Spring Boot Reference Guide

1.2.8.RELEASE

Phillip Webb , Dave Syer , Josh Long , Stéphane Nicoll , Rob Winch ,
Andy Wilkinson , Marcel Overdijk , Christian Dupuis , Sébastien Deleuze

Copyright © 2013-2015

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Boot Reference Guide

Table of Contents

[. Spring BOOt DOCUMENTALIONiit ittt et e e et e et e et e e et e eeaeeeanss 1
1. About the dOCUMENTALIONccueiiii e et e e e et e e e e en s 2
22 €1~ 111 To T 1Yo 3
T TS B 1= oL PP 4
4. Working With SPring BOOtoiiiiiiiiiii e 5
5. Learning about Spring BOOt FEATUIESuiiiiiiiiii e e e e 6
6. MOVING t0 PrOGUCTIONiit ittt e e et e e et e et e e et e e e e eanaaes 7
A Yo A= TaTod=To IR o] o (ol PP PP PT 8

TR =Y 1] o =] = U =T o 9
8. INtroducing SPriNG BOOLc.uuiiiiiiiii et ees 10
9. SYSteM REQUIFEIMENTSuuiiiiii ettt ettt e et e et e et b e e e e e eana s 11

9.1, SerVIEt CONAINEIS ...ciiiiieeiii e et e et e e e e et e e e eate e eeees 11

10. InStalling SPriNG BOOLc.uniiiiiii e ettt e e eaas 12
10.1. Installation instructions for the Java developerccoovvviiiiiiiiiinc e 12
Maven INSTAIALIONoouuiii e 12

Gradle INSTAllAtIONcouuii e 13

10.2. Installing the Spring BOOt CLIviiiiiiiiii e 14
Manual INSEAllALIONcooiiii e e 14
Installation WIith GVIM ... e 14

OSX Homebrew installationc.oiiiiiiiiiii e 15

MaCPOrtS INSLAIAtIONiiiii e 15
Command-line COMPIELIONiiiii e 15

Quick start Spring CLI @XamPleiiiiiiiiiiiiiii e 15

10.3. Upgrading from an earlier version of Spring BOOtcccoceviviiiiiiviiiviiieeceeeannn, 16

11. Developing your first Spring Boot applicationccooiiiiiiiiii e 17
11.1. Creating the POM ... e 17
11.2. Adding classpath dependENCIESveiuuiiiiiiiiiii e e 18
11.3. WIEING Tthe COOEeeniiiiie et e e e 18

The @RestController and @RequestMapping annotationscceeveeeiiinneees 19

The @EnableAutoConfiguration annotationccoevvviiiiiiiieviin e, 19

The "main” Method ... e 19

11.4. RUNNING the @XaMPIEuie e 19
11.5. Creating an €XECULADIE JAIc..uiveunieiieei e e e e e e e e 20

12. WhHAL t0 AU NEXL ...ttt et e et e e et e e et e e e e e ea e eaaaaes 22

1. USING SPHNG BOOL ...ttt ettt e et e e et eeenaa s 23

R T = T 1] o IS V] 1= o 1 P 24

T 1Y = Y= o TP PP PP PP 24
Inheriting the Starter PAreNtoooiiiii i e 24
Using Spring Boot without the parent POMc.coiiiiiiiiiii e 24
Changing the Java VEISION ... e 25
Using the Spring Boot Maven pluginoooeeiiiiiiii e 25

I T €1 - To [PP 25
G T T Y o | TS PP P OO PPPPPRTTTRI 26
13,4, STAMEIr POMS ..o 26
O {0 ox (W T o Y/ 10 oo o [N 30
14.1. Using the “default” packagecocoeuiiiiiiiii e 30
14.2. Locating the main application Classc.ooveiiiiiiiiiiiii e 30

1.2.8.RELEASE Spring Boot ii

Spring Boot Reference Guide

15. COoNfIQUIALION CIASSES ...eitiiieiiiiie ettt ettt et e et e e a e e enaaas 32
15.1. Importing additional configuration ClaSSESc..ciiiiiiiiiiiiiiii e 32
15.2. Importing XML CONfIQUIAtiONuiiiiiiiiii e e e e e e e e e e 32

16. AULO-CONTIGUIATION ...eiitiiiii ettt e ettt e e e et e e e e et e e e ente e eeees 33
16.1. Gradually replacing auto-configurationccooveiiiiiiiiiiiiiin e, 33
16.2. Disabling specific auto-configurationcooeiiiiiiiii i 33

17. Spring Beans and dependency INJECHONuuiiiiiiiiiiiii e 34

18. Using the @SpringBootApplication annotationccooveiiiiiiiiiiiiine e 35

e I W ol o I/ 10 1 G- o] o] Loz L1 o] o 36
19.1. RUNNINg from @Nn IDEcoiiiiiiiiii et 36
19.2. Running as a packaged appliCationcoeuuiiiiiiiiinieii e 36
19.3. Using the Maven PIUgIN ..o e e e e e e e 36
19.4. Using the Gradle PlUGiNieiiiiiiiii e e eeees 37
19.5. HOU SWAPPING evtneieiitiiee ettt ettt e et e e e et e e ettt e e e etbreeeeat e e e eeatnaeaae 37

20. Packaging your application for productionc.coiiiiiiiiiiiiii e 38

21, WHAL 10 FAM NEXLE .eevuiiiiii ettt ettt e et et e et e e e e e e e et e e e enans 39

V. SPring BOO FEALUIES ...t e et e e et e e et e e eeenas 40

272 Y 19T 12X o] o] 1o 1 o] o 41
22.1. Customizing the BaNNETcooiiiiiiiiiii e 41
22.2. Customizing SpringAPPlICALIONoviiiiiiie i 42
22.3. Fluent DUIlder AP ... e 42
22.4. Application events and lISTENEISuuiiiiiiiiiiei e 43
22.5. WED EnVIFONMENT ...oiiiiiiii e 43
22.6. Using the CommandLIiNERUNNETccouuiiiiiiiiii e e e 44
22.7. APPHCALION EXIT ...t 44

23. Externalized ConfiQUIrationooceiuuioiiiii et e e e e eaa e eees 45
23.1. Configuring random VAIUESc..oiiiiiiiiiii i e e e e e e e 46
23.2. Accessing command liNe Propertiescco.uveeiiiiiiieiiiiiieeee e 46
23.3. Application property fileS ..o 46
23.4. Profile-SpecCific PrOPErtiEScivuiiii i e e 47
23.5. Placeholders in ProPertiesco.uuieieiiiiiiiie et 47
23.6. Using YAML instead Of Propertiescooeuiiiiiiiiiieiiii e 47

[0 To [T 72N 1, | PP 48
Exposing YAML as properties in the Spring Environmentccc.oooviiieeiinnnnnn. 48
Multi-profile YAML dOCUMENLSiiiiiiiiiiiiii et e 49
YAML SHOMCOMINGS ..ivtiiiiiieii e e e e e e e e e e e et e e e aees 49
23.7. Typesafe Configuration PrOPertiesoveiiiiiiiiiiiiiiieiiiii e 49
Third-party ConfiQUIationuiiiiiiiii e e 50
Relaxed DiNdiNgG ...ccoviii i 51
@ConfigurationProperties Validationcoooiiiiiiiiiiiiic e 51

24, PrOfIlES o e 53
24.1. Adding active ProfileSco.uiiiiiiiiiii i 53
24.2. Programmatically setting profiles ... 53
24.3. Profile specific configuration filesooiiiiiiiii 54

2 T o T T 11 o 55
AT I e T B (0] 11 - | PP PTTRN 55
25.2. CONSOIE OULPUL ..uiieiii ettt e et e e et eeeaae s 55
SR T 1 L= o 11 o | PN 56
25.4. LOQ LEVEIS .. 56
25.5. Custom 10g CONFIQUIALIONiiiiiii i 56

1.2.8.RELEASE Spring Boot iii

Spring Boot Reference Guide

26. Developing web appliCatiONSccuuuiiiiiiiiiiiii e 58
26.1. The ‘Spring Web MVC framework’coouiiiiiiiiiiii e 58
Spring MVC auto-Configurationcccocuiiiiiiiiiiir e 58
HIPMESSAGECONVEITEISieiiiiiiieiiee e e 59
MESSAGECOUESRESOIVETuiiiiiii et e i e e e 59

] - Lo O] 0 (=] o | PP 59

TEMPIAE ENGINES ...eiiiiiii ettt 60

Error HandliNgoooeeii e 60

Error Handling on WebSphere Application Servercccocceeviiiiiiiieciinnenn, 61

SPrNG HATEOAS ..ottt ettt e e et e eeena e eeens 61

26.2. JAX-RS AN JEISEY ..ottt 62
26.3. Embedded servlet container SUPPOITc.uuiiiiiieiiiiciie e e e e e 62
ServIets and FIlEIS ... e 63

Servlet Context INItIAlIZAtIONcoovviiii 63

The EmbeddedWebApplicationContextcceuviiiiiiiiiiiciie e, 63
Customizing embedded servlet CONLAINEIScovvuiiieiiiiiiieiii e 63
Programmatic CUSIOMIZALIONoooiiuiieiiiii e 64

Customizing ConfigurableEmbeddedServietContainer directly 64

JSP IIMILALIONS ...t e 64

P S T o 1Y PP 65
28. Working with SQL databaSescccuiiiiiiiiiiiiii e e 67
28.1. Configure a DataSOUICEoiiiiiiiieiiii et 67
Embedded Database SUPPOIoviiiiiiii e 67
Connection to a production databasec.ccoevviiiiiiiiiiie 68
Connection to @ JNDI DAtaSOUICEciuuuiiiuneiiiieiiii et e e e e et e e e eanas 68

28.2. USING JADCTEMPIALE ..coevniiiiiii ettt e 69
28.3. JPA and ‘SPring Data’ccouuiiiiiiiiiii e 69
ENLLY ClASSES ..ottt 69

Spring Data JPA REPOSITOMNEScceeuuiiiiiiiiiee et e e 70

Creating and dropping JPA databasescccoeeiiiiiiiiiiiiii e 71

29. Working with NOSQL teChNOIOGIESccvuuiiiiiiiiei i 72
B2 T LT o | 72
(070] a1 g T=Tox 119 To I (o T = 1= To |1 72

29.2. MONGODB ... et 72
Connecting to a MongoDB databasecc.oiiiiiiiiiiiiiii 72

o] aTe Tl =T 4 0] o] =1 = 73

Spring Data MoNgODB rePOSILONIESccivutiieeiiii et e et e e 74

P24 IR T 1= 1 1) {1 - 74
20,4, SOOIl it e e 74
CONNECHING 10 SOIM it 74

Spring Data Solr rePOSItOMIEScovuniiiiiiii e 75

29.5. EIASHCSEAICHeviiiii e 75
Connecting to EIAStICSEAICNooiiiiiiiiii e 75

Spring Data Elasticsearch repoSitoriesovveiiiiiiiiiiiiie e 75

GO T 1Y oYY Y= Vo 1T [N 77
1050 N 1 ST PTTTR 77
HOIMETQ SUPPOIT ...ttt ettt et et e e e et e e e e e e enes 77

F o171V 1@ BT U o] o o] o A 78

Using a JNDI CONNECHONFACIONYccuuuiiiiiiieiiiii e e e 78

SENAING 8 MESSAGE ..uueiiiii ettt e et e et e et e e ettt e e e et eeeaaa s 78

1.2.8.RELEASE Spring Boot iv

Spring Boot Reference Guide

RECEIVING 8 MESSAGE ... ciiiiiiieiiii ettt e s 78

31, SENAING EMAIL ...coiiiieie e 80
32. Distributed Transactions With JTAoeuiiiii e 81
32.1. Using an Atomikos transaction Managercc.uuiereiriieeeiiieeeeiie e eenies 81
32.2. Using a Bitronix transaction MaNAQEruuueieeuinereiiiieeeeiiaeeeeii e eenii e eeneanns 81
32.3. Using a Java EE managed transaction Managerccceeevuieeiineeiiniesineeenneenns 82
32.4. Mixing XA and non-XA JMS CONNECLIONSuiiiiiiinieiiiiiieeeeii e e e 82
32.5. Supporting an alternative embedded transaction managerccooevvvevevennennnn. 82

GG TS o] 1o I 101 (Yo = o o 1S 83
34. Monitoring and management OVEr JMXcoouiiiiiiiiiie et 84
LS T = 1] o PSPPI 85
35.1. Test SCOPE AEPENUENCIESuuiiiiiieii e e e e e e e e e e e e e aens 85
35.2. Testing SPring appliCAtIONSuuiiiiiiiieiii e 85
35.3. Testing Spring Boot appliCatioNSiviiiiiiiiiiie e 85
Using Spock to test Spring Boot applicationsccocceveiiiiiiiiiieiieeciceeeeeeiees 87

5.4, TESE ULIITIES ..uieeeeei ettt e e e e e e e et e e e e anaeees 87
ConfigFileApplicationContextINitialiZerooiiiiiiiii e 87
ENVIroNMENtTESTULIISoieiiiiiiiiii e e 87
OULPULCAPTUIE ettt ettt e e e e e e e r e e eaaneen 87
TESIRESITEMPIALE ... e eaens 88

36. Developing auto-configuration and using conditionsccocciveiiiiiiii e 89
36.1. Understanding auto-configured DEANScoveiiiiiiiiiiiiiieeiiii e 89
36.2. Locating auto-configuration candidatescceevuiiiiiiiiiiiii e 89
36.3. Condition ANNOLALIONScevviiiiiiie et e e e e e e 89

L0 F= S oo o 1110 1S TP 89

[T CT T T oo T o 111 1 89

Property CONAItIONScoovniiiii e e 90

RESOUICE CONAIIONS ...t e et e e e e 90

Web application CONItIONSccouuuiiiiii e 90

SPEL eXpression CONAILIONSoiiiiiiiiii e e e e e e e e e e e 90

7. WEDSOCKELS ...t 91
1T S TV g o A (o T == o I 1= 92
V. Spring Boot Actuator: Production-ready fEatUrescooeeviiiiiiiiiiii e 93
39. Enabling production-ready fEAIUIEScoouuiiiiiiiiiieiii e 94
L0 T = 0o [o To] 1 £ PPN 95
40.1. CuStoMizZiNG ENAPOINTSiiieiiiiiei e e e e e e e e e e e e et eeaaeee 95
40.2. Health infOrmationiiiiiiii e 96
40.3. Security with HealthINdiCatorsc.uiiiiiiiiii e 96
Auto-configured HealthINdiCatorscciiiiiiiiiiii e 96

Writing custom HealthINdiCAtorSiiiiiiiiiiiii e 97

40.4. Custom application info informationcccooiiiiiiiii 97
Automatically expand info properties at build timec.ccooviiiiinii e, 98

Automatic property expansion using Mavenc.oceeueieeiiiiinieeeiiineeeeiinen 98

Automatic property expansion using Gradlecccoovviiiiiiiiiiii i 98

Git commit INFOIMALION ...oeveiiiiiiii e e 99

41. Monitoring and management oVer HTTP ... 100
41.1. Securing Sensitive NAPOINTScoouuiiiiiiiiii e 100
41.2. Customizing the management server context pathccooooviiiiiniiin e, 100
41.3. Customizing the management SEIVEr POITccuuuiiiiiiinieiiiii e 100
41.4. Customizing the management server addressoceuivevieiiiieieeinieeeiieeeenen. 101

1.2.8.RELEASE Spring Boot \

Spring Boot Reference Guide

41.5. Disabling HTTP €NdPOINTScouuuiiiiiiiieiiiii e e e e 101
41.6. HTTP health endpoint access restriCtionsc.covveiiiiiiiiiiiiineeei e 101

42. Monitoring and management OVEr JMXo.iiiiiiiiiiiii e e e e e 102
42.1. Customizing MBEAN NAMESiiiiiiiieiiiii ettt e et e e e e e e eens 102
42.2. Disabling JMX €ndPOINESccouuuiiiiiiiieeiiii e 102
42.3. Using Jolokia for IMX over HTTP ..o 102
CUSEOMIZING JOIOKIA ...eeevteeiiiii et et e e e et e e enes 102

Disabling JOIOKIAccceuuuiiiiiiii e e 102

43. Monitoring and management using a remote shellccooooii i 104
43.1. Connecting to the remote Shell ... 104
Remote shell credentialSoooooiiiiiiiii e 104

43.2. Extending the remote Shell ... 104
Remote shell comMmandS ... 105

Remote Shell PIUGINS ... e 105

Y T 1 oSSR PPRPPPPPRTTN 106
A4, 1. SYSIEIM MEIMCS ..eiiitiieeeiii ettt e e ettt e et e et et e e e e e e naa s 106
N D - L r= o 10 | (ol 0 0 T=Y T 107
44.3. TOMCAL SESSION MELIICS ...uuuiiieeiiiieiiii e e e ettt e e et ee b a e e e e e e nrrr e e e eeaeenes 107
44.4. Recording YOUI OWN METIICS .. .ceuuuuiiiiiiieieii et e et e et e et e e 107
44.5. Adding your own publiC MELHCSviiiiiiiiiiii e 108
T oY (ol =T 0 To 1Y (0] [108
A4.7. DIOPWIZArd MELIICSeiiiiii ettt 108
44.8. Message channel iNtegration ... 109
¥ (o 11119V PSP TRPPPPP 110
LT I = To1 | o B TP RTOPPTR 111
L I O U1 (] I 1 = Tod T U 111

N = (o Tot TR 4T T 1 (] o 112
47.1. Extend CONFIQUIALIONceeuuiiiiiti et 112
A47.2. ProgrammatiCallycoouuiiiiiiiieii e 112

48. WHAL 10 AU NEXL ...eeieiiiiiii ettt e et e e et et e e e e e e e e e e rnren s 113
V1. Deploying t0 the ClOUoooiiiii e e e e enaans 114
Ve T @ (o 1H o [o TH g Lo [V PSP 115
49.1. BiNAING t0 SEIVICES ..uuiiiiiiiiiiiiiii ettt e e e e e e e e e e e et e et e e e e eanas 116

oL 1T o] (U P 117
o O] o 1= 0 £ o 1 | AP UPPTTRPP 119
52. G0OQIE APP ENGINE .oeiiiiiii e 120
53. WRAL 10 FEAU NEXLE ...ttt ettt e e e et e et e e et e e aaeeean e 121
V4TS o 1o T = Te o) A O PP 122
oY | 1S = T o 1 L= o 123
B55. USING the CLI ..ottt e e 124
55.1. Running applications using the CLIcoiviiiiiiiiiii e 124
Deduced “grab” dependencCiescc.cieiuiiiiiiiiiii e 125

Deduced “grab” COOrdiNALESoiiieiiiiiiii e 126

Default import StAtEMENTScoeiiiiii e 126

Automatic main Methodcoooiiiiiii e 126

Custom “grab” Metadatacouuuiiiiiiiieiei e 126

55.2. TESHNG YOUI COUR ..evtiiiiiiii ettt e et e e 127
55.3. Applications with multiple source filesccooiiiiii i, 127
55.4. Packaging your appliCationoooiiiiiiiiiiiiieeci e 127
55.5. INitialize @ NEW PrOJECT ..uuu it e 128

1.2.8.RELEASE Spring Boot Vi

Spring Boot Reference Guide

55.6. Using the embedded sShell ... 128
55.7. Adding extensions to the CLIc.oiiiiiiii e 129

56. Developing application with the Groovy beans DSLc.coccoiiiiiiiiiiiiiiie e, 130
57. WRAL 10 FEAU NEXLE ... ittt e e e et e et e et e e aaeeeaneas 131
VI BUIld tOO] PIUGINS «.oeiieeieie et e et e e et e e e e et e e e eeraaeaees 132
58. Spring Boot Maven PIUGIN ... e e e e e e e 133
58.1. INCluding the PIUGINouniii e 133
58.2. Packaging executable jar and war files ..o, 134

59. Spring Boot Gradle PIUGIN 135
59.1. InCluding the PIUGINoouniii e 135
59.2. Declaring dependencies WithOUL VEISIONSoveiiiiiiieiiiiiineeeiiine e 135
Custom VErsion MaNAGEMENTcuuiiiiieiiii e e e e e e e e e e eaaaeeees 136

59.3. Default @XCIUe TUIESoee e 136
59.4. Packaging executable jar and war filesoooiiiiiiiiii 137
59.5. RUNNING @ ProjeCt iN-PlaCeccvviiiiiiiii e e e e e 137
59.6. Spring Boot plugin CoONfIgQUIationc..iieiiiiiiiiiii e 138
59.7. Repackage CONfIQUIAtIONcoouueiiiiiiiiiiei e 138
59.8. Repackage with custom Gradle configurationcccoeeiiiiiiin i, 139
ConfiIgUration OPLIONSccoeueieiiit et 139

59.9. Understanding how the Gradle plugin WOrkSccooiiiiiiiiiiiiiiiieei e 140
59.10. Publishing artifacts to a Maven repository using Gradlecooooviiivinennnnn. 140
Configuring Gradle to produce a pom that inherits dependency management 140
Configuring Gradle to produce a pom that imports dependency management 141

60. Supporting other build SYSIEMSccouiiiiii e 142
60.1. Repackaging @rChiVESoieiiiiiieiiii ettt et e eneens 142
(107 =T (Yo B 1] o] = 1= 142
60.3. FINAING @ MAIN CIASScooiiiiiii i e e 142
60.4. Example repackage implementationccoeiiieiiiiiiieiii e 142

L VLY g o A (o T (== o 1=« 143
DO 1011 (o e [U o [144
62. SPring BOOot @PPlICALIONcouuiiiiiii e e 145
62.1. Troubleshoot auto-CONfIQUIAtIoNcoouuiiiiiiiiie e 145
62.2. Customize the Environment or ApplicationContext before it starts 145
62.3. Build an ApplicationContext hierarchy (adding a parent or root context) 146
62.4. Create a non-web appliCationcoouuiiiiiiiiiie e 146

63. Properties & CONfIQUIALIONcciiuiiiiii e e e e e e e e e e aa s 147
63.1. Externalize the configuration of SpringApplicationcccoooveviiinieiiiinieei, 147
63.2. Change the location of external properties of an applicationcccc..ooeeeenn. 147
63.3. Use ‘short’ command lin€ argumMEeNtSceeiiiiiiiiiiiiii e e e 147
63.4. Use YAML for external Properti€scooceeuuuiiiiiuinieiiiiie e 148
63.5. Set the active Spring Profiles ... 148
63.6. Change configuration depending on the environmentcccoeeviveiiiieeeineeennn. 149
63.7. Discover built-in options for external Propertiescvevieiiiiiineeiiineeecen 149

64. Embedded Serviet CONAINEISc.uuiiii i e e e e e e e e an s 150
64.1. Add a Servlet, Filter or ServletContextListener to an application 150
64.2. Disable registration of a Servlet or Filterc.coovviiiiiiiiiiii e 150
64.3. Change the HTTP POITcooiiiiiii e 150
64.4. Use a random unassigned HTTP POItcc.oiiiiiiiiiiiiiiie e 150
64.5. Discover the HTTP port at runtimeooveiiiiiieiiiie e 150
B4.6. CONFIGUIE SSL ..oiiiiiiiiiii ettt et e e e e eeenas 151

1.2.8.RELEASE Spring Boot vii

Spring Boot Reference Guide

B4.7. CONFIGUIE TOIMCAL ...eeuuniiiiii ettt ettt e e e e 151
64.8. Enable Multiple Connectors with TOMCALc..ovveiiiiiiiiiiii e 151
64.9. Use Tomcat behind a front-end proxy SEIVENccoeeiiiiiiiiiieiiieeiiieeee e 152
64.10. Use Jetty instead Of TOMCALooieiuiiiiiiiiieiii e 152
B4.11. CONFIGUIE JELLY ..oovunieiiiiii et e et e et e e eeaaaeeees 153
64.12. Use Undertow instead Of TOMCALuuuvuiiiieiiiiiiiiiie e 153
64.13. CoNfIGUIe UNUEIOWciiieiieiiiii ettt et e et e e 154
64.14. Enable Multiple Listeners with Undertowccooveiiiiiiiiiiiiinieiiiiii e 154
64.15. USE TOMCAL 7 ...oiiiiiiiiiiiiiie i 154
Use Tomcat 7 With MaVeN ..o e 154

Use Tomcat 7 With Gradleoiiiiiiiiicis e e e 155
B4.16. USE JELY 8 ...eiiiiieeiiiiiiiiii ettt 155
Use Jetty 8 WIth MaAVENcoouuiiiiiii e 155

Use Jetty 8 With Gradleiiiiiiiiiiii e e 155
64.17. Create WebSocket endpoints using @ServerEndpointc.ccceveviiiiiiiineennnnns 156
64.18. Enable HTTP responSe COMPIESSIONcccuuuuieiiiiiieiiiiiaeeeeiin e eenin e eeni e eenenns 156
Enable Tomcat's HTTP response COMPreSSiONcoeuuuieiiiiinneieiineeeeiiineeeennnns 156
Enable HTTP response compression using GzipFilterccoovviiiiiiiiiiineiinneens 156

B5. SPIING MV C L. e et e et e e et et e e e e e e eee 158
65.1. Write @ JSON REST SEIVICE ..ocvuiiiiiiiiiiieiei et ee e e e e e e e eeees 158
65.2. Write an XML REST SEIVICEuuiiiiiiiiiiiiiiiiiie et et e e e e e e e enneeenns 158
65.3. Customize the Jackson ODbJECIMAPPETc.uuiiiiiiiieiii e 158
65.4. Customize the @ResponseBody renderingcovevevueiieiiiiinieiiiineeee e 160
65.5. Handling Multipart File Uploadsccooiiiiiiiiiiii e 160
65.6. Switch off the Spring MVC DispatcherServietcooooiiiiiiiiiiiii e, 160
65.7. Switch off the Default MVC configurationccccooiiiiiiiiniiiiii e 160
65.8. CUStOMIZE VIEWRESOIVEISiiiiiiiiiiiiii et e 161
TG Moo o1 o R PP P PP SPPPTRR 163
66.1. Configure Logback for [0ggingccuuuiiiiiiiiiiiiii e 163
66.2. Configure Log4j fOr l0gQiNg «....uoevueieiii i 164
Use YAML or JSON to configure LOG4A] 2oeveviiiieiiiiieeee e 164

L = 1= T o o -1 165
67.1. Configure @ DAtASOUICEcceuuiiiiiieiiie e e e e e e e e e e e e e e anas 165
67.2. Configure TWO Dat@SOUICESccoeuruiiiiiiii et e ettt e et e et eeera e eees 165
67.3. Use Spring Data rePOSItONIEScccuuuiiiiiiii et e 165
67.4. Separate @Entity definitions from Spring configurationccoeviiiieeiine 166
67.5. Configure JPA PrOPEITIESueiieiii ettt ettt e e e e e e e enaens 166
67.6. Use a custom EntityManagerFactoryccooveiieiiiiiiiiiinieciiin e 166
67.7. Use TWO ENtItyMaANAQEIScovuiiiiieiii et e et e e e e e e e e 166
67.8. Use a traditional persiStenCe. XMloviiiiiiiiiiiiieiei e 167
67.9. Use Spring Data JPA and MoNgO repOSItONESc..uuiiiiiiiiieeiiiii e 167
67.10. Expose Spring Data repositories as REST endpointc..cccoeeviiiiiniiiieeennnn, 167
68. Database INItIAlIZAIONcouuiiii e e e 168
68.1. Initialize a database USING JPA ... 168
68.2. Initialize a database using Hibernateccoooiiiiiiiii i, 168
68.3. Initialize a database using Spring JDBCcoiiiiiiiiiiiiee e 168
68.4. Initialize a Spring Batch databaseccooooiiiiiiiii 169
68.5. Use a higher level database migration toolccocoiiiiiiiiiiiiicie e 169
Execute Flyway database migrations on Startupccceevevevinieieiiinneiininneeennn. 169
Execute Liquibase database migrations on Startupcccoevevvveeiieiinieviineenneennn, 169

1.2.8.RELEASE Spring Boot viii

Spring Boot Reference Guide

69. BatCh apPliCALIONSiiiiii ettt e e e eee 170
69.1. Execute Spring Batch jobs on Startupooveieeiiiiiiiiii e 170

A0 e (1 = o PP 171
70.1. Change the HTTP port or address of the actuator endpointscccceceunneeee. 171
70.2. Customize the ‘whitelabel’ error PAgeovvvieiiiiiiiii e 171

4TS Y=o U |] 172
71.1. Switch off the Spring Boot security configurationccccceeveviiiinieieninienennnn. 172
71.2. Change the AuthenticationManager and add user accountscccceeeeeevnnnnn. 172
71.3. Enable HTTPS when running behind a proxy Serverc.cccoevevvieeiiineiiineennnnn. 172

7 o (o) 1= To] o] o o PP SPPTTR 174
72.1. Reload StatiC CONTENTcouiiii e e e e e e r e e an s 174
72.2. Reload Thymeleaf templates without restarting the container 174
72.3. Reload FreeMarker templates without restarting the containercc.......... 174
72.4. Reload Groovy templates without restarting the containercccoooeeveiiniene. 174
72.5. Reload Velocity templates without restarting the containerccoeeee, 174
72.6. Reload Java classes without restarting the containercccooeeveviiinneiinnnnnn. 174
Configuring Spring Loaded for use with Mavenccoooiieiiiiinniiiiineecce 174
Configuring Spring Loaded for use with Gradle and Intellidcccc.coen. 175

S T = 1011 Lo SO SSSPPPPPPTIN 176
73.1. Customize dependency versions with Mavencccooiiiiiiiniiiiiin e 176
73.2. Create an executable JAR With Maven ... 176
73.3. Create an additional executable JARcooiiiiiiiiiii e 177
73.4. Extract specific libraries when an executable jar runsccccooiviiiiinieinen. 177
73.5. Create a non-executable JAR with eXCIUSIONSc.cccvviiiiiiiiiiiiiiii e 178
73.6. Remote debug a Spring Boot application started with Mavenccceeeeee. 179
73.7. Remote debug a Spring Boot application started with Gradlecceeeeenn. 179
73.8. Build an executable archive wWith ANt ..., 179
73.9. HOW 10 USE JAVA B ...oeniiiieieiii ettt et et e e e e eans 180
Embedded servlet container compatibilityooooiiiiiiiii 180

JTA API compatibilityooovniiiii e 180

74. Traditional deplOYMENTo.un i et 181
74.1. Create a deployable war file ... 181
74.2. Create a deployable war file for older servlet containersc.c.ccooeeveviiiieennnnn. 182
74.3. Convert an existing application to Spring BOOLcoviiiiiiiiiiiiiiiiecieeci, 182
74.4. Deploying @ WAR t0 WEDIOGICoiiiviiiiiiiiii e 183
74.5. Deploying a WAR in an Old (Servlet 2.5) Containercccovvvevieiiiiieiiineeinnenns 184

DO o] o 1T oo [T PP UPPPPT 186
A. Common application PrOPEILIESieiirriieieiii ettt 187
B. Configuration Meta-dataccuoiiiiiiiiiiii e e e e 197
B.1. Meta-data fOrMALooiiuiiiii e 197
Group AIIDULES ...oeee e e e e e e 197

Property AtDULEScovviii e e 198

Repeated meta-data itemMSiiiiiiiiiii e 199

B.2. Generating your own meta-data using the annotation processorccccc..... 199

TS (Yo o] o] =T 4 1 TN 200

Adding additional meta-datacooieeiiiiiiii 200

C. AUtO-CONfIGUIALION CIASSESiiiiiiieiiii e e 201
C.1. From the “spring-boot-autoconfigure” moduleccocoiieiiiiiiiiin e, 201

C.2. From the “spring-boot-actuator” module ... 203

D. The executable jar FOrMAaLooooiiiiiii e 204

1.2.8.RELEASE Spring Boot ix

Spring Boot Reference Guide

D.1. NESIEA JARS ...t eeeeeeeeeeeeeeaaae 204

The executable jar file SIrUCIUIEoooiiiiiiiii e 204

The executable war file SrUCIUIEcooviiiiiiiiii e 204

D.2. Spring Boot’'s “JArFile” Classcoooeuuuiiiiiiiie e 205
Compatibility with the standard Java “JarFile”cccoooviiiiiiiiii e 205

D.3. Launching eXeCUtable JArSc..oiiiiiiiiiiiiiiii e e e e e e e e 205
Launcher Manifest ... 206

EXPloded arChiVESoooiiiiiiee e 206

D.4. PropertiesLauncher FEALUIEScc.viiiiiiiiii i e e 206

D.5. Executable jar reStriClONSiiiiiiiiieiiii e 207

ZiP €NEIY COMPIESSION ...ciiiiiieeiit ettt ettt e et et e et e e e et e e e e et e e e eenanaes 207

SYStEM ClaSSLOAUETouiiiiiieiii e e e e e e aeas 207

D.6. Alternative single jar SOIULIONSviiiuiiiiiiiii e 207

S B =T o 1T o o (= o oy VAR =T = o PSPPSR 208
1.2.8.RELEASE Spring Boot X

Part |. Spring Boot Documentation

This section provides a brief overview of Spring Boot reference documentation. Think of it as map for
the rest of the document. You can read this reference guide in a linear fashion, or you can skip sections
if something doesn't interest you.

Spring Boot Reference Guide

1. About the documentation

The Spring Boot reference guide is available as html, pdf and epub documents. The latest copy is
available at docs.spring.io/spring-boot/docs/current/reference.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

1.2.8.RELEASE Spring Boot

http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/reference/html
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/reference/pdf/spring-boot-reference.pdf
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/reference/epub/spring-boot-reference.epub
http://docs.spring.io/spring-boot/docs/current/reference

Spring Boot Reference Guide

2. Getting help

Having trouble with Spring Boot, We'd like to help!

Try the How-to’'s — they provide solutions to the most common questions.

 Learn the Spring basics — Spring Boot builds on many other Spring projects, check the spring.io web-
site for a wealth of reference documentation. If you are just starting out with Spring, try one of the

guides.

» Ask a question - we monitor stackoverflow.com for questions tagged with spri ng- boot .

Report bugs with Spring Boot at github.com/spring-projects/spring-boot/issues.

Note

All of Spring Boot is open source, including the documentation! If you find problems with the docs;
or if you just want to improve them, please get involved.

1.2.8.RELEASE Spring Boot 3

http://spring.io
http://spring.io/guides
http://stackoverflow.com
http://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE

Spring Boot Reference Guide

3. First steps

If you're just getting started with Spring Boot, or 'Spring' in general, this is the place to start!

» From scratch: Overview | Requirements | Installation

e Tutorial: Part1 | Part 2

* Running your example: Part 1 | Part 2

1.2.8.RELEASE Spring Boot

Spring Boot Reference Guide

4. Working with Spring Boot

Ready to actually start using Spring Boot? We've got you covered.

» Build systems: Maven | Gradle | Ant | Starter POMs

» Best practices: Code Structure | @Configuration | @EnableAutoConfiguration | Beans and
Dependency Injection

* Running your code IDE | Packaged | Maven | Gradle

» Packaging your app: Production jars

» Spring Boot CLI: Using the CLI

1.2.8.RELEASE Spring Boot 5

Spring Boot Reference Guide

5. Learning about Spring Boot features

Need more details about Spring Boot's core features? This is for you!

» Core Features: SpringApplication | External Configuration | Profiles | Logging

* Web Applications: MVC | Embedded Containers

» Working with data: SQL | NO-SQL
» Messaging: Overview | JIMS

» Testing: Overview | Boot Applications | Utils

» Extending: Auto-configuration | @Conditions

1.2.8.RELEASE Spring Boot

Spring Boot Reference Guide

6. Moving to production

When you're ready to push your Spring Boot application to production, we've got some tricks that you
might like!

* Management endpoints: Overview | Customization

» Connection options: HTTP | JMX | SSH

* Monitoring: Metrics | Auditing | Tracing | Process

1.2.8.RELEASE Spring Boot 7

Spring Boot Reference Guide

7. Advanced topics

Lastly, we have a few topics for the more advanced user.

» Deploy to the cloud: Cloud Foundry | Heroku | CloudBees

» Build tool plugins: Maven | Gradle

» Appendix: Application Properties | Auto-configuration classes | Executable Jars

1.2.8.RELEASE Spring Boot

Part Il. Getting started

If you're just getting started with Spring Boot, or 'Spring' in general, this is the section for you! Here we
answer the basic “what?™, “how?" and "“why?™ questions. You'll find a gentle introduction to Spring
Boot along with installation instructions. We’'ll then build our first Spring Boot application, discussing

some core principles as we go.

Spring Boot Reference Guide

8. Introducing Spring Boot

Spring Boot makes it easy to create stand-alone, production-grade Spring based Applications that you
can “just run”. We take an opinionated view of the Spring platform and third-party libraries so you can
get started with minimum fuss. Most Spring Boot applications need very little Spring configuration.

You can use Spring Boot to create Java applications that can be started using j ava -j ar or more
traditional war deployments. We also provide a command line tool that runs “spring scripts”.

Our primary goals are:
» Provide a radically faster and widely accessible getting started experience for all Spring development.

» Be opinionated out of the box, but get out of the way quickly as requirements start to diverge from
the defaults.

* Provide a range of non-functional features that are common to large classes of projects (e.g.
embedded servers, security, metrics, health checks, externalized configuration).

» Absolutely no code generation and no requirement for XML configuration.

1.2.8.RELEASE Spring Boot 10

Spring Boot Reference Guide

9. System Requirements

By default, Spring Boot 1.2.8.RELEASE requires Java 7 and Spring Framework 4.1.5 or above. You can
use Spring Boot with Java 6 with some additional configuration. See Section 73.9, “How to use Java 6”
for more details. Explicit build support is provided for Maven (3.2+) and Gradle (1.12+).

Tip

Although you can use Spring Boot with Java 6 or 7, we generally recommend Java 8 if at all
possible.

9.1 Servlet containers

The following embedded servlet containers are supported out of the box:

Name Servlet Version Java Version
Tomcat 8 3.1 Java 7+
Tomcat 7 3.0 Java 6+
Jetty 9 3.1 Java 7+
Jetty 8 3.0 Java 6+
Undertow 1.1 3.1 Java 7+

You can also deploy Spring Boot applications to any Servlet 3.0+ compatible container.

1.2.8.RELEASE Spring Boot 11

http://www.java.com

Spring Boot Reference Guide

10. Installing Spring Boot

Spring Boot can be used with “classic” Java development tools or installed as a command line tool.
Regardless, you will need Java SDK v1.6 or higher. You should check your current Java installation
before you begin:

$ java -version

If you are new to Java development, or if you just want to experiment with Spring Boot you might want
to try the Spring Boot CLI first, otherwise, read on for “classic” installation instructions.

Tip
Although Spring Boot is compatible with Java 1.6, if possible, you should consider using the latest

version of Java.

10.1 Installation instructions for the Java developer

You can use Spring Boot in the same way as any standard Java library. Simply include the appropriate
spring-boot-*.jar files on your classpath. Spring Boot does not require any special tools
integration, so you can use any IDE or text editor; and there is nothing special about a Spring Boot
application, so you can run and debug as you would any other Java program.

Although you could just copy Spring Boot jars, we generally recommend that you use a build tool that
supports dependency management (such as Maven or Gradle).

Maven installation

Spring Boot is compatible with Apache Maven 3.2 or above. If you don't already have Maven installed
you can follow the instructions at maven.apache.org.

Tip

On many operating systems Maven can be installed via a package manager. If you’re an OSX
Homebrew user try brew i nstal | maven. Ubuntu users can run sudo apt-get install
maven.

Spring Boot dependencies use the or g. spri ngf ramewor k. boot groupl d. Typically your Maven
POM file will inherit from the spri ng- boot - st art er - par ent project and declare dependencies to
one or more “Starter POMs”. Spring Boot also provides an optional Maven plugin to create executable
jars.

Here is a typical pom xm file:

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // www. w3. or g/ 2001/ XM_Schen®- i nst ance"
xsi : schemalLocation="http://maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven-4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifactld>nmyproject</artifactld>
<versi on>0. 0. 1- SNAPSHOT</ ver si on>

<l-- Inherit defaults from Spring Boot -->
<par ent >

1.2.8.RELEASE Spring Boot 12

http://www.java.com
http://maven.apache.org

Spring Boot Reference Guide

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-starter-parent</artifactld>
<ver si on>1. 2. 8. RELEASE</ ver si on>

</ par ent >

<!-- Add typical dependencies for a web application -->
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
</ dependenci es>

<l -- Package as an executable jar -->
<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifact|d>spring-boot-mven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

</ proj ect >

Tip

The spri ng-boot -starter-parent is a great way to use Spring Boot, but it might not be
suitable all of the time. Sometimes you may need to inherit from a different parent POM, or you
might just not like our default settings. See the section called “Using Spring Boot without the parent
POM?” for an alternative solution that uses an i nport scope.

Gradle installation

Spring Boot is compatible with Gradle 1.12 or above. If you don't already have Gradle installed you can

follow the instructions at www.gradle.org/.

Spring Boot dependencies can be declared using the or g. spri ngf r anmewor k. boot gr oup. Typically
your project will declare dependencies to one or more “Starter POMs”. Spring Boot provides a useful

Gradle plugin that can be used to simplify dependency declarations and to create executable jars.

Gradle Wrapper

The Gradle Wrapper provides a nice way of “obtaining” Gradle when you need to build a project.
It's a small script and library that you commit alongside your code to bootstrap the build process.

See www.gradle.org/docs/current/userguide/gradle _wrapper.html for details.

Here is a typical bui | d. gr adl e file:

buil dscript {
repositories {
jcenter()
maven { url "http://repo.spring.iol/snapshot" }
maven { url "http://repo.spring.io/mlestone" }
}
dependenci es {
cl asspat h("org. springfranmewor k. boot : spri ng- boot - gr adl e- pl ugi n: 1. 2. 8. RELEASE")
}
}

apply plugin: 'java
apply plugin: 'spring-boot

1.2.8.RELEASE Spring Boot

13

http://www.gradle.org/
http://www.gradle.org/docs/current/userguide/gradle_wrapper.html

Spring Boot Reference Guide

jar {
baseName = 'nyproject’
version = '0.0.1- SNAPSHOT'

}

repositories {
jcenter()
maven { url "http://repo.spring.iol/snapshot" }
maven { url "http://repo.spring.io/mlestone" }

}

dependenci es {
conpi | e("org. springframework. boot : spri ng-boot -starter-web")
t est Conpi | e("org. springframewor k. boot : spring-boot-starter-test")

10.2 Installing the Spring Boot CLI

The Spring Boot CLI is a command line tool that can be used if you want to quickly prototype with Spring.
It allows you to run Groovy scripts, which means that you have a familiar Java-like syntax, without so
much boilerplate code.

You don't need to use the CLI to work with Spring Boot but it's definitely the quickest way to get a Spring
application off the ground.

Manual installation
You can download the Spring CLI distribution from the Spring software repository:

» spring-boot-cli-1.2.8.RELEASE-bin.zip

* spring-boot-cli-1.2.8.RELEASE-bin.tar.gz

Cutting edge snapshot distributions are also available.

Once downloaded, follow the INSTALL.txt instructions from the unpacked archive. In summary: there
isaspring script (spri ng. bat for Windows) in a bi n/ directory in the . zi p file, or alternatively you
canusej ava -j ar withthe. j ar file (the script helps you to be sure that the classpath is set correctly).

Installation with GVM

GVM (the Groovy Environment Manager) can be used for managing multiple versions of various Groovy
and Java binary packages, including Groovy itself and the Spring Boot CLI. Get gvmfrom gvmtool.net
and install Spring Boot with

$ gvminstall springboot
$ spring --version
Spring Boot vil.2.8. RELEASE

If you are developing features for the CLI and want easy access to the version you just built, follow
these extra instructions.

$ gvminstall springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-cli-1.2.8. RELEASE-
bi n/ spring-1.2. 8. RELEASE/

$ gvm use springboot dev

$ spring --version

Spring CLI v1.2.8. RELEASE

This will install a local instance of spri ng called the dev instance inside your gvm repository. It points
at your target build location, so every time you rebuild Spring Boot, spr i ng will be up-to-date.

1.2.8.RELEASE Spring Boot 14

http://groovy.codehaus.org/
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.2.8.RELEASE/spring-boot-cli-1.2.8.RELEASE-bin.zip
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.2.8.RELEASE/spring-boot-cli-1.2.8.RELEASE-bin.tar.gz
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
http://raw.github.com/spring-projects/spring-boot/v1.2.8.RELEASE/spring-boot-cli/src/main/content/INSTALL.txt
http://gvmtool.net

Spring Boot Reference Guide

You can see it by doing this:

$ gvm s springboot

Avai | abl e Springboot Versions

> + dev
* 1.2.8. RELEASE

e

- local version
- installed
> - currently in use

*

OSX Homebrew installation

If you are on a Mac and using Homebrew, all you need to do to install the Spring Boot CLI is:

$ brew tap pivotal /tap
$ brew install springboot

Homebrew will install spri ng to/ usr/1 ocal / bi n.

Note

If you don'’t see the formula, your installation of brew might be out-of-date. Just execute br ew
updat e and try again.

MacPorts installation

If you are on a Mac and using MacPorts, all you need to do to install the Spring Boot CLI is:

$ sudo port install spring-boot-cli

Command-line completion

Spring Boot CLI ships with scripts that provide command completion for BASH and zsh shells. You can
sour ce the script (also named spri ng) in any shell, or put it in your personal or system-wide bash
completion initialization. On a Debian system the system-wide scripts are in / shel | - conpl et i on/
bash and all scripts in that directory are executed when a new shell starts. To run the script manually,
e.g. if you have installed using GYM

$. ~/.gvm springboot/current/shell-conpl etion/bash/spring
$ spring <HI T TAB HERE>
grab help jar run test version

Note

If you install Spring Boot CLI using Homebrew or MacPorts, the command-line completion scripts
are automatically registered with your shell.

Quick start Spring CLI example

Here’s a really simple web application that you can use to test your installation. Create a file called
app. groovy:

1.2.8.RELEASE Spring Boot 15

http://brew.sh/
http://www.macports.org/
http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://en.wikipedia.org/wiki/Zsh

Spring Boot Reference Guide

@Rest Control |l er
class Thi sWlIl Actual | yRun {

@Request Mappi ng("/")
String home() {
"Hello World!"

}

Then simply run it from a shell:

$ spring run app.groovy

Note

It will take some time when you first run the application as dependencies are downloaded.
Subsequent runs will be much quicker.

Open localhost:8080 in your favorite web browser and you should see the following output:

‘Hello Wor | d!

10.3 Upgrading from an earlier version of Spring Boot

If you are upgrading from an earlier release of Spring Boot check the “release notes” hosted on the
project wiki. You'll find upgrade instructions along with a list of “new and noteworthy” features for each
release.

To upgrade an existing CLI installation use the appropriate package manager command (for example
br ew upgr ade) or, if you manually installed the CLI, follow the standard instructions remembering to
update your PATH environment variable to remove any older references.

1.2.8.RELEASE Spring Boot 16

http://localhost:8080
http://github.com/spring-projects/spring-boot/wiki

Spring Boot Reference Guide

11. Developing your first Spring Boot application

Let's develop a simple “Hello World!” web application in Java that highlights some of Spring Boot's key
features. We’'ll use Maven to build this project since most IDEs support it.

Tip

The spring.io web site contains many “Getting Started” guides that use Spring Boot. If you're
looking to solve a specific problem; check there first.

Before we begin, open a terminal to check that you have valid versions of Java and Maven installed.

$ java -version

java version "1.7.0_51"

Java(TM SE Runtine Environnment (build 1.7.0_51-b13)

Java Hot Spot (TM) 64-Bit Server VM (build 24.51-b03, m xed node)

$ nvn -v

Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8f df 4; 2014- 08- 11T13: 58: 10- 07: 00)
Maven hone: /Users/user/tool s/ apache-maven-3.1. 1

Java version: 1.7.0_51, vendor: Oracle Corporation

Note

This sample needs to be created in its own folder. Subsequent instructions assume that you have
created a suitable folder and that it is your “current directory”.

11.1 Creating the POM

We need to start by creating a Maven pom xm file. The pom xm is the recipe that will be used to build
your project. Open your favorite text editor and add the following:

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="htt p: // www. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifactld>nmyproject</artifactld>
<ver si on>0. 0. 1- SNAPSHOT</ ver si on>

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<version>1. 2. 8. RELEASE</ ver si on>

</ par ent >

<l-- Additional lines to be added here... -->

</ proj ect >

This should give you a working build, you can test it out by running mvn package (you can ignore the
“jar will be empty - no content was marked for inclusion!” warning for now).

Note

At this point you could import the project into an IDE (most modern Java IDE’s include built-in
support for Maven). For simplicity, we will continue to use a plain text editor for this example.

1.2.8.RELEASE Spring Boot 17

http://spring.io

Spring Boot Reference Guide

11.2 Adding classpath dependencies

Spring Boot provides a number of “Starter POMs” that make easy to add jars to your classpath. Our
sample application has already used spri ng- boot - st art er - par ent in the par ent section of the
POM. The spri ng- boot - st art er - par ent is a special starter that provides useful Maven defaults.
It also provides a dependency- nanagenent section so that you can omit ver si on tags for “blessed”
dependencies.

Other “Starter POMs” simply provide dependencies that you are likely to need when developing a
specific type of application. Since we are developing a web application, we will add a spri ng- boot -
st art er - web dependency — but before that, let’s look at what we currently have.

$ nvn dependency:tree

[INFO com exanpl e: nyproj ect:jar:0.0.1- SNAPSHOT

The nvn dependency:tree command prints a tree representation of your project dependencies.
You can see that spri ng- boot - st art er - par ent provides no dependencies by itself. Let’s edit our
pom xnl and add the spri ng- boot - st art er - web dependency just below the par ent section:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
</ dependenci es>

If you run mvn dependency: tree again, you will see that there are now a number of additional
dependencies, including the Tomcat web server and Spring Boot itself.

11.3 Writing the code

To finish our application we need to create a single Java file. Maven will compile sources from sr c/
mai n/ j ava by default so you need to create that folder structure, then add a file named sr ¢/ mai n/
j aval Exampl e. j ava:

i nport org.springfranmework. boot . *;

i nport org.springfranmework. boot. aut oconfi gure. *;
i mport org.springframework. stereotype. *;

i nport org.springframewor k. web. bi nd. annot ati on. *;

@rest Control | er
@Enabl eAut oConfi gurati on
public class Exanple {

@Request Mappi ng("/")
String hone() {
return "Hello World!'";

}

public static void main(String[] args) throws Exception {
SpringApplication. run(Exanpl e. cl ass, args);
}

Although there isn't much code here, quite a lot is going on. Let’s step through the important parts.

1.2.8.RELEASE Spring Boot 18

Spring Boot Reference Guide

The @RestController and @RequestMapping annotations

The first annotation on our Exanpl e class is @Rest Control | er. This is known as a stereotype
annotation. It provides hints for people reading the code, and for Spring, that the class plays a specific
role. In this case, our class is a web @ont rol | er so Spring will consider it when handling incoming
web requests.

The @Request Mappi ng annotation provides “routing” information. It is telling Spring that any HTTP
request with the path “/” should be mapped to the home method. The @Rest Cont r ol | er annotation
tells Spring to render the resulting string directly back to the caller.

Tip

The @Rest Cont rol | er and @equest Mappi ng annotations are Spring MVC annotations (they
are not specific to Spring Boot). See the MVC section in the Spring Reference Documentation
for more details.

The @EnableAutoConfiguration annotation

The second class-level annotation is @nabl eAut oConf i gur ati on. This annotation tells Spring
Boot to “guess” how you will want to configure Spring, based on the jar dependencies that you have
added. Since spri ng-boot - st art er - web added Tomcat and Spring MVC, the auto-configuration
will assume that you are developing a web application and setup Spring accordingly.

Starter POMs and Auto-Configuration

Auto-configuration is designed to work well with “Starter POMSs”, but the two concepts are not
directly tied. You are free to pick-and-choose jar dependencies outside of the starter POMs and
Spring Boot will still do its best to auto-configure your application.

The “main” method

The final part of our application is the mai n method. This is just a standard method that follows
the Java convention for an application entry point. Our main method delegates to Spring Boot’s
SpringAppl i cation class by calling run. Spri ngAppl i cati on will bootstrap our application,
starting Spring which will in turn start the auto-configured Tomcat web server. We need to pass
Exanpl e. cl ass as an argument to the r un method to tell Spri ngAppl i cat i on which is the primary
Spring component. The ar gs array is also passed through to expose any command-line arguments.

11.4 Running the example

At this point our application should work. Since we have used the spri ng- boot - st art er - par ent
POM we have a useful r un goal that we can use to start the application. Type mvn spri ng- boot : run
from the root project directory to start the application:

$ nvn spring-boot:run

I WA I U O

L))))

N (D VA
I
I
Il 2
|

L /7
=l

1.2.8.RELEASE Spring Boot 19

http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle#mvc

Spring Boot Reference Guide

: Spring Boot :: (vl1.2.8. RELEASE)
. (1 og output here)

........ Started Exanple in 2.222 seconds (JVM running for 6.514)

If you open a web browser to localhost:8080 you should see the following output:

‘ Hel l o Worl d!

To gracefully exit the application hitctrl - c.

11.5 Creating an executable jar

Let’s finish our example by creating a completely self-contained executable jar file that we could run in
production. Executable jars (sometimes called “fat jars”) are archives containing your compiled classes
along with all of the jar dependencies that your code needs to run.

Executable jars and Java

Java does not provide any standard way to load nested jar files (i.e. jar files that are themselves
contained within a jar). This can be problematic if you are looking to distribute a self-contained
application.

To solve this problem, many developers use “shaded” jars. A shaded jar simply packages all
classes, from all jars, into a single “uber jar”. The problem with shaded jars is that it becomes hard
to see which libraries you are actually using in your application. It can also be problematic if the
the same filename is used (but with different content) in multiple jars.

Spring Boot takes a different approach and allows you to actually nest jars directly.

To create an executable jar we need to add the spr i ng- boot - maven- pl ugi n to our pom xni . Insert
the following lines just below the dependenci es section:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Note

The spri ng- boot - start er- parent POM includes <execut i ons> configuration to bind the
r epackage goal. If you are not using the parent POM you will need to declare this configuration
yourself. See the plugin documentation for details.

Save your pom xnl and run nvn package from the command line:

$ nvn package

1.2.8.RELEASE Spring Boot 20

http://localhost:8080
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/maven-plugin/usage.html

Spring Boot Reference Guide

INFQ --- maven-jar-plugin:2.4:jar (default-jar) @nyproject ---
INFQ Building jar: /Users/devel oper/exanpl e/ spri ng-boot - exanpl e/t ar get / nypr oj ect - 0. 0. 1- SNAPSHOT. j ar

INFQ --- spring-boot-nmaven-pl ugin: 1. 2. 8. RELEASE: r epackage (default) @ nyproject ---

If you look in the t ar get directory you should see nyproj ect - 0. 0. 1- SNAPSHOT. j ar. The file
should be around 10 Mb in size. If you want to peek inside, you can use j ar tvf:

$ jar tvf target/nyproject-0.0.1- SNAPSHOT. j ar

You should also see a much smaller file named nmypr oj ect - 0. 0. 1- SNAPSHOT. j ar. ori gi nal in
the t ar get directory. This is the original jar file that Maven created before it was repackaged by Spring
Boot.

To run that application, use the j ava -j ar command:

$ java -jar target/nyproject-0.0.1- SNAPSHOT. j ar

NN () v v
CON_ N vy v
W DIty)))
S [) I I Y I [I PR B
| | | 1=_1_1_1
Spring Boot :: (v1.2.8.RELEASE)

....... . . . (log output here)

........ Started Exanple in 2.536 seconds (JVMrunning for 2.864)

As before, to gracefully exit the application hitctrl - c.

1.2.8.RELEASE Spring Boot 21

Spring Boot Reference Guide

12. What to read next

Hopefully this section has provided you with some of the Spring Boot basics, and got you on your way
to writing your own applications. If you're a task-oriented type of developer you might want to jump over
to spring.io and check out some of the getting started guides that solve specific “How do | do that with
Spring” problems; we also have Spring Boot-specific How-to reference documentation.

Otherwise, the next logical step is to read Part lll, “Using Spring Boot”. If you're really impatient, you
could also jump ahead and read about Spring Boot features.

1.2.8.RELEASE Spring Boot 22

http://spring.io
http://spring.io/guides/

Part lll. Using Spring Boot

This section goes into more detail about how you should use Spring Boot. It covers topics such as
build systems, auto-configuration and run/deployment options. We also cover some Spring Boot best
practices. Although there is nothing particularly special about Spring Boot (it is just another library that
you can consume), there are a few recommendations that, when followed, will make your development
process just a little easier.

If you're just starting out with Spring Boot, you should probably read the Getting Started guide before
diving into this section.

Spring Boot Reference Guide

13. Build systems

It is strongly recommended that you choose a build system that supports dependency management,
and one that can consume artifacts published to the “Maven Central” repository. We would recommend
that you choose Maven or Gradle. It is possible to get Spring Boot to work with other build systems (Ant
for example), but they will not be particularly well supported.

13.1 Maven

Maven users can inherit from the spri ng- boot - st art er - par ent project to obtain sensible defaults.
The parent project provides the following features:

» Java 1.6 as the default compiler level.
» UTF-8 source encoding.

A Dependency Management section, allowing you to omit <version> tags for common
dependencies, inherited from the spri ng- boot - dependenci es POM.

» Sensible resource filtering.

» Sensible plugin configuration (exec plugin, surefire, Git commit ID, shade).

» Sensible resource filtering for appl i cati on. properti es and appli cati on. ynl

On the last point: since the default config files accept Spring style placeholders (${..}) the Maven
filtering is changed to use @ . @ placeholders (you can override that with a Maven property
resource.deliniter).

Inheriting the starter parent

To configure your project to inherit from the spri ng- boot - st art er - par ent simply set the par ent :

<l-- Inherit defaults from Spring Boot -->

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-starter-parent</artifactld>

<ver si on>1. 2. 8. RELEASE</ ver si on>
</ par ent >

Note

You should only need to specify the Spring Boot version number on this dependency. If you import
additional starters, you can safely omit the version number.

Using Spring Boot without the parent POM

Not everyone likes inheriting from the spri ng- boot - st art er - parent POM. You may have your
own corporate standard parent that you need to use, or you may just prefer to explicitly declare all your
Maven configuration.

If you don’t want to use the spri ng- boot - st art er-parent, you can still keep the benefit of the
dependency management (but not the plugin management) by using a scope=i nport dependency:

1.2.8.RELEASE Spring Boot 24

https://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
http://mojo.codehaus.org/exec-maven-plugin/
http://maven.apache.org/surefire/maven-surefire-plugin/
https://github.com/ktoso/maven-git-commit-id-plugin
http://maven.apache.org/plugins/maven-shade-plugin/

Spring Boot Reference Guide

<dependencyManagenent >
<dependenci es>
<dependency>
<l-- Inport dependency managenent from Spring Boot -->
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-dependenci es</artifactld>
<ver si on>1. 2. 8. RELEASE</ ver si on>
<t ype>pon¥/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

Changing the Java version

The spri ng-boot - st art er - par ent chooses fairly conservative Java compatibility. If you want to
follow our recommendation and use a later Java version you can add a j ava. ver si on property:

<properties>
<j ava. versi on>1. 8</j ava. versi on>
</ properties>

Using the Spring Boot Maven plugin

Spring Boot includes a Maven plugin that can package the project as an executable jar. Add the plugin
to your <pl ugi ns> section if you want to use it:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Note

If you use the Spring Boot starter parent pom, you only need to add the plugin, there is no need
for to configure it unless you want to change the settings defined in the parent.

13.2 Gradle

Gradle users can directly import “starter POMs” in their dependenci es section. Unlike Maven, there
is no “super parent” to import to share some configuration.

apply plugin: 'java

repositories {
jcenter ()

}

dependenci es {
conpi | e("org. springfranmework. boot : spring-boot-starter-web: 1. 2. 8. RELEASE")

}

The spri ng- boot - gr adl e- pl ugi nis also available and provides tasks to create executable jars and
run projects from source. It also adds a Resol uti onSt r at egy that enables you to omit the version
number for “blessed” dependencies:

buil dscript {

1.2.8.RELEASE Spring Boot 25

Spring Boot Reference Guide

repositories {
jcenter()

}

dependenci es {
cl asspat h("org. springframewor k. boot : spri ng- boot - gr adl e- pl ugi n: 1. 2. 8. RELEASE")
}
}

apply plugin: 'java'
apply plugin: 'spring-boot'

repositories {
jcenter()

}

dependenci es {
conpi | e("org. springframework. boot : spri ng-boot - starter-web")
t est Conpi | e("org. springframewor k. boot : spring-boot-starter-test")

13.3 Ant

It is possible to build a Spring Boot project using Apache Ant, however, no special support or plugins
are provided. Ant scripts can use the Ivy dependency system to import starter POMs.

See the Section 73.8, “Build an executable archive with Ant” “How-to” for more complete instructions.

13.4 Starter POMs

Starter POMs are a set of convenient dependency descriptors that you can include in your application.
You get a one-stop-shop for all the Spring and related technology that you need, without having to hunt
through sample code and copy paste loads of dependency descriptors. For example, if you want to get
started using Spring and JPA for database access, just include the spri ng- boot - st art er - dat a-
j pa dependency in your project, and you are good to go.

The starters contain a lot of the dependencies that you need to get a project up and running quickly and
with a consistent, supported set of managed transitive dependencies.

What’s in a name

All official starters follow a similar naming pattern; spri ng- boot -starter-*, where * is a
particular type of application. This naming structure is intended to help when you need to find
a starter. The Maven integration in many IDEs allow you to search dependencies by name. For
example, with the appropriate Eclipse or STS plugin installed, you can simply hitct r| - space in
the POM editor and type "spring-boot-starter” for a complete list.

Third party starters should not start with spri ng- boot - starter as it is reserved for official
starters. A third-party starter for acne will be typically named acne- spri ng- boot -starter.

The following application starters are provided by Spring Boot under the
or g. spri ngframewor k. boot group:

Table 13.1. Spring Boot application starters
Name Description

spring-boot-starter The core Spring Boot starter, including auto-
configuration support, logging and YAML.

1.2.8.RELEASE Spring Boot 26

Spring Boot Reference Guide

Name

spring-boot -starter-actuator

Description

Production ready features to help you monitor
and manage your application.

spring-boot -starter-angp

spring-boot -starter-aop

Support for the “Advanced Message Queuing
Protocol” via spri ng-rabbi t.

Support for aspect-oriented programming
including spri ng- aop and AspectJ.

spring-boot -starter-batch

spring-boot -starter-cl oud-connectors

Support for “Spring Batch” including HSQLDB
database.

Support for “Spring Cloud Connectors” which
simplifies connecting to services in cloud
platforms like Cloud Foundry and Heroku.

spring-boot -starter-data-
el asti csearch

spring-boot-starter-data-genfire

Support for the Elasticsearch search and
analytics engine including spri ng- dat a-
el asti csear ch.

Support for the GemFire distributed data store
including spri ng- dat a- genfire.

spring-boot-starter-data-jpa Support for the “Java Persistence API” including
spring-dat a-j pa, spri ng- or mand
Hibernate.

spring-boot - st art er - dat a- nongodb Support for the MongoDB NoSQL Database,
including spri ng- dat a- nongodb.

spring-boot -starter-data-rest Support for exposing Spring Data repositories
over REST via spri ng- dat a- r est - webmvc.

spring-boot-starter-data-solr Support for the Apache Solr search platform,
including spri ng- dat a-sol r.

spring-boot-starter-freenmarker Support for the FreeMarker templating engine.

spring-boot-starter-groovy-tenplates Supportforthe Groovy templating engine.

spring-boot - st arter-hat eoas Support for HATEOAS-based RESTful services
via spri ng- hat eoas.

spring-boot -starter-hornetq Support for “Java Message Service API” via
HornetQ.

spring-boot-starter-integration Support for common spri ng-i ntegrati on
modules.

spring-boot-starter-jdbc Support for JDBC databases.

spring-boot-starter-jersey Support for the Jersey RESTful Web Services

framework.

1.2.8.RELEASE

Spring Boot

27

Spring Boot Reference Guide

Name

spring-boot-starter-jta-atonikos

Description

Support for JTA distributed transactions via
Atomikos.

spring-boot-starter-jta-bitronix

spring-boot-starter-mail
spring-boot-starter-nobile
spring-boot -starter-nustache

spring-boot-starter-redis

Support for JTA distributed transactions via
Bitronix.

Support for j avax. mai | .
Support for spri ng- mobi | e.
Support for the Mustache templating engine.

Support for the REDIS key-value data store,
including spri ng-redis.

spring-boot-starter-security

Support for spri ng-security.

spring-boot-starter-social -facebook

spring-boot-starter-social -1inkedin

spring-boot-starter-social-twitter

spring-boot-starter-test

Support for spri ng- soci al - f acebook.
Support for spri ng-soci al -1 i nkedi n.
Support for spri ng-soci al -twitter.

Support for common test dependencies,
including JUnit, Hamcrest and Mockito along
with the spri ng-t est module.

spring-boot -starter-thynel eaf

spring-boot-starter-velocity

spri ng-boot -starter-web

Support for the Thymeleaf templating engine,
including integration with Spring.

Support for the Velocity templating engine.

Support for full-stack web development,
including Tomcat and spri ng- webnvc.

spring-boot - starter-websocket

Support for WebSocket development.

spring-boot-starter-ws

Support for Spring Web Services.

In addition to the application starters, the following starters can be used to add production ready features.

Table 13.2. Spring Boot production ready starters

Name

spring-boot -starter-actuator

Description

Adds production ready features such as metrics

and monitoring.

spring-boot-starter-renote-shell

Adds remote ssh shell support.

Finally, Spring Boot includes some starters that can be used if you want to exclude or swap specific

technical facets.

1.2.8.RELEASE

Spring Boot

28

Spring Boot Reference Guide

Table 13.3. Spring Boot technical starters

Name

Description

spring-boot-starter-jetty

spring-boot -starter-1o0g4j

spring-boot -starter-1ogging

Imports the Jetty HTTP engine (to be used as an

alternative to Tomcat).
Support the Log4J logging framework.

Import Spring Boot’s default logging framework
(Logback).

spring-boot-starter-toncat

spring-boot-starter-undertow

Tip

Import Spring Boot's default HTTP engine
(Tomcat).

Imports the Undertow HTTP engine (to be used
as an alternative to Tomcat).

For a list of additional community contributed starter POMs, see the README file in the spri ng-

boot - st art er s module on GitHub.

1.2.8.RELEASE

Spring Boot

29

http://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/README.adoc

Spring Boot Reference Guide

14. Structuring your code

Spring Boot does not require any specific code layout to work, however, there are some best practices
that help.

14.1 Using the “default” package

When a class doesn't include a package declaration it is considered to be in the “default package”.
The use of the “default package” is generally discouraged, and should be avoided. It can cause
particular problems for Spring Boot applications that use @onponent Scan, @ntityScan or
@Bpr i ngBoot Appl i cat i on annotations, since every class from every jar, will be read.

Tip

We recommend that you follow Java’s recommended package naming conventions and use a
reversed domain name (for example, com exanpl e. pr oj ect).

14.2 Locating the main application class

We generally recommend that you locate your main application class in a root package above other
classes. The @nabl eAut oConfi gur ati on annotation is often placed on your main class, and it
implicitly defines a base “search package” for certain items. For example, if you are writing a JPA
application, the package of the @nabl eAut oConf i gur at i on annotated class will be used to search
for @nt ity items.

Using a root package also allows the @onponent Scan annotation to be used without needing to
specify abasePackage attribute. You can also use the @pr i ngBoot Appl i cat i on annotation if your
main class is in the root package.

Here is a typical layout:

com
+- exanpl e
+- myproj ect
+- Application.java

|

+- domain
| +- Custoner.java
| +- Cust omer Repository.java
|

+- service
| +- Cust oner Service.java

|

+- web

+- CustonerController.java

The Appl i cat i on. j ava file would declare the nai n method, along with the basic @onf i gur ati on.

package com exanpl e. myproj ect;

i nport org.springframework. boot. SpringApplication;

i nport org.springfranework. boot . aut oconfi gur e. Enabl eAut oConfi gurati on;
i nport org.springfranework. cont ext. annot ati on. Conponent Scan;

i mport org.springfranmework. cont ext.annot ati on. Confi guration;

@onfiguration
@nabl eAut oConf i guration
@Conponent Scan

1.2.8.RELEASE Spring Boot 30

Spring Boot Reference Guide

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

1.2.8.RELEASE Spring Boot

31

Spring Boot Reference Guide

15. Configuration classes

Spring Boot favors Java-based configuration. Although it is possible to call
Spri ngAppl i cation. run() with an XML source, we generally recommend that your primary source
is a @onf i gurati on class. Usually the class that defines the mai n method is also a good candidate
as the primary @onfi gurati on.

Tip

Many Spring configuration examples have been published on the Internet that use XML
configuration. Always try to use the equivalent Java-base configuration if possible. Searching for
enabl e* annotations can be a good starting point.

15.1 Importing additional configuration classes

You don't need to put all your @onfi gurati on into a single class. The @ nport annotation can
be used to import additional configuration classes. Alternatively, you can use @onponent Scan to
automatically pickup all Spring components, including @onf i gur at i on classes.

15.2 Importing XML configuration

If you absolutely must use XML based configuration, we recommend that you still start with a
@confi gur ati on class. You can then use an additional @ npor t Resour ce annotation to load XML
configuration files.

1.2.8.RELEASE Spring Boot 32

Spring Boot Reference Guide

16. Auto-configuration

Spring Boot auto-configuration attempts to automatically configure your Spring application based on the
jar dependencies that you have added. For example, If HSQLDB is on your classpath, and you have
not manually configured any database connection beans, then we will auto-configure an in-memory
database.

You need to opt-in to auto-configuration by adding the @enabl eAut oConfi guration or
@pr i ngBoot Appl i cat i on annotations to one of your @onf i gur at i on classes.

Tip

You should only ever add one @tnabl eAut oConfi gurati on annotation. We generally
recommend that you add it to your primary @onf i gur ati on class.

16.1 Gradually replacing auto-configuration

Auto-configuration is noninvasive, at any point you can start to define your own configuration to replace
specific parts of the auto-configuration. For example, if you add your own Dat aSour ce bean, the default
embedded database support will back away.

If you need to find out what auto-configuration is currently being applied, and why, starting your
application with the - - debug switch. This will log an auto-configuration report to the console.

16.2 Disabling specific auto-configuration

If you find that specific auto-configure classes are being applied that you don’t want, you can use the
exclude attribute of @nabl eAut oConfi gur at i on to disable them.

i nport org.springfranmework. boot. aut oconfi gure. *;
i mport org.springframework. boot . aut oconfigure.jdbc.*;
i nport org.springframework. cont ext.annotation.*;

@onfi guration
@Enabl eAut oConf i gur at i on(excl ude={ Dat aSour ceAut oConf i gur ati on. cl ass})
public class MyConfiguration {

}

1.2.8.RELEASE Spring Boot 33

Spring Boot Reference Guide

17. Spring Beans and dependency injection

You are free to use any of the standard Spring Framework techniques to define your beans and their
injected dependencies. For simplicity, we often find that using @onponent Scan to find your beans, in
combination with @\ut owi r ed constructor injection works well.

If you structure your code as suggested above (locating your application class in a root package), you
can add @onponent Scan without any arguments. All of your application components (@onponent ,
@ber vi ce, @Reposi tory, @ontrol | er etc.)will be automatically registered as Spring Beans.

Here is an example @ber vi ce Bean that uses constructor injection to obtain a required Ri skAssessor
bean.

package com exanpl e. service;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. stereotype. Servi ce;

@ber vi ce
public class DatabaseAccount Service inpl enents Account Service {

private final Ri skAssessor riskAssessor;
@\ut owi red
publ i ¢ Dat abaseAccount Servi ce(Ri skAssessor riskAssessor) {

this.riskAssessor = riskAssessor;

}

N/

Tip

Notice how using constructor injection allows the ri skAssessor field to be marked as f i nal ,
indicating that it cannot be subsequently changed.

1.2.8.RELEASE Spring Boot 34

Spring Boot Reference Guide

18. Using the @SpringBootApplication annotation

Many Spring Boot developers always have their main class annotated with @Confi gurati on,
@nabl eAut oConfi gurati on and @onponent Scan. Since these annotations are so frequently
used together (especially if you follow the best practices above), Spring Boot provides a convenient
@Bpr i ngBoot Appl i cat i on alternative.

The @ppringBoot Application annotation is equivalent to wusing @onfiguration,
@nabl eAut oConfi gur at i on and @onponent Scan with their default attributes:

package com exanpl e. nyproj ect;

i nport org.springfranmework. boot. SpringApplication;
i nport org.springframework. boot . aut oconfi gure. Spri ngBoot Appl i cati on;

@pri ngBoot Appl i cation // sane as @onfiguration @nabl eAut oConfi gurati on @onponent Scan
public class Application {

public static void main(String[] args) {
Spri ngApplication. run(Application.class, args);

}

1.2.8.RELEASE Spring Boot 35

Spring Boot Reference Guide

19. Running your application

One of the biggest advantages of packaging your application as jar and using an embedded HTTP
server is that you can run your application as you would any other. Debugging Spring Boot applications
is also easy; you don't need any special IDE plugins or extensions.

Note

This section only covers jar based packaging, If you choose to package your application as a war
file you should refer to your server and IDE documentation.

19.1 Running from an IDE

You can run a Spring Boot application from your IDE as a simple Java application, however, first you
will need to import your project. Import steps will vary depending on your IDE and build system. Most
IDEs can import Maven projects directly, for example Eclipse users can select | nport ..._, Exi sting
Maven Proj ects from the Fi | e menu.

If you can’t directly import your project into your IDE, you may be able to generate IDE metadata using
a build plugin. Maven includes plugins for Eclipse and IDEA; Gradle offers plugins for various IDEs.

Tip

If you accidentally run a web application twice you will see a “Port already in use” error. STS users
can use the Rel aunch button rather than Run to ensure that any existing instance is closed.

19.2 Running as a packaged application

If you use the Spring Boot Maven or Gradle plugins to create an executable jar you can run your
application using j ava -j ar . For example:

‘ $ java -jar target/ myproject-0.0.1- SNAPSHOT. j ar

It is also possible to run a packaged application with remote debugging support enabled. This allows
you to attach a debugger to your packaged application:

$ java - Xdebug - Xrunj dwp: server =y, transport=dt _socket, addr ess=8000, suspend=n \
-jar target/myproject-0.0.1- SNAPSHOT. j ar

19.3 Using the Maven plugin

The Spring Boot Maven plugin includes a r un goal which can be used to quickly compile and run your
application. Applications run in an exploded form, and you can edit resources for instant “hot” reload.

‘ $ nmvn spring-boot:run

You might also want to use the useful operating system environment variable:

‘ $ export MAVEN OPTS=- Xmx1024m - XX: MaxPer nSi ze=128M - [j ava. security. egd=fil e:/dev/./urandom

(The “egd” setting is to speed up Tomcat startup by giving it a faster source of entropy for session keys.)

1.2.8.RELEASE Spring Boot 36

http://maven.apache.org/plugins/maven-eclipse-plugin/
http://maven.apache.org/plugins/maven-idea-plugin/
http://www.gradle.org/docs/current/userguide/ide_support.html

Spring Boot Reference Guide

19.4 Using the Gradle plugin

The Spring Boot Gradle plugin also includes a r un goal which can be used to run your application in
an exploded form. The boot Run task is added whenever you import the spri ng- boot - pl ugi n

‘ $ gradl e boot Run

You might also want to use this useful operating system environment variable:

‘ $ export JAVA OPTS=- Xnx1024m - XX: MaxPer nSi ze=128M - Dj ava. security. egd=fil e:/dev/./urandom

19.5 Hot swapping

Since Spring Boot applications are just plain Java applications, JVM hot-swapping should work out of the
box. JVM hot swapping is somewhat limited with the bytecode that it can replace, for a more complete
solution the Spring Loaded project, or JRebel can be used.

See the Hot swapping “How-to” section for details.

1.2.8.RELEASE Spring Boot 37

https://github.com/spring-projects/spring-loaded
http://zeroturnaround.com/software/jrebel/

Spring Boot Reference Guide

20. Packaging your application for production

Executable jars can be used for production deployment. As they are self-contained, they are also ideally
suited for cloud-based deployment.

For additional “production ready” features, such as health, auditing and metric REST or JMX end-
points; consider adding spri ng- boot - act uat or. See Part V, “Spring Boot Actuator: Production-

ready features” for detalils.

1.2.8.RELEASE Spring Boot 38

Spring Boot Reference Guide

21. What to read next

You should now have good understanding of how you can use Spring Boot along with some best
practices that you should follow. You can now go on to learn about specific Spring Boot features in
depth, or you could skip ahead and read about the “production ready” aspects of Spring Boot.

1.2.8.RELEASE Spring Boot 39

Part IV. Spring Boot features

This section dives into the details of Spring Boot. Here you can learn about the key features that you will
want to use and customize. If you haven't already, you might want to read the Part Il, “Getting started”
and Part I, “Using Spring Boot” sections so that you have a good grounding of the basics.

Spring Boot Reference Guide

22. SpringApplication

The SpringAppl i cati on class provides a convenient way to bootstrap a Spring application that
will be started from a nmai n() method. In many situations you can just delegate to the static
Spri ngAppl i cati on. run method:

public static void main(String[] args) {
SpringApplication. run(M/SpringConfiguration.class, args);
}

When your application starts you should see something similar to the following:

AN

SN G D U U W
CON— "N v Vv
W e roy)))
S S) I W B A Y
|| | __/=l_1_1_1
;1 Spring Boot :: v1. 2. 8. RELEASE
2013-07-31 00: 08:16.117 |NFO 56603 --- [mai n] o.s.b.s.app. Sanpl eAppl i cation :
Starting Sanpl eApplication v0.1.0 on nyconputer with PID 56603 (/apps/nyapp.jar started by pwebb)
2013-07-31 00: 08: 16. 166 | NFO 56603 --- [mai n] ati onConfi gEnbeddedWebAppl i cati onCont ext :
Ref r eshi ng

or g. springframewor k. boot . cont ext . enbedded. Annot at i onConf i gEmbeddedWebAppl i cati onCont ext @e5a8246:
startup date [Wed Jul 31 00:08:16 PDT 2013]; root of context hierarchy

2014-03-04 13: 09:54.912 |NFO 41370 --- [mai n] .t.Tonctat EnbeddedSer vl et Cont ai ner Factory :
Server initialized with port: 8080
2014-03-04 13: 09:56.501 |NFO 41370 --- [mai n] o.s.b.s.app. Sanpl eAppl i cation

Started Sanpl eApplication in 2.992 seconds (JVM running for 3.658)

By default | NFOlogging messages will be shown, including some relevant startup details such as the
user that launched the application.

22.1 Customizing the Banner

The banner that is printed on start up can be changed by adding a banner . t xt file to your classpath,
or by setting banner . | ocat i on to the location of such a file. If the file has an unusual encoding you
can set banner . char set (default is UTF- 8).

You can use the following variables inside your banner . t xt file:
Table 22.1. Banner variables

Variable Description

${appl i cation. versi on} The version number of your application as
declared in MANI FEST. MF. For example 1. 0.

${application. formatted-version} The version number of your application as
declared in MANI FEST. MF formatted for display
(surrounded with brackets and prefixed with v).
For example (v1. 0).

${spring-boot . versi on} The Spring Boot version that you are using. For
example 1. 2. 8. RELEASE.

${spring-boot.fornmatted-version} The Spring Boot version that you are using
formatted for display (surrounded with

1.2.8.RELEASE Spring Boot 41

Spring Boot Reference Guide

Variable Description

brackets and prefixed with v). For example
(vl. 2. 8. RELEASE) .

Tip

The SpringApplication. set Banner(.) method can be used if you want to generate
a banner programmatically. Use the or g. spri ngframewor k. boot . Banner interface and
implement your own pri nt Banner () method.

22.2 Customizing SpringApplication

If the Spri ngAppl i cati on defaults aren’t to your taste you can instead create a local instance and
customize it. For example, to turn off the banner you would write:

public static void main(String[] args) {
Spri ngApplication app = new SpringApplication(MSpringConfiguration.class);
app. set ShowBanner (f al se);
app. run(args);

Note

The constructor arguments passed to Spr i ngAppl i cat i on are configuration sources for spring
beans. In most cases these will be references to @onf i gur at i on classes, but they could also
be references to XML configuration or to packages that should be scanned.

It is also possible to configure the Spri ngAppl i cati on using an appl i cati on. properti es file.
See Chapter 23, Externalized Configuration for details.

For a complete list of the configuration options, see the Spri ngAppl i cati on Javadoc.

22.3 Fluent builder API

If you need to build an Applicati onContext hierarchy (multiple contexts with a parent/
child relationship), or if you just prefer using a ‘fluent’ builder API, you can use the
Spri ngAppl i cati onBuil der.

The Spri ngAppl i cati onBui | der allows you to chain together multiple method calls, and includes
par ent and chi | d methods that allow you to create a hierarchy.

For example:

new Spri ngAppl i cationBuil der ()
. showBanner (f al se)
. sour ces(Parent. cl ass)
.chil d(Application.class)
.run(args);

Note

There are some restrictions when creating an Appl i cati onCont ext hierarchy, e.g. Web
components must be contained within the child context, and the same Envi r onmrent will be

1.2.8.RELEASE Spring Boot 42

http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/SpringApplication.html

Spring Boot Reference Guide

used for both parent and child contexts. See the Spri ngAppl i cati onBui | der Javadoc for
full details.

22.4 Application events and listeners

In addition to the usual Spring Framework events, such as Cont ext RefreshedEvent, a
Spri ngAppl i cati on sends some additional application events. Some events are actually triggered
before the Appl i cat i onCont ext is created.

You can register event listeners in a number of ways, the most common being
Spri ngAppl i cati on. addLi st ener s(..) method.

Application events are sent in the following order, as your application runs:

1. An ApplicationStart edEvent is sent at the start of a run, but before any processing except the
registration of listeners and initializers.

2. An Appl i cati onEnvi r onment Pr epar edEvent is sentwhen the Envi r onnment to be used in the
context is known, but before the context is created.

3. An Appl i cati onPr epar edEvent is sent just before the refresh is started, but after bean definitions
have been loaded.

4. An Appl i cati onFai | edEvent is sent if there is an exception on startup.
Tip

You often won't need to use application events, but it can be handy to know that they exist.
Internally, Spring Boot uses events to handle a variety of tasks.

22.5 Web environment

A SpringApplication wil attempt to create the right type of ApplicationContext
on your behalf. By default, an AnnotationConfi gApplicati onCont ext or
Annot at i onConf i gEnbeddedWebAppl i cat i onCont ext will be used, depending on whether you
are developing a web application or not.

The algorithm used to determine a ‘web environment’ is fairly simplistic (based on the presence of a few
classes). You can use set WebEnvi r onnment (bool ean webEnvi ronnent) if you need to override
the default.

It is also possible to take complete control of the Appl i cati onCont ext type that will be used by
calling set Appl i cati onCont ext C ass(..).

Tip

It is often desirable to call set WebEnvi r onnment (f al se) when using Spri ngAppl i cati on
within a JUnit test.

1.2.8.RELEASE Spring Boot 43

http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/builder/SpringApplicationBuilder.html
http://docs.spring.io/spring/docs/4.1.9.RELEASE/javadoc-api/org/springframework/context/event/ContextRefreshedEvent.html

Spring Boot Reference Guide

22.6 Using the CommandLineRunner

If you want access to the raw command line arguments, or you need to run some specific code once
the Spri ngAppl i cati on has started you can implement the CommandLi neRunner interface. The
run(String...args) method will be called on all Spring beans implementing this interface.

i nport org.springfranework. boot . *
i nport org.springfranework. stereotype. *

@onponent
public class MyBean inplenents CommandLi neRunner {

public void run(String... args) {
/1 Do sonething...
}

You can additionally implement the or g. spri ngf ranewor k. cor e. Or der ed interface or use the
org. springfranmework. core. annot ati on. O der annotation if several CormandLi neRunner
beans are defined that must be called in a specific order.

22.7 Application exit

Each SpringApplication wil register a shutdown hook with the JVM to ensure that the
Appl i cati onCont ext is closed gracefully on exit. All the standard Spring lifecycle callbacks (such
as the Di sposabl eBean interface, or the @r eDest r oy annotation) can be used.

In addition, beans may implement the org. springfranmework. boot . Exi t CodeGener at or
interface if they wish to return a specific exit code when the application ends.

1.2.8.RELEASE Spring Boot 44

Spring Boot Reference Guide

23. Externalized Configuration

Spring Boot allows you to externalize your configuration so you can work with the same application
code in different environments. You can use properties files, YAML files, environment variables and
command-line arguments to externalize configuration. Property values can be injected directly into your
beans using the @/al ue annotation, accessed via Spring’s Envi r onnent abstraction or bound to
structured objects via @onf i gur ati onProperti es.

Spring Boot uses a very particular Pr oper t ySour ce order that is designed to allow sensible overriding
of values, properties are considered in the the following order:

1. Command line arguments.

2. JNDI attributes from j ava: conp/ env.

3. Java System properties (Syst em get Properties()).

4. OS environment variables.

5. ARandonVal uePr opert ySour ce that only has properties in r andom *.

6. Profile-specific application properties outside of your packaged jar (application-
{profile}.properties and YAML variants)

7. Profile-specific __application properties packaged inside your jar (application-
{profile}.properties and YAML variants)

8. Application properties outside of your packaged jar (application. properties and YAML
variants).

9. Application properties packaged inside your jar (appl i cati on. properti es and YAML variants).

10@r oper t ySour ce annotations on your @onf i gur ati on classes.

11Default properties (specified using Spri ngAppl i cati on. set Def aul t Properti es).

To provide a concrete example, suppose you develop a @Conponent that uses a name property:

i nport org.springfranework. stereotype. *
i nport org.springframework. beans. factory. annotati on. *

@onponent
public class MyBean {

@al ue(" ${nanme}")
private String nane;

...

You can bundle an appl i cati on. properti es inside your jar that provides a sensible default nane.
When running in production, an appl i cat i on. properti es can be provided outside of your jar that
overrides nane; and for one-off testing, you can launch with a specific command line switch (e.g. j ava
-jar app.jar --nane="Spring").

1.2.8.RELEASE Spring Boot 45

http://docs.spring.io/spring/docs/4.1.9.RELEASE/javadoc-api/org/springframework/context/annotation/PropertySource.html

Spring Boot Reference Guide

23.1 Configuring random values

The RandonVal uePr opert ySour ce is useful for injecting random values (e.g. into secrets or test
cases). It can produce integers, longs or strings, e.g.

. secret =${random val ue}

. nunmber =${random i nt }

. bi gnunber =${r andom | ong}

.nunber. | ess. than.ten=${random i nt (10)}
.nunber . in.range=${random i nt[1024, 65536] }

33333

The random i nt * syntax is OPEN val ue (, nax) CLOSE where the OPEN, CLOSE are any character
and val ue, max are integers. If max is provided then val ue is the minimum value and max is the
maximum (exclusive).

23.2 Accessing command line properties

By default Spri ngAppl i cat i on will convert any command line option arguments (starting with ‘-,
e.g. --server. port=9000) to a property and add it to the Spring Envi r onment . As mentioned
above, command line properties always take precedence over other property sources.

If you don’t want command line properties to be added to the Envi r onnment you can disable them using
Spri ngAppl i cati on. set AddCommandLi neProperti es(fal se).

23.3 Application property files

SpringAppl i cati on will load properties from appl i cati on. properti es files in the following
locations and add them to the Spring Envi r onment :

1. A/ confi g subdir of the current directory.
2. The current directory

3. Aclasspath / conf i g package

4. The classpath root

The listis ordered by precedence (properties defined in locations higher in the list override those defined
in lower locations).

Note

You can also use YAML (.yml') files as an alternative to '.properties'.

If you don't like application. properties as the configuration file name you can switch to
another by specifying a spri ng. confi g. nane environment property. You can also refer to an
explicit location using the spri ng. confi g. | ocati on environment property (comma-separated list
of directory locations, or file paths).

‘ $ java -jar nyproject.jar --spring.config.name=nyproj ect

or

$ java -jar nyproject.jar --spring.config.location=classpath:/default.properties,classpath:/
override. properties

1.2.8.RELEASE Spring Boot 46

Spring Boot Reference Guide

If spring.config.location contains directories (as opposed to files) they should end in / (and
will be appended with the names generated from spri ng. confi g. nane before being loaded). The
default search path cl asspat h:, cl asspath:/config,file:,file:config/ is always used,
irrespective of the value of spri ng. config.locati on. In that way you can set up default values
for your application in appl i cati on. properti es (or whatever other basename you choose with
spring. confi g. nane) and override it at runtime with a different file, keeping the defaults.

Note

If you use environment variables rather than system properties, most operating systems disallow
period-separated key names, but you can use underscores instead (e.g. SPRI NG_CONFI G_NAVMVE
instead of spri ng. confi g. nane).

Note

If you are running in a container then JNDI properties (in j ava: conp/ env) or servlet context
initialization parameters can be used instead of, or as well as, environment variables or system
properties.

23.4 Profile-specific properties

In addition to appl i cati on. properti es files, profile-specific properties can also be defined using
the naming convention appl i cati on-{profil e}. properties.

Profile specific properties are loaded from the same locations as standard
appl i cation. properti es, with profile-specific files always overriding the default ones irrespective
of whether the profile-specific files are inside or outside your packaged jar.

If several profiles are specified, a last wins strategy applies. For example, profiles specified by the
spring. active. profil es property are added after those configured via the Spri ngAppl i cati on
API and therefore take precedence.

23.5 Placeholders in properties

The values in appl i cati on. properti es are filtered through the existing Envi r onment when they
are used so you can refer back to previously defined values (e.g. from System properties).

app. name=M/App
app. descri ption=${app. nane} is a Spring Boot application

Tip

You can also use this technique to create ‘short’ variants of existing Spring Boot properties. See
the Section 63.3, “Use ‘short’ command line arguments” how-to for details.

23.6 Using YAML instead of Properties

YAML is a superset of JSON, and as such is a very convenient format for specifying hierarchical
configuration data. The Spri ngAppl i cat i on class will automatically support YAML as an alternative
to properties whenever you have the SnakeYAML library on your classpath.

1.2.8.RELEASE Spring Boot 47

http://yaml.org
http://www.snakeyaml.org/

Spring Boot Reference Guide

Note

If you use ‘starter POMs’ SnakeYAML will be automatically provided via spri ng- boot -
starter.

Loading YAML

Spring Framework provides two convenient classes that can be used to load YAML documents. The
Yam Properti esFact or yBean will load YAML as Pr oper ti es and the Yam MapFact or yBean will
load YAML as a Map.

For example, the following YAML document:

envi ronnents:
dev:
url: http://dev. bar.com
nane: Devel oper Setup
prod:
url: http://foo.bar.com
name: My Cool App

Would be transformed into these properties:

envi ronnments. dev. url =http://dev. bar. com
envi ronnent s. dev. nane=Devel oper Setup
environnents. prod. url =http://foo. bar.com
envi ronnents. prod. nane=My Cool App

YAML lists are represented as property keys with [i ndex] dereferencers, for example this YAML:

ny:
servers:

- dev. bar.com

- foo.bar.com

Would be transformed into these properties:

ny. server s[0] =dev. bar. com
ny. servers[1] =f oo. bar. com

To bind to properties like that using the Spring DataBi nder utilities (which is what
@configurati onProperties does) you need to have a property in the target bean of type
java.util.List (orSet)and you either need to provide a setter, or initialize it with a mutable value,
e.g. this will bind to the properties above

@onfi gurationProperties(prefix="ny")
public class Config {

private List<String> servers = new ArraylList<String>();
public List<String> getServers() {

return this.servers;

}

Exposing YAML as properties in the Spring Environment

The Yan! Pr opert ySour ceLoader class can be used to expose YAML as a Pr opert ySour ce inthe
Spring Envi r onnent . This allows you to use the familiar @/al ue annotation with placeholders syntax
to access YAML properties.

1.2.8.RELEASE Spring Boot 48

Spring Boot Reference Guide

Multi-profile YAML documents

You can specify multiple profile-specific YAML documents in a single file by usinga spri ng. profil es
key to indicate when the document applies. For example:

server:
address: 192.168.1.100

spring:

profiles: devel opnent
server:

address: 127.0.0.1

spring:

profiles: production
server:

address: 192.168.1.120

In the example above, the ser ver . addr ess property will be 127. 0. 0. 1 if the devel opnent profile
is active. If the devel oprment and pr oduct i on profiles are not enabled, then the value for the property
will be 192. 168. 1. 100

YAML shortcomings

YAML files can't be loaded via the @°r oper t ySour ce annotation. So in the case that you need to load
values that way, you need to use a properties file.

23.7 Typesafe Configuration Properties

Using the @/al ue(" ${ property}") annotation to inject configuration properties can sometimes be
cumbersome, especially if you are working with multiple properties or your data is hierarchical in nature.
Spring Boot provides an alternative method of working with properties that allows strongly typed beans
to govern and validate the configuration of your application. For example:

@onponent
@onfi gurationProperties(prefix="connection")
public class ConnectionSettings {

private String usernane;

private |net Address renpteAddress;

/1 ... getters and setters

Note

The getters and setters are advisable, since binding is via standard Java Beans property
descriptors, just like in Spring MVC. They are mandatory for immutable types or those that are
directly coercible from St r i ng. As long as they are initialized, maps, collections, and arrays need
a getter but not necessarily a setter since they can be mutated by the binder. If there is a setter,
Maps, collections, and arrays can be created. Maps and collections can be expanded with only a
getter, whereas arrays require a setter. Nested POJO properties can also be created (so a setter
is not mandatory) if they have a default constructor, or a constructor accepting a single value
that can be coerced from String. Some people use Project Lombok to add getters and setters
automatically.

1.2.8.RELEASE Spring Boot 49

Spring Boot Reference Guide

When the @nabl eConfi gurati onProperti es annotation is applied to your @onfi gurati on,
any beans annotated with @Confi gurati onProperties will be automatically configured from
the Environnent properties. This style of configuration works particularly well with the
Spri ngAppl i cati on external YAML configuration:

application.ynl
connecti on:
usernane: admn

renot eAddress: 192.168.1.1

addi tional configuration as required

To work with @onf i gur ati onProperti es beans you can just inject them in the same way as any
other bean.

@ervi ce
public class MyService {

@\ut owi r ed
private ConnectionSettings connection;

oo

@Post Construct
public void openConnection() {
Server server = new Server();
t hi s. connecti on. confi gure(server);

It is also possible to shortcut the registration of @Confi gur ati onProperti es bean definitions by
simply listing the properties classes directly in the @nabl eConf i gur ati onPr operti es annotation:

@onfi guration
@Enabl eConfi gurati onProperties(ConnectionSettings. class)
public class MyConfiguration {

}

Tip

Using @Confi gurati onProperti es also allows you to generate meta-data files that can be
used by IDEs. See the Appendix B, Configuration meta-data appendix for details.

Third-party configuration

As well as using @onfi gur ati onProperti es to annotate a class, you can also use it on @ean
methods. This can be particularly useful when you want to bind properties to third-party components
that are outside of your control.

To configure a bean from the Envi r onnent properties, add @onfi gurati onProperties to its
bean registration:

@onfi gurationProperties(prefix = "foo")
@Bean
publ i ¢ FooConponent fooConponent () {

}

1.2.8.RELEASE Spring Boot 50

Spring Boot Reference Guide

Any property defined with the f oo prefix will be mapped onto that FooConponent bean in a similar
manner as the Connecti onSet t i ngs example above.

Relaxed binding

Spring Boot uses some relaxed rules for binding Environnment properties to
@confi gurati onProperties beans, so there doesn’'t need to be an exact match between the
Envi ronnment property name and the bean property name. Common examples where this is useful
include dashed separated (e.g. cont ext - pat h binds to cont ext Pat h), and capitalized (e.g. PORT
binds to por t) environment properties.

For example, given the following @onf i gur ati onProperti es class:

@Conponent
@onfi gurationProperties(prefix="person")
public class ConnectionSettings {

private String firstName;

public String getFirstNane() {
return this.firstNang;

}

public void setFirstName(String firstName) {
this.firstName = firstNane;
}

The following properties names can all be used:
Table 23.1. relaxed binding
Property Note

per son. fi r st NanStandard camel case syntax.

person. first- Dashed notation, recommended for use in . properties and.ym files.
name

PERSON_FI RST_NAMpper case format. Recommended when using a system environment
variables.

Spring will attempt to coerce the external application properties to the right type when it binds to
the @onfi gurati onProperties beans. If you need custom type conversion you can provide a
Conver si onSer vi ce bean (with bean id conver si onSer vi ce) or custom property editors (via a
Cust onEdi t or Conf i gur er bean).

@ConfigurationProperties Validation

Spring Boot will attempt to validate external configuration, by default using JSR-303 (if it is on
the classpath). You can simply add JSR-303 j avax. val i dati on constraint annotations to your
@confi gurati onProperti es class:

@onponent
@onfi gurationProperties(prefix="connection")
public class ConnectionSettings {

@\ot Nul |

1.2.8.RELEASE Spring Boot 51

Spring Boot Reference Guide

private |netAddress renpteAddress;

/1 ... getters and setters

You can also add a custom Spring Validator by creating a bean definition called
confi gurationPropertiesValidator.

Tip

The spring-boot-actuator module includes an endpoint that exposes all
@confi gurati onProperti es beans. Simply point your web browserto/ conf i gpr ops or use
the equivalent JIMX endpoint. See the Production ready features. section for details.

1.2.8.RELEASE Spring Boot 52

Spring Boot Reference Guide

24. Profiles

Spring Profiles provide a way to segregate parts of your application configuration and make it
only available in certain environments. Any @onponent or @onf i gurati on can be marked with
@r of i | e to limit when it is loaded:

@onfiguration
@rofile("production")
public class ProductionConfiguration {

...

In the normal Spring way, you can use a spring. profiles.active Environment property to
specify which profiles are active. You can specify the property in any of the usual ways, for example
you could include it in your appl i cati on. properti es:

spring. profiles.active=dev, hsql db

or specify on the command line using the switch - - spri ng. profil es. acti ve=dev, hsql db.

24.1 Adding active profiles

The spring.profiles.active property follows the same ordering rules as other properties,
the highest PropertySource will win. This means that you can specify active profiles in
appl i cation. properti es then replace them using the command line switch.

Sometimes it is useful to have profile specific properties that add to the active profiles rather than replace
them. The spri ng. profil es. i ncl ude property can be used to unconditionally add active profiles.
The Spri ngAppl i cati on entry point also has a Java API for setting additional profiles (i.e. on top of
those activated by the spri ng. profil es. acti ve property): see the set Addi ti onal Profil es()
method.

For example, when an application with following properties is run using the switch --
spring. profiles.active=prod the proddb and pr odng profiles will also be activated:

ny.property: fronyamfile

spring. profiles: prod
spring. profiles.include: proddb, prodnyg

Note

Remember that the spring. profil es property can be defined in a YAML document to
determine when this particular document is included in the configuration. See Section 63.6
“Change configuration depending on the environment” for more details.

24.2 Programmatically setting profiles

You can programmatically set active profiles by calling
SpringApplication.set Additional Profil es(.) before your application runs. It is also
possible to activate profiles using Spring’s Conf i gur abl eEnvi r onnent interface.

1.2.8.RELEASE Spring Boot 53

Spring Boot Reference Guide

24.3 Profile specific configuration files

Profile specific variants of both application. properties (or application.ym) and files
referenced via @onf i gur ati onProperti es are considered as files are loaded. See Section 23.4
“Profile-specific properties” for details.

1.2.8.RELEASE Spring Boot 54

Spring Boot Reference Guide

25. Logging

Spring Boot uses Commons Logging for all internal logging, but leaves the underlying log implementation
open. Default configurations are provided for Java Util Logging, Log4J, Log4J2 and Logback. In each
case loggers are pre-configured to use console output with optional file output also available.

By default, If you use the ‘Starter POMs’, Logback will be used for logging. Appropriate Logback routing
is also included to ensure that dependent libraries that use Java Util Logging, Commons Logging, Log4J
or SLF4J will all work correctly.

Tip

There are a lot of logging frameworks available for Java. Don't worry if the above list seems
confusing. Generally you won't need to change your logging dependencies and the Spring Boot
defaults will work just fine.

25.1 Log format

The default log output from Spring Boot looks like this:

2014-03-05 10:57:51.112 | NFO 45469 --- | mai n] org. apache. cat al i na. core. St andar dEngi ne
Starting Servlet Engine: Apache Tontat/7.0.52

2014-03-05 10:57:51.253 | NFO 45469 --- [ost-startStop-1] o.a.c.c.C.[Tonctat].[local host].[/]
Initializing Spring enbedded WebAppl i cati onCont ext

2014-03-05 10:57:51.253 | NFO 45469 --- [ost-startStop-1] o.s.web.context.ContextLoader
Root WebApplicationContext: initialization conpleted in 1358 ns

2014-03-05 10:57:51.698 |NFO 45469 --- [ost-startStop-1] o.s.b.c.e.ServletRegistrati onBean
Mappi ng servlet: 'dispatcherServiet' to [/]

2014-03-05 10:57:51.702 |NFO 45469 --- [ost-startStop-1] o.s.b.c.enbedded. FilterRegi strati onBean
Mapping filter: 'hiddenHttpMethodFilter' to: [/*]

The following items are output:
» Date and Time — Millisecond precision and easily sortable.

* Log Level — ERROR, WARN, | NFO, DEBUG or TRACE.

Process ID.

» A--- separator to distinguish the start of actual log messages.

e Thread name — Enclosed in square brackets (may be truncated for console output).
» Logger name — This is usually the source class name (often abbreviated).

» The log message.

25.2 Console output

The default log configuration will echo messages to the console as they are written. By default ERROR,
WARN and | NFOlevel messages are logged. To also log DEBUG level messages to the console you can
start your application with a - - debug flag.

$ java -jar nyapp.jar --debug

If your terminal supports ANSI, color output will be used to aid readability. You can set
spring. out put. ansi . enabl ed to a supported value to override the auto detection.

1.2.8.RELEASE Spring Boot 55

http://commons.apache.org/logging
http://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html
http://logging.apache.org/log4j/
http://logging.apache.org/log4j/2.x/
http://logback.qos.ch/
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/ansi/AnsiOutput.Enabled.html

Spring Boot Reference Guide

25.3 File output

By default, Spring Boot will only log to the console and will not write log files. If you want to write log
files in addition to the console output you need to set a | oggi ng. fil e or | oggi ng. pat h property
(for example in your appl i cati on. properti es).

The following table shows how the | oggi ng. * properties can be used together:

Table 25.1. Logging properties
| oggi ng. fi|lleoggi ng. paJtlﬁxample Description
(none) (none) Console only logging.

Specific file | (none) my. |l og Writes to the specified log file. Names can be an exact
location or relative to the current directory.

(none) Specific /var/log | Writes spring. | og to the specified directory. Names
directory can be an exact location or relative to the current
directory.

Log files will rotate when they reach 10 Mb and as with console output, ERROR, WARN and | NFO level
messages are logged by default.

Note

The logging system is initialized early in the application lifecycle and as such logging properties
will not be found in property files loaded via @r oper t ySour ce annotations.

25.4 Log Levels

All the supported logging systems can have the logger levels set in the Spring Envi r onnent (so
for example in appl i cati on. properti es) using ‘logging.level.*=LEVEL’ where ‘LEVEL’ is one of
TRACE, DEBUG, INFO, WARN, ERROR, FATAL, OFF. Example appl i cati on. properti es:

| oggi ng. | evel . org. spri ngf ramewor k. web=DEBUG
| oggi ng. | evel . or g. hi ber nat e=ERROR

Note

By default Spring Boot remaps Thymeleaf | NFO messages so that they are logged at DEBUG
level. This helps to reduce noise in the standard log output. See Level Renappi ngAppender
for details of how you can apply remapping in your own configuration.

25.5 Custom log configuration

The various logging systems can be activated by including the appropriate libraries on the classpath,
and further customized by providing a suitable configuration file in the root of the classpath, or in a
location specified by the Spring Envi r onment property | oggi ng. confi g. (Note however that since
logging is initialized before the Appl i cat i onCont ext is created, it isn't possible to control logging
from @Pr oper t ySour ces in Spring @onfi gur ati on files. System properties and the conventional
Spring Boot external configuration files work just fine.)

1.2.8.RELEASE Spring Boot 56

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/logging/logback/LevelRemappingAppender.java

Spring Boot Reference Guide

Depending on your logging system, the following files will be loaded:

Logging System Customization

Logback | ogback. xm orl ogback. gr oovy
Log4j | og4j . propertiesorlog4j.xmn
Log4j2 og4j 2. xm

JDK (Java Util Logging) | oggi ng. properties

To help with the customization some other properties are transferred from the Spring Envi r onnent
to System properties:

Spring Environment System Property Comments

logging.file LOG FI LE Used in default log
configuration if defined.

| oggi ng. pat h LOG_PATH Used in default log
configuration if defined.

PI D Pl D The current process ID
(discovered if possible and
when not already defined as an
OS environment variable).

All the logging systems supported can consult System properties when parsing their configuration files.
See the default configurations in spri ng- boot . j ar for examples.

Warning

There are known classloading issues with Java Util Logging that cause problems when running
from an ‘executable jar'. We recommend that you avoid it if at all possible.

1.2.8.RELEASE Spring Boot 57

Spring Boot Reference Guide

26. Developing web applications

Spring Boot is well suited for web application development. You can easily create a self-contained HTTP
server using embedded Tomcat, Jetty, or Undertow. Most web applications will use the spri ng- boot -
st art er - web module to get up and running quickly.

If you haven't yet developed a Spring Boot web application you can follow the "Hello World!" example
in the Getting started section.

26.1 The ‘Spring Web MVC framework’

The Spring Web MVC framework (often referred to as simply ‘Spring MVC’) is a rich ‘model view
controller’ web framework. Spring MVC lets you create special @ont rol | er or @Rest Control | er
beans to handle incoming HTTP requests. Methods in your controller are mapped to HTTP using
@Request Mappi ng annotations.

Here is a typical example @Rest Cont r ol | er to serve JSON data:

@rest Control | er
@Request Mappi ng(val ue="/users")
public class MyRestController {

@Request Mappi ng(val ue="/{user}", nethod=Request Met hod. GET)
public User getUser(@athVariable Long user) {
...

}

@Request Mappi ng(val ue="/{user}/custoners", nethod=Request Met hod. GET)
Li st <Cust oner > get User Cust oner s(@at hVari abl e Long user) {
...

}

@Request Mappi ng(val ue="/{user}", nethod=Request Met hod. DELETE)
public User del eteUser(@athVariable Long user) {
1.

}

Spring MVC is part of the core Spring Framework and detailed information is available in the reference
documentation. There are also several guides available at spring.io/guides that cover Spring MVC.

Spring MVC auto-configuration
Spring Boot provides auto-configuration for Spring MVC that works well with most applications.
The auto-configuration adds the following features on top of Spring’s defaults:

* Inclusion of Cont ent Negot i at i ngVi ewResol ver and BeanNaneVi ewResol ver beans.

Support for serving static resources, including support for WebJars (see below).

» Automatic registration of Convert er, Generi cConverter, Formatt er beans.

Support for Ht t pMessageConver t er s (see below).

» Automatic registration of MessageCodesResol ver (see below).

1.2.8.RELEASE Spring Boot 58

http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle#mvc
http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle#mvc
http://spring.io/guides

Spring Boot Reference Guide

» Statici ndex. ht m support.
» Custom Favi con support.

If you want to take complete control of Spring MVC, you can add your own @Conf i gur at i on annotated
with @nabl eWebMvc. If you want to keep Spring Boot MVC features, and you just want to add additional
MVC configuration (interceptors, formatters, view controllers etc.) you can add your own @ean of type
WebMscConfi gur er Adapt er, but without @nabl eWebM/c.

HttpMessageConverters

Spring MVC uses the Ht t pMessageConvert er interface to convert HTTP requests and responses.
Sensible defaults are included out of the box, for example Objects can be automatically converted to
JSON (using the Jackson library) or XML (using the Jackson XML extension if available, else using
JAXB). Strings are encoded using UTF- 8 by default.

If you need to add or customize converters you can use Spring Boot's Ht t pMessageConverters
class:

i nport org.springframework. boot . aut oconfi gure. web. H t pMessageConverters;
i nport org.springframework. context.annotation.*;
i nport org.springframework. http.converter.*;

@onfi guration
public class MyConfiguration {

@Bean
public HttpMessageConverters custonConverters() {
Ht t pMessageConverter<?> additional = ...
Ht t pMessageConvert er <?> anot her = ...
return new Htt pMessageConverters(additional, another);

Any Ht t pMessageConvert er bean thatis present in the context will be added to the list of converters.
You can also override default converters that way.

MessageCodesResolver

Spring MVC has a strategy for generating error codes for rendering error messages from binding errors:
MessageCodesResol ver . Spring Boot will create one for you if you set the spri ng. mvc. nessage-
codes-resol ver. format property PREFI X ERROR _CODE or POSTFI X _ERROR CODE (see the
enumeration in Def aul t MessageCodesResol ver. For nat).

Static Content

By default Spring Boot will serve static content from a directory called / stati c (or / public or/
resour ces or / META- | NF/ r esour ces) in the classpath or from the root of the Ser vl et Cont ext .
It uses the Resour ceHt t pRequest Handl er from Spring MVC so you can modify that behavior by
adding your own WebMvcConf i gur er Adapt er and overriding the addResour ceHandl er s method.

In a stand-alone web application the default servlet from the container is also enabled, and acts as a
fallback, serving content from the root of the Ser vl et Cont ext if Spring decides not to handle it. Most
of the time this will not happen (unless you modify the default MVC configuration) because Spring will
always be able to handle requests through the Di spat cher Servl et .

1.2.8.RELEASE Spring Boot 59

http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle#mvc

Spring Boot Reference Guide

In addition to the ‘standard’ static resource locations above, a special case is made for Webjars content.
Any resources with a path in / webj ar s/ ** will be served from jar files if they are packaged in the
Webijars format.

Tip

Do notuse the sr ¢/ mai n/ webapp directory if your application will be packaged as a jar. Although
this directory is a common standard, it will only work with war packaging and it will be silently
ignored by most build tools if you generate a jar.

Template engines

As well as REST web services, you can also use Spring MVC to serve dynamic HTML content. Spring
MVC supports a variety of templating technologies including Velocity, FreeMarker and JSPs. Many other
templating engines also ship their own Spring MVC integrations.

Spring Boot includes auto-configuration support for the following templating engines:

* FreeMarker

e Groovy

Thymeleaf
» Velocity

* Mustache
Tip

JSPs should be avoided if possible, there are several known limitations when using them with
embedded servlet containers.

When you're using one of these templating engines with the default configuration, your templates will
be picked up automatically from sr c/ mai n/ r esour ces/ t enpl at es.

Tip

IntelliJ IDEA orders the classpath differently depending on how you run your application. Running
your application in the IDE via its main method will result in a different ordering to when you
run your application using Maven or Gradle or from its pacakaged jar. This can cause Spring
Boot to fail to find the templates on the classpath. If you're affected by this problem you can
reorder the classpath in the IDE to place the module’s classes and resources first. Alternatively,
you can configure the template prefix to search every templates directory on the classpath:
cl asspat h*:/tenpl ates/.

Error Handling

Spring Boot provides an / err or mapping by default that handles all errors in a sensible way, and
it is registered as a ‘global’ error page in the servlet container. For machine clients it will produce a
JSON response with details of the error, the HTTP status and the exception message. For browser
clients there is a ‘whitelabel’ error view that renders the same data in HTML format (to customize
it just add a Vi ew that resolves to ‘error’). To replace the default behaviour completely you can

1.2.8.RELEASE Spring Boot 60

http://www.webjars.org/
http://freemarker.org/docs/
http://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_the_markuptemplateengine
http://www.thymeleaf.org
http://velocity.apache.org
http://mustache.github.io/

Spring Boot Reference Guide

implement Er r or Cont r ol | er and register a bean definition of that type, or simply add a bean of type
ErrorAttri but es to use the existing mechanism but replace the contents.

If you want more specific error pages for some conditions, the embedded servlet containers support a
uniform Java DSL for customizing the error handling. For example:

@Bean
publ i ¢ EnbeddedSer vl et Cont ai ner Cust omi zer cont ai ner Cust om zer (){
return new MyCustoni zer();

}

1.
private static class MyCustom zer inplenents EnbeddedServl et Cont ai ner Cust omi zer {

@verride
public void custom ze(Confi gurabl eEnbeddedSer vl et Cont ai ner cont ai ner) {
cont ai ner. addEr r or Pages(new ErrorPage(Ht t pSt at us. BAD REQUEST, "/400"));

}

You can also use regular Spring MVC features like @&xcepti onHandl er methods and
@control | er Advi ce. The Error Contr ol | er will then pick up any unhandled exceptions.

N.B. if you register an Er r or Page with a path that will end up being handled by a Fi | t er (e.g. as is
common with some non-Spring web frameworks, like Jersey and Wicket), then the Fi | t er has to be
explicitly registered as an ERROR dispatcher, e.qg.

@Bean

public FilterRegistrationBean nyFilter() {
Fil ter Regi strati onBean registration = new FilterRegistrati onBean();
registration.setFilter(new MFilter());

regi stration. set Di spat cher Types(EnunSet . al | O (Di spat cher Type. cl ass));
return registration;

}

(the default Fi | t er Regi st rati onBean does not include the ERROR dispatcher type).
Error Handling on WebSphere Application Server

When deployed to a servlet container, a Spring Boot uses its error page filter to forward a request with an
error status to the appropriate error page. The request can only be forwarded to the correct error page if
the response has not already been committed. By default, WebSphere Application Server 8.0 and later
commits the response upon successful completion of a servlet's service method. You should disable
this behaviour by setting com i bm ws. webcont ai ner. i nvokeFl ushAfter Servi cetofal se

Spring HATEOAS

If you're developing a RESTful API that makes use of hypermedia, Spring Boot provides auto-
configuration for Spring HATEOAS that works well with most applications. The auto-configuration
replaces the need to use @nabl eHyper medi aSupport and registers a number of beans to
ease building hypermedia-based applications including a Li nkDi scover er and an Cbj ect Mapper
configured to correctly marshal responses into the desired representation. The Cbj ect Mapper will be
customized based on the spri ng. j ackson. * properties or a Jackson2Chj ect Mapper Bui | der
bean if one exists.

You can take control of Spring HATEOAS's configuration by using @nabl eHyper nmedi aSupport .
Note that this will disable the Obj ect Mapper customization described above.

1.2.8.RELEASE Spring Boot 61

http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle/#mvc-exceptionhandlers
http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle/#mvc-ann-controller-advice

Spring Boot Reference Guide

26.2 JAX-RS and Jersey

If you prefer the JAX-RS programming model for REST endpoints you can use one of the available
implementations instead of Spring MVC. Jersey 1.x and Apache Celtix work quite well out of the box
if you just register their Servl et or Fi l ter as a @ean in your application context. Jersey 2.x has
some native Spring support so we also provide auto-configuration support for it in Spring Boot together
with a starter.

To get started with Jersey 2.x just include the spri ng- boot - st art er -j er sey as a dependency and
then you need one @ean of type Resour ceConf i g in which you register all the endpoints:

@Conponent
public class JerseyConfig extends ResourceConfig {

public JerseyConfig() {
regi st er (Endpoi nt. cl ass);

}
}

All the registered endpoints should be @onponent s with HTTP resource annotations (@EET etc.), e.g.

@onponent
@ath("/hello")
public class Endpoint {

@ET
public String nmessage() {
return "Hello";

}
}

Since the Endpoi nt is a Spring @onponent its lifecycle is managed by Spring and you can
@\ut owi r ed dependencies and inject external configuration with @/al ue. The Jersey servlet will be
registered and mapped to / * by default. You can change the mapping by adding @\ppl i cat i onPat h
to your Resour ceConfi g.

By default Jersey will be set up as a Servlet in a @ean of type Servl et Regi strati onBean
named j erseyServl et Regi stration. You can disable or override that bean by creating
one of your own with the same name. You can also use a Filter instead of a Servlet
by setting spring.jersey.type=filter (in which case the @ean to replace or override
is jerseyFilterRegi stration). The servlet has an @der which you can set with
spring.jersey.filter.order. Both the Servlet and the Filter registrations can be given init
parameters using spri ng. j ersey.init.* to specify a map of properties.

There is a Jersey sample so you can see how to set things up. There is also a Jersey 1.x sample.
Note that in the Jersey 1.x sample that the spring-boot maven plugin has been configured to unpack
some Jersey jars so they can be scanned by the JAX-RS implementation (because the sample asks
for them to be scanned in its Fi | t er registration). You may need to do the same if any of your JAX-
RS resources are packages as nested jars.

26.3 Embedded servlet container support

Spring Boot includes support for embedded Tomcat, Jetty, and Undertow servers. Most developers will
simply use the appropriate ‘Starter POM’ to obtain a fully configured instance. By default the embedded
server will listen for HTTP requests on port 8080.

1.2.8.RELEASE Spring Boot 62

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-jersey
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-jersey1

Spring Boot Reference Guide

Servlets and Filters

When using an embedded servlet container you can register Servlets, Filters and all the listeners from
the Servlet spec (e.g. Ht t pSessi onlLi st ener) directly as Spring beans. This can be particularly
convenient if you want to refer to a value from your appl i cati on. properti es during configuration.

By default, if the context contains only a single Servlet it will be mapped to /. In the case of multiple
Servlet beans the bean name will be used as a path prefix. Filters will map to/ *.

If convention-based mapping is not flexible enough you can use the Ser vl et Regi strati onBean,
FilterRegi strati onBean and Servl etLi stenerRegi strati onBean classes for complete
control.

Servlet Context Initialization

Embedded servlet containers will not directly execute the Servlet
3.0+ j avax.servl et. ServletContainerlnitializer interface, or Spring’s
org. spri ngframewor k. web. WebAppl i cationlnitializer interface. This is an intentional
design decision intended to reduce the risk that 3rd party libraries designed to run inside a war will break
Spring Boot applications.

If you need to perform servlet context initialization in a Spring
Boot application, you should register a bean that implements the
org. spri ngfranmewor k. boot . cont ext . enbedded. Servl et ContextlInitializer interface.
The single onSt ar t up method provides access to the Ser vl et Cont ext , and can easily be used as
an adapter to an existing "WebApplicationlInitializer if necessary.

The EmbeddedWebApplicationContext

Under the hood Spring Boot uses a new type of Appl i cat i onCont ext for embedded servlet container
support. The EnbeddedWebAppl i cati onCont ext is a special type of WebAppl i cat i onCont ext
that bootstraps itself by searching for a single EnbeddedSer vl et Cont ai ner Fact ory bean. Usually a
Tontat EnbeddedSer vl et Cont ai ner Fact ory, JettyEnmbeddedSer vl et Cont ai ner Fact ory,
or Under t owEnbeddedSer vl et Cont ai ner Fact or y will have been auto-configured.

Note

You wusually won't need to be aware of these implementation classes. Most
applications will be auto-configured and the appropriate Appli cati onContext and
EnbeddedSer vl et Cont ai ner Fact or y will be created on your behalf.

Customizing embedded servlet containers

Common servlet container settings can be configured using Spring Envi r onment properties. Usually
you would define the properties in your appl i cati on. properti es file.

Common server settings include:
* server. port —The listen port for incoming HTTP requests.
» server. addr ess — The interface address to bind to.

e server. sessi onTi neout — A session timeout.

1.2.8.RELEASE Spring Boot 63

Spring Boot Reference Guide

See the Ser ver Properti es class for a complete list.
Programmatic customization

If you need to configure your embdedded servlet container programmatically you can
register a Spring bean that implements the EnbeddedServl et Contai ner Custoni zer
interface. EnbeddedSer vl et Cont ai ner Cust oni zer provides access to the
Confi gur abl eEnbeddedSer vl et Cont ai ner which includes numerous customization setter
methods.

i nport org.springframework. boot . cont ext. enbedded. *;
i nport org.springfranework. st ereotype. Conponent ;

@onponent
public class Custom zationBean inpl enents EnbeddedSer vl et Cont ai ner Cust om zer {

@verride
public void custom ze(Confi gurabl eEnbeddedSer vl et Cont ai ner cont ai ner) {
cont ai ner. set Port (9000) ;

}

Customizing ConfigurableEmbeddedServletContainer directly

If the above customization techniques are too |limited, you can register the
Tonctat EnbeddedSer vl et Cont ai ner Factory, JettyEnbeddedSer vl et Cont ai ner Fact ory
or Under t owEnmbeddedSer vl et Cont ai ner Fact ory bean yourself.

@Bean
publ i ¢ EnbeddedSer vl et Cont ai ner Fact ory servl et Cont ai ner () {
Tontat EnbeddedSer vl et Cont ai ner Factory factory = new Tontat EnbeddedSer vl et Cont ai ner Fact ory() ;
factory. set Port (9000);
factory. set Sessi onTi meout (10, Ti meUnit. M NUTES);
factory. addErr or Pages(new Error Page(Ht t pSt at us. NOT_FOUND, "/notfound. htm"));
return factory;

Setters are provided for many configuration options. Several protected method ‘hooks’ are also provided
should you need to do something more exotic. See the source code documentation for details.

JSP limitations

When running a Spring Boot application that uses an embedded servlet container (and is packaged as
an executable archive), there are some limitations in the JSP support.

» With Tomcat it should work if you use war packaging, i.e. an executable war will work, and will also
be deployable to a standard container (not limited to, but including Tomcat). An executable jar will not
work because of a hard coded file pattern in Tomcat.

» Jetty does not currently work as an embedded container with JSPs.
» Undertow does not support JSPs.

There is a JSP sample so you can see how to set things up.

1.2.8.RELEASE Spring Boot 64

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-web-jsp

Spring Boot Reference Guide

27. Security

If Spring Security is on the classpath then web applications will be secure by default with ‘basic’
authentication on all HTTP endpoints. To add method-level security to a web application you can also
add @nabl ed obal Met hodSecur i t y with your desired settings. Additional information can be found
in the Spring Security Reference.

The default Aut henti cat i onManager has a single user (‘user’ username and random password,
printed at INFO level when the application starts up)

Using default security password: 78fa095d- 3f4c-48bl-ad50-e24c31d5cf 35

Note

If you fine tune your logging configuration, ensure that the
or g. spri ngframewor k. boot . aut oconfi gure. security category is set to log | NFO
messages, otherwise the default password will not be printed.

You can change the password by providing a security. user. password. This and other useful
properties are externalized via Secur i t yProperti es (properties prefix "security").

The default security configuration is implemented in SecurityAut oConfi gurati on and in the
classes imported from there (SpringBoot WebSecurityConfiguration for web security and
Aut hent i cat i onManager Confi gur ati on for authentication configuration which is also relevant in
non-web applications). To switch off the Boot default configuration completely in a web application you
can add a bean with @nabl eWebSecuri t y. To customize it you normally use external properties and
beans of type WebSecuri t yConfi gur er Adapt er (e.g. to add form-based login). There are several
secure applications in the Spring Boot samples to get you started with common use cases.

The basic features you get out of the box in a web application are:

e An Aut henticationManager bean with in-memory store and a single user (see
SecurityProperties. User forthe properties of the user).

 Ignored (unsecure) paths for common static resource locations (/ css/ **,/js/**, /i mages/ **
and **/favi con. i co).

» HTTP Basic security for all other endpoints.

e Security events published to Spring’'s Applicati onEvent Publisher (successful and
unsuccessful authentication and access denied).

* Common low-level features (HSTS, XSS, CSRF, caching) provided by Spring Security are on by
default.

All of the above <can be swittched on and off or modified using external
properties (security.*). To override the access rules without changing any other
autoconfigured features add a @Bean of type WebSecurityConfigurerAdapter with
@ der (SecurityProperties. ACCESS_OVERRI DE_ORDER) .

If the Actuator is also in use, you will find:

» The management endpoints are secure even if the application endpoints are unsecure.

1.2.8.RELEASE Spring Boot 65

http://docs.spring.io/spring-security/site/docs/3.2.9.RELEASE/reference/htmlsingle#jc-method
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/

Spring Boot Reference Guide

» Security events are transformed into Audi t Event s and published to the Audi t Ser vi ce.
» The default user will have the ADM Nrole as well as the USER role.

The Actuator security features can be modified using external properties (managenent . security. *).
To override the application access rules add a @ean of type WebSecur i t yConf i gur er Adapt er and
use @x der (SecurityProperties. ACCESS OVERRI DE_CORDER) if you don’t want to override the
actuator access rules, or @ der (Managenent Ser ver Properti es. ACCESS OVERRI DE_ORDER)
if you do want to override the actuator access rules.

1.2.8.RELEASE Spring Boot 66

Spring Boot Reference Guide

28. Working with SQL databases

The Spring Framework provides extensive support for working with SQL databases. From direct JDBC
access using JdbcTenpl at e to complete ‘object relational mapping’ technologies such as Hibernate.
Spring Data provides an additional level of functionality, creating Reposi t or y implementations directly
from interfaces and using conventions to generate queries from your method names.

28.1 Configure a DataSource

Java’s j avax. sql . Dat aSour ce interface provides a standard method of working with database
connections. Traditionally a DataSource uses a URL along with some credentials to establish a database
connection.

Embedded Database Support

It's often convenient to develop applications using an in-memory embedded database. Obviously, in-
memory databases do not provide persistent storage; you will need to populate your database when
your application starts and be prepared to throw away data when your application ends.

Tip
The ‘How-to’ section includes a section on how to initialize a database

Spring Boot can auto-configure embedded H2, HSQL and Derby databases. You don’t need to provide
any connection URLs, simply include a build dependency to the embedded database that you want to
use.

For example, typical POM dependencies would be:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-data-jpa</artifactld>
</ dependency>
<dependency>
<groupl d>or g. hsql db</ gr oupl d>
<artifactld>hsql db</artifact!d>
<scope>runti me</scope>
</ dependency>

Tip

If, for whatever reason, you do configure the connection URL for an embedded database, care
should be taken to ensure that the database’s automatic shutdown is disabled. If you're using
H2 you should use DB_CLOSE_ON_EXI T=FALSE to do so. If you're using HSQLDB, you should
ensure that shut down=t r ue is not used. Disabling the database’s automatic shutdown allows
Spring Boot to control when the database is closed, thereby ensuring that it happens once access
to the database is no longer needed.

Note

You need a dependency on spri ng- j dbc for an embedded database to be auto-configured. In
this example it's pulled in transitively via spri ng- boot - st art er - dat a- j pa.

1.2.8.RELEASE Spring Boot 67

http://www.h2database.com
http://hsqldb.org/
http://db.apache.org/derby/

Spring Boot Reference Guide

Connection to a production database

Production database connections can also be auto-configured using a pooling Dat aSour ce. Here's the
algorithm for choosing a specific implementation:

» We prefer the Tomcat pooling Dat aSour ce for its performance and concurrency, so if that is available
we always choose it.

« If HikariCP is available we will use it.
» If Commons DBCP is available we will use it, but we don’t recommend it in production.
* Lastly, if Commons DBCP2 is available we will use it.

If you use the spri ng- boot -starter-jdbcorspring-boot-starter-data-j pa ‘starter POMs’
you will automatically get a dependency to t ontat - j dbc.

Note

Additional connection pools can always be configured manually. If you define your own
Dat aSour ce bean, auto-configuration will not occur.

DataSource configuration is controlled by external configuration propertiesinspri ng. dat asour ce. *.
For example, you might declare the following section in appl i cati on. properti es:

spring. dat asource. url =j dbc: nysql : / /1 ocal host/test

spring. dat asour ce. user nane=dbuser

spring. dat asour ce. passwor d=dbpass

spring. datasource. driver-cl ass- name=com nysql . j dbc. Dri ver

See Dat aSour cePr operti es for more of the supported options. Note also that you can configure
any of the Dat aSour ce implementation specific properties via spri ng. dat asour ce. *: refer to the
documentation of the connection pool implementation you are using for more details.

Tip

You often won't need to specify the dri ver - cl ass- nane since Spring boot can deduce it for
most databases from the ur| .

Note

For a pooling Dat aSource to be created we need to be able to verify that a valid
Driver class is available, so we check for that before doing anything. l.e. if you set
spring. dat asource. dri ver d assName=com mysgqgl . j dbc. Dri ver then that class has to
be loadable.

Connection to a JNDI DataSource

If you are deploying your Spring Boot application to an Application Server you might want to configure
and manage your DataSource using your Application Servers built-in features and access it using JNDI.

The spring. dat asour ce. j ndi - nane property can be used as an
alternative to the spring.datasource.url, spring.datasource.usernamre and

1.2.8.RELEASE Spring Boot 68

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceProperties.java

Spring Boot Reference Guide

spring. dat asour ce. passwor d properties to access the Dat aSour ce from a specific INDI location.
For example, the following section in appl i cati on. properti es shows how you can access a JBoss
AS defined Dat aSour ce:

spring. dat asour ce. j ndi - nane=j ava: j boss/ dat asour ces/ cust onmer s

28.2 Using JdbcTemplate

Spring’s JdbcTenpl at e and NanedPar anet er JdbcTenpl at e classes are auto-configured and you
can @\ut owi r e them directly into your own beans:

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. jdbc. core.JdbcTenpl at e;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class MyBean {

private final JdbcTenpl ate jdbcTenpl ate;
@\ut owi r ed
public MyBean(JdbcTenpl ate jdbcTenpl ate) {

this.jdbcTenpl ate = jdbcTenpl at e;
}

N/

28.3 JPA and ‘Spring Data’

The Java Persistence API is a standard technology that allows you to ‘map’ objects to relational
databases. The spri ng- boot -starter-data-jpa POM provides a quick way to get started. It
provides the following key dependencies:

* Hibernate — One of the most popular JPA implementations.
» Spring Data JPA — Makes it easy to implement JPA-based repositories.
» Spring ORMs — Core ORM support from the Spring Framework.

Tip

We won't go into too many details of JPA or Spring Data here. You can follow the ‘Accessing
Data with JPA’ guide from spring.io and read the Spring Data JPA and Hibernate reference
documentation.

Entity Classes

Traditionally, JPA ‘Entity’ classes are specified in a persi stence. xnl file. With Spring Boot
this file is not necessary and instead ‘Entity Scanning’ is used. By default all packages
below your main configuration class (the one annotated with @nabl eAut oConfi gurati on or
@spr i ngBoot Appl i cati on) will be searched.

Any classes annotated with @nt i ty, @nbeddabl e or @/appedSuper cl ass will be considered. A
typical entity class would look something like this:

1.2.8.RELEASE Spring Boot 69

http://spring.io/guides/gs/accessing-data-jpa/
http://spring.io/guides/gs/accessing-data-jpa/
http://spring.io
http://projects.spring.io/spring-data-jpa/
http://hibernate.org/orm/documentation/

Spring Boot Reference Guide

package com exanpl e. myapp. domai n;

inport java.io.Serializable;
i nport javax. persi stence. *;

@ntity
public class Gty inplenents Serializable {

@d
@z=ner at edVal ue
private Long id;

@ol um(nul | abl e = fal se)
private String nane;

@ol um(nul | abl e = fal se)
private String state;

/1 ... additional nenbers, often include @neToMany neppi ngs

protected City() {
/'l no-args constructor required by JPA spec
/'l this one is protected since it shouldn't be used directly

}

public Gty(String nane, String state) {
this. name = nane;
this.country = country;

}

public String getNanme() {
return this.name;

}

public String getState() {
return this.state;

}

/Il ... etc

Tip

You can customize entity scanning locations using the @EntityScan annotation. See the
Section 67.4, “Separate @Entity definitions from Spring configuration” how-to.

Spring Data JPA Repositories

Spring Data JPA repositories are interfaces that you can define to access data. JPA queries are created
automatically from your method names. For example, a Ci t yReposi t ory interface might declare a
findAl | ByState(String state) method to find all cities in a given state.

For more complex queries you can annotate your method using Spring Data’s Quer y annotation.

Spring Data repositories usually extend from the Repository or CrudRepository interfaces.
If you are using auto-configuration, repositories will be searched from the package containing
your main configuration class (the one annotated with @Enabl eAut oConfiguration or
@pr i ngBoot Appl i cat i on) down.

Here is a typical Spring Data repository:

package com exanpl e. nyapp. donai n;

1.2.8.RELEASE Spring Boot 70

http://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/Query.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html

Spring Boot Reference Guide

i mport org.springframework. data. domai n. *;
i nport org.springframework. data.repository.*;

public interface CityRepository extends Repository<City, Long> {
Page<Ci ty> findAl | (Pageabl e pageabl e);

City findByNaneAndCountryAl |l gnoringCase(String nane, String country);

Tip

We have barely scratched the surface of Spring Data JPA. For complete details check their
reference documentation.

Creating and dropping JPA databases

By default, JPA databases will be automatically created only if you use an embedded database
(H2, HSQL or Derby). You can explicitly configure JPA settings using spri ng. j pa. * properties. For
example, to create and drop tables you can add the following to your appl i cati on. properti es.

spring.j pa. hi bernate. ddl - aut o=cr eat e- dr op

Note

Hibernate's own internal property name for this (if you happen to remember it better) is
hi ber nat e. hbnRddl . aut 0. You can set it, along with other Hibernate native properties, using
spring.jpa.properties.* (the prefix is stripped before adding them to the entity manager).
Example:

spring.jpa.properties. hibernate.globally_quoted_identifiers=true

passes hi ber nat e. gl obal | y_quot ed i denti fi er s to the Hibernate entity manager.

By default the DDL execution (or validation) is deferred until the Appl i cat i onCont ext has started.
There is also a spri ng. j pa. gener at e- ddl flag, but it is not used if Hibernate autoconfig is active
because the ddl - aut o settings are more fine-grained.

1.2.8.RELEASE Spring Boot 71

http://projects.spring.io/spring-data-jpa/

Spring Boot Reference Guide

29. Working with NoSQL technologies

Spring Data provides additional projects that help you access a variety of NoSQL technologies
including MongoDB, Neo4J, Elasticsearch, Solr, Redis, Gemfire, Couchbase and Cassandra. Spring
Boot provides auto-configuration for Redis, MongoDB, Elasticsearch, and Solr; you can make use of
the other projects, but you will need to configure them yourself. Refer to the appropriate reference
documentation at projects.spring.io/spring-data.

29.1 Redis

Redis is a cache, message broker and richly-featured key-value store. Spring Boot offers basic auto-
configuration for the Jedis client library and abstractions on top of it provided by Spring Data Redis. There
is a spring-boot-starter-redis ‘Starter POM’ for collecting the dependencies in a convenient
way.

Connecting to Redis

You can inject an auto-configured Redi sConnect i onFact ory, Stri ngRedi sTenpl at e or vanilla
Redi sTenpl at e instance as you would any other Spring Bean. By default the instance will attempt to
connect to a Redis server using | ocal host: 6379:

@onponent
public class MyBean {

private StringRedi sTenpl ate tenpl ate;
@\ut owi r ed
public MyBean(StringRedi sTenpl ate tenplate) {

this.tenplate = tenplate;
}

...

If you add a @ean of your own of any of the auto-configured types it will replace the default (except in
the case of Redi sTenpl at e the exclusion is based on the bean name ‘redisTemplate’ not its type). If
conmons- pool 2 is on the classpath you will get a pooled connection factory by default.

29.2 MongoDB

MongoDB is an open-source NoSQL document database that uses a JSON-like schema instead
of traditional table-based relational data. Spring Boot offers several conveniences for working with
MongoDB, including the spri ng- boot - st art er - dat a- nrongodb ‘Starter POM'.

Connecting to a MongoDB database

You can inject an auto-configured or g. spri ngf r anewor k. dat a. nrongodb. MongoDbFact ory to
access Mongo databases. By default the instance will attempt to connect to a MongoDB server using
the URL nongodb: / /1 ocal host/test:

i nport org.springframework. dat a. mongodb. MongoDbFact ory;
i nport com nongodb. DB;

@Conponent

1.2.8.RELEASE Spring Boot 72

http://projects.spring.io/spring-data-mongodb/
http://projects.spring.io/spring-data-neo4j/
https://github.com/spring-projects/spring-data-elasticsearch/
http://projects.spring.io/spring-data-solr/
http://projects.spring.io/spring-data-redis/
http://projects.spring.io/spring-data-gemfire/
http://projects.spring.io/spring-data-couchbase/
http://projects.spring.io/spring-data-cassandra/
http://projects.spring.io/spring-data
http://redis.io/
https://github.com/xetorthio/jedis/
https://github.com/spring-projects/spring-data-redis
http://www.mongodb.com/

Spring Boot Reference Guide

public class MyBean {
private final MngoDbFactory nopngo;

@\ut owi r ed
publ i ¢ MyBean(MongoDbFact ory nongo) {
this. nongo = nongo;

}

...

public void exanple() {
DB db = nongo. get Db();
...

You can set spring. dat a. nongodb. uri property to change the url, or alternatively specify a
host /port . For example, you might declare the following in your appl i cati on. properti es:

spring. dat a. nrongodb. host =nongoser ver
spring. dat a. nrongodb. port =27017

Tip

If spri ng. dat a. nongodb. port is not specified the default of 27017 is used. You could simply
delete this line from the sample above.

Tip

If you aren’t using Spring Data Mongo you can inject com nongodb. Mongo beans instead of
using MongoDbFact ory.

You can also declare your own MongoDbFact or y or Mongo bean if you want to take complete control
of establishing the MongoDB connection.

MongoTemplate

Spring Data Mongo provides a MongoTenpl at e class that is very similar in its design to Spring’s
JdbcTenpl at e. As with JdbcTenpl at e Spring Boot auto-configures a bean for you to simply inject:

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. dat a. nongodb. cor e. MongoTenpl at e;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class MyBean {

private final MngoTenpl ate nobngoTenpl at e;
@\ut owi r ed
publ i c MyBean(MongoTenpl at e nongoTenpl ate) {

t hi s. nongoTenpl ate = nongoTenpl at e;

}

N/

See the MongoQper at i ons Javadoc for complete details.

1.2.8.RELEASE Spring Boot 73

http://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoTemplate.html

Spring Boot Reference Guide

Spring Data MongoDB repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data MongoDB share the same common infrastructure; so
you could take the JPA example from earlier and, assuming that G t y is now a Mongo data class rather
than a JPA @nti ty, it will work in the same way.

package com exanpl e. nyapp. donai n;

i mport org.springframework. data. domai n. *;
i nport org.springfranework. data.repository. *;

public interface CtyRepository extends Repository<City, Long> {
Page<City> findAl | (Pageabl e pageabl e);

City findByNameAndCountryAl |l gnoringCase(String nanme, String country);

Tip

For complete details of Spring Data MongoDB, including its rich object mapping technologies,
refer to their reference documentation.

29.3 Gemfire

Spring Data Gemfire provides convenient Spring-friendly tools for accessing the Pivotal Gemfire
data management platform. There is a spri ng-boot-starter-data-genfire ‘Starter POM’
for collecting the dependencies in a convenient way. There is currently no auto-configuration
support for Gemfire, but you can enable Spring Data Repositories with a single annotation
(@nabl eGenf i reRepositories).

29.4 Solr

Apache Solr is a search engine. Spring Boot offers basic auto-configuration for the Solr client library
and abstractions on top of it provided by Spring Data Solr. There is a spri ng- boot - st art er - dat a-
sol r ‘Starter POM’ for collecting the dependencies in a convenient way.

Connecting to Solr

You caninject an auto-configured Sol r Ser ver instance as you would any other Spring bean. By default
the instance will attempt to connect to a server using | ocal host : 8983/ sol r:

@onponent
public class MyBean {

private SolrServer solr;

@\ut owi r ed
public MyBean(Sol r Server solr) {
this.solr = solr;

}

...

1.2.8.RELEASE Spring Boot 74

http://projects.spring.io/spring-data-mongodb/
https://github.com/spring-projects/spring-data-gemfire
http://www.gopivotal.com/big-data/pivotal-gemfire#details
https://github.com/spring-projects/spring-data-gemfire/blob/master/src/main/java/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.java
https://github.com/spring-projects/spring-data-gemfire/blob/master/src/main/java/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.java
http://lucene.apache.org/solr/
https://github.com/spring-projects/spring-data-solr
http://localhost:8983/solr

Spring Boot Reference Guide

‘ }

If you add a @ean of your own of type Sol r Ser ver it will replace the default.

Spring Data Solr repositories

Spring Data includes repository support for Apache Solr. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data Solr share the same common infrastructure; so you could
take the JPA example from earlier and, assuming that Ci t y is now a @ol r Docunent class rather
than a JPA @nt i ty, it will work in the same way.

Tip

For complete details of Spring Data Solr, refer to their reference documentation.

29.5 Elasticsearch

Elasticsearch is an open source, distributed, real-time search and analytics engine. Spring Boot
offers basic auto-configuration for the Elasticsearch and abstractions on top of it provided by Spring
Data Elasticsearch. There is a spri ng- boot - st art er - dat a- el asti csear ch ‘Starter POM’ for
collecting the dependencies in a convenient way.

Connecting to Elasticsearch

You can inject an auto-configured El asti csear chTenpl at e or Elasticsearch Cl i ent instance as
you would any other Spring Bean. By default the instance will attempt to connect to a local in-
memory server (a NodeC i ent in Elasticsearch terms), but you can switch to a remote server (i.e.
a Transport Cl i ent) by setting spri ng. dat a. el asti csearch. cl ust er-nodes to a comma-
separated ‘host:port’ list.

@Conponent
public class MyBean {

private El asticsearchTenpl ate tenpl ate;

@\ut owi r ed

public MyBean(El asticsearchTenpl ate tenpl ate) {
this.tenplate = tenpl ate;

}

...

If you add a @ean of your own of type El asti csear chTenpl at e it will replace the default.

Spring Data Elasticsearch repositories

Spring Data includes repository support for Elasticsearch. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data Elasticsearch share the same common infrastructure;
so you could take the JPA example from earlier and, assuming that Ci ty is now an Elasticsearch
@pocunent class rather than a JPA @nti ty, it will work in the same way.

1.2.8.RELEASE Spring Boot 75

http://projects.spring.io/spring-data-solr/
http://www.elasticsearch.org/
https://github.com/spring-projects/spring-data-elasticsearch
https://github.com/spring-projects/spring-data-elasticsearch

Spring Boot Reference Guide

Tip

For complete details of Spring Data Elasticsearch, refer to their reference documentation.

1.2.8.RELEASE Spring Boot

76

http://docs.spring.io/spring-data/elasticsearch/docs/

Spring Boot Reference Guide

30. Messaging

The Spring Framework provides extensive support for integrating with messaging systems: from
simplified use of the JMS API using Jms Tenpl at e to a complete infrastructure to receive messages
asynchronously. Spring AMQP provides a similar feature set for the ‘Advanced Message Queuing
Protocol’ and Spring Boot also provides auto-configuration options for Rabbit Tenpl ate and
RabbitMQ. There is also support for STOMP messaging natively in Spring WebSocket and Spring Boot
has support for that through starters and a small amount of auto-configuration.

30.1 IMS

The javax.]jns. ConnectionFactory interface provides a standard method of creating
a javax.jms.Connection for interacting with a JMS broker. Although Spring needs a
Connect i onFact or y to work with JMS, you generally won't need to use it directly yourself and you can
instead rely on higher level messaging abstractions (see the relevant section of the Spring Framework
reference documentation for details). Spring Boot also auto-configures the necessary infrastructure to
send and receive messages.

HornetQ support

Spring Boot can auto-configure a Connect i onFact ory when it detects that HornetQ is available on
the classpath. If the broker is present, an embedded broker is started and configured automatically
(unless the mode property has been explicitly set). The supported modes are: enbedded (to make
explicit that an embedded broker is required and should lead to an error if the broker is not available in
the classpath), and nat i ve to connect to a broker using the net t y transport protocol. When the latter
is configured, Spring Boot configures a Connect i onFact or y connecting to a broker running on the
local machine with the default settings.

Note

If you are using spri ng- boot - st art er - hor net q the necessary dependencies to connect to
an existing HornetQ instance are provided, as well as the Spring infrastructure to integrate with
JMS. Adding or g. hor net g: hor net g-j ns- server to your application allows you to use the
embedded mode.

HornetQ configuration is controlled by external configuration properties in spri ng. hor net g. *. For
example, you might declare the following section in appl i cati on. properti es:

spring. hornet q. node=nati ve
spring. hornet g. host =192. 168. 1. 210
spring. hor net g. port=9876

When embedding the broker, you can choose if you want to enable persistence,
and the list of destinations that should be made available. These can be specified
as a comma-separated list to create them with the default options; or you can
define bean(s) of type org.hornetq.jns.server.config. JMSQueueConfiguration or
org. hornetq.jns.server.config. Topi cConfiguration, for advanced queue and topic
configurations respectively.

See Hor net QPr operti es for more of the supported options.

No JNDI lookup is involved at all and destinations are resolved against their names, either using the
‘name’ attribute in the HornetQ configuration or the names provided through configuration.

1.2.8.RELEASE Spring Boot 77

http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle/#jms
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/hornetq/HornetQProperties.java

Spring Boot Reference Guide

ActiveMQ support

Spring Boot can also configure a Connect i onFact or y when it detects that ActiveMQ is available on
the classpath. If the broker is present, an embedded broker is started and configured automatically (as
long as no broker URL is specified through configuration).

ActiveMQ configuration is controlled by external configuration properties in spri ng. acti veny. *. For
example, you might declare the following section in appl i cati on. properties:

spring. activeny. broker-url=tcp://192.168. 1. 210: 9876
spring. activenyg. user =admni n
spring. activeny. passwor d=secr et

See Act i veMQPr operti es for more of the supported options.

By default, ActiveMQ creates a destination if it does not exist yet, so destinations are resolved against
their provided names.

Using a JNDI ConnectionFactory

If you are running your application in an Application Server Spring Boot will attempt to locate
a JMS Connecti onFact ory using JNDI. By default the locations j ava:/JnsXA and java:/
XAConnect i onFact ory will be checked. You can use the spri ng. j ns. j ndi - name property if you
need to specify an alternative location:

spring.jms.jndi-nanme=j ava: / MyConnecti onFactory

Sending a message

Spring’s Jns Tenpl at e is auto-configured and you can autowire it directly into your own beans:

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework.jns.core.JnsTenpl at e;
i mport org.springframework. stereotype. Conponent ;

@onponent
public class MyBean {

private final JnmsTenpl ate jmsTenpl ate;

@\ut owi r ed

public MyBean(JnsTenpl ate jnsTenpl ate) {
this.jnmsTenpl ate = jnsTenpl at e;

}

...

Note

JnsMessagi ngTenpl at e (new in Spring 4.1) can be injected in a similar manner.

Receiving a message

When the JMS infrastructure is present, any bean can be annotated with @nsLi st ener to create
a listener endpoint. If no JnsLi st ener Cont ai ner Fact ory has been defined, a default one is
configured automatically.

1.2.8.RELEASE Spring Boot 78

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQProperties.java
http://docs.spring.io/spring/docs/4.1.9.RELEASE/javadoc-api/org/springframework/jms/core/JmsMessagingTemplate.html

Spring Boot Reference Guide

The default factory is transactional by default. If you are running in an infrastructure where a
Jt aTransacti onManager is present, it will be associated to the listener container by default. If not,
the sessi onTr ansact ed flag will be enabled. In that latter scenario, you can associate your local
data store transaction to the processing of an incoming message by adding @r ansact i onal on your
listener method (or a delegate thereof). This will make sure that the incoming message is acknowledged
once the local transaction has completed. This also includes sending response messages that have
been performed on the same JMS session.

The following component creates a listener endpoint on the soneQueue destination:

@Conponent
public class MyBean {

@nsLi st ener (destination = "soneQueue")
public void processMessage(String content) {
...

}

Tip

Check the Javadoc of @nabl eJns for more details.

1.2.8.RELEASE Spring Boot 79

http://docs.spring.io/spring/docs/4.1.9.RELEASE/javadoc-api/org/springframework/jms/annotation/EnableJms.html

Spring Boot Reference Guide

31. Sending email

The Spring Framework provides an easy abstraction for sending email using the JavaMai | Sender
interface and Spring Boot provides auto-configuration for it as well as a starter module.

Tip

Check the reference documentation for a detailed explanation of how you can use
JavaMai | Sender .

If spring. mail . host and the relevant libraries (as defined by spri ng- boot -starter-nmnail) are
available, a default JavaMai | Sender is created if none exists. The sender can be further customized
by configuration items from the spri ng. mai | namespace, see the Mai | Pr oper ti es for more details.

1.2.8.RELEASE Spring Boot 80

http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle/#mail
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailProperties.java

Spring Boot Reference Guide

32. Distributed Transactions with JTA

Spring Boot supports distributed JTA transactions across multiple XA resources using either an
Atomikos or Bitronix embedded transaction manager. JTA transactions are also supported when
deploying to a suitable Java EE Application Server.

When a JTA environment is detected, Spring’s Jt aTr ansact i onManager will be used to manage
transactions. Auto-configured JMS, DataSource and JPA beans will be upgraded to support XA
transactions. You can use standard Spring idioms such as @vr ansacti onal to participate in a
distributed transaction. If you are within a JTA environment and still want to use local transactions you
can setthe spring. jta. enabl ed property to f al se to disable the JTA auto-configuration.

32.1 Using an Atomikos transaction manager

Atomikos is a popular open source transaction manager which can be embedded into your Spring Boot
application. You can use the spri ng-boot-starter-jta-aton kos Starter POM to pull in the
appropriate Atomikos libraries. Spring Boot will auto-configure Atomikos and ensure that appropriate
depends- on settings are applied to your Spring beans for correct startup and shutdown ordering.

By default Atomikos transaction logs will be written to a transaction-1ogs directory in
your application home directory (the directory in which your application jar file resides).
You can customize this directory by setting a spring.jta.log-dir property in your
appl i cation. properti es file. Properties starting spri ng. j t a. can also be used to customize the
Atomikos User Transact i onServi cel np. See the At onm kosPr operti es Javadoc for complete
details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Atomikos instance must be configured with a unique ID. By default this ID is the IP address
of the machine on which Atomikos is running. To ensure uniqueness in production, you should
configurethe spri ng. jta.transacti on- nanager - i d property with a different value for each
instance of your application.

32.2 Using a Bitronix transaction manager

Bitronix is another popular open source JTA transaction manager implementation. You can use the
spring-boot-starter-jta-bitronix starter POM to add the appropriate Birtronix dependencies
to your project. As with Atomikos, Spring Boot will automatically configure Bitronix and post-process
your beans to ensure that startup and shutdown ordering is correct.

By default Bitronix transaction log files (partl1.btm and part?2.btm will be written to a
transacti on-| ogs directory in your application home directory. You can customize this directory
by using the spring. jta.l og-dir property. Properties starting spri ng.jta. are also bound to
the bi troni x.tm Confi guration bean, allowing for complete customization. See the Bitronix
documentation for details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Bitronix instance must be configured with a unique ID. By default this ID is the IP address

1.2.8.RELEASE Spring Boot 81

http://www.atomikos.com/
https://github.com/bitronix/btm
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/jta/atomikos/AtomikosProperties.html
https://github.com/bitronix/btm/wiki/Transaction-manager-configuration
https://github.com/bitronix/btm/wiki/Transaction-manager-configuration

Spring Boot Reference Guide

of the machine on which Bitronix is running. To ensure uniqueness in production, you should
configurethe spri ng. j ta. transacti on- manager - i d property with a different value for each
instance of your application.

32.3 Using a Java EE managed transaction manager

If you are packaging your Spring Boot application as a war or ear file and deploying it to a Java
EE application server, you can use your application servers built-in transaction manager. Spring
Boot will attempt to auto-configure a transaction manager by looking at common JNDI locations
(j ava: conmp/ User Tr ansacti on, j ava: conp/ Transact i onManager etc). If you are using a
transaction service provided by your application server, you will generally also want to ensure
that all resources are managed by the server and exposed over JNDI. Spring Boot will attempt
to auto-configure JMS by looking for a Connect i onFact ory at the JNDI path j ava: / Jns XA or
j ava: / XAConnect i onFact ory and you can use the spri ng. dat asour ce. j ndi - nane _property
to configure your Dat aSour ce.

32.4 Mixing XA and non-XA JMS connections

When using JTA, the primary JMS Connect i onFact ory bean will be XA aware and participate in
distributed transactions. In some situations you might want to process certain JMS messages using a
non-XA Connect i onFact ory. For example, your JMS processing logic might take longer than the
XA timeout.

If you want to use a non-XA Connect i onFact or y you can inject the nonXaJmsConnect i onFact ory
bean rather than the @Primary jnsConnectionFactory bean. For consistency the
j msConnect i onFact or y bean is also provided using the bean alias xaJnsConnect i onFact ory.

For example:

/1 Inject the primary (XA aware) ConnectionFactory
@\ut owi red
private ConnectionFactory defaul t Connecti onFactory;

/1 Inject the XA aware ConnectionFactory (uses the alias and injects the sane as above)
@\ut owi r ed

@ualifier("xaJnmsConnecti onFactory")

private ConnectionFactory xaConnecti onFactory;

/1 1nject the non-XA aware Connecti onFactory

@\ut owi r ed

@ualifier("nonXaJmsConnecti onFactory")

private Connecti onFactory nonXaConnecti onFactory;

32.5 Supporting an alternative embedded transaction manager

The XAConnecti onFact oryW apper and XADat aSour ceW apper interfaces can be used
to support alternative embedded transaction managers. The interfaces are responsible for
wrapping XAConnecti onFactory and XADat aSource beans and exposing them as regular
Connecti onFactory and Dat aSour ce beans which will transparently enroll in the distributed
transaction. DataSource and JMS auto-configuration will use JTA variants as long as you have
a JtaTransacti onManager bean and appropriate XA wrapper beans registered within your
Appl i cati onCont ext.

The BitronixXAConnectionFactoryWrapper and BitronixXADataSourceWrapper provide good examples
of how to write XA wrappers.

1.2.8.RELEASE Spring Boot 82

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/jta/XAConnectionFactoryWrapper.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/jta/XADataSourceWrapper.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/jta/BitronixXAConnectionFactoryWrapper.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/jta/BitronixXADataSourceWrapper.java

Spring Boot Reference Guide

33. Spring Integration

Spring Integration provides abstractions over messaging and also other transports such
as HTTP, TCP etc. If Spring Integration is available on your classpath it will be
initialized through the @nabl el nt egrati on annotation. Message processing statistics will
be published over JMX if 'spring-integration-jnx' is also on the classpath. See the
I nt egr ati onAut oConf i gurati on class for more details.

1.2.8.RELEASE Spring Boot 83

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.java

Spring Boot Reference Guide

34. Monitoring and management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default Spring Boot will create an MBeanSer ver with bean id ‘mbeanServer’ and
expose any of your beans that are annotated with Spring JMX annotations (@hnagedResour ce,
@vmanagedAt tri but e, @/anagedQper ati on).

See the JnxAut oConf i gur at i on class for more details.

1.2.8.RELEASE Spring Boot 84

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java

Spring Boot Reference Guide

35. Testing

Spring Boot provides a number of useful tools for testing your application. The spri ng- boot -
starter-test POM provides Spring Test, JUnit, Hamcrest and Mockito dependencies. There are also
useful test utilities in the core spri ng- boot module under the or g. spri ngf r amewor k. boot . t est
package.

35.1 Test scope dependencies

If you use the spri ng-boot-starter-test ‘Starter POM’ (in the t est scope), you will find the
following provided libraries:

» Spring Test— integration test support for Spring applications.
« JUnit— The de-facto standard for unit testing Java applications.

» Hamcrest— A library of matcher objects (also known as constraints or predicates) allowing
assert That style JUnit assertions.

* Mockito — A Java mocking framework.

These are common libraries that we generally find useful when writing tests. You are free to add
additional test dependencies of your own if these don’t suit your needs.

35.2 Testing Spring applications

One of the major advantages of dependency injection is that it should make your code easier to unit
test. You can simply instantiate objects using the new operator without even involving Spring. You can
also use mock objects instead of real dependencies.

Often you need to move beyond ‘unit testing’ and start ‘integration testing’ (with a Spring
Appl i cati onCont ext actually involved in the process). It's useful to be able to perform integration
testing without requiring deployment of your application or needing to connect to other infrastructure.

The Spring Framework includes a dedicated test module for just such integration testing. You can
declare a dependency directly to or g. spri ngf ramewor k: spri ng-t est oruse the spri ng- boot -
starter-test ‘Starter POM’ to pull it in transitively.

If you have not used the spri ng-t est module before you should start by reading the relevant section
of the Spring Framework reference documentation.

35.3 Testing Spring Boot applications

A Spring Boot application is just a Spring Appl i cati onCont ext so nothing very special has to be
done to test it beyond what you would normally do with a vanilla Spring context. One thing to watch out
for though is that the external properties, logging and other features of Spring Boot are only installed in
the context by default if you use Spri ngAppl i cat i on to create it.

Spring Boot provides a @pri ngAppl i cati onConfi guration annotation as an alternative
to the standard spring-test @ContextConfiguration annotation. If you use
@Bpri ngAppl i cati onConfi gurati on to configure the Appl i cati onCont ext used in your tests,
it will be created via Spri ngAppl i cat i on and you will get the additional Spring Boot features.

For example:

1.2.8.RELEASE Spring Boot 85

http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle/#testing

Spring Boot Reference Guide

@unW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@pri ngAppl i cati onConfi guration(classes = Sanpl eDat aJpaAppl i cati on. cl ass)
public class CityRepositorylntegrationTests {

@\ut owi r ed
Ci tyRepository repository;

...

Tip

The context loader guesses whether you want to test a web application or not (e.g.
with MockMVC) by looking for the @bl nt egrati onTest or @\ébAppConfi guration
annotations. (MockMVC and @\bAppConf i gur ati on are part of spri ng-t est).

If you want a web application to start up and listen on its normal port, so you can test it with
HTTP (e.g. using Rest Tenpl at e), annotate your test class (or one of its superclasses) with
@bl nt egrati onTest . This can be very useful because it means you can test the full stack of your
application, but also inject its components into the test class and use them to assert the internal state
of the application after an HTTP interaction. For example:

@unW t h(SpringJUnit4d assRunner. cl ass)

@pri ngAppl i cati onConfi guration(cl asses = Sanpl eDat aJpaAppl i cati on. cl ass)
@\ebl nt egr at i onTest

public class CityRepositorylntegrationTests {

@\ut owi red
CityRepository repository;

Rest Tenpl ate rest Tenpl ate = new Test Rest Tenpl at e() ;

/1 ... interact with the running server

Note

Spring’s test framework will cache application contexts between tests. Therefore, as long as your
tests share the same configuration, the time consuming process of starting and stopping the server
will only happen once, regardless of the number of tests that actually run.

To change the port you can add environment properties to @Wbl nt egrati onTest as colon-
or equals-separated name-value pairs, e.g. @\¥bl ntegrati onTest("server. port:9000").
Additionally you can set the ser ver . port and managemnent . port properties to O in order to run your
integration tests using random ports. For example:

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@pri ngAppl i cati onConfi guration(classes = M/Appli cation. cl ass)
@\ebl nt egr ati onTest ({"server. port=0", "nanagenent.port=0"})
public class SonelntegrationTests {

...

See Section 64.5, “Discover the HTTP port at runtime” for a description of how you can discover the
actual port that was allocated for the duration of the tests.

1.2.8.RELEASE Spring Boot 86

Spring Boot Reference Guide

Using Spock to test Spring Boot applications

If you wish to use Spock to test a Spring Boot application you should add a dependency on Spock’s
spock- spri ng module to your application’s build. spock- spri ng integrates Spring’s test framework
into Spock.

Please note that you cannot use the @pri ngAppl i cati onConfi gurati on annotation that was
described above as Spock does not find the @ont ext Confi gur ati on meta-annotation. To work
around this limitation, you should use the @ont ext Conf i gur at i on annotation directly and configure
it to use the Spring Boot specific context loader:

@ont ext Confi guration(l oader = SpringApplicationContext Loader. cl ass)
cl ass Exanpl eSpec extends Specification {

1.

Note

The annotations described above can be used with Spock, i.e. you can annotate your
Speci fi cati on with @\bl nt egr ati onTest to suit the needs of your tests.

35.4 Test utilities

A few test utility classes are packaged as part of spri ng- boot that are generally useful when testing
your application.

ConfigFileApplicationContextlinitializer

ConfigFil eApplicationContextlnitializerisanApplicationContextlnitializer that
can apply to your tests to load Spring Boot appl i cati on. properti es files. You can use this when
you don't need the full features provided by @pr i ngAppl i cati onConfi gurati on.

@Cont ext Confi guration(cl asses = Config.cl ass,
initializers = ConfigFileApplicationContextlnitializer.class)

EnvironmentTestUtils

Envi ronnent Test Uti | s allows you to quickly add properties to a Conf i gur abl eEnvi r onnment or
Confi gur abl eAppl i cati onCont ext . Simply call it with key=val ue strings:

Envi ronnent Test Uti | s. addEnvi ronnent (env, "org=Spring", "name=Boot");

OutputCapture

Qut put Capt ur e is a JUnit Rul e that you can use to capture Syst em out and Syst em er r output.
Simply declare the capture as a @Rul e then uset oStri ng() for assertions:

import org.junit.Rule;
import org.junit. Test;
i mport org.springframework. boot . t est. Qut put Capt ure;

i nport static org.hancrest. Matchers. *;
inport static org.junit.Assert.*;

1.2.8.RELEASE Spring Boot 87

https://code.google.com/p/spock/issues/detail?id=349

Spring Boot Reference Guide

public class MyTest {

@Rul e
publ i c QutputCapture capture = new Qut put Capture();

@est

public void testNane() throws Exception {
Systemout.printin("Hello Wrld!l");

assert That (capture.toString(), containsString("Wrld"));
}

TestRestTemplate

Test Rest Tenpl at e is a convenience subclass of Spring’s Rest Tenpl at e that is useful in integration
tests. You can get a vanilla template or one that sends Basic HTTP authentication (with a username
and password). In either case the template will behave in a test-friendly way: not following redirects (so
you can assert the response location), ignoring cookies (so the template is stateless), and not throwing
exceptions on server-side errors. It is recommended, but not mandatory, to use Apache HTTP Client
(version 4.3.2 or better), and if you have that on your classpath the Test Rest Tenpl at e will respond
by configuring the client appropriately.

public class MyTest {
Rest Tenpl ate tenpl ate = new Test Rest Tenpl ate();

@est

public void testRequest() throws Exception {
Ht t pHeader s headers = tenpl ate.get ForEntity("http://nyhost.conl, String.class).getHeaders();
assert That (headers. get Location().toString(), containsString("nmyotherhost"));

}

1.2.8.RELEASE Spring Boot 88

Spring Boot Reference Guide

36. Developing auto-configuration and using
conditions

If you work in a company that develops shared libraries, or if you work on an open-source or commercial
library, you might want to develop your own auto-configuration. Auto-configuration classes can be
bundled in external jars and still be picked-up by Spring Boot.

36.1 Understanding auto-configured beans

Under the hood, auto-configuration is implemented with standard @onf i gur at i on classes. Additional
@Condi ti onal annotations are used to constrain when the auto-configuration should apply. Usually
auto-configuration classes use @onditional OnCl ass and @Conditi onal OnM ssi ngBean
annotations. This ensures that auto-configuration only applies when relevant classes are found and
when you have not declared your own @onf i gur ati on.

You can browse the source code of spri ng- boot - aut oconfi gur e to see the @onfi guration
classes that we provide (see the META- | NF/ spri ng. fact ori es file).

36.2 Locating auto-configuration candidates

Spring Boot checks for the presence of a META- | NF/ spri ng. f act ori es file within your published
jar. The file should list your configuration classes under the Enabl eAut oConf i gur at i on key.

or g. springfranmewor k. boot . aut oconfi gur e. Enabl eAut oConfi gur ati on=\
com nycorp. | i bx. aut oconfi gure. Li bXAut oConfi guration, \
com mycorp. | i bx. aut oconfi gur e. Li bXWWbAut oConfi gurati on

You can use the @AutoConfigureAfter or @A\utoConfigureBefore annotations if your
configuration needs to be applied in a specific order. For example, if you provide web-specific
configuration, your class may need to be applied after WebMvcAut oConf i gur ati on.

36.3 Condition annotations

You almost always want to include one or more @ondi t i onal annotations on your auto-configuration
class. The @ondi t i onal OnM ssi ngBean is one common example that is used to allow developers
to ‘override’ auto-configuration if they are not happy with your defaults.

Spring Boot includes a number of @ondi t i onal annotations that you can reuse in your own code by
annotating @onf i gur at i on classes or individual @ean methods.

Class conditions

The @onditional OnC ass and @onditional OnM ssi ngC ass annotations allows
configuration to be included based on the presence or absence of specific classes. Due to the fact that
annotation metadata is parsed using ASM you can actually use the val ue attribute to refer to the real
class, even though that class might not actually appear on the running application classpath. You can
also use the nane attribute if you prefer to specify the class name using a St ri ng value.

Bean conditions

The @Condi ti onal OnBean and @ondi ti onal OnM ssi ngBean annotations allow configurations
to be included based on the presence or absence of specific beans. You can use the val ue attribute

1.2.8.RELEASE Spring Boot 89

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureAfter.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureBefore.java
http://asm.ow2.org/

Spring Boot Reference Guide

to specify beans by type, or namne to specify beans by name. The sear ch attribute allows you to limit
the Appl i cat i onCont ext hierarchy that should be considered when searching for beans.

Note

@condi ti onal annotations are processed when @onf i gur ati on classes are parsed. Auto-
configured @onfi gurati on is always parsed last (after any user defined beans), however, if
you are using these annotations on regular @onf i gur at i on classes, care must be taken not
to refer to bean definitions that have not yet been created.

Property conditions

The @Condi ti onal OnProperty annotation allows configuration to be included based on a Spring
Environment property. Use the prefi x and nane attributes to specify the property that should be
checked. By default any property that exists and is not equal to f al se will be matched. You can also
create more advanced checks using the havi ngVal ue and mat chl f M ssi ng attributes.

Resource conditions

The @ondi t i onal OnResour ce annotation allows configuration to be included only when a specific
resource is present. Resources can be specified using the usual Spring conventions, for example,
file:/home/user/test. dat.

Web application conditions

The @ondi ti onal OnWWebAppl i cati on and @ondi ti onal OnNot WebAppl i cat i on annotations
allow configuration to be included depending on whether the application is a 'web application’. A web
application is any application that is using a Spring WebAppl i cati onCont ext , defines a sessi on
scope or has a St andar dSer vl et Envi r onnent .

SpEL expression conditions

The @ondi ti onal OnExpr essi on annotation allows configuration to be included based on the result
of a SpEL expression.

1.2.8.RELEASE Spring Boot 90

http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle/#expressions

Spring Boot Reference Guide

37. WebSockets

Spring Boot provides WebSockets auto-configuration for embedded Tomcat (8 and 7), Jetty 9 and
Undertow. If you're deploying a war file to a standalone container, Spring Boot assumes that the
container will be responsible for the configuration of its WebSocket support.

Spring Framework provides rich WebSocket support that can be easily accessed via the spri ng-
boot - st art er - websocket module.

1.2.8.RELEASE Spring Boot 91

http://docs.spring.io/spring/docs/4.1.9.RELEASE/spring-framework-reference/htmlsingle/#websocket

Spring Boot Reference Guide

38. What to read next

If you want to learn more about any of the classes discussed in this section you can check out the Spring
Boot API documentation or you can browse the source code directly. If you have specific questions,
take a look at the how-to section.

If you are comfortable with Spring Boot's core features, you can carry on and read about production-
ready features.

1.2.8.RELEASE Spring Boot 92

http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE

Part V. Spring Boot Actuator:
Production-ready features

Spring Boot includes a number of additional features to help you monitor and manage your application
when it's pushed to production. You can choose to manage and monitor your application using HTTP
endpoints, with JMX or even by remote shell (SSH or Telnet). Auditing, health and metrics gathering
can be automatically applied to your application.

Spring Boot Reference Guide

39. Enabling production-ready features

The spri ng-boot - act uat or module provides all of Spring Boot’s production-ready features. The
simplest way to enable the features is to add a dependency to the spri ng- boot - st art er - act uat or
‘Starter POM".

Definition of Actuator

An actuator is a manufacturing term, referring to a mechanical device for moving or controlling
something. Actuators can generate a large amount of motion from a small change.

To add the actuator to a Maven based project, add the following ‘starter’ dependency:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-actuator</artifactld>
</ dependency>
</ dependenci es>

For Gradle, use the declaration:

dependenci es {
conpi | e("org. springframework. boot: spring-boot-starter-actuator")

}

1.2.8.RELEASE Spring Boot 94

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator

Spring Boot Reference Guide

40. Endpoints

Actuator endpoints allow you to monitor and interact with your application. Spring Boot includes a
number of built-in endpoints and you can also add your own. For example the heal t h endpoint provides
basic application health information.

The way that endpoints are exposed will depend on the type of technology that you choose. Most
applications choose HTTP monitoring, where the ID of the endpoint is mapped to a URL. For example,
by default, the heal t h endpoint will be mapped to / heal t h.

The following endpoints are available:

ID Description Sensitive

aut oconfi g Displays an auto-configuration report showing all auto- true
configuration candidates and the reason why they ‘were’ or
‘were not’ applied.

beans Displays a complete list of all the Spring beans in your true
application.

confi gprops Displays a collated list of all @onf i gur ati onProperties. true

dunp Performs a thread dump. true

env Exposes properties from Spring’s true

Confi gur abl eEnvi r onnent .

heal th Shows application health information (a simple ‘status’ when false
accessed over an unauthenticated connection or full message
details when authenticated).

info Displays arbitrary application info. false

netrics Shows ‘metrics’ information for the current application. true

mappi ngs Displays a collated list of all @Request Mappi ng paths. true

shut down Allows the application to be gracefully shutdown (not enabled true
by default).

trace Displays trace information (by default the last few HTTP true
requests).

Note

Depending on how an endpoint is exposed, the sensi t i ve property may be used as a security
hint. For example, sensitive endpoints will require a username/password when they are accessed
over HTTP (or simply disabled if web security is not enabled).

40.1 Customizing endpoints

Endpoints can be customized using Spring properties. You can change if an endpoint is enabl ed, if it
is considered sensi tive and evenitsi d.

1.2.8.RELEASE Spring Boot 95

Spring Boot Reference Guide

For example, here is an appl i cati on. properti es that changes the sensitivity and id of the beans
endpoint and also enables shut down.

endpoi nts. beans. i d=spri nghbeans
endpoi nts. beans. sensi tive=fal se
endpoi nt s. shut down. enabl ed=t r ue

Note

The prefix #endpoi nts + . + nane” is used to uniquely identify the endpoint that is being
configured.

By default, all endpoints except for shut down are enabled. If you prefer to specifically “opt-in” endpoint
enablement you can use the endpoi nt s. enabl ed property. For example, the following will disable
all endpoints except for i nf o:

endpoi nt s. enabl ed=f al se
endpoi nts. i nfo. enabl ed=true

40.2 Health information

Health information can be used to check the status of your running application. It is often used by
monitoring software to alert someone if a production system goes down. The default information exposed
by the heal t h endpoint depends on how it is accessed. For an insecure unauthenticated connection a
simple ‘status’ message is returned, for a secure or authenticated connection additional details are also
displayed (see Section 41.6, “HTTP health endpoint access restrictions” for HTTP details).

Health information is collected from all Healthlndicator beans defined in your
Appl i cati onCont ext . Spring Boot includes a number of auto-configured Heal t hl ndi cat or s and
you can also write your own.

40.3 Security with HealthIndicators

Information returned by Heal t hl ndi cat or s is often somewhat sensitive in hature. For example, you
probably don't want to publish details of your database server to the world. For this reason, by default,
only the health status is exposed over an unauthenticated HTTP connection. If you are happy for
complete health information to always be exposed you can set endpoi nts. heal t h. sensitive to
fal se.

Health responses are also cached to prevent “denial of service” attacks. Use the
endpoi nts. heal th. ti me-to-1Iive property if you want to change the default cache period of 1000
milliseconds.

Auto-configured Healthindicators

The following Heal t hl ndi cat or s are auto-configured by Spring Boot when appropriate:

Name Description

Di skSpaceHeal t hOhécksfarrow disk space.

Dat aSour ceHeal t Bhedks #taira connection to Dat aSour ce can be obtained.

1.2.8.RELEASE Spring Boot 96

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/DiskSpaceHealthIndicator.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/DataSourceHealthIndicator.java

Spring Boot Reference Guide

Name Description

MongoHeal t hl ndi €aiecks that a Mongo database is up.

Rabbi t Heal t hl ndiChetks that a Rabbit server is up.

Redi sHeal t hl ndi €aiecks that a Redis server is up.

Sol r Heal t hl ndi c&hecks that a Solr server is up.

Writing custom HealthIndicators

To provide custom health information you can register Spring beans that implement the
Heal t hl ndi cat or interface. You need to provide an implementation of the heal t h() method and
return a Heal t h response. The Heal t h response should include a status and can optionally include
additional details to be displayed.

i nport org.springframework. boot . actuate. heal t h. Heal t hl ndi cat or;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class MyHeal th inplenments Heal thlndicator {

@verride
public Health health() {
int errorCode = check(); // performsonme specific health check
if (errorCode !'= 0) {
return Heal th. down().w thDetail ("Error Code", errorCode).build();

}
return Heal th.up().build();

In addition to Spring Boot's predefined St at us types, it is also possible for Heal t h to return a
custom St at us that represents a new system state. In such cases a custom implementation of the
Heal t hAggr egat or interface also needs to be provided, or the default implementation has to be
configured using the managenent . heal t h. st at us. or der configuration property.

For example, assuming a new Status with code FATAL is being used in one of your
Heal t hl ndi cat or implementations. To configure the severity order add the following to your
application properties:

managenent . heal t h. st at us. or der =DOWN, OUT_OF_SERVI CE, UNKNOWN, UP

You might also want to register custom status mappings with the Heal t hM/cEndpoi nt
if you access the health endpoint over HTTP. For example you could map FATAL to
Ht t pSt at us. SERVI CE_UNAVAI LABLE.

40.4 Custom application info information

You can customize the data exposed by the i nf 0 endpoint by setting i nf 0. * Spring properties. All
Envi ronnent properties under the info key will be automatically exposed. For example, you could add
the following to your appl i cati on. properti es:

i nf 0. app. nane=MySer vi ce
i nfo. app. descri pti on=My awesone service
i nfo. app. version=1.0.0

1.2.8.RELEASE Spring Boot 97

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/MongoHealthIndicator.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/RabbitHealthIndicator.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/RedisHealthIndicator.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/SolrHealthIndicator.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/Status.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthAggregator.java

Spring Boot Reference Guide

Automatically expand info properties at build time

Rather than hardcoding some properties that are also specified in your project’s build configuration, you
can automatically expand info properties using the existing build configuration instead. This is possible
in both Maven and Gradle.

Automatic property expansion using Maven

You can automatically expand info properties from the Maven project using resource filtering. If you use
the spri ng- boot - st art er - par ent you can then refer to your Maven ‘project properties’ via @ . @
placeholders, e.g.

project.artifact!d=nyproject

proj ect . nanme=Deno

proj ect.version=X X X. X

proj ect.description=Denp project for info endpoint
info.build. artifact=@roject.artifactld@

i nfo. buil d. nane=@r oj ect . nane@

i nfo.build. description=@roject.description@

i nfo. build.versi on=@r oj ect.versi on@

Note

In the above example we used proj ect.* to set some values to be used as fallbacks if the
Maven resource filtering has not been switched on for some reason.

Tip

The spri ng- boot : run maven goal adds sr ¢/ nai n/ r esour ces directly to the classpath (for
hot reloading purposes). This circumvents the resource filtering and this feature. You can use the
exec: j ava goal instead or customize the plugin’s configuration, see the plugin usage page for
more details.

If you don't use the starter parent, in your pom xm you need (inside the <bui | d/ > element):

<resour ces>
<resour ce>
<di rectory>src/ mai n/ resources</directory>
<filtering>true</filtering>
</resource>
</ resour ces>

and (inside <pl ugi ns/ >):

<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-resources-plugin</artifactld>
<versi on>2. 6</ ver si on>
<confi gurati on>
<delimters>
<delimter>@x/delinter>
</delimters>
</ configuration>
</ pl ugi n>

Automatic property expansion using Gradle

You can automatically expand info properties from the Gradle project by configuring the Java plugin’s
pr ocessResour ces task to do so:

1.2.8.RELEASE Spring Boot 98

http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/maven-plugin/usage.html

Spring Boot Reference Guide

processResour ces {
expand(proj ect.properties)

}

You can then refer to your Gradle project’s properties via placeholders, e.g.

i nf o. bui | d. nane=${ nanme}
i nfo.build. description=${description}
i nfo. buil d.versi on=${ver si on}

Note

Gradle's expand method uses Groovy's Si npl eTenpl at eEngi ne which transforms ${. .}
tokens. The ${..} style conflicts with Spring’s own property placeholder mechanism. To use
Spring property placeholders together with automatic expansion the Spring property placeholders
need to be escaped like\ ${. . }.

Git commit information

Another useful feature of the i nf o endpoint is its ability to publish information about the state of your
gi t source code repository when the project was built. If a gi t. properti es file is contained in your
jarthe git. branch and gi t. conm t properties will be loaded.

For Maven users the spri ng- boot -starter-parent POM includes a pre-configured plugin to
generate agit. properti es file. Simply add the following declaration to your POM:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>pl . proj ect 13. maven</ gr oupl d>
<artifactld>git-commt-id-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

A similar gr adl e- gi t plugin is also available for Gradle users, although a little more work is required
to generate the properties file.

1.2.8.RELEASE Spring Boot 99

https://github.com/ajoberstar/gradle-git

Spring Boot Reference Guide

41. Monitoring and management over HTTP

If you are developing a Spring MVC application, Spring Boot Actuator will auto-configure all enabled
endpoints to be exposed over HTTP. The default convention is to use the i d of the endpoint as the URL
path. For example, heal t h is exposed as / heal t h.

41.1 Securing sensitive endpoints

If you add ‘Spring Security’ to your project, all sensitive endpoints exposed over HTTP will be protected.
By default ‘basic’ authentication will be used with the username user and a generated password (which
is printed on the console when the application starts).

Tip

Generated passwords are logged as the application starts. Search for ‘Using default security
password’.

You can use Spring properties to change the username and password and to change the
security role required to access the endpoints. For example, you might set the following in your
application. properties:

security. user.nanme=adm n
security. user. passwor d=secr et
managenent . security. r ol e=SUPERUSER

Tip

If you don’t use Spring Security and your HTTP endpoints are exposed publicly, you should
carefully consider which endpoints you enable. See Section 40.1, “Customizing endpoints” for
details of how you can set endpoi nt's. enabl ed to f al se then “opt-in” only specific endpoints.

41.2 Customizing the management server context path

Sometimes it is useful to group all management endpoints under a single path. For example, your
application might already use / i nf o for another purpose. You can use the managenent . cont ext -
pat h property to set a prefix for your management endpoint:

managenent . cont ext - pat h=/ manage

The appl i cati on. properti es example above will change the endpoint from / {i d} to / nanage/
{id} (e.g./ manage/i nf o).

41.3 Customizing the management server port

Exposing management endpoints using the default HTTP port is a sensible choice for cloud based
deployments. If, however, your application runs inside your own data center you may prefer to expose
endpoints using a different HTTP port.

The managenent . port property can be used to change the HTTP port.

managenent . por t =8081

1.2.8.RELEASE Spring Boot 100

Spring Boot Reference Guide

Since your management port is often protected by a firewall, and not exposed to the public you might
not need security on the management endpoints, even if your main application is secure. In that case
you will have Spring Security on the classpath, and you can disable management security like this:

managenent . security. enabl ed=f al se

(If you don’t have Spring Security on the classpath then there is no need to explicitly disable the
management security in this way, and it might even break the application.)

41.4 Customizing the management server address

You can customize the address that the management endpoints are available on by setting the
managenent . addr ess property. This can be useful if you want to listen only on an internal or ops-
facing network, or to only listen for connections from | ocal host .

Note

You can only listen on a different address if the port is different to the main server port.

Here is an example appl i cati on. properti es that will not allow remote management connections:

managenent . por t =8081
managenent . addr ess=127.0.0. 1

41.5 Disabling HTTP endpoints

If you don’t want to expose endpoints over HTTP you can set the management port to - 1:

‘nanagenent.port:—l

41.6 HTTP health endpoint access restrictions

The information exposed by the health endpoint varies depending on whether or not it's accessed
anonymously. By default, when accessed anonymously, any details about the server’s health are hidden
and the endpoint will simply indicate whether or not the server is up or down. Furthermore, when
accessed anonymously, the response is cached for a configurable period to prevent the endpoint
being used in a denial of service attack. The endpoi nts. heal th.ti me-to-1ive property is used
to configure the caching period in milliseconds. It defaults to 1000, i.e. one second.

The above-described restrictions can be disabled, thereby allowing anonymous users full access to the
health endpoint. To do so, set endpoi nts. heal t h. sensitivetofal se.

1.2.8.RELEASE Spring Boot 101

Spring Boot Reference Guide

42. Monitoring and management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default Spring Boot will expose management endpoints as JMX MBeans under the
org. spri ngfranmewor k. boot domain.

42.1 Customizing MBean names

The name of the MBean is usually generated from the i d of the endpoint. For example the heal t h
endpoint is exposed as or g. spri ngf r amewor k. boot / Endpoi nt / Heal t hEndpoi nt .

If your application contains more than one Spring Appl i cat i onCont ext you may find that names
clash. To solve this problem you can set the endpoi nt s. j nx. uni queNanes property tot r ue so that
MBean names are always unique.

You can also customize the JMX domain under which endpoints are exposed. Here is an example
application. properties:

endpoi nt s. j nx. domai n=nyapp
endpoi nts. j nx. uni queNames=tr ue

42.2 Disabling JMX endpoints

If you don’t want to expose endpoints over JMX you can set the spri ng. j nx. enabl ed property to
fal se:

spring. j nx. enabl ed=f al se

42.3 Using Jolokia for JMX over HTTP

Jolokia is a JMX-HTTP bridge giving an alternative method of accessing JMX beans. To use Jolokia,
simply include a dependency to or g. j ol oki a: j ol oki a- cor e. For example, using Maven you would
add the following:

<dependency>
<groupl d>org. j ol oki a</ gr oupl d>
<artifact!|d>jol okia-core</artifactld>

</ dependency>

Jolokia can then be accessed using / j ol oki a on your management HTTP server.
Customizing Jolokia

Jolokia has a number of settings that you would traditionally configure using servlet parameters.
With Spring Boot you can use your appl i cati on. properti es, simply prefix the parameter with
j ol okia.config.:

j ol oki a. confi g. debug=t rue

Disabling Jolokia

If you are using Jolokia but you don't want Spring Boot to configure it, simply set the
endpoi nt s. j ol oki a. enabl ed property to f al se:

1.2.8.RELEASE Spring Boot 102

Spring Boot Reference Guide

endpoi nts. j ol oki a. enabl ed=f al se

1.2.8.RELEASE Spring Boot 103

Spring Boot Reference Guide

43. Monitoring and management using a remote
shell

Spring Boot supports an integrated Java shell called ‘CRaSH’. You can use CRaSH to ssh ort el net
into your running application. To enable remote shell support add a dependency to spri ng- boot -
starter-renote-shell:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-renmote-shell</artifactld>
</ dependency>

Tip

If you want to also enable telnet access you will additionally need a dependency on
org.crsh:crsh.shell.tel net.

43.1 Connecting to the remote shell

By default the remote shell will listen for connections on port 2000. The default user is user and the
default password will be randomly generated and displayed in the log output. If your application is using
Spring Security, the shell will use the same configuration by default. If not, a simple authentication will
be applied and you should see a message like this:

Using default password for shell access: ec03el6c-4cf4-49ee-b745-7c8255cldd7e

Linux and OSX users can use ssh to connect to the remote shell, Windows users can download and
install PUTTY.

$ ssh -p 2000 user @ ocal host

user @ ocal host's password:

NN () v v
CON— TNy vy
W DD 1))))

! | _| |
=111
:: Spring Boot :: (v1.2.8.RELEASE) on nyhost

Type hel p for alist of commands. Spring Boot provides et ri ¢s, beans, aut oconf i g and endpoi nt
commands.

Remote shell credentials

You can use the shel | . aut h. si npl e. user. nanme and shel | . aut h. si npl e. user. password
properties to configure custom connection credentials. It is also possible to use a ‘Spring
Security’ Aut hent i cat i onManager to handle login duties. See the Cr shAut oConf i gur ati on and
Shel | Properti es Javadoc for full details.

43.2 Extending the remote shell

The remote shell can be extended in a number of interesting ways.

1.2.8.RELEASE Spring Boot 104

http://www.putty.org/
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.html
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/ShellProperties.html

Spring Boot Reference Guide

Remote shell commands

You can write additional shell commands using Groovy or Java (see the CRaSH documentation for
details). By default Spring Boot will search for commands in the following locations:

» cl asspat h*:/ comuands/ **
e cl asspat h*:/crash/ cormands/ **
Tip
You can change the search path by settings a shel | . command- pat h- pat t er ns property.

Here is a simple ‘hello world’ command that could be loaded from sr ¢/ nai n/ r esour ces/ commands/
hel | 0. gr oovy

package conmands

i nport org.crsh.cli.Usage
i mport org.crsh.cli.Comand

class hello {

@Jsage(" Say Hel |l o")

@ommand

def main(lnvocationContext context) {
return "Hello"

}

Spring Boot adds some additional attributes to | nvocat i onCont ext that you can access from your
command:

Attribute Name Description

spring. boot . version The version of Spring Boot

Spring. version The version of the core Spring Framework
spring. beanfactory Access to the Spring BeanFact ory
spring. envi ronnent Access to the Spring Envi r onnent

Remote shell plugins

In addition to new commands, it is also possible to extend other CRaSH shell features. All Spring Beans
that extend or g. cr sh. pl ugi n. CRaSHPI ugi n will be automatically registered with the shell.

For more information please refer to the CRaSH reference documentation.

1.2.8.RELEASE Spring Boot 105

http://www.crashub.org/

Spring Boot Reference Guide

44. Metrics

Spring Boot Actuator includes a metrics service with ‘gauge’ and ‘counter’ support. A ‘gauge’ records
a single value; and a ‘counter’ records a delta (an increment or decrement). Spring Boot Actuator also
provides a Publ i cMet ri cs interface that you can implement to expose metrics that you cannot record
via one of those two mechanisms. Look at Syst enPubl i cMet ri cs for an example.

Metrics for all HTTP requests are automatically recorded, so if you hit the net r i ¢cs endpoint you should
see a response similar to this:

{
"counter.status.200.root": 20,
"counter.status.200.netrics": 3,
"counter.status.200.star-star": 5,
"counter.status.401.root": 4,
"gauge. response. star-star": 6,
"gauge. response.root": 2,

"gauge. response. metrics": 3,
"cl asses": 5808,

"cl asses. | oaded": 5808,

"cl asses. unl oaded": O,

"heap": 3728384,

"heap. committed": 986624,
"heap.init": 262144,

"heap. used": 52765,

"ment': 986624,

"mem free": 933858,
"processors": 8,

"threads": 15,

"t hreads. daenon": 11,

"t hreads. peak": 15,

"uptinme": 494836,
"instance.uptime": 489782,
"datasource. prinmary. active": 5,
"dat asource. primary. usage": 0.25

Here we can see basic nenor y, heap, cl ass | oadi ng, processor andt hread pool information
along with some HTTP metrics. In this instance ther oot (/') and/ netri cs URLs have returned HTTP
200 responses 20 and 3 times respectively. It also appears that the r oot URL returned HTTP 401
(unauthorized) 4 times. The double asterix (st ar - st ar) comes from a request matched by Spring
MVC as / ** (normally a static resource).

The gauge shows the last response time for a request. So the last request to r oot took 2ns to respond
and the lastto / netri cs took 3ms.

Note

In this example we are actually accessing the endpoint over HTTP using the / net ri ¢s URL, this
explains why net ri cs appears in the response.

44.1 System metrics
The following system metrics are exposed by Spring Boot:
» The total system memory in KB (nmen)

* The amount of free memory in KB (mem f r ee)

1.2.8.RELEASE Spring Boot 106

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/endpoint/PublicMetrics.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/endpoint/SystemPublicMetrics.java

Spring Boot Reference Guide

» The number of processors (pr ocessors)

e The system uptime in milliseconds (upt i ne)

» The application context uptime in milliseconds (i nst ance. upti ne)

» The average system load (syst em oad. aver age)

» Heap information in KB (heap, heap. conmi tt ed, heap. i ni t, heap. used)
» Thread information (t hr eads, t hr ead. peak, t head. daenon)

» Class load information (cl asses, cl asses. | oaded, cl asses. unl oaded)

» Garbage collection information (gc. Xxxx. count , gc. Xxx. ti ne)

44.2 DataSource metrics

The following metrics are exposed for each supported Dat aSour ce defined in your application:
» The number of active connections (dat asour ce. xxX. acti ve)
» The current usage of the connection pool (dat asour ce. xxx. usage).

All data source metrics share the dat asour ce. prefix. The prefix is further qualified for each data
source:

« If the data source is the primary data source (that is either the only available data source or the one
flagged @°r i mar y amongst the existing ones), the prefix is dat asour ce. pri mary.

« If the data source bean name ends with Dat aSour ce, the prefix is the name of the bean without
Dat aSour ce (i.e. dat asour ce. bat ch for bat chDat aSour ce).

* |In all other cases, the name of the bean is used.

It is possible to override part or all of those defaults by registering a bean with a customized version
of Dat aSour cePubl i cMet ri cs. By default, Spring Boot provides metadata for all supported data
sources; you can add additional Dat aSour cePool Met adat aPr ovi der beans if your favorite data
source isn’t supported out of the box. See Dat aSour cePool Met adat aPr ovi der sConf i gurati on
for examples.

44.3 Tomcat session metrics

If you are using Tomcat as your embedded servlet container, session metrics will automatically be
exposed. The htt psessi ons. acti ve and htt psessi ons. nax keys provide the number of active
and maximum sessions.

44.4 Recording your own metrics

To record your own metrics inject a Count er Servi ce and/or GaugeServi ce into your bean.
The Count er Ser vi ce exposes i ncr enent , decr erent and r eset methods; the GaugeSer vi ce
provides a subm t method.

Here is a simple example that counts the number of times that a method is invoked:

1.2.8.RELEASE Spring Boot 107

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/CounterService.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/GaugeService.java

Spring Boot Reference Guide

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i mport org. springframework. boot. actuate. netrics. Count er Servi ce;
i nport org.springframework. stereotype. Service;

@er vi ce
public class MyService {

private final CounterService counterService;

@\ut owi r ed
public MyServi ce(Counter Service counterService) {
this.counterService = counter Service;

}

public void exanpl eMet hod() {
this. counterService.increnent("services.system nyservice.invoked");

}

Tip

You can use any string as a metric name but you should follow guidelines of your chosen store/
graphing technology. Some good guidelines for Graphite are available on Matt Aimonetti’'s Blog.

44.5 Adding your own public metrics

To add additional metrics that are computed every time the metrics endpoint is invoked, simply register
additional Publ i cMet ri cs implementation bean(s). By default, all such beans are gathered by the
endpoint. You can easily change that by defining your own Met ri csEndpoi nt .

44.6 Metric repositories

Metric service implementations are usually bound to a Met ri cReposi tory. AMetri cRepository
is responsible for storing and retrieving metric information. Spring Boot provides an
I nMenoryMetri cRepository and a Redi sMetri cRepository out of the box (the in-memory
repository is the default) but you can also write your own. The Met ri cReposi t or y interface is actually
composed of higher level Metri cReader and Metri cWi t er interfaces. For full details refer to the
Javadoc.

There’s nothing to stop you hooking a Met ri cReposi t ory with back-end storage directly into your
app, but we recommend using the default | nMenor yMet ri cReposi t or y (possibly with a custom Map
instance if you are worried about heap usage) and populating a back-end repository through a scheduled
export job. In that way you get some buffering in memory of the metric values and you can reduce the
network chatter by exporting less frequently or in batches. Spring Boot provides an Export er interface
and a few basic implementations for you to get started with that.

44.7 Dropwizard Metrics

User of the Dropwizard ‘Metrics’ library will —automatically find that Spring
Boot metrics are published to com codahal e.netrics. MetricRegistry. A default
com codahal e. metrics. Metri cRegi stry Spring bean will be created when you declare a
dependency tothei o. dropwi zard. metri cs: metri cs- cor e library; you can also register you own
@ean instance if you need customizations. Metrics from the Met r i cRegi st ry are also automatically
exposed via the / met ri cs endpoint.

1.2.8.RELEASE Spring Boot 108

http://matt.aimonetti.net/posts/2013/06/26/practical-guide-to-graphite-monitoring/
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/repository/MetricRepository.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/metrics/repository/MetricRepository.html
https://dropwizard.github.io/metrics/

Spring Boot Reference Guide

Users can create Dropwizard metrics by prefixing their metric names with the appropriate type (e.g.
hi st ogram *, met er. *).

44.8 Message channel integration

If the ‘Spring Messaging’ jar is on your classpath a MessageChannel called netri csChannel is
automatically created (unless one already exists). All metric update events are additionally published
as ‘messages’ on that channel. Additional analysis or actions can be taken by clients subscribing to
that channel.

1.2.8.RELEASE Spring Boot 109

Spring Boot Reference Guide

45. Auditing

Spring Boot Actuator has a flexible audit framework that will publish events once Spring Security is
in play (‘authentication success’, ‘failure’ and ‘access denied’ exceptions by default). This can be very
useful for reporting, and also to implement a lock-out policy based on authentication failures.

You can also choose to use the audit services for your own business events. To do that you can either
inject the existing Audi t Event Reposi t ory into your own components and use that directly, or you
can simply publish Audi t Appl i cat i onEvent viathe Spring Appl i cati onEvent Publ i sher (using
Appl i cati onEvent Publ i sher Awar e).

1.2.8.RELEASE Spring Boot 110

Spring Boot Reference Guide

46. Tracing

Tracing is automatically enabled for all HTTP requests. You can view the t r ace endpoint and obtain
basic information about the last few requests:

[{
"timestanp": 1394343677415,
"info": {
"met hod": "CET",
"path": "/trace",
"headers": {
"request": {
"Accept": "text/htm , application/xhtm +xm , application/xm;g=0.9,*/*;g=0.8",
"Connection": "keep-alive",
"Accept - Encodi ng": "gzip, deflate",
"User-Agent": "Mozillal/5.0 Gecko/Firefox",
"Accept - Language": "en-US, en; q=0. 5",
"Cooki e": "_ga=GAl. 1.827067509. 1390890128;
"Aut hori zation": "Basic ...",
"Host": "l ocal host: 8080"
B
"response": {
"Strict-Transport-Security": "max-age=31536000 ; incl udeSubDonai ns",
"X-Application-Context": "application:8080",
"Content-Type": "application/json; charset=UTF-8",
"status": "200"

}
ol
"tinmestanp": 1394343684465,

H

46.1 Custom tracing

If you need to trace additional events you can inject a Tr aceReposi t or y into your Spring beans. The
add method accepts a single Map structure that will be converted to JSON and logged.

By defaultan | nMenor yTr aceReposi t or y will be used that stores the last 100 events. You can define
your own instance of the | nMenor yTr aceReposi t or y bean if you need to expand the capacity. You
can also create your own alternative Tr aceReposi t or y implementation if needed.

1.2.8.RELEASE Spring Boot 111

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/trace/TraceRepository.java

Spring Boot Reference Guide

47. Process monitoring

In Spring Boot Actuator you can find a couple of classes to create files that are useful for process
monitoring:

* ApplicationPidFileWiter creates a file containing the application PID (by default in the
application directory with the file name appl i cati on. pi d).

» EnbeddedServerPortFil eWiter creates a file (or files) containing the ports of the embedded
server (by default in the application directory with the file name appl i cati on. port).

These writers are not activated by default, but you can enable them in one of the ways described below.

47.1 Extend configuration

In META- | NF/ spri ng. fact ori es file you have to activate the listener(s):

or g. spri ngf ramewor k. cont ext. Appl i cati onLi st ener =\
or g. spri ngframewor k. boot . act uat e. system ApplicationPidFileWiter,
org. spri ngfranmewor k. boot . act uat e. syst em EnbeddedSer ver Port Fi |l eWiter

47.2 Programmatically

You can also activate a listener by invoking the Spri ngAppl i cati on. addLi st ener s(..) method
and passing the appropriate Wi t er object. This method also allows you to customize the file name
and path via the Wi t er constructor.

1.2.8.RELEASE Spring Boot 112

Spring Boot Reference Guide

48. What to read next

If you want to explore some of the concepts discussed in this chapter, you can take a look at the actuator
sample applications. You also might want to read about graphing tools such as Graphite.

Otherwise, you can continue on, to read about ‘cloud deployment options’ or jump ahead for some in-
depth information about Spring Boot’s build tool plugins.

1.2.8.RELEASE Spring Boot 113

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples
http://graphite.wikidot.com/

Part VI. Deploying to the cloud

Spring Boot’s executable jars are ready-made for most popular cloud PaaS (platform-as-a-service)
providers. These providers tend to require that you “bring your own container”; they manage application
processes (not Java applications specifically), so they need some intermediary layer that adapts your
application to the cloud’s notion of a running process.

Two popular cloud providers, Heroku and Cloud Foundry, employ a “buildpack” approach. The buildpack
wraps your deployed code in whatever is needed to start your application: it might be a JDK and a call to
j ava, it might be an embedded webserver, or it might be a full-fledged application server. A buildpack
is pluggable, but ideally you should be able to get by with as few customizations to it as possible. This
reduces the footprint of functionality that is not under your control. It minimizes divergence between
development and production environments.

Ideally, your application, like a Spring Boot executable jar, has everything that it needs to run packaged
within it.

In this section we’ll look at what it takes to get the simple application that we developed in the “Getting
Started” section up and running in the Cloud.

Spring Boot Reference Guide

49. Cloud Foundry

Cloud Foundry provides default buildpacks that come into play if no other buildpack is specified. The
Cloud Foundry Java buildpack has excellent support for Spring applications, including Spring Boot. You
can deploy stand-alone executable jar applications, as well as traditional . war packaged applications.

Once you've built your application (using, for example, nvn cl ean package) and installed the cf
command line tool, simply deploy your application using the cf push command as follows, substituting
the path to your compiled . j ar . Be sure to have logged in with your cf command line client before
pushing an application.

$ cf push acl oudyspringtinme -p target/denp-0.0.1- SNAPSHOT. j ar

See the cf push documentation for more options. If there is a Cloud Foundry mani f est . ym file
present in the same directory, it will be consulted.

Note

Here we are substituting acl oudyspri ngti me for whatever value you give cf as the name of
your application.

At this point cf will start uploading your application:

Upl oadi ng acl oudyspringtine... OK
Preparing to start acloudyspringtine... OK
————— > Downl oaded app package (8.9M
————— > Java Bui |l dpack source: system
----- > Downl oadi ng Open JDK 1.7.0_51 from.../x86_64/openjdk-1.7.0_51.tar.gz (1.8s)
Expandi ng Open JDK to .java-buil dpack/open_j dk (1.2s)

----- > Downl oadi ng Spring Auto Reconfiguration from 0.8.7 .../auto-reconfiguration-0.8.7.jar (0.1s)
————— > Upl oadi ng dropl et (44M
Checki ng status of app 'acloudyspringtinme'...

0 of 1 instances running (1 starting)

0 of 1 instances running (1 down)
0 of 1 instances running (1 starting)

1 of 1 instances running (1 running)

App started

Congratulations! The application is now live!

It's easy to then verify the status of the deployed application:

$ cf apps

Getting applications in ...

K

nanme requested state i nstances menory di sk urls

acl oudyspringti me started 1/1 512M 1G acl oudyspri ngti me. cfapps.io

Once Cloud Foundry acknowledges that your application has been deployed, you should be able to hit
the application at the URI given, in this case acl oudyspri ngti ne. cf apps.io/.

1.2.8.RELEASE Spring Boot 115

https://github.com/cloudfoundry/java-buildpack
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#login
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#push
http://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html
http://acloudyspringtime.cfapps.io/

Spring Boot Reference Guide

49.1 Binding to services

By default, metadata about the running application as well as service connection information is exposed
to the application as environment variables (for example: $VCAP_SERVI CES). This architecture decision
is due to Cloud Foundry’s polyglot (any language and platform can be supported as a buildpack) nature;
process-scoped environment variables are language agnostic.

Environment variables don't always make for the easiest API so Spring Boot automatically extracts them
and flattens the data into properties that can be accessed through Spring’s Envi r onnent abstraction:

@onponent
cl ass MyBean i npl ements Environnent Anare {

private String instanceld;

@verride
public voi d setEnvironnment (Environment environment) {
this.instanceld = environnment. getProperty("vcap.application.instance_id");

}

N/

All Cloud Foundry properties are prefixed with vcap. You can use vcap properties to access application
information (such as the public URL of the application) and service information (such as database
credentials). See VcapAppl i cati onLi st ener Javdoc for complete details.

Tip

The Spring Cloud Connectors project is a better fit for tasks such as configuring a DataSource.
Spring Boot includes auto-configuration support and a spri ng-boot-starter-cl oud-
connect or s starter POM.

1.2.8.RELEASE Spring Boot 116

http://cloud.spring.io/spring-cloud-connectors/

Spring Boot Reference Guide

50. Heroku

Heroku is another popular PaaS platform. To customize Heroku builds, you provide a Procfil e,
which provides the incantation required to deploy an application. Heroku assigns a port for the Java
application to use and then ensures that routing to the external URI works.

You must configure your application to listen on the correct port. Here’s the Pr ocf i | e for our starter
REST application:

web: java -Dserver.port=$PORT -jar target/denp-0.0.1- SNAPSHOT. j ar

Spring Boot makes - D arguments available as properties accessible from a Spring Envi r onnent
instance. The ser ver. port configuration property is fed to the embedded Tomcat, Jetty or Undertow
instance which then uses it when it starts up. The $PORT environment variable is assigned to us by
the Heroku PaaS.

Heroku by default will use Java 1.8. This is fine as long as your Maven or Gradle build is set to use the
same version (Maven users can use the java.version property). If you want to use JDK 1.7, create a
new file adjacent to your pom xm and Procfil e, called syst em properti es. In this file add the
following:

java.runtime. version=1.7

This should be everything you need. The most common workflow for Heroku deployments is to gi t
push the code to production.

$ git push heroku master

Initializing repository, done.

Counti ng objects: 95, done.

Del ta conpression using up to 8 threads.

Conpr essi ng obj ects: 100% (78/78), done.

Witing objects: 100% (95/95), 8.66 MB | 606.00 KiB/s, done.
Total 95 (delta 31), reused O (delta 0)

----- > Java app detected

----- > Installing OpenJDK 1.8... done

----- > Installing Maven 3.3.1... done

----- > Installing settings.xm ... done

————— > Executing: nmvn -B -DskipTests=true clean install

[INFQ Scanning for projects...
Downl oadi ng: http://repo.spring.iol...
Downl oaded: http://repo.spring.io/... (818 B at 1.8 KB/ sec)

Downl oaded: http://s3pository. heroku.conmjvni... (152 KB at 595.3 KB/ sec)
[INFO Installing /tnp/build_0c35a5d2-a067-4abc-a232-14b1f b7a8229/target/. ..
[INFQ Installing /tnp/build_0c35a5d2-a067-4abc-a232- 14b1f b7a8229/ pom xm ...
TINFG] s=oc=c=sssscccasssscccasssscccasssscccassosccoaosoocccaooo0c0ca0000c00aS
[INFO BU LD SUCCESS

[INFG] s=scccssssscccssssscccsssssccoosssoccoaosooccnaooooccoao000c000000000000
[INFO Total time: 59.358s

[INFO Finished at: Fri Mar 07 07:28:25 UTC 2014

[INFO Final Menory: 20M 493M

TINFG] s=oc=c=sssscccasssscccasssscccasssscccassosccoaosoocccaooo0c0ca0000c00aS

————— > Di scovering process types
Procfile declares types -> web

----- > Conpressing... done, 70.4M
----- > Launching... done, v6
http://agil e-sierra-1405. her okuapp. coni depl oyed to Heroku

1.2.8.RELEASE Spring Boot 117

Spring Boot Reference Guide

To git @eroku. comagil e-sierra-1405.git
* [new branch] master -> master

Your application should now be up and running on Heroku.

1.2.8.RELEASE Spring Boot 118

Spring Boot Reference Guide

51. Openshift

Openshift is the RedHat public (and enterprise) PaaS solution. Like Heroku, it works by running scripts
triggered by git commits, so you can script the launching of a Spring Boot application in pretty much any
way you like as long as the Java runtime is available (which is a standard feature you can ask for at
Openshift). To do this you can use the DIY Cartridge and hooks in your repository under . openshi ft/
action_scripts:

The basic model is to:

1. Ensure Java and your build tool are installed remotely, e.g. using a pre_bui | d hook (Java and
Maven are installed by default, Gradle is not)

2. Use a bui | d hook to build your jar (using Maven or Gradle), e.g.

#!'/ bi n/ bash
cd $OPENSHI FT_REPO DI R
mvn package -s .openshift/settings.xm -DskipTests=true

3. Add astart hookthatcallsjava -jar

#! / bi n/ bash

cd $OPENSHI FT_REPO DI R

nohup java -jar target/*.jar --server.port=%${OPENSH FT_DI Y_PORT} --server.address=${ OPENSHI FT_DI Y_| P}
&

4. Use a st op hook (since the start is supposed to return cleanly), e.g.

#!/ bi n/ bash
sour ce $OPENSHI FT_CARTRI DGE_SDK_BASH
PID=$(ps -ef | grep java.*\.jar | grep -v grep | awk '{ print $2 }")
if [-z"$PID"]
then
client_result "Application is already stopped"
el se
kill $PID
fi

5. Embed service bindings from environment variables provided by the platform in your
application. properties,e.g.

spring. datasource.url: jdbc:nysql://${OPENSH FT_MySQL_DB_HOST}: ${ OPENSHI FT_MySQL_DB_PORT}/
${ OPENSHI FT_APP_NANE}

spring. dat asour ce. user nane: ${ OPENSHI FT_MYSQL_DB_USERNANME}

spring. dat asour ce. passwor d: ${ OPENSHI FT_MYSQL_DB_PASSWORD}

There’s a blog on running Gradle in Openshift on their website that will get you started with a gradle
build to run the app. A bug in Gradle currently prevents you from using Gradle newer than 1.6.

1.2.8.RELEASE Spring Boot 119

https://www.openshift.com/
https://www.openshift.com/developers/do-it-yourself
https://www.openshift.com/blogs/run-gradle-builds-on-openshift
http://issues.gradle.org/browse/GRADLE-2871

Spring Boot Reference Guide

52. Google App Engine

Google App Engine is tied to the Servlet 2.5 API, so you can’t deploy a Spring Application there without
some modifications. See the Servlet 2.5 section of this guide.

1.2.8.RELEASE Spring Boot 120

Spring Boot Reference Guide

53. What to read next

Check out the Cloud Foundry, Heroku and Openshift web sites for more information about the kinds of
features that a PaaS can offer. These are just three of the most popular Java PaaS providers, since
Spring Boot is so amenable to cloud-based deployment you're free to consider other providers as well.

The next section goes on to cover the Spring Boot CLI; or you can jump ahead to read about build
tool plugins.

1.2.8.RELEASE Spring Boot 121

http://www.cloudfoundry.com/
https://www.heroku.com/
https://www.openshift.com

Part VII. Spring Boot CLI

The Spring Boot CLI is a command line tool that can be used if you want to quickly develop with Spring.
It allows you to run Groovy scripts, which means that you have a familiar Java-like syntax, without so
much boilerplate code. You can also bootstrap a new project or write your own command for it.

Spring Boot Reference Guide

54. Installing the CLI

The Spring Boot CLI can be installed manually; using GVM (the Groovy Environment Manually) or using
Homebrew or MacPorts if you are an OSX user. See Section 10.2, “Installing the Spring Boot CLI” in
the “Getting started” section for comprehensive installation instructions.

1.2.8.RELEASE Spring Boot 123

Spring Boot Reference Guide

55. Using the CLI

Once you have installed the CLI you can run it by typing spri ng. If you run spri ng without any
arguments, a simple help screen is displayed:

$ spring
usage: spring [--help] [--version]
<commrand> [<ar gs>]

Avai | abl e commands are:

run [options] <files> [--] [args]
Run a spring groovy script

nore command hel p i s shown here

You can use hel p to get more details about any of the supported commands. For example:

$ spring help run
spring run - Run a spring groovy script

usage: spring run [options] <files> [--] [args]

Option Description

--autoconfigure [Bool ean] Add autoconfigure conpiler
transformations (default: true)

--classpath, -cp Addi tional classpath entries

-e, --edit Qpen the file with the default system
editor

--no- guess- dependenci es Do not attenpt to guess dependencies

--no-guess-inports Do not attenpt to guess inports

-g, --quiet Qui et | oggi ng

-v, --verbose Ver bose | oggi ng of dependency
resol ution

--wat ch Watch the specified file for changes

The ver si on command provides a quick way to check which version of Spring Boot you are using.

$ spring version
Spring CLI vi.2.8. RELEASE

55.1 Running applications using the CLI

You can compile and run Groovy source code using the run command. The Spring Boot CLI is
completely self-contained so you don’t need any external Groovy installation.

Here is an example “hello world” web application written in Groovy:
hello.groovy.

@Rest Control | er
cl ass WebApplication {

@Request Mappi ng("/")

String honme() {
"Hello World!"

}

To compile and run the application type:

$ spring run hello. groovy

1.2.8.RELEASE Spring Boot 124

Spring Boot Reference Guide

To pass command line arguments to the application, you need to use a - - to separate them from the
“spring” command arguments, e.g.

‘$ spring run hello.groovy -- --server.port=9000

To set JVM command line arguments you can use the JAVA OPTS environment variable, e.g.

‘ $ JAVA_OPTS=- Xmx1024m spring run hell o. groovy

Deduced “grab” dependencies

Standard Groovy includes a @ ab annotation which allows you to declare dependencies on a third-
party libraries. This useful technique allows Groovy to download jars in the same way as Maven or
Gradle would, but without requiring you to use a build tool.

Spring Boot extends this technique further, and will attempt to deduce which libraries to “grab”
based on your code. For example, since the WebAppl i cat i on code above uses @est Control | er
annotations, “Tomcat” and “Spring MVC” will be grabbed.

The following items are used as “grab hints”;

ltems Grabs

JdbcTenpl at e, JDBC Application.
NanmedPar aret er JdbcTenpl at e,
Dat aSour ce

@nabl eJns JMS Application.

@nabl eCachi ng Caching abstraction.

@est JUnit.

@nabl eRabbi t RabbitMQ.

@nabl eReact or Project Reactor.

extends Speci fication Spock test.

@knabl eBat chProcessi ng Spring Batch.

@/kessageEndpoi nt Spring Integration.

@nabl el ntegrati onPatterns

@nabl eDevi ceResol ver Spring Mobile.

@control | er @estController Spring MVC + Embedded Tomcat.
@nabl eWebM/c

@nabl eWebSecurity Spring Security.

@knabl eTr ansact i onManagenent Spring Transaction Management.
Tip

See subclasses of Conpi | er Aut oConfi gurati on in the Spring Boot CLI source code to
understand exactly how customizations are applied.

1.2.8.RELEASE Spring Boot 125

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-cli/src/main/java/org/springframework/boot/cli/compiler/CompilerAutoConfiguration.java

Spring Boot Reference Guide

Deduced “grab” coordinates

Spring Boot extends Groovy's standard @x ab support by allowing you to specify a dependency
without a group or version, for example @ ab(' f r eemar ker ') . This will consult Spring Boot'’s default
dependency metadata to deduce the artifact's group and version. Note that the default metadata is tied
to the version of the CLI that you're using — it will only change when you move to a new version of the
CLlI, putting you in control of when the versions of your dependencies may change. A table showing the
dependencies and their versions that are included in the default metadata can be found in the appendix.

Default import statements

To help reduce the size of your Groovy code, several i nport statements are automatically included.
Notice how the example above refers to @Conponent , @Rest Cont rol | er and @Request Mappi ng
without needing to use fully-qualified names or i nport statements.

Tip

Many Spring annotations will work without using i npor t statements. Try running your application
to see what fails before adding imports.

Automatic main method

Unlike the equivalent Java application, you do not need to include a public static void
mai n(String[] args) method with your Gr oovy scripts. A Spri ngAppl i cat i on is automatically
created, with your compiled code acting as the sour ce.

Custom “grab” metadata

Spring Boot provides a new @ abMet adat a annotation that can be used to provide custom
dependency metadata that overrides Spring Boot's defaults. This metadata is specified by using the
annotation to provide coordinates of one or more properties files (deployed to a Maven repository
with a “type” identifier of properti es). Each entry in each properties file must be in the form
gr oup: modul e=ver si on.

For example, the following declaration:

* @ abMet adat a(" com exanpl e. custom versions: 1.0.0")"

Will pick up cust om ver si ons- 1. 0. 0. properti es in a Maven repository under coni exanpl e/
custom versions/1.0.0/.

Multiple properties files can be specified from the annotation, they will be applied in the order that they're
declared. For example:

@ abMet adat a([" com exanpl e. cust om versi ons: 1. 0. 0",
"com exanpl e. nore-versions: 1.0.0"])"

indicates that properties in nor e- ver si ons will override properties in cust om ver si ons.

You can use @x abMet adat a anywhere that you can use @ ab, however, to ensure consistent
ordering of the metadata, you can only use @ abMet adat a at most once in your application. A
useful source of dependency metadata (a superset of Spring Boot) is the Spring IO Platform, e.g.
@> abMet adat a(' i o.spring.platformplatformversions: 1. 0.4. RELEASE).

1.2.8.RELEASE Spring Boot 126

http://platform.spring.io/

Spring Boot Reference Guide

55.2 Testing your code

The t est command allows you to compile and run tests for your application. Typical usage looks like
this:

$ spring test app.groovy tests.groovy
Total: 1, Success: 1, : Failures: O
Passed? true

In this example, t est s. gr oovy contains JUnit @est methods or Spock Speci fi cati on classes.
All the common framework annotations and static methods should be available to you without having
toi nport them.

Here isthe t est s. gr oovy file that we used above (with a JUnit test):

class ApplicationTests {

@est
voi d honeSaysHel | o() {
assert Equal s("Hello World!'", new WebApplication().honme())

}

Tip

If you have more than one test source files, you might prefer to organize them into a t est
directory.

55.3 Applications with multiple source files

You can use “shell globbing” with all commands that accept file input. This allows you to easily use
multiple files from a single directory, e.g.

‘$ spring run *.groovy

This technique can also be useful if you want to segregate your “test” or “spec” code from the main
application code:

‘$ spring test app/*.groovy test/*.groovy

55.4 Packaging your application

You can use the j ar command to package your application into a self-contained executable jar file.
For example:

$ spring jar my-app.jar *.groovy

The resulting jar will contain the classes produced by compiling the application and all of the application’s
dependencies so that it can then be run using j ava -j ar. The jar file will also contain entries from the
application’s classpath. You can add explicit paths to the jar using - - i ncl ude and - - excl ude (both
are comma-separated, and both accept prefixes to the values “+” and “-" to signify that they should be
removed from the defaults). The default includes are

public/**, resources/**, static/**, tenplates/**, META-INF/ ** *

1.2.8.RELEASE Spring Boot 127

Spring Boot Reference Guide

and the default excludes are

‘.*, repository/**, build/**, target/**, **/* jar, **/* groovy
See the output of spri ng hel p j ar for more information.

55.5 Initialize a new project

The i ni t command allows you to create a new project using start.spring.io without leaving the shell.
For example:

$ spring init --dependenci es=web, data-jpa my-project
Using service at https://start.spring.io
Project extracted to '/Users/devel oper/exanpl e/ ny-project’

This creates a nmy- pr oj ect directory with a Maven-based project using spri ng- boot -start er -
web and spri ng- boot - st art er - dat a- j pa. You can list the capabilities of the service using the - -
list flag

$ spring init --1ist

Capabilities of https://start.spring.io

Avai | abl e dependenci es:

actuator - Actuator: Production ready features to help you nonitor and manage your application

web - Web: Support for full-stack web devel opnent, including Tontat and spring-webnvc
websocket - Websocket: Support for WebSocket devel opnent
ws - WS Support for Spring Wb Services

Avai | abl e project types:

gradle-build - Gadle Config [format:build, build:gradle]

gradle-project - Gadle Project [format:project, build:gradle]
maven-build - Maven POM [format: build, build: maven]
maven-proj ect - Maven Project [format:project, build:mven] (default)

The i ni t command supports many options, check the hel p output for more details. For instance, the
following command creates a gradle project using Java 8 and war packaging:

$ spring init --build=gradle --java-version=1.8 --dependenci es=websocket --packagi ng=war sanpl e-app. zi p
Using service at https://start.spring.io
Content saved to 'sanpl e-app. zi p'

55.6 Using the embedded shell

Spring Boot includes command-line completion scripts for BASH and zsh shells. If you don’t use either
of these shells (perhaps you are a Windows user) then you can use the shel | command to launch
an integrated shell.

$ spring shell
Spring Boot (v1.2.8. RELEASE)
Ht TAB to conplete. Type \'help' and hit RETURN for help, and \'exit' to quit.

From inside the embedded shell you can run other commands directly:

$ version
Spring CLI vi.2.8. RELEASE

1.2.8.RELEASE Spring Boot 128

https://start.spring.io

Spring Boot Reference Guide

The embedded shell supports ANSI color output as well as t ab completion. If you need to run a native
command you can use the $ prefix. Hitting ct r | - ¢ will exit the embedded shell.

55.7 Adding extensions to the CLI

You can add extensions to the CLI using the i nst al | command. The command takes one or more
sets of artifact coordinates in the format gr oup: arti f act : ver si on. For example:

$ spring install com exanple: spring-boot-cli-extension:1.0.0. RELEASE

In addition to installing the artifacts identified by the coordinates you supply, all of the artifacts'
dependencies will also be installed.

To uninstall a dependency use the uni nst al | command. As with the i nst al | command, it takes one
or more sets of artifact coordinates in the format gr oup: arti fact: ver si on. For example:

$ spring uninstall com exanpl e:spring-boot-cli-extension:1.0.0. RELEASE

It will uninstall the artifacts identified by the coordinates you supply and their dependencies.

To uninstall all additional dependencies you can use the - - al | option. For example:

$ spring uninstall --all

1.2.8.RELEASE Spring Boot 129

Spring Boot Reference Guide

56. Developing application with the Groovy beans
DSL

Spring Framework 4.0 has native support for a beans{} “DSL” (borrowed from Grails), and you can
embed bean definitions in your Groovy application scripts using the same format. This is sometimes a
good way to include external features like middleware declarations. For example:

@onfiguration
class Application inplenments CommandLi neRunner {

@\ut owi r ed
Shar edSer vi ce service

@verride
void run(String... args) {
println service. message

}
}
i nport ny.conpany. SharedServi ce
beans {

servi ce(SharedService) {
nmessage = "Hello World"

}

You can mix class declarations with beans{} in the same file as long as they stay at the top level, or
you can put the beans DSL in a separate file if you prefer.

1.2.8.RELEASE Spring Boot 130

http://grails.org/

Spring Boot Reference Guide

57. What to read next

There are some sample groovy scripts available from the GitHub repository that you can use to try out
the Spring Boot CLI. There is also extensive javadoc throughout the source code.

If you find that you reach the limit of the CLI tool, you will probably want to look at converting your
application to full Gradle or Maven built “groovy project”. The next section covers Spring Boot's Build
tool plugins that you can use with Gradle or Maven.

1.2.8.RELEASE Spring Boot 131

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-cli/samples
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-cli/src/main/java/org/springframework/boot/cli

Part VIII. Build tool plugins

Spring Boot provides build tool plugins for Maven and Gradle. The plugins offer a variety of features,
including the packaging of executable jars. This section provides more details on both plugins, as well
as some help should you need to extend an unsupported build system. If you are just getting started,
you might want to read “Chapter 13, Build systems” from the Part Ill, “Using Spring Boot” section first.

Spring Boot Reference Guide

58. Spring Boot Maven plugin

The Spring Boot Maven Plugin provides Spring Boot support in Maven, allowing you to package
executable jar or war archives and run an application “in-place”. To use it you must be using Maven
3.2 (or better).

Note

Refer to the Spring Boot Maven Plugin Site for complete plugin documentation.

58.1 Including the plugin

To use the Spring Boot Maven Plugin simply include the appropriate XML in the pl ugi ns section of
your pom X

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<l-- ... -->
<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-mven-plugin</artifactld>
<ver si on>1. 2. 8. RELEASE</ ver si on>
<executions>
<executi on>
<goal s>
<goal >r epackage</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

This configuration will repackage a jar or war that is built during the package phase of the Maven
lifecycle. The following example shows both the repackaged jar, as well as the original jar, inthe t ar get
directory:

$ nvn package
$ |s target/*.jar
target/ nmyproject-1.0.0.jar target/nyproject-1.0.0.jar.original

If you don't include the <execut i on/ > configuration as above, you can run the plugin on its own (but
only if the package goal is used as well). For example:

$ nvn package spring-boot:repackage
$ |s target/*.jar
target/nmyproject-1.0.0.jar target/nyproject-1.0.0.jar.original

If you are using a milestone or snapshot release you will also need to add appropriate
pl ugi nReposi t ory elements:

<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>spring-snapshot s</i d>
<url >http://repo.spring.iol/snapshot</url >

1.2.8.RELEASE Spring Boot 133

http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/maven-plugin/
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/maven-plugin/

Spring Boot Reference Guide

</ pl ugi nReposi t ory>
<pl ugi nReposi tory>
<i d>spring-m|estones</id>
<url >http://repo.spring.io/mlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>

58.2 Packaging executable jar and war files

Once spri ng- boot - maven- pl ugi n has been included in your pom xm it will automatically attempt
to rewrite archives to make them executable using the spri ng- boot : r epackage goal. You should
configure your project to build a jar or war (as appropriate) using the usual packagi ng element:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="htt p: // wwwv w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ naven- 4. 0. 0. xsd" >

<l-- ... -->
<packagi ng>j ar </ packagi ng>
<l-- ... -->

</ proj ect >

Your existing archive will be enhanced by Spring Boot during the package phase. The main class that
you want to launch can either be specified using a configuration option, or by adding a Mai n- Cl ass
attribute to the manifest in the usual way. If you don’t specify a main class the plugin will search for a
classwithapublic static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ nmvn package
$ java -jar target/mynodul e-0. 0. 1- SNAPSHOT. j ar

To build a war file that is both executable and deployable into an external container you need to mark
the embedded container dependencies as “provided”, e.g:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // www. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocation="http://maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven-4. 0. 0. xsd" >
<l-- ... -->
<packagi ng>war </ packagi ng>
<l-- ... -->
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifactld>spring-boot-starter-toncat</artifactl|d>
<scope>provi ded</ scope>
</ dependency>
<l-- ... -->
</ dependenci es>
</ proj ect >

Tip

See the “Section 74.1, “Create a deployable war file™ section for more details on how to create

a deployable war file.

Advanced configuration options and examples are available in the plugin info page.

1.2.8.RELEASE Spring Boot 134

http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/maven-plugin/

Spring Boot Reference Guide

59. Spring Boot Gradle plugin

The Spring Boot Gradle Plugin provides Spring Boot support in Gradle, allowing you to package
executable jar or war archives, run Spring Boot applications and omit version information from your
bui | d. gr adl e file for “blessed” dependencies.

59.1 Including the plugin

To use the Spring Boot Gradle Plugin simply include a bui | dscri pt dependency and apply the
spri ng- boot plugin:

bui l dscript {
dependenci es {
cl asspat h("org. spri ngframewor k. boot : spri ng- boot - gradl e- pl ugi n: 1. 2. 8. RELEASE")
}

}
apply plugin: 'spring-boot'

If you are using a milestone or snapshot release you will also need to add appropriate r eposi t ori es
reference:

bui l dscript {
repositories {
maven. url "http://repo.spring.iol/snapshot”
maven. url "http://repo.spring.io/mlestone"

59.2 Declaring dependencies without versions

The spri ng- boot plugin will register a custom Gradle Resol uti onStrat egy with your build that
allows you to omit version numbers when declaring dependencies to “blessed” artifacts. To make use
of this functionality, simply declare dependencies in the usual way, but leave the version number empty:

dependenci es {
conpi | e("org. springfranmework. boot: spri ng-boot -starter-web")
conpi |l e("org. thynel eaf : t hynel eaf - spri ng4")
conpi l e("nz.net.ul trag. thynel eaf : t hynmel eaf - | ayout - di al ect")

Note

The version of the spr i ng- boot gradle plugin that you declare determines the actual versions of
the “blessed” dependencies (this ensures that builds are always repeatable). You should always
set the version of the spri ng- boot gradle plugin to the actual Spring Boot version that you wish
to use. Details of the versions that are provided can be found in the appendix.

The spri ng- boot plugin will only supply a version where one is not specified. To use a version of
an artifact that differs from the one that the plugin would provide, simply specify the version when you
declare the dependency as you usually would. For example:

dependenci es {
conpi |l e("org. thynel eaf : t hynel eaf - spring4: 2. 1. 1. RELEASE")

}

1.2.8.RELEASE Spring Boot 135

Spring Boot Reference Guide

Custom version management

If is possible to customize the versions used by the Resol uti onSt r at egy if you need to deviate
from Spring Boot's “blessed” dependencies. Alternative version metadata is consulted using the
ver si onManagenent configuration. For example:

dependenci es {
ver si onManagenent (" com nycor p: mycor p- ver si ons: 1. 0. 0. RELEASE@pr operti es")
conpi | e("org. springframework. dat a: spri ng- dat a- hadoop")

Version information needs to be published to a repository as a . properti es file. For the above
example mycor p- ver si ons. properti es file might contain the following:

or g. springfranmewor k. dat a\ : spri ng- dat a- hadoop=2. 0. 0. RELEASE

The properties file takes precedence over Spring Boot's defaults, and can be used to override version
numbers if necessary.

59.3 Default exclude rules

Gradle handles “exclude rules” in a slightly different way to Maven which can cause unexpected results
when using the starter POMs. Specifically, exclusions declared on a dependency will not be applied
when the dependency can be reached through a different path. For example, if a starter POM declares
the following:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<ver si on>4. 0. 5. RELEASE</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>commons- | oggi ng</ gr oupl d>
<artifactld>commons-1oggi ng</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<version>4.0.5. RELEASE</ ver si on>
</ dependency>
</ dependenci es>

The commons- | oggi ng jar will not be excluded by Gradle because it is pulled in transitively via
spring-context (spring-context _ spring-core _ comons-| oggi ng)which does not have
an excl usi on element.

To ensure that correct exclusions are actually applied, the Spring Boot Gradle plugin will automatically
add exclusion rules. All exclusions defined in the spri ng- boot - dependenci es POM and implicit
rules for the “starter” POMs will be added.

If you don’t want exclusion rules automatically applied you can use the following configuration:

springBoot {
appl yExcl udeRul es=f al se
}

1.2.8.RELEASE Spring Boot 136

Spring Boot Reference Guide

59.4 Packaging executable jar and war files

Once the spri ng- boot plugin has been applied to your project it will automatically attempt to rewrite
archives to make them executable using the boot Repackage task. You should configure your project
to build a jar or war (as appropriate) in the usual way.

The main class that you want to launch can either be specified using a configuration option, or by adding
a Mai n- d ass attribute to the manifest. If you don’t specify a main class the plugin will search for a
classwithapublic static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ gradle build
$ java -jar build/libs/nynodul e-0.0. 1- SNAPSHOT. j ar

To build a war file that is both executable and deployable into an external container, you need to mark
the embedded container dependencies as belonging to a configuration named “providedRuntime”, e.g:

apply plugin: 'war'

war {
baseNane = ' nyapp'
version = '0.5.0

}

repositories {
jcenter()
maven { url "http://repo.spring.io/libs-snapshot” }

}

configurations {
provi dedRunti me

}

dependenci es {
conpi | e("org. springfranmework. boot: spri ng-boot -starter-web")
provi dedRunti me("org. springfranmewor k. boot : spri ng-boot-starter-toncat")

Tip

See the “Section 74.1, “Create a deployable war file™ section for more details on how to create
a deployable war file.

59.5 Running a project in-place

To run a project in place without building a jar first you can use the “bootRun” task:

‘ $ gradl e boot Run

By default, running this way makes your static classpath resources (i.e. in src/ mai n/ r esour ces
by default) reloadable in the live application, which can be helpful at development time. Making
static classpath resources reloadable means that boot Run does not use the output of the
pr ocessResour ces task, i.e., when invoked using boot Run, your application will use the resources
in their unprocessed form.

1.2.8.RELEASE Spring Boot 137

Spring Boot Reference Guide

You can disable the direct use of your static classpath resources. This will mean that the resources
are no longer reloadable but the output of the pr ocessResour ces task will be used. To do so, set
addResour ces on the boot Run task to f al se:

boot Run {
addResources = fal se

}

59.6 Spring Boot plugin configuration

The gradle plugin automatically extends your build script DSL with a spri ngBoot element for global
configuration of the Boot plugin. Set the appropriate properties as you would with any other Gradle
extension (see below for a list of configuration options):

springBoot {
backupSource = fal se

}

59.7 Repackage configuration

The plugin adds a boot Repackage task which you can also configure directly, e.g.:

boot Repackage {
mai nCl ass = ' deno. Appl i cati on’

}

The following configuration options are available:

Name Description

enabl ed Boolean flag to switch the repackager off (sometimes useful if you
want the other Boot features but not this one)

mai nCl ass The main class that should be run. If not specified the

mai nCl assNane project property will be used or, if the no

mai nCl assNane id defined the archive will be searched for a
suitable class. "Suitable" means a unique class with a well-formed
mai n() method (if more than one is found the build will fail). You
should also be able to specify the main class name via the "run"
task (mai n property) and/or the "startScripts" (mai nCl assNane
property) as an alternative to using the "springBoot" configuration.

classifier A file name segment (before the extension) to add to the archive,
so that the original is preserved in its original location. Defaults

to null in which case the archive is repackaged in place. The
default is convenient for many purposes, but if you want to use
the original jar as a dependency in another project, it's best to use
an extension to define the executable archive.

wi t hJar Task The name or value of the Jar task (defaults to all tasks of type
Jar) which is used to locate the archive to repackage.

cust onConfi guration The name of the custom configuration which is used to populate
the nested lib directory (without specifying this you get all compile
and runtime dependencies).

1.2.8.RELEASE Spring Boot 138

Spring Boot Reference Guide

59.8 Repackage with custom Gradle configuration

Sometimes it may be more appropriate to not package default dependencies resolved from conpi | e,
runti ne and provi ded scopes. If the created executable jar file is intended to be run as it is, you
need to have all dependencies nested inside it; however, if the plan is to explode a jar file and run the
main class manually, you may already have some of the libraries available via CLASSPATH. This is a
situation where you can repackage your jar with a different set of dependencies.

Using a custom configuration will automatically disable dependency resolving from conpi | e, runti e
and pr ovi ded scopes. Custom configuration can be either defined globally (inside the spri ngBoot
section) or per task.

task clientJar(type: Jar) {
appendi x = 'client’
from sourceSets. mai n. out put
excl ude(' **/*Sonet hi ng*')

}

task clientBoot (type: Boot Repackage, dependsOn: clientJar) {
wi t hjar Task = clientJar
cust onConfiguration = "nycustonconfiguration"”

In above example, we created a new cl i ent Jar Jar task to package a customized file set from your
compiled sources. Then we created a new cl i ent Boot BootRepackage task and instructed it to work
with only cl i ent Jar task and nycust ontonfi gurati on.

configurations {
nycust ontonfi guration. exclude group: 'l og4j"’

}

dependenci es {
nmycust ontonfi guration configurations.runtine

}

The configuration that we are referring to in Boot Repackage is a normal Gradle configuration. In
the above example we created a new configuration named mycust ontonfi gur ati on instructing it
to derive from a runti me and exclude the | og4j group. If the cl i ent Boot task is executed, the
repackaged boot jar will have all dependencies from r unt i ne but no | og4j jars.

Configuration options

The following configuration options are available:

Name Description
mai nCl ass The main class that should be run by the executable archive.
provi dedConfi gurati on The name of the provided configuration (defaults to

provi dedRunt i rre).

backupSour ce If the original source archive should be backed-up before being
repackaged (defaults to t r ue).

cust onConfi guration The name of the custom configuration.

| ayout The type of archive, corresponding to how the dependencies are
laid out inside (defaults to a guess based on the archive type).

1.2.8.RELEASE Spring Boot 139

http://www.gradle.org/docs/current/dsl/org.gradle.api.artifacts.Configuration.html

Spring Boot Reference Guide

Name Description

requi r esUnpack A list of dependencies (in the form “groupld:artifactld” that must
be unpacked from fat jars in order to run. Items are still packaged
into the fat jar, but they will be automatically unpacked when it
runs.

59.9 Understanding how the Gradle plugin works

When spri ng- boot is applied to your Gradle project a default task named boot Repackage is created
automatically. The boot Repackage task depends on Gradle assenbl e task, and when executed, it
tries to find all jar artifacts whose qualifier is empty (i.e. tests and sources jars are automatically skipped).

Due to the fact that boot Repackage finds ‘all' created jar artifacts, the order of Gradle task execution
is important. Most projects only create a single jar file, so usually this is not an issue; however, if you
are planning to create a more complex project setup, with custom Jar and Boot Repackage tasks,
there are few tweaks to consider.

If you are 'just' creating custom jar files from your project you can simply disable default j ar and
boot Repackage tasks:

jar.enabled = fal se
boot Repackage. enabl ed = fal se

Another option is to instruct the default boot Repackage task to only work with a default j ar task.

boot Repackage. wi t hJar Task = jar

If you have a default project setup where the main jar file is created and repackaged, 'and' you still
want to create additional custom jars, you can combine your custom repackage tasks together and use
dependsOn so that the boot Jar s task will run after the default boot Repackage task is executed:

task bootJars
boot Jars. dependsOn = [clientBoot 1, clientBoot 2, clientBoot 3]
bui | d. dependsOn(boot Jar s)

All the above tweaks are usually used to avoid situations where an already created boot jar is repackaged
again. Repackaging an existing boot jar will not break anything, but you may find that it includes
unnecessary dependencies.

59.10 Publishing artifacts to a Maven repository using Gradle

If you are declaring dependencies without versions and you want to publish artifacts to a Maven
repository you will need to configure the Maven publication with details of Spring Boot's dependency
management. This can be achieved by configuring it to publish poms that inherit from spri ng- boot -
st art er - par ent orthatimport dependency management from spri ng- boot - dependenci es. The
exact details of this configuration depend on how you're using Gradle and how you're trying to publish
the artifacts.

Configuring Gradle to produce a pom that inherits dependency
management

The following is an example of configuring Gradle to generate a pom that inherits from spri ng- boot -
st art er - par ent . Please refer to the Gradle User Guide for further information.

1.2.8.RELEASE Spring Boot 140

http://www.gradle.org/docs/current/userguide/userguide.html

Spring Boot Reference Guide

upl oadAr chi ves {
repositories {
mavenDepl oyer {
pom {
project {
parent {

groupld "org. springframework. boot"
artifactld "spring-boot-starter-parent”
version "1.2.8. RELEASE"

Configuring Gradle to produce a pom that imports dependency
management
The following is an example of configuring Gradle to generate a pom that imports the dependency

management provided by spri ng- boot - dependenci es. Please refer to the Gradle User Guide for
further information.

upl oadAr chi ves {
repositories {
mavenDepl oyer {
pom {
project {
dependencyManagenent {
dependenci es {
dependency {
groupld "org. springfranmework. boot"
artifactld "spring-boot-dependenci es"
version "1.2.8. RELEASE"
type "pont
scope "inport"
}
}
}
}
}
}
}
}

1.2.8.RELEASE Spring Boot 141

http://www.gradle.org/docs/current/userguide/userguide.html

Spring Boot Reference Guide

60. Supporting other build systems

If you want to use a build tool other than Maven or Gradle, you will likely need to develop your own
plugin. Executable jars need to follow a specific format and certain entries need to be written in an
uncompressed form (see the executable jar format section in the appendix for details).

The Spring Boot Maven and Gradle plugins both make use of spri ng-boot -1 oader-tool s to
actually generate jars. You are also free to use this library directly yourself if you need to.

60.1 Repackaging archives

To repackage an existing archive so that it becomes a self-contained executable archive use
org. spri ngframewor k. boot . | oader . t ool s. Repackager. The Repackager class takes a
single constructor argument that refers to an existing jar or war archive. Use one of the two available
repackage() methods to either replace the original file or write to a new destination. Various settings
can also be configured on the repackager before it is run.

60.2 Nested libraries

When repackaging an archive you can include references to dependency files using the
org. springframework. boot . | oader.tool s. Li brari es interface. We don't provide any
concrete implementations of Li br ari es here as they are usually build system specific.

If your archive already includes libraries you can use Li br ari es. NONE.

60.3 Finding a main class

If you don't use Repackager . set Mai nCl ass() to specify a main class, the repackager will use ASM
to read class files and attempt to find a suitable class with a publ i ¢ static void mai n(String[]
ar gs) method. An exception is thrown if more than one candidate is found.

60.4 Example repackage implementation

Here is a typical example repackage:

Repackager repackager = new Repackager (sourcedarFile);
repackager . set BackupSour ce(f al se);
repackager . repackage(new Libraries() {
@verride
public void doWthLibraries(LibraryCal |l back cal | back) throws |CException {
/] Build system specific inplenentation, callback for each dependency
/1 call back.library(new Library(nestedFile, LibraryScope. COWILE));

1)

1.2.8.RELEASE Spring Boot 142

http://asm.ow2.org/

Spring Boot Reference Guide

61. What to read next

If you're interested in how the build tool plugins work you can look at the spr i ng- boot - t ool s module
on GitHub. More technical details of the executable jar format are covered in the appendix.

If you have specific build-related questions you can check out the “how-to” guides.

1.2.8.RELEASE Spring Boot 143

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-tools

Part IX. ‘How-to’ guides

This section provides answers to some common ‘how do | do that...” type of questions that often arise
when using Spring Boot. This is by no means an exhaustive list, but it does cover quite a lot.

If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer; this is also a great place to ask
new questions (please use the spri ng- boot tag).

We’'re also more than happy to extend this section; If you want to add a ‘how-to’ you can send us a
pull request.

http://stackoverflow.com/tags/spring-boot
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE

Spring Boot Reference Guide

62. Spring Boot application

62.1 Troubleshoot auto-configuration

The Spring Boot auto-configuration tries its best to ‘do the right thing’, but sometimes things fail and it
can be hard to tell why.

There is a really useful ConditionEval uati onReport available in any Spring Boot
Appl i cati onCont ext . You will see it if you enable DEBUG logging output. If you use the spri ng-
boot - act uat or there is also an aut oconf i g endpoint that renders the report in JSON. Use that to
debug the application and see what features have been added (and which not) by Spring Boot at runtime.

Many more questions can be answered by looking at the source code and the javadoc. Some rules
of thumb:

e Look for classes called *Aut oConfiguration and read their sources, in particular the
@condi ti onal * annotations to find out what features they enable and when. Add - - debug to the
command line or a System property - Ddebug to get a log on the console of all the autoconfiguration
decisions that were made in your app. In a running Actuator app look at the aut oconf i g endpoint
(‘/autoconfig’ or the JIMX equivalent) for the same information.

e Look for classes that are @onfi gurati onProperties (e.g. Server Properties) and read
from there the available external configuration options. The @Confi gur ati onProperties has
a nane attribute which acts as a prefix to external properties, thus Server Properties has
prefix="server" and its configuration properties are server. port, server. address etc. Ina
running Actuator app look at the conf i gpr ops endpoint.

e Look for use of Rel axedEnvironment to pull configuration values explicitly out of the
Envi r onnment . It often is used with a prefix.

e Look for @/al ue annotations that bind directly to the Envi ronnent. This is less flexible than
the Rel axedEnvi ronnment approach, but does allow some relaxed binding, specifically for OS
environment variables (so CAPI TALS AND_UNDERSCORES are synonyms for per i od. separ at ed).

» Look for @ondi t i onal OnExpr essi on annotations that switch features on and off in response to
SpEL expressions, normally evaluated with place-holders resolved from the Envi r onnent .

62.2 Customize the Environment or ApplicationContext before
it starts

A SpringApplicationhasApplicationListenersandApplicationContextlnitializers
that are used to apply customizations to the context or environment. Spring Boot loads a number of
such customizations for use internally from META- | NF/ spri ng. f act ori es. There is more than one
way to register additional ones:

» Programmatically per application by calling the addLi st eners and addl niti al i zer s methods
on Spri ngAppl i cati on before you run it.

» Declaratively per application by setting context.initializer.classes or
context.listener.classes.

» Declaratively for all applications by adding a META- | NF/ spri ng. f act ori es and packaging a jar
file that the applications all use as a library.

1.2.8.RELEASE Spring Boot 145

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

The SpringAppl i cati on sends some special Appl i cati onEvent s to the listeners (even some
before the context is created), and then registers the listeners for events published by the
Appl i cati onCont ext aswell. See Section 22.4, “Application events and listeners” in the ‘Spring Boot
features’ section for a complete list.

62.3 Build an ApplicationContext hierarchy (adding a parent or
root context)
You can use the ApplicationBuil der class to create parent/child Appli cati onCont ext

hierarchies. See Section 22.3, “Fluent builder API” in the ‘Spring Boot features’ section for more
information.

62.4 Create a non-web application

Not all Spring applications have to be web applications (or web services). If you want to execute some
code in a mai n method, but also bootstrap a Spring application to set up the infrastructure to use, then
it's easy with the Spri ngAppl i cat i on features of Spring Boot. A Spri ngAppl i cati on changes its
Appl i cati onCont ext class depending on whether it thinks it needs a web application or not. The
first thing you can do to help it is to just leave the servlet APl dependencies off the classpath. If you
can't do that (e.g. you are running 2 applications from the same code base) then you can explicitly call
SpringAppl i cation. set WebEnvi ronnent (fal se), or set the appli cati onCont ext d ass
property (through the Java API or with external properties). Application code that you want to run as
your business logic can be implemented as a CommandLi neRunner and dropped into the context as
a @Bean definition.

1.2.8.RELEASE Spring Boot 146

Spring Boot Reference Guide

63. Properties & configuration

63.1 Externalize the configuration of SpringApplication

A SpringApplication has bean properties (mainly setters) so you can use its Java API as you
create the application to modify its behavior. Or you can externalize the configuration using properties
inspring. main. *. E.g.inapplication. properties you might have.

spring. mai n. web_envi ronnment =f al se
spring. mai n. show_banner =f al se

and then the Spring Boot banner will not be printed on startup, and the application will not be a web
application.

Note

The example above also demonstrates how flexible binding allows the use of underscores (_) as
well as dashes (-) in property names.

63.2 Change the location of external properties of an
application

By default properties from different sources are added to the Spring Envi r onnent in a defined order
(see Chapter 23, Externalized Configuration in the ‘Spring Boot features’ section for the exact order).

A nice way to augment and modify this is to add @°r opert ySour ce annotations to your application
sources. Classes passed to the Spri ngAppl i cat i on static convenience methods, and those added
using set Sources() are inspected to see if they have @PropertySources, and if they do,
those properties are added to the Envi ronnent early enough to be used in all phases of the
Appl i cati onCont ext lifecycle. Properties added in this way have precedence over any added using
the default locations, but have lower priority than system properties, environment variables or the
command line.

You can also provide System properties (or environment variables) to change the behavior:

* spring. config. nane (SPRI NG_CONFI G_NAME), defaults to appl i cati on as the root of the file
name.

* spring.config.location (SPRI NG CONFI G_LOCATI ON) is the file to load (e.g. a classpath
resource or a URL). A separate Envi r onnent property source is set up for this document and it can
be overridden by system properties, environment variables or the command line.

No matter what you set in the environment, Spring Boot will always load appl i cati on. properties
as described above. If YAML is used then files with the “.yml" extension are also added to the list by
default.

See Confi gFi | eAppli cationLi st ener for more detail.

63.3 Use ‘short’ command line arguments

Some people like to use (for example) - - port =9000 instead of - - server. port=9000 to set
configuration properties on the command line. You can easily enable this by using placeholders in
application. properties,e.g.

1.2.8.RELEASE Spring Boot 147

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java

Spring Boot Reference Guide

server. port=${port: 8080}

Tip

If you are inheriting from the spri ng- boot - st art er - par ent POM, the default filter token
of the maven- r esour ces- pl ugi ns has been changed from ${*} to @(i.e. @raven. t oken@
instead of ${ maven. t oken}) to prevent conflicts with Spring-style placeholders. If you have
enabled maven filtering for the appl i cati on. properti es directly, you may want to also
change the default filter token to use other delimiters.

Note

In this specific case the port binding will work in a PaaS environment like Heroku and Cloud
Foundry, since in those two platforms the PORT environment variable is set automatically and
Spring can bind to capitalized synonyms for Envi r onnent properties.

63.4 Use YAML for external properties

YAML is a superset of JSON and as such is a very convenient syntax for storing external properties
in a hierarchical format. E.g.

spring:
appl i cation:
nane: cruncher
dat asour ce:
driverC assNane: com nysql.jdbc. Driver
url: jdbc:nysql://1ocal host/test
server:
port: 9000

Create a file called application.ym and stick it in the root of your classpath, and also add
shakeyam to your dependencies (Maven coordinates or g. yam : snakeyani , already included if
you use the spri ng- boot - starter). A YAML file is parsed to a Java Map<St ri ng, Qbj ect > (like
a JSON obiject), and Spring Boot flattens the map so that it is 1-level deep and has period-separated
keys, a lot like people are used to with Pr opert i es files in Java.

The example YAML above corresponds to an appl i cat i on. properti es file

spring. appl i cati on. nanme=cr uncher

spring. dat asour ce. dri ver Cl assNane=com nysql . j dbc. Dri ver
spring. dat asour ce. url =j dbc: mysql : / /1 ocal host/t est
server. port=9000

See Section 23.6, “Using YAML instead of Properties” in the ‘Spring Boot features’ section for more
information about YAML.

63.5 Set the active Spring profiles

The Spring Envi ronnent has an API for this, but normally you would set a System property
(spring. profiles.active) or an OS environment variable (SPRI NG_PRCFI LES_ACTI VE). E.g.
launch your application with a - D argument (remember to put it before the main class or jar archive):

$ java -jar -Dspring.profiles.active=production denp-0.0.1- SNAPSHOT. j ar

In Spring Boot you can also set the active profile in appl i cati on. properti es, e.g.

1.2.8.RELEASE Spring Boot 148

http://maven.apache.org/plugins/maven-resources-plugin/resources-mojo.html#delimiters

Spring Boot Reference Guide

spring. profiles.active=production

A value set this way is replaced by the System property or environment variable setting, but not by
the Spri ngAppl i cati onBuil der. profil es() method. Thus the latter Java API can be used to
augment the profiles without changing the defaults.

See Chapter 24, Profiles in the ‘Spring Boot features’ section for more information.

63.6 Change configuration depending on the environment

A YAML file is actually a sequence of documents separated by - - - lines, and each document is parsed
separately to a flattened map.

If a YAML document contains a spri ng. pr of i | es key, then the profiles value (comma-separated list
of profiles) is fed into the Spring Envi r onnent . accept sProfi | es() and if any of those profiles is
active that document is included in the final merge (otherwise not).

Example:

server:
port: 9000

spring:

profiles: devel opnent
server:

port: 9001

spring:

profiles: production
server:

port: O

In this example the default port is 9000, but if the Spring profile ‘development’ is active then the port is
9001, and if ‘production’ is active then it is 0.

The YAML documents are merged in the order they are encountered (so later values override earlier
ones).

To do the same thing with properties files you can use appl i cati on-${profil e}. propertiesto
specify profile-specific values.

63.7 Discover built-in options for external properties

Spring Boot binds external properties from appl i cati on. properti es (or. ym) (and other places)
into an application at runtime. There is not (and technically cannot be) an exhaustive list of all supported
properties in a single location because contributions can come from additional jar files on your classpath.

A running application with the Actuator features has a conf i gpr ops endpoint that shows all the bound
and bindable properties available through @onf i gur ati onProperti es.

The appendix includes an appli cation. properties example with a list of the most common
properties supported by Spring Boot. The definitive list comes from searching the source code
for @onfi gurati onProperti es and @/al ue annotations, as well as the occasional use of
Rel axedEnvi r onment .

1.2.8.RELEASE Spring Boot 149

Spring Boot Reference Guide

64. Embedded servlet containers

64.1 Add a Servlet, Filter or ServletContextListener to an
application

Servlet,Filter,Servl et Cont extListener and the other listeners supported by the Servlet spec
can be added to your application as @ean definitions. Be very careful that they don't cause eager
initialization of too many other beans because they have to be installed in the container very early in
the application lifecycle (e.g. it's not a good idea to have them depend on your Dat aSour ce or JPA
configuration). You can work around restrictions like that by initializing them lazily when first used instead
of on initialization.

In the case of Fi l t ers and Ser vl et s you can also add mappings and init parameters by adding a
Fi |l ter Regi strati onBean or Ser vl et Regi strati onBean instead of or as well as the underlying
component.

64.2 Disable registration of a Servlet or Filter

As described above any Servl et or Filter beans will be registered with the servlet container
automatically. To disable registration of a particular Fi | t er or Servl et bean create a registration
bean for it and mark it as disabled. For example:

@Bean

public FilterRegistrationBean registration(MFilter filter) {
Fi |l ter Regi strationBean registration = new FilterRegistrationBean(filter);
regi stration. set Enabl ed(fal se);
return registration;

64.3 Change the HTTP port

In a standalone application the main HTTP port defaults to 8080, but can be set with ser ver . port (e.g.
inappl i cati on. properti es oras a System property). Thanks to relaxed binding of Envi r onnent
values you can also use SERVER PORT (e.g. as an OS environment variable).

To switch off the HTTP endpoints completely, but still create a WebAppl i cat i onCont ext, use
server. port =-1 (this is sometimes useful for testing).

For more details look at the section called “Customizing embedded servlet containers” in the ‘Spring
Boot features’ section, or the Ser ver Pr operti es source code.

64.4 Use a random unassigned HTTP port

To scan for a free port (using OS natives to prevent clashes) use server . port =0.

64.5 Discover the HTTP port at runtime

You can access the port the server is running on from log output or from
the EnbeddedWebApplicati onContext via its EnbeddedServl et Contai ner. The best
way to get that and be sure that it has initialized is to add a @ean of
type Appl i cati onLi st ener <EnbeddedSer vl et Contai nerlnitializedEvent> and pull the
container out of the event when it is published.

1.2.8.RELEASE Spring Boot 150

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

A useful practice for use with @\ébl nt egr ati onTest s isto set ser ver. por t =0 and then inject the
actual (‘local’) port as a @/al ue. For example:

@RunW t h(SpringJUnit4d assRunner. cl ass)

@pri ngAppl i cationConfiguration(classes = Sanpl eDat aJpaAppl i cati on. cl ass)
@\ebl nt egr ati onTest ("server.port:0")

public class CityRepositorylntegrationTests {

@\ut owi r ed
EnbeddedWebAppl i cati onCont ext server;

@/al ue("${1 ocal . server.port}")
int port;

...

64.6 Configure SSL

SSL can be configured declaratively by setting the various server. ssl . * properties, typically in
application. propertiesorapplication.ynl.Forexample:

server. port=8443

server. ssl. key-store=cl asspat h: keystore. j ks
server. ssl . key- st ore- passwor d=secr et

server. ssl . key-password anot her - secret

See Ssl for details of all of the supported properties.

Using configuration like the example above means the application will no longer support plain HTTP
connector at port 8080. Spring Boot doesn’t support the configuration of both an HTTP connector and
an HTTPS connector via appl i cati on. properti es. If you want to have both then you’'ll need to
configure one of them programmatically. It's recommended to use appl i cati on. properties to
configure HTTPS as the HTTP connector is the easier of the two to configure programmatically. See
the spri ng- boot - sanpl e-t ontat - nul ti - connect or s sample project for an example.

64.7 Configure Tomcat

Generally you can follow the advice from Section 63.7, “Discover built-in options for external properties”
about @onfi gurati onProperties (ServerProperties is the main one here), but also look
at EnbeddedSer vl et Cont ai ner Cust omi zer and various Tomcat-specific * Cust oni zer s that
you can add in one of those. The Tomcat APIs are quite rich so once you have access to the
Tonctat EnbeddedSer vl et Cont ai ner Fact or y you can modify it in a number of ways. Or the nuclear
option is to add your own Tontat EnbeddedSer vl et Cont ai ner Fact ory.

64.8 Enable Multiple Connectors with Tomcat

Add a or g. apache. cat al i na. connect or. Connect or to the
Tontat EnbeddedSer vl et Cont ai ner Fact or y which can allow multiple connectors, e.g. HTTP and
HTTPS connector:

@Bean

publ i ¢ EnbeddedSer vl et Cont ai ner Fact ory servl et Cont ai ner () {
Tontat EnbeddedSer vl et Cont ai ner Factory tontat = new Tontat EnbeddedSer vl et Cont ai ner Fact ory();
tontat . addAddi ti onal Tontat Connect or s(cr eat eSsl Connector());
return toncat;

1.2.8.RELEASE Spring Boot 151

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/context/embedded/Ssl.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-tomcat-multi-connectors

Spring Boot Reference Guide

private Connector createSsl Connector() {
Connector connector = new Connector ("org.apache. coyote. httpll. Ht p11Ni oProtocol ")
Htt p11Ni oPr ot ocol protocol = (HttpllNi oProtocol) connector.getProtocol Handl er ();
try {
File keystore = new C assPat hResour ce("keystore").getFile()
File truststore = new O assPat hResource("keystore").getFile()
connector. set Scheme("https")
connector. set Secure(true)
connect or. set Port (8443);
prot ocol . set SSLEnabl ed(true)
prot ocol . set Keyst or eFi | e(keyst or e. get Absol utePat h());
prot ocol . set Keyst or ePass("changeit");
protocol . set TruststoreFi |l e(truststore. get Absol utePath());
protocol . set Trust st orePass("changeit");
protocol . set KeyAl i as("apitester");
return connector
}
catch (1 COException ex) {
throw new ||| egal StateException("can't access keystore: [" + "keystore"
+ "] or truststore: [" + "keystore" + "]", ex)

64.9 Use Tomcat behind a front-end proxy server

Spring Boot will automatically configure Tomcat’s Renot el pVal ve if you enable it. This allows you
to transparently use the standard x- f or war ded- f or and x- f or war ded- pr ot 0 headers that most
front-end proxy servers add. The valve is switched on by setting one or both of these properties to
something non-empty (these are the conventional values used by most proxies, and if you only set one
the other will be set automatically):

server.toncat.renote_i p_header=x-f orwar ded-f or
server.toncat. protocol _header =x-f orwar ded- prot o

If your proxy uses different headers you can customize the valve’s configuration by adding some entries
toapplication. properties,e.g.

server.tontat.renote_i p_header =x-your-renote-i p- header
server.toncat. prot ocol _header =x-your - prot ocol - header

The valve is also configured with a default regular expression that matches internal proxies that are to
be trusted. By default, IP addresses in 10/8, 192.168/16, 169.254/16 and 127/8 are trusted. You can
customize the valve’s configuration by adding an entry to appl i cati on. properti es, e.g.

server.toncat.internal _proxi es=192\\.168\\.\\d{1, 3}\\.\\d{1, 3}

Note

The double backslashes are only required when you're using a properties file for configuration.
If you are using YAML, single backslashes are sufficient and a value that’s equivalent to the one
shown above would be 192\ . 168\ .\d{1, 3}\.\d{1, 3}.

Alternatively, you can take complete control of the configuration of the Renot el pVal ve by configuring
and adding it in a Tontat EnbeddedSer vl et Cont ai ner Fact ory bean.

64.10 Use Jetty instead of Tomcat

The Spring Boot starters (spri ng- boot - st art er - web in particular) use Tomcat as an embedded
container by default. You need to exclude those dependencies and include the Jetty one instead. Spring

1.2.8.RELEASE Spring Boot 152

Spring Boot Reference Guide

Boot provides Tomcat and Jetty dependencies bundled together as separate starters to help make this
process as easy as possible.

Example in Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactl|d>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-jetty</artifactld>
</ dependency>

Example in Gradle:

configurations {
conpi | e. excl ude nodul e: "spring-boot-starter-toncat"”

}

dependenci es {
conpi | e("org. springfranmework. boot: spring-boot-starter-web: 1. 2. 8. RELEASE")
conpi | e("org. springframework. boot: spring-boot-starter-jetty:1.2. 8. RELEASE")
/1

64.11 Configure Jetty

Generally you can follow the advice from Section 63.7, “Discover built-in options for external properties”
about @onfi gurati onProperties (ServerProperties is the main one here), but also look at
EnbeddedSer vl et Cont ai ner Cust om zer . The Jetty APIs are quite rich so once you have access
to the Jet t yEnbeddedSer vl et Cont ai ner Fact ory you can modify it in a number of ways. Or the
nuclear option is to add your own Jet t yEnmbeddedSer vl et Cont ai ner Fact ory.

64.12 Use Undertow instead of Tomcat

Using Undertow instead of Tomcat is very similar to using Jetty instead of Tomcat. You need to exclude
the Tomcat dependencies and include the Undertow starter instead.

Example in Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-undertow</artifactld>
</ dependency>

Example in Gradle:

1.2.8.RELEASE Spring Boot 153

Spring Boot Reference Guide

configurations {
conpi | e. excl ude nodul e: "spring-boot-starter-toncat"”

}

dependenci es {
conpi | e("org. springframework. boot : spri ng-boot -starter-web: 1. 2. 8. RELEASE")
conpi | e("org. springframework. boot : spring-boot-starter-undertow 1.2. 8. RELEASE")

Il

64.13 Configure Undertow

Generally you can follow the advice from Section 63.7, “Discover built-in options for external properties”
about @onfi gurati onProperties (ServerProperties and ServerProperties. Undert ow
are the main ones here), but also look at EnmbeddedSer vl et Cont ai ner Cust oni zer. Once
you have access to the Undert owEnbeddedSer vl et Cont ai ner Factory you can use an
Under t owBui | der Cust omi zer to modify Undertow’s configuration to meet your needs. Or the
nuclear option is to add your own Under t owEnbeddedSer vl et Cont ai ner Fact ory.

64.14 Enable Multiple Listeners with Undertow

Add an Undert owBui | der Cust oni zer to the Under t owEnbeddedSer vl et Cont ai ner Fact ory
and add a listener to the Bui | der :

@ean

publ i ¢ Undert owEnbeddedSer vl et Cont ai ner Fact ory enbeddedSer vl et Cont ai ner Factory() {
Under t owEnbeddedSer vl et Cont ai ner Factory factory = new UndertowEnbeddedSer vl et Cont ai ner Factory();
factory. addBui | der Cust omi zer s(new Undert owBui | der Cust omi zer () {

@verride
public void custom ze(Builder builder) {
bui | der. addHt t pLi st ener (8080, "0.0.0.0");

}

1)

return factory;

64.15 Use Tomcat 7

Tomcat 7 works with Spring Boot, but the default is to use Tomcat 8. If you cannot use Tomcat 8 (for
example, because you are using Java 1.6) you will need to change your classpath to reference Tomcat
7.

Use Tomcat 7 with Maven

If you are using the starter poms and parent you can just change the Tomcat version property, e.g. for
a simple webapp or service:

<properties>

<t oncat . versi on>7. 0. 59</ t ontat . ver si on>
</ properties>
<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>

</ dependenci es>

1.2.8.RELEASE Spring Boot 154

Spring Boot Reference Guide

Use Tomcat 7 with Gradle

You can use a resolution strategy to change the versions of the Tomcat dependencies, e.g. for a simple
webapp or service:

configurations.all {
resol utionStrategy {
eachDependency {
if (it.requested.group == 'org.apache.tontat.enbed) {
it.useVersion '7.0.59

}

}

dependenci es {
conpil e 'org. springframework. boot: spring-boot -starter-web'

}

64.16 Use Jetty 8

Jetty 8 works with Spring Boot, but the default is to use Jetty 9. If you cannot use Jetty 9 (for example,
because you are using Java 1.6) you will need to change your classpath to reference Jetty 8. You will
also need to exclude Jetty’'s WebSocket-related dependencies.

Use Jetty 8 with Maven

If you are using the starter poms and parent you can just add the Jetty starter with the required
WebSocket exclusion and change the version properties, e.g. for a simple webapp or service:

<properties>
<jetty.version>8.1.15.v20140411</jetty. versi on>
<jetty-jsp.version>2.2.0.v201112011158</ etty-| sp. versi on>
</ properties>
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifactld>spring-boot-starter-web</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-jetty</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>org. ecl i pse. jetty. websocket </ groupl d>
<artifactld>*</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

Use Jetty 8 with Gradle

You can use a resolution strategy to change the version of the Jetty dependencies, e.g. for a simple
webapp or service:

configurations.all {

1.2.8.RELEASE Spring Boot 155

Spring Boot Reference Guide

resol utionStrategy {
eachDependency {
if (it.requested.group == 'org.eclipse.jetty') {
it.useVersion '8.1.15.v20140411"
}

}

dependenci es {
conpil e (' org.springfranmework. boot: spring-boot-starter-web') {
excl ude group: 'org.springfranmework.boot', nodul e: 'spring-boot-starter-toncat’
}
conpil e ('org.springframework. boot: spring-boot-starter-jetty') {
exclude group: 'org.eclipse.jetty.websocket'

}

64.17 Create WebSocket endpoints using @ServerEndpoint

If you want to use @ser ver Endpoi nt in a Spring Boot application that used an embedded container,
you must declare a single Ser ver Endpoi nt Export er @ean:

@Bean
publ i ¢ Server Endpoi nt Exporter server Endpoi nt Exporter () {
return new Server Endpoi nt Exporter();

}

This bean will register any @er ver Endpoi nt annotated beans with the underlying WebSocket
container. When deployed to a standalone servlet container this role is performed by a servlet container
initializer and the Ser ver Endpoi nt Export er bean is not required.

64.18 Enable HTTP response compression

Spring Boot provides two mechanisms for enabling compression of HTTP compression; one that is
Tomcat-specific and another that uses a filter and works with Jetty, Tomcat, and Undertow.

Enable Tomcat's HTTP response compression

Tomcat provides built-in support for HTTP response compression. Itis disabled by default, but can easily
be enabled via appl i cati on. properti es:

server.toncat.conpressi on=on

When set to on Tomcat will compress responses with a length that is at least 2048 bytes. This limit can
be configured by specifying an integer value rather than on, e.g.:

server.toncat. conpressi on=4096

By default Tomcat will only compress responses with certain MIME types (t ext/ htm , text/xm,
and t ext / pl ai n). You can customize this using the server. t ontat. conpr essabl eM neTypes

property, e.g.:
server.toncat. conpressabl eM neTypes=appl i cati on/j son, appli cati on/ xm
Enable HTTP response compression using GzipFilter

If you're using Jetty or Undertow, or you want more sophisticated control over HTTP response
compression, Spring Boot provides auto-configuration for Jetty’'s Gzi pFi | t er . While this filter is part of

1.2.8.RELEASE Spring Boot 156

Spring Boot Reference Guide

Jetty, it's compatible with Tomcat and Undertow as well. To enable the filter, simply add a dependency
onorg.eclipse.jetty:jetty-servlets toyour application.

&ipFilter can be configured wusing the spring.http.gzip.* properties. See
&zi pFil ter Properti es for more details.

1.2.8.RELEASE Spring Boot 157

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/GzipFilterProperties.java

Spring Boot Reference Guide

65. Spring MVC

65.1 Write a JSON REST service

Any Spring @Rest Cont r ol | er in a Spring Boot application should render JISON response by default
as long as Jackson2 is on the classpath. For example:

@Rest Control | er
public class MyController {

@Request Mappi ng("/t hi ng")
public MyThing thing() {

return new MyThing();
}

As long as MyThi ng can be serialized by Jackson2 (e.g. a normal POJO or Groovy object) then
| ocal host : 8080/ t hi ng will serve a JSON representation of it by default. Sometimes in a browser
you might see XML responses because browsers tend to send accept headers that prefer XML.

65.2 Write an XML REST service

If you have the Jackson XML extension (j ackson- dat af or mat - xm) on the classpath, it will be used
to render XML responses and the very same example as we used for JSON would work. To use it, add
the following dependency to your project:

<dependency>
<groupl d>com f ast erxni . j ackson. dat af or mat </ gr oupl d>
<artifactld>jackson-dataformat-xm </artifactld>

</ dependency>

You may also want to add a dependency on Woodstox. It's faster than the default Stax implementation
provided by the JDK and also adds pretty print support and improved namespace handling:

<dependency>
<groupl d>or g. codehaus. woodst ox</ gr oupl d>
<artifact!| d>woodst ox-core-asl </artifactld>

</ dependency>

If Jackson’s XML extension is not available, JAXB (provided by default in the JDK) will be used, with
the additional requirement to have MyThi ng annotated as @m Root El enent :

@ Root El enent

public class MyThing {
private String nane;
/1 .. getters and setters

To get the server to render XML instead of JSON you might have to send an Accept: text/xnl
header (or use a browser).

65.3 Customize the Jackson ObjectMapper

Spring MVC (client and server side) uses Ht t pMessageConvert er s to negotiate content conversion
in an HTTP exchange. If Jackson is on the classpath you already get the default converter(s) provided
by Jackson2(hj ect Mapper Bui | der .

1.2.8.RELEASE Spring Boot 158

http://localhost:8080/thing

Spring Boot Reference Guide

The Obj ect Mapper (or Xm Mapper for Jackson XML converter) instance created by default have the
following customized properties:

* Mapper Feat ur e. DEFAULT_VI EW | NCLUSI ONis disabled
e DeserializationFeature. FAl L_ON _UNKNOAN PROPERTI ESis disabled
Spring Boot has also some features to make it easier to customize this behavior.

You can configure the Cbj ect Mapper and Xm Mapper instances using the environment. Jackson
provides an extensive suite of simple on/off features that can be used to configure various aspects of
its processing. These features are described in five enums in Jackson which map onto properties in
the environment:

Jackson enum Environment property

com fasterxni .jackson. dat abi nd. Deser i edpraaig.grdadedam.edeseri al i zat i on. <f eat ure_nanme>=tru
fal se

com fast erxm . j ackson. core. JsonGener atspr.iFeatjuaekson. gener at or . <f eat ur e_name>=tr ue|
fal se

com fast erxm . j ackson. dat abi nd. Mapper Fgatiutge j ackson. napper. <f eat ure_nane>=t r ue|
fal se

com fasterxm . jackson. core. JsonPar ser .dqmdatng.g ackson. par ser. <f eat ure_nane>=t r ue|
fal se

com fast erxm . j ackson. dat abi nd. Seri al igatiirnnHesatks@n. seri al i zati on. <f eat ure_nanme>=t r ue|
fal se

For example, to enable pretty print, set
spring.jackson. serialization.indent_out put=true.Note that, thanks to the use of relaxed
binding, the case of i ndent _out put doesn’t have to match the case of the corresponding enum
constant which is | NDENT_OQUTPUT.

If you want to replace the default Cbj ect Mapper completely, define a @ean of that type and mark
itas @rimary.

Defining a @ean of type Jackson2Obj ect Mapper Bui | der will allow you to customize both
default Obj ect Mapper and Xm Mapper (used in Mappi ngJackson2Ht t pMessageConvert er and
Mappi hgJackson2Xmi Ht t pMessageConvert er respectively).

Another way to customize Jackson is to add beans of type
com fasterxn .jackson. dat abi nd. Modul e to your context. They will be registered with every
bean of type Obj ect Mapper , providing a global mechanism for contributing custom modules when you
add new features to your application.

Finally, if you provide any @eans of type Mappi hgJackson2Ht t pMessageConvert er then they
will replace the default value in the MVC configuration. Also, a convenience bean is provided of type
Ht t pMessageConvert ers (always available if you use the default MVC configuration) which has
some useful methods to access the default and user-enhanced message converters.

See also the Section 65.4, “Customize the @ResponseBody rendering” section and the
WebMrcAut oConf i gur at i on source code for more details.

1.2.8.RELEASE Spring Boot 159

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java

Spring Boot Reference Guide

65.4 Customize the @ResponseBody rendering

Spring uses HtpMessageConverters to render @ResponseBody (or responses from
@rest Cont r ol | er). You can contribute additional converters by simply adding beans of that type in a
Spring Boot context. If a bean you add is of a type that would have been included by default anyway (like
Mappi ngJackson2Ht t pMessageConvert er for JSON conversions) then it will replace the default
value. A convenience bean is provided of type Ht t pMessageConvert ers (always available if you
use the default MVC configuration) which has some useful methods to access the default and user-
enhanced message converters (useful, for example if you want to manually inject them into a custom
Rest Tenpl at e).

As in normal MVC usage, any WebM/cConfi gur er Adapt er beans that you provide can also
contribute converters by overriding the confi gur eMessageConvert ers method, but unlike with
normal MVC, you can supply only additional converters that you need (because Spring Boot
uses the same mechanism to contribute its defaults). Finally, if you opt-out of the Spring
Boot default MVC configuration by providing your own @nabl eWwebMsc configuration, then you
can take control completely and do everything manually using get MessageConverters from
WebMvcConf i gur ati onSupport.

See the WebMrcAut oConf i gur at i on source code for more details.

65.5 Handling Multipart File Uploads

Spring Boot embraces the Servlet 3 j avax. servl et. htt p. Part API to support uploading files. By
default Spring Boot configures Spring MVC with a maximum file of 1Mb per file and a maximum of
10Mb of file data in a single request. You may override these values, as well as the location to which
intermediate data is stored (e.g., to the / t np directory) and the threshold past which data is flushed to
disk by using the properties exposed in the Mul ti part Properti es class. If you want to specify that
files be unlimited, for example, set the mul ti part. maxFi | eSi ze property to - 1.

The multipart support is helpful when you want to receive multipart encoded file data as a
@Request Par amannotated parameter of type Mul ti part Fi | e in a Spring MVC controller handler
method.

See the Mul ti part Aut oConfi gur ati on source for more details.

65.6 Switch off the Spring MVC DispatcherServlet

Spring Boot wants to serve all content from the root of your application / down. If you would rather map
your own servlet to that URL you can do it, but of course you may lose some of the other Boot MVC
features. To add your own servlet and map it to the root resource just declare a @ean of type Ser vl et
and give it the special bean name di spat cher Servl et (You can also create a bean of a different
type with that name if you want to switch it off and not replace it).

65.7 Switch off the Default MVC configuration

The easiest way to take complete control over MVC configuration is to provide your own
@conf i gur at i on with the @nabl eWebM/c annotation. This will leave all MVC configuration in your
hands.

1.2.8.RELEASE Spring Boot 160

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/MultipartAutoConfiguration.java

Spring Boot Reference Guide

65.8 Customize ViewResolvers

A Vi ewResol ver is a core component of Spring MVC, translating view names in @ontrol | er
to actual Vi ew implementations. Note that Vi ewResol vers are mainly used in Ul applications,
rather than REST-style services (a Vi ew is not used to render a @ResponseBody). There are many
implementations of Vi ewResol ver to choose from, and Spring on its own is not opinionated about
which ones you should use. Spring Boot, on the other hand, installs one or two for you depending on
what it finds on the classpath and in the application context. The Di spat cher Ser vl et uses all the
resolvers it finds in the application context, trying each one in turn until it gets a result, so if you are
adding your own you have to be aware of the order and in which position your resolver is added.

WebMscAut oConf i gur at i on adds the following Vi ewResol ver s to your context:

An | nt er nal Resour ceVi enResol ver with bean id ‘defaultViewResolver'. This one locates
physical resources that can be rendered using the Def aul t Ser vl et (e.g. static resources and JSP
pages if you are using those). It applies a prefix and a suffix to the view name and then looks for
a physical resource with that path in the servlet context (defaults are both empty, but accessible for
external configuration viaspri ng. vi ew. prefi xandspri ng. vi ew. suf fi x). It can be overridden
by providing a bean of the same type.

A BeanNanmeVi ewResol ver with id ‘beanNameViewResolver'. This is a useful member of the view
resolver chain and will pick up any beans with the same name as the Vi ewbeing resolved. It shouldn’t
be necessary to override or replace it.

A Cont ent Negoti ati ngVi ewResol ver with id ‘viewResolver' is only added if there are
actually beans of type Vi ew present. This is a ‘master’ resolver, delegating to all the others
and attempting to find a match to the ‘Accept’ HTTP header sent by the client. There is a
useful blog about Cont ent Negoti ati ngVi ewResol ver that you might like to study to learn
more, and also look at the source code for detail. You can switch off the auto-configured
Cont ent Negot i ati ngVi ewResol ver by defining a bean named ‘viewResolver'.

If you wuse Thymeleaf you wil also have a Thymnel eafVi ewResol ver with id
‘thymeleafViewResolver'. It looks for resources by surrounding the view name with a prefix and
suffix (externalized to spri ng. t hynel eaf . prefi x and spri ng. t hynel eaf . suf fi x, defaults
‘classpath:/templates/ and ‘.html’ respectively). It can be overridden by providing a bean of the same
name.

If you use FreeMarker you will also have a FreeMarkerVi ewResol ver with id
‘freeMarkerViewResolver'. It looks for resources in a loader path (externalized to
spring. freemarker.tenpl at eLoader Pat h, default ‘classpath:/templates/’) by surrounding
the view name with a prefix and suffix (externalized to spring. freemarker. prefix and
spring. freemarker. suf fi x, with empty and “.ftI' defaults respectively). It can be overridden by
providing a bean of the same name.

If you use Groovy templates (actually if groovy-templates is on your classpath) you will
also have a G oovyMar kupVi ewResol ver with id ‘groovyMarkupViewResolver'. It looks for
resources in a loader path by surrounding the view name with a prefix and suffix (externalized
to spring.groovy.tenplate.prefix and spring.groovy.tenplate.suffix, defaults
‘classpath:/templates/’ and ‘.tpl’ respectively). It can be overriden by providing a bean of the same
name.

If you use Velocity you will also have a Vel oci t yVi ewResol ver with id ‘velocityViewResolver'. It
looks for resources in a loader path (externalized to spri ng. vel oci ty. resour ceLoader Pat h,

1.2.8.RELEASE Spring Boot 161

https://spring.io/blog/2013/06/03/content-negotiation-using-views

Spring Boot Reference Guide

default ‘classpath:/templates/’) by surrounding the view name with a prefix and suffix (externalized
to spring.velocity. prefix and spring.vel ocity. suffix, with empty and ‘.vm’ defaults
respectively). It can be overridden by providing a bean of the same name.

Check out WebM/cAut oConfi gur ati on, Thynel eaf Aut oConfi gurati on,
Fr eeMar ker Aut oConf i gur ati on, G oovyTenpl at eAut oConf i gur ati on and
Vel oci t yAut oConfi gurati on

1.2.8.RELEASE Spring Boot 162

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/velocity/VelocityAutoConfiguration.java

Spring Boot Reference Guide

66. Logging

Spring Boot has no mandatory logging dependence, except for the cormons- | oggi ng API, of which
there are many implementations to choose from. To use Logback you need to include it, and some
bindings for conmons- | oggi ng on the classpath. The simplest way to do that is through the starter
poms which all depend on spri ng- boot - starter-1oggi ng. For a web application you only need
spring-boot - st art er - web since it depends transitively on the logging starter. For example, using
Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>

</ dependency>

Spring Boot has a Loggi ngSyst emabstraction that attempts to configure logging based on the content
of the classpath. If Logback is available it is the first choice.

If the only change you need to make to logging is to set the levels of various loggers then you can do
thatin appl i cati on. properti es using the "logging.level" prefix, e.g.

| oggi ng. | evel . org. spri ngf ramewor k. web=DEBUG
| oggi ng. | evel . or g. hi ber nat e=ERROR

You can also set the location of a file to log to (in addition to the console) using "logging.file".

To configure the more fine-grained settings of a logging system you need to use the native configuration
format supported by the Loggi ngSyst emin question. By default Spring Boot picks up the native
configuration from its default location for the system (e.g. cl asspat h: | ogback. xm for Logback), but
you can set the location of the config file using the "logging.config" property.

66.1 Configure Logback for logging

If you put a | ogback. xm in the root of your classpath it will be picked up from there. Spring Boot
provides a default base configuration that you can include if you just want to set levels, e.g.

<?xm version="1.0" encodi ng="UTF-8"?>

<confi guration>
<include resource="org/springframework/boot/| oggi ng/ | ogback/ base. xm "/ >
<l ogger nane="org. spri ngfranmewor k. web" | evel =" DEBUG'/ >

</ configuration>

If you look at the default | ogback. xm in the spring-boot jar you will see that it uses some useful
System properties which the Loggi ngSyst emtakes care of creating for you. These are:

« ${ PI D} the current process ID.
* ${LOG _FI LE} if | oggi ng. fi | e was set in Boot's external configuration.
+ ${LOG _PATH} if | oggi ng. pat h was set (representing a directory for log files to live in).

Spring Boot also provides some nice ANSI colour terminal output on a console (but not in a log file)
using a custom Logback converter. See the default base. xm configuration for details.

If Groovy is on the classpath you should be able to configure Logback with | ogback. gr oovy as well
(it will be given preference if present).

1.2.8.RELEASE Spring Boot 163

http://logback.qos.ch

Spring Boot Reference Guide

66.2 Configure Log4j for logging

Spring Boot also supports either Log4j or Log4j 2 for logging configuration, but only if one of them is on
the classpath. If you are using the starter poms for assembling dependencies that means you have to
exclude Logback and then include your chosen version of Log4j instead. If you aren’t using the starter
poms then you need to provide cormons- | oggi ng (at least) in addition to your chosen version of Log4j.

The simplest path is probably through the starter poms, even though it requires some jiggling with
excludes, .e.g. in Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifactld>spring-boot-starter</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-1logging</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-log4j</artifactld>
</ dependency>

To use Log4j 2, simply depend on spri ng-boot -starter-I|o0g4j 2 rather than spri ng- boot -
starter-1og4j.

Note

The use of one of the Log4j starters gathers together the dependencies for common logging
requirements (e.g. including having Tomcatuse j ava. uti | . | oggi ng but configuring the output
using Log4j or Log4j 2). See the Actuator Log4j or Log4j 2 samples for more detail and to see
it in action.

Use YAML or JSON to configure Log4j 2

In addition to its default XML configuration format, Log4j 2 also supports YAML and JSON
configuration files. To configure Log4j 2 to use an alternative configuration file format all you need
to do is add an appropriate dependency to the classpath. To use YAML, add a dependency on
com fasterxnl .jackson. dat af or mat : j ackson- dat af or mat - yaml and Log4j 2 will look for
configuration files names | og4j 2. yam or | og4j 2. yml . To use JSON, add a dependency on
com f ast erxm . j ackson. core: j ackson- dat abi nd and Log4j 2 will look for configuration files
named | 0og4j 2. j sonorl og4j2.jsn

1.2.8.RELEASE Spring Boot 164

http://logging.apache.org/log4j/1.2
http://logging.apache.org/log4j/2.x

Spring Boot Reference Guide

67. Data Access

67.1 Configure a DataSource

To override the default settings just define a @ean of your own of type Dat aSour ce. Spring Boot
provides a utility builder class Dat aSour ceBui | der that can be used to create one of the standard
ones (if it is on the classpath), or you can just create your own, and bind it to a set of Envi r onnent
properties as explained in the section called “Third-party configuration”, e.g.

@Bean
@onfi gurationProperties(prefix="datasource.m ne")
publ i ¢ DataSource dataSource() {

return new FancyDat aSource();

}

dat asour ce. m ne. j dbcUr | =j dbc: h2: mem nydb
dat asour ce. m ne. user =sa
dat asour ce. m ne. pool Si ze=30

See Section 28.1, “Configure a DataSource” in the ‘Spring Boot features’ section and the
Dat aSour ceAut oConf i gur at i on class for more details.

67.2 Configure Two DataSources

Creating more than one data source works the same as creating the first one. You might want to mark
one of them as @r i mary if you are using the default auto-configuration for JDBC or JPA (then that
one will be picked up by any @\ut owi r ed injections).

@Bean
@i mary
@onfi gurationProperties(prefix="datasource. prinary")
publ i c Dat aSource pri maryDat aSource() {
return DataSourceBuil der.create().build();

}

@Bean
@onfi gurationProperties(prefix="datasource. secondary")
publ i c Dat aSour ce secondaryDat aSource() {

return DataSourceBuil der.create().build();

}

67.3 Use Spring Data repositories

Spring Data can create implementations for you of @Reposi t or y interfaces of various flavors. Spring
Boot will handle all of that for you as long as those @Reposi t ori es are included in the same package
(or a sub-package) of your @nabl eAut oConfi gur ati on class.

For many applications all you will need is to put the right Spring Data dependencies on your classpath
(there is a spring-boot-starter-data-jpa for JPA and a spring-boot-starter-data-
nongodb for Mongodb), create some repository interfaces to handle your @nt i t y objects. Examples
are in the JPA sample or the Mongodb sample.

Spring Boot tries to guess the location of your @Repository definitions, based on the
@nabl eAut oConfi gur ati on it finds. To get more control, use the @nabl eJpaReposi tories
annotation (from Spring Data JPA).

1.2.8.RELEASE Spring Boot 165

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-data-jpa
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-data-mongodb

Spring Boot Reference Guide

67.4 Separate @Entity definitions from Spring configuration

Spring Boot tries to guess the location of your @Entity definitions, based on the
@nabl eAut oConfi guration it finds. To get more control, you can use the @ntityScan
annotation, e.g.

@onfiguration

@nabl eAut oConf i guration

@nt it yScan(basePackageC asses=Ci ty. cl ass)
public class Application {

/...

67.5 Configure JPA properties

Spring Data JPA already provides some vendor-independent configuration options (e.g. for SQL
logging) and Spring Boot exposes those, and a few more for hibernate as external configuration
properties. The most common options to set are:

spring.jpa. hibernate. ddl -auto: create-drop

spring.j pa. hi bernate. nam ng_strategy: org.hibernate.cfg.|nprovedNam ngStrat egy
spring.j pa.database: H2

spring.jpa.showsqgl: true

(Because of relaxed data binding hyphens or underscores should work equally well as property
keys.) The ddl - aut o setting is a special case in that it has different defaults depending on whether
you are using an embedded database (cr eat e- dr op) or not (none). In addition all properties in
spring.jpa.properties.* are passed through as normal JPA properties (with the prefix stripped)
when the local Ent i t yManager Fact ory is created.

See Hi ber nat eJpaAut oConf i gur ati on and JpaBaseConf i gur ati on for more details.

67.6 Use a custom EntityManagerFactory

To take full control of the configuration of the Ent i t yManager Fact ory, you need to add a @ean
named ‘entityManagerFactory’. Spring Boot auto-configuration switches off its entity manager based on
the presence of a bean of that type.

67.7 Use Two EntityManagers

Even if the default Ent i t yManager Fact or y works fine, you will need to define a new one because
otherwise the presence of the second bean of that type will switch off the default. To make it easy to do
that you can use the convenient Ent i t yManager Bui | der provided by Spring Boot, or if you prefer
you can just use the Local Cont ai ner Enti t yManager Fact or yBean directly from Spring ORM.

Example:
/] add two data sources configured as above

@Bean
publ i c Local Cont ai ner EntityManager Fact or yBean cust oner Enti t yManager Fact or y(
Enti t yManager Fact oryBui | der buil der) {
return builder
. dat aSour ce(cust oner Dat aSour ce())
. packages(Cust oner . cl ass)

1.2.8.RELEASE Spring Boot 166

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java

Spring Boot Reference Guide

. persi stenceUnit("custoners")
.bui 1 d();
}

@Bean
publ i c Local Cont ai ner Enti t yManager Fact or yBean or der Enti t yManager Fact or y(
Enti t yManager Fact or yBui | der buil der) {
return builder

. dat aSour ce(or der Dat aSour ce())
. packages(Order. cl ass)
. persistenceUnit("orders")
Lbuild();

The configuration above almost works on its own. To complete the picture you need to configure
Transact i onManager s for the two Ent i t yManager s as well. One of them could be picked up by the
default JpaTr ansact i onManager in Spring Boot if you mark it as @r i mar y. The other would have
to be explicitly injected into a new instance. Or you might be able to use a JTA transaction manager
spanning both.

67.8 Use a traditional persistence.xmi

Spring doesn’t require the use of XML to configure the JPA provider, and Spring Boot assumes you
want to take advantage of that feature. If you prefer to use per si st ence. xm then you need to define
your own @Bean of type Local Enti t yManager Fact or yBean (with id ‘entityManagerFactory’, and
set the persistence unit name there.

See JpaBaseConf i gur at i on for the default settings.

67.9 Use Spring Data JPA and Mongo repositories

Spring Data JPA and Spring Data Mongo can both create Repository implementations for you
automatically. If they are both present on the classpath, you might have to do some extra configuration
to tell Spring Boot which one (or both) you want to create repositories for you. The most explicit way
to do that is to use the standard Spring Data @nabl e* Reposi t ori es and tell it the location of your
Reposi t ory interfaces (where *" is ‘Jpa’ or ‘Mongo’ or both).

There are also flags spri ng. dat a. *. reposi t ori es. enabl ed that you can use to switch the auto-
configured repositories on and off in external configuration. This is useful for instance in case you want
to switch off the Mongo repositories and still use the auto-configured MongoTenpl at e.

The same obstacle and the same features exist for other auto-configured Spring Data repository types
(Elasticsearch, Solr). Just change the names of the annotations and flags respectively.

67.10 Expose Spring Data repositories as REST endpoint

Spring Data REST can expose the Reposi t or y implementations as REST endpoints for you as long
as Spring MVC has been enabled for the application.

Spring Boot exposes as set of useful properties from the spring.data.rest
namespace that customize the RepositoryRestConfiguration. If you need to provide
additional customization, you <can «create a @Configuration class that extends
Spri ngBoot Reposi t or yRest MvcConf i gur ati on. This class supports the same functionality as
Reposi t or yRest MvcConf i gur ati on, but allows you to continue using spring. data.rest.*
properties.

1.2.8.RELEASE Spring Boot 167

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
http://docs.spring.io/spring-data/rest/docs/current/api/org/springframework/data/rest/core/config/RepositoryRestConfiguration.html

Spring Boot Reference Guide

68. Database initialization

An SQL database can be initialized in different ways depending on what your stack is. Or of course you
can do it manually as long as the database is a separate process.

68.1 Initialize a database using JPA

JPA has features for DDL generation, and these can be set up to run on startup against the database.
This is controlled through two external properties:

e spring.jpa.generate-ddl (boolean) switches the feature on and off and is vendor independent.

* spring.jpa. hi bernate. ddl - aut o (enum) is a Hibernate feature that controls the behavior in a
more fine-grained way. See below for more detail.

68.2 Initialize a database using Hibernate

You can set spring.j pa. hi bernate. ddl - aut o explicitly and the standard Hibernate property
values are none, val i dat e, updat e, cr eat e- dr op. Spring Boot chooses a default value for you
based on whether it thinks your database is embedded (default cr eat e- dr op) or not (default none).
An embedded database is detected by looking at the Connect i on type: hsqgl db, h2 and der by are
embedded, the rest are not. Be careful when switching from in-memory to a ‘real’ database that you
don’t make assumptions about the existence of the tables and data in the new platform. You either have
to set ddl - aut o explicitly, or use one of the other mechanisms to initialize the database.

In addition, a file named i nport . sql in the root of the classpath will be executed on startup. This can
be useful for demos and for testing if you are careful, but probably not something you want to be on the
classpath in production. It is a Hibernate feature (nothing to do with Spring).

68.3 Initialize a database using Spring JDBC

Spring JDBC has a Dat aSour ce initializer feature. Spring Boot enables it by default and loads
SQL from the standard locations schena. sql and dat a. sql (in the root of the classpath). In
addition Spring Boot will load the schema- ${pl atf orm}. sql and dat a- ${pl atforn}. sql files
(if present), where pl at f ormis the value of spring. dat asource. pl atform e.g. you might
choose to set it to the vendor name of the database (hsql db, h2, oracl e, nysql , post gresql
etc.). Spring Boot enables the failfast feature of the Spring JDBC initializer by default, so if the
scripts cause exceptions the application will fail to start. The script locations can be changed by
setting spri ng. dat asour ce. schena and spri ng. dat asour ce. dat a, and neither location will be
processed if spri ng. dat asource. i nitialize=fal se.

To disable the failfast you can set spri ng. dat asource. conti nueOnError=true. This can be
useful once an application has matured and been deployed a few times, since the scripts can act as
‘poor man’s migrations’ — inserts that fail mean that the data is already there, so there would be no
need to prevent the application from running, for instance.

If you want to use the schema. sqgl initialization in a JPA app (with Hibernate) then ddl -
aut o=cr eat e- dr op will lead to errors if Hibernate tries to create the same tables. To avoid those
errors setddl - aut o explicitly to " (preferable) or "none". Whether or not you use ddl - aut o=cr eat e-
dr op you can always use dat a. sql to initialize new data.

1.2.8.RELEASE Spring Boot 168

Spring Boot Reference Guide

68.4 Initialize a Spring Batch database

If you are using Spring Batch then it comes pre-packaged with SQL initialization scripts for most popular
database platforms. Spring Boot will detect your database type, and execute those scripts by default,
and in this case will switch the fail fast setting to false (errors are logged but do not prevent the application
from starting). This is because the scripts are known to be reliable and generally do not contain bugs, so
errors are ignorable, and ignoring them makes the scripts idempotent. You can switch off the initialization
explicitly using spri ng. batch.initializer.enabl ed=f al se.

68.5 Use a higher level database migration tool

Spring Boot works fine with higher level migration tools Flyway (SQL-based) and Liguibase (XML). In
general we prefer Flyway because it is easier on the eyes, and it isn’'t very common to need platform
independence: usually only one or at most couple of platforms is needed.

Execute Flyway database migrations on startup

To automatically run Flyway database migrations on startup, add the or g. f | ywaydb: f| yway- core
to your classpath.

The migrations are scripts in the form V<VERSI ON>_ <NAME>. sql (with <VERSI ON> an underscore-
separated version, e.g. ‘1’ or ‘2_1"). By default they live in a folder cl asspat h: db/ m gr ati on butyou
can modify that using f | yway. | ocat i ons (a list). See the Flyway class from flyway-core for details
of available settings like schemas etc. In addition Spring Boot provides a small set of properties in
FI ywayPr oper ti es that can be used to disable the migrations, or switch off the location checking.

By default Flyway will autowire the (@ri mary) Dat aSour ce in your context and use that for
migrations. If you like to use a different Dat aSour ce you can create one and mark its @ean as
@ ywayDat aSour ce - if you do that remember to create another one and mark it as @ri mary
if you want two data sources. Or you can use Flyway’s native Dat aSour ce by setting f | yway.
[url,user, passwor d] in external properties.

There is a Flyway sample so you can see how to set things up.

Execute Liquibase database migrations on startup

To automatically run Liguibase database migrations on startup, add the
org. |l i qui base: | i qui base- cor e to your classpath.

The master change log is by default read from db/ changel og/ db. changel og- nast er. yam but
can be set using | i qui base. change-| 0g. See Li qui basePr operti es for details of available
settings like contexts, default schema etc.

There is a Liguibase sample so you can see how to set things up.

1.2.8.RELEASE Spring Boot 169

http://flywaydb.org/
http://www.liquibase.org/
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-flyway
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-liquibase

Spring Boot Reference Guide

69. Batch applications

69.1 Execute Spring Batch jobs on startup

Spring Batch auto configuration is enabled by adding @nabl eBat chPr ocessi ng (from Spring Batch)
somewhere in your context.

By default it executes all Jobs in the application context on startup (see
JobLauncherCommandLineRunner for details). You can narrow down to a specific job or jobs by
specifying spri ng. bat ch. j ob. nanes (comma-separated job name patterns).

If the application context includes a JobRegi st ry then the jobs in spri ng. bat ch. j ob. nanes are
looked up in the registry instead of being autowired from the context. This is a common pattern with
more complex systems where multiple jobs are defined in child contexts and registered centrally.

See BatchAutoConfiguration and @EnableBatchProcessing for more details.

1.2.8.RELEASE Spring Boot 170

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/JobLauncherCommandLineRunner.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
https://github.com/spring-projects/spring-batch/blob/master/spring-batch-core/src/main/java/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.java

Spring Boot Reference Guide

70. Actuator

70.1 Change the HTTP port or address of the actuator
endpoints

In a standalone application the Actuator HTTP port defaults to the same as the main HTTP port. To
make the application listen on a different port set the external property nanagenent . port. To listen
on a completely different network address (e.g. if you have an internal network for management and
an external one for user applications) you can also set managenent . addr ess to a valid IP address
that the server is able to bind to.

For more detail look at the Managenent Server Properties source code and Section 41.3
“Customizing the management server port” in the ‘Production-ready features’ section.

70.2 Customize the ‘whitelabel’ error page

Spring Boot installs a ‘whitelabel’ error page that you will see in browser client if you encounter a server
error (machine clients consuming JSON and other media types should see a sensible response with
the right error code). To switch it off you can set er r or . whi t el abel . enabl ed=f al se, but normally
in addition or alternatively to that you will want to add your own error page replacing the whitelabel one.
Exactly how you do this depends on the templating technology that you are using. For example, if you
are using Thymeleaf you would add an error. ht Ml template and if you are using FreeMarker you
would add an error. ftl template. In general what you need is a Vi ew that resolves with a name
of error, and/or a @ontrol | er that handles the / err or path. Unless you replaced some of the
default configuration you should find a BeanNaneVi ewResol ver in your Appl i cati onCont ext so
a @ean with id er r or would be a simple way of doing that. Look at Er r or MrcAut oConf i gur ati on
for more options.

See also the section on Error Handling for details of how to register handlers in the servlet container.

1.2.8.RELEASE Spring Boot 171

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ErrorMvcAutoConfiguration.java

Spring Boot Reference Guide

71. Security

71.1 Switch off the Spring Boot security configuration

If you define a @onfi gurati on with @nabl eWebSecurity anywhere in your application it will
switch off the default webapp security settings in Spring Boot. To tweak the defaults try setting properties
insecurity.* (see SecurityProperties for details of available settings) and SECURI TY section
of Common application properties.

71.2 Change the AuthenticationManager and add user
accounts

If you provide a @ean of type Aut hent i cati onManager the default one will not be created, so you
have the full feature set of Spring Security available (e.g. various authentication options).

Spring Security also provides a convenient Aut hent i cat i onManager Bui | der which can be used
to build an Aut hent i cat i onManager with common options. The recommended way to use this in a
webapp is to inject it into a void method in a WebSecur i t yConf i gur er Adapt er, e.g.

@onfi guration
public class SecurityConfiguration extends WbSecurityConfi gurerAdapter {

@\ut owi r ed
public void configured obal (Aut henti cati onManager Bui | der auth) throws Exception {
aut h. i nMenor yAut henti cation()
. W thUser ("barry"). password("password").roles("USER'); // ... etc.

/1 ... other stuff for application security

You will get the best results if you put this in a nested class, or a standalone class (i.e. not mixed in
with a lot of other @eans that might be allowed to influence the order of instantiation). The secure web
sample is a useful template to follow.

If you experience instantiation issues (e.g. using JDBC or JPA for the user detail
store) it might be worth extracting the Aut henti cati onManager Buil der callback into a
G obal Aut henti cati onConfi gurer Adapter (in the i nit() method so it happens before the
authentication manager is needed elsewhere), e.g.

@onfiguration
public class Authenticati onManager Confi gurati on extends

G obal Aut henti cati onConfi gurer Adapter {

@verride
public void init(Authenticati onManagerBuilder auth) {
aut h. i nMenoryAut hentication() // ... etc.

}

71.3 Enable HTTPS when running behind a proxy server

Ensuring that all your main endpoints are only available over HTTPS is an important chore for any
application. If you are using Tomcat as a servlet container, then Spring Boot will add Tomcat's own

1.2.8.RELEASE Spring Boot 172

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jc-authentication
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-web-secure
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-web-secure

Spring Boot Reference Guide

Renot el pVal ve automatically if it detects some environment settings, and you should be able to
rely on the Ht t pSer vl et Request to report whether it is secure or not (even downstream of a proxy
server that handles the real SSL termination). The standard behavior is determined by the presence or
absence of certain request headers (x- f or war ded- f or and x- f or war ded- pr ot 0), whose names
are conventional, so it should work with most front end proxies. You can switch on the valve by adding
some entries to appl i cati on. properti es, e.g.

server.toncat.renote_i p_header =x-f orwar ded-f or
server.tontat. protocol _header =x-f or war ded- prot o

(The presence of either of those properties will switch on the valve. Or you can add the Renot el pVal ve
yourself by adding a Tontat EnbeddedSer vl et Cont ai ner Fact ory bean.)

Spring Security can also be configured to require a secure channel for all (or some requests). To
switch that on in a Spring Boot application you just need to set security.require_ssl totruein
application. properties.

1.2.8.RELEASE Spring Boot 173

Spring Boot Reference Guide

72. Hot swapping

72.1 Reload static content

There are several options for hot reloading. Running in an IDE (especially with debugging on) is a
good way to do development (all modern IDEs allow reloading of static resources and usually also
hot-swapping of Java class changes). The Maven and Gradle plugins also support running from the
command line with reloading of static files. You can use that with an external css/js compiler process
if you are writing that code with higher level tools.

72.2 Reload Thymeleaf templates without restarting the
container

If you are using Thymeleaf, then set spring.thyneleaf.cache to false. See
Thynel eaf Aut oConf i gur at i on for other Thymeleaf customization options.

72.3 Reload FreeMarker templates without restarting the
container

If you are using FreeMarker, then set spring.freemarker.cache to false. See
Fr eeMar ker Aut oConf i gur at i on for other FreeMarker customization options.

72.4 Reload Groovy templates without restarting the container

If you are using Groovy templates, then set spring. groovy. tenpl ate. cache to fal se. See
G oovyTenpl at eAut oConf i gur at i on for other Groovy customization options.

72.5 Reload Velocity templates without restarting the container

If you are wusing Velocity, then set spring.velocity.cache to false. See
Vel oci t yAut oConfi gur at i on for other Velocity customization options.

72.6 Reload Java classes without restarting the container

Modern IDEs (Eclipse, IDEA, etc.) all support hot swapping of bytecode, so if you make a change that
doesn't affect class or method signatures it should reload cleanly with no side effects.

Spring Loaded goes a little further in that it can reload class definitions with changes in the method
signatures. With some customization it can force an Appl i cat i onCont ext to refresh itself (but there
is no general mechanism to ensure that would be safe for a running application anyway, so it would
only ever be a development time trick probably).

Configuring Spring Loaded for use with Maven

To use Spring Loaded with the Maven command line, just add it as a dependency in the Spring Boot
plugin declaration, e.g.

<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>

<dependenci es>

1.2.8.RELEASE Spring Boot 174

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/velocity/VelocityAutoConfiguration.java
https://github.com/spring-projects/spring-loaded

Spring Boot Reference Guide

<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>springloaded</artifactld>
<ver si on>1. 2. 0. RELEASE</ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>

This normally works pretty well with Eclipse and IntelliJ as long as they have their build configuration
aligned with the Maven defaults (Eclipse m2e does this out of the box).

Configuring Spring Loaded for use with Gradle and IntelliJ

You need to jump through a few hoops if you want to use Spring Loaded in combination with Gradle
and IntelliJ. By default, IntelliJ will compile classes into a different location than Gradle, causing Spring
Loaded monitoring to fail.

To configure Intellid correctly you can use the i dea Gradle plugin:

bui l dscript {
repositories { jcenter() }
dependenci es {
cl asspath "org. springfranmewor k. boot : spri ng- boot - gradl e- pl ugi n: 1. 2. 8. RELEASE"
classpath 'org. springframework: springl oaded: 1. 2. 0. RELEASE'

}

apply plugin: 'ideal

idea {
nmodul e {
inheritQutputDirs = fal se
outputDir = file("$buildDir/classes/min/")
}
}
/1
Note

IntelliJ must be configured to use the same Java version as the command line Gradle task and
spri ngl oaded must be included as a bui | dscri pt dependency.

You can also additionally enable ‘Make Project Automatically’ inside Intellij to automatically compile your
code whenever a file is saved.

1.2.8.RELEASE Spring Boot 175

Spring Boot Reference Guide

73. Build

73.1 Customize dependency versions with Maven

If you use a Maven build that inherits directly or indirectly from spri ng- boot - dependenci es (for
instance spri ng- boot - st art er - par ent) but you want to override a specific third-party dependency
you can add appropriate <pr opert i es> elements. Browse the spri ng- boot - dependenci es POM
for a complete list of properties. For example, to pick a different sl f 4] version you would add the
following:

<properties>
<sl f4j.version>1.7.5<sl|f4j.version>
</ properties>

Note

This only works if your Maven project inherits (directly or indirectly) from spri ng-
boot - dependenci es. If you have added spring-boot-dependenci es in your own
dependencyManagenent section with <scope>i nport </ scope> you have to redefine the
artifact yourself instead of overriding the property .

Warning

Each Spring Boot release is designed and tested against a specific set of third-party
dependencies. Overriding versions may cause compatibility issues.

73.2 Create an executable JAR with Maven

The spri ng- boot - maven- pl ugi n can be used to create an executable ‘fat’ JAR. If you are using
the spri ng- boot - starter-parent POM you can simply declare the plugin and your jars will be
repackaged:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

If you are not using the parent POM you can still use the plugin, however, you must additionally add
an <execut i ons> section:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactl|d>
<ver si on>1. 2. 8. RELEASE</ ver si on>
<executions>
<executi on>
<goal s>
<goal >r epackage</ goal >
</ goal s>
</ executi on>
</ executi ons>

1.2.8.RELEASE Spring Boot 176

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-dependencies/pom.xml

Spring Boot Reference Guide

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

See the plugin documentation for full usage details.

73.3 Create an additional executable JAR

If you want to use your project as a library jar for other projects to depend on, and in addition have an
executable (e.g. demo) version of it, you will want to configure the build in a slightly different way.

For Maven the normal JAR plugin and the Spring Boot plugin both have a ‘classifier’ configuration that
you can add to create an additional JAR. Example (using the Spring Boot Starter Parent to manage the
plugin versions and other configuration defaults):

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
<confi gurati on>
<cl assi fi er>exec</cl assifier>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Two jars are produced, the default one, and an executable one using the Boot plugin with classifier
‘exec’.

For Gradle users the steps are similar. Example:

boot Repackage {
classifier = 'exec

}

73.4 Extract specific libraries when an executable jar runs

Most nested libraries in an executable jar do not need to be unpacked in order to run, however, certain
libraries can have problems. For example, JRuby includes its own nested jar support which assumes
that the j r uby- conpl et e. j ar is always directly available as a file in its own right.

To deal with any problematic libraries, you can flag that specific nested jars should be automatically
unpacked to the ‘temp folder’ when the executable jar first runs.

For example, to indicate that JRuby should be flagged for unpack using the Maven Plugin you would
add the following configuration:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
<confi gurati on>
<r equi r esUnpack>
<dependency>
<groupl d>org. jruby</groupl d>
<artifactld>jruby-conplete</artifactld>
</ dependency>
</ requi r esUnpack>

1.2.8.RELEASE Spring Boot 177

http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/maven-plugin/usage.html

Spring Boot Reference Guide

</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

And to do that same with Gradle:

springBoot {
requi resUnpack = ['org.]jruby:jruby-conplete']
}

73.5 Create a non-executable JAR with exclusions

Often if you have an executable and a non-executable jar as build products, the executable version
will have additional configuration files that are not needed in a library jar. E.g. the appl i cati on. ym
configuration file might excluded from the non-executable JAR.

Here's how to do that in Maven:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
<confi gurati on>
<cl assi fi er>exec</cl assifier>
</ configuration>
</ pl ugi n>
<pl ugi n>
<artifactld>maven-jar-plugin</artifactld>
<executions>
<executi on>
<i d>exec</id>
<phase>package</ phase>
<goal s>
<goal >j ar </ goal >
</ goal s>
<confi guration>
<cl assi fi er>exec</cl assifier>
</ configuration>
</ executi on>
<execution>
<phase>package</ phase>
<goal s>
<goal >j ar </ goal >
</ goal s>
<confi gurati on>
<l-- Need this to ensure application.ym is excluded -->
<forceCreati on>true</forceCreati on>
<excl udes>
<excl ude>appl i cation.ym </ excl ude>
</ excl udes>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

In Gradle you can create a new JAR archive with standard task DSL features, and then have the
boot Repackage task depend on that one using its wi t hJar Task property:

jar {
baseNanme = 'spring-boot-sanpl e-profile'
version = '0.0.0

1.2.8.RELEASE Spring Boot 178

Spring Boot Reference Guide

excludes = ['**/application.ym"]

}

task(' execJdar', type:Jar, dependsOn: 'jar') {

baseNanme = 'spring-boot-sanple-profile'
version = '0.0.0
classifier = "'exec'

from sour ceSet s. nai n. out put

}

boot Repackage {
wi t har Task = tasks[' execJar']

}

73.6 Remote debug a Spring Boot application started with
Maven

To attach a remote debugger to a Spring Boot application started with Maven you can use the
j VMAr gunent s property of the maven plugin.

Check this example for more details.

73.7 Remote debug a Spring Boot application started with
Gradle

To attach a remote debugger to a Spring Boot application started with Gradle you can use the
appl i cati onDef aul t JvmAr gs in bui | d. gradl e or - - debug- j vmcommand line option.

bui | d. gradl e:

appl i cationDef aul t JvmArgs = [
"-agentlib:jdwp=transport=dt_socket, server =y, suspend=y, addr ess=5005"
|

Command line:

‘$ gradl e run --debug-jvm

Check Gradle Application Plugin for more details.

73.8 Build an executable archive with Ant

To build with Ant you need to grab dependencies, compile and then create a jar or war archive as
normal. To make it executable:

1. Use the appropriate launcher as a Mai n- Cl ass, e.g. Jar Launcher for a jar file, and specify the
other properties it needs as manifest entries, principally a St ar t - Cl ass.

2. Add the runtime dependencies in a nested ‘lib’ directory (for a jar) and the pr ovi ded (embedded
container) dependencies in a nested | i b- provi ded directory. Remember not to compress the
entries in the archive.

3. Add the spri ng- boot - | oader classes at the root of the archive (so the Mai n- O ass is available).

Example:

1.2.8.RELEASE Spring Boot 179

http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/maven-plugin/
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/maven-plugin/examples/run-debug.html
http://www.gradle.org/docs/current/userguide/application_plugin.html

Spring Boot Reference Guide

<target name="buil d" depends="conpile">
<copy todir="target/cl asses/lib">
<fileset dir="lib/runtime" />
</ copy>
<jar destfile="target/spring-boot-sanple-actuator-${spring-boot.version}.jar" conpress="fal se">
<fileset dir="target/classes" />
<fileset dir="src/min/resources" />
<zipfileset src="lib/loader/spring-boot-|oader-jar-${spring-boot.version}.jar" />
<mani f est >
<attribute name="Main-C ass" val ue="org. spri ngfranmewor k. boot . | oader. Jar Launcher" />
<attribute name="Start-C ass" val ue="${start-class}" />
</ mani f est >
</jar>
</target>

The Actuator Sample has a bui | d. xrm that should work if you run it with

‘$ ant -lib <path_to>/ivy-2.2.jar

after which you can run the application with

‘$ java -jar target/*.jar

73.9 How to use Java 6

If you want to use Spring Boot with Java 6 there are a small number of configuration changes that you
will have to make. The exact changes depend on your application’s functionality.

Embedded servlet container compatibility

If you are using one of Boot's embedded Servlet containers you will have to use a Java 6-compatible
container. Both Tomcat 7 and Jetty 8 are Java 6 compatible. See Section 64.15, “Use Tomcat 7” and
Section 64.16, “Use Jetty 8” for details.

JTA API compatibility

While the Java Transaction API itself doesn’t require Java 7 the official API jar contains classes that
have been built to require Java 7. If you are using JTA then you will need to replace the official JTA 1.2
API jar with one that has been built to work on Java 6. To do so, exclude any transitive dependencies
on javax.transaction:javax.transaction-api and replace them with a dependency on
org.j boss. spec.javax.transaction:jboss-transaction-api _1.2_ spec:1.0.0. Fi nal

1.2.8.RELEASE Spring Boot 180

Spring Boot Reference Guide

74. Traditional deployment

74.1 Create a deployable war file

The first step in producing a deployable war file is to provide a Spri ngBoot Servl etlnitializer
subclass and override its confi gur e method. This makes use of Spring Framework’s Servlet 3.0
support and allows you to configure your application when it's launched by the servlet container.
Typically, you update your application’s main class to extend Spri ngBoot Servl etlnitializer:

@Bpr i ngBoot Appl i cati on
public class Application extends SpringBootServletlnitializer {

@verride
protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {
return application.sources(Application.class);

}

public static void main(String[] args) throws Exception {
Spri ngApplication. run(Application.class, args);
}

The next step is to update your build configuration so that your project produces a war file rather than a
jar file. If you're using Maven and using spri ng- boot - st art er - par ent (which configures Maven’s
war plugin for you) all you need to do is modify pom xni to change the packaging to war:

<packagi ng>war </ packagi ng>

If you're using Gradle, you need to modify bui | d. gr adl e to apply the war plugin to the project:

apply plugin: 'war'

The final step in the process is to ensure that the embedded servlet container doesn’t interfere with
the servlet container to which the war file will be deployed. To do so, you need to mark the embedded
servlet container dependency as provided.

If you're using Maven:

<dependenci es>

<l-- ..-->

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactld>
<scope>pr ovi ded</ scope>

</ dependency>

<l-- ..-->

</ dependenci es>

And if you’re using Gradle:

dependenci es {
/...
provi dedRunti me ' org. springframewor k. boot : spri ng-boot -starter-tontat
/...

If you're using the Spring Boot build tools, marking the embedded servlet container dependency as
provided will produce an executable war file with the provided dependencies packaged in a | i b-

1.2.8.RELEASE Spring Boot 181

Spring Boot Reference Guide

provi ded directory. This means that, in addition to being deployable to a servlet container, you can
also run your application using j ava -j ar on the command line.

Tip

Take a look at Spring Boot's sample applications for a Maven-based example of the above-
described configuration.

74.2 Create a deployable war file for older servlet containers

Older Servlet containers don’t have support for the Ser vl et Cont ext I ni ti al i zer bootstrap process
used in Servlet 3.0. You can still use Spring and Spring Boot in these containers but you are going to
need to add a web. xm to your application and configure it to load an Appl i cati onCont ext via a
Di spat cher Servl et.

74.3 Convert an existing application to Spring Boot

For a non-web application it should be easy (throw away the code that -creates
your ApplicationContext and replace it with «calls to SpringApplication or
Spri ngAppl i cati onBui | der). Spring MVC web applications are generally amenable to first creating
a deployable war application, and then migrating it later to an executable war and/or jar. Useful reading
is in the Getting Started Guide on Converting a jar to a war.

Create a deployable war by extending Spri ngBoot Servl etlnitializer (e.g. in a class called
Appl i cati on), and add the Spring Boot @nabl eAut oConf i gur at i on annotation. Example:

@onfiguration

@Enabl eAut oConfi gurati on

@onponent Scan

public class Application extends SpringBootServletlnitializer {

@verride
protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {
/| Custom ze the application or call application.sources(...) to add sources

/1 Since our exanple is itself a @onfiguration class we actually don't
/1 need to override this method.
return application;

Remember that whatever you put in the sour ces is just a Spring Appl i cati onCont ext and normally
anything that already works should work here. There might be some beans you can remove later and let
Spring Boot provide its own defaults for them, but it should be possible to get something working first.

Static resources can be movedto/ publi c (or/ staticor/resourcesor/ META-|I NF/ r esour ces)
in the classpath root. Same for nessages. properti es (Spring Boot detects this automatically in the
root of the classpath).

Vanilla usage of Spring Di spat cher Ser vl et and Spring Security should require no further changes. If
you have other features in your application, using other servlets or filters for instance, then you may need
to add some configuration to your Appl i cat i on context, replacing those elements from the web. xni
as follows:

* A @ean of type Ser vl et or Ser vl et Regi st rati onBean installs that bean in the container as if
itwas a <servl et/ >and <ser vl et - mappi ng/ > in web. xn .

1.2.8.RELEASE Spring Boot 182

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-samples/spring-boot-sample-traditional/pom.xml
http://spring.io/guides/gs/convert-jar-to-war/

Spring Boot Reference Guide

* A@eanoftypeFilter orFilterRegistrati onBean behaves similarly (likea<filter/>and
<filter-mapping/>.

* An Appl i cati onCont ext in an XML file can be added to an @ nport in your Appl i cati on. Or
simple cases where annotation configuration is heavily used already can be recreated in a few lines
as @ean definitions.

Once the war is working we make it executable by adding a mai n method to our Appl i cati on, e.g.

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

Applications can fall into more than one category:

Servlet 3.0+ applications with no web. xni .

Applications with a web. xm .

Applications with a context hierarchy.
» Applications without a context hierarchy.
All of these should be amenable to translation, but each might require slightly different tricks.

Servlet 3.0+ applications might translate pretty easily if they already use the Spring Servlet 3.0+
initializer support classes. Normally all the code from an existing WebAppl i cationlnitializer
can be moved into a Spri ngBoot Servl et nitializer. If your existing application has more than
one Appl i cat i onCont ext (e.g.ifituses Abstract Di spat cher Servletlnitializer)thenyou
might be able to squash all your context sources into a single Spri ngAppl i cati on. The main
complication you might encounter is if that doesn’t work and you need to maintain the context hierarchy.
See the entry on building a hierarchy for examples. An existing parent context that contains web-specific
features will usually need to be broken up so that all the Ser vl et Cont ext Awar e components are in
the child context.

Applications that are not already Spring applications might be convertible to a Spring Boot application,
and the guidance above might help, but your mileage may vary.

74.4 Deploying a WAR to Weblogic

To deploy a Spring Boot application to Weblogic you must ensure that your servlet initializer directly
implements WebApplicationlnitializer (even if you extend from a base class that already
implements it).

A typical initializer for Weblogic would be something like this:

i mport org.springframework. boot . aut oconfi gure. Spri ngBoot Appl i cati on;
i nport org.springframework. boot. cont ext.web. SpringBoot Servletlnitializer;
i nport org.springfranework. web. WebAppl i cationlnitializer;

@pr i ngBoot Appl i cati on
public class MyApplication extends SpringBootServletlnitializer inplenments WebApplicationlnitializer {

}

If you use logback, you will also need to tell Weblogic to prefer the packaged version rather than the
version that pre-installed with the server. You can do this by adding a VEB- | NF/ webl ogi c. xnl file
with the following contents:

1.2.8.RELEASE Spring Boot 183

Spring Boot Reference Guide

<?xm version="1.0" encodi ng="UTF-8"?>
<w s: webl ogi c- web- app
xm ns:w s="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- web- app”
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://java. sun. conl xnl / ns/ j avaee
http://java. sun. coml xm /ns/javaee/ ej b-jar_3_0. xsd
http://xm ns. oracl e. conl webl ogi c/ webl ogi c- web- app
http://xm ns. oracl e. conl webl ogi c/ webl ogi c- web- app/ 1. 4/ webl ogi c- web- app. xsd" >
<w s: cont ai ner - descri pt or >
<wW s: prefer-application-packages>
<wW s: package- nane>or g. sl f 4j </ W s: package- nane>
</W s: prefer-application-packages>
</wl s: cont ai ner-descri ptor>
</ W s: webl ogi c- web- app>

74.5 Deploying a WAR in an Old (Servlet 2.5) Container

Spring Boot uses Servlet 3.0 APIs to initialize the Ser vl et Cont ext (register Servl ets etc.) so
you can’t use the same application out of the box in a Servlet 2.5 container. It is however possible
to run a Spring Boot application on an older container with some special tools. If you include
or g. spri ngframewor k. boot : spri ng- boot -1 egacy as a dependency (maintained separately to
the core of Spring Boot and currently available at 1.0.0.RELEASE), all you should need to do is create
aweb. xm and declare a context listener to create the application context and your filters and servlets.
The context listener is a special purpose one for Spring Boot, but the rest of it is normal for a Spring
application in Servlet 2.5. Example:

<?xm version="1.0" encodi ng="UTF-8"?>
<web-app version="2.5" xmns="http://java.sun.conl xnl/ns/javaee"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocation="http://java. sun.com xnl / ns/javaee http://java.sun.com xnl/ns/javaee/ web-
app_2_5. xsd" >

<cont ext - par an»
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<param val ue>deno. Appl i cati on</ param val ue>

</ cont ext - par an>

<l i stener>
<l i stener-cl ass>org. spri ngframewor k. boot . | egacy. cont ext. web. Spri ngBoot Cont ext Loader Li st ener </
|'i stener-class>
</listener>

<filter>
<filter-name>nmetricFilter</filter-name>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-name>metricFilter</filter-name>
<url -pattern>/*</url -pattern>
</filter-mappi ng>

<servl et >
<servl et - nane>appSer vl et </ ser vl et - nane>
<servl et-cl ass>org. spri ngframewor k. web. servl et. Di spat cher Servl et </ servl et -cl ass>
<init-paranp
<par am nane>cont ext At t ri but e</ par am nane>
<par am val ue>or g. spri ngf ramewor k. web. cont ext . WebAppl i cat i onCont ext . ROOT</ par am val ue>
</init-parane
<l oad- on- st art up>1</1| oad- on- st art up>
</ servl et>

<servl et - mappi ng>
<servl et - name>appSer vl et </ ser vl et - name>
<url -pattern>/</url-pattern>

</ servl et - mappi ng>

1.2.8.RELEASE Spring Boot 184

https://github.com/scratches/spring-boot-legacy

Spring Boot Reference Guide

</ web- app>

In this example we are using a single application context (the one created by the context listener)
and attaching it to the Di spat cher Ser vl et using an init parameter. This is normal in a Spring Boot
application (you normally only have one application context).

1.2.8.RELEASE Spring Boot 185

Part X. Appendices

Spring Boot Reference Guide

Appendix A. Common application
properties

Various properties can be specified inside your appl i cati on. properti es/application.ynl file
or as command line switches. This section provides a list common Spring Boot properties and references
to the underlying classes that consume them.

Note

Property contributions can come from additional jar files on your classpath so you should not
consider this an exhaustive list. It is also perfectly legit to define your own properties.

Warning

This sample file is meant as a guide only. Do not copy/paste the entire content into your
application; rather pick only the properties that you need.

#

COWON SPRI NG BOOT PROPERTI ES

#

This sanple file is provided as a guideline. Do NOT copy it inits
entirety to your own application. AAN

#

L e

CORE PROPERTI ES

< P e

SPRI NG CONFI G (Confi gFil eApplicationLi stener)
spring.config.name= # config file name (default to 'application')
spring.config.location= # |ocation of config file

PROFI LES
spring.profiles.active= # comm |ist of active profiles
spring. profiles.include= # unconditionally activate the specified conma separated profiles

APPLI CATI ON SETTI NGS (SpringApplication)
spring. mai n. sour ces=

spring. mai n. web- envi ronnment = # detect by default
spring. mai n. show banner =t r ue

spring.main....= # see class for all properties

LOGE NG

| oggi ng. pat h=/var/| og

| oggi ng. fil e=nyapp. | og

| oggi ng. config= # location of config file (default classpath:|ogback.xm for |ogback)

| ogging.level .*= # levels for loggers, e.g. "logging.level.org.springframework=DEBUG' (TRACE, DEBUG
I NFO, WARN, ERROR, FATAL, OFF)

| DENTI TY (Context|dApplicationContextlnitializer)
spring. applicati on. name=
spring. application.index=

ENMBEDDED SERVER CONFI GURATI ON (Server Properti es)

server. port =8080

server.address= # bind to a specific NIC

server.session-timeout= # session timeout in seconds

server.context-paraneters.*= # Servlet context init paraneters, e.g. server.context-paraneters.a=al pha
server.context-path= # the context path, defaults to '/

server.servl et-path= # the servlet path, defaults to '/’

server.ssl.enabl ed=true # if SSL support is enabl ed

1.2.8.RELEASE Spring Boot 187

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/SpringApplication.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/context/ContextIdApplicationContextInitializer.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

server.ssl.client-auth= # want or need

server. ssl. key-alias=

server. ssl.ci phers= # supported SSL ciphers

server. ssl . key- passwor d=

server. ssl . key-store=

server. ssl . key-store-passwor d=

server. ssl . key-store-provi der=

server. ssl . key-store-type=

server. ssl.protocol =TLS

server.ssl.trust-store=

server. ssl.trust-store-password=

server.ssl.trust-store-provider=

server.ssl.trust-store-type=

server.tontat.access-log-pattern= # | og pattern of the access |og
server.tontat. access-| og-enabl ed=fal se # is access |oggi ng enabl ed

server.tontat. conpression=off # is conpression enabled (off, on, or an integer content length limt)
server.toncat. conpressabl e-m nme-types=text/htm ,text/xm 6 text/plain # comm-separated |ist of mnme types
that Tontat will conpress

server.toncat.internal -proxi es=10\\.\\d{1, 3}\\.\\d{1,3}\\.\\d{1, 3}|\\

192\\. 168\\.\\d{1, 3}\\.\\d{1, 3}|\\

169\\. 254\ \ . \\d{1, 3}\\.\\d{1, 3}|\\

127\\ ANV d{ 1, 33\ AN d{1, 3}\\ .\ d{ 1,3} # regular expression matching trusted |P addresses
server.toncat. protocol - header =x-f orwarded-proto # front end proxy forward header
server.tontat. protocol - header-https-val ue=https # val ue of the protocol header that indicates that the

incom ng request uses SSL

server.tontat.port-header= # front end proxy port header
server.toncat.renote-ip-header =x-f orwarded-f or

server.tontat. basedir=/tnp # base dir (usually not needed, defaults to tnp)
server.toncat. background- processor-del ay=30; # in seconds
server.tontat. max- htt p- header - si ze= # nmaxi num size in bytes of the HITP nessage header
server.tontat. max-threads = 0 # nunber of threads in protocol handler
server.tontat.uri-encoding = UTF-8 # character encoding to use for URL decoding

SPRI NG WC (\WebM/cProperties)

spring.nmvc. |l ocal e= # set fixed locale, e.g. en_UK

spring.nvc.date-format= # set fixed date format, e.g. dd/ MMyyyy

spring. mvc. favi con. enabl ed=true

spring. mvc. medi a-types. *= # Maps file extensions to nedia types for content negotiation

spring. m/c. message- codes-resol ver-format= # PREFI X_ERROR CODE / POSTFI X_ERRCOR_CODE

spring. mvc.ignore-defaul t-nodel -on-redirect=true # If the the content of the "default" nodel should be
ignored redirects

spring. view prefix= # MWC view prefix

spring.view suffix=# ... and suffix

SPRI NG RESOURCES HANDLI NG (Resour ceProperti es)
spring. resources. cache-peri od= # cache tineouts in headers sent to browser
spring. resources. add- mappi ngs=true # if default mappings shoul d be added

MULTI PART (Ml tipartProperties)

nul ti part.enabl ed=true

mul tipart.file-size-threshold=0 # Threshold after which files will be witten to disk
mul tipart.location= # Internedi ate | ocati on of upl oaded files

mul tipart. max-file-size=1Md # Max file size

mul ti part. max-request-si ze=10Mo # Max request size

SPRI NG HATEOAS (Hat eoasProperti es)
spring. hat eoas. appl y-t o- pri mary-obj ect-napper=true # if the prinmary napper should al so be configured

HTTP encodi ng (HttpEncodi ngProperties)

spring. http. encodi ng. charset =UTF-8 # the encodi ng of HTTP requests/responses
spring. http. encodi ng. enabl ed=true # enabl e http encodi ng support

spring. http. encodi ng.force=true # force the configured encoding

HTTP nessage conversion
spring. http.converters. preferred-json-mapper= # the preferred JSON mapper to use for HITP nessage
conversion. Set to "gson" to force the use of Gson when both it and Jackson are on the classpath

HTTP response conpression (GzipFilterProperties)

spring. http.gzip.buffer-size= # size of the output buffer in bytes

spring. http. gzi p. defl ate-conpressi on-1evel = # the | evel used for deflate conpression (0-9)
spring. http. gzi p. defl ate-no-w ap= # noWap setting for deflate conpression (true or false)

1.2.8.RELEASE Spring Boot 188

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ResourceProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/MultipartProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hateoas/HateoasProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/HttpEncodingProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/GzipFilterProperties.java

Spring Boot Reference Guide

spring. http.gzi p. enabl ed=true # enable gzip filter support

spring. http. gzi p. excl uded- agent s= # conma-separated |ist of user agents to exclude from conpression

spring. http. gzi p. excl ude- agent - patterns= # comma-separated |ist of regular expression patterns to
control user agents excluded from conpression

spring. http. gzi p. excl ude- paths= # comma-separated |list of paths to exclude from conpression

spring. http. gzi p. excl ude- pat h-patterns= # comma-separated |ist of regular expression patterns to control
the paths that are excluded from conpression

spring. http. gzi p. methods= # comma-separated |ist of HITP nethods for which conpression is enabl ed

spring. http.gzip. m ne-types= # comma-separated |ist of MM types which should be conpressed

spring. http. gzi p. excl uded-m nme-types= # conmma-separated |list of MME types to exclude from conpression

spring. http. gzip. mn-gzip-size= # mnimum content |length required for conpression to occur

spring. http.gzip.vary= # Vary header to be sent on responses that nay be conpressed

JACKSON (JacksonProperti es)
spring.jackson.date-format= # Date format string (e.g. yyyy-Midd HH nmss), or a fully-qualified date

format class nane (e.g. com fasterxnl.jackson. databind.util.|S08601DateFor mat)

spring.j ackson. property-nam ng-strategy= # One of the constants on Jackson's PropertyNam ngStrategy
(e.g. CAMEL_CASE TO LOWER CASE W TH _UNDERSCORES) or the fully-qualified class name of a
PropertyNam ngStrategy subcl ass

spring.jackson. deserialization.*= # see Jackson's DeserializationFeature

spring.jackson. generator.*= # see Jackson's JsonGenerator. Feature

spring.j ackson. mapper.*= # see Jackson's Mapper Feature

spring.j ackson. parser.*= # see Jackson's JsonParser. Feature

spring.jackson. serialization.*= # see Jackson's SerializationFeature

THYMELEAF (Thynel eaf Aut oConfi gurati on)

spring. t hynel eaf . check-tenpl ate-1 ocati on=true

spring.thynel eaf . prefix=cl asspath:/tenpl at es/

spring. t hynel eaf . excl uded- vi ew nanmes= # conmma-separated |ist of view nanmes that shoul d be excluded from
resol ution

spring. thynel eaf . vi ew- names= # comma- separated |ist of view nanmes that can be resol ved

spring. t hynel eaf . suf fi x=. htm

spring. t hynel eaf . node=HTML5

spring. t hyrel eaf . encodi ng=UTF- 8

spring. thynel eaf. content-type=text/htm # ;charset=<encodi ng> i s added

spring. t hynel eaf . cache=true # set to false for hot refresh

FREEMARKER (Fr eeMar ker Aut oConf i gur ati on)

spring. freemarker. al | owrequest-overri de=f al se

spring. freemarker. al | ow sessi on-overri de=f al se

spring. freemar ker. cache=true

spring. freenmarker. check-tenpl ate-| ocati on=true

spring. freemar ker. char set =UTF- 8

spring. freemarker. content-type=text/htnl

spring. freemarker. expose-request -attri butes=fal se

spring. freemar ker. expose-sessi on-attributes=fal se

spring. freemar ker. expose-spri ng- macr o- hel per s=f al se

spring. freenmarker. prefix=

spring. freemarker.request-context-attribute=

spring. freemarker. settings.*=

spring. freemarker.suffix=. ftl

spring. freemarker.tenpl at e-| oader - pat h=cl asspath: /tenpl ates/ # comma-separated |ist
spring. freemarker.vi ew names= # whitelist of view names that can be resol ved

GROOVY TEMPLATES (GroovyTenpl at eAut oConfi gurati on)

spring. groovy. tenpl ate. cache=t rue

spring. groovy. tenpl ate. char set =UTF- 8

spring. groovy.tenpl ate. configuration.*= # See G oovy's Tenpl at eConfi guration
spring. groovy. tenpl ate. content-type=text/htm

spring. groovy. tenpl ate. prefix=cl asspat h:/tenpl at es/

spring. groovy. tenpl ate. suffix=.tpl

spring. groovy. tenpl ate.vi ew-names= # whitelist of view nanes that can be resol ved

VELOCI TY TEMPLATES (Vel oci t yAut oConfi gurati on)

spring.vel ocity. al |l owrequest-override=fal se

spring.velocity. al | ow session-override=fal se

spring. vel ocity. cache=true

spring. vel ocity. check-tenpl ate-1ocation=true
spring.velocity.charset=UTF-8 # charset for input and output encoding
spring.velocity.content-type=text/htmn

spring.velocity.date-tool -attribute=

1.2.8.RELEASE Spring Boot 189

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jackson/JacksonProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/velocity/VelocityAutoConfiguration.java

Spring Boot Reference Guide

spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri

spri
spri
spri
spri
spri
spri
spri
spri

spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri

ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.

vel ocity. expose-request-attributes=fal se

vel ocity. expose-sessi on-attributes=fal se

vel oci ty. expose- spri ng- macr o- hel per s=f al se

vel oci ty. nunber-tool -attribute=

velocity.prefer-file-systemaccess=true # prefer file system access for tenplate |oading
vel ocity. prefix=

vel ocity. properties.*=

vel ocity.request-context-attribute=

vel oci ty. resource-| oader - pat h=cl asspat h: / t enpl at es/

vel ocity. suffix=.vm

vel oci ty. t ool box-config-location= # vel ocity Tool box config | ocation, for exanple "/WEB-I| NF/
t ool box. xm "
spring.velocity.viewnanes= # whitelist of view names that can be resol ved

MUSTACHE TEMPLATES (Must acheAut oConfi gurati on)
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.

nmust ache. cache=t rue

must ache. char set =UTF- 8

must ache. check-tenpl ate-1 ocati on=true

nust ache. cont ent - t ype=UTF- 8

nust ache. enabl ed=true # enabl e MVC vi ew resol ution

nust ache. prefi x=

must ache. suf fi x=. ht

must ache. vi ew- names= # whitelist of view names that can be resol ved

JERSEY (JerseyProperties)
spring.jersey.type=servlet # servlet or filter
spring.jersey.init=# init parans
spring.jersey.filter.order=

| NTERNATI ONALI ZATI ON (MessageSour ceAut oConf i gur ati on)
spring. nessages. basenane=nessages

spring. nessages. cache- seconds=-1

spring. nessages. encodi ng=UTF- 8

SECURI TY (SecurityProperties)

security.user.nane=user # |ogin usernane

security.user.password= # | ogi n password

security.user.rol e=USER # rol e assigned to the user
security.require-ssl=fal se # advanced settings ..
security. enabl e-csrf=fal se

security. basic. enabl ed=t rue

security. basic.real meSpring

security. basic.path= # /**

security. basic.authorize-node= # ROLE, AUTHENTI CATED, NONE
security.filter-order=0

security. headers. xss=f al se

security. headers. cache=fal se

security. headers. frame=fal se

security. headers. content-type=fal se

security. headers. hsts=all # none / domain / al
security.sessions=statel ess # always / never / if_required / stateless
security.ignored= # Comma-separated |ist of paths to exclude fromthe default secured paths

DATASOURCE (Dat aSour ceAut oConfi guration & Dat aSour ceProperti es)
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.

dat asour ce. name= # nane of the data source
datasource.initialize=true # popul ate using data.sql

dat asour ce. schema= # a schenma (DDL) script resource reference

dat asource. data= # a data (DM.) script resource reference

dat asour ce. sql -scri pt-encodi ng= # a charset for reading SQL scripts

datasource.platforme # the platformto use in the schema resource (schema-${platforn}.sql)

dat asour ce. conti nue-on-error=fal se # continue even if can't be initialized
dat asource. separator=; # statement separator in SQ. initialization scripts
dat asource. dri ver-cl ass- name= # JDBC Settings...

dat asource. url =

dat asour ce. user name=

dat asour ce. passwor d=

dat asource. j ndi - name= # For JNDI |ookup (class, url, username & password are ignored when set)

dat asour ce. max- acti ve=100 # Advanced configuration...
dat asour ce. max-i dl e=8
dat asource. mi n-idl e=8

1.2.8.RELEASE Spring Boot

190

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mustache/MustacheAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure}/jersey/JerseyProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/MessageSourceAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceProperties.java

Spring Boot Reference Guide

spring. datasource.initial-size=10

spring. dat asour ce. val i dati on- query=

spring. dat asour ce. t est - on- bor r on=f al se

spring. dat asource. test-on-return=fal se

spring. dat asource. test-while-idle=

spring. dat asour ce. ti me- bet ween-eviction-runs-mllis=

spring. datasource. mn-evictable-idle-tinme-mllis=

spring. dat asour ce. max-wai t =

spring. dat asour ce. j nx- enabl ed=fal se # Export JMX MBeans (if supported)

DAO (Persi stenceExceptionTransl ati onAut oConfi gurati on)
spring. dao. exceptiontransl ati on. enabl ed=true

MONGODB (MongoProperti es)

spring. dat a. nrongodb. host = # the db host

spring. dat a. nongodb. port =27017 # the connection port (defaults to 27017)

spring. dat a. nrongodb. uri =nmongodb: / /| ocal host/test # connection URL

spring. dat a. nongodb. dat abase=

spring. dat a. nrongodb. aut henti cati on- dat abase=

spring. dat a. nongodb. gri d- f s- dat abase=

spring. dat a. nrongodb. user nane=

spring. dat a. nrongodb. passwor d=

spring. dat a. nrongodb. reposi tori es. enabl ed=true # if spring data repository support is enabl ed

JPA (JpaBaseConfi guration, HibernateJpaAutoConfi guration)

spring.jpa.properties.*= # properties to set on the JPA connection

sSpring.j pa.open-in-viewtrue

spring. j pa. showsql =true

spring.j pa. dat abase- pl at f or e

spring.j pa. dat abase=

spring.jpa.generate-ddl =fal se # ignored by Hi bernate, m ght be useful for other vendors
spring.j pa. hi bernat e. nam ng-strategy= # naning cl assnanme

spring.jpa.hibernate.ddl -auto= # defaults to create-drop for enbedded dbs
spring.data.jpa.repositories.enabled=true # if spring data repository support is enabled

JTA (JtaAut oConfi gurati on)
spring.jta.log-dir= # transaction log dir
spring.jta.*= # technol ogy specific configuration

ATOM KOS
connections fromthe pool

transacted flag when creating session

spring.jta.atom kos. connectionfactory. | ocal -transacti on-node=fal se # \Wether or not |ocal transactions
are desired

spring.jta.atom kos. connecti onfactory. mai ntenance-interval =60 # The tinme, in seconds, between runs of
the pool's nmaintenance thread

spring.jta.atom kos. connectionfactory. max-idle-tinme=60 # The tine, in seconds, after which connections
are cleaned up fromthe pool

spring.jta.atom kos. connectionfactory. max-lifetime=0 # The tinme, in seconds, that a connection can be
pool ed for before being destroyed. 0 denotes no limt.

spring.jta.atom kos. connecti onf actory. max- pool -si ze=1 # The maxi mum si ze of the pool

spring.jta.atomnm kos. connecti onfactory. m n-pool -size=1 # The mi ni num si ze of the pool

spring.jta.atom kos. connectionfactory.reap-tineout=0 # The reap tinmeout, in seconds, for borrowed
connections. 0O denotes no limt.

spring.jta.atom kos. connecti onfactory. uni que-resour ce- nane=j nsConnecti onFactory # The uni que nane used
to identify the resource during recovery

spring.jta.atom kos. dat asour ce. borrow connecti on-ti meout =30 # Ti neout, in seconds, for borrow ng
connections fromthe pool

spring.jta.atomn kos. datasource. defaul t-isol ation-1evel = # Default isolation |evel of connections
provi ded by the pool

spring.jta.atomnm kos. datasource. | ogin-timeout= # Tinmeout, in seconds, for establishing a database
connection

spring.jta.atom kos. dat asour ce. mai nt enance-interval =60 # The tinme, in seconds, between runs of the
pool ' s mai nt enance thread

spring.jta.atomn kos. datasource. max-idl e-ti me=60 # The tinme, in seconds, after which connections are
cl eaned up fromthe pool

spring.jta.atomnm kos. datasource. max-lifetinme=0 # The time, in seconds, that a connection can be pool ed
for before being destroyed. O denotes no limt.

spring.jta. atom kos. dat asour ce. max- pool - si ze=1 # The maxi mum si ze of the pool

spring.jta.atom kos. connecti onfactory. borrow connection-ti meout=30 # Ti meout, in seconds, for borrow ng

spring.jta.atomn kos. connectionfactory.ignore-session-transacted-flag=true # Wiether or not to ignore the

1.2.8.RELEASE Spring Boot

191

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/dao/PersistenceExceptionTranslationAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jta/JtaAutoConfiguration.java

Spring Boot Reference Guide

spring.jta. atoni kos. dat asour ce. m n-pool -si ze=1 # The m ni num si ze of the poo
spring.jta.atom kos. dat asource. reap-tineout=0 # The reap tineout, in seconds, for borrowed connections
0 denotes no limt.
spring.jta.atom kos. dat asource. test-query= # SQL query or statenment used to validate a connection before
returning it
spring.jta. aton kos. dat asour ce. uni que- r esour ce- nane=dat aSour ce # The uni que name used to identify the
resource during recovery

BI TRONI X

spring.jta.bitroni x.connectionfactory. acquire-increment=1 # Nunber of connections to create when grow ng
t he pool

spring.jta. bitronix. connectionfactory.acquisition-interval=1 # Tine, in seconds, to wait before trying
to acquire a connection again after an invalid connection was acquired

spring.jta.bitroni x.connectionfactory. acquisition-tinmeout=30 # Tinmeout, in seconds, for acquiring
connections fromthe poo

spring.jta.bitronix.connectionfactory. all owocal -transacti ons=true # Wether or not the transaction
manager shoul d allow mi xing XA and non- XA transactions

spring.jta. bitronix.connectionfactory. apply-transaction-tineout=fal se # Whether or not the transaction
ti meout should be set on the XAResource when it is enlisted

spring.jta.bitronix.connectionfactory. automatic-enlisting-enabl ed=true # Wether or not resources shoul d
be enlisted and delisted automatically

spring.jta.bitronix.connectionfactory. cache-producers-consunmers=true # \Wether or not produces and
consurers shoul d be cached

spring.jta. bitronix. connectionfactory. def er-connecti on-rel ease=true # \Wiether or not the provider can
run many transactions on the sane connection and supports transaction interleaving
spring.jta.bitronix.connectionfactory.ignore-recovery-failures=false # Wether or not recovery failures
shoul d be ignored

spring.jta.bitronix.connectionfactory. max-idle-time=60 # The tine, in seconds, after which connections
are cl eaned up fromthe poo

spring.jta. bitronix. connecti onfact ory. max- pool -si ze=10 # The naxi num si ze of the pool. O denotes no
limt

spring.jta.bitronix.connectionfactory.nin-pool -size=0 # The m ni mum si ze of the poo
spring.jta.bitronix.connectionfactory. password= # The password to use to connect to the JMS provider
spring.jta.bitronix.connectionfactory. share-transacti on-connections=false # Wether or not connections
in the ACCESSIBLE state can be shared within the context of a transaction

spring.jta. bitronix.connectionfactory.test-connections=true # Wether or not connections should be
tested when acquired fromthe pool

spring.jta.bitronix.connectionfactory.two-pc-ordering-position=1 # The postion that this resource should
take during two-phase commt (always first is Integer.M N _VALUE, always |ast is |nteger. VAX VALUE)
spring.jta.bitronix.connectionfactory. uni que- name=j nsConnectionFactory # The uni que nane used to
identify the resource during recovery

spring.jta.bitronix.connectionfactory.use-tmjoin=true Whether or not TMJO N should be used when
starting XAResources

spring.jta.bitronix.connectionfactory.user= # The user to use to connect to the JMS provider
spring.jta.bitroni x.datasource. acquire-increment=1 # Nunber of connections to create when grow ng the
pool

spring.jta. bitronix. datasource. acquisition-interval=1 # Tine, in seconds, to wait before trying to
acquire a connection again after an invalid connection was acquired

spring.jta. bitronix. datasource. acqui si tion-tinmeout=30 # Tineout, in seconds, for acquiring connections
fromthe poo

spring.jta.bitronix. datasource. al | ow | ocal -transactions=true # Wether or not the transaction manager
shoul d al | ow m xi ng XA and non- XA transacti ons

spring.jta. bitronix. datasource. appl y-transacti on-ti meout =fal se # Whether or not the transaction tinmeout
shoul d be set on the XAResource when it is enlisted

spring.jta. bitronix. datasource. autonatic-enlisting-enabl ed=true # Wether or not resources should be
enlisted and delisted automatically

spring.jta.bitronix. datasource. cursor-hol dability= # The default cursor holdability for connections
spring.jta.bitronix. datasource. def er-connection-rel ease=true # Wiether or not the database can run nany
transacti ons on the sanme connection and supports transaction interleaving

spring.jta. bitronix. datasource. enabl e-j dbc4- connection-test # \\hether or not Connection.isValid() is
cal l ed when acquiring a connection fromthe poo
spring.jta.bitronix.datasource.ignore-recovery-failures=fal se # Wether or not recovery failures should
be ignored

spring.jta.bitroni x. datasource.isolation-level = # The default isolation |evel for connections

spring.jta. bitronix. datasource. | ocal -auto-commit # The default auto-commt node for |ocal transactions

spring.jta. bitronix. datasource. | ogin-tinmeout= # Tinmeout, in seconds, for establishing a database
connection

spring.jta.bitronix. datasource. max-idl e-ti me=60 # The tine, in seconds, after which connections are

cl eaned up fromthe pool

spring.jta.bitronix. dat asource. max- pool -si ze=10 # The maxi mum size of the pool. 0 denotes no limt

spring.jta. bitronix. dat asource. m n-pool -si ze=0 # The ni ni num si ze of the poo

1.2.8.RELEASE Spring Boot 192

Spring Boot Reference Guide

spri
spri
spri
spri
spri
spri
spri

spri
spri
spri
spri
spri
spri

flyway.
flyway.
flyway.
flyway.
flyway.
flyway.
flyway.
flyway.
flyway.
flyway.

| i qui base.
l'i qui base.
|'i qui base.
i qui base.
i qui base.
I'i qui base.
| i qui base.
l'i qui base.
|'i qui base.

JMX
spring. j nx. enabl ed=true # Expose MBeans from Spring

ng.
ng.
ng.
ng.
ng.
ng.
ng.

spring.jta. bitronix. datasource. prepar ed- st at enent - cache-si ze=0 # The target size of the prepared
statement cache. O disables the cache

spring.jta.bitroni x.datasource. share-transacti on-connecti ons=fal se # Wether or
ACCESSI BLE state can be shared within the context of a transaction

spring.jta.bitronix. datasource.test-query # SQL query or statenent
returning it

spring.jta. bitronix. datasource. two-pc-ordering-position=1 # The postion that this resource should take
during two-phase commit (always first is Integer. M N _VALUE, always |ast is |nteger. MAX VALUE)

spring.jta.bitroni x.datasource. uni que- nane=dat aSour ce # The uni que nane used to identify the resource
during recovery

spring.jta.bitronix.datasource.use-tmjoin=true Whether or not TMJIO N shoul d be used when starting
XAResour ces

SOLR (SolrProperties)
spring. data.solr.host=http://127.0.0.1:8983/solr

spring. dat a. sol r. zk- host =
spring.data.solr.repositories.enabled=true # if spring data repository support is enabl ed

ELASTI CSEARCH (El asti csearchProperti es)

spring. dat a. el asti csearch. cl uster-name= # The cluster nane (defaults to el asticsearch)

spring. dat a. el asti csearch. cl uster-nodes= # The address(es) of the server node (comma-separated; if not
specified starts a client node)

spring. data. el asti csearch. properties.*= # Additional properties used to configure the client

spring. data. el asticsearch.repositories.enabled=true # if spring data repository support is enabled

DATA REST (RepositoryRest Confi guration)
spring. data.rest.base-uri= # base URl against which the exporter should calculate its |inks

FLYWAY (FlLywayProperties)
flyway.

check-1 ocation=fal se # check that migration scripts |ocation exists
| ocations=cl asspath:db/mgration # |ocations of mgrations scripts
schemas= # schemas to update

init-version= 1 # version to start mgration

init-sqls= # SQL statenents to execute to initialize a connection inmediately after obtaining it

sql -m gration-prefix=V

sqgl -m gration-suffix=.sql

enabl ed=true

url=# JDBC url if you want Flyway to create its own DataSource

user= # JDBC usernane if you want Flyway to create its own DataSource
password= # JDBC password if you want Flyway to create its own DataSource

LI QUI BASE (Liqui baseProperties)

change- | og=cl asspat h: / db/ changel og/ db. changel og- mast er. yani

check- change- 1 og-l ocati on=true # check the change |og |ocation exists
contexts= # runtinme contexts to use

defaul t-schema= # default database schena to use

drop-first=fal se

enabl ed=true

url= # specific JDBC url (if not set the default datasource is used)
user= # user nane for |iquibase.url

password= # password for |iquibase. url

RABBI T (RabbitProperties)

rabbi t ng. host = # connecti on host

rabbi t ng. port= # connection port

rabbi t ng. addr esses= # connection addresses (e.g. nyhost: 9999, ot herhost: 1111)
rabbi t mg. user name= # | ogi n user

rabbi t ng. password= # | ogi n password

rabbi t ng. vi rtual - host =

rabbi t ng. dynamni c=

redi
r edi
redi
redi
redi
redi

s.
s. host =l ocal host # server host
s. password= # server password
S.
s
s

REDI S (Redi sProperties)
ng.
ng.
ng.
ng.
ng.
ng.

dat abase= # dat abase nane

port=6379 # connection port

. pool . max-idl e=8 # pool settings ...
. pool . m n-idl e=0

not connections in the

used to validate a connection before

1.2.8.RELEASE

Spring Boot

193

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/solr/SolrProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/elasticsearch/ElasticsearchProperties.java
http://docs.spring.io/spring-data/rest/docs/current/api/org/springframework/data/rest/core/config/RepositoryRestConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/redis/RedisProperties.java

Spring Boot Reference Guide

spri
spri
spri
spri
spri
spri
spri
spri
spri
spri

spri
spri
spri
spri
spri
spri

spring.
spring.
spring.
spring.

spring.
spring.
spring.
spring.
spring.

ng

ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.

Enai |
ng.
ng.
ng.
ng.
ng.
ng.

ACP
spring. aop. aut o=
spring. aop. proxy-target-cl ass=

. hornetq.
hor net q.
hor net q.
hor net q.
hor net q.
hor net g.
hor net q.
hor net q.
hor net q.
hor net q.

redis. pool . max-acti ve=8

redi s. pool . max-wai t=-1

redis.sentinel.master= # name of Redis server
redi s. sentinel . nodes= # comma-separated |ist of host:port pairs

ACTI VEMQ (Acti veMXProperties)

activeny. broker-url =tcp://1ocal host: 61616 # connection URL
activenyg. user =

acti veny. passwor d=

activeng.in-menory=true # broker kind to create if no broker-url is specified
activeny. pool ed=f al se

Hor net Q (Hor net QProperti es)

node= # connection node (native, enbedded)
host =l ocal host # hornet Q host (native node)
port=5445 # hornetQ port (native node)

enbedded. enabl ed=true # if the enbedded server is enabled (needs hornetq-jns-server.jar)

enmbedded. server-id= # auto-generated id of the enbedded server (integer)

enbedded. persi stent =fal se # nessage persistence
enbedded. dat a-directory= # | ocation of data content

(when persistence i s enabl ed)

enbedded. queues= # conma- separated queues to create on startup
enbedded. t opi cs= # conmma-separated topics to create on startup
enbedded. cl ust er - passwor d= # cust omer password (randomly generated by defaul t)

JM5 (JnmsProperties)
spring.jms.jndi-name= # JNDI |ocation of a JMS ConnectionFactory
spring.j nms. pub-sub-domai n= # fal se for queue (default),

(Mai |l Properties)
mai | . host =snt p. acme.org # mai | server host

mai |l . port= # nail server port

nai | . user name=

mai | . passwor d=

mai | . defaul t - encodi ng=UTF-8 # encoding to use for
mai | . properties.*= # properties to set on the JavaMail session

SPRI NG BATCH (Bat chDat abasel nitializer)
spring. bat ch. j ob. nanes=j ob1l, j ob2

spring. bat ch. j ob. enabl ed=true

spring. batch.initializer.enabl ed=true
spring. bat ch. schema= # batch schema to | oad

FI LE ENCODI NG (Fil eEncodi ngAppli cati onli stener)
spring. mandat ory-fil e-encodi ng=f al se

SPRI NG SOCI AL (Soci al WebAut oConfi gur ati on)
spring. soci al . aut o-connection-views=true # Set to true for default connection views or false if you
provi de your own

SPRI NG SOCI AL FACEBOXK (FacebookAut oConfi gur ati on)
spring. soci al . facebook. app-id= # your application's Facebook App |ID
spring. soci al . facebook. app-secret= # your application's Facebook App Secret

SPRI NG SOCI AL LI NKEDI N (Li nkedl nAut oConfi gurati on)
spring. soci al . linkedin.app-id= # your application's Linkedln App ID
spring. soci al . i nkedi n. app-secret= # your application's Linkedln App Secret

SPRI NG SOCI AL TW TTER (Twi t t er Aut oConf i gur at i on)
spring.social.twitter.app-id= # your application's Twitter App ID
spring.social .twitter.app-secret= # your application's Twitter App Secret

SPRI NG MOBI LE SI TE PREFERENCE (Sit ePr ef er enceAut oConfi gur ati on)
spring. nobi | e. sitepreference. enabl ed=true # enabl ed by defaul t

true for topic

M neMessages

SPRI NG MOBI LE DEVI CE VI EW5 (Devi ceDel egati ngVi ewResol ver Aut oConfi gur ati on)

spring. nobi | e. devi cedel egati ngvi ew esol ver. enabl ed=true # di sabl ed by default
spring. nobi | e. devi cedel egati ngvi ew esol ver. normal - prefi x=

1.2.8.RELEASE

Spring Boot

194

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/hornetq/HornetQProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JmsProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchDatabaseInitializer.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot/src/main/java/org/springframework/boot/context/FileEncodingApplicationListener.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/social/SocialWebAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/social/FacebookAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/social/LinkedInAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/social/TwitterAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mobile/SitePreferenceAutoConfiguration.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mobile/DeviceDelegatingViewResolverAutoConfiguration.java

Spring Boot Reference Guide

endpoi nts.
endpoi nts.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nts.
endpoi nts.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nts.
endpoi nts.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nts.
endpoi nts.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nts.
endpoi nts.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nts.
endpoi nts.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nt s.
endpoi nts.
endpoi nts.

HEALTH |

managenent .
managenent .
managenent .
managenent .
managenent .
managenent .
managenent .

spring. nobi | e. devi cedel egati ngvi ew esol ver. nornal - suf fi x=
spring. nobi | e. devi cedel egati ngvi ew esol ver. nobi | e- prefi x=nobi | e/
spring. nobi | e. devi cedel egati ngvi ewr esol ver. nobi | e-suf fi x=
spring. nobi | e. devi cedel egati ngvi ew esol ver. tabl et -prefix=tabl et/
spring. nobi | e. devi cedel egati ngvi ew esol ver. tabl et -suffix=

MANAGEMENT HTTP SERVER (Managenent Server Properti es)
managenent .
managenent .
nmanagenent .
nmanagenent .
nanagenent .
nanagenent .
managenent .

statel ess)

port= # defaults to 'server.port'

address= # bind to a specific NIC

context-path= # default to '/"'

add- appl i cati on-cont ext - header= # default to true

security. enabl ed=true # enable security

security.role=ADM N # role required to access the managenent endpoi nt
security.sessions=statel ess # session creating policy to use (always, never,

PID FILE (ApplicationPidFileWiter)
spring.pidfile= # Location of the PIDfile to wite

ENDPOI NTS (Abstract Endpoi nt subcl asses)

aut oconfi g.i d=autoconfig

aut oconfig. sensitive=true

aut oconfi g. enabl ed=true

beans. i d=beans

beans. sensitive=true

beans. enabl ed=t r ue

confi gprops.id=configprops

confi gprops. sensitive=true

confi gprops. enabl ed=t rue

confi gprops. keys-to-sanitize=password, secret, key # suffix or regex
dunp. i d=dunp

dunp. sensi tive=true

dunp. enabl ed=true

env. i d=env

env. sensitive=true

env. enabl ed=t rue

env. keys-to-sani ti ze=password, secret, key # suffix or regex
heal th.i d=heal th

heal th. sensitive=true

heal t h. enabl ed=t rue

heal t h. mappi ng. *= # mappi ng of health statuses to H tpStatus codes
heal th.tine-to-1ive=1000

info.id=info

info.sensitive=fal se

i nfo. enabl ed=true

mappi ngs. enabl ed=t r ue

mappi ngs. i d=mappi ngs

mappi ngs. sensi tive=true

metrics.id=nmetrics

netrics.sensitive=true

netrics. enabl ed=true

metrics.filter.enabl ed=true # Enable the nmetrics servliet filter.
shut down. i d=shut down

shut down. sensi ti ve=true

shut down. enabl ed=f al se

trace.id=trace

trace.sensitive=true

trace. enabl ed=t rue

NDI CATORS (previously heal th.*)
heal t h. db. enabl ed=t r ue

heal t h. di skspace. enabl ed=t rue
heal t h. nongo. enabl ed=t r ue

heal t h. rabbi t. enabl ed=t rue
heal t h. redi s. enabl ed=t rue

heal t h. sol r. enabl ed=t rue

heal t h. di skspace. pat h=.

if_required,

1.2.8.RELEASE Spring Boot

195

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/system/ApplicationPidFileWriter.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/endpoint/AbstractEndpoint.java

Spring Boot Reference Guide

managenent . heal t h. di skspace. t hr eshol d=10485760
managenent . heal t h. st at us. order =DOWN, OUT_OF_SERVI CE, UNKNOWN, UP

MVC ONLY ENDPO NTS

endpoi nts. j ol oki a. pat h=/]j ol oki a

endpoi nts. j ol oki a. sensitive=true

endpoi nts. j ol oki a. enabl ed=true # when using Jol oki a

JMX ENDPO NT (Endpoi nt MBeanExport Properti es)

endpoi nts. j nx. enabl ed=t rue

endpoi nts. j nk. domai n= # the JMX domain, defaults to 'org.springboot
endpoi nt's. j nx. uni que- nanes=f al se

endpoi nts. j nx. static-nanmes=

JOLOKI A (Jol oki aProperti es)
jol okia.config.*= # See Jol oki a manua

REMOTE SHELL
shel | . auth=sinple # jaas, key, sinple, spring
shel | . conmand-refresh-interval =-1

shel | . confi g-path-patterns= # cl asspath*:/crash/*

shel | . di sabl ed- pl ugi ns=fal se # don't expose plugins
shel | . ssh. enabl ed= # ssh settings ..

shel | . ssh. key- pat h=

shel | . ssh. port=

shel |l . tel net. enabl ed= # tel net settings ..

shel |l . tel net. port=

shel | . aut h. j aas. donmai n= # aut hentication settings ..
shel | . aut h. key. pat h=

shel | . aut h. si npl e. user. nane=

shel | . aut h. si npl e. user. passwor d=

shel | . auth. spring.rol es=

AT | NFO
spring.git.properties= # resource ref to generated git info properties file

shel | . conmand- pat h- patterns= # cl asspat h*:/commands/ **, classpath*:/crash/comrands/**

shel | . di sabl ed- commands=j pa*, j dbc*,jndi* # comma-separated |ist of commands to disable

1.2.8.RELEASE Spring Boot

196

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointMBeanExportProperties.java
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/JolokiaProperties.java

Spring Boot Reference Guide

Appendix B. Configuration meta-data

Spring Boot jars are shipped with meta-data files that provide details of all supported configuration
properties. The files are designed to allow IDE developers to offer contextual help and “code completion”
as users are working with appl i cati on. properti es orapplication.ym files.

The majority of the meta-data file is generated automatically at compile time by processing all items
annotated with @onf i gur ati onProperti es.

B.1 Meta-data format

Configuration meta-data files are located inside jars under META- | NF/ spri ng- confi gurati on-
net adat a. j son They use a simple JSON format with items categorized under either “groups” or
“properties”

{"groups": [
{
"name": "server",
"type": "org.springframework. boot. aut oconfi gure.web. Server Properties"”,
"sourceType": "org.springfranmework. boot. aut oconfi gure. web. Server Properties"

}

],"properties": [

{

"panme": "server.port",

"type": "java.lang.|nteger",

"sourceType": "org.springfranmework. boot. aut oconfi gure. web. Server Properties"
bo
{

"nanme": "server.servlet-path",

"type": "java.lang. String",

"sourceType": "org.springfranmework. boot. aut oconfi gure. web. Server Properties"

"defaul tVal ue": "/"

1}

Each “property” is a configuration item that the user specifies with a given value. For example
server.port and server. servl et - pat h might be specified in appl i cati on. properties as
follows:

server. port=9090
server. servl et - pat h=/ home

The “groups” are higher level items that don't themselves specify a value, but instead provide a
contextual grouping for properties. For example the server. port and server.servlet-path
properties are part of the ser ver group.

Note

It is not required that every “property” has a “group”, some properties might just exist in their own
right.

Group Attributes

The JSON object contained in the gr oups array can contain the following attributes:

1.2.8.RELEASE Spring Boot 197

Spring Boot Reference Guide

Name Type Purpose
name String The full name of the group. This attribute is mandatory.
type String The class name of the data type of the group. For

example, if the group was based on a class annotated with
@Confi gurati onProperti es the attribute would contain the
fully qualified name of that class. If it was based on a @ean
method, it would be the return type of that method. The attribute
may be omitted if the type is not known.

descri pti on | String A short description of the group that can be displayed to users.
May be omitted if no description is available. It is recommended
that descriptions are a short paragraphs, with the first line
providing a concise summary. The last line in the description
should end with a period (.).

sourceType | String The class name of the source that contributed this group. For
example, if the group was based on a @ean method annotated
with @onf i gurati onProperti es this attribute would contain
the fully qualified name of the @onf i gur at i on class containing
the method. The attribute may be omitted if the source type is not
known.

sour ceMet hod String The full name of the method (include parenthesis and argument
types) that contributed this group. For example, the name of a
@confi gurati onProperties annotated @ean method. May
be omitted if the source method is not known.

Property Attributes
The JSON object contained in the pr oper ti es array can contain the following attributes:

Name Type Purpose

name String The full name of the property. Names are in lowercase dashed
form (e.g. server. servl et - pat h). This attribute is mandatory.

type String The class name of the data type of the property. For example,

j ava. | ang. Stri ng. This attribute can be used to guide the user
as to the types of values that they can enter. For consistency, the
type of a primitive is specified using its wrapper counterpart, i.e.
bool ean becomes j ava. | ang. Bool ean. Note that this class
may be a complex type that gets converted from a String as values
are bound. May be omitted if the type is not known.

descri pti on | String A short description of the group that can be displayed to users.
May be omitted if no description is available. It is recommended
that descriptions are a short paragraphs, with the first line
providing a concise summary. The last line in the description
should end with a period (.).

sourceType | String The class name of the source that contributed this property.
For example, if the property was from a class annotated with

1.2.8.RELEASE Spring Boot 198

Spring Boot Reference Guide

Name Type Purpose

@Conf i gurati onProperti es this attribute would contain the
fully qualified name of that class. May be omitted if the source type
is not known.

def aul t Val ue Object The default value which will be used if the property is not specified.
Can also be an array of value(s) if the type of the property is an
array. May be omitted if the default value is not known.

deprecat ed |boolean Specify if the property is deprecated. May be omitted if the field is
not deprecated or if that information is not known.

Repeated meta-data items

Itis perfectly acceptable for “property” and “group” objects with the same name to appear multiple times
within a meta-data file. For example, Spring Boot binds spri ng. dat asour ce properties to Hikari,
Tomcat and DBCP classes, with each potentially offering overlap of property names. Consumers of
meta-data should take care to ensure that they support such scenarios.

B.2 Generating your own meta-data using the annotation
processor

You can easily generate your own configuration meta-data file from items annotated with
@confi gurati onProperties by using the spri ng- boot - confi gurati on-processor jar. The
jar includes a Java annotation processor which is invoked as your project is compiled. To use the
processor, simply include spri ng- boot - confi gur ati on- processor as an optional dependency,
for example with Maven you would add:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-configuration-processor</artifactld>
<opti onal >t rue</ opti onal >

</ dependency>

With Gradle, you can use the propdeps-plugin and specify:

dependenci es {
optional "org.springframework. boot: spring-boot-configuration-processor"

}

conpi | eJava. dependsOn(pr ocessResour ces)

}

Note

You need to add conpi | eJava. dependsOn(pr ocessResour ces) to your build to ensure
that resources are processed before code is compiled. Without this directive any addi ti onal -
spring-configuration-netadat a. j son files will not be processed.

The processor will pickup both classes and methods that are annotated with
@confi gurati onProperties. The Javadoc for field values within configuration classes will be used
to populate the descri pti on attribute.

1.2.8.RELEASE Spring Boot 199

https://github.com/spring-projects/gradle-plugins/tree/master/propdeps-plugin

Spring Boot Reference Guide

Note

You should only use simple text with @onfi gur ati onProperti es field Javadoc since they
are not processed before being added to the JSON.

Properties are discovered via the presence of standard getters and setters with special handling for
collection types (that will be detected even if only a getter is present). The annotation processor also
supports the use of the @at a, @ett er and @et t er lombok annotations.

Nested properties

The annotation processor will automatically consider inner classes as nested properties. For example,
the following class:

@confi gurationProperties(prefix="server")
public class ServerProperties {

private String nane;
private Host host;

/1 ... getter and setters
private static class Host {
private String ip;
private int port;

/1 ... getter and setters

Will produce meta-data information for ser ver . nane, server. host. i p and server. host. port
properties. You can use the @\est edConf i gur ati onPr operty annotation on a field to indicate that
a regular (non-inner) class should be treated as if it were nested.

Adding additional meta-data

Spring Boot's configuration file handling is quite flexible; and it often the case that properties may exist
that are not bound to a @onf i gurati onProperti es bean. To support such cases, the annotation
processor will automatically merge items from META- | NF/ addi ti onal - spri ng- confi gurati on-
nmet adat a. j son into the main meta-data file.

The format of the addi ti onal - spri ng- confi gurati on- et adat a. j son file is exactly the same
as the regular spri ng- confi gur at i on- net adat a. j son. The additional properties file is optional,
if you don’t have any additional properties, simply don’t add it.

1.2.8.RELEASE Spring Boot 200

Spring Boot Reference Guide

Appendix C. Auto-configuration
classes

Here is a list of all auto configuration classes provided by Spring Boot with links to documentation and
source code. Remember to also look at the autoconfig report in your application for more details of
which features are switched on. (start the app with - - debug or - Ddebug, or in an Actuator application
use the aut oconf i g endpoint).

C.1 From the “spring-boot-autoconfigure” module

The following auto-configuration classes are from the spri ng- boot - aut oconf i gur e module:

Configuration Class Links

Act i veMQAut oConfi gurati on javadoc
AopAut oConfi guration javadoc
Bat chAut oConfi gurati on javadoc
Cl oudAut oConfi gurati on javadoc
Dat aSour ceAut oConf i gurati on javadoc
Dat aSour ceTr ansact i onManager Aut oConfi gurati on javadoc
Devi ceDel egati ngVi ewResol ver Aut oConfi gurati on javadoc
Devi ceResol ver Aut oConfi gurati on javadoc
Di spat cher Ser vl et Aut oConfi gurati on javadoc
El asti csear chAut oConfi gurati on javadoc
El asti csear chDat aAut oConfi gurati on javadoc
El asti csear chReposi t ori esAut oConfi gurati on javadoc
EnbeddedSer vl et Cont ai ner Aut oConf i gurati on javadoc
Er r or MrvcAut oConfi gurati on javadoc
FacebookAut oConfi gurati on javadoc
Fal | backWebSecuri t yAut oConfi gurati on javadoc
Fl ywayAut oConf i gurati on javadoc
Fr eeMar ker Aut oConf i gurati on javadoc
G oovyTenpl at eAut oConfi gurati on javadoc
GsonAut oConfi gurati on javadoc
Gzi pFi |l t er Aut oConfi guration javadoc
Hi ber nat eJpaAut oConfi gurati on javadoc

1.2.8.RELEASE Spring Boot 201

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cloud/CloudAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/cloud/CloudAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mobile/DeviceDelegatingViewResolverAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/mobile/DeviceDelegatingViewResolverAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mobile/DeviceResolverAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/mobile/DeviceResolverAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/DispatcherServletAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/web/DispatcherServletAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/elasticsearch/ElasticsearchAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/elasticsearch/ElasticsearchAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/elasticsearch/ElasticsearchDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/elasticsearch/ElasticsearchDataAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchRepositoriesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/EmbeddedServletContainerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/web/EmbeddedServletContainerAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ErrorMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/web/ErrorMvcAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/social/FacebookAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/social/FacebookAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/FallbackWebSecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/security/FallbackWebSecurityAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/flyway/FlywayAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/gson/GsonAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/gson/GsonAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/GzipFilterAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/web/GzipFilterAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.html

Spring Boot Reference Guide

Configuration Class Links

Hor net QAut oConfi gurati on javadoc
Ht t pEncodi ngAut oConfi gurati on javadoc
Ht t pMessageConvert er sAut oConfi gurati on javadoc
Hyper nedi aAut oConfi gurati on javadoc
I nt egrati onAut oConfi guration javadoc
JacksonAut oConfi guration javadoc
Jer seyAut oConfi guration javadoc
JmsAut oConfi guration javadoc
JnxAut oConfi guration javadoc
Jndi Connect i onFact or yAut oConfi gurati on javadoc
Jndi Dat aSour ceAut oConfi gurati on javadoc
JpaReposi t ori esAut oConfi gurati on javadoc
Jt aAut oConfi gurati on javadoc
Li nkedl nAut oConfi guration javadoc
Li qui baseAut oConfi gurati on javadoc
Mai | Sender Aut oConfi guration javadoc
MessageSour ceAut oConfi gurati on javadoc
MongoAut oConf i gurati on javadoc
MongoDat aAut oConfi gurati on javadoc
MongoReposi t ori esAut oConfi gurati on javadoc
Mul ti part Aut oConfi guration javadoc
Must acheAut oConf i gurati on javadoc
Per si st enceExcepti onTr ansl ati onAut oConfi gurati on javadoc
Pr opert yPl acehol der Aut oConfi gurati on javadoc
Rabbi t Aut oConfi gurati on javadoc
React or Aut oConfi gurati on javadoc
Redi sAut oConfi gurati on javadoc
Reposi t or yRest MvcAut oConfi gurati on javadoc
Securi t yAut oConfi guration javadoc
Server Properti esAut oConfi guration javadoc

1.2.8.RELEASE Spring Boot

202

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/hornetq/HornetQAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jms/hornetq/HornetQAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/HttpEncodingAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/web/HttpEncodingAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/HttpMessageConvertersAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/web/HttpMessageConvertersAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hateoas/HypermediaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/hateoas/HypermediaAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jackson/JacksonAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jackson/JacksonAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jersey/JerseyAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jersey/JerseyAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JmsAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jms/JmsAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JndiConnectionFactoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jms/JndiConnectionFactoryAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/JndiDataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jdbc/JndiDataSourceAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/jpa/JpaRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/data/jpa/JpaRepositoriesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jta/JtaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jta/JtaAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/social/LinkedInAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/social/LinkedInAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/liquibase/LiquibaseAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailSenderAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/mail/MailSenderAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/MessageSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/MessageSourceAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/mongo/MongoAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/mongo/MongoDataAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/mongo/MongoRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/data/mongo/MongoRepositoriesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/MultipartAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/web/MultipartAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mustache/MustacheAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/mustache/MustacheAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/dao/PersistenceExceptionTranslationAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/dao/PersistenceExceptionTranslationAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/PropertyPlaceholderAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/PropertyPlaceholderAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/amqp/RabbitAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/reactor/ReactorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/reactor/ReactorAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/redis/RedisAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/redis/RedisAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/rest/RepositoryRestMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/data/rest/RepositoryRestMvcAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/security/SecurityAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerPropertiesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/web/ServerPropertiesAutoConfiguration.html

Spring Boot Reference Guide

Configuration Class Links

Si t ePr ef er enceAut oConfi gurati on javadoc
Soci al WebAut oConfi gurati on javadoc
Sol r Aut oConfi gurati on javadoc
Sol r Reposi tori esAut oConfi guration javadoc
Spr i ngbat aWebAut oConf i gurati on javadoc
Thynel eaf Aut oConfi gurati on javadoc
Twi tt er Aut oConfi guration javadoc
Vel oci t yAut oConfi gurati on javadoc
WebM/cAut oConf i guration javadoc
WebSocket Aut oConf i gurati on javadoc
XADat aSour ceAut oConfi gurati on javadoc

C.2 From the “spring-boot-actuator” module

The following auto-configuration classes are from the spri ng- boot - act uat or module:

Configuration Class Links

Audi t Aut oConfi guration javadoc
Cr shAut oConfi gurati on javadoc
Endpoi nt Aut oConfi gurati on javadoc
Endpoi nt MBeanExpor t Aut oConf i gurati on javadoc
Endpoi nt WebMrcAut oConfi guration javadoc
Heal t hl ndi cat or Aut oConfi gurati on javadoc
Jol oki aAut oConfi gurati on javadoc
Managemnent Securi t yAut oConfi guration javadoc
Managenent Ser ver Properti esAut oConfi gurati on javadoc
MetricFilterAutoConfiguration javadoc
Met ri cReposi t or yAut oConfi gurati on javadoc
Publ i cMet ri csAut oConfi guration javadoc
Tr aceReposi t or yAut oConfi guration javadoc
TraceWebFi | t er Aut oConfi guration javadoc

1.2.8.RELEASE

Spring Boot

203

http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mobile/SitePreferenceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/mobile/SitePreferenceAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/social/SocialWebAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/social/SocialWebAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/solr/SolrAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/solr/SolrAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/solr/SolrRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/data/solr/SolrRepositoriesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/web/SpringDataWebAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/data/web/SpringDataWebAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/social/TwitterAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/social/TwitterAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/velocity/VelocityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/velocity/VelocityAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/websocket/WebSocketAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/websocket/WebSocketAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/XADataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/autoconfigure/jdbc/XADataSourceAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/AuditAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/AuditAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/EndpointAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointMBeanExportAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/EndpointMBeanExportAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointWebMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/EndpointWebMvcAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/HealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/HealthIndicatorAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/JolokiaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/JolokiaAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementSecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/ManagementSecurityAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerPropertiesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/ManagementServerPropertiesAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/MetricFilterAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/MetricFilterAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/MetricRepositoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/MetricRepositoryAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/PublicMetricsAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/PublicMetricsAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/TraceRepositoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/TraceRepositoryAutoConfiguration.html
http://github.com/spring-projects/spring-boot/tree/v1.2.8.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/TraceWebFilterAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/1.2.8.RELEASE/api/org/springframework/boot/actuate/autoconfigure/TraceWebFilterAutoConfiguration.html

Spring Boot Reference Guide

Appendix D. The executable jar
format

The spri ng- boot - | oader modules allows Spring Boot to support executable jar and war files. If
you're using the Maven or Gradle plugin, executable jars are automatically generated and you generally
won't need to know the details of how they work.

If you need to create executable jars from a different build system, or if you are just curious about the
underlying technology, this section provides some background.

D.1 Nested JARS

Java does not provide any standard way to load nested jar files (i.e. jar files that are themselves
contained within a jar). This can be problematic if you are looking to distribute a self-contained application
that you can just run from the command line without unpacking.

To solve this problem, many developers use “shaded” jars. A shaded jar simply packages all classes,
from all jars, into a single 'uber jar'. The problem with shaded jars is that it becomes hard to see which
libraries you are actually using in your application. It can also be problematic if the the same filename
is used (but with different content) in multiple jars. Spring Boot takes a different approach and allows
you to actually nest jars directly.

The executable jar file structure

Spring Boot Loader compatible jar files should be structured in the following way:

exanpl e. j ar
|
+- META- | NF
| +- MANI FEST. MF
+-org
| +-springfranework
| +- boot
| +-1 oader
| +-<spring boot |oader classes>
+-com
| +-nyconpany
| + project
| +- Youdl asses. cl ass
+lib
+- dependencyl. j ar
+- dependency?2. j ar

Dependencies should be placed in a nested | i b directory.
The executable war file structure

Spring Boot Loader compatible war files should be structured in the following way:

exanpl e. j ar
|
+- META- | NF
| +- MANI FEST. MF
+-org
| +-springframework
| +- boot

1.2.8.RELEASE Spring Boot 204

Spring Boot Reference Guide

| +- | oader
| +-<spring boot |oader classes>
+- VEB- | NF

+-cl asses

| +-com
+- myconpany

+- proj ect

+- Youd asses. cl ass

+- dependencyl. j ar
+- dependency?2. j ar
i b-provi ded

+-servlet-api.jar
+- dependency3. j ar

|

|

|
+1lib
|

|

+-

Dependencies should be placed in a nested VEB- | NF/ | i b directory. Any dependencies that are
required when running embedded but are not required when deploying to a traditional web container
should be placed in VEB- | NF/ | i b- pr ovi ded.

D.2 Spring Boot’s “JarFile” class

The core class used to support loading nested jars is
org. springframework. boot. | oader.jar.JarFile. It allows you load jar content from a
standard jar file, or from nested child jar data. When first loaded, the location of each Jar Entry is
mapped to a physical file offset of the outer jar:

myapp. j ar

foocooanoo foocooomocosocooocooan +
| | /lib/nylib.jar |
| Aclass [+--------- tooeae- +|
| || B.class | B.class |

| e Gmmesssoes +|
fmocsoasos fmocccocscocosososocoo +
N N N

0063 3452 3980

The example above shows how A. cl ass can be found in myapp. j ar position 0063. B. cl ass from
the nested jar can actually be found in nyapp. j ar position 3452 and B. cl ass is at position 3980.

Armed with this information, we can load specific nested entries by simply seeking to appropriate part if
the outer jar. We don’t need to unpack the archive and we don’t need to read all entry data into memory.

Compatibility with the standard Java “JarFile”

Spring Boot Loader strives to remain compatible with existing code and libraries.
org. spri ngframewor k. boot . | oader. jar. JarFil e extends from java. util.jar.JarFile
and should work as a drop-in replacement. The get URL() method will return a URL that
opens a j ava. net.Jar URLConnecti on compatible connection and can be used with Java's
URLCl assLoader.

D.3 Launching executable jars

The or g. spri ngframewor k. boot . | oader. Launcher class is a special bootstrap class that is
used as an executable jars main entry point. It is the actual Mai n- Cl ass in your jar file and it's used to
setup an appropriate URLCl assLoader and ultimately call your mai n() method.

There are 3 launcher subclasses (Jar Launcher , War Launcher and Pr operti esLauncher). Their
purpose is to load resources (. cl ass files etc.) from nested jar files or war files in directories (as
opposed to explicitly on the classpath). In the case of the [Jar | War] Launcher the nested paths

1.2.8.RELEASE Spring Boot 205

Spring Boot Reference Guide

are fixed (i b/*.jar and | i b-provi ded/*.jar for the war case) so you just add extra jars in
those locations if you want more. The Pr oper ti esLauncher looksinl i b/ inyour application archive
by default, but you can add additional locations by setting an environment variable LOADER _PATH or
| oader. pat hinapplication. properties (comma-separated list of directories or archives).

Launcher manifest

You need to specify an appropriate Launcher as the Mai n-Cd ass attribute of META-1 NF/
MANI FEST. MF. The actual class that you want to launch (i.e. the class that you wrote that contains a
mai n method) should be specified in the St art - C ass attribute.

For example, here is a typical MANI FEST. M- for an executable jar file:

Mai n-C ass: org. springfranmework. boot . | oader. Jar Launcher
Start-Cl ass: com nyconpany. proj ect. MyApplication

For a war file, it would be:

Mai n- Cl ass: org. springfranmework. boot . | oader . War Launcher
Start-Cl ass: com nmyconpany. proj ect. M/Appli cation

Note

You do not need to specify O ass- Pat h entries in your manifest file, the classpath will be deduced
from the nested jars.

Exploded archives

Certain PaaS implementations may choose to unpack archives before they run. For example, Cloud
Foundry operates in this way. You can run an unpacked archive by simply starting the appropriate
launcher:

$ unzip -q nyapp.jar
$ java org. springfranmework. boot . | oader. Jar Launcher

D.4 PropertiesLauncher Features

Properti esLauncher has afew special features that can be enabled with external properties (System
properties, environment variables, manifest entries or appl i cati on. properti es).

Key Purpose

| oader. path Comma-separated Classpath, e.g. | i b: ${ HOVE} / app/ | i b.

| oader . home Location of additional properties file, e.g. / opt / app (defaults to
${user.dir})

| oader. args Default arguments for the main method (space separated)

| oader. main Name of main class to launch, e.g. com app. Appl i cati on.

| oader. confi g. name Name of properties file, e.g. | oader (defaults to appl i cati on).

| oader. config.l ocation Path to properties file, e.g. cl asspat h: | oader. properties
(defaults to appl i cati on. properti es).

1.2.8.RELEASE Spring Boot 206

Spring Boot Reference Guide

Key Purpose

| oader. system Boolean flag to indicate that all properties should be added to
System properties (defaults to f al se)

Manifest entry keys are formed by capitalizing initial letters of words and changing the separator to
from “.” (e.g. Loader - Pat h). The exception is | oader . mai n which is looked up as St art - C ass in
the manifest for compatibility with Jar Launcher).

Environment variables can be capitalized with underscore separators instead of periods.

» | oader . hone is the directory location of an additional properties file (overriding the default) as long
as | oader. confi g. | ocati on is not specified.

» | oader. pat h can contain directories (scanned recursively for jar and zip files), archive paths, or
wildcard patterns (for the default JVM behavior).

» Placeholder replacement is done from System and environment variables plus the properties file itself
on all values before use.

D.5 Executable jar restrictions

There are a number of restrictions that you need to consider when working with a Spring Boot Loader
packaged application.

Zip entry compression

The Zi pEnt ry for a nested jar must be saved using the Zi pEnt r y. STORED method. This is required
so that we can seek directly to individual content within the nested jar. The content of the nested jar file
itself can still be compressed, as can any other entries in the outer jar.

System ClassLoader

Launched applications should use Thr ead. get Cont ext Cl assLoader () when loading classes
(most libraries and frameworks will do this by default). Trying to load nested jar classes via
Cl assLoader . get Syst enCCl assLoader () will fail. Please be aware that j ava. util. Loggi ng
always uses the system classloader, for this reason you should consider a different logging
implementation.

D.6 Alternative single jar solutions

If the above restrictions mean that you cannot use Spring Boot Loader the following alternatives could
be considered:

* Maven Shade Plugin

e JarClassLoader

e OneJar

1.2.8.RELEASE Spring Boot 207

http://maven.apache.org/plugins/maven-shade-plugin/
http://www.jdotsoft.com/JarClassLoader.php
http://one-jar.sourceforge.net

Spring Boot Reference Guide

Appendix E. Dependency versions

The table below provides details of all of the dependency versions that are provided by Spring Boot in
its CLI, Maven dependency management and Gradle plugin. When you declare a dependency on one

of these artifacts without declaring a version the version that is listed in the table will be used.

Group ID Artifact ID Version
antlr antlr 2.7.7
ch. gos. | ogback | ogback-cl assi ¢ 1.1.3
com at oni kos transacti ons-j dbc 3.9.3
com at om kos transactions-j s 3.9.3
com at omi kos transactions-jta 3.93
com f ast erxm . j ackson. corf gackson-annot ati ons 2.4.6
com f ast erxm . j ackson. cor gackson-core 2.4.6
com f ast erxm . j ackson. cor gackson- dat abi nd 2.4.6
com f ast erxm . j ackson. dat phoksan- dat af or nat - xm 2.4.6
com f ast erxm . j ackson. dat phoksan- dat af or mat - yaml 2.4.6
com f ast erxm . j ackson. dat pagkeon- dat at ype-j dk8 2.4.6
com fasterxm . j ackson. dat pagkeon- dat at ype-j oda 2.4.6
com fasterxm . j ackson. dat pagkeon- dat at ype-j sr310 2.4.6
com genstone. genfire genfire 7.0.2
com gi t hub. mxab. t hynel eaf t bytrehsaf - ext r as- dat a- 1.3
attribute
com googl e. code. gson gson 2.3.1
com googl ecode. j son- j son-sinple 1.1.1
sinmpl e
com h2dat abase h2 1.4.190
com j ayway. j sonpat h j son-path 0.9.1
com sanski vert j must ache 1.10
com sun. mai | j avax. mai | 154
com zaxxer Hi kari CP 225
com zaxxer Hi kari CP-j ava6 2.25
comons- beanutil s conmons- beanutils 1.9.2
comons-col | ections conmons-col | ecti ons 3.2.2

1.2.8.RELEASE

Spring Boot

208

Spring Boot Reference Guide

Group ID Artifact ID Version
conmons- dbcp comons- dbcp 1.4
commons- di gest er conmons- di gest er 21
comons- pool conmons- pool 1.6
i 0.dropwi zard. nmetrics metrics-core 3.1.2
i 0.dropwi zard. nmetrics metrics-ganglia 3.1.2
i 0.dropwi zard. netrics metrics-graphite 3.1.2
i 0.dropwi zard. netrics metrics-servlets 3.1.2
i 0. undertow undert ow- core 1.1.9.Final
i 0. undertow under t ow ser vl et 1.1.9.Final
i 0. undert ow undert ow websocket s-jsr 1.1.9.Final
j avax. cache cache- api 1.0.0
javax.jns j ms- api 1.1-rev-1
j avax. mai | j avax. mai | - api 154
j avax. servl et j avax. servl et - api 3.1.0
j avax. servl et jstl 1.2
javax.transaction j avax. transacti on- api 1.2
j axen j axen 1.1.6
joda-tine joda-tinme 2.5
junit junit 412
| 0g4j | 0g4j 1.2.17
nysql mysgl - connector-j ava 5.1.38
nz.net.ultraq.thynel eaf |thynel eaf-Iayout - 1.29

di al ect
or g. apache. acti veny acti veny- br oker 5.10.2
or g. apache. acti veny activeny-client 5.10.2
org. apache. acti veny activeny-j ns- pool 5.10.2
or g. apache. acti veny acti veny- pool 5.10.2
or g. apache. conmons commons- dbcp2 2.0.1
or g. apache. commons commons- pool 2 2.2
or g. apache. der by der by 10.10.2.0
or g. apache. htt pconponent shtt pasynccl i ent 4.0.2

1.2.8.RELEASE

Spring Boot

209

Spring Boot Reference Guide

Group ID Artifact ID Version
or g. apache. htt pconponent shtt pcli ent 4.3.6
or g. apache. htt pconponent shtt pm e 4.3.6
or g. apache. | oggi ng. | 0g4j || og4j - api 21
or g. apache. | oggi ng. |1 og4j || og4j -core 21
or g. apache. | oggi ng. | og4j || og4j - sl f4j-i npl 2.1
org. apache. sol r solr-sol rj 4.7.2
or g. apache. t ontat tontat -j dbc 8.0.30
or g. apache. t ontat tontat -j sp- api 8.0.30
org. apache. tontat. enbed |tontat-enbed-core 8.0.30
or g. apache. tontat . enbed |tontat-enbed- el 8.0.30
org. apache. tontat . enbed |tontat-enbed-| asper 8.0.30
or g. apache. tontat . enbed |tontat-enbed-1 oggi ng- 8.0.30
juli
org. apache. tontat. enbed |tontat-enbed- websocket 8.0.30
org. apache.vel ocity vel ocity 1.7
org. apache.vel ocity vel ocity-tools 2.0
org. aspect]j aspectjrt 1.8.7
org. aspect]j aspectjtools 1.8.7
or g. aspectj aspect j weaver 1.8.7
or g. codehaus. bt m bt m 214
or g. codehaus. gr oovy gr oovy 24.4
or g. codehaus. gr oovy groovy-al | 24.4
or g. codehaus. gr oovy groovy- ant 24.4
or g. codehaus. gr oovy groovy- bsf 2.4.4
or g. codehaus. gr oovy groovy-consol e 24.4
or g. codehaus. gr oovy groovy- docgener at or 2.4.4
or g. codehaus. gr oovy groovy- groovydoc 2.4.4
or g. codehaus. gr oovy groovy-groovysh 2.4.4
or g. codehaus. gr oovy groovy-j nx 2.4.4
or g. codehaus. gr oovy groovy-json 2.4.4
or g. codehaus. gr oovy groovy-j sr223 24.4

1.2.8.RELEASE

Spring Boot

210

Spring Boot Reference Guide

Group ID Artifact ID Version
or g. codehaus. gr oovy groovy-nio 244
or g. codehaus. gr oovy groovy-servl et 2.4.4
or g. codehaus. gr oovy groovy- sql 2.4.4
or g. codehaus. gr oovy gr oovy- sw ng 24.4
or g. codehaus. gr oovy groovy-tenpl ates 2.4.4
or g. codehaus. gr oovy groovy-test 2.4.4
or g. codehaus. gr oovy groovy-testng 2.4.4
or g. codehaus. gr oovy groovy- xm 2.4.4
or g. codehaus. j ani no j ani no 26.1
org. crashub crash.cli 1.3.2
org. crashub crash. connectors. ssh 1.3.2
org. crashub crash. connectors.telnet 1.3.2
org. crashub crash. enbed. spri ng 1.3.2
org.crashub crash. pl ugi ns. cron 1.3.2
org.crashub crash. pl ugi ns. mai | 1.3.2
org. crashub crash. shel | 1.3.2

org.eclipse.jetty

jetty-annotations

9.2.14.v20151106

org.eclipse.jetty

jetty-continuation

9.2.14.v20151106

org.eclipse.jetty j etty-depl oy 9.2.14.v20151106
org.eclipse.jetty jetty-http 9.2.14.v20151106
org.eclipse.jetty jetty-io 9.2.14.v20151106
org.eclipse.jetty jetty-jnx 9.2.14.v20151106
org.eclipse.jetty jetty-jsp 9.2.14.v20151106
org.eclipse.jetty jetty-plus 9.2.14.v20151106

org.eclipse.jetty

org.eclipse.jetty

org.eclipse.jetty

jetty-security
jetty-server

jetty-servl et

9.2.14.v20151106

9.2.14.v20151106

9.2.14.v20151106

org.eclipse.jetty

jetty-servlets

9.2.14.v20151106

org.eclipse.jetty

jetty-util

9.2.14.v20151106

org.eclipse.jetty

j etty-webapp

9.2.14.v20151106

1.2.8.RELEASE

Spring Boot

211

Spring Boot Reference Guide

Group ID

org.eclipse.jetty

Artifact ID

jetty-xm

Version

9.2.14.v20151106

org.eclipse.jetty.orbit |javax.servlet.jsp 2.2.0.v201112011158
org. eclipse.jetty. websockgtivax- websocket -server- 9.2.14.v20151106
i mpl
org. eclipse.jetty. websockeebsocket - server 9.2.14.v20151106
org. fl ywaydb fl yway-core 3.1
org. freemarker freenmar ker 2.3.23
org. gl assfi sh j avax. el 3.0.0
org. gl assfish.jersey. cont aenseyg- cont ai ner - 2.14
servl et
org. gl assfish.jersey. cont pensey- cont ai ner - 2.14
servlet-core
org. gl assfish.jersey. corejersey-server 2.14
org. gl assfish.jersey. ext |jersey-bean-validation 2.14
org. gl assfish.jersey.ext |jersey-spring3 2.14
org. gl assfish.jersey. nedi aer sey- nedi a-j son- 2.14
j ackson
or g. hantr est hantrest-core 1.3
or g. hantr est hancrest-library 1.3
org. hi bernate hi ber nat e- ehcache 4.3.11.Final
org. hi bernate hi bernat e-enti tymanager 4.3.11.Final
org. hi bernate hi ber nat e- envers 4.3.11.Final
org. hi bernate hi ber nat e- j panodel gen 4.3.11.Final
org. hi bernate hi ber nat e- val i dat or 5.1.3.Final
org. hornetq hornet g-j ns-cli ent 2.4.7.Final
org. hornetq hor net g-j nms-server 2.4.7. Final
org. hsqgl db hsql db 2.3.3
org.j avassi st j avassi st 3.18.1-GA
org.jdom j donR 2.0.6
org.jol okia j ol oki a-core 1.2.3
org. liqui base | i qui base-core 3.35
org. nockito nocki t o-core 1.10.19

1.2.8.RELEASE

Spring Boot

212

Spring Boot Reference Guide

Group ID

or g. nongodb

Artifact ID

nmongo-j ava-dri ver

Version

2.12.5

org. proj ectreactor reactor-core 1.1.6.RELEASE

org. proj ectreactor react or - groovy 1.1.6.RELEASE

org. proj ectreactor react or-groovy- 1.1.6.RELEASE
ext ensi ons

org. proj ectreactor react or -1 ogback 1.1.6.RELEASE

org. proj ectreactor reactor - net 1.1.6.RELEASE

org. projectreactor.springreactor-spring-context 1.1.3.RELEASE

org. projectreactor.springreactor-spring-core 1.1.3.RELEASE

org. proj ectreactor.springreactor-spring- 1.1.3.RELEASE
messagi ng

org. projectreactor.springreactor-spring-webnmc 1.1.3.RELEASE

org. sl f4j j cl-over-sl f4j 1.7.13

org. sl f4j jul -to-slf4j 1.7.13

org. sl f4j | og4j - over - sl f 4] 1.7.13

org. sl f4j sl f 4j - api 1.7.13

org.slf4j sl f4j-jdkl4d 1.7.13

org. sl f4j sl f4j-1o0g4j12 1.7.13

or g. spockf r anewor k spock-core 0.7-groovy-2.0

or g. spockf r anewor k spock- spring 0.7-groovy-2.0

or g. spri ngframewor k spri ng-aop 4.1.9.RELEASE

or g. spri ngframewor k spring-aspects 4.1.9.RELEASE

org. spri ngframewor k spri ng- beans 4.1.9.RELEASE

org. spri ngframework spri ng- cont ext 4.1.9.RELEASE

or g. spri ngframewor k spring-cont ext - support 4.1.9.RELEASE

org. spri ngfranmewor k spring-core 4.1.9.RELEASE

org. spri ngframework Spring- expr essi on 4.1.9.RELEASE

or g. spri ngframewor k spring-instrunent 4.1.9.RELEASE

or g. spri ngframewor k spring-instrunent - 4.1.9.RELEASE
t oncat

or g. spri ngframewor k spring-jdbc 4.1.9.RELEASE

1.2.8.RELEASE

Spring Boot

213

Spring Boot Reference Guide

Group ID Artifact ID Version
or g. spri ngframewor k spring-jms 4.1.9.RELEASE
or g. spri ngframewor k spri ngl oaded 1.2.5.RELEASE
or g. spri ngframewor k spri ng- messagi ng 4.1.9.RELEASE
or g. spri ngframewor k spring-orm 4.1.9.RELEASE
org. spri ngframewor k spring- oxm 4.1.9.RELEASE
org. spri ngframewor k spring-test 4.1.9.RELEASE
or g. spri ngframewor k spring-tx 4.1.9.RELEASE
org. spri ngframework spri ng-web 4.1.9.RELEASE
org. spri ngframework spri ng-webnvc 4.1.9.RELEASE
or g. spri ngframewor k spri ng-webmvc- portl et 4.1.9.RELEASE
or g. spri ngframewor k spri ng- websocket 4.1.9.RELEASE
or g. spri ngframewor k. amgp | spri ng- angp 1.4.6.RELEASE
org. spri ngframewor k. amgp | spri ng-erl ang 1.4.6.RELEASE
org. spri ngframewor k. amgp | spri ng-rabbit 1.4.6.RELEASE
org. spri ngframewor k. bat chspri ng- bat ch-core 3.0.6.RELEASE
org. spri ngframewor k. bat chspri ng- bat ch- 3.0.6.RELEASE
infrastructure
org. spri ngfranmewor k. bat chspri ng- bat ch- 3.0.6.RELEASE
i ntegration
or g. spri ngframewor k. bat chspri ng- bat ch-t est 3.0.6.RELEASE
org. spri ngframewor k. boot | spri ng- boot 1.2.8.RELEASE
or g. spri ngframewor k. boot | spri ng- boot 1.2.8.RELEASE
org. spri ngframewor k. boot | spri ng- boot - act uat or 1.2.8.RELEASE
org. spri ngframewor k. boot | spri ng- boot - 1.2.8.RELEASE
aut oconfi gure
or g. spri ngframewor k. boot | spri ng- boot - 1.2.8.RELEASE
confi guration-processor
org. spri ngframewor k. boot | spri ng- boot - dependency- 1.2.8.RELEASE
tool s
org. springframewor k. boot | spri ng- boot - | oader 1.2.8.RELEASE
or g. spri ngframewor k. boot | spri ng- boot - | oader - 1.2.8.RELEASE

tool s

1.2.8.RELEASE

Spring Boot

214

Spring Boot Reference Guide

Group ID Artifact ID Version

or g. spri ngframewor k. boot | spri ng- boot -starter 1.2.8.RELEASE

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
act uat or

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
angp

org. spri ngframewor k. boot | spring-boot-starter-aop 1.2.8.RELEASE

or g. spri ngfranmewor k. boot | spri ng- boot -starter- 1.2.8.RELEASE
bat ch

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
cl oud- connectors

or g. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
dat a- el asti csearch

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
data-genfire

org. spri ngframework. boot | spring-boot-starter- 1.2.8.RELEASE
dat a-j pa

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
dat a- nongodb

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
dat a-r est

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
dat a-sol r

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
freemarker

or g. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
groovy-tenpl ates

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
hat eoas

org. spri ngfranmewor k. boot | spring-boot-starter- 1.2.8.RELEASE
hor net q

or g. spri ngfranmewor k. boot | spri ng- boot -starter- 1.2.8.RELEASE
i ntegration

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
j dbc

or g. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE

j ersey

1.2.8.RELEASE

Spring Boot

215

Spring Boot Reference Guide

Group ID Artifact ID Version

or g. spri ngfranmewor k. boot | spri ng- boot -starter- 1.2.8.RELEASE
jetty

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
j ta-atom kos

or g. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
jta-bitronix

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
| 0g4j

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
| og4j 2

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
| oggi ng

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
mai |

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
nobi | e

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
must ache

or g. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
redis

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
r enot e- shel |

org. spri ngframework. boot | spring-boot-starter- 1.2.8.RELEASE
security

or g. spri ngfranmewor k. boot | spri ng- boot -starter- 1.2.8.RELEASE
soci al - facebook

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
soci al -1inkedin

or g. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
social -twitter

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
t est

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
t hynel eaf

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE

t ontat

1.2.8.RELEASE

Spring Boot

216

Spring Boot Reference Guide

Group ID Artifact ID Version

or g. spri ngfranmewor k. boot | spri ng- boot -starter- 1.2.8.RELEASE
undert ow

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
vel ocity

org. spri ngframewor k. boot | spring-boot-starter-web 1.2.8.RELEASE

org. spri ngframewor k. boot | spring-boot-starter- 1.2.8.RELEASE
websocket

org. spri ngframewor k. boot | spring-boot-starter-ws 1.2.8.RELEASE

org. spri ngframework. cl oudspri ng-cl oud- 1.1.1.RELEASE
cl oudf oundry- connect or

or g. spri ngframewor k. cl oudspri ng-cl oud-core 1.1.1.RELEASE

or g. spri ngframewor k. cl oudspri ng- cl oud- her oku- 1.1.1.RELEASE
connect or

org. spri ngframework. cl oudspri ng-cl oud- 1.1.1.RELEASE
| ocal confi g- connect or

or g. spri ngframewor k. cl oudspri ng-cl oud-spring- 1.1.1.RELEASE
servi ce- connect or

or g. spri ngframewor k. dat a| spri ng- cql 1.1.4.RELEASE

org. springframework. data|spri ng-dat a- cassandr a 1.1.4.RELEASE

or g. springframewor k. dat a| spri ng- dat a- cormons 1.9.4.RELEASE

org. spri ngframewor k. dat a| spri ng- dat a- couchbase 1.2.4.RELEASE

org. springfranmework. data| spring-dat a- 1.1.4.RELEASE
el asticsearch

org. springframework. data|spring-data-genfire 1.5.4.RELEASE

org. spri ngframework. dat a| spri ng-dat a-j pa 1.7.4.RELEASE

or g. springfranmewor k. dat a| spri ng- dat a- nongodb 1.6.4.RELEASE

or g. spri ngframewor k. dat a| spri ng- dat a- nongodb- 1.6.4.RELEASE
cross-store

org. spri ngframewor k. dat a| spri ng- dat a- nongodb- 1.6.4.RELEASE
| 0g4j

org. spri ngframewor k. dat a| spri ng- dat a- neo4;j 3.2.4.RELEASE

org. springframewor k. dat a| spring-data-redis 1.4.4.RELEASE

org. springframework. data| spri ng-data-rest-core 2.2.4. RELEASE

org. springfranmewor k. dat a| spri ng- dat a-rest-webnvc 2.2.4.RELEASE

1.2.8.RELEASE

Spring Boot

217

Spring Boot Reference Guide

Group ID Artifact ID Version
org. springframework. data|spring-data-solr 1.3.4.RELEASE
or g. spri ngframewor k. hat epapri ng- hat eoas 0.16.0.RELEASE
org. springframework. integsptiag-integration-angp 4.1.8.RELEASE
org. springframework. i ntegsptiag-integration-core 4.1.8.RELEASE
org. springframework. i ntegsatiag-integration- 4.1.8.RELEASE
event
org. springframework. i ntegsatiag-integration-feed 4.1.8.RELEASE
org.springframework.integsatiag-integration-file 4.1.8.RELEASE
org. springframework. integsptiag-integration-ftp 4.1.8.RELEASE
org. springfranmework. integsatiaog-integration- 4.1.8.RELEASE
genfire
org. springframework. i ntegsatiag-integration- 4.1.8.RELEASE
groovy
org.springframework.integsatiag-integration-http 4.1.8.RELEASE
org. springframework. i ntegsptiag-integration-ip 4.1.8.RELEASE
org. springframework. integsptiag-integration-jdbc 4.1.8.RELEASE
org. springframework. integsptiag-integration-jns 4.1.8.RELEASE
org. springframework. i ntegsptiag-integration-jnx 4.1.8.RELEASE
org. springframework.integspatiag-integration-jpa 4.1.8.RELEASE
org. springframework. i ntegsptiag-integration-mail 4.1.8.RELEASE
org. springframework. i ntegsatiag-integration- 4.1.8.RELEASE
nmongodb
org.springframework.integsatiag-integration-ngtt 4.1.8.RELEASE
org. springframework. i ntegspatiag-integration- 4.1.8.RELEASE
redis
org. springframework. i ntegspatiag-integration-rm 4.1.8.RELEASE
org. springframework. i ntegsatiag-integration- 4.1.8.RELEASE
scripting
org. springframework. i ntegspatiag-integration- 4.1.8.RELEASE
security
org. springframework. i ntegsptiag-integration-sftp 4.1.8.RELEASE
org. springframework. i ntegsatiag-integration- 4.1.8.RELEASE

stream

1.2.8.RELEASE

Spring Boot

218

Spring Boot Reference Guide

Group ID Artifact ID Version
org. springfranmework. integsatiaog-integration- 4.1.8.RELEASE
sysl og
org. springframework. integsptiag-integration-test 4.1.8.RELEASE
org. springfranmework. integsatiag-integration- 4.1.8.RELEASE
twitter
org. springframework. i ntegspatiag-integration- 4.1.8.RELEASE
websocket
org. springframework. i ntegsatiag-integration-ws 4.1.8.RELEASE
org. springframework. i ntegsatiag-integration-xm 4.1.8.RELEASE
org. springframework. i ntegspatiag-integration-xnpp 4.1.8.RELEASE
or g. spri ngframewor k. nobi | epri ng- nobi | e- devi ce 1.1.5.RELEASE
org. springframewor k. pl ugispri ng-pl ugi n-core 1.1.0.RELEASE
org. springframewor k. securBpyi ng- security-acl 3.2.9.RELEASE
org. springframewor k. securBpyi ng-security-aspects 3.2.9.RELEASE
org. spri ngframewor k. securBpyi ng- security-cas 3.2.9.RELEASE
or g. spri ngframewor k. securBpyi ng-security-config 3.2.9.RELEASE
org. spri ngframewor k. securBpyi ng- security-core 3.2.9.RELEASE
org. spri ngframewor k. securBpyi ng- security-crypto 3.2.9.RELEASE
org. spri ngframewor k. securBpyi ng-security-jw 1.0.3.RELEASE
org. spri ngframewor k. securbpyi ng- security-1|dap 3.2.9.RELEASE
org. spri ngframewor k. securBpyi ng- security-openid 3.2.9.RELEASE
org. spri ngframewor k. securBpyi ng-security- 3.2.9.RELEASE
renoting
org. springframewor k. securspyi ng-security-taglibs 3.2.9.RELEASE
or g. spri ngframewor k. secur Bpyi ng- security-web 3.2.9.RELEASE
org. spri ngframewor k. soci abpri ng-soci al -config 1.1.4.RELEASE
org. springframewor k. soci abpri ng-soci al -core 1.1.4.RELEASE
org. spri ngframewor k. soci abpri ng-soci al - f acebook 2.0.3.RELEASE
org. spri ngframework. soci abpri ng-soci al -facebook- 2.0.3.RELEASE
web
or g. spri ngframewor k. soci abpri ng-soci al -1i nkedin 1.0.2.RELEASE
or g. springframewor k. soci abpri ng-soci al -security 1.1.4.RELEASE

1.2.8.RELEASE

Spring Boot

219

Spring Boot Reference Guide

Group ID
or g. spri ngframewor k.
or g. spri ngframewor k.

or g. spri ngframewor k.

Artifact ID

soci akpring-social-twitter

soci akpri ng-soci al -web

WS

spring-ws-core

Version
1.1.2.RELEASE
1.1.4.RELEASE

2.2.3.RELEASE

or g. spri ngframework.

spring-ws-security

2.2.3.RELEASE

org. spri ngframework.

spring-ws-support

2.2.3.RELEASE

org. spri ngframework.

WS
WS
WS

spring-ws-test

2.2.3.RELEASE

org. t hynel eaf

t hynel eaf

2.1.4. RELEASE

org. t hynel eaf

org. thynel eaf . extras

org.thynel eaf . extras

t hynel eaf - spri ng4

t hynel eaf - extras-
condi ti onal conment s

t hynel eaf - extras-
springsecurity3

2.1.4. RELEASE

2.1.1.RELEASE

2.1.2.RELEASE

org. yam snhakeyan 1.14
redis.clients jedis 2.5.2
wsdl 4j wsdl 4j 1.6.3

1.2.8.RELEASE

Spring Boot

220

	Spring Boot Reference Guide
	Table of Contents
	Part I. Spring Boot Documentation
	1. About the documentation
	2. Getting help
	3. First steps
	4. Working with Spring Boot
	5. Learning about Spring Boot features
	6. Moving to production
	7. Advanced topics

	Part II. Getting started
	8. Introducing Spring Boot
	9. System Requirements
	9.1 Servlet containers

	10. Installing Spring Boot
	10.1 Installation instructions for the Java developer
	Maven installation
	Gradle installation

	10.2 Installing the Spring Boot CLI
	Manual installation
	Installation with GVM
	OSX Homebrew installation
	MacPorts installation
	Command-line completion
	Quick start Spring CLI example

	10.3 Upgrading from an earlier version of Spring Boot

	11. Developing your first Spring Boot application
	11.1 Creating the POM
	11.2 Adding classpath dependencies
	11.3 Writing the code
	The @RestController and @RequestMapping annotations
	The @EnableAutoConfiguration annotation
	The “main” method

	11.4 Running the example
	11.5 Creating an executable jar

	12. What to read next

	Part III. Using Spring Boot
	13. Build systems
	13.1 Maven
	Inheriting the starter parent
	Using Spring Boot without the parent POM
	Changing the Java version
	Using the Spring Boot Maven plugin

	13.2 Gradle
	13.3 Ant
	13.4 Starter POMs

	14. Structuring your code
	14.1 Using the “default” package
	14.2 Locating the main application class

	15. Configuration classes
	15.1 Importing additional configuration classes
	15.2 Importing XML configuration

	16. Auto-configuration
	16.1 Gradually replacing auto-configuration
	16.2 Disabling specific auto-configuration

	17. Spring Beans and dependency injection
	18. Using the @SpringBootApplication annotation
	19. Running your application
	19.1 Running from an IDE
	19.2 Running as a packaged application
	19.3 Using the Maven plugin
	19.4 Using the Gradle plugin
	19.5 Hot swapping

	20. Packaging your application for production
	21. What to read next

	Part IV. Spring Boot features
	22. SpringApplication
	22.1 Customizing the Banner
	22.2 Customizing SpringApplication
	22.3 Fluent builder API
	22.4 Application events and listeners
	22.5 Web environment
	22.6 Using the CommandLineRunner
	22.7 Application exit

	23. Externalized Configuration
	23.1 Configuring random values
	23.2 Accessing command line properties
	23.3 Application property files
	23.4 Profile-specific properties
	23.5 Placeholders in properties
	23.6 Using YAML instead of Properties
	Loading YAML
	Exposing YAML as properties in the Spring Environment
	Multi-profile YAML documents
	YAML shortcomings

	23.7 Typesafe Configuration Properties
	Third-party configuration
	Relaxed binding
	@ConfigurationProperties Validation

	24. Profiles
	24.1 Adding active profiles
	24.2 Programmatically setting profiles
	24.3 Profile specific configuration files

	25. Logging
	25.1 Log format
	25.2 Console output
	25.3 File output
	25.4 Log Levels
	25.5 Custom log configuration

	26. Developing web applications
	26.1 The ‘Spring Web MVC framework’
	Spring MVC auto-configuration
	HttpMessageConverters
	MessageCodesResolver
	Static Content
	Template engines
	Error Handling
	Error Handling on WebSphere Application Server

	Spring HATEOAS

	26.2 JAX-RS and Jersey
	26.3 Embedded servlet container support
	Servlets and Filters
	Servlet Context Initialization
	The EmbeddedWebApplicationContext
	Customizing embedded servlet containers
	Programmatic customization
	Customizing ConfigurableEmbeddedServletContainer directly

	JSP limitations

	27. Security
	28. Working with SQL databases
	28.1 Configure a DataSource
	Embedded Database Support
	Connection to a production database
	Connection to a JNDI DataSource

	28.2 Using JdbcTemplate
	28.3 JPA and ‘Spring Data’
	Entity Classes
	Spring Data JPA Repositories
	Creating and dropping JPA databases

	29. Working with NoSQL technologies
	29.1 Redis
	Connecting to Redis

	29.2 MongoDB
	Connecting to a MongoDB database
	MongoTemplate
	Spring Data MongoDB repositories

	29.3 Gemfire
	29.4 Solr
	Connecting to Solr
	Spring Data Solr repositories

	29.5 Elasticsearch
	Connecting to Elasticsearch
	Spring Data Elasticsearch repositories

	30. Messaging
	30.1 JMS
	HornetQ support
	ActiveMQ support
	Using a JNDI ConnectionFactory
	Sending a message
	Receiving a message

	31. Sending email
	32. Distributed Transactions with JTA
	32.1 Using an Atomikos transaction manager
	32.2 Using a Bitronix transaction manager
	32.3 Using a Java EE managed transaction manager
	32.4 Mixing XA and non-XA JMS connections
	32.5 Supporting an alternative embedded transaction manager

	33. Spring Integration
	34. Monitoring and management over JMX
	35. Testing
	35.1 Test scope dependencies
	35.2 Testing Spring applications
	35.3 Testing Spring Boot applications
	Using Spock to test Spring Boot applications

	35.4 Test utilities
	ConfigFileApplicationContextInitializer
	EnvironmentTestUtils
	OutputCapture
	TestRestTemplate

	36. Developing auto-configuration and using conditions
	36.1 Understanding auto-configured beans
	36.2 Locating auto-configuration candidates
	36.3 Condition annotations
	Class conditions
	Bean conditions
	Property conditions
	Resource conditions
	Web application conditions
	SpEL expression conditions

	37. WebSockets
	38. What to read next

	Part V. Spring Boot Actuator: Production-ready features
	39. Enabling production-ready features
	40. Endpoints
	40.1 Customizing endpoints
	40.2 Health information
	40.3 Security with HealthIndicators
	Auto-configured HealthIndicators
	Writing custom HealthIndicators

	40.4 Custom application info information
	Automatically expand info properties at build time
	Automatic property expansion using Maven
	Automatic property expansion using Gradle

	Git commit information

	41. Monitoring and management over HTTP
	41.1 Securing sensitive endpoints
	41.2 Customizing the management server context path
	41.3 Customizing the management server port
	41.4 Customizing the management server address
	41.5 Disabling HTTP endpoints
	41.6 HTTP health endpoint access restrictions

	42. Monitoring and management over JMX
	42.1 Customizing MBean names
	42.2 Disabling JMX endpoints
	42.3 Using Jolokia for JMX over HTTP
	Customizing Jolokia
	Disabling Jolokia

	43. Monitoring and management using a remote shell
	43.1 Connecting to the remote shell
	Remote shell credentials

	43.2 Extending the remote shell
	Remote shell commands
	Remote shell plugins

	44. Metrics
	44.1 System metrics
	44.2 DataSource metrics
	44.3 Tomcat session metrics
	44.4 Recording your own metrics
	44.5 Adding your own public metrics
	44.6 Metric repositories
	44.7 Dropwizard Metrics
	44.8 Message channel integration

	45. Auditing
	46. Tracing
	46.1 Custom tracing

	47. Process monitoring
	47.1 Extend configuration
	47.2 Programmatically

	48. What to read next

	Part VI. Deploying to the cloud
	49. Cloud Foundry
	49.1 Binding to services

	50. Heroku
	51. Openshift
	52. Google App Engine
	53. What to read next

	Part VII. Spring Boot CLI
	54. Installing the CLI
	55. Using the CLI
	55.1 Running applications using the CLI
	Deduced “grab” dependencies
	Deduced “grab” coordinates
	Default import statements
	Automatic main method
	Custom “grab” metadata

	55.2 Testing your code
	55.3 Applications with multiple source files
	55.4 Packaging your application
	55.5 Initialize a new project
	55.6 Using the embedded shell
	55.7 Adding extensions to the CLI

	56. Developing application with the Groovy beans DSL
	57. What to read next

	Part VIII. Build tool plugins
	58. Spring Boot Maven plugin
	58.1 Including the plugin
	58.2 Packaging executable jar and war files

	59. Spring Boot Gradle plugin
	59.1 Including the plugin
	59.2 Declaring dependencies without versions
	Custom version management

	59.3 Default exclude rules
	59.4 Packaging executable jar and war files
	59.5 Running a project in-place
	59.6 Spring Boot plugin configuration
	59.7 Repackage configuration
	59.8 Repackage with custom Gradle configuration
	Configuration options

	59.9 Understanding how the Gradle plugin works
	59.10 Publishing artifacts to a Maven repository using Gradle
	Configuring Gradle to produce a pom that inherits dependency management
	Configuring Gradle to produce a pom that imports dependency management

	60. Supporting other build systems
	60.1 Repackaging archives
	60.2 Nested libraries
	60.3 Finding a main class
	60.4 Example repackage implementation

	61. What to read next

	Part IX. ‘How-to’ guides
	62. Spring Boot application
	62.1 Troubleshoot auto-configuration
	62.2 Customize the Environment or ApplicationContext before it starts
	62.3 Build an ApplicationContext hierarchy (adding a parent or root context)
	62.4 Create a non-web application

	63. Properties & configuration
	63.1 Externalize the configuration of SpringApplication
	63.2 Change the location of external properties of an application
	63.3 Use ‘short’ command line arguments
	63.4 Use YAML for external properties
	63.5 Set the active Spring profiles
	63.6 Change configuration depending on the environment
	63.7 Discover built-in options for external properties

	64. Embedded servlet containers
	64.1 Add a Servlet, Filter or ServletContextListener to an application
	64.2 Disable registration of a Servlet or Filter
	64.3 Change the HTTP port
	64.4 Use a random unassigned HTTP port
	64.5 Discover the HTTP port at runtime
	64.6 Configure SSL
	64.7 Configure Tomcat
	64.8 Enable Multiple Connectors with Tomcat
	64.9 Use Tomcat behind a front-end proxy server
	64.10 Use Jetty instead of Tomcat
	64.11 Configure Jetty
	64.12 Use Undertow instead of Tomcat
	64.13 Configure Undertow
	64.14 Enable Multiple Listeners with Undertow
	64.15 Use Tomcat 7
	Use Tomcat 7 with Maven
	Use Tomcat 7 with Gradle

	64.16 Use Jetty 8
	Use Jetty 8 with Maven
	Use Jetty 8 with Gradle

	64.17 Create WebSocket endpoints using @ServerEndpoint
	64.18 Enable HTTP response compression
	Enable Tomcat’s HTTP response compression
	Enable HTTP response compression using GzipFilter

	65. Spring MVC
	65.1 Write a JSON REST service
	65.2 Write an XML REST service
	65.3 Customize the Jackson ObjectMapper
	65.4 Customize the @ResponseBody rendering
	65.5 Handling Multipart File Uploads
	65.6 Switch off the Spring MVC DispatcherServlet
	65.7 Switch off the Default MVC configuration
	65.8 Customize ViewResolvers

	66. Logging
	66.1 Configure Logback for logging
	66.2 Configure Log4j for logging
	Use YAML or JSON to configure Log4j 2

	67. Data Access
	67.1 Configure a DataSource
	67.2 Configure Two DataSources
	67.3 Use Spring Data repositories
	67.4 Separate @Entity definitions from Spring configuration
	67.5 Configure JPA properties
	67.6 Use a custom EntityManagerFactory
	67.7 Use Two EntityManagers
	67.8 Use a traditional persistence.xml
	67.9 Use Spring Data JPA and Mongo repositories
	67.10 Expose Spring Data repositories as REST endpoint

	68. Database initialization
	68.1 Initialize a database using JPA
	68.2 Initialize a database using Hibernate
	68.3 Initialize a database using Spring JDBC
	68.4 Initialize a Spring Batch database
	68.5 Use a higher level database migration tool
	Execute Flyway database migrations on startup
	Execute Liquibase database migrations on startup

	69. Batch applications
	69.1 Execute Spring Batch jobs on startup

	70. Actuator
	70.1 Change the HTTP port or address of the actuator endpoints
	70.2 Customize the ‘whitelabel’ error page

	71. Security
	71.1 Switch off the Spring Boot security configuration
	71.2 Change the AuthenticationManager and add user accounts
	71.3 Enable HTTPS when running behind a proxy server

	72. Hot swapping
	72.1 Reload static content
	72.2 Reload Thymeleaf templates without restarting the container
	72.3 Reload FreeMarker templates without restarting the container
	72.4 Reload Groovy templates without restarting the container
	72.5 Reload Velocity templates without restarting the container
	72.6 Reload Java classes without restarting the container
	Configuring Spring Loaded for use with Maven
	Configuring Spring Loaded for use with Gradle and IntelliJ

	73. Build
	73.1 Customize dependency versions with Maven
	73.2 Create an executable JAR with Maven
	73.3 Create an additional executable JAR
	73.4 Extract specific libraries when an executable jar runs
	73.5 Create a non-executable JAR with exclusions
	73.6 Remote debug a Spring Boot application started with Maven
	73.7 Remote debug a Spring Boot application started with Gradle
	73.8 Build an executable archive with Ant
	73.9 How to use Java 6
	Embedded servlet container compatibility
	JTA API compatibility

	74. Traditional deployment
	74.1 Create a deployable war file
	74.2 Create a deployable war file for older servlet containers
	74.3 Convert an existing application to Spring Boot
	74.4 Deploying a WAR to Weblogic
	74.5 Deploying a WAR in an Old (Servlet 2.5) Container

	Part X. Appendices
	Appendix A. Common application properties
	Appendix B. Configuration meta-data
	B.1 Meta-data format
	Group Attributes
	Property Attributes
	Repeated meta-data items

	B.2 Generating your own meta-data using the annotation processor
	Nested properties
	Adding additional meta-data

	Appendix C. Auto-configuration classes
	C.1 From the “spring-boot-autoconfigure” module
	C.2 From the “spring-boot-actuator” module

	Appendix D. The executable jar format
	D.1 Nested JARs
	The executable jar file structure
	The executable war file structure

	D.2 Spring Boot’s “JarFile” class
	Compatibility with the standard Java “JarFile”

	D.3 Launching executable jars
	Launcher manifest
	Exploded archives

	D.4 PropertiesLauncher Features
	D.5 Executable jar restrictions
	Zip entry compression
	System ClassLoader

	D.6 Alternative single jar solutions

	Appendix E. Dependency versions

