4 Example repackage implementation

Here is a typical example repackage:

Repackager repackager = new Repackager (sourcedarFile);
repackager . set BackupSour ce(f al se);
repackager . repackage(new Libraries() {
@verride
public void doWthLibraries(LibraryCal |l back cal | back) throws |CException {
/] Build system specific inplenentation, callback for each dependency
/1 call back. library(nestedFile, LibraryScope. COWI LE);

1)

1.0.3.BUILD-SNAPSHOT Spring Boot 109

http://asm.ow2.org/

Spring Boot Reference Guide

53. What to read next

If you're interested in how the build tool plugins work you can look at the spr i ng- boot - t ool s module
on GitHub. More technical details of the executable jar format are covered in the appendix.

If you have specific build-related questions you can check out the ‘how-to’ guides.

1.0.3.BUILD-SNAPSHOT Spring Boot 110

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-tools

Part IX. “How-to” guides

This section provides answers to some common “how do | do that...” type of questions that often arise
when using Spring Boot. This is by no means an exhaustive list, but it does cover quite a lot.

If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer; this is also a great place to ask
new questions (please use the spri ng- boot tag).

We’'re also more than happy to extend this section; If you want to add a “how-to” you can send us a
pull request.

http://stackoverflow.com/tags/spring-boot
http://github.com/spring-projects/spring-boot/tree/master

Spring Boot Reference Guide

54. Spring Boot application

54.1 Troubleshoot auto-configuration

The Spring Boot auto-configuration tries its best to “do the right thing”, but sometimes things fail and
it can be hard to tell why.

There is a really useful AutoConfigurationReport available in any Spring Boot
Appl i cati onCont ext . You will see it if you enable DEBUG logging output. If you use the spri ng-
boot - act uat or there is also an aut oconf i g endpoint that renders the report in JSON. Use that to
debug the application and see what features have been added (and which not) by Spring Boot at runtime.

Many more questions can be answered by looking at the source code and the javadoc. Some rules
of thumb:

e Look for classes called *Aut oConfiguration and read their sources, in particular the
@condi ti onal * annotations to find out what features they enable and when. Add - - debug to the
command line or a System property - Ddebug to get a log on the console of all the autoconfiguration
decisions that were made in your app. In a running Actuator app look at the aut oconf i g endpoint
(‘/autoconfig’ or the JIMX equivalent) for the same information.

e Look for classes that are @onfi gurati onProperties (e.g. Server Properties) and read
from there the available external configuration options. The @Confi gur ati onProperties has
a nane attribute which acts as a prefix to external properties, thus Server Properties has
prefix="server" and its configuration properties are server. port, server. address etc. Ina
running Actuator app look at the conf i gpr ops endpoint.

e Look for use of Rel axedEnvironment to pull configuration values explicitly out of the
Envi r onnment . It often is used with a prefix.

e Look for @/al ue annotations that bind directly to the Envi ronnent. This is less flexible than
the Rel axedEnvi ronnment approach, but does allow some relaxed binding, specifically for OS
environment variables (so CAPI TALS AND_UNDERSCORES are synonyms for per i od. separ at ed).

» Look for @ondi t i onal OnExpr essi on annotations that switch features on and off in response to
SpEL expressions, normally evaluated with place-holders resolved from the Envi r onnent .

54.2 Customize the Environment or ApplicationContext before
it starts

A SpringApplicationhasApplicationListenersandApplicationContextlnitializers
that are used to apply customizations to the context or environment. Spring Boot loads a number of
such customizations for use internally from META- | NF/ spri ng. f act ori es. There is more than one
way to register additional ones:

» Programmatically per application by calling the addLi st eners and addl niti al i zer s methods
on Spri ngAppl i cati on before you run it.

» Declaratively per application by setting context.initializer.classes or
context.listener.classes.

» Declaratively for all applications by adding a META- | NF/ spri ng. f act ori es and packaging a jar
file that the applications all use as a library.

1.0.3.BUILD-SNAPSHOT Spring Boot 112

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

The SpringAppl i cati on sends some special Appl i cati onEvent s to the listeners (even some
before the context is created), and then registers the listeners for events published by the
Appl i cati onCont ext as well. See Section 20.3, “Application events and listeners” in the “Spring
Boot features” section for a complete list.

54.3 Build an ApplicationContext hierarchy (adding a parent or
root context)

You can use the ApplicationBuil der class to create parent/child Appli cati onCont ext
hierarchies. See Section 20.2, “Fluent builder API” in the “Spring Boot features” section for more
information.

54.4 Create a non-web application

Not all Spring applications have to be web applications (or web services). If you want to execute some
code in a mai n method, but also bootstrap a Spring application to set up the infrastructure to use, then
it's easy with the Spri ngAppl i cat i on features of Spring Boot. A Spri ngAppl i cati on changes its
Appl i cati onCont ext class depending on whether it thinks it needs a web application or not. The
first thing you can do to help it is to just leave the servlet APl dependencies off the classpath. If you
can't do that (e.g. you are running 2 applications from the same code base) then you can explicitly call
SpringAppl i cation. set WebEnvi ronnent (fal se), or set the appli cati onCont ext d ass
property (through the Java API or with external properties). Application code that you want to run as
your business logic can be implemented as a CommandLi neRunner and dropped into the context as
a @Bean definition.

1.0.3.BUILD-SNAPSHOT Spring Boot 113

Spring Boot Reference Guide

55. Properties & configuration

55.1 Externalize the configuration of SpringApplication

A SpringApplication has bean properties (mainly setters) so you can use its Java API as you
create the application to modify its behavior. Or you can externalize the configuration using properties
inspring. main. *. E.g.inapplication. properties you might have.

spring. mai n. web_envi ronnment =f al se
spring. mai n. show_banner =f al se

and then the Spring Boot banner will not be printed on startup, and the application will not be a web
application.

Note

The example above also demonstrates how flexible binding allows the use of underscores (_) as
well as dashes (-) in property names.

55.2 Change the location of external properties of an
application

By default properties from different sources are added to the Spring Envi r onnent in a defined order
(see Chapter 21, Externalized Configuration in the “Spring Boot features” section for the exact order).

A nice way to augment and modify this is to add @°r opert ySour ce annotations to your application
sources. Classes passed to the Spri ngAppl i cat i on static convenience methods, and those added
using set Sources() are inspected to see if they have @PropertySources, and if they do,
those properties are added to the Envi ronnent early enough to be used in all phases of the
Appl i cati onCont ext lifecycle. Properties added in this way have precedence over any added using
the default locations, but have lower priority than system properties, environment variables or the
command line.

You can also provide System properties (or environment variables) to change the behavior:

* spring. config. nane (SPRI NG_CONFI G_NAME), defaults to appl i cati on as the root of the file
name.

* spring.config.location (SPRI NG CONFI G_LOCATI ON) is the file to load (e.g. a classpath
resource or a URL). A separate Envi r onnent property source is set up for this document and it can
be overridden by system properties, environment variables or the command line.

No matter what you set in the environment, Spring Boot will always load appl i cati on. properties
as described above. If YAML is used then files with the “.yml” extension are also added to the list by
default.

See Confi gFi | eAppli cationLi st ener for more detail.

55.3 Use “short” command line arguments

Some people like to use (for example) - - port =9000 instead of - - server. port=9000 to set
configuration properties on the command line. You can easily enable this by using placeholders in
application. properties,e.g.

1.0.3.BUILD-SNAPSHOT Spring Boot 114

http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java

Spring Boot Reference Guide

server. port=${port: 8080}

Tip

If you have enabled maven filtering for the appl i cati on. properti es you may want to avoid
using ${*} for the tokens to filter as it conflicts with those placeholders. You can either use
@ @(i.e. @aven. t oken@instead of ${ maven. t oken}) or you can configure the naven-
resour ces- pl ugi n to use other delimiters.

Note

In this specific case the port binding will work in a PaaS environment like Heroku and Cloud
Foundry, since in those two platforms the PORT environment variable is set automatically and
Spring can bind to capitalized synonyms for Envi r onnment properties.

55.4 Use YAML for external properties

YAML is a superset of JISON and as such is a very convenient syntax for storing external properties
in a hierarchical format. E.g.

spring:
appl i cation:
name: cruncher
dat asour ce:
driverC assNane: com nysql . jdbc. Driver
url: jdbc:nysql://1ocal host/test
server:
port: 9000

Create a file called application.ym and stick it in the root of your classpath, and also add
snakeyam to your dependencies (Maven coordinates or g. yaml : snakeyani , already included if
you use the spri ng- boot - st arter). A YAML file is parsed to a Java Map<St ri ng, Obj ect > (like
a JSON object), and Spring Boot flattens the map so that it is 1-level deep and has period-separated
keys, a lot like people are used to with Pr operti es files in Java.

The example YAML above corresponds to an appl i cati on. properti es file

spring. appl i cati on. nanme=cruncher

spring. datasource. dri ver Cl assNane=com nysql . j dbc. Dri ver
spring. dat asource. url =j dbc: nysql : //1 ocal host/test
server. port=9000

See Section 21.5, “Using YAML instead of Properties” in the “Spring Boot features” section for more
information about YAML.

55.5 Set the active Spring profiles

The Spring Envi ronment has an API for this, but normally you would set a System profile
(spring.profiles.active) or an OS environment variable (SPRI NG_PROFI LES_ACTI VE). E.g.
launch your application with a - D argument (remember to put it before the main class or jar archive):

‘ $ java -jar -Dspring.profiles.active=production denp-0.0.1- SNAPSHOT. j ar

In Spring Boot you can also set the active profile in appl i cati on. properti es, e.g.

spring. profiles.active=production

1.0.3.BUILD-SNAPSHOT Spring Boot 115

http://maven.apache.org/plugins/maven-resources-plugin/resources-mojo.html#delimiters

Spring Boot Reference Guide

A value set this way is replaced by the System property or environment variable setting, but not by
the Spri ngAppl i cationBuil der. profil es() method. Thus the latter Java API can be used to
augment the profiles without changing the defaults.

See Chapter 22, Profiles in the “Spring Boot features” section for more information.

55.6 Change configuration depending on the environment

A YAML file is actually a sequence of documents separated by - - - lines, and each document is parsed
separately to a flattened map.

If a YAML document contains a spri ng. pr of i | es key, then the profiles value (comma-separated list
of profiles) is fed into the Spring Envi ronnent . accept sProfi |l es() and if any of those profiles is
active that document is included in the final merge (otherwise not).

Example:

server:
port: 9000

spring:

profiles: devel opnent
server:

port: 9001

spring:

profiles: production
server:

port: O

In this example the default port is 9000, but if the Spring profile “development” is active then the port
is 9001, and if “production” is active then it is O.

The YAML documents are merged in the order they are encountered (so later values override earlier
ones).

To do the same thing with properties files you can use appl i cati on-${profile}. propertiesto
specify profile-specific values.

55.7 Discover built-in options for external properties

Spring Boot binds external properties from appl i cati on. properti es (or. ymnl) (and other places)
into an application at runtime. There is not (and technically cannot be) an exhaustive list of all supported
properties in a single location because contributions can come from additional jar files on your classpath.

A running application with the Actuator features has a conf i gpr ops endpoint that shows all the bound
and bindable properties available through @onfi gur ati onPr operti es.

The appendix includes an appli cation. properties example with a list of the most common
properties supported by Spring Boot. The definitive list comes from searching the source code
for @onfi gurationProperties and @al ue annotations, as well as the occasional use of
Rel axedEnvi ronment .

1.0.3.BUILD-SNAPSHOT Spring Boot 116

Spring Boot Reference Guide

56. Embedded servilet containers

56.1 Add a Servlet, Filter or ServletContextListener to an
application

Servlet,Filter,Servl et Cont extLi stener and the other listeners supported by the Servlet spec
can be added to your application as @ean definitions. Be very careful that they don’t cause eager
initialization of too many other beans because they have to be installed in the container very early in
the application lifecycle (e.g. it's not a good idea to have them depend on your Dat aSour ce or JPA
configuration). You can work around restrictions like that by initializing them lazily when first used instead
of on initialization.

In the case of Fi |l t ers and Ser vl et s you can also add mappings and init parameters by adding a
Fi |l ter Regi strati onBean or Ser vl et Regi strati onBean instead of or as well as the underlying
component.

56.2 Change the HTTP port

In a standalone application the main HTTP port defaults to 8080, but can be setwith ser ver. port (e.g.
inappl i cati on. properti es oras a System property). Thanks to relaxed binding of Envi r onnent
values you can also use SERVER_PORT (e.g. as an OS environment variable).

To switch off the HTTP endpoints completely, but still create a WebAppl i cat i onCont ext, use
server. port =-1 (this is sometimes useful for testing).

For more details look at the section called “Customizing embedded servlet containers” in the “Spring
Boot features” section, or the Ser ver Pr operti es source code.

56.3 Use a random unassigned HTTP port

To scan for a free port (using OS natives to prevent clashes) use ser ver . port =0.

56.4 Discover the HTTP port at runtime

You can access the port the server is running on from log output or from
the EnbeddedWebApplicati onContext via its EnbeddedServl et Contai ner. The best
way to get that and be sure that it has initialized is to add a @ean of
type Applicati onLi st ener <EnbeddedSer vl et Contai nerlnitializedEvent> and pull the
container out of the event when it is published.

A really useful thing to do inis to use @ nt egr ati onTest to setserver. port =0 and then inject the
actual (“local”) port as a @/al ue. For example:

@unW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@pri ngAppl i cati onConfi guration(classes = Sanpl eDat aJpaAppl i cati on. cl ass)
@\éebAppConfi guration

@ntegrationTest ("server.port:0")

public class CityRepositorylntegrationTests {

@\ut owi r ed
EnbeddedWebAppl i cat i onCont ext server;

@/al ue("${l ocal . server.port}")
int port;

1.0.3.BUILD-SNAPSHOT Spring Boot 117

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

56.5 Configure Tomcat

Generally you can follow the advice from Section 55.7, “Discover built-in options for external properties”
about @onfi gurati onProperties (ServerProperties is the main one here), but also look
at EnbeddedSer vl et Cont ai ner Cust om zer and various Tomcat specific * Cust om zer s that
you can add in one of those. The Tomcat APIs are quite rich so once you have access to the
Tontat EnbeddedSer vl et Cont ai ner Fact or y you can modify itin a number of ways. Or the nuclear

option is to add your own Tontat EnbeddedSer vl et Cont ai ner Fact ory.

56.6 Terminate SSL in Tomcat

Use an EnbeddedSer vl et Cont ai ner Cust om zer and in that
Tontat Connect or Cust oni zer that sets up the connector to be secure:

@Bean
publ i ¢ EnbeddedSer vl et Cont ai ner Cust onmi zer cont ai ner Cust omi zer () {
return new MyCustom zer();

}
Il

private static class MyCustom zer inplenents EnbeddedSer vl et Cont ai ner Cust om zer {

@verride
public void custom ze(Confi gurabl eEnbeddedSer vl et Cont ai ner factory) {
if(factory instanceof TontatEnbeddedServl et Contai ner Factory) {
cust om zeTonctat ((Tontat EnbeddedSer vl et Cont ai ner Factory) factory));
}
}

public voi d custom zeTontat (Tontat EnbeddedSer vl et Cont ai ner Factory factory) {
fact ory. addConnect or Cust omi zer s(new Tontat Connect or Cust omi zer () {
@verride
public void custom ze(Connector connector) {
connector. set Port (serverPort);
connect or. set Secure(true);
connector. set Scheme("https");

connector.setAttribute("keyAlias", "tontat");
connector.set Attribute("keystorePass", "password");
try {

connector.setAttribute("keystoreFile",
ResourceUtils.getFile("src/ssl/toncat. keystore"). get Absol utePath());
} catch (FileNot FoundException e) {
throw new ||| egal StateException("Cannot |oad keystore", e);

}
connector.setAttribute("clientAuth", "false");
connector.setAttribute("sslProtocol", "TLS");

connector.set Attribute("SSLEnabl ed", true);

1)

56.7 Enable Multiple Connectors Tomcat

Add a or g. apache. cat al i na. connect or. Connect or to

add a

the

Tontat EnbeddedSer vl et Cont ai ner Fact or y which can allow multiple connectors eg a HTTP and

HTTPS connector:

1.0.3.BUILD-SNAPSHOT Spring Boot

118

Spring Boot Reference Guide

@Bean

publ i ¢ EnbeddedSer vl et Cont ai ner Factory servl et Container() {
Tontat EnbeddedSer vl et Cont ai ner Factory tontat = new Tontat EnbeddedSer vl et Cont ai ner Fact ory();
t ontat . addAddi t i onal Tontat Connect or s(cr eat eSsl Connector());
return toncat;

}

private Connector createSsl Connector() {

Connector connector = new Connector ("org.apache. coyote. httpll. Htt p11Ni oProtocol");
Htt p11Ni oPr ot ocol protocol = (HttpllNi oProtocol) connector.getProtocol Handl er();
try {

File keystore = new Cl assPat hResource("keystore").getFile();

File truststore = new Cl assPat hResource("keystore").getFile();

connector. set Scheme("https");

connect or. set Secure(true);

connect or. set Port (8443);

prot ocol . set SSLEnabl ed(true);

prot ocol . set Keyst or eFi | e(keyst ore. get Absol utePat h());

protocol . set Keyst orePass("changeit");

protocol . set TruststoreFi |l e(truststore. get Absol utePath());

protocol . set Trust st orePass("changeit");

protocol . set KeyAli as("apitester");

return connector;

}
catch (1 OException ex) {
throw new ||| egal StateException("can't access keystore: [" + "keystore"
+ "] or truststore: [" + "keystore" + "]", ex);
}

56.8 Use Tomcat behind a front-end proxy server

Spring Boot will automatically configure Tomcat's Renot el pVal ve if it detects some environment
settings. This allows you to transparently use the standard x- f or war ded- f or and x- f or war ded-
pr ot o headers that most front-end proxy servers add.

You can switch on the valve by adding some entries to application.properties, e.g.

server.toncat.renote_i p_header=x-f orwarded-f or
server.toncat. protocol _header =x-f orwar ded- prot o

Alternatively, you can add the Renot el pVal ve yourself by adding a
Tontat EnbeddedSer vl et Cont ai ner Fact ory bean.

56.9 Use Jetty instead of Tomcat

The Spring Boot starters (spri ng- boot - st art er - web in particular) use Tomcat as an embedded
container by default. You need to exclude those dependencies and include the Jetty one instead. Spring
Boot provides Tomcat and Jetty dependencies bundled together as separate starters to help make this
process as easy as possible.

Example in Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifact|d>spring-boot-starter-tontat</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

1.0.3.BUILD-SNAPSHOT Spring Boot 119

Spring Boot Reference Guide

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-jetty</artifactld>
</ dependency>

Example in Gradle:

configurations {
conpi | e. excl ude nodul e: "spring-boot-starter-toncat"

}

dependenci es {
conpi | e("org. springframework. boot : spri ng-boot-starter-web: 1. 0. 0. RC3")
conpi |l e("org. spri ngframework. boot : spring-boot-starter-jetty:1.0.0. RC3")
/1

56.10 Configure Jetty

Generally you can follow the advice from Section 55.7, “Discover built-in options for external properties”
about @onfi gurati onProperties (ServerProperties is the main one here), but also look at
EnmbeddedSer vl et Cont ai ner Cust o zer . The Jetty APIs are quite rich so once you have access
to the Jet t yEnbeddedSer vl et Cont ai ner Fact ory you can modify it in a number of ways. Or the
nuclear option is to add your own Jet t yEnbeddedSer vl et Cont ai ner Fact ory.

56.11 Use Tomcat 8

Tomcat 8 works with Spring Boot, but the default is to use Tomcat 7 (so we can support Java 1.6 out
of the box). You should only need to change the classpath to use Tomcat 8 for it to work. For example,
using the starter poms in Maven:

<properties>

<t oncat . versi on>8. 0. 8</t ontat . ver si on>
</ properties>
<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>

</ dependenci es>

change the classpath to use Tomcat 8 for it to work.

56.12 Use Jetty 9

Jetty 9 works with Spring Boot, but the default is to use Jetty 8 (so we can support Java 1.6 out of the
box). You should only need to change the classpath to use Jetty 9 for it to work.

If you are using the starter poms and parent you can just add the Jetty starter and change the version
properties, e.g. for a simple webapp or service:

<properties>
<j ava. ver si on>1. 7</j ava. ver si on>
<jetty.version>9.1.0.v20131115</jetty. versi on>
<servl et -api . versi on>3. 1. 0</ servl et - api . ver si on>
</ properties>
<dependenci es>
<dependency>

1.0.3.BUILD-SNAPSHOT Spring Boot 120

Spring Boot Reference Guide

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-starter-web</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-jetty</artifactld>
</ dependency>
</ dependenci es>

1.0.3.BUILD-SNAPSHOT Spring Boot 121

Spring Boot Reference Guide

57. Spring MVC

57.1 Write a JSON REST service

Any Spring @Rest Cont r ol | er in a Spring Boot application should render JISON response by default
as long as Jackson2 is on the classpath. For example:

@Rest Control | er
public class MyController {

@Request Mappi ng("/t hi ng")
public MyThing thing() {

return new MyThing();
}

}

As long as MyThi ng can be serialized by Jackson2 (e.g. a normal POJO or Groovy object) then
http://1 ocal host: 8080/t hi ng will serve a JSON representation of it by default. Sometimes in a
browser you might see XML responses (but by default only if MyThi ng was a JAXB object) because
browsers tend to send accept headers that prefer XML.

57.2 Write an XML REST service

Since JAXB is in the JDK the same example as we used for JSON would work, as long as the MyThi ng
was annotated as @Xm Root El enment :

@nl Root El enent

public class MyThing {
private String nane;
/1 .. getters and setters

}

To get the server to render XML instead of JSON you might have to send an Accept: text/xnl
header (or use a browser).

57.3 Customize the Jackson ObjectMapper

Spring MVC (client and server side) uses Ht t pMessageConvert er s to negotiate content conversion
in an HTTP exchange. If Jackson is on the classpath you already get a default converter with a vanilla
nj ect Mapper . Spring Boot has some features to make it easier to customize this behavior.

The smallest change that might work is to just add beans of type
com fast erxm . j ackson. dat abi nd. Modul e to your context. They will be registered with the
default Gbj ect Mapper and then injected into the default message converter. To replace the default
nj ect Mapper completely, define a @ean of that type and mark it as @°ri mary.

In addition, if your context contains any beans of type Obj ect Mapper then all of the Modul e beans will
be registered with all of the mappers. So there is a global mechanism for contributing custom modules
when you add new features to your application.

Finally, if you provide any @eans of type Mappi ngJackson2Ht t pMessageConvert er then they
will replace the default value in the MVC configuration. Also, a convenience bean is provided of type
Ht t pMessageConvert ers (always available if you use the default MVC configuration) which has
some useful methods to access the default and user-enhanced message converters.

1.0.3.BUILD-SNAPSHOT Spring Boot 122

Spring Boot Reference Guide

See also the Section 57.4, “Customize the @ResponseBody rendering” section and the
WebM/cAut oConf i gur ati on source code for more details.

57.4 Customize the @ResponseBody rendering

Spring uses HtpMessageConverters to render @ResponseBody (or responses from
@rest Cont r ol | er). You can contribute additional converters by simply adding beans of that type in a
Spring Boot context. If a bean you add is of a type that would have been included by default anyway (like
Mappi ngJackson2Ht t pMessageConvert er for JISON conversions) then it will replace the default
value. A convenience bean is provided of type Ht t pMessageConvert ers (always available if you
use the default MVC configuration) which has some useful methods to access the default and user-
enhanced message converters (useful, for example if you want to manually inject them into a custom
Rest Tenpl at e).

As in normal MVC usage, any WebM/cConfi gur er Adapt er beans that you provide can also
contribute converters by overriding the confi gur eMessageConvert ers method, but unlike with
normal MVC, you can supply only additional converters that you need (because Spring Boot
uses the same mechanism to contribute its defaults). Finally, if you opt-out of the Spring
Boot default MVC configuration by providing your own @nabl eWwebM/c configuration, then you
can take control completely and do everything manually using get MessageConverters from
WebMvcConf i gur ati onSupport.

See the WebMrcAut oConf i gur at i on source code for more details.

57.5 Switch off the Spring MVC DispatcherServlet

Spring Boot wants to serve all content from the root of your application / down. If you would rather map
your own servlet to that URL you can do it, but of course you may lose some of the other Boot MVC
features. To add your own servlet and map it to the root resource just declare a @ean of type Ser vl et
and give it the special bean name di spat cher Ser vl et (You can also create a bean of a different
type with that name if you want to switch it off and not replace it).

57.6 Switch off the Default MVC configuration

The easiest way to take complete control over MVC configuration is to provide your own
@confi gur at i on with the @nabl eWebMsc annotation. This will leave all MVC configuration in your
hands.

57.7 Customize ViewResolvers

A Vi ewResol ver is a core component of Spring MVC, translating view names in @ontrol | er
to actual Vi ew implementations. Note that Vi ewResol vers are mainly used in Ul applications,
rather than REST-style services (a Vi ewis not used to render a @esponseBody). There are many
implementations of Vi ewResol ver to choose from, and Spring on its own is not opinionated about
which ones you should use. Spring Boot, on the other hand, installs one or two for you depending on
what it finds on the classpath and in the application context. The Di spat cher Ser vl et uses all the
resolvers it finds in the application context, trying each one in turn until it gets a result, so if you are
adding your own you have to be aware of the order and in which position your resolver is added.

WebM/cAut oConf i gur ati on adds the following Vi ewResol ver s to your context:

1.0.3.BUILD-SNAPSHOT Spring Boot 123

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java

Spring Boot Reference Guide

An | nternal Resour ceVi ewResol ver with bean id “defaultViewResolver”. This one locates
physical resources that can be rendered using the Def aul t Ser vl et (e.g. static resources and JSP
pages if you are using those). It applies a prefix and a suffix to the view name and then looks for
a physical resource with that path in the servlet context (defaults are both empty, but accessible for
external configuration viaspri ng. vi ew. prefi xandspri ng. vi ew. suf fi x). It can be overridden
by providing a bean of the same type.

A BeanNaneVi ewResol ver with id “beanNameViewResolver”. This is a useful member of the view
resolver chain and will pick up any beans with the same name as the Vi ew being resolved. It can be
overridden by providing a bean of the same type, but it's unlikely you will need to do that.

A Cont ent Negoti ati ngVi ewResol ver with id “viewResolver” is only added if there are
actually beans of type Vi ew present. This is a “master” resolver, delegating to all the others
and attempting to find a match to the “Accept” HTTP header sent by the client. There is a
useful blog about Cont ent Negoti ati ngVi ewResol ver that you might like to study to learn
more, and also look at the source code for detail. You can switch off the auto-configured
Cont ent Negot i ati ngVi ewResol ver by defining a bean named “viewResolver”.

If you wuse Thymeleaf you wil also have a Thynel eafVi ewResol ver with id
“thymeleafViewResolver”. It looks for resources by surrounding the view name with a prefix and
suffix (externalized to spring. t hynel eaf . prefi x and spri ng. t hynel eaf . suf fi x, defaults
“classpath:/templates/” and “.html” respectively). It can be overridden by providing a bean of the same
name.

Checkout WebMvcAut oConfi gur ati on and Thynel eaf Aut oConf i gur ati on

1.0.3.BUILD-SNAPSHOT Spring Boot 124

https://spring.io/blog/2013/06/03/content-negotiation-using-views
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java

Spring Boot Reference Guide

58. Logging

58.1 Configure Logback for logging

Spring Boot has no mandatory logging dependence, except for the cormons- | oggi ng API, of which
there are many implementations to choose from. To use Logback you need to include it, and some
bindings for cormons- | oggi ng on the classpath. The simplest way to do that is through the starter
poms which all depend on spri ng- boot - starter-1|oggi ng. For a web application you only need
spring-boot - st art er - web since it depends transitively on the logging starter. For example, using
Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>

</ dependency>

Spring Boot has a Loggi ngSyst emabstraction that attempts to configure logging based on the content
of the classpath. If Logback is available it is the first choice. So if you put a | ogback. xm in the root
of your classpath it will be picked up from there. Spring Boot provides a default base configuration that
you can include if you just want to set levels, e.g.

<?xm version="1.0" encodi ng="UTF-8"?>

<confi guration>
<include resource="org/springframework/boot /| oggi ng/ | ogback/ base. xm "/ >
<l ogger nane="org. spri ngfranmewor k. web" | evel =" DEBUG'/ >

</ configuration>

If you look at the default | ogback. xm in the spring-boot jar you will see that it uses some useful
System properties which the Loggi ngSyst emtakes care of creating for you. These are:

* ${ PI D} the current process ID.
 ${LOG_FI LE} ifl oggi ng. fi | e was set in Boot's external configuration.
» ${LOG PATH;} if | oggi ng. pat h was set (representing a directory for log files to live in).

Spring Boot also provides some nice ANSI colour terminal output on a console (but not in a log file)
using a custom Logback converter. See the default base. xm configuration for detalils.

If Groovy is on the classpath you should be able to configure Logback with | ogback. gr oovy as well
(it will be given preference if present).

58.2 Configure Log4j for logging

Spring Boot supports Log4j for logging configuration, but it has to be on the classpath. If you are using
the starter poms for assembling dependencies that means you have to exclude logback and then include
log4j instead. If you aren’t using the starter poms then you need to provide commons- | oggi ng (at
least) in addition to Log4j.

The simplest path to using Log4j is probably through the starter poms, even though it requires some
jiggling with excludes, e.g. in Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>

</ dependency>

1.0.3.BUILD-SNAPSHOT Spring Boot 125

http://logback.qos.ch
http://logging.apache.org/log4j

Spring Boot Reference Guide

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-logging</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifactld>spring-boot-starter-log4j</artifactld>
</ dependency>

Note

The use of the log4j starter gathers together the dependencies for common logging requirements
(e.g. including having Tomcat use j ava. uti |l . | oggi ng but configure the output using Log4j).
See the Actuator Log4j Sample for more detail and to see it in action.

1.0.3.BUILD-SNAPSHOT Spring Boot 126

Spring Boot Reference Guide

59. Data Access

59.1 Configure a DataSource

To override the default settings just define a @ean of your own of type DataSource.
See Section 26.1, “Configure a DataSource” in the “Spring Boot features” section and the
Dat aSour ceAut oConf i gur at i on class for more details.

59.2 Use Spring Data repositories

Spring Data can create implementations for you of @Reposi t or y interfaces of various flavours. Spring
Boot will handle all of that for you as long as those @Reposi t ori es are included in the same package
(or a sub-package) of your @nabl eAut oConf i gur ati on class.

For many applications all you will need is to put the right Spring Data dependencies on your classpath
(there is a spring-boot-starter-data-jpa for JPA and a spring-boot -starter-data-
nongodb for Mongodb), create some repository interfaces to handle your @nt i t y objects. Examples
are in the JPA sample or the Mongodb sample.

Spring Boot tries to guess the location of your @Repository definitions, based on the
@nabl eAut oConfi gurati on it finds. To get more control, use the @nabl eJpaReposi tori es
annotation (from Spring Data JPA).

59.3 Separate @Entity definitions from Spring configuration

Spring Boot tries to guess the location of your @Entity definitions, based on the
@nabl eAut oConfi gurati on it finds. To get more control, you can use the @ntityScan
annotation, e.g.

@onfi guration

@nabl eAut oConf i guration
@ntityScan(basePackageC asses=City. cl ass)
public class Application {

Il

59.4 Configure JPA properties

Spring Data JPA already provides some vendor-independent configuration options (e.g. for SQL
logging) and Spring Boot exposes those, and a few more for hibernate as external configuration
properties. The most common options to set are:

spring.j pa. hibernate. ddl -auto: create-drop

spring.j pa. hi bernate. nam ng_strategy: org.hibernate.cfg.|nprovedNani ngStrat egy
spring.j pa. dat abase: H2

spring.jpa.showsqgl: true

(Because of relaxed data binding hyphens or underscores should work equally well as property
keys.) The ddl - aut o setting is a special case in that it has different defaults depending on whether
you are using an embedded database (cr eat e- dr op) or not (none). In addition all properties in
spring.jpa. properties.* are passed through as normal JPA properties (with the prefix stripped)
when the local Ent i t yManager Fact ory is created.

1.0.3.BUILD-SNAPSHOT Spring Boot 127

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-data-jpa
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-data-mongodb

Spring Boot Reference Guide

See Hi ber nat eJpaAut oConfi gur ati on and JpaBaseConf i gur ati on for more details.

59.5 Use a custom EntityManagerFactory

To take full control of the configuration of the Ent i t yManager Fact ory, you need to add a @ean
named "entityManagerFactory". To avoid eager initialization of JPA infrastructure, Spring Boot auto-
configuration does not switch on its entity manager based on the presence of a bean of that type. Instead
it has to do it by name.

59.6 Use a traditional persistence.xml

Spring doesn't require the use of XML to configure the JPA provider, and Spring Boot assumes you
want to take advantage of that feature. If you prefer to use per si st ence. xm then you need to define
your own @ean of type Local Enti t yManager Fact or yBean (with id "entityManagerFactory", and
set the persistence unit name there.

See JpaBaseConfi gur at i on for the default settings.

1.0.3.BUILD-SNAPSHOT Spring Boot 128

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java

Spring Boot Reference Guide

60. Database initialization

An SQL database can be initialized in different ways depending on what your stack is. Or of course you
can do it manually as long as the database is a separate process.

60.1 Initialize a database using JPA

JPA has features for DDL generation, and these can be set up to run on startup against the database.
This is controlled through two external properties:

* spring.jpa.generate-ddl (boolean) switches the feature on and off and is vendor independent.

* spring.jpa. hi bernate. ddl - aut o (enum) is a Hibernate feature that controls the behavior in a
more fine-grained way. See below for more detail.

60.2 Initialize a database using Hibernate

You can set spring.j pa. hi bernat e. ddl - aut o explicitly and the standard Hibernate property
values are none, val i dat e, updat e, cr eat e- dr op. Spring Boot chooses a default value for you
based on whether it thinks your database is embedded (default cr eat e- dr op) or not (default none).
An embedded database is detected by looking at the Connect i on type: hsql db, h2 and der by are
embedded, the rest are not. Be careful when switching from in-memory to a “real” database that you
don’t make assumptions about the existence of the tables and data in the new platform. You either have
to set ddl - aut o explicitly, or use one of the other mechanisms to initialize the database.

In addition, a file named i nport . sql in the root of the classpath will be executed on startup. This can
be useful for demos and for testing if you are careful, but probably not something you want to be on the
classpath in production. It is a Hibernate feature (nothing to do with Spring).

60.3 Initialize a database using Spring JDBC

Spring JDBC has a Dat aSour ce initializer feature. Spring Boot enables it by default and loads
SQL from the standard locations schema. sql and dat a. sql (in the root of the classpath). In
addition Spring Boot will load a file schenma- ${ pl atf orn}. sql where pl at f or mis the value of
spring. dat asour ce. pl at f or m e.g. you might choose to set it to the vendor name of the database
(hsqgl db, h2,oracl e, nysql , post gresql etc.). Spring Boot enables the failfast feature of the Spring
JDBC initializer by default, so if the scripts cause exceptions the application will fail to start.

To disable the failfast you can set spri ng. dat asour ce. conti nueOnError=true. This can be
useful once an application has matured and been deployed a few times, since the scripts can act as
“poor man’s migrations” — inserts that fail mean that the data is already there, so there would be no
need to prevent the application from running, for instance.

60.4 Initialize a Spring Batch database

If you are using Spring Batch then it comes pre-packaged with SQL initialization scripts for most popular
database platforms. Spring Boot will detect your database type, and execute those scripts by default,
and in this case will switch the fail fast setting to false (errors are logged but do not prevent the application
from starting). This is because the scripts are known to be reliable and generally do not contain bugs, so
errors are ignorable, and ignoring them makes the scripts idempotent. You can switch off the initialization
explicitly using spri ng. batch.initializer. enabl ed=f al se.

1.0.3.BUILD-SNAPSHOT Spring Boot 129

Spring Boot Reference Guide

60.5 Use a higher level database migration tool

Spring Boot works fine with higher level migration tools Flyway (SQL-based) and Liquibase (XML). In
general we prefer Flyway because it is easier on the eyes, and it isn’t very common to need platform
independence: usually only one or at most couple of platforms is needed.

1.0.3.BUILD-SNAPSHOT Spring Boot 130

http://flywaydb.org/
http://www.liquibase.org/

Spring Boot Reference Guide

61. Batch applications

61.1 Execute Spring Batch jobs on startup

Spring Batch auto configuration is enabled by adding @nabl eBat chPr ocessi ng (from Spring Batch)
somewhere in your context.

By default it executes all Jobs in the application context on startup (see
JobLauncherCommandLineRunner for details). You can narrow down to a specific job or jobs by
specifying spri ng. bat ch. j ob. names (comma separated job name patterns).

If the application context includes a JobRegi st ry then the jobs in spri ng. bat ch. j ob. nanes are
looked up in the registry instead of being autowired from the context. This is a common pattern with
more complex systems where multiple jobs are defined in child contexts and registered centrally.

See BatchAutoConfiguration and @EnableBatchProcessing for more details.

1.0.3.BUILD-SNAPSHOT Spring Boot 131

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/JobLauncherCommandLineRunner.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
https://github.com/spring-projects/spring-batch/blob/master/spring-batch-core/src/main/java/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.java

Spring Boot Reference Guide

62. Actuator

62.1 Change the HTTP port or address of the actuator
endpoints

In a standalone application the Actuator HTTP port defaults to the same as the main HTTP port. To
make the application listen on a different port set the external property nanagenent . port. To listen
on a completely different network address (e.g. if you have an internal network for management and
an external one for user applications) you can also set managenent . addr ess to a valid IP address
that the server is able to bind to.

For more detail look at the Managenent Server Properties source code and Section 33.3,
“Customizing the management server port” in the “Production-ready features” section.

62.2 Customize the “whitelabel” error page

The Actuator installs a “whitelabel” error page that you will see in browser client if you encounter a server
error (machine clients consuming JSON and other media types should see a sensible response with the
right error code). To switch it off you can set er r or . whi t el abel . enabl ed=f al se, but normally in
addition or alternatively to that you will want to add your own error page replacing the whitelabel one. If
you are using Thymeleaf you can do this by adding an er r or . ht M template. In general what you need
is a Vi ewthat resolves with a name of er r or , and/or a @ont r ol | er that handles the / er r or path.
Unless you replaced some of the default configuration you should find a BeanNaneVi ewResol ver in
your Appl i cati onCont ext so a @ean with id er r or would be a simple way of doing that. Look at
Err or MvcAut oConf i gur at i on for more options.

1.0.3.BUILD-SNAPSHOT Spring Boot 132

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ErrorMvcAutoConfiguration.java

Spring Boot Reference Guide

63. Security

63.1 Switch off the Spring Boot security configuration

If you define a @onfi gurati on with @nabl eWebSecurity anywhere in your application it will
switch off the default webapp security settings in Spring Boot. To tweak the defaults try setting properties
insecurity.* (see SecurityProperties for details of available settings) and SECURI TY section
of Common application properties.

63.2 Change the AuthenticationManager and add user
accounts

If you provide a @Bean of type Aut hent i cat i onManager the default one will not be created, so you
have the full feature set of Spring Security available (e.g. various authentication options).

Spring Security also provides a convenient Aut hent i cat i onManager Bui | der which can be used
to build an Aut hent i cat i onManager with common options. The recommended way to use this in a
webapp is to inject it into a void method in a WebSecur i t yConf i gur er Adapt er, e.g.

@onfiguration
public class SecurityConfiguration extends WbSecurityConfi gurerAdapter {

@\ut owi r ed
public voi d configured obal (Aut henti cati onManager Bui | der auth) throws Exception {
aut h. i nMenor yAut henti cation()
.withUser("barry").password("password").roles("USER"); // ... etc.

/1 ... other stuff for application security

You will get the best results if you put this in a nested class, or a standalone class (i.e. not mixed in
with a lot of other @eans that might be allowed to influence the order of instantiation). The secure web
sample is a useful template to follow.

63.3 Enable HTTPS when running behind a proxy server

Ensuring that all your main endpoints are only available over HTTPS is an important chore for any
application. If you are using Tomcat as a servlet container, then Spring Boot will add Tomcat's own
Renot el pVal ve automatically if it detects some environment settings, and you should be able to
rely on the Ht t pSer vl et Request to report whether it is secure or not (even downstream of a proxy
server that handles the real SSL termination). The standard behavior is determined by the presence or
absence of certain request headers (x- f or war ded- f or and x- f or war ded- pr ot 0), whose names
are conventional, so it should work with most front end proxies. You can switch on the valve by adding
some entries to appl i cati on. properti es, e.g.

server.tontat.renote_i p_header =x-forwarded-for
server.tontat. prot ocol _header =x-f or war ded- prot o

(The presence of either of those properties will switch on the valve. Or you can add the Renot el pVal ve
yourself by adding a Tontat EnbeddedSer vl et Cont ai ner Fact ory bean.)

1.0.3.BUILD-SNAPSHOT Spring Boot 133

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jc-authentication
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-web-secure
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-web-secure

Spring Boot Reference Guide

Spring Security can also be configured to require a secure channel for all (or some requests). To
switch that on in a Spring Boot application you just need to set security.require_httpstotrue
inapplication. properties.

1.0.3.BUILD-SNAPSHOT Spring Boot 134

Spring Boot Reference Guide

64. Hot swapping

64.1 Reload static content

There are several options for hot reloading. Running in an IDE (especially with debugging on) is a
good way to do development (all modern IDEs allow reloading of static resources and usually also
hot-swapping of Java class changes). The Maven and Gradle plugins also support running from the
command line with reloading of static files. You can use that with an external css/js compiler process
if you are writing that code with higher level tools.

64.2 Reload Thymeleaf templates without restarting the
container

If you are wusing Thymeleaf, then set spring.thyneleaf.cache to false. See
Thynel eaf Aut oConf i gur at i on for other template customization options.

64.3 Reload Java classes without restarting the container

Modern IDEs (Eclipse, IDEA, etc.) all support hot swapping of bytecode, so if you make a change that
doesn't affect class or method signatures it should reload cleanly with no side effects.

Spring Loaded goes a little further in that it can reload class definitions with changes in the method
signatures. With some customization it can force an Appl i cat i onCont ext to refresh itself (but there
is no general mechanism to ensure that would be safe for a running application anyway, so it would
only ever be a development time trick probably).

1.0.3.BUILD-SNAPSHOT Spring Boot 135

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-loaded

Spring Boot Reference Guide

65. Build

65.1 Customize dependency versions with Maven

If you use a Maven build that inherits from spri ng- boot - st art er - par ent but you want to override
a specific third-party dependency you can add appropriate <properti es> elements. Browse the
spri ng- dependenci es POM for a complete list of properties. For example, to pick a different sl f 4j

version you would add the following:

<properties>
<sl f4j . versi on>1. 7. 5<sl f 4j . ver si on>
</ properties>

Warning
Each Spring Boot release is designed and tested against a specific set of third-party

dependencies. Overriding versions may cause compatibilty issues.

65.2 Remote debug a Spring Boot application started with
Maven

To attach a remote debugger to a Spring Boot application started with Maven you can use the mvnDebug
command rather than mvn. For example:

‘ $ nmvnDebug spri ng-boot: run

You can now attach a remote debugger to your running application on port 8000.

65.3 Build an executable archive with Ant

To build with Ant you need to grab dependencies, compile and then create a jar or war archive as
normal. To make it executable:

1. Use the appropriate launcher as a Mai n- Cl ass, e.g. Jar Launcher for a jar file, and specify the
other properties it needs as manifest entries, principally a St art - Cl ass.

2. Add the runtime dependencies in a nested "lib" directory (for a jar) and the pr ovi ded (embedded
container) dependencies in a nested | i b- provi ded directory. Remember not to compress the
entries in the archive.

3. Add the spri ng- boot - | oader classes at the root of the archive (so the Mai n- Cl ass is available).

Example:

<target name="buil d" depends="conpile">
<copy todir="target/classes/|ib">
<fileset dir="lib/runtime" />
</ copy>
<jar destfile="target/spring-boot-sanple-actuator-${spring-boot.version}.jar" conpress="fal se">
<fileset dir="target/cl asses" />
<fileset dir="src/ main/resources" />
<zipfileset src="lib/loader/spring-boot-|oader-jar-${spring-boot.version}.jar" />
<nmani f est >
<attribute name="Main-C ass" val ue="org. spri ngfranmewor k. boot . | oader. Jar Launcher" />
<attribute nanme="Start-C ass" value="${start-class}" />

1.0.3.BUILD-SNAPSHOT Spring Boot 136

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-dependencies/pom.xml

Spring Boot Reference Guide

</ mani f est >
</jar>
</target>

The Actuator Sample has a bui | d. xm that should work if you run it with

‘$ ant -lib <path_to>/ivy-2.2. jar

after which you can run the application with

‘$ java -jar target/*.jar

1.0.3.BUILD-SNAPSHOT Spring Boot 137

Spring Boot Reference Guide

66. Traditional deployment

66.1 Create a deployable war file

Use the Spri ngBoot Servl et nitializer base class, which is picked up by Spring’s Servlet 3.0
support on deployment. Add an extension of that to your project and build a war file as normal. For more
detail, see the “Converting a jar Project to a war” guide on the spring.io website and the sample below.

The war file can also be executable if you use the Spring Boot build tools. In that case the embedded
container classes (to launch Tomcat for instance) have to be added to the war in a | i b- provi ded
directory. The tools will take care of that as long as the dependencies are marked as "provided" in Maven
or Gradle. Here's a Maven example in the Boot Samples.

66.2 Create a deployable war file for older servlet containers

Older Servlet containers don’t have support for the Ser vl et Cont ext I ni ti al i zer bootstrap process
used in Servlet 3.0. You can still use Spring and Spring Boot in these containers but you are going to
need to add a web. xml to your application and configure it to load an Appl i cati onCont ext via a
Di spat cher Servl et .

66.3 Convert an existing application to Spring Boot

For a non-web application it should be easy (throw away the code that creates
your ApplicationContext and replace it with «calls to SpringApplication or
Spri ngAppl i cati onBui | der). Spring MVC web applications are generally amenable to first creating
a deployable war application, and then migrating it later to an executable war and/or jar. Useful reading
is in the Getting Started Guide on Converting a jar to a war.

Create a deployable war by extending Spri ngBoot Servl etlnitializer (e.g. in a class called
Appl i cati on), and add the Spring Boot @nabl eAut oConf i gur at i on annotation. Example:

@onfiguration

@Enabl eAut oConfi gurati on

@onponent Scan

public class Application extends SpringBootServletlnitializer {

@verride
protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {
return application.sources(Application.class);

}
}

Remember that whatever you put in the sour ces is just a Spring Appl i cat i onCont ext and normally
anything that already works should work here. There might be some beans you can remove later and let
Spring Boot provide its own defaults for them, but it should be possible to get something working first.

Static resources can be movedto/ publi c (or/ staticor/resourcesor/ META-|I NF/ resour ces)
in the classpath root. Same for nessages. properti es (Spring Boot detects this automatically in the
root of the classpath).

Vanilla usage of Spring Di spat cher Ser vl et and Spring Security should require no further changes. If
you have other features in your application, using other servlets or filters for instance, then you may need
to add some configuration to your Appl i cat i on context, replacing those elements from the web. xm
as follows:

1.0.3.BUILD-SNAPSHOT Spring Boot 138

http://spring.io/guides/gs/convert-jar-to-war
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-traditional/pom.xml
http://spring.io/guides/gs/convert-jar-to-war/

Spring Boot Reference Guide

» A @ean of type Ser vl et or Ser vl et Regi st rati onBean installs that bean in the container as if
itwas a <servl et/ >and <servl et - mappi ng/ > inweb. xm .

* A@eanoftype Filter orFilterRegistrati onBean behaves similarly (likea<filter/>and
<filter-mapping/>.

e An Appl i cati onCont ext in an XML file can be added to an @ nport in your Appl i cati on. Or
simple cases where annotation configuration is heavily used already can be recreated in a few lines
as @ean definitions.

Once the war is working we make it executable by adding a mai h method to our Appl i cati on, e.g.

public static void main(String[] args) {
Spri ngApplication. run(Application.class, args);

}

Applications can fall into more than one category:

Servlet 3.0 applications with no web. xm .

» Applications with a web. xm .

Applications with a context hierarchy.

Applications without a context hierarchy.
All of these should be amenable to translation, but each might require slightly different tricks.

Servlet 3.0 applications might translate pretty easily if they already use the Spring Servlet 3.0 initializer
support classes. Normally all the code from an existing WebAppl i cationlnitializer can be
moved into a Spri ngBoot Servl etlnitializer. If your existing application has more than one
Appl i cati onCont ext (e.g. if it uses Abstract Di spatcherServletlnitializer) then you
might be able to squash all your context sources into a single Spri ngApplicati on. The main
complication you might encounter is if that doesn’t work and you need to maintain the context hierarchy.
See the entry on building a hierarchy for examples. An existing parent context that contains web-specific
features will usually need to be broken up so that all the Ser vl et Cont ext Awar e components are in
the child context.

Applications that are not already Spring applications might be convertible to a Spring Boot application,
and the guidance above might help, but your mileage may vary.

1.0.3.BUILD-SNAPSHOT Spring Boot 139

Part X. Appendices

Spring Boot Reference Guide

Appendix A. Common application
properties

Various properties can be specified inside your appl i cati on. properti es/application.ynl file
or as command line switches. This section provides a list common Spring Boot properties and references
to the underlying classes that consume them.

Note

Property contributions can come from additional jar files on your classpath so you should not
consider this an exhaustive list. It is also perfectly legit to define your own properties.

Warning

This sample file is meant as a guide only. Do not copy/paste the entire content into your
application; rather pick only the properties that you need.

#

COMMON SPRI NG BOOT PROPERTI ES

#

This sanple file is provided as a guideline. Do NOT copy it inits
entirety to your own application. O

#

L e

CORE PROPERTI ES

< P e

SPRI NG CONFI G (Confi gFil eAppli cationLi stener)
spring.config.name= # config file name (default to 'application')
spring.config.location= # |ocation of config file

PROFI LES
spring.profiles= # comm |ist of active profiles

APPLI CATI ON SETTI NGS (SpringApplication)
spring. mai n. sour ces=

spring. mai n. web- envi ronnment = # detect by defaul t
spring. mai n. show banner =t r ue

spring.main....= # see class for all properties

LOGG NG

| oggi ng. pat h=/ var/| ogs
| oggi ng. fil e=nyapp. | og
| oggi ng. confi g=

| DENTI TY (Context!|dApplicationContextlnitializer)
spring. appl i cation. nane=
spring. application.index=

EMBEDDED SERVER CONFI GURATI ON (Server Properti es)

server. port=8080

server.address= # bind to a specific NIC

server.session-timeout= # session tinmeout in sections
server.context-path= # the context path, defaults to '/’

server.servl et-path= # the servlet path, defaults to '/’
server.toncat.access-1og-pattern= # | og pattern of the access |og
server.tontat. access-| og-enabl ed=fal se # is access | oggi ng enabl ed
server.tonctat. protocol - header =x- f orwarded-proto # ssl forward headers
server.toncat.renote-ip-header =x-f orwarded-f or
server.toncat.basedir=/tnp # base dir (usually not needed, defaults to tnp)

1.0.3.BUILD-SNAPSHOT Spring Boot 141

http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/SpringApplication.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/context/ContextIdApplicationContextInitializer.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

spri
spri
spri
spri
spri
spri

spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri

ng
ng
ng
ng
ng
ng

security.
security. user. pas
security.user.rol
security.require-
security. enabl e-c
security. basic.en
security.basic.re
security. basic. pal
security. headers.
security. headers.
security. headers.
security. headers.
security. headers.
security. sessions
security.ignored=

ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.

server. tontat. backgr ound- processor-del ay=30; # in seconds
server.tontat.max-threads = 0 # nunber of threads in protocol
server.tontat.uri-encoding = UTF-8 # character encoding to use for

SPRI NG WC (HttpMapper Properties)

. thynel eaf .
. thynel eaf .
.thynel eaf .
.thynel eaf .
. thynel eaf .
. thynel eaf .

http. mappers.json-pretty-print=false # pretty print JSON
ht t p. mappers. json-sort-keys=fal se # sort keys

spring. mvc. | ocale= # set fixed locale, e.g. en_WK
spring.view prefix= # WC view prefix

spring.view suffix=# ... and suffix

spring. resources. cache-peri od= # cache tinmeouts in headers sent to browser

THYMELEAF (Thynel eaf Aut oConfi gur ati on)

prefix=cl asspath:/tenpl ates/
suffix=.htn

nmode=HTM.5

encodi ng=UTF- 8

handl er
URL decodi ng

content-type=text/htm # ;charset=<encoding> is added

cache=true # set to false for hot refresh

| NTERNATI ONALI ZATI ON (MessageSour ceAut oConf i gur ati on)
spring. nessages. basename=nessages

spring. nessages. encodi ng=UTF- 8

spring. nessages. cacheSeconds=- 1

SECURITY (SecurityProperties)

user. nane=user # | ogin usernane

sword= # | ogi n password

e=USER # rol e assigned to the user
ssl =fal se # advanced settings ...
srf=fal se

abl ed=t rue

al meSpring

th= # [**

xss=fal se

cache=f al se

frame=fal se

cont ent Type=f al se

hsts=all # none / domain / all

=stateless # always / never / if_required / stateless

f al se

dat asour ce

dat asour ce

dat asour ce

dat asour ce.
dat asour ce.
dat asour ce.
dat asour ce.
dat asour ce.
dat asour ce.
dat asour ce.

dat asour ce.
dat asour ce.
dat asour ce.
dat asour ce.

dat asour ce.
dat asour ce.
dat asour ce.
dat asour ce.
dat asour ce.
dat asour ce.

nanme= # nanme of the data source
.intialize=true # popul ate using data.sql
schema= # a schema resource reference

continueOnError=fal se # continue even if can't

driverCl assNane= # JDBC Settings...
url =

user nane=

. passwor d=

mex- acti ve=100 # Advanced configuration...
max-idl e=8

mn-idl e=8

initial-size=10

.val i dation-query=

t est - on- borrow=f al se
test-on-return=fal se
test-while-idle=

ti me- between-eviction-runs-mllis=
mn-evictable-idle-time-mllis=
max-wait-mllis=

MONGODB (MongoProperti es)
spring. dat a. nongodb. host = # the db host

spring. dat a. nongodb. port =27017 # the connection port (defaults to
spring. dat a. nrongodb. uri =nmongodb: / /| ocal host/test # connection URL

DATASOURCE (Dat aSour ceAut oConfiguration & Abstract Dat aSour ceConfi gurati on)
dat asour ce.

platforme # the platformto use in the schema resource (schema-${platfornt.sql)
be initialized
separator=; # statenent separator in SQ initialization scripts

27107)

1.0.3.BUILD-SNAPSHOT Spring Boot

142

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/HttpMapperProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/MessageSourceAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure//jdbc/AbstractDataSourceConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoProperties.java

Spring Boot Reference Guide

spring. j pa. openl nVi ew=t r ue

spring. j pa. showsql =true

spring.j pa. dat abase- pl at f or e

spring.j pa. dat abase=

spring.jpa.generate-ddl =

spring.j pa. hi bernate. nam ng-strategy= # naning cl assnanme

JMX
spring. j nx. enabl ed=true # Expose MBeans from Spring

RABBI T (RabbitProperties)
spring. rabbi t ng. host = # connecti on host

spring. rabbitng. port= # connecti on port

spring. rabbitng. usernane= # | ogi n user
spring. rabbi t ng. password= # | ogi n password
spring. rabbi t n. vi rtual host =
spring. rabbi t ng. dynamni c=

REDI S (Redi sProperties)

spring.redis. host=local host # server host
spring. redis. password= # server password

spring. redis. port=6379 # connection port

spring. redis. pool . max-idl e=8 # pool settings ..
spring.redis.pool.mn-idl e=0

spring. redis. pool . max-active=8

spring.redis. pool.max-wait=-1

ACTI VEMQ (ActiveMQProperties)

spring. activeny. user =
spring. acti veny. passwor d=
spring.activeng.in-nmenory=true
spring. acti veny. pool ed=f al se

JV5 (JnsTenpl at eProperties)
spring.j ms. pub- sub- domai n=

SPRI NG BATCH (BatchDat abasel nitializer)
spring. bat ch. j ob. nanes=j ob1l, j ob2

spring. bat ch. j ob. enabl ed=t rue

spring. batch.initializer.enabl ed=true
spring. bat ch. schema= # batch schema to | oad

ACP
spring. aop. aut o=
spring. aop. proxyTar get G ass=

FI LE ENCODI NG (Fil eEncodi ngAppli cati onli stener)
spring. mandat ory-fil e-encodi ng=f al se

MANAGEMENT HTTP SERVER (Managenent Server Properti es)
managenent . port= # defaults to 'server.port'
managenent . address= # bind to a specific NIC
managenent . cont ext Pat h= # default to '/’

ENDPO NTS (Abstract Endpoi nt subcl asses)
endpoi nts. aut oconfi g.i d=autoconfig

endpoi nts. aut oconfi g. sensitive=true
endpoi nts. aut oconfi g. enabl ed=tr ue

endpoi nts. beans. i d=beans

endpoi nts. beans. sensitive=true

endpoi nt s. beans. enabl ed=t r ue

JPA (JpaBaseConfi guration, HibernateJpaAutoConfi guration)
spring.jpa.properties.*= # properties to set on the JPA connection

spring. rabbi t ng. addr esses= # connecti on addresses (e.g. nyhost

spring.jpa. hibernate.ddl -auto= # defaults to create-drop for enbedded dbs

19999, ot her host : 1111)

spring. activeny. broker-url=tcp://local host: 61616 # connection URL

1.0.3.BUILD-SNAPSHOT Spring Boot

143

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/redis/RedisProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/ActiveMQProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JmsTemplateProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchDatabaseInitializer.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/context/FileEncodingApplicationListener.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/endpoint/AbstractEndpoint.java

Spring Boot Reference Guide

endpoi nts. configprops.id=confi gprops
endpoi nts. confi gprops. sensitive=true
endpoi nts. confi gprops. enabl ed=t rue
endpoi nts. confi gprops. keys-to-saniti ze=password, secr et
endpoi nts. dunp. i d=dunp

endpoi nts. dunp. sensi tive=true

endpoi nts. dunp. enabl ed=t r ue
endpoi nts. env. i d=env

endpoi nts. env. sensitive=true

endpoi nts. env. enabl ed=t rue

endpoi nts. heal th. i d=heal th

endpoi nts. heal th. sensi tive=fal se
endpoi nts. heal t h. enabl ed=true

endpoi nts. i nfo.id=info

endpoi nts.info.sensitive=false
endpoi nts. i nf o. enabl ed=t rue

endpoi nts. nmetrics.id=nmetrics

endpoi nts. metrics. sensitive=true
endpoi nts. metrics. enabl ed=true
endpoi nt's. shut down. i d=shut down
endpoi nts. shut down. sensi ti ve=true
endpoi nt s. shut down. enabl ed=f al se
endpoi nts.trace.id=trace

endpoi nts. trace. sensitive=true
endpoi nts. trace. enabl ed=t rue

MVC ONLY ENDPO NTS

endpoi nts. j ol oki a. pat h=j ol oki a

endpoi nts. j ol oki a. sensitive=true

endpoi nts. j ol oki a. enabl ed=true # when using Jol oki a
endpoi nts. error. path=/error

JMX ENDPO NT (Endpoi nt MBeanExport Properti es)

endpoi nts. j nx. enabl ed=t rue

endpoi nts. j nk. domai n= # the JMX domain, defaults to 'org.springboot
endpoi nt's. j nx. uni que- nanes=f al se

endpoi nts. j nx. enabl ed=true

endpoi nts. j nx. st ati cNanes=

JOLOKI A (Jol oki aProperti es)
jol okia.config.*= # See Jol oki a manua

REMOTE SHELL

shel | . auth=sinple # jaas, key, sinple, spring

shel | . conmand-refresh-interval =-1

shel | . command- pat h- pattern= # cl asspat h*:/commands/**, cl asspath*:/crash/ commands/**
shel | . confi g-path-patterns= # cl asspath*:/crash/*
shel | . di sabl ed- pl ugi ns=fal se # don't expose plugins
shel | . ssh. enabl ed= # ssh settings ..

shel | . ssh. keyPat h=

shel | . ssh. port=

shel | . tel net.enabl ed= # tel net settings ..

shel |l . tel net. port=

shel | . aut h. j aas. donmai n= # aut hentication settings ..
shel | . aut h. key. pat h=

shel | . aut h. si npl e. user. nane=

shel | . aut h. si npl e. user. passwor d=

shel | . auth. spring.rol es=

AT | NFO
spring.git.properties= # resource ref to generated git info properties file

1.0.3.BUILD-SNAPSHOT Spring Boot 144

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointMBeanExportProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/JolokiaProperties.java

Spring Boot Reference Guide

Appendix B. Auto-configuration
classes

Here is a list of all auto configuration classes provided by Spring Boot with links to documentation and
source code. Remember to also look at the autoconfig report in your application for more details of
which features are switched on. (start the app with - - debug or - Ddebug, or in an Actuator application
use the aut oconf i g endpoint).

B.1 From the “spring-boot-autoconfigure” module

The following auto-configuration classes are from the spri ng- boot - aut oconf i gur e module:

Configuration Class Links

AopAutoConfiguration javadoc
BatchAutoConfiguration javadoc
DataSourceAutoConfiguration javadoc
DataSourceTransactionManagerAutoConfiguration javadoc
DeviceResolverAutoConfiguration javadoc
DispatcherServletAutoConfiguration javadoc
EmbeddedServletContainerAutoConfiguration javadoc
HibernateJpaAutoConfiguration javadoc
HttpMessageConvertersAutoConfiguration javadoc
JmsTemplateAutoConfiguration javadoc
JmxAutoConfiguration javadoc
JpaRepositoriesAutoConfiguration javadoc
MessageSourceAutoConfiguration javadoc
MongoAutoConfiguration javadoc
MongoRepositoriesAutoConfiguration javadoc
MongoTemplateAutoConfiguration javadoc
MultipartAutoConfiguration javadoc
PropertyPlaceholderAutoConfiguration javadoc
RabbitAutoConfiguration javadoc
ReactorAutoConfiguration javadoc
RedisAutoConfiguration javadoc
SecurityAutoConfiguration javadoc

1.0.3.BUILD-SNAPSHOT Spring Boot 145

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mobile/DeviceResolverAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/mobile/DeviceResolverAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/DispatcherServletAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/DispatcherServletAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/EmbeddedServletContainerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/EmbeddedServletContainerAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/HttpMessageConvertersAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/HttpMessageConvertersAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JmsTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jms/JmsTemplateAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/JpaRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/data/JpaRepositoriesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/MessageSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/MessageSourceAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/mongo/MongoAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/MongoRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/data/MongoRepositoriesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/MongoTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/data/MongoTemplateAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/MultipartAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/MultipartAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/PropertyPlaceholderAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/PropertyPlaceholderAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/amqp/RabbitAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/reactor/ReactorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/reactor/ReactorAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/redis/RedisAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/redis/RedisAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/security/SecurityAutoConfiguration.html

Spring Boot Reference Guide

Configuration Class Links

ServerPropertiesAutoConfiguration javadoc
ThymeleafAutoConfiguration javadoc
WebMvcAutoConfiguration javadoc
WebSocketAutoConfiguration javadoc

B.2 From the “spring-boot-actuator”

module

The following auto-configuration classes are from the spri ng- boot - act uat or module:

Configuration Class Links

AuditAutoConfiguration javadoc
CrshAutoConfiguration javadoc
EndpointAutoConfiguration javadoc
EndpointMBeanExportAutoConfiguration javadoc
EndpointWebMvcAutoConfiguration javadoc
ErrorMvcAutoConfiguration javadoc
JolokiaAutoConfiguration javadoc
ManagementSecurityAutoConfiguration javadoc
ManagementServerPropertiesAutoConfiguration javadoc
MetricFilterAutoConfiguration javadoc
MetricRepositoryAutoConfiguration javadoc
TraceRepositoryAutoConfiguration javadoc
TraceWebFilterAutoConfiguration javadoc

1.0.3.BUILD-SNAPSHOT Spring Boot

146

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerPropertiesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/ServerPropertiesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/websocket/WebSocketAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/websocket/WebSocketAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/AuditAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/AuditAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/EndpointAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointMBeanExportAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/EndpointMBeanExportAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointWebMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/EndpointWebMvcAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ErrorMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/ErrorMvcAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/JolokiaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/JolokiaAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementSecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/ManagementSecurityAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerPropertiesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/ManagementServerPropertiesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/MetricFilterAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/MetricFilterAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/MetricRepositoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/MetricRepositoryAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/TraceRepositoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/TraceRepositoryAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/TraceWebFilterAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/TraceWebFilterAutoConfiguration.html

Spring Boot Reference Guide

Appendix C. The executable jar
format

The spri ng- boot - | oader modules allows Spring Boot to support executable jar and war files. If
you're using the Maven or Gradle plugin, executable jars are automatically generated and you generally
won't need to know the details of how they work.

If you need to create executable jars from a different build system, or if you are just curious about the
underlying technology, this section provides some background.

C.1 Nested JARs

Java does not provide any standard way to load nested jar files (i.e. jar files that are themselves
contained within a jar). This can be problematic if you are looking to distribute a self contained application
that you can just run from the command line without unpacking.

To solve this problem, many developers use “shaded” jars. A shaded jar simply packages all classes,
from all jars, into a single uber jar. The problem with shaded jars is that it becomes hard to see which
libraries you are actually using in your application. It can also be problematic if the the same filename
is used (but with different content) in multiple jars. Spring Boot takes a different approach and allows
you to actually nest jars directly.

The executable jar file structure

Spring Boot Loader compatible jar files should be structured in the following way:

exanpl e. j ar

|

+- META- | NF

| +- MANI FEST. MF

+-org

+- spri ngf ramewor k
+- boot
+- | oader
+-<spring boot |oader classes>

I

|

|

|
+-com
| +-nyconpany

| + proj ect

| +- Youdl asses. cl ass
+lib

+- dependencyl. j ar

+- dependency?2. j ar

Dependencies should be placed in a nested | i b directory.
The executable war file structure

Spring Boot Loader compatible war files should be structured in the following way:

exanpl e. j ar
|
+- META- | NF
| +- MANI FEST. MF
+-org
| +-springframework
| +- boot

1.0.3.BUILD-SNAPSHOT Spring Boot 147

Spring Boot Reference Guide

| +- | oader
| +-<spring boot |oader classes>
+- VEB- | NF

+-cl asses

| +-com
+- myconpany

+- proj ect

+- Youd asses. cl ass

+- dependencyl. j ar
+- dependency?2. j ar
i b-provi ded
+-servlet-api.jar
+- dependency3. j ar

|

|

|
+1lib
|

|

+-

Dependencies should be placed in a nested VEB- | NF/ | i b directory. Any dependencies that are
required when running embedded but are not required when deploying to a traditional web container
should be placed in VEB- | NF/ | i b- pr ovi ded.

C.2 Spring Boot’'s “JarFile” class

The core class used to support loading nested jars is
org. springframework. boot. | oader.jar.JarFile. It allows you load jar content from a
standard jar file, or from nested child jar data. When first loaded, the location of each Jar Entry is
mapped to a physical file offset of the outer jar:

myapp. j ar

foocooanoo foocooomocosocooocooan +
| | /lib/nylib.jar |
| Aclass [+--------- tooeae- +|
| || B.class | B.class ||
| e Gmmesssoes +|
fmocsoasos fmocccocscocosososocoo +
N N N

0063 3452 3980

The example above shows how A. cl ass can be found in myapp. j ar position 0063. B. cl ass from
the nested jar can actually be found in nyapp. j ar position 3452 and B. cl ass is at position 3980.

Armed with this information, we can load specific nested entries by simply seeking to appropriate part if
the outer jar. We don’t need to unpack the archive and we don’t need to read all entry data into memory.

Compatibility with the standard Java “JarFile”

Spring Boot Loader strives to remain compatible with existing code and libraries.
org. spri ngframewor k. boot . | oader. jar. JarFil e extends from java. util.jar.JarFile
and should work as a drop-in replacement. The RandomAccessJarFil e. get URL() method
will return a URL that opens a java.net.Jar URLConnection compatible connection.
RandonmAccessJar Fi | e URLs can be used with Java’'s URLCl assLoader .

C.3 Launching executable jars

The or g. spri ngframewor k. boot . | oader. Launcher class is a special bootstrap class that is
used as an executable jars main entry point. It is the actual Mai n- Cl ass in your jar file and it's used to
setup an appropriate URLCl assLoader and ultimately call your mai n() method.

There are 3 launcher subclasses (Jar Launcher , War Launcher and Pr operti esLauncher). Their
purpose is to load resources (. cl ass files etc.) from nested jar files or war files in directories (as
opposed to explicitly on the classpath). In the case of the [Jar | War] Launcher the nested paths

1.0.3.BUILD-SNAPSHOT Spring Boot 148

Spring Boot Reference Guide

are fixed (lib/*.jar and |i b-provi ded/*.jar for the war case) so you just add extra jars in
those locations if you want more. The Properti esLauncher looks in I'i b/ by default, but you
can add additional locations by setting an environment variable LOADER _PATH or | oader . pat h in
appl i cation. properties (comma-separated list of directories or archives).

Launcher manifest

You need to specify an appropriate Launcher as the Mai n-Cd ass attribute of META-1 NF/
MANI FEST. MF. The actual class that you want to launch (i.e. the class that you wrote that contains a
mai n method) should be specified in the St art - C ass attribute.

For example, here is a typical MANI FEST. M- for an executable jar file:

Mai n-C ass: org. springfranmework. boot . | oader. Jar Launcher
Start-Cl ass: com nyconpany. proj ect. MyApplication

For a war file, it would be:

Mai n- Cl ass: org. springfranmework. boot . | oader . War Launcher
Start-Cl ass: com nmyconpany. proj ect. M/Appli cation

Note

You do not need to specify O ass- Pat h entries in your manifest file, the classpath will be deduced
from the nested jars.

Exploded archives

Certain PaaS implementations may choose to unpack archives before they run. For example, Cloud
Foundry operates in this way. You can run an unpacked archive by simply starting the appropriate
launcher:

$ unzip -q nyapp.jar
$ java org. springfranmework. boot . | oader. Jar Launcher

C.4 PropertiesLauncher Features

Properti esLauncher has afew special features that can be enabled with external properties (System
properties, environment variables, manifest entries or appl i cati on. properti es).

Key Purpose
| oader. path Comma-separated Classpath, e.g. | i b: ${ HOVE} / app/ | i b.
| oader. home Location of additional properties file, e.g. fi l e: /// opt/ app

(defaults to ${ user . dir})

| oader. args Default arguments for the main method (space separated)
| oader. main Name of main class to launch, e.g. com app. Appl i cati on.
| oader. confi g. name Name of properties file, e.g. | oader (defaults to appl i cati on).

| oader. config.l ocation Path to properties file, e.g. cl asspat h: | oader. properties
(defaults to appl i cati on. properti es).

1.0.3.BUILD-SNAPSHOT Spring Boot 149

Spring Boot Reference Guide

Key Purpose

| oader. system Boolean flag to indicate that all properties should be added to
System properties (defaults to f al se)

Manifest entry keys are formed by capitalizing initial letters of words and changing the separator to "- "
from ". " (e.g. Loader - Pat h). The exception is | oader . mai n which is looked up as Start - C ass
in the manifest for compatibility with Jar Launcher).

Environment variables can be capitalized with underscore separators instead of periods.

» | oader . hone is the directory location of an additional properties file (overriding the default) as long
as | oader. confi g. | ocati on is not specified.

» | oader. pat h can contain directories (scanned recursively for jar and zip files), archive paths, or
wildcard patterns (for the default JVM behavior).

» Placeholder replacement is done from System and environment variables plus the properties file itself
on all values before use.

C.5 Executable jar restrictions

There are a number of restrictions that you need to consider when working with a Spring Boot Loader
packaged application.

Zip entry compression

The Zi pEnt ry for a nested jar must be saved using the Zi pEnt r y. STORED method. This is required
so that we can seek directly to individual content within the nested jar. The content of the nested jar file
itself can still be compressed, as can any other entries in the outer jar.

System ClassLoader

Launched applications should use Thr ead. get Cont ext Cl assLoader () when loading classes
(most libraries and frameworks will do this by default). Trying to load nested jar classes via
Cl assLoader . get Syst enCCl assLoader () will fail. Please be aware that j ava. util. Loggi ng
always uses the system classloader, for this reason you should consider a different logging
implementation.

C.6 Alternative single jar solutions

If the above restrictions mean that you cannot use Spring Boot Loader the following alternatives could
be considered:

* Maven Shade Plugin

» JarClassLoader

e OneJar

1.0.3.BUILD-SNAPSHOT Spring Boot 150

http://maven.apache.org/plugins/maven-shade-plugin/
http://www.jdotsoft.com/JarClassLoader.php
http://one-jar.sourceforge.net

	Spring Boot Reference Guide
	Table of Contents
	Part I. Spring Boot Documentation
	1. About the documentation
	2. Getting help
	3. First steps
	4. Working with Spring Boot
	5. Learning about Spring Boot features
	6. Moving to production
	7. Advanced topics

	Part II. Getting started
	8. Introducing Spring Boot
	9. Installing Spring Boot
	9.1 Installation instructions for the Java developer
	Maven installation
	Gradle installation

	9.2 Installing the Spring Boot CLI
	Manual installation
	Installation with GVM
	OSX Homebrew installation
	Command-line completion
	Quick start Spring CLI example

	10. Developing your first Spring Boot application
	10.1 Creating the POM
	10.2 Adding classpath dependencies
	10.3 Writing the code
	The @RestController and @RequestMapping annotations
	The @EnableAutoConfiguration annotation
	The “main” method

	10.4 Running the example
	10.5 Creating an executable jar

	11. What to read next

	Part III. Using Spring Boot
	12. Build systems
	12.1 Maven
	Inheriting the starter parent
	Using your own parent POM
	Changing the Java version
	Using the Spring Boot Maven plugin

	12.2 Gradle
	12.3 Ant
	12.4 Starter POMs

	13. Structuring your code
	13.1 Using the “default” package
	13.2 Locating the main application class

	14. Configuration classes
	14.1 Importing additional configuration classes
	14.2 Importing XML configuration

	15. Auto-configuration
	15.1 Gradually replacing auto-configuration
	15.2 Disabling specific auto-configuration

	16. Spring Beans and dependency injection
	17. Running your application
	17.1 Running from an IDE
	17.2 Running as a packaged application
	17.3 Using the Maven plugin
	17.4 Using the Gradle plugin
	17.5 Hot swapping

	18. Packaging your application for production
	19. What to read next

	Part IV. Spring Boot features
	20. SpringApplication
	20.1 Customizing SpringApplication
	20.2 Fluent builder API
	20.3 Application events and listeners
	20.4 Web environment
	20.5 Using the CommandLineRunner
	20.6 Application exit

	21. Externalized Configuration
	21.1 Accessing command line properties
	21.2 Application property files
	21.3 Profile specific properties
	21.4 Placeholders in properties
	21.5 Using YAML instead of Properties
	Loading YAML
	Exposing YAML as properties in the Spring Environment
	Multi-profile YAML documents
	YAML shortcomings

	21.6 Typesafe Configuration Properties
	Relaxed binding
	@ConfigurationProperties Validation

	22. Profiles
	22.1 Adding active profiles
	22.2 Programmatically setting profiles
	22.3 Profile specific configuration files

	23. Logging
	23.1 Log format
	23.2 Console output
	23.3 File output
	23.4 Custom log configuration

	24. Developing web applications
	24.1 The “Spring Web MVC framework”
	Spring MVC auto-configuration
	HttpMessageConverters
	Static Content
	Template engines

	24.2 Embedded servlet container support
	Servlets and Filters
	The EmbeddedWebApplicationContext
	Customizing embedded servlet containers
	Programmatic customization
	Customizing ConfigurableEmbeddedServletContainerFactory directly

	JSP limitations

	25. Security
	26. Working with SQL databases
	26.1 Configure a DataSource
	Embedded Database Support
	Connection to a production database

	26.2 Using JdbcTemplate
	26.3 JPA and “Spring Data”
	Entity Classes
	Spring Data JPA Repositories
	Creating and dropping JPA databases

	27. Working with NoSQL technologies
	27.1 MongoDB
	Connecting to a MongoDB database
	MongoTemplate
	Spring Data MongoDB repositories

	28. Testing
	28.1 Test scope dependencies
	28.2 Testing Spring applications
	28.3 Testing Spring Boot applications
	28.4 Test utilities
	ConfigFileApplicationContextInitializer
	EnvironmentTestUtils
	OutputCapture
	TestRestTemplate

	29. Developing auto-configuration and using conditions
	29.1 Understanding auto-configured beans
	29.2 Locating auto-configuration candidates
	29.3 Condition annotations
	Class conditions
	Bean conditions
	Resource conditions
	Web Application Conditions
	SpEL expression conditions

	30. What to read next

	Part V. Production-ready features
	31. Enabling production-ready features.
	32. Endpoints
	32.1 Customizing endpoints
	32.2 Custom health information
	32.3 Custom application info information
	Git commit information

	33. Monitoring and management over HTTP
	33.1 Exposing sensitive endpoints
	33.2 Customizing the management server context path
	33.3 Customizing the management server port
	33.4 Customizing the management server address
	33.5 Disabling HTTP endpoints

	34. Monitoring and management over JMX
	34.1 Customizing MBean names
	34.2 Disabling JMX endpoints
	34.3 Using Jolokia for JMX over HTTP
	Customizing Jolokia
	Disabling Jolokia

	35. Monitoring and management using a remote shell
	35.1 Connecting to the remote shell
	Remote shell credentials

	35.2 Extending the remote shell
	Remote shell commands
	Remote shell plugins

	36. Metrics
	36.1 Recording your own metrics
	36.2 Metric repositories
	36.3 Coda Hale Metrics
	36.4 Message channel integration

	37. Auditing
	38. Tracing
	38.1 Custom tracing

	39. Error Handling
	40. Process monitoring
	40.1 Extend configuration
	40.2 Programmatically

	41. What to read next

	Part VI. Deploying to the cloud
	42. Cloud Foundry
	42.1 Binding to services

	43. Heroku
	44. CloudBees
	45. What to read next

	Part VII. Spring Boot CLI
	46. Installing the CLI
	47. Using the CLI
	47.1 Running applications using the CLI
	Deduced “grab” dependencies
	Default import statements
	Automatic main method

	47.2 Testing your code
	47.3 Applications with multiple source files
	47.4 Packaging your application
	47.5 Using the embedded shell

	48. Developing application with the Groovy beans DSL
	49. What to read next

	Part VIII. Build tool plugins
	50. Spring Boot Maven plugin
	50.1 Including the plugin
	50.2 Packaging executable jar and war files
	50.3 Repackage configuration
	Required parameters
	Optional parameters

	50.4 Running applications
	50.5 Run configuration
	50.6 Required parameters
	50.7 Optional parameters

	51. Spring Boot Gradle plugin
	51.1 Including the plugin
	51.2 Declaring dependencies without versions
	51.3 Packaging executable jar and war files
	51.4 Running a project in-place
	51.5 Repackage configuration
	51.6 Repackage with custom Gradle configuration
	Configuration options

	51.7 Understanding how the Gradle plugin works

	52. Supporting other build systems
	52.1 Repackaging archives
	52.2 Nested libraries
	52.3 Finding a main class
	52.4 Example repackage implementation

	53. What to read next

	Part IX. “How-to” guides
	54. Spring Boot application
	54.1 Troubleshoot auto-configuration
	54.2 Customize the Environment or ApplicationContext before it starts
	54.3 Build an ApplicationContext hierarchy (adding a parent or root context)
	54.4 Create a non-web application

	55. Properties & configuration
	55.1 Externalize the configuration of SpringApplication
	55.2 Change the location of external properties of an application
	55.3 Use “short” command line arguments
	55.4 Use YAML for external properties
	55.5 Set the active Spring profiles
	55.6 Change configuration depending on the environment
	55.7 Discover built-in options for external properties

	56. Embedded servlet containers
	56.1 Add a Servlet, Filter or ServletContextListener to an application
	56.2 Change the HTTP port
	56.3 Use a random unassigned HTTP port
	56.4 Discover the HTTP port at runtime
	56.5 Configure Tomcat
	56.6 Terminate SSL in Tomcat
	56.7 Enable Multiple Connectors Tomcat
	56.8 Use Tomcat behind a front-end proxy server
	56.9 Use Jetty instead of Tomcat
	56.10 Configure Jetty
	56.11 Use Tomcat 8
	56.12 Use Jetty 9

	57. Spring MVC
	57.1 Write a JSON REST service
	57.2 Write an XML REST service
	57.3 Customize the Jackson ObjectMapper
	57.4 Customize the @ResponseBody rendering
	57.5 Switch off the Spring MVC DispatcherServlet
	57.6 Switch off the Default MVC configuration
	57.7 Customize ViewResolvers

	58. Logging
	58.1 Configure Logback for logging
	58.2 Configure Log4j for logging

	59. Data Access
	59.1 Configure a DataSource
	59.2 Use Spring Data repositories
	59.3 Separate @Entity definitions from Spring configuration
	59.4 Configure JPA properties
	59.5 Use a custom EntityManagerFactory
	59.6 Use a traditional persistence.xml

	60. Database initialization
	60.1 Initialize a database using JPA
	60.2 Initialize a database using Hibernate
	60.3 Initialize a database using Spring JDBC
	60.4 Initialize a Spring Batch database
	60.5 Use a higher level database migration tool

	61. Batch applications
	61.1 Execute Spring Batch jobs on startup

	62. Actuator
	62.1 Change the HTTP port or address of the actuator endpoints
	62.2 Customize the “whitelabel” error page

	63. Security
	63.1 Switch off the Spring Boot security configuration
	63.2 Change the AuthenticationManager and add user accounts
	63.3 Enable HTTPS when running behind a proxy server

	64. Hot swapping
	64.1 Reload static content
	64.2 Reload Thymeleaf templates without restarting the container
	64.3 Reload Java classes without restarting the container

	65. Build
	65.1 Customize dependency versions with Maven
	65.2 Remote debug a Spring Boot application started with Maven
	65.3 Build an executable archive with Ant

	66. Traditional deployment
	66.1 Create a deployable war file
	66.2 Create a deployable war file for older servlet containers
	66.3 Convert an existing application to Spring Boot

	Part X. Appendices
	Appendix A. Common application properties
	Appendix B. Auto-configuration classes
	B.1 From the “spring-boot-autoconfigure” module
	B.2 From the “spring-boot-actuator” module

	Appendix C. The executable jar format
	C.1 Nested JARs
	The executable jar file structure
	The executable war file structure

	C.2 Spring Boot’s “JarFile” class
	Compatibility with the standard Java “JarFile”

	C.3 Launching executable jars
	Launcher manifest
	Exploded archives

	C.4 PropertiesLauncher Features
	C.5 Executable jar restrictions
	Zip entry compression
	System ClassLoader

	C.6 Alternative single jar solutions

