
Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT

Phillip Webb , Dave Syer , Josh Long , Stéphane Nicoll , Rob Winch

Copyright © 2013-2014

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot ii

Table of Contents

I. Spring Boot Documentation ...................................................................................................... 1
1. About the documentation ................................................................................................  2
2. Getting help ....................................................................................................................  3
3. First steps ......................................................................................................................  4
4. Working with Spring Boot ................................................................................................  5
5. Learning about Spring Boot features ................................................................................ 6
6. Moving to production ....................................................................................................... 7
7. Advanced topics .............................................................................................................  8

II. Getting started ........................................................................................................................  9
8. Introducing Spring Boot .................................................................................................  10
9. Installing Spring Boot ....................................................................................................  11

9.1. Installation instructions for the Java developer .....................................................  11
Maven installation .............................................................................................  11
Gradle installation .............................................................................................  12

9.2. Installing the Spring Boot CLI .............................................................................  13
Manual installation ............................................................................................  13
Installation with GVM ........................................................................................  13
OSX Homebrew installation ...............................................................................  14
Command-line completion .................................................................................  14
Quick start Spring CLI example .........................................................................  15

10. Developing your first Spring Boot application ................................................................  16
10.1. Creating the POM ............................................................................................  16
10.2. Adding classpath dependencies ........................................................................  17
10.3. Writing the code ...............................................................................................  18

The @RestController and @RequestMapping annotations ..................................  18
The @EnableAutoConfiguration annotation ........................................................  18
The “main” method ...........................................................................................  19

10.4. Running the example ........................................................................................ 19
10.5. Creating an executable jar ................................................................................  19

11. What to read next .......................................................................................................  21
III. Using Spring Boot ................................................................................................................  22

12. Build systems .............................................................................................................  23
12.1. Maven .............................................................................................................. 23

Inheriting the starter parent ...............................................................................  23
Using your own parent POM .............................................................................  23
Changing the Java version ................................................................................  24
Using the Spring Boot Maven plugin ..................................................................  24

12.2. Gradle .............................................................................................................. 24
12.3. Ant ................................................................................................................... 25
12.4. Starter POMs ...................................................................................................  25

13. Structuring your code ..................................................................................................  28
13.1. Using the “default” package ..............................................................................  28
13.2. Locating the main application class ...................................................................  28

14. Configuration classes ..................................................................................................  30
14.1. Importing additional configuration classes ..........................................................  30
14.2. Importing XML configuration .............................................................................. 30

15. Auto-configuration .......................................................................................................  31



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot iii

15.1. Gradually replacing auto-configuration ...............................................................  31
15.2. Disabling specific auto-configuration ..................................................................  31

16. Spring Beans and dependency injection .......................................................................  32
17. Running your application .............................................................................................  33

17.1. Running from an IDE ........................................................................................ 33
17.2. Running as a packaged application ...................................................................  33
17.3. Using the Maven plugin ....................................................................................  33
17.4. Using the Gradle plugin ....................................................................................  33
17.5. Hot swapping ...................................................................................................  34

18. Packaging your application for production ..................................................................... 35
19. What to read next .......................................................................................................  36

IV. Spring Boot features ............................................................................................................  37
20. SpringApplication ......................................................................................................... 38

20.1. Customizing SpringApplication ..........................................................................  38
20.2. Fluent builder API ............................................................................................. 39
20.3. Application events and listeners ........................................................................  39
20.4. Web environment .............................................................................................  39
20.5. Using the CommandLineRunner ........................................................................ 40
20.6. Application exit .................................................................................................  40

21. Externalized Configuration ...........................................................................................  41
21.1. Accessing command line properties ..................................................................  42
21.2. Application property files ...................................................................................  42
21.3. Profile specific properties ..................................................................................  42
21.4. Placeholders in properties ................................................................................. 43
21.5. Using YAML instead of Properties .....................................................................  43

Loading YAML ..................................................................................................  43
Exposing YAML as properties in the Spring Environment ....................................  44
Multi-profile YAML documents ...........................................................................  44
YAML shortcomings ..........................................................................................  44

21.6. Typesafe Configuration Properties .....................................................................  44
Relaxed binding ................................................................................................  45
@ConfigurationProperties Validation ..................................................................  46

22. Profiles .......................................................................................................................  47
22.1. Adding active profiles .......................................................................................  47
22.2. Programmatically setting profiles .......................................................................  47
22.3. Profile specific configuration files ....................................................................... 47

23. Logging ....................................................................................................................... 48
23.1. Log format .......................................................................................................  48
23.2. Console output .................................................................................................  48
23.3. File output ........................................................................................................ 49
23.4. Custom log configuration ..................................................................................  49

24. Developing web applications ........................................................................................ 50
24.1. The “Spring Web MVC framework” .................................................................... 50

Spring MVC auto-configuration ..........................................................................  50
HttpMessageConverters ....................................................................................  51
Static Content ...................................................................................................  51
Template engines .............................................................................................. 51

24.2. Embedded servlet container support .................................................................. 52
Servlets and Filters ...........................................................................................  52
The EmbeddedWebApplicationContext ............................................................... 52



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot iv

Customizing embedded servlet containers .......................................................... 52
Programmatic customization ......................................................................  53
Customizing ConfigurableEmbeddedServletContainerFactory directly ........... 53

JSP limitations ..................................................................................................  53
25. Security ......................................................................................................................  54
26. Working with SQL databases ....................................................................................... 55

26.1. Configure a DataSource ...................................................................................  55
Embedded Database Support ............................................................................  55
Connection to a production database .................................................................  55

26.2. Using JdbcTemplate .........................................................................................  56
26.3. JPA and “Spring Data” .....................................................................................  56

Entity Classes ...................................................................................................  57
Spring Data JPA Repositories ...........................................................................  58
Creating and dropping JPA databases ...............................................................  58

27. Working with NoSQL technologies ...............................................................................  59
27.1. MongoDB .........................................................................................................  59

Connecting to a MongoDB database .................................................................. 59
MongoTemplate ................................................................................................  59
Spring Data MongoDB repositories ....................................................................  60

28. Testing .......................................................................................................................  61
28.1. Test scope dependencies .................................................................................  61
28.2. Testing Spring applications ...............................................................................  61
28.3. Testing Spring Boot applications .......................................................................  61
28.4. Test utilities ...................................................................................................... 62

ConfigFileApplicationContextInitializer ................................................................  62
EnvironmentTestUtils ......................................................................................... 62
OutputCapture ................................................................................................... 63
TestRestTemplate .............................................................................................  63

29. Developing auto-configuration and using conditions ......................................................  64
29.1. Understanding auto-configured beans ................................................................ 64
29.2. Locating auto-configuration candidates ..............................................................  64
29.3. Condition annotations .......................................................................................  64

Class conditions ................................................................................................  64
Bean conditions ................................................................................................  64
Resource conditions ..........................................................................................  65
Web Application Conditions ...............................................................................  65
SpEL expression conditions ............................................................................... 65

30. What to read next .......................................................................................................  66
V. Production-ready features .....................................................................................................  67

31. Enabling production-ready features. .............................................................................  68
32. Endpoints .................................................................................................................... 69

32.1. Customizing endpoints ...................................................................................... 69
32.2. Custom health information ................................................................................  70
32.3. Custom application info information ...................................................................  70

Git commit information ......................................................................................  71
33. Monitoring and management over HTTP ......................................................................  72

33.1. Exposing sensitive endpoints ............................................................................  72
33.2. Customizing the management server context path .............................................. 72
33.3. Customizing the management server port ..........................................................  72
33.4. Customizing the management server address ....................................................  73



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot v

33.5. Disabling HTTP endpoints ................................................................................  73
34. Monitoring and management over JMX ........................................................................  74

34.1. Customizing MBean names ..............................................................................  74
34.2. Disabling JMX endpoints ..................................................................................  74
34.3. Using Jolokia for JMX over HTTP .....................................................................  74

Customizing Jolokia ..........................................................................................  74
Disabling Jolokia ...............................................................................................  74

35. Monitoring and management using a remote shell ........................................................  76
35.1. Connecting to the remote shell .........................................................................  76

Remote shell credentials ...................................................................................  76
35.2. Extending the remote shell ...............................................................................  76

Remote shell commands ...................................................................................  77
Remote shell plugins .........................................................................................  77

36. Metrics ........................................................................................................................ 78
36.1. Recording your own metrics .............................................................................. 78
36.2. Metric repositories ............................................................................................  79
36.3. Coda Hale Metrics ............................................................................................ 79
36.4. Message channel integration ............................................................................. 79

37. Auditing ......................................................................................................................  80
38. Tracing .......................................................................................................................  81

38.1. Custom tracing .................................................................................................  81
39. Error Handling ............................................................................................................. 82
40. Process monitoring ...................................................................................................... 83

40.1. Extend configuration .........................................................................................  83
40.2. Programmatically ..............................................................................................  83

41. What to read next .......................................................................................................  84
VI. Deploying to the cloud .........................................................................................................  85

42. Cloud Foundry ............................................................................................................  86
42.1. Binding to services ...........................................................................................  87

43. Heroku ........................................................................................................................ 88
44. CloudBees ..................................................................................................................  90
45. What to read next .......................................................................................................  91

VII. Spring Boot CLI ..................................................................................................................  92
46. Installing the CLI .........................................................................................................  93
47. Using the CLI .............................................................................................................  94

47.1. Running applications using the CLI ...................................................................  94
Deduced “grab” dependencies ...........................................................................  95
Default import statements ..................................................................................  95
Automatic main method ..................................................................................... 96

47.2. Testing your code ............................................................................................. 96
47.3. Applications with multiple source files ................................................................  96
47.4. Packaging your application ...............................................................................  96
47.5. Using the embedded shell ................................................................................  97

48. Developing application with the Groovy beans DSL ....................................................... 98
49. What to read next .......................................................................................................  99

VIII. Build tool plugins .............................................................................................................  100
50. Spring Boot Maven plugin .......................................................................................... 101

50.1. Including the plugin ........................................................................................  101
50.2. Packaging executable jar and war files ............................................................  102
50.3. Repackage configuration .................................................................................  102



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot vi

Required parameters .......................................................................................  102
Optional parameters ........................................................................................  103

50.4. Running applications ....................................................................................... 103
50.5. Run configuration ...........................................................................................  104
50.6. Required parameters ......................................................................................  104
50.7. Optional parameters .......................................................................................  104

51. Spring Boot Gradle plugin .......................................................................................... 105
51.1. Including the plugin ........................................................................................  105
51.2. Declaring dependencies without versions .........................................................  105
51.3. Packaging executable jar and war files ............................................................  106
51.4. Running a project in-place ..............................................................................  106
51.5. Repackage configuration .................................................................................  106
51.6. Repackage with custom Gradle configuration ...................................................  107

Configuration options ....................................................................................... 107
51.7. Understanding how the Gradle plugin works ....................................................  108

52. Supporting other build systems ..................................................................................  109
52.1. Repackaging archives .....................................................................................  109
52.2. Nested libraries ..............................................................................................  109
52.3. Finding a main class ....................................................................................... 109
52.4. Example repackage implementation ................................................................  109

53. What to read next .....................................................................................................  110
IX. “How-to” guides .................................................................................................................  111

54. Spring Boot application ..............................................................................................  112
54.1. Troubleshoot auto-configuration ....................................................................... 112
54.2. Customize the Environment or ApplicationContext before it starts ......................  112
54.3. Build an ApplicationContext hierarchy (adding a parent or root context) ..............  113
54.4. Create a non-web application ..........................................................................  113

55. Properties & configuration .......................................................................................... 114
55.1. Externalize the configuration of SpringApplication .............................................  114
55.2. Change the location of external properties of an application ..............................  114
55.3. Use “short” command line arguments ..............................................................  114
55.4. Use YAML for external properties .................................................................... 115
55.5. Set the active Spring profiles ..........................................................................  115
55.6. Change configuration depending on the environment ........................................  116
55.7. Discover built-in options for external properties ................................................  116

56. Embedded servlet containers .....................................................................................  117
56.1. Add a Servlet, Filter or ServletContextListener to an application ........................  117
56.2. Change the HTTP port ...................................................................................  117
56.3. Use a random unassigned HTTP port .............................................................. 117
56.4. Discover the HTTP port at runtime ..................................................................  117
56.5. Configure Tomcat ...........................................................................................  118
56.6. Terminate SSL in Tomcat ...............................................................................  118
56.7. Enable Multiple Connectors Tomcat ................................................................  118
56.8. Use Tomcat behind a front-end proxy server .................................................... 119
56.9. Use Jetty instead of Tomcat ...........................................................................  119
56.10. Configure Jetty .............................................................................................  120
56.11. Use Tomcat 8 ............................................................................................... 120
56.12. Use Jetty 9 ................................................................................................... 120

57. Spring MVC ..............................................................................................................  122
57.1. Write a JSON REST service ...........................................................................  122



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot vii

57.2. Write an XML REST service ...........................................................................  122
57.3. Customize the Jackson ObjectMapper .............................................................  122
57.4. Customize the @ResponseBody rendering ......................................................  123
57.5. Switch off the Spring MVC DispatcherServlet ...................................................  123
57.6. Switch off the Default MVC configuration .........................................................  123
57.7. Customize ViewResolvers ...............................................................................  123

58. Logging ..................................................................................................................... 125
58.1. Configure Logback for logging ......................................................................... 125
58.2. Configure Log4j for logging .............................................................................  125

59. Data Access .............................................................................................................  127
59.1. Configure a DataSource .................................................................................. 127
59.2. Use Spring Data repositories ..........................................................................  127
59.3. Separate @Entity definitions from Spring configuration .....................................  127
59.4. Configure JPA properties ................................................................................  127
59.5. Use a custom EntityManagerFactory ...............................................................  128
59.6. Use a traditional persistence.xml .....................................................................  128

60. Database initialization ................................................................................................  129
60.1. Initialize a database using JPA .......................................................................  129
60.2. Initialize a database using Hibernate ...............................................................  129
60.3. Initialize a database using Spring JDBC ..........................................................  129
60.4. Initialize a Spring Batch database ...................................................................  129
60.5. Use a higher level database migration tool ....................................................... 130

61. Batch applications .....................................................................................................  131
61.1. Execute Spring Batch jobs on startup ..............................................................  131

62. Actuator ....................................................................................................................  132
62.1. Change the HTTP port or address of the actuator endpoints .............................  132
62.2. Customize the “whitelabel” error page .............................................................. 132

63. Security ..................................................................................................................... 133
63.1. Switch off the Spring Boot security configuration ..............................................  133
63.2. Change the AuthenticationManager and add user accounts ..............................  133
63.3. Enable HTTPS when running behind a proxy server .........................................  133

64. Hot swapping ............................................................................................................  135
64.1. Reload static content ......................................................................................  135
64.2. Reload Thymeleaf templates without restarting the container ............................. 135
64.3. Reload Java classes without restarting the container ........................................  135

65. Build .........................................................................................................................  136
65.1. Customize dependency versions with Maven ...................................................  136
65.2. Remote debug a Spring Boot application started with Maven ............................. 136
65.3. Build an executable archive with Ant ...............................................................  136

66. Traditional deployment ............................................................................................... 138
66.1. Create a deployable war file ...........................................................................  138
66.2. Create a deployable war file for older servlet containers .................................... 138
66.3. Convert an existing application to Spring Boot .................................................. 138

X. Appendices ......................................................................................................................... 140
A. Common application properties ...................................................................................  141
B. Auto-configuration classes ...........................................................................................  145

B.1. From the “spring-boot-autoconfigure” module ..................................................... 145
B.2. From the “spring-boot-actuator” module ............................................................. 146

C. The executable jar format ...........................................................................................  147
C.1. Nested JARs ...................................................................................................  147



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot viii

The executable jar file structure .......................................................................  147
The executable war file structure .....................................................................  147

C.2. Spring Boot’s “JarFile” class .............................................................................  148
Compatibility with the standard Java “JarFile” ...................................................  148

C.3. Launching executable jars ................................................................................  148
Launcher manifest ...........................................................................................  149
Exploded archives ...........................................................................................  149

C.4. PropertiesLauncher Features ............................................................................  149
C.5. Executable jar restrictions ................................................................................  150

Zip entry compression .....................................................................................  150
System ClassLoader .......................................................................................  150

C.6. Alternative single jar solutions ..........................................................................  150



Part I. Spring Boot Documentation
This section provides a brief overview of Spring Boot reference documentation. Think of it as map for
the rest of the document. You can read this reference guide in a linear fashion, or you can skip sections
if something doesn’t interest you.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 2

1. About the documentation

The Spring Boot reference guide is available as html, pdf and epub documents. The latest copy is
available at http://docs.spring.io/spring-boot/docs/current/reference.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/reference/html
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/reference/pdf/spring-boot-reference.pdf
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/reference/epub/spring-boot-reference.epub
http://docs.spring.io/spring-boot/docs/current/reference


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 3

2. Getting help

Having trouble with Spring Boot, We’d like to help!

• Try the How-to’s — they provide solutions to the most common questions.

• Learn the Spring basics — Spring Boot is builds on many other Spring projects, check the spring.io
web-site for a wealth of reference documentation. If you are just starting out with Spring, try one of
the guides.

• Ask a question - we monitor stackoverflow.com for questions tagged with spring-boot.

• Report bugs with Spring Boot at https://github.com/spring-projects/spring-boot/issues.

Note

All of Spring Boot is open source, including the documentation! If you find problems with the docs;
or if you just want to improve them, please get involved.

http://spring.io
http://spring.io/guides
http://stackoverflow.com
http://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
http://github.com/spring-projects/spring-boot/tree/master


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 4

3. First steps

If you’re just getting started with Spring Boot, or Spring in general, this is the place to start!

• From scratch: Overview | Installation

• Tutorial: Part 1 | Part 2

• Running your example: Part 1 | Part 2



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 5

4. Working with Spring Boot

Ready to actually start using Spring Boot? We’ve got you covered.

• Build systems: Maven | Gradle | Ant | Starter POMs

• Best practices: Code Structure | @Configuration | @EnableAutoConfiguration | Beans and
Dependency Injection

• Running your code IDE | Packaged | Maven | Gradle

• Packaging your app: Production jars

• Spring Boot CLI: Using the CLI



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 6

5. Learning about Spring Boot features

Need more details about Spring Boot’s core features? This is for you!

• Core Features: SpringApplication | External Configuration | Profiles | Logging

• Web Applications: MVC | Embedded Containers

• Working with data: SQL | NO-SQL

• Testing: Overview | Boot Applications | Utils

• Extending: Auto-configuration | @Conditions



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 7

6. Moving to production

When you’re ready to push your Spring Boot application to production, we’ve got some tricks that you
might like!

• Management endpoints: Overview | Customization

• Connection options: HTTP | JMX | SSH

• Monitoring: Metrics | Auditing | Tracing | Process



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 8

7. Advanced topics

Lastly, we have a few topics for the more advanced user.

• Deploy to the cloud: Cloud Foundry | Heroku | CloudBees

• Build tool plugins: Maven | Gradle

• Appendix: Application Properties | Auto-configuration classes | Executable Jars



Part II. Getting started
If you’re just getting started with Spring Boot, or Spring in general, this is the section for you! Here we
answer the basic “what?”, “how?” and “why?” questions. You’ll find a gentle introduction to Spring Boot
along with installation instructions. We’ll then build our first Spring Boot application, discussing some
core principles as we go.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 10

8. Introducing Spring Boot

Spring Boot makes it easy to create stand-alone, production-grade Spring based Applications that you
can “just run”. We take an opinionated view of the Spring platform and third-party libraries so you can
get started with minimum fuss. Most Spring Boot applications need very little Spring configuration.

You can use Spring Boot to create Java applications that can be started using java -jar or more
traditional war deployments. We also provide a command line tool that runs “spring scripts”.

Our primary goals are:

• Provide a radically faster and widely accessible getting started experience for all Spring development.

• Be opinionated out of the box, but get out of the way quickly as requirements start to diverge from
the defaults.

• Provide a range of non-functional features that are common to large classes of projects (e.g.
embedded servers, security, metrics, health checks, externalized configuration).

• Absolutely no code generation and no requirement for XML configuration.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 11

9. Installing Spring Boot

Spring Boot can be used with “classic” Java development tools or installed as a command line tool.
Regardless, you will need Java SDK v1.6 or higher. You should check your current Java installation
before you begin:

$ java -version

If you are new to Java development, or if you just want to experiment with Spring Boot you might want
to try the Spring Boot CLI first, otherwise, read on for “classic” installation instructions.

Tip

Although Spring Boot is compatible with Java 1.6, if possible, you should consider using the latest
version of Java.

9.1 Installation instructions for the Java developer

You can use Spring Boot in the same way as any standard Java library. Simply include the appropriate
spring-boot-*.jar files on your classpath. Spring Boot does not require any special tools
integration, so you can use any IDE or text editor; and there is nothing special about a Spring Boot
application, so you can run and debug as you would any other Java program.

Although you could just copy Spring Boot jars, we generally recommend that you use a build tool that
supports dependency management (such as Maven or Gradle).

Maven installation

Spring Boot is compatible with Apache Maven 3.0 or above. If you don’t already have Maven installed
you can follow the instructions at http://maven.apache.org.

Tip

On many operating systems Maven can be installed via a package manager. If you’re an OSX
Homebrew user try brew install maven. Ubuntu users can run sudo apt-get install
maven.

Spring Boot dependencies use the org.springframework.boot groupId. Typically your Maven
POM file will inherit from the spring-boot-starter-parent project and declare dependencies to
one or more “Starter POMs”. Spring Boot also provides an optional Maven plugin to create executable
jars.

Here is a typical pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <modelVersion>4.0.0</modelVersion>

    <groupId>com.example</groupId>

    <artifactId>myproject</artifactId>

    <version>0.0.1-SNAPSHOT</version>

    <!-- Inherit defaults from Spring Boot -->

http://www.java.com
http://maven.apache.org


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 12

    <parent>

        <groupId>org.springframework.boot</groupId>

        <artifactId>spring-boot-starter-parent</artifactId>

        <version>1.0.3.BUILD-SNAPSHOT</version>

    </parent>

    <!-- Add typical dependencies for a web application -->

    <dependencies>

        <dependency>

            <groupId>org.springframework.boot</groupId>

            <artifactId>spring-boot-starter-web</artifactId>

        </dependency>

    </dependencies>

    <!-- Package as an executable jar -->

    <build>

        <plugins>

            <plugin>

                <groupId>org.springframework.boot</groupId>

                <artifactId>spring-boot-maven-plugin</artifactId>

            </plugin>

        </plugins>

    </build>

    <!-- Add Spring repoistories -->

    <!-- (you don't need this if you are using a .RELEASE version) -->

    <repositories>

        <repository>

            <id>spring-snapshots</id>

            <url>http://repo.spring.io/snapshot</url>

            <snapshots><enabled>true</enabled></snapshots>

        </repository>

        <repository>

            <id>spring-milestones</id>

            <url>http://repo.spring.io/milestone</url>

        </repository>

    </repositories>

    <pluginRepositories>

        <pluginRepository>

            <id>spring-snapshots</id>

            <url>http://repo.spring.io/snapshot</url>

        </pluginRepository>

        <pluginRepository>

            <id>spring-milestones</id>

            <url>http://repo.spring.io/milestone</url>

        </pluginRepository>

    </pluginRepositories>

</project>

Gradle installation

Spring Boot is compatible with Gradle 1.6 or above. If you don’t already have Gradle installed you can
follow the instructions at http://www.gradle.org/.

Spring Boot dependencies can be declared using the org.springframework.boot group. Typically
your project will declare dependencies to one or more “Starter POMs”. Spring Boot provides a useful
Gradle plugin that can be used to simplify dependency declarations and to create executable jars.

Gradle Wrapper

The Gradle Wrapper provides a nice way of “obtaining” Gradle when you need to build a project.
It’s a small script and library that you commit alongside your code to bootstrap the build process.
See http://www.gradle.org/docs/current/userguide/gradle_wrapper.html for details.

Here is a typical build.gradle file:

http://www.gradle.org/
http://www.gradle.org/docs/current/userguide/gradle_wrapper.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 13

buildscript {

    repositories {

        mavenCentral()

        maven { url "http://repo.spring.io/snapshot" }

        maven { url "http://repo.spring.io/milestone" }

    }

    dependencies {

        classpath("org.springframework.boot:spring-boot-gradle-plugin:1.0.3.BUILD-SNAPSHOT")

    }

}

apply plugin: 'java'

apply plugin: 'spring-boot'

jar {

    baseName = 'myproject'

    version =  '0.0.1-SNAPSHOT'

}

repositories {

    mavenCentral()

    maven { url "http://repo.spring.io/snapshot" }

    maven { url "http://repo.spring.io/milestone" }

}

dependencies {

    compile("org.springframework.boot:spring-boot-starter-web")

    testCompile("junit:junit")

}

9.2 Installing the Spring Boot CLI

The Spring Boot CLI is a command line tool that can be used if you want to quickly prototype with Spring.
It allows you to run Groovy scripts, which means that you have a familiar Java-like syntax, without so
much boilerplate code.

You don’t need to use the CLI to work with Spring Boot but it’s definitely the quickest way to get a Spring
application off the ground.

Manual installation

You can download the Spring CLI distribution from the Spring software repository:

• spring-boot-cli-1.0.3.BUILD-SNAPSHOT-bin.zip

• spring-boot-cli-1.0.3.BUILD-SNAPSHOT-bin.tar.gz

Cutting edge snapshot distributions are also available.

Once downloaded, follow the INSTALL.txt instructions from the unpacked archive. In summary: there
is a spring script (spring.bat for Windows) in a bin/ directory in the .zip file, or alternatively you
can use java -jar with the .jar file (the script helps you to be sure that the classpath is set correctly).

Installation with GVM

GVM (the Groovy Environment Manager) can be used for managing multiple versions of various Groovy
and Java binary packages, including Groovy itself and the Spring Boot CLI. Get gvm from http://
gvmtool.net and install Spring Boot with

$ gvm install springboot

$ spring --version

Spring Boot v1.0.3.BUILD-SNAPSHOT

http://groovy.codehaus.org/
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/1.0.3.BUILD-SNAPSHOT/spring-boot-cli-1.0.3.BUILD-SNAPSHOT-bin.zip
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/1.0.3.BUILD-SNAPSHOT/spring-boot-cli-1.0.3.BUILD-SNAPSHOT-bin.tar.gz
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
http://raw.github.com/spring-projects/spring-boot/master/spring-boot-cli/src/main/content/INSTALL.txt
http://gvmtool.net
http://gvmtool.net


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 14

If you are developing features for the CLI and want easy access to the version you just built, follow
these extra instructions.

$ gvm install springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-cli-1.0.3.BUILD-

SNAPSHOT-bin/spring-1.0.3.BUILD-SNAPSHOT/

$ gvm use springboot dev

$ spring --version

Spring CLI v1.0.3.BUILD-SNAPSHOT

This will install a local instance of spring called the dev instance inside your gvm repository. It points
at your target build location, so every time you rebuild Spring Boot, spring will be up-to-date.

You can see it by doing this:

$ gvm ls springboot

================================================================================

Available Springboot Versions

================================================================================

> + dev

* 1.0.3.BUILD-SNAPSHOT

================================================================================

+ - local version

* - installed

> - currently in use

================================================================================

OSX Homebrew installation

If you are on a Mac and using Homebrew, all you need to do to install the Spring Boot CLI is:

$ brew tap pivotal/tap

$ brew install springboot

Homebrew will install spring to /usr/local/bin.

Note

If you don’t see the formula, your installation of brew might be out-of-date. Just execute brew
update and try again.

Command-line completion

Spring Boot CLI ships with scripts that provide command completion for BASH and zsh shells. You can
source the script (also named spring) in any shell, or put it in your personal or system-wide bash
completion initialization. On a Debian system the system-wide scripts are in /shell-completion/
bash and all scripts in that directory are executed when a new shell starts. To run the script manually,
e.g. if you have installed using GVM

$ . ~/.gvm/springboot/current/shell-completion/bash/spring

$ spring <HIT TAB HERE>

  grab  help  jar  run  test  version

Note

If you install Spring Boot CLI using Homebrew, the command-line completion scripts are
automatically registered with your shell.

http://brew.sh/
http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://en.wikipedia.org/wiki/Zsh


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 15

Quick start Spring CLI example

Here’s a really simple web application that you can use to test you installation. Create a file called
app.groovy:

@RestController

class ThisWillActuallyRun {

    @RequestMapping("/")

    String home() {

        "Hello World!"

    }

}

Then simply run it from a shell:

$ spring run app.groovy

Note

It will take some time when you first run the application as dependencies are downloaded,
subsequent runs will be much quicker.

Open http://localhost:8080 in your favorite web browser and you should see the following output:

Hello World!

http://localhost:8080


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 16

10. Developing your first Spring Boot application

Let’s develop a simple “Hello World!” web application in Java that highlights some of Spring Boot’s key
features. We’ll use Maven to build this project since most IDEs support it.

Tip

The spring.io web site contains many “Getting Started” guides that use Spring Boot. If you’re
looking to solve a specific problem; check there first.

Before we begin, open a terminal to check that you have valid versions of Java and Maven installed.

$ java -version

java version "1.7.0_51"

Java(TM) SE Runtime Environment (build 1.7.0_51-b13)

Java HotSpot(TM) 64-Bit Server VM (build 24.51-b03, mixed mode)

$ mvn -v

Apache Maven 3.1.1 (0728685237757ffbf44136acec0402957f723d9a; 2013-09-17 08:22:22-0700)

Maven home: /Users/user/tools/apache-maven-3.1.1

Java version: 1.7.0_51, vendor: Oracle Corporation

Note

This sample needs to be created in its own folder. Subsequent instructions assume that you have
created a suitable folder and that it is your “current directory”.

10.1 Creating the POM

We need to start by creating a Maven pom.xml file. The pom.xml is the recipe that will be used to build
your project. Open you favorite text editor and add the following:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <modelVersion>4.0.0</modelVersion>

    <groupId>com.example</groupId>

    <artifactId>myproject</artifactId>

    <version>0.0.1-SNAPSHOT</version>

    <parent>

        <groupId>org.springframework.boot</groupId>

        <artifactId>spring-boot-starter-parent</artifactId>

        <version>1.0.3.BUILD-SNAPSHOT</version>

    </parent>

    <!-- Additional lines to be added here... -->

    <!-- (you don't need this if you are using a .RELEASE version) -->

    <repositories>

        <repository>

            <id>spring-snapshots</id>

            <url>http://repo.spring.io/snapshot</url>

            <snapshots><enabled>true</enabled></snapshots>

        </repository>

        <repository>

            <id>spring-milestones</id>

            <url>http://repo.spring.io/milestone</url>

        </repository>

    </repositories>

http://spring.io


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 17

    <pluginRepositories>

        <pluginRepository>

            <id>spring-snapshots</id>

            <url>http://repo.spring.io/snapshot</url>

        </pluginRepository>

        <pluginRepository>

            <id>spring-milestones</id>

            <url>http://repo.spring.io/milestone</url>

        </pluginRepository>

    </pluginRepositories>

</project>

This should give you a working build, you can test it out by running mvn package (you can ignore the
“jar will be empty - no content was marked for inclusion!” warning for now).

Note

At this point you could import the project into an IDE (most modern Java IDE’s include built-in
support for Maven). For simplicity, we will continue to use a plain text editor for this example.

10.2 Adding classpath dependencies

Spring Boot provides a number of “Starter POMs” that make easy to add jars to your classpath. Our
sample application has already used spring-boot-starter-parent in the parent section of the
POM. The spring-boot-starter-parent is a special starter that provides useful Maven defaults.
It also provides a dependency-management section so that you can omit version tags for “blessed”
dependencies.

Other “Starter POMs” simply provide dependencies that you are likely to need when developing a
specific type of application. Since we are developing a web application, we will add a spring-boot-
starter-web dependency — but before that, let’s look at what we currently have.

$ mvn dependency:tree

[INFO] com.example:myproject:jar:0.0.1-SNAPSHOT

[INFO] +- junit:junit:jar:4.11:test

[INFO] |  \- org.hamcrest:hamcrest-core:jar:1.3:test

[INFO] +- org.mockito:mockito-core:jar:1.9.5:test

[INFO] |  \- org.objenesis:objenesis:jar:1.0:test

[INFO] \- org.hamcrest:hamcrest-library:jar:1.3:test

The mvn dependency:tree command prints tree representation of your project dependencies. You
can see that spring-boot-starter-parent has already provided some useful test dependencies.
Let’s edit our pom.xml and add the spring-boot-starter-web dependency just below the parent
section:

<dependencies>

    <dependency>

        <groupId>org.springframework.boot</groupId>

        <artifactId>spring-boot-starter-web</artifactId>

    </dependency>

</dependencies>

If you run mvn dependency:tree again, you will see that there are now a number of additional
dependencies, including the Tomcat web server and Spring Boot itself.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 18

10.3 Writing the code

To finish our application we need to create a single Java file. Maven will compile sources from src/
main/java by default so you need to create that folder structure, then add a file named src/main/
java/Example.java:

import org.springframework.boot.*;

import org.springframework.boot.autoconfigure.*;

import org.springframework.stereotype.*;

import org.springframework.web.bind.annotation.*;

@RestController

@EnableAutoConfiguration

public class Example {

    @RequestMapping("/")

    String home() {

        return "Hello World!";

    }

    public static void main(String[] args) throws Exception {

        SpringApplication.run(Example.class, args);

    }

}

Although there isn’t much code here, quite a lot is going on. Let’s step though the important parts.

The @RestController and @RequestMapping annotations

The first annotation on our Example class is @RestController. This is known as a stereotype
annotation. It provides hints for people reading the code, and for Spring, that the class plays a specific
role. In this case, our class is a web @Controller so Spring will consider it when handling incoming
web requests.

The @RequestMapping annotation provides “routing” information. It is telling Spring that any HTTP
request with the path "/" should be mapped to the home method. The @RestController annotation
tells Spring to render the resulting string directly back to the caller.

Tip

The @RestController and @RequestMapping annotations are Spring MVC annotations (they
are not specific to Spring Boot). See the MVC section in the Spring Reference Documentation
for more details.

The @EnableAutoConfiguration annotation

The second class-level annotation is @EnableAutoConfiguration. This annotation tells Spring
Boot to “guess” how you will want to configure Spring, based on the jar dependencies that you have
added. Since spring-boot-starter-web added Tomcat and Spring MVC, the auto-configuration
will assume that you are developing a web application and setup Spring accordingly.

Starter POMs and Auto-Configuration

Auto-configuration is designed to work well with “Starter POMs”, but the two concepts are not
directly tied. You are free to pick-and-choose jar dependencies outside of the starter POMs and
Spring Boot will still do its best to auto-configure your application.

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 19

The “main” method

The final part of our application is the main method. This is just a standard method that follows
the Java convention for an application entry point. Our main method delegates to Spring Boot’s
SpringApplication class by calling run. SpringApplication will bootstrap our application,
starting Spring which will in turn start the auto-configured Tomcat web server. We need to pass
Example.class as an argument to the run method to tell SpringApplication which is the primary
Spring component. The args array is also passed through to expose any command-line arguments.

10.4 Running the example

At this point our application should work. Since we have used the spring-boot-starter-parent
POM we have a useful run goal that we can use to start the application. Type mvn spring-boot:run
from the root project directory to start the application:

$ mvn spring-boot:run

  .   ____          _            __ _ _

 /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \

( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/  ___)| |_)| | | | | || (_| |  ) ) ) )

  '  |____| .__|_| |_|_| |_\__, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot ::  (v1.0.3.BUILD-SNAPSHOT)

....... . . .

....... . . . (log output here)

....... . . .

........ Started Example in 2.222 seconds (JVM running for 6.514)

If you open a web browser to http://localhost:8080 you should see the following output:

Hello World!

To gracefully exit the application hit ctrl-c.

10.5 Creating an executable jar

Let’s finish our example by creating a completely self-contained executable jar file that we could run in
production. Executable jars (sometimes called “fat jars”) are archives containing your compiled classes
along with all of the jar dependencies that your code needs to run.

Executable jars and Java

Java does not provide any standard way to load nested jar files (i.e. jar files that are themselves
contained within a jar). This can be problematic if you are looking to distribute a self-contained
application.

To solve this problem, many developers use “shaded” jars. A shaded jar simply packages all
classes, from all jars, into a single “uber jar”. The problem with shaded jars is that it becomes hard
to see which libraries you are actually using in your application. It can also be problematic if the
the same filename is used (but with different content) in multiple jars.

Spring Boot takes a different approach and allows you to actually nest jars directly.

To create an executable jar we need to add the spring-boot-maven-plugin to our pom.xml. Insert
the following lines just below the dependencies section:

http://localhost:8080


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 20

<build>

    <plugins>

        <plugin>

            <groupId>org.springframework.boot</groupId>

            <artifactId>spring-boot-maven-plugin</artifactId>

        </plugin>

    </plugins>

</build>

Save your pom.xml and run mvn package from the command line:

$ mvn package

[INFO] Scanning for projects...

[INFO]

[INFO] ------------------------------------------------------------------------

[INFO] Building myproject 0.0.1-SNAPSHOT

[INFO] ------------------------------------------------------------------------

[INFO] .... ..

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ myproject ---

[INFO] Building jar: /Users/developer/example/spring-boot-example/target/myproject-0.0.1-SNAPSHOT.jar

[INFO]

[INFO] --- spring-boot-maven-plugin:1.0.3.BUILD-SNAPSHOT:repackage (default) @ myproject ---

[INFO] ------------------------------------------------------------------------

[INFO] BUILD SUCCESS

[INFO] ------------------------------------------------------------------------

If you look in the target directory you should see myproject-0.0.1-SNAPSHOT.jar. The file
should be around 10 Mb in size. If you want to peek inside, you can use jar tvf:

$ jar tvf target/myproject-0.0.1-SNAPSHOT.jar

You should also see a much smaller file named myproject-0.0.1-SNAPSHOT.jar.original in
the target directory. This is the original jar file that Maven created before it was repackaged by Spring
Boot.

To run that application, use the java -jar command:

$ java -jar target/myproject-0.0.1-SNAPSHOT.jar

  .   ____          _            __ _ _

 /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \

( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/  ___)| |_)| | | | | || (_| |  ) ) ) )

  '  |____| .__|_| |_|_| |_\__, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot ::  (v1.0.3.BUILD-SNAPSHOT)

....... . . .

....... . . . (log output here)

....... . . .

........ Started Example in 3.236 seconds (JVM running for 3.764)

As before, to gracefully exit the application hit ctrl-c.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 21

11. What to read next

Hopefully this section has provided you with some of the Spring Boot basics, and got you on your way
to writing your own applications. If you’re a task-oriented type of developer you might want to jump over
to http://spring.io and check out some of the getting started guides that solve specific “How do I do that
with Spring” problems; we also have Spring Boot-specific How-to reference documentation.

Otherwise, the next logical step is to read Part III, “Using Spring Boot”. If you’re really impatient, you
could also jump ahead and read about Spring Boot features.

http://spring.io
http://spring.io/guides/


Part III. Using Spring Boot
This section goes into more detail about how you should use Spring Boot. It covers topics such as
build systems, auto-configuration and run/deployment options. We also cover some Spring Boot best
practices. Although there is nothing particularly special about Spring Boot (it is just another library that
you can consume), there are a few recommendations that, when followed, will make your development
process just a little easier.

If you’re just starting out with Spring Boot, you should probably read the Getting Started guide before
diving into this section.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 23

12. Build systems

It is strongly recommended that you choose a build system that supports dependency management,
and one that can consume artifacts published to the “Maven Central” repository. We would recommend
that you choose Maven or Gradle. It is possible to get Spring Boot to work with other build systems (Ant
for example), but they will not be particularly well supported.

12.1 Maven

Maven users can inherit from the spring-boot-starter-parent project to obtain sensible defaults.
The parent project provides the following features:

• Java 1.6 as the default compiler level.

• UTF-8 source encoding.

• A Dependency Management section, allowing you to omit <version> tags for common
dependencies.

• Generally useful test dependencies (JUnit, Hamcrest, Mockito).

• Sensible resource filtering.

• Sensible plugin configuration (exec plugin, surefire, Git commit ID, shade).

Inheriting the starter parent

To configure your project to inherit from the spring-boot-starter-parent simply set the parent:

<!-- Inherit defaults from Spring Boot -->

<parent>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-parent</artifactId>

    <version>1.0.3.BUILD-SNAPSHOT</version>

</parent>

Note

You should only need to specify the Spring Boot version number on this dependency. If you import
additional starters, you can safely omit the version number.

Using your own parent POM

If you don’t want to use the Spring Boot starter parent, you can use your own and still keep the benefit of
the dependency management (but not the plugin management) using a scope=import dependency:

<dependencyManagement>

     <dependencies>

        <dependency>

            <!-- Import dependency management from Spring Boot -->

            <groupId>org.springframework.boot</groupId>

            <artifactId>spring-boot-starter-parent</artifactId>

            <version>1.0.3.BUILD-SNAPSHOT</version>

            <type>pom</type>

            <scope>import</scope>

        </dependency>

    </dependencies>

http://junit.org/
https://code.google.com/p/hamcrest/
https://code.google.com/p/mockito/
https://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
http://mojo.codehaus.org/exec-maven-plugin/
http://maven.apache.org/surefire/maven-surefire-plugin/
https://github.com/ktoso/maven-git-commit-id-plugin
http://maven.apache.org/plugins/maven-shade-plugin/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 24

</dependencyManagement>

Changing the Java version

The spring-boot-starter-parent chooses fairly conservative Java compatibility. If you want to
follow our recommendation and use a later Java version you can add a java.version property:

<properties>

    <java.version>1.8</java.version>

</properties>

Using the Spring Boot Maven plugin

Spring Boot includes a Maven plugin that can package the project as an executable jar. Add the plugin
to your <plugins> section if you want to use it:

<build>

    <plugins>

        <plugin>

            <groupId>org.springframework.boot</groupId>

            <artifactId>spring-boot-maven-plugin</artifactId>

        </plugin>

    </plugins>

</build>

Note

You only need to add the plugin, there is no need for to configure it unless you want to change
the settings defined in the parent.

12.2 Gradle

Gradle users can directly import “starter POMs” in their dependencies section. Unlike Maven, there
is no “super parent” to import to share some configuration.

apply plugin: 'java'

repositories { mavenCentral() }

dependencies {

    compile("org.springframework.boot:spring-boot-starter-web:1.0.3.BUILD-SNAPSHOT")

}

The spring-boot-gradle-plugin is also available and provides tasks to create executable jars and
run projects from source. It also adds a ResolutionStrategy that enables you to omit the version
number for “blessed” dependencies:

buildscript {

    repositories { mavenCentral() }

    dependencies {

        classpath("org.springframework.boot:spring-boot-gradle-plugin:1.0.3.BUILD-SNAPSHOT")

    }

}

apply plugin: 'java'

apply plugin: 'spring-boot'

repositories { mavenCentral() }

dependencies {

    compile("org.springframework.boot:spring-boot-starter-web")

    testCompile("org.springframework.boot:spring-boot-starter-test")

}



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 25

12.3 Ant

It is possible to build a Spring Boot project using Apache Ant, however, no special support or plugins
are provided. Ant scripts can use the Ivy dependency system to import starter POMs.

See the Section 65.3, “Build an executable archive with Ant” “How-to” for more complete instructions.

12.4 Starter POMs

Starter POMs are a set of convenient dependency descriptors that you can include in your application.
You get a one-stop-shop for all the Spring and related technology that you need, without having to hunt
through sample code and copy paste loads of dependency descriptors. For example, if you want to get
started using Spring and JPA for database access, just include the spring-boot-starter-data-
jpa dependency in your project, and you are good to go.

The starters contain a lot of the dependencies that you need to get a project up and running quickly and
with a consistent, supported set of managed transitive dependencies.

What’s in a name

All starters follow a similar naming pattern; spring-boot-starter-*, where * is a particular
type of application. This naming structure is intended to help when you need to find a starter. The
Maven integration in many IDEs allow you to search dependencies by name. For example, with
the appropriate Eclipse or STS plugin installed, you can simply hit ctrl-space in the POM editor
and type 'spring-boot-starter' for a complete list.

The following application starters are provided by Spring Boot under the
org.springframework.boot group:

Table 12.1. Spring Boot application starters

Name Description

spring-boot-starter The core Spring Boot starter, including auto-
configuration support, logging and YAML.

spring-boot-starter-amqp Support for the “Advanced Message Queuing
Protocol” via spring-rabbit.

spring-boot-starter-aop Full AOP programming support including
spring-aop and AspectJ.

spring-boot-starter-batch Support for “Spring Batch” including HSQLDB
database.

spring-boot-starter-data-jpa Full support for the “Java Persistence API”
including spring-data-jpa, spring-orm and
Hibernate.

spring-boot-starter-data-mongodb Support for the MongoDB NoSQL Database,
including spring-data-mongodb.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 26

Name Description

spring-boot-starter-data-rest Support for exposing Spring Data repositories
over REST via spring-data-rest-webmvc.

spring-boot-starter-integration Support for common spring-integration
modules.

spring-boot-starter-jdbc JDBC Database support.

spring-boot-starter-mobile Support for spring-mobile

spring-boot-starter-redis Support for the REDIS key-value data store,
including spring-redis.

spring-boot-starter-security Support for spring-security.

spring-boot-starter-test Support for common test dependencies,
including JUnit, Hamcrest and Mockito along
with the spring-test module.

spring-boot-starter-thymeleaf Support for the Thymeleaf templating engine,
including integration with Spring.

spring-boot-starter-web Support for full-stack web development,
including Tomcat and spring-webmvc.

spring-boot-starter-websocket Support for websocket development with
Tomcat.

In addition to the application starters, the following starters can be used to add production ready features.

Table 12.2. Spring Boot production ready starters

Name Description

spring-boot-starter-actuator Adds production ready features such as metrics
and monitoring.

spring-boot-starter-remote-shell Adds remote ssh shell support.

Finally, Spring Boot includes some starters that can be used if you want to exclude or swap specific
technical facets.

Table 12.3. Spring Boot technical starters

Name Description

spring-boot-starter-jetty Imports the Jetty HTTP engine (to be used as an
alternative to Tomcat)

spring-boot-starter-log4j Support the Log4J logging framework

spring-boot-starter-logging Import Spring Boot’s default logging framework
(Logback).

spring-boot-starter-tomcat Import Spring Boot’s default HTTP engine
(Tomcat).



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 27

Tip

For a list of additional community contributed starter POMs, see the README file in the spring-
boot-starters module on GitHub.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/README.adoc


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 28

13. Structuring your code

Spring Boot does not require any specific code layout to work, however, there are some best practices
that help.

13.1 Using the “default” package

When a class doesn’t include a package declaration it is considered to be in the “default package”. The
use of the “default package” is generally discouraged, and should be avoided. It can cause particular
problems for Spring Boot applications that use @ComponentScan or @EntityScan annotations, since
every class from every jar, will be read.

Tip

We recommend that you follow Java’s recommended package naming conventions and use a
reversed domain name (for example, com.example.project).

13.2 Locating the main application class

We generally recommend that you locate your main application class in a root package above other
classes. The @EnableAutoConfiguration annotation is often placed on your main class, and it
implicitly defines a base “search package” for certain items. For example, if you are writing a JPA
application, the package of the @EnableAutoConfiguration annotated class will be used to search
for @Entity items.

Using a root package also allows the @ComponentScan annotation to be used without needing to
specify a basePackage attribute.

Here is a typical layout:

com

 +- example

     +- myproject

         +- Application.java

         |

         +- domain

         |   +- Customer.java

         |   +- CustomerRepository.java

         |

         +- service

         |   +- CustomerService.java

         |

         +- web

             +- CustomerController.java

The Application.java file would declare the main method, along with the basic @Configuration.

package com.example.myproject;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;

import org.springframework.context.annotation.ComponentScan;

import org.springframework.context.annotation.Configuration;

@Configuration

@EnableAutoConfiguration

@ComponentScan

public class Application {



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 29

    public static void main(String[] args) {

        SpringApplication.run(Application.class, args);

    }

}



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 30

14. Configuration classes

Spring Boot favors Java-based configuration. Although it is possible to call
SpringApplication.run() with an XML source, we generally recommend that your primary source
is a @Configuration class. Usually the class that defines the main method is also a good candidate
as the primary @Configuration.

Tip

Many Spring configuration examples have been published on the Internet that use XML
configuration. Always try to use the equivalent Java-base configuration if possible. Searching for
enable* annotations can be a good starting point.

14.1 Importing additional configuration classes

You don’t need to put all your @Configuration into a single class. The @Import annotation can
be used to import additional configuration classes. Alternatively, you can use @ComponentScan to
automatically pickup all Spring components, including @Configuration classes.

14.2 Importing XML configuration

If you absolutely must use XML based configuration, we recommend that you still start with a
@Configuration class. You can then use an additional @ImportResource annotation to load XML
configuration files.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 31

15. Auto-configuration

Spring Boot auto-configuration attempts to automatically configure your Spring application based on the
jar dependencies that you have added. For example, If HSQLDB is on your classpath, and you have
not manually configured any database connection beans, then we will auto-configure an in-memory
database.

You need to opt-in to auto-configuration by adding the @EnableAutoConfiguration annotation to
one of your @Configuration classes.

Tip

You should only ever add one @EnableAutoConfiguration annotation. We generally
recommend that you add it to your primary @Configuration class.

15.1 Gradually replacing auto-configuration

Auto-configuration is noninvasive, at any point you can start to define your own configuration to replace
specific parts of the auto-configuration. For example, if you add your own DataSource bean, the default
embedded database support will back away.

If you need to find out what auto-configuration is currently being applied, and why, starting your
application with the --debug switch. This will log an auto-configuration report to the console.

15.2 Disabling specific auto-configuration

If you find that specific auto-configure classes are being applied that you don’t want, you can use the
exclude attribute of @EnableAutoConfiguration to disable them.

import org.springframework.boot.autoconfigure.*;

import org.springframework.boot.autoconfigure.jdbc.*;

import org.springframework.context.annotation.*;

@Configuration

@EnableAutoConfiguration(exclude={EmbeddedDatabaseConfiguration.class})

public class MyConfiguration {

}



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 32

16. Spring Beans and dependency injection

You are free to use any of the standard Spring Framework techniques to define your beans and their
injected dependencies. For simplicity, we often find that using @ComponentScan to find your beans, in
combination with @Autowired constructor injection works well.

If you structure your code as suggested above (locating your application class in a root package), you
can add @ComponentScan without any arguments. All of your application components (@Component,
@Service, @Repository, @Controller etc.) will be automatically registered as Spring Beans.

Here is an example @Service Bean that uses constructor injection to obtain a required RiskAssessor
bean.

package com.example.service;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service

public class DatabaseAccountService implements AccountService {

    private final RiskAssessor riskAssessor;

    @Autowired

    public DatabaseAccountService(RiskAssessor riskAssessor) {

        this.riskAssessor = riskAssessor;

    }

    // ...

}

Tip

Notice how using constructor injection allows the riskAssessor field to be marked as final,
indicating that it cannot be subsequently changed.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 33

17. Running your application

One of the biggest advantages of packaging your application as jar and using an embedded HTTP
server is that you can run your application as you would any other. Debugging Spring Boot applications
is also easy; you don’t need any special IDE plugins or extensions.

Note

This section only covers jar based packaging, If you choose to package your application as a war
file you should refer to your server and IDE documentation.

17.1 Running from an IDE

You can run a Spring Boot application from your IDE as a simple Java application, however, first you will
need to import your project. Import steps will vary depending on your IDE and build system. Most IDEs
can import Maven projects directly, for example Eclipse users can select Import... → Existing
Maven Projects from the File menu.

If you can’t directly import your project into your IDE, you may be able to generate IDE meta-data using
a build plugin. Maven includes plugins for Eclipse and IDEA; Gradle offers plugins for various IDEs.

Tip

If you accidentally run a web application twice you will see a “Port already in use” error. STS users
can use the Relauch button rather than Run to ensure that any existing instance is closed.

17.2 Running as a packaged application

If you use the Spring Boot Maven or Gradle plugins to create an executable jar you can run your
application using java -jar. For example:

$ java -jar target/myproject-0.0.1-SNAPSHOT.jar

It is also possible to run a packaged application with remote debugging support enabled. This allows
you to attach a debugger to your packaged application:

$ java -Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=8000,suspend=n \

       -jar target/myproject-0.0.1-SNAPSHOT.jar

17.3 Using the Maven plugin

The Spring Boot Maven plugin includes a run goal which can be used to quickly compile and run your
application. Applications run in an exploded form, and you can edit resources for instant “hot” reload.

$ mvn spring-boot:run

17.4 Using the Gradle plugin

The Spring Boot Gradle plugin also includes a run goal which can be used to run your application in
an exploded form. The bootRun task is added whenever you import the spring-boot-plugin

$ gradle bootRun

http://maven.apache.org/plugins/maven-eclipse-plugin/
http://maven.apache.org/plugins/maven-idea-plugin/
http://www.gradle.org/docs/current/userguide/ide_support.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 34

17.5 Hot swapping

Since Spring Boot applications are just plain Java applications, JVM hot-swapping should work out of the
box. JVM hot swapping is somewhat limited with the bytecode that it can replace, for a more complete
solution the Spring Loaded project, or JRebel can be used.

See the Hot swapping “How-to” section for details.

https://github.com/spring-projects/spring-loaded
http://zeroturnaround.com/software/jrebel/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 35

18. Packaging your application for production

Executable jars can be used for production deployment. As they are self contained, they are also ideally
suited for cloud-based deployment.

For additional “production ready” features, such as health, auditing and metric REST or JMX end-points;
consider adding spring-boot-actuator. See Part V, “Production-ready features” for details.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 36

19. What to read next

You should now have good understanding of how you can use Spring Boot along with some best
practices that you should follow. You can now go on to learn about specific Spring Boot features in
depth, or you could skip ahead and read about the “production ready” aspects of Spring Boot.



Part IV. Spring Boot features
This section dives into the details of Spring Boot. Here you can learn about the key features that you will
want to use and customize. If you haven’t already, you might want to read the Part II, “Getting started”
and Part III, “Using Spring Boot” sections so that you have a good grounding of the basics.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 38

20. SpringApplication

The SpringApplication class provides a convenient way to bootstrap a Spring application that
will be started from a main() method. In many situations you can just delegate to the static
SpringApplication.run method:

public static void main(String[] args) {

    SpringApplication.run(MySpringConfiguration.class, args);

}

When your application starts you should see something similar to the following:

  .   ____          _            __ _ _

 /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \

( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/  ___)| |_)| | | | | || (_| |  ) ) ) )

  '  |____| .__|_| |_|_| |_\__, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot ::   v1.0.3.BUILD-SNAPSHOT

2013-07-31 00:08:16.117  INFO 56603 --- [           main] o.s.b.s.app.SampleApplication            :

 Starting SampleApplication v0.1.0 on mycomputer with PID 56603 (/apps/myapp.jar started by pwebb)

2013-07-31 00:08:16.166  INFO 56603 --- [           main] ationConfigEmbeddedWebApplicationContext :

 Refreshing

 org.springframework.boot.context.embedded.AnnotationConfigEmbeddedWebApplicationContext@6e5a8246:

 startup date [Wed Jul 31 00:08:16 PDT 2013]; root of context hierarchy

2014-03-04 13:09:54.912  INFO 41370 --- [           main] .t.TomcatEmbeddedServletContainerFactory :

 Server initialized with port: 8080

2014-03-04 13:09:56.501  INFO 41370 --- [           main] o.s.b.s.app.SampleApplication            :

 Started SampleApplication in 2.992 seconds (JVM running for 3.658)

By default INFO logging messages will be shown, including some relevant startup details such as the
user that launched the application.

20.1 Customizing SpringApplication

If the SpringApplication defaults aren’t to your taste you can instead create a local instance and
customize it. For example, to turn off the banner you would write:

public static void main(String[] args) {

    SpringApplication app = new SpringApplication(MySpringConfiguration.class);

    app.setShowBanner(false);

    app.run(args);

}

Note

The constructor arguments passed to SpringApplication are configuration sources for spring
beans. In most cases these will be references to @Configuration classes, but they could also
be references to XML configuration or to packages that should be scanned.

It is also possible to configure the SpringApplication using an application.properties file.
See Chapter 21, Externalized Configuration for details.

For a complete list of the configuration options, see the SpringApplication Javadoc.

http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/SpringApplication.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 39

20.2 Fluent builder API

If you need to build an ApplicationContext hierarchy (multiple contexts with a parent/
child relationship), or if you just prefer using a “fluent” builder API, you can use the
SpringApplicationBuilder.

The SpringApplicationBuilder allows you to chain together multiple method calls, and includes
parent and child methods that allow you to create a hierarchy.

For example:

new SpringApplicationBuilder()

    .showBanner(false)

    .sources(Parent.class)

    .child(Application.class)

    .run(args);

Note

There are some restrictions when creating an ApplicationContext hierarchy, e.g. Web
components must be contained within the child context, and the same Environment will be
used for both parent and child contexts. See the SpringApplicationBuilder javadoc for full
details.

20.3 Application events and listeners

In addition to the usual Spring Framework events, such as ContextRefreshedEvent, a
SpringApplication sends some additional application events. Some events are actually triggered
before the ApplicationContext is created.

You can register event listeners in a number of ways, the most common being
SpringApplication.addListeners(...) method.

Application events are sent in the following order, as your application runs:

1. An ApplicationStartedEvent is sent at the start of a run, but before any processing except the
registration of listeners and initializers.

2. An ApplicationEnvironmentPreparedEvent is sent when the Environment to be used in the
context is known, but before the context is created.

3. An ApplicationPreparedEvent is sent just before the refresh is started, but after bean definitions
have been loaded.

4. An ApplicationFailedEvent is sent if there is an exception on startup.

Tip

You often won’t need to use application events, but it can be handy to know that they exist.
Internally, Spring Boot uses events to handle a variety of tasks.

20.4 Web environment

A SpringApplication will attempt to create the right type of ApplicationContext

on your behalf. By default, an AnnotationConfigApplicationContext or

http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/builder/SpringApplication.{dc-edit}
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/event/ContextRefreshedEvent.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 40

AnnotationConfigEmbeddedWebApplicationContext will be used, depending on whether you
are developing a web application or not.

The algorithm used to determine a “web environment” is fairly simplistic (based on the presence of a few
classes). You can use setWebEnvironment(boolean webEnvironment) if you need to override
the default.

It is also possible to take complete control of the ApplicationContext type that will be used by
calling setApplicationContextClass(...).

Tip

It is often desirable to call setWebEnvironment(false) when using SpringApplication
within a JUnit test.

20.5 Using the CommandLineRunner

If you want access to the raw command line arguments, or you need to run some specific code once
the SpringApplication has started you can implement the CommandLineRunner interface. The
run(String... args) method will be called on all Spring beans implementing this interface.

import org.springframework.boot.*

import org.springframework.stereotype.*

@Component

public class MyBean implements CommandLineRunner {

    public void run(String... args) {

        // Do something...

    }

}

You can additionally implement the org.springframework.core.Ordered interface or use the
org.springframework.core.annotation.Order annotation if several CommandLineRunner
beans are defined that must be called in a specific order.

20.6 Application exit

Each SpringApplication will register a shutdown hook with the JVM to ensure that the
ApplicationContext is closed gracefully on exit. All the standard Spring lifecycle callbacks (such
as the DisposableBean interface, or the @PreDestroy annotation) can be used.

In addition, beans may implement the org.springframework.boot.ExitCodeGenerator
interface if they wish to return a specific exit code when the application ends.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 41

21. Externalized Configuration

Spring Boot allows you to externalize your configuration so you can work with the same application
code in different environments. You can use properties files, YAML files, environment variables and
command-line arguments to externalize configuration. Property values can be injected directly into your
beans using the @Value annotation, accessed via Spring’s Environment abstraction or bound to
structured objects.

Spring Boot uses a very particular PropertySource order that is designed to allow sensible overriding
of values, properties are considered in the the following order:

1. Command line arguments.

2. Java System properties (System.getProperties()).

3. OS environment variables.

4. A RandomValuePropertySource that only has properties in random.*.

5. @PropertySource annotations on your @Configuration classes.

6. Application properties outside of your packaged jar (application.properties including YAML
and profile variants).

7. Application properties packaged inside your jar (application.properties including YAML and
profile variants).

8. Default properties (specified using SpringApplication.setDefaultProperties).

To provide a concrete example, suppose you develop a @Component that uses a name property:

import org.springframework.stereotype.*

import org.springframework.beans.factory.annotation.*

@Component

public class MyBean {

    @Value("${name}")

    private String name;

    // ...

}

You can bundle an application.properties inside your jar that provides a sensible default name.
When running in production, an application.properties can be provided outside of your jar that
overrides name; and for one-off testing, you can launch with a specific command line switch (e.g. java
-jar app.jar --name="Spring").

The RandomValuePropertySource is useful for injecting random values (e.g. into secrets or test
cases). It can produce integers, longs or strings, e.g.

my.secret=${random.value}

my.number=${random.int}

my.bignumber=${random.long}

my.number.less.than.ten=${random.int(10)}

my.number.in.range=${random.int[1024,65536]}



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 42

The random.int* syntax is OPEN value (,max) CLOSE where the OPEN,CLOSE are any character
and value,max are integers. If max is provided then value is the minimum value and max is the
maximum (exclusive).

21.1 Accessing command line properties

By default SpringApplication will convert any command line option arguments (starting with “--”,
e.g. --server.port=9000) to a property and add it to the Spring Environment. As mentioned
above, command line properties always take precedence over other property sources.

If you don’t want command line properties to be added to the Environment you can disable them using
SpringApplication.setAddCommandLineProperties(false).

21.2 Application property files

SpringApplication will load properties from application.properties files in the following
locations and add them to the Spring Environment:

1. A /config subdir of the current directory.

2. The current directory

3. A classpath /config package

4. The classpath root

The list is ordered by precedence (locations higher in the list override lower items).

Note

You can also use YAML (.yml) files as an alternative to .properties.

If you don’t like application.properties as the configuration file name you can switch to
another by specifying a spring.config.name environment property. You can also refer to an
explicit location using the spring.config.location environment property (comma-separated list
of directory locations, or file paths).

$ java -jar myproject.jar --spring.config.name=myproject

or

$ java -jar myproject.jar --spring.config.location=classpath:/default.properties,classpath:/

override.properties

If spring.config.location contains directories (as opposed to files) they should end in / (and
will be appended with the names generated from spring.config.name before being loaded). The
default search path classpath:,classpath:/config,file:,file:config/ is always used,
irrespective of the value of spring.config.location. In that way you can set up default values
for your application in application.properties (or whatever other basename you choose with
spring.config.name) and override it at runtime with a different file, keeping the defaults.

21.3 Profile specific properties

In addition to application.properties files, profile specific properties can also be defined using
the naming convention application-{profile}.properties.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 43

Profile specific properties are loaded from the same locations as standard
application.properties, with profiles specific files overriding the default ones.

21.4 Placeholders in properties

The values in application.properties are filtered through the existing Environment when they
are used so you can refer back to previously defined values (e.g. from System properties).

app.name=MyApp

app.description=${app.name} is a Spring Boot application

Tip

You can also use this technique to create “short” variants of existing Spring Boot properties. See
the Section 55.3, “Use “short” command line arguments” how-to for details.

21.5 Using YAML instead of Properties

YAML is a superset of JSON, and as such is a very convenient format for specifying hierarchical
configuration data. The SpringApplication class will automatically support YAML as an alternative
to properties whenever you have the SnakeYAML library on your classpath.

Note

If you use “starter POMs” SnakeYAML will be automatically provided via spring-boot-
starter.

Loading YAML

Spring Boot provides two convenient classes that can be used to load YAML documents. The
YamlPropertiesFactoryBean will load YAML as Properties and the YamlMapFactoryBean will
load YAML as a Map.

For example, the following YAML document:

dev:

    url: http://dev.bar.com

    name: Developer Setup

prod:

    url: http://foo.bar.com

    name: My Cool App

Would be transformed into these properties:

environments.dev.url=http://dev.bar.com

environments.dev.name=Developer Setup

environments.prod.url=http://foo.bar.com

environments.prod.name=My Cool App

YAML lists are represented as property keys with [index] dereferencers, for example this YAML:

my:

   servers:

       - dev.bar.com

       - foo.bar.com

http://yaml.org
http://code.google.com/p/snakeyaml/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 44

Would be transformed into these properties:

my.servers[0]=dev.bar.com

my.servers[1]=foo.bar.com

To bind to properties like that using the Spring DataBinder utilities (which is what
@ConfigurationProperties does) you need to have a property in the target bean of type
java.util.List (or Set) and you either need to provide a setter, or initialize it with a mutable value,
e.g. this will bind to the properties above

@ConfigurationProperties(prefix="my")

public class Config {

    private List<String> servers = new ArrayList<String>();

    public List<String> getServers() {

        return this.servers;

    }

}

Exposing YAML as properties in the Spring Environment

The YamlPropertySourceLoader class can be used to expose YAML as a PropertySource in the
Spring Environment. This allows you to use the familiar @Value annotation with placeholders syntax
to access YAML properties.

Multi-profile YAML documents

You can specify multiple profile-specific YAML document in a single file by by using a
spring.profiles key to indicate when the document applies. For example:

server:

    address: 192.168.1.100

---

spring:

    profiles: development

server:

    address: 127.0.0.1

---

spring:

    profiles: production

server:

    address: 192.168.1.120

YAML shortcomings

YAML files can’t be loaded via the @PropertySource annotation. So in the case that you need to load
values that way, you need to use a properties file.

21.6 Typesafe Configuration Properties

Using the @Value("${property}") annotation to inject configuration properties can sometimes be
cumbersome, especially if you are working with multiple properties or your data is hierarchical in nature.
Spring Boot provides an alternative method of working with properties that allows strongly typed beans
to govern and validate the configuration of your application. For example:

@Component

@ConfigurationProperties(prefix="connection")

public class ConnectionSettings {



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 45

    private String username;

    private InetAddress remoteAddress;

    // ... getters and setters

}

When the @EnableConfigurationProperties annotation is applied to your @Configuration,
any beans annotated with @ConfigurationProperties will be automatically configured from
the Environment properties. This style of configuration works particularly well with the
SpringApplication external YAML configuration:

# application.yml

connection:

    username: admin

    remoteAddress: 192.168.1.1

# additional configuration as required

To work with @ConfigurationProperties beans you can just inject them in the same way as any
other bean.

@Service

public class MyService {

    @Autowired

    private ConnectionSettings connection;

     //...

    @PostConstruct

    public void openConnection() {

        Server server = new Server();

        this.connection.configure(server);

    }

}

It is also possible to shortcut the registration of @ConfigurationProperties bean definitions by
simply listing the properties classes directly in the @EnableConfigurationProperties annotation:

@Configuration

@EnableConfigurationProperties(ConnectionSettings.class)

public class MyConfiguration {

}

Relaxed binding

Spring Boot uses some relaxed rules for binding Environment properties to
@ConfigurationProperties beans, so there doesn’t need to be an exact match between the
Environment property name and the bean property name. Common examples where this is useful
include underscore separated (e.g. context_path binds to contextPath), and capitalized (e.g. PORT
binds to port) environment properties.

Spring will attempt to coerce the external application properties to the right type when it binds to
the @ConfigurationProperties beans. If you need custom type conversion you can provide a
ConversionService bean (with bean id conversionService) or custom property editors (via a
CustomEditorConfigurer bean).



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 46

@ConfigurationProperties Validation

Spring Boot will attempt to validate external configuration, by default using JSR-303 (if it is on
the classpath). You can simply add JSR-303 javax.validation constraint annotations to your
@ConfigurationProperties class:

@Component

@ConfigurationProperties(prefix="connection")

public class ConnectionSettings {

    @NotNull

    private InetAddress remoteAddress;

    // ... getters and setters

}

You can also add a custom Spring Validator by creating a bean definition called
configurationPropertiesValidator.

Tip

The spring-boot-actuator module includes an endpoint that exposes all
@ConfigurationProperties beans. Simply point your web browser to /configprops or use
the equivalent JMX endpoint. See the Production ready features. section for details.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 47

22. Profiles

Spring Profiles provide a way to segregate parts of your application configuration and make it
only available in certain environments. Any @Component or @Configuration can be marked with
@Profile to limit when it is loaded:

@Configuration

@Profile("production")

public class ProductionConfiguraiton {

    // ...

}

In the normal Spring way, you can use a spring.profiles.active Environment property to
specify which profiles are active. You can specify the property in any of the usual ways, for example
you could include it in your application.properties:

spring.profiles.active=dev,hsqldb

or specify on the command line using the switch --spring.profiles.active=dev,hsqldb.

22.1 Adding active profiles

The spring.profiles.active property follows the same ordering rules as other properties,
the highest PropertySource will win. This means that you can specify active profiles in
application.properties then replace them using the command line switch.

Sometimes it is useful to have profile specific properties that add to the active profiles rather than replace
them. The spring.profiles.include property can be used to unconditionally add active profiles.
The SpringApplication entry point also has a Java API for setting additional profiles (i.e. on top of
those activated by the spring.profiles.active property): see the setAdditionalProfiles()
method.

For example, when an application with following properties is run using the switch --

spring.profiles.active=prod the proddb and prodmq profiles will also be activated:

---

my.property: fromyamlfile

---

spring.profiles: prod

spring.profiles.include: proddb,prodmq

22.2 Programmatically setting profiles

You can programmatically set active profiles by calling
SpringApplication.setAdditionalProfiles(...) before your application runs. It is also
possible to activate profiles using Spring’s ConfigurableEnvironment interface.

22.3 Profile specific configuration files

Profile specific variants of both application.properties (or application.yml) and files
referenced via @ConfigurationProperties are considered as files are loaded. See Section 21.3,
“Profile specific properties” for details.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 48

23. Logging

Spring Boot uses Commons Logging for all internal logging, but leaves the underlying log implementation
open. Default configurations are provided for Java Util Logging, Log4J and Logback. In each case there
is console output and file output (rotating, 10 Mb file size).

By default, If you use the “Starter POMs”, Logback will be used for logging. Appropriate Logback routing
is also included to ensure that dependent libraries that use Java Util Logging, Commons Logging, Log4J
or SLF4J will all work correctly.

Tip

There are a lot of logging frameworks available for Java. Don’t worry if the above list seems
confusing, generally you won’t need to change your logging dependencies and the Spring Boot
defaults will work just fine.

23.1 Log format

The default log output from Spring Boot looks like this:

2014-03-05 10:57:51.112  INFO 45469 --- [           main] org.apache.catalina.core.StandardEngine  :

 Starting Servlet Engine: Apache Tomcat/7.0.52

2014-03-05 10:57:51.253  INFO 45469 --- [ost-startStop-1] o.a.c.c.C.[Tomcat].[localhost].[/]       :

 Initializing Spring embedded WebApplicationContext

2014-03-05 10:57:51.253  INFO 45469 --- [ost-startStop-1] o.s.web.context.ContextLoader            :

 Root WebApplicationContext: initialization completed in 1358 ms

2014-03-05 10:57:51.698  INFO 45469 --- [ost-startStop-1] o.s.b.c.e.ServletRegistrationBean        :

 Mapping servlet: 'dispatcherServlet' to [/]

2014-03-05 10:57:51.702  INFO 45469 --- [ost-startStop-1] o.s.b.c.embedded.FilterRegistrationBean  :

 Mapping filter: 'hiddenHttpMethodFilter' to: [/*]

The following items are output:

• Date and Time — Millesecond precision and easily sortable.

• Log Level — ERROR, WARN, INFO, DEBUG or TRACE.

• Process ID.

• A --- separator to distinguish the start of actual log messages.

• Logger name — This is usually the source class name (often abbreviated).

• The log message.

23.2 Console output

The default log configuration will echo messages to the console as they written. By default ERROR, WARN
and INFO level messages are logged. To also log DEBUG level messages to the console you can start
your application with a --debug flag.

$ java -jar myapp.jar --debug

If your terminal supports ANSI, color output will be used to aid readability.

http://commons.apache.org/logging
http://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html
http://logging.apache.org/log4j/
http://logback.qos.ch/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 49

23.3 File output

By default, log files are written to spring.log in your temp directory and rotate at 10 Mb. You
can easily customize the output folder by setting the logging.path property (for example in your
application.properties). It is also possible to change the filename using a logging.file
property.

As with console output, ERROR, WARN and INFO level messages are logged by default.

23.4 Custom log configuration

The various logging systems can be activated by including the appropriate libraries on the classpath,
and further customized by providing a suitable configuration file in the root of the classpath, or in a
location specified by the Spring Environment property logging.config.

Depending on your logging system, the following files will be loaded:

Logging System Customization

Logback logback.xml

Log4j log4j.properties or log4j.xml

JDK (Java Util Logging) logging.properties

To help with the customization some other properties are transferred from the Spring Environment
to System properties:

Spring Environment System Property Comments

logging.file LOG_FILE Used in default log
configuration if defined.

logging.path LOG_PATH Used in default log
configuration if defined.

PID PID The current process ID
(discovered if possible and
when not already defined as an
OS environment variable).

All the logging systems supported can consult System properties when parsing their configuration files.
See the default configurations in spring-boot.jar for examples.

Warning

There are know classloading issues with Java Util Logging that cause problems when running
from an “executable jar”. We recommend that you avoid it if at all possible.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 50

24. Developing web applications

Spring Boot is well suited for web application development. You can easily create a self-contained HTTP
server using embedded Tomcat or Jetty. Most web applications will use the spring-boot-starter-
web module to get up and running quickly.

If you haven’t yet developed a Spring Boot web application you can follow the "Hello World!" example
in the Getting started section.

24.1 The “Spring Web MVC framework”

The Spring Web MVC framework (often referred to as simply “Spring MVC”) is a rich “model view
controller” web framework. Spring MVC lets you create special @Controller or @RestController
beans to handle incoming HTTP requests. Methods in your controller are mapped to HTTP using
@RequestMapping annotations.

Here is a typical example @RestController to serve JSON data:

@RestController

@RequestMapping(value="/users")

public class MyRestController {

    @RequestMapping(value="/{user}", method=RequestMethod.GET)

    public User getUser(@PathVariable Long user) {

        // ...

    }

    @RequestMapping(value="/{user}/customers", method=RequestMethod.GET)

    List<Customer> getUserCustomers(@PathVariable Long user) {

        // ...

    }

    @RequestMapping(value="/{user}", method=RequestMethod.DELETE)

    public User deleteUser(@PathVariable Long user) {

        // ...

    }

}

Spring MVC is part of the core Spring Framework and detailed information is available in the reference
documentation. There are also several guides available at http://spring.io/guides that cover Spring MVC.

Spring MVC auto-configuration

Spring Boot provides auto-configuration for Spring MVC that works well with most applications.

The auto-configuration adds the following features on top of Spring’s defaults:

• Inclusion of ContentNegotiatingViewResolver and BeanNameViewResolver beans.

• Support for serving static resources, including support for WebJars (see below).

• Automatic registration of Converter, GenericConverter, Formatter beans.

• Support for HttpMessageConverters (see below).

• Static index.html support.

• Custom Favicon support.

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle#mvc
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle#mvc
http://spring.io/guides


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 51

If you want to take complete control of Spring MVC, you can add your own @Configuration annotated
with @EnableWebMvc. If you want to keep Spring Boot MVC features, and you just want to add additional
MVC configuration (interceptors, formatters, view controllers etc.) you can add your own @Bean of type
WebMvcConfigurerAdapter, but without @EnableWebMvc.

HttpMessageConverters

Spring MVC uses the HttpMessageConverter interface to convert HTTP requests and responses.
Sensible defaults are included out of the box, for example Objects can be automatically converted to
JSON (using the Jackson library) or XML (using JAXB).

If you need to add or customize converters you can use Spring Boot’s HttpMessageConverters
class:

import org.springframework.boot.autoconfigure.web.HttpMessageConverters;

import org.springframework.context.annotation.*;

import org.springframework.http.converter.*;

@Configuration

public class MyConfiguration {

    @Bean

    public HttpMessageConverters customConverters() {

        HttpMessageConverter<?> additional = ...

        HttpMessageConverter<?> another = ...

        return new HttpMessageConverters(additional, another);

    }

}

Static Content

By default Spring Boot will serve static content from a folder called /static (or /public or /
resources or /META-INF/resources) in the classpath or from the root of the ServeltContext.
It uses the ResourceHttpRequestHandler from Spring MVC so you can modify that behavior by
adding your own WebMvcConfigurerAdapter and overriding the addResourceHandlers method.

In a stand-alone web application the default servlet from the container is also enabled, and acts as a
fallback, serving content from the root of the ServletContext if Spring decides not to handle it. Most
of the time this will not happen (unless you modify the default MVC configuration) because Spring will
always be able to handle requests through the DispatcherServlet.

In addition to the “standard” static resource locations above, a special case is made for Webjars content.
Any resources with a path in /webjars/** will be served from jar files if they are packaged in the
Webjars format.

Tip

Do not use the src/main/webapp folder if your application will be packaged as a jar. Although
this folder is a common standard, it will only work with war packaging and it will be silently ignored
by most build tools if you generate a jar.

Template engines

As well as REST web services, you can also use Spring MVC to serve dynamic HTML content. Spring
MVC supports a variety of templating technologies including: velocity, freemarker, and JSPs. Many other
templating engines also ship their own Spring MVC integrations.

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle#mvc
http://www.webjars.org/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 52

Spring Boot includes auto-configuration support for the Thymeleaf templating engine. Thymeleaf is an
XML/XHTML/HTML5 template engine that can work both in web and non-web environments. It allows
you to create natural templates that can be correctly displayed by browsers and therefore work also as
static prototypes. Thymeleaf templates will be picked up automatically from src/main/resources/
templates.

Tip

JSPs should be avoided if possible, there are several known limitations when using them with
embedded servlet containers.

24.2 Embedded servlet container support

Spring Boot includes support for embedded Tomcat and Jetty servers. Most developers will simply use
the appropriate “Starter POM” to obtain a fully configured instance. By default both Tomcat and Jetty
will listen for HTTP requests on port 8080.

Servlets and Filters

When using an embedded servlet container you can register Servlets and Filters directly as
Spring beans. This can be particularly convenient if you want to refer to a value from your
application.properties during configuration.

By default, if the context contains only a single Servlet it will be mapped to /. In the case of multiple
Servlets beans the bean name will be used as a path prefix. Filters will map to /*.

If convention-based mapping is not flexible enough you can use the ServletRegistrationBean and
FilterRegistrationBean classes for complete control. You can also register items directly if your
bean implements the ServletContextInitializer interface.

The EmbeddedWebApplicationContext

Under the hood Spring Boot uses a new type of ApplicationContext for embedded servlet container
support. The EmbeddedWebApplicationContext is a special type of WebApplicationContext
that bootstraps itself by searching for a single EmbeddedServletContainerFactory bean. Usually a
TomcatEmbeddedServletContainerFactory or JettyEmbeddedServletContainerFactory
will have been auto-configured.

Note

You usually won’t need to be aware of these implementation classes. Most
applications will be auto-configured and the appropriate ApplicationContext and
EmbeddedServletContainerFactory will be created on your behalf.

Customizing embedded servlet containers

Common servlet container settings can be configured using Spring Environment properties. Usually
you would define the properties in your application.properties file.

Common server settings include:

• server.port— The listen port for incoming HTTP requests.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 53

• server.address— The interface address to bind to.

• server.sessionTimeout— A session timeout.

See the ServerProperties class for a complete list.

Programmatic customization

If you need to configure your embdedded servlet container programmatically you can
register a Spring bean that implements the EmbeddedServletContainerCustomizer

interface. EmbeddedServletContainerCustomizer provides access to the
ConfigurableEmbeddedServletContainerFactory which includes numerous customization
setter methods.

import org.springframework.boot.context.embedded.*;

import org.springframework.stereotype.Component;

@Component

public class CustomizationBean implements EmbeddedServletContainerCustomizer {

    @Override

    public void customize(ConfigurableEmbeddedServletContainer container) {

        container.setPort(9000);

    }

}

Customizing ConfigurableEmbeddedServletContainerFactory directly

If the above customization techniques are too limited, you can register the
TomcatEmbeddedServletContainerFactory or JettyEmbeddedServletContainerFactory
bean yourself.

@Bean

public EmbeddedServletContainerFactory servletContainer() {

    TomcatEmbeddedServletContainerFactory factory = new TomcatEmbeddedServletContainerFactory();

    factory.setPort(9000);

    factory.setSessionTimeout(10, TimeUnit.MINUTES);

    factory.addErrorPages(new ErrorPage(HttpStatus.404, "/notfound.html");

    return factory;

}

Setters are provided for many configuration options. Several protected method “hooks” are also provided
should you need to do something more exotic. See the source code documentation for details.

JSP limitations

When running a Spring Boot application that uses an embedded servlet container (and is packaged as
an executable archive), there are some limitations in the JSP support.

• With Tomcat it should work if you use war packaging, i.e. an executable war will work, and will also
be deployable to a standard container (not limited to, but including Tomcat). An executable jar will not
work because of a hard coded file pattern in Tomcat.

• Jetty does not currently work as an embedded container with JSPs.

There is a JSP sample so you can see how to set things up.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-web-jsp


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 54

25. Security

If Spring Security is on the classpath then web applications will be secure by default with “basic”
authentication on all HTTP endpoints. To add method-level security to a web application you can also
add @EnableGlobalMethodSecurity with your desired settings. Additional information can be found
in the Spring Security Reference.

The default AuthenticationManager has a single user (“user” username and random password,
printed at INFO level when the application starts up). You can change the password by
providing a security.user.password. This and other useful properties are externalized via
SecurityProperties (properties prefix "security").

The default security configuration is implemented in SecurityAutoConfiguration and in the
classes imported from there (SpringBootWebSecurityConfiguration for web security and
AuthenticationManagerConfiguration for authentication configuration which is also relevant in
non-web applications). To switch off the Boot default configuration completely in a web application you
can add a bean with @EnableWebSecurity. To customize it you normally use external properties
and beans of type WebConfigurerAdapter (e.g. to add form-based login). There are several secure
applications in the Spring Boot samples to get you started with common use cases.

The basic features you get out of the box in a web application are:

• An AuthenticationManager bean with in-memory store and a single user (see
SecurityProperties.User for the properties of the user).

• Ignored (unsecure) paths for common static resource locations (/css/**, /js/**, /images/**
and **/favicon.ico).

• HTTP Basic security for all other endpoints.

• Security events published to Spring’s ApplicationEventPublisher (successful and
unsuccessful authentication and access denied).

• Common low-level features (HSTS, XSS, CSRF, caching) provided by Spring Security are on by
default.

All of the above can be switched on and off or modified using external properties (security.*).

If the Actuator is also in use, you will find:

• The management endpoints are secure even if the application endpoints are unsecure.

• Security events are transformed into AuditEvents and published to the AuditService.

• The default user will have the "ADMIN" role as well as the "USER" role.

The Actuator security features can be modified using external properties (management.security.*).

http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle#jc-method
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 55

26. Working with SQL databases

The Spring Framework provides extensive support for working with SQL databases. From direct JDBC
access using JdbcTemplate to complete “object relational mapping” technologies such as Hibernate.
Spring Data provides an additional level of functionality, creating Repository implementations directly
from interfaces and using conventions to generate queries from your method names.

26.1 Configure a DataSource

Java’s javax.sql.DataSource interface provides a standard method of working with database
connections. Traditionally a DataSource uses a URL along with some credentials to establish a database
connection.

Embedded Database Support

It’s often convenient to develop applications using an in-memory embedded database. Obviously, in-
memory databases do not provide persistent storage; you will need to populate your database when
your application starts and be prepared to throw away data when your application ends.

Tip

The “How-to” section includes a section on how to initialize a database

Spring Boot can auto-configure embedded H2, HSQL and Derby databases. You don’t need to provide
any connection URLs, simply include a build dependency to the embedded database that you want to
use.

For example, typical POM dependencies would be:

<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

<dependency>

    <groupId>org.hsqldb</groupId>

    <artifactId>hsqldb</artifactId>

    <scope>runtime</scope>

</dependency>

Note

You need a dependency on spring-jdbc for an embedded database to be auto-configured. In
this example it’s pulled in transitively via spring-boot-starter-data-jpa.

Connection to a production database

Production database connections can also be auto-configured using a pooling DataSource. Here’s the
algorithm for choosing a specific implementation.

• We prefer the Tomcat pooling DataSource for its performance and concurrency, so if that is available
we always choose it.

• If commons-dbcp is available we will use that, but we don’t recommend it in production.

http://www.h2database.com
http://hsqldb.org/
http://db.apache.org/derby/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 56

If you use the spring-boot-starter-jdbc or spring-boot-starter-data-jpa “starter POMs”
you will automcatically get a dependency to tomcat-jdbc.

Note

Additional connection pools can always be configured manually. If you define your own
DataSource bean, auto-configuration will not occur.

DataSource configuration is controlled by external configuration properties in spring.datasource.*.
For example, you might declare the following section in application.properties:

spring.datasource.url=jdbc:mysql://localhost/test

spring.datasource.username=dbuser

spring.datasource.password=dbpass

spring.datasource.driverClassName=com.mysql.jdbc.Driver

See AbstractDataSourceConfiguration for more of the supported options.

Note

For a pooling DataSource to be created we need to be able to verify that a valid
Driver class is available, so we check for that before doing anything. I.e. if you set
spring.datasource.driverClassName=com.mysql.jdbc.Driver then that class has to
be loadable.

26.2 Using JdbcTemplate

Spring’s JdbcTemplate and NamedParameterJdbcTemplate classes are auto-configured and you
can @Autowire them directly into your own beans:

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.stereotype.Component;

@Component

public class MyBean {

    private final JdbcTemplate jdbcTemplate;

    @Autowired

    public MyBean(JdbcTemplate jdbcTemplate) {

        this.jdbcTemplate = jdbcTemplate;

    }

    // ...

}

26.3 JPA and “Spring Data”

The Java Persistence API is a standard technology that allows you to “map” objects to relational
databases. The spring-boot-starter-data-jpa POM provides a quick way to get started. It
provides the following key dependencies:

• Hibernate — One of the most popular JPA implementations.

• Spring Data JPA — Makes it easy to easily implement JPA-based repositories.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/AbstractDataSourceConfiguration.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 57

• Spring ORMs — Core ORM support from the Spring Framework.

Tip

We won’t go into too many details of JPA or Spring Data here. You can follow the “Accessing
Data with JPA” guide from http://spring.io and read the Spring Data JPA and Hibernate reference
documentation.

Entity Classes

Traditionally, JPA “Entity” classes are specified in a persistence.xml file. With Spring Boot this
file is not necessary and instead “Entity Scanning” is used. By default all packages below your main
configuration class (the one annotated with @EnableAutoConfiguration) will be searched.

Any classes annotated with @Entity, @Embeddable or @MappedSuperclass will be considered. A
typical entity class would look something like this:

package com.example.myapp.domain;

import java.io.Serializable;

import javax.persistence.*;

@Entity

public class City implements Serializable {

    @Id

    @GeneratedValue

    private Long id;

    @Column(nullable = false)

    private String name;

    @Column(nullable = false)

    private String state;

    // ... additional members, often include @OneToMany mappings

    protected City() {

        // no-args constructor required by JPA spec

        // this one is protected since it shouldn't be used directly

    }

    public City(String name, String state) {

        this.name = name;

        this.country = country;

    }

    public String getName() {

        return this.name;

    }

    public String getState() {

        return this.state;

    }

    // ... etc

}

Tip

You can customize entity scanning locations using the @EntityScan annotation. See the
Section 59.3, “Separate @Entity definitions from Spring configuration” how-to.

http://spring.io/guides/gs/accessing-data-jpa/
http://spring.io/guides/gs/accessing-data-jpa/
http://spring.io
http://projects.spring.io/spring-data-jpa/
http://hibernate.org/orm/documentation/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 58

Spring Data JPA Repositories

Spring Data JPA repositories are interfaces that you can define to access data. JPA queries are created
automatically from your method names. For example, a CityRepository interface might declare a
findAllByState(String state) method to find all cities in a given state.

For more complex queries you can annotate your method using Spring Data’s Query annotation.

Spring Data repositories usually extend from the Repository or CrudRepository interfaces. If you
are using auto-configuration, repositories will be searched from the package containing your main
configuration class (the one annotated with @EnableAutoConfiguration) down.

Here is a typical Spring Data repository:

package com.example.myapp.domain;

import org.springframework.data.domain.*;

import org.springframework.data.repository.*;

public interface CityRepository extends Repository<City, Long> {

    Page<City> findAll(Pageable pageable);

    City findByNameAndCountryAllIgnoringCase(String name, String country);

}

Tip

We have barely scratched the surface of Spring Data JPA. For complete details check their
reference documentation.

Creating and dropping JPA databases

By default JPA database will be automatically created only if you use an embedded database (H2, HSQL
or Derby). You can explicitly configure JPA settings using spring.jpa.* properties. For example, to
create and drop tables you can add the following to your application.properties.

spring.jpa.hibernate.ddl-auto=create-drop

Note

Hibernate’s own internal property name for this (if you happen to remember it better) is
hibernate.hbm2ddl.auto. You can set it, along with other Hibernate native properties, using
spring.jpa.properties.* (the prefix is stripped before adding them to the entity manager).
Alternatively, spring.jpa.generate-ddl=false switches off all DDL generation.

http://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/Query.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
http://projects.spring.io/spring-data-jpa/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 59

27. Working with NoSQL technologies

Spring Data provides additional projects that help you access a variety of NoSQL technologies including
MongoDB, Neo4J, Redis, Gemfire, Couchbase and Cassandra. Spring Boot provides auto-configuration
for MongoDB; you can make use of the other projects, but you will need to configure them yourself.
Refer to the appropriate reference documentation at http://projects.spring.io/spring-data.

27.1 MongoDB

MongoDB is an open-source NoSQL document database that uses a JSON-like schema instead
of traditional table-based relational data. Spring Boot offers several conveniences for working with
MongoDB, including the The spring-boot-starter-data-mongodb “Starter POM”.

Connecting to a MongoDB database

You can inject an auto-configured com.mongodb.Mongo instance as you would any other Spring Bean.
By default the instance will attempt to connect to a MongoDB server using the URL mongodb://
localhost/test:

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Component;

import com.mongodb.Mongo;

@Component

public class MyBean {

    private final Mongo mongo;

    @Autowired

    public MyBean(Mongo mongo) {

        this.mongo = mongo;

    }

    // ...

}

You can set spring.data.mongodb.uri property to change the url, or alternatively specify a
host/port. For example, you might declare the following in your application.properties:

spring.data.mongodb.host=mongoserver

spring.data.mongodb.port=27017

Tip

If spring.data.mongodb.port is not specified the default of 27017 is used. You could simply
delete this line from the sample above.

You can also declare your own Mongo @Bean if you want to take complete control of establishing the
MongoDB connection.

MongoTemplate

Spring Data Mongo provides a MongoTemplate class that is very similar in its design to Spring’s
JdbcTemplate. As with JdbcTemplate Spring Boot auto-configures a bean for you to simply inject:

http://projects.spring.io/spring-data-mongodb/
http://projects.spring.io/spring-data-neo4j/
http://projects.spring.io/spring-data-redis/
http://projects.spring.io/spring-data-gemfire/
http://projects.spring.io/spring-data-couchbase/
http://projects.spring.io/spring-data-cassandra/
http://projects.spring.io/spring-data
http://www.mongodb.com/
http://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoTemplate.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 60

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.data.mongodb.core.MongoTemplate;

import org.springframework.stereotype.Component;

@Component

public class MyBean {

    private final MongoTemplate mongoTemplate;

    @Autowired

    public MyBean(MongoTemplate mongoTemplate) {

        this.mongoTemplate = mongoTemplate;

    }

    // ...

}

See the MongoOperations Javadoc for complete details.

Spring Data MongoDB repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data MongoDB share the same common infrastructure; so
you could take the JPA example from earlier and, assuming that City is now a Mongo data class rather
than a JPA @Entity, it will work in the same way.

package com.example.myapp.domain;

import org.springframework.data.domain.*;

import org.springframework.data.repository.*;

public interface CityRepository extends Repository<City, Long> {

    Page<City> findAll(Pageable pageable);

    City findByNameAndCountryAllIgnoringCase(String name, String country);

}

Tip

For complete details of Spring Data MongoDB, including its rich object mapping technologies,
refer to their reference documentation.

http://projects.spring.io/spring-data-mongodb/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 61

28. Testing
Spring Boot provides a number of useful tools for testing your application. The spring-
boot-starter-parent POM provides JUnit, Hamcrest and Mockito “test” scope dependencies.
There are also useful test utilities in the core spring-boot module under the
org.springframework.boot.test package. There is also a spring-boot-starter-test
“Starter POM”.

28.1 Test scope dependencies

If you extend your Maven project from the spring-boot-starter-parent POM, or use the
spring-boot-starter-test “Starter POM” (in the test scope), you will find the following provided
libraries:

• JUnit — The de-facto standard for unit testing Java applications.

• Hamcrest — A library of matcher objects (also known as constraints or predicates) allowing
assertThat style JUnit assertions.

• Mockito — A Java mocking framework.

These are common libraries that we generally find useful when writing tests. You are free to add
additional test dependencies of your own if these don’t suit your needs.

28.2 Testing Spring applications

One of the major advantages of dependency injection is that it should make your code easier to unit
test. You can simply instantiate objects using the new operator without even involving Spring. You can
also use mock objects instead of real dependencies.

Often you need to move beyond “unit testing” and start “integration testing” (with a Spring
ApplicationContext actually involved in the process). It’s useful to be able to perform integration
testing without requiring deployment of your application or needing to connect to other infrastructure.

The Spring Framework includes a dedicated test module for just such integration testing. You can
declare a dependency directly to org.springframework:spring-test or use the spring-boot-
starter-test “Starter POM” to pull it in transitively.

If you have not used the spring-test module before you should start by reading the relevant section
of the Spring Framework reference documentation.

28.3 Testing Spring Boot applications

A Spring Boot application is just a Spring ApplicationContext so nothing very special has to be
done to test it beyond what you would normally do with a vanilla Spring context. One thing to watch out
for though is that the external properties, logging and other features of Spring Boot are only installed in
the context by default if you use SpringApplication to create it.

Spring Boot provides a @SpringApplicationConfiguration annotation as an alternative
to the standard spring-test @ContextConfiguration annotation. If you use
@SpringApplicationConfiguration to configure the ApplicationContext used in your tests,
it will be created via SpringApplication and you will get the additional Spring Boot features.

For example:

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#testing


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 62

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes = SampleDataJpaApplication.class)

public class CityRepositoryIntegrationTests {

    @Autowired

    CityRepository repository;

    // ...

}

Tip

The context loader guesses whether you want to test a web application or not (e.g.
with MockMVC) by looking for the @WebAppConfiguration annotation. (MockMVC and
@WebAppConfiguration are part of spring-test).

If you want a web application to start up and listen on its normal port, so you can test it with HTTP (e.g.
using RestTemplate), annotate your test class (or one of its superclasses) with @IntegrationTest.
This can be very useful because it means you can test the full stack of your application, but also inject
its components into the test class and use them to assert the internal state of the application after an
HTTP interaction. For Example:

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes = SampleDataJpaApplication.class)

@WebAppConfiguration

@IntegrationTest

public class CityRepositoryIntegrationTests {

    @Autowired

    CityRepository repository;

    RestTemplate restTemplate = new TestRestTemplate();

    // ... interact with the running server

}

To change the port you can add environment properties to @IntegrationTest as colon- or equals-
separated name-value pairs, e.g. @IntegrationTest("server.port:9000").

28.4 Test utilities

A few test utility classes are packaged as part of spring-boot that are generally useful when testing
your application.

ConfigFileApplicationContextInitializer

ConfigFileApplicationContextInitializer is an ApplicationContextInitializer that
can apply to your tests to load Spring Boot application.properties files. You can use this when
you don’t need the full features provided by @SpringApplicationConfiguration.

@ContextConfiguration(classes = Config.class,

    initializers = ConfigFileApplicationContextInitializer.class)

EnvironmentTestUtils

EnvironmentTestUtils allows you to quickly add properties to a ConfigurableEnvironment or
ConfigurableApplicationContext. Simply call it with key=value strings:



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 63

EnvironmentTestUtils.addEnvironment(env, "org=Spring", "name=Boot");

OutputCapture

OutputCapture is a JUnit Rule that you can use to capture System.out and System.err output.
Simply declare the capture as a @Rule then use toString() for assertions:

import org.junit.Rule;

import org.junit.Test;

import org.springframework.boot.test.OutputCapture;

import static org.hamcrest.Matchers.*;

import static org.junit.Assert.*;

public class MyTest {

 @Rule

 public OutputCapture capture = new OutputCapture();

 @Test

 public void testName() throws Exception {

  System.out.println("Hello World!");

  assertThat(capture.toString(), containsString("World"));

 }

}

TestRestTemplate

TestRestTemplate is a convenience subclass of Spring’s RestTemplate that is useful in integration
tests. You can get a vanilla template or one that sends Basic HTTP authentication (with a username
and password). In either case the template will behave in a test-friendly way: not following redirects (so
you can assert the response location), ignoring cookies (so the template is stateless), and not throwing
exceptions on server-side errors. It is recommended, but not mandatory, to use Apache HTTP Client
(version 4.3.2 or better), and if you have that on your classpath the TestRestTemplate will respond
by configuring the client appropriately.

public class MyTest {

 RestTemplate template = new TestRestTemplate();

 @Test

 public void testRequest() throws Exception {

  HttpHeaders headers = template.getForEntity("http://myhost.com", String.class).getHeaders();

  assertThat(headers.getLocation().toString(), containsString("myotherhost"));

 }

}



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 64

29. Developing auto-configuration and using
conditions

If you work in a company that develops shared libraries, or if you work on an open-source or commercial
library, you might want to develop your own auto-configuration. Auto-configuration classes can be
bundled in external jars and still be picked-up by Spring Boot.

29.1 Understanding auto-configured beans

Under the hood, auto-configuration is implemented with standard @Configuration classes. Additional
@Conditional annotations are used to constrain when the auto-configuration should apply. Usually
auto-configuration classes use @ConditionalOnClass and @ConditionalOnMissingBean

annotations. This ensures that auto-configuration only applies when relevant classes are found and
when you have not declared your own @Configuration.

You can browse the source code of spring-boot-autoconfigure to see the @Configuration
classes that we provide (see the META-INF/spring.factories file).

29.2 Locating auto-configuration candidates

Spring Boot checks for the presence of a META-INF/spring.factories file within your published
jar. The file should list your configuration classes under the EnableAutoConfiguration key.

org.springframework.boot.autoconfigure.EnableAutoConfiguration=\

com.mycorp.libx.autoconfigure.LibXAutoConfiguration,\

com.mycorp.libx.autoconfigure.LibXWebAutoConfiguration

You can use the @AutoConfigureAfter or @AutoConfigureBefore annotations if your
configuration needs to be applied in a specific order. For example, if you provide web specific
configuration, your class may need to be applied after WebMvcAutoConfiguration.

29.3 Condition annotations

You almost always want to include one or more @Condition annotations on your auto-configuration
class. The @ConditionalOnMissingBean is one common example that is used to allow developers
to “override” auto-configuration if they are not happy with your defaults.

Spring Boot includes a number of @Conditional annotations that you can reuse in your own code by
annotating @Configuration classes or individual @Bean methods.

Class conditions

The @ConditionalOnClass and @ConditionalOnMissingClass annotations allows
configuration to be skipped based on the presence or absence of specific classes. Due to the fact that
annotation meta-data is parsed using ASM you can actually use the value attribute to refer to the real
class, even though that class might not actually appear on the running application classpath. You can
also use the name attribute if you prefer to specify the class name using a String value.

Bean conditions

The @ConditionalOnBean and @ConditionalOnMissingBean annotations allow configurations
to be skipped based on the presence or absence of specific beans. You can use the value attribute to

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureAfter.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureBefore.java
http://asm.ow2.org/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 65

specify beans by type, or name to specify beans by name. The search attribute allows you to limit the
ApplicationContext hierarchy that should be considered when searching for beans.

Note

@Conditional annotations are processed when @Configuration classes are parsed. Auto-
configure @Configuration is always parsed last (after any user defined beans), however, if
you are using these annotations on regular @Configuration classes, care must be taken not
to refer to bean definitions that have not yet been created.

Resource conditions

The @ConditionalOnResource annotation allows configuration to be included only when a specific
resource is present. Resources can be specified using the usual Spring conventions, for example,
file:/home/user/test.dat.

Web Application Conditions

The @ConditionalOnWebApplication and @ConditionalOnNotWebApplication annotations
allow configuration to be skipped depending on whether the application is a web application. A web
application is any application that is using a Spring WebApplicationContext, defines a session
scope or has a StandardServletEnvironment.

SpEL expression conditions

The @ConditionalOnExpression annotation allows configuration to be skipped based on the result
of a SpEL expression.

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#expressions


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 66

30. What to read next

If you want to learn more about any of the classes discussed in this section you can check out the Spring
Boot API documentation or you can browse the source code directly. If you have specific questions,
take a look at the how-to section.

If you are comfortable with Spring Boot’s core features, you can carry on and read about production-
ready features.

http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api
http://github.com/spring-projects/spring-boot/tree/master


Part V. Production-ready features
Spring Boot includes a number of additional features to help you monitor and manage your application
when it’s pushed to production. You can choose to manage and monitor your application using HTTP
endpoints, with JMX or even by remote shell (SSH or Telnet). Auditing, health and metrics gathering
can be automatically applied to your application.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 68

31. Enabling production-ready features.

The spring-boot-actuator module provides all of Spring Boot’s production-ready features. The
simplest way to enable the features is to add a dependency to the spring-boot-starter-actuator
“Starter POM”.

Definition of Actuator

An actuator is a manufacturing term, referring to a mechanical device for moving or controlling
something. Actuators can generate a large amount of motion from a small change.

To add the actuator to a Maven based project, add the following “starter” dependency:

<dependencies>

    <dependency>

        <groupId>org.springframework.boot</groupId>

        <artifactId>spring-boot-starter-actuator</artifactId>

    </dependency>

</dependencies>

For Gradle, use the declaration:

dependencies {

    compile("org.springframework.boot:spring-boot-starter-actuator")

}



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 69

32. Endpoints

Actuator endpoints allow you to monitor and interact with your application. Spring Boot includes a
number of built-in endpoints and you can also add your own. For example the health endpoint provides
basic application health information.

The way that endpoints are exposed will depend on the type of technology that you choose. Most
applications choose HTTP monitoring, where the ID of the endpoint is mapped to a URL. For example,
by default, the health endpoint will be mapped to /health.

The following endpoints are available:

ID Description Sensitive

autoconfig Displays an auto-configuration report showing all auto-
configuration candidates and the reason why they “were” or
“were not” applied.

true

beans Displays a complete list of all the Spring Beans in your
application.

true

configprops Displays a collated list of all @ConfigurationProperties. true

dump Performs a thread dump. true

env Exposes properties from Spring’s
ConfigurableEnvironment.

true

health Shows application health information (defaulting to a simple
“OK” message).

false

info Displays arbitrary application info. false

metrics Shows “metrics” information for the current application. true

mappings Displays a collated list of all @RequestMapping paths. true

shutdown Allows the application to be gracefully shutdown (not enabled
by default).

true

trace Displays trace information (by default the last few HTTP
requests).

true

Note

Depending on how an endpoint is exposed, the sensitive parameter may be used as a security
hint. For example, sensitive endpoints will require a username/password when they are accessed
over HTTP (or simply disabled if web security is not enabled).

32.1 Customizing endpoints

Endpoints can be customized using Spring properties. You can change if an endpoint is enabled, if it
is considered sensitive and even its id.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 70

For example, here is an application.properties that changes the sensitivity and id of the beans
endpoint and also enables shutdown.

endpoints.beans.id=springbeans

endpoints.beans.sensitive=false

endpoints.shutdown.enabled=true

Note

The prefix "endpoints + . + name" is used to uniquely identify the endpoint that is being
configured.

32.2 Custom health information

The default information exposed by the health endpoint is a simple “OK” message. It is often useful to
perform some additional health checks, for example you might check that a database connection works,
or that a remote REST endpoint is functioning.

To provide custom health information you can register a Spring bean that implements the
HealthIndicator interface.

import org.springframework.boot.actuate.health.HealthIndicator;

import org.springframework.stereotype.Component;

@Component

public class MyHealth implements HealthIndicator<String> {

    @Override

    public String health() {

        // perform some specific health check

        return ...

    }

}

Spring Boot also provides a SimpleHealthIndicator implementation that attempts a simple
database test.

32.3 Custom application info information

You can customize the data exposed by the info endpoint by setting info.* Spring properties. All
Environment properties under the info key will be automatically exposed. For example, you could add
the following to your application.properties:

info.app.name=MyService

info.app.description=My awesome service

info.app.version=1.0.0

If you are using Maven, you can automatically expand info properties from the Maven project using
resource filtering. In your pom.xml you have (inside the <build/> element):

<resources>

    <resource>

        <directory>src/main/resources</directory>

        <filtering>true</filtering>

    </resource>

</resources>

You can then refer to your Maven “project properties” via placeholders, e.g.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/SimpleHealthIndicator.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 71

project.artifactId=myproject

project.name=Demo

project.version=X.X.X.X

project.description=Demo project for info endpoint

info.build.artifact=${project.artifactId}

info.build.name=${project.name}

info.build.description=${project.description}

info.build.version=${project.version}

Note

In the above example we used project.* to set some values to be used as fallbacks if the
Maven resource filtering has not been switched on for some reason.

Git commit information

Another useful feature of the info endpoint is its ability to publish information about the state of your
git source code repository when the project was built. If a git.properties file is contained in your
jar the git.branch and git.commit properties will be loaded.

For Maven users the spring-boot-starter-parent POM includes a pre-configured plugin to
generate a git.properties file. Simply add the following declaration to your POM:

<build>

    <plugins>

        <plugin>

            <groupId>pl.project13.maven</groupId>

            <artifactId>git-commit-id-plugin</artifactId>

        </plugin>

    </plugins>

</build>

A similar gradle-git plugin is also available for Gradle users, although a little more work is required
to generate the properties file.

https://github.com/ajoberstar/gradle-git


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 72

33. Monitoring and management over HTTP
If you are developing a Spring MVC application, Spring Boot Actuator will auto-configure all non-sensitive
endpoints to be exposed over HTTP. The default convention is to use the id of the endpoint as the URL
path. For example, health is exposed as /health.

33.1 Exposing sensitive endpoints

If you use “Spring Security” sensitive endpoints will be exposed over HTTP, but also protected. By
default “basic” authentication will be used with the username user and a generated password (which
is printed on the console when the application starts).

Tip

Generated passwords are logged as the application starts. Search for “Using default password
for application endpoints”.

You can use Spring properties to change the username and passsword and to change the
security role required to access the endpoints. For example, you might set the following in your
application.properties:

security.user.name=admin

security.user.password=secret

management.security.role=SUPERUSER

33.2 Customizing the management server context path

Sometimes it is useful to group all management endpoints under a single path. For
example, your application might already use /info for another purpose. You can use the
management.contextPath property to set a prefix for your manangement endpoint:

management.context-path=/manage

The application.properties example above will change the endpoint from /{id} to /manage/
{id} (e.g. /manage/info).

33.3 Customizing the management server port

Exposing management endpoints using the default HTTP port is a sensible choice for cloud based
deployments. If, however, your application runs inside your own data center you may prefer to expose
endpoints using a different HTTP port.

The management.port property can be used to change the HTTP port.

management.port=8081

Since your management port is often protected by a firewall, and not exposed to the public you might
not need security on the management endpoints, even if your main application is secure. In that case
you will have Spring Security on the classpath, and you can disable management security like this:

management.security.enabled=false

(If you don’t have Spring Security on the classpath then there is no need to explicitly disable the
management security in this way, and it might even break the application.)



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 73

33.4 Customizing the management server address

You can customize the address that the management endpoints are available on by setting the
management.address property. This can be useful if you want to listen only on an internal or ops-
facing network, or to only listen for connections from localhost.

Note

You can only listen on a different address if the port is different to the main server port.

Here is an example application.properties that will not allow remote management connections:

management.port=8081

management.address=127.0.0.1

33.5 Disabling HTTP endpoints

If you don’t want to expose endpoints over HTTP you can set the management port to -1:

management.port=-1



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 74

34. Monitoring and management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default Spring Boot will expose management endpoints as JMX MBeans under the
org.springframework.boot domain.

34.1 Customizing MBean names

The name of the MBean is usually generated from the id of the endpoint. For example the health
endpoint is exposed as org.springframework.boot/Endpoint/HealthEndpoint.

If your application contains more than one Spring ApplicationContext you may find that names
clash. To solve this problem you can set the endpoints.jmx.uniqueNames property to true so that
MBean names are always unique.

You can also customize the JMX domain under which endpoints are exposed. Here is an example
application.properties:

endpoints.jmx.domain=myapp

endpoints.jmx.uniqueNames=true

34.2 Disabling JMX endpoints

If you don’t want to expose endpoints over JMX you can set the spring.jmx.enabled property to
false:

spring.jmx.enabled=false

34.3 Using Jolokia for JMX over HTTP

Jolokia is a JMX-HTTP bridge giving an alternative method of accessing JMX beans. To use Jolokia,
simply include a dependency to org.jolokia:jolokia-core. For example, using Maven you would
add the following:

<dependency>

    <groupId>org.jolokia</groupId>

    <artifactId>jolokia-core</artifactId>

 </dependency>

Jolokia can then be accessed using /jolokia on your management HTTP server.

Customizing Jolokia

Jolokia has a number of settings that you would traditionally configure using servlet parameters.
With Spring Boot you can use your application.properties, simply prefix the parameter with
jolokia.config.:

jolokia.config.debug=true

Disabling Jolokia

If you are using Jolokia but you don’t want Spring Boot to configure it, simply set the
endpoints.jolokia.enabled property to false:



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 75

endpoints.jolokia.enabled=false



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 76

35. Monitoring and management using a remote
shell

Spring Boot supports an integrated Java shell called “CRaSH”. You can use CRaSH to ssh or telnet
into your running application. To enable remote shell support add a dependency to spring-boot-
starter-remote-shell:

<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-remote-shell</artifactId>

 </dependency>

Tip

If you want to also enable telnet access your will additionally need a dependency on
org.crsh:crsh.shell.telnet.

35.1 Connecting to the remote shell

By default the remote shell will listen for connections on port 2000. The default user is user and the
default password will be randomly generated and displayed in the log output, you should see a message
like this:

Using default password for shell access: ec03e16c-4cf4-49ee-b745-7c8255c1dd7e

Linux and OSX users can use ssh to connect to the remote shell, Windows users can download and
install PuTTY.

$ ssh -p 2000 user@localhost

user@localhost's password:

  .   ____          _            __ _ _

 /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \

( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/  ___)| |_)| | | | | || (_| |  ) ) ) )

  '  |____| .__|_| |_|_| |_\__, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot ::  (v1.0.3.BUILD-SNAPSHOT) on myhost

Type help for a list of commands. Spring boot provides metrics, beans, autoconfig and endpoint
commands.

Remote shell credentials

You can use the shell.auth.simple.username and shell.auth.simple.password properties
to configure custom connection credentials. It is also possible to use a “Spring Security”
AuthenticationManager to handle login duties. See the CrshAutoConfiguration and
ShellProperties Javadoc for full details.

35.2 Extending the remote shell

The remote shell can be extended in a number of interesting ways.

http://www.putty.org/
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.html
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/ShellProperties.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 77

Remote shell commands

You can write additional shell commands using Groovy or Java (see the CRaSH documentation for
details). By default Spring Boot will search for commands in the following locations:

• classpath*:/commands/**

• classpath*:/crash/commands/**

Tip

You can change the search path by settings a shell.commandPathPatterns property.

Here is a simple “hello world” command that could be loaded from src/main/resources/commands/
hello.groovy

package commands

import org.crsh.cli.Usage

import org.crsh.cli.Command

class hello {

    @Usage("Say Hello")

    @Command

    def main(InvocationContext context) {

        return "Hello"

    }

}

Spring Boot adds some additional attributes to InvocationContext that you can access from your
command:

Attribute Name Description

spring.boot.version The version of Spring Boot

spring.version The version of the core Spring Framework

spring.beanfactory Access to the Spring BeanFactory

spring.environment Access to the Spring Environment

Remote shell plugins

In addition to new commands, it is also possible to extend other CRaSH shell features. All Spring Beans
that extends org.crsh.plugin.CRaSHPlugin will be automatically registered with the shell.

For more information please refer to the CRaSH reference documentation.

http://www.crashub.org/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 78

36. Metrics

Spring Boot Actuator includes a metrics service with “gauge” and “counter” support. A “gauge” records a
single value; and a “counter” records a delta (an increment or decrement). Metrics for all HTTP requests
are automatically recorded, so if you hit the metrics endpoint should should see a response similar
to this:

{

    "counter.status.200.root": 20,

    "counter.status.200.metrics": 3,

    "counter.status.401.root": 4,

    "gauge.response.root": 2,

    "gauge.response.metrics": 3,

    "mem": 466944,

    "mem.free": 410117,

    "processors": 8

}

Here we can see basic memory and processor information along with some HTTP metrics. In this
instance the root (“/”) and /metrics URLs have returned HTTP 200 responses 20 and 3 times
respectively. It also appears that the root URL returned HTTP 401 (unauthorized) 4 times.

The gauge shows the last response time for a request. So the last request to root took 2ms to respond
and the last to /metrics took 3ms.

Note

In this example we are actually accessing the endpoint over HTTP using the /metrics URL, this
explains why metrics appears in the response.

36.1 Recording your own metrics

To record your own metrics inject a CounterService and/or GaugeService into your bean.
The CounterService exposes increment, decrement and reset methods; the GaugeService
provides a submit method.

Here is a simple example that counts the number of times that a method is invoked:

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.actuate.metrics.CounterService;

import org.springframework.stereotype.Service;

@Service

public class MyService {

    private final CounterService counterService;

    @Autowired

    public MyService(CounterService counterService) {

        this.counterService = counterService;

    }

    public void exampleMethod() {

        this.counterService.increment("services.system.myservice.invoked");

    }

}

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/CounterService.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/GaugeService.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 79

Tip

You can use any string as a metric name but you should follow guidelines of your chosen store/
graphing technology. Some good guidelines for Graphite are available on Matt Aimonetti’s Blog.

36.2 Metric repositories

Metric service implementations are usually bound to a MetricRepository. A MetricRepository
is responsible for storing and retrieving metric information. Spring Boot provides an
InMemoryMessageRespository and a RedisMetricRepository out of the box (the in-memory
repository is the default) but you can also write your own. The MetricRepository interface is actually
composed of higher level MetricReader and MetricWriter interfaces. For full details refer to the
Javadoc.

36.3 Coda Hale Metrics

User of the Coda Hale “Metrics” library will automatically find that Spring
Boot metrics are published to com.codahale.metrics.MetricRegistry. A default
com.codahale.metrics.MetricRegistry Spring bean will be created when you declare a
dependency to the com.codahale.metrics:metrics-core library; you can also register you own
@Bean instance if you need customizations.

Users can create Coda Hale metrics by prefixing their metric names with the appropriate type (e.g.
histogram.*, meter.*).

36.4 Message channel integration

If the “Spring Messaging” jar is on your classpath a MessageChannel called metricsChannel is
automatically created (unless one already exists). All metric update events are additionally published
as “messages” on that channel. Additional analysis or actions can be taken by clients subscribing to
that channel.

http://matt.aimonetti.net/posts/2013/06/26/practical-guide-to-graphite-monitoring/
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/repository/MetricRepository.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/metrics/repository/MetricRepository.html
http://metrics.codahale.com/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 80

37. Auditing

Spring Boot Actuator has a flexible audit framework that will publish events once Spring Security is in
play (“authentication success”, “failure” and “access denied” exceptions by default). This can be very
useful for reporting, and also to implement a lock-out policy based on authentication failures.

You can also choose to use the audit services for your own business events. To do that you can either
inject the existing AuditEventRepository into your own components and use that directly, or you
can simply publish AuditApplicationEvent via the Spring ApplicationEventPublisher (using
ApplicationEventPublisherAware).



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 81

38. Tracing

Tracing is automatically enabled for all HTTP requests. You can view the trace endpoint and obtain
basic information about the last few requests:

[{

    "timestamp": 1394343677415,

    "info": {

        "method": "GET",

        "path": "/trace",

        "headers": {

            "request": {

                "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",

                "Connection": "keep-alive",

                "Accept-Encoding": "gzip, deflate",

                "User-Agent": "Mozilla/5.0 Gecko/Firefox",

                "Accept-Language": "en-US,en;q=0.5",

                "Cookie": "_ga=GA1.1.827067509.1390890128; ..."

                "Authorization": "Basic ...",

                "Host": "localhost:8080"

            },

            "response": {

                "Strict-Transport-Security": "max-age=31536000 ; includeSubDomains",

                "X-Application-Context": "application:8080",

                "Content-Type": "application/json;charset=UTF-8",

                "status": "200"

            }

        }

    }

},{

    "timestamp": 1394343684465,

    ...

}]

38.1 Custom tracing

If you need to trace additional events you can inject a TraceRepository into your Spring Beans. The
add method accepts a single Map structure that will be converted to JSON and logged.

By default an InMemoryTraceRepository will be used that stores the last 100 events. You can define
your own instance of the InMemoryTraceRepository bean if you need to expand the capacity. You
can also create your own alternative TraceRepository implementation if needed.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/trace/TraceRepository.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 82

39. Error Handling

Spring Boot Actuator provides an /error mapping by default that handles all errors in a sensible way,
and it is registered as a “global” error page in the servlet container. For machine clients it will produce
a JSON response with details of the error, the HTTP status and the exception message. For browser
clients there is a “whitelabel” error view that renders the same data in HTML format (to customize it just
add a View that resolves to “error”).

If you want more specific error pages for some conditions, the embedded servlet containers support a
uniform Java DSL for customizing the error handling. For example:

@Bean

public EmbeddedServletContainerCustomizer containerCustomizer(){

    return new MyCustomizer();

}

// ...

private static class MyCustomizer implements EmbeddedServletContainerCustomizer {

    @Override

    public void customize(ConfigurableEmbeddedServletContainer factory) {

        factory.addErrorPages(new ErrorPage(HttpStatus.BAD_REQUEST, "/400"));

    }

}

You can also use regular Spring MVC features like @ExceptionHandler methods and
@ControllerAdvice.

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-exception-handlers
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc-ann-controller-advice


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 83

40. Process monitoring

In Spring Boot Actuator you can find ApplicationPidListener which creates file containing
application PID (by default in application directory and file name is application.pid). It’s not
activated by default, but you can do it in two simple ways described below.

40.1 Extend configuration

In META-INF/spring.factories file you have to activate the listener:

org.springframework.context.ApplicationListener=\

org.springframework.boot.actuate.system.ApplicationPidListener

40.2 Programmatically

You can also activate this listener by invoking SpringApplication.addListeners(...) method
and passing ApplicationPidListener object. You can also customize file name and path through
constructor.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 84

41. What to read next

If you want to explore some of the concepts discussed in this chapter, you can take a look at the actuator
sample applications. You also might want to read about graphing tools such as Graphite.

Otherwise, you can continue on, to read about “cloud deployment options” or jump ahead for some in
depth information about Spring Boot’s build tool plugins.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples
http://graphite.wikidot.com/


Part VI. Deploying to the cloud
Spring Boot’s executable jars are ready-made for most popular cloud PaaS (platform-as-a-service)
providers. These providers tend to require that you `bring your own container'; they manage application
processes (not Java applications specifically), so they need some intermediary layer that adapts your
application to the cloud’s notion of a running process.

Two popular cloud providers, Heroku and Cloud Foundry, employ a “buildpack” approach. The buildpack
wraps your deployed code in whatever is needed to start your application: it might be a JDK and a call to
java, it might be an embedded webserver, or it might be a full fledged application server. A buildpack
is pluggable, but ideally you should be able to get by with as few customizations to it as possible. This
reduces the footprint of functionality that is not under your control. It minimizes divergence between
deployment and production environments.

Ideally, your application, like a Spring Boot executable jar, has everything that it needs to run packaged
within it.

In this section we’ll look at what it takes to get the simple application that we developed in the “Getting
Started” section up and running in the Cloud.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 86

42. Cloud Foundry

Cloud Foundry provides default buildpacks that come into play if no other buildpack is specified. The
Cloud Foundry Java buildpack has excellent support for Spring applications, including Spring Boot. You
can deploy stand-alone executable jar applications, as well as traditional .war packaged applications.

Once you’ve built your application (using, for example, mvn clean package) and installed the cf
command line tool, simply deploy your application using the cf push command as follows, substituting
the path to your compiled .jar. Be sure to have logged in with your cf command line client before
pushing an application.

$ cf push acloudyspringtime -p target/demo-0.0.1-SNAPSHOT.jar

See the cf push documentation for more options. If there is a Cloud Foundry manifest.yml file
present in the same directory, it will be consulted.

Note

Here we are substituting acloudyspringtime for whatever value you give cf as the name of
your application.

At this point cf will start uploading your application:

Uploading acloudyspringtime... OK

Preparing to start acloudyspringtime... OK

-----> Downloaded app package (8.9M)

-----> Java Buildpack source: system

-----> Downloading Open JDK 1.7.0_51 from .../x86_64/openjdk-1.7.0_51.tar.gz (1.8s)

       Expanding Open JDK to .java-buildpack/open_jdk (1.2s)

-----> Downloading Spring Auto Reconfiguration from  0.8.7 .../auto-reconfiguration-0.8.7.jar (0.1s)

-----> Uploading droplet (44M)

Checking status of app acloudyspringtime...

  0 of 1 instances running (1 starting)

  ...

  0 of 1 instances running (1 down)

  ...

  0 of 1 instances running (1 starting)

  ...

  1 of 1 instances running (1 running)

App started

Congratulations! The application is now live!

It’s easy to then verify the status of the deployed application:

$ cf apps

Getting applications in ...

OK

name                 requested state   instances   memory   disk   urls

...

acloudyspringtime    started           1/1         512M     1G     acloudyspringtime.cfapps.io

...

Once Cloud Foundry acknowledges that your application has been deployed, you should be able to hit
the application at the URI given, in this case http://acloudyspringtime.cfapps.io/.

https://github.com/cloudfoundry/java-buildpack
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#login
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#push
http://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 87

42.1 Binding to services

By default, meta-data about the running application as well as service connection information is exposed
to the application as environment variables (for example: $VCAP_SERVICES). This architecture decision
is due to Cloud Foundry’s polyglot (any language and platform can be supported as a buildpack) nature;
process-scoped environment variables are language agnostic.

Environment variables don’t always make for the easiest API so Spring Boot automatically extracts them
and flattens the data into properties that can be accessed through Spring’s Environment abstraction:

@Component

class MyBean implements EnvironmentAware {

    private String instanceId;

    @Override

    public void setEnvironment(Environment environment) {

        this.instanceId = environment.getProperty("vcap.application.instance_id");

    }

    // ...

}

All Cloud Foundry properties are prefixed with vcap. You can use vcap properties to access application
information (such as the public URL of the application) and service information (such as database
credentials). See VcapApplicationListener Javdoc for complete details.

Tip

The Spring Cloud project is a better fit for tasks such as configuring a DataSource; it also lets
you use Spring Cloud with Heroku.

https://github.com/spring-projects/spring-cloud


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 88

43. Heroku

Heroku is another popular PaaS platform. To customize Heroku builds, you provide a Procfile,
which provides the incantation required to deploy an application. Heroku assigns a port for the Java
application to use and then ensures that routing to the external URI works.

You must configure your application to listen on the correct port. Here’s the Procfile for our starter
REST application:

web: java -Dserver.port=$PORT -jar target/demo-0.0.1-SNAPSHOT.jar

Spring Boot makes -D arguments available as properties accessible from a Spring Environment
instance. The server.port configuration property is fed to the embedded Tomcat or Jetty instance
which then uses it when it starts up. The $PORT environment variable is assigned to us by the Heroku
PaaS.

Heroku by default will use Java 1.6. This is fine as long as your Maven or Gradle build is set to use
the same version (Maven users can use the java.version property). If you want to use JDK 1.7,
create a new file adjacent to your pom.xml and Procfile, called system.properties. In this file
add the following:

java.runtime.version=1.7

This should be everything you need. The most common workflow for Heroku deployments is to git
push the code to production.

$ git push heroku master

Initializing repository, done.

Counting objects: 95, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (78/78), done.

Writing objects: 100% (95/95), 8.66 MiB | 606.00 KiB/s, done.

Total 95 (delta 31), reused 0 (delta 0)

-----> Java app detected

-----> Installing OpenJDK 1.7... done

-----> Installing Maven 3.0.3... done

-----> Installing settings.xml... done

-----> executing /app/tmp/cache/.maven/bin/mvn -B

       -Duser.home=/tmp/build_0c35a5d2-a067-4abc-a232-14b1fb7a8229

       -Dmaven.repo.local=/app/tmp/cache/.m2/repository

       -s /app/tmp/cache/.m2/settings.xml -DskipTests=true clean install

       [INFO] Scanning for projects...

       Downloading: http://repo.spring.io/...

       Downloaded: http://repo.spring.io/... (818 B at 1.8 KB/sec)

        ....

       Downloaded: http://s3pository.heroku.com/jvm/... (152 KB at 595.3 KB/sec)

       [INFO] Installing /tmp/build_0c35a5d2-a067-4abc-a232-14b1fb7a8229/target/...

       [INFO] Installing /tmp/build_0c35a5d2-a067-4abc-a232-14b1fb7a8229/pom.xml ...

       [INFO] ------------------------------------------------------------------------

       [INFO] BUILD SUCCESS

       [INFO] ------------------------------------------------------------------------

       [INFO] Total time: 59.358s

       [INFO] Finished at: Fri Mar 07 07:28:25 UTC 2014

       [INFO] Final Memory: 20M/493M

       [INFO] ------------------------------------------------------------------------

-----> Discovering process types

       Procfile declares types -> web



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 89

-----> Compressing... done, 70.4MB

-----> Launching... done, v6

       http://agile-sierra-1405.herokuapp.com/ deployed to Heroku

To git@heroku.com:agile-sierra-1405.git

 * [new branch]      master -> master

Your application should now be up and running on Heroku.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 90

44. CloudBees

CloudBees provides cloud-based “continuous integration” and “continuous delivery” services as well as
Java PaaS hosting. Sean Gilligan has contributed an excellent Spring Boot sample application to the
CloudBees community GitHub repository. The project includes an extensive README that covers the
steps that you need to follow when deploying to CloudBees.

https://github.com/msgilligan
https://github.com/CloudBees-community/springboot-gradle-cloudbees-sample
https://github.com/CloudBees-community/springboot-gradle-cloudbees-sample/blob/master/README.asciidoc


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 91

45. What to read next

Check out the Cloud Foundry, Heroku and CloudBees web sites for more information about the kinds
of features that a PaaS can offer. These are just three of the most popular Java PaaS providers, since
Spring Boot is so amenable to cloud-based deployment you’re free to consider other providers as well.

The next section goes on to cover the Spring Boot CLI; or you can jump ahead to read about build
tool plugins.

http://www.cloudfoundry.com/
https://www.heroku.com/
http://www.cloudbees.com


Part VII. Spring Boot CLI
The Spring Boot CLI is a command line tool that can be used if you want to quickly prototype with Spring.
It allows you to run Groovy scripts, which means that you have a familiar Java-like syntax, without so
much boilerplate code.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 93

46. Installing the CLI

The Spring Boot CLI can be installed manually; using GVM (the Groovy Environment Manually) or using
Homebrew if you are an OSX user. See Section 9.2, “Installing the Spring Boot CLI” in the “Getting
started” section for comprehensive installation instructions.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 94

47. Using the CLI

Once you have installed the CLI you can run it by typing spring. If you run spring without any
arguments, a simple help screen is displayed:

$ spring

usage: spring [--help] [--version]

       <command> [<args>]

Available commands are:

  run [options] <files> [--] [args]

    Run a spring groovy script

  ... more command help is shown here

You can use help to get more details about any of the supported commands. For example:

$ spring help run

spring run - Run a spring groovy script

usage: spring run [options] <files> [--] [args]

Option                     Description

------                     -----------

--autoconfigure [Boolean]  Add autoconfigure compiler

                             transformations (default: true)

--classpath, -cp           Additional classpath entries

-e, --edit                 Open the file with the default system

                             editor

--no-guess-dependencies    Do not attempt to guess dependencies

--no-guess-imports         Do not attempt to guess imports

-q, --quiet                Quiet logging

-v, --verbose              Verbose logging of dependency

                             resolution

--watch                    Watch the specified file for changes

The version command provides a quick way to check which version of Spring Boot you are using.

$ spring version

Spring CLI v1.0.3.BUILD-SNAPSHOT

47.1 Running applications using the CLI

You can compile and run Groovy source code using the run command. The Spring Boot CLI is
completely self contained so you don’t need any external Groovy installation.

Here is an example “hello world” web application written in Groovy:

@RestController

class WebApplication {

    @RequestMapping("/")

    String home() {

        "Hello World!"

    }

}



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 95

Deduced “grab” dependencies

Standard Groovy includes a @Grab annotation which allows you to declare dependencies on a third-
party libraries. This useful technique allows Groovy to download jars in the same way as Maven or
Gradle would; but without requiring you to use a build tool.

Spring Boot extends this technique further, and will attempt to deduce which libraries to “grab”
based on your code. For example, since the WebApplication code above uses @RestController
annotations, “Tomcat” and “Spring MVC” will be grabbed.

The following items are used as “grab hints”:

Items Grabs

JdbcTemplate,
NamedParameterJdbcTemplate,
DataSource

JDBC Application.

@EnableJmsMessaging JMS Application.

@Test JUnit.

@EnableRabbitMessaging RabbitMQ.

@EnableReactor Project Reactor.

extends Specification Spock test.

@EnableBatchProcessing Spring Batch.

@MessageEndpoint

@EnableIntegrationPatterns

Spring Integration.

@EnableDeviceResolver Spring Mobile.

@Controller @RestController
@EnableWebMvc

Spring MVC + Embedded Tomcat.

@EnableWebSecurity Spring Security.

@EnableTransactionManagement Spring Transaction Management.

Tip

See subclasses of CompilerAutoConfiguration in the Spring Boot CLI source code to
understand exactly how customizations are applied.

Default import statements

To help reduce the size of your Groovy code, several import statements are automatically included.
Notice how the example above refers to @Component, @RestController and @RequestMapping
without needing to use fully-qualified names or import statements.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-cli/src/main/java/org/springframework/boot/cli/compiler/CompilerAutoConfiguration.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 96

Tip

Many Spring annotations will work without using import statements. Try running your application
to see what fails before adding imports.

Automatic main method

Unlike the equilvement Java application, you do not need to include a public static void

main(String[] args) method with your Groovy scripts. A SpringApplication is automatically
created, with your compiled code acting as the source.

47.2 Testing your code

The test command allows you to compile and run tests for your application. Typical usage looks like
this:

$ spring test app.groovy tests.groovy

Total: 1, Success: 1, : Failures: 0

Passed? true

In this example, tests.groovy contains JUnit @Test methods or Spock Specification classes.
All the common framework annotations and static methods should be available to you without having
to import them.

Here is the test.groovy file that we used above (with a JUnit test):

class ApplicationTests {

    @Test

    void homeSaysHello() {

        assertEquals("Hello World", new WebApplication().home())

    }

}

Tip

If you have more than one test source files, you might prefer to organize them into a test
directory.

47.3 Applications with multiple source files

You can use “shell globbing” with all commands that accept file input. This allows you to easily use
multiple files from a single directory, e.g.

$ spring run *.groovy

This technique can also be useful if you want to segregate your “test” or “spec” code from the main
application code:

$ spring test app/*.groovy test/*.groovy

47.4 Packaging your application

You can use the jar command to package your application into a self-contained executable jar file.
For example:



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 97

$ spring jar my-app.jar *.groovy

The resulting jar will contain the classes produced by compiling the application and all of the application’s
dependencies so that it can then be run using java -jar. The jar file will also contain entries from
the application’s classpath.

See the output of spring help jar for more information.

47.5 Using the embedded shell

Spring Boot includes command-line completion scripts for BASH and zsh shells. If you don’t use either
of these shells (perhaps you are a Windows user) then you can use the shell command to launch
an integrated shell.

$ spring shell

Spring Boot (v1.0.3.BUILD-SNAPSHOT)

Hit TAB to complete. Type 'help' and hit RETURN for help, and 'exit' to quit.

From inside the embedded shell you can run other commands directly:

$ version

Spring CLI v1.0.3.BUILD-SNAPSHOT

The embedded shell supports ANSI color output as well as tab completion. If you need to run a native
command you can use the $ prefix. Hitting ctrl-c will exit the embedded shell.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 98

48. Developing application with the Groovy beans
DSL

Spring Framework 4.0 has native support for a beans{} “DSL” (borrowed from Grails), and you can
embed bean definitions in your Groovy application scripts using the same format. This is sometimes a
good way to include external features like middleware declarations. For example:

@Configuration

class Application implements CommandLineRunner {

    @Autowired

    SharedService service

    @Override

    void run(String... args) {

        println service.message

    }

}

import my.company.SharedService

beans {

    service(SharedService) {

        message "Hello World"

    }

}

You can mix class declarations with beans{} in the same file as long as they stay at the top level, or
you can put the beans DSL in a separate file if you prefer.

http://grails.org/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 99

49. What to read next

There are some sample groovy scripts available from the GitHub repository that you can use to try out
the Spring Boot CLI. There is also extensive javadoc throughout the source code.

If you find that you reach the limit of the CLI tool, you will probably want to look at converting your
application to full Gradle or Maven built “groovy project”. The next section covers Spring Boot’s Build
tool plugins that you can use with Gradle or Maven.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-cli/samples
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-cli/src/main/java/org/springframework/boot/cli


Part VIII. Build tool plugins
Spring Boot provides build tool plugins for Maven and Gradle. The plugins offer a variety of features,
including the packaging of executable jars. This section provides more details on both plugins, as well
as some help should you need to extend an unsupported build system. If you are just getting started,
you might want to read “Chapter 12, Build systems” from the Part III, “Using Spring Boot” section first.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 101

50. Spring Boot Maven plugin

The Spring Boot Maven Plugin provides Spring Boot support in Maven, allowing you to package
executable jar or war archives and run an application “in-place”. To use it you must be using Maven
3 (or better).

50.1 Including the plugin

To use the Spring Boot Maven Plugin simply include the appropriate XML in the plugins section of
your pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <modelVersion>4.0.0</modelVersion>

    <!-- ... -->

    <build>

        <plugins>

            <plugin>

                <groupId>org.springframework.boot</groupId>

                <artifactId>spring-boot-maven-plugin</artifactId>

                <version>1.0.3.BUILD-SNAPSHOT</version>

                <executions>

                    <execution>

                        <goals>

                            <goal>repackage</goal>

                        </goals>

                    </execution>

                </executions>

            </plugin>

        </plugins>

    </build>

</project>

This configuration will repackage a jar or war that is built during the package phase of the Maven
lifecycle. The following example shows both the repackaged jar, as well as the original jar, in the target
directory:

$ mvn package

$ ls target/*.jar

target/myproject-1.0.0.jar target/myproject-1.0.0.jar.original

If you don’t include the <execution/> configuration as above, you can run the plugin on its own (but
only if the package goal is used as well). For example:

$ mvn package spring-boot:repackage

$ ls target/*.jar

target/myproject-1.0.0.jar target/myproject-1.0.0.jar.original

If you are using a milestone or snapshot release you will also need to add appropriate
pluginRepository elements:

<pluginRepositories>

    <pluginRepository>

        <id>spring-snapshots</id>

        <url>http://repo.spring.io/snapshot</url>

    </pluginRepository>

    <pluginRepository>

        <id>spring-milestones</id>

        <url>http://repo.spring.io/milestone</url>

    </pluginRepository>

</pluginRepositories>



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 102

50.2 Packaging executable jar and war files

Once spring-boot-maven-plugin has been included in your pom.xml it will automatically attempt
to rewrite archives to make them executable using the spring-boot:repackage goal. You should
configure your project to build a jar or war (as appropriate) using the usual packaging element:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <!-- ... -->

    <packaging>jar</packaging>

    <!-- ... -->

</project>

Your existing archive will be enhanced by Spring Boot during the package phase. The main class that
you want to launch can either be specified using a configuration option, or by adding a Main-Class
attribute to the manifest in the usual way. If you don’t specify a main class the plugin will search for a
class with a public static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ mvn package

$ java -jar target/mymodule-0.0.1-SNAPSHOT.jar

To build a war file that is both executable and deployable into an external container you need to mark
the embedded container dependencies as “provided”, e.g:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <!-- ... -->

    <packaging>war</packaging>

    <!-- ... -->

    <dependencies>

        <dependency>

            <groupId>org.springframework.boot</groupId>

            <artifactId>spring-boot-starter-web</artifactId>

        </dependency>

        <dependency>

            <groupId>org.springframework.boot</groupId>

            <artifactId>spring-boot-starter-tomcat</artifactId>

            <scope>provided</scope>

        </dependency>

        <!-- ... -->

    </dependencies>

</project>

50.3 Repackage configuration

The following configuration options are available for the spring-boot:repackage goal:

Required parameters

Name Description

outputDirectory Directory containing the generated archive (defaults to
${project.build.directory}).

finalName Name of the generated archive (defaults to
${project.build.finalName}).



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 103

Optional parameters

Name Description

classifier Classifier to add to the generated artifact. If given, the artifact
will be attached. If this is not given, it will merely be written to
the output directory according to the finalName. Attaching the
artifact allows to deploy it alongside to the original one, see  the
maven documentation for more details

mainClass The name of the main class. If not specified will search for a
single compiled class that contains a main method.

layout The type of archive (which corresponds to how the dependencies
are laid out inside it). Defaults to a guess based on the archive
type.

The plugin rewrites your manifest, and in particular it manages the Main-Class and Start-Class
entries, so if the defaults don’t work you have to configure those there (not in the jar plugin). The Main-
Class in the manifest is actually controlled by the layout property of the boot plugin, e.g.

<plugin>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-maven-plugin</artifactId>

    <version>1.0.3.BUILD-SNAPSHOT</version>

    <configuration>

        <mainClass>${start-class}</mainClass>

        <layout>ZIP</layout>

    </configuration>

    <executions>

        <execution>

            <goals>

                <goal>repackage</goal>

            </goals>

        </execution>

    </executions>

</plugin>

The layout property defaults to a guess based on the archive type (jar or war). For the
PropertiesLauncher the layout is “ZIP” (even though the output might be a jar file).

Tip

The executable jar format is described in the appendix.

50.4 Running applications

The Spring Boot Maven Plugin includes a run goal which can be used to launch your application from
the command line. Type the following from the root of your Maven project:

$ mvn spring-boot:run

By default, any src/main/resources folder will be added to the application classpath when you run
via the maven plugin. This allows hot refreshing of resources which can be very useful when developing
web applications. For example, you can work on HTML, CSS or JavaScipt files and see your changes
immediately without recompiling your application. It is also a helpful way of allowing your front end
developers to work without needing to download and install a Java IDE.

http://maven.apache.org/plugins/maven-deploy-plugin/examples/deploying-with-classifiers.html
http://maven.apache.org/plugins/maven-deploy-plugin/examples/deploying-with-classifiers.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 104

50.5 Run configuration

The following configuration options are available for the spring-boot:run goal:

50.6 Required parameters

Name Description

classesDirectrory Directory containing the classes and resource files
that should be packaged into the archive (defaults to
${project.build.outputDirectory}).

50.7 Optional parameters

Name Description

arguments or -
Drun.arguments

Arguments that should be passed to the application (comma-
separated).

addResources or -
Drun.addResources

Add Maven resources to the classpath directly, this allows live
in-place editing or resources. Since resources will be added
directly, and via the target/classes folder they will appear twice if
ClassLoader.getResources() is called. In practice, however,
most applications call ClassLoader.getResource() which
will always return the first resource (defaults to true).

mainClass The name of the main class. If not specified the first compiled
class found that contains a main method will be used.

folders Folders that should be added to the classpath (defaults to
${project.build.outputDirectory}).



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 105

51. Spring Boot Gradle plugin

The Spring Boot Gradle Plugin provides Spring Boot support in Gradle, allowing you to package
executable jar or war archives, run Spring Boot applications and omit version information from your
build.gradle file for “blessed” dependencies.

51.1 Including the plugin

To use the Spring Boot Gradle Plugin simply include a buildscript dependency and apply the
spring-boot plugin:

buildscript {

    dependencies {

        classpath("org.springframework.boot:spring-boot-gradle-plugin:1.0.3.BUILD-SNAPSHOT")

    }

}

apply plugin: 'spring-boot'

If you are using a milestone or snapshot release you will also need to add appropriate repositories
reference:

buildscript {

    repositories {

        maven.url "http://repo.spring.io/snapshot"

        maven.url "http://repo.spring.io/milestone"

    }

    // ...

}

51.2 Declaring dependencies without versions

The spring-boot plugin will register a custom Gradle ResolutionStrategy with your build
that allows you to omit version numbers when declaring dependencies to “blessed” artifacts. All
artifacts with a org.springframework.boot group ID, and any of the artifacts declared in the
managementDependencies section of the spring-dependencies POM can have their version
number resolved automatically.

Simply declare dependencies in the usual way, but leave the version number empty:

dependencies {

    compile("org.springframework.boot:spring-boot-starter-web")

    compile("org.thymeleaf:thymeleaf-spring4")

    compile("nz.net.ultraq.thymeleaf:thymeleaf-layout-dialect")

}

Note

The version of the spring-boot gradle plugin that you declare determines the actual versions of
the “blessed” dependencies (this ensures that builds are always repeatable). You should always
set the version of the spring-boot gradle plugin to the actual Spring Boot version that you wish
to use.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-dependencies/pom.xml


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 106

51.3 Packaging executable jar and war files

Once the spring-boot plugin has been applied to your project it will automatically attempt to rewrite
archives to make them executable using the bootRepackage task. You should configure your project
to build a jar or war (as appropriate) in the usual way.

The main class that you want to launch can either be specified using a configuration option, or by adding
a Main-Class attribute to the manifest. If you don’t specify a main class the plugin will search for a
class with a public static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ gradle build

$ java -jar build/libs/mymodule-0.0.1-SNAPSHOT.jar

To build a war file that is both executable and deployable into an external container, you need to mark
the embedded container dependencies as belonging to a configuration named "providedRuntime", e.g:

...

apply plugin: 'war'

war {

    baseName = 'myapp'

    version =  '0.5.0'

}

repositories {

    mavenCentral()

    maven { url "http://repo.spring.io/libs-snapshot" }

}

configurations {

    providedRuntime

}

dependencies {

    compile("org.springframework.boot:spring-boot-starter-web")

    providedRuntime("org.springframework.boot:spring-boot-starter-tomcat")

    ...

}

51.4 Running a project in-place

To run a project in place without building a jar first you can use the "bootRun" task:

$ gradle bootRun

Running this way makes your static classpath resources (i.e. in src/main/resources by default)
reloadable in the live application, which can be helpful at development time.

51.5 Repackage configuration

The gradle plugin automatically extends your build script DSL with a springBoot element for
configuration. Simply set the appropriate properties as you would with any other Gradle extension (see
below for a list of configuration options):

springBoot {

    backupSource = false

}



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 107

51.6 Repackage with custom Gradle configuration

Sometimes it may be more appropriate to not package default dependencies resolved from compile,
runtime and provided scopes. If the created executable jar file is intended to be run as it is, you
need to have all dependencies nested inside it; however, if the plan is to explode a jar file and run the
main class manually, you may already have some of the libraries available via CLASSPATH. This is a
situation where you can repackage your jar with a different set of dependencies.

Using a custom configuration will automatically disable dependency resolving from compile, runtime
and provided scopes. Custom configuration can be either defined globally (inside the springBoot
section) or per task.

task clientJar(type: Jar) {

    appendix = 'client'

    from sourceSets.main.output

    exclude('**/*Something*')

}

task clientBoot(type: BootRepackage, dependsOn: clientJar) {

    withJarTask = clientJar

    customConfiguration = "mycustomconfiguration"

}

In above example, we created a new clientJar Jar task to package a customized file set from your
compiled sources. Then we created a new clientBoot BootRepackage task and instructed it to work
with only clientJar task and mycustomconfiguration.

configurations {

    mycustomconfiguration.exclude group: 'log4j'

}

dependencies {

    mycustomconfiguration configurations.runtime

}

The configuration that we are referring to in BootRepackage is a normal Gradle configuration. In
the above example we created a new configuration named mycustomconfiguration instructing it
to derive from a runtime and exclude the log4j group. If the clientBoot task is executed, the
repackaged boot jar will have all dependencies from runtime but no log4j jars.

Configuration options

The following configuration options are available:

Name Description

mainClass The main class that should be run. If not specified the value from
the manifest will be used, or if no manifest entry is the archive will
be searched for a suitable class.

providedConfiguration The name of the provided configuration (defaults to
providedRuntime).

backupSource If the original source archive should be backed-up before being
repackaged (defaults to true).

customConfiguration The name of the custom configuration.

http://www.gradle.org/docs/current/dsl/org.gradle.api.artifacts.Configuration.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 108

Name Description

layout The type of archive, corresponding to how the dependencies are
laid out inside (defaults to a guess based on the archive type).

51.7 Understanding how the Gradle plugin works

When spring-boot is applied to your Gradle project a default task named bootRepackage is created
automatically. The bootRepackage task depends on Gradle assemble task, and when executed, it
tries to find all jar artifacts whose qualifier is empty (i.e. tests and sources jars are automatically skipped).

Due to the fact that bootRepackage finds all created jar artifacts, the order of Gradle task execution is
important. Most projects only create a single jar file, so usually this is not an issue; however, if you are
planning to create a more complex project setup, with custom Jar and BootRepackage tasks, there
are few tweaks to consider.

If you are just creating custom jar files from your project you can simply disables default jar and
bootRepackage tasks:

jar.enabled = false

bootRepackage.enabled = false

Another option is to instruct the default bootRepackage task to only work with a default jar task.

bootRepackage.withJarTask = jar

If you have a default project setup where the main jar file is created and repackaged, and you still
want to create additional custom jars, you can combine your custom repackage tasks together and use
dependsOn so that the bootJars task will run after the default bootRepackage task is executed:

task bootJars

bootJars.dependsOn = [clientBoot1,clientBoot2,clientBoot3]

build.dependsOn(bootJars)

All the above tweaks are usually used to avoid situations where an already created boot jar is repackaged
again. Repackaging an existing boot jar will not break anything, but you may find that it includes
unnecessary dependencies.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 109

52. Supporting other build systems

If you want to use a build tool other than Maven or Gradle, you will likely need to develop your own
plugin. Executable jars need to follow a specific format and certain entries need to be written in an
uncompressed form (see the executable jar format section in the appendix for details).

The Spring Boot Maven and Gradle plugins both make use of spring-boot-loader-tools to
actually generate jars. You are also free to use this library directly yourself if you need to.

52.1 Repackaging archives

To repackage an existing archive so that it becomes a self-contained executable archive use
org.springframework.boot.loader.tools.Repackager. The Repackager class takes a
single constructor argument that refers to an existing jar or war archive. Use one of the two available
repackage() methods to either replace the original file or write to a new destination. Various settings
can also be configured on the repackager before it is run.

52.2 Nested libraries

When repackaging an archive you can include references to dependency files using the
org.springframework.boot.loader.tools.Libraries interface. We don’t provide any
concrete implementations of Libraries here as they are usually build system specific.

If your archive already includes libraries you can use Libraries.NONE.

52.3 Finding a main class

If you don’t use Repackager.setMainClass() to specify a main class, the repackager will use ASM
to read class files and attempt to find a suitable class with a public static void main(String[]
args) method. An exception is thrown if more than one candidate is found.

52.4 Example repackage implementation

Here is a typical example repackage:

Repackager repackager = new Repackager(sourceJarFile);

repackager.setBackupSource(false);

repackager.repackage(new Libraries() {

            @Override

            public void doWithLibraries(LibraryCallback callback) throws IOException {

                // Build system specific implementation, callback for each dependency

                // callback.library(nestedFile, LibraryScope.COMPILE);

            }

        });

http://asm.ow2.org/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 110

53. What to read next

If you’re interested in how the build tool plugins work you can look at the spring-boot-tools module
on GitHub. More technical details of the executable jar format are covered in the appendix.

If you have specific build-related questions you can check out the ‘how-to’ guides.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-tools


Part IX. “How-to” guides
This section provides answers to some common “how do I do that…” type of questions that often arise
when using Spring Boot. This is by no means an exhaustive list, but it does cover quite a lot.

If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer; this is also a great place to ask
new questions (please use the spring-boot tag).

We’re also more than happy to extend this section; If you want to add a “how-to” you can send us a
pull request.

http://stackoverflow.com/tags/spring-boot
http://github.com/spring-projects/spring-boot/tree/master


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 112

54. Spring Boot application

54.1 Troubleshoot auto-configuration

The Spring Boot auto-configuration tries its best to “do the right thing”, but sometimes things fail and
it can be hard to tell why.

There is a really useful AutoConfigurationReport available in any Spring Boot
ApplicationContext. You will see it if you enable DEBUG logging output. If you use the spring-
boot-actuator there is also an autoconfig endpoint that renders the report in JSON. Use that to
debug the application and see what features have been added (and which not) by Spring Boot at runtime.

Many more questions can be answered by looking at the source code and the javadoc. Some rules
of thumb:

• Look for classes called *AutoConfiguration and read their sources, in particular the
@Conditional* annotations to find out what features they enable and when. Add --debug to the
command line or a System property -Ddebug to get a log on the console of all the autoconfiguration
decisions that were made in your app. In a running Actuator app look at the autoconfig endpoint
(‘/autoconfig’ or the JMX equivalent) for the same information.

• Look for classes that are @ConfigurationProperties (e.g. ServerProperties) and read
from there the available external configuration options. The @ConfigurationProperties has
a name attribute which acts as a prefix to external properties, thus ServerProperties has
prefix="server" and its configuration properties are server.port, server.address etc. In a
running Actuator app look at the configprops endpoint.

• Look for use of RelaxedEnvironment to pull configuration values explicitly out of the
Environment. It often is used with a prefix.

• Look for @Value annotations that bind directly to the Environment. This is less flexible than
the RelaxedEnvironment approach, but does allow some relaxed binding, specifically for OS
environment variables (so CAPITALS_AND_UNDERSCORES are synonyms for period.separated).

• Look for @ConditionalOnExpression annotations that switch features on and off in response to
SpEL expressions, normally evaluated with place-holders resolved from the Environment.

54.2 Customize the Environment or ApplicationContext before
it starts

A SpringApplication has ApplicationListeners and ApplicationContextInitializers
that are used to apply customizations to the context or environment. Spring Boot loads a number of
such customizations for use internally from META-INF/spring.factories. There is more than one
way to register additional ones:

• Programmatically per application by calling the addListeners and addInitializers methods
on SpringApplication before you run it.

• Declaratively per application by setting context.initializer.classes or
context.listener.classes.

• Declaratively for all applications by adding a META-INF/spring.factories and packaging a jar
file that the applications all use as a library.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 113

The SpringApplication sends some special ApplicationEvents to the listeners (even some
before the context is created), and then registers the listeners for events published by the
ApplicationContext as well. See Section 20.3, “Application events and listeners” in the “Spring
Boot features” section for a complete list.

54.3 Build an ApplicationContext hierarchy (adding a parent or
root context)

You can use the ApplicationBuilder class to create parent/child ApplicationContext
hierarchies. See Section 20.2, “Fluent builder API” in the “Spring Boot features” section for more
information.

54.4 Create a non-web application

Not all Spring applications have to be web applications (or web services). If you want to execute some
code in a main method, but also bootstrap a Spring application to set up the infrastructure to use, then
it’s easy with the SpringApplication features of Spring Boot. A SpringApplication changes its
ApplicationContext class depending on whether it thinks it needs a web application or not. The
first thing you can do to help it is to just leave the servlet API dependencies off the classpath. If you
can’t do that (e.g. you are running 2 applications from the same code base) then you can explicitly call
SpringApplication.setWebEnvironment(false), or set the applicationContextClass
property (through the Java API or with external properties). Application code that you want to run as
your business logic can be implemented as a CommandLineRunner and dropped into the context as
a @Bean definition.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 114

55. Properties & configuration

55.1 Externalize the configuration of SpringApplication

A SpringApplication has bean properties (mainly setters) so you can use its Java API as you
create the application to modify its behavior. Or you can externalize the configuration using properties
in spring.main.*. E.g. in application.properties you might have.

spring.main.web_environment=false

spring.main.show_banner=false

and then the Spring Boot banner will not be printed on startup, and the application will not be a web
application.

Note

The example above also demonstrates how flexible binding allows the use of underscores (_) as
well as dashes (-) in property names.

55.2 Change the location of external properties of an
application

By default properties from different sources are added to the Spring Environment in a defined order
(see Chapter 21, Externalized Configuration in the “Spring Boot features” section for the exact order).

A nice way to augment and modify this is to add @PropertySource annotations to your application
sources. Classes passed to the SpringApplication static convenience methods, and those added
using setSources() are inspected to see if they have @PropertySources, and if they do,
those properties are added to the Environment early enough to be used in all phases of the
ApplicationContext lifecycle. Properties added in this way have precedence over any added using
the default locations, but have lower priority than system properties, environment variables or the
command line.

You can also provide System properties (or environment variables) to change the behavior:

• spring.config.name (SPRING_CONFIG_NAME), defaults to application as the root of the file
name.

• spring.config.location (SPRING_CONFIG_LOCATION) is the file to load (e.g. a classpath
resource or a URL). A separate Environment property source is set up for this document and it can
be overridden by system properties, environment variables or the command line.

No matter what you set in the environment, Spring Boot will always load application.properties
as described above. If YAML is used then files with the “.yml” extension are also added to the list by
default.

See ConfigFileApplicationListener for more detail.

55.3 Use “short” command line arguments

Some people like to use (for example) --port=9000 instead of --server.port=9000 to set
configuration properties on the command line. You can easily enable this by using placeholders in
application.properties, e.g.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 115

server.port=${port:8080}

Tip

If you have enabled maven filtering for the application.properties you may want to avoid
using ${*} for the tokens to filter as it conflicts with those placeholders. You can either use
@*@ (i.e. @maven.token@ instead of ${maven.token}) or you can configure the maven-
resources-plugin to use other delimiters.

Note

In this specific case the port binding will work in a PaaS environment like Heroku and Cloud
Foundry, since in those two platforms the PORT environment variable is set automatically and
Spring can bind to capitalized synonyms for Environment properties.

55.4 Use YAML for external properties

YAML is a superset of JSON and as such is a very convenient syntax for storing external properties
in a hierarchical format. E.g.

spring:

    application:

        name: cruncher

    datasource:

        driverClassName: com.mysql.jdbc.Driver

        url: jdbc:mysql://localhost/test

server:

    port: 9000

Create a file called application.yml and stick it in the root of your classpath, and also add
snakeyaml to your dependencies (Maven coordinates org.yaml:snakeyaml, already included if
you use the spring-boot-starter). A YAML file is parsed to a Java Map<String,Object> (like
a JSON object), and Spring Boot flattens the map so that it is 1-level deep and has period-separated
keys, a lot like people are used to with Properties files in Java.

The example YAML above corresponds to an application.properties file

spring.application.name=cruncher

spring.datasource.driverClassName=com.mysql.jdbc.Driver

spring.datasource.url=jdbc:mysql://localhost/test

server.port=9000

See Section 21.5, “Using YAML instead of Properties” in the “Spring Boot features” section for more
information about YAML.

55.5 Set the active Spring profiles

The Spring Environment has an API for this, but normally you would set a System profile
(spring.profiles.active) or an OS environment variable (SPRING_PROFILES_ACTIVE). E.g.
launch your application with a -D argument (remember to put it before the main class or jar archive):

$ java -jar -Dspring.profiles.active=production demo-0.0.1-SNAPSHOT.jar

In Spring Boot you can also set the active profile in application.properties, e.g.

spring.profiles.active=production

http://maven.apache.org/plugins/maven-resources-plugin/resources-mojo.html#delimiters


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 116

A value set this way is replaced by the System property or environment variable setting, but not by
the SpringApplicationBuilder.profiles() method. Thus the latter Java API can be used to
augment the profiles without changing the defaults.

See Chapter 22, Profiles in the “Spring Boot features” section for more information.

55.6 Change configuration depending on the environment

A YAML file is actually a sequence of documents separated by --- lines, and each document is parsed
separately to a flattened map.

If a YAML document contains a spring.profiles key, then the profiles value (comma-separated list
of profiles) is fed into the Spring Environment.acceptsProfiles() and if any of those profiles is
active that document is included in the final merge (otherwise not).

Example:

server:

    port: 9000

---

spring:

    profiles: development

server:

    port: 9001

---

spring:

    profiles: production

server:

    port: 0

In this example the default port is 9000, but if the Spring profile “development” is active then the port
is 9001, and if “production” is active then it is 0.

The YAML documents are merged in the order they are encountered (so later values override earlier
ones).

To do the same thing with properties files you can use application-${profile}.properties to
specify profile-specific values.

55.7 Discover built-in options for external properties

Spring Boot binds external properties from application.properties (or .yml) (and other places)
into an application at runtime. There is not (and technically cannot be) an exhaustive list of all supported
properties in a single location because contributions can come from additional jar files on your classpath.

A running application with the Actuator features has a configprops endpoint that shows all the bound
and bindable properties available through @ConfigurationProperties.

The appendix includes an application.properties example with a list of the most common
properties supported by Spring Boot. The definitive list comes from searching the source code
for @ConfigurationProperties and @Value annotations, as well as the occasional use of
RelaxedEnvironment.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 117

56. Embedded servlet containers

56.1 Add a Servlet, Filter or ServletContextListener to an
application

Servlet, Filter, ServletContextListener and the other listeners supported by the Servlet spec
can be added to your application as @Bean definitions. Be very careful that they don’t cause eager
initialization of too many other beans because they have to be installed in the container very early in
the application lifecycle (e.g. it’s not a good idea to have them depend on your DataSource or JPA
configuration). You can work around restrictions like that by initializing them lazily when first used instead
of on initialization.

In the case of Filters and Servlets you can also add mappings and init parameters by adding a
FilterRegistrationBean or ServletRegistrationBean instead of or as well as the underlying
component.

56.2 Change the HTTP port

In a standalone application the main HTTP port defaults to 8080, but can be set with server.port (e.g.
in application.properties or as a System property). Thanks to relaxed binding of Environment
values you can also use SERVER_PORT (e.g. as an OS environment variable).

To switch off the HTTP endpoints completely, but still create a WebApplicationContext, use
server.port=-1 (this is sometimes useful for testing).

For more details look at the section called “Customizing embedded servlet containers” in the “Spring
Boot features” section, or the ServerProperties source code.

56.3 Use a random unassigned HTTP port

To scan for a free port (using OS natives to prevent clashes) use server.port=0.

56.4 Discover the HTTP port at runtime

You can access the port the server is running on from log output or from
the EmbeddedWebApplicationContext via its EmbeddedServletContainer. The best
way to get that and be sure that it has initialized is to add a @Bean of
type ApplicationListener<EmbeddedServletContainerInitializedEvent> and pull the
container out of the event when it is published.

A really useful thing to do in is to use @IntegrationTest to set server.port=0 and then inject the
actual (“local”) port as a @Value. For example:

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes = SampleDataJpaApplication.class)

@WebAppConfiguration

@IntegrationTest("server.port:0")

public class CityRepositoryIntegrationTests {

    @Autowired

    EmbeddedWebApplicationContext server;

    @Value("${local.server.port}")

    int port;

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 118

    // ...

}

56.5 Configure Tomcat

Generally you can follow the advice from Section 55.7, “Discover built-in options for external properties”
about @ConfigurationProperties (ServerProperties is the main one here), but also look
at EmbeddedServletContainerCustomizer and various Tomcat specific *Customizers that
you can add in one of those. The Tomcat APIs are quite rich so once you have access to the
TomcatEmbeddedServletContainerFactory you can modify it in a number of ways. Or the nuclear
option is to add your own TomcatEmbeddedServletContainerFactory.

56.6 Terminate SSL in Tomcat

Use an EmbeddedServletContainerCustomizer and in that add a
TomcatConnectorCustomizer that sets up the connector to be secure:

@Bean

public EmbeddedServletContainerCustomizer containerCustomizer(){

    return new MyCustomizer();

}

// ...

private static class MyCustomizer implements EmbeddedServletContainerCustomizer {

    @Override

    public void customize(ConfigurableEmbeddedServletContainer factory) {

        if(factory instanceof TomcatEmbeddedServletContainerFactory) {

            customizeTomcat((TomcatEmbeddedServletContainerFactory) factory));

        }

    }

    public void customizeTomcat(TomcatEmbeddedServletContainerFactory factory) {

        factory.addConnectorCustomizers(new TomcatConnectorCustomizer() {

            @Override

            public void customize(Connector connector) {

                connector.setPort(serverPort);

                connector.setSecure(true);

                connector.setScheme("https");

                connector.setAttribute("keyAlias", "tomcat");

                connector.setAttribute("keystorePass", "password");

                try {

                    connector.setAttribute("keystoreFile",

                        ResourceUtils.getFile("src/ssl/tomcat.keystore").getAbsolutePath());

                } catch (FileNotFoundException e) {

                    throw new IllegalStateException("Cannot load keystore", e);

                }

                connector.setAttribute("clientAuth", "false");

                connector.setAttribute("sslProtocol", "TLS");

                connector.setAttribute("SSLEnabled", true);

            }

        });

    }

}

56.7 Enable Multiple Connectors Tomcat

Add a org.apache.catalina.connector.Connector to the
TomcatEmbeddedServletContainerFactory which can allow multiple connectors eg a HTTP and
HTTPS connector:



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 119

@Bean

public EmbeddedServletContainerFactory servletContainer() {

    TomcatEmbeddedServletContainerFactory tomcat = new TomcatEmbeddedServletContainerFactory();

    tomcat.addAdditionalTomcatConnectors(createSslConnector());

    return tomcat;

}

private Connector createSslConnector() {

    Connector connector = new Connector("org.apache.coyote.http11.Http11NioProtocol");

    Http11NioProtocol protocol = (Http11NioProtocol) connector.getProtocolHandler();

    try {

        File keystore = new ClassPathResource("keystore").getFile();

        File truststore = new ClassPathResource("keystore").getFile();

        connector.setScheme("https");

        connector.setSecure(true);

        connector.setPort(8443);

        protocol.setSSLEnabled(true);

        protocol.setKeystoreFile(keystore.getAbsolutePath());

        protocol.setKeystorePass("changeit");

        protocol.setTruststoreFile(truststore.getAbsolutePath());

        protocol.setTruststorePass("changeit");

        protocol.setKeyAlias("apitester");

        return connector;

    }

    catch (IOException ex) {

        throw new IllegalStateException("can't access keystore: [" + "keystore"

                + "] or truststore: [" + "keystore" + "]", ex);

    }

}

56.8 Use Tomcat behind a front-end proxy server

Spring Boot will automatically configure Tomcat’s RemoteIpValve if it detects some environment
settings. This allows you to transparently use the standard x-forwarded-for and x-forwarded-
proto headers that most front-end proxy servers add.

You can switch on the valve by adding some entries to application.properties, e.g.

server.tomcat.remote_ip_header=x-forwarded-for

server.tomcat.protocol_header=x-forwarded-proto

Alternatively, you can add the RemoteIpValve yourself by adding a
TomcatEmbeddedServletContainerFactory bean.

56.9 Use Jetty instead of Tomcat

The Spring Boot starters (spring-boot-starter-web in particular) use Tomcat as an embedded
container by default. You need to exclude those dependencies and include the Jetty one instead. Spring
Boot provides Tomcat and Jetty dependencies bundled together as separate starters to help make this
process as easy as possible.

Example in Maven:

<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-web</artifactId>

    <exclusions>

        <exclusion>

            <groupId>org.springframework.boot</groupId>

            <artifactId>spring-boot-starter-tomcat</artifactId>

        </exclusion>

    </exclusions>

</dependency>



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 120

<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-jetty</artifactId>

</dependency>

Example in Gradle:

configurations {

    compile.exclude module: "spring-boot-starter-tomcat"

}

dependencies {

    compile("org.springframework.boot:spring-boot-starter-web:1.0.0.RC3")

    compile("org.springframework.boot:spring-boot-starter-jetty:1.0.0.RC3")

    // ...

}

56.10 Configure Jetty

Generally you can follow the advice from Section 55.7, “Discover built-in options for external properties”
about @ConfigurationProperties (ServerProperties is the main one here), but also look at
EmbeddedServletContainerCustomizer. The Jetty APIs are quite rich so once you have access
to the JettyEmbeddedServletContainerFactory you can modify it in a number of ways. Or the
nuclear option is to add your own JettyEmbeddedServletContainerFactory.

56.11 Use Tomcat 8

Tomcat 8 works with Spring Boot, but the default is to use Tomcat 7 (so we can support Java 1.6 out
of the box). You should only need to change the classpath to use Tomcat 8 for it to work. For example,
using the starter poms in Maven:

<properties>

    <tomcat.version>8.0.8</tomcat.version>

</properties>

<dependencies>

    ...

    <dependency>

        <groupId>org.springframework.boot</groupId>

        <artifactId>spring-boot-starter-web</artifactId>

    </dependency>

    ...

</dependencies>

change the classpath to use Tomcat 8 for it to work.

56.12 Use Jetty 9

Jetty 9 works with Spring Boot, but the default is to use Jetty 8 (so we can support Java 1.6 out of the
box). You should only need to change the classpath to use Jetty 9 for it to work.

If you are using the starter poms and parent you can just add the Jetty starter and change the version
properties, e.g. for a simple webapp or service:

<properties>

    <java.version>1.7</java.version>

    <jetty.version>9.1.0.v20131115</jetty.version>

    <servlet-api.version>3.1.0</servlet-api.version>

</properties>

<dependencies>

    <dependency>



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 121

        <groupId>org.springframework.boot</groupId>

        <artifactId>spring-boot-starter-web</artifactId>

        <exclusions>

            <exclusion>

                <groupId>org.springframework.boot</groupId>

                <artifactId>spring-boot-starter-tomcat</artifactId>

            </exclusion>

        </exclusions>

    </dependency>

    <dependency>

        <groupId>org.springframework.boot</groupId>

        <artifactId>spring-boot-starter-jetty</artifactId>

    </dependency>

</dependencies>



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 122

57. Spring MVC

57.1 Write a JSON REST service

Any Spring @RestController in a Spring Boot application should render JSON response by default
as long as Jackson2 is on the classpath. For example:

@RestController

public class MyController {

    @RequestMapping("/thing")

    public MyThing thing() {

            return new MyThing();

    }

}

As long as MyThing can be serialized by Jackson2 (e.g. a normal POJO or Groovy object) then
http://localhost:8080/thing will serve a JSON representation of it by default. Sometimes in a
browser you might see XML responses (but by default only if MyThing was a JAXB object) because
browsers tend to send accept headers that prefer XML.

57.2 Write an XML REST service

Since JAXB is in the JDK the same example as we used for JSON would work, as long as the MyThing
was annotated as @XmlRootElement:

@XmlRootElement

public class MyThing {

    private String name;

    // .. getters and setters

}

To get the server to render XML instead of JSON you might have to send an Accept: text/xml
header (or use a browser).

57.3 Customize the Jackson ObjectMapper

Spring MVC (client and server side) uses HttpMessageConverters to negotiate content conversion
in an HTTP exchange. If Jackson is on the classpath you already get a default converter with a vanilla
ObjectMapper. Spring Boot has some features to make it easier to customize this behavior.

The smallest change that might work is to just add beans of type
com.fasterxml.jackson.databind.Module to your context. They will be registered with the
default ObjectMapper and then injected into the default message converter. To replace the default
ObjectMapper completely, define a @Bean of that type and mark it as @Primary.

In addition, if your context contains any beans of type ObjectMapper then all of the Module beans will
be registered with all of the mappers. So there is a global mechanism for contributing custom modules
when you add new features to your application.

Finally, if you provide any @Beans of type MappingJackson2HttpMessageConverter then they
will replace the default value in the MVC configuration. Also, a convenience bean is provided of type
HttpMessageConverters (always available if you use the default MVC configuration) which has
some useful methods to access the default and user-enhanced message converters.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 123

See also the Section 57.4, “Customize the @ResponseBody rendering” section and the
WebMvcAutoConfiguration source code for more details.

57.4 Customize the @ResponseBody rendering

Spring uses HttpMessageConverters to render @ResponseBody (or responses from
@RestController). You can contribute additional converters by simply adding beans of that type in a
Spring Boot context. If a bean you add is of a type that would have been included by default anyway (like
MappingJackson2HttpMessageConverter for JSON conversions) then it will replace the default
value. A convenience bean is provided of type HttpMessageConverters (always available if you
use the default MVC configuration) which has some useful methods to access the default and user-
enhanced message converters (useful, for example if you want to manually inject them into a custom
RestTemplate).

As in normal MVC usage, any WebMvcConfigurerAdapter beans that you provide can also
contribute converters by overriding the configureMessageConverters method, but unlike with
normal MVC, you can supply only additional converters that you need (because Spring Boot
uses the same mechanism to contribute its defaults). Finally, if you opt-out of the Spring
Boot default MVC configuration by providing your own @EnableWebMvc configuration, then you
can take control completely and do everything manually using getMessageConverters from
WebMvcConfigurationSupport.

See the WebMvcAutoConfiguration source code for more details.

57.5 Switch off the Spring MVC DispatcherServlet

Spring Boot wants to serve all content from the root of your application / down. If you would rather map
your own servlet to that URL you can do it, but of course you may lose some of the other Boot MVC
features. To add your own servlet and map it to the root resource just declare a @Bean of type Servlet
and give it the special bean name dispatcherServlet (You can also create a bean of a different
type with that name if you want to switch it off and not replace it).

57.6 Switch off the Default MVC configuration

The easiest way to take complete control over MVC configuration is to provide your own
@Configuration with the @EnableWebMvc annotation. This will leave all MVC configuration in your
hands.

57.7 Customize ViewResolvers

A ViewResolver is a core component of Spring MVC, translating view names in @Controller
to actual View implementations. Note that ViewResolvers are mainly used in UI applications,
rather than REST-style services (a View is not used to render a @ResponseBody). There are many
implementations of ViewResolver to choose from, and Spring on its own is not opinionated about
which ones you should use. Spring Boot, on the other hand, installs one or two for you depending on
what it finds on the classpath and in the application context. The DispatcherServlet uses all the
resolvers it finds in the application context, trying each one in turn until it gets a result, so if you are
adding your own you have to be aware of the order and in which position your resolver is added.

WebMvcAutoConfiguration adds the following ViewResolvers to your context:

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 124

• An InternalResourceViewResolver with bean id “defaultViewResolver”. This one locates
physical resources that can be rendered using the DefaultServlet (e.g. static resources and JSP
pages if you are using those). It applies a prefix and a suffix to the view name and then looks for
a physical resource with that path in the servlet context (defaults are both empty, but accessible for
external configuration via spring.view.prefix and spring.view.suffix). It can be overridden
by providing a bean of the same type.

• A BeanNameViewResolver with id “beanNameViewResolver”. This is a useful member of the view
resolver chain and will pick up any beans with the same name as the View being resolved. It can be
overridden by providing a bean of the same type, but it’s unlikely you will need to do that.

• A ContentNegotiatingViewResolver with id “viewResolver” is only added if there are
actually beans of type View present. This is a “master” resolver, delegating to all the others
and attempting to find a match to the “Accept” HTTP header sent by the client. There is a
useful blog about ContentNegotiatingViewResolver that you might like to study to learn
more, and also look at the source code for detail. You can switch off the auto-configured
ContentNegotiatingViewResolver by defining a bean named “viewResolver”.

• If you use Thymeleaf you will also have a ThymeleafViewResolver with id
“thymeleafViewResolver”. It looks for resources by surrounding the view name with a prefix and
suffix (externalized to spring.thymeleaf.prefix and spring.thymeleaf.suffix, defaults
“classpath:/templates/” and “.html” respectively). It can be overridden by providing a bean of the same
name.

Checkout WebMvcAutoConfiguration and ThymeleafAutoConfiguration

https://spring.io/blog/2013/06/03/content-negotiation-using-views
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 125

58. Logging

58.1 Configure Logback for logging

Spring Boot has no mandatory logging dependence, except for the commons-logging API, of which
there are many implementations to choose from. To use Logback you need to include it, and some
bindings for commons-logging on the classpath. The simplest way to do that is through the starter
poms which all depend on spring-boot-starter-logging. For a web application you only need
spring-boot-starter-web since it depends transitively on the logging starter. For example, using
Maven:

<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-web</artifactId>

</dependency>

Spring Boot has a LoggingSystem abstraction that attempts to configure logging based on the content
of the classpath. If Logback is available it is the first choice. So if you put a logback.xml in the root
of your classpath it will be picked up from there. Spring Boot provides a default base configuration that
you can include if you just want to set levels, e.g.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

    <include resource="org/springframework/boot/logging/logback/base.xml"/>

    <logger name="org.springframework.web" level="DEBUG"/>

</configuration>

If you look at the default logback.xml in the spring-boot jar you will see that it uses some useful
System properties which the LoggingSystem takes care of creating for you. These are:

• ${PID} the current process ID.

• ${LOG_FILE} if logging.file was set in Boot’s external configuration.

• ${LOG_PATH} if logging.path was set (representing a directory for log files to live in).

Spring Boot also provides some nice ANSI colour terminal output on a console (but not in a log file)
using a custom Logback converter. See the default base.xml configuration for details.

If Groovy is on the classpath you should be able to configure Logback with logback.groovy as well
(it will be given preference if present).

58.2 Configure Log4j for logging

Spring Boot supports Log4j for logging configuration, but it has to be on the classpath. If you are using
the starter poms for assembling dependencies that means you have to exclude logback and then include
log4j instead. If you aren’t using the starter poms then you need to provide commons-logging (at
least) in addition to Log4j.

The simplest path to using Log4j is probably through the starter poms, even though it requires some
jiggling with excludes, e.g. in Maven:

<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-web</artifactId>

</dependency>

http://logback.qos.ch
http://logging.apache.org/log4j


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 126

<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter</artifactId>

    <exclusions>

            <exclusion>

                    <groupId>org.springframework.boot</groupId>

                    <artifactId>spring-boot-starter-logging</artifactId>

            </exclusion>

    </exclusions>

</dependency>

<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-log4j</artifactId>

</dependency>

Note

The use of the log4j starter gathers together the dependencies for common logging requirements
(e.g. including having Tomcat use java.util.logging but configure the output using Log4j).
See the Actuator Log4j Sample for more detail and to see it in action.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 127

59. Data Access

59.1 Configure a DataSource

To override the default settings just define a @Bean of your own of type DataSource.
See Section 26.1, “Configure a DataSource” in the “Spring Boot features” section and the
DataSourceAutoConfiguration class for more details.

59.2 Use Spring Data repositories

Spring Data can create implementations for you of @Repository interfaces of various flavours. Spring
Boot will handle all of that for you as long as those @Repositories are included in the same package
(or a sub-package) of your @EnableAutoConfiguration class.

For many applications all you will need is to put the right Spring Data dependencies on your classpath
(there is a spring-boot-starter-data-jpa for JPA and a spring-boot-starter-data-
mongodb for Mongodb), create some repository interfaces to handle your @Entity objects. Examples
are in the JPA sample or the Mongodb sample.

Spring Boot tries to guess the location of your @Repository definitions, based on the
@EnableAutoConfiguration it finds. To get more control, use the @EnableJpaRepositories
annotation (from Spring Data JPA).

59.3 Separate @Entity definitions from Spring configuration

Spring Boot tries to guess the location of your @Entity definitions, based on the
@EnableAutoConfiguration it finds. To get more control, you can use the @EntityScan
annotation, e.g.

@Configuration

@EnableAutoConfiguration

@EntityScan(basePackageClasses=City.class)

public class Application {

    //...

}

59.4 Configure JPA properties

Spring Data JPA already provides some vendor-independent configuration options (e.g. for SQL
logging) and Spring Boot exposes those, and a few more for hibernate as external configuration
properties. The most common options to set are:

spring.jpa.hibernate.ddl-auto: create-drop

spring.jpa.hibernate.naming_strategy: org.hibernate.cfg.ImprovedNamingStrategy

spring.jpa.database: H2

spring.jpa.show-sql: true

(Because of relaxed data binding hyphens or underscores should work equally well as property
keys.) The ddl-auto setting is a special case in that it has different defaults depending on whether
you are using an embedded database (create-drop) or not (none). In addition all properties in
spring.jpa.properties.* are passed through as normal JPA properties (with the prefix stripped)
when the local EntityManagerFactory is created.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-data-jpa
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-data-mongodb


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 128

See HibernateJpaAutoConfiguration and JpaBaseConfiguration for more details.

59.5 Use a custom EntityManagerFactory

To take full control of the configuration of the EntityManagerFactory, you need to add a @Bean
named "entityManagerFactory". To avoid eager initialization of JPA infrastructure, Spring Boot auto-
configuration does not switch on its entity manager based on the presence of a bean of that type. Instead
it has to do it by name.

59.6 Use a traditional persistence.xml

Spring doesn’t require the use of XML to configure the JPA provider, and Spring Boot assumes you
want to take advantage of that feature. If you prefer to use persistence.xml then you need to define
your own @Bean of type LocalEntityManagerFactoryBean (with id "entityManagerFactory", and
set the persistence unit name there.

See JpaBaseConfiguration for the default settings.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 129

60. Database initialization

An SQL database can be initialized in different ways depending on what your stack is. Or of course you
can do it manually as long as the database is a separate process.

60.1 Initialize a database using JPA

JPA has features for DDL generation, and these can be set up to run on startup against the database.
This is controlled through two external properties:

• spring.jpa.generate-ddl (boolean) switches the feature on and off and is vendor independent.

• spring.jpa.hibernate.ddl-auto (enum) is a Hibernate feature that controls the behavior in a
more fine-grained way. See below for more detail.

60.2 Initialize a database using Hibernate

You can set spring.jpa.hibernate.ddl-auto explicitly and the standard Hibernate property
values are none, validate, update, create-drop. Spring Boot chooses a default value for you
based on whether it thinks your database is embedded (default create-drop) or not (default none).
An embedded database is detected by looking at the Connection type: hsqldb, h2 and derby are
embedded, the rest are not. Be careful when switching from in-memory to a “real” database that you
don’t make assumptions about the existence of the tables and data in the new platform. You either have
to set ddl-auto explicitly, or use one of the other mechanisms to initialize the database.

In addition, a file named import.sql in the root of the classpath will be executed on startup. This can
be useful for demos and for testing if you are careful, but probably not something you want to be on the
classpath in production. It is a Hibernate feature (nothing to do with Spring).

60.3 Initialize a database using Spring JDBC

Spring JDBC has a DataSource initializer feature. Spring Boot enables it by default and loads
SQL from the standard locations schema.sql and data.sql (in the root of the classpath). In
addition Spring Boot will load a file schema-${platform}.sql where platform is the value of
spring.datasource.platform, e.g. you might choose to set it to the vendor name of the database
(hsqldb, h2, oracle, mysql, postgresql etc.). Spring Boot enables the failfast feature of the Spring
JDBC initializer by default, so if the scripts cause exceptions the application will fail to start.

To disable the failfast you can set spring.datasource.continueOnError=true. This can be
useful once an application has matured and been deployed a few times, since the scripts can act as
“poor man’s migrations” — inserts that fail mean that the data is already there, so there would be no
need to prevent the application from running, for instance.

60.4 Initialize a Spring Batch database

If you are using Spring Batch then it comes pre-packaged with SQL initialization scripts for most popular
database platforms. Spring Boot will detect your database type, and execute those scripts by default,
and in this case will switch the fail fast setting to false (errors are logged but do not prevent the application
from starting). This is because the scripts are known to be reliable and generally do not contain bugs, so
errors are ignorable, and ignoring them makes the scripts idempotent. You can switch off the initialization
explicitly using spring.batch.initializer.enabled=false.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 130

60.5 Use a higher level database migration tool

Spring Boot works fine with higher level migration tools Flyway (SQL-based) and Liquibase (XML). In
general we prefer Flyway because it is easier on the eyes, and it isn’t very common to need platform
independence: usually only one or at most couple of platforms is needed.

http://flywaydb.org/
http://www.liquibase.org/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 131

61. Batch applications

61.1 Execute Spring Batch jobs on startup

Spring Batch auto configuration is enabled by adding @EnableBatchProcessing (from Spring Batch)
somewhere in your context.

By default it executes all Jobs in the application context on startup (see
JobLauncherCommandLineRunner for details). You can narrow down to a specific job or jobs by
specifying spring.batch.job.names (comma separated job name patterns).

If the application context includes a JobRegistry then the jobs in spring.batch.job.names are
looked up in the registry instead of being autowired from the context. This is a common pattern with
more complex systems where multiple jobs are defined in child contexts and registered centrally.

See BatchAutoConfiguration and @EnableBatchProcessing for more details.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/JobLauncherCommandLineRunner.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
https://github.com/spring-projects/spring-batch/blob/master/spring-batch-core/src/main/java/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 132

62. Actuator

62.1 Change the HTTP port or address of the actuator
endpoints

In a standalone application the Actuator HTTP port defaults to the same as the main HTTP port. To
make the application listen on a different port set the external property management.port. To listen
on a completely different network address (e.g. if you have an internal network for management and
an external one for user applications) you can also set management.address to a valid IP address
that the server is able to bind to.

For more detail look at the ManagementServerProperties source code and Section 33.3,
“Customizing the management server port” in the “Production-ready features” section.

62.2 Customize the “whitelabel” error page

The Actuator installs a “whitelabel” error page that you will see in browser client if you encounter a server
error (machine clients consuming JSON and other media types should see a sensible response with the
right error code). To switch it off you can set error.whitelabel.enabled=false, but normally in
addition or alternatively to that you will want to add your own error page replacing the whitelabel one. If
you are using Thymeleaf you can do this by adding an error.html template. In general what you need
is a View that resolves with a name of error, and/or a @Controller that handles the /error path.
Unless you replaced some of the default configuration you should find a BeanNameViewResolver in
your ApplicationContext so a @Bean with id error would be a simple way of doing that. Look at
ErrorMvcAutoConfiguration for more options.

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ErrorMvcAutoConfiguration.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 133

63. Security

63.1 Switch off the Spring Boot security configuration

If you define a @Configuration with @EnableWebSecurity anywhere in your application it will
switch off the default webapp security settings in Spring Boot. To tweak the defaults try setting properties
in security.* (see SecurityProperties for details of available settings) and SECURITY section
of Common application properties.

63.2 Change the AuthenticationManager and add user
accounts

If you provide a @Bean of type AuthenticationManager the default one will not be created, so you
have the full feature set of Spring Security available (e.g. various authentication options).

Spring Security also provides a convenient AuthenticationManagerBuilder which can be used
to build an AuthenticationManager with common options. The recommended way to use this in a
webapp is to inject it into a void method in a WebSecurityConfigurerAdapter, e.g.

@Configuration

public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

    @Autowired

    public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {

            auth.inMemoryAuthentication()

                .withUser("barry").password("password").roles("USER"); // ...  etc.

    }

    // ... other stuff for application security

}

You will get the best results if you put this in a nested class, or a standalone class (i.e. not mixed in
with a lot of other @Beans that might be allowed to influence the order of instantiation). The secure web
sample is a useful template to follow.

63.3 Enable HTTPS when running behind a proxy server

Ensuring that all your main endpoints are only available over HTTPS is an important chore for any
application. If you are using Tomcat as a servlet container, then Spring Boot will add Tomcat’s own
RemoteIpValve automatically if it detects some environment settings, and you should be able to
rely on the HttpServletRequest to report whether it is secure or not (even downstream of a proxy
server that handles the real SSL termination). The standard behavior is determined by the presence or
absence of certain request headers (x-forwarded-for and x-forwarded-proto), whose names
are conventional, so it should work with most front end proxies. You can switch on the valve by adding
some entries to application.properties, e.g.

server.tomcat.remote_ip_header=x-forwarded-for

server.tomcat.protocol_header=x-forwarded-proto

(The presence of either of those properties will switch on the valve. Or you can add the RemoteIpValve
yourself by adding a TomcatEmbeddedServletContainerFactory bean.)

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jc-authentication
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-web-secure
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-web-secure


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 134

Spring Security can also be configured to require a secure channel for all (or some requests). To
switch that on in a Spring Boot application you just need to set security.require_https to true
in application.properties.



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 135

64. Hot swapping

64.1 Reload static content

There are several options for hot reloading. Running in an IDE (especially with debugging on) is a
good way to do development (all modern IDEs allow reloading of static resources and usually also
hot-swapping of Java class changes). The Maven and Gradle plugins also support running from the
command line with reloading of static files. You can use that with an external css/js compiler process
if you are writing that code with higher level tools.

64.2 Reload Thymeleaf templates without restarting the
container

If you are using Thymeleaf, then set spring.thymeleaf.cache to false. See
ThymeleafAutoConfiguration for other template customization options.

64.3 Reload Java classes without restarting the container

Modern IDEs (Eclipse, IDEA, etc.) all support hot swapping of bytecode, so if you make a change that
doesn’t affect class or method signatures it should reload cleanly with no side effects.

Spring Loaded goes a little further in that it can reload class definitions with changes in the method
signatures. With some customization it can force an ApplicationContext to refresh itself (but there
is no general mechanism to ensure that would be safe for a running application anyway, so it would
only ever be a development time trick probably).

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-loaded


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 136

65. Build

65.1 Customize dependency versions with Maven

If you use a Maven build that inherits from spring-boot-starter-parent but you want to override
a specific third-party dependency you can add appropriate <properties> elements. Browse the
spring-dependencies POM for a complete list of properties. For example, to pick a different slf4j
version you would add the following:

<properties>

    <slf4j.version>1.7.5<slf4j.version>

</properties>

Warning

Each Spring Boot release is designed and tested against a specific set of third-party
dependencies. Overriding versions may cause compatibilty issues.

65.2 Remote debug a Spring Boot application started with
Maven

To attach a remote debugger to a Spring Boot application started with Maven you can use the mvnDebug
command rather than mvn. For example:

$ mvnDebug spring-boot:run

You can now attach a remote debugger to your running application on port 8000.

65.3 Build an executable archive with Ant

To build with Ant you need to grab dependencies, compile and then create a jar or war archive as
normal. To make it executable:

1. Use the appropriate launcher as a Main-Class, e.g. JarLauncher for a jar file, and specify the
other properties it needs as manifest entries, principally a Start-Class.

2. Add the runtime dependencies in a nested "lib" directory (for a jar) and the provided (embedded
container) dependencies in a nested lib-provided directory. Remember not to compress the
entries in the archive.

3. Add the spring-boot-loader classes at the root of the archive (so the Main-Class is available).

Example:

<target name="build" depends="compile">

    <copy todir="target/classes/lib">

        <fileset dir="lib/runtime" />

    </copy>

    <jar destfile="target/spring-boot-sample-actuator-${spring-boot.version}.jar" compress="false">

        <fileset dir="target/classes" />

        <fileset dir="src/main/resources" />

        <zipfileset src="lib/loader/spring-boot-loader-jar-${spring-boot.version}.jar" />

        <manifest>

            <attribute name="Main-Class" value="org.springframework.boot.loader.JarLauncher" />

            <attribute name="Start-Class" value="${start-class}" />

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-dependencies/pom.xml


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 137

        </manifest>

    </jar>

</target>

The Actuator Sample has a build.xml that should work if you run it with

$ ant -lib <path_to>/ivy-2.2.jar

after which you can run the application with

$ java -jar target/*.jar



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 138

66. Traditional deployment

66.1 Create a deployable war file

Use the SpringBootServletInitializer base class, which is picked up by Spring’s Servlet 3.0
support on deployment. Add an extension of that to your project and build a war file as normal. For more
detail, see the “Converting a jar Project to a war” guide on the spring.io website and the sample below.

The war file can also be executable if you use the Spring Boot build tools. In that case the embedded
container classes (to launch Tomcat for instance) have to be added to the war in a lib-provided
directory. The tools will take care of that as long as the dependencies are marked as "provided" in Maven
or Gradle. Here’s a Maven example in the Boot Samples.

66.2 Create a deployable war file for older servlet containers

Older Servlet containers don’t have support for the ServletContextInitializer bootstrap process
used in Servlet 3.0. You can still use Spring and Spring Boot in these containers but you are going to
need to add a web.xml to your application and configure it to load an ApplicationContext via a
DispatcherServlet.

66.3 Convert an existing application to Spring Boot

For a non-web application it should be easy (throw away the code that creates
your ApplicationContext and replace it with calls to SpringApplication or
SpringApplicationBuilder). Spring MVC web applications are generally amenable to first creating
a deployable war application, and then migrating it later to an executable war and/or jar. Useful reading
is in the Getting Started Guide on Converting a jar to a war.

Create a deployable war by extending SpringBootServletInitializer (e.g. in a class called
Application), and add the Spring Boot @EnableAutoConfiguration annotation. Example:

@Configuration

@EnableAutoConfiguration

@ComponentScan

public class Application extends SpringBootServletInitializer {

    @Override

    protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

        return application.sources(Application.class);

    }

}

Remember that whatever you put in the sources is just a Spring ApplicationContext and normally
anything that already works should work here. There might be some beans you can remove later and let
Spring Boot provide its own defaults for them, but it should be possible to get something working first.

Static resources can be moved to /public (or /static or /resources or /META-INF/resources)
in the classpath root. Same for messages.properties (Spring Boot detects this automatically in the
root of the classpath).

Vanilla usage of Spring DispatcherServlet and Spring Security should require no further changes. If
you have other features in your application, using other servlets or filters for instance, then you may need
to add some configuration to your Application context, replacing those elements from the web.xml
as follows:

http://spring.io/guides/gs/convert-jar-to-war
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-samples/spring-boot-sample-traditional/pom.xml
http://spring.io/guides/gs/convert-jar-to-war/


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 139

• A @Bean of type Servlet or ServletRegistrationBean installs that bean in the container as if
it was a <servlet/> and <servlet-mapping/> in web.xml.

• A @Bean of type Filter or FilterRegistrationBean behaves similarly (like a <filter/> and
<filter-mapping/>.

• An ApplicationContext in an XML file can be added to an @Import in your Application. Or
simple cases where annotation configuration is heavily used already can be recreated in a few lines
as @Bean definitions.

Once the war is working we make it executable by adding a main method to our Application, e.g.

public static void main(String[] args) {

    SpringApplication.run(Application.class, args);

}

Applications can fall into more than one category:

• Servlet 3.0 applications with no web.xml.

• Applications with a web.xml.

• Applications with a context hierarchy.

• Applications without a context hierarchy.

All of these should be amenable to translation, but each might require slightly different tricks.

Servlet 3.0 applications might translate pretty easily if they already use the Spring Servlet 3.0 initializer
support classes. Normally all the code from an existing WebApplicationInitializer can be
moved into a SpringBootServletInitializer. If your existing application has more than one
ApplicationContext (e.g. if it uses AbstractDispatcherServletInitializer) then you
might be able to squash all your context sources into a single SpringApplication. The main
complication you might encounter is if that doesn’t work and you need to maintain the context hierarchy.
See the entry on building a hierarchy for examples. An existing parent context that contains web-specific
features will usually need to be broken up so that all the ServletContextAware components are in
the child context.

Applications that are not already Spring applications might be convertible to a Spring Boot application,
and the guidance above might help, but your mileage may vary.



Part X. Appendices



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 141

Appendix A. Common application
properties
Various properties can be specified inside your application.properties/application.yml file
or as command line switches. This section provides a list common Spring Boot properties and references
to the underlying classes that consume them.

Note

Property contributions can come from additional jar files on your classpath so you should not
consider this an exhaustive list. It is also perfectly legit to define your own properties.

Warning

This sample file is meant as a guide only. Do not copy/paste the entire content into your
application; rather pick only the properties that you need.

# ===================================================================

# COMMON SPRING BOOT PROPERTIES

#

# This sample file is provided as a guideline. Do NOT copy it in its

# entirety to your own application.               ^^^

# ===================================================================

# ----------------------------------------

# CORE PROPERTIES

# ----------------------------------------

# SPRING CONFIG (ConfigFileApplicationListener)

spring.config.name= # config file name (default to 'application')

spring.config.location= # location of config file

# PROFILES

spring.profiles= # comma list of active profiles

# APPLICATION SETTINGS (SpringApplication)

spring.main.sources=

spring.main.web-environment= # detect by default

spring.main.show-banner=true

spring.main....= # see class for all properties

# LOGGING

logging.path=/var/logs

logging.file=myapp.log

logging.config=

# IDENTITY (ContextIdApplicationContextInitializer)

spring.application.name=

spring.application.index=

# EMBEDDED SERVER CONFIGURATION (ServerProperties)

server.port=8080

server.address= # bind to a specific NIC

server.session-timeout= # session timeout in sections

server.context-path= # the context path, defaults to '/'

server.servlet-path= # the servlet path, defaults to '/'

server.tomcat.access-log-pattern= # log pattern of the access log

server.tomcat.access-log-enabled=false # is access logging enabled

server.tomcat.protocol-header=x-forwarded-proto # ssl forward headers

server.tomcat.remote-ip-header=x-forwarded-for

server.tomcat.basedir=/tmp # base dir (usually not needed, defaults to tmp)

http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/SpringApplication.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/context/ContextIdApplicationContextInitializer.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 142

server.tomcat.background-processor-delay=30; # in seconds

server.tomcat.max-threads = 0 # number of threads in protocol handler

server.tomcat.uri-encoding = UTF-8 # character encoding to use for URL decoding

# SPRING MVC (HttpMapperProperties)

http.mappers.json-pretty-print=false # pretty print JSON

http.mappers.json-sort-keys=false # sort keys

spring.mvc.locale= # set fixed locale, e.g. en_UK

spring.view.prefix= # MVC view prefix

spring.view.suffix= # ... and suffix

spring.resources.cache-period= # cache timeouts in headers sent to browser

# THYMELEAF (ThymeleafAutoConfiguration)

spring.thymeleaf.prefix=classpath:/templates/

spring.thymeleaf.suffix=.html

spring.thymeleaf.mode=HTML5

spring.thymeleaf.encoding=UTF-8

spring.thymeleaf.content-type=text/html # ;charset=<encoding> is added

spring.thymeleaf.cache=true # set to false for hot refresh

# INTERNATIONALIZATION (MessageSourceAutoConfiguration)

spring.messages.basename=messages

spring.messages.encoding=UTF-8

spring.messages.cacheSeconds=-1

# SECURITY (SecurityProperties)

security.user.name=user # login username

security.user.password= # login password

security.user.role=USER # role assigned to the user

security.require-ssl=false # advanced settings ...

security.enable-csrf=false

security.basic.enabled=true

security.basic.realm=Spring

security.basic.path= # /**

security.headers.xss=false

security.headers.cache=false

security.headers.frame=false

security.headers.contentType=false

security.headers.hsts=all # none / domain / all

security.sessions=stateless # always / never / if_required / stateless

security.ignored=false

# DATASOURCE (DataSourceAutoConfiguration & AbstractDataSourceConfiguration)

spring.datasource.name= # name of the data source

spring.datasource.intialize=true # populate using data.sql

spring.datasource.schema= # a schema resource reference

spring.datasource.platform= # the platform to use in the schema resource (schema-${platform}.sql)

spring.datasource.continueOnError=false # continue even if can't be initialized

spring.datasource.separator=; # statement separator in SQL initialization scripts

spring.datasource.driverClassName= # JDBC Settings...

spring.datasource.url=

spring.datasource.username=

spring.datasource.password=

spring.datasource.max-active=100 # Advanced configuration...

spring.datasource.max-idle=8

spring.datasource.min-idle=8

spring.datasource.initial-size=10

spring.datasource.validation-query=

spring.datasource.test-on-borrow=false

spring.datasource.test-on-return=false

spring.datasource.test-while-idle=

spring.datasource.time-between-eviction-runs-millis=

spring.datasource.min-evictable-idle-time-millis=

spring.datasource.max-wait-millis=

# MONGODB (MongoProperties)

spring.data.mongodb.host= # the db host

spring.data.mongodb.port=27017 # the connection port (defaults to 27107)

spring.data.mongodb.uri=mongodb://localhost/test # connection URL

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/HttpMapperProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/MessageSourceAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure//jdbc/AbstractDataSourceConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoProperties.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 143

# JPA (JpaBaseConfiguration, HibernateJpaAutoConfiguration)

spring.jpa.properties.*= # properties to set on the JPA connection

spring.jpa.openInView=true

spring.jpa.show-sql=true

spring.jpa.database-platform=

spring.jpa.database=

spring.jpa.generate-ddl=

spring.jpa.hibernate.naming-strategy= # naming classname

spring.jpa.hibernate.ddl-auto= # defaults to create-drop for embedded dbs

# JMX

spring.jmx.enabled=true # Expose MBeans from Spring

# RABBIT (RabbitProperties)

spring.rabbitmq.host= # connection host

spring.rabbitmq.port= # connection port

spring.rabbitmq.addresses= # connection addresses (e.g. myhost:9999,otherhost:1111)

spring.rabbitmq.username= # login user

spring.rabbitmq.password= # login password

spring.rabbitmq.virtualhost=

spring.rabbitmq.dynamic=

# REDIS (RedisProperties)

spring.redis.host=localhost # server host

spring.redis.password= # server password

spring.redis.port=6379 # connection port

spring.redis.pool.max-idle=8 # pool settings ...

spring.redis.pool.min-idle=0

spring.redis.pool.max-active=8

spring.redis.pool.max-wait=-1

# ACTIVEMQ (ActiveMQProperties)

spring.activemq.broker-url=tcp://localhost:61616 # connection URL

spring.activemq.user=

spring.activemq.password=

spring.activemq.in-memory=true

spring.activemq.pooled=false

# JMS (JmsTemplateProperties)

spring.jms.pub-sub-domain=

# SPRING BATCH (BatchDatabaseInitializer)

spring.batch.job.names=job1,job2

spring.batch.job.enabled=true

spring.batch.initializer.enabled=true

spring.batch.schema= # batch schema to load

# AOP

spring.aop.auto=

spring.aop.proxyTargetClass=

# FILE ENCODING (FileEncodingApplicationListener)

spring.mandatory-file-encoding=false

# ----------------------------------------

# ACTUATOR PROPERTIES

# ----------------------------------------

# MANAGEMENT HTTP SERVER (ManagementServerProperties)

management.port= # defaults to 'server.port'

management.address= # bind to a specific NIC

management.contextPath= # default to '/'

# ENDPOINTS (AbstractEndpoint subclasses)

endpoints.autoconfig.id=autoconfig

endpoints.autoconfig.sensitive=true

endpoints.autoconfig.enabled=true

endpoints.beans.id=beans

endpoints.beans.sensitive=true

endpoints.beans.enabled=true

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/redis/RedisProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/ActiveMQProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JmsTemplateProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchDatabaseInitializer.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot/src/main/java/org/springframework/boot/context/FileEncodingApplicationListener.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/endpoint/AbstractEndpoint.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 144

endpoints.configprops.id=configprops

endpoints.configprops.sensitive=true

endpoints.configprops.enabled=true

endpoints.configprops.keys-to-sanitize=password,secret

endpoints.dump.id=dump

endpoints.dump.sensitive=true

endpoints.dump.enabled=true

endpoints.env.id=env

endpoints.env.sensitive=true

endpoints.env.enabled=true

endpoints.health.id=health

endpoints.health.sensitive=false

endpoints.health.enabled=true

endpoints.info.id=info

endpoints.info.sensitive=false

endpoints.info.enabled=true

endpoints.metrics.id=metrics

endpoints.metrics.sensitive=true

endpoints.metrics.enabled=true

endpoints.shutdown.id=shutdown

endpoints.shutdown.sensitive=true

endpoints.shutdown.enabled=false

endpoints.trace.id=trace

endpoints.trace.sensitive=true

endpoints.trace.enabled=true

# MVC ONLY ENDPOINTS

endpoints.jolokia.path=jolokia

endpoints.jolokia.sensitive=true

endpoints.jolokia.enabled=true # when using Jolokia

endpoints.error.path=/error

# JMX ENDPOINT (EndpointMBeanExportProperties)

endpoints.jmx.enabled=true

endpoints.jmx.domain= # the JMX domain, defaults to 'org.springboot'

endpoints.jmx.unique-names=false

endpoints.jmx.enabled=true

endpoints.jmx.staticNames=

# JOLOKIA (JolokiaProperties)

jolokia.config.*= # See Jolokia manual

# REMOTE SHELL

shell.auth=simple # jaas, key, simple, spring

shell.command-refresh-interval=-1

shell.command-path-pattern= # classpath*:/commands/**, classpath*:/crash/commands/**

shell.config-path-patterns= # classpath*:/crash/*

shell.disabled-plugins=false # don't expose plugins

shell.ssh.enabled= # ssh settings ...

shell.ssh.keyPath=

shell.ssh.port=

shell.telnet.enabled= # telnet settings ...

shell.telnet.port=

shell.auth.jaas.domain= # authentication settings ...

shell.auth.key.path=

shell.auth.simple.user.name=

shell.auth.simple.user.password=

shell.auth.spring.roles=

# GIT INFO

spring.git.properties= # resource ref to generated git info properties file

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointMBeanExportProperties.java
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/JolokiaProperties.java


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 145

Appendix B. Auto-configuration
classes
Here is a list of all auto configuration classes provided by Spring Boot with links to documentation and
source code. Remember to also look at the autoconfig report in your application for more details of
which features are switched on. (start the app with --debug or -Ddebug, or in an Actuator application
use the autoconfig endpoint).

B.1 From the “spring-boot-autoconfigure” module

The following auto-configuration classes are from the spring-boot-autoconfigure module:

Configuration Class Links

AopAutoConfiguration javadoc

BatchAutoConfiguration javadoc

DataSourceAutoConfiguration javadoc

DataSourceTransactionManagerAutoConfiguration javadoc

DeviceResolverAutoConfiguration javadoc

DispatcherServletAutoConfiguration javadoc

EmbeddedServletContainerAutoConfiguration javadoc

HibernateJpaAutoConfiguration javadoc

HttpMessageConvertersAutoConfiguration javadoc

JmsTemplateAutoConfiguration javadoc

JmxAutoConfiguration javadoc

JpaRepositoriesAutoConfiguration javadoc

MessageSourceAutoConfiguration javadoc

MongoAutoConfiguration javadoc

MongoRepositoriesAutoConfiguration javadoc

MongoTemplateAutoConfiguration javadoc

MultipartAutoConfiguration javadoc

PropertyPlaceholderAutoConfiguration javadoc

RabbitAutoConfiguration javadoc

ReactorAutoConfiguration javadoc

RedisAutoConfiguration javadoc

SecurityAutoConfiguration javadoc

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mobile/DeviceResolverAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/mobile/DeviceResolverAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/DispatcherServletAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/DispatcherServletAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/EmbeddedServletContainerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/EmbeddedServletContainerAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/HttpMessageConvertersAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/HttpMessageConvertersAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JmsTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jms/JmsTemplateAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/JpaRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/data/JpaRepositoriesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/MessageSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/MessageSourceAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/mongo/MongoAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/MongoRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/data/MongoRepositoriesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/MongoTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/data/MongoTemplateAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/MultipartAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/MultipartAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/PropertyPlaceholderAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/PropertyPlaceholderAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/amqp/RabbitAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/reactor/ReactorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/reactor/ReactorAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/redis/RedisAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/redis/RedisAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/security/SecurityAutoConfiguration.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 146

Configuration Class Links

ServerPropertiesAutoConfiguration javadoc

ThymeleafAutoConfiguration javadoc

WebMvcAutoConfiguration javadoc

WebSocketAutoConfiguration javadoc

B.2 From the “spring-boot-actuator” module

The following auto-configuration classes are from the spring-boot-actuator module:

Configuration Class Links

AuditAutoConfiguration javadoc

CrshAutoConfiguration javadoc

EndpointAutoConfiguration javadoc

EndpointMBeanExportAutoConfiguration javadoc

EndpointWebMvcAutoConfiguration javadoc

ErrorMvcAutoConfiguration javadoc

JolokiaAutoConfiguration javadoc

ManagementSecurityAutoConfiguration javadoc

ManagementServerPropertiesAutoConfiguration javadoc

MetricFilterAutoConfiguration javadoc

MetricRepositoryAutoConfiguration javadoc

TraceRepositoryAutoConfiguration javadoc

TraceWebFilterAutoConfiguration javadoc

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerPropertiesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/ServerPropertiesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/websocket/WebSocketAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/autoconfigure/websocket/WebSocketAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/AuditAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/AuditAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/EndpointAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointMBeanExportAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/EndpointMBeanExportAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointWebMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/EndpointWebMvcAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ErrorMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/ErrorMvcAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/JolokiaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/JolokiaAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementSecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/ManagementSecurityAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerPropertiesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/ManagementServerPropertiesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/MetricFilterAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/MetricFilterAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/MetricRepositoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/MetricRepositoryAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/TraceRepositoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/TraceRepositoryAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/master/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/TraceWebFilterAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.0.3.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/TraceWebFilterAutoConfiguration.html


Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 147

Appendix C. The executable jar
format
The spring-boot-loader modules allows Spring Boot to support executable jar and war files. If
you’re using the Maven or Gradle plugin, executable jars are automatically generated and you generally
won’t need to know the details of how they work.

If you need to create executable jars from a different build system, or if you are just curious about the
underlying technology, this section provides some background.

C.1 Nested JARs

Java does not provide any standard way to load nested jar files (i.e. jar files that are themselves
contained within a jar). This can be problematic if you are looking to distribute a self contained application
that you can just run from the command line without unpacking.

To solve this problem, many developers use “shaded” jars. A shaded jar simply packages all classes,
from all jars, into a single uber jar. The problem with shaded jars is that it becomes hard to see which
libraries you are actually using in your application. It can also be problematic if the the same filename
is used (but with different content) in multiple jars. Spring Boot takes a different approach and allows
you to actually nest jars directly.

The executable jar file structure

Spring Boot Loader compatible jar files should be structured in the following way:

example.jar

 |

 +-META-INF

 |  +-MANIFEST.MF

 +-org

 |  +-springframework

 |     +-boot

 |        +-loader

 |           +-<spring boot loader classes>

 +-com

 |  +-mycompany

 |     + project

 |        +-YouClasses.class

 +-lib

    +-dependency1.jar

    +-dependency2.jar

Dependencies should be placed in a nested lib directory.

The executable war file structure

Spring Boot Loader compatible war files should be structured in the following way:

example.jar

 |

 +-META-INF

 |  +-MANIFEST.MF

 +-org

 |  +-springframework

 |     +-boot



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 148

 |        +-loader

 |           +-<spring boot loader classes>

 +-WEB-INF

    +-classes

    |  +-com

    |     +-mycompany

    |        +-project

    |           +-YouClasses.class

    +-lib

    |  +-dependency1.jar

    |  +-dependency2.jar

    +-lib-provided

       +-servlet-api.jar

       +-dependency3.jar

Dependencies should be placed in a nested WEB-INF/lib directory. Any dependencies that are
required when running embedded but are not required when deploying to a traditional web container
should be placed in WEB-INF/lib-provided.

C.2 Spring Boot’s “JarFile” class

The core class used to support loading nested jars is
org.springframework.boot.loader.jar.JarFile. It allows you load jar content from a
standard jar file, or from nested child jar data. When first loaded, the location of each JarEntry is
mapped to a physical file offset of the outer jar:

myapp.jar

+---------+---------------------+

|         | /lib/mylib.jar      |

| A.class |+---------+---------+|

|         || B.class | B.class ||

|         |+---------+---------+|

+---------+---------------------+

^          ^          ^

0063       3452       3980

The example above shows how A.class can be found in myapp.jar position 0063. B.class from
the nested jar can actually be found in myapp.jar position 3452 and B.class is at position 3980.

Armed with this information, we can load specific nested entries by simply seeking to appropriate part if
the outer jar. We don’t need to unpack the archive and we don’t need to read all entry data into memory.

Compatibility with the standard Java “JarFile”

Spring Boot Loader strives to remain compatible with existing code and libraries.
org.springframework.boot.loader.jar.JarFile extends from java.util.jar.JarFile
and should work as a drop-in replacement. The RandomAccessJarFile.getURL() method
will return a URL that opens a java.net.JarURLConnection compatible connection.
RandomAccessJarFile URLs can be used with Java’s URLClassLoader.

C.3 Launching executable jars

The org.springframework.boot.loader.Launcher class is a special bootstrap class that is
used as an executable jars main entry point. It is the actual Main-Class in your jar file and it’s used to
setup an appropriate URLClassLoader and ultimately call your main() method.

There are 3 launcher subclasses (JarLauncher, WarLauncher and PropertiesLauncher). Their
purpose is to load resources (.class files etc.) from nested jar files or war files in directories (as
opposed to explicitly on the classpath). In the case of the [Jar|War]Launcher the nested paths



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 149

are fixed (lib/*.jar and lib-provided/*.jar for the war case) so you just add extra jars in
those locations if you want more. The PropertiesLauncher looks in lib/ by default, but you
can add additional locations by setting an environment variable LOADER_PATH or loader.path in
application.properties (comma-separated list of directories or archives).

Launcher manifest

You need to specify an appropriate Launcher as the Main-Class attribute of META-INF/
MANIFEST.MF. The actual class that you want to launch (i.e. the class that you wrote that contains a
main method) should be specified in the Start-Class attribute.

For example, here is a typical MANIFEST.MF for an executable jar file:

Main-Class: org.springframework.boot.loader.JarLauncher

Start-Class: com.mycompany.project.MyApplication

For a war file, it would be:

Main-Class: org.springframework.boot.loader.WarLauncher

Start-Class: com.mycompany.project.MyApplication

Note

You do not need to specify Class-Path entries in your manifest file, the classpath will be deduced
from the nested jars.

Exploded archives

Certain PaaS implementations may choose to unpack archives before they run. For example, Cloud
Foundry operates in this way. You can run an unpacked archive by simply starting the appropriate
launcher:

$ unzip -q myapp.jar

$ java org.springframework.boot.loader.JarLauncher

C.4 PropertiesLauncher Features

PropertiesLauncher has a few special features that can be enabled with external properties (System
properties, environment variables, manifest entries or application.properties).

Key Purpose

loader.path Comma-separated Classpath, e.g. lib:${HOME}/app/lib.

loader.home Location of additional properties file, e.g. file:///opt/app
(defaults to ${user.dir})

loader.args Default arguments for the main method (space separated)

loader.main Name of main class to launch, e.g. com.app.Application.

loader.config.name Name of properties file, e.g. loader (defaults to application).

loader.config.location Path to properties file, e.g. classpath:loader.properties
(defaults to application.properties).



Spring Boot Reference Guide

1.0.3.BUILD-SNAPSHOT Spring Boot 150

Key Purpose

loader.system Boolean flag to indicate that all properties should be added to
System properties (defaults to false)

Manifest entry keys are formed by capitalizing initial letters of words and changing the separator to "-"
from "." (e.g. Loader-Path). The exception is loader.main which is looked up as Start-Class
in the manifest for compatibility with JarLauncher).

Environment variables can be capitalized with underscore separators instead of periods.

• loader.home is the directory location of an additional properties file (overriding the default) as long
as loader.config.location is not specified.

• loader.path can contain directories (scanned recursively for jar and zip files), archive paths, or
wildcard patterns (for the default JVM behavior).

• Placeholder replacement is done from System and environment variables plus the properties file itself
on all values before use.

C.5 Executable jar restrictions

There are a number of restrictions that you need to consider when working with a Spring Boot Loader
packaged application.

Zip entry compression

The ZipEntry for a nested jar must be saved using the ZipEntry.STORED method. This is required
so that we can seek directly to individual content within the nested jar. The content of the nested jar file
itself can still be compressed, as can any other entries in the outer jar.

System ClassLoader

Launched applications should use Thread.getContextClassLoader() when loading classes
(most libraries and frameworks will do this by default). Trying to load nested jar classes via
ClassLoader.getSystemClassLoader() will fail. Please be aware that java.util.Logging
always uses the system classloader, for this reason you should consider a different logging
implementation.

C.6 Alternative single jar solutions

If the above restrictions mean that you cannot use Spring Boot Loader the following alternatives could
be considered:

• Maven Shade Plugin

• JarClassLoader

• OneJar

http://maven.apache.org/plugins/maven-shade-plugin/
http://www.jdotsoft.com/JarClassLoader.php
http://one-jar.sourceforge.net

	Spring Boot Reference Guide
	Table of Contents
	Part I. Spring Boot Documentation
	1. About the documentation
	2. Getting help
	3. First steps
	4. Working with Spring Boot
	5. Learning about Spring Boot features
	6. Moving to production
	7. Advanced topics

	Part II. Getting started
	8. Introducing Spring Boot
	9. Installing Spring Boot
	9.1 Installation instructions for the Java developer
	Maven installation
	Gradle installation

	9.2 Installing the Spring Boot CLI
	Manual installation
	Installation with GVM
	OSX Homebrew installation
	Command-line completion
	Quick start Spring CLI example


	10. Developing your first Spring Boot application
	10.1 Creating the POM
	10.2 Adding classpath dependencies
	10.3 Writing the code
	The @RestController and @RequestMapping annotations
	The @EnableAutoConfiguration annotation
	The “main” method

	10.4 Running the example
	10.5 Creating an executable jar

	11. What to read next

	Part III. Using Spring Boot
	12. Build systems
	12.1 Maven
	Inheriting the starter parent
	Using your own parent POM
	Changing the Java version
	Using the Spring Boot Maven plugin

	12.2 Gradle
	12.3 Ant
	12.4 Starter POMs

	13. Structuring your code
	13.1 Using the “default” package
	13.2 Locating the main application class

	14. Configuration classes
	14.1 Importing additional configuration classes
	14.2 Importing XML configuration

	15. Auto-configuration
	15.1 Gradually replacing auto-configuration
	15.2 Disabling specific auto-configuration

	16. Spring Beans and dependency injection
	17. Running your application
	17.1 Running from an IDE
	17.2 Running as a packaged application
	17.3 Using the Maven plugin
	17.4 Using the Gradle plugin
	17.5 Hot swapping

	18. Packaging your application for production
	19. What to read next

	Part IV. Spring Boot features
	20. SpringApplication
	20.1 Customizing SpringApplication
	20.2 Fluent builder API
	20.3 Application events and listeners
	20.4 Web environment
	20.5 Using the CommandLineRunner
	20.6 Application exit

	21. Externalized Configuration
	21.1 Accessing command line properties
	21.2 Application property files
	21.3 Profile specific properties
	21.4 Placeholders in properties
	21.5 Using YAML instead of Properties
	Loading YAML
	Exposing YAML as properties in the Spring Environment
	Multi-profile YAML documents
	YAML shortcomings

	21.6 Typesafe Configuration Properties
	Relaxed binding
	@ConfigurationProperties Validation


	22. Profiles
	22.1 Adding active profiles
	22.2 Programmatically setting profiles
	22.3 Profile specific configuration files

	23. Logging
	23.1 Log format
	23.2 Console output
	23.3 File output
	23.4 Custom log configuration

	24. Developing web applications
	24.1 The “Spring Web MVC framework”
	Spring MVC auto-configuration
	HttpMessageConverters
	Static Content
	Template engines

	24.2 Embedded servlet container support
	Servlets and Filters
	The EmbeddedWebApplicationContext
	Customizing embedded servlet containers
	Programmatic customization
	Customizing ConfigurableEmbeddedServletContainerFactory directly

	JSP limitations


	25. Security
	26. Working with SQL databases
	26.1 Configure a DataSource
	Embedded Database Support
	Connection to a production database

	26.2 Using JdbcTemplate
	26.3 JPA and “Spring Data”
	Entity Classes
	Spring Data JPA Repositories
	Creating and dropping JPA databases


	27. Working with NoSQL technologies
	27.1 MongoDB
	Connecting to a MongoDB database
	MongoTemplate
	Spring Data MongoDB repositories


	28. Testing
	28.1 Test scope dependencies
	28.2 Testing Spring applications
	28.3 Testing Spring Boot applications
	28.4 Test utilities
	ConfigFileApplicationContextInitializer
	EnvironmentTestUtils
	OutputCapture
	TestRestTemplate


	29. Developing auto-configuration and using conditions
	29.1 Understanding auto-configured beans
	29.2 Locating auto-configuration candidates
	29.3 Condition annotations
	Class conditions
	Bean conditions
	Resource conditions
	Web Application Conditions
	SpEL expression conditions


	30. What to read next

	Part V. Production-ready features
	31. Enabling production-ready features.
	32. Endpoints
	32.1 Customizing endpoints
	32.2 Custom health information
	32.3 Custom application info information
	Git commit information


	33. Monitoring and management over HTTP
	33.1 Exposing sensitive endpoints
	33.2 Customizing the management server context path
	33.3 Customizing the management server port
	33.4 Customizing the management server address
	33.5 Disabling HTTP endpoints

	34. Monitoring and management over JMX
	34.1 Customizing MBean names
	34.2 Disabling JMX endpoints
	34.3 Using Jolokia for JMX over HTTP
	Customizing Jolokia
	Disabling Jolokia


	35. Monitoring and management using a remote shell
	35.1 Connecting to the remote shell
	Remote shell credentials

	35.2 Extending the remote shell
	Remote shell commands
	Remote shell plugins


	36. Metrics
	36.1 Recording your own metrics
	36.2 Metric repositories
	36.3 Coda Hale Metrics
	36.4 Message channel integration

	37. Auditing
	38. Tracing
	38.1 Custom tracing

	39. Error Handling
	40. Process monitoring
	40.1 Extend configuration
	40.2 Programmatically

	41. What to read next

	Part VI. Deploying to the cloud
	42. Cloud Foundry
	42.1 Binding to services

	43. Heroku
	44. CloudBees
	45. What to read next

	Part VII. Spring Boot CLI
	46. Installing the CLI
	47. Using the CLI
	47.1 Running applications using the CLI
	Deduced “grab” dependencies
	Default import statements
	Automatic main method

	47.2 Testing your code
	47.3 Applications with multiple source files
	47.4 Packaging your application
	47.5 Using the embedded shell

	48. Developing application with the Groovy beans DSL
	49. What to read next

	Part VIII. Build tool plugins
	50. Spring Boot Maven plugin
	50.1 Including the plugin
	50.2 Packaging executable jar and war files
	50.3 Repackage configuration
	Required parameters
	Optional parameters

	50.4 Running applications
	50.5 Run configuration
	50.6 Required parameters
	50.7 Optional parameters

	51. Spring Boot Gradle plugin
	51.1 Including the plugin
	51.2 Declaring dependencies without versions
	51.3 Packaging executable jar and war files
	51.4 Running a project in-place
	51.5 Repackage configuration
	51.6 Repackage with custom Gradle configuration
	Configuration options

	51.7 Understanding how the Gradle plugin works

	52. Supporting other build systems
	52.1 Repackaging archives
	52.2 Nested libraries
	52.3 Finding a main class
	52.4 Example repackage implementation

	53. What to read next

	Part IX. “How-to” guides
	54. Spring Boot application
	54.1 Troubleshoot auto-configuration
	54.2 Customize the Environment or ApplicationContext before it starts
	54.3 Build an ApplicationContext hierarchy (adding a parent or root context)
	54.4 Create a non-web application

	55. Properties & configuration
	55.1 Externalize the configuration of SpringApplication
	55.2 Change the location of external properties of an application
	55.3 Use “short” command line arguments
	55.4 Use YAML for external properties
	55.5 Set the active Spring profiles
	55.6 Change configuration depending on the environment
	55.7 Discover built-in options for external properties

	56. Embedded servlet containers
	56.1 Add a Servlet, Filter or ServletContextListener to an application
	56.2 Change the HTTP port
	56.3 Use a random unassigned HTTP port
	56.4 Discover the HTTP port at runtime
	56.5 Configure Tomcat
	56.6 Terminate SSL in Tomcat
	56.7 Enable Multiple Connectors Tomcat
	56.8 Use Tomcat behind a front-end proxy server
	56.9 Use Jetty instead of Tomcat
	56.10 Configure Jetty
	56.11 Use Tomcat 8
	56.12 Use Jetty 9

	57. Spring MVC
	57.1 Write a JSON REST service
	57.2 Write an XML REST service
	57.3 Customize the Jackson ObjectMapper
	57.4 Customize the @ResponseBody rendering
	57.5 Switch off the Spring MVC DispatcherServlet
	57.6 Switch off the Default MVC configuration
	57.7 Customize ViewResolvers

	58. Logging
	58.1 Configure Logback for logging
	58.2 Configure Log4j for logging

	59. Data Access
	59.1 Configure a DataSource
	59.2 Use Spring Data repositories
	59.3 Separate @Entity definitions from Spring configuration
	59.4 Configure JPA properties
	59.5 Use a custom EntityManagerFactory
	59.6 Use a traditional persistence.xml

	60. Database initialization
	60.1 Initialize a database using JPA
	60.2 Initialize a database using Hibernate
	60.3 Initialize a database using Spring JDBC
	60.4 Initialize a Spring Batch database
	60.5 Use a higher level database migration tool

	61. Batch applications
	61.1 Execute Spring Batch jobs on startup

	62. Actuator
	62.1 Change the HTTP port or address of the actuator endpoints
	62.2 Customize the “whitelabel” error page

	63. Security
	63.1 Switch off the Spring Boot security configuration
	63.2 Change the AuthenticationManager and add user accounts
	63.3 Enable HTTPS when running behind a proxy server

	64. Hot swapping
	64.1 Reload static content
	64.2 Reload Thymeleaf templates without restarting the container
	64.3 Reload Java classes without restarting the container

	65. Build
	65.1 Customize dependency versions with Maven
	65.2 Remote debug a Spring Boot application started with Maven
	65.3 Build an executable archive with Ant

	66. Traditional deployment
	66.1 Create a deployable war file
	66.2 Create a deployable war file for older servlet containers
	66.3 Convert an existing application to Spring Boot


	Part X. Appendices
	Appendix A. Common application properties
	Appendix B. Auto-configuration classes
	B.1 From the “spring-boot-autoconfigure” module
	B.2 From the “spring-boot-actuator” module

	Appendix C. The executable jar format
	C.1 Nested JARs
	The executable jar file structure
	The executable war file structure

	C.2 Spring Boot’s “JarFile” class
	Compatibility with the standard Java “JarFile”

	C.3 Launching executable jars
	Launcher manifest
	Exploded archives

	C.4 PropertiesLauncher Features
	C.5 Executable jar restrictions
	Zip entry compression
	System ClassLoader

	C.6 Alternative single jar solutions



