Spring Boot Reference Guide
Table of Contents
	I. Spring Boot Documentation	1. About the documentation
	2. Getting help
	3. First steps
	4. Working with Spring Boot
	5. Learning about Spring Boot features
	6. Moving to production
	7. Advanced topics

	II. Getting started	8. Introducing Spring Boot
	9. System Requirements	Servlet containers

	10. Installing Spring Boot	Installation instructions for the Java developer	Maven installation
	Gradle installation

	Installing the Spring Boot CLI	Manual installation
	Installation with GVM
	OSX Homebrew installation
	MacPorts installation
	Command-line completion
	Quick start Spring CLI example

	Upgrading from an earlier version of Spring Boot

	11. Developing your first Spring Boot application	Creating the POM
	Adding classpath dependencies
	Writing the code	The @RestController and @RequestMapping annotations
	The @EnableAutoConfiguration annotation
	The “main” method

	Running the example
	Creating an executable jar

	12. What to read next

	III. Using Spring Boot	13. Build systems	Maven	Inheriting the starter parent
	Using Spring Boot without the parent POM
	Changing the Java version
	Using the Spring Boot Maven plugin

	Gradle
	Ant
	Starter POMs

	14. Structuring your code	Using the “default” package
	Locating the main application class

	15. Configuration classes	Importing additional configuration classes
	Importing XML configuration

	16. Auto-configuration	Gradually replacing auto-configuration
	Disabling specific auto-configuration

	17. Spring Beans and dependency injection
	18. Using the @SpringBootApplication annotation
	19. Running your application	Running from an IDE
	Running as a packaged application
	Using the Maven plugin
	Using the Gradle plugin
	Hot swapping

	20. Packaging your application for production
	21. What to read next

	IV. Spring Boot features	22. SpringApplication	Customizing the Banner
	Customizing SpringApplication
	Fluent builder API
	Application events and listeners
	Web environment
	Using the CommandLineRunner
	Application exit

	23. Externalized Configuration	Configuring random values
	Accessing command line properties
	Application property files
	Profile-specific properties
	Placeholders in properties
	Using YAML instead of Properties	Loading YAML
	Exposing YAML as properties in the Spring Environment
	Multi-profile YAML documents
	YAML shortcomings

	Typesafe Configuration Properties	Third-party configuration
	Relaxed binding
	@ConfigurationProperties Validation

	24. Profiles	Adding active profiles
	Programmatically setting profiles
	Profile specific configuration files

	25. Logging	Log format
	Console output
	File output
	Log Levels
	Custom log configuration

	26. Developing web applications	The ‘Spring Web MVC framework’	Spring MVC auto-configuration
	HttpMessageConverters
	MessageCodesResolver
	Static Content
	Template engines
	Error Handling	Error Handling on WebSphere Application Server

	Spring HATEOAS

	JAX-RS and Jersey
	Embedded servlet container support	Servlets and Filters
	Servlet Context Initialization
	The EmbeddedWebApplicationContext
	Customizing embedded servlet containers	Programmatic customization
	Customizing ConfigurableEmbeddedServletContainer directly

	JSP limitations

	27. Security
	28. Working with SQL databases	Configure a DataSource	Embedded Database Support
	Connection to a production database
	Connection to a JNDI DataSource

	Using JdbcTemplate
	JPA and ‘Spring Data’	Entity Classes
	Spring Data JPA Repositories
	Creating and dropping JPA databases

	29. Working with NoSQL technologies	Redis	Connecting to Redis

	MongoDB	Connecting to a MongoDB database
	MongoTemplate
	Spring Data MongoDB repositories

	Gemfire
	Solr	Connecting to Solr
	Spring Data Solr repositories

	Elasticsearch	Connecting to Elasticsearch
	Spring Data Elasticsearch repositories

	30. Messaging	JMS	HornetQ support
	ActiveMQ support
	Using a JNDI ConnectionFactory
	Sending a message
	Receiving a message

	31. Sending email
	32. Distributed Transactions with JTA	Using an Atomikos transaction manager
	Using a Bitronix transaction manager
	Using a Java EE managed transaction manager
	Mixing XA and non-XA JMS connections
	Supporting an alternative embedded transaction manager

	33. Spring Integration
	34. Monitoring and management over JMX
	35. Testing	Test scope dependencies
	Testing Spring applications
	Testing Spring Boot applications	Using Spock to test Spring Boot applications

	Test utilities	ConfigFileApplicationContextInitializer
	EnvironmentTestUtils
	OutputCapture
	TestRestTemplate

	36. Developing auto-configuration and using conditions	Understanding auto-configured beans
	Locating auto-configuration candidates
	Condition annotations	Class conditions
	Bean conditions
	Property conditions
	Resource conditions
	Web application conditions
	SpEL expression conditions

	37. WebSockets
	38. What to read next

	V. Spring Boot Actuator: Production-ready features	39. Enabling production-ready features
	40. Endpoints	Customizing endpoints
	Health information
	Security with HealthIndicators	Auto-configured HealthIndicators
	Writing custom HealthIndicators

	Custom application info information	Automatically expand info properties at build time	Automatic property expansion using Maven
	Automatic property expansion using Gradle

	Git commit information

	41. Monitoring and management over HTTP	Securing sensitive endpoints
	Customizing the management server context path
	Customizing the management server port
	Customizing the management server address
	Disabling HTTP endpoints
	HTTP health endpoint access restrictions

	42. Monitoring and management over JMX	Customizing MBean names
	Disabling JMX endpoints
	Using Jolokia for JMX over HTTP	Customizing Jolokia
	Disabling Jolokia

	43. Monitoring and management using a remote shell	Connecting to the remote shell	Remote shell credentials

	Extending the remote shell	Remote shell commands
	Remote shell plugins

	44. Metrics	System metrics
	DataSource metrics
	Tomcat session metrics
	Recording your own metrics
	Adding your own public metrics
	Metric repositories
	Dropwizard Metrics
	Message channel integration

	45. Auditing
	46. Tracing	Custom tracing

	47. Process monitoring	Extend configuration
	Programmatically

	48. What to read next

	VI. Deploying to the cloud	49. Cloud Foundry	Binding to services

	50. Heroku
	51. Openshift
	52. Google App Engine
	53. What to read next

	VII. Spring Boot CLI	54. Installing the CLI
	55. Using the CLI	Running applications using the CLI	Deduced “grab” dependencies
	Deduced “grab” coordinates
	Default import statements
	Automatic main method
	Custom “grab” metadata

	Testing your code
	Applications with multiple source files
	Packaging your application
	Initialize a new project
	Using the embedded shell
	Adding extensions to the CLI

	56. Developing application with the Groovy beans DSL
	57. What to read next

	VIII. Build tool plugins	58. Spring Boot Maven plugin	Including the plugin
	Packaging executable jar and war files

	59. Spring Boot Gradle plugin	Including the plugin
	Declaring dependencies without versions	Custom version management

	Default exclude rules
	Packaging executable jar and war files
	Running a project in-place
	Spring Boot plugin configuration
	Repackage configuration
	Repackage with custom Gradle configuration	Configuration options

	Understanding how the Gradle plugin works
	Publishing artifacts to a Maven repository using Gradle	Configuring Gradle to produce a pom that inherits dependency management
	Configuring Gradle to produce a pom that imports dependency management

	60. Supporting other build systems	Repackaging archives
	Nested libraries
	Finding a main class
	Example repackage implementation

	61. What to read next

	IX. ‘How-to’ guides	62. Spring Boot application	Troubleshoot auto-configuration
	Customize the Environment or ApplicationContext before it starts
	Build an ApplicationContext hierarchy (adding a parent or root context)
	Create a non-web application

	63. Properties & configuration	Externalize the configuration of SpringApplication
	Change the location of external properties of an application
	Use ‘short’ command line arguments
	Use YAML for external properties
	Set the active Spring profiles
	Change configuration depending on the environment
	Discover built-in options for external properties

	64. Embedded servlet containers	Add a Servlet, Filter or ServletContextListener to an application
	Disable registration of a Servlet or Filter
	Change the HTTP port
	Use a random unassigned HTTP port
	Discover the HTTP port at runtime
	Configure SSL
	Configure Tomcat
	Enable Multiple Connectors with Tomcat
	Use Tomcat behind a front-end proxy server
	Use Jetty instead of Tomcat
	Configure Jetty
	Use Undertow instead of Tomcat
	Configure Undertow
	Enable Multiple Listeners with Undertow
	Use Tomcat 7	Use Tomcat 7 with Maven
	Use Tomcat 7 with Gradle

	Use Jetty 8	Use Jetty 8 with Maven
	Use Jetty 8 with Gradle

	Create WebSocket endpoints using @ServerEndpoint
	Enable HTTP response compression	Enable Tomcat’s HTTP response compression
	Enable HTTP response compression using GzipFilter

	65. Spring MVC	Write a JSON REST service
	Write an XML REST service
	Customize the Jackson ObjectMapper
	Customize the @ResponseBody rendering
	Handling Multipart File Uploads
	Switch off the Spring MVC DispatcherServlet
	Switch off the Default MVC configuration
	Customize ViewResolvers

	66. Logging	Configure Logback for logging
	Configure Log4j for logging	Use YAML or JSON to configure Log4j 2

	67. Data Access	Configure a DataSource
	Configure Two DataSources
	Use Spring Data repositories
	Separate @Entity definitions from Spring configuration
	Configure JPA properties
	Use a custom EntityManagerFactory
	Use Two EntityManagers
	Use a traditional persistence.xml
	Use Spring Data JPA and Mongo repositories
	Expose Spring Data repositories as REST endpoint

	68. Database initialization	Initialize a database using JPA
	Initialize a database using Hibernate
	Initialize a database using Spring JDBC
	Initialize a Spring Batch database
	Use a higher level database migration tool	Execute Flyway database migrations on startup
	Execute Liquibase database migrations on startup

	69. Batch applications	Execute Spring Batch jobs on startup

	70. Actuator	Change the HTTP port or address of the actuator endpoints
	Customize the ‘whitelabel’ error page

	71. Security	Switch off the Spring Boot security configuration
	Change the AuthenticationManager and add user accounts
	Enable HTTPS when running behind a proxy server

	72. Hot swapping	Reload static content
	Reload Thymeleaf templates without restarting the container
	Reload FreeMarker templates without restarting the container
	Reload Groovy templates without restarting the container
	Reload Velocity templates without restarting the container
	Reload Java classes without restarting the container	Configuring Spring Loaded for use with Maven
	Configuring Spring Loaded for use with Gradle and IntelliJ

	73. Build	Customize dependency versions with Maven
	Create an executable JAR with Maven
	Create an additional executable JAR
	Extract specific libraries when an executable jar runs
	Create a non-executable JAR with exclusions
	Remote debug a Spring Boot application started with Maven
	Remote debug a Spring Boot application started with Gradle
	Build an executable archive with Ant
	How to use Java 6	Embedded servlet container compatibility
	JTA API compatibility

	74. Traditional deployment	Create a deployable war file
	Create a deployable war file for older servlet containers
	Convert an existing application to Spring Boot
	Deploying a WAR to Weblogic
	Deploying a WAR in an Old (Servlet 2.5) Container

	X. Appendices	A. Common application properties
	B. Configuration meta-data	Meta-data format	Group Attributes
	Property Attributes
	Repeated meta-data items

	Generating your own meta-data using the annotation processor	Nested properties
	Adding additional meta-data

	C. Auto-configuration classes	From the “spring-boot-autoconfigure” module
	From the “spring-boot-actuator” module

	D. The executable jar format	Nested JARs	The executable jar file structure
	The executable war file structure

	Spring Boot’s “JarFile” class	Compatibility with the standard Java “JarFile”

	Launching executable jars	Launcher manifest
	Exploded archives

	PropertiesLauncher Features
	Executable jar restrictions	Zip entry compression
	System ClassLoader

	Alternative single jar solutions

	E. Dependency versions

List of Tables
	13.1. Spring Boot application starters
	13.2. Spring Boot production ready starters
	13.3. Spring Boot technical starters
	22.1. Banner variables
	23.1. relaxed binding
	25.1. Logging properties

Spring Boot Reference Guide

Phillip Webb

Dave Syer

Josh Long

Stéphane Nicoll

Rob Winch

Andy Wilkinson

Marcel Overdijk

Christian Dupuis

Sébastien Deleuze

1.2.8.RELEASE

Copyright © 2013-2015

		Copies of this document may be made for your own use and for distribution to
		others, provided that you do not charge any fee for such copies and further
		provided that each copy contains this Copyright Notice, whether distributed in
		print or electronically.
	

Part I. Spring Boot Documentation

This section provides a brief overview of Spring Boot reference documentation. Think of
it as map for the rest of the document. You can read this reference guide in a linear
fashion, or you can skip sections if something doesn’t interest you.

Chapter 1. About the documentation

The Spring Boot reference guide is available as html,
pdf
and epub documents. The latest copy
is available at docs.spring.io/spring-boot/docs/current/reference.
Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for such copies and
further provided that each copy contains this Copyright Notice, whether distributed in
print or electronically.
Chapter 2. Getting help

Having trouble with Spring Boot, We’d like to help!
	Try the How-to’s — they provide solutions to the most common
questions.
	Learn the Spring basics — Spring Boot builds on many other Spring projects, check
the spring.io web-site for a wealth of reference documentation. If
you are just starting out with Spring, try one of the guides.
	Ask a question - we monitor stackoverflow.com for questions
tagged with spring-boot.
	Report bugs with Spring Boot at github.com/spring-projects/spring-boot/issues.

Note
All of Spring Boot is open source, including the documentation! If you find problems
with the docs; or if you just want to improve them, please get involved.

Chapter 3. First steps

If you’re just getting started with Spring Boot, or 'Spring' in general,
this is the place to start!
	From scratch:
Overview |
Requirements |
Installation
	Tutorial:
Part 1 |
Part 2
	Running your example:
Part 1 |
Part 2

Chapter 4. Working with Spring Boot

Ready to actually start using Spring Boot? We’ve
got you covered.
	Build systems:
Maven |
Gradle |
Ant |
Starter POMs
	Best practices:
Code Structure |
@Configuration |
@EnableAutoConfiguration |
Beans and Dependency Injection
	Running your code
IDE |
Packaged |
Maven |
Gradle
	Packaging your app:
Production jars
	Spring Boot CLI:
Using the CLI

Chapter 5. Learning about Spring Boot features

Need more details about Spring Boot’s core features?
This is for you!
	Core Features:
SpringApplication |
External Configuration |
Profiles |
Logging
	Web Applications:
MVC |
Embedded Containers
	Working with data:
SQL |
NO-SQL
	Messaging:
Overview |
JMS
	Testing:
Overview |
Boot Applications |
Utils
	Extending:
Auto-configuration |
@Conditions

Chapter 6. Moving to production

When you’re ready to push your Spring Boot application to production, we’ve got
some tricks that you might like!
	Management endpoints:
Overview |
Customization
	Connection options:
HTTP |
JMX |
SSH
	Monitoring:
Metrics |
Auditing |
Tracing |
Process

Chapter 7. Advanced topics

Lastly, we have a few topics for the more advanced user.
	Deploy to the cloud:
Cloud Foundry |
Heroku |
CloudBees
	Build tool plugins:
Maven |
Gradle
	Appendix:
Application Properties |
Auto-configuration classes |
Executable Jars

Part II. Getting started

If you’re just getting started with Spring Boot, or 'Spring' in general, this is the section
for you! Here we answer the basic '“what?”', '“how?”' and '“why?”' questions. You’ll
find a gentle introduction to Spring Boot along with installation instructions.
We’ll then build our first Spring Boot application, discussing some core principles as
we go.

Chapter 8. Introducing Spring Boot

Spring Boot makes it easy to create stand-alone, production-grade Spring based
Applications that you can “just run”. We take an opinionated view of the Spring
platform and third-party libraries so you can get started with minimum fuss. Most Spring
Boot applications need very little Spring configuration.
You can use Spring Boot to create Java applications that can be started using java -jar
or more traditional war deployments. We also provide a command line tool that runs
“spring scripts”.
Our primary goals are:
	Provide a radically faster and widely accessible getting started experience for all
Spring development.
	Be opinionated out of the box, but get out of the way quickly as requirements start to
diverge from the defaults.
	Provide a range of non-functional features that are common to large classes of projects
(e.g. embedded servers, security, metrics, health checks, externalized configuration).
	Absolutely no code generation and no requirement for XML configuration.

Chapter 9. System Requirements

By default, Spring Boot 1.2.8.RELEASE requires Java 7 and
Spring Framework 4.1.5 or above. You can use Spring Boot with Java 6 with some additional
configuration. See the section called “How to use Java 6” for more details. Explicit build support
is provided for Maven (3.2+) and Gradle (1.12+).
Tip
Although you can use Spring Boot with Java 6 or 7, we generally recommend Java 8 if at
all possible.

Servlet containers

The following embedded servlet containers are supported out of the box:
	Name	Servlet Version	Java Version
	Tomcat 8
	3.1
	Java 7+

	Tomcat 7
	3.0
	Java 6+

	Jetty 9
	3.1
	Java 7+

	Jetty 8
	3.0
	Java 6+

	Undertow 1.1
	3.1
	Java 7+

You can also deploy Spring Boot applications to any Servlet 3.0+ compatible container.
Chapter 10. Installing Spring Boot

Spring Boot can be used with “classic” Java development tools or installed as a command
line tool. Regardless, you will need Java SDK v1.6 or higher. You
should check your current Java installation before you begin:
$ java -version
If you are new to Java development, or if you just want to experiment with Spring Boot
you might want to try the Spring Boot CLI first,
otherwise, read on for “classic” installation instructions.
Tip
Although Spring Boot is compatible with Java 1.6, if possible, you should consider
using the latest version of Java.

Installation instructions for the Java developer

You can use Spring Boot in the same way as any standard Java library. Simply include the
appropriate spring-boot-*.jar files on your classpath. Spring Boot does not require
any special tools integration, so you can use any IDE or text editor; and there is
nothing special about a Spring Boot application, so you can run and debug as you would
any other Java program.
Although you could just copy Spring Boot jars, we generally recommend that you use a
build tool that supports dependency management (such as Maven or Gradle).
Maven installation

Spring Boot is compatible with Apache Maven 3.2 or above. If you don’t already have Maven
installed you can follow the instructions at maven.apache.org.
Tip
On many operating systems Maven can be installed via a package manager. If you’re an
OSX Homebrew user try brew install maven. Ubuntu users can run
sudo apt-get install maven.

Spring Boot dependencies use the org.springframework.boot groupId. Typically your
Maven POM file will inherit from the spring-boot-starter-parent project and declare
dependencies to one or more “Starter
POMs”. Spring Boot also provides an optional
Maven plugin to create
executable jars.
Here is a typical pom.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>myproject</artifactId>
 <version>0.0.1-SNAPSHOT</version>

 <!-- Inherit defaults from Spring Boot -->
 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.2.8.RELEASE</version>
 </parent>

 <!-- Add typical dependencies for a web application -->
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 </dependencies>

 <!-- Package as an executable jar -->
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

</project>
Tip
The spring-boot-starter-parent is a great way to use Spring Boot, but it might
not be suitable all of the time. Sometimes you may need to inherit from a different
parent POM, or you might just not like our default settings. See
the section called “Using Spring Boot without the parent POM” for an alternative solution that uses an import
scope.

Gradle installation

Spring Boot is compatible with Gradle 1.12 or above. If you don’t already have Gradle
installed you can follow the instructions at www.gradle.org/.
Spring Boot dependencies can be declared using the org.springframework.boot group.
Typically your project will declare dependencies to one or more
“Starter POMs”. Spring Boot
provides a useful Gradle plugin
that can be used to simplify dependency declarations and to create executable jars.
Gradle Wrapper

The Gradle Wrapper provides a nice way of “obtaining” Gradle when you need to build a
project. It’s a small script and library that you commit alongside your code to bootstrap
the build process. See www.gradle.org/docs/current/userguide/gradle_wrapper.html
for details.

Here is a typical build.gradle file:
buildscript {
 repositories {
 jcenter()
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "http://repo.spring.io/milestone" }
 }
 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-plugin:1.2.8.RELEASE")
 }
}

apply plugin: 'java'
apply plugin: 'spring-boot'

jar {
 baseName = 'myproject'
 version = '0.0.1-SNAPSHOT'
}

repositories {
 jcenter()
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "http://repo.spring.io/milestone" }
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile("org.springframework.boot:spring-boot-starter-test")
}
Installing the Spring Boot CLI

The Spring Boot CLI is a command line tool that can be used if you want to quickly
prototype with Spring. It allows you to run Groovy scripts,
which means that you have a familiar Java-like syntax, without so much boilerplate code.
You don’t need to use the CLI to work with Spring Boot but it’s definitely the quickest
way to get a Spring application off the ground.
Manual installation

You can download the Spring CLI distribution from the Spring software repository:
	spring-boot-cli-1.2.8.RELEASE-bin.zip
	spring-boot-cli-1.2.8.RELEASE-bin.tar.gz

Cutting edge snapshot distributions
are also available.
Once downloaded, follow the INSTALL.txt
instructions from the unpacked archive. In summary: there is a spring script
(spring.bat for Windows) in a bin/ directory in the .zip file, or alternatively you
can use java -jar with the .jar file (the script helps you to be sure that the
classpath is set correctly).
Installation with GVM

GVM (the Groovy Environment Manager) can be used for managing multiple versions of
various Groovy and Java binary packages, including Groovy itself and the Spring Boot CLI.
Get gvm from gvmtool.net and install Spring Boot with
$ gvm install springboot
$ spring --version
Spring Boot v1.2.8.RELEASE
If you are developing features for the CLI and want easy access to the version you just
built, follow these extra instructions.
$ gvm install springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-cli-1.2.8.RELEASE-bin/spring-1.2.8.RELEASE/
$ gvm use springboot dev
$ spring --version
Spring CLI v1.2.8.RELEASE
This will install a local instance of spring called the dev instance inside your gvm
repository. It points at your target build location, so every time you rebuild Spring
Boot, spring will be up-to-date.
You can see it by doing this:
$ gvm ls springboot

==
Available Springboot Versions
==
> + dev
* 1.2.8.RELEASE

==
+ - local version
* - installed
> - currently in use
==
OSX Homebrew installation

If you are on a Mac and using Homebrew, all you need to do to install
the Spring Boot CLI is:
$ brew tap pivotal/tap
$ brew install springboot
Homebrew will install spring to /usr/local/bin.
Note
If you don’t see the formula, your installation of brew might be out-of-date.
Just execute brew update and try again.

MacPorts installation

If you are on a Mac and using MacPorts, all you need to do to
install the Spring Boot CLI is:
$ sudo port install spring-boot-cli
Command-line completion

Spring Boot CLI ships with scripts that provide command completion for
BASH and
zsh shells. You can source the script (also named
spring) in any shell, or put it in your personal or system-wide bash completion
initialization. On a Debian system the system-wide scripts are in /shell-completion/bash
and all scripts in that directory are executed when a new shell starts. To run the script
manually, e.g. if you have installed using GVM
$. ~/.gvm/springboot/current/shell-completion/bash/spring
$ spring <HIT TAB HERE>
 grab help jar run test version
Note
If you install Spring Boot CLI using Homebrew or MacPorts, the command-line
completion scripts are automatically registered with your shell.

Quick start Spring CLI example

Here’s a really simple web application that you can use to test your installation. Create
a file called app.groovy:
@RestController
class ThisWillActuallyRun {

 @RequestMapping("/")
 String home() {
 "Hello World!"
 }

}
Then simply run it from a shell:
$ spring run app.groovy
Note
It will take some time when you first run the application as dependencies are
downloaded. Subsequent runs will be much quicker.

Open localhost:8080 in your favorite web browser and you should see the following
output:
Hello World!
Upgrading from an earlier version of Spring Boot

If you are upgrading from an earlier release of Spring Boot check the “release notes”
hosted on the project wiki. You’ll find upgrade instructions along with
a list of “new and noteworthy” features for each release.
To upgrade an existing CLI installation use the appropriate package manager command
(for example brew upgrade) or, if you manually installed the CLI, follow the
standard instructions remembering to
update your PATH environment variable to remove any older references.
Chapter 11. Developing your first Spring Boot application

Let’s develop a simple “Hello World!” web application in Java that highlights some
of Spring Boot’s key features. We’ll use Maven to build this project since most IDEs
support it.
Tip
The spring.io web site contains many “Getting Started” guides
that use Spring Boot. If you’re looking to solve a specific problem; check there first.

Before we begin, open a terminal to check that you have valid versions of Java and Maven
installed.
$ java -version
java version "1.7.0_51"
Java(TM) SE Runtime Environment (build 1.7.0_51-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.51-b03, mixed mode)
$ mvn -v
Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8fdf4; 2014-08-11T13:58:10-07:00)
Maven home: /Users/user/tools/apache-maven-3.1.1
Java version: 1.7.0_51, vendor: Oracle Corporation
Note
This sample needs to be created in its own folder. Subsequent instructions assume
that you have created a suitable folder and that it is your “current directory”.

Creating the POM

We need to start by creating a Maven pom.xml file. The pom.xml is the recipe that
will be used to build your project. Open your favorite text editor and add the following:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>myproject</artifactId>
 <version>0.0.1-SNAPSHOT</version>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.2.8.RELEASE</version>
 </parent>

 <!-- Additional lines to be added here... -->

</project>
This should give you a working build, you can test it out by running mvn package (you
can ignore the “jar will be empty - no content was marked for inclusion!'” warning for
now).
Note
At this point you could import the project into an IDE (most modern Java IDE’s
include built-in support for Maven). For simplicity, we will continue to use a plain
text editor for this example.

Adding classpath dependencies

Spring Boot provides a number of “Starter POMs” that make easy to add jars to your
classpath. Our sample application has already used spring-boot-starter-parent in the
parent section of the POM. The spring-boot-starter-parent is a special starter
that provides useful Maven defaults. It also provides a dependency-management section
so that you can omit version tags for “blessed” dependencies.
Other “Starter POMs” simply provide dependencies that you are likely to need when
developing a specific type of application. Since we are developing a web application, we
will add a spring-boot-starter-web dependency — but before that, let’s look at what we
currently have.
$ mvn dependency:tree

[INFO] com.example:myproject:jar:0.0.1-SNAPSHOT
The mvn dependency:tree command prints a tree representation of your project dependencies.
You can see that spring-boot-starter-parent provides no
dependencies by itself. Let’s edit our pom.xml and add the spring-boot-starter-web dependency
just below the parent section:
<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
</dependencies>
If you run mvn dependency:tree again, you will see that there are now a number of
additional dependencies, including the Tomcat web server and Spring Boot itself.
Writing the code

To finish our application we need to create a single Java file. Maven will compile sources
from src/main/java by default so you need to create that folder structure, then add a
file named src/main/java/Example.java:
import org.springframework.boot.*;
import org.springframework.boot.autoconfigure.*;
import org.springframework.stereotype.*;
import org.springframework.web.bind.annotation.*;

@RestController
@EnableAutoConfiguration
public class Example {

 @RequestMapping("/")
 String home() {
 return "Hello World!";
 }

 public static void main(String[] args) throws Exception {
 SpringApplication.run(Example.class, args);
 }

}
Although there isn’t much code here, quite a lot is going on. Let’s step through the
important parts.
The @RestController and @RequestMapping annotations

The first annotation on our Example class is @RestController. This is known as a
stereotype annotation. It provides hints for people reading the code, and for Spring,
that the class plays a specific role. In this case, our class is a web @Controller so
Spring will consider it when handling incoming web requests.
The @RequestMapping annotation provides “routing” information. It is telling Spring
that any HTTP request with the path “/” should be mapped to the home method. The
@RestController annotation tells Spring to render the resulting string directly
back to the caller.
Tip
The @RestController and @RequestMapping annotations are Spring MVC annotations
(they are not specific to Spring Boot). See the MVC section in
the Spring Reference Documentation for more details.

The @EnableAutoConfiguration annotation

The second class-level annotation is @EnableAutoConfiguration. This annotation tells
Spring Boot to “guess” how you will want to configure Spring, based on the jar
dependencies that you have added. Since spring-boot-starter-web added Tomcat and
Spring MVC, the auto-configuration will assume that you are developing a web application
and setup Spring accordingly.
Starter POMs and Auto-Configuration

Auto-configuration is designed to work well with “Starter POMs”, but the two concepts
are not directly tied. You are free to pick-and-choose jar dependencies outside of the
starter POMs and Spring Boot will still do its best to auto-configure your application.

The “main” method

The final part of our application is the main method. This is just a standard method
that follows the Java convention for an application entry point. Our main method delegates
to Spring Boot’s SpringApplication class by calling run. SpringApplication will
bootstrap our application, starting Spring which will in turn start the auto-configured
Tomcat web server. We need to pass Example.class as an argument to the run method to
tell SpringApplication which is the primary Spring component. The args array is also
passed through to expose any command-line arguments.
Running the example

At this point our application should work. Since we have used the
spring-boot-starter-parent POM we have a useful run goal that we can use to start
the application. Type mvn spring-boot:run from the root project directory to start the
application:
$ mvn spring-boot:run

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v1.2.8.RELEASE)
....... . . .
....... . . . (log output here)
....... . . .
........ Started Example in 2.222 seconds (JVM running for 6.514)
If you open a web browser to localhost:8080 you should see the following output:
Hello World!
To gracefully exit the application hit ctrl-c.
Creating an executable jar

Let’s finish our example by creating a completely self-contained executable jar file that
we could run in production. Executable jars (sometimes called “fat jars”) are archives
containing your compiled classes along with all of the jar dependencies that your code
needs to run.
Executable jars and Java

Java does not provide any standard way to load nested jar files (i.e. jar files that are
themselves contained within a jar). This can be problematic if you are looking to
distribute a self-contained application.
To solve this problem, many developers use “shaded” jars. A shaded jar simply packages
all classes, from all jars, into a single “uber jar”. The problem with shaded jars is that
it becomes hard to see which libraries you are actually using in your application. It can
also be problematic if the the same filename is used (but with different content) in
multiple jars.
Spring Boot takes a different
approach and allows you to actually nest jars directly.

To create an executable jar we need to add the spring-boot-maven-plugin to our
pom.xml. Insert the following lines just below the dependencies section:
<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>
Note
The spring-boot-starter-parent POM includes <executions> configuration to
bind the repackage goal. If you are not using the parent POM you will need to declare
this configuration yourself. See the plugin
documentation for details.

Save your pom.xml and run mvn package from the command line:
$ mvn package

[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building myproject 0.0.1-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ myproject ---
[INFO] Building jar: /Users/developer/example/spring-boot-example/target/myproject-0.0.1-SNAPSHOT.jar
[INFO]
[INFO] --- spring-boot-maven-plugin:1.2.8.RELEASE:repackage (default) @ myproject ---
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
If you look in the target directory you should see myproject-0.0.1-SNAPSHOT.jar. The
file should be around 10 Mb in size. If you want to peek inside, you can use jar tvf:
$ jar tvf target/myproject-0.0.1-SNAPSHOT.jar
You should also see a much smaller file named myproject-0.0.1-SNAPSHOT.jar.original
in the target directory. This is the original jar file that Maven created before it was
repackaged by Spring Boot.
To run that application, use the java -jar command:
$ java -jar target/myproject-0.0.1-SNAPSHOT.jar

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v1.2.8.RELEASE)
....... . . .
....... . . . (log output here)
....... . . .
........ Started Example in 2.536 seconds (JVM running for 2.864)
As before, to gracefully exit the application hit ctrl-c.
Chapter 12. What to read next

Hopefully this section has provided you with some of the Spring Boot basics, and got you
on your way to writing your own applications. If you’re a task-oriented type of
developer you might want to jump over to spring.io and check out some of the
getting started guides that solve specific
“How do I do that with Spring” problems; we also have Spring Boot-specific
How-to reference documentation.
Otherwise, the next logical step is to read Part III, “Using Spring Boot”. If
you’re really impatient, you could also jump ahead and read about
Spring Boot features.
Part III. Using Spring Boot

This section goes into more detail about how you should use Spring Boot. It covers topics
such as build systems, auto-configuration and run/deployment options. We also cover some
Spring Boot best practices. Although there is nothing particularly special about
Spring Boot (it is just another library that you can consume), there are a few
recommendations that, when followed, will make your development process just a
little easier.
If you’re just starting out with Spring Boot, you should probably read the
Getting Started guide before diving into
this section.

Chapter 13. Build systems

It is strongly recommended that you choose a build system that supports dependency
management, and one that can consume artifacts published to the “Maven Central”
repository. We would recommend that you choose Maven or Gradle. It is possible to get
Spring Boot to work with other build systems (Ant for example), but they will not be
particularly well supported.
Maven

Maven users can inherit from the spring-boot-starter-parent project to obtain sensible
defaults. The parent project provides the following features:
	Java 1.6 as the default compiler level.
	UTF-8 source encoding.
	A Dependency Management section, allowing you to omit <version> tags for common
dependencies, inherited from the spring-boot-dependencies POM.
	Sensible resource filtering.
	Sensible plugin configuration (exec plugin,
surefire,
Git commit ID,
shade).
	Sensible resource filtering for application.properties and application.yml

On the last point: since the default config files accept
Spring style placeholders (${…​}) the Maven filtering is changed to
use @..@ placeholders (you can override that with a Maven property
resource.delimiter).
Inheriting the starter parent

To configure your project to inherit from the spring-boot-starter-parent simply set
the parent:
<!-- Inherit defaults from Spring Boot -->
<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.2.8.RELEASE</version>
</parent>
Note
You should only need to specify the Spring Boot version number on this dependency.
If you import additional starters, you can safely omit the version number.

Using Spring Boot without the parent POM

Not everyone likes inheriting from the spring-boot-starter-parent POM. You may have your
own corporate standard parent that you need to use, or you may just prefer to explicitly
declare all your Maven configuration.
If you don’t want to use the spring-boot-starter-parent, you can still keep the benefit
of the dependency management (but not the plugin management) by using a scope=import
dependency:
<dependencyManagement>
 <dependencies>
 <dependency>
 <!-- Import dependency management from Spring Boot -->
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-dependencies</artifactId>
 <version>1.2.8.RELEASE</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>
Changing the Java version

The spring-boot-starter-parent chooses fairly conservative Java compatibility. If you
want to follow our recommendation and use a later Java version you can add a
java.version property:
<properties>
 <java.version>1.8</java.version>
</properties>
Using the Spring Boot Maven plugin

Spring Boot includes a Maven plugin
that can package the project as an executable jar. Add the plugin to your <plugins>
section if you want to use it:
<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>
Note
If you use the Spring Boot starter parent pom, you only need to add the plugin,
there is no need for to configure it unless you want to change the settings defined in
the parent.

Gradle

Gradle users can directly import “starter POMs” in their dependencies section. Unlike
Maven, there is no “super parent” to import to share some configuration.
apply plugin: 'java'

repositories {
 jcenter()
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web:1.2.8.RELEASE")
}
The spring-boot-gradle-plugin
is also available and provides tasks to create executable jars and run projects from
source. It also adds a ResolutionStrategy that enables you to
omit the version number
for “blessed” dependencies:
buildscript {
 repositories {
 jcenter()
 }

 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-plugin:1.2.8.RELEASE")
 }
}

apply plugin: 'java'
apply plugin: 'spring-boot'

repositories {
 jcenter()
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile("org.springframework.boot:spring-boot-starter-test")
}
Ant

It is possible to build a Spring Boot project using Apache Ant, however, no special
support or plugins are provided. Ant scripts can use the Ivy dependency system to import
starter POMs.
See the the section called “Build an executable archive with Ant” “How-to” for more
complete instructions.
Starter POMs

Starter POMs are a set of convenient dependency descriptors that you can include in your
application. You get a one-stop-shop for all the Spring and related technology that you
need, without having to hunt through sample code and copy paste loads of dependency
descriptors. For example, if you want to get started using Spring and JPA for database
access, just include the spring-boot-starter-data-jpa dependency in your project, and
you are good to go.
The starters contain a lot of the dependencies that you need to get a project up and
running quickly and with a consistent, supported set of managed transitive dependencies.
What’s in a name

All official starters follow a similar naming pattern; spring-boot-starter-*,
where * is a particular type of application. This naming structure is intended to
help when you need to find a starter. The Maven integration in many IDEs allow you to
search dependencies by name. For example, with the appropriate Eclipse or STS plugin
installed, you can simply hit ctrl-space in the POM editor and type
''spring-boot-starter'' for a complete list.
Third party starters should not start with spring-boot-starter as it is reserved for
official starters. A third-party starter for acme will be typically named
acme-spring-boot-starter.

The following application starters are provided by Spring Boot under the
org.springframework.boot group:
Table 13.1. Spring Boot application starters
	Name	Description
	spring-boot-starter
	The core Spring Boot starter, including auto-configuration support, logging and YAML.

	spring-boot-starter-actuator
	Production ready features to help you monitor and manage your application.

	spring-boot-starter-amqp
	Support for the “Advanced Message Queuing Protocol” via spring-rabbit.

	spring-boot-starter-aop
	Support for aspect-oriented programming including spring-aop and AspectJ.

	spring-boot-starter-batch
	Support for “Spring Batch” including HSQLDB database.

	spring-boot-starter-cloud-connectors
	Support for “Spring Cloud Connectors” which simplifies connecting to services in cloud
platforms like Cloud Foundry and Heroku.

	spring-boot-starter-data-elasticsearch
	Support for the Elasticsearch search and analytics engine including
spring-data-elasticsearch.

	spring-boot-starter-data-gemfire
	Support for the GemFire distributed data store including spring-data-gemfire.

	spring-boot-starter-data-jpa
	Support for the “Java Persistence API” including spring-data-jpa, spring-orm
and Hibernate.

	spring-boot-starter-data-mongodb
	Support for the MongoDB NoSQL Database, including spring-data-mongodb.

	spring-boot-starter-data-rest
	Support for exposing Spring Data repositories over REST via spring-data-rest-webmvc.

	spring-boot-starter-data-solr
	Support for the Apache Solr search platform, including spring-data-solr.

	spring-boot-starter-freemarker
	Support for the FreeMarker templating engine.

	spring-boot-starter-groovy-templates
	Support for the Groovy templating engine.

	spring-boot-starter-hateoas
	Support for HATEOAS-based RESTful services via spring-hateoas.

	spring-boot-starter-hornetq
	Support for “Java Message Service API” via HornetQ.

	spring-boot-starter-integration
	Support for common spring-integration modules.

	spring-boot-starter-jdbc
	Support for JDBC databases.

	spring-boot-starter-jersey
	Support for the Jersey RESTful Web Services framework.

	spring-boot-starter-jta-atomikos
	Support for JTA distributed transactions via Atomikos.

	spring-boot-starter-jta-bitronix
	Support for JTA distributed transactions via Bitronix.

	spring-boot-starter-mail
	Support for javax.mail.

	spring-boot-starter-mobile
	Support for spring-mobile.

	spring-boot-starter-mustache
	Support for the Mustache templating engine.

	spring-boot-starter-redis
	Support for the REDIS key-value data store, including spring-redis.

	spring-boot-starter-security
	Support for spring-security.

	spring-boot-starter-social-facebook
	Support for spring-social-facebook.

	spring-boot-starter-social-linkedin
	Support for spring-social-linkedin.

	spring-boot-starter-social-twitter
	Support for spring-social-twitter.

	spring-boot-starter-test
	Support for common test dependencies, including JUnit, Hamcrest and Mockito along with
 the spring-test module.

	spring-boot-starter-thymeleaf
	Support for the Thymeleaf templating engine, including integration with Spring.

	spring-boot-starter-velocity
	Support for the Velocity templating engine.

	spring-boot-starter-web
	Support for full-stack web development, including Tomcat and spring-webmvc.

	spring-boot-starter-websocket
	Support for WebSocket development.

	spring-boot-starter-ws
	Support for Spring Web Services.

In addition to the application starters, the following starters can be used to
add production ready features.
Table 13.2. Spring Boot production ready starters
	Name	Description
	spring-boot-starter-actuator
	Adds production ready features such as metrics and monitoring.

	spring-boot-starter-remote-shell
	Adds remote ssh shell support.

Finally, Spring Boot includes some starters that can be used if you want to exclude or
swap specific technical facets.
Table 13.3. Spring Boot technical starters
	Name	Description
	spring-boot-starter-jetty
	Imports the Jetty HTTP engine (to be used as an alternative to Tomcat).

	spring-boot-starter-log4j
	Support the Log4J logging framework.

	spring-boot-starter-logging
	Import Spring Boot’s default logging framework (Logback).

	spring-boot-starter-tomcat
	Import Spring Boot’s default HTTP engine (Tomcat).

	spring-boot-starter-undertow
	Imports the Undertow HTTP engine (to be used as an alternative to Tomcat).

Tip
For a list of additional community contributed starter POMs, see the
README file in the
spring-boot-starters module on GitHub.

Chapter 14. Structuring your code

Spring Boot does not require any specific code layout to work, however, there are some
best practices that help.
Using the “default” package

When a class doesn’t include a package declaration it is considered to be in the
“default package”. The use of the “default package” is generally discouraged, and
should be avoided. It can cause particular problems for Spring Boot applications that
use @ComponentScan, @EntityScan or @SpringBootApplication annotations, since every
class from every jar, will be read.
Tip
We recommend that you follow Java’s recommended package naming conventions
and use a reversed domain name (for example, com.example.project).

Locating the main application class

We generally recommend that you locate your main application class in a root package
above other classes. The @EnableAutoConfiguration annotation is often placed on your
main class, and it implicitly defines a base “search package” for certain items. For
example, if you are writing a JPA application, the package of the
@EnableAutoConfiguration annotated class will be used to search for @Entity items.
Using a root package also allows the @ComponentScan annotation to be used without
needing to specify a basePackage attribute. You can also use the
@SpringBootApplication annotation if your main class is in the root package.
Here is a typical layout:
com
 +- example
 +- myproject
 +- Application.java
 |
 +- domain
 | +- Customer.java
 | +- CustomerRepository.java
 |
 +- service
 | +- CustomerService.java
 |
 +- web
 +- CustomerController.java
The Application.java file would declare the main method, along with the basic
@Configuration.
package com.example.myproject;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@Configuration
@EnableAutoConfiguration
@ComponentScan
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}
Chapter 15. Configuration classes

Spring Boot favors Java-based configuration. Although it is possible to call
SpringApplication.run() with an XML source, we generally recommend that your primary
source is a @Configuration class. Usually the class that defines the main method
is also a good candidate as the primary @Configuration.
Tip
Many Spring configuration examples have been published on the Internet that use XML
configuration. Always try to use the equivalent Java-base configuration if possible.
Searching for enable* annotations can be a good starting point.

Importing additional configuration classes

You don’t need to put all your @Configuration into a single class. The @Import
annotation can be used to import additional configuration classes. Alternatively, you
can use @ComponentScan to automatically pickup all Spring components, including
@Configuration classes.
Importing XML configuration

If you absolutely must use XML based configuration, we recommend that you still start
with a @Configuration class. You can then use an additional @ImportResource
annotation to load XML configuration files.
Chapter 16. Auto-configuration

Spring Boot auto-configuration attempts to automatically configure your Spring
application based on the jar dependencies that you have added. For example, If
HSQLDB is on your classpath, and you have not manually configured any database
connection beans, then we will auto-configure an in-memory database.
You need to opt-in to auto-configuration by adding the @EnableAutoConfiguration or
@SpringBootApplication annotations to one of your @Configuration classes.
Tip
You should only ever add one @EnableAutoConfiguration annotation. We generally
recommend that you add it to your primary @Configuration class.

Gradually replacing auto-configuration

Auto-configuration is noninvasive, at any point you can start to define your own
configuration to replace specific parts of the auto-configuration. For example, if
you add your own DataSource bean, the default embedded database support will back away.
If you need to find out what auto-configuration is currently being applied, and why,
starting your application with the --debug switch. This will log an auto-configuration
report to the console.
Disabling specific auto-configuration

If you find that specific auto-configure classes are being applied that you don’t want,
you can use the exclude attribute of @EnableAutoConfiguration to disable them.
import org.springframework.boot.autoconfigure.*;
import org.springframework.boot.autoconfigure.jdbc.*;
import org.springframework.context.annotation.*;

@Configuration
@EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.class})
public class MyConfiguration {
}
Chapter 17. Spring Beans and dependency injection

You are free to use any of the standard Spring Framework techniques to define your beans
and their injected dependencies. For simplicity, we often find that using @ComponentScan
to find your beans, in combination with @Autowired constructor injection works well.
If you structure your code as suggested above (locating your application class in a root
package), you can add @ComponentScan without any arguments. All of your application
components (@Component, @Service, @Repository, @Controller etc.) will be
automatically registered as Spring Beans.
Here is an example @Service Bean that uses constructor injection to obtain a
required RiskAssessor bean.
package com.example.service;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service
public class DatabaseAccountService implements AccountService {

 private final RiskAssessor riskAssessor;

 @Autowired
 public DatabaseAccountService(RiskAssessor riskAssessor) {
 this.riskAssessor = riskAssessor;
 }

 // ...

}
Tip
Notice how using constructor injection allows the riskAssessor field to be marked
as final, indicating that it cannot be subsequently changed.

Chapter 18. Using the @SpringBootApplication annotation

Many Spring Boot developers always have their main class annotated with @Configuration,
@EnableAutoConfiguration and @ComponentScan. Since these annotations are so frequently
used together (especially if you follow the best practices
above), Spring Boot provides a convenient @SpringBootApplication alternative.
The @SpringBootApplication annotation is equivalent to using @Configuration,
@EnableAutoConfiguration and @ComponentScan with their default attributes:
package com.example.myproject;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication // same as @Configuration @EnableAutoConfiguration @ComponentScan
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}
Chapter 19. Running your application

One of the biggest advantages of packaging your application as jar and using an embedded
HTTP server is that you can run your application as you would any other. Debugging Spring
Boot applications is also easy; you don’t need any special IDE plugins or extensions.
Note
This section only covers jar based packaging, If you choose to package your
application as a war file you should refer to your server and IDE documentation.

Running from an IDE

You can run a Spring Boot application from your IDE as a simple Java application, however,
first you will need to import your project. Import steps will vary depending on your IDE
and build system. Most IDEs can import Maven projects directly, for example Eclipse users
can select Import…​ → Existing Maven Projects from the File menu.
If you can’t directly import your project into your IDE, you may be able to generate IDE
metadata using a build plugin. Maven includes plugins for
Eclipse and
IDEA; Gradle offers plugins
for various IDEs.
Tip
If you accidentally run a web application twice you will see a “Port already in
use” error. STS users can use the Relaunch button rather than Run to ensure that
any existing instance is closed.

Running as a packaged application

If you use the Spring Boot Maven or Gradle plugins to create an executable jar you can
run your application using java -jar. For example:
$ java -jar target/myproject-0.0.1-SNAPSHOT.jar
It is also possible to run a packaged application with remote debugging support enabled.
This allows you to attach a debugger to your packaged application:
$ java -Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=8000,suspend=n \
 -jar target/myproject-0.0.1-SNAPSHOT.jar
Using the Maven plugin

The Spring Boot Maven plugin includes a run goal which can be used to quickly compile
and run your application. Applications run in an exploded form, and you can edit
resources for instant “hot” reload.
$ mvn spring-boot:run
You might also want to use the useful operating system environment variable:
$ export MAVEN_OPTS=-Xmx1024m -XX:MaxPermSize=128M -Djava.security.egd=file:/dev/./urandom
(The “egd” setting is to speed up Tomcat startup by giving it a faster source of
entropy for session keys.)
Using the Gradle plugin

The Spring Boot Gradle plugin also includes a run goal which can be used to run
your application in an exploded form. The bootRun task is added whenever you import
the spring-boot-plugin
$ gradle bootRun
You might also want to use this useful operating system environment variable:
$ export JAVA_OPTS=-Xmx1024m -XX:MaxPermSize=128M -Djava.security.egd=file:/dev/./urandom
Hot swapping

Since Spring Boot applications are just plain Java applications, JVM hot-swapping should
work out of the box. JVM hot swapping is somewhat limited with the bytecode that it can
replace, for a more complete solution the
Spring Loaded project, or
JRebel can be used.
See the Hot swapping “How-to” section for details.
Chapter 20. Packaging your application for production

Executable jars can be used for production deployment. As they are self-contained, they
are also ideally suited for cloud-based deployment.
For additional “production ready” features, such as health, auditing and metric REST
or JMX end-points; consider adding spring-boot-actuator. See
Part V, “Spring Boot Actuator: Production-ready features” for details.
Chapter 21. What to read next

You should now have good understanding of how you can use Spring Boot along with some best
practices that you should follow. You can now go on to learn about specific
Spring Boot features in depth, or you
could skip ahead and read about the
“production ready” aspects of Spring
Boot.
Part IV. Spring Boot features

This section dives into the details of Spring Boot. Here you can learn about the key
features that you will want to use and customize. If you haven’t already, you might want
to read the Part II, “Getting started” and
Part III, “Using Spring Boot” sections so that you have a good grounding
of the basics.

Chapter 22. SpringApplication

The SpringApplication class provides a convenient way to bootstrap a Spring application
that will be started from a main() method. In many situations you can just delegate to
the static SpringApplication.run method:
public static void main(String[] args) {
 SpringApplication.run(MySpringConfiguration.class, args);
}
When your application starts you should see something similar to the following:
 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: v1.2.8.RELEASE

2013-07-31 00:08:16.117 INFO 56603 --- [main] o.s.b.s.app.SampleApplication : Starting SampleApplication v0.1.0 on mycomputer with PID 56603 (/apps/myapp.jar started by pwebb)
2013-07-31 00:08:16.166 INFO 56603 --- [main] ationConfigEmbeddedWebApplicationContext : Refreshing org.springframework.boot.context.embedded.AnnotationConfigEmbeddedWebApplicationContext@6e5a8246: startup date [Wed Jul 31 00:08:16 PDT 2013]; root of context hierarchy
2014-03-04 13:09:54.912 INFO 41370 --- [main] .t.TomcatEmbeddedServletContainerFactory : Server initialized with port: 8080
2014-03-04 13:09:56.501 INFO 41370 --- [main] o.s.b.s.app.SampleApplication : Started SampleApplication in 2.992 seconds (JVM running for 3.658)
By default INFO logging messages will be shown, including some relevant startup details
such as the user that launched the application.
Customizing the Banner

The banner that is printed on start up can be changed by adding a banner.txt file
to your classpath, or by setting banner.location to the location of such a file.
If the file has an unusual encoding you can set banner.charset (default is UTF-8).
You can use the following variables inside your banner.txt file:
Table 22.1. Banner variables
	Variable	Description
	${application.version}
	The version number of your application as declared in MANIFEST.MF. For example 1.0.

	${application.formatted-version}
	The version number of your application as declared in MANIFEST.MF formatted for
display (surrounded with brackets and prefixed with v). For example (v1.0).

	${spring-boot.version}
	The Spring Boot version that you are using. For example 1.2.8.RELEASE.

	${spring-boot.formatted-version}
	The Spring Boot version that you are using formatted for display (surrounded with
brackets and prefixed with v). For example (v1.2.8.RELEASE).

Tip
The SpringApplication.setBanner(…​) method can be used if you want to generate
a banner programmatically. Use the org.springframework.boot.Banner interface and
implement your own printBanner() method.

Customizing SpringApplication

If the SpringApplication defaults aren’t to your taste you can instead create a local
instance and customize it. For example, to turn off the banner you would write:
public static void main(String[] args) {
 SpringApplication app = new SpringApplication(MySpringConfiguration.class);
 app.setShowBanner(false);
 app.run(args);
}
Note
The constructor arguments passed to SpringApplication are configuration sources
for spring beans. In most cases these will be references to @Configuration classes, but
they could also be references to XML configuration or to packages that should be scanned.

It is also possible to configure the SpringApplication using an application.properties
file. See Chapter 23, Externalized Configuration for details.
For a complete list of the configuration options, see the
SpringApplication Javadoc.
Fluent builder API

If you need to build an ApplicationContext hierarchy (multiple contexts with a
parent/child relationship), or if you just prefer using a ‘fluent’ builder API, you
can use the SpringApplicationBuilder.
The SpringApplicationBuilder allows you to chain together multiple method calls, and
includes parent and child methods that allow you to create a hierarchy.
For example:
new SpringApplicationBuilder()
 .showBanner(false)
 .sources(Parent.class)
 .child(Application.class)
 .run(args);
Note
There are some restrictions when creating an ApplicationContext hierarchy, e.g.
Web components must be contained within the child context, and the same Environment
will be used for both parent and child contexts. See the
SpringApplicationBuilder
Javadoc for full details.

Application events and listeners

In addition to the usual Spring Framework events, such as
ContextRefreshedEvent,
a SpringApplication sends some additional application events. Some events are actually
triggered before the ApplicationContext is created.
You can register event listeners in a number of ways, the most common being
SpringApplication.addListeners(…​) method.
Application events are sent in the following order, as your application runs:
	An ApplicationStartedEvent is sent at the start of a run, but before any
processing except the registration of listeners and initializers.
	An ApplicationEnvironmentPreparedEvent is sent when the Environment to be used in
the context is known, but before the context is created.
	An ApplicationPreparedEvent is sent just before the refresh is started, but after bean
definitions have been loaded.
	An ApplicationFailedEvent is sent if there is an exception on startup.

Tip
You often won’t need to use application events, but it can be handy to know that they
exist. Internally, Spring Boot uses events to handle a variety of tasks.

Web environment

A SpringApplication will attempt to create the right type of ApplicationContext on
your behalf. By default, an AnnotationConfigApplicationContext or
AnnotationConfigEmbeddedWebApplicationContext will be used, depending on whether you
are developing a web application or not.
The algorithm used to determine a ‘web environment’ is fairly simplistic (based on the
presence of a few classes). You can use setWebEnvironment(boolean webEnvironment) if
you need to override the default.
It is also possible to take complete control of the ApplicationContext type that will
be used by calling setApplicationContextClass(…​).
Tip
It is often desirable to call setWebEnvironment(false) when using
SpringApplication within a JUnit test.

Using the CommandLineRunner

If you want access to the raw command line arguments, or you need to run some specific
code once the SpringApplication has started you can implement the CommandLineRunner
interface. The run(String…​ args) method will be called on all Spring beans
implementing this interface.
import org.springframework.boot.*
import org.springframework.stereotype.*

@Component
public class MyBean implements CommandLineRunner {

 public void run(String... args) {
 // Do something...
 }

}
You can additionally implement the org.springframework.core.Ordered interface or use the
org.springframework.core.annotation.Order annotation if several CommandLineRunner
beans are defined that must be called in a specific order.
Application exit

Each SpringApplication will register a shutdown hook with the JVM to ensure that the
ApplicationContext is closed gracefully on exit. All the standard Spring lifecycle
callbacks (such as the DisposableBean interface, or the @PreDestroy annotation) can
be used.
In addition, beans may implement the org.springframework.boot.ExitCodeGenerator
interface if they wish to return a specific exit code when the application ends.
Chapter 23. Externalized Configuration

Spring Boot allows you to externalize your configuration so you can work with the same
application code in different environments. You can use properties files, YAML files,
environment variables and command-line arguments to externalize configuration. Property
values can be injected directly into your beans using the @Value annotation, accessed
via Spring’s Environment abstraction or
bound to structured objects
via @ConfigurationProperties.
Spring Boot uses a very particular PropertySource order that is designed to allow
sensible overriding of values, properties are considered in the the following order:
	Command line arguments.
	JNDI attributes from java:comp/env.
	Java System properties (System.getProperties()).
	OS environment variables.
	A RandomValuePropertySource that only has properties in random.*.
	Profile-specific
application properties outside of your packaged jar
(application-{profile}.properties and YAML variants)
	Profile-specific
application properties packaged inside your jar (application-{profile}.properties
and YAML variants)
	Application properties outside of your packaged jar (application.properties and YAML
variants).
	Application properties packaged inside your jar (application.properties and YAML
variants).
	@PropertySource annotations
on your @Configuration classes.
	Default properties (specified using SpringApplication.setDefaultProperties).

To provide a concrete example, suppose you develop a @Component that uses a
name property:
import org.springframework.stereotype.*
import org.springframework.beans.factory.annotation.*

@Component
public class MyBean {

 @Value("${name}")
 private String name;

 // ...

}
You can bundle an application.properties inside your jar that provides a sensible
default name. When running in production, an application.properties can be provided
outside of your jar that overrides name; and for one-off testing, you can launch with
a specific command line switch (e.g. java -jar app.jar --name="Spring").
Configuring random values

The RandomValuePropertySource is useful for injecting random values (e.g. into secrets
or test cases). It can produce integers, longs or strings, e.g.
my.secret=${random.value}
my.number=${random.int}
my.bignumber=${random.long}
my.number.less.than.ten=${random.int(10)}
my.number.in.range=${random.int[1024,65536]}
The random.int* syntax is OPEN value (,max) CLOSE where the OPEN,CLOSE are any
character and value,max are integers. If max is provided then value is the minimum
value and max is the maximum (exclusive).
Accessing command line properties

By default SpringApplication will convert any command line option arguments (starting
with ‘--’, e.g. --server.port=9000) to a property and add it to the Spring
Environment. As mentioned above, command line properties always take precedence over
other property sources.
If you don’t want command line properties to be added to the Environment you can disable
them using SpringApplication.setAddCommandLineProperties(false).
Application property files

SpringApplication will load properties from application.properties files in the
following locations and add them to the Spring Environment:
	A /config subdir of the current directory.
	The current directory
	A classpath /config package
	The classpath root

The list is ordered by precedence (properties defined in locations higher in the list
override those defined in lower locations).
Note
You can also use YAML ('.yml') files as
an alternative to '.properties'.

If you don’t like application.properties as the configuration file name you can switch
to another by specifying a spring.config.name environment property. You can also refer
to an explicit location using the spring.config.location environment property
(comma-separated list of directory locations, or file paths).
$ java -jar myproject.jar --spring.config.name=myproject
or
$ java -jar myproject.jar --spring.config.location=classpath:/default.properties,classpath:/override.properties
If spring.config.location contains directories (as opposed to files) they should end
in / (and will be appended with the names generated from spring.config.name before
being loaded). The default search path classpath:,classpath:/config,file:,file:config/
is always used, irrespective of the value of spring.config.location. In that way you
can set up default values for your application in application.properties (or whatever
other basename you choose with spring.config.name) and override it at runtime with a
different file, keeping the defaults.
Note
If you use environment variables rather than system properties, most operating
systems disallow period-separated key names, but you can use underscores instead (e.g.
SPRING_CONFIG_NAME instead of spring.config.name).

Note
If you are running in a container then JNDI properties (in java:comp/env) or
servlet context initialization parameters can be used instead of, or as well as,
environment variables or system properties.

Profile-specific properties

In addition to application.properties files, profile-specific properties can also be
defined using the naming convention application-{profile}.properties.
Profile specific properties are loaded from the same locations as standard
application.properties, with profile-specific files always overriding the default
ones irrespective of whether the profile-specific files are inside or outside your
packaged jar.
If several profiles are specified, a last wins strategy applies. For example, profiles
specified by the spring.active.profiles property are added after those configured via
the SpringApplication API and therefore take precedence.
Placeholders in properties

The values in application.properties are filtered through the existing Environment
when they are used so you can refer back to previously defined values (e.g. from System
properties).
app.name=MyApp
app.description=${app.name} is a Spring Boot application
Tip
You can also use this technique to create ‘short’ variants of existing Spring Boot
properties. See the the section called “Use ‘short’ command line arguments” how-to
for details.

Using YAML instead of Properties

YAML is a superset of JSON, and as such is a very convenient format
for specifying hierarchical configuration data. The SpringApplication class will
automatically support YAML as an alternative to properties whenever you have the
SnakeYAML library on your classpath.
Note
If you use ‘starter POMs’ SnakeYAML will be automatically provided via
spring-boot-starter.

Loading YAML

Spring Framework provides two convenient classes that can be used to load YAML documents.
The YamlPropertiesFactoryBean will load YAML as Properties and the
YamlMapFactoryBean will load YAML as a Map.
For example, the following YAML document:
environments:
 dev:
 url: http://dev.bar.com
 name: Developer Setup
 prod:
 url: http://foo.bar.com
 name: My Cool App
Would be transformed into these properties:
environments.dev.url=http://dev.bar.com
environments.dev.name=Developer Setup
environments.prod.url=http://foo.bar.com
environments.prod.name=My Cool App
YAML lists are represented as property keys with [index] dereferencers,
for example this YAML:
my:
 servers:
 - dev.bar.com
 - foo.bar.com
Would be transformed into these properties:
my.servers[0]=dev.bar.com
my.servers[1]=foo.bar.com
To bind to properties like that using the Spring DataBinder utilities (which is what
@ConfigurationProperties does) you need to have a property in the target bean of type
java.util.List (or Set) and you either need to provide a setter, or initialize it
with a mutable value, e.g. this will bind to the properties above
@ConfigurationProperties(prefix="my")
public class Config {

 private List<String> servers = new ArrayList<String>();

 public List<String> getServers() {
 return this.servers;
 }
}
Exposing YAML as properties in the Spring Environment

The YamlPropertySourceLoader class can be used to expose YAML as a PropertySource
in the Spring Environment. This allows you to use the familiar @Value annotation with
placeholders syntax to access YAML properties.
Multi-profile YAML documents

You can specify multiple profile-specific YAML documents in a single file by
using a spring.profiles key to indicate when the document applies. For example:
server:
 address: 192.168.1.100

spring:
 profiles: development
server:
 address: 127.0.0.1

spring:
 profiles: production
server:
 address: 192.168.1.120
In the example above, the server.address property will be 127.0.0.1 if the
development profile is active. If the development and production profiles are not
enabled, then the value for the property will be 192.168.1.100
YAML shortcomings

YAML files can’t be loaded via the @PropertySource annotation. So in the
case that you need to load values that way, you need to use a properties file.
Typesafe Configuration Properties

Using the @Value("${property}") annotation to inject configuration properties can
sometimes be cumbersome, especially if you are working with multiple properties or
your data is hierarchical in nature. Spring Boot provides an alternative method
of working with properties that allows strongly typed beans to govern and validate
the configuration of your application. For example:
@Component
@ConfigurationProperties(prefix="connection")
public class ConnectionSettings {

 private String username;

 private InetAddress remoteAddress;

 // ... getters and setters

}
Note
The getters and setters are advisable, since binding is via standard Java Beans
property descriptors, just like in Spring MVC. They are mandatory for immutable types or
those that are directly coercible from String. As long as they are initialized, maps,
collections, and arrays need a getter but not necessarily a setter since they can be
mutated by the binder. If there is a setter, Maps, collections, and arrays can be created.
Maps and collections can be expanded with only a getter, whereas arrays require a setter.
Nested POJO properties can also be created (so a setter is not mandatory) if they have a
default constructor, or a constructor accepting a single value that can be coerced from
String. Some people use Project Lombok to add getters and setters automatically.

When the @EnableConfigurationProperties annotation is applied to your @Configuration,
any beans annotated with @ConfigurationProperties will be automatically configured from
the Environment properties. This style of configuration works particularly well with the
SpringApplication external YAML configuration:
application.yml

connection:
 username: admin
 remoteAddress: 192.168.1.1

additional configuration as required
To work with @ConfigurationProperties beans you can just inject them in the same way
as any other bean.
@Service
public class MyService {

 @Autowired
 private ConnectionSettings connection;

 //...

 @PostConstruct
 public void openConnection() {
 Server server = new Server();
 this.connection.configure(server);
 }

}
It is also possible to shortcut the registration of @ConfigurationProperties bean
definitions by simply listing the properties classes directly in the
@EnableConfigurationProperties annotation:
@Configuration
@EnableConfigurationProperties(ConnectionSettings.class)
public class MyConfiguration {
}
Tip
Using @ConfigurationProperties also allows you to generate meta-data files that can
be used by IDEs. See the Appendix B, Configuration meta-data appendix for details.

Third-party configuration

As well as using @ConfigurationProperties to annotate a class, you can also use it
on @Bean methods. This can be particularly useful when you want to bind properties to
third-party components that are outside of your control.
To configure a bean from the Environment properties, add @ConfigurationProperties to
its bean registration:
@ConfigurationProperties(prefix = "foo")
@Bean
public FooComponent fooComponent() {
 ...
}
Any property defined with the foo prefix will be mapped onto that FooComponent bean
in a similar manner as the ConnectionSettings example above.
Relaxed binding

Spring Boot uses some relaxed rules for binding Environment properties to
@ConfigurationProperties beans, so there doesn’t need to be an exact match between
the Environment property name and the bean property name. Common examples where this
is useful include dashed separated (e.g. context-path binds to contextPath), and
capitalized (e.g. PORT binds to port) environment properties.
For example, given the following @ConfigurationProperties class:
@Component
@ConfigurationProperties(prefix="person")
public class ConnectionSettings {

 private String firstName;

 public String getFirstName() {
 return this.firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

}
The following properties names can all be used:
Table 23.1. relaxed binding
	Property	Note
	person.firstName
	Standard camel case syntax.

	person.first-name
	Dashed notation, recommended for use in .properties and .yml files.

	PERSON_FIRST_NAME
	Upper case format. Recommended when using a system environment variables.

Spring will attempt to coerce the external application properties to the right type when
it binds to the @ConfigurationProperties beans. If you need custom type conversion you
can provide a ConversionService bean (with bean id conversionService) or custom
property editors (via a CustomEditorConfigurer bean).
@ConfigurationProperties Validation

Spring Boot will attempt to validate external configuration, by default using JSR-303
(if it is on the classpath). You can simply add JSR-303 javax.validation constraint
annotations to your @ConfigurationProperties class:
@Component
@ConfigurationProperties(prefix="connection")
public class ConnectionSettings {

 @NotNull
 private InetAddress remoteAddress;

 // ... getters and setters

}
You can also add a custom Spring Validator by creating a bean definition called
configurationPropertiesValidator.
Tip
The spring-boot-actuator module includes an endpoint that exposes all
@ConfigurationProperties beans. Simply point your web browser to /configprops
or use the equivalent JMX endpoint. See the
Production ready features.
section for details.

Chapter 24. Profiles

Spring Profiles provide a way to segregate parts of your application configuration and
make it only available in certain environments. Any @Component or @Configuration can
be marked with @Profile to limit when it is loaded:
@Configuration
@Profile("production")
public class ProductionConfiguration {

 // ...

}
In the normal Spring way, you can use a spring.profiles.active
Environment property to specify which profiles are active. You can
specify the property in any of the usual ways, for example you could
include it in your application.properties:
spring.profiles.active=dev,hsqldb
or specify on the command line using the switch --spring.profiles.active=dev,hsqldb.
Adding active profiles

The spring.profiles.active property follows the same ordering rules as other
properties, the highest PropertySource will win. This means that you can specify
active profiles in application.properties then replace them using the command line
switch.
Sometimes it is useful to have profile specific properties that add to the active
profiles rather than replace them. The spring.profiles.include property can be used
to unconditionally add active profiles. The SpringApplication entry point also has
a Java API for setting additional profiles (i.e. on top of those activated by the
spring.profiles.active property): see the setAdditionalProfiles() method.
For example, when an application with following properties is run using the switch
--spring.profiles.active=prod the proddb and prodmq profiles will also be activated:

my.property: fromyamlfile

spring.profiles: prod
spring.profiles.include: proddb,prodmq
Note
Remember that the spring.profiles property can be defined in a YAML document
to determine when this particular document is included in the configuration. See
the section called “Change configuration depending on the environment” for more details.

Programmatically setting profiles

You can programmatically set active profiles by calling
SpringApplication.setAdditionalProfiles(…​) before your application runs. It is also
possible to activate profiles using Spring’s ConfigurableEnvironment interface.
Profile specific configuration files

Profile specific variants of both application.properties (or application.yml) and
files referenced via @ConfigurationProperties are considered as files are loaded.
See the section called “Profile-specific properties” for details.
Chapter 25. Logging

Spring Boot uses Commons Logging for all internal
logging, but leaves the underlying log implementation open. Default configurations are
provided for
Java Util Logging,
Log4J, Log4J2 and
Logback. In each case loggers are pre-configured to use console
output with optional file output also available.
By default, If you use the ‘Starter POMs’, Logback will be used for logging. Appropriate
Logback routing is also included to ensure that dependent libraries that use
Java Util Logging, Commons Logging, Log4J or SLF4J will all work correctly.
Tip
There are a lot of logging frameworks available for Java. Don’t worry if the above
list seems confusing. Generally you won’t need to change your logging dependencies and
the Spring Boot defaults will work just fine.

Log format

The default log output from Spring Boot looks like this:
2014-03-05 10:57:51.112 INFO 45469 --- [main] org.apache.catalina.core.StandardEngine : Starting Servlet Engine: Apache Tomcat/7.0.52
2014-03-05 10:57:51.253 INFO 45469 --- [ost-startStop-1] o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing Spring embedded WebApplicationContext
2014-03-05 10:57:51.253 INFO 45469 --- [ost-startStop-1] o.s.web.context.ContextLoader : Root WebApplicationContext: initialization completed in 1358 ms
2014-03-05 10:57:51.698 INFO 45469 --- [ost-startStop-1] o.s.b.c.e.ServletRegistrationBean : Mapping servlet: 'dispatcherServlet' to [/]
2014-03-05 10:57:51.702 INFO 45469 --- [ost-startStop-1] o.s.b.c.embedded.FilterRegistrationBean : Mapping filter: 'hiddenHttpMethodFilter' to: [/*]
The following items are output:
	Date and Time — Millisecond precision and easily sortable.
	Log Level — ERROR, WARN, INFO, DEBUG or TRACE.
	Process ID.
	A --- separator to distinguish the start of actual log messages.
	Thread name — Enclosed in square brackets (may be truncated for console output).
	Logger name — This is usually the source class name (often abbreviated).
	The log message.

Console output

The default log configuration will echo messages to the console as they are written. By
default ERROR, WARN and INFO level messages are logged. To also log DEBUG level
messages to the console you can start your application with a --debug flag.
$ java -jar myapp.jar --debug
If your terminal supports ANSI, color output will be used to aid readability. You can set
spring.output.ansi.enabled to a
supported value to override the auto
detection.
File output

By default, Spring Boot will only log to the console and will not write log files. If you
want to write log files in addition to the console output you need to set a
logging.file or logging.path property (for example in your application.properties).
The following table shows how the logging.* properties can be used together:
Table 25.1. Logging properties
	logging.file
	logging.path
	Example
	Description

	(none)
	(none)
	 	Console only logging.

	Specific file
	(none)
	my.log
	Writes to the specified log file. Names can be an exact location or relative to the
current directory.

	(none)
	Specific directory
	/var/log
	Writes spring.log to the specified directory. Names can be an exact location or
relative to the current directory.

Log files will rotate when they reach 10 Mb and as with console output, ERROR, WARN
and INFO level messages are logged by default.
Note
The logging system is initialized early in the application lifecycle and as such
logging properties will not be found in property files loaded via @PropertySource
annotations.

Log Levels

All the supported logging systems can have the logger levels set in the Spring
Environment (so for example in application.properties) using
‘logging.level.*=LEVEL’ where ‘LEVEL’ is one of TRACE, DEBUG, INFO, WARN, ERROR,
FATAL, OFF. Example application.properties:
logging.level.org.springframework.web=DEBUG
logging.level.org.hibernate=ERROR
Note
By default Spring Boot remaps Thymeleaf INFO messages so that they are logged at
DEBUG level. This helps to reduce noise in the standard log output. See
LevelRemappingAppender
for details of how you can apply remapping in your own configuration.

Custom log configuration

The various logging systems can be activated by including the appropriate libraries on
the classpath, and further customized by providing a suitable configuration file in the
root of the classpath, or in a location specified by the Spring Environment property
logging.config. (Note however that since logging is initialized before the
ApplicationContext is created, it isn’t possible to control logging from
@PropertySources in Spring @Configuration files. System properties and the
conventional Spring Boot external configuration files work just fine.)
Depending on your logging system, the following files will be loaded:
	Logging System	Customization
	Logback
	logback.xml or logback.groovy

	Log4j
	log4j.properties or log4j.xml

	Log4j2
	log4j2.xml

	JDK (Java Util Logging)
	logging.properties

To help with the customization some other properties are transferred from the Spring
Environment to System properties:
	Spring Environment	System Property	Comments
	logging.file
	LOG_FILE
	Used in default log configuration if defined.

	logging.path
	LOG_PATH
	Used in default log configuration if defined.

	PID
	PID
	The current process ID (discovered if possible and when not already defined as an OS
 environment variable).

All the logging systems supported can consult System properties when parsing their
configuration files. See the default configurations in spring-boot.jar for examples.
Warning
There are known classloading issues with Java Util Logging that cause problems
when running from an ‘executable jar’. We recommend that you avoid it if at all
possible.

Chapter 26. Developing web applications

Spring Boot is well suited for web application development. You can easily create a
self-contained HTTP server using embedded Tomcat, Jetty, or Undertow. Most web
applications will use the spring-boot-starter-web module to get up and running quickly.
If you haven’t yet developed a Spring Boot web application you can follow the
"Hello World!" example in the
Getting started section.
The ‘Spring Web MVC framework’

The Spring Web MVC framework (often referred to as simply ‘Spring MVC’) is a rich
‘model view controller’ web framework. Spring MVC lets you create special @Controller
or @RestController beans to handle incoming HTTP requests. Methods in your controller
are mapped to HTTP using @RequestMapping annotations.
Here is a typical example @RestController to serve JSON data:
@RestController
@RequestMapping(value="/users")
public class MyRestController {

 @RequestMapping(value="/{user}", method=RequestMethod.GET)
 public User getUser(@PathVariable Long user) {
 // ...
 }

 @RequestMapping(value="/{user}/customers", method=RequestMethod.GET)
 List<Customer> getUserCustomers(@PathVariable Long user) {
 // ...
 }

 @RequestMapping(value="/{user}", method=RequestMethod.DELETE)
 public User deleteUser(@PathVariable Long user) {
 // ...
 }

}
Spring MVC is part of the core Spring Framework and detailed information is available in
the reference documentation. There are also several guides
available at spring.io/guides that cover Spring MVC.
Spring MVC auto-configuration

Spring Boot provides auto-configuration for Spring MVC that works well with most
applications.
The auto-configuration adds the following features on top of Spring’s defaults:
	Inclusion of ContentNegotiatingViewResolver and BeanNameViewResolver beans.
	Support for serving static resources, including support for WebJars (see below).
	Automatic registration of Converter, GenericConverter, Formatter beans.
	Support for HttpMessageConverters (see below).
	Automatic registration of MessageCodesResolver (see below).
	Static index.html support.
	Custom Favicon support.

If you want to take complete control of Spring MVC, you can add your own @Configuration
annotated with @EnableWebMvc. If you want to keep Spring Boot MVC features, and
you just want to add additional MVC configuration (interceptors,
formatters, view controllers etc.) you can add your own @Bean of type
WebMvcConfigurerAdapter, but without @EnableWebMvc.
HttpMessageConverters

Spring MVC uses the HttpMessageConverter interface to convert HTTP requests and
responses. Sensible defaults are included out of the box, for example Objects can be
automatically converted to JSON (using the Jackson library) or XML (using the Jackson
XML extension if available, else using JAXB). Strings are encoded using UTF-8 by
default.
If you need to add or customize converters you can use Spring Boot’s
HttpMessageConverters class:
import org.springframework.boot.autoconfigure.web.HttpMessageConverters;
import org.springframework.context.annotation.*;
import org.springframework.http.converter.*;

@Configuration
public class MyConfiguration {

 @Bean
 public HttpMessageConverters customConverters() {
 HttpMessageConverter<?> additional = ...
 HttpMessageConverter<?> another = ...
 return new HttpMessageConverters(additional, another);
 }

}
Any HttpMessageConverter bean that is present in the context will be added to the list of
converters. You can also override default converters that way.
MessageCodesResolver

Spring MVC has a strategy for generating error codes for rendering error messages
from binding errors: MessageCodesResolver. Spring Boot will create one for you if
you set the spring.mvc.message-codes-resolver.format property PREFIX_ERROR_CODE or
POSTFIX_ERROR_CODE (see the enumeration in DefaultMessageCodesResolver.Format).
Static Content

By default Spring Boot will serve static content from a directory called /static (or
/public or /resources or /META-INF/resources) in the classpath or from the root
of the ServletContext. It uses the ResourceHttpRequestHandler from Spring MVC so you
can modify that behavior by adding your own WebMvcConfigurerAdapter and overriding the
addResourceHandlers method.
In a stand-alone web application the default servlet from the container is also
enabled, and acts as a fallback, serving content from the root of the ServletContext if
Spring decides not to handle it. Most of the time this will not happen (unless you modify
the default MVC configuration) because Spring will always be able to handle requests
through the DispatcherServlet.
In addition to the ‘standard’ static resource locations above, a special case is made
for Webjars content. Any resources with a path in /webjars/**
will be served from jar files if they are packaged in the Webjars format.
Tip
Do not use the src/main/webapp directory if your application will be packaged as a
jar. Although this directory is a common standard, it will only work with war packaging
and it will be silently ignored by most build tools if you generate a jar.

Template engines

As well as REST web services, you can also use Spring MVC to serve dynamic HTML content.
Spring MVC supports a variety of templating technologies including Velocity, FreeMarker
and JSPs. Many other templating engines also ship their own Spring MVC integrations.
Spring Boot includes auto-configuration support for the following templating engines:
	FreeMarker
	Groovy
	Thymeleaf
	Velocity
	Mustache

Tip
JSPs should be avoided if possible, there are several
known limitations when using them with embedded
servlet containers.

When you’re using one of these templating engines with the default configuration, your
templates will be picked up automatically from src/main/resources/templates.
Tip
IntelliJ IDEA orders the classpath differently depending on how you run your
application. Running your application in the IDE via its main method will result in a
different ordering to when you run your application using Maven or Gradle or from its
pacakaged jar. This can cause Spring Boot to fail to find the templates on the classpath.
If you’re affected by this problem you can reorder the classpath in the IDE to place the
module’s classes and resources first. Alternatively, you can configure the template prefix
to search every templates directory on the classpath: classpath*:/templates/.

Error Handling

Spring Boot provides an /error mapping by default that handles all errors in a sensible
way, and it is registered as a ‘global’ error page in the servlet container. For machine
clients it will produce a JSON response with details of the error, the HTTP status and the
exception message. For browser clients there is a ‘whitelabel’ error view that renders
the same data in HTML format (to customize it just add a View that resolves to
‘error’). To replace the default behaviour completely you can implement
ErrorController and register a bean definition of that type, or simply add a bean of
type ErrorAttributes to use the existing mechanism but replace the contents.
If you want more specific error pages for some conditions, the embedded servlet containers
support a uniform Java DSL for customizing the error handling. For example:
@Bean
public EmbeddedServletContainerCustomizer containerCustomizer(){
 return new MyCustomizer();
}

// ...

private static class MyCustomizer implements EmbeddedServletContainerCustomizer {

 @Override
 public void customize(ConfigurableEmbeddedServletContainer container) {
 container.addErrorPages(new ErrorPage(HttpStatus.BAD_REQUEST, "/400"));
 }

}
You can also use regular Spring MVC features like
@ExceptionHandler methods and
@ControllerAdvice. The ErrorController
will then pick up any unhandled exceptions.
N.B. if you register an ErrorPage with a path that will end up being handled by a
Filter (e.g. as is common with some non-Spring web frameworks, like Jersey and Wicket),
then the Filter has to be explicitly registered as an ERROR dispatcher, e.g.
@Bean
public FilterRegistrationBean myFilter() {
 FilterRegistrationBean registration = new FilterRegistrationBean();
 registration.setFilter(new MyFilter());
 ...
 registration.setDispatcherTypes(EnumSet.allOf(DispatcherType.class));
 return registration;
}
(the default FilterRegistrationBean does not include the ERROR dispatcher type).
Error Handling on WebSphere Application Server

When deployed to a servlet container, a Spring Boot uses its error page filter to forward
a request with an error status to the appropriate error page. The request can only be
forwarded to the correct error page if the response has not already been committed. By
default, WebSphere Application Server 8.0 and later commits the response upon successful
completion of a servlet’s service method. You should disable this behaviour by setting
com.ibm.ws.webcontainer.invokeFlushAfterService to false
Spring HATEOAS

If you’re developing a RESTful API that makes use of hypermedia, Spring Boot provides
auto-configuration for Spring HATEOAS that works well with most applications. The
auto-configuration replaces the need to use @EnableHypermediaSupport and registers a
number of beans to ease building hypermedia-based applications including a
LinkDiscoverer and an ObjectMapper configured to correctly marshal responses into the
desired representation. The ObjectMapper will be customized based on the
spring.jackson.* properties or a Jackson2ObjectMapperBuilder bean if one exists.
You can take control of Spring HATEOAS’s configuration by using
@EnableHypermediaSupport. Note that this will disable the ObjectMapper customization
described above.
JAX-RS and Jersey

If you prefer the JAX-RS programming model for REST endpoints you can use one of the
available implementations instead of Spring MVC. Jersey 1.x and Apache Celtix work quite
well out of the box if you just register their Servlet or Filter as a @Bean in your
application context. Jersey 2.x has some native Spring support so we also provide
auto-configuration support for it in Spring Boot together with a starter.
To get started with Jersey 2.x just include the spring-boot-starter-jersey as a
dependency and then you need one @Bean of type ResourceConfig in which you register
all the endpoints:
@Component
public class JerseyConfig extends ResourceConfig {

 public JerseyConfig() {
 register(Endpoint.class);
 }

}
All the registered endpoints should be @Components with HTTP resource annotations
(@GET etc.), e.g.
@Component
@Path("/hello")
public class Endpoint {

 @GET
 public String message() {
 return "Hello";
 }

}
Since the Endpoint is a Spring @Component its lifecycle is managed by Spring and you
can @Autowired dependencies and inject external configuration with @Value. The Jersey
servlet will be registered and mapped to /* by default. You can change the mapping
by adding @ApplicationPath to your ResourceConfig.
By default Jersey will be set up as a Servlet in a @Bean of type
ServletRegistrationBean named jerseyServletRegistration. You can disable or override
that bean by creating one of your own with the same name. You can also use a Filter
instead of a Servlet by setting spring.jersey.type=filter (in which case the @Bean to
replace or override is jerseyFilterRegistration). The servlet has an @Order which you
can set with spring.jersey.filter.order. Both the Servlet and the Filter registrations
can be given init parameters using spring.jersey.init.* to specify a map of properties.
There is a Jersey sample so
you can see how to set things up. There is also a
Jersey 1.x sample. Note that
in the Jersey 1.x sample that the spring-boot maven plugin has been configured to unpack
some Jersey jars so they can be scanned by the JAX-RS implementation (because the sample
asks for them to be scanned in its Filter registration). You may need to do the same if
any of your JAX-RS resources are packages as nested jars.
Embedded servlet container support

Spring Boot includes support for embedded Tomcat, Jetty, and Undertow servers. Most
developers will simply use the appropriate ‘Starter POM’ to obtain a fully configured
instance. By default the embedded server will listen for HTTP requests on port 8080.
Servlets and Filters

When using an embedded servlet container you can register Servlets, Filters and all the
listeners from the Servlet spec (e.g. HttpSessionListener) directly as
Spring beans. This can be particularly convenient if you want to refer to a value from
your application.properties during configuration.
By default, if the context contains only a single Servlet it will be mapped to /. In the
case of multiple Servlet beans the bean name will be used as a path prefix. Filters will
map to /*.
If convention-based mapping is not flexible enough you can use the
ServletRegistrationBean, FilterRegistrationBean and ServletListenerRegistrationBean
classes for complete control.
Servlet Context Initialization

Embedded servlet containers will not directly execute the Servlet 3.0+
javax.servlet.ServletContainerInitializer interface, or Spring’s
org.springframework.web.WebApplicationInitializer interface. This is an intentional
design decision intended to reduce the risk that 3rd party libraries designed to run
inside a war will break Spring Boot applications.
If you need to perform servlet context initialization in a Spring Boot application, you
should register a bean that implements the
org.springframework.boot.context.embedded.ServletContextInitializer interface. The
single onStartup method provides access to the ServletContext, and can easily be used
as an adapter to an existing `WebApplicationInitializer if necessary.
The EmbeddedWebApplicationContext

Under the hood Spring Boot uses a new type of ApplicationContext for embedded servlet
container support. The EmbeddedWebApplicationContext is a special type of
WebApplicationContext that bootstraps itself by searching for a single
EmbeddedServletContainerFactory bean. Usually a TomcatEmbeddedServletContainerFactory,
JettyEmbeddedServletContainerFactory, or UndertowEmbeddedServletContainerFactory will
have been auto-configured.
Note
You usually won’t need to be aware of these implementation classes. Most
applications will be auto-configured and the appropriate ApplicationContext and
EmbeddedServletContainerFactory will be created on your behalf.

Customizing embedded servlet containers

Common servlet container settings can be configured using Spring Environment
properties. Usually you would define the properties in your application.properties
file.
Common server settings include:
	server.port — The listen port for incoming HTTP requests.
	server.address — The interface address to bind to.
	server.sessionTimeout — A session timeout.

See the ServerProperties
class for a complete list.
Programmatic customization

If you need to configure your embdedded servlet container programmatically you can
register a Spring bean that implements the EmbeddedServletContainerCustomizer interface.
EmbeddedServletContainerCustomizer provides access to the
ConfigurableEmbeddedServletContainer which includes numerous customization setter
methods.
import org.springframework.boot.context.embedded.*;
import org.springframework.stereotype.Component;

@Component
public class CustomizationBean implements EmbeddedServletContainerCustomizer {

 @Override
 public void customize(ConfigurableEmbeddedServletContainer container) {
 container.setPort(9000);
 }

}
Customizing ConfigurableEmbeddedServletContainer directly

If the above customization techniques are too limited, you can register the
TomcatEmbeddedServletContainerFactory, JettyEmbeddedServletContainerFactory or
UndertowEmbeddedServletContainerFactory bean yourself.
@Bean
public EmbeddedServletContainerFactory servletContainer() {
 TomcatEmbeddedServletContainerFactory factory = new TomcatEmbeddedServletContainerFactory();
 factory.setPort(9000);
 factory.setSessionTimeout(10, TimeUnit.MINUTES);
 factory.addErrorPages(new ErrorPage(HttpStatus.NOT_FOUND, "/notfound.html"));
 return factory;
}
Setters are provided for many configuration options. Several protected method
‘hooks’ are also provided should you need to do something more exotic. See the
source code documentation for details.
JSP limitations

When running a Spring Boot application that uses an embedded servlet container (and is
packaged as an executable archive), there are some limitations in the JSP support.
	With Tomcat it should work if you use war packaging, i.e. an executable war will work,
and will also be deployable to a standard container (not limited to, but including
Tomcat). An executable jar will not work because of a hard coded file pattern in Tomcat.
	Jetty does not currently work as an embedded container with JSPs.
	Undertow does not support JSPs.

There is a JSP sample so you
can see how to set things up.
Chapter 27. Security

If Spring Security is on the classpath then web applications will be secure by default
with ‘basic’ authentication on all HTTP endpoints. To add method-level security to a web
application you can also add @EnableGlobalMethodSecurity with your desired settings.
Additional information can be found in the Spring
Security Reference.
The default AuthenticationManager has a single user (‘user’ username and random
password, printed at INFO level when the application starts up)
Using default security password: 78fa095d-3f4c-48b1-ad50-e24c31d5cf35
Note
If you fine tune your logging configuration, ensure that the
org.springframework.boot.autoconfigure.security category is set to log INFO messages,
otherwise the default password will not be printed.

You can change the password by providing a security.user.password. This and other useful
properties are externalized via
SecurityProperties
(properties prefix "security").
The default security configuration is implemented in SecurityAutoConfiguration and in
the classes imported from there (SpringBootWebSecurityConfiguration for web security
and AuthenticationManagerConfiguration for authentication configuration which is also
relevant in non-web applications). To switch off the Boot default configuration
completely in a web application you can add a bean with @EnableWebSecurity. To customize
it you normally use external properties and beans of type WebSecurityConfigurerAdapter
(e.g. to add form-based login). There are several secure applications in the
Spring Boot samples to get you started with common
use cases.
The basic features you get out of the box in a web application are:
	An AuthenticationManager bean with in-memory store and a single user (see
SecurityProperties.User for the properties of the user).
	Ignored (unsecure) paths for common static resource locations (/css/**, /js/**,
/images/** and **/favicon.ico).
	HTTP Basic security for all other endpoints.
	Security events published to Spring’s ApplicationEventPublisher (successful and
unsuccessful authentication and access denied).
	Common low-level features (HSTS, XSS, CSRF, caching) provided by Spring Security are
on by default.

All of the above can be switched on and off or modified using external properties
(security.*). To override the access rules without changing any other autoconfigured
features add a @Bean of type WebSecurityConfigurerAdapter with
@Order(SecurityProperties.ACCESS_OVERRIDE_ORDER).
If the Actuator is also in use, you will find:
	The management endpoints are secure even if the application endpoints are unsecure.
	Security events are transformed into AuditEvents and published to the AuditService.
	The default user will have the ADMIN role as well as the USER role.

The Actuator security features can be modified using external properties
(management.security.*). To override the application access rules
add a @Bean of type WebSecurityConfigurerAdapter and use
@Order(SecurityProperties.ACCESS_OVERRIDE_ORDER) if you don’t want to override
the actuator access rules, or @Order(ManagementServerProperties.ACCESS_OVERRIDE_ORDER)
if you do want to override the actuator access rules.
Chapter 28. Working with SQL databases

The Spring Framework provides extensive support for working with SQL databases. From
direct JDBC access using JdbcTemplate to complete ‘object relational mapping’
technologies such as Hibernate. Spring Data provides an additional level of functionality,
creating Repository implementations directly from interfaces and using conventions to
generate queries from your method names.
Configure a DataSource

Java’s javax.sql.DataSource interface provides a standard method of working with
database connections. Traditionally a DataSource uses a URL along with some
credentials to establish a database connection.
Embedded Database Support

It’s often convenient to develop applications using an in-memory embedded database.
Obviously, in-memory databases do not provide persistent storage; you will need to
populate your database when your application starts and be prepared to throw away
data when your application ends.
Tip
The ‘How-to’ section includes a section on how to initialize a database

Spring Boot can auto-configure embedded H2,
HSQL and Derby databases. You don’t need
to provide any connection URLs, simply include a build dependency to the embedded database
that you want to use.
For example, typical POM dependencies would be:
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <scope>runtime</scope>
</dependency>
Tip
If, for whatever reason, you do configure the connection URL for an embedded
database, care should be taken to ensure that the database’s automatic shutdown is
disabled. If you’re using H2 you should use DB_CLOSE_ON_EXIT=FALSE to do so. If you’re
using HSQLDB, you should ensure that shutdown=true is not used. Disabling the database’s
automatic shutdown allows Spring Boot to control when the database is closed, thereby
ensuring that it happens once access to the database is no longer needed.

Note
You need a dependency on spring-jdbc for an embedded database to be
auto-configured. In this example it’s pulled in transitively via
spring-boot-starter-data-jpa.

Connection to a production database

Production database connections can also be auto-configured using a pooling DataSource.
Here’s the algorithm for choosing a specific implementation:
	We prefer the Tomcat pooling DataSource for its performance and concurrency, so if
that is available we always choose it.
	If HikariCP is available we will use it.
	If Commons DBCP is available we will use it, but we don’t recommend it in production.
	Lastly, if Commons DBCP2 is available we will use it.

If you use the spring-boot-starter-jdbc or spring-boot-starter-data-jpa
‘starter POMs’ you will automatically get a dependency to tomcat-jdbc.
Note
Additional connection pools can always be configured manually. If you define your
own DataSource bean, auto-configuration will not occur.

DataSource configuration is controlled by external configuration properties in
spring.datasource.*. For example, you might declare the following section in
application.properties:
spring.datasource.url=jdbc:mysql://localhost/test
spring.datasource.username=dbuser
spring.datasource.password=dbpass
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
See DataSourceProperties
for more of the supported options. Note also that you can configure any of the
DataSource implementation specific properties via spring.datasource.*: refer to the
documentation of the connection pool implementation you are using for more details.
Tip
You often won’t need to specify the driver-class-name since Spring boot can deduce
it for most databases from the url.

Note
For a pooling DataSource to be created we need to be able to verify that a valid
Driver class is available, so we check for that before doing anything. I.e. if you set
spring.datasource.driverClassName=com.mysql.jdbc.Driver then that class has to be
loadable.

Connection to a JNDI DataSource

If you are deploying your Spring Boot application to an Application Server you might want
to configure and manage your DataSource using your Application Servers built-in features
and access it using JNDI.
The spring.datasource.jndi-name property can be used as an alternative to the
spring.datasource.url, spring.datasource.username and spring.datasource.password
properties to access the DataSource from a specific JNDI location. For example, the
following section in application.properties shows how you can access a JBoss AS defined
DataSource:
spring.datasource.jndi-name=java:jboss/datasources/customers
Using JdbcTemplate

Spring’s JdbcTemplate and NamedParameterJdbcTemplate classes are auto-configured and
you can @Autowire them directly into your own beans:
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.stereotype.Component;

@Component
public class MyBean {

 private final JdbcTemplate jdbcTemplate;

 @Autowired
 public MyBean(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 // ...

}
JPA and ‘Spring Data’

The Java Persistence API is a standard technology that allows you to ‘map’ objects to
relational databases. The spring-boot-starter-data-jpa POM provides a quick way to get
started. It provides the following key dependencies:
	Hibernate — One of the most popular JPA implementations.
	Spring Data JPA — Makes it easy to implement JPA-based repositories.
	Spring ORMs — Core ORM support from the Spring Framework.

Tip
We won’t go into too many details of JPA or Spring Data here. You can follow the
‘Accessing Data with JPA’ guide from
spring.io and read the Spring Data JPA
and Hibernate reference documentation.

Entity Classes

Traditionally, JPA ‘Entity’ classes are specified in a persistence.xml file. With
Spring Boot this file is not necessary and instead ‘Entity Scanning’ is used. By default
all packages below your main configuration class (the one annotated with
@EnableAutoConfiguration or @SpringBootApplication) will be searched.
Any classes annotated with @Entity, @Embeddable or @MappedSuperclass will be
considered. A typical entity class would look something like this:
package com.example.myapp.domain;

import java.io.Serializable;
import javax.persistence.*;

@Entity
public class City implements Serializable {

 @Id
 @GeneratedValue
 private Long id;

 @Column(nullable = false)
 private String name;

 @Column(nullable = false)
 private String state;

 // ... additional members, often include @OneToMany mappings

 protected City() {
 // no-args constructor required by JPA spec
 // this one is protected since it shouldn't be used directly
 }

 public City(String name, String state) {
 this.name = name;
 this.country = country;
 }

 public String getName() {
 return this.name;
 }

 public String getState() {
 return this.state;
 }

 // ... etc

}
Tip
You can customize entity scanning locations using the @EntityScan annotation. See
the the section called “Separate @Entity definitions from Spring configuration” how-to.

Spring Data JPA Repositories

Spring Data JPA repositories are interfaces that you can define to access data. JPA
queries are created automatically from your method names. For example, a CityRepository
interface might declare a findAllByState(String state) method to find all cities in a
given state.
For more complex queries you can annotate your method using Spring Data’s
Query annotation.
Spring Data repositories usually extend from the
Repository or
CrudRepository interfaces.
If you are using auto-configuration, repositories will be searched from the package
containing your main configuration class (the one annotated with
@EnableAutoConfiguration or @SpringBootApplication) down.
Here is a typical Spring Data repository:
package com.example.myapp.domain;

import org.springframework.data.domain.*;
import org.springframework.data.repository.*;

public interface CityRepository extends Repository<City, Long> {

 Page<City> findAll(Pageable pageable);

 City findByNameAndCountryAllIgnoringCase(String name, String country);

}
Tip
We have barely scratched the surface of Spring Data JPA. For complete details check
their reference documentation.

Creating and dropping JPA databases

By default, JPA databases will be automatically created only if you use an embedded
database (H2, HSQL or Derby). You can explicitly configure JPA settings using
spring.jpa.* properties. For example, to create and drop tables you can add the
following to your application.properties.
spring.jpa.hibernate.ddl-auto=create-drop
Note
Hibernate’s own internal property name for this (if you happen to remember it
better) is hibernate.hbm2ddl.auto. You can set it, along with other Hibernate native
properties, using spring.jpa.properties.* (the prefix is stripped before adding them
to the entity manager). Example:

spring.jpa.properties.hibernate.globally_quoted_identifiers=true
passes hibernate.globally_quoted_identifiers to the Hibernate entity manager.
By default the DDL execution (or validation) is deferred until the ApplicationContext
has started. There is also a spring.jpa.generate-ddl flag, but it is not used if
Hibernate autoconfig is active because the ddl-auto settings are more fine-grained.
Chapter 29. Working with NoSQL technologies

Spring Data provides additional projects that help you access a variety of NoSQL
technologies including
MongoDB,
Neo4J,
Elasticsearch,
Solr,
Redis,
Gemfire,
Couchbase and
Cassandra.
Spring Boot provides auto-configuration for Redis, MongoDB, Elasticsearch, and Solr; you
can make use of the other projects, but you will need to configure them yourself. Refer to
the appropriate reference documentation at
projects.spring.io/spring-data.
Redis

Redis is a cache, message broker and richly-featured key-value store.
Spring Boot offers basic auto-configuration for the
Jedis client library and abstractions on top of it
provided by Spring Data Redis. There
is a spring-boot-starter-redis ‘Starter POM’ for collecting the dependencies in a
convenient way.
Connecting to Redis

You can inject an auto-configured RedisConnectionFactory, StringRedisTemplate or
vanilla RedisTemplate instance as you would any other Spring Bean. By default the
instance will attempt to connect to a Redis server using localhost:6379:
@Component
public class MyBean {

 private StringRedisTemplate template;

 @Autowired
 public MyBean(StringRedisTemplate template) {
 this.template = template;
 }

 // ...

}
If you add a @Bean of your own of any of the auto-configured types it will replace the
default (except in the case of RedisTemplate the exclusion is based on the bean name
‘redisTemplate’ not its type). If commons-pool2 is on the classpath you will get a
pooled connection factory by default.
MongoDB

MongoDB is an open-source NoSQL document database that uses a
JSON-like schema instead of traditional table-based relational data. Spring Boot offers
several conveniences for working with MongoDB, including the
spring-boot-starter-data-mongodb ‘Starter POM’.
Connecting to a MongoDB database

You can inject an auto-configured org.springframework.data.mongodb.MongoDbFactory to
access Mongo databases. By default the instance will attempt to connect to a MongoDB
server using the URL mongodb://localhost/test:
import org.springframework.data.mongodb.MongoDbFactory;
import com.mongodb.DB;

@Component
public class MyBean {

 private final MongoDbFactory mongo;

 @Autowired
 public MyBean(MongoDbFactory mongo) {
 this.mongo = mongo;
 }

 // ...

 public void example() {
 DB db = mongo.getDb();
 // ...
 }

}
You can set spring.data.mongodb.uri property to change the url, or alternatively
specify a host/port. For example, you might declare the following in your
application.properties:
spring.data.mongodb.host=mongoserver
spring.data.mongodb.port=27017
Tip
If spring.data.mongodb.port is not specified the default of 27017 is used. You
could simply delete this line from the sample above.

Tip
If you aren’t using Spring Data Mongo you can inject com.mongodb.Mongo beans
instead of using MongoDbFactory.

You can also declare your own MongoDbFactory or Mongo bean if you want to take
complete control of establishing the MongoDB connection.
MongoTemplate

Spring Data Mongo provides a
MongoTemplate class that is very
similar in its design to Spring’s JdbcTemplate. As with JdbcTemplate Spring Boot
auto-configures a bean for you to simply inject:
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.stereotype.Component;

@Component
public class MyBean {

 private final MongoTemplate mongoTemplate;

 @Autowired
 public MyBean(MongoTemplate mongoTemplate) {
 this.mongoTemplate = mongoTemplate;
 }

 // ...

}
See the MongoOperations Javadoc for complete details.
Spring Data MongoDB repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories
discussed earlier, the basic principle is that queries are constructed for you
automatically based on method names.
In fact, both Spring Data JPA and Spring Data MongoDB share the same common
infrastructure; so you could take the JPA example from earlier and, assuming that City
is now a Mongo data class rather than a JPA @Entity, it will work in the same way.
package com.example.myapp.domain;

import org.springframework.data.domain.*;
import org.springframework.data.repository.*;

public interface CityRepository extends Repository<City, Long> {

 Page<City> findAll(Pageable pageable);

 City findByNameAndCountryAllIgnoringCase(String name, String country);

}
Tip
For complete details of Spring Data MongoDB, including its rich object mapping
technologies, refer to their reference
documentation.

Gemfire

Spring Data Gemfire provides
convenient Spring-friendly tools for accessing the
Pivotal Gemfire data management
platform. There is a spring-boot-starter-data-gemfire ‘Starter POM’ for collecting the
dependencies in a convenient way. There is currently no auto-configuration support for
Gemfire, but you can enable Spring Data Repositories with a
single annotation (@EnableGemfireRepositories).
Solr

Apache Solr is a search engine. Spring Boot offers basic
auto-configuration for the Solr client library and abstractions on top of it provided by
Spring Data Solr. There is
a spring-boot-starter-data-solr ‘Starter POM’ for collecting the dependencies in a
convenient way.
Connecting to Solr

You can inject an auto-configured SolrServer instance as you would any other Spring
bean. By default the instance will attempt to connect to a server using
localhost:8983/solr:
@Component
public class MyBean {

 private SolrServer solr;

 @Autowired
 public MyBean(SolrServer solr) {
 this.solr = solr;
 }

 // ...

}
If you add a @Bean of your own of type SolrServer it will replace the default.
Spring Data Solr repositories

Spring Data includes repository support for Apache Solr. As with the JPA repositories
discussed earlier, the basic principle is that queries are constructed for you
automatically based on method names.
In fact, both Spring Data JPA and Spring Data Solr share the same common infrastructure;
so you could take the JPA example from earlier and, assuming that City is now a
@SolrDocument class rather than a JPA @Entity, it will work in the same way.
Tip
For complete details of Spring Data Solr, refer to their
reference documentation.

Elasticsearch

Elasticsearch is an open source, distributed,
real-time search and analytics engine. Spring Boot offers basic auto-configuration for
the Elasticsearch and abstractions on top of it provided by
Spring Data Elasticsearch.
There is a spring-boot-starter-data-elasticsearch ‘Starter POM’ for collecting the
dependencies in a convenient way.
Connecting to Elasticsearch

You can inject an auto-configured ElasticsearchTemplate or Elasticsearch Client
instance as you would any other Spring Bean. By default the instance will attempt to
connect to a local in-memory server (a NodeClient in Elasticsearch terms), but you can
switch to a remote server (i.e. a TransportClient) by setting
spring.data.elasticsearch.cluster-nodes to a comma-separated ‘host:port’ list.
@Component
public class MyBean {

 private ElasticsearchTemplate template;

 @Autowired
 public MyBean(ElasticsearchTemplate template) {
 this.template = template;
 }

 // ...

}
If you add a @Bean of your own of type ElasticsearchTemplate it will replace the
default.
Spring Data Elasticsearch repositories

Spring Data includes repository support for Elasticsearch. As with the JPA repositories
discussed earlier, the basic principle is that queries are constructed for you
automatically based on method names.
In fact, both Spring Data JPA and Spring Data Elasticsearch share the same common
infrastructure; so you could take the JPA example from earlier and, assuming that
City is now an Elasticsearch @Document class rather than a JPA @Entity, it will
work in the same way.
Tip
For complete details of Spring Data Elasticsearch, refer to their
reference documentation.

Chapter 30. Messaging

The Spring Framework provides extensive support for integrating with messaging systems:
from simplified use of the JMS API using JmsTemplate to a complete infrastructure to
receive messages asynchronously. Spring AMQP provides a similar feature set for the
‘Advanced Message Queuing Protocol’ and Spring Boot also provides auto-configuration
options for RabbitTemplate and RabbitMQ. There is also support for STOMP messaging
natively in Spring WebSocket and Spring Boot has support for that through starters and a
small amount of auto-configuration.
JMS

The javax.jms.ConnectionFactory interface provides a standard method of creating a
javax.jms.Connection for interacting with a JMS broker. Although Spring needs a
ConnectionFactory to work with JMS, you generally won’t need to use it directly yourself
and you can instead rely on higher level messaging abstractions (see the
relevant section of the Spring Framework reference
documentation for details). Spring Boot also auto-configures the necessary infrastructure
to send and receive messages.
HornetQ support

Spring Boot can auto-configure a ConnectionFactory when it detects that HornetQ is
available on the classpath. If the broker is present, an embedded broker is started and
configured automatically (unless the mode property has been explicitly set). The supported
modes are: embedded (to make explicit that an embedded broker is required and should
lead to an error if the broker is not available in the classpath), and native to connect
to a broker using the netty transport protocol. When the latter is configured, Spring
Boot configures a ConnectionFactory connecting to a broker running on the local machine
with the default settings.
Note
If you are using spring-boot-starter-hornetq the necessary dependencies to
connect to an existing HornetQ instance are provided, as well as the Spring infrastructure
to integrate with JMS. Adding org.hornetq:hornetq-jms-server to your application allows
you to use the embedded mode.

HornetQ configuration is controlled by external configuration properties in
spring.hornetq.*. For example, you might declare the following section in
application.properties:
spring.hornetq.mode=native
spring.hornetq.host=192.168.1.210
spring.hornetq.port=9876
When embedding the broker, you can choose if you want to enable persistence, and the list
of destinations that should be made available. These can be specified as a comma-separated
list to create them with the default options; or you can define bean(s) of type
org.hornetq.jms.server.config.JMSQueueConfiguration or
org.hornetq.jms.server.config.TopicConfiguration, for advanced queue and topic
configurations respectively.
See
HornetQProperties
for more of the supported options.
No JNDI lookup is involved at all and destinations are resolved against their names,
either using the ‘name’ attribute in the HornetQ configuration or the names provided
through configuration.
ActiveMQ support

Spring Boot can also configure a ConnectionFactory when it detects that ActiveMQ is
available on the classpath. If the broker is present, an embedded broker is started and
configured automatically (as long as no broker URL is specified through configuration).
ActiveMQ configuration is controlled by external configuration properties in
spring.activemq.*. For example, you might declare the following section in
application.properties:
spring.activemq.broker-url=tcp://192.168.1.210:9876
spring.activemq.user=admin
spring.activemq.password=secret
See
ActiveMQProperties
for more of the supported options.
By default, ActiveMQ creates a destination if it does not exist yet, so destinations are
resolved against their provided names.
Using a JNDI ConnectionFactory

If you are running your application in an Application Server Spring Boot will attempt to
locate a JMS ConnectionFactory using JNDI. By default the locations java:/JmsXA and
java:/XAConnectionFactory will be checked. You can use the
spring.jms.jndi-name property if you need to specify an alternative location:
spring.jms.jndi-name=java:/MyConnectionFactory
Sending a message

Spring’s JmsTemplate is auto-configured and you can autowire it directly into your own
beans:
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.stereotype.Component;

@Component
public class MyBean {

 private final JmsTemplate jmsTemplate;

 @Autowired
 public MyBean(JmsTemplate jmsTemplate) {
 this.jmsTemplate = jmsTemplate;
 }

 // ...

}
Note
JmsMessagingTemplate
(new in Spring 4.1) can be injected in a similar manner.

Receiving a message

When the JMS infrastructure is present, any bean can be annotated with @JmsListener to
create a listener endpoint. If no JmsListenerContainerFactory has been defined, a
default one is configured automatically.
The default factory is transactional by default. If you are running in an infrastructure
where a JtaTransactionManager is present, it will be associated to the listener container
by default. If not, the sessionTransacted flag will be enabled. In that latter scenario,
you can associate your local data store transaction to the processing of an incoming message
by adding @Transactional on your listener method (or a delegate thereof). This will make
sure that the incoming message is acknowledged once the local transaction has completed. This
also includes sending response messages that have been performed on the same JMS session.
The following component creates a listener endpoint on the someQueue destination:
@Component
public class MyBean {

 @JmsListener(destination = "someQueue")
 public void processMessage(String content) {
 // ...
 }

}
Tip
Check the Javadoc of @EnableJms for
more details.

Chapter 31. Sending email

The Spring Framework provides an easy abstraction for sending email using the
JavaMailSender interface and Spring Boot provides auto-configuration for it as well as
a starter module.
Tip
Check the reference documentation for a detailed
explanation of how you can use JavaMailSender.

If spring.mail.host and the relevant libraries (as defined by
spring-boot-starter-mail) are available, a default JavaMailSender is created if none
exists. The sender can be further customized by configuration items from the spring.mail
namespace, see the
MailProperties for more
details.
Chapter 32. Distributed Transactions with JTA

Spring Boot supports distributed JTA transactions across multiple XA resources using
either an Atomikos or Bitronix
embedded transaction manager. JTA transactions are also supported when deploying to a
suitable Java EE Application Server.
When a JTA environment is detected, Spring’s JtaTransactionManager will be used to
manage transactions. Auto-configured JMS, DataSource and JPA beans will be upgraded to
support XA transactions. You can use standard Spring idioms such as @Transactional to
participate in a distributed transaction. If you are within a JTA environment and still
want to use local transactions you can set the spring.jta.enabled property to false to
disable the JTA auto-configuration.
Using an Atomikos transaction manager

Atomikos is a popular open source transaction manager which can be embedded into your
Spring Boot application. You can use the spring-boot-starter-jta-atomikos Starter POM to
pull in the appropriate Atomikos libraries. Spring Boot will auto-configure Atomikos and
ensure that appropriate depends-on settings are applied to your Spring beans for correct
startup and shutdown ordering.
By default Atomikos transaction logs will be written to a transaction-logs directory in
your application home directory (the directory in which your application jar file
resides). You can customize this directory by setting a spring.jta.log-dir property in
your application.properties file. Properties starting spring.jta. can also be used to
customize the Atomikos UserTransactionServiceImp. See the
AtomikosProperties Javadoc
for complete details.
Note
To ensure that multiple transaction managers can safely coordinate the same
resource managers, each Atomikos instance must be configured with a unique ID. By default
this ID is the IP address of the machine on which Atomikos is running. To ensure
uniqueness in production, you should configure the spring.jta.transaction-manager-id
property with a different value for each instance of your application.

Using a Bitronix transaction manager

Bitronix is another popular open source JTA transaction manager implementation. You can
use the spring-boot-starter-jta-bitronix starter POM to add the appropriate Birtronix
dependencies to your project. As with Atomikos, Spring Boot will automatically configure
Bitronix and post-process your beans to ensure that startup and shutdown ordering is
correct.
By default Bitronix transaction log files (part1.btm and part2.btm) will be written to
a transaction-logs directory in your application home directory. You can customize this
directory by using the spring.jta.log-dir property. Properties starting spring.jta.
are also bound to the bitronix.tm.Configuration bean, allowing for complete
customization. See the
Bitronix documentation
for details.
Note
To ensure that multiple transaction managers can safely coordinate the same
resource managers, each Bitronix instance must be configured with a unique ID. By default
this ID is the IP address of the machine on which Bitronix is running. To ensure
uniqueness in production, you should configure the spring.jta.transaction-manager-id
property with a different value for each instance of your application.

Using a Java EE managed transaction manager

If you are packaging your Spring Boot application as a war or ear file and deploying
it to a Java EE application server, you can use your application servers built-in
transaction manager. Spring Boot will attempt to auto-configure a transaction manager by
looking at common JNDI locations (java:comp/UserTransaction,
java:comp/TransactionManager etc). If you are using a transaction service provided by
your application server, you will generally also want to ensure that all resources are
managed by the server and exposed over JNDI. Spring Boot will attempt to auto-configure
JMS by looking for a ConnectionFactory at the JNDI path java:/JmsXA or
java:/XAConnectionFactory and you can use the
spring.datasource.jndi-name property
to configure your DataSource.
Mixing XA and non-XA JMS connections

When using JTA, the primary JMS ConnectionFactory bean will be XA aware and participate
in distributed transactions. In some situations you might want to process certain JMS
messages using a non-XA ConnectionFactory. For example, your JMS processing logic might
take longer than the XA timeout.
If you want to use a non-XA ConnectionFactory you can inject the
nonXaJmsConnectionFactory bean rather than the @Primary jmsConnectionFactory bean.
For consistency the jmsConnectionFactory bean is also provided using the bean alias
xaJmsConnectionFactory.
For example:
// Inject the primary (XA aware) ConnectionFactory
@Autowired
private ConnectionFactory defaultConnectionFactory;

// Inject the XA aware ConnectionFactory (uses the alias and injects the same as above)
@Autowired
@Qualifier("xaJmsConnectionFactory")
private ConnectionFactory xaConnectionFactory;

// Inject the non-XA aware ConnectionFactory
@Autowired
@Qualifier("nonXaJmsConnectionFactory")
private ConnectionFactory nonXaConnectionFactory;
Supporting an alternative embedded transaction manager

The XAConnectionFactoryWrapper
and XADataSourceWrapper interfaces
can be used to support alternative embedded transaction managers. The interfaces are
responsible for wrapping XAConnectionFactory and XADataSource beans and exposing them
as regular ConnectionFactory and DataSource beans which will transparently enroll in
the distributed transaction. DataSource and JMS auto-configuration will use JTA variants
as long as you have a JtaTransactionManager bean and appropriate XA wrapper beans
registered within your ApplicationContext.
The BitronixXAConnectionFactoryWrapper
and BitronixXADataSourceWrapper
provide good examples of how to write XA wrappers.
Chapter 33. Spring Integration

Spring Integration provides abstractions over messaging and also other transports such as
HTTP, TCP etc. If Spring Integration is available on your classpath it will be initialized
through the @EnableIntegration annotation. Message processing statistics will be
published over JMX if 'spring-integration-jmx' is also on the classpath. See the
IntegrationAutoConfiguration
class for more details.
Chapter 34. Monitoring and management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default Spring Boot will create an MBeanServer with bean id
‘mbeanServer’ and expose any of your beans that are annotated with Spring JMX
annotations (@ManagedResource, @ManagedAttribute, @ManagedOperation).
See the
JmxAutoConfiguration
class for more details.
Chapter 35. Testing

Spring Boot provides a number of useful tools for testing your application. The
spring-boot-starter-test POM provides Spring Test, JUnit, Hamcrest and Mockito
dependencies. There are also useful test utilities in the core spring-boot module under
the org.springframework.boot.test package.
Test scope dependencies

If you use the
spring-boot-starter-test ‘Starter POM’ (in the test scope), you will find
the following provided libraries:
	Spring Test — integration test support for Spring applications.
	JUnit — The de-facto standard for unit testing Java applications.
	Hamcrest — A library of matcher objects (also known as constraints or predicates)
allowing assertThat style JUnit assertions.
	Mockito — A Java mocking framework.

These are common libraries that we generally find useful when writing tests. You are free
to add additional test dependencies of your own if these don’t suit your needs.
Testing Spring applications

One of the major advantages of dependency injection is that it should make your code
easier to unit test. You can simply instantiate objects using the new operator without
even involving Spring. You can also use mock objects instead of real dependencies.
Often you need to move beyond ‘unit testing’ and start ‘integration testing’ (with
a Spring ApplicationContext actually involved in the process). It’s useful to be able
to perform integration testing without requiring deployment of your application or
needing to connect to other infrastructure.
The Spring Framework includes a dedicated test module for just such integration testing.
You can declare a dependency directly to org.springframework:spring-test or use the
spring-boot-starter-test ‘Starter POM’ to pull it in transitively.
If you have not used the spring-test module before you should start by reading the
relevant section of the Spring Framework reference
documentation.
Testing Spring Boot applications

A Spring Boot application is just a Spring ApplicationContext so nothing very special
has to be done to test it beyond what you would normally do with a vanilla Spring context.
One thing to watch out for though is that the external properties, logging and other
features of Spring Boot are only installed in the context by default if you use
SpringApplication to create it.
Spring Boot provides a @SpringApplicationConfiguration annotation as an alternative
to the standard spring-test @ContextConfiguration annotation. If you use
@SpringApplicationConfiguration to configure the ApplicationContext used in your
tests, it will be created via SpringApplication and you will get the additional Spring
Boot features.
For example:
@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = SampleDataJpaApplication.class)
public class CityRepositoryIntegrationTests {

 @Autowired
 CityRepository repository;

 // ...

}
Tip
The context loader guesses whether you want to test a web application or not (e.g.
with MockMVC) by looking for the @WebIntegrationTest or @WebAppConfiguration
annotations. (MockMVC and @WebAppConfiguration are part of spring-test).

If you want a web application to start up and listen on its normal port, so you can test
it with HTTP (e.g. using RestTemplate), annotate your test class (or one of its
superclasses) with @WebIntegrationTest. This can be very useful because it means you can
test the full stack of your application, but also inject its components into the test
class and use them to assert the internal state of the application after an HTTP
interaction. For example:
@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = SampleDataJpaApplication.class)
@WebIntegrationTest
public class CityRepositoryIntegrationTests {

 @Autowired
 CityRepository repository;

 RestTemplate restTemplate = new TestRestTemplate();

 // ... interact with the running server

}
Note
Spring’s test framework will cache application contexts between tests. Therefore,
as long as your tests share the same configuration, the time consuming process of starting
and stopping the server will only happen once, regardless of the number of tests that
actually run.

To change the port you can add environment properties to @WebIntegrationTest as colon-
or equals-separated name-value pairs, e.g. @WebIntegrationTest("server.port:9000").
Additionally you can set the server.port and management.port properties to 0
in order to run your integration tests using random ports. For example:
@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = MyApplication.class)
@WebIntegrationTest({"server.port=0", "management.port=0"})
public class SomeIntegrationTests {

 // ...

}
See the section called “Discover the HTTP port at runtime” for a description of how you can discover
the actual port that was allocated for the duration of the tests.
Using Spock to test Spring Boot applications

If you wish to use Spock to test a Spring Boot application you should add a dependency
on Spock’s spock-spring module to your application’s build. spock-spring integrates
Spring’s test framework into Spock.
Please note that you cannot use the @SpringApplicationConfiguration annotation that was
described above as Spock
does not find the
@ContextConfiguration meta-annotation. To work around this limitation, you should use
the @ContextConfiguration annotation directly and configure it to use the Spring
Boot specific context loader:
@ContextConfiguration(loader = SpringApplicationContextLoader.class)
class ExampleSpec extends Specification {

 // ...

}
Note
The annotations described above
can be used with Spock, i.e. you can annotate your Specification with
@WebIntegrationTest to suit the needs of your tests.

Test utilities

A few test utility classes are packaged as part of spring-boot that are generally
useful when testing your application.
ConfigFileApplicationContextInitializer

ConfigFileApplicationContextInitializer is an ApplicationContextInitializer that
can apply to your tests to load Spring Boot application.properties files. You can use
this when you don’t need the full features provided by @SpringApplicationConfiguration.
@ContextConfiguration(classes = Config.class,
 initializers = ConfigFileApplicationContextInitializer.class)
EnvironmentTestUtils

EnvironmentTestUtils allows you to quickly add properties to a
ConfigurableEnvironment or ConfigurableApplicationContext. Simply call it with
key=value strings:
EnvironmentTestUtils.addEnvironment(env, "org=Spring", "name=Boot");
OutputCapture

OutputCapture is a JUnit Rule that you can use to capture System.out and
System.err output. Simply declare the capture as a @Rule then use toString()
for assertions:
import org.junit.Rule;
import org.junit.Test;
import org.springframework.boot.test.OutputCapture;

import static org.hamcrest.Matchers.*;
import static org.junit.Assert.*;

public class MyTest {

	@Rule
	public OutputCapture capture = new OutputCapture();

	@Test
	public void testName() throws Exception {
		System.out.println("Hello World!");
		assertThat(capture.toString(), containsString("World"));
	}

}
TestRestTemplate

TestRestTemplate is a convenience subclass of Spring’s RestTemplate that is useful in
integration tests. You can get a vanilla template or one that sends Basic HTTP
authentication (with a username and password). In either case the template will behave
in a test-friendly way: not following redirects (so you can assert the response location),
ignoring cookies (so the template is stateless), and not throwing exceptions on
server-side errors. It is recommended, but not mandatory, to use Apache HTTP Client
(version 4.3.2 or better), and if you have that on your classpath the TestRestTemplate
will respond by configuring the client appropriately.
public class MyTest {

	RestTemplate template = new TestRestTemplate();

	@Test
	public void testRequest() throws Exception {
		HttpHeaders headers = template.getForEntity("http://myhost.com", String.class).getHeaders();
		assertThat(headers.getLocation().toString(), containsString("myotherhost"));
	}

}
Chapter 36. Developing auto-configuration and using conditions

If you work in a company that develops shared libraries, or if you work on an open-source
or commercial library, you might want to develop your own auto-configuration.
Auto-configuration classes can be bundled in external jars and still be picked-up by
Spring Boot.
Understanding auto-configured beans

Under the hood, auto-configuration is implemented with standard @Configuration classes.
Additional @Conditional annotations are used to constrain when the auto-configuration
should apply. Usually auto-configuration classes use @ConditionalOnClass and
@ConditionalOnMissingBean annotations. This ensures that auto-configuration only applies
when relevant classes are found and when you have not declared your own @Configuration.
You can browse the source code of spring-boot-autoconfigure to see the @Configuration
classes that we provide (see the META-INF/spring.factories file).
Locating auto-configuration candidates

Spring Boot checks for the presence of a META-INF/spring.factories file within your
published jar. The file should list your configuration classes under the
EnableAutoConfiguration key.
org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
com.mycorp.libx.autoconfigure.LibXAutoConfiguration,\
com.mycorp.libx.autoconfigure.LibXWebAutoConfiguration
You can use the
@AutoConfigureAfter or
@AutoConfigureBefore
annotations if your configuration needs to be applied in a specific order. For example, if
you provide web-specific configuration, your class may need to be applied after
WebMvcAutoConfiguration.
Condition annotations

You almost always want to include one or more @Conditional annotations on your
auto-configuration class. The @ConditionalOnMissingBean is one common example that is
used to allow developers to ‘override’ auto-configuration if they are not happy with
your defaults.
Spring Boot includes a number of @Conditional annotations that you can reuse in your own
code by annotating @Configuration classes or individual @Bean methods.
Class conditions

The @ConditionalOnClass and @ConditionalOnMissingClass annotations allows
configuration to be included based on the presence or absence of specific classes. Due to
the fact that annotation metadata is parsed using ASM you can
actually use the value attribute to refer to the real class, even though that class
might not actually appear on the running application classpath. You can also use the
name attribute if you prefer to specify the class name using a String value.
Bean conditions

The @ConditionalOnBean and @ConditionalOnMissingBean annotations allow configurations
to be included based on the presence or absence of specific beans. You can use the value
attribute to specify beans by type, or name to specify beans by name. The search
attribute allows you to limit the ApplicationContext hierarchy that should be considered
when searching for beans.
Note
@Conditional annotations are processed when @Configuration classes are parsed.
Auto-configured @Configuration is always parsed last (after any user defined beans),
however, if you are using these annotations on regular @Configuration classes, care must
be taken not to refer to bean definitions that have not yet been created.

Property conditions

The @ConditionalOnProperty annotation allows configuration to be included based on a
Spring Environment property. Use the prefix and name attributes to specify the
property that should be checked. By default any property that exists and is not equal to
false will be matched. You can also create more advanced checks using the havingValue
and matchIfMissing attributes.
Resource conditions

The @ConditionalOnResource annotation allows configuration to be included only when a
specific resource is present. Resources can be specified using the usual Spring
conventions, for example, file:/home/user/test.dat.
Web application conditions

The @ConditionalOnWebApplication and @ConditionalOnNotWebApplication annotations
allow configuration to be included depending on whether the application is a 'web
application'. A web application is any application that is using a Spring
WebApplicationContext, defines a session scope or has a StandardServletEnvironment.
SpEL expression conditions

The @ConditionalOnExpression annotation allows configuration to be included based on the
result of a SpEL expression.
Chapter 37. WebSockets

Spring Boot provides WebSockets auto-configuration for embedded Tomcat (8 and 7), Jetty 9
and Undertow. If you’re deploying a war file to a standalone container, Spring Boot
assumes that the container will be responsible for the configuration of its WebSocket
support.
Spring Framework provides rich WebSocket support that can
be easily accessed via the spring-boot-starter-websocket module.
Chapter 38. What to read next

If you want to learn more about any of the classes discussed in this section you can
check out the Spring Boot API documentation or you can browse the
source code directly. If you have specific questions, take a look at the
how-to section.
If you are comfortable with Spring Boot’s core features, you can carry on and read
about production-ready features.
Part V. Spring Boot Actuator: Production-ready features

Spring Boot includes a number of additional features to help you monitor and manage your
application when it’s pushed to production. You can choose to manage and monitor your
application using HTTP endpoints, with JMX or even by remote shell (SSH or Telnet).
Auditing, health and metrics gathering can be automatically applied to your application.

Chapter 39. Enabling production-ready features

The spring-boot-actuator module provides all of
Spring Boot’s production-ready features. The simplest way to enable the features is to add
a dependency to the spring-boot-starter-actuator ‘Starter POM’.
Definition of Actuator

An actuator is a manufacturing term, referring to a mechanical device for moving or
controlling something. Actuators can generate a large amount of motion from a small
change.

To add the actuator to a Maven based project, add the following ‘starter’
dependency:
<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
</dependencies>
For Gradle, use the declaration:
dependencies {
 compile("org.springframework.boot:spring-boot-starter-actuator")
}
Chapter 40. Endpoints

Actuator endpoints allow you to monitor and interact with your application. Spring Boot
includes a number of built-in endpoints and you can also add your own. For example the
health endpoint provides basic application health information.
The way that endpoints are exposed will depend on the type of technology that you choose.
Most applications choose HTTP monitoring, where the ID of the endpoint is mapped
to a URL. For example, by default, the health endpoint will be mapped to /health.
The following endpoints are available:
	ID	Description	Sensitive
	autoconfig
	Displays an auto-configuration report showing all auto-configuration candidates and the
 reason why they ‘were’ or ‘were not’ applied.
	true

	beans
	Displays a complete list of all the Spring beans in your application.
	true

	configprops
	Displays a collated list of all @ConfigurationProperties.
	true

	dump
	Performs a thread dump.
	true

	env
	Exposes properties from Spring’s ConfigurableEnvironment.
	true

	health
	Shows application health information (a simple ‘status’ when accessed over an
unauthenticated connection or full message details when authenticated).
	false

	info
	Displays arbitrary application info.
	false

	metrics
	Shows ‘metrics’ information for the current application.
	true

	mappings
	Displays a collated list of all @RequestMapping paths.
	true

	shutdown
	Allows the application to be gracefully shutdown (not enabled by default).
	true

	trace
	Displays trace information (by default the last few HTTP requests).
	true

Note
Depending on how an endpoint is exposed, the sensitive property may be used as
a security hint. For example, sensitive endpoints will require a username/password when
they are accessed over HTTP (or simply disabled if web security is not enabled).

Customizing endpoints

Endpoints can be customized using Spring properties. You can change if an endpoint is
enabled, if it is considered sensitive and even its id.
For example, here is an application.properties that changes the sensitivity and id
of the beans endpoint and also enables shutdown.
endpoints.beans.id=springbeans
endpoints.beans.sensitive=false
endpoints.shutdown.enabled=true
Note
The prefix ‟endpoints + . + name” is used to uniquely identify the endpoint
that is being configured.

By default, all endpoints except for shutdown are enabled. If you prefer to
specifically “opt-in” endpoint enablement you can use the endpoints.enabled property.
For example, the following will disable all endpoints except for info:
endpoints.enabled=false
endpoints.info.enabled=true
Health information

Health information can be used to check the status of your running application. It is
often used by monitoring software to alert someone if a production system goes down.
The default information exposed by the health endpoint depends on how it is accessed.
For an insecure unauthenticated connection a simple ‘status’ message is returned, for a
secure or authenticated connection additional details are also displayed (see
the section called “HTTP health endpoint access restrictions” for HTTP details).
Health information is collected from all
HealthIndicator beans defined
in your ApplicationContext. Spring Boot includes a number of auto-configured
HealthIndicators and you can also write your own.
Security with HealthIndicators

Information returned by HealthIndicators is often somewhat sensitive in nature. For
example, you probably don’t want to publish details of your database server to the
world. For this reason, by default, only the health status is exposed over an
unauthenticated HTTP connection. If you are happy for complete health information to always
be exposed you can set endpoints.health.sensitive to false.
Health responses are also cached to prevent “denial of service” attacks. Use the
endpoints.health.time-to-live property if you want to change the default cache period
of 1000 milliseconds.
Auto-configured HealthIndicators

The following HealthIndicators are auto-configured by Spring Boot when appropriate:
	Name	Description
	DiskSpaceHealthIndicator
	Checks for low disk space.

	DataSourceHealthIndicator
	Checks that a connection to DataSource can be obtained.

	MongoHealthIndicator
	Checks that a Mongo database is up.

	RabbitHealthIndicator
	Checks that a Rabbit server is up.

	RedisHealthIndicator
	Checks that a Redis server is up.

	SolrHealthIndicator
	Checks that a Solr server is up.

Writing custom HealthIndicators

To provide custom health information you can register Spring beans that implement the
HealthIndicator interface.
You need to provide an implementation of the health() method and return a Health
response. The Health response should include a status and can optionally include
additional details to be displayed.
import org.springframework.boot.actuate.health.HealthIndicator;
import org.springframework.stereotype.Component;

@Component
public class MyHealth implements HealthIndicator {

 @Override
 public Health health() {
 int errorCode = check(); // perform some specific health check
 if (errorCode != 0) {
 return Health.down().withDetail("Error Code", errorCode).build();
 }
 return Health.up().build();
 }

}
In addition to Spring Boot’s predefined Status
types, it is also possible for Health to return a custom Status that represents a
new system state. In such cases a custom implementation of the
HealthAggregator
interface also needs to be provided, or the default implementation has to be configured
using the management.health.status.order configuration property.
For example, assuming a new Status with code FATAL is being used in one of your
HealthIndicator implementations. To configure the severity order add the following
to your application properties:
management.health.status.order=DOWN, OUT_OF_SERVICE, UNKNOWN, UP
You might also want to register custom status mappings with the HealthMvcEndpoint
if you access the health endpoint over HTTP. For example you could map FATAL to
HttpStatus.SERVICE_UNAVAILABLE.
Custom application info information

You can customize the data exposed by the info endpoint by setting info.* Spring
properties. All Environment properties under the info key will be automatically
exposed. For example, you could add the following to your application.properties:
info.app.name=MyService
info.app.description=My awesome service
info.app.version=1.0.0
Automatically expand info properties at build time

Rather than hardcoding some properties that are also specified in your project’s build
configuration, you can automatically expand info properties using the existing build
configuration instead. This is possible in both Maven and Gradle.
Automatic property expansion using Maven

You can automatically expand info properties from the Maven project using resource
filtering. If you use the spring-boot-starter-parent you can then refer to your
Maven ‘project properties’ via @..@ placeholders, e.g.
project.artifactId=myproject
project.name=Demo
project.version=X.X.X.X
project.description=Demo project for info endpoint
info.build.artifact=@project.artifactId@
info.build.name=@project.name@
info.build.description=@project.description@
info.build.version=@project.version@
Note
In the above example we used project.* to set some values to be used as
fallbacks if the Maven resource filtering has not been switched on for some reason.

Tip
The spring-boot:run maven goal adds src/main/resources directly to the classpath
(for hot reloading purposes). This circumvents the resource filtering and this feature.
You can use the exec:java goal instead or customize the plugin’s configuration, see the
plugin usage page for more details.

If you don’t use the starter parent, in your pom.xml you need (inside the <build/>
element):
<resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
</resources>
and (inside <plugins/>):
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <delimiters>
 <delimiter>@</delimiter>
 </delimiters>
 </configuration>
</plugin>
Automatic property expansion using Gradle

You can automatically expand info properties from the Gradle project by configuring
the Java plugin’s processResources task to do so:
processResources {
 expand(project.properties)
}
You can then refer to your Gradle project’s properties via placeholders, e.g.
info.build.name=${name}
info.build.description=${description}
info.build.version=${version}
Note
Gradle’s expand method uses Groovy’s SimpleTemplateEngine which transforms
${..} tokens. The ${..} style conflicts with Spring’s own property placeholder
mechanism. To use Spring property placeholders together with automatic expansion
the Spring property placeholders need to be escaped like \${..}.

Git commit information

Another useful feature of the info endpoint is its ability to publish information
about the state of your git source code repository when the project was built. If a
git.properties file is contained in your jar the git.branch and git.commit
properties will be loaded.
For Maven users the spring-boot-starter-parent POM includes a pre-configured plugin to
generate a git.properties file. Simply add the following declaration to your POM:
<build>
 <plugins>
 <plugin>
 <groupId>pl.project13.maven</groupId>
 <artifactId>git-commit-id-plugin</artifactId>
 </plugin>
 </plugins>
</build>
A similar gradle-git plugin is also available
for Gradle users, although a little more work is required to generate the properties file.
Chapter 41. Monitoring and management over HTTP

If you are developing a Spring MVC application, Spring Boot Actuator will auto-configure
all enabled endpoints to be exposed over HTTP. The default convention is to use the
id of the endpoint as the URL path. For example, health is exposed as /health.
Securing sensitive endpoints

If you add ‘Spring Security’ to your project, all sensitive endpoints exposed over HTTP
will be protected. By default ‘basic’ authentication will be used with the username
user and a generated password (which is printed on the console when the application
starts).
Tip
Generated passwords are logged as the application starts. Search for ‘Using default
security password’.

You can use Spring properties to change the username and password and to change the
security role required to access the endpoints. For example, you might set the following
in your application.properties:
security.user.name=admin
security.user.password=secret
management.security.role=SUPERUSER
Tip
If you don’t use Spring Security and your HTTP endpoints are exposed publicly,
you should carefully consider which endpoints you enable. See
the section called “Customizing endpoints” for details of how you can set
endpoints.enabled to false then “opt-in” only specific endpoints.

Customizing the management server context path

Sometimes it is useful to group all management endpoints under a single path. For example,
your application might already use /info for another purpose. You can use the
management.context-path property to set a prefix for your management endpoint:
management.context-path=/manage
The application.properties example above will change the endpoint from /{id} to
/manage/{id} (e.g. /manage/info).
Customizing the management server port

Exposing management endpoints using the default HTTP port is a sensible choice for cloud
based deployments. If, however, your application runs inside your own data center you
may prefer to expose endpoints using a different HTTP port.
The management.port property can be used to change the HTTP port.
management.port=8081
Since your management port is often protected by a firewall, and not exposed to the public
you might not need security on the management endpoints, even if your main application is
secure. In that case you will have Spring Security on the classpath, and you can disable
management security like this:
management.security.enabled=false
(If you don’t have Spring Security on the classpath then there is no need to explicitly
disable the management security in this way, and it might even break the application.)
Customizing the management server address

You can customize the address that the management endpoints are available on by
setting the management.address property. This can be useful if you want to
listen only on an internal or ops-facing network, or to only listen for connections from
localhost.
Note
You can only listen on a different address if the port is different to the
main server port.

Here is an example application.properties that will not allow remote management
connections:
management.port=8081
management.address=127.0.0.1
Disabling HTTP endpoints

If you don’t want to expose endpoints over HTTP you can set the management port to -1:
management.port=-1
HTTP health endpoint access restrictions

The information exposed by the health endpoint varies depending on whether or not it’s
accessed anonymously. By default, when accessed anonymously, any details about the
server’s health are hidden and the endpoint will simply indicate whether or not the server
is up or down. Furthermore, when accessed anonymously, the response is cached for a
configurable period to prevent the endpoint being used in a denial of service attack.
The endpoints.health.time-to-live property is used to configure the caching period in
milliseconds. It defaults to 1000, i.e. one second.
The above-described restrictions can be disabled, thereby allowing anonymous users full
access to the health endpoint. To do so, set endpoints.health.sensitive to false.
Chapter 42. Monitoring and management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default Spring Boot will expose management endpoints as JMX MBeans
under the org.springframework.boot domain.
Customizing MBean names

The name of the MBean is usually generated from the id of the endpoint. For example
the health endpoint is exposed as org.springframework.boot/Endpoint/HealthEndpoint.
If your application contains more than one Spring ApplicationContext you may find that
names clash. To solve this problem you can set the endpoints.jmx.uniqueNames property
to true so that MBean names are always unique.
You can also customize the JMX domain under which endpoints are exposed. Here is an
example application.properties:
endpoints.jmx.domain=myapp
endpoints.jmx.uniqueNames=true
Disabling JMX endpoints

If you don’t want to expose endpoints over JMX you can set the spring.jmx.enabled
property to false:
spring.jmx.enabled=false
Using Jolokia for JMX over HTTP

Jolokia is a JMX-HTTP bridge giving an alternative method of accessing JMX beans. To
use Jolokia, simply include a dependency to org.jolokia:jolokia-core. For example,
using Maven you would add the following:
<dependency>
 <groupId>org.jolokia</groupId>
 <artifactId>jolokia-core</artifactId>
 </dependency>
Jolokia can then be accessed using /jolokia on your management HTTP server.
Customizing Jolokia

Jolokia has a number of settings that you would traditionally configure using servlet
parameters. With Spring Boot you can use your application.properties, simply prefix the
parameter with jolokia.config.:
jolokia.config.debug=true
Disabling Jolokia

If you are using Jolokia but you don’t want Spring Boot to configure it, simply set the
endpoints.jolokia.enabled property to false:
endpoints.jolokia.enabled=false
Chapter 43. Monitoring and management using a remote shell

Spring Boot supports an integrated Java shell called ‘CRaSH’. You can use CRaSH to
ssh or telnet into your running application. To enable remote shell support add a
dependency to spring-boot-starter-remote-shell:
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-remote-shell</artifactId>
 </dependency>
Tip
If you want to also enable telnet access you will additionally need a dependency
on org.crsh:crsh.shell.telnet.

Connecting to the remote shell

By default the remote shell will listen for connections on port 2000. The default user
is user and the default password will be randomly generated and displayed in the log
output. If your application is using Spring Security, the shell will use
the same configuration by default. If not, a simple
authentication will be applied and you should see a message like this:
Using default password for shell access: ec03e16c-4cf4-49ee-b745-7c8255c1dd7e
Linux and OSX users can use ssh to connect to the remote shell, Windows users can
download and install PuTTY.
$ ssh -p 2000 user@localhost

user@localhost's password:
 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v1.2.8.RELEASE) on myhost
Type help for a list of commands. Spring Boot provides metrics, beans, autoconfig
and endpoint commands.
Remote shell credentials

You can use the shell.auth.simple.user.name and shell.auth.simple.user.password properties
to configure custom connection credentials. It is also possible to use a
‘Spring Security’ AuthenticationManager to handle login duties. See the
CrshAutoConfiguration
and ShellProperties
Javadoc for full details.
Extending the remote shell

The remote shell can be extended in a number of interesting ways.
Remote shell commands

You can write additional shell commands using Groovy or Java (see the CRaSH documentation
for details). By default Spring Boot will search for commands in the following locations:
	classpath*:/commands/**
	classpath*:/crash/commands/**

Tip
You can change the search path by settings a shell.command-path-patterns property.

Here is a simple ‘hello world’ command that could be loaded from
src/main/resources/commands/hello.groovy
package commands

import org.crsh.cli.Usage
import org.crsh.cli.Command

class hello {

 @Usage("Say Hello")
 @Command
 def main(InvocationContext context) {
 return "Hello"
 }

}
Spring Boot adds some additional attributes to InvocationContext that you can access
from your command:
	Attribute Name	Description
	spring.boot.version
	The version of Spring Boot

	spring.version
	The version of the core Spring Framework

	spring.beanfactory
	Access to the Spring BeanFactory

	spring.environment
	Access to the Spring Environment

Remote shell plugins

In addition to new commands, it is also possible to extend other CRaSH shell features.
All Spring Beans that extend org.crsh.plugin.CRaSHPlugin will be automatically
registered with the shell.
For more information please refer to the CRaSH reference
documentation.
Chapter 44. Metrics

Spring Boot Actuator includes a metrics service with ‘gauge’ and ‘counter’ support.
A ‘gauge’ records a single value; and a ‘counter’ records a delta (an increment or
decrement). Spring Boot Actuator also provides a
PublicMetrics interface that
you can implement to expose metrics that you cannot record via one of those two
mechanisms. Look at SystemPublicMetrics
for an example.
Metrics for all HTTP requests are automatically recorded, so if you hit the metrics
endpoint you should see a response similar to this:
{
 "counter.status.200.root": 20,
 "counter.status.200.metrics": 3,
 "counter.status.200.star-star": 5,
 "counter.status.401.root": 4,
 "gauge.response.star-star": 6,
 "gauge.response.root": 2,
 "gauge.response.metrics": 3,
 "classes": 5808,
 "classes.loaded": 5808,
 "classes.unloaded": 0,
 "heap": 3728384,
 "heap.committed": 986624,
 "heap.init": 262144,
 "heap.used": 52765,
 "mem": 986624,
 "mem.free": 933858,
 "processors": 8,
 "threads": 15,
 "threads.daemon": 11,
 "threads.peak": 15,
 "uptime": 494836,
 "instance.uptime": 489782,
 "datasource.primary.active": 5,
 "datasource.primary.usage": 0.25
}
Here we can see basic memory, heap, class loading, processor and thread pool
information along with some HTTP metrics. In this instance the root (‘/’) and /metrics
URLs have returned HTTP 200 responses 20 and 3 times respectively. It also appears
that the root URL returned HTTP 401 (unauthorized) 4 times. The double asterix (star-star)
comes from a request matched by Spring MVC as /** (normally a static resource).
The gauge shows the last response time for a request. So the last request to root took
2ms to respond and the last to /metrics took 3ms.
Note
In this example we are actually accessing the endpoint over HTTP using the
/metrics URL, this explains why metrics appears in the response.

System metrics

The following system metrics are exposed by Spring Boot:
	The total system memory in KB (mem)
	The amount of free memory in KB (mem.free)
	The number of processors (processors)
	The system uptime in milliseconds (uptime)
	The application context uptime in milliseconds (instance.uptime)
	The average system load (systemload.average)
	Heap information in KB (heap, heap.committed, heap.init, heap.used)
	Thread information (threads, thread.peak, thead.daemon)
	Class load information (classes, classes.loaded, classes.unloaded)
	Garbage collection information (gc.xxx.count, gc.xxx.time)

DataSource metrics

The following metrics are exposed for each supported DataSource defined in your
application:
	The number of active connections (datasource.xxx.active)
	The current usage of the connection pool (datasource.xxx.usage).

All data source metrics share the datasource. prefix. The prefix is further qualified
for each data source:
	If the data source is the primary data source (that is either the only available data
source or the one flagged @Primary amongst the existing ones), the prefix is
datasource.primary.
	If the data source bean name ends with DataSource, the prefix is the name of the bean
without DataSource (i.e. datasource.batch for batchDataSource).
	In all other cases, the name of the bean is used.

It is possible to override part or all of those defaults by registering a bean with a
customized version of DataSourcePublicMetrics. By default, Spring Boot provides metadata
for all supported data sources; you can add additional DataSourcePoolMetadataProvider
beans if your favorite data source isn’t supported out of the box. See
DataSourcePoolMetadataProvidersConfiguration for examples.
Tomcat session metrics

If you are using Tomcat as your embedded servlet container, session metrics will
automatically be exposed. The httpsessions.active and httpsessions.max keys provide
the number of active and maximum sessions.
Recording your own metrics

To record your own metrics inject a
CounterService and/or
GaugeService into
your bean. The CounterService exposes increment, decrement and reset methods; the
GaugeService provides a submit method.
Here is a simple example that counts the number of times that a method is invoked:
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.actuate.metrics.CounterService;
import org.springframework.stereotype.Service;

@Service
public class MyService {

 private final CounterService counterService;

 @Autowired
 public MyService(CounterService counterService) {
 this.counterService = counterService;
 }

 public void exampleMethod() {
 this.counterService.increment("services.system.myservice.invoked");
 }

}
Tip
You can use any string as a metric name but you should follow guidelines of your chosen
store/graphing technology. Some good guidelines for Graphite are available on
Matt Aimonetti’s Blog.

Adding your own public metrics

To add additional metrics that are computed every time the metrics endpoint is invoked,
simply register additional PublicMetrics implementation bean(s). By default, all such
beans are gathered by the endpoint. You can easily change that by defining your own
MetricsEndpoint.
Metric repositories

Metric service implementations are usually bound to a
MetricRepository.
A MetricRepository is responsible for storing and retrieving metric information. Spring
Boot provides an InMemoryMetricRepository and a RedisMetricRepository out of the
box (the in-memory repository is the default) but you can also write your own. The
MetricRepository interface is actually composed of higher level MetricReader and
MetricWriter interfaces. For full details refer to the
Javadoc.
There’s nothing to stop you hooking a MetricRepository with back-end storage directly
into your app, but we recommend using the default InMemoryMetricRepository
(possibly with a custom Map instance if you are worried about heap usage) and
populating a back-end repository through a scheduled export job. In that way you get
some buffering in memory of the metric values and you can reduce the network
chatter by exporting less frequently or in batches. Spring Boot provides
an Exporter interface and a few basic implementations for you to get started with that.
Dropwizard Metrics

User of the Dropwizard ‘Metrics’ library will
automatically find that Spring Boot metrics are published to
com.codahale.metrics.MetricRegistry. A default com.codahale.metrics.MetricRegistry
Spring bean will be created when you declare a dependency to the
io.dropwizard.metrics:metrics-core library; you can also register you own @Bean
instance if you need customizations. Metrics from the MetricRegistry are also
automatically exposed via the /metrics endpoint.
Users can create Dropwizard metrics by prefixing their metric names with the appropriate
type (e.g. histogram.*, meter.*).
Message channel integration

If the ‘Spring Messaging’ jar is on your classpath a MessageChannel called
metricsChannel is automatically created (unless one already exists). All metric update
events are additionally published as ‘messages’ on that channel. Additional analysis or
actions can be taken by clients subscribing to that channel.
Chapter 45. Auditing

Spring Boot Actuator has a flexible audit framework that will publish events once Spring
Security is in play (‘authentication success’, ‘failure’ and ‘access denied’
exceptions by default). This can be very useful for reporting, and also to implement a
lock-out policy based on authentication failures.
You can also choose to use the audit services for your own business events. To do that
you can either inject the existing AuditEventRepository into your own components and
use that directly, or you can simply publish AuditApplicationEvent via the Spring
ApplicationEventPublisher (using ApplicationEventPublisherAware).
Chapter 46. Tracing

Tracing is automatically enabled for all HTTP requests. You can view the trace endpoint
and obtain basic information about the last few requests:
[{
 "timestamp": 1394343677415,
 "info": {
 "method": "GET",
 "path": "/trace",
 "headers": {
 "request": {
 "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
 "Connection": "keep-alive",
 "Accept-Encoding": "gzip, deflate",
 "User-Agent": "Mozilla/5.0 Gecko/Firefox",
 "Accept-Language": "en-US,en;q=0.5",
 "Cookie": "_ga=GA1.1.827067509.1390890128; ..."
 "Authorization": "Basic ...",
 "Host": "localhost:8080"
 },
 "response": {
 "Strict-Transport-Security": "max-age=31536000 ; includeSubDomains",
 "X-Application-Context": "application:8080",
 "Content-Type": "application/json;charset=UTF-8",
 "status": "200"
 }
 }
 }
},{
 "timestamp": 1394343684465,
 ...
}]
Custom tracing

If you need to trace additional events you can inject a
TraceRepository into your
Spring beans. The add method accepts a single Map structure that will be converted to
JSON and logged.
By default an InMemoryTraceRepository will be used that stores the last 100 events. You
can define your own instance of the InMemoryTraceRepository bean if you need to expand
the capacity. You can also create your own alternative TraceRepository implementation
if needed.
Chapter 47. Process monitoring

In Spring Boot Actuator you can find a couple of classes to create files that are useful
for process monitoring:
	ApplicationPidFileWriter creates a file containing the application PID (by default in
the application directory with the file name application.pid).
	EmbeddedServerPortFileWriter creates a file (or files) containing the ports of the
embedded server (by default in the application directory with the file name
application.port).

These writers are not activated by default, but you can enable them in one of the ways
described below.
Extend configuration

In META-INF/spring.factories file you have to activate the listener(s):
org.springframework.context.ApplicationListener=\
org.springframework.boot.actuate.system.ApplicationPidFileWriter,
org.springframework.boot.actuate.system.EmbeddedServerPortFileWriter
Programmatically

You can also activate a listener by invoking the SpringApplication.addListeners(…​)
method and passing the appropriate Writer object. This method also allows you to
customize the file name and path via the Writer constructor.
Chapter 48. What to read next

If you want to explore some of the concepts discussed in this chapter, you can take a
look at the actuator sample applications. You also
might want to read about graphing tools such as Graphite.
Otherwise, you can continue on, to read about ‘cloud deployment options’ or jump ahead
for some in-depth information about Spring Boot’s
build tool plugins.
Part VI. Deploying to the cloud

Spring Boot’s executable jars are ready-made for most popular cloud PaaS
(platform-as-a-service) providers. These providers tend to require that you
“bring your own container”; they manage application processes (not Java applications
specifically), so they need some intermediary layer that adapts your application to the
cloud’s notion of a running process.
Two popular cloud providers, Heroku and Cloud Foundry, employ a “buildpack” approach.
The buildpack wraps your deployed code in whatever is needed to start your
application: it might be a JDK and a call to java, it might be an embedded webserver,
or it might be a full-fledged application server. A buildpack is pluggable, but ideally
you should be able to get by with as few customizations to it as possible.
This reduces the footprint of functionality that is not under your control. It minimizes
divergence between development and production environments.
Ideally, your application, like a Spring Boot executable jar, has everything that it needs
to run packaged within it.
In this section we’ll look at what it takes to get the
simple application that we
developed in the “Getting Started” section up and running in the Cloud.

Chapter 49. Cloud Foundry

Cloud Foundry provides default buildpacks that come into play if no other buildpack is
specified. The Cloud Foundry Java buildpack
has excellent support for Spring applications, including Spring Boot. You can deploy
stand-alone executable jar applications, as well as traditional .war packaged
applications.
Once you’ve built your application (using, for example, mvn clean package) and
installed the cf
command line tool, simply deploy your application using the cf push command as follows,
substituting the path to your compiled .jar. Be sure to have
logged in with your
cf command line client before pushing an application.
$ cf push acloudyspringtime -p target/demo-0.0.1-SNAPSHOT.jar
See the cf push
documentation for more options. If there is a Cloud Foundry
manifest.yml
file present in the same directory, it will be consulted.
Note
Here we are substituting acloudyspringtime for whatever value you give cf
as the name of your application.

At this point cf will start uploading your application:
Uploading acloudyspringtime... OK
Preparing to start acloudyspringtime... OK
-----> Downloaded app package (8.9M)
-----> Java Buildpack source: system
-----> Downloading Open JDK 1.7.0_51 from .../x86_64/openjdk-1.7.0_51.tar.gz (1.8s)
 Expanding Open JDK to .java-buildpack/open_jdk (1.2s)
-----> Downloading Spring Auto Reconfiguration from 0.8.7 .../auto-reconfiguration-0.8.7.jar (0.1s)
-----> Uploading droplet (44M)
Checking status of app 'acloudyspringtime'...
 0 of 1 instances running (1 starting)
 ...
 0 of 1 instances running (1 down)
 ...
 0 of 1 instances running (1 starting)
 ...
 1 of 1 instances running (1 running)

App started
Congratulations! The application is now live!
It’s easy to then verify the status of the deployed application:
$ cf apps
Getting applications in ...
OK

name requested state instances memory disk urls
...
acloudyspringtime started 1/1 512M 1G acloudyspringtime.cfapps.io
...
Once Cloud Foundry acknowledges that your application has been deployed, you should be
able to hit the application at the URI given, in this case
acloudyspringtime.cfapps.io/.
Binding to services

By default, metadata about the running application as well as service connection
information is exposed to the application as environment variables (for example:
$VCAP_SERVICES). This architecture decision is due to Cloud Foundry’s polyglot
(any language and platform can be supported as a buildpack) nature; process-scoped
environment variables are language agnostic.
Environment variables don’t always make for the easiest API so Spring Boot automatically
extracts them and flattens the data into properties that can be accessed through
Spring’s Environment abstraction:
@Component
class MyBean implements EnvironmentAware {

 private String instanceId;

 @Override
 public void setEnvironment(Environment environment) {
 this.instanceId = environment.getProperty("vcap.application.instance_id");
 }

 // ...

}
All Cloud Foundry properties are prefixed with vcap. You can use vcap properties to
access application information (such as the public URL of the application) and service
information (such as database credentials). See VcapApplicationListener Javdoc for
complete details.
Tip
The Spring Cloud Connectors project
is a better fit for tasks such as configuring a DataSource. Spring Boot includes
auto-configuration support and a spring-boot-starter-cloud-connectors starter POM.

Chapter 50. Heroku

Heroku is another popular PaaS platform. To customize Heroku builds, you provide a
Procfile, which provides the incantation required to deploy an application. Heroku
assigns a port for the Java application to use and then ensures that routing to the
external URI works.
You must configure your application to listen on the correct port. Here’s the Procfile
for our starter REST application:
web: java -Dserver.port=$PORT -jar target/demo-0.0.1-SNAPSHOT.jar
Spring Boot makes -D arguments available as properties accessible from a Spring
Environment instance. The server.port configuration property is fed to the embedded
Tomcat, Jetty or Undertow instance which then uses it when it starts up. The $PORT
environment variable is assigned to us by the Heroku PaaS.
Heroku by default will use Java 1.8. This is fine as long as your Maven or Gradle build
is set to use the same version (Maven users can use the java.version property). If you
want to use JDK 1.7, create a new file adjacent to your pom.xml and Procfile,
called system.properties. In this file add the following:
java.runtime.version=1.7
This should be everything you need. The most common workflow for Heroku deployments is to
git push the code to production.
$ git push heroku master

Initializing repository, done.
Counting objects: 95, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (78/78), done.
Writing objects: 100% (95/95), 8.66 MiB | 606.00 KiB/s, done.
Total 95 (delta 31), reused 0 (delta 0)

-----> Java app detected
-----> Installing OpenJDK 1.8... done
-----> Installing Maven 3.3.1... done
-----> Installing settings.xml... done
-----> Executing: mvn -B -DskipTests=true clean install

 [INFO] Scanning for projects...
 Downloading: http://repo.spring.io/...
 Downloaded: http://repo.spring.io/... (818 B at 1.8 KB/sec)

 Downloaded: http://s3pository.heroku.com/jvm/... (152 KB at 595.3 KB/sec)
 [INFO] Installing /tmp/build_0c35a5d2-a067-4abc-a232-14b1fb7a8229/target/...
 [INFO] Installing /tmp/build_0c35a5d2-a067-4abc-a232-14b1fb7a8229/pom.xml ...
 [INFO] --
 [INFO] BUILD SUCCESS
 [INFO] --
 [INFO] Total time: 59.358s
 [INFO] Finished at: Fri Mar 07 07:28:25 UTC 2014
 [INFO] Final Memory: 20M/493M
 [INFO] --

-----> Discovering process types
 Procfile declares types -> web

-----> Compressing... done, 70.4MB
-----> Launching... done, v6
 http://agile-sierra-1405.herokuapp.com/ deployed to Heroku

To git@heroku.com:agile-sierra-1405.git
 * [new branch] master -> master
Your application should now be up and running on Heroku.
Chapter 51. Openshift

Openshift is the RedHat public (and enterprise) PaaS solution.
Like Heroku, it works by running scripts triggered by git commits, so you can script
the launching of a Spring Boot application in pretty much any way you like as long as the
Java runtime is available (which is a standard feature you can ask for at Openshift).
To do this you can use the
DIY Cartridge and hooks in your
repository under .openshift/action_scripts:
The basic model is to:
	Ensure Java and your build tool are installed remotely, e.g. using a pre_build hook
(Java and Maven are installed by default, Gradle is not)
	Use a build hook to build your jar (using Maven or Gradle), e.g.
#!/bin/bash
cd $OPENSHIFT_REPO_DIR
mvn package -s .openshift/settings.xml -DskipTests=true

	Add a start hook that calls java -jar …​
#!/bin/bash
cd $OPENSHIFT_REPO_DIR
nohup java -jar target/*.jar --server.port=${OPENSHIFT_DIY_PORT} --server.address=${OPENSHIFT_DIY_IP} &

	Use a stop hook (since the start is supposed to return cleanly), e.g.
#!/bin/bash
source $OPENSHIFT_CARTRIDGE_SDK_BASH
PID=$(ps -ef | grep java.*\.jar | grep -v grep | awk '{ print $2 }')
if [-z "$PID"]
then
 client_result "Application is already stopped"
else
 kill $PID
fi

	Embed service bindings from environment variables provided by the platform
in your application.properties, e.g.
spring.datasource.url: jdbc:mysql://${OPENSHIFT_MYSQL_DB_HOST}:${OPENSHIFT_MYSQL_DB_PORT}/${OPENSHIFT_APP_NAME}
spring.datasource.username: ${OPENSHIFT_MYSQL_DB_USERNAME}
spring.datasource.password: ${OPENSHIFT_MYSQL_DB_PASSWORD}

There’s a blog on running
Gradle in Openshift on their website that will get you started with a gradle build to
run the app. A bug in Gradle currently
prevents you from using Gradle newer than 1.6.
Chapter 52. Google App Engine

Google App Engine is tied to the Servlet 2.5 API, so you can’t deploy a Spring Application
there without some modifications. See the Servlet 2.5 section
of this guide.
Chapter 53. What to read next

Check out the Cloud Foundry, Heroku
and Openshift web sites for more information about the kinds of
features that a PaaS can offer. These are just three of the most popular Java PaaS
providers, since Spring Boot is so amenable to cloud-based deployment you’re free to
consider other providers as well.
The next section goes on to cover the Spring Boot CLI;
or you can jump ahead to read about
build tool plugins.
Part VII. Spring Boot CLI

The Spring Boot CLI is a command line tool that can be used if you want to quickly
develop with Spring. It allows you to run Groovy scripts, which means that you have a
familiar Java-like syntax, without so much boilerplate code. You can also bootstrap
a new project or write your own command for it.

Chapter 54. Installing the CLI

The Spring Boot CLI can be installed manually; using GVM (the Groovy Environment
Manually) or using Homebrew or MacPorts if you are an OSX user. See
the section called “Installing the Spring Boot CLI”
in the “Getting started” section for comprehensive installation instructions.
Chapter 55. Using the CLI

Once you have installed the CLI you can run it by typing spring. If you run spring
without any arguments, a simple help screen is displayed:
$ spring
usage: spring [--help] [--version]
 <command> [<args>]

Available commands are:

 run [options] <files> [--] [args]
 Run a spring groovy script

 ... more command help is shown here
You can use help to get more details about any of the supported commands. For example:
$ spring help run
spring run - Run a spring groovy script

usage: spring run [options] <files> [--] [args]

Option Description
------ -----------
--autoconfigure [Boolean] Add autoconfigure compiler
 transformations (default: true)
--classpath, -cp Additional classpath entries
-e, --edit Open the file with the default system
 editor
--no-guess-dependencies Do not attempt to guess dependencies
--no-guess-imports Do not attempt to guess imports
-q, --quiet Quiet logging
-v, --verbose Verbose logging of dependency
 resolution
--watch Watch the specified file for changes
The version command provides a quick way to check which version of Spring Boot you are
using.
$ spring version
Spring CLI v1.2.8.RELEASE
Running applications using the CLI

You can compile and run Groovy source code using the run command. The Spring Boot CLI
is completely self-contained so you don’t need any external Groovy installation.
Here is an example “hello world” web application written in Groovy:
hello.groovy.

@RestController
class WebApplication {

 @RequestMapping("/")
 String home() {
 "Hello World!"
 }

}

To compile and run the application type:
$ spring run hello.groovy
To pass command line arguments to the application, you need to use a -- to separate
them from the “spring” command arguments, e.g.
$ spring run hello.groovy -- --server.port=9000
To set JVM command line arguments you can use the JAVA_OPTS environment variable, e.g.
$ JAVA_OPTS=-Xmx1024m spring run hello.groovy
Deduced “grab” dependencies

Standard Groovy includes a @Grab annotation which allows you to declare dependencies
on a third-party libraries. This useful technique allows Groovy to download jars in the
same way as Maven or Gradle would, but without requiring you to use a build tool.
Spring Boot extends this technique further, and will attempt to deduce which libraries
to “grab” based on your code. For example, since the WebApplication code above uses
@RestController annotations, “Tomcat” and “Spring MVC” will be grabbed.
The following items are used as “grab hints”:
	Items	Grabs
	JdbcTemplate, NamedParameterJdbcTemplate, DataSource
	JDBC Application.

	@EnableJms
	JMS Application.

	@EnableCaching
	Caching abstraction.

	@Test
	JUnit.

	@EnableRabbit
	RabbitMQ.

	@EnableReactor
	Project Reactor.

	extends Specification
	Spock test.

	@EnableBatchProcessing
	Spring Batch.

	@MessageEndpoint @EnableIntegrationPatterns
	Spring Integration.

	@EnableDeviceResolver
	Spring Mobile.

	@Controller @RestController @EnableWebMvc
	Spring MVC + Embedded Tomcat.

	@EnableWebSecurity
	Spring Security.

	@EnableTransactionManagement
	Spring Transaction Management.

Tip
See subclasses of
CompilerAutoConfiguration
in the Spring Boot CLI source code to understand exactly how customizations are applied.

Deduced “grab” coordinates

Spring Boot extends Groovy’s standard @Grab support by allowing you to specify a dependency
without a group or version, for example @Grab('freemarker'). This will consult Spring Boot’s
default dependency metadata to deduce the artifact’s group and version. Note that the default
metadata is tied to the version of the CLI that you’re using – it will only change when you move
to a new version of the CLI, putting you in control of when the versions of your dependencies
may change. A table showing the dependencies and their versions that are included in the default
metadata can be found in the appendix.
Default import statements

To help reduce the size of your Groovy code, several import statements are
automatically included. Notice how the example above refers to @Component,
@RestController and @RequestMapping without needing to use
fully-qualified names or import statements.
Tip
Many Spring annotations will work without using import statements. Try running
your application to see what fails before adding imports.

Automatic main method

Unlike the equivalent Java application, you do not need to include a
public static void main(String[] args) method with your Groovy scripts. A
SpringApplication is automatically created, with your compiled code acting as the
source.
Custom “grab” metadata

Spring Boot provides a new @GrabMetadata annotation that can be used to provide custom
dependency metadata that overrides Spring Boot’s defaults. This metadata is specified by
using the annotation to provide coordinates of one or more properties files (deployed
to a Maven repository with a “type” identifier of properties). Each entry in each
properties file must be in the form group:module=version.
For example, the following declaration:
`@GrabMetadata("com.example.custom-versions:1.0.0")`
Will pick up custom-versions-1.0.0.properties in a Maven repository under
com/example/custom-versions/1.0.0/.
Multiple properties files can be specified from the annotation, they will be applied in
the order that they’re declared. For example:
`@GrabMetadata(["com.example.custom-versions:1.0.0",
 "com.example.more-versions:1.0.0"])`
indicates that properties in more-versions will override properties in custom-versions.
You can use @GrabMetadata anywhere that you can use @Grab, however, to ensure
consistent ordering of the metadata, you can only use @GrabMetadata at most once in your
application. A useful source of dependency metadata (a superset of Spring Boot) is the
Spring IO Platform, e.g.
@GrabMetadata('io.spring.platform:platform-versions:1.0.4.RELEASE').
Testing your code

The test command allows you to compile and run tests for your application. Typical
usage looks like this:
$ spring test app.groovy tests.groovy
Total: 1, Success: 1, : Failures: 0
Passed? true
In this example, tests.groovy contains JUnit @Test methods or Spock Specification
classes. All the common framework annotations and static methods should be available to
you without having to import them.
Here is the tests.groovy file that we used above (with a JUnit test):
class ApplicationTests {

 @Test
 void homeSaysHello() {
 assertEquals("Hello World!", new WebApplication().home())
 }

}
Tip
If you have more than one test source files, you might prefer to organize them
into a test directory.

Applications with multiple source files

You can use “shell globbing” with all commands that accept file input. This allows you
to easily use multiple files from a single directory, e.g.
$ spring run *.groovy
This technique can also be useful if you want to segregate your “test” or “spec” code
from the main application code:
$ spring test app/*.groovy test/*.groovy
Packaging your application

You can use the jar command to package your application into a self-contained
executable jar file. For example:
$ spring jar my-app.jar *.groovy
The resulting jar will contain the classes produced by compiling the application and all
of the application’s dependencies so that it can then be run using java -jar. The jar
file will also contain entries from the application’s classpath. You can add explicit
paths to the jar using --include and --exclude (both are comma-separated, and both
accept prefixes to the values “+” and “-” to signify that they should be removed from
the defaults). The default includes are
public/**, resources/**, static/**, templates/**, META-INF/**, *
and the default excludes are
.*, repository/**, build/**, target/**, **/*.jar, **/*.groovy
See the output of spring help jar for more information.
Initialize a new project

The init command allows you to create a new project using start.spring.io
without leaving the shell. For example:
$ spring init --dependencies=web,data-jpa my-project
Using service at https://start.spring.io
Project extracted to '/Users/developer/example/my-project'
This creates a my-project directory with a Maven-based project using
spring-boot-starter-web and spring-boot-starter-data-jpa. You can list the
capabilities of the service using the --list flag
$ spring init --list
=======================================
Capabilities of https://start.spring.io
=======================================

Available dependencies:

actuator - Actuator: Production ready features to help you monitor and manage your application
...
web - Web: Support for full-stack web development, including Tomcat and spring-webmvc
websocket - Websocket: Support for WebSocket development
ws - WS: Support for Spring Web Services

Available project types:

gradle-build - Gradle Config [format:build, build:gradle]
gradle-project - Gradle Project [format:project, build:gradle]
maven-build - Maven POM [format:build, build:maven]
maven-project - Maven Project [format:project, build:maven] (default)

...
The init command supports many options, check the help output for more details. For
instance, the following command creates a gradle project using Java 8 and war packaging:
$ spring init --build=gradle --java-version=1.8 --dependencies=websocket --packaging=war sample-app.zip
Using service at https://start.spring.io
Content saved to 'sample-app.zip'
Using the embedded shell

Spring Boot includes command-line completion scripts for BASH and zsh shells. If you
don’t use either of these shells (perhaps you are a Windows user) then you can use the
shell command to launch an integrated shell.
$ spring shell
Spring Boot (v1.2.8.RELEASE)
Hit TAB to complete. Type \'help' and hit RETURN for help, and \'exit' to quit.
From inside the embedded shell you can run other commands directly:
$ version
Spring CLI v1.2.8.RELEASE
The embedded shell supports ANSI color output as well as tab completion. If you need
to run a native command you can use the $ prefix. Hitting ctrl-c will exit the
embedded shell.
Adding extensions to the CLI

You can add extensions to the CLI using the install command. The command takes one
or more sets of artifact coordinates in the format group:artifact:version. For example:
$ spring install com.example:spring-boot-cli-extension:1.0.0.RELEASE
In addition to installing the artifacts identified by the coordinates you supply, all of
the artifacts' dependencies will also be installed.
To uninstall a dependency use the uninstall command. As with the install command, it
takes one or more sets of artifact coordinates in the format group:artifact:version.
For example:
$ spring uninstall com.example:spring-boot-cli-extension:1.0.0.RELEASE
It will uninstall the artifacts identified by the coordinates you supply and their
dependencies.
To uninstall all additional dependencies you can use the --all option. For example:
$ spring uninstall --all
Chapter 56. Developing application with the Groovy beans DSL

Spring Framework 4.0 has native support for a beans{} “DSL” (borrowed from
Grails), and you can embed bean definitions in your Groovy
application scripts using the same format. This is sometimes a good way to include
external features like middleware declarations. For example:
@Configuration
class Application implements CommandLineRunner {

 @Autowired
 SharedService service

 @Override
 void run(String... args) {
 println service.message
 }

}

import my.company.SharedService

beans {
 service(SharedService) {
 message = "Hello World"
 }
}
You can mix class declarations with beans{} in the same file as long as they stay at
the top level, or you can put the beans DSL in a separate file if you prefer.
Chapter 57. What to read next

There are some sample groovy
scripts available from the GitHub repository that you can use to try out the
Spring Boot CLI. There is also extensive javadoc throughout the
source code.
If you find that you reach the limit of the CLI tool, you will probably want to look
at converting your application to full Gradle or Maven built “groovy project”. The
next section covers Spring Boot’s
Build tool plugins that you can
use with Gradle or Maven.
Part VIII. Build tool plugins

Spring Boot provides build tool plugins for Maven and Gradle. The plugins offer a
variety of features, including the packaging of executable jars. This section provides
more details on both plugins, as well as some help should you need to extend an
unsupported build system. If you are just getting started, you might want to read
“Chapter 13, Build systems” from the
Part III, “Using Spring Boot” section first.

Chapter 58. Spring Boot Maven plugin

The Spring Boot Maven Plugin provides Spring Boot
support in Maven, allowing you to package executable jar or war archives and run an
application “in-place”. To use it you must be using Maven 3.2 (or better).
Note
Refer to the Spring Boot Maven Plugin Site
for complete plugin documentation.

Including the plugin

To use the Spring Boot Maven Plugin simply include the appropriate XML in the plugins
section of your pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <!-- ... -->
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>1.2.8.RELEASE</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>
This configuration will repackage a jar or war that is built during the package phase of
the Maven lifecycle. The following example shows both the repackaged jar, as well as the
original jar, in the target directory:
$ mvn package
$ ls target/*.jar
target/myproject-1.0.0.jar target/myproject-1.0.0.jar.original
If you don’t include the <execution/> configuration as above, you can run the plugin on
its own (but only if the package goal is used as well). For example:
$ mvn package spring-boot:repackage
$ ls target/*.jar
target/myproject-1.0.0.jar target/myproject-1.0.0.jar.original
If you are using a milestone or snapshot release you will also need to add appropriate
pluginRepository elements:
<pluginRepositories>
 <pluginRepository>
 <id>spring-snapshots</id>
 <url>http://repo.spring.io/snapshot</url>
 </pluginRepository>
 <pluginRepository>
 <id>spring-milestones</id>
 <url>http://repo.spring.io/milestone</url>
 </pluginRepository>
</pluginRepositories>
Packaging executable jar and war files

Once spring-boot-maven-plugin has been included in your pom.xml it will automatically
attempt to rewrite archives to make them executable using the spring-boot:repackage
goal. You should configure your project to build a jar or war (as appropriate) using the
usual packaging element:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <!-- ... -->
 <packaging>jar</packaging>
 <!-- ... -->
</project>
Your existing archive will be enhanced by Spring Boot during the package phase. The
main class that you want to launch can either be specified using a configuration option,
or by adding a Main-Class attribute to the manifest in the usual way. If you don’t
specify a main class the plugin will search for a class with a
public static void main(String[] args) method.
To build and run a project artifact, you can type the following:
$ mvn package
$ java -jar target/mymodule-0.0.1-SNAPSHOT.jar
To build a war file that is both executable and deployable into an external container you
need to mark the embedded container dependencies as “provided”, e.g:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <!-- ... -->
 <packaging>war</packaging>
 <!-- ... -->
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 <scope>provided</scope>
 </dependency>
 <!-- ... -->
 </dependencies>
</project>
Tip
See the “the section called “Create a deployable war file”” section for more details on
how to create a deployable war file.

Advanced configuration options and examples are available in the
plugin info page.
Chapter 59. Spring Boot Gradle plugin

The Spring Boot Gradle Plugin provides Spring Boot support in Gradle, allowing you to
package executable jar or war archives, run Spring Boot applications and omit version
information from your build.gradle file for “blessed” dependencies.
Including the plugin

To use the Spring Boot Gradle Plugin simply include a buildscript dependency and apply
the spring-boot plugin:
buildscript {
 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-plugin:1.2.8.RELEASE")
 }
}
apply plugin: 'spring-boot'
If you are using a milestone or snapshot release you will also need to add appropriate
repositories reference:
buildscript {
 repositories {
 maven.url "http://repo.spring.io/snapshot"
 maven.url "http://repo.spring.io/milestone"
 }
 // ...
}
Declaring dependencies without versions

The spring-boot plugin will register a custom Gradle ResolutionStrategy with your
build that allows you to omit version numbers when declaring dependencies to “blessed”
artifacts. To make use of this functionality, simply declare dependencies in the usual way,
but leave the version number empty:
dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 compile("org.thymeleaf:thymeleaf-spring4")
 compile("nz.net.ultraq.thymeleaf:thymeleaf-layout-dialect")
}
Note
The version of the spring-boot gradle plugin that you declare determines the
actual versions of the “blessed” dependencies (this ensures that builds are always
repeatable). You should always set the version of the spring-boot gradle plugin to the
actual Spring Boot version that you wish to use. Details of the versions that are
provided can be found in the appendix.

The spring-boot plugin will only supply a version where one is not specified. To
use a version of an artifact that differs from the one that the plugin would provide,
simply specify the version when you declare the dependency as you usually would. For
example:
dependencies {
 compile("org.thymeleaf:thymeleaf-spring4:2.1.1.RELEASE")
}
Custom version management

If is possible to customize the versions used by the ResolutionStrategy if you need
to deviate from Spring Boot’s “blessed” dependencies. Alternative version metadata
is consulted using the versionManagement configuration. For example:
dependencies {
 versionManagement("com.mycorp:mycorp-versions:1.0.0.RELEASE@properties")
 compile("org.springframework.data:spring-data-hadoop")
}
Version information needs to be published to a repository as a .properties file. For
the above example mycorp-versions.properties file might contain the following:
org.springframework.data\:spring-data-hadoop=2.0.0.RELEASE
The properties file takes precedence over Spring Boot’s defaults, and can be used
to override version numbers if necessary.
Default exclude rules

Gradle handles “exclude rules” in a slightly different way to Maven which can cause
unexpected results when using the starter POMs. Specifically, exclusions declared on
a dependency will not be applied when the dependency can be reached through a different
path. For example, if a starter POM declares the following:
<dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>4.0.5.RELEASE</version>
 <exclusions>
 <exclusion>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>4.0.5.RELEASE</version>
 </dependency>
</dependencies>
The commons-logging jar will not be excluded by Gradle because it is pulled in
transitively via spring-context (spring-context → spring-core → commons-logging)
which does not have an exclusion element.
To ensure that correct exclusions are actually applied, the Spring Boot Gradle plugin will
automatically add exclusion rules. All exclusions defined in the
spring-boot-dependencies POM and implicit rules for the “starter” POMs will be added.
If you don’t want exclusion rules automatically applied you can use the following
configuration:
springBoot {
 applyExcludeRules=false
}
Packaging executable jar and war files

Once the spring-boot plugin has been applied to your project it will automatically
attempt to rewrite archives to make them executable using the bootRepackage task. You
should configure your project to build a jar or war (as appropriate) in the usual way.
The main class that you want to launch can either be specified using a configuration
option, or by adding a Main-Class attribute to the manifest. If you don’t specify a
main class the plugin will search for a class with a
public static void main(String[] args) method.
To build and run a project artifact, you can type the following:
$ gradle build
$ java -jar build/libs/mymodule-0.0.1-SNAPSHOT.jar
To build a war file that is both executable and deployable into an external container,
you need to mark the embedded container dependencies as belonging to a configuration
named “providedRuntime”, e.g:
...
apply plugin: 'war'

war {
 baseName = 'myapp'
 version = '0.5.0'
}

repositories {
 jcenter()
 maven { url "http://repo.spring.io/libs-snapshot" }
}

configurations {
 providedRuntime
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 providedRuntime("org.springframework.boot:spring-boot-starter-tomcat")
 ...
}
Tip
See the “the section called “Create a deployable war file”” section for more details on
how to create a deployable war file.

Running a project in-place

To run a project in place without building a jar first you can use the “bootRun” task:
$ gradle bootRun
By default, running this way makes your static classpath resources (i.e. in
src/main/resources by default) reloadable in the live application, which can be helpful
at development time. Making static classpath resources reloadable means that bootRun
does not use the output of the processResources task, i.e., when invoked using
bootRun, your application will use the resources in their unprocessed form.
You can disable the direct use of your static classpath resources. This will mean that
the resources are no longer reloadable but the output of the processResources task will
be used. To do so, set addResources on the bootRun task to false:
bootRun {
 addResources = false
}
Spring Boot plugin configuration

The gradle plugin automatically extends your build script DSL with a springBoot element
for global configuration of the Boot plugin. Set the appropriate properties as you would
with any other Gradle extension (see below for a list of configuration options):
springBoot {
 backupSource = false
}
Repackage configuration

The plugin adds a bootRepackage task which you can also configure directly, e.g.:
bootRepackage {
 mainClass = 'demo.Application'
}
The following configuration options are available:
	Name	Description
	enabled
	Boolean flag to switch the repackager off (sometimes useful if you
want the other Boot features but not this one)

	mainClass
	The main class that should be run. If not specified the mainClassName project property
 will be used or, if the no mainClassName id defined the archive will be searched for a
 suitable class. "Suitable" means a unique class with a well-formed main() method (if
 more than one is found the build will fail). You should also be able to specify the main
 class name via the "run" task (main property) and/or the "startScripts"
 (mainClassName property) as an alternative to using the "springBoot" configuration.

	classifier
	A file name segment (before the extension) to add to the archive, so that the original is
 preserved in its original location. Defaults to null in which case the archive is
 repackaged in place. The default is convenient for many purposes, but if you want to use
 the original jar as a dependency in another project, it’s best to use an extension to
 define the executable archive.

	withJarTask
	The name or value of the Jar task (defaults to all tasks of type Jar) which is used
 to locate the archive to repackage.

	customConfiguration
	The name of the custom configuration which is used to populate the nested lib directory
 (without specifying this you get all compile and runtime dependencies).

Repackage with custom Gradle configuration

Sometimes it may be more appropriate to not package default dependencies resolved from
compile, runtime and provided scopes. If the created executable jar file
is intended to be run as it is, you need to have all dependencies nested inside it;
however, if the plan is to explode a jar file and run the main class manually, you may already
have some of the libraries available via CLASSPATH. This is a situation where
you can repackage your jar with a different set of dependencies.
Using a custom
configuration will automatically disable dependency resolving from
compile, runtime and provided scopes. Custom configuration can be either
defined globally (inside the springBoot section) or per task.
task clientJar(type: Jar) {
 appendix = 'client'
 from sourceSets.main.output
 exclude('**/*Something*')
}

task clientBoot(type: BootRepackage, dependsOn: clientJar) {
 withJarTask = clientJar
 customConfiguration = "mycustomconfiguration"
}
In above example, we created a new clientJar Jar task to package a customized
file set from your compiled sources. Then we created a new clientBoot
BootRepackage task and instructed it to work with only clientJar task and
mycustomconfiguration.
configurations {
 mycustomconfiguration.exclude group: 'log4j'
}

dependencies {
 mycustomconfiguration configurations.runtime
}
The configuration that we are referring to in BootRepackage is a normal
Gradle
configuration. In the above example we created a new configuration named
mycustomconfiguration instructing it to derive from a runtime and exclude the log4j
group. If the clientBoot task is executed, the repackaged boot jar will have all
dependencies from runtime but no log4j jars.
Configuration options

The following configuration options are available:
	Name	Description
	mainClass
	The main class that should be run by the executable archive.

	providedConfiguration
	The name of the provided configuration (defaults to providedRuntime).

	backupSource
	If the original source archive should be backed-up before being repackaged (defaults
 to true).

	customConfiguration
	The name of the custom configuration.

	layout
	The type of archive, corresponding to how the dependencies are laid out inside
 (defaults to a guess based on the archive type).

	requiresUnpack
	A list of dependencies (in the form “groupId:artifactId” that must be unpacked from
 fat jars in order to run. Items are still packaged into the fat jar, but they will be
 automatically unpacked when it runs.

Understanding how the Gradle plugin works

When spring-boot is applied to your Gradle project a default task named bootRepackage
is created automatically. The bootRepackage task depends on Gradle assemble task, and
when executed, it tries to find all jar artifacts whose qualifier is empty (i.e. tests and
sources jars are automatically skipped).
Due to the fact that bootRepackage finds 'all' created jar artifacts, the order of
Gradle task execution is important. Most projects only create a single jar file, so
usually this is not an issue; however, if you are planning to create a more complex
project setup, with custom Jar and BootRepackage tasks, there are few tweaks to
consider.
If you are 'just' creating custom jar files from your project you can simply disable
default jar and bootRepackage tasks:
jar.enabled = false
bootRepackage.enabled = false
Another option is to instruct the default bootRepackage task to only work with a
default jar task.
bootRepackage.withJarTask = jar
If you have a default project setup where the main jar file is created and repackaged,
'and' you still want to create additional custom jars, you can combine your custom
repackage tasks together and use dependsOn so that the bootJars task will run after
the default bootRepackage task is executed:
task bootJars
bootJars.dependsOn = [clientBoot1,clientBoot2,clientBoot3]
build.dependsOn(bootJars)
All the above tweaks are usually used to avoid situations where an already created boot
jar is repackaged again. Repackaging an existing boot jar will not break anything, but
you may find that it includes unnecessary dependencies.
Publishing artifacts to a Maven repository using Gradle

If you are declaring
dependencies without versions and you want to publish artifacts to a Maven repository
you will need to configure the Maven publication with details of Spring Boot’s
dependency management. This can be achieved by configuring it to publish poms that
inherit from spring-boot-starter-parent or that import dependency management from
spring-boot-dependencies. The exact details of this configuration depend on how you’re
using Gradle and how you’re trying to publish the artifacts.
Configuring Gradle to produce a pom that inherits dependency management

The following is an example of configuring Gradle to generate a pom that inherits
from spring-boot-starter-parent. Please refer to the
Gradle User Guide for
further information.
uploadArchives {
 repositories {
 mavenDeployer {
 pom {
 project {
 parent {
 groupId "org.springframework.boot"
 artifactId "spring-boot-starter-parent"
 version "1.2.8.RELEASE"
 }
 }
 }
 }
 }
}
Configuring Gradle to produce a pom that imports dependency management

The following is an example of configuring Gradle to generate a pom that imports
the dependency management provided by spring-boot-dependencies. Please refer to the
Gradle User Guide for
further information.
uploadArchives {
 repositories {
 mavenDeployer {
 pom {
 project {
 dependencyManagement {
 dependencies {
 dependency {
 groupId "org.springframework.boot"
 artifactId "spring-boot-dependencies"
 version "1.2.8.RELEASE"
 type "pom"
 scope "import"
 }
 }
 }
 }
 }
 }
 }
}
Chapter 60. Supporting other build systems

If you want to use a build tool other than Maven or Gradle, you will likely need to develop
your own plugin. Executable jars need to follow a specific format and certain entries need
to be written in an uncompressed form (see the
executable jar format section
in the appendix for details).
The Spring Boot Maven and Gradle plugins both make use of spring-boot-loader-tools to
actually generate jars. You are also free to use this library directly yourself if you
need to.
Repackaging archives

To repackage an existing archive so that it becomes a self-contained executable archive
use org.springframework.boot.loader.tools.Repackager. The Repackager class takes a
single constructor argument that refers to an existing jar or war archive. Use one of the
two available repackage() methods to either replace the original file or write to a new
destination. Various settings can also be configured on the repackager before it is
run.
Nested libraries

When repackaging an archive you can include references to dependency files using the
org.springframework.boot.loader.tools.Libraries interface. We don’t provide any
concrete implementations of Libraries here as they are usually build system specific.
If your archive already includes libraries you can use Libraries.NONE.
Finding a main class

If you don’t use Repackager.setMainClass() to specify a main class, the repackager will
use ASM to read class files and attempt to find a suitable class
with a public static void main(String[] args) method. An exception is thrown if more
than one candidate is found.
Example repackage implementation

Here is a typical example repackage:
Repackager repackager = new Repackager(sourceJarFile);
repackager.setBackupSource(false);
repackager.repackage(new Libraries() {
 @Override
 public void doWithLibraries(LibraryCallback callback) throws IOException {
 // Build system specific implementation, callback for each dependency
 // callback.library(new Library(nestedFile, LibraryScope.COMPILE));
 }
 });
Chapter 61. What to read next

If you’re interested in how the build tool plugins work you can
look at the spring-boot-tools module on GitHub. More
technical details of the executable
jar format are covered in the appendix.
If you have specific build-related questions you can check out the
“how-to” guides.
Part IX. ‘How-to’ guides

This section provides answers to some common ‘how do I do that…​’ type of questions
that often arise when using Spring Boot. This is by no means an exhaustive list, but it
does cover quite a lot.
If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has
already provided an answer; this is also a great place to ask new questions (please use
the spring-boot tag).
We’re also more than happy to extend this section; If you want to add a ‘how-to’ you
can send us a pull request.

Chapter 62. Spring Boot application

Troubleshoot auto-configuration

The Spring Boot auto-configuration tries its best to ‘do the right thing’, but
sometimes things fail and it can be hard to tell why.
There is a really useful ConditionEvaluationReport available in any Spring Boot
ApplicationContext. You will see it if you enable DEBUG logging output. If you use
the spring-boot-actuator there is also an autoconfig endpoint that renders the report
in JSON. Use that to debug the application and see what features have been added (and
which not) by Spring Boot at runtime.
Many more questions can be answered by looking at the source code and the javadoc. Some
rules of thumb:
	Look for classes called *AutoConfiguration and read their sources, in particular the
@Conditional* annotations to find out what features they enable and when. Add
--debug to the command line or a System property -Ddebug to get a log on the
console of all the autoconfiguration decisions that were made in your app. In a running
Actuator app look at the autoconfig endpoint (‘/autoconfig’ or the JMX equivalent) for
the same information.
	Look for classes that are @ConfigurationProperties (e.g.
ServerProperties)
and read from there the available external configuration options. The
@ConfigurationProperties has a name attribute which acts as a prefix to external
properties, thus ServerProperties has prefix="server" and its configuration properties
are server.port, server.address etc. In a running Actuator app look at the
configprops endpoint.
	Look for use of RelaxedEnvironment to pull configuration values explicitly out of the
Environment. It often is used with a prefix.
	Look for @Value annotations that bind directly to the Environment. This is less
flexible than the RelaxedEnvironment approach, but does allow some relaxed binding,
specifically for OS environment variables (so CAPITALS_AND_UNDERSCORES are synonyms
for period.separated).
	Look for @ConditionalOnExpression annotations that switch features on and off in
response to SpEL expressions, normally evaluated with place-holders resolved from the
Environment.

Customize the Environment or ApplicationContext before it starts

A SpringApplication has ApplicationListeners and ApplicationContextInitializers that
are used to apply customizations to the context or environment. Spring Boot loads a number
of such customizations for use internally from META-INF/spring.factories. There is more
than one way to register additional ones:
	Programmatically per application by calling the addListeners and addInitializers
methods on SpringApplication before you run it.
	Declaratively per application by setting context.initializer.classes or
context.listener.classes.
	Declaratively for all applications by adding a META-INF/spring.factories and packaging
a jar file that the applications all use as a library.

The SpringApplication sends some special ApplicationEvents to the listeners (even
some before the context is created), and then registers the listeners for events published
by the ApplicationContext as well. See
the section called “Application events and listeners” in the
‘Spring Boot features’ section for a complete list.
Build an ApplicationContext hierarchy (adding a parent or root context)

You can use the ApplicationBuilder class to create parent/child ApplicationContext
hierarchies. See the section called “Fluent builder API”
in the ‘Spring Boot features’ section for more information.
Create a non-web application

Not all Spring applications have to be web applications (or web services). If you want to
execute some code in a main method, but also bootstrap a Spring application to set up
the infrastructure to use, then it’s easy with the SpringApplication features of Spring
Boot. A SpringApplication changes its ApplicationContext class depending on whether it
thinks it needs a web application or not. The first thing you can do to help it is to just
leave the servlet API dependencies off the classpath. If you can’t do that (e.g. you are
running 2 applications from the same code base) then you can explicitly call
SpringApplication.setWebEnvironment(false), or set the applicationContextClass
property (through the Java API or with external properties).
Application code that you want to run as your business logic can be implemented as a
CommandLineRunner and dropped into the context as a @Bean definition.
Chapter 63. Properties & configuration

Externalize the configuration of SpringApplication

A SpringApplication has bean properties (mainly setters) so you can use its Java API as
you create the application to modify its behavior. Or you can externalize the
configuration using properties in spring.main.*. E.g. in application.properties you
might have.
spring.main.web_environment=false
spring.main.show_banner=false
and then the Spring Boot banner will not be printed on startup, and the application will
not be a web application.
Note
The example above also demonstrates how flexible binding allows the use of
underscores (_) as well as dashes (-) in property names.

Change the location of external properties of an application

By default properties from different sources are added to the Spring Environment in a
defined order (see Chapter 23, Externalized Configuration in
the ‘Spring Boot features’ section for the exact order).
A nice way to augment and modify this is to add @PropertySource annotations to your
application sources. Classes passed to the SpringApplication static convenience
methods, and those added using setSources() are inspected to see if they have
@PropertySources, and if they do, those properties are added to the Environment early
enough to be used in all phases of the ApplicationContext lifecycle. Properties added
in this way have precedence over any added using the default locations, but have lower
priority than system properties, environment variables or the command line.
You can also provide System properties (or environment variables) to change the behavior:
	spring.config.name (SPRING_CONFIG_NAME), defaults to application as the root of
the file name.
	spring.config.location (SPRING_CONFIG_LOCATION) is the file to load (e.g. a classpath
resource or a URL). A separate Environment property source is set up for this document
and it can be overridden by system properties, environment variables or the
command line.

No matter what you set in the environment, Spring Boot will always load
application.properties as described above. If YAML is used then files with the ‘.yml’
extension are also added to the list by default.
See ConfigFileApplicationListener
for more detail.
Use ‘short’ command line arguments

Some people like to use (for example) --port=9000 instead of --server.port=9000 to
set configuration properties on the command line. You can easily enable this by using
placeholders in application.properties, e.g.
server.port=${port:8080}
Tip
If you are inheriting from the spring-boot-starter-parent POM, the default filter
token of the maven-resources-plugins has been changed from ${*} to @ (i.e.
@maven.token@ instead of ${maven.token}) to prevent conflicts with Spring-style
placeholders. If you have enabled maven filtering for the application.properties
directly, you may want to also change the default filter token to use
other delimiters.

Note
In this specific case the port binding will work in a PaaS environment like Heroku
and Cloud Foundry, since in those two platforms the PORT environment variable is set
automatically and Spring can bind to capitalized synonyms for Environment properties.

Use YAML for external properties

YAML is a superset of JSON and as such is a very convenient syntax for storing external
properties in a hierarchical format. E.g.
spring:
 application:
 name: cruncher
 datasource:
 driverClassName: com.mysql.jdbc.Driver
 url: jdbc:mysql://localhost/test
server:
 port: 9000
Create a file called application.yml and stick it in the root of your classpath, and
also add snakeyaml to your dependencies (Maven coordinates org.yaml:snakeyaml, already
included if you use the spring-boot-starter). A YAML file is parsed to a Java
Map<String,Object> (like a JSON object), and Spring Boot flattens the map so that it
is 1-level deep and has period-separated keys, a lot like people are used to with
Properties files in Java.
The example YAML above corresponds to an application.properties file
spring.application.name=cruncher
spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost/test
server.port=9000
See the section called “Using YAML instead of Properties” in
the ‘Spring Boot features’ section for more information
about YAML.
Set the active Spring profiles

The Spring Environment has an API for this, but normally you would set a System property
(spring.profiles.active) or an OS environment variable (SPRING_PROFILES_ACTIVE). E.g.
launch your application with a -D argument (remember to put it before the main class
or jar archive):
$ java -jar -Dspring.profiles.active=production demo-0.0.1-SNAPSHOT.jar
In Spring Boot you can also set the active profile in application.properties, e.g.
spring.profiles.active=production
A value set this way is replaced by the System property or environment variable setting,
but not by the SpringApplicationBuilder.profiles() method. Thus the latter Java API can
be used to augment the profiles without changing the defaults.
See Chapter 24, Profiles in
the ‘Spring Boot features’ section for more information.
Change configuration depending on the environment

A YAML file is actually a sequence of documents separated by --- lines, and each
document is parsed separately to a flattened map.
If a YAML document contains a spring.profiles key, then the profiles value
(comma-separated list of profiles) is fed into the Spring
Environment.acceptsProfiles() and if any of those profiles is active that document is
included in the final merge (otherwise not).
Example:
server:
 port: 9000

spring:
 profiles: development
server:
 port: 9001

spring:
 profiles: production
server:
 port: 0
In this example the default port is 9000, but if the Spring profile ‘development’ is
active then the port is 9001, and if ‘production’ is active then it is 0.
The YAML documents are merged in the order they are encountered (so later values override
earlier ones).
To do the same thing with properties files you can use application-${profile}.properties
to specify profile-specific values.
Discover built-in options for external properties

Spring Boot binds external properties from application.properties (or .yml) (and
other places) into an application at runtime. There is not (and technically cannot be)
an exhaustive list of all supported properties in a single location because contributions
can come from additional jar files on your classpath.
A running application with the Actuator features has a configprops endpoint that shows
all the bound and bindable properties available through @ConfigurationProperties.
The appendix includes an application.properties example with a list of the most common properties supported by
Spring Boot. The definitive list comes from searching the source code for
@ConfigurationProperties and @Value annotations, as well as the occasional use of
RelaxedEnvironment.
Chapter 64. Embedded servlet containers

Add a Servlet, Filter or ServletContextListener to an application

Servlet, Filter, ServletContextListener and the other listeners supported by the
Servlet spec can be added to your application as @Bean definitions. Be very careful that
they don’t cause eager initialization of too many other beans because they have to be
installed in the container very early in the application lifecycle (e.g. it’s not a good
idea to have them depend on your DataSource or JPA configuration). You can work around
restrictions like that by initializing them lazily when first used instead of on
initialization.
In the case of Filters and Servlets you can also add mappings and init parameters by
adding a FilterRegistrationBean or ServletRegistrationBean instead of or as well as
the underlying component.
Disable registration of a Servlet or Filter

As described above any Servlet
or Filter beans will be registered with the servlet container automatically. To disable
registration of a particular Filter or Servlet bean create a registration bean for it
and mark it as disabled. For example:
@Bean
public FilterRegistrationBean registration(MyFilter filter) {
 FilterRegistrationBean registration = new FilterRegistrationBean(filter);
 registration.setEnabled(false);
 return registration;
}
Change the HTTP port

In a standalone application the main HTTP port defaults to 8080, but can be set with
server.port (e.g. in application.properties or as a System property). Thanks to
relaxed binding of Environment values you can also use SERVER_PORT (e.g. as an OS
environment variable).
To switch off the HTTP endpoints completely, but still create a WebApplicationContext,
use server.port=-1 (this is sometimes useful for testing).
For more details look at the section called “Customizing embedded servlet containers”
in the ‘Spring Boot features’ section, or the
ServerProperties source
code.
Use a random unassigned HTTP port

To scan for a free port (using OS natives to prevent clashes) use server.port=0.
Discover the HTTP port at runtime

You can access the port the server is running on from log output or from the
EmbeddedWebApplicationContext via its EmbeddedServletContainer. The best way to get
that and be sure that it has initialized is to add a @Bean of type
ApplicationListener<EmbeddedServletContainerInitializedEvent> and pull the container
out of the event when it is published.
A useful practice for use with @WebIntegrationTests is to set server.port=0
and then inject the actual (‘local’) port as a @Value. For example:
@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = SampleDataJpaApplication.class)
@WebIntegrationTest("server.port:0")
public class CityRepositoryIntegrationTests {

 @Autowired
 EmbeddedWebApplicationContext server;

 @Value("${local.server.port}")
 int port;

 // ...

}
Configure SSL

SSL can be configured declaratively by setting the various server.ssl.* properties,
typically in application.properties or application.yml. For example:
server.port=8443
server.ssl.key-store=classpath:keystore.jks
server.ssl.key-store-password=secret
server.ssl.key-password another-secret
See Ssl for details of all of the
supported properties.
Using configuration like the example above means the application will no longer support
plain HTTP connector at port 8080. Spring Boot doesn’t support the configuration of both
an HTTP connector and an HTTPS connector via application.properties. If you want to
have both then you’ll need to configure one of them programmatically. It’s recommended
to use application.properties to configure HTTPS as the HTTP connector is the easier of
the two to configure programmatically. See the
spring-boot-sample-tomcat-multi-connectors
sample project for an example.
Configure Tomcat

Generally you can follow the advice from
the section called “Discover built-in options for external properties” about
@ConfigurationProperties (ServerProperties is the main one here), but also look at
EmbeddedServletContainerCustomizer and various Tomcat-specific *Customizers that you
can add in one of those. The Tomcat APIs are quite rich so once you have access to the
TomcatEmbeddedServletContainerFactory you can modify it in a number of ways. Or the
nuclear option is to add your own TomcatEmbeddedServletContainerFactory.
Enable Multiple Connectors with Tomcat

Add a org.apache.catalina.connector.Connector to the
TomcatEmbeddedServletContainerFactory which can allow multiple connectors, e.g. HTTP and
HTTPS connector:
@Bean
public EmbeddedServletContainerFactory servletContainer() {
 TomcatEmbeddedServletContainerFactory tomcat = new TomcatEmbeddedServletContainerFactory();
 tomcat.addAdditionalTomcatConnectors(createSslConnector());
 return tomcat;
}

private Connector createSslConnector() {
 Connector connector = new Connector("org.apache.coyote.http11.Http11NioProtocol");
 Http11NioProtocol protocol = (Http11NioProtocol) connector.getProtocolHandler();
 try {
 File keystore = new ClassPathResource("keystore").getFile();
 File truststore = new ClassPathResource("keystore").getFile();
 connector.setScheme("https");
 connector.setSecure(true);
 connector.setPort(8443);
 protocol.setSSLEnabled(true);
 protocol.setKeystoreFile(keystore.getAbsolutePath());
 protocol.setKeystorePass("changeit");
 protocol.setTruststoreFile(truststore.getAbsolutePath());
 protocol.setTruststorePass("changeit");
 protocol.setKeyAlias("apitester");
 return connector;
 }
 catch (IOException ex) {
 throw new IllegalStateException("can't access keystore: [" + "keystore"
 + "] or truststore: [" + "keystore" + "]", ex);
 }
}
Use Tomcat behind a front-end proxy server

Spring Boot will automatically configure Tomcat’s RemoteIpValve if you enable it. This
allows you to transparently use the standard x-forwarded-for and x-forwarded-proto
headers that most front-end proxy servers add. The valve is switched on by setting one or
both of these properties to something non-empty (these are the conventional values used by
most proxies, and if you only set one the other will be set automatically):
server.tomcat.remote_ip_header=x-forwarded-for
server.tomcat.protocol_header=x-forwarded-proto
If your proxy uses different headers you can customize the valve’s configuration by adding
some entries to application.properties, e.g.
server.tomcat.remote_ip_header=x-your-remote-ip-header
server.tomcat.protocol_header=x-your-protocol-header
The valve is also configured with a default regular expression that matches internal
proxies that are to be trusted. By default, IP addresses in 10/8, 192.168/16, 169.254/16
and 127/8 are trusted. You can customize the valve’s configuration by adding an entry
to application.properties, e.g.
server.tomcat.internal_proxies=192\\.168\\.\\d{1,3}\\.\\d{1,3}
Note
The double backslashes are only required when you’re using a properties file for
configuration. If you are using YAML, single backslashes are sufficient and a value
that’s equivalent to the one shown above would be 192\.168\.\d{1,3}\.\d{1,3}.

Alternatively, you can take complete control of the configuration of the RemoteIpValve
by configuring and adding it in a TomcatEmbeddedServletContainerFactory bean.
Use Jetty instead of Tomcat

The Spring Boot starters (spring-boot-starter-web in particular) use Tomcat as an
embedded container by default. You need to exclude those dependencies and include the
Jetty one instead. Spring Boot provides Tomcat and Jetty dependencies bundled together
as separate starters to help make this process as easy as possible.
Example in Maven:
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jetty</artifactId>
</dependency>
Example in Gradle:
configurations {
 compile.exclude module: "spring-boot-starter-tomcat"
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web:1.2.8.RELEASE")
 compile("org.springframework.boot:spring-boot-starter-jetty:1.2.8.RELEASE")
 // ...
}
Configure Jetty

Generally you can follow the advice from
the section called “Discover built-in options for external properties” about
@ConfigurationProperties (ServerProperties is the main one here), but also look at
EmbeddedServletContainerCustomizer. The Jetty APIs are quite rich so once you have
access to the JettyEmbeddedServletContainerFactory you can modify it in a number
of ways. Or the nuclear option is to add your own JettyEmbeddedServletContainerFactory.
Use Undertow instead of Tomcat

Using Undertow instead of Tomcat is very similar to using Jetty instead of Tomcat. You need to exclude the Tomcat dependencies and include
the Undertow starter instead.
Example in Maven:
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-undertow</artifactId>
</dependency>
Example in Gradle:
configurations {
 compile.exclude module: "spring-boot-starter-tomcat"
}

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web:1.2.8.RELEASE")
 compile("org.springframework.boot:spring-boot-starter-undertow:1.2.8.RELEASE")
 // ...
}
Configure Undertow

Generally you can follow the advice from
the section called “Discover built-in options for external properties” about
@ConfigurationProperties (ServerProperties and ServerProperties.Undertow are the
main ones here), but also look at
EmbeddedServletContainerCustomizer. Once you have access to the
UndertowEmbeddedServletContainerFactory you can use an UndertowBuilderCustomizer to
modify Undertow’s configuration to meet your needs. Or the nuclear option is to add your
own UndertowEmbeddedServletContainerFactory.
Enable Multiple Listeners with Undertow

Add an UndertowBuilderCustomizer to the UndertowEmbeddedServletContainerFactory and
add a listener to the Builder:
@Bean
public UndertowEmbeddedServletContainerFactory embeddedServletContainerFactory() {
 UndertowEmbeddedServletContainerFactory factory = new UndertowEmbeddedServletContainerFactory();
 factory.addBuilderCustomizers(new UndertowBuilderCustomizer() {

 @Override
 public void customize(Builder builder) {
 builder.addHttpListener(8080, "0.0.0.0");
 }

 });
 return factory;
}
Use Tomcat 7

Tomcat 7 works with Spring Boot, but the default is to use Tomcat 8. If you cannot use
Tomcat 8 (for example, because you are using Java 1.6) you will need to change your
classpath to reference Tomcat 7 .
Use Tomcat 7 with Maven

If you are using the starter poms and parent you can just change the Tomcat version
property, e.g. for a simple webapp or service:
<properties>
 <tomcat.version>7.0.59</tomcat.version>
</properties>
<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 ...
</dependencies>
Use Tomcat 7 with Gradle

You can use a resolution strategy to change the versions of the Tomcat dependencies,
e.g. for a simple webapp or service:
configurations.all {
 resolutionStrategy {
 eachDependency {
 if (it.requested.group == 'org.apache.tomcat.embed') {
 it.useVersion '7.0.59'
 }
 }
 }
}

dependencies {
 compile 'org.springframework.boot:spring-boot-starter-web'
}
Use Jetty 8

Jetty 8 works with Spring Boot, but the default is to use Jetty 9. If you cannot use
Jetty 9 (for example, because you are using Java 1.6) you will need to change your
classpath to reference Jetty 8. You will also need to exclude Jetty’s WebSocket-related
dependencies.
Use Jetty 8 with Maven

If you are using the starter poms and parent you can just add the Jetty starter with
the required WebSocket exclusion and change the version properties, e.g. for a simple
webapp or service:
<properties>
 <jetty.version>8.1.15.v20140411</jetty.version>
 <jetty-jsp.version>2.2.0.v201112011158</jetty-jsp.version>
</properties>
<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jetty</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.eclipse.jetty.websocket</groupId>
 <artifactId>*</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
</dependencies>
Use Jetty 8 with Gradle

You can use a resolution strategy to change the version of the Jetty dependencies, e.g.
for a simple webapp or service:
configurations.all {
 resolutionStrategy {
 eachDependency {
 if (it.requested.group == 'org.eclipse.jetty') {
 it.useVersion '8.1.15.v20140411'
 }
 }
 }
}

dependencies {
 compile ('org.springframework.boot:spring-boot-starter-web') {
 exclude group: 'org.springframework.boot', module: 'spring-boot-starter-tomcat'
 }
 compile ('org.springframework.boot:spring-boot-starter-jetty') {
 exclude group: 'org.eclipse.jetty.websocket'
 }
}
Create WebSocket endpoints using @ServerEndpoint

If you want to use @ServerEndpoint in a Spring Boot application that used an embedded
container, you must declare a single ServerEndpointExporter @Bean:
@Bean
public ServerEndpointExporter serverEndpointExporter() {
 return new ServerEndpointExporter();
}
This bean will register any @ServerEndpoint annotated beans with the underlying
WebSocket container. When deployed to a standalone servlet container this role is
performed by a servlet container initializer and the ServerEndpointExporter bean is
not required.
Enable HTTP response compression

Spring Boot provides two mechanisms for enabling compression of HTTP compression; one
that is Tomcat-specific and another that uses a filter and works with Jetty, Tomcat,
and Undertow.
Enable Tomcat’s HTTP response compression

Tomcat provides built-in support for HTTP response compression. It is disabled by
default, but can easily be enabled via application.properties:
server.tomcat.compression=on
When set to on Tomcat will compress responses with a length that is at least 2048
bytes. This limit can be configured by specifying an integer value rather than on,
e.g.:
server.tomcat.compression=4096
By default Tomcat will only compress responses with certain MIME types
(text/html, text/xml, and text/plain). You can customize this using the
server.tomcat.compressableMimeTypes property, e.g.:
server.tomcat.compressableMimeTypes=application/json,application/xml
Enable HTTP response compression using GzipFilter

If you’re using Jetty or Undertow, or you want more sophisticated control over
HTTP response compression, Spring Boot provides auto-configuration for Jetty’s
GzipFilter. While this filter is part of Jetty, it’s compatible with Tomcat
and Undertow as well. To enable the filter, simply add a dependency on
org.eclipse.jetty:jetty-servlets to your application.
GzipFilter can be configured using the spring.http.gzip.* properties. See
GzipFilterProperties
for more details.
Chapter 65. Spring MVC

Write a JSON REST service

Any Spring @RestController in a Spring Boot application should render JSON response by
default as long as Jackson2 is on the classpath. For example:
@RestController
public class MyController {

 @RequestMapping("/thing")
 public MyThing thing() {
 return new MyThing();
 }

}
As long as MyThing can be serialized by Jackson2 (e.g. a normal POJO or Groovy object)
then localhost:8080/thing will serve a JSON representation of it by default.
Sometimes in a browser you might see XML responses because browsers tend to send accept
headers that prefer XML.
Write an XML REST service

If you have the Jackson XML extension (jackson-dataformat-xml) on the classpath, it will
be used to render XML responses and the very same example as we used for JSON would work.
To use it, add the following dependency to your project:
<dependency>
 <groupId>com.fasterxml.jackson.dataformat</groupId>
 <artifactId>jackson-dataformat-xml</artifactId>
</dependency>
You may also want to add a dependency on Woodstox. It’s faster than the default Stax
implementation provided by the JDK and also adds pretty print support and improved
namespace handling:
<dependency>
 <groupId>org.codehaus.woodstox</groupId>
 <artifactId>woodstox-core-asl</artifactId>
</dependency>
If Jackson’s XML extension is not available, JAXB (provided by default in the JDK) will
be used, with the additional requirement to have MyThing annotated as
@XmlRootElement:
@XmlRootElement
public class MyThing {
 private String name;
 // .. getters and setters
}
To get the server to render XML instead of JSON you might have to send an
Accept: text/xml header (or use a browser).
Customize the Jackson ObjectMapper

Spring MVC (client and server side) uses HttpMessageConverters to negotiate content
conversion in an HTTP exchange. If Jackson is on the classpath you already get the
default converter(s) provided by Jackson2ObjectMapperBuilder.
The ObjectMapper (or XmlMapper for Jackson XML converter) instance created by default
have the following customized properties:
	MapperFeature.DEFAULT_VIEW_INCLUSION is disabled
	DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES is disabled

Spring Boot has also some features to make it easier to customize this behavior.
You can configure the ObjectMapper and XmlMapper instances using the environment.
Jackson provides an extensive suite of simple on/off features that can be used to
configure various aspects of its processing. These features are described in five enums in
Jackson which map onto properties in the environment:
	Jackson enum	Environment property
	com.fasterxml.jackson.databind.DeserializationFeature
	spring.jackson.deserialization.<feature_name>=true|false

	com.fasterxml.jackson.core.JsonGenerator.Feature
	spring.jackson.generator.<feature_name>=true|false

	com.fasterxml.jackson.databind.MapperFeature
	spring.jackson.mapper.<feature_name>=true|false

	com.fasterxml.jackson.core.JsonParser.Feature
	spring.jackson.parser.<feature_name>=true|false

	com.fasterxml.jackson.databind.SerializationFeature
	spring.jackson.serialization.<feature_name>=true|false

For example, to enable pretty print, set spring.jackson.serialization.indent_output=true.
Note that, thanks to the use of relaxed binding, the case of indent_output doesn’t have to match the case of the
corresponding enum constant which is INDENT_OUTPUT.
If you want to replace the default ObjectMapper completely, define a @Bean of that
type and mark it as @Primary.
Defining a @Bean of type Jackson2ObjectMapperBuilder will allow you to customize both
default ObjectMapper and XmlMapper (used in MappingJackson2HttpMessageConverter and
MappingJackson2XmlHttpMessageConverter respectively).
Another way to customize Jackson is to add beans of type
com.fasterxml.jackson.databind.Module to your context. They will be registered with every
bean of type ObjectMapper, providing a global mechanism for contributing custom modules
when you add new features to your application.
Finally, if you provide any @Beans of type MappingJackson2HttpMessageConverter then
they will replace the default value in the MVC configuration. Also, a convenience bean is
provided of type HttpMessageConverters (always available if you use the default MVC
configuration) which has some useful methods to access the default and user-enhanced
message converters.
See also the the section called “Customize the @ResponseBody rendering” section and the
WebMvcAutoConfiguration
source code for more details.
Customize the @ResponseBody rendering

Spring uses HttpMessageConverters to render @ResponseBody (or responses from
@RestController). You can contribute additional converters by simply adding beans of
that type in a Spring Boot context. If a bean you add is of a type that would have been
included by default anyway (like MappingJackson2HttpMessageConverter for JSON
conversions) then it will replace the default value. A convenience bean is provided of
type HttpMessageConverters (always available if you use the default MVC configuration)
which has some useful methods to access the default and user-enhanced message converters
(useful, for example if you want to manually inject them into a custom RestTemplate).
As in normal MVC usage, any WebMvcConfigurerAdapter beans that you provide can also
contribute converters by overriding the configureMessageConverters method, but unlike
with normal MVC, you can supply only additional converters that you need (because Spring
Boot uses the same mechanism to contribute its defaults). Finally, if you opt-out of the
Spring Boot default MVC configuration by providing your own @EnableWebMvc configuration,
then you can take control completely and do everything manually using
getMessageConverters from WebMvcConfigurationSupport.
See the WebMvcAutoConfiguration
source code for more details.
Handling Multipart File Uploads

Spring Boot embraces the Servlet 3 javax.servlet.http.Part API to support uploading
files. By default Spring Boot configures Spring MVC with a maximum file of 1Mb per
file and a maximum of 10Mb of file data in a single request. You may override these
values, as well as the location to which intermediate data is stored (e.g., to the /tmp
directory) and the threshold past which data is flushed to disk by using the properties
exposed in the MultipartProperties class. If you want to specify that files be
unlimited, for example, set the multipart.maxFileSize property to -1.
The multipart support is helpful when you want to receive multipart encoded file data as
a @RequestParam-annotated parameter of type MultipartFile in a Spring MVC controller
handler method.
See the MultipartAutoConfiguration
source for more details.
Switch off the Spring MVC DispatcherServlet

Spring Boot wants to serve all content from the root of your application / down. If you
would rather map your own servlet to that URL you can do it, but of course you may lose
some of the other Boot MVC features. To add your own servlet and map it to the root
resource just declare a @Bean of type Servlet and give it the special bean name
dispatcherServlet (You can also create a bean of a different type with that name if
you want to switch it off and not replace it).
Switch off the Default MVC configuration

The easiest way to take complete control over MVC configuration is to provide your own
@Configuration with the @EnableWebMvc annotation. This will leave all MVC
configuration in your hands.
Customize ViewResolvers

A ViewResolver is a core component of Spring MVC, translating view names in
@Controller to actual View implementations. Note that ViewResolvers are mainly
used in UI applications, rather than REST-style services (a View is not used to render
a @ResponseBody). There are many implementations of ViewResolver to choose from, and
Spring on its own is not opinionated about which ones you should use. Spring Boot, on the
other hand, installs one or two for you depending on what it finds on the classpath and
in the application context. The DispatcherServlet uses all the resolvers it finds in
the application context, trying each one in turn until it gets a result, so if you are
adding your own you have to be aware of the order and in which position your resolver is
added.
WebMvcAutoConfiguration adds the following ViewResolvers to your context:
	An InternalResourceViewResolver with bean id ‘defaultViewResolver’. This one locates
physical resources that can be rendered using the DefaultServlet (e.g. static
resources and JSP pages if you are using those). It applies a prefix and a suffix to the
view name and then looks for a physical resource with that path in the servlet context
(defaults are both empty, but accessible for external configuration via
spring.view.prefix and spring.view.suffix). It can be overridden by providing a
bean of the same type.
	A BeanNameViewResolver with id ‘beanNameViewResolver’. This is a useful member of the
view resolver chain and will pick up any beans with the same name as the View being
resolved. It shouldn’t be necessary to override or replace it.
	A ContentNegotiatingViewResolver with id ‘viewResolver’ is only added if there are
actually beans of type View present. This is a ‘master’ resolver, delegating to all
the others and attempting to find a match to the ‘Accept’ HTTP header sent by the
client. There is a useful
blog about ContentNegotiatingViewResolver
that you might like to study to learn more, and also look at the source code for detail.
You can switch off the auto-configured
ContentNegotiatingViewResolver by defining a bean named ‘viewResolver’.
	If you use Thymeleaf you will also have a ThymeleafViewResolver with id
‘thymeleafViewResolver’. It looks for resources by surrounding the view name with a
prefix and suffix (externalized to spring.thymeleaf.prefix and
spring.thymeleaf.suffix, defaults ‘classpath:/templates/’ and ‘.html’
respectively). It can be overridden by providing a bean of the same name.
	If you use FreeMarker you will also have a FreeMarkerViewResolver with id
‘freeMarkerViewResolver’. It looks for resources in a loader path (externalized to
spring.freemarker.templateLoaderPath, default ‘classpath:/templates/’) by
surrounding the view name with a prefix and suffix (externalized to spring.freemarker.prefix
and spring.freemarker.suffix, with empty and ‘.ftl’ defaults respectively). It can
be overridden by providing a bean of the same name.
	If you use Groovy templates (actually if groovy-templates is on your classpath) you will
also have a GroovyMarkupViewResolver with id ‘groovyMarkupViewResolver’. It
looks for resources in a loader path by surrounding the view name with a prefix and
suffix (externalized to spring.groovy.template.prefix and
spring.groovy.template.suffix, defaults ‘classpath:/templates/’ and ‘.tpl’
respectively). It can be overriden by providing a bean of the same name.
	If you use Velocity you will also have a VelocityViewResolver with id ‘velocityViewResolver’.
It looks for resources in a loader path (externalized to spring.velocity.resourceLoaderPath,
default ‘classpath:/templates/’) by surrounding the view name with a prefix and suffix
(externalized to spring.velocity.prefix and spring.velocity.suffix, with empty and ‘.vm’
defaults respectively). It can be overridden by providing a bean of the same name.

Check out WebMvcAutoConfiguration,
ThymeleafAutoConfiguration,
FreeMarkerAutoConfiguration,
GroovyTemplateAutoConfiguration and
VelocityAutoConfiguration
Chapter 66. Logging

Spring Boot has no mandatory logging dependence, except for the commons-logging API, of
which there are many implementations to choose from. To use Logback
you need to include it, and some bindings for commons-logging on the classpath. The
simplest way to do that is through the starter poms which all depend on
spring-boot-starter-logging. For a web application you only need
spring-boot-starter-web since it depends transitively on the logging starter.
For example, using Maven:
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>
Spring Boot has a LoggingSystem abstraction that attempts to configure logging based on
the content of the classpath. If Logback is available it is the first choice.
If the only change you need to make to logging is to set the levels of various loggers
then you can do that in application.properties using the "logging.level" prefix, e.g.
logging.level.org.springframework.web=DEBUG
logging.level.org.hibernate=ERROR
You can also set the location of a file to log to (in addition to the console) using
"logging.file".
To configure the more fine-grained settings of a logging system you need to use the native
configuration format supported by the LoggingSystem in question. By default Spring Boot
picks up the native configuration from its default location for the system (e.g.
classpath:logback.xml for Logback), but you can set the location of the config file
using the "logging.config" property.
Configure Logback for logging

If you put a logback.xml in the root of your classpath it will be picked up from there.
Spring Boot provides a default base configuration that you can include if you just want
to set levels, e.g.
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <include resource="org/springframework/boot/logging/logback/base.xml"/>
 <logger name="org.springframework.web" level="DEBUG"/>
</configuration>
If you look at the default logback.xml in the spring-boot jar you will see that it uses
some useful System properties which the LoggingSystem takes care of creating for you.
These are:
	${PID} the current process ID.
	${LOG_FILE} if logging.file was set in Boot’s external configuration.
	${LOG_PATH} if logging.path was set (representing a directory for
log files to live in).

Spring Boot also provides some nice ANSI colour terminal output on a console (but not in
a log file) using a custom Logback converter. See the default base.xml configuration
for details.
If Groovy is on the classpath you should be able to configure Logback with
logback.groovy as well (it will be given preference if present).
Configure Log4j for logging

Spring Boot also supports either Log4j or
Log4j 2 for logging configuration, but only if one
of them is on the classpath. If you are using the starter poms for assembling
dependencies that means you have to exclude Logback and then include your chosen version
of Log4j instead. If you aren’t using the starter poms then you need to provide
commons-logging (at least) in addition to your chosen version of Log4j.
The simplest path is probably through the starter poms, even though it requires some
jiggling with excludes, .e.g. in Maven:
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-logging</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-log4j</artifactId>
</dependency>
To use Log4j 2, simply depend on spring-boot-starter-log4j2 rather than
spring-boot-starter-log4j.
Note
The use of one of the Log4j starters gathers together the dependencies for
common logging requirements (e.g. including having Tomcat use java.util.logging but
configuring the output using Log4j or Log4j 2). See the Actuator Log4j or Log4j 2
samples for more detail and to see it in action.

Use YAML or JSON to configure Log4j 2

In addition to its default XML configuration format, Log4j 2 also supports YAML and JSON
configuration files. To configure Log4j 2 to use an alternative configuration file format
all you need to do is add an appropriate dependency to the classpath. To use YAML, add a
dependency on com.fasterxml.jackson.dataformat:jackson-dataformat-yaml and Log4j 2 will
look for configuration files names log4j2.yaml or log4j2.yml. To use JSON, add a
dependency on com.fasterxml.jackson.core:jackson-databind and Log4j 2 will look for
configuration files named log4j2.json or log4j2.jsn
Chapter 67. Data Access

Configure a DataSource

To override the default settings just define a @Bean of your own of type DataSource.
Spring Boot provides a utility builder class DataSourceBuilder that can be used
to create one of the standard ones (if it is on the classpath), or you can just create
your own, and bind it to a set of Environment properties as explained in
the section called “Third-party configuration”, e.g.
@Bean
@ConfigurationProperties(prefix="datasource.mine")
public DataSource dataSource() {
 return new FancyDataSource();
}
datasource.mine.jdbcUrl=jdbc:h2:mem:mydb
datasource.mine.user=sa
datasource.mine.poolSize=30
See the section called “Configure a DataSource” in the
‘Spring Boot features’ section and the
DataSourceAutoConfiguration
class for more details.
Configure Two DataSources

Creating more than one data source works the same as creating the first one. You might
want to mark one of them as @Primary if you are using the default auto-configuration for
JDBC or JPA (then that one will be picked up by any @Autowired injections).
@Bean
@Primary
@ConfigurationProperties(prefix="datasource.primary")
public DataSource primaryDataSource() {
 return DataSourceBuilder.create().build();
}

@Bean
@ConfigurationProperties(prefix="datasource.secondary")
public DataSource secondaryDataSource() {
 return DataSourceBuilder.create().build();
}
Use Spring Data repositories

Spring Data can create implementations for you of @Repository interfaces of various
flavors. Spring Boot will handle all of that for you as long as those @Repositories
are included in the same package (or a sub-package) of your @EnableAutoConfiguration
class.
For many applications all you will need is to put the right Spring Data dependencies on
your classpath (there is a spring-boot-starter-data-jpa for JPA and a
spring-boot-starter-data-mongodb for Mongodb), create some repository interfaces to handle your
@Entity objects. Examples are in the JPA sample
or the Mongodb sample.
Spring Boot tries to guess the location of your @Repository definitions, based on the
@EnableAutoConfiguration it finds. To get more control, use the @EnableJpaRepositories
annotation (from Spring Data JPA).
Separate @Entity definitions from Spring configuration

Spring Boot tries to guess the location of your @Entity definitions, based on the
@EnableAutoConfiguration it finds. To get more control, you can use the @EntityScan
annotation, e.g.
@Configuration
@EnableAutoConfiguration
@EntityScan(basePackageClasses=City.class)
public class Application {

 //...

}
Configure JPA properties

Spring Data JPA already provides some vendor-independent configuration options (e.g.
for SQL logging) and Spring Boot exposes those, and a few more for hibernate as external
configuration properties. The most common options to set are:
spring.jpa.hibernate.ddl-auto: create-drop
spring.jpa.hibernate.naming_strategy: org.hibernate.cfg.ImprovedNamingStrategy
spring.jpa.database: H2
spring.jpa.show-sql: true
(Because of relaxed data binding hyphens or underscores should work equally well as
property keys.) The ddl-auto setting is a special case in that it has different
defaults depending on whether you are using an embedded database (create-drop) or not
(none). In addition all properties in spring.jpa.properties.* are passed through as
normal JPA properties (with the prefix stripped) when the local EntityManagerFactory is
created.
See HibernateJpaAutoConfiguration
and JpaBaseConfiguration
for more details.
Use a custom EntityManagerFactory

To take full control of the configuration of the EntityManagerFactory, you need to add
a @Bean named ‘entityManagerFactory’. Spring Boot auto-configuration switches off its
entity manager based on the presence of a bean of that type.
Use Two EntityManagers

Even if the default EntityManagerFactory works fine, you will need to define a new one
because otherwise the presence of the second bean of that type will switch off the
default. To make it easy to do that you can use the convenient EntityManagerBuilder
provided by Spring Boot, or if you prefer you can just use the
LocalContainerEntityManagerFactoryBean directly from Spring ORM.
Example:
// add two data sources configured as above

@Bean
public LocalContainerEntityManagerFactoryBean customerEntityManagerFactory(
 EntityManagerFactoryBuilder builder) {
 return builder
 .dataSource(customerDataSource())
 .packages(Customer.class)
 .persistenceUnit("customers")
 .build();
}

@Bean
public LocalContainerEntityManagerFactoryBean orderEntityManagerFactory(
 EntityManagerFactoryBuilder builder) {
 return builder
 .dataSource(orderDataSource())
 .packages(Order.class)
 .persistenceUnit("orders")
 .build();
}
The configuration above almost works on its own. To complete the picture you need to
configure TransactionManagers for the two EntityManagers as well. One of them could
be picked up by the default JpaTransactionManager in Spring Boot if you mark it as
@Primary. The other would have to be explicitly injected into a new instance. Or you
might be able to use a JTA transaction manager spanning both.
Use a traditional persistence.xml

Spring doesn’t require the use of XML to configure the JPA provider, and Spring Boot
assumes you want to take advantage of that feature. If you prefer to use persistence.xml
then you need to define your own @Bean of type LocalEntityManagerFactoryBean (with
id ‘entityManagerFactory’, and set the persistence unit name there.
See
JpaBaseConfiguration
for the default settings.
Use Spring Data JPA and Mongo repositories

Spring Data JPA and Spring Data Mongo can both create Repository implementations for you
automatically. If they are both present on the classpath, you might have to do some extra
configuration to tell Spring Boot which one (or both) you want to create repositories for
you. The most explicit way to do that is to use the standard Spring Data
@Enable*Repositories and tell it the location of your Repository interfaces
(where ‘*’ is ‘Jpa’ or ‘Mongo’ or both).
There are also flags spring.data.*.repositories.enabled that you can use to switch the
auto-configured repositories on and off in external configuration. This is useful for
instance in case you want to switch off the Mongo repositories and still use the
auto-configured MongoTemplate.
The same obstacle and the same features exist for other auto-configured Spring Data
repository types (Elasticsearch, Solr). Just change the names of the annotations and flags
respectively.
Expose Spring Data repositories as REST endpoint

Spring Data REST can expose the Repository implementations as REST endpoints for you as
long as Spring MVC has been enabled for the application.
Spring Boot exposes as set of useful properties from the spring.data.rest namespace that
customize the RepositoryRestConfiguration.
If you need to provide additional customization, you can create a @Configuration class
that extends SpringBootRepositoryRestMvcConfiguration. This class supports the same
functionality as RepositoryRestMvcConfiguration, but allows you to continue using
spring.data.rest.* properties.
Chapter 68. Database initialization

An SQL database can be initialized in different ways depending on what your stack is. Or
of course you can do it manually as long as the database is a separate process.
Initialize a database using JPA

JPA has features for DDL generation, and these can be set up to run on startup against the
database. This is controlled through two external properties:
	spring.jpa.generate-ddl (boolean) switches the feature on and off and is vendor
independent.
	spring.jpa.hibernate.ddl-auto (enum) is a Hibernate feature that controls the
behavior in a more fine-grained way. See below for more detail.

Initialize a database using Hibernate

You can set spring.jpa.hibernate.ddl-auto explicitly and the standard Hibernate property
values are none, validate, update, create-drop. Spring Boot chooses a default
value for you based on whether it thinks your database is embedded (default create-drop)
or not (default none). An embedded database is detected by looking at the Connection
type: hsqldb, h2 and derby are embedded, the rest are not. Be careful when switching
from in-memory to a ‘real’ database that you don’t make assumptions about the existence of
the tables and data in the new platform. You either have to set ddl-auto explicitly, or
use one of the other mechanisms to initialize the database.
In addition, a file named import.sql in the root of the classpath will be executed on
startup. This can be useful for demos and for testing if you are careful, but probably
not something you want to be on the classpath in production. It is a Hibernate feature
(nothing to do with Spring).
Initialize a database using Spring JDBC

Spring JDBC has a DataSource initializer feature. Spring Boot enables it by default and
loads SQL from the standard locations schema.sql and data.sql (in the root of the
classpath). In addition Spring Boot will load the schema-${platform}.sql
and data-${platform}.sql files (if present), where
platform is the value of spring.datasource.platform, e.g. you might choose to set
it to the vendor name of the database (hsqldb, h2, oracle, mysql,
postgresql etc.). Spring Boot enables the failfast feature of the Spring JDBC
initializer by default, so if the scripts cause exceptions the application will fail
to start. The script locations can be changed by setting spring.datasource.schema and
spring.datasource.data, and neither location will be processed if
spring.datasource.initialize=false.
To disable the failfast you can set spring.datasource.continueOnError=true. This can be
useful once an application has matured and been deployed a few times, since the scripts
can act as ‘poor man’s migrations’ — inserts that fail mean that the data is already
there, so there would be no need to prevent the application from running, for instance.
If you want to use the schema.sql initialization in a JPA app (with
Hibernate) then ddl-auto=create-drop will lead to errors if
Hibernate tries to create the same tables. To avoid those errors set
ddl-auto explicitly to "" (preferable) or "none". Whether or not you use
ddl-auto=create-drop you can always use data.sql to initialize new
data.
Initialize a Spring Batch database

If you are using Spring Batch then it comes pre-packaged with SQL initialization scripts
for most popular database platforms. Spring Boot will detect your database type, and
execute those scripts by default, and in this case will switch the fail fast setting to
false (errors are logged but do not prevent the application from starting). This is
because the scripts are known to be reliable and generally do not contain bugs, so errors
are ignorable, and ignoring them makes the scripts idempotent. You can switch off the
initialization explicitly using spring.batch.initializer.enabled=false.
Use a higher level database migration tool

Spring Boot works fine with higher level migration tools Flyway
(SQL-based) and Liquibase (XML). In general we prefer
Flyway because it is easier on the eyes, and it isn’t very common to need platform
independence: usually only one or at most couple of platforms is needed.
Execute Flyway database migrations on startup

To automatically run Flyway database migrations on startup, add the
org.flywaydb:flyway-core to your classpath.
The migrations are scripts in the form V<VERSION>__<NAME>.sql (with <VERSION> an
underscore-separated version, e.g. ‘1’ or ‘2_1’). By default they live in a folder
classpath:db/migration but you can modify that using flyway.locations (a list). See
the Flyway class from flyway-core for details of available settings like schemas etc. In
addition Spring Boot provides a small set of properties in
FlywayProperties
that can be used to disable the migrations, or switch off the location checking.
By default Flyway will autowire the (@Primary) DataSource in your context and
use that for migrations. If you like to use a different DataSource you can create
one and mark its @Bean as @FlywayDataSource - if you do that remember to create
another one and mark it as @Primary if you want two data sources.
Or you can use Flyway’s native DataSource by setting flyway.[url,user,password]
in external properties.
There is a Flyway sample so
you can see how to set things up.
Execute Liquibase database migrations on startup

To automatically run Liquibase database migrations on startup, add the
org.liquibase:liquibase-core to your classpath.
The master change log is by default read from db/changelog/db.changelog-master.yaml but
can be set using liquibase.change-log. See
LiquibaseProperties
for details of available settings like contexts, default schema etc.
There is a Liquibase sample so
you can see how to set things up.
Chapter 69. Batch applications

Execute Spring Batch jobs on startup

Spring Batch auto configuration is enabled by adding @EnableBatchProcessing
(from Spring Batch) somewhere in your context.
By default it executes all Jobs in the application context on startup (see
JobLauncherCommandLineRunner
for details). You can narrow down to a specific job or jobs by specifying
spring.batch.job.names (comma-separated job name patterns).
If the application context includes a JobRegistry then the jobs in
spring.batch.job.names are looked up in the registry instead of being autowired from the
context. This is a common pattern with more complex systems where multiple jobs are
defined in child contexts and registered centrally.
See
BatchAutoConfiguration
and
@EnableBatchProcessing
for more details.
Chapter 70. Actuator

Change the HTTP port or address of the actuator endpoints

In a standalone application the Actuator HTTP port defaults to the same as the main HTTP
port. To make the application listen on a different port set the external property
management.port. To listen on a completely different network address (e.g. if you have
an internal network for management and an external one for user applications) you can
also set management.address to a valid IP address that the server is able to bind to.
For more detail look at the
ManagementServerProperties
source code and
the section called “Customizing the management server port”
in the ‘Production-ready features’ section.
Customize the ‘whitelabel’ error page

Spring Boot installs a ‘whitelabel’ error page that you will see in browser client if
you encounter a server error (machine clients consuming JSON and other media types should
see a sensible response with the right error code). To switch it off you can set
error.whitelabel.enabled=false, but normally in addition or alternatively to that you
will want to add your own error page replacing the whitelabel one. Exactly how you do this
depends on the templating technology that you are using. For example, if you are using
Thymeleaf you would add an error.html template and if you are using FreeMarker you would
add an error.ftl template. In general what you need is a View that resolves with a name
of error, and/or a @Controller that handles the /error path. Unless you replaced some
of the default configuration you should find a BeanNameViewResolver in your
ApplicationContext so a @Bean with id error would be a simple way of doing that.
Look at ErrorMvcAutoConfiguration for more options.
See also the section on Error Handling for details of
how to register handlers in the servlet container.
Chapter 71. Security

Switch off the Spring Boot security configuration

If you define a @Configuration with @EnableWebSecurity anywhere in your application
it will switch off the default webapp security settings in Spring Boot. To tweak the
defaults try setting properties in security.* (see
SecurityProperties
for details of available settings) and SECURITY section of
Common application properties.
Change the AuthenticationManager and add user accounts

If you provide a @Bean of type AuthenticationManager the default one will not be
created, so you have the full feature set of Spring Security available (e.g.
various authentication options).
Spring Security also provides a convenient AuthenticationManagerBuilder which can be
used to build an AuthenticationManager with common options. The recommended way to
use this in a webapp is to inject it into a void method in a
WebSecurityConfigurerAdapter, e.g.
@Configuration
public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {
 auth.inMemoryAuthentication()
 .withUser("barry").password("password").roles("USER"); // ... etc.
 }

 // ... other stuff for application security

}
You will get the best results if you put this in a nested class, or a standalone class
(i.e. not mixed in with a lot of other @Beans that might be allowed to influence the
order of instantiation). The secure web sample
is a useful template to follow.
If you experience instantiation issues (e.g. using JDBC or JPA for the user detail store)
it might be worth extracting the AuthenticationManagerBuilder callback into a
GlobalAuthenticationConfigurerAdapter (in the init() method so it happens before the
authentication manager is needed elsewhere), e.g.
@Configuration
public class AuthenticationManagerConfiguration extends

 GlobalAuthenticationConfigurerAdapter {
 @Override
 public void init(AuthenticationManagerBuilder auth) {
 auth.inMemoryAuthentication() // ... etc.
 }

}
Enable HTTPS when running behind a proxy server

Ensuring that all your main endpoints are only available over HTTPS is an important
chore for any application. If you are using Tomcat as a servlet container, then
Spring Boot will add Tomcat’s own RemoteIpValve automatically if it detects some
environment settings, and you should be able to rely on the HttpServletRequest to
report whether it is secure or not (even downstream of a proxy server that handles the
real SSL termination). The standard behavior is determined by the presence or absence of
certain request headers (x-forwarded-for and x-forwarded-proto), whose names are
conventional, so it should work with most front end proxies. You can switch on the valve
by adding some entries to application.properties, e.g.
server.tomcat.remote_ip_header=x-forwarded-for
server.tomcat.protocol_header=x-forwarded-proto
(The presence of either of those properties will switch on the valve. Or you can add the
RemoteIpValve yourself by adding a TomcatEmbeddedServletContainerFactory bean.)
Spring Security can also be configured to require a secure channel for all (or some
requests). To switch that on in a Spring Boot application you just need to set
security.require_ssl to true in application.properties.
Chapter 72. Hot swapping

Reload static content

There are several options for hot reloading. Running in an IDE (especially with debugging
on) is a good way to do development (all modern IDEs allow reloading of static resources
and usually also hot-swapping of Java class changes). The
Maven and Gradle plugins also
support running from the command line with reloading of static files. You can use that
with an external css/js compiler process if you are writing that code with higher level
tools.
Reload Thymeleaf templates without restarting the container

If you are using Thymeleaf, then set spring.thymeleaf.cache to false. See
ThymeleafAutoConfiguration
for other Thymeleaf customization options.
Reload FreeMarker templates without restarting the container

If you are using FreeMarker, then set spring.freemarker.cache to false. See
FreeMarkerAutoConfiguration
for other FreeMarker customization options.
Reload Groovy templates without restarting the container

If you are using Groovy templates, then set spring.groovy.template.cache to false. See
GroovyTemplateAutoConfiguration
for other Groovy customization options.
Reload Velocity templates without restarting the container

If you are using Velocity, then set spring.velocity.cache to false. See
VelocityAutoConfiguration
for other Velocity customization options.
Reload Java classes without restarting the container

Modern IDEs (Eclipse, IDEA, etc.) all support hot swapping of bytecode, so if you make a
change that doesn’t affect class or method signatures it should reload cleanly with no
side effects.
Spring Loaded goes a little further in
that it can reload class definitions with changes in the method signatures. With some
customization it can force an ApplicationContext to refresh itself (but there is no
general mechanism to ensure that would be safe for a running application anyway, so it
would only ever be a development time trick probably).
Configuring Spring Loaded for use with Maven

To use Spring Loaded with the Maven command line, just add it as a dependency in the
Spring Boot plugin declaration, e.g.
<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>springloaded</artifactId>
 <version>1.2.0.RELEASE</version>
 </dependency>
 </dependencies>
</plugin>
This normally works pretty well with Eclipse and IntelliJ as long as they have their
build configuration aligned with the Maven defaults (Eclipse m2e does this out of the
box).
Configuring Spring Loaded for use with Gradle and IntelliJ

You need to jump through a few hoops if you want to use Spring Loaded in combination with
Gradle and IntelliJ. By default, IntelliJ will compile classes into a different location
than Gradle, causing Spring Loaded monitoring to fail.
To configure IntelliJ correctly you can use the idea Gradle plugin:
buildscript {
 repositories { jcenter() }
 dependencies {
 classpath "org.springframework.boot:spring-boot-gradle-plugin:1.2.8.RELEASE"
 classpath 'org.springframework:springloaded:1.2.0.RELEASE'
 }
}

apply plugin: 'idea'

idea {
 module {
 inheritOutputDirs = false
 outputDir = file("$buildDir/classes/main/")
 }
}

// ...
Note
IntelliJ must be configured to use the same Java version as the command line Gradle
task and springloaded must be included as a buildscript dependency.

You can also additionally enable ‘Make Project Automatically’ inside Intellij to
automatically compile your code whenever a file is saved.
Chapter 73. Build

Customize dependency versions with Maven

If you use a Maven build that inherits directly or indirectly from spring-boot-dependencies
(for instance spring-boot-starter-parent) but you want to override a specific
third-party dependency you can add appropriate <properties> elements. Browse
the spring-boot-dependencies
POM for a complete list of properties. For example, to pick a different slf4j version
you would add the following:
<properties>
 <slf4j.version>1.7.5<slf4j.version>
</properties>
Note
This only works if your Maven project inherits (directly or indirectly) from
spring-boot-dependencies. If you have added spring-boot-dependencies in your
own dependencyManagement section with <scope>import</scope> you have to redefine
the artifact yourself instead of overriding the property	.

Warning
Each Spring Boot release is designed and tested against a specific set of
third-party dependencies. Overriding versions may cause compatibility issues.

Create an executable JAR with Maven

The spring-boot-maven-plugin can be used to create an executable ‘fat’ JAR. If you
are using the spring-boot-starter-parent POM you can simply declare the plugin and
your jars will be repackaged:
<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>
If you are not using the parent POM you can still use the plugin, however, you must
additionally add an <executions> section:
<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>1.2.8.RELEASE</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>
See the plugin documentation for full usage
details.
Create an additional executable JAR

If you want to use your project as a library jar for other projects to depend on, and in
addition have an executable (e.g. demo) version of it, you will want to configure the
build in a slightly different way.
For Maven the normal JAR plugin and the Spring Boot plugin both have a ‘classifier’
configuration that you can add to create an additional JAR. Example (using the Spring
Boot Starter Parent to manage the plugin versions and other configuration defaults):
<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <classifier>exec</classifier>
 </configuration>
 </plugin>
 </plugins>
</build>
Two jars are produced, the default one, and an executable one using the Boot plugin with
classifier ‘exec’.
For Gradle users the steps are similar. Example:
bootRepackage {
 classifier = 'exec'
}
Extract specific libraries when an executable jar runs

Most nested libraries in an executable jar do not need to be unpacked in order to run,
however, certain libraries can have problems. For example, JRuby includes its own nested
jar support which assumes that the jruby-complete.jar is always directly available as a
file in its own right.
To deal with any problematic libraries, you can flag that specific nested jars should be
automatically unpacked to the ‘temp folder’ when the executable jar first runs.
For example, to indicate that JRuby should be flagged for unpack using the Maven Plugin
you would add the following configuration:
<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <requiresUnpack>
 <dependency>
 <groupId>org.jruby</groupId>
 <artifactId>jruby-complete</artifactId>
 </dependency>
 </requiresUnpack>
 </configuration>
 </plugin>
 </plugins>
</build>
And to do that same with Gradle:
springBoot {
 requiresUnpack = ['org.jruby:jruby-complete']
}
Create a non-executable JAR with exclusions

Often if you have an executable and a non-executable jar as build products, the executable
version will have additional configuration files that are not needed in a library jar.
E.g. the application.yml configuration file might excluded from the non-executable JAR.
Here’s how to do that in Maven:
<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <classifier>exec</classifier>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <executions>
 <execution>
 <id>exec</id>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 <configuration>
 <classifier>exec</classifier>
 </configuration>
 </execution>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 <configuration>
 <!-- Need this to ensure application.yml is excluded -->
 <forceCreation>true</forceCreation>
 <excludes>
 <exclude>application.yml</exclude>
 </excludes>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>
In Gradle you can create a new JAR archive with standard task DSL features, and then have
the bootRepackage task depend on that one using its withJarTask property:
jar {
 baseName = 'spring-boot-sample-profile'
 version = '0.0.0'
 excludes = ['**/application.yml']
}

task('execJar', type:Jar, dependsOn: 'jar') {
 baseName = 'spring-boot-sample-profile'
 version = '0.0.0'
 classifier = 'exec'
 from sourceSets.main.output
}

bootRepackage {
 withJarTask = tasks['execJar']
}
Remote debug a Spring Boot application started with Maven

To attach a remote debugger to a Spring Boot application started with Maven you can use
the jvmArguments property of the maven plugin.
Check this example for more details.
Remote debug a Spring Boot application started with Gradle

To attach a remote debugger to a Spring Boot application started with Gradle you can use
the applicationDefaultJvmArgs in build.gradle or --debug-jvm command line option.
build.gradle:
applicationDefaultJvmArgs = [
 "-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005"
]
Command line:
$ gradle run --debug-jvm
Check Gradle Application Plugin for more
details.
Build an executable archive with Ant

To build with Ant you need to grab dependencies, compile and then create a jar or war
archive as normal. To make it executable:
	Use the appropriate launcher as a Main-Class, e.g. JarLauncher for a jar file, and
specify the other properties it needs as manifest entries, principally a Start-Class.
	Add the runtime dependencies in a nested ‘lib’ directory (for a jar) and the
provided (embedded container) dependencies in a nested lib-provided directory.
Remember not to compress the entries in the archive.
	Add the spring-boot-loader classes at the root of the archive (so the Main-Class
is available).

Example:
<target name="build" depends="compile">
 <copy todir="target/classes/lib">
 <fileset dir="lib/runtime" />
 </copy>
 <jar destfile="target/spring-boot-sample-actuator-${spring-boot.version}.jar" compress="false">
 <fileset dir="target/classes" />
 <fileset dir="src/main/resources" />
 <zipfileset src="lib/loader/spring-boot-loader-jar-${spring-boot.version}.jar" />
 <manifest>
 <attribute name="Main-Class" value="org.springframework.boot.loader.JarLauncher" />
 <attribute name="Start-Class" value="${start-class}" />
 </manifest>
 </jar>
</target>
The Actuator Sample has a build.xml that should work if you run it with
$ ant -lib <path_to>/ivy-2.2.jar
after which you can run the application with
$ java -jar target/*.jar
How to use Java 6

If you want to use Spring Boot with Java 6 there are a small number of configuration
changes that you will have to make. The exact changes depend on your application’s
functionality.
Embedded servlet container compatibility

If you are using one of Boot’s embedded Servlet containers you will have to use a
Java 6-compatible container. Both Tomcat 7 and Jetty 8 are Java 6 compatible. See
the section called “Use Tomcat 7” and the section called “Use Jetty 8” for details.
JTA API compatibility

While the Java Transaction API itself doesn’t require Java 7 the official API jar
contains classes that have been built to require Java 7. If you are using JTA then
you will need to replace the official JTA 1.2 API jar with one that has been built
to work on Java 6. To do so, exclude any transitive dependencies on
javax.transaction:javax.transaction-api and replace them with a dependency on
org.jboss.spec.javax.transaction:jboss-transaction-api_1.2_spec:1.0.0.Final
Chapter 74. Traditional deployment

Create a deployable war file

The first step in producing a deployable war file is to provide a
SpringBootServletInitializer subclass and override its configure method. This makes
use of Spring Framework’s Servlet 3.0 support and allows you to configure your
application when it’s launched by the servlet container. Typically, you update your
application’s main class to extend SpringBootServletInitializer:
@SpringBootApplication
public class Application extends SpringBootServletInitializer {

 @Override
 protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {
 return application.sources(Application.class);
 }

 public static void main(String[] args) throws Exception {
 SpringApplication.run(Application.class, args);
 }

}
The next step is to update your build configuration so that your project produces a war file
rather than a jar file. If you’re using Maven and using spring-boot-starter-parent (which
configures Maven’s war plugin for you) all you need to do is modify pom.xml to change the
packaging to war:
<packaging>war</packaging>
If you’re using Gradle, you need to modify build.gradle to apply the war plugin to the
project:
apply plugin: 'war'
The final step in the process is to ensure that the embedded servlet container doesn’t
interfere with the servlet container to which the war file will be deployed. To do so, you
need to mark the embedded servlet container dependency as provided.
If you’re using Maven:
<dependencies>
 <!-- … -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 <scope>provided</scope>
 </dependency>
 <!-- … -->
</dependencies>
And if you’re using Gradle:
dependencies {
 // …
 providedRuntime 'org.springframework.boot:spring-boot-starter-tomcat'
 // …
}
If you’re using the Spring Boot build tools,
marking the embedded servlet container dependency as provided will produce an executable war
file with the provided dependencies packaged in a lib-provided directory. This means
that, in addition to being deployable to a servlet container, you can also run your
application using java -jar on the command line.
Tip
Take a look at Spring Boot’s sample applications for a
Maven-based example
of the above-described configuration.

Create a deployable war file for older servlet containers

Older Servlet containers don’t have support for the ServletContextInitializer bootstrap
process used in Servlet 3.0. You can still use Spring and Spring Boot in these containers
but you are going to need to add a web.xml to your application and configure it to load
an ApplicationContext via a DispatcherServlet.
Convert an existing application to Spring Boot

For a non-web application it should be easy (throw away the code that creates your
ApplicationContext and replace it with calls to SpringApplication or
SpringApplicationBuilder). Spring MVC web applications are generally amenable to first
creating a deployable war application, and then migrating it later to an executable war
and/or jar. Useful reading is in the Getting
Started Guide on Converting a jar to a war.
Create a deployable war by extending SpringBootServletInitializer (e.g. in a class
called Application), and add the Spring Boot @EnableAutoConfiguration annotation.
Example:
@Configuration
@EnableAutoConfiguration
@ComponentScan
public class Application extends SpringBootServletInitializer {

 @Override
 protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {
 // Customize the application or call application.sources(...) to add sources
 // Since our example is itself a @Configuration class we actually don't
 // need to override this method.
 return application;
 }

}
Remember that whatever you put in the sources is just a Spring ApplicationContext and
normally anything that already works should work here. There might be some beans you can
remove later and let Spring Boot provide its own defaults for them, but it should be
possible to get something working first.
Static resources can be moved to /public (or /static or /resources or
/META-INF/resources) in the classpath root. Same for messages.properties (Spring Boot
detects this automatically in the root of the classpath).
Vanilla usage of Spring DispatcherServlet and Spring Security should require no further
changes. If you have other features in your application, using other servlets or filters
for instance, then you may need to add some configuration to your Application context,
replacing those elements from the web.xml as follows:
	A @Bean of type Servlet or ServletRegistrationBean installs that bean in the
container as if it was a <servlet/> and <servlet-mapping/> in web.xml.
	A @Bean of type Filter or FilterRegistrationBean behaves similarly (like a
<filter/> and <filter-mapping/>.
	An ApplicationContext in an XML file can be added to an @Import in your
Application. Or simple cases where annotation configuration is heavily used already
can be recreated in a few lines as @Bean definitions.

Once the war is working we make it executable by adding a main method to our
Application, e.g.
public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
}
Applications can fall into more than one category:
	Servlet 3.0+ applications with no web.xml.
	Applications with a web.xml.
	Applications with a context hierarchy.
	Applications without a context hierarchy.

All of these should be amenable to translation, but each might require slightly different
tricks.
Servlet 3.0+ applications might translate pretty easily if they already use the Spring
Servlet 3.0+ initializer support classes. Normally all the code from an existing
WebApplicationInitializer can be moved into a SpringBootServletInitializer. If your
existing application has more than one ApplicationContext (e.g. if it uses
AbstractDispatcherServletInitializer) then you might be able to squash all your context
sources into a single SpringApplication. The main complication you might encounter is if
that doesn’t work and you need to maintain the context hierarchy. See the
entry on building a hierarchy for
examples. An existing parent context that contains web-specific features will usually
need to be broken up so that all the ServletContextAware components are in the child
context.
Applications that are not already Spring applications might be convertible to a Spring
Boot application, and the guidance above might help, but your mileage may vary.
Deploying a WAR to Weblogic

To deploy a Spring Boot application to Weblogic you must ensure that your servlet
initializer directly implements WebApplicationInitializer (even if you extend from a
base class that already implements it).
A typical initializer for Weblogic would be something like this:
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.context.web.SpringBootServletInitializer;
import org.springframework.web.WebApplicationInitializer;

@SpringBootApplication
public class MyApplication extends SpringBootServletInitializer implements WebApplicationInitializer {

}
If you use logback, you will also need to tell Weblogic to prefer the packaged version
rather than the version that pre-installed with the server. You can do this by adding a
WEB-INF/weblogic.xml file with the following contents:
<?xml version="1.0" encoding="UTF-8"?>
<wls:weblogic-web-app
	xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
		http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd
		http://xmlns.oracle.com/weblogic/weblogic-web-app
		http://xmlns.oracle.com/weblogic/weblogic-web-app/1.4/weblogic-web-app.xsd">
	<wls:container-descriptor>
		<wls:prefer-application-packages>
			<wls:package-name>org.slf4j</wls:package-name>
		</wls:prefer-application-packages>
	</wls:container-descriptor>
</wls:weblogic-web-app>
Deploying a WAR in an Old (Servlet 2.5) Container

Spring Boot uses Servlet 3.0 APIs to initialize the ServletContext (register Servlets
etc.) so you can’t use the same application out of the box in a Servlet 2.5 container.
It is however possible to run a Spring Boot application on an older container with some
special tools. If you include org.springframework.boot:spring-boot-legacy as a
dependency (maintained separately to the
core of Spring Boot and currently available at 1.0.0.RELEASE), all you should need to do
is create a web.xml and declare a context listener to create the application context and
your filters and servlets. The context listener is a special purpose one for Spring Boot,
but the rest of it is normal for a Spring application in Servlet 2.5. Example:
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>demo.Application</param-value>
 </context-param>

 <listener>
 <listener-class>org.springframework.boot.legacy.context.web.SpringBootContextLoaderListener</listener-class>
 </listener>

 <filter>
 <filter-name>metricFilter</filter-name>
 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>metricFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <servlet>
 <servlet-name>appServlet</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <init-param>
 <param-name>contextAttribute</param-name>
 <param-value>org.springframework.web.context.WebApplicationContext.ROOT</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>appServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>

</web-app>
In this example we are using a single application context (the one created by the context
listener) and attaching it to the DispatcherServlet using an init parameter. This is
normal in a Spring Boot application (you normally only have one application context).
Part X. Appendices

Appendix A. Common application properties

Various properties can be specified inside your application.properties/application.yml
file or as command line switches. This section provides a list common Spring Boot
properties and references to the underlying classes that consume them.
Note
Property contributions can come from additional jar files on your classpath so
you should not consider this an exhaustive list. It is also perfectly legit to define
your own properties.

Warning
This sample file is meant as a guide only. Do not copy/paste the entire
content into your application; rather pick only the properties that you need.

===
COMMON SPRING BOOT PROPERTIES
#
This sample file is provided as a guideline. Do NOT copy it in its
entirety to your own application. ^^^
===

--
CORE PROPERTIES
--

SPRING CONFIG (ConfigFileApplicationListener)
spring.config.name= # config file name (default to 'application')
spring.config.location= # location of config file

PROFILES
spring.profiles.active= # comma list of active profiles
spring.profiles.include= # unconditionally activate the specified comma separated profiles

APPLICATION SETTINGS (SpringApplication)
spring.main.sources=
spring.main.web-environment= # detect by default
spring.main.show-banner=true
spring.main....= # see class for all properties

LOGGING
logging.path=/var/log
logging.file=myapp.log
logging.config= # location of config file (default classpath:logback.xml for logback)
logging.level.*= # levels for loggers, e.g. "logging.level.org.springframework=DEBUG" (TRACE, DEBUG, INFO, WARN, ERROR, FATAL, OFF)

IDENTITY (ContextIdApplicationContextInitializer)
spring.application.name=
spring.application.index=

EMBEDDED SERVER CONFIGURATION (ServerProperties)
server.port=8080
server.address= # bind to a specific NIC
server.session-timeout= # session timeout in seconds
server.context-parameters.*= # Servlet context init parameters, e.g. server.context-parameters.a=alpha
server.context-path= # the context path, defaults to '/'
server.servlet-path= # the servlet path, defaults to '/'
server.ssl.enabled=true # if SSL support is enabled
server.ssl.client-auth= # want or need
server.ssl.key-alias=
server.ssl.ciphers= # supported SSL ciphers
server.ssl.key-password=
server.ssl.key-store=
server.ssl.key-store-password=
server.ssl.key-store-provider=
server.ssl.key-store-type=
server.ssl.protocol=TLS
server.ssl.trust-store=
server.ssl.trust-store-password=
server.ssl.trust-store-provider=
server.ssl.trust-store-type=
server.tomcat.access-log-pattern= # log pattern of the access log
server.tomcat.access-log-enabled=false # is access logging enabled
server.tomcat.compression=off # is compression enabled (off, on, or an integer content length limit)
server.tomcat.compressable-mime-types=text/html,text/xml,text/plain # comma-separated list of mime types that Tomcat will compress
server.tomcat.internal-proxies=10\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}|\\
 192\\.168\\.\\d{1,3}\\.\\d{1,3}|\\
 169\\.254\\.\\d{1,3}\\.\\d{1,3}|\\
 127\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3} # regular expression matching trusted IP addresses
server.tomcat.protocol-header=x-forwarded-proto # front end proxy forward header
server.tomcat.protocol-header-https-value=https # value of the protocol header that indicates that the incoming request uses SSL
server.tomcat.port-header= # front end proxy port header
server.tomcat.remote-ip-header=x-forwarded-for
server.tomcat.basedir=/tmp # base dir (usually not needed, defaults to tmp)
server.tomcat.background-processor-delay=30; # in seconds
server.tomcat.max-http-header-size= # maximum size in bytes of the HTTP message header
server.tomcat.max-threads = 0 # number of threads in protocol handler
server.tomcat.uri-encoding = UTF-8 # character encoding to use for URL decoding

SPRING MVC (WebMvcProperties)
spring.mvc.locale= # set fixed locale, e.g. en_UK
spring.mvc.date-format= # set fixed date format, e.g. dd/MM/yyyy
spring.mvc.favicon.enabled=true
spring.mvc.media-types.*= # Maps file extensions to media types for content negotiation.
spring.mvc.message-codes-resolver-format= # PREFIX_ERROR_CODE / POSTFIX_ERROR_CODE
spring.mvc.ignore-default-model-on-redirect=true # If the the content of the "default" model should be ignored redirects
spring.view.prefix= # MVC view prefix
spring.view.suffix= # ... and suffix

SPRING RESOURCES HANDLING (ResourceProperties)
spring.resources.cache-period= # cache timeouts in headers sent to browser
spring.resources.add-mappings=true # if default mappings should be added

MULTIPART (MultipartProperties)
multipart.enabled=true
multipart.file-size-threshold=0 # Threshold after which files will be written to disk.
multipart.location= # Intermediate location of uploaded files.
multipart.max-file-size=1Mb # Max file size.
multipart.max-request-size=10Mb # Max request size.

SPRING HATEOAS (HateoasProperties)
spring.hateoas.apply-to-primary-object-mapper=true # if the primary mapper should also be configured

HTTP encoding (HttpEncodingProperties)
spring.http.encoding.charset=UTF-8 # the encoding of HTTP requests/responses
spring.http.encoding.enabled=true # enable http encoding support
spring.http.encoding.force=true # force the configured encoding

HTTP message conversion
spring.http.converters.preferred-json-mapper= # the preferred JSON mapper to use for HTTP message conversion. Set to "gson" to force the use of Gson when both it and Jackson are on the classpath.

HTTP response compression (GzipFilterProperties)
spring.http.gzip.buffer-size= # size of the output buffer in bytes
spring.http.gzip.deflate-compression-level= # the level used for deflate compression (0-9)
spring.http.gzip.deflate-no-wrap= # noWrap setting for deflate compression (true or false)
spring.http.gzip.enabled=true # enable gzip filter support
spring.http.gzip.excluded-agents= # comma-separated list of user agents to exclude from compression
spring.http.gzip.exclude-agent-patterns= # comma-separated list of regular expression patterns to control user agents excluded from compression
spring.http.gzip.exclude-paths= # comma-separated list of paths to exclude from compression
spring.http.gzip.exclude-path-patterns= # comma-separated list of regular expression patterns to control the paths that are excluded from compression
spring.http.gzip.methods= # comma-separated list of HTTP methods for which compression is enabled
spring.http.gzip.mime-types= # comma-separated list of MIME types which should be compressed
spring.http.gzip.excluded-mime-types= # comma-separated list of MIME types to exclude from compression
spring.http.gzip.min-gzip-size= # minimum content length required for compression to occur
spring.http.gzip.vary= # Vary header to be sent on responses that may be compressed

JACKSON (JacksonProperties)
spring.jackson.date-format= # Date format string (e.g. yyyy-MM-dd HH:mm:ss), or a fully-qualified date format class name (e.g. com.fasterxml.jackson.databind.util.ISO8601DateFormat)
spring.jackson.property-naming-strategy= # One of the constants on Jackson's PropertyNamingStrategy (e.g. CAMEL_CASE_TO_LOWER_CASE_WITH_UNDERSCORES) or the fully-qualified class name of a PropertyNamingStrategy subclass
spring.jackson.deserialization.*= # see Jackson's DeserializationFeature
spring.jackson.generator.*= # see Jackson's JsonGenerator.Feature
spring.jackson.mapper.*= # see Jackson's MapperFeature
spring.jackson.parser.*= # see Jackson's JsonParser.Feature
spring.jackson.serialization.*= # see Jackson's SerializationFeature

THYMELEAF (ThymeleafAutoConfiguration)
spring.thymeleaf.check-template-location=true
spring.thymeleaf.prefix=classpath:/templates/
spring.thymeleaf.excluded-view-names= # comma-separated list of view names that should be excluded from resolution
spring.thymeleaf.view-names= # comma-separated list of view names that can be resolved
spring.thymeleaf.suffix=.html
spring.thymeleaf.mode=HTML5
spring.thymeleaf.encoding=UTF-8
spring.thymeleaf.content-type=text/html # ;charset=<encoding> is added
spring.thymeleaf.cache=true # set to false for hot refresh

FREEMARKER (FreeMarkerAutoConfiguration)
spring.freemarker.allow-request-override=false
spring.freemarker.allow-session-override=false
spring.freemarker.cache=true
spring.freemarker.check-template-location=true
spring.freemarker.charset=UTF-8
spring.freemarker.content-type=text/html
spring.freemarker.expose-request-attributes=false
spring.freemarker.expose-session-attributes=false
spring.freemarker.expose-spring-macro-helpers=false
spring.freemarker.prefix=
spring.freemarker.request-context-attribute=
spring.freemarker.settings.*=
spring.freemarker.suffix=.ftl
spring.freemarker.template-loader-path=classpath:/templates/ # comma-separated list
spring.freemarker.view-names= # whitelist of view names that can be resolved

GROOVY TEMPLATES (GroovyTemplateAutoConfiguration)
spring.groovy.template.cache=true
spring.groovy.template.charset=UTF-8
spring.groovy.template.configuration.*= # See Groovy's TemplateConfiguration
spring.groovy.template.content-type=text/html
spring.groovy.template.prefix=classpath:/templates/
spring.groovy.template.suffix=.tpl
spring.groovy.template.view-names= # whitelist of view names that can be resolved

VELOCITY TEMPLATES (VelocityAutoConfiguration)
spring.velocity.allow-request-override=false
spring.velocity.allow-session-override=false
spring.velocity.cache=true
spring.velocity.check-template-location=true
spring.velocity.charset=UTF-8 # charset for input and output encoding
spring.velocity.content-type=text/html
spring.velocity.date-tool-attribute=
spring.velocity.expose-request-attributes=false
spring.velocity.expose-session-attributes=false
spring.velocity.expose-spring-macro-helpers=false
spring.velocity.number-tool-attribute=
spring.velocity.prefer-file-system-access=true # prefer file system access for template loading
spring.velocity.prefix=
spring.velocity.properties.*=
spring.velocity.request-context-attribute=
spring.velocity.resource-loader-path=classpath:/templates/
spring.velocity.suffix=.vm
spring.velocity.toolbox-config-location= # velocity Toolbox config location, for example "/WEB-INF/toolbox.xml"
spring.velocity.view-names= # whitelist of view names that can be resolved

MUSTACHE TEMPLATES (MustacheAutoConfiguration)
spring.mustache.cache=true
spring.mustache.charset=UTF-8
spring.mustache.check-template-location=true
spring.mustache.content-type=UTF-8
spring.mustache.enabled=true # enable MVC view resolution
spring.mustache.prefix=
spring.mustache.suffix=.html
spring.mustache.view-names= # whitelist of view names that can be resolved

JERSEY (JerseyProperties)
spring.jersey.type=servlet # servlet or filter
spring.jersey.init= # init params
spring.jersey.filter.order=

INTERNATIONALIZATION (MessageSourceAutoConfiguration)
spring.messages.basename=messages
spring.messages.cache-seconds=-1
spring.messages.encoding=UTF-8

SECURITY (SecurityProperties)
security.user.name=user # login username
security.user.password= # login password
security.user.role=USER # role assigned to the user
security.require-ssl=false # advanced settings ...
security.enable-csrf=false
security.basic.enabled=true
security.basic.realm=Spring
security.basic.path= # /**
security.basic.authorize-mode= # ROLE, AUTHENTICATED, NONE
security.filter-order=0
security.headers.xss=false
security.headers.cache=false
security.headers.frame=false
security.headers.content-type=false
security.headers.hsts=all # none / domain / all
security.sessions=stateless # always / never / if_required / stateless
security.ignored= # Comma-separated list of paths to exclude from the default secured paths

DATASOURCE (DataSourceAutoConfiguration & DataSourceProperties)
spring.datasource.name= # name of the data source
spring.datasource.initialize=true # populate using data.sql
spring.datasource.schema= # a schema (DDL) script resource reference
spring.datasource.data= # a data (DML) script resource reference
spring.datasource.sql-script-encoding= # a charset for reading SQL scripts
spring.datasource.platform= # the platform to use in the schema resource (schema-${platform}.sql)
spring.datasource.continue-on-error=false # continue even if can't be initialized
spring.datasource.separator=; # statement separator in SQL initialization scripts
spring.datasource.driver-class-name= # JDBC Settings...
spring.datasource.url=
spring.datasource.username=
spring.datasource.password=
spring.datasource.jndi-name= # For JNDI lookup (class, url, username & password are ignored when set)
spring.datasource.max-active=100 # Advanced configuration...
spring.datasource.max-idle=8
spring.datasource.min-idle=8
spring.datasource.initial-size=10
spring.datasource.validation-query=
spring.datasource.test-on-borrow=false
spring.datasource.test-on-return=false
spring.datasource.test-while-idle=
spring.datasource.time-between-eviction-runs-millis=
spring.datasource.min-evictable-idle-time-millis=
spring.datasource.max-wait=
spring.datasource.jmx-enabled=false # Export JMX MBeans (if supported)

DAO (PersistenceExceptionTranslationAutoConfiguration)
spring.dao.exceptiontranslation.enabled=true

MONGODB (MongoProperties)
spring.data.mongodb.host= # the db host
spring.data.mongodb.port=27017 # the connection port (defaults to 27017)
spring.data.mongodb.uri=mongodb://localhost/test # connection URL
spring.data.mongodb.database=
spring.data.mongodb.authentication-database=
spring.data.mongodb.grid-fs-database=
spring.data.mongodb.username=
spring.data.mongodb.password=
spring.data.mongodb.repositories.enabled=true # if spring data repository support is enabled

JPA (JpaBaseConfiguration, HibernateJpaAutoConfiguration)
spring.jpa.properties.*= # properties to set on the JPA connection
spring.jpa.open-in-view=true
spring.jpa.show-sql=true
spring.jpa.database-platform=
spring.jpa.database=
spring.jpa.generate-ddl=false # ignored by Hibernate, might be useful for other vendors
spring.jpa.hibernate.naming-strategy= # naming classname
spring.jpa.hibernate.ddl-auto= # defaults to create-drop for embedded dbs
spring.data.jpa.repositories.enabled=true # if spring data repository support is enabled

JTA (JtaAutoConfiguration)
spring.jta.log-dir= # transaction log dir
spring.jta.*= # technology specific configuration

ATOMIKOS
spring.jta.atomikos.connectionfactory.borrow-connection-timeout=30 # Timeout, in seconds, for borrowing connections from the pool
spring.jta.atomikos.connectionfactory.ignore-session-transacted-flag=true # Whether or not to ignore the transacted flag when creating session
spring.jta.atomikos.connectionfactory.local-transaction-mode=false # Whether or not local transactions are desired
spring.jta.atomikos.connectionfactory.maintenance-interval=60 # The time, in seconds, between runs of the pool's maintenance thread
spring.jta.atomikos.connectionfactory.max-idle-time=60 # The time, in seconds, after which connections are cleaned up from the pool
spring.jta.atomikos.connectionfactory.max-lifetime=0 # The time, in seconds, that a connection can be pooled for before being destroyed. 0 denotes no limit.
spring.jta.atomikos.connectionfactory.max-pool-size=1 # The maximum size of the pool
spring.jta.atomikos.connectionfactory.min-pool-size=1 # The minimum size of the pool
spring.jta.atomikos.connectionfactory.reap-timeout=0 # The reap timeout, in seconds, for borrowed connections. 0 denotes no limit.
spring.jta.atomikos.connectionfactory.unique-resource-name=jmsConnectionFactory # The unique name used to identify the resource during recovery
spring.jta.atomikos.datasource.borrow-connection-timeout=30 # Timeout, in seconds, for borrowing connections from the pool
spring.jta.atomikos.datasource.default-isolation-level= # Default isolation level of connections provided by the pool
spring.jta.atomikos.datasource.login-timeout= # Timeout, in seconds, for establishing a database connection
spring.jta.atomikos.datasource.maintenance-interval=60 # The time, in seconds, between runs of the pool's maintenance thread
spring.jta.atomikos.datasource.max-idle-time=60 # The time, in seconds, after which connections are cleaned up from the pool
spring.jta.atomikos.datasource.max-lifetime=0 # The time, in seconds, that a connection can be pooled for before being destroyed. 0 denotes no limit.
spring.jta.atomikos.datasource.max-pool-size=1 # The maximum size of the pool
spring.jta.atomikos.datasource.min-pool-size=1 # The minimum size of the pool
spring.jta.atomikos.datasource.reap-timeout=0 # The reap timeout, in seconds, for borrowed connections. 0 denotes no limit.
spring.jta.atomikos.datasource.test-query= # SQL query or statement used to validate a connection before returning it
spring.jta.atomikos.datasource.unique-resource-name=dataSource # The unique name used to identify the resource during recovery

BITRONIX
spring.jta.bitronix.connectionfactory.acquire-increment=1 # Number of connections to create when growing the pool
spring.jta.bitronix.connectionfactory.acquisition-interval=1 # Time, in seconds, to wait before trying to acquire a connection again after an invalid connection was acquired
spring.jta.bitronix.connectionfactory.acquisition-timeout=30 # Timeout, in seconds, for acquiring connections from the pool
spring.jta.bitronix.connectionfactory.allow-local-transactions=true # Whether or not the transaction manager should allow mixing XA and non-XA transactions
spring.jta.bitronix.connectionfactory.apply-transaction-timeout=false # Whether or not the transaction timeout should be set on the XAResource when it is enlisted
spring.jta.bitronix.connectionfactory.automatic-enlisting-enabled=true # Whether or not resources should be enlisted and delisted automatically
spring.jta.bitronix.connectionfactory.cache-producers-consumers=true # Whether or not produces and consumers should be cached
spring.jta.bitronix.connectionfactory.defer-connection-release=true # Whether or not the provider can run many transactions on the same connection and supports transaction interleaving
spring.jta.bitronix.connectionfactory.ignore-recovery-failures=false # Whether or not recovery failures should be ignored
spring.jta.bitronix.connectionfactory.max-idle-time=60 # The time, in seconds, after which connections are cleaned up from the pool
spring.jta.bitronix.connectionfactory.max-pool-size=10 # The maximum size of the pool. 0 denotes no limit
spring.jta.bitronix.connectionfactory.min-pool-size=0 # The minimum size of the pool
spring.jta.bitronix.connectionfactory.password= # The password to use to connect to the JMS provider
spring.jta.bitronix.connectionfactory.share-transaction-connections=false # Whether or not connections in the ACCESSIBLE state can be shared within the context of a transaction
spring.jta.bitronix.connectionfactory.test-connections=true # Whether or not connections should be tested when acquired from the pool
spring.jta.bitronix.connectionfactory.two-pc-ordering-position=1 # The postion that this resource should take during two-phase commit (always first is Integer.MIN_VALUE, always last is Integer.MAX_VALUE)
spring.jta.bitronix.connectionfactory.unique-name=jmsConnectionFactory # The unique name used to identify the resource during recovery
spring.jta.bitronix.connectionfactory.use-tm-join=true Whether or not TMJOIN should be used when starting XAResources
spring.jta.bitronix.connectionfactory.user= # The user to use to connect to the JMS provider
spring.jta.bitronix.datasource.acquire-increment=1 # Number of connections to create when growing the pool
spring.jta.bitronix.datasource.acquisition-interval=1 # Time, in seconds, to wait before trying to acquire a connection again after an invalid connection was acquired
spring.jta.bitronix.datasource.acquisition-timeout=30 # Timeout, in seconds, for acquiring connections from the pool
spring.jta.bitronix.datasource.allow-local-transactions=true # Whether or not the transaction manager should allow mixing XA and non-XA transactions
spring.jta.bitronix.datasource.apply-transaction-timeout=false # Whether or not the transaction timeout should be set on the XAResource when it is enlisted
spring.jta.bitronix.datasource.automatic-enlisting-enabled=true # Whether or not resources should be enlisted and delisted automatically
spring.jta.bitronix.datasource.cursor-holdability= # The default cursor holdability for connections
spring.jta.bitronix.datasource.defer-connection-release=true # Whether or not the database can run many transactions on the same connection and supports transaction interleaving
spring.jta.bitronix.datasource.enable-jdbc4-connection-test # Whether or not Connection.isValid() is called when acquiring a connection from the pool
spring.jta.bitronix.datasource.ignore-recovery-failures=false # Whether or not recovery failures should be ignored
spring.jta.bitronix.datasource.isolation-level= # The default isolation level for connections
spring.jta.bitronix.datasource.local-auto-commit # The default auto-commit mode for local transactions
spring.jta.bitronix.datasource.login-timeout= # Timeout, in seconds, for establishing a database connection
spring.jta.bitronix.datasource.max-idle-time=60 # The time, in seconds, after which connections are cleaned up from the pool
spring.jta.bitronix.datasource.max-pool-size=10 # The maximum size of the pool. 0 denotes no limit
spring.jta.bitronix.datasource.min-pool-size=0 # The minimum size of the pool
spring.jta.bitronix.datasource.prepared-statement-cache-size=0 # The target size of the prepared statement cache. 0 disables the cache
spring.jta.bitronix.datasource.share-transaction-connections=false # Whether or not connections in the ACCESSIBLE state can be shared within the context of a transaction
spring.jta.bitronix.datasource.test-query # SQL query or statement used to validate a connection before returning it
spring.jta.bitronix.datasource.two-pc-ordering-position=1 # The postion that this resource should take during two-phase commit (always first is Integer.MIN_VALUE, always last is Integer.MAX_VALUE)
spring.jta.bitronix.datasource.unique-name=dataSource # The unique name used to identify the resource during recovery
spring.jta.bitronix.datasource.use-tm-join=true Whether or not TMJOIN should be used when starting XAResources

SOLR (SolrProperties)
spring.data.solr.host=http://127.0.0.1:8983/solr
spring.data.solr.zk-host=
spring.data.solr.repositories.enabled=true # if spring data repository support is enabled

ELASTICSEARCH (ElasticsearchProperties)
spring.data.elasticsearch.cluster-name= # The cluster name (defaults to elasticsearch)
spring.data.elasticsearch.cluster-nodes= # The address(es) of the server node (comma-separated; if not specified starts a client node)
spring.data.elasticsearch.properties.*= # Additional properties used to configure the client
spring.data.elasticsearch.repositories.enabled=true # if spring data repository support is enabled

DATA REST (RepositoryRestConfiguration)
spring.data.rest.base-uri= # base URI against which the exporter should calculate its links

FLYWAY (FlywayProperties)
flyway.check-location=false # check that migration scripts location exists
flyway.locations=classpath:db/migration # locations of migrations scripts
flyway.schemas= # schemas to update
flyway.init-version= 1 # version to start migration
flyway.init-sqls= # SQL statements to execute to initialize a connection immediately after obtaining it
flyway.sql-migration-prefix=V
flyway.sql-migration-suffix=.sql
flyway.enabled=true
flyway.url= # JDBC url if you want Flyway to create its own DataSource
flyway.user= # JDBC username if you want Flyway to create its own DataSource
flyway.password= # JDBC password if you want Flyway to create its own DataSource

LIQUIBASE (LiquibaseProperties)
liquibase.change-log=classpath:/db/changelog/db.changelog-master.yaml
liquibase.check-change-log-location=true # check the change log location exists
liquibase.contexts= # runtime contexts to use
liquibase.default-schema= # default database schema to use
liquibase.drop-first=false
liquibase.enabled=true
liquibase.url= # specific JDBC url (if not set the default datasource is used)
liquibase.user= # user name for liquibase.url
liquibase.password= # password for liquibase.url

JMX
spring.jmx.enabled=true # Expose MBeans from Spring

RABBIT (RabbitProperties)
spring.rabbitmq.host= # connection host
spring.rabbitmq.port= # connection port
spring.rabbitmq.addresses= # connection addresses (e.g. myhost:9999,otherhost:1111)
spring.rabbitmq.username= # login user
spring.rabbitmq.password= # login password
spring.rabbitmq.virtual-host=
spring.rabbitmq.dynamic=

REDIS (RedisProperties)
spring.redis.database= # database name
spring.redis.host=localhost # server host
spring.redis.password= # server password
spring.redis.port=6379 # connection port
spring.redis.pool.max-idle=8 # pool settings ...
spring.redis.pool.min-idle=0
spring.redis.pool.max-active=8
spring.redis.pool.max-wait=-1
spring.redis.sentinel.master= # name of Redis server
spring.redis.sentinel.nodes= # comma-separated list of host:port pairs

ACTIVEMQ (ActiveMQProperties)
spring.activemq.broker-url=tcp://localhost:61616 # connection URL
spring.activemq.user=
spring.activemq.password=
spring.activemq.in-memory=true # broker kind to create if no broker-url is specified
spring.activemq.pooled=false

HornetQ (HornetQProperties)
spring.hornetq.mode= # connection mode (native, embedded)
spring.hornetq.host=localhost # hornetQ host (native mode)
spring.hornetq.port=5445 # hornetQ port (native mode)
spring.hornetq.embedded.enabled=true # if the embedded server is enabled (needs hornetq-jms-server.jar)
spring.hornetq.embedded.server-id= # auto-generated id of the embedded server (integer)
spring.hornetq.embedded.persistent=false # message persistence
spring.hornetq.embedded.data-directory= # location of data content (when persistence is enabled)
spring.hornetq.embedded.queues= # comma-separated queues to create on startup
spring.hornetq.embedded.topics= # comma-separated topics to create on startup
spring.hornetq.embedded.cluster-password= # customer password (randomly generated by default)

JMS (JmsProperties)
spring.jms.jndi-name= # JNDI location of a JMS ConnectionFactory
spring.jms.pub-sub-domain= # false for queue (default), true for topic

Email (MailProperties)
spring.mail.host=smtp.acme.org # mail server host
spring.mail.port= # mail server port
spring.mail.username=
spring.mail.password=
spring.mail.default-encoding=UTF-8 # encoding to use for MimeMessages
spring.mail.properties.*= # properties to set on the JavaMail session

SPRING BATCH (BatchDatabaseInitializer)
spring.batch.job.names=job1,job2
spring.batch.job.enabled=true
spring.batch.initializer.enabled=true
spring.batch.schema= # batch schema to load

AOP
spring.aop.auto=
spring.aop.proxy-target-class=

FILE ENCODING (FileEncodingApplicationListener)
spring.mandatory-file-encoding=false

SPRING SOCIAL (SocialWebAutoConfiguration)
spring.social.auto-connection-views=true # Set to true for default connection views or false if you provide your own

SPRING SOCIAL FACEBOOK (FacebookAutoConfiguration)
spring.social.facebook.app-id= # your application's Facebook App ID
spring.social.facebook.app-secret= # your application's Facebook App Secret

SPRING SOCIAL LINKEDIN (LinkedInAutoConfiguration)
spring.social.linkedin.app-id= # your application's LinkedIn App ID
spring.social.linkedin.app-secret= # your application's LinkedIn App Secret

SPRING SOCIAL TWITTER (TwitterAutoConfiguration)
spring.social.twitter.app-id= # your application's Twitter App ID
spring.social.twitter.app-secret= # your application's Twitter App Secret

SPRING MOBILE SITE PREFERENCE (SitePreferenceAutoConfiguration)
spring.mobile.sitepreference.enabled=true # enabled by default

SPRING MOBILE DEVICE VIEWS (DeviceDelegatingViewResolverAutoConfiguration)
spring.mobile.devicedelegatingviewresolver.enabled=true # disabled by default
spring.mobile.devicedelegatingviewresolver.normal-prefix=
spring.mobile.devicedelegatingviewresolver.normal-suffix=
spring.mobile.devicedelegatingviewresolver.mobile-prefix=mobile/
spring.mobile.devicedelegatingviewresolver.mobile-suffix=
spring.mobile.devicedelegatingviewresolver.tablet-prefix=tablet/
spring.mobile.devicedelegatingviewresolver.tablet-suffix=

--
ACTUATOR PROPERTIES
--

MANAGEMENT HTTP SERVER (ManagementServerProperties)
management.port= # defaults to 'server.port'
management.address= # bind to a specific NIC
management.context-path= # default to '/'
management.add-application-context-header= # default to true
management.security.enabled=true # enable security
management.security.role=ADMIN # role required to access the management endpoint
management.security.sessions=stateless # session creating policy to use (always, never, if_required, stateless)

PID FILE (ApplicationPidFileWriter)
spring.pidfile= # Location of the PID file to write

ENDPOINTS (AbstractEndpoint subclasses)
endpoints.autoconfig.id=autoconfig
endpoints.autoconfig.sensitive=true
endpoints.autoconfig.enabled=true
endpoints.beans.id=beans
endpoints.beans.sensitive=true
endpoints.beans.enabled=true
endpoints.configprops.id=configprops
endpoints.configprops.sensitive=true
endpoints.configprops.enabled=true
endpoints.configprops.keys-to-sanitize=password,secret,key # suffix or regex
endpoints.dump.id=dump
endpoints.dump.sensitive=true
endpoints.dump.enabled=true
endpoints.env.id=env
endpoints.env.sensitive=true
endpoints.env.enabled=true
endpoints.env.keys-to-sanitize=password,secret,key # suffix or regex
endpoints.health.id=health
endpoints.health.sensitive=true
endpoints.health.enabled=true
endpoints.health.mapping.*= # mapping of health statuses to HttpStatus codes
endpoints.health.time-to-live=1000
endpoints.info.id=info
endpoints.info.sensitive=false
endpoints.info.enabled=true
endpoints.mappings.enabled=true
endpoints.mappings.id=mappings
endpoints.mappings.sensitive=true
endpoints.metrics.id=metrics
endpoints.metrics.sensitive=true
endpoints.metrics.enabled=true
endpoints.metrics.filter.enabled=true # Enable the metrics servlet filter.
endpoints.shutdown.id=shutdown
endpoints.shutdown.sensitive=true
endpoints.shutdown.enabled=false
endpoints.trace.id=trace
endpoints.trace.sensitive=true
endpoints.trace.enabled=true

HEALTH INDICATORS (previously health.*)
management.health.db.enabled=true
management.health.diskspace.enabled=true
management.health.mongo.enabled=true
management.health.rabbit.enabled=true
management.health.redis.enabled=true
management.health.solr.enabled=true
management.health.diskspace.path=.
management.health.diskspace.threshold=10485760
management.health.status.order=DOWN, OUT_OF_SERVICE, UNKNOWN, UP

MVC ONLY ENDPOINTS
endpoints.jolokia.path=/jolokia
endpoints.jolokia.sensitive=true
endpoints.jolokia.enabled=true # when using Jolokia

JMX ENDPOINT (EndpointMBeanExportProperties)
endpoints.jmx.enabled=true
endpoints.jmx.domain= # the JMX domain, defaults to 'org.springboot'
endpoints.jmx.unique-names=false
endpoints.jmx.static-names=

JOLOKIA (JolokiaProperties)
jolokia.config.*= # See Jolokia manual

REMOTE SHELL
shell.auth=simple # jaas, key, simple, spring
shell.command-refresh-interval=-1
shell.command-path-patterns= # classpath*:/commands/**, classpath*:/crash/commands/**
shell.config-path-patterns= # classpath*:/crash/*
shell.disabled-commands=jpa*,jdbc*,jndi* # comma-separated list of commands to disable
shell.disabled-plugins=false # don't expose plugins
shell.ssh.enabled= # ssh settings ...
shell.ssh.key-path=
shell.ssh.port=
shell.telnet.enabled= # telnet settings ...
shell.telnet.port=
shell.auth.jaas.domain= # authentication settings ...
shell.auth.key.path=
shell.auth.simple.user.name=
shell.auth.simple.user.password=
shell.auth.spring.roles=

GIT INFO
spring.git.properties= # resource ref to generated git info properties file
Appendix B. Configuration meta-data

Spring Boot jars are shipped with meta-data files that provide details of all supported
configuration properties. The files are designed to allow IDE developers to offer
contextual help and “code completion” as users are working with application.properties
or application.yml files.
The majority of the meta-data file is generated automatically at compile time by
processing all items annotated with @ConfigurationProperties.
Meta-data format

Configuration meta-data files are located inside jars under
META-INF/spring-configuration-metadata.json They use a simple JSON format with items
categorized under either “groups” or “properties”:
{"groups": [
 {
 "name": "server",
 "type": "org.springframework.boot.autoconfigure.web.ServerProperties",
 "sourceType": "org.springframework.boot.autoconfigure.web.ServerProperties"
 }
 ...
],"properties": [
 {
 "name": "server.port",
 "type": "java.lang.Integer",
 "sourceType": "org.springframework.boot.autoconfigure.web.ServerProperties"
 },
 {
 "name": "server.servlet-path",
 "type": "java.lang.String",
 "sourceType": "org.springframework.boot.autoconfigure.web.ServerProperties"
 "defaultValue": "/"
 }
 ...
]}
Each “property” is a configuration item that the user specifies with a given value.
For example server.port and server.servlet-path might be specified in
application.properties as follows:
server.port=9090
server.servlet-path=/home
The “groups” are higher level items that don’t themselves specify a value, but instead
provide a contextual grouping for properties. For example the server.port and
server.servlet-path properties are part of the server group.
Note
It is not required that every “property” has a “group”, some properties might
just exist in their own right.

Group Attributes

The JSON object contained in the groups array can contain the following attributes:
	Name	Type	Purpose
	name
	String
	The full name of the group. This attribute is mandatory.

	type
	String
	The class name of the data type of the group. For example, if the group was based
 on a class annotated with @ConfigurationProperties the attribute would contain the
 fully qualified name of that class. If it was based on a @Bean method, it would be
 the return type of that method. The attribute may be omitted if the type is not known.

	description
	String
	A short description of the group that can be displayed to users. May be omitted if no
 description is available. It is recommended that descriptions are a short paragraphs,
 with the first line providing a concise summary. The last line in the description should
 end with a period (.).

	sourceType
	String
	The class name of the source that contributed this group. For example, if the group
 was based on a @Bean method annotated with @ConfigurationProperties this attribute
 would contain the fully qualified name of the @Configuration class containing the
 method. The attribute may be omitted if the source type is not known.

	sourceMethod
	String
	The full name of the method (include parenthesis and argument types) that contributed
 this group. For example, the name of a @ConfigurationProperties annotated @Bean
 method. May be omitted if the source method is not known.

Property Attributes

The JSON object contained in the properties array can contain the following attributes:
	Name	Type	Purpose
	name
	String
	The full name of the property. Names are in lowercase dashed form (e.g.
 server.servlet-path). This attribute is mandatory.

	type
	String
	The class name of the data type of the property. For example, java.lang.String. This
 attribute can be used to guide the user as to the types of values that they can enter.
 For consistency, the type of a primitive is specified using its wrapper counterpart,
 i.e. boolean becomes java.lang.Boolean. Note that this class may be a complex type
 that gets converted from a String as values are bound. May be omitted if the type is
 not known.

	description
	String
	A short description of the group that can be displayed to users. May be omitted if no
 description is available. It is recommended that descriptions are a short paragraphs,
 with the first line providing a concise summary. The last line in the description should
 end with a period (.).

	sourceType
	String
	The class name of the source that contributed this property. For example, if the
 property was from a class annotated with @ConfigurationProperties this attribute
 would contain the fully qualified name of that class. May be omitted if the source type
 is not known.

	defaultValue
	Object
	The default value which will be used if the property is not specified. Can also be an
 array of value(s) if the type of the property is an array. May be omitted if the default
 value is not known.

	deprecated
	boolean
	Specify if the property is deprecated. May be omitted if the field is not deprecated
 or if that information is not known.

Repeated meta-data items

It is perfectly acceptable for “property” and “group” objects with the same name to
appear multiple times within a meta-data file. For example, Spring Boot binds
spring.datasource properties to Hikari, Tomcat and DBCP classes, with each potentially
offering overlap of property names. Consumers of meta-data should take care to ensure
that they support such scenarios.
Generating your own meta-data using the annotation processor

You can easily generate your own configuration meta-data file from items annotated with
@ConfigurationProperties by using the spring-boot-configuration-processor jar.
The jar includes a Java annotation processor which is invoked as your project is
compiled. To use the processor, simply include spring-boot-configuration-processor as
an optional dependency, for example with Maven you would add:
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-configuration-processor</artifactId>
 <optional>true</optional>
</dependency>
With Gradle, you can use the propdeps-plugin
and specify:
	dependencies {
		optional "org.springframework.boot:spring-boot-configuration-processor"
	}

	compileJava.dependsOn(processResources)
}
Note
You need to add compileJava.dependsOn(processResources) to your build to ensure
that resources are processed before code is compiled. Without this directive any
additional-spring-configuration-metadata.json files will not be processed.

The processor will pickup both classes and methods that are annotated with
@ConfigurationProperties. The Javadoc for field values within configuration classes
will be used to populate the description attribute.
Note
You should only use simple text with @ConfigurationProperties field Javadoc since
they are not processed before being added to the JSON.

Properties are discovered via the presence of standard getters and setters with special
handling for collection types (that will be detected even if only a getter is present). The
annotation processor also supports the use of the @Data, @Getter and @Setter lombok
annotations.
Nested properties

The annotation processor will automatically consider inner classes as nested properties.
For example, the following class:
@ConfigurationProperties(prefix="server")
public class ServerProperties {

 private String name;

 private Host host;

 // ... getter and setters

 private static class Host {

 private String ip;

 private int port;

 // ... getter and setters

 }

}
Will produce meta-data information for server.name, server.host.ip and
server.host.port properties. You can use the @NestedConfigurationProperty
annotation on a field to indicate that a regular (non-inner) class should be treated as
if it were nested.
Adding additional meta-data

Spring Boot’s configuration file handling is quite flexible; and it often the case that
properties may exist that are not bound to a @ConfigurationProperties bean. To support
such cases, the annotation processor will automatically merge items from
META-INF/additional-spring-configuration-metadata.json into the main meta-data file.
The format of the additional-spring-configuration-metadata.json file is exactly the same
as the regular spring-configuration-metadata.json. The additional properties file is
optional, if you don’t have any additional properties, simply don’t add it.
Appendix C. Auto-configuration classes

Here is a list of all auto configuration classes provided by Spring Boot with links to
documentation and source code. Remember to also look at the autoconfig report in your
application for more details of which features are switched on.
(start the app with --debug or -Ddebug, or in an Actuator application use the
autoconfig endpoint).
From the “spring-boot-autoconfigure” module

The following auto-configuration classes are from the spring-boot-autoconfigure module:
	Configuration Class	Links
	ActiveMQAutoConfiguration
	javadoc

	AopAutoConfiguration
	javadoc

	BatchAutoConfiguration
	javadoc

	CloudAutoConfiguration
	javadoc

	DataSourceAutoConfiguration
	javadoc

	DataSourceTransactionManagerAutoConfiguration
	javadoc

	DeviceDelegatingViewResolverAutoConfiguration
	javadoc

	DeviceResolverAutoConfiguration
	javadoc

	DispatcherServletAutoConfiguration
	javadoc

	ElasticsearchAutoConfiguration
	javadoc

	ElasticsearchDataAutoConfiguration
	javadoc

	ElasticsearchRepositoriesAutoConfiguration
	javadoc

	EmbeddedServletContainerAutoConfiguration
	javadoc

	ErrorMvcAutoConfiguration
	javadoc

	FacebookAutoConfiguration
	javadoc

	FallbackWebSecurityAutoConfiguration
	javadoc

	FlywayAutoConfiguration
	javadoc

	FreeMarkerAutoConfiguration
	javadoc

	GroovyTemplateAutoConfiguration
	javadoc

	GsonAutoConfiguration
	javadoc

	GzipFilterAutoConfiguration
	javadoc

	HibernateJpaAutoConfiguration
	javadoc

	HornetQAutoConfiguration
	javadoc

	HttpEncodingAutoConfiguration
	javadoc

	HttpMessageConvertersAutoConfiguration
	javadoc

	HypermediaAutoConfiguration
	javadoc

	IntegrationAutoConfiguration
	javadoc

	JacksonAutoConfiguration
	javadoc

	JerseyAutoConfiguration
	javadoc

	JmsAutoConfiguration
	javadoc

	JmxAutoConfiguration
	javadoc

	JndiConnectionFactoryAutoConfiguration
	javadoc

	JndiDataSourceAutoConfiguration
	javadoc

	JpaRepositoriesAutoConfiguration
	javadoc

	JtaAutoConfiguration
	javadoc

	LinkedInAutoConfiguration
	javadoc

	LiquibaseAutoConfiguration
	javadoc

	MailSenderAutoConfiguration
	javadoc

	MessageSourceAutoConfiguration
	javadoc

	MongoAutoConfiguration
	javadoc

	MongoDataAutoConfiguration
	javadoc

	MongoRepositoriesAutoConfiguration
	javadoc

	MultipartAutoConfiguration
	javadoc

	MustacheAutoConfiguration
	javadoc

	PersistenceExceptionTranslationAutoConfiguration
	javadoc

	PropertyPlaceholderAutoConfiguration
	javadoc

	RabbitAutoConfiguration
	javadoc

	ReactorAutoConfiguration
	javadoc

	RedisAutoConfiguration
	javadoc

	RepositoryRestMvcAutoConfiguration
	javadoc

	SecurityAutoConfiguration
	javadoc

	ServerPropertiesAutoConfiguration
	javadoc

	SitePreferenceAutoConfiguration
	javadoc

	SocialWebAutoConfiguration
	javadoc

	SolrAutoConfiguration
	javadoc

	SolrRepositoriesAutoConfiguration
	javadoc

	SpringDataWebAutoConfiguration
	javadoc

	ThymeleafAutoConfiguration
	javadoc

	TwitterAutoConfiguration
	javadoc

	VelocityAutoConfiguration
	javadoc

	WebMvcAutoConfiguration
	javadoc

	WebSocketAutoConfiguration
	javadoc

	XADataSourceAutoConfiguration
	javadoc

From the “spring-boot-actuator” module

The following auto-configuration classes are from the spring-boot-actuator module:
	Configuration Class	Links
	AuditAutoConfiguration
	javadoc

	CrshAutoConfiguration
	javadoc

	EndpointAutoConfiguration
	javadoc

	EndpointMBeanExportAutoConfiguration
	javadoc

	EndpointWebMvcAutoConfiguration
	javadoc

	HealthIndicatorAutoConfiguration
	javadoc

	JolokiaAutoConfiguration
	javadoc

	ManagementSecurityAutoConfiguration
	javadoc

	ManagementServerPropertiesAutoConfiguration
	javadoc

	MetricFilterAutoConfiguration
	javadoc

	MetricRepositoryAutoConfiguration
	javadoc

	PublicMetricsAutoConfiguration
	javadoc

	TraceRepositoryAutoConfiguration
	javadoc

	TraceWebFilterAutoConfiguration
	javadoc

Appendix D. The executable jar format

The spring-boot-loader modules allows Spring Boot to support executable jar and
war files. If you’re using the Maven or Gradle plugin, executable jars are
automatically generated and you generally won’t need to know the details of how
they work.
If you need to create executable jars from a different build system, or if you are just
curious about the underlying technology, this section provides some background.
Nested JARs

Java does not provide any standard way to load nested jar files (i.e. jar files that
are themselves contained within a jar). This can be problematic if you are looking
to distribute a self-contained application that you can just run from the command line
without unpacking.
To solve this problem, many developers use “shaded” jars. A shaded jar simply packages
all classes, from all jars, into a single 'uber jar'. The problem with shaded jars is
that it becomes hard to see which libraries you are actually using in your application.
It can also be problematic if the the same filename is used (but with different content)
in multiple jars. Spring Boot takes a different approach and allows you to actually nest
jars directly.
The executable jar file structure

Spring Boot Loader compatible jar files should be structured in the following way:
example.jar
 |
 +-META-INF
 | +-MANIFEST.MF
 +-org
 | +-springframework
 | +-boot
 | +-loader
 | +-<spring boot loader classes>
 +-com
 | +-mycompany
 | + project
 | +-YouClasses.class
 +-lib
 +-dependency1.jar
 +-dependency2.jar
Dependencies should be placed in a nested lib directory.
The executable war file structure

Spring Boot Loader compatible war files should be structured in the following way:
example.jar
 |
 +-META-INF
 | +-MANIFEST.MF
 +-org
 | +-springframework
 | +-boot
 | +-loader
 | +-<spring boot loader classes>
 +-WEB-INF
 +-classes
 | +-com
 | +-mycompany
 | +-project
 | +-YouClasses.class
 +-lib
 | +-dependency1.jar
 | +-dependency2.jar
 +-lib-provided
 +-servlet-api.jar
 +-dependency3.jar
Dependencies should be placed in a nested WEB-INF/lib directory. Any dependencies
that are required when running embedded but are not required when deploying to
a traditional web container should be placed in WEB-INF/lib-provided.
Spring Boot’s “JarFile” class

The core class used to support loading nested jars is
org.springframework.boot.loader.jar.JarFile. It allows you load jar
content from a standard jar file, or from nested child jar data. When first loaded, the
location of each JarEntry is mapped to a physical file offset of the outer jar:
myapp.jar
+---------+---------------------+
	/lib/mylib.jar			
A.class	+---------+---------+			
		B.class	B.class	
	+---------+---------+			
+---------+---------------------+
^ ^ ^
0063 3452 3980
The example above shows how A.class can be found in myapp.jar position 0063.
B.class from the nested jar can actually be found in myapp.jar position 3452
and B.class is at position 3980.
Armed with this information, we can load specific nested entries by simply seeking to
appropriate part if the outer jar. We don’t need to unpack the archive and we don’t
need to read all entry data into memory.
Compatibility with the standard Java “JarFile”

Spring Boot Loader strives to remain compatible with existing code and libraries.
org.springframework.boot.loader.jar.JarFile extends from java.util.jar.JarFile and
should work as a drop-in replacement. The getURL() method will return a URL that
opens a java.net.JarURLConnection compatible connection and can be used with Java’s
URLClassLoader.
Launching executable jars

The org.springframework.boot.loader.Launcher class is a special bootstrap class that
is used as an executable jars main entry point. It is the actual Main-Class in your jar
file and it’s used to setup an appropriate URLClassLoader and ultimately call your
main() method.
There are 3 launcher subclasses (JarLauncher, WarLauncher and PropertiesLauncher).
Their purpose is to load resources (.class files etc.) from nested jar files or war
files in directories (as opposed to explicitly on the classpath). In the case of the
[Jar|War]Launcher the nested paths are fixed (lib/*.jar and lib-provided/*.jar for
the war case) so you just add extra jars in those locations if you want more. The
PropertiesLauncher looks in lib/ in your application archive by default, but you can
add additional locations by setting an environment variable LOADER_PATH or loader.path
in application.properties (comma-separated list of directories or archives).
Launcher manifest

You need to specify an appropriate Launcher as the Main-Class attribute of
META-INF/MANIFEST.MF. The actual class that you want to launch (i.e. the class that
you wrote that contains a main method) should be specified in the Start-Class
attribute.
For example, here is a typical MANIFEST.MF for an executable jar file:
Main-Class: org.springframework.boot.loader.JarLauncher
Start-Class: com.mycompany.project.MyApplication
For a war file, it would be:
Main-Class: org.springframework.boot.loader.WarLauncher
Start-Class: com.mycompany.project.MyApplication
Note
You do not need to specify Class-Path entries in your manifest file, the classpath
will be deduced from the nested jars.

Exploded archives

Certain PaaS implementations may choose to unpack archives before they run. For example,
Cloud Foundry operates in this way. You can run an unpacked archive by simply starting
the appropriate launcher:
$ unzip -q myapp.jar
$ java org.springframework.boot.loader.JarLauncher
PropertiesLauncher Features

PropertiesLauncher has a few special features that can be enabled with external
properties (System properties, environment variables, manifest entries or
application.properties).
	Key	Purpose
	loader.path
	Comma-separated Classpath, e.g. lib:${HOME}/app/lib.

	loader.home
	Location of additional properties file, e.g. /opt/app
 (defaults to ${user.dir})

	loader.args
	Default arguments for the main method (space separated)

	loader.main
	Name of main class to launch, e.g. com.app.Application.

	loader.config.name
	Name of properties file, e.g. loader (defaults to application).

	loader.config.location
	Path to properties file, e.g. classpath:loader.properties (defaults to
 application.properties).

	loader.system
	Boolean flag to indicate that all properties should be added to System properties
 (defaults to false)

Manifest entry keys are formed by capitalizing initial letters of words and changing the
separator to “-” from “.” (e.g. Loader-Path). The exception is loader.main which
is looked up as Start-Class in the manifest for compatibility with JarLauncher).
Environment variables can be capitalized with underscore separators instead of periods.
	loader.home is the directory location of an additional properties file (overriding
the default) as long as loader.config.location is not specified.
	loader.path can contain directories (scanned recursively for jar and zip files),
archive paths, or wildcard patterns (for the default JVM behavior).
	Placeholder replacement is done from System and environment variables plus the
properties file itself on all values before use.

Executable jar restrictions

There are a number of restrictions that you need to consider when working with a Spring
Boot Loader packaged application.
Zip entry compression

The ZipEntry for a nested jar must be saved using the ZipEntry.STORED method. This
is required so that we can seek directly to individual content within the nested jar.
The content of the nested jar file itself can still be compressed, as can any other
entries in the outer jar.
System ClassLoader

Launched applications should use Thread.getContextClassLoader() when loading classes
(most libraries and frameworks will do this by default). Trying to load nested jar
classes via ClassLoader.getSystemClassLoader() will fail. Please be aware that
java.util.Logging always uses the system classloader, for this reason you should
consider a different logging implementation.
Alternative single jar solutions

If the above restrictions mean that you cannot use Spring Boot Loader the following
alternatives could be considered:
	Maven Shade Plugin
	JarClassLoader
	OneJar

Appendix E. Dependency versions

The table below provides details of all of the dependency versions that are provided by Spring Boot
in its CLI, Maven dependency management and Gradle plugin. When you declare a dependency on one of
these artifacts without declaring a version the version that is listed in the table will be used.
	Group ID	Artifact ID	Version
	antlr
	antlr
	2.7.7

	ch.qos.logback
	logback-classic
	1.1.3

	com.atomikos
	transactions-jdbc
	3.9.3

	com.atomikos
	transactions-jms
	3.9.3

	com.atomikos
	transactions-jta
	3.9.3

	com.fasterxml.jackson.core
	jackson-annotations
	2.4.6

	com.fasterxml.jackson.core
	jackson-core
	2.4.6

	com.fasterxml.jackson.core
	jackson-databind
	2.4.6

	com.fasterxml.jackson.dataformat
	jackson-dataformat-xml
	2.4.6

	com.fasterxml.jackson.dataformat
	jackson-dataformat-yaml
	2.4.6

	com.fasterxml.jackson.datatype
	jackson-datatype-jdk8
	2.4.6

	com.fasterxml.jackson.datatype
	jackson-datatype-joda
	2.4.6

	com.fasterxml.jackson.datatype
	jackson-datatype-jsr310
	2.4.6

	com.gemstone.gemfire
	gemfire
	7.0.2

	com.github.mxab.thymeleaf.extras
	thymeleaf-extras-data-attribute
	1.3

	com.google.code.gson
	gson
	2.3.1

	com.googlecode.json-simple
	json-simple
	1.1.1

	com.h2database
	h2
	1.4.190

	com.jayway.jsonpath
	json-path
	0.9.1

	com.samskivert
	jmustache
	1.10

	com.sun.mail
	javax.mail
	1.5.4

	com.zaxxer
	HikariCP
	2.2.5

	com.zaxxer
	HikariCP-java6
	2.2.5

	commons-beanutils
	commons-beanutils
	1.9.2

	commons-collections
	commons-collections
	3.2.2

	commons-dbcp
	commons-dbcp
	1.4

	commons-digester
	commons-digester
	2.1

	commons-pool
	commons-pool
	1.6

	io.dropwizard.metrics
	metrics-core
	3.1.2

	io.dropwizard.metrics
	metrics-ganglia
	3.1.2

	io.dropwizard.metrics
	metrics-graphite
	3.1.2

	io.dropwizard.metrics
	metrics-servlets
	3.1.2

	io.undertow
	undertow-core
	1.1.9.Final

	io.undertow
	undertow-servlet
	1.1.9.Final

	io.undertow
	undertow-websockets-jsr
	1.1.9.Final

	javax.cache
	cache-api
	1.0.0

	javax.jms
	jms-api
	1.1-rev-1

	javax.mail
	javax.mail-api
	1.5.4

	javax.servlet
	javax.servlet-api
	3.1.0

	javax.servlet
	jstl
	1.2

	javax.transaction
	javax.transaction-api
	1.2

	jaxen
	jaxen
	1.1.6

	joda-time
	joda-time
	2.5

	junit
	junit
	4.12

	log4j
	log4j
	1.2.17

	mysql
	mysql-connector-java
	5.1.38

	nz.net.ultraq.thymeleaf
	thymeleaf-layout-dialect
	1.2.9

	org.apache.activemq
	activemq-broker
	5.10.2

	org.apache.activemq
	activemq-client
	5.10.2

	org.apache.activemq
	activemq-jms-pool
	5.10.2

	org.apache.activemq
	activemq-pool
	5.10.2

	org.apache.commons
	commons-dbcp2
	2.0.1

	org.apache.commons
	commons-pool2
	2.2

	org.apache.derby
	derby
	10.10.2.0

	org.apache.httpcomponents
	httpasyncclient
	4.0.2

	org.apache.httpcomponents
	httpclient
	4.3.6

	org.apache.httpcomponents
	httpmime
	4.3.6

	org.apache.logging.log4j
	log4j-api
	2.1

	org.apache.logging.log4j
	log4j-core
	2.1

	org.apache.logging.log4j
	log4j-slf4j-impl
	2.1

	org.apache.solr
	solr-solrj
	4.7.2

	org.apache.tomcat
	tomcat-jdbc
	8.0.30

	org.apache.tomcat
	tomcat-jsp-api
	8.0.30

	org.apache.tomcat.embed
	tomcat-embed-core
	8.0.30

	org.apache.tomcat.embed
	tomcat-embed-el
	8.0.30

	org.apache.tomcat.embed
	tomcat-embed-jasper
	8.0.30

	org.apache.tomcat.embed
	tomcat-embed-logging-juli
	8.0.30

	org.apache.tomcat.embed
	tomcat-embed-websocket
	8.0.30

	org.apache.velocity
	velocity
	1.7

	org.apache.velocity
	velocity-tools
	2.0

	org.aspectj
	aspectjrt
	1.8.7

	org.aspectj
	aspectjtools
	1.8.7

	org.aspectj
	aspectjweaver
	1.8.7

	org.codehaus.btm
	btm
	2.1.4

	org.codehaus.groovy
	groovy
	2.4.4

	org.codehaus.groovy
	groovy-all
	2.4.4

	org.codehaus.groovy
	groovy-ant
	2.4.4

	org.codehaus.groovy
	groovy-bsf
	2.4.4

	org.codehaus.groovy
	groovy-console
	2.4.4

	org.codehaus.groovy
	groovy-docgenerator
	2.4.4

	org.codehaus.groovy
	groovy-groovydoc
	2.4.4

	org.codehaus.groovy
	groovy-groovysh
	2.4.4

	org.codehaus.groovy
	groovy-jmx
	2.4.4

	org.codehaus.groovy
	groovy-json
	2.4.4

	org.codehaus.groovy
	groovy-jsr223
	2.4.4

	org.codehaus.groovy
	groovy-nio
	2.4.4

	org.codehaus.groovy
	groovy-servlet
	2.4.4

	org.codehaus.groovy
	groovy-sql
	2.4.4

	org.codehaus.groovy
	groovy-swing
	2.4.4

	org.codehaus.groovy
	groovy-templates
	2.4.4

	org.codehaus.groovy
	groovy-test
	2.4.4

	org.codehaus.groovy
	groovy-testng
	2.4.4

	org.codehaus.groovy
	groovy-xml
	2.4.4

	org.codehaus.janino
	janino
	2.6.1

	org.crashub
	crash.cli
	1.3.2

	org.crashub
	crash.connectors.ssh
	1.3.2

	org.crashub
	crash.connectors.telnet
	1.3.2

	org.crashub
	crash.embed.spring
	1.3.2

	org.crashub
	crash.plugins.cron
	1.3.2

	org.crashub
	crash.plugins.mail
	1.3.2

	org.crashub
	crash.shell
	1.3.2

	org.eclipse.jetty
	jetty-annotations
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-continuation
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-deploy
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-http
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-io
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-jmx
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-jsp
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-plus
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-security
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-server
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-servlet
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-servlets
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-util
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-webapp
	9.2.14.v20151106

	org.eclipse.jetty
	jetty-xml
	9.2.14.v20151106

	org.eclipse.jetty.orbit
	javax.servlet.jsp
	2.2.0.v201112011158

	org.eclipse.jetty.websocket
	javax-websocket-server-impl
	9.2.14.v20151106

	org.eclipse.jetty.websocket
	websocket-server
	9.2.14.v20151106

	org.flywaydb
	flyway-core
	3.1

	org.freemarker
	freemarker
	2.3.23

	org.glassfish
	javax.el
	3.0.0

	org.glassfish.jersey.containers
	jersey-container-servlet
	2.14

	org.glassfish.jersey.containers
	jersey-container-servlet-core
	2.14

	org.glassfish.jersey.core
	jersey-server
	2.14

	org.glassfish.jersey.ext
	jersey-bean-validation
	2.14

	org.glassfish.jersey.ext
	jersey-spring3
	2.14

	org.glassfish.jersey.media
	jersey-media-json-jackson
	2.14

	org.hamcrest
	hamcrest-core
	1.3

	org.hamcrest
	hamcrest-library
	1.3

	org.hibernate
	hibernate-ehcache
	4.3.11.Final

	org.hibernate
	hibernate-entitymanager
	4.3.11.Final

	org.hibernate
	hibernate-envers
	4.3.11.Final

	org.hibernate
	hibernate-jpamodelgen
	4.3.11.Final

	org.hibernate
	hibernate-validator
	5.1.3.Final

	org.hornetq
	hornetq-jms-client
	2.4.7.Final

	org.hornetq
	hornetq-jms-server
	2.4.7.Final

	org.hsqldb
	hsqldb
	2.3.3

	org.javassist
	javassist
	3.18.1-GA

	org.jdom
	jdom2
	2.0.6

	org.jolokia
	jolokia-core
	1.2.3

	org.liquibase
	liquibase-core
	3.3.5

	org.mockito
	mockito-core
	1.10.19

	org.mongodb
	mongo-java-driver
	2.12.5

	org.projectreactor
	reactor-core
	1.1.6.RELEASE

	org.projectreactor
	reactor-groovy
	1.1.6.RELEASE

	org.projectreactor
	reactor-groovy-extensions
	1.1.6.RELEASE

	org.projectreactor
	reactor-logback
	1.1.6.RELEASE

	org.projectreactor
	reactor-net
	1.1.6.RELEASE

	org.projectreactor.spring
	reactor-spring-context
	1.1.3.RELEASE

	org.projectreactor.spring
	reactor-spring-core
	1.1.3.RELEASE

	org.projectreactor.spring
	reactor-spring-messaging
	1.1.3.RELEASE

	org.projectreactor.spring
	reactor-spring-webmvc
	1.1.3.RELEASE

	org.slf4j
	jcl-over-slf4j
	1.7.13

	org.slf4j
	jul-to-slf4j
	1.7.13

	org.slf4j
	log4j-over-slf4j
	1.7.13

	org.slf4j
	slf4j-api
	1.7.13

	org.slf4j
	slf4j-jdk14
	1.7.13

	org.slf4j
	slf4j-log4j12
	1.7.13

	org.spockframework
	spock-core
	0.7-groovy-2.0

	org.spockframework
	spock-spring
	0.7-groovy-2.0

	org.springframework
	spring-aop
	4.1.9.RELEASE

	org.springframework
	spring-aspects
	4.1.9.RELEASE

	org.springframework
	spring-beans
	4.1.9.RELEASE

	org.springframework
	spring-context
	4.1.9.RELEASE

	org.springframework
	spring-context-support
	4.1.9.RELEASE

	org.springframework
	spring-core
	4.1.9.RELEASE

	org.springframework
	spring-expression
	4.1.9.RELEASE

	org.springframework
	spring-instrument
	4.1.9.RELEASE

	org.springframework
	spring-instrument-tomcat
	4.1.9.RELEASE

	org.springframework
	spring-jdbc
	4.1.9.RELEASE

	org.springframework
	spring-jms
	4.1.9.RELEASE

	org.springframework
	springloaded
	1.2.5.RELEASE

	org.springframework
	spring-messaging
	4.1.9.RELEASE

	org.springframework
	spring-orm
	4.1.9.RELEASE

	org.springframework
	spring-oxm
	4.1.9.RELEASE

	org.springframework
	spring-test
	4.1.9.RELEASE

	org.springframework
	spring-tx
	4.1.9.RELEASE

	org.springframework
	spring-web
	4.1.9.RELEASE

	org.springframework
	spring-webmvc
	4.1.9.RELEASE

	org.springframework
	spring-webmvc-portlet
	4.1.9.RELEASE

	org.springframework
	spring-websocket
	4.1.9.RELEASE

	org.springframework.amqp
	spring-amqp
	1.4.6.RELEASE

	org.springframework.amqp
	spring-erlang
	1.4.6.RELEASE

	org.springframework.amqp
	spring-rabbit
	1.4.6.RELEASE

	org.springframework.batch
	spring-batch-core
	3.0.6.RELEASE

	org.springframework.batch
	spring-batch-infrastructure
	3.0.6.RELEASE

	org.springframework.batch
	spring-batch-integration
	3.0.6.RELEASE

	org.springframework.batch
	spring-batch-test
	3.0.6.RELEASE

	org.springframework.boot
	spring-boot
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-actuator
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-autoconfigure
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-configuration-processor
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-dependency-tools
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-loader
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-loader-tools
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-actuator
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-amqp
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-aop
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-batch
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-cloud-connectors
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-data-elasticsearch
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-data-gemfire
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-data-jpa
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-data-mongodb
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-data-rest
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-data-solr
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-freemarker
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-groovy-templates
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-hateoas
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-hornetq
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-integration
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-jdbc
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-jersey
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-jetty
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-jta-atomikos
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-jta-bitronix
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-log4j
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-log4j2
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-logging
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-mail
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-mobile
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-mustache
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-redis
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-remote-shell
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-security
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-social-facebook
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-social-linkedin
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-social-twitter
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-test
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-thymeleaf
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-tomcat
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-undertow
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-velocity
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-web
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-websocket
	1.2.8.RELEASE

	org.springframework.boot
	spring-boot-starter-ws
	1.2.8.RELEASE

	org.springframework.cloud
	spring-cloud-cloudfoundry-connector
	1.1.1.RELEASE

	org.springframework.cloud
	spring-cloud-core
	1.1.1.RELEASE

	org.springframework.cloud
	spring-cloud-heroku-connector
	1.1.1.RELEASE

	org.springframework.cloud
	spring-cloud-localconfig-connector
	1.1.1.RELEASE

	org.springframework.cloud
	spring-cloud-spring-service-connector
	1.1.1.RELEASE

	org.springframework.data
	spring-cql
	1.1.4.RELEASE

	org.springframework.data
	spring-data-cassandra
	1.1.4.RELEASE

	org.springframework.data
	spring-data-commons
	1.9.4.RELEASE

	org.springframework.data
	spring-data-couchbase
	1.2.4.RELEASE

	org.springframework.data
	spring-data-elasticsearch
	1.1.4.RELEASE

	org.springframework.data
	spring-data-gemfire
	1.5.4.RELEASE

	org.springframework.data
	spring-data-jpa
	1.7.4.RELEASE

	org.springframework.data
	spring-data-mongodb
	1.6.4.RELEASE

	org.springframework.data
	spring-data-mongodb-cross-store
	1.6.4.RELEASE

	org.springframework.data
	spring-data-mongodb-log4j
	1.6.4.RELEASE

	org.springframework.data
	spring-data-neo4j
	3.2.4.RELEASE

	org.springframework.data
	spring-data-redis
	1.4.4.RELEASE

	org.springframework.data
	spring-data-rest-core
	2.2.4.RELEASE

	org.springframework.data
	spring-data-rest-webmvc
	2.2.4.RELEASE

	org.springframework.data
	spring-data-solr
	1.3.4.RELEASE

	org.springframework.hateoas
	spring-hateoas
	0.16.0.RELEASE

	org.springframework.integration
	spring-integration-amqp
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-core
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-event
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-feed
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-file
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-ftp
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-gemfire
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-groovy
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-http
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-ip
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-jdbc
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-jms
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-jmx
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-jpa
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-mail
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-mongodb
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-mqtt
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-redis
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-rmi
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-scripting
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-security
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-sftp
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-stream
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-syslog
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-test
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-twitter
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-websocket
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-ws
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-xml
	4.1.8.RELEASE

	org.springframework.integration
	spring-integration-xmpp
	4.1.8.RELEASE

	org.springframework.mobile
	spring-mobile-device
	1.1.5.RELEASE

	org.springframework.plugin
	spring-plugin-core
	1.1.0.RELEASE

	org.springframework.security
	spring-security-acl
	3.2.9.RELEASE

	org.springframework.security
	spring-security-aspects
	3.2.9.RELEASE

	org.springframework.security
	spring-security-cas
	3.2.9.RELEASE

	org.springframework.security
	spring-security-config
	3.2.9.RELEASE

	org.springframework.security
	spring-security-core
	3.2.9.RELEASE

	org.springframework.security
	spring-security-crypto
	3.2.9.RELEASE

	org.springframework.security
	spring-security-jwt
	1.0.3.RELEASE

	org.springframework.security
	spring-security-ldap
	3.2.9.RELEASE

	org.springframework.security
	spring-security-openid
	3.2.9.RELEASE

	org.springframework.security
	spring-security-remoting
	3.2.9.RELEASE

	org.springframework.security
	spring-security-taglibs
	3.2.9.RELEASE

	org.springframework.security
	spring-security-web
	3.2.9.RELEASE

	org.springframework.social
	spring-social-config
	1.1.4.RELEASE

	org.springframework.social
	spring-social-core
	1.1.4.RELEASE

	org.springframework.social
	spring-social-facebook
	2.0.3.RELEASE

	org.springframework.social
	spring-social-facebook-web
	2.0.3.RELEASE

	org.springframework.social
	spring-social-linkedin
	1.0.2.RELEASE

	org.springframework.social
	spring-social-security
	1.1.4.RELEASE

	org.springframework.social
	spring-social-twitter
	1.1.2.RELEASE

	org.springframework.social
	spring-social-web
	1.1.4.RELEASE

	org.springframework.ws
	spring-ws-core
	2.2.3.RELEASE

	org.springframework.ws
	spring-ws-security
	2.2.3.RELEASE

	org.springframework.ws
	spring-ws-support
	2.2.3.RELEASE

	org.springframework.ws
	spring-ws-test
	2.2.3.RELEASE

	org.thymeleaf
	thymeleaf
	2.1.4.RELEASE

	org.thymeleaf
	thymeleaf-spring4
	2.1.4.RELEASE

	org.thymeleaf.extras
	thymeleaf-extras-conditionalcomments
	2.1.1.RELEASE

	org.thymeleaf.extras
	thymeleaf-extras-springsecurity3
	2.1.2.RELEASE

	org.yaml
	snakeyaml
	1.14

	redis.clients
	jedis
	2.5.2

	wsdl4j
	wsdl4j
	1.6.3

