Spring Boot Reference Guide

1.4.8.BUILD-SNAPSHOT

Phillip Webb , Dave Syer , Josh Long , Stéphane Nicoll , Rob Winch ,
Andy Wilkinson , Marcel Overdijk , Christian Dupuis , Sébastien Deleuze

Copyright © 2012-2017

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Boot Reference Guide

Table of Contents

[. Spring BOOt DOCUMENTALIONiit ittt et e e et e et e et e e et e eeaeeeanss 1
1. About the dOCUMENTALIONccueiiii e et e e e et e e e e en s 2
22 €1~ 111 To T 1Yo 3
T TS B 1= oL PP 4
4. Working With SPring BOOtoiiiiiiiiiii e 5
5. Learning about Spring BOOt FEATUIESuiiiiiiiiii e e e e 6
6. MOVING t0 PrOGUCTIONiit ittt e e et e e et e et e e et e e e e eanaaes 7
A Yo A= TaTod=To IR o] o (ol PP PP PT 8

TR =Y 1] o =] = U =T o 9
8. INtroducing SPriNG BOOLc.uuiiiiiiiii et ees 10
9. SYSteM REQUIFEIMENTSuuiiiiii ettt ettt e et e et e et b e e e e e eana s 11

9.1, SerVIEt CONAINEIS ...ciiiiieeiii e et e et e e e e et e e e eate e eeees 11

10. InStalling SPriNG BOOLc.uniiiiiii e ettt e e eaas 12
10.1. Installation instructions for the Java developerccoovvviiiiiiiiiinc e 12
Maven INSTAIALIONoouuiii e 12

Gradle INSTAllAtIONcouuii e 13

10.2. Installing the Spring BOOt CLIviiiiiiiiii e 14
Manual INSEAllALIONcooiiii e e 14
Installation with SDKMANT! ... e 15

OSX Homebrew installationc.oiiiiiiiiiii e 15

MaCPOrtS INSLAIAtIONiiiii e 15
Command-line COMPIELIONiiiii e 16

Quick start Spring CLI @XamPleiiiiiiiiiiiiiii e 16

10.3. Upgrading from an earlier version of Spring BOOtcccoceviviiiiiiviiiviiieeceeeannn, 16

11. Developing your first Spring Boot applicationccooiiiiiiiiii e 17
11.1. Creating the POM ... e 17
11.2. Adding classpath dependENCIESveiuuiiiiiiiiiii e e 18
11.3. WIEING Tthe COOEeeniiiiie et e e e 19

The @RestController and @RequestMapping annotationscceeveeeiiinneees 19

The @EnableAutoConfiguration annotationccoevvviiiiiiiieviin e, 19

The "main” Method ... e 20

11.4. RUNNING the @XaMPIEuie e 20
11.5. Creating an €XECULADIE JAIc..uiveunieiieei e e e e e e e e 20

12. WhHAL t0 AU NEXL ...ttt et e et e e et e e et e e e e e ea e eaaaaes 22

1. USING SPHNG BOOL ...ttt ettt e et e e et eeenaa s 23

R T = T 1] o IS V] 1= o 1 P 24
13.1. Dependency MAaNAQEIMENTc.uiiuu ittt e e e e e e e e ea e e e e e e eeanns 24

R T |V = Y= o PP 24
Inheriting the Starter Parentccoouiiiiii e 24

Using Spring Boot without the parent POMocooiiiiiiiiiii e 25

Changing the Java VEISIONiiiiiiiiei et 26

Using the Spring Boot Maven pluginoovviieii e 26

G T 1 7= To | PP PT O PPTTUPPTRPPN 26
G T o | PSSR 27
R TS] 1= 1 (= £ S PP UPPTR PPN 28

14, STTUCTUNING YOUE COOR ...euniiiiiii et e et et e et e e et e et et e et e e et e e et e e et e e ean e eanaaes 34
14.1. Using the “default” PacCKagecoooieiiiiiiiie e 34

1.4.8.BUILD-SNAPSHOT Spring Boot ii

Spring Boot Reference Guide

14.2. Locating the main application Classooveiiiiiiiiiiiii e 34

15. CoNfIQUIALION CIASSESeeiiiieiiiii et ettt et e et e e e eaanns 36
15.1. Importing additional configuration ClaSSESccocvuiiiiiiiiiiii e 36
15.2. Importing XML CONfIQUIatioNoooveuiiiiiii e 36

16. AULO-CONTIGUIALION ..ottt et e et e e et e e e et e e e eebe e eeees 37
16.1. Gradually replacing auto-configurationcccoiveiiiiiiiii i, 37
16.2. Disabling specific auto-configurationccoorieiiiiiiiiiiiiee e 37

17. Spring Beans and dependency INJECHONuuiiiiiiiiieiei e 38
18. Using the @SpringBootApplication annotationcccoeeiiiiiii i 39
19. RUNNING YOUI APPIICALION ...eevtiiiiiti et et e e e e e 40
19.1. RUNNING from @N IDEoiiiiiiiiiiii e 40
19.2. Running as a packaged appliCationc.cciiiiiiieiiiiiiii e 40
19.3. Using the Maven PIUGINcouuueiiiiieieii e eeeees 40
19.4. Using the Gradle PlUGinoioiiiiiiii e eeees 41
SRS T (o A =3.17= T o] o o 41

20. DEVEIOPET TOOIS ...ttt 42
20.1. Property defaUllSccoouiniiiiii e e 42
20.2. AULOMALIC FESTANTieeeiiiiiiiiiie e et e e e e e e e e e e e e e r e e e e 43
EXCIUAING FESOUICES ...ttt ettt e e e eeens 44

Watching additional paths ... 44

[T ET= Vo] [T g =) €= L 44

USING & trgger fileu. e e 44
Customizing the restart classloaderccooviiiiiiiiii 45

KNOWN TIMILALIONS ..evviie et e e e e s 45

20.3. LIVEREIOAA ... ieiiiiiiieei et e 45
20.4. GIODAl SELHNGS ...vuiiiiiii e e 46
20.5. Remote appliCatioNScceuuiiiiiiiiii e 46
Running the remote client applicationcoooiiiiiiiiiii 46

REMOLE UPAALE ..o e 47

Remote debug tUNNEL ... 48

21. Packaging your application for producCtioncooeiiiiiiiiiiiiiie e 49
P72V g - A (o T (== o I 1= 50
V. SPring BOOt fEALUIMESu.iiiiiiiii e e e e e e e e e e et e e e e et e e et e e et 51
23. SPHNGAPPICALIONeeeiti ettt ettt ettt e e e e r e et et e e ena e eeee 52
23.1. Startup failure ... 52
23.2. Customizing the BANNEToiiiiiiiiii e e e e eaas 53
23.3. Customizing SpringAPPLICALIONooiiiiieiiii e 54

B2 S (11~ o | 1U] o Lo Y 54
23.5. Application events and lISLENEISccouuiiiiiiiiiiiee e 55
23.6. WED ENVIFONMENT ...ttt e e et e eeees 55
23.7. Accessing application argUMENTSveiiiriiiiiii e 56
23.8. Using the ApplicationRunner or CommandLineRUNNETccoceviviiiiieiiineeiinennn, 56
23.9. APPHCALION EXIT ...t 57
23.10. ADMIN FEALUIESietiieii ittt e e e e e e e e e e e et s e e e eaneees 57

24, Externalized ConfigUrationcoiiiieiiiieiii e e e e e e e e e e e e e eaaeees 58
24.1. Configuring random VAIUEScouuuiiiiiiiiieiiii et 59
24.2. Accessing command line Propertiesooouuie i 59
24.3. Application property file€Soiiuiiiiiii i 60
24.4. Profile-Specific PrOPEITIESuuuiiiiiiie et 61
24.5. Placeholders in ProOPertieScooeuuiiiiiiiieiiii e e e 61

1.4.8.BUILD-SNAPSHOT Spring Boot iii

Spring Boot Reference Guide

24.6. Using YAML instead Of Propertiesccoouuiieiiiiiiiiiiiiieece e 61
LOAAING YAML ottt et e e e e e e e 62
Exposing YAML as properties in the Spring Environmentcccooeviiieiiinennnnn. 63
Multi-profile YAML dOCUMENTScoouiiiiiiiiiieeiii ettt ea e 63
YAML SROMCOMINGS ...t et e et e eeeaes 63
Merging YAML LIS ...ouuiiiiiiiiii e e e 64

24.7. Type-safe Configuration Propertiescceeuuiiiiiiiiiieiiie e 64
Third-party ConfiQUIationuiiiiiiiiii e 67
Relaxed DiNdiNg ...ocooiiii 68
PropertieS CONVEISIONcciuueiieiiiii ettt ettt e e et e e e e e e 68
@ConfigurationProperties Validationccoooiiiiiiiiiiii e 69
@ConfigurationProperties vs. @ValUEccccouuiiiiiiiiiiieiie e 69

25, PrOfIlES .t et e e e 71

25.1. Adding active Profilescoouuiiiiiiiiii e 71

25.2. Programmatically setting profilesccoiiiiiiiiiii e 71

25.3. Profile-specific configuration filescooi i 72

PG T o o o 11 o PSPPSRI 73

24 200 R I Yo I (0] 1 2= | 73

26.2. CONSOIE OULPUL ...ttt ettt e e e e et e e e et e e e ebe s 73
(070] (o] eTo o [=To I o U 1 11 | AN PP 74

B2 T 1 L= o 10 o | PN 75

26.4. LOQ LEVEIS ..t 75

26.5. Custom 10g CONFIQUIALIONiiiiiiiiie e 76

26.6. LOGDACK EXIENSIONSvuiiiiiieiiiiei e e e e e e e e e e e e e e e e e e eaa e eaen 77
Profile-specific CONfIGQUIALIONcoouuiiiiiii e 78
ENVIrONMENt PrOPEITIESiiiii it 78

27. Developing Web appliCatiONSociuuiiiiiiiii e 79

27.1. The 'Spring Web MVC framework’coouiiiiiiiiii e 79
Spring MVC auto-configUuIationoviiiiiiiiiiii e 79
HUPMESSAGECONVEITEIS ..vuitiiiiiiiitie ittt e e e e anaas 80
Custom JSON Serializers and Deserializersocoiiiiiiiiiinieiiie e 80
MESSAGECOUESRESOIVETueiiiii et e e e e 81
] - Lo O] 0 (=] o | PP 81
(G101 (o] o == 1Y/ oo] o [N 82
ConfigurableWebBindingInitializerccoooiiiiiii e 83
=1 10] o] Fo C=I =T oo 1 =T P 83
Error HandliNgooooenii e 83

CUSEOM EITON PAUES ...neeeneirt ettt e et ettt ettt e e et et e e e ea e enes 84
Mapping error pages outside of Spring MVCccooeiiiiiiiiiiincee e, 85
Error Handling on WebSphere Application Servercccooivieiiiiiiieiennnnnn. 85
SPrNG HATEOAS ..ottt et ettt e ettt e e et e e e eat e eeens 86
(00] 3 ST T] o] o Lo ¢ A 86

27.2. JAX-RS AN JEISRY ..ottt 86

27.3. Embedded servlet container SUPPOITveieeieieiiieee e 87
Servlets, Filters, and lISENEIScooi i 87

Registering Servlets, Filters, and listeners as Spring beans 88
Servlet Context INItIAIZALIONiiiiiii e 88
Scanning for Servlets, Filters, and liStenersccooeeviiiiiiiiiiiiie e, 88
The EmbeddedWebApplicatioNCONIEXEcc.uuiiiiiiiieeeii e 88
Customizing embedded serviet CoONtaiNErscoovvviiiiiiiiiii i 89

1.4.8.BUILD-SNAPSHOT Spring Boot iv

Spring Boot Reference Guide

Programmatic CUSIOMIZALIONcoovuuiiiiiiiiiei e 89
Customizing ConfigurableEmbeddedServietContainer directly 89

JSP IIMILALIONS .eveiiie ettt et e e e e e r e 90

28, SECUIMLY ...ttt ettt ettt ettt ettt et et e et e e et et e e et b et e et e e e e s 91
P2 S T00 @ 7 U | ¢ 2 92
AULNOTIZALION SEIVET ...t e e 92
RESOUICE SEIVET ..o e 92
28.2. Token Type in USEr INFO ..o 93
28.3. Customizing the User Info RestTemplateccoooviiiiiiiiiiiii e 93
L4 1= o | PR 93
SINGIE SIGN ON et 94
B Aot (U =Y (o] =T o U | N 95
29. Working with SQL databasesuiiiiiiiiiiiiiii e 96
29.1. Configure & DAtaSOUICEuiiiiiiiiiieiiiie et e e eeees 96
Embedded Database SUPPOITcouuiiiiieiiie e e e e 96
Connection to a production databaseccoooeeiiiiiiiii 97
Connection to @ JNDI Dat@SOUICEceieuinieieiii e e e e i 98
29.2. UsiNg JADCTEMPIALE ...covuiiiiiii e e e e e e e e e e eaaes 98
29.3. JPA and 'SPring Data’ocoeeuiiieiiiiiieeie e 99
ENLLY ClaSSES ..iitiiiiiii e 99
Spring Data JPA REPOSILONESccuuiiiiieiiii et e e e e e 100
Creating and dropping JPA databasescocuuiiiiiiiiiiiiiiiiieci e 101
Open EntityManager iN VIBWuuiiiiiiiieieei e e 101
29.4. Using H2'S WED CONSOIEcoviiiiiiici e e e 101
Changing the H2 console’s path ... 101
Securing the H2 CONSOIEcooiiiii e 102
29.5. USING JOOQ ...ttt ettt ettt e aeeeeene 102
1070 [€1 =T o =T -0 o [T PP 102
USING DSLCONIEXE ...iiiitiiieiiii ettt ettt e e e et e e eaeens 102
L1013 (0] 121741 oo [N © 10 1 103

30. Working with NOSQL teChNOIOGIESccuuuiiiiiiiieiiii e 104
G0 T 1Yo 11 104
(7] a1 aT=Tox 119 To I (o T = 1= To |1 104
30.2. MONGODB ... i 104
Connecting to @ MonNgoDB databasecoouuiiiiiiiiiiieiiee e 104

o] aTo Tl =T 4 0] o] =1 = PPN 105
Spring Data MONQODB rePOSILONIEScvieveuiiiiiiieieii e 106
EMbedded MONQOiiiiiiiie e 106
10 T N =T V- TSP PP PP 106
Connecting to a Neo4j databasec..oviiiiiiiiiiiii e 107
Using the embedded MOdeoiiiiiiiiiiii e 107

N [T o 72 ST STT [o J 107
Spring Data NE04j rePOSItONEScccuuuieieiiiiiei ittt 107
REPOSItOrY @XAMPIE ..ot e 108
30,4, GEIMFITE ittt e e et e e e e e e e e e e e e eenne 108
10T S0 | OO PP SPPPPPPRRTPN 108
CONNECHING 10 SOIM ..t 108
Spring Data SoIr rEPOSILONIESviviiiiiie e e e e 109
30.6. EIASHCSEAICRieeiiiii e e 109
Connecting to Elasticsearch using Jestcooviiiiiiiiiiiiiiee e 109

1.4.8.BUILD-SNAPSHOT Spring Boot v

Spring Boot Reference Guide

Connecting to Elasticsearch using Spring Dataccceiiieiiiiiineiiiiineceie 109

Spring Data Elasticsearch reposSitoriesovviveiuiiiiiiiiieee e 110

30.7. CASSANUIA ...eeeeviiiiiie ettt ettt e ettt e e e et e e e e e e e e e 110
CoNNECiNG 0 CASSANUIAiieieii ettt et e et e s 110

Spring Data Cassandra rePOSItONIESccuuuuiiiiiiiieeiiiie et 111

30.8. COUCNDASEvviiiii ettt ettt e e e e e e e e e e e aeeee 111
Connecting t0 COUCNDASEiiiiiiii e 111

Spring Data Couchbase repoSItOriesoviiiiiiiieiiiii e 111

G 31 I O T o 11 o R 113
31.1. Supported CaChe PrOVIAEISoiiiiiiieiiii e 114
7= =T oS 115

JCACNE (JSR-L07) oieeiiiiiiei ettt e et e e e e e e ee e e e e e eenne 115

ENCACNE 2.X e e 116

[= V=Y o= 1 P 116

11T = o P 116
COUCNDASE ..o e 116

=0 1 117

CaffBINE i e 117

L= A7 PP PRPPR PP UPRPN 118

SIMIPIE e e e 118

NONE 118

2. IMBSSAGING . eetneieett ettt ettt ettt ettt e e e s 119
G 700 N 1 119
Yo 0V =1Y (@ T U1 o] o o] o A 119

AEMIS SUPPOIT ..ttt ettt e e et e e e et e e e ena s 119

HOIMETQ SUPPOIT ..ttt ettt et e r e e e e e e e eees 120

Using a JNDI ConnecCtioNFaCIOrYcovvuuiiiiiieiii e 121

SENAING 8 MESSAGE ...ueiiiiiii ettt ettt ettt e et et e e e e e e e eaa s 121

RECEIVING @ MESSATE ... iiiiiiiei ittt et e e e e eeaaa s 122

32,2, AMQIP et ea e eaaeene 123
RabbitMQ SUPPOIT ...t 123

SENAING 8 MESSAGE ..uueiiiii ettt e et e et e et e e eba e e e eban s 123

RECEIVING @ MESSAQJE ...ievniiiiiiiii et e e e e e e e e e e e e e et e e eaaaeeaen 124

33. CalliNg REST SEIVICES ...couiiiiiiii ettt e e e e e eeees 126
33.1. RestTemplate CUSIOMIZALIONooiiiiiiiiiiiii e 126

34, SeNAING EMAIL ...couiiii e 128
35. Distributed Transactions With JTA ... e 129
35.1. Using an Atomikos transaction Managerceeuuuieiiiiinieeeiinee et e e eeeeens 129
35.2. Using a Bitronix transaction Managerc.oveeiiieiiiieeiiieeeiieeeiieeeeesaieesnneeeens 129
35.3. Using a Narayana transaction MaNAQENc.uuveereruuieeieriieeeeiieeeeniaeeeniaens 130
35.4. Using a Java EE managed transaction managerc..ccceveveneeenneeeinieennenennns 130
35.5. Mixing XA and non-XA JMS CONNECLIONSccceuuiiiiiiiiii e e e eaen 130
35.6. Supporting an alternative embedded transaction managercccoevveuieeennnnns 131

BTG o T V= o 1 132
A o 10T I o] (Yo -1 i o T o N 133
38. SPIING SESSION ...ttt ettt ettt et et eaaas 134
39. Monitoring and management OVEr JMXciiiiiiiiiiii et 135
O T =Y (] o 136
40.1. Test SCOPE AEPENUENCIESccovvuneeiiii ettt 136
40.2. Testing Spring appliCatiONSuiiiiiiiieii e 136

1.4.8.BUILD-SNAPSHOT Spring Boot Vi

Spring Boot Reference Guide

40.3. Testing Spring Boot appliCatioNSocieuiiiiiiiiieeie e 136
Detecting test CONfIQUIationcooouiiiiiiiiiie e 137

Excluding test configurationcc.iiiiiiiiiiie e e 138

Working With random POIScoouuiiiiiiiiee e e 138

Mocking and SPYiNg DEANSuiiiiiiiii e 139
AULO-CONFIGUIEA TESES .uiiiiiiiii e e e e e r e e e een 140
AUto-coNfigured JSON TESESuiiiiiiii i 140
Auto-configured Spring MVC tESESiiiiiiiieiii e 141
Auto-configured Data JPA tESISiiiiiiiiii e 142
Auto-configured REST CHENTScouuuiiiiiiiieiiii e e 143
Auto-configured Spring REST DOCS tESIS ...cceivviiiiiiiii e 144

Using Spock to test Spring Boot appliCationsccceceuiveiiiieiiiieeiiieecice e, 145

O 1 S I TS U] =2 PP 146
ConfigFileApplicationContextINitialiZercooiiiiiiiiiii e, 146
EnvIroNmMeNntTESTULIIScooiiiiiiiiii e 146

O 11011 (0T o] (1 (PP PPT 146
TESIRESITEMPIALE ...t e e e et e e e e eees 146

1. WEDSOCKELS ...ttt e 148
A2, WED SEIVICES ..eiiitiiiii ettt ettt e e et e et e e et e e e et a et e aanaea 149
43. Creating your own auto-CONfIQUIAtIONiiiiiiiiiiiiiiii e 150
43.1. Understanding auto-configured beansc.ccoiviiiiiiii i, 150
43.2. Locating auto-configuration candidatesccooeeiiiiiiiiiiiiiieii e 150
VG T0C T @] oo [11 0T =T o 1T] €= L1 0] 1S 150
ClasS CONAILIONS ...vvviiieeee it e e e e e e s 151

Bean CONItIONSiiiiiii e e e e e 151

Property CONAItIONSiiiiiiiiei e 151

RESOUICE CONAILIONS ...eevviiiiiieeiieee it e e e eeenes 151

Web application CONGItIONScoouuiiiiiiii e 152

SPEL expression CONItIONSccoouuiiiiiiiiei e e 152

43.4. Creating YOUr OWN SEAIMETiiiiiiiii e e e e e e e e e e e e e e aaaas 152

[N F=T001T o o PSP SPPPR TR 152
AUtocoNnfigure MOTUIEooiiiii e 152

Starter MOAUIEooeeiii e e 153

VY oo (o T =Y To [1= U UPTP 154
V. Spring Boot Actuator: Production-ready fEatUresccuoviiiiiiiiiiiiii e e s 155
45, Enabling production-ready fEAtUrESccceuiiiiiiiiiiii e 156
AB. ENAPOINTS ...eiieiiiiii ettt ettt 157
46.1. CusStomizing €NAPOINES ... cceeuuiiiiiiii e e aeaeens 158
46.2. Hypermedia for actuator MVC endpointscooevuiieiiiieiiiniiiii e ee e 159
46.3. CORS SUPPOI .oueetiieitieee ettt e e et e e e e e e e e eaneees 159
46.4. Adding CUSIOM €NAPOINTS ...oeiiiiiiiiii e e e e e e 159
46.5. Health iNfOrMEAtIONccoiiiiiiiiii e e 160
46.6. Security with HealthINdiCatorscouiiiiiiiiiii e 160
Auto-configured HealthINdiCatorscooiiiiiiiiiii e 160

Writing custom HealthIndiCatorsccocvuiiiiiii i 161

46.7. Application INFOrMALIONiiiiiiieii e 161
Auto-configured INfOCONLHBULOIS ... 162

Custom application info informationccoeveiiiiiiiii e, 162

Git commit INFOrMALIONii e e 162

BUIld INfOrMAtioNo.eiiee e 163

1.4.8.BUILD-SNAPSHOT Spring Boot Vii

Spring Boot Reference Guide

Writing custom INFOCONTMDULOTSiiiiiiiiiiii e 163

47. Monitoring and management oVer HTTP ... 164
47.1. Securing sensitive eNdPOINESiieiiiiiiiiieii e 164
47.2. Customizing the management endpoint pathscccoooeiiiiiiiiiinc e, 164
47.3. Customizing the management SEIVEr POcocuuiiiiiiiinieiiii e 165
47.4. Configuring management-Specific SSLccocviiiiiiiiiii e 165
47.5. Customizing the management server addressc.oevevieiiieiieiinieeeiieeeenenn 165
47.6. Disabling HTTP €NdPOiNtSc..uuiiiiiiiiieiiiii e 166
47.7. HTTP health endpoint format and access restrictionsc.ccccceeevviiieiiineeinens 166

48. Monitoring and management OVEI JMXuuiiiiiiieiiii e 168
48.1. Customizing MBEAN NAMESuiiiiiiiieeiii e e et e et e e et e e ear e aens 168
48.2. Disabling JMX eNdPOINESociiiiiiiiiiiii e e 168
48.3. Using Jolokia for IMX oVer HTTPcoooiiiiiiiiciii e 168
CUSEOMIZING JOIOKIA ...eeeveieeiii e e eae e eeees 168

Disabling JOIOKIAc.uiiiiiiii e 168

49. Monitoring and management using a remote shellc.cooooiiii 170
49.1. Connecting to the remote Shell ... 170
Remote shell Credentialsoooooiiiiiiiiiii e 170

49.2. Extending the remote Shello 171
Remote shell COMMANASoooiiii e 171

Remote Shell plUGINS oo e 171

T 1Y T TP 173
B50.1. SYSIEM MELICS ...ueeeiiiee ittt e e et et e et eeeaen e 173
50.2. DAtSOUICE MELIICS ...cevverririniieeeeeieeiii e e e et e e e e e e e s e e enn e e e 174
50.3. CAChE MELICS ..oeiiiiiiei e et e e ean s 174
50.4. TOMCAL SESSION MELIICS ..eevuiieiiiiii et e s 175
50.5. Recording YOUr OWN MELHCS ..oouuiiiiiieiiieiii e e e e e e e e e e e et e e e e e e e e eaanns 175
50.6. Adding your own publiCc MELIICSiiiiiiiiieiiii e 175
50.7. Special features With JAVA 8oooeuiiiiiiiii e 176
50.8. Metric writers, exporters and aggregationc.oveiiiieiiiieciii e 176
Example: EXPOrt t0 REISoiiiiiiiiiiii e 177

Example: EXport t0 Open TSDBoiiiiiiiiiiiiiiiieeei e 177

Example: EXPOrt t0 STatSAoovvniiiiiiiii e 178

Example: EXPOrt t0 JMX ..ooiiii ettt e 178

50.9. Aggregating metrics from multiple SOUICESc.uoiviiiiiiiiiiiiii e, 179
50.10. DropWizZard MELIICScuuueiiiieiiii i e e e e e e e e e e e e e e e e e et e e st e et e e aaeeaens 179
50.11. Message channel iNtegrationcooceiuiieiiiiiiie e 180

o A o 11 oo PP PR 181
o7 I - od oV 182
52.1. CUSIOM TrACING «.tuueteetieeteiti ettt ettt et e et e et et e e e e et e e e e ab e e e e aea s 182

53. ProCeSS MONITOTING ...ceeiriiiiiiiie ettt ettt ettt e e et e e e et e e e et e e e e ab e e eeannnes 183
53.1. Extend configurationcooouiiiiiiiii e e 183
53.2. ProgrammatiCallycooeuuuiiiiiiiiie e 183

o VLY T A (o T (== o 1=« 184
VI. Deploying Spring Boot appliCatiONSceiiieiiiieiiii e e e 185
55. Deploying t0 the CIOUTi i e 186
B55.1. CloUd FOUNAIY ...ttt e et e e 186
BiNAING t0 SEIVICES ..uiiiiiiiii e e e e e 187

D52, HEIOKU ..ottt e 187
B55.3. OPENSNIL L. 189

1.4.8.BUILD-SNAPSHOT Spring Boot viii

Spring Boot Reference Guide

55.4. Boxfuse and AmMAazon WeD SEIVICESiiiiiiiiiiiiiiiiiieei e 189
55.5. G0Ogle APP ENGINEoiiiiiiiei e 190

56. Installing Spring Boot appliCatiONScc.uiiiiiieiiiiieii e 191
56.1. UNIX/LINUX SEIVICES ...uiiiiiiiiieiii et e e e e e e e et e e e e et e e et e e e e e aaaeeennns 191
Installation as an init.d service (SYStemM V)cooiiiiiiiiiiii e 191

Securing an iNit.d SEIVICEiiiiiieiiii e 192

Installation as a SyStemd SEIVICEcoiiiiiiiiiiiiiiieee e 193
Customizing the StartupP SCHPLcoeueiiiiii e 193
Customizing script When it's WIHeNccoviiiiiiii e, 194

Customizing SCript When it FTUNScoouviiiiiiiii e 194

56.2. Microsoft WINAOWS SEIVICESvveuniiiiieiii e e e e e e e e e e e e e e e eeees 195

57. WHAL 10 FEAU NEXLieiiieiiiiiii e e ettt e e e e e e e e e e e e e e eeennnees 196
VI SPHNG BOOL CLI ...ttt e et e et e et et e e e e et e e e eebaaeeeees 197
58. INSTAIING T CLI ..uiiiiiii e et 198
LTS TR £ 1 o 1 1= O I 199
59.1. Running applications using the CLIcooioiiiiiiiii e 199
Deduced “grab” dependencCiescoveiiiiiiiiiiiiii e 200

Deduced “grab” COOrdiNAtesccuuieiiiiiiiiieeii e e e 201

Default import STAEMENTScoouuiiiiiii e 201

Automatic main MEthOdooiiiii e 201

Custom dependency ManNagemMENTvivuuieiiiieeiii e e e e e e e e e e aaaeeeans 201

59.2. TESHNG YOUI COUR ..oitiiiiiiiii ettt et et e et e e 202
59.3. Applications with multiple source filesccooiiiiiiiii s 202
59.4. Packaging your appliCationeeiiiiiiiiiieiii e e e e e 202
59.5. INitialize @ NEW PrOJECTu it 203
59.6. Using the embedded Shell ... 203
59.7. Adding extensions t0 the CLIcoooiiiiiiiiii e 204

60. Developing application with the Groovy beans DSLccooveviiiiiiiiiiiiiiei e 205
61. Configuring the CLI with SEttingS. XM ..o 206
62. WHat 10 FEAU NEXLcieiiiiiiiiii et e et e e e e e e e e e e e e e e e eeennnees 207
VI BUIl OOl PIUGINS ...ttt ettt e et e et e et rb e e e naa s 208
63. Spring BOOt MavVEN PIUGIN ... cceeiiieiiiii e e et e e et e e e eaan e eees 209
63.1. INCluding the PIUGIN ..o e 209
63.2. Packaging executable jar and war files ..o 210

64. Spring Boot Gradle PIUGINuuiiiiiiieee e e e 211
64.1. INcluding the PIUGIN ... 211
64.2. Gradle dependency ManagemMENTociuuurieiiiiiee et e e 211
64.3. Packaging executable jar and war files ..o, 211
64.4. RUNNING @ ProjeCt iN-PlaCEoiiiiiiiii i e e 212
64.5. Spring Boot plugin CoNfigUIationc..iieiiiiiiiiii e 213
64.6. Repackage CONfIQUIAtiONoouuiiiiiiiiiiiii e 213
64.7. Repackage with custom Gradle configurationcccoeeiiiiiiineiin i, 214
ConfiIgUration OPLIONScouuuiieiiiii et 214

AVaAIlADIE TAYOULScoovniee e 215

64.8. Understanding how the Gradle plugin Workscccoooiiiiiiiiiiin i, 215
64.9. Publishing artifacts to a Maven repository using Gradlecccccoeeviiiieeiennnnnn. 216
Configuring Gradle to produce a pom that inherits dependency management 216
Configuring Gradle to produce a pom that imports dependency management 216

65. Spring Boot ANtLID MOTUIEiiiiiie e 218
65.1. SPring BOOt ANt TASKSuuiiiiiii e e e 218

1.4.8.BUILD-SNAPSHOT Spring Boot ix

Spring Boot Reference Guide

SPIING-DOOLIEXEJAI ...eeetieeeeii ettt 218

EXAMIPIES o e 218

65.2. spring-boot:fiNdMaiNCIASSooiiiiiiiiiii e 219
EXAMIPIES o e 219

66. Supporting other BUild SYSIEMScouuiiii e 220
66.1. Repackaging arChiVescc.iiiiiiiiiiii e e 220
66.2. NeSted lIDrarieSoiieiii e 220
66.3. FINAING & MAIN ClASS ...iiitiiiiiii et eens 220
66.4. Example repackage implementationcccoeeiiiiiiiiicii e 220

B7. WRAL 10 FEAU NEXLE ... it et e e e et e e et e e et e e aaeeennaas 221
IX. THOW-TO" QUILES ...ttt ettt et et e e ettt e e e e et e e e eaba e e e ennens 222
68. Spring Boot appliCatiONcouuiiiiiiii e 223
68.1. Create your own FailureAnalyzZercoouuiiiiiiiiiii e 223
68.2. Troubleshoot auto-CoONfIQUIatioNcoouuiiiiiiiiiiei e 223
68.3. Customize the Environment or ApplicationContext before it starts 224
68.4. Build an ApplicationContext hierarchy (adding a parent or root context) 224
68.5. Create a non-web appliCationcoouuiiiiiiiii e 224

69. Properties & CONfIQUIALIONcciiiiiiiii e e e e e e e e e e aa s 225
69.1. Automatically expand properties at build timeooooiiiiiiiie, 225
Automatic property expansion using Mavenccocoeiiiieiiiinneiiiie e 225
Automatic property expansion using Gradleccoooeiiiiiiiii 225

69.2. Externalize the configuration of SpringApplicationccccooveviiiiieiiiineee, 226
69.3. Change the location of external properties of an applicationcccc..ooeeeeen. 227
69.4. Use ‘short’ command lin€ argumMEeNtSceeiiiiiiiiiiiiii e e e e 227
69.5. Use YAML for external Propertiescooceeuuuiiiiiiiieiiiiiie e 228
69.6. Set the active Spring Profiles ... 228
69.7. Change configuration depending on the environmentcccoeeviveviineeeineeennn. 228
69.8. Discover built-in options for external Propertiescoveiveiiiiiineeiiiineeecien 229

70. Embedded Serviet CONAINEISccuuiiii it e e e e e e an s 230
70.1. Add a Servlet, Filter or Listener to an applicationcccooeviiiiiiiiin e, 230

Add a Servlet, Filter or Listener using a Spring beanc..ocoviiiiiiiiinneiiinnnnn. 230

Disable registration of a Servlet or Filterccoooviiiiiiiiiii e, 230

Add Servlets, Filters, and Listeners using classpath scanningc.c....oe.. 230

70.2. Change the HTTP POIT ...ttt 231
70.3. Use a random unassigned HTTP POITcoouuiiiiiiiiiiiiiieeeei e 231
70.4. Discover the HTTP port at rUNtimMeevviniiiiiecii e e e 231
70.5. CONFIQUIE SSL ..ttt ettt ettt e e e e enanns 231
70.6. Configure ACCESS LOGGING ..evuueiieiineiiiii ettt e e et e et eeeetn e e eeae e eennes 232
70.7. Use behind a front-end ProXy SEIVELccccuiiiiiiiiiii e e e e e 232
Customize Tomcat's proxy CONfigurationccoeveueuiieiiiiinneiiiiineeeeie e 233

70.8. CONfIQUIE TOMCAL ...ceuuiieiiii et et e e e e e 233
70.9. Enable Multiple Connectors with TOMCALcoovviiiiiiiiiii e 233
70.10. Use Tomcat's LegacyCOOKIEPTOCESSONeivevuueiiiiiieieeiiie et 234
70.11. Use Jetty instead Of TOMCALviiiiiiiiiiiii e 234
70.12. CONfIQUIE JEILY ..uiiiiiiiii e e e e e e e e e e e e et e e e e eaes 235
70.13. Use Undertow instead Of TOMCALoovivniiiiiiiiiii e 235
70.14. CoNfigUre UNUEIOWcccuuuiiiiiii ettt e et eaeaees 236
70.15. Enable Multiple Listeners with Undertowc..ccoeeiiiiiiiiiiin e, 236
70.16. Use TOMCAL 7.X OF 8.0 ... e e e e e 236

Use Tomcat 7.X or 8.0 With MaVeNcooiiiiiiiiiiiiie e 236

1.4.8.BUILD-SNAPSHOT Spring Boot X

Spring Boot Reference Guide

Use Tomcat 7.x or 8.0 with Gradlec.oooiiiiiiiiii e 237

TO.17. USE JEtY 9.2 oottt 237

Use Jetty 9.2 With MaVENciiiiii e 237

Use Jetty 9.2 With Gradlecooouiiiiiiiiiie e 237

T0.18. USE JtY 8 oottt et 237

Use Jetty 8 With MaAVENcouiiiiiiiii e e e 238

Use Jetty 8 With Gradleiiiiiiiiiiii e e 238

70.19. Create WebSocket endpoints using @ServerEndpointcccceeveviiiinneeiinnnnn. 238
70.20. Enable HTTP response COMPIreSSIONccvuuiiiinieiiiieeiieeiiieeeiieeeaaeesineeenneesannns 239

T1. SPIING MV C o e ettt e et e ettt e et e et et e e e eee 240
71.1. Write @ JSON REST SEIVICE ..oevuiiiiiieiiiieiei et e e e e e e e e e e eeees 240
71.2. Write an XML REST SEIVICEuuuiiiieiiiiiiiiiiii et ettt e e e e 240
71.3. Customize the Jackson ObJECIMAPPETccuuuiiiiiiiiieiiii e 240
71.4. Customize the @ResponseBody renderingcoveveeuiieieiiinieiiiieeee e 242
71.5. Handling Multipart File Uploadsccooiuiiiiiiiiii e 242
71.6. Switch off the Spring MVC DispatcherServietcooooiiiiiiiiiiii e, 242
71.7. Switch off the Default MVC configurationccccooiiiiiiiiniiiiiee e 243
71.8. CuStOMIZE VIEWRESOIVEISiiiiiiiiiiiiiii ettt e 243
70,9, VEIOCITY ettt ettt et et 244
71.10. Use Thymeleal 3 ... e e 244

T2. HTTP CHENES ...ttt ettt e e e e et e e e e e e e e e rrb e e e e e e e 246
72.1. Configure RestTemplate t0 USE @ PrOXYuveveeruniereriiieeiniiaeeeiinee et eeeninnnes 246

4 T oo T 11 o PSP 247
73.1. Configure Logback for [0ggingccuuieiiiiiiiiiie e 247
Configure logback for file only OUtPULiiiiiiiiii e 248

73.2. Configure Log4j fOr 10Q00ING ... eveetiieiiiiiee e 248

Use YAML or JSON to configure LOG4A] 2cceuniveiiiiiiieiie e ee e 249

TA. DAEA ACCESS ...uitniitiii ettt e et et et et e et e et ea e e et e e eans 250
74.1. Configure a CUStOM DAtaSOUICEcievuunieiiiiiie e eeees 250
74.2. Configure TWO DataSOUICEScvvuniiiiieiiieeei e e e e e e e e e e e e e e e eaen 252
74.3. Use Spring Data rePOSItONEScccuuuiiiiitiieeiiii et ee et e e et eeeri e 253
74.4. Separate @Entity definitions from Spring configurationccccooeviiiiiiiiiinnnn. 253
74.5. Configure JPA PrOPEIIES ...uiiviieiiii et e e e e e e e 253
74.6. Use a custom EntityManagerFactorycoooeieeiiieiiiiinieiiiiecei e 254
74.7. Use TWO ENtItyMANAGETSuiiiiiiieiiii ettt e e 254
74.8. Use a traditional persiStenCe.Xmlccooiiiiiiiiiiiiiciii e 255
74.9. Use Spring Data JPA and MoNgo repOoSItOriesoveveiiiieeiiiiiieeeiiii e 255
74.10. Expose Spring Data repositories as REST endpointccooveveivinieiiiinneeennnn, 255
74.11. Configure a component that is used by JPAcoooiiiiiiii e, 255

75. Database iNitIAliZAtIONiiiiiii e e 257
75.1. Initialize a database uSINg JPA ... 257
75.2. Initialize a database using Hibernateccooviiiii i, 257
75.3. Initialize a database using Spring JDBCoiiiiiiiiiiii e 257
75.4. Initialize a Spring Batch databasecoooooiiiiiiii 258
75.5. Use a higher-level database migration toolccocoieiiiiiiiiiiiii e 258
Execute Flyway database migrations on Startupccceevevevinieieiiinneieninneeennn. 258

Execute Liquibase database migrations on Startupcccoevevvveeiieiinieviinereneennn, 259

A T =TT =Y= To 1T T 260
76.1. Disable transacted JMS SESSIONcoeuvuuieiiiiiieiiiii et 260

77. BatCh apPliCALIONSuiiiiiii e ettt eab e 261

1.4.8.BUILD-SNAPSHOT Spring Boot Xi

Spring Boot Reference Guide

77.1. Execute Spring Batch jobS 0N Startupooveveviiiiiiiii e 261

4= TR X1 11 - o] 262
78.1. Change the HTTP port or address of the actuator endpointscccceceuuneeee. 262
78.2. Customize the ‘whitelabel’ error Pageoovvveviiiiiiiiii e 262
78.3. ACLUALOT QNG JEISEY ...ttt ettt e e et e e et e e e eat e e e eaanaeeees 262

A TS 1= 1o U] Y 263
79.1. Switch off the Spring Boot security configurationccccceeveviiiinieiiiiinnenennnn. 263
79.2. Change the AuthenticationManager and add user accountscccceeeevevnnnnn. 263
79.3. Enable HTTPS when running behind a proxy Servercccoeveeieeiiineciineennnnn. 263

80. HOL SWAPPING . eettieitiii ettt ettt e et e et ettt e e et e et e 265
80.1. Reload StatiC CONTENTcceiiii e e e e e e e e e e anes 265
80.2. Reload templates without restarting the containercccooeviiiiiiiiineeee, 265
Thymeleaf tEMPIALES ... e 265
FreeMarker temMPIateSiiiiiiiiie e 265

(€T (0T0N YA (=] 1] o] F= L (=P 265

VelOCity tEMPIALESeiiiiii e 265

80.3. Fast appliCation FESLANSc.uuuiiiiiiiie e 265
80.4. Reload Java classes without restarting the containercccoocceiiiinin, 266
Configuring Spring Loaded for use with Maven ..o 266
Configuring Spring Loaded for use with Gradle and IntelliJ IDEAc..c...... 266

S 3 I 2 101 o PP 268
81.1. Generate build INfOrmMationccoooiiiiii 268
81.2. Generate git INFOrMALIONc.uuiiiiiiii e 268
81.3. Customize dependenCY VEISIONScceuuiiiiiieeiieeiiiieeiie e et eeeaee e e et e e eeaneens 269
81.4. Create an executable JAR With Mavencccooiiiiiiiiiiii e 269
81.5. Use a Spring Boot application as a dependencyccceveveiiviiiieiinieeiiieeinenannn, 270
81.6. Extract specific libraries when an executable jar runsc.occoeeviiiiiineiinnenn, 270
81.7. Create a non-executable JAR with eXCIUSIONScoooiiiiiiiiiiiiiiieiiiiiecei e 271
81.8. Remote debug a Spring Boot application started with Mavencccoeeeee.. 272
81.9. Remote debug a Spring Boot application started with Gradlec.......... 272
81.10. Build an executable archive from Ant without using spring-boot-antlib 273
81.11. HOW 10 USE JAVA 6 ..euieiiiiieiiiei et e et e e e e e e e e e e e e e e e e e eanes 273
Embedded servlet container compatibilityc..ccooviiiiiiii 274

JACKSON o e 274

JTA API compatiDilitycoouniiiii 274

82. Traditional depPIOYMENT e e e e e e 275
82.1. Create a deployable war file ..o 275
82.2. Create a deployable war file for older servlet containersccc.cccevevieiiviieennnnn. 276
82.3. Convert an existing application to Spring BOOtccccceviieiiiiiiiiieciie e 276
82.4. Deploying @ WAR t0 WEDLOGICc.uuuiiiiiiiieiiiiieeeee et 278
82.5. Deploying a WAR in an Old (Servlet 2.5) Containerccoovveveiiiiiiiiinneeiiinnnnn. 278

DO Y o] o 1= Lo 1= PPN 280
A. Common application PrOPEITIESieieruuieieii ettt e s 281
B. Configuration Meta-datauiiiiiiiiiiiii e e 302
B.1. Meta-data fOrMALiiiiiiiiieii e 302
Group AINDULESeeieeei e e e et e e 303

Property AtrDULESiiiii e 304

HINE ALHDULES oo e e e e 305

Repeated meta-data itemMSuiiiiiiiii e 306

B.2. Providing manual hiNtSoiiiiiiii e 306

1.4.8.BUILD-SNAPSHOT Spring Boot Xii

Spring Boot Reference Guide

Value NNt e e 307

V2= LT o0 1Yo [PSPPI 307

ANy ettt e e et e e e e e aaene 308

ClaSS FEIEIBNCEuiiii e 308

[= L0 L 309

[IoTo o 1= gl g =11 0[PP RPN 310

SPring Dean referenCeooooiiiii i 311

Spring Profile NAME ... 311

B.3. Generating your own meta-data using the annotation processorc......... 312
NESEEA PrOPEITIES ...veneeiiiii ettt ettt ettt e e et e e et e e e erb e e eenbaeeees 313

Adding additional meta-datacooiiiiiiiiii 313

C. AULO-CONFIQUIALION CIASSES ..uuiiiiiiiiieeiii et e e e e et e e et e et e e aaaaaes 314
C.1. From the “spring-boot-autoconfigure” moduleccoiiiiiiiiiiiiii e, 314

C.2. From the “spring-boot-actuator” moduleoooiiiiiiiiiii e 317

D. Test auto-configuration anNOtAtiONSievuiiiiiiiiiii e e e e e 319
E. The executable jar fOrmMatlooooiiiiiiii e 320
E. L NESIEA JARS ..oiiii ittt e e e e e 320

The executable jar file SUCIUIEccciiiiii e 320

The executable war file SITUCLUIEoouiiiiiii e 320

E.2. Spring Boot's “JAarFile” Classcc.iiiiiiiiiiii e 321
Compatibility with the standard Java “JarFile”cccccoiiiiiiiiiiii e 321

E.3. Launching eXecutable JArs ... 321
Launcher Manifestoouiir 322

EXploded arChiVESccoouiiii e 322

E.4. PropertiesLauncher FEAUIESoiiiiiuiiiiiiiie et 322

E.5. Executable jar reStriCtioNScco.uiiiiiiiiiiii e 324

WA =T oY1 VA oo Taq] o] =11 (o] o [N 324

SYSIEM ClAaSSLOAUETnciiiiiieiei et 324

E.6. Alternative single jar SOIULIONScooouiiiiiiii e 324

[B LT o 1T oo [T o Ty VY =T £ o o 1P 325

1.4.8.BUILD-SNAPSHOT Spring Boot Xiii

Part |. Spring Boot Documentation

This section provides a brief overview of Spring Boot reference documentation. Think of it as map for
the rest of the document. You can read this reference guide in a linear fashion, or you can skip sections
if something doesn't interest you.

Spring Boot Reference Guide

1. About the documentation

The Spring Boot reference guide is available as html, pdf and epub documents. The latest copy is
available at docs.spring.io/spring-boot/docs/current/reference.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

1.4.8.BUILD-SNAPSHOT Spring Boot

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/reference/html
https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/reference/pdf/spring-boot-reference.pdf
https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/reference/epub/spring-boot-reference.epub
https://docs.spring.io/spring-boot/docs/current/reference

Spring Boot Reference Guide

2. Getting help

Having trouble with Spring Boot, We'd like to help!

Try the How-to’'s — they provide solutions to the most common questions.

 Learn the Spring basics — Spring Boot builds on many other Spring projects, check the spring.io web-
site for a wealth of reference documentation. If you are just starting out with Spring, try one of the

guides.

» Ask a question - we monitor stackoverflow.com for questions tagged with spri ng- boot .

Report bugs with Spring Boot at github.com/spring-projects/spring-boot/issues.

Note

All of Spring Boot is open source, including the documentation! If you find problems with the docs;
or if you just want to improve them, please get involved.

1.4.8.BUILD-SNAPSHOT Spring Boot 3

https://spring.io
https://spring.io/guides
https://stackoverflow.com
https://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/tree/1.4.x

Spring Boot Reference Guide

3. First steps

If you're just getting started with Spring Boot, or 'Spring' in general, this is the place to start!

» From scratch: Overview | Requirements | Installation

e Tutorial: Part1 | Part 2

* Running your example: Part 1 | Part 2

1.4.8.BUILD-SNAPSHOT Spring Boot

Spring Boot Reference Guide

4. Working with Spring Boot

Ready to actually start using Spring Boot? We've got you covered.

» Build systems: Maven | Gradle | Ant | Starters

» Best practices: Code Structure | @Configuration | @EnableAutoConfiguration | Beans and
Dependency Injection

* Running your code IDE | Packaged | Maven | Gradle

» Packaging your app: Production jars

» Spring Boot CLI: Using the CLI

1.4.8.BUILD-SNAPSHOT Spring Boot 5

Spring Boot Reference Guide

5. Learning about Spring Boot features

Need more details about Spring Boot's core features? This is for you!

Core Features: SpringApplication | External Configuration | Profiles | Logging

Web Applications: MVC | Embedded Containers

Working with data: SQL | NO-SQL

Messaging: Overview | IMS

Testing: Overview | Boot Applications | Utils

Extending: Auto-configuration | @Conditions

1.4.8.BUILD-SNAPSHOT Spring Boot

Spring Boot Reference Guide

6. Moving to production

When you're ready to push your Spring Boot application to production, we've got some tricks that you
might like!

* Management endpoints: Overview | Customization

» Connection options: HTTP | JMX | SSH

* Monitoring: Metrics | Auditing | Tracing | Process

1.4.8.BUILD-SNAPSHOT Spring Boot 7

Spring Boot Reference Guide

7. Advanced topics

Lastly, we have a few topics for the more advanced user.

» Deploy Spring Boot Applications: Cloud Deployment | OS Service

» Build tool plugins: Maven | Gradle

» Appendix: Application Properties | Auto-configuration classes | Executable Jars

1.4.8.BUILD-SNAPSHOT Spring Boot

Part Il. Getting started

If you're just getting started with Spring Boot, or 'Spring' in general, this is the section for you! Here we
answer the basic “what?”, “how?” and “why?” questions. You'll find a gentle introduction to Spring Boot
along with installation instructions. We'll then build our first Spring Boot application, discussing some
core principles as we go.

Spring Boot Reference Guide

8. Introducing Spring Boot

Spring Boot makes it easy to create stand-alone, production-grade Spring based Applications that you
can “just run”. We take an opinionated view of the Spring platform and third-party libraries so you can
get started with minimum fuss. Most Spring Boot applications need very little Spring configuration.

You can use Spring Boot to create Java applications that can be started using j ava -j ar or more
traditional war deployments. We also provide a command line tool that runs “spring scripts”.

Our primary goals are:
» Provide a radically faster and widely accessible getting started experience for all Spring development.

» Be opinionated out of the box, but get out of the way quickly as requirements start to diverge from
the defaults.

* Provide a range of non-functional features that are common to large classes of projects (e.g.
embedded servers, security, metrics, health checks, externalized configuration).

» Absolutely no code generation and no requirement for XML configuration.

1.4.8.BUILD-SNAPSHOT Spring Boot 10

Spring Boot Reference Guide

9. System Requirements

By default, Spring Boot 1.4.8.BUILD-SNAPSHOT requires Java 7 and Spring Framework
4.3.9.RELEASE or above. You can use Spring Boot with Java 6 with some additional configuration. See
Section 81.11, “How to use Java 6” for more details. Explicit build support is provided for Maven (3.2+)
and Gradle (1.12 or 2.x). Support for Gradle 2.8 and earlier is deprecated. Gradle 3 is not supported.

Tip

Although you can use Spring Boot with Java 6 or 7, we generally recommend Java 8 if at all
possible.

9.1 Servlet containers

The following embedded servlet containers are supported out of the box:

Name Servlet Version Java Version
Tomcat 8 3.1 Java 7+
Tomcat 7 3.0 Java 6+
Jetty 9.3 3.1 Java 8+
Jetty 9.2 31 Java 7+
Jetty 8 3.0 Java 6+
Undertow 1.3 3.1 Java 7+

You can also deploy Spring Boot applications to any Servlet 3.0+ compatible container.

1.4.8.BUILD-SNAPSHOT Spring Boot 11

https://www.java.com

Spring Boot Reference Guide

10. Installing Spring Boot

Spring Boot can be used with “classic” Java development tools or installed as a command line tool.
Regardless, you will need Java SDK v1.6 or higher. You should check your current Java installation
before you begin:

$ java -version

If you are new to Java development, or if you just want to experiment with Spring Boot you might want
to try the Spring Boot CLI first, otherwise, read on for “classic” installation instructions.

Tip

Although Spring Boot is compatible with Java 1.6, if possible, you should consider using the latest
version of Java.

10.1 Installation instructions for the Java developer

You can use Spring Boot in the same way as any standard Java library. Simply include the appropriate
spring-boot-*.jar files on your classpath. Spring Boot does not require any special tools
integration, so you can use any IDE or text editor; and there is nothing special about a Spring Boot
application, so you can run and debug as you would any other Java program.

Although you could just copy Spring Boot jars, we generally recommend that you use a build tool that
supports dependency management (such as Maven or Gradle).

Maven installation

Spring Boot is compatible with Apache Maven 3.2 or above. If you don't already have Maven installed
you can follow the instructions at maven.apache.org.

Tip

On many operating systems Maven can be installed via a package manager. If you're an OSX
Homebrew user try brew i nstal | maven. Ubuntu users can run sudo apt-get install
maven.

Spring Boot dependencies use the or g. spri ngf r anmewor k. boot groupl d. Typically your Maven
POM file will inherit from the spri ng- boot - st art er - par ent project and declare dependencies to
one or more “Starters”. Spring Boot also provides an optional Maven plugin to create executable jars.

Here is a typical pom xm file:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http: //wwmv w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0 https:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifactld>nmyproject</artifactld>
<ver si on>0. 0. 1- SNAPSHOT</ ver si on>

<l-- Inherit defaults from Spring Boot -->
<par ent >

1.4.8.BUILD-SNAPSHOT Spring Boot 12

https://www.java.com
https://maven.apache.org

Spring Boot Reference Guide

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-starter-parent</artifactld>
<versi on>1. 4. 8. BUl LD- SNAPSHOT</ ver si on>

</ par ent >

<!-- Add typical dependencies for a web application -->
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
</ dependenci es>

<l -- Package as an executable jar -->
<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifact|d>spring-boot-mven-plugin</artifactld>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>
<l-- Add Spring repositories -->
<I-- (you don't need this if you are using a .RELEASE version) -->

<repositories>
<repository>
<i d>spri ng-snapshot s</i d>
<url >https://repo.spring.iol/snapshot </ url >
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
<repository>
<i d>spring-m | estones</id>
<url >https://repo.spring.io/mlestone</url>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>spring-snapshot s</i d>
<url >https://repo.spring.io/snapshot</url >
</ pl ugi nReposi t ory>
<pl ugi nReposi tory>
<i d>spring-m|estones</id>
<url >https://repo.spring.io/nlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>
</ proj ect >

Tip

The spri ng-boot - start er-parent is a great way to use Spring Boot, but it might not be
suitable all of the time. Sometimes you may need to inherit from a different parent POM, or you
might just not like our default settings. See the section called “Using Spring Boot without the parent
POM?” for an alternative solution that uses an i nport scope.

Gradle installation

Spring Boot is compatible with Gradle 1.12 or 2.x but support for 2.8 and earlier is deprecated. Gradle
2.14.1 is recommended. Gradle 3 is not supported. If you don’t already have Gradle installed you can
follow the instructions at www.gradle.org/.

Spring Boot dependencies can be declared using the or g. spri ngf r anewor k. boot gr oup. Typically
your project will declare dependencies to one or more “Starters”. Spring Boot provides a useful Gradle
plugin that can be used to simplify dependency declarations and to create executable jars.

1.4.8.BUILD-SNAPSHOT Spring Boot 13

https://www.gradle.org/

Spring Boot Reference Guide

Gradle Wrapper

The Gradle Wrapper provides a nice way of “obtaining” Gradle when you need to build a project.
It's a small script and library that you commit alongside your code to bootstrap the build process.
See docs.gradle.org/2.14.1/userguide/gradle_wrapper.html for details.

Here is a typical bui | d. gr adl e file:

bui l dscript {
repositories {
jcenter()
maven { url 'https://repo.spring.iolsnapshot’ }
maven { url 'https://repo.spring.io/mlestone }
}
dependenci es {
cl asspath 'org. springframework. boot: spring-boot - gradl e- pl ugi n: 1. 4. 8. BUl LD- SNAPSHOT"
}
}

apply plugin: 'java'
apply plugin: 'org.springframework. boot'

jar {
baseName = 'nyproject’
version = '0.0.1- SNAPSHOT'

}

repositories {
jcenter()
maven { url "https://repo.spring.iolsnapshot" }
maven { url "https://repo.spring.io/mlestone" }

}

dependenci es {
conpi | e("org. springframework. boot : spring- boot-starter-web")
t est Conpi | e("org. springframewor k. boot : spring-boot-starter-test")

10.2 Installing the Spring Boot CLI

The Spring Boot CLI is a command line tool that can be used if you want to quickly prototype with Spring.
It allows you to run Groovy scripts, which means that you have a familiar Java-like syntax, without so
much boilerplate code.

You don't need to use the CLI to work with Spring Boot but it's definitely the quickest way to get a Spring
application off the ground.

Manual installation
You can download the Spring CLI distribution from the Spring software repository:

* spring-boot-cli-1.4.8.BUILD-SNAPSHOT-bin.zip

e spring-boot-cli-1.4.8.BUILD-SNAPSHOT-bin.tar.gz

Cutting edge snapshot distributions are also available.

Once downloaded, follow the INSTALL.txt instructions from the unpacked archive. In summary: there
isaspring script (spri ng. bat for Windows) in a bi n/ directory in the . zi p file, or alternatively you
canusej ava -j ar withthe. j ar file (the script helps you to be sure that the classpath is set correctly).

1.4.8.BUILD-SNAPSHOT Spring Boot 14

https://docs.gradle.org/2.14.1/userguide/gradle_wrapper.html
http://groovy-lang.org
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/1.4.8.BUILD-SNAPSHOT/spring-boot-cli-1.4.8.BUILD-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/1.4.8.BUILD-SNAPSHOT/spring-boot-cli-1.4.8.BUILD-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
https://raw.github.com/spring-projects/spring-boot/1.4.x/spring-boot-cli/src/main/content/INSTALL.txt

Spring Boot Reference Guide

Installation with SDKMAN!

SDKMAN! (The Software Development Kit Manager) can be used for managing multiple versions of
various binary SDKs, including Groovy and the Spring Boot CLI. Get SDKMAN! from sdkman.io and
install Spring Boot with

$ sdk install springboot
$ spring --version
Spring Boot vl.4.8.BU LD SNAPSHOT

If you are developing features for the CLI and want easy access to the version you just built, follow
these extra instructions.

$ sdk install springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-cli-1.4.8.BU LD
SNAPSHOT- bi n/ spring- 1. 4. 8. BUl LD- SNAPSHOT/

$ sdk default springboot dev

$ spring --version

Spring CLI vil.4.8.BU LD SNAPSHOT

This will install a local instance of spr i ng called the dev instance. It points at your target build location,
S0 every time you rebuild Spring Boot, spr i ng will be up-to-date.

You can see it by doing this:

$ sdk |'s springboot

Avai | abl e Springboot Versions

> + dev
* 1. 4. 8. BUl LD- SNAPSHOT

+ - local version
* - installed
> - currently in use

OSX Homebrew installation

If you are on a Mac and using Homebrew, all you need to do to install the Spring Boot CLI is:

$ brew tap pivotal /tap
$ brew install springboot

Homebrew will install spri ng to/ usr/1 ocal / bi n.

Note

If you don'’t see the formula, your installation of brew might be out-of-date. Just execute br ew
updat e and try again.

MacPorts installation

If you are on a Mac and using MacPorts, all you need to do to install the Spring Boot CLI is:

$ sudo port install spring-boot-cli

1.4.8.BUILD-SNAPSHOT Spring Boot 15

https://sdkman.io
https://brew.sh/
https://www.macports.org/

Spring Boot Reference Guide

Command-line completion

Spring Boot CLI ships with scripts that provide command completion for BASH and zsh shells. You can
sour ce the script (also named spri ng) in any shell, or put it in your personal or system-wide bash
completion initialization. On a Debian system the system-wide scripts are in / shel | - conpl et i on/
bash and all scripts in that directory are executed when a new shell starts. To run the script manually,
e.g. if you have installed using SDKMAN!

$. ~/.sdkman/ candi dat es/ spri ngboot/current/shel | -conpl etion/bash/spring
$ spring <H T TAB HERE>
grab help jar run test version

Note

If you install Spring Boot CLI using Homebrew or MacPorts, the command-line completion scripts
are automatically registered with your shell.

Quick start Spring CLI example

Here’s a really simple web application that you can use to test your installation. Create a file called
app. gr oovy:

class Thi sWll Actual | yRun {

String home() {
"Hello World!"

}

Then simply run it from a shell:

$ spring run app.groovy

Note

It will take some time when you first run the application as dependencies are downloaded.
Subsequent runs will be much quicker.

Open localhost:8080 in your favorite web browser and you should see the following output:

‘Hello Wor | d!

10.3 Upgrading from an earlier version of Spring Boot

If you are upgrading from an earlier release of Spring Boot check the “release notes” hosted on the
project wiki. You'll find upgrade instructions along with a list of “new and noteworthy” features for each
release.

To upgrade an existing CLI installation use the appropriate package manager command (for example
br ew upgr ade) or, if you manually installed the CLI, follow the standard instructions remembering to
update your PATH environment variable to remove any older references.

1.4.8.BUILD-SNAPSHOT Spring Boot 16

https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/Zsh
http://localhost:8080
https://github.com/spring-projects/spring-boot/wiki

Spring Boot Reference Guide

11. Developing your first Spring Boot application

Let's develop a simple “Hello World!” web application in Java that highlights some of Spring Boot's key
features. We’'ll use Maven to build this project since most IDEs support it.

Tip

The spring.io web site contains many “Getting Started” guides that use Spring Boot. If you're
looking to solve a specific problem; check there first.

You can shortcut the steps below by going to start.spring.io and choosing the web starter from
the dependencies searcher. This will automatically generate a new project structure so that you
can start coding right away. Check the documentation for more details.

Before we begin, open a terminal to check that you have valid versions of Java and Maven installed.

$ java -version

java version "1.7.0_51"

Java(TM SE Runtine Environnment (build 1.7.0_51-b13)

Java Hot Spot (TM 64-Bit Server VM (build 24.51-b03, mi xed node)

$ mn -v

Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8f df 4; 2014- 08- 11T13: 58: 10- 07: 00)
Maven hone: /Users/user/tool s/ apache-maven-3. 1.1

Java version: 1.7.0_51, vendor: Oracle Corporation

Note

This sample needs to be created in its own folder. Subsequent instructions assume that you have
created a suitable folder and that it is your “current directory”.

11.1 Creating the POM

We need to start by creating a Maven pom xmi file. The pom xmi is the recipe that will be used to build
your project. Open your favorite text editor and add the following:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http: //wwmv w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0. 0 https:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifactld>nmyproject</artifactld>
<ver si on>0. 0. 1- SNAPSHOT</ ver si on>

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<version>1. 4. 8. BUl LD- SNAPSHOT</ ver si on>

</ par ent >
<l-- Additional lines to be added here... -->
<l-- (you don't need this if you are using a .RELEASE version) -->

<repositories>
<reposi tory>
<i d>spring-snapshot s</i d>
<url>https://repo.spring.iol/snapshot</url>
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>

1.4.8.BUILD-SNAPSHOT Spring Boot 17

https://spring.io
https://start.spring.io
https://github.com/spring-io/initializr

Spring Boot Reference Guide

</repository>
<reposi tory>
<i d>spring-m|estones</id>
<url >https://repo.spring.io/mlestone</url>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>spring-snapshot s</i d>
<url >https://repo.spring.iol/ snapshot </ url >
</ pl ugi nReposi t ory>
<pl ugi nReposi tory>
<i d>spring-m|estones</id>
<url>https://repo.spring.io/nlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>
</ proj ect >

This should give you a working build, you can test it out by running mvn package (you can ignore the
“jar will be empty - no content was marked for inclusion!” warning for now).

Note

At this point you could import the project into an IDE (most modern Java IDE’s include built-in
support for Maven). For simplicity, we will continue to use a plain text editor for this example.

11.2 Adding classpath dependencies

Spring Boot provides a number of “Starters” that make easy to add jars to your classpath. Our sample
application has already used spri ng- boot - st art er - par ent in the par ent section of the POM.
The spring-boot -starter-parent is a special starter that provides useful Maven defaults. It
also provides a dependency- nanagenent section so that you can omit ver si on tags for “blessed”
dependencies.

Other “Starters” simply provide dependencies that you are likely to need when developing a specific
type of application. Since we are developing a web application, we willadd a spr i ng- boot - st art er -
web dependency — but before that, let’s look at what we currently have.

$ nvn dependency:tree

[INFO com exanpl e: nyproj ect:jar:0.0.1- SNAPSHOT

The nvn dependency: tree command prints a tree representation of your project dependencies.
You can see that spri ng- boot - st art er - par ent provides no dependencies by itself. Let’s edit our
pom xnl and add the spri ng- boot - st art er - web dependency just below the par ent section:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
</ dependenci es>

If you run nvn dependency:tree again, you will see that there are now a number of additional
dependencies, including the Tomcat web server and Spring Boot itself.

1.4.8.BUILD-SNAPSHOT Spring Boot 18

Spring Boot Reference Guide

11.3 Writing the code

To finish our application we need to create a single Java file. Maven will compile sources from sr c/
mai n/ j ava by default so you need to create that folder structure, then add a file named sr ¢/ mai n/
j aval Exanpl e. j ava:

i nport org.springfranmework. boot . *;

i mport org.springframework. boot . aut oconfigure.*;
i nport org.springframework. stereotype. *;

i nport org.springframework. web. bi nd. annot ati on. *;

public class Exanple {

String home() {
return "Hello World!'";

}

public static void main(String[] args) throws Exception {
Spri ngApplication. run(Exanpl e.cl ass, args);
}

}
Although there isn't much code here, quite a lot is going on. Let’s step through the important parts.

The @RestController and @RequestMapping annotations

The first annotation on our Exanpl e class is @Rest Control | er. This is known as a stereotype
annotation. It provides hints for people reading the code, and for Spring, that the class plays a specific
role. In this case, our class is a web @ont r ol | er so Spring will consider it when handling incoming
web requests.

The @Request Mappi ng annotation provides “routing” information. It is telling Spring that any HTTP
request with the path “/” should be mapped to the home method. The @Rest Cont r ol | er annotation
tells Spring to render the resulting string directly back to the caller.

Tip

The @Rest Control | er and @equest Mappi ng annotations are Spring MVC annotations (they
are not specific to Spring Boot). See the MVC section in the Spring Reference Documentation
for more details.

The @EnableAutoConfiguration annotation

The second class-level annotation is @nabl eAut oConf i gur ati on. This annotation tells Spring
Boot to “guess” how you will want to configure Spring, based on the jar dependencies that you have
added. Since spri ng- boot - st art er - web added Tomcat and Spring MVC, the auto-configuration
will assume that you are developing a web application and setup Spring accordingly.

Starters and Auto-Configuration

Auto-configuration is designed to work well with “Starters”, but the two concepts are not directly
tied. You are free to pick-and-choose jar dependencies outside of the starters and Spring Boot will
still do its best to auto-configure your application.

1.4.8.BUILD-SNAPSHOT Spring Boot 19

https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle#mvc

Spring Boot Reference Guide

The “main” method

The final part of our application is the mai n method. This is just a standard method that follows
the Java convention for an application entry point. Our main method delegates to Spring Boot’s
Spri ngAppl i cation class by calling run. Spri ngAppl i cati on will bootstrap our application,
starting Spring which will in turn start the auto-configured Tomcat web server. We need to pass
Exanmpl e. cl ass as an argument to the r un method to tell Spri ngAppl i cat i on which is the primary
Spring component. The ar gs array is also passed through to expose any command-line arguments.

11.4 Running the example

At this point our application should work. Since we have used the spri ng- boot - st art er - par ent
POM we have a useful r un goal that we can use to start the application. Type mvn spri ng-boot: run
from the root project directory to start the application:

$ nvn spring-boot:run

N () v
CON_ | "1 LW/ I U U U
W/) 1O [[))))
0 || | /11
=]
1 Spring Boot :: (vi.4.8.BU LD SNAPSHOT)

. (1 og output here)

........ Started Exanple in 2.222 seconds (JVMrunning for 6.514)

If you open a web browser to localhost:8080 you should see the following output:

‘Hello Wor | d!

To gracefully exit the application hitctr| - c.

11.5 Creating an executable jar

Let’s finish our example by creating a completely self-contained executable jar file that we could run in
production. Executable jars (sometimes called “fat jars”) are archives containing your compiled classes
along with all of the jar dependencies that your code needs to run.

Executable jars and Java

Java does not provide any standard way to load nested jar files (i.e. jar files that are themselves
contained within a jar). This can be problematic if you are looking to distribute a self-contained
application.

To solve this problem, many developers use “uber” jars. An uber jar simply packages all classes,
from all jars, into a single archive. The problem with this approach is that it becomes hard to see
which libraries you are actually using in your application. It can also be problematic if the same
filename is used (but with different content) in multiple jars.

Spring Boot takes a different approach and allows you to actually nest jars directly.

To create an executable jar we need to add the spri ng- boot - maven- pl ugi nto our pom xm . Insert
the following lines just below the dependenci es section:

1.4.8.BUILD-SNAPSHOT Spring Boot 20

http://localhost:8080

Spring Boot Reference Guide

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Note

The spri ng- boot - start er-parent POM includes <execut i ons> configuration to bind the
r epackage goal. If you are not using the parent POM you will need to declare this configuration
yourself. See the plugin documentation for details.

Save your pom xnl and run nvn package from the command line:

$ nvn package

[INFQ Scanning for projects...

[I NFO

[INRG] ==ccssccssccsscosscossconscanscanscanscansconscanscansconoconoconoca09e0s

[INFQ Building nyproject 0.0.1- SNAPSHOT

I 3 I

[INFO

[INFO --- maven-jar-plugin:2.4:jar (default-jar) @nyproject ---

[INFOQ Building jar: /Users/devel oper/exanpl e/ spring-boot - exanpl e/t ar get/ nypr oj ect - 0. 0. 1- SNAPSHOT. j ar
[INFO

[INFQ --- spring-boot-maven-plugin: 1. 4. 8. BU LD- SNAPSHOT: r epackage (default) @ nyproject ---
[INFQ - mmmmm e e e e e e m e e e e e e e e e e e

[INFO BU LD SUCCESS

Y = R T

If you look in the t ar get directory you should see nyproj ect - 0. 0. 1- SNAPSHOT. j ar. The file
should be around 10 Mb in size. If you want to peek inside, you can use j ar tvf:

$ jar tvf target/nyproject-0.0.1- SNAPSHOT. j ar

You should also see a much smaller file named nmypr oj ect - 0. 0. 1- SNAPSHOT. j ar. ori gi nal in
the t ar get directory. This is the original jar file that Maven created before it was repackaged by Spring
Boot.

To run that application, use the j ava -j ar command:

$ java -jar target/myproject-0.0.1- SNAPSHOT. j ar

M (O VL

CON_ N vy vy
W e ro)y)))
S S [) O W B A O
| _l | __/1=_1_1_1

Spring Boot :: (v1.4.8.BU LD SNAPSHOT)

....... . . . (log output here)

........ Started Exanple in 2.536 seconds (JVMrunning for 2.864)

As before, to gracefully exit the application hitctrl - c.

1.4.8.BUILD-SNAPSHOT Spring Boot 21

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/maven-plugin/usage.html

Spring Boot Reference Guide

12. What to read next

Hopefully this section has provided you with some of the Spring Boot basics, and got you on your way
to writing your own applications. If you're a task-oriented type of developer you might want to jump over
to spring.io and check out some of the getting started guides that solve specific “How do | do that with
Spring” problems; we also have Spring Boot-specific How-to reference documentation.

The Spring Boot repository has also a bunch of samples you can run. The samples are independent of
the rest of the code (that is you don’t need to build the rest to run or use the samples).

Otherwise, the next logical step is to read Part lll, “Using Spring Boot”. If you're really impatient, you
could also jump ahead and read about Spring Boot features.

1.4.8.BUILD-SNAPSHOT Spring Boot 22

https://spring.io
https://spring.io/guides/
https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples

Part lll. Using Spring Boot

This section goes into more detail about how you should use Spring Boot. It covers topics such as build
systems, auto-configuration and how to run your applications. We also cover some Spring Boot best
practices. Although there is nothing particularly special about Spring Boot (it is just another library that
you can consume), there are a few recommendations that, when followed, will make your development
process just a little easier.

If you're just starting out with Spring Boot, you should probably read the Getting Started guide before
diving into this section.

Spring Boot Reference Guide

13. Build systems

It is strongly recommended that you choose a build system that supports dependency management,
and one that can consume artifacts published to the “Maven Central” repository. We would recommend
that you choose Maven or Gradle. It is possible to get Spring Boot to work with other build systems (Ant
for example), but they will not be particularly well supported.

13.1 Dependency management

Each release of Spring Boot provides a curated list of dependencies it supports. In practice, you do not
need to provide a version for any of these dependencies in your build configuration as Spring Boot is
managing that for you. When you upgrade Spring Boot itself, these dependencies will be upgraded as
well in a consistent way.

Note

You can still specify a version and override Spring Boot's recommendations if you feel that's
necessary.

The curated list contains all the spring modules that you can use with Spring Boot as well as a
refined list of third party libraries. The list is available as a standard Bills of Materials (spri ng- boot -
dependenci es) and additional dedicated support for Maven and Gradle are available as well.

Warning

Each release of Spring Boot is associated with a base version of the Spring Framework so we
highly recommend you to not specify its version on your own.

13.2 Maven

Maven users can inherit from the spri ng- boot - st art er - par ent project to obtain sensible defaults.
The parent project provides the following features:

» Java 1.6 as the default compiler level.
» UTF-8 source encoding.

« A Dependency Management section, allowing you to omit <versi on> tags for common
dependencies, inherited from the spri ng- boot - dependenci es POM.

» Sensible resource filtering.

» Sensible plugin configuration (exec plugin, surefire, Git commit ID, shade).

» Sensible resource filtering for application. properties and application.ynl including
profile-specific files (e.g. appl i cati on-f o0o. properti es and appl i cati on-foo.ym)

On the last point: since the default config files accept Spring style placeholders (${..}) the Maven
filtering is changed to use @ . @ placeholders (you can override that with a Maven property
resource.delimter).

Inheriting the starter parent

To configure your project to inherit from the spri ng- boot - st ar t er - par ent simply set the par ent :

1.4.8.BUILD-SNAPSHOT Spring Boot 24

https://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
https://www.mojohaus.org/exec-maven-plugin/
https://maven.apache.org/surefire/maven-surefire-plugin/
https://github.com/ktoso/maven-git-commit-id-plugin
https://maven.apache.org/plugins/maven-shade-plugin/

Spring Boot Reference Guide

<I-- Inherit defaults from Spring Boot -->

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<versi on>1. 4. 8. BUl LD- SNAPSHOT</ ver si on>

</ par ent >

Note

You should only need to specify the Spring Boot version number on this dependency. If you import
additional starters, you can safely omit the version number.

With that setup, you can also override individual dependencies by overriding a property in your own
project. For instance, to upgrade to another Spring Data release train you'd add the following to your
pom xm .

<properties>
<spring-data-rel easetrain.versi on>Fow er - SR2</ spri ng- dat a-r el easet rai n. ver si on>
</ properties>

Tip

Check the spri ng- boot - dependenci es pom for a list of supported properties.

Using Spring Boot without the parent POM

Not everyone likes inheriting from the spri ng- boot - st art er - parent POM. You may have your
own corporate standard parent that you need to use, or you may just prefer to explicitly declare all your
Maven configuration.

If you don’t want to use the spri ng-boot - st art er-parent, you can still keep the benefit of the
dependency management (but not the plugin management) by using a scope=i nport dependency:

<dependencyManagenent >
<dependenci es>
<dependency>
<l-- Inport dependency nmanagenent from Spring Boot -->
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-dependenci es</artifactld>
<version>1. 4. 8. BUl LD- SNAPSHOT</ ver si on>
<t ype>ponk/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

That setup does not allow you to override individual dependencies using a property as explained above.
To achieve the same result, you'd need to add an entry in the dependencyManagenent of your project
before the spri ng- boot - dependenci es entry. For instance, to upgrade to another Spring Data
release train you'd add the following to your pom xni .

<dependencyManagenent >
<dependenci es>

<l-- Override Spring Data release train provided by Spring Boot -->

<dependency>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oup| d>
<artifactld>spring-data-rel easetrain</artifactld>
<versi on>Fow er - SR2</ ver si on>
<scope>i nport </ scope>
<t ype>ponx/type>

1.4.8.BUILD-SNAPSHOT Spring Boot 25

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-dependencies/pom.xml

Spring Boot Reference Guide

</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-dependenci es</artifactld>
<version>1. 4. 8. BUl LD- SNAPSHOT</ ver si on>
<t ype>ponk/type>
<scope>i nport </ scope>

</ dependency>

</ dependenci es>
</ dependencyManagenent >

Note

In the example above, we specify a BOM but any dependency type can be overridden that way.

Changing the Java version

The spring-boot - starter-parent chooses fairly conservative Java compatibility. If you want to
follow our recommendation and use a later Java version you can add a j ava. ver si on property:

<properties>
<j ava. ver si on>1. 8</j ava. ver si on>
</ properties>

Using the Spring Boot Maven plugin

Spring Boot includes a Maven plugin that can package the project as an executable jar. Add the plugin
to your <pl ugi ns> section if you want to use it:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Note

If you use the Spring Boot starter parent pom, you only need to add the plugin, there is no need
for to configure it unless you want to change the settings defined in the parent.

13.3 Gradle

Gradle users can directly import ‘starters’ in their dependenci es section. Unlike Maven, there is no
“super parent” to import to share some configuration.

repositories {
maven { url "https://repo.spring.io/snapshot" }
maven { url "https://repo.spring.io/mlestone" }

}

dependenci es {
conpi | e("org. springframework. boot: spring-boot-starter-web: 1. 4. 8. BUl LD- SNAPSHOT")

}

The spri ng- boot - gr adl e- pl ugi n is also available and provides tasks to create executable jars
and run projects from source. It also provides dependency management that, among other capabilities,
allows you to omit the version number for any dependencies that are managed by Spring Boot:

1.4.8.BUILD-SNAPSHOT Spring Boot 26

Spring Boot Reference Guide

bui I dscript {
repositories {
jcenter()
maven { url 'https://repo.spring.iol/snapshot' }
maven { url 'https://repo.spring.io/mlestone }
}
dependenci es {
classpath 'org. springframework. boot: spri ng- boot - gradl e- pl ugi n: 1. 4. 8. BUI LD- SNAPSHOT"
}
}

apply plugin: 'java'
apply plugin: '"org.springframework. boot"'

repositories {
jcenter()
maven { url 'https://repo.spring.io/snapshot' }
maven { url 'https://repo.spring.io/mnlestone }

}

dependenci es {
conpi | e("org. springframework. boot : spring-boot -starter-web")
t est Conpi | e("org. spri ngfranmewor k. boot : spri ng-boot-starter-test")

13.4 Ant

Itis possible to build a Spring Boot project using Apache Ant+lvy. The spri ng- boot - ant | i b “AntLib”
module is also available to help Ant create executable jars.

To declare dependencies a typical i vy. xm file will look something like this:

<i vy-nodul e version="2.0">
<i nfo organisation="org. springframework. boot" nodul e="spri ng-boot-sanpl e-ant" />
<confi gurati ons>
<conf nanme="conpile" description="everything needed to conpile this nodule" />
<conf name="runtinme" extends="conpile" description="everything needed to run this nodule" />
</ configurations>
<dependenci es>
<dependency org="org. springframework. boot" nanme="spring-boot-starter"
rev="${spring-boot . version}" conf="conpile" />
</ dependenci es>
</ivy-nodul e>

A typical bui | d. xm will look like this:

<pr oj ect
xm ns:ivy="antlib:org. apache.ivy.ant"
xm ns: spring-boot="ant i b: org. spri ngfranmework. boot. ant"
nane="nyapp" defaul t="build">

<property name="spring-boot.version" value="1.3.0.BU LD SNAPSHOT" />

<target name="resolve" description="--> retrieve dependencies with ivy">
<ivy:retrieve pattern="lib/[conf]/[artifact]-[type]-[revision].[ext]" />
</ target>

<target name="cl asspat hs" depends="resol ve">
<path id="conpile.classpath">
<fileset dir="lib/conpile" includes="*.jar" />
</ pat h>
</ target>

<target name="init" depends="cl asspat hs">
<nkdir dir="build/classes" />
</target>

1.4.8.BUILD-SNAPSHOT Spring Boot 27

Spring Boot Reference Guide

<target name="conpile" depends="init" description="conpile">
<javac srcdir="src/ main/java" destdir="build/classes" classpathref="conpile.classpath" />
</target>

<target name="buil d" depends="conpile">
<spring-boot:exejar destfile="buil d/ myapp.jar" classes="buil d/cl asses">
<spring-boot:|ib>
<fileset dir="lib/runtime" />
</ spring-boot:|ib>
</ spring-boot : exej ar >
</target>
</ proj ect >

Tip
See the Section 81.10, “Build an executable archive from Ant without using spring-boot-antlib”
“How-to” if you don’t want to use the spri ng- boot - ant | i b module.

13.5 Starters

Starters are a set of convenient dependency descriptors that you can include in your application. You
get a one-stop-shop for all the Spring and related technology that you need, without having to hunt
through sample code and copy paste loads of dependency descriptors. For example, if you want to get
started using Spring and JPA for database access, just include the spri ng- boot - st art er - dat a-
j pa dependency in your project, and you are good to go.

The starters contain a lot of the dependencies that you need to get a project up and running quickly and
with a consistent, supported set of managed transitive dependencies.

What's in a name

All official starters follow a similar naming pattern; spri ng- boot -starter-*, where * is a
particular type of application. This naming structure is intended to help when you need to find
a starter. The Maven integration in many IDEs allow you to search dependencies by name. For
example, with the appropriate Eclipse or STS plugin installed, you can simply hitct r| - space in
the POM editor and type “spring-boot-starter” for a complete list.

As explained in the Creating your own starter section, third party starters should not start with
spri ng- boot as itis reserved for official Spring Boot artifacts. A third-party starter for acme will
be typically named acne- spri ng- boot - starter.

The following application starters are provided by Spring Boot under the
or g. spri ngframewor k. boot group:

Table 13.1. Spring Boot application starters

Name Description Pom
spring-boot-starter- Starter for building MVC web Pom
t hynel eaf applications using Thymeleaf

views

B
o
3

spring-boot-starter-ws Starter for using Spring Web
Services. Deprecated as of

1.4 in favor of spri ng- boot -
starter-web-services

1.4.8.BUILD-SNAPSHOT Spring Boot 28

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-thymeleaf/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-ws/pom.xml

Spring Boot Reference Guide

Name

spring-boot-starter-
dat a- couchbase

spring-boot-starter-
artems

spring-boot-starter-
web- servi ces

Description

Starter for using Couchbase
document-oriented database
and Spring Data Couchbase

Starter for JIMS messaging
using Apache Artemis

Starter for using Spring Web
Services

spring-boot-starter-
mai |

Starter for using Java Mail
and Spring Framework’s email
sending support

spring-boot-starter-
data-redis

spri ng-boot -starter-web

Starter for using Redis key-
value data store with Spring
Data Redis and the Jedis client

Starter for building web,
including RESTful, applications
using Spring MVC. Uses
Tomcat as the default
embedded container

spring-boot-starter-
dat a-genfire

Starter for using GemFire
distributed data store and
Spring Data GemFire

spring-boot-starter-
activeng

spring-boot-starter-
dat a- el asti csearch

Starter for IMS messaging
using Apache ActiveMQ

Starter for using Elasticsearch
search and analytics engine
and Spring Data Elasticsearch

spring-boot-starter-
i ntegration

spring-boot-starter-
t est

spring-boot-starter-
hor net g

spring-boot-starter-
j dbc

Starter for using Spring
Integration

Starter for testing Spring Boot
applications with libraries
including JUnit, Hamcrest and
Mockito

Starter for IMS messaging
using HornetQ. Deprecated
as of 1.4 in favor of spri ng-
boot-starter-artenm s

Starter for using JDBC with the
Tomcat JDBC connection pool

1.4.8.BUILD-SNAPSHOT

Spring Boot

3

go)
3

o
3

T
3

_U
3

T
3

T
3

_U
3

T
3

_U
3

_U
3

o
3

o
=

go)
3

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-data-couchbase/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-artemis/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-web-services/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-mail/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-data-redis/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-web/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-data-gemfire/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-activemq/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-data-elasticsearch/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-integration/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-test/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-hornetq/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-jdbc/pom.xml

Spring Boot Reference Guide

Name Description Pom
spring-boot-starter- Starter for building web Pom
nmobi | e applications using Spring

Mobile
spring-boot-starter- Starter for using Java Bean Pom
val i dation Validation with Hibernate

Validator
spring-boot-starter- Starter for building hypermedia- Pom
hat eoas based RESTful web application

with Spring MVC and Spring

HATEOAS
spring-boot-starter- Starter for building RESTful Pom
j ersey web applications using JAX-RS

and Jersey. An alternative to
spring-boot-starter-web

spring-boot-starter- Starter for using Neo4j graph Pom
dat a- neo4j database and Spring Data

Neo4j
spring-boot-starter- Starter for building WebSocket Pom
websocket applications using Spring

Framework’'s WebSocket

support
spring-boot -starter-aop | Starter for aspect-oriented Pom

programming with Spring AOP

and AspectJ
spring-boot-starter- Starter for using Spring AMQP Pom
angp and Rabbit MQ
spring-boot-starter- Starter for using Cassandra Pom
dat a- cassandr a distributed database and Spring

Data Cassandra
spring-boot-starter- Starter for using Spring Social Pom
soci al - f acebook Facebook
spring-boot-starter- Starter for JTA transactions Pom
j ta-atom kos using Atomikos
spring-boot-starter- Starter for using Spring Security Pom
security
spring-boot-starter- Starter for building MVC web Pom
nmust ache applications using Mustache

views
spring-boot-starter- Starter for using Spring Data Pom
dat a- j pa JPA with Hibernate

1.4.8.BUILD-SNAPSHOT Spring Boot

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-mobile/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-validation/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-hateoas/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-jersey/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-data-neo4j/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-websocket/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-aop/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-amqp/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-data-cassandra/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-social-facebook/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-jta-atomikos/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-security/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-mustache/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-data-jpa/pom.xml

Spring Boot Reference Guide

Name Description Pom
spring-boot-starter Core starter, including auto- Pom

configuration support, logging

and YAML
spring-boot-starter- Starter for building MVC web Pom
vel ocity applications using Velocity

views. Deprecated since 1.4
spring-boot-starter- Starter for building MVC web Pom
groovy-tenpl at es applications using Groovy

Templates views
spring-boot-starter- Starter for building MVC web Pom
freemar ker applications using FreeMarker

views
spring-boot-starter- Starter for using Spring Batch Pom
bat ch
spring-boot-starter- Starter for using Redis key- Pom
redis value data store with Spring

Data Redis and the Jedis client.

Deprecated as of 1.4 in favor

of spri ng-boot -starter-

data-redis
spring-boot-starter- Stater for using Spring Social Pom
soci al -1i nkedin LinkedIn
spring-boot-starter- Starter for using Spring Pom
cache Framework’s caching support
spring-boot-starter- Starter for using the Apache Pom
dat a- sol r Solr search platform with Spring

Data Solr
spring-boot-starter- Starter for using MongoDB Pom
dat a- nrongodb document-oriented database

and Spring Data MongoDB
spring-boot-starter- Starter for using jOOQ to Pom
j 0oq access SQL databases. An

alternative to spri ng- boot -

starter-data-jpaor

spring-boot-starter-

j dbc
spring-boot-starter- Spring Boot Narayana JTA Pom
j ta-narayana Starter
spring-boot-starter- Starter for using Spring Cloud Pom

cl oud- connectors

Connectors which simplifies
connecting to services in cloud

1.4.8.BUILD-SNAPSHOT

Spring Boot

31

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-velocity/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-groovy-templates/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-freemarker/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-batch/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-redis/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-social-linkedin/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-cache/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-data-solr/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-data-mongodb/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-jooq/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-jta-narayana/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-cloud-connectors/pom.xml

Spring Boot Reference Guide

Name Description Pom
platforms like Cloud Foundry
and Heroku
spring-boot-starter- Starter for JTA transactions Pom
jta-bitronix using Bitronix
spring-boot-starter- Starter for using Spring Social Pom
social -twitter Twitter
spring-boot-starter- Starter for exposing Spring Pom

dat a-r est

Data repositories over REST
using Spring Data REST

In addition to the application starters, the following starters can be used to add production ready features:

Table 13.2. Spring Boot production starters

Name

spring-boot-starter-
act uat or

spring-boot-starter-
renot e- shel |

Description

Starter for using Spring Boot's
Actuator which provides
production ready features to
help you monitor and manage
your application

Starter for using the CRaSH
remote shell to monitor and
manage your application over
SSH

Pom

Finally, Spring Boot also includes some starters that can be used if you want to exclude or swap specific

technical facets:

Table 13.3. Spring Boot technical starters

Name Description Pom
spring-boot-starter- Starter for using Undertow Pom
undert ow as the embedded servlet
container. An alternative to
spring-boot-starter-
t ontat
spring-boot-starter- Starter for using Jetty as the Pom
jetty embedded servlet container. An
alternative to spri ng- boot -
starter-tontat
spring-boot-starter- Starter for logging using Pom
| oggi ng Logback. Default logging starter
spring-boot-starter- Starter for using Tomcat as the Pom

t ontat

embedded servlet container.

1.4.8.BUILD-SNAPSHOT

Spring Boot

32

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-jta-bitronix/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-social-twitter/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-data-rest/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-actuator/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-remote-shell/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-undertow/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-jetty/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-logging/pom.xml
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-tomcat/pom.xml

Spring Boot Reference Guide

Name Description Pom
Default servlet container starter

used by spri ng- boot -
starter-web

spring-boot-starter- Starter for using Log4j2 for Pom
| og4j 2 logging. An alternative to
spring-boot-starter-
| oggi ng
Tip

For a list of additional community contributed starters, see the README file in the spr i ng- boot -
st art ers module on GitHub.

1.4.8.BUILD-SNAPSHOT Spring Boot

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-starters/spring-boot-starter-log4j2/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-starters/README.adoc

Spring Boot Reference Guide

14. Structuring your code

Spring Boot does not require any specific code layout to work, however, there are some best practices
that help.

14.1 Using the “default” package

When a class doesn't include a package declaration it is considered to be in the “default package”.
The use of the “default package” is generally discouraged, and should be avoided. It can cause
particular problems for Spring Boot applications that use @onponent Scan, @ntityScan or
@Bpr i ngBoot Appl i cat i on annotations, since every class from every jar, will be read.

Tip

We recommend that you follow Java’s recommended package naming conventions and use a
reversed domain name (for example, com exanpl e. pr oj ect).

14.2 Locating the main application class

We generally recommend that you locate your main application class in a root package above other
classes. The @nabl eAut oConfi gur ati on annotation is often placed on your main class, and it
implicitly defines a base “search package” for certain items. For example, if you are writing a JPA
application, the package of the @nabl eAut oConf i gur at i on annotated class will be used to search
for @nt ity items.

Using a root package also allows the @onponent Scan annotation to be used without needing to
specify abasePackage attribute. You can also use the @pr i ngBoot Appl i cat i on annotation if your
main class is in the root package.

Here is a typical layout:

com
+- exanpl e
+- myproj ect
+- Application.java

|

+- domain
| +- Custoner.java
| +- Cust omer Repository.java
|

+- service
| +- Cust oner Service.java

|

+- web

+- CustonerController.java

The Appl i cat i on. j ava file would declare the nai n method, along with the basic @onf i gur ati on.

package com exanpl e. myproj ect;

i nport org.springframework. boot. SpringApplication;

i nport org.springfranework. boot . aut oconfi gur e. Enabl eAut oConfi gurati on;
i nport org.springfranework. cont ext. annot ati on. Conponent Scan;

i mport org.springfranmework. cont ext.annot ati on. Confi guration;

1.4.8.BUILD-SNAPSHOT Spring Boot 34

Spring Boot Reference Guide

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

1.4.8.BUILD-SNAPSHOT Spring Boot

35

Spring Boot Reference Guide

15. Configuration classes

Spring Boot favors Java-based configuration. Although it is possible to call
Spri ngAppl i cation. run() with an XML source, we generally recommend that your primary source
is a @onf i gurati on class. Usually the class that defines the mai n method is also a good candidate
as the primary @onfi gurati on.

Tip

Many Spring configuration examples have been published on the Internet that use XML
configuration. Always try to use the equivalent Java-based configuration if possible. Searching for
Enabl e* annotations can be a good starting point.

15.1 Importing additional configuration classes

You don't need to put all your @onfi gurati on into a single class. The @ nport annotation can
be used to import additional configuration classes. Alternatively, you can use @onponent Scan to
automatically pick up all Spring components, including @onf i gur at i on classes.

15.2 Importing XML configuration

If you absolutely must use XML based configuration, we recommend that you still start with a
@confi gur ati on class. You can then use an additional @ npor t Resour ce annotation to load XML
configuration files.

1.4.8.BUILD-SNAPSHOT Spring Boot 36

Spring Boot Reference Guide

16. Auto-configuration

Spring Boot auto-configuration attempts to automatically configure your Spring application based on the
jar dependencies that you have added. For example, If HSQLDB is on your classpath, and you have
not manually configured any database connection beans, then we will auto-configure an in-memory
database.

You need to opt-in to auto-configuration by adding the @enabl eAut oConfi guration or
@pr i ngBoot Appl i cat i on annotations to one of your @onf i gur at i on classes.

Tip

You should only ever add one @tnabl eAut oConfi gurati on annotation. We generally
recommend that you add it to your primary @onf i gur ati on class.

16.1 Gradually replacing auto-configuration

Auto-configuration is noninvasive, at any point you can start to define your own configuration to replace
specific parts of the auto-configuration. For example, if you add your own Dat aSour ce bean, the default
embedded database support will back away.

If you need to find out what auto-configuration is currently being applied, and why, start your application
with the - - debug switch. This will enable debug logs for a selection of core loggers and log an auto-
configuration report to the console.

16.2 Disabling specific auto-configuration

If you find that specific auto-configure classes are being applied that you don’t want, you can use the
exclude attribute of @nabl eAut oConf i gur at i on to disable them.

i nport org.springfranework. boot . aut oconfi gure. *;
i nport org.springfranework. boot . aut oconfi gure. jdbc. *;
i mport org.springfranmework. cont ext.annotation.*;

public class MyConfiguration {
}

If the class is not on the classpath, you can use the excl udeNane attribute of the annotation and specify
the fully qualified name instead. Finally, you can also control the list of auto-configuration classes to
exclude via the spri ng. aut oconf i gur e. excl ude property.

Tip

You can define exclusions both at the annotation level and using the property.

1.4.8.BUILD-SNAPSHOT Spring Boot 37

Spring Boot Reference Guide

17. Spring Beans and dependency injection

You are free to use any of the standard Spring Framework techniques to define your beans and their
injected dependencies. For simplicity, we often find that using @onponent Scan to find your beans, in
combination with @\ut owi r ed constructor injection works well.

If you structure your code as suggested above (locating your application class in a root package), you
can add @onponent Scan without any arguments. All of your application components (@onponent ,
@ber vi ce, @Reposi tory, @ontrol | er etc.)will be automatically registered as Spring Beans.

Here is an example @ber vi ce Bean that uses constructor injection to obtain a required Ri skAssessor
bean.

package com exanpl e. service;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranework. stereotype. Servi ce;

public class DatabaseAccount Service inpl enents Account Service {
private final Ri skAssessor riskAssessor;

publ i ¢ Dat abaseAccount Servi ce(Ri skAssessor riskAssessor) {
this.riskAssessor = riskAssessor;

}

N/

Tip

Notice how using constructor injection allows the ri skAssessor field to be marked as f i nal ,
indicating that it cannot be subsequently changed.

1.4.8.BUILD-SNAPSHOT Spring Boot 38

Spring Boot Reference Guide

18. Using the @SpringBootApplication annotation

Many Spring Boot developers always have their main class annotated with @Confi gurati on,
@nabl eAut oConfi gurati on and @onponent Scan. Since these annotations are so frequently
used together (especially if you follow the best practices above), Spring Boot provides a convenient
@Bpr i ngBoot Appl i cat i on alternative.

The @ppringBoot Application annotation is equivalent to wusing @onfiguration,
@nabl eAut oConfi gur at i on and @onponent Scan with their default attributes:

package com exanpl e. nyproj ect;

i nport org.springfranmework. boot. SpringApplication;
i nport org.springframework. boot . aut oconfi gure. Spri ngBoot Appl i cati on;

/] same as @onfiguration @nabl eAut oConfi gurati on @onponent Scan
public class Application {

public static void main(String[] args) {
Spri ngApplication. run(Application.class, args);

}

Note

@bpri ngBoot Appl i cation also provides aliases to customize the attributes of
@nabl eAut oConfi gur ati on and @onponent Scan.

1.4.8.BUILD-SNAPSHOT Spring Boot 39

Spring Boot Reference Guide

19. Running your application

One of the biggest advantages of packaging your application as jar and using an embedded HTTP
server is that you can run your application as you would any other. Debugging Spring Boot applications
is also easy; you don't need any special IDE plugins or extensions.

Note

This section only covers jar based packaging, If you choose to package your application as a war
file you should refer to your server and IDE documentation.

19.1 Running from an IDE

You can run a Spring Boot application from your IDE as a simple Java application, however, first you
will need to import your project. Import steps will vary depending on your IDE and build system. Most
IDEs can import Maven projects directly, for example Eclipse users can select | nport ..._ Existing
Maven Proj ects from the Fi | e menu.

If you can’t directly import your project into your IDE, you may be able to generate IDE metadata using
a build plugin. Maven includes plugins for Eclipse and IDEA; Gradle offers plugins for various IDEs.

Tip

If you accidentally run a web application twice you will see a “Port already in use” error. STS users
can use the Rel aunch button rather than Run to ensure that any existing instance is closed.

19.2 Running as a packaged application

If you use the Spring Boot Maven or Gradle plugins to create an executable jar you can run your
application using j ava -j ar . For example:

‘ $ java -jar target/ myproject-0.0.1- SNAPSHOT. j ar

It is also possible to run a packaged application with remote debugging support enabled. This allows
you to attach a debugger to your packaged application:

$ java - Xdebug - Xrunj dwp: server =y, transport =dt _socket, addr ess=8000, suspend=n \
-jar target/nmyproject-0.0.1- SNAPSHOT. j ar

19.3 Using the Maven plugin

The Spring Boot Maven plugin includes a r un goal which can be used to quickly compile and run your
application. Applications run in an exploded form just like in your IDE.

‘ $ nvn spring-boot:run

You might also want to use the useful operating system environment variable:

‘ $ export MAVEN_OPTS=- Xmx1024m - XX: MaxPer nSi ze=128M

1.4.8.BUILD-SNAPSHOT Spring Boot 40

https://maven.apache.org/plugins/maven-eclipse-plugin/
https://maven.apache.org/plugins/maven-idea-plugin/
https://docs.gradle.org/2.14.1/userguide/userguide.html

Spring Boot Reference Guide

19.4 Using the Gradle plugin

The Spring Boot Gradle plugin also includes a boot Run task which can be used to run your application
in an exploded form. The boot Run task is added whenever you import the spri ng- boot - gr adl e-

pl ugi n:

‘ $ gradl e boot Run

You might also want to use this useful operating system environment variable:

‘ $ export JAVA OPTS=- Xmx1024m - XX: MaxPer nSi ze=128M

19.5 Hot swapping

Since Spring Boot applications are just plain Java applications, JVM hot-swapping should work out of the
box. JVM hot swapping is somewhat limited with the bytecode that it can replace, for a more complete
solution JRebel or the Spring Loaded project can be used. The spri ng- boot - devt ool s module also
includes support for quick application restarts.

See the Chapter 20, Developer tools section below and the Hot swapping “How-to” for details.

1.4.8.BUILD-SNAPSHOT Spring Boot 41

https://zeroturnaround.com/software/jrebel/
https://github.com/spring-projects/spring-loaded

Spring Boot Reference Guide

20. Developer tools

Spring Boot includes an additional set of tools that can make the application development experience a
little more pleasant. The spri ng- boot - devt ool s module can be included in any project to provide
additional development-time features. To include devtools support, simply add the module dependency
to your build:

Maven.

<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-devtool s</artifactld>

<opti onal >t rue</ opti onal >
</ dependency>
</ dependenci es>

Gradle.

dependenci es {
conpi | e("org. spri ngframework. boot : spri ng- boot - devt ool s")

}

Note

Developer tools are automatically disabled when running a fully packaged application. If your
application is launched using j ava -j ar or if it's started using a special classloader, then it
is considered a “production application”. Flagging the dependency as optional is a best practice
that prevents devtools from being transitively applied to other modules using your project. Gradle
does not support opt i onal dependencies out-of-the-box so you may want to have a look to the
pr opdeps- pl ugi n in the meantime.

Tip

If you want to ensure that devtools is never included in a production build, you can use the
excl udeDevt ool s build property to completely remove the JAR. The property is supported with
both the Maven and Gradle plugins.

20.1 Property defaults

Several of the libraries supported by Spring Boot use caches to improve performance. For example,
template engines will cache compiled templates to avoid repeatedly parsing template files. Also, Spring
MVC can add HTTP caching headers to responses when serving static resources.

Whilst caching is very beneficial in production, it can be counter productive during development,
preventing you from seeing the changes you just made in your application. For this reason, spring-boot-
devtools will disable those caching options by default.

Cache options are usually configured by settings in your application. properties file. For
example, Thymeleaf offers the spri ng. t hynel eaf . cache property. Rather than needing to set
these properties manually, the spri ng- boot - devt ool s module will automatically apply sensible
development-time configuration.

1.4.8.BUILD-SNAPSHOT Spring Boot 42

https://github.com/spring-projects/gradle-plugins/tree/master/propdeps-plugin

Spring Boot Reference Guide

Tip

For a complete list of the properties that are applied see DevToolsPropertyDefaultsPostProcessor.

20.2 Automatic restart

Applications that use spri ng-boot - devt ool s will automatically restart whenever files on the
classpath change. This can be a useful feature when working in an IDE as it gives a very fast feedback
loop for code changes. By default, any entry on the classpath that points to a folder will be monitored for
changes. Note that certain resources such as static assets and view templates do not need to restart

the application.

Triggering a restart

As DevTools monitors classpath resources, the only way to trigger a restart is to update the
classpath. The way in which you cause the classpath to be updated depends on the IDE that you
are using. In Eclipse, saving a modified file will cause the classpath to be updated and trigger a
restart. In IntelliJ IDEA, building the project (Bui | d - > Make Pr oj ect) will have the same effect.

Note

You can also start your application via the supported build plugins (i.e. Maven and Gradle) as long
as forking is enabled since DevTools need an isolated application classloader to operate properly.
Gradle and Maven do that by default when they detect DevTools on the classpath.

Tip

Automatic restart works very well when used with LiveReload. See below for details. If you use
JRebel automatic restarts will be disabled in favor of dynamic class reloading. Other devtools
features (such as LiveReload and property overrides) can still be used.

Note

DevTools relies on the application context's shutdown hook to close it during a
restart. It will not work correctly if you have disabled the shutdown hook (
SpringAppl i cati on. set Regi st er Shut downHook(f al se)).

Note

When deciding if an entry on the classpath should trigger a restart when it changes, DevTools
automatically ignores projects named spri ng- boot, spring-boot-devtool s, spring-
boot - aut oconfi gur e, spri ng- boot - act uat or, and spri ng- boot -starter.

Restart vs Reload

The restart technology provided by Spring Boot works by using two classloaders. Classes that don't
change (for example, those from third-party jars) are loaded into a base classloader. Classes that
you're actively developing are loaded into a restart classloader. When the application is restarted,
the restart classloader is thrown away and a new one is created. This approach means that
application restarts are typically much faster than “cold starts” since the base classloader is already
available and populated.

1.4.8.BUILD-SNAPSHOT Spring Boot

43

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/env/DevToolsPropertyDefaultsPostProcessor.java

Spring Boot Reference Guide

If you find that restarts aren’t quick enough for your applications, or you encounter classloading
issues, you could consider reloading technologies such as JRebel from ZeroTurnaround. These
work by rewriting classes as they are loaded to make them more amenable to reloading. Spring
Loaded provides another option, however it doesn’t support as many frameworks and it isn’'t
commercially supported.

Excluding resources

Certain resources don't necessarily need to trigger a restart when they are changed. For example,
Thymeleaf templates can just be edited in-place. By default changing resources in / META- | NF/
maven, / META- | NF/ resources ,/resources ,/static ,/public or/tenpl ates will not trigger
a restart but will trigger a live reload. If you want to customize these exclusions you can use the
spring. devt ool s. restart. excl ude property. For example, to exclude only /static and /
publ i ¢ you would set the following:

spring. devtool s.restart.exclude=static/**, public/**

Tip

if you want to keep those defaults and add additional exclusions, use the
spring. devtool s.restart. addi ti onal - excl ude property instead.

Watching additional paths

You may want your application to be restarted or reloaded when you make changes to files
that are not on the classpath. To do so, use the spring. devtool s.restart. additional -
pat hs property to configure additional paths to watch for changes. You can use the
spring. devtool s.restart. excl ude property described above to control whether changes
beneath the additional paths will trigger a full restart or just a live reload.

Disabling restart

If you dont want to wuse the restart feature you can disable it wusing the
spring. devtool s.restart. enabl ed property. In most cases you can set this in your
application. properties (this will still initialize the restart classloader but it won't watch for file
changes).

If you need to completely disable restart support, for example, because it doesn’t work with a specific
library, you need to set a Syst emproperty before calling Spri ngAppl i cati on. run(..) . Forexample:

public static void main(String[] args) {
Syst em set Property("spring. devtool s.restart.enabl ed", "false");
SpringApplication. run(MApp. cl ass, args);

Using a trigger file

If you work with an IDE that continuously compiles changed files, you might prefer to trigger restarts
only at specific times. To do this you can use a “trigger file”, which is a special file that must be modified
when you want to actually trigger a restart check. Changing the file only triggers the check and the
restart will only occur if Devtools has detected it has to do something. The trigger file could be updated
manually, or via an IDE plugin.

1.4.8.BUILD-SNAPSHOT Spring Boot 44

https://zeroturnaround.com/software/jrebel/
https://github.com/spring-projects/spring-loaded
https://github.com/spring-projects/spring-loaded

Spring Boot Reference Guide

To use a trigger file use the spri ng. devtool s.restart.trigger-fil e property.
Tip

You might wantto setspri ng. devtool s.restart.trigger-fil easaglobal setting so that
all your projects behave in the same way.

Customizing the restart classloader

As described in the Restart vs Reload section above, restart functionality is implemented by using
two classloaders. For most applications this approach works well, however, sometimes it can cause
classloading issues.

By default, any open project in your IDE will be loaded using the “restart” classloader, and any regular
. ar file will be loaded using the “base” classloader. If you work on a multi-module project, and not
each module is imported into your IDE, you may need to customize things. To do this you can create
a META- | NF/ spri ng-devt ool s. properti es file.

The spring-devtool s.properties file can contain restart.excl ude. and
restart.incl ude. prefixed properties. The i ncl ude elements are items that should be pulled up
into the “restart” classloader, and the excl ude elements are items that should be pushed down into
the “base” classloader. The value of the property is a regex pattern that will be applied to the classpath.

For example:

restart. excl ude. conpanycommonl i bs=/ nycor p- cormon-[\\w]+\.jar
restart.include. project coomon=/ mycor p-nyproj -[\\w]+\.jar

Note

All property keys must be unique. As long as a property starts with restart.i ncl ude. or
restart.excl ude. itwill be considered.

Tip

All META- | NF/ spri ng-devt ool s. properti es from the classpath will be loaded. You can
package files inside your project, or in the libraries that the project consumes.

Known limitations

Restart functionality does not work well with objects that are deserialized
using a standard ObjectlnputStream If you need to deserialize data, you
may need to use Spring’'s Configurabl eCbjectlnputStream in combination with
Thr ead. current Thread() . get Cont ext Cl assLoader ().

Unfortunately, several third-party libraries deserialize without considering the context classloader. If you
find such a problem, you will need to request a fix with the original authors.

20.3 LiveReload

The spri ng- boot - devt ool s module includes an embedded LiveReload server that can be used
to trigger a browser refresh when a resource is changed. LiveReload browser extensions are freely
available for Chrome, Firefox and Safari from livereload.com.

1.4.8.BUILD-SNAPSHOT Spring Boot 45

http://livereload.com/extensions/

Spring Boot Reference Guide

If you don't want to start the LiveReload server when your application runs you can set the
spring. devt ool s. | iverel oad. enabl ed property to f al se.

Note

You can only run one LiveReload server at a time. Before starting your application, ensure that
no other LiveReload servers are running. If you start multiple applications from your IDE, only the
first will have LiveReload support.

20.4 Global settings

You can configure global devtools settings by adding a file named . spring-boot-
devt ool s. properti es to your $HOVE folder (note that the filename starts with “.”). Any properties
added to this file will apply to all Spring Boot applications on your machine that use devtools. For
example, to configure restart to always use a trigger file, you would add the following:

~/.spring-boot-devtools.properties.

spring. devtool s.reload.trigger-file=.rel oadtrigger

20.5 Remote applications

The Spring Boot developer tools are not just limited to local development. You can also use several
features when running applications remotely. Remote support is opt-in, to enable it you need to set a
spring. devt ool s. renot e. secr et property. For example:

spring. devt ool s. renpt e. secr et =nysecr et

Warning

Enabling spri ng- boot - devt ool s on a remote application is a security risk. You should never
enable support on a production deployment.

Remote devtools support is provided in two parts; there is a server side endpoint that accepts
connections, and a client application that you run in your IDE. The server component is automatically
enabled when the spri ng. devt ool s. renpt e. secr et property is set. The client component must
be launched manually.

Running the remote client application

The remote client application is designed to be run from within your IDE. You need to
run org. springfranmework. boot . devt ool s. Renot eSpri ngAppl i cati on using the same
classpath as the remote project that you're connecting to. The non-option argument passed to the
application should be the remote URL that you are connecting to.

For example, if you are using Eclipse or STS, and you have a project named mny- app that you've
deployed to Cloud Foundry, you would do the following:

e Select Run Confi gurati ons...from the Run menu.

» Create anew Java Appl i cati on “launch configuration”.

1.4.8.BUILD-SNAPSHOT Spring Boot 46

Spring Boot Reference Guide

* Browse for the ny- app project.
* Useorg. springfranmework. boot . devt ool s. Renot eSpri ngAppl i cat i on asthe main class.
e Add https:// nyapp. cfapps.iotothe Program ar gunent s (or whatever your remote URL is).

A running remote client will look like this:

NN (D) . _ Vv
CON_ "N [\ R U U
WO DD e el A=) NN L -0)))))
[P [Y I I S| [| o Y W S VA B B
| | |/ I _1_1_1

Spring Boot Renpte :: 1.4.8.BU LD SNAPSHOT

2015- 06- 10 18:25:06.632 | NFO 14938 --- | mai n] o.s.b.devtool s. Renpt eSpri ngAppl i cation
Starting RenoteSpringApplication on pwrbp with PI D 14938 (/Users/pwebb/ proj ects/spring-boot/code/

spring- boot - devt ool s/ target/cl asses started by pwebb in /Users/pwebb/ projects/spring-boot/code/spring-

boot - sanpl es/ spri ng- boot - sanpl e- devt ool s)

2015- 06- 10 18:25:06.671 | NFO 14938 --- | mai n] s.c.a.Annot ati onConfi gAppl i cati onCont ext
Refreshi ng org. springfranmewor k. cont ext. annot ati on. Annot at i onConfi gAppl i cati onCont ext @al7b7b6: startup
date [Wed Jun 10 18:25:06 PDT 2015]; root of context hierarchy

2015- 06- 10 18: 25: 07. 043 WARN 14938 --- [main] o.s.b.d.r.c. Renoted ientConfiguration : The
connection to http://1ocal host: 8080 is insecure. You should use a URL starting with '"https://".

2015- 06- 10 18: 25: 07. 074 | NFO 14938 --- [mai n] o.s.b.d. a. Optional Li veRel oadSer ver
Li veRel oad server is running on port 35729

2015- 06- 10 18:25:07.130 | NFO 14938 --- | mai n] o.s.b.devtool s. Renot eSpri ngAppl i cation

Started RenoteSpringApplication in 0.74 seconds (JVMrunning for 1.105)

Note

Because the remote client is using the same classpath as the real application it can directly read
application properties. This is how the spri ng. devt ool s. renot e. secr et property is read
and passed to the server for authentication.

Tip

It's always advisable to use ht t ps: // as the connection protocol so that traffic is encrypted and
passwords cannot be intercepted.

Tip

If you need to use a proxy to access the remote application, configure the
spring. devt ool s. renot e. proxy. host and spring. devt ool s. renot e. proxy. port
properties.

Remote update

The remote client will monitor your application classpath for changes in the same way as the local restart.
Any updated resource will be pushed to the remote application and (if required) trigger a restart. This
can be quite helpful if you are iterating on a feature that uses a cloud service that you don’t have locally.
Generally remote updates and restarts are much quicker than a full rebuild and deploy cycle.

Note

Files are only monitored when the remote client is running. If you change a file before starting the
remote client, it won’t be pushed to the remote server.

1.4.8.BUILD-SNAPSHOT Spring Boot a7

Spring Boot Reference Guide

Remote debug tunnel

Java remote debugging is useful when diagnosing issues on a remote application. Unfortunately, it's
not always possible to enable remote debugging when your application is deployed outside of your data
center. Remote debugging can also be tricky to setup if you are using a container based technology

such as Docker.

To help work around these limitations, devtools supports tunneling of remote debug traffic over HTTP.
The remote client provides a local server on port 8000 that you can attach a remote debugger to. Once
a connection is established, debug traffic is sent over HTTP to the remote application. You can use the

spring. devt ool s. renot e. debug. | ocal - port property if you want to use a different port.

You'll need to ensure that your remote application is started with remote debugging enabled. Often
this can be achieved by configuring JAVA_OPTS. For example, with Cloud Foundry you can add the

following to your mani f est . yni :

env:
JAVA_OPTS: "-Xdebug - Xrunj dwp: server=y, transport=dt _socket, suspend=n"

Tip

Notice that you don’t need to pass an addr ess=NNNN option to - Xr unj dwp. If omitted Java will
simply pick a random free port.

Note

Debugging a remote service over the Internet can be slow and you might need to increase timeouts
in your IDE. For example, in Eclipse you can select Java _, Debug from Pr ef er ences...and
change the Debugger tineout (ns) to a more suitable value (60000 works well in most
situations).

Warning

When using the remote debug tunnel with IntelliJ IDEA, all breakpoints must be configured to
suspend the thread rather than the VM. By default, breakpoints in IntelliJ IDEA suspend the entire
VM rather than only suspending the thread that hit the breakpoint. This has the unwanted side-
effect of suspending the thread that manages the remote debug tunnel, causing your debugging
session to freeze. When using the remote debug tunnel with IntelliJ IDEA, all breakpoints should
be configured to suspend the thread rather than the VM. Please set IDEA-165769 for further
details.

1.4.8.BUILD-SNAPSHOT Spring Boot

48

https://youtrack.jetbrains.com/issue/IDEA-165769

Spring Boot Reference Guide

21. Packaging your application for production

Executable jars can be used for production deployment. As they are self-contained, they are also ideally
suited for cloud-based deployment.

For additional “production ready” features, such as health, auditing and metric REST or JMX end-
points; consider adding spri ng- boot - act uat or. See Part V, “Spring Boot Actuator: Production-

ready features” for detalils.

1.4.8.BUILD-SNAPSHOT Spring Boot 49

Spring Boot Reference Guide

22. What to read next

You should now have good understanding of how you can use Spring Boot along with some best
practices that you should follow. You can now go on to learn about specific Spring Boot features in
depth, or you could skip ahead and read about the “production ready” aspects of Spring Boot.

1.4.8.BUILD-SNAPSHOT Spring Boot 50

Part IV. Spring Boot features

This section dives into the details of Spring Boot. Here you can learn about the key features that you will
want to use and customize. If you haven't already, you might want to read the Part Il, “Getting started”
and Part I, “Using Spring Boot” sections so that you have a good grounding of the basics.

Spring Boot Reference Guide

23. SpringApplication

The Spri ngAppl i cati on class provides a convenient way to bootstrap a Spring application that
will be started from a nmai n() method. In many situations you can just delegate to the static
Spri ngAppl i cation. run method:

public static void main(String[] args) {
Spri ngApplication. run(MSpringConfiguration.class, args);
}

When your application starts you should see something similar to the following:

NN () Vv vy
CON— Ny vy
LS WA B 0 B I (O G D D B B
S S [) I W B A Y
|| | /=l_1_1_1
Spring Boot :: v1. 4. 8. BU LD SNAPSHOT
2013-07-31 00:08:16.117 | NFO 56603 --- [mai n] o.s.b.s.app. Sanpl eApplication
Starting Sanpl eApplication v0.1.0 on nyconputer with PI D 56603 (/apps/nyapp.jar started by pwebb)
2013-07-31 00: 08: 16. 166 | NFO 56603 --- [mai n] ati onConfi gEmbeddedWebAppl i cati onCont ext
Ref reshi ng

org. spri ngframewor k. boot . cont ext. embedded. Annot ati onConf i gEmbeddedWebAppl i cati onCont ext @e5a8246:
startup date [Wed Jul 31 00:08:16 PDT 2013]; root of context hierarchy

2014- 03-04 13:09:54.912 |NFO 41370 --- | mai n] .t.Tontat EnbeddedSer vl et Cont ai ner Factory :
Server initialized with port: 8080
2014-03-04 13: 09:56.501 |NFO 41370 --- [mai n] o.s.b.s.app. Sanpl eAppl i cation

Started Sanpl eApplication in 2.992 seconds (JVM running for 3.658)

By default | NFOlogging messages will be shown, including some relevant startup details such as the
user that launched the application.

23.1 Startup failure

If your application fails to start, registered Fai | ur eAnal yzer s get a chance to provide a dedicated
error message and a concrete action to fix the problem. For instance if you start a web application on
port 8080 and that port is already in use, you should see something similar to the following:

APPLI CATI ON FAI LED TO START

B

Descri ption:
Enbedded servlet container failed to start. Port 8080 was already in use.
Acti on:

Identify and stop the process that's listening on port 8080 or configure this application to |listen on
anot her port.

Note

Spring Boot provides numerous Fai | ur eAnal yzer implementations and you can add your own
very easily.

If no failure analyzers are able to handle the exception, you can still display
the full auto-configuration report to better understand what went wrong. To do

1.4.8.BUILD-SNAPSHOT Spring Boot 52

Spring Boot Reference Guide

so you need to enable the debug property or enable DEBUG logging for
org. spri ngframewor k. boot . aut oconfi gur e. | oggi ng. Aut oConf i gurati onReportLogginglnitialize

For instance, if you are running your application using j ava - ar you can enable the debug property
as follows:

‘ $ java -jar nyproject-0.0.1-SNAPSHOT. j ar --debug

23.2 Customizing the Banner

The banner that is printed on start up can be changed by adding a banner . t xt file to your classpath,
or by setting banner . | ocat i on to the location of such a file. If the file has an unusual encoding you
cansetbanner . char set (defaultis UTF- 8). In addition to a text file, you can also add a banner . gi f,
banner.j pg or banner. png image file to your classpath, or set a banner.i nage. | ocati on
property. Images will be converted into an ASCII art representation and printed above any text banner.

Inside your banner . t xt file you can use any of the following placeholders:

Table 23.1. Banner variables

Variable Description

${appl i cation. version} The version number of your application as
declared in MANI FEST. MF. For example
| npl enent ati on- Versi on: 1.0 is printed
as 1. 0.

${application.formatted-version} The version number of your application as
declared in MANI FEST. MF formatted for display
(surrounded with brackets and prefixed with v).
For example (v1. 0).

${spring-boot . versi on} The Spring Boot version that you are using. For
example 1. 4. 8. BU LD- SNAPSHOT.

${spring-boot. f ormat t ed- ver si on} The Spring Boot version that you are using
formatted for display (surrounded with
brackets and prefixed with v). For example
(v1. 4. 8. BU LD SNAPSHOQT) .

${ Ansi . NAVE} (or ${ Ansi Col or . NAVE}, Where NAME is the name of an ANSI escape
${ Ansi Backgr ound. NAVE}, code. See Ansi Pr opert ySour ce for details.
${ Ansi Styl e. NAME})

${application.title} The title of your application as declared
in MANI FEST. MF. For example
| mpl ementation-Title: MyApp is printed

as MyApp.

Tip

The SpringApplication. set Banner(..) method can be used if you want to generate
a banner programmatically. Use the or g. spri ngf ramewor k. boot . Banner interface and
implement your own pri nt Banner () method.

1.4.8.BUILD-SNAPSHOT Spring Boot 53

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/ansi/AnsiPropertySource.java

Spring Boot Reference Guide

You can also use the spri ng. mai n. banner - mode property to determine if the banner has to be
printed on Syst em out (consol e), using the configured logger (I og) or not at all (of f).

The printed banner will be registered as a singleton bean under the name spr i ngBoot Banner .

Note

YAML maps of f to f al se so make sure to add quotes if you want to disable the banner in your
application.

spring:
mai n:
banner - node: "of f"

23.3 Customizing SpringApplication

If the Spri ngAppl i cati on defaults aren’t to your taste you can instead create a local instance and
customize it. For example, to turn off the banner you would write:

public static void main(String[] args) {
SpringApplication app = new SpringApplication(MSpringConfiguration.class);
app. set Banner Mode(Banner . Mode. OFF) ;
app. run(args);

Note

The constructor arguments passed to Spr i ngAppl i cat i on are configuration sources for spring
beans. In most cases these will be references to @onf i gur at i on classes, but they could also
be references to XML configuration or to packages that should be scanned.

It is also possible to configure the Spri ngAppl i cati on using an appl i cati on. properti es file.
See Chapter 24, Externalized Configuration for details.

For a complete list of the configuration options, see the Spri ngAppl i cati on Javadoc.

23.4 Fluent builder API

If you need to build an ApplicationContext hierarchy (multiple contexts with a parent/
child relationship), or if you just prefer using a ‘fluent’ builder API, you can use the
Spri ngAppl i cati onBui | der.

The Spri ngAppl i cati onBui | der allows you to chain together multiple method calls, and includes
par ent and chi | d methods that allow you to create a hierarchy.

For example:

new Spri ngAppl i cati onBui | der ()
. sources(Parent.cl ass)
.chil d(Application.class)
. banner Mbde(Banner . Mbde. OFF)
.run(args);

1.4.8.BUILD-SNAPSHOT Spring Boot 54

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/SpringApplication.html

Spring Boot Reference Guide

Note

There are some restrictions when creating an Appl i cati onCont ext hierarchy, e.g. Web
components must be contained within the child context, and the same Envi r onment will be
used for both parent and child contexts. See the Spri ngAppl i cati onBui | der Javadoc for
full details.

23.5 Application events and listeners

In addition to the usual Spring Framework events, such as Cont ext RefreshedEvent, a
Spri ngAppl i cati on sends some additional application events.

Note

Some events are actually triggered before the ApplicationContext is
created so you cannot register a listener on those as a (@ean.
You can register them via the SpringApplication.addListeners(.) or
SpringApplicationBuilder.|isteners(.) methods.

If you want those listeners to be registered automatically regardless of the way the application is
created you can add a META- | NF/ spri ng. f act ori es file to your project and reference your
listener(s) using the or g. spri ngf ranmewor k. cont ext . Appl i cati onLi st ener key.

or g. springfranmewor k. cont ext . Appl i cati onLi st ener =com exanpl e. proj ect. M/Li st ener

Application events are sent in the following order, as your application runs:

1. An Appl i cati onSt art edEvent is sent at the start of a run, but before any processing except the
registration of listeners and initializers.

2. An Appl i cat i onEnvi r onnent Pr epar edEvent is sent when the Envi r onnent to be used in the
context is known, but before the context is created.

3. AnAppl i cati onPr epar edEvent is sentjust before the refresh is started, but after bean definitions
have been loaded.

4. An Applicati onReadyEvent is sent after the refresh and any related callbacks have been
processed to indicate the application is ready to service requests.

5. An Appl i cati onFai | edEvent is sent if there is an exception on startup.
Tip

You often won't need to use application events, but it can be handy to know that they exist.
Internally, Spring Boot uses events to handle a variety of tasks.

23.6 Web environment

A SpringApplication wil attempt to create the right type of Applicati onContext
on your behalf. By default, an AnnotationConfi gApplicati onContext or
Annot at i onConf i gEnbeddedWebAppl i cat i onCont ext will be used, depending on whether you
are developing a web application or not.

1.4.8.BUILD-SNAPSHOT Spring Boot 55

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/builder/SpringApplicationBuilder.html
https://docs.spring.io/spring/docs/4.3.9.RELEASE/javadoc-api/org/springframework/context/event/ContextRefreshedEvent.html

Spring Boot Reference Guide

The algorithm used to determine a ‘web environment’ is fairly simplistic (based on the presence of a few
classes). You can use set WebEnvi r onnent (bool ean webEnvi ronnent) if you need to override
the default.

It is also possible to take complete control of the Appl i cati onCont ext type that will be used by
calling set Appl i cati onCont ext Cl ass(..).

Tip

It is often desirable to call set WebEnvi r onnment (f al se) when using Spri ngAppl i cati on
within a JUnit test.

23.7 Accessing application arguments

If you need to access the application arguments that were passed to Spri ngAppli cati on. run(...
) you can inject a org.springframework.boot. Applicati onArgunents bean. The
Appl i cati onAr gurrent s interface provides access to both the raw St ri ng[] arguments as well as
parsed opt i on and non- opt i on arguments:

i nport org.springfranework. boot . *
i nport org.springfranework. beans. factory. annot ati on. *
i nport org.springfranework. stereotype. *

public class MyBean {

public MyBean(ApplicationArgunents args) {
bool ean debug = args. contai nsOpti on("debug");
List<String> files = args. get NonOpti onArgs();
/1 if run with "--debug logfile.txt" debug=true, files=["logfile.txt"]

Tip

Spring Boot will also register a CommandLi nePr oper t ySour ce with the Spring Envi r onnent .
This allows you to also inject single application arguments using the @/al ue annotation.

23.8 Using the ApplicationRunner or CommandLineRunner

If you need to run some specific code once the Spri ngAppl i cati on has started, you can implement
the Appl i cati onRunner or CommandLi neRunner interfaces. Both interfaces work in the same
way and offer a single r un method which will be called just before Spri ngAppli cation. run(..)
completes.

The CommandLi neRunner interfaces provides access to application arguments as a simple string
array, whereas the Appl i cati onRunner uses the Appl i cati onAr gunents interface discussed
above.

i nport org.springfranework. boot . *
i nport org.springfranework. stereotype. *

public class MyBean inplenents CommandLi neRunner {

1.4.8.BUILD-SNAPSHOT Spring Boot 56

Spring Boot Reference Guide

public void run(String... args) {
/1 Do sonething...

}

You can additionally implement the or g. spri ngf ramewor k. cor e. Or der ed interface or use the
org. springframework. core. annot ati on. O der annotation if several CommrandLi neRunner or
Appl i cati onRunner beans are defined that must be called in a specific order.

23.9 Application exit

Each SpringApplication will register a shutdown hook with the JVM to ensure that the
Appl i cati onCont ext is closed gracefully on exit. All the standard Spring lifecycle callbacks (such
as the Di sposabl eBean interface, or the @'r eDest r oy annotation) can be used.

In addition, beans may implement the org. springfranework. boot . Exi t CodeCGener at or
interface if they wish to return a specific exit code when the application ends.

23.10 Admin features

It is possible to enable admin-related features for the application by
specifying the spring.application.adm n.enabl ed property. This exposes the
Spri ngAppl i cati onAdm nMXBean on the platform MBeanSer ver. You could use this feature to
administer your Spring Boot application remotely. This could also be useful for any service wrapper
implementation.

Tip

If you want to know on which HTTP port the application is running, get the property with key
| ocal . server. port.

Note

Take care when enabling this feature as the MBean exposes a method to shutdown the
application.

1.4.8.BUILD-SNAPSHOT Spring Boot 57

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/admin/SpringApplicationAdminMXBean.java

Spring Boot Reference Guide

24. Externalized Configuration

Spring Boot allows you to externalize your configuration so you can work with the same application
code in different environments. You can use properties files, YAML files, environment variables and
command-line arguments to externalize configuration. Property values can be injected directly into your
beans using the @/al ue annotation, accessed via Spring’s Envi r onnent abstraction or bound to
structured objects via @onf i gur ati onProperti es.

Spring Boot uses a very particular Pr oper t ySour ce order that is designed to allow sensible overriding
of values. Properties are considered in the following order:

1. Devtools global settings properties on your home directory (~/.spring-boot-
devt ool s. properti es when devtools is active).

2. @est PropertySour ce annotations on your tests.

3. @pri ngBoot Test #pr operti es annotation attribute on your tests.

4. Command line arguments.

5. Properties from SPRI NG_APPLI CATI ON_JSON (inline JISON embedded in an environment variable
or system property)

6. Ser vl et Confi g init parameters.

7. Ser vl et Cont ext init parameters.

8. JNDI attributes from j ava: conp/ env.

9. Java System properties (Syst em get Properti es()).

100S environment variables.

11A RandonVal uePr opert ySour ce that only has properties in r andom *.

12 Profile-specific _application properties outside of your packaged jar (application-
{profile}.properties and YAML variants)

13Profile-specific application properties packaged inside your jar (application-
{profile}.properties and YAML variants)

14 Application properties outside of your packaged jar (appli cation. properties and YAML
variants).

15Application properties packaged inside your jar (appl i cati on. properti es and YAML variants).
16@°r oper t ySour ce annotations on your @onf i gur at i on classes.
17Default properties (specified using Spri ngAppl i cati on. set Def aul t Properti es).

To provide a concrete example, suppose you develop a @onponent that uses a nane property:

i nport org.springfranework. stereotype. *
i nport org.springfranework. beans. factory. annot ati on. *

1.4.8.BUILD-SNAPSHOT Spring Boot 58

https://docs.spring.io/spring/docs/4.3.9.RELEASE/javadoc-api/org/springframework/test/context/TestPropertySource.html
https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/test/context/SpringBootTest.html
https://docs.spring.io/spring/docs/4.3.9.RELEASE/javadoc-api/org/springframework/context/annotation/PropertySource.html

Spring Boot Reference Guide

public class MyBean {

private String nane;

...

On your application classpath (e.g. inside your jar) you can have an appl i cati on. properties
that provides a sensible default property value for nane. When running in a new environment, an
application. properties can be provided outside of your jar that overrides the name; and for
one-off testing, you can launch with a specific command line switch (e.g. j ava -jar app.jar --
name="Spring").

Tip

The SPRI NG_APPLI CATI ON_JSON properties can be supplied on the command line with an
environment variable. For example in a UN*X shell:

‘ $ SPRI NG _APPLI CATI ON_JSON=' {"foo": {"bar":"spant'}}' java -jar nyapp.jar

In this example you will end up with f 0o. bar =spamin the Spring Envi r onnment . You can also
supply the JSON as spri ng. appl i cati on. j son in a System variable:

‘ $ java -Dspring.application.json="{"foo":"bar"}' -jar nyapp.jar

or command line argument:

‘SB java -jar nyapp.jar --spring.application.json="{"foo":"bar"}'

or as a JNDI variable j ava: conp/ env/ spri ng. appl i cation.json.

24.1 Configuring random values

The RandonVal uePr opert ySour ce is useful for injecting random values (e.g. into secrets or test
cases). It can produce integers, longs, uuids or strings, e.g.

. secr et =${random val ue}

. nunmber =${random i nt }

. bi gnunber =${r andom | ong}

. uui d=${r andom uui d}

.nunber. | ess. than. ten=${random i nt (10)}
nunber.in.range=${random i nt[1024, 65536] }

333333

The random i nt * syntax is OPEN val ue (, max) CLOSEwhere the OPEN, CLOSE are any character
and val ue, max are integers. If max is provided then val ue is the minimum value and max is the
maximum (exclusive).

24.2 Accessing command line properties

By default Spri ngAppl i cat i on will convert any command line option arguments (starting with ‘--,
e.g. --server. port=9000) to a property and add it to the Spring Envi r onmrent . As mentioned
above, command line properties always take precedence over other property sources.

1.4.8.BUILD-SNAPSHOT Spring Boot 59

Spring Boot Reference Guide

If you don’t want command line properties to be added to the Envi r onnent you can disable them using
Spri ngAppl i cati on. set AddConmandLi neProperties(false).

24.3 Application property files

Spri ngAppl i cati on will load properties from appl i cati on. properti es files in the following
locations and add them to the Spring Envi r onnent :

1. A/ confi g subdirectory of the current directory.
2. The current directory

3. Aclasspath / conf i g package

4. The classpath root

The list is ordered by precedence (properties defined in locations higher in the list override those defined
in lower locations).

Note

You can also use YAML (.yml') files as an alternative to ".properties'.

If you don't like application. properties as the configuration file name you can switch to
another by specifying a spri ng. confi g. nane environment property. You can also refer to an
explicit location using the spri ng. confi g. | ocati on environment property (comma-separated list
of directory locations, or file paths).

‘ $ java -jar myproject.jar --spring.config.name=nyproj ect

or

$ java -jar nyproject.jar --spring.config.location=classpath:/default.properties,classpath:/
override. properties

Warning

spring. config.name and spring.config.location are used very early to determine
which files have to be loaded so they have to be defined as an environment property (typically
OS env, system property or command line argument).

If spring. config. | ocation contains directories (as opposed to files) they should end in/ (and will
be appended with the names generated from spri ng. confi g. name before being loaded, including
profile-specific file names). Files specified in spring. config.location are used as-is, with no
support for profile-specific variants, and will be overridden by any profile-specific properties.

The default search path cl asspat h:, cl asspath:/config,file:,file:config/ is always
used, irrespective of the value of spring. config.location. This search path is ordered from
lowest to highest precedence (fi | e: confi g/ wins). If you do specify your own locations, they take
precedence over all of the default locations and use the same lowest to highest precedence ordering. In
that way you can set up default values for your applicationin appl i cat i on. pr operti es (or whatever
other basename you choose with spri ng. confi g. nane) and override it at runtime with a different
file, keeping the defaults.

1.4.8.BUILD-SNAPSHOT Spring Boot 60

Spring Boot Reference Guide

Note

If you use environment variables rather than system properties, most operating systems disallow
period-separated key names, but you can use underscores instead (e.g. SPRI NG_CONFI G_NAME
instead of spri ng. confi g. nane).

Note

If you are running in a container then JNDI properties (in j ava: conp/ env) or servlet context
initialization parameters can be used instead of, or as well as, environment variables or system
properties.

24.4 Profile-specific properties

In addition to appl i cati on. properti es files, profile-specific properties can also be defined using
the naming convention application-{profil e}. properties. The Envi ronment has a set of
default profiles (by default [def aul t]) which are used if no active profiles are set (i.e. if no profiles are
explicitly activated then properties from appl i cati on- def aul t. properti es are loaded).

Profile-specific ~ properties are loaded from the same Ilocations as standard
application. properties, with profile-specific files always overriding the non-specific ones
irrespective of whether the profile-specific files are inside or outside your packaged jar.

If several profiles are specified, a last wins strategy applies. For example, profiles specified by the
spring. profil es. acti ve property are added after those configured via the Spri ngAppl i cati on
API and therefore take precedence.

Note

If you have specified any files in spri ng. confi g. | ocat i on, profile-specific variants of those
files will not be considered. Use directories in spri ng. confi g. | ocati on if you also want to
also use profile-specific properties.

24.5 Placeholders in properties

The values in appl i cati on. properti es are filtered through the existing Envi r onment when they
are used so you can refer back to previously defined values (e.g. from System properties).

app. name=M/App
app. descri ption=${app. nane} is a Spring Boot application

Tip

You can also use this technique to create ‘short’ variants of existing Spring Boot properties. See
the Section 69.4, “Use ‘short’ command line arguments” how-to for details.

24.6 Using YAML instead of Properties

YAML is a superset of JSON, and as such is a very convenient format for specifying hierarchical
configuration data. The Spri ngAppl i cat i on class will automatically support YAML as an alternative
to properties whenever you have the SnakeYAML library on your classpath.

1.4.8.BUILD-SNAPSHOT Spring Boot 61

https://yaml.org
https://bitbucket.org/asomov/snakeyaml

Spring Boot Reference Guide

Note

If you use ‘Starters’ SnakeYAML will be automatically provided via spri ng- boot -starter.

Loading YAML

Spring Framework provides two convenient classes that can be used to load YAML documents. The
Yam Properti esFact or yBean willload YAML as Pr oper ti es and the Yam MapFact or yBean will
load YAML as a Map.

For example, the following YAML document:

envi ronment s:
dev:
url: https://dev. exanpl e.com
name: Devel oper Setup
prod:
url: https://another. exanpl e.com
nane: My Cool App

Would be transformed into these properties:

environnents. dev. url =https://dev. exanpl e. com

envi ronnent s. dev. nane=Devel oper Set up

envi ronnment s. prod. url =https://anot her. exanpl e. com
envi ronnent s. prod. nane=My Cool App

YAML lists are represented as property keys with [i ndex] dereferencers, for example this YAML:

ny:
servers:
- dev. exanpl e. com
- anot her. exanpl e. com

Would be transformed into these properties:

ny. server s[0] =dev. exanpl e. com
ny. server s[1] =anot her . exanpl e. com

To bind to properties like that using the Spring Dat aBi nder utilities (which is what
@configurati onProperties does) you need to have a property in the target bean of type
java.util.List (orSet)and you either need to provide a setter, or initialize it with a mutable value,
e.g. this will bind to the properties above

public class Config {
private List<String> servers = new ArrayList<String>();
public List<String> getServers() {

return this.servers;

}

Note

Extra care is required when configuring lists that way as overriding will not work as you would
expect. In the example above, when ny. ser ver s is redefined in several places, the individual
elements are targeted for override, not the list. To make sure that a Pr oper t ySour ce with higher
precedence can override the list, you need to define it as a single property:

1.4.8.BUILD-SNAPSHOT Spring Boot 62

Spring Boot Reference Guide

ny:
‘ servers: dev. bar.com foo. bar.com

Exposing YAML as properties in the Spring Environment

The Yanl Pr opert ySour ceLoader class can be used to expose YAML as a Pr opert ySour ce inthe
Spring Envi r onrent . This allows you to use the familiar @/al ue annotation with placeholders syntax
to access YAML properties.

Multi-profile YAML documents

You can specify multiple profile-specific YAML documents in a single file by usingaspri ng. profil es
key to indicate when the document applies. For example:

server:
address: .
spring:
profiles: devel opnent
server:
address: .
spring:
profiles: production
server:
address: .

In the example above, the ser ver . addr ess property will be 127. 0. 0. 1 if the devel opnent profile
is active. If the devel oprment and pr oduct i on profiles are not enabled, then the value for the property
will be 192. 168. 1. 100.

The default profiles are activated if none are explicitly active when the application context starts. So in
this YAML we set a value for securi ty. user. passwor d that is only available in the "default” profile:

server:
port:
spring:
profiles: default
security:
user:
password: weak

whereas in this example, the password is always set because it isn’t attached to any profile, and it would
have to be explicitly reset in all other profiles as necessary:

server:
port:
security:
user:
password: weak

Spring profiles designated using the "spring.profiles" element may optionally be negated using the !
character. If both negated and non-negated profiles are specified for a single document, at least one
non-negated profile must match and no negated profiles may match.

YAML shortcomings

YAML files can’t be loaded via the @r opert ySour ce annotation. So in the case that you need to load
values that way, you need to use a properties file.

1.4.8.BUILD-SNAPSHOT Spring Boot 63

Spring Boot Reference Guide

Merging YAML lists

As we have seen above, any YAML content is ultimately transformed to properties. That process may
be counter intuitive when overriding “list” properties via a profile.

For example, assume a MyPoj o object with nane anddescr i pt i on attributes thatare nul | by default.
Let's expose a list of MyPoj o from FooPr operti es:

public class FooProperties {
private final List<M/Pojo> list = new ArrayList<>();
public List<M/Pojo> getList() {

return this.list;

}

Consider the following configuration:

foo:
list:
- nane: my nane
description: ny description

spring:
profiles: dev
foo:
list:
- nane: ny another name

If the dev profile isn't active, FooPr operti es. | i st will contain one MyPoj o entry as defined above.
If the dev profile is enabled however, the | i st will still only contain one entry (with name “my another
name” and description nul |). This configuration will not add a second MyPoj o instance to the list, and
it won't merge the items.

When a collection is specified in multiple profiles, the one with highest priority is used (and only that one):

foo:
list:
- nane: my nane
description: ny description
- nane: another nane
description: another description
spring:
profiles: dev
foo:
list:
- nane: ny another nane

In the example above, considering that the dev profile is active, FooPr operti es. | i st will contain
one MyPoj o entry (with name “my another name” and description nul |).

24.7 Type-safe Configuration Properties

Using the @/al ue(" ${ property}") annotation to inject configuration properties can sometimes be
cumbersome, especially if you are working with multiple properties or your data is hierarchical in nature.
Spring Boot provides an alternative method of working with properties that allows strongly typed beans
to govern and validate the configuration of your application.

1.4.8.BUILD-SNAPSHOT Spring Boot 64

Spring Boot Reference Guide

package com exanpl e;

i nport java.net.|net Address;
inport java.util.ArraylList;

i nport java.util.Collections;

import java.util.List;

i nport org.springframework. boot. context. properties. ConfigurationProperties;

public class FooProperties {
private bool ean enabl ed;
private |net Address renpteAddress;

private final Security security = new Security();

public boolean isEnabled() { ... }

public voi d setEnabl ed(bool ean enabled) { ... }

public | netAddress get RenpteAddress() { ... }

public voi d set Renpt eAddr ess(| net Address renoteAddress) { ... }
public Security getSecurity() { ... }

public static class Security {
private String usernane;
private String password;

private List<String> roles = new ArraylList<>(Collections.singleton("USER"));

public String getUsernane() { ... }

public void setUsernane(String usernane) { ... }
public String getPassword() { ... }

public void setPassword(String password) { ... }
public List<String> getRoles() { ... }

public void setRol es(List<String> roles) { ... }

The POJO above defines the following properties:
» fo00. enabl ed, f al se by default
» f00. renot e- addr ess, with a type that can be coerced from Stri ng

e f00.security. username, with a nested "security" whose name is determined by the name
of the property. In particular the return type is not used at all there and could have been
SecurityProperties

e f00.security. password

» foo.security.rol es, with a collection of St ri ng

1.4.8.BUILD-SNAPSHOT Spring Boot 65

Spring Boot Reference Guide

Note

Getters and setters are usually mandatory, since binding is via standard Java Beans property
descriptors, just like in Spring MVC. There are cases where a setter may be omitted:

* Maps, as long as they are initialized, need a getter but not necessarily a setter since they can
be mutated by the binder.

» Collections and arrays can be either accessed via an index (typically with YAML) or using
a single comma-separated value (properties). In the latter case, a setter is mandatory. We
recommend to always add a setter for such types. If you initialize a collection, make sure it is
not immutable (as in the example above)

 If nested POJO properties are initialized (like the Securi ty field in the example above), a
setter is not required. If you want the binder to create the instance on-the-fly using its default
constructor, you will need a setter.

Some people use Project Lombok to add getters and setters automatically. Make sure that Lombok
doesn’t generate any particular constructor for such type as it will be used automatically by the
container to instantiate the object.

Tip

See also the differences between @/al ue and @Conf i gur ati onProperti es.

You also need to list the properties classes to register in the @nabl eConfi gurati onProperties
annotation:

public class MyConfiguration {
}

Note

When @Confi gurati onProperties bean is registered that way, the bean will have a
conventional name: <pr ef i x>- <f gn>, where <pr ef i x> is the environment key prefix specified
inthe @onfi gurati onProperti es annotation and <f gn> the fully qualified name of the bean.
If the annotation does not provide any prefix, only the fully qualified name of the bean is used.

The bean name in the example above will be f 00- com exanpl e. FooPr operti es.

Even if the configuration above will create a regular bean for FooProperti es, we recommend
that @onfigurati onProperties only deal with the environment and in particular does not
inject other beans from the context. Having said that, The @nabl eConfi gurati onProperties
annotation is also automatically applied to your project so that any existing bean annotated with
@confi gurati onProperties wil be configured from the Environnment. You could shortcut
MyConf i gur ati on above by making sure FooPr operti es is a already a bean:

public class FooProperties {

/'l ... see above

1.4.8.BUILD-SNAPSHOT Spring Boot 66

Spring Boot Reference Guide

This style of configuration works particularly well with the Spri ngAppl i cati on external YAML
configuration:

application.ynl

f oo:
renot e- addr ess: .
security:
user nane: foo
rol es:
- USER
- ADM N

addi tional configuration as required

To work with @onf i gur ati onProperti es beans you can just inject them in the same way as any
other bean.

public class MyService {
private final FooProperties properties;
public MyService(FooProperties properties) {
this.properties = properties;
}

1. ..

public void openConnection() {
Server server = new Server(this.properties.getRenoteAddress());
/o,

Tip

Using @Confi gurati onProperti es also allows you to generate meta-data files that can be
used by IDEs to offer auto-completion for your own keys, see the Appendix B, Configuration meta-
data appendix for details.

Third-party configuration

As well as using @onfi gurati onProperti es to annotate a class, you can also use it on public
@ean methods. This can be particularly useful when you want to bind properties to third-party
components that are outside of your control.

To configure a bean from the Envi r onnent properties, add @onfi gurati onProperties to its
bean registration:

publ i ¢ Bar Conponent bar Conponent () {

}

Any property defined with the bar prefix will be mapped onto that Bar Conrponent bean in a similar
manner as the FooPr oper ti es example above.

1.4.8.BUILD-SNAPSHOT Spring Boot 67

Spring Boot Reference Guide

Relaxed binding

Spring Boot uses some relaxed rules for binding Environnment properties to
@confi gurati onProperties beans, so there doesn’'t need to be an exact match between the
Envi ronnent property name and the bean property name. Common examples where this is useful
include dashed separated (e.g. cont ext - pat h binds to cont ext Pat h), and capitalized (e.g. PORT
binds to por t) environment properties.

For example, given the following @onf i gur ati onPr operti es class:

public class OmnerProperties {
private String firstName;

public String getFirstNane() {
return this.firstNane;

}

public void setFirstName(String firstName) {
this.firstName = firstNane;
}

The following properties names can all be used:

Table 24.1. relaxed binding

Property Note

per son. fi r st NanStandard camel case syntax.

person. first- Dashed notation, recommended for use in . properties and.ym files.
nane

per son. first_nakimderscore notation, alternative format for use in . properti es and.ym
files.

PERSON_FI RST_NAMBper case format. Recommended when using a system environment
variables.

Properties conversion

Spring will attempt to coerce the external application properties to the right type when it binds to
the @onfi gurati onProperties beans. If you need custom type conversion you can provide a
Conver si onSer vi ce bean (with bean id conver si onServi ce) or custom property editors (via
a Cust onEdi t or Confi gur er bean) or custom Converters (with bean definitions annotated as
@Confi gurationProperti esBi ndi ng).

Note

As this bean is requested very early during the application lifecycle, make sure to limit the
dependencies that your Conver si onSer vi ce is using. Typically, any dependency that you
require may not be fully initialized at creation time. You may want to rename your custom
Conver si onSer vi ce if it's not required for configuration keys coercion and only rely on custom
converters qualified with @Conf i gur ati onPr operti esBi ndi ng.

1.4.8.BUILD-SNAPSHOT Spring Boot 68

Spring Boot Reference Guide

@ConfigurationProperties Validation

Spring Boot will attempt to validate external configuration, by default using JSR-303 (if it is on
the classpath). You can simply add JSR-303 j avax. val i dati on constraint annotations to your
@confi gurati onProperti es class:

public class FooProperties {

private |netAddress renpteAddress;

/1 ... getters and setters

In order to validate values of nested properties, you must annotate the associated field as @/al i d to
trigger its validation. For example, building upon the above FooPr operti es example:

public class FooProperties {

private |net Address renpteAddress;

private final Security security = new Security();
/1 ... getters and setters

public static class Security {

public String usernane;

/1 ... getters and setters

You can also add a custom Spring Validator by creating a bean definition called
configurationPropertiesValidator. The @ean method should be declared static. The
configuration properties validator is created very early in the application’s lifecycle and declaring
the @ean method as static allows the bean to be created without having to instantiate the
@confi gur at i on class. This avoids any problems that may be caused by early instantiation. There is
a property validation sample so you can see how to set things up.

Tip

The spring-boot-actuator module includes an endpoint that exposes all
@confi gurati onProperti es beans. Simply point your web browserto/ conf i gpr ops oruse
the equivalent JIMX endpoint. See the Production ready features. section for details.

@ConfigurationProperties vs. @Value

@/al ue is a core container feature and it does not provide the same features as type-
safe Configuration Properties. The table below summarizes the features that are supported by
@confi gurati onProperties and @al ue:

1.4.8.BUILD-SNAPSHOT Spring Boot 69

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-property-validation

Spring Boot Reference Guide

Feature @confi gur ati onPr ope@alese
Relaxed binding Yes No
Meta-data support Yes No
SpEL evaluation No Yes

If you define a set of configuration keys for your own components, we recommend you to group them in a
POJO annotated with @onf i gur ati onProperti es. Please also be aware that since @/al ue does
not support relaxed binding, it isn’t a great candidate if you need to provide the value using environment
variables.

Finally, while you can write a SpEL expression in @/al ue, such expressions are not processed from
Application property files.

1.4.8.BUILD-SNAPSHOT Spring Boot 70

Spring Boot Reference Guide

25. Profiles

Spring Profiles provide a way to segregate parts of your application configuration and make it
only available in certain environments. Any @onponent or @onf i gurati on can be marked with
@r of i | e to limit when it is loaded:

public class ProductionConfiguration {

...

In the normal Spring way, you can use a spring. profiles.active Environment property to
specify which profiles are active. You can specify the property in any of the usual ways, for example
you could include it in your appl i cati on. properti es:

spring. profiles.active=dev, hsql db

or specify on the command line using the switch - - spri ng. profil es. acti ve=dev, hsql db.

25.1 Adding active profiles

The spring.profiles.active property follows the same ordering rules as other properties,
the highest PropertySource will win. This means that you can specify active profiles in
appl i cation. properti es then replace them using the command line switch.

Sometimes it is useful to have profile-specific properties that add to the active profiles rather than replace
them. The spri ng. profil es. i ncl ude property can be used to unconditionally add active profiles.
The Spri ngAppl i cati on entry point also has a Java API for setting additional profiles (i.e. on top of
those activated by the spri ng. profil es. acti ve property): see the set Addi ti onal Profil es()
method.

For example, when an application with following properties is run using the switch --
spring. profiles.active=prod the proddb and pr odng profiles will also be activated:

ny.property: fronyamfile

spring. profiles: prod
spring. profiles.include: proddb, prodnyg

Note

Remember that the spring. profil es property can be defined in a YAML document to
determine when this particular document is included in the configuration. See Section 69.7
“Change configuration depending on the environment” for more details.

25.2 Programmatically setting profiles

You can programmatically set active profiles by calling
SpringApplication.set Additional Profil es(.) before your application runs. It is also
possible to activate profiles using Spring’s Conf i gur abl eEnvi r onnent interface.

1.4.8.BUILD-SNAPSHOT Spring Boot 71

Spring Boot Reference Guide

25.3 Profile-specific configuration files

Profile-specific variants of both application. properties (or application.ynl) and files
referenced via @onf i gur ati onProperti es are considered as files are loaded. See Section 24.4
“Profile-specific properties” for details.

1.4.8.BUILD-SNAPSHOT Spring Boot 72

Spring Boot Reference Guide

26. Logging

Spring Boot uses Commons Logging for all internal logging, but leaves the underlying log implementation
open. Default configurations are provided for Java Util Logging, Log4J2 and Logback. In each case
loggers are pre-configured to use console output with optional file output also available.

By default, If you use the ‘Starters’, Logback will be used for logging. Appropriate Logback routing is
also included to ensure that dependent libraries that use Java Util Logging, Commons Logging, Log4J
or SLF4J will all work correctly.

Tip

There are a lot of logging frameworks available for Java. Don’'t worry if the above list seems
confusing. Generally you won't need to change your logging dependencies and the Spring Boot
defaults will work just fine.

26.1 Log format

The default log output from Spring Boot looks like this:

2014-03-05 10:57:51. 112 | NFO 45469 --- [nmai n] org. apache. catal i na. cor e. St andar dEngi ne
Starting Servlet Engine: Apache Tontat/7.0.52

2014-03-05 10:57:51.253 | NFO 45469 --- [ost-startStop-1] o.a.c.c.C.[Tontat].[local host].[/]
Initializing Spring enbedded WebAppl i cati onCont ext

2014-03-05 10:57:51. 253 | NFO 45469 --- [ost-startStop-1] o.s.web. context. ContextLoader
Root WebApplicationContext: initialization conpleted in 1358 ns

2014-03-05 10:57:51.698 | NFO 45469 --- [ost-startStop-1] o.s.b.c.e. ServletRegistrati onBean
Mappi ng servlet: 'dispatcherServliet' to [/]

2014-03-05 10:57:51.702 |NFO 45469 --- [ost-startStop-1] o.s.b.c.enbedded. FilterRegi strati onBean
Mapping filter: 'hiddenHttpMethodFilter' to: [/*]

The following items are output:
» Date and Time — Millisecond precision and easily sortable.

* Log Level — ERROR, WARN, | NFO, DEBUG or TRACE.

Process ID.

» A--- separator to distinguish the start of actual log messages.

e Thread name — Enclosed in square brackets (may be truncated for console output).
» Logger name — This is usually the source class name (often abbreviated).

e The log message.

Note

Logback does not have a FATAL level (it is mapped to ERROR)

26.2 Console output

The default log configuration will echo messages to the console as they are written. By default ERROR,
WARN and | NFO level messages are logged. You can also enable a “debug” mode by starting your
application with a - - debug flag.

1.4.8.BUILD-SNAPSHOT Spring Boot 73

https://commons.apache.org/logging
https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html
https://logging.apache.org/log4j/2.x/
https://logback.qos.ch/

Spring Boot Reference Guide

$ java -jar nyapp.jar --debug

Note

you can also specify debug=t r ue in your appl i cati on. properties.

When the debug mode is enabled, a selection of core loggers (embedded container, Hibernate and
Spring Boot) are configured to output more information. Enabling the debug mode does not configure
your application to log all messages with DEBUG level.

Alternatively, you can enable a “trace” mode by starting your application with a --trace flag (or
trace=true in your appl i cati on. properti es). This will enable trace logging for a selection of
core loggers (embedded container, Hibernate schema generation and the whole Spring portfolio).

Color-coded output

If your terminal supports ANSI, color output will be used to aid readability. You can set
spring. out put. ansi . enabl ed to a supported value to override the auto detection.

Color coding is configured using the %1 r conversion word. In its simplest form the converter will color
the output according to the log level, for example:

%! r (%p)

The mapping of log level to a color is as follows:

Level Color
FATAL Red
ERROR Red
WARN Yellow
I NFO Green
DEBUG Green
TRACE Green

Alternatively, you can specify the color or style that should be used by providing it as an option to the
conversion. For example, to make the text yellow:

%! r (%{yyyy- Mt dd HH nm ss. SSS}) {yel | ow}

The following colors and styles are supported:
* bl ue

e cyan

« faint

e green

« magent a

1.4.8.BUILD-SNAPSHOT Spring Boot 74

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/ansi/AnsiOutput.Enabled.html

Spring Boot Reference Guide

 red

* yell ow

26.3 File output

By default, Spring Boot will only log to the console and will not write log files. If you want to write log
files in addition to the console output you need to set a | oggi ng. fil e or | oggi ng. pat h property
(for example in your appl i cati on. properti es).

The following table shows how the | oggi ng. * properties can be used together:

Table 26.1. Logging properties

| oggi ng. fillleoggi ng. paJtHﬁxample Description

(none) (none) Console only logging.

Specific file | (none) nmy. |l og Writes to the specified log file. Names can be an exact
location or relative to the current directory.

(none) Specific /var/log | Writesspring. | og to the specified directory. Names
directory can be an exact location or relative to the current
directory.

Log files will rotate when they reach 10 Mb and as with console output, ERROR, WARN and | NFO level
messages are logged by default.

Note

The logging system is initialized early in the application lifecycle and as such logging properties
will not be found in property files loaded via @r oper t ySour ce annotations.

Tip

Logging properties are independent of the actual logging infrastructure. As a result, specific
configuration keys (such as | ogback. confi gur ati onFi | e for Logback) are not managed by
spring Boot.

26.4 Log Levels

All the supported logging systems can have the logger levels set in the Spring Envi r onnent (so
for example in appl i cati on. properti es) using ‘logging.level.*=LEVEL" where ‘LEVEL’ is one of
TRACE, DEBUG, INFO, WARN, ERROR, FATAL, OFF. The r oot logger can be configured using
| oggi ng. | evel . root . Example appl i cati on. properties:

| oggi ng. | evel . r oot =WARN
| oggi ng. | evel . org. spri ngf ramewor k. web=DEBUG
| oggi ng. | evel . or g. hi ber nat e=ERROR

Note

By default Spring Boot remaps Thymeleaf | NFO messages so that they are logged at DEBUG
level. This helps to reduce noise in the standard log output. See Level Remappi ngAppender
for details of how you can apply remapping in your own configuration.

1.4.8.BUILD-SNAPSHOT Spring Boot 75

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/logging/logback/LevelRemappingAppender.java

Spring Boot Reference Guide

26.5 Custom log configuration

The various logging systems can be activated by including the appropriate libraries on the classpath,
and further customized by providing a suitable configuration file in the root of the classpath, or in a
location specified by the Spring Envi r onnent property | oggi ng. confi g.

You can force Spring Boot to use a particular logging system using the
org. spri ngfranmewor k. boot . | oggi ng. Loggi ngSyst emsystem property. The value should be
the fully-qualified class name of a Loggi ngSyst emimplementation. You can also disable Spring Boot'’s
logging configuration entirely by using a value of none.

Note
Since logging is initialized before the Appl i cat i onCont ext is created, itisn’t possible to control

logging from @°r opert ySour ces in Spring @onf i gur at i on files. System properties and the
conventional Spring Boot external configuration files work just fine.)

Depending on your logging system, the following files will be loaded:

Logging System Customization

Logback | ogback-spring. xm , | ogback-
spring. groovy, | ogback. xm or
| ogback. gr oovy

Log4j2 | og4j 2-spring. xm orl og4j 2. xm
JDK (Java Util Logging) | oggi ng. properties
Note

When possible we recommend that you use the - spri ng variants for your logging configuration
(for example | ogback-spring.xm rather than | ogback.xm). If you use standard
configuration locations, Spring cannot completely control log initialization.

Warning

There are known classloading issues with Java Util Logging that cause problems when running
from an ‘executable jar'. We recommend that you avoid it if at all possible.

To help with the customization some other properties are transferred from the Spring Envi r onnent
to System properties:

Spring Environment System Property Comments

| oggi ng. excepti on- LOG_EXCEPTI ON_CONVERSI ON_WBRRonversion word that's

conver si on-wor d used when logging exceptions.

l ogging.file LOG FI LE Used in default log
configuration if defined.

1.4.8.BUILD-SNAPSHOT Spring Boot 76

Spring Boot Reference Guide

Spring Environment System Property Comments

| oggi ng. pat h LOG_PATH Used in default log
configuration if defined.

| oggi ng. pattern.consol e | CONSOLE LOG PATTERN The log pattern to use on
the console (stdout). (Only
supported with the default
logback setup.)

| oggi ng. pattern.file FI LE LOG PATTERN The log pattern to use in a file
(if LOG_FILE enabled). (Only
supported with the default
logback setup.)

| oggi ng. pattern.|evel LOG LEVEL PATTERN The format to use to render

the log level (default %%p).
(Only supported with the default
logback setup.)

PI D PI D The current process ID
(discovered if possible and
when not already defined as an
OS environment variable).

All the logging systems supported can consult System properties when parsing their configuration files.
See the default configurations in spri ng- boot . j ar for examples.

Tip

If you want to use a placeholder in a logging property, you should use Spring Boot's syntax and
not the syntax of the underlying framework. Notably, if you're using Logback, you should use :
as the delimiter between a property name and its default value and not : - .

Tip

You can add MDC and other ad-hoc content to log lines by overriding only the
LOG LEVEL_PATTERN (or | oggi ng. pattern. | evel with Logback). For example, if you use
| oggi ng. pattern.|evel =user: %{user} 9%bp then the default log format will contain an
MDC entry for "user" if it exists, e.qg.

2015-09- 30 12: 30: 04. 031 user:juergen |NFO 22174 --- [nio-8080-exec-0] deno. Controller
Handl i ng aut henti cated request

26.6 Logback extensions

Spring Boot includes a number of extensions to Logback which can help with advanced configuration.
You can use these extensions in your | ogback- spri ng. xm configuration file.

Note

You cannot use extensions in the standard | ogback. xm configuration file since it's loaded too
early. You need to either use | ogback- spri ng. xm or define al oggi ng. confi g property.

1.4.8.BUILD-SNAPSHOT Spring Boot 7

Spring Boot Reference Guide

Warning

The extensions cannot be used with Logback’s configuration scanning. If you attempt to do so,
making changes to the configuration file will result in an error similar to once of the following being
logged:

ERROR i n ch. qos. | ogback. core.joran.spi.Interpreter@:71 - no applicable action for [springProperty],
current ElementPath is [[configuration][springProperty]]

ERROR i n ch. qos. | ogback. core.joran. spi.Interpreter@:71 - no applicable action for [springProfile],
current ElementPath is [[configuration][springProfile]]

Profile-specific configuration

The <spri ngPr of i | e> tag allows you to optionally include or exclude sections of configuration based
on the active Spring profiles. Profile sections are supported anywhere within the <confi gurati on>
element. Use the nane attribute to specify which profile accepts the configuration. Multiple profiles can
be specified using a comma-separated list.

<springProfil e name="stagi ng">
<l-- configuration to be enabl ed when the "staging" profile is active -->
</springProfile>

<springProfile name="dev, staging">
<!-- configuration to be enabl ed when the "dev" or "staging" profiles are active -->
</springProfile>

<springProfile name="!production">
<l-- configuration to be enabl ed when the "production" profile is not active -->
</springProfil e>

Environment properties

The <spri ngPr oper t y> tag allows you to surface properties from the Spring Envi r onment for use
within Logback. This can be useful if you want to access values from your appl i cat i on. properti es
file in your logback configuration. The tag works in a similar way to Logback’s standard <pr operty>
tag, but rather than specifying a direct val ue you specify the sour ce of the property (from the
Envi ronnent). You can use the scope attribute if you need to store the property somewhere other
thanin| ocal scope. If you need a fallback value in case the property is not set in the Envi r onnment ,
you can use the def aul t Val ue attribute.

<springProperty scope="context" nanme="fluentHost" source="nyapp.fluentd. host"
def aul t Val ue="1 ocal host"/ >
<appender name="FLUENT" cl ass="ch. gos. | ogback. nor e. appenders. Dat aFl uent Appender " >
<renot eHost >${f | uent Host } </ r enot eHost >

</ appender >

Tip

The Rel axedPr opertyResol ver is used to access Environment properties. If specify
the sour ce in dashed notation (my- pr operty- nane) all the relaxed variations will be tried
(myPr oper t yNanme, MY_PROPERTY_NAME etc).

1.4.8.BUILD-SNAPSHOT Spring Boot 78

https://logback.qos.ch/manual/configuration.html#autoScan

Spring Boot Reference Guide

27. Developing web applications

Spring Boot is well suited for web application development. You can easily create a self-contained HTTP
server using embedded Tomcat, Jetty, or Undertow. Most web applications will use the spri ng- boot -
st art er - web module to get up and running quickly.

If you haven't yet developed a Spring Boot web application you can follow the "Hello World!" example
in the Getting started section.

27.1 The ‘Spring Web MVC framework’

The Spring Web MVC framework (often referred to as simply ‘Spring MVC’) is a rich ‘model view
controller’ web framework. Spring MVC lets you create special @ont rol | er or @Rest Control | er
beans to handle incoming HTTP requests. Methods in your controller are mapped to HTTP using
@Request Mappi ng annotations.

Here is a typical example @Rest Cont r ol | er to serve JSON data:

public class MyRestController {

public User getUser(Long user) {
...

}

Li st <Cust oner > get User Cust oners(Long user) {
...

}

public User del eteUser(Long user) {
/o,

}
}

Spring MVC is part of the core Spring Framework and detailed information is available in the reference
documentation. There are also several guides available at spring.io/guides that cover Spring MVC.

Spring MVC auto-configuration

Spring Boot provides auto-configuration for Spring MVC that works well with most applications.
The auto-configuration adds the following features on top of Spring’s defaults:

* Inclusion of Cont ent Negot i at i ngVi ewResol ver and BeanNaneVi ewResol ver beans.
» Support for serving static resources, including support for WebJars (see below).

» Automatic registration of Convert er, Generi cConverter, Formatt er beans.

» Support for Ht t pMessageConvert er s (see below).

» Automatic registration of MessageCodesResol ver (see below).

» Statici ndex. ht m support.

» Custom Favi con support (see below).

1.4.8.BUILD-SNAPSHOT Spring Boot 79

https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle#mvc
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle#mvc
https://spring.io/guides

Spring Boot Reference Guide

» Automatic use of a Conf i gur abl eWebBi ndi ngl nitial i zer bean (see below).

If you want to keep Spring Boot MVC features, and you just want to add additional MVC
configuration (interceptors, formatters, view controllers etc.) you can add your own @onf i gur ati on
class of type WebMvcConf i gur er Adapt er, but without @nabl eWebM/c. If you wish to provide
custom instances of Request Mappi ngHandl er Mappi ng, Request Mappi ngHandl er Adapt er or
Except i onHandl er Except i onResol ver you can declare a WebM/cRegi st rati onsAdapt er
instance providing such components.

If you want to take complete control of Spring MVC, you can add your own @Conf i gur at i on annotated
with @nabl eWwebM/c.

HttpMessageConverters

Spring MVC uses the Ht t pMessageConvert er interface to convert HTTP requests and responses.
Sensible defaults are included out of the box, for example Objects can be automatically converted to
JSON (using the Jackson library) or XML (using the Jackson XML extension if available, else using
JAXB). Strings are encoded using UTF- 8 by default.

If you need to add or customize converters you can use Spring Boot's Ht t pMessageConverters
class:

i nport org.springfranework. boot . aut oconfi gure. web. Ht t pMessageConverters;
i nport org.springfranework. context.annotation.*;
i mport org.springframework. http. converter.*;

public class MyConfiguration {

public HttpMessageConverters custonConverters() {
Ht t pMessageConverter<?> additional = ...
Ht t pMessageConverter<?> another = ...
return new Htt pMessageConverters(additional, another);

Any Ht t pMessageConvert er bean thatis present in the context will be added to the list of converters.
You can also override default converters that way.

Custom JSON Serializers and Deserializers

If you're using Jackson to serialize and deserialize JSON data, you might want to write your own
JsonSeri al i zer and JsonDeseri al i zer classes. Custom serializers are usually registered with
Jackson via a Module, but Spring Boot provides an alternative @sonConponent annotation which
makes it easier to directly register Spring Beans.

You can use @sonConponent directly on JsonSerializer or JsonDeserializer
implementations. You can also use it on classes that contains serializers/deserializers as inner-classes.
For example:

i nport java.io.*;

i nport com fasterxnl .jackson.core.*;

i nport com fasterxm .jackson. dat abi nd. *;

i nport org.springframework. boot . jackson. *;

public class Exanple {

1.4.8.BUILD-SNAPSHOT Spring Boot 80

https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle#mvc
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle#mvc
https://wiki.fasterxml.com/JacksonHowToCustomDeserializers
https://wiki.fasterxml.com/JacksonHowToCustomDeserializers

Spring Boot Reference Guide

public static class Serializer extends JsonSerializer<SomeObject> {
I

}

public static class Deserializer extends JsonDeseri alizer<SoneCbj ect> {
1.

}
}

All @sonConponent beans in the Appli cati onCont ext will be automatically registered with
Jackson, and since @sonConponent is meta-annotated with @onponent , the usual component-
scanning rules apply.

Spring Boot also provides JsonCbj ect Seri al i zer and JsonCbj ect Deseri al i zer base classes
which provide useful alternatives to the standard Jackson versions when serializing Objects. See the
Javadoc for details.

MessageCodesResolver

Spring MVC has a strategy for generating error codes for rendering error messages from binding errors:
MessageCodesResol ver . Spring Boot will create one for you if you set the spri ng. mvc. nessage-
codes-resol ver. format property PREFI X ERROR _CODE or POSTFI X ERROR CODE (see the
enumeration in Def aul t MessageCodesResol ver. For nat).

Static Content

By default Spring Boot will serve static content from a directory called / static (or / public or/
resour ces or / META- | NF/ r esour ces) in the classpath or from the root of the Ser vl et Cont ext .
It uses the Resour ceHt t pRequest Handl er from Spring MVC so you can modify that behavior by
adding your own WebMvcConf i gur er Adapt er and overriding the addResour ceHandl er s method.

In a stand-alone web application the default servlet from the container is also enabled, and acts as a
fallback, serving content from the root of the Ser vl et Cont ext if Spring decides not to handle it. Most
of the time this will not happen (unless you modify the default MVC configuration) because Spring will
always be able to handle requests through the Di spat cher Ser vl et .

By default, resources are mapped on / ** but you can tune that via spri ng. nvc. stati c- pat h-
pat t er n. For instance, relocating all resources to / r esour ces/ ** can be achieved as follows:

spring. nvc. static-path-pattern=/resources/**

You can also customize the static resource locations using spring.resources.static-
| ocati ons (replacing the default values with a list of directory locations). If you do this the default
welcome page detection will switch to your custom locations, so if there is an i ndex. ht m in any of
your locations on startup, it will be the home page of the application.

In addition to the ‘standard’ static resource locations above, a special case is made for Webjars content.
Any resources with a path in / webj ar s/ ** will be served from jar files if they are packaged in the
Webjars format.

Tip

Do notuse the sr ¢/ mai n/ webapp directory if your application will be packaged as a jar. Although
this directory is a common standard, it will only work with war packaging and it will be silently
ignored by most build tools if you generate a jar.

1.4.8.BUILD-SNAPSHOT Spring Boot 81

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/jackson/JsonObjectSerializer.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/jackson/JsonObjectDeserializer.java
https://www.webjars.org/

Spring Boot Reference Guide

Spring Boot also supports advanced resource handling features provided by Spring MVC, allowing use
cases such as cache busting static resources or using version agnostic URLs for Webjars.

To use version agnostic URLs for Webjars, simply add the webj ar s-1 ocat or dependency. Then
declare your Webjar, taking jQuery for example, as "/ webj ars/j query/di st/jquery. mn.js"
which results in "/ webj ars/ j query/ x.y. z/di st/jquery. mn.js" where X.y. z is the Webjar
version.

Note

If you are using JBoss, you'll need to declare the webj ar s- | ocat or - j boss- vf s dependency
instead of the webj ar s- | ocat or ; otherwise all Webjars resolve as a 404.

To use cache busting, the following configuration will configure a cache busting solution for all
static resources, effectively adding a content hash in URLs, such as <link href="/css/
spri ng- 2a2d595e6ed9a0b24f 027f 2b63b134d6. css"/ >:

spring. resources. chain. strategy. content. enabl ed=true
spring. resources. chai n. strategy. content. pat hs=/**

Note

Links to resources are rewritten at runtime in template, thanks to a
Resour ceUr | Encodi ngFi | t er, auto-configured for Thymeleaf, Velocity and FreeMarker. You
should manually declare this filter when using JSPs. Other template engines aren’t automatically
supported right now, but can be with custom template macros/helpers and the use of the
Resour ceUr | Provi der.

When loading resources dynamically with, for example, a JavaScript module loader, renaming files is
not an option. That's why other strategies are also supported and can be combined. A "fixed" strategy
will add a static version string in the URL, without changing the file name:

spring. resources. chain. strategy. content. enabl ed=true
spring. resources. chain. strategy. content. pat hs=/**
spring. resources. chain. strategy. fi xed. enabl ed=true
spring. resources. chain. strategy. fixed. paths=/js/lib/
spring. resources. chain. strategy. fixed. versi on=v12

With this configuration, JavaScript modules located under "/j s/ 1ib/" will use a fixed versioning
strategy "/ v12/js/li b/ mynodul e. js" while other resources will still use the content one <l i nk
href ="/ css/ spri ng- 2a2d595e6ed9a0b24f 027f 2b63b134d6. css"/ >.

See Resour ceProperti es for more of the supported options.

Tip

This feature has been thoroughly described in a dedicated blog post and in Spring Framework’s
reference documentation.

Custom Favicon

Spring Boot looks for a f avi con. i co in the configured static content locations and the root of the
classpath (in that order). If such file is present, it is automatically used as the favicon of the application.

1.4.8.BUILD-SNAPSHOT Spring Boot 82

https://docs.spring.io/spring/docs/4.3.9.RELEASE/javadoc-api/org/springframework/web/servlet/resource/ResourceUrlProvider.html
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ResourceProperties.java
https://spring.io/blog/2014/07/24/spring-framework-4-1-handling-static-web-resources
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#mvc-config-static-resources

Spring Boot Reference Guide

ConfigurableWebBindinglnitializer

Spring MVC uses a WebBi ndi nglnitializer to initialize a WebDat aBi nder for a particular
request. If you create your own Conf i gur abl eWebBi ndi ngl niti al i zer @ean, Spring Boot will
automatically configure Spring MVC to use it.

Template engines

As well as REST web services, you can also use Spring MVC to serve dynamic HTML content. Spring
MVC supports a variety of templating technologies including Velocity, FreeMarker and JSPs. Many other
templating engines also ship their own Spring MVC integrations.

Spring Boot includes auto-configuration support for the following templating engines:
» FreeMarker
* Groovy

» Thymeleaf

Velocity (deprecated in 1.4)

e Mustache
Tip

JSPs should be avoided if possible, there are several known limitations when using them with
embedded servlet containers.

When you're using one of these templating engines with the default configuration, your templates will
be picked up automatically from sr ¢/ mai n/ r esour ces/ t enpl at es.

Tip

IntelliJ IDEA orders the classpath differently depending on how you run your application. Running
your application in the IDE via its main method will result in a different ordering to when you
run your application using Maven or Gradle or from its packaged jar. This can cause Spring
Boot to fail to find the templates on the classpath. If you're affected by this problem you can
reorder the classpath in the IDE to place the module’s classes and resources first. Alternatively,
you can configure the template prefix to search every templates directory on the classpath:
cl asspat h*:/tenpl ates/.

Error Handling

Spring Boot provides an / err or mapping by default that handles all errors in a sensible way, and
it is registered as a ‘global’ error page in the servlet container. For machine clients it will produce a
JSON response with details of the error, the HTTP status and the exception message. For browser
clients there is a ‘whitelabel’ error view that renders the same data in HTML format (to customize
it just add a Vi ew that resolves to ‘error’). To replace the default behaviour completely you can
implement Er r or Cont r ol | er and register a bean definition of that type, or simply add a bean of type
Error Attri but es to use the existing mechanism but replace the contents.

1.4.8.BUILD-SNAPSHOT Spring Boot 83

https://freemarker.apache.org/docs
http://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_the_markuptemplateengine
https://www.thymeleaf.org
https://velocity.apache.org
https://mustache.github.io/

Spring Boot Reference Guide

Tip

The Basi cError Control | er can be used as a base class for a custom Err or Control | er.
This is particularly useful if you want to add a handler for a new content type (the default is
to handle t ext/ ht m specifically and provide a fallback for everything else). To do that just
extend Basi cError Cont rol | er and add a public method with a @Request Mappi ng that has
a pr oduces attribute, and create a bean of your new type.

You can also define a @Cont r ol | er Advi ce to customize the JSON document to return for a particular
controller and/or exception type.

public class FooControllerAdvice extends ResponseEntityExceptionHandl er {

ResponseEnt it y<?> handl eControl | er Exception(H t pServl et Request request, Throwable ex) {
Htt pSt atus status = get Status(request);
return new ResponseEntity<>(new CustonError Type(status.val ue(), ex.getMessage()), status);

}

private H tpStatus getStatus(HttpServletRequest request) {
I nteger statusCode = (Integer) request.getAttribute("javax.servlet.error.status_code");
if (statusCode == null) {
return HttpStatus. | NTERNAL_SERVER ERROR;

}
return HttpStatus. val ueCr (st at usCode) ;

In the example above, if Your Except i on is thrown by a controller defined in the same package as
FooControl | er, ajson representation of the Cust oner Er r or Type POJO will be used instead of the
Error Attri but es representation.

Custom error pages

If you want to display a custom HTML error page for a given status code, you add a filetoan/ error
folder. Error pages can either be static HTML (i.e. added under any of the static resource folders) or
built using templates. The name of the file should be the exact status code or a series mask.

For example, to map 404 to a static HTML file, your folder structure would look like this:

src/

+- main/
+- javal
| + <source code>
+- resources/

+- public/
+ error/
| +- 404. htm

+- <other public assets>

To map all 5xx errors using a FreeMarker template, you'd have a structure like this:

src/
+- main/
+- javal
| + <source code>
+- resources/
+- tenpl ates/
+- error/
| +- 5xx. ftl

1.4.8.BUILD-SNAPSHOT Spring Boot 84

Spring Boot Reference Guide

+- <other tenplates>

For more complex mappings you can also add beans that implement the Error Vi ewResol ver
interface.

public class MErrorVi ewResol ver inplenents ErrorVi ewResol ver {

publ i c Mbdel AndVi ew resol veError Vi ew(Ht t pSer vl et Request request,
Htt pSt atus status, Map<String, Object> nodel) {
/] Use the request or status to optionally return a Mdel AndVi ew
return ...

You can also use regular Spring MVC features like @Excepti onHandl er methods and
@Control | er Advi ce. The Error Control | er will then pick up any unhandled exceptions.

Mapping error pages outside of Spring MVC

For applications that aren’t using Spring MVC, you can use the Err or PageRegi str ar interface to
directly register Er r or Pages. This abstraction works directly with the underlying embedded servlet
container and will work even if you don’t have a Spring MVC Di spat cher Servl et .

publ i c ErrorPageRegi strar errorPageRegistrar(){
return new MyErrorPageRegistrar();

}

...
private static class MErrorPageRegi strar inplenents ErrorPageRegi strar {
public void registerErrorPages(ErrorPageRegi stry registry) {

regi stry. addErr or Pages(new ErrorPage(H t pSt at us. BAD_REQUEST, "/400"));
}

N.B. if you register an Er r or Page with a path that will end up being handled by a Fi | t er (e.g. as is
common with some non-Spring web frameworks, like Jersey and Wicket), then the Fi | t er has to be
explicitly registered as an ERROR dispatcher, e.g.

public FilterRegistrationBean nyFilter() {
Fil ter Regi strationBean registration = new FilterRegistrationBean();
registration.setFilter(new MyFilter());

regi stration. set Di spat cher Types(EnunSet . al | Of (D spat cher Type. cl ass));
return registration;

(the default Fi | t er Regi st rati onBean does not include the ERROR dispatcher type).
Error Handling on WebSphere Application Server

When deployed to a servlet container, a Spring Boot uses its error page filter to forward a request with an
error status to the appropriate error page. The request can only be forwarded to the correct error page if
the response has not already been committed. By default, WebSphere Application Server 8.0 and later
commits the response upon successful completion of a servlet's service method. You should disable
this behaviour by setting com i bm ws. webcont ai ner. i nvokeFl ushAft er Servi ce tofal se

1.4.8.BUILD-SNAPSHOT Spring Boot 85

https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#mvc-exceptionhandlers
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#mvc-ann-controller-advice

Spring Boot Reference Guide

Spring HATEOAS

If you're developing a RESTful API that makes use of hypermedia, Spring Boot provides auto-
configuration for Spring HATEOAS that works well with most applications. The auto-configuration
replaces the need to use @nabl eHyper nedi aSupport and registers a number of beans to ease
building hypermedia-based applications including a Li nkDi scoverers (for client side support)
and an Obj ect Mapper configured to correctly marshal responses into the desired representation.
The bj ect Mapper will be customized based on the spring.jackson.* properties or a
Jackson2Cbj ect Mapper Bui | der bean if one exists.

You can take control of Spring HATEOAS's configuration by using @nabl eHyper nedi aSupport.
Note that this will disable the Obj ect Mapper customization described above.

CORS support

Cross-origin resource sharing (CORS) is a W3C specification implemented by most browsers that allows
you to specify in a flexible way what kind of cross domain requests are authorized, instead of using
some less secure and less powerful approaches like IFRAME or JSONP.

As of version 4.2, Spring MVC supports CORS out of the box. Using controller method CORS
configuration with @r ossOri gi n annotations in your Spring Boot application does not require any
specific configuration. Global CORS configuration can be defined by registering a WebMvcConf i gur er
bean with a customized addCor sMappi ngs(Cor sRegi st ry) method:

public class MyConfiguration {

publ ic WebM/cConfigurer corsConfigurer() {
return new WebMvcConfi gurer Adapter () {

public void addCor sMappi ngs(Cor sRegi stry registry) {
regi stry. addMappi ng("/api/**");
}

27.2 JAX-RS and Jersey

If you prefer the JAX-RS programming model for REST endpoints you can use one of the available
implementations instead of Spring MVC. Jersey 1.x and Apache CXF work quite well out of the box
if you just register their Servl et or Fi | ter as a @ean in your application context. Jersey 2.x has
some native Spring support so we also provide auto-configuration support for it in Spring Boot together
with a starter.

To get started with Jersey 2.x just include the spri ng- boot - st art er -j er sey as a dependency and
then you need one @ean of type Resour ceConf i g in which you register all the endpoints:

public class JerseyConfig extends ResourceConfig {

public JerseyConfig() {
regi st er (Endpoi nt. cl ass);

}

1.4.8.BUILD-SNAPSHOT Spring Boot 86

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://www.w3.org/TR/cors/
https://caniuse.com/#feat=cors
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#cors
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#_controller_method_cors_configuration
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#_controller_method_cors_configuration
https://docs.spring.io/spring/docs/4.3.9.RELEASE/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#_global_cors_configuration

Spring Boot Reference Guide

Warning

Jersey’s support for scanning executable archives is rather limited. For example, it cannot scan
for endpoints in a package found in WEB- | NF/ ¢l asses when running an executable war file. To
avoid this limitation, the packages method should not be used and endpoints should be registered
individually using the r egi st er method as shown above.

You can also register an arbitrary number of beans implementing Resour ceConf i gCust om zer for
more advanced customizations.

All the registered endpoints should be @onponent s with HTTP resource annotations (@EET etc.), e.g.

public class Endpoint {

public String nessage() {
return "Hello";

}

Since the Endpoi nt is a Spring @onponent its lifecycle is managed by Spring and you can
@\t owi r ed dependencies and inject external configuration with @/al ue. The Jersey servlet will be
registered and mapped to / * by default. You can change the mapping by adding @\ppl i cat i onPat h
to your Resour ceConfi g.

By default Jersey will be set up as a Servlet in a @ean of type Servl et Regi strati onBean
named j er seyServl et Regi strati on. By default, the servlet will be initialized lazily but you
can customize it with spring.j ersey. servl et.| oad-on-startup .You can disable or override
that bean by creating one of your own with the same name. You can also use a Filter instead
of a Servlet by setting spring.jersey.type=filter (in which case the @ean to replace or
override is j erseyFi |l t er Regi strati on). The servlet has an @ der which you can set with
spring.jersey.filter.order. Both the Servlet and the Filter registrations can be given init
parameters using spri ng. j ersey.init.* to specify a map of properties.

There is a Jersey sample so you can see how to set things up. There is also a Jersey 1.x sample.
Note that in the Jersey 1.x sample that the spring-boot maven plugin has been configured to unpack
some Jersey jars so they can be scanned by the JAX-RS implementation (because the sample asks
for them to be scanned in its Fi | t er registration). You may need to do the same if any of your JAX-
RS resources are packaged as nested jars.

27.3 Embedded servlet container support

Spring Boot includes support for embedded Tomcat, Jetty, and Undertow servers. Most developers will
simply use the appropriate ‘Starter’ to obtain a fully configured instance. By default the embedded server
will listen for HTTP requests on port 8080.

Servlets, Filters, and listeners

When using an embedded servlet container you can register Servlets, Filters and all the listeners from
the Servlet spec (e.g. Ht t pSessi onLi st ener) either by using Spring beans or by scanning for Servlet
components.

1.4.8.BUILD-SNAPSHOT Spring Boot 87

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-jersey
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-jersey1

Spring Boot Reference Guide

Registering Servlets, Filters, and listeners as Spring beans

Any Servl et, Filter or Servlet *Li st ener instance that is a Spring bean will be registered with
the embedded container. This can be particularly convenient if you want to refer to a value from your
appl i cation. properti es during configuration.

By default, if the context contains only a single Servlet it will be mapped to /. In the case of multiple
Servlet beans the bean name will be used as a path prefix. Filters will map to/ *.

If convention-based mapping is not flexible enough you can use the Ser vl et Regi st rati onBean,
FilterRegi strati onBean and Servl etLi stener Regi strati onBean classes for complete
control.

Servlet Context Initialization

Embedded servlet containers will not directly execute the Servlet
3.0+ javax.servlet. ServletContainerlnitializer interface, or Spring’s
org. springfranmewor k. web. WebApplicationlnitializer interface. This is an intentional
design decision intended to reduce the risk that 3rd party libraries designed to run inside a war will break
Spring Boot applications.

If you need to perform servlet context initialization in a Spring
Boot application, you should register a bean that implements the
or g. spri ngframewor k. boot . cont ext . enbedded. Servl et ContextlInitializer interface.
The single onSt ar t up method provides access to the Ser vl et Cont ext , and can easily be used as
an adapter to an existing WebAppl i cati onl nitiali zer if necessary.

Scanning for Servlets, Filters, and listeners

When using an embedded container, automatic registration of @ébSer vl et, @\¥bFil ter, and
@\ébLi st ener annotated classes can be enabled using @er vl et Conmponent Scan.

Tip

@er vl et Conponent Scan will have no effect in a standalone container, where the container’s
built-in discovery mechanisms will be used instead.

The EmbeddedWebApplicationContext

Under the hood Spring Boot uses a new type of Appl i cat i onCont ext for embedded servlet container
support. The EnbeddedWebAppl i cati onCont ext is a special type of WebAppl i cati onCont ext
that bootstraps itself by searching for a single EnbeddedSer vl et Cont ai ner Fact or y bean. Usually a
Tontat EnbeddedSer vl et Cont ai ner Fact ory, JettyEnbeddedServl et Cont ai ner Fact ory,
or Under t onwEnbeddedSer vl et Cont ai ner Fact or y will have been auto-configured.

Note

You wusually wont need to be aware of these implementation classes. Most
applications will be auto-configured and the appropriate Applicati onContext and
EnbeddedSer vl et Cont ai ner Fact or y will be created on your behalf.

1.4.8.BUILD-SNAPSHOT Spring Boot 88

Spring Boot Reference Guide

Customizing embedded servlet containers

Common servlet container settings can be configured using Spring Envi r onment properties. Usually
you would define the properties in your appl i cati on. properti es file.

Common server settings include:

* Network settings: listen port for incoming HTTP requests (ser ver . por t), interface address to bind
to server. addr ess, etc.

» Session settings: whether the session is persistent (server. sessi on. per si st ence), session
timeout (server . sessi on. ti meout), location of session data (server. session. store-dir)
and session-cookie configuration (ser ver . sessi on. cooki e. *).

« Error management: location of the error page (ser ver. error. pat h), etc.
e SSL

e HTTP compression

Spring Boot tries as much as possible to expose common settings but this is not always possible.
For those cases, dedicated namespaces offer server-specific customizations (see server . t ontat
and server . undert ow). For instance, access logs can be configured with specific features of the
embedded servlet container.

Tip

See the Ser ver Properti es class for a complete list.

Programmatic customization

If you need to -configure your embedded servlet container programmatically you can
register a Spring bean that implements the EnbeddedServl et Contai ner Custoni zer
interface. EnbeddedSer vl et Cont ai ner Cust oni zer provides access to the
Confi gur abl eEnbeddedSer vl et Cont ai ner which includes numerous customization setter
methods.

i nport org.springfranework. boot . cont ext . enbedded. *;
i nport org.springfranework. stereotype. Conponent ;

public class Custom zati onBean inplenents EnbeddedServl et Cont ai ner Cust om zer {

public void custom ze(Confi gur abl eEnbeddedSer vl et Cont ai ner cont ai ner) {
cont ai ner.setPort();

}

Customizing ConfigurableEmbeddedServietContainer directly

If the above customization techniques are too limited, you can register the
Tontat EnbeddedSer vl et Cont ai ner Factory, JettyEnbeddedServl et Cont ai ner Factory
or Under t owEnbeddedSer vl et Cont ai ner Fact or y bean yourself.

1.4.8.BUILD-SNAPSHOT Spring Boot 89

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

publ i ¢ EnbeddedSer vl et Cont ai ner Factory servl et Container() {
Tontat EmbeddedSer vl et Cont ai ner Factory factory = new Tontat EnbeddedSer vl et Cont ai ner Fact ory();
factory.setPort();
factory. set Sessi onTi neout (, Ti neUnit. M NUTES);
factory. addError Pages(new ErrorPage(Htt pSt atus. NOT_FOUND, "/notfound. htm "));
return factory;

Setters are provided for many configuration options. Several protected method ‘hooks’ are also provided
should you need to do something more exotic. See the source code documentation for details.

JSP limitations

When running a Spring Boot application that uses an embedded servlet container (and is packaged as
an executable archive), there are some limitations in the JSP support.

« With Tomcat it should work if you use war packaging, i.e. an executable war will work, and will also
be deployable to a standard container (not limited to, but including Tomcat). An executable jar will not
work because of a hard coded file pattern in Tomcat.

» With Jetty it should work if you use war packaging, i.e. an executable war will work, and will also be
deployable to any standard container.

» Undertow does not support JSPs.

e Creating a custom err or . j sp page won't override the default view for error handling, custom error
pages should be used instead.

There is a JSP sample so you can see how to set things up.

1.4.8.BUILD-SNAPSHOT Spring Boot 90

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-web-jsp

Spring Boot Reference Guide

28. Security

If Spring Security is on the classpath then web applications will be secure by default with ‘basic’
authentication on all HTTP endpoints. To add method-level security to a web application you can also
add @nabl ed obal Met hodSecur i t y with your desired settings. Additional information can be found
in the Spring Security Reference.

The default Aut henti cat i onManager has a single user (‘user’ username and random password,
printed at INFO level when the application starts up)

Usi ng default security password: 78fa095d- 3f4c-48bl-ad50-e24c31d5cf 35

Note

If you fine-tune your logging configuration, ensure that the
org. spri ngframewor k. boot . aut oconfi gure. security category is set to log | NFO
messages, otherwise the default password will not be printed.

You can change the password by providing a security. user. password. This and other useful
properties are externalized via Secur i t yProperti es (properties prefix "security").

The default security configuration is implemented in SecurityAutoConfiguration and in
the classes imported from there (Spri ngBootWhbSecurityConfiguration for web security
and Aut henti cati onManager Confi gurati on for authentication configuration which is also
relevant in non-web applications). To switch off the default web application security configuration
completely you can add a bean with @Enabl eWebSecurity (this does not disable the
authentication manager configuration or Actuator’s security). To customize it you normally use
external properties and beans of type WebSecur i t yConf i gur er Adapt er (e.g. to add form-based
login). To also switch off the authentication manager configuration you can add a bean of type
Aut hent i cat i onManager, or else configure the global Aut hent i cat i onManager by autowiring an
Aut hent i cati onManager Bui | der into a method in one of your @onf i gur at i on classes. There
are several secure applications in the Spring Boot samples to get you started with common use cases.

The basic features you get out of the box in a web application are:

« An Aut henticati onManager bean with in-memory store and a single user (see
SecurityProperties. User forthe properties of the user).

« Ignored (insecure) paths for common static resource locations (/ css/ **,/j s/ **,/i mages/ **,/
webj ars/ ** and **/ f avi con. i co).

» HTTP Basic security for all other endpoints.

e Security events published to Spring’'s Applicati onEvent Publisher (successful and
unsuccessful authentication and access denied).

e Common low-level features (HSTS, XSS, CSRF, caching) provided by Spring Security are on by
default.

All of the above can be switched on and off or modified using external
properties (security.*). To override the access rules without changing any other
auto-configured features add a @ean of type WebSecurityConfi gurerAdapter with
@ der (SecurityProperties. ACCESS OVERRI DE_ORDER) and configure it to meet your needs.

1.4.8.BUILD-SNAPSHOT Spring Boot 91

https://docs.spring.io/spring-security/site/docs/4.1.4.RELEASE/reference/htmlsingle#jc-method
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/

Spring Boot Reference Guide

Note

By default, a WebSecuri t yConfi gur er Adapt er will match any path. If you don't want to
completely override Spring Boot's auto-configured access rules, your adapter must explicitly
configure the paths that you do want to override.

28.1 OAuth2

If you have spri ng-security-oauth2 on your classpath you can take advantage of some auto-
configuration to make it easy to set up Authorization or Resource Server. For full details, see the Spring
Security OAuth 2 Developers Guide.

Authorization Server

To create an Authorization Server and grant access tokens you need to use
@nabl eAut hori zati onServer and provide security.oauth2.client.client-id and
security.oauth2.client.client-secret] properties. The client will be registered for you in an
in-memory repository.

Having done that you will be able to use the client credentials to create an access token, for example:

$ curl client:secret@ocal host: 8080/ oaut h/token -d grant_type=password -d username=user -d passwor d=pwd

The basic auth credentials for the / t oken endpoint are the client-id and client-secret. The
user credentials are the normal Spring Security user details (which default in Spring Boot to “user” and
a random password).

To switch off the auto-configuration and configure the Authorization Server features yourself just add a
@ean of type Aut hori zat i onSer ver Confi gurer.

Resource Server

To use the access token you need a Resource Server (which can be the same as the Authorization
Server). Creating a Resource Server is easy, just add @nabl eResour ceSer ver and provide some
configuration to allow the server to decode access tokens. If your application is also an Authorization
Server it already knows how to decode tokens, so there is nothing else to do. If your app is a standalone
service then you need to give it some more configuration, one of the following options:

e security.oauth2.resource.user-info-uri to use the /me resource (e.g. https://
uaa. run. pi votal .i o/ userinfoonPWS)

e security.oauth2.resource.token-info-uri to use the token decoding endpoint (e.g.
https://uaa. run. pivotal .i o/ check_t oken on PWS).

If you specify both the user -i nf o-uri and the t oken-i nf o- uri then you can set a flag to say that
one is preferred over the other (pr ef er -t oken- i nf o=t r ue is the default).

Alternatively (instead of user-info-uri or token-info-uri) if the tokens are JWTs you can
configure a security. oaut h2. resource.jwt . key-val ue to decode them locally (where the key
is a verification key). The verification key value is either a symmetric secret or PEM-encoded RSA public
key. If you don’t have the key and it's public you can provide a URI where it can be downloaded (as a
JSON object with a “value” field) with securi ty. oaut h2. resource. jwt . key-uri.E.g. on PWS:

$ curl https://uaa.run.pivotal.io/token_key
{"al g": " SHA256w t hRSA", "val ue":"----- BEG N PUBLI C KEY----- \nMIBI...\n----- END PUBLI C KEY----- \n"}

1.4.8.BUILD-SNAPSHOT Spring Boot 92

https://projects.spring.io/spring-security-oauth/docs/oauth2.html
https://projects.spring.io/spring-security-oauth/docs/oauth2.html

Spring Boot Reference Guide

Warning

If you use the securi ty. oaut h2. resource. j w . key- uri the authorization server needs to
be running when your application starts up. It will log a warning if it can't find the key, and tell
you what to do to fix it.

28.2 Token Type in User Info

Google, and certain other 3rd party identity providers, are more strict about the token type name that
is sent in the headers to the user info endpoint. The default is “Bearer” which suits most providers and
matches the spec, but if you need to change it you can set securi ty. oaut h2. resour ce. t oken-

t ype.
28.3 Customizing the User Info RestTemplate

If you have a user-info-uri, the resource server features use an QAut h2Rest Tenpl at e
internally to fetch user details for authentication. This is provided as a qualified @ean with id
user | nf oRest Tenpl at e, but you shouldn’t need to know that to just use it. The default should be fine
for most providers, but occasionally you might need to add additional interceptors, or change the request
authenticator (which is how the token gets attached to outgoing requests). To add a customization just
create a bean of type User | nf oRest Tenpl at eCust oni zer -it has a single method that will be called
after the bean is created but before it is initialized. The rest template that is being customized here is
only used internally to carry out authentication.

Tip

To set an RSA key value in YAML use the “pipe” continuation marker to split it over multiple lines
(“I") and remember to indent the key value (it's a standard YAML language feature). Example:

security:
oaut h2:
resource:
W
keyVal ue: |

----- BEG N PUBLI C KEY-----

M | Bl j ANBgkghki GOWOBAQEFAAOCCA@AM | BCGKC. . .
----- END PUBLI C KEY-----

Client

To make your web-app into an OAuth2 client you can simply add @nabl eQAut h2C i ent and
Spring Boot will create a QAut h2Cl i ent Cont ext and OQAut h2Pr ot ect edResour ceDet ai | s that
are necessary to create an QAut h2Rest Oper at i ons. Spring Boot does not automatically create such
bean but you can easily create your own:

publ i ¢ QAut h2Rest Tenpl at e oaut h2Rest Tenpl at e(QAut h2d i ent Cont ext oaut h2d i ent Cont ext ,
QAut h2Pr ot ect edResour ceDet ai | s details) {
return new OAut h2Rest Tenpl at e(details, oauth2C ientContext);

Note

You may want to add a qualifier and review your configuration as more than one Rest Tenpl at e
may be defined in your application.

1.4.8.BUILD-SNAPSHOT Spring Boot 93

Spring Boot Reference Guide

This configuration uses securi ty. oaut h2. cl i ent . * as credentials (the same as you might be using
in the Authorization Server), but in addition it will need to know the authorization and token URIs in the
Authorization Server. For example:

application.yml.

security:
oaut h2:
client:
clientld: bdlcOa783ccddlc9b9e4
clientSecret: a9030f bca47a5b2c28e92f 19050bb77824b5ad1l
accessTokenUri: https://github.con | ogi n/ oauth/access_t oken
user Aut hori zationUri: https://github.conll ogin/oauth/authorize
client Aut henti cati onScheme: form

An application with this configuration will redirect to Github for authorization when you attempt to use
the QAut h2Rest Tenpl at e. If you are already signed into Github you won't even notice that it has
authenticated. These specific credentials will only work if your application is running on port 8080
(register your own client app in Github or other provider for more flexibility).

To limit the scope that the client asks for when it obtains an access token you can set
security.oauth2. client.scope (comma separated or an array in YAML). By default the scope
is empty and it is up to Authorization Server to decide what the defaults should be, usually depending
on the settings in the client registration that it holds.

Note

There is also a setting for security. oauth2.client.client-authentication-schemne
which defaults to “header” (but you might need to set it to “form” if, like Github for instance, your
OAuth2 provider doesn't like header authentication). In fact, the securi ty. oaut h2. cli ent.*
properties are bound to an instance of Aut hori zati onCodeResour ceDetail s so all its
properties can be specified.

Tip

In a non-web application you can still create an QAut h2Rest Oper ati ons and it is still wired
intothe securi ty. oaut h2. cl i ent. * configuration. In this case it is a “client credentials token
grant” you will be asking for if you use it (and there is no need to use @nabl eQAut h2d i ent
or @nabl eQAut h2Sso). To prevent that infrastructure to be defined, just remove the
security.oauth2.client.client-idfromyour configuration (or make it the empty string).

Single Sign On

An OAuth2 Client can be used to fetch user details from the provider (if such features are available)
and then convert them into an Aut henti cati on token for Spring Security. The Resource Server
above support this via the user -i nf o-uri property This is the basis for a Single Sign On (SSO)
protocol based on OAuth2, and Spring Boot makes it easy to participate by providing an annotation
@nabl eQAut h2Sso. The Github client above can protect all its resources and authenticate using the
Github / user/ endpoint, by adding that annotation and declaring where to find the endpoint (in addition
to the securi ty. oaut h2. cl i ent. * configuration already listed above):

application.yml.

security:
oaut h2:

1.4.8.BUILD-SNAPSHOT Spring Boot 94

Spring Boot Reference Guide

resource:
userInfoUri: https://api.github.confuser
pref er Tokenl nfo: fal se

Since all paths are secure by default, there is no “home” page that you can show to
unauthenticated users and invite them to login (by visiting the / | ogi n path, or the path specified by
security. oaut h2. sso. | ogi n- pat h).

To customize the access rules or paths to protect, so you can add a “home” page for instance,
@nabl eQAut h2Sso can be added to a WebSecur i t yConf i gur er Adapt er and the annotation will
cause it to be decorated and enhanced with the necessary pieces to get the / | ogi n path working. For
example, here we simply allow unauthenticated access to the home page at "/" and keep the default
for everything else:

static class WebSecurityConfigurati on extends WbSecurityConfigurerAdapter {

public void init(WbSecurity web) {
web. i gnoring().ant Matchers("/");
}

protected void configure(HttpSecurity http) throws Exception {
http. ant Mat cher ("/**") . aut hori zeRequest s() . anyRequest (). aut henti cated();
}

28.4 Actuator Security

If the Actuator is also in use, you will find:
» The management endpoints are secure even if the application endpoints are insecure.

* Security events are transformed into AuditEvent instances and published to the
Audi t Event Repository.

* The default user will have the ADM N role as well as the USER role.

The Actuator security features can be modified using external properties (managenent . security. *).
To override the application access rules add a @ean of type WebSecur i t yConf i gur er Adapt er and
use @x der (SecurityProperties. ACCESS OVERRI DE_CRDER) if you don’t want to override the
actuator access rules, or @ der (Managemnent Ser ver Pr operti es. ACCESS OVERRI DE_ORDER)
if you do want to override the actuator access rules.

1.4.8.BUILD-SNAPSHOT Spring Boot 95

Spring Boot Reference Guide

29. Working with SQL databases

The Spring Framework provides extensive support for working with SQL databases. From direct JDBC
access using JdbcTenpl at e to complete ‘object relational mapping’ technologies such as Hibernate.
Spring Data provides an additional level of functionality, creating Reposi t or y implementations directly
from interfaces and using conventions to generate queries from your method names.

29.1 Configure a DataSource

Java’s j avax. sql . Dat aSour ce interface provides a standard method of working with database
connections. Traditionally a DataSource uses a URL along with some credentials to establish a database
connection.

Tip

Check also the ‘How-to’ section for more advanced examples, typically to take full control over
the configuration of the DataSource.

Embedded Database Support

It's often convenient to develop applications using an in-memory embedded database. Obviously, in-
memory databases do not provide persistent storage; you will need to populate your database when
your application starts and be prepared to throw away data when your application ends.

Tip
The ‘How-to’ section includes a section on how to initialize a database

Spring Boot can auto-configure embedded H2, HSQL and Derby databases. You don’t need to provide
any connection URLs, simply include a build dependency to the embedded database that you want to
use.

Note

If you are using this feature in your tests, you may notice that the same database is reused
by your whole test suite regardless of the number of application contexts that you use. If you
want to make sure that each context has a separate embedded database, you should set
spring. dat asour ce. gener at e- uni que- nane tot r ue.

For example, typical POM dependencies would be:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-data-jpa</artifactld>
</ dependency>
<dependency>
<groupl d>or g. hsql db</ gr oupl d>
<artifactld>hsqgl db</artifactld>
<scope>runti me</ scope>
</ dependency>

1.4.8.BUILD-SNAPSHOT Spring Boot 96

https://www.h2database.com
http://hsqldb.org/
https://db.apache.org/derby/

Spring Boot Reference Guide

Note

You need a dependency on spri ng- j dbc for an embedded database to be auto-configured. In
this example it's pulled in transitively via spri ng- boot - st art er - dat a- j pa.

Tip

If, for whatever reason, you do configure the connection URL for an embedded database, care
should be taken to ensure that the database’s automatic shutdown is disabled. If you're using
H2 you should use DB_CLOSE_ON_EXI T=FALSE to do so. If you're using HSQLDB, you should
ensure that shut down=t r ue is not used. Disabling the database’s automatic shutdown allows

Spring Boot to control when the database is closed, thereby ensuring that it happens once access
to the database is no longer needed.

Connection to a production database

Production database connections can also be auto-configured using a pooling Dat aSour ce. Here’s the
algorithm for choosing a specific implementation:

We prefer the Tomcat pooling Dat aSour ce for its performance and concurrency, so if that is available
we always choose it.

Otherwise, if HikariCP is available we will use it.

If neither the Tomcat pooling datasource nor HikariCP are available and if Commons DBCP is
available we will use it, but we don’t recommend it in production.

Lastly, if Commons DBCP2 is available we will use it.

If you use the spri ng-boot -starter-jdbc orspring-boot-starter-data-jpa ‘starters’ you
will automatically get a dependency to t ontat - j dbc.

Note

You can bypass that algorithm completely and specify the connection pool to use via the
spring. dat asour ce. t ype property. This is especially important if you are running your
application in a Tomcat container as t ontat - j dbc is provided by default.

Tip

Additional connection pools can always be configured manually. If you define your own
Dat aSour ce bean, auto-configuration will not occur.

DataSource configuration is controlled by external configuration propertiesin spri ng. dat asour ce. *.
For example, you might declare the following section in appl i cati on. properti es:

spring. datasource. url =j dbc: nysql :/ /1 ocal host/test

spri ng. dat asour ce. user nane=dbuser

spring. dat asour ce. passwor d=dbpass

spring. dat asour ce. dri ver - cl ass- nane=com nysql . j dbc. Dri ver

Note

You should at least specify the url using the spri ng. dat asour ce. ur| property or Spring Boot
will attempt to auto-configure an embedded database.

1.4.8.BUILD-SNAPSHOT Spring Boot 97

Spring Boot Reference Guide

Tip

You often won't need to specify the dri ver - cl ass- name since Spring boot can deduce it for
most databases from the ur | .

Note

For a pooling Dat aSource to be created we need to be able to verify that a valid
Driver class is available, so we check for that before doing anything. l.e. if you set
spring. dat asour ce. dri ver - cl ass- name=com nysql . j dbc. Dri ver thenthat class has
to be loadable.

See DataSourceProperties for more of the supported options. These are
the standard options that work regardless of the actual implementation.
It is also possible to fine-tune implementation-specific settings using their
respective prefix (spring. dat asour ce. tontat . *, spring. dat asource. hi kari . *,
spring. dat asour ce. dbcp. * and spri ng. dat asour ce. dbcp2. *). Refer to the documentation
of the connection pool implementation you are using for more details.

For instance, if you are using the Tomcat connection pool you could customize many additional settings:

Nunber of ns to wait before throwing an exception if no connection is avail able.
spring. dat asour ce. t ontat . max- wai t =10000

Maxi mum nunber of active connections that can be allocated fromthis pool at the same tine.
spring. dat asour ce. t ontat . nax- acti ve=50

Validate the connection before borrowing it fromthe pool .
spring. dat asour ce. tontat .t est-on-borrow=true

Connection to a JNDI DataSource

If you are deploying your Spring Boot application to an Application Server you might want to configure
and manage your DataSource using your Application Servers built-in features and access it using JNDI.

The spri ng. dat asour ce. j ndi - nane property can be used as an
alternative to the spring.datasource.url, spring.datasource.username and
spring. dat asour ce. passwor d properties to access the Dat aSour ce from a specific INDI location.
For example, the following section in appl i cati on. properti es shows how you can access a JBoss
AS defined Dat aSour ce:

spring. dat asource. j ndi - nane=j ava: j boss/ dat asour ces/ cust oner s

29.2 Using JdbcTemplate

Spring’s JdbcTenpl at e and NanmedPar anet er JdbcTenpl at e classes are auto-configured and you
can @\ut owi r e them directly into your own beans:

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springframework.jdbc. core.JdbcTenpl at e;
i nport org.springfranework. stereotype. Conponent ;

public class MyBean {

private final JdbcTenpl ate jdbcTenpl ate;

1.4.8.BUILD-SNAPSHOT Spring Boot 98

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceProperties.java
https://tomcat.apache.org/tomcat-8.0-doc/jdbc-pool.html#Common_Attributes

Spring Boot Reference Guide

public MyBean(JdbcTenpl ate jdbcTenpl ate) {
this.jdbcTenpl ate = jdbcTenpl at e;

}

N/

29.3 JPA and ‘Spring Data’

The Java Persistence API is a standard technology that allows you to ‘map’ objects to relational
databases. The spri ng- boot - starter-dat a-j pa POM provides a quick way to get started. It
provides the following key dependencies:

» Hibernate — One of the most popular JPA implementations.

» Spring Data JPA — Makes it easy to implement JPA-based repositories.
e Spring ORMs — Core ORM support from the Spring Framework.

Tip

We won’t go into too many details of JPA or Spring Data here. You can follow the ‘Accessing
Data with JPA’ guide from spring.io and read the Spring Data JPA and Hibernate reference
documentation.

Note

By default, Spring Boot uses Hibernate 5.0.x. However it's also possible to use 4.3.x or 5.2.x if
you wish. Please refer to the Hibernate 4 and Hibernate 5.2 samples to see how to do so.

Entity Classes

Traditionally, JPA ‘Entity’ classes are specified in a persi stence. xnl file. With Spring Boot
this file is not necessary and instead ‘Entity Scanning’ is used. By default all packages
below your main configuration class (the one annotated with @nabl eAut oConfi gurati on or
@Bpr i ngBoot Appl i cati on) will be searched.

Any classes annotated with @nt i ty, @nbeddabl e or @vappedSuper cl ass will be considered. A
typical entity class would look something like this:

package com exanpl e. nyapp. donai n;
import java.io.Serializable;

i nport javax. persistence. *;

public class Gty inplenents Serializable {

private Long id;

private String name;

private String state;

1.4.8.BUILD-SNAPSHOT Spring Boot 99

https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io
https://projects.spring.io/spring-data-jpa/
https://hibernate.org/orm/documentation/
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-hibernate4
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-hibernate52

Spring Boot Reference Guide

/1 ... additional nmenbers, often include @neToMany neppi ngs

protected City() {
/'l no-args constructor required by JPA spec
/1 this one is protected since it shouldn't be used directly

}

public Gity(String name, String state) {
t hi s. nane = nane;
this.country = country;

}

public String getNane() {
return this.nang;

}

public String getState() {
return this.state;

}

/Il ... etc

Tip

You can customize entity scanning locations using the @ntityScan annotation. See the
Section 74.4, “Separate @Entity definitions from Spring configuration” how-to.

Spring Data JPA Repositories

Spring Data JPA repositories are interfaces that you can define to access data. JPA queries are created
automatically from your method names. For example, a Ci t yReposi t ory interface might declare a
findAl | ByState(String state) method to find all cities in a given state.

For more complex queries you can annotate your method using Spring Data’s Quer y annotation.

Spring Data repositories usually extend from the Repository or CrudRepository interfaces.
If you are using auto-configuration, repositories will be searched from the package containing
your main configuration class (the one annotated with @Enabl eAut oConfi guration or
@pr i ngBoot Appl i cat i on) down.

Here is a typical Spring Data repository:

package com exanpl e. nyapp. donai n;

i nport org.springframework. dat a. domai n. *;
i nport org.springfranework. data.repository. *;

public interface CityRepository extends Repository<City, Long> {
Page<Ci ty> findAl | (Pageabl e pageabl e);

City findByNameAndCountryAl |l gnoringCase(String nanme, String country);

Tip

We have barely scratched the surface of Spring Data JPA. For complete details check their
reference documentation.

1.4.8.BUILD-SNAPSHOT Spring Boot 100

https://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/Query.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
https://projects.spring.io/spring-data-jpa/

Spring Boot Reference Guide

Creating and dropping JPA databases

By default, JPA databases will be automatically created only if you use an embedded database
(H2, HSQL or Derby). You can explicitly configure JPA settings using spri ng. j pa. * properties. For
example, to create and drop tables you can add the following to your appl i cati on. properti es.

spring.j pa. hi bernate. ddl - aut o=cr eat e- dr op

Note

Hibernate's own internal property name for this (if you happen to remember it better) is
hi ber nat e. hbnRddl . aut 0. You can set it, along with other Hibernate native properties, using
spring.jpa. properties.* (the prefix is stripped before adding them to the entity manager).
Example:

spring.jpa.properties.hibernate.globally_quoted_identifiers=true

passes hi ber nat e. gl obal | y_quot ed_i denti fi er s to the Hibernate entity manager.

By default the DDL execution (or validation) is deferred until the Appl i cat i onCont ext has started.
There is also a spri ng. j pa. gener at e- ddl flag, but it is not used if Hibernate autoconfig is active
because the ddl - aut o settings are more fine-grained.

Open EntityManager in View

If you are running a web application, Spring Boot will by default register
OpenEnti t yManager | nVi ewl nt er cept or to apply the "Open EntityManager in View" pattern, i.e. to
allow for lazy loading in web views. If you don’t want this behavior you should set spri ng. j pa. open-
i n-vi ewtofal seinyourapplication. properties.

29.4 Using H2's web console

The H2 database provides a browser-based console that Spring Boot can auto-configure for you. The
console will be auto-configured when the following conditions are met;

* You are developing a web application
» com h2dat abase: h2 is on the classpath

* You are using Spring Boot’s developer tools

Tip

If you are not using Spring Boot'’s developer tools, but would still like to make use of H2’s console,
then you can do so by configuring the spri ng. h2. consol e. enabl ed property with a value of
true. The H2 console is only intended for use during development so care should be taken to
ensure that spri ng. h2. consol e. enabl ed is not setto t r ue in production.

Changing the H2 console’s path

By default the console will be available at / h2- consol e. You can customize the console’s path using
the spri ng. h2. consol e. pat h property.

1.4.8.BUILD-SNAPSHOT Spring Boot 101

https://docs.spring.io/spring/docs/4.3.9.RELEASE/javadoc-api/org/springframework/orm/jpa/support/OpenEntityManagerInViewInterceptor.html
https://www.h2database.com
https://www.h2database.com/html/quickstart.html#h2_console

Spring Boot Reference Guide

Securing the H2 console

When Spring Security is on the classpath and basic auth is enabled, the H2 console will be automatically
secured using basic auth. The following properties can be used to customize the security configuration:

e security.user.role
» security. basic.authorize-node

e security. basic. enabl ed

29.5 Using jOOQ

Java Object Oriented Querying (JOOQ) is a popular product from Data Geekery which generates Java
code from your database, and lets you build type safe SQL queries through its fluent API. Both the
commercial and open source editions can be used with Spring Boot.

Code Generation

In order to use JOOQ type-safe queries, you need to generate Java classes from your database schema.
You can follow the instructions in the JOOQ user manual. If you are using the j 00g- codegen- maven
plugin (and you also use the spri ng- boot - st art er - par ent “parent POM”) you can safely omit the
plugin’s <ver si on> tag. You can also use Spring Boot defined version variables (e.g. h2. ver si on)
to declare the plugin’s database dependency. Here's an example:

<pl ugi n>
<gr oupl d>or g. j ooqg</ gr oupl d>
<artifactl|d> oog- codegen- maven</artifactld>
<executions>

</ executi ons>
<dependenci es>
<dependency>
<gr oupl d>com h2dat abase</ gr oupl d>
<artifactld>h2</artifactld>
<ver si on>${ h2. ver si on} </ ver si on>
</ dependency>
</ dependenci es>
<confi gurati on>
<j dbc>
<driver>org. h2.Driver</driver>
<ur| >j dbc: h2: ~/ your dat abase</ ur | >
</jdbc>
<gener at or >

</ gener at or >
</ configuration>
</ pl ugi n>

Using DSLContext

The fluent API offered by jOOQ is initiated via the or g. j ooq. DSLCont ext interface. Spring Boot will
auto-configure a DSLCont ext as a Spring Bean and connect it to your application Dat aSour ce. To
use the DSLCont ext you can just @\ut owi r e it:

public class JoogExanpl e inplenents CommandLi neRunner {

private final DSLContext create

1.4.8.BUILD-SNAPSHOT Spring Boot 102

https://www.jooq.org/
https://www.datageekery.com/
https://www.jooq.org/doc/3.6/manual-single-page/#jooq-in-7-steps-step3

Spring Boot Reference Guide

publ i ¢ JoogExanpl e(DSLCont ext dsl Context) {
this.create = dsl Context;

}

Tip

The jOOQ manual tends to use a variable named cr eat e to hold the DSLCont ext , we've done
the same for this example.

You can then use the DSLCont ext to construct your queries:

public List<G egorianCal endar> aut hor sBor nAfter1980() {
return this.create. sel ect Fr onm{ AUTHOR)
. wher e(AUTHOR. DATE_OF_BI RTH. gr eat er Than(new Gregori anCal endar(, ,)))
. f et ch(AUTHOR. DATE_OF_BI RTH) ;

Customizing jOOQ

You can customize the SQL dialect used by jOOQ by setting spri ng. j 0oq. sql -di al ect in your
application. properties. For example, to specify Postgres you would add:

spring.j 0og. sql - di al ect =Post gr es

More advanced customizations can be achieved by defining your own @ean definitions which will be
used when the JOOQ Conf i gur at i on is created. You can define beans for the following jJOOQ Types:

e Connecti onProvi der

e Transacti onProvi der

Recor dMapper Provi der

» RecordLi st ener Provi der
* Execut elLi st ener Provi der
* VisitlListenerProvider

You can also create your own or g. j 00q. Conf i gur ati on @ean if you want to take complete control
of the jOOQ configuration.

1.4.8.BUILD-SNAPSHOT Spring Boot 103

Spring Boot Reference Guide

30. Working with NoSQL technologies

Spring Data provides additional projects that help you access a variety of NoSQL technologies
including MongoDB, Neo4J, Elasticsearch, Solr, Redis, Gemfire, Couchbase and Cassandra. Spring
Boot provides auto-configuration for Redis, MongoDB, Neo4j, Elasticsearch, Solr and Cassandra; you
can make use of the other projects, but you will need to configure them yourself. Refer to the appropriate
reference documentation at projects.spring.io/spring-data.

30.1 Redis

Redis is a cache, message broker and richly-featured key-value store. Spring Boot offers basic auto-
configuration for the Jedis client library and abstractions on top of it provided by Spring Data Redis. There
is aspring-boot-starter-data-redi s ‘Starter’ for collecting the dependencies in a convenient
way.

Connecting to Redis

You can inject an auto-configured Redi sConnecti onFact ory, Stri ngRedi sTenpl at e or vanilla
Redi sTenpl at e instance as you would any other Spring Bean. By default the instance will attempt to
connect to a Redis server using | ocal host: 6379:

public class MyBean {
private StringRedi sTenpl ate tenpl ate;

public MyBean(StringRedi sTenpl ate tenplate) {
this.tenplate = tenpl ate;

}

...

If you add a @ean of your own of any of the auto-configured types it will replace the default (except in
the case of Redi sTenpl at e the exclusion is based on the bean name ‘redisTemplate’ not its type). If
conmons- pool 2 is on the classpath you will get a pooled connection factory by default.

30.2 MongoDB

MongoDB is an open-source NoSQL document database that uses a JSON-like schema instead
of traditional table-based relational data. Spring Boot offers several conveniences for working with
MongoDB, including the spri ng- boot - st art er - dat a- nrongodb ‘Starter’.

Connecting to a MongoDB database

You can inject an auto-configured or g. spri ngf r anewor k. dat a. nrongodb. MongoDbFact ory to
access Mongo databases. By default the instance will attempt to connect to a MongoDB server using
the URL nongodb: / /1 ocal host/test:

i mport org.springframework. dat a. mongodb. MongoDbFact ory;
i nport com nongodb. DB;

public class MyBean {

1.4.8.BUILD-SNAPSHOT Spring Boot 104

https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-neo4j/
https://github.com/spring-projects/spring-data-elasticsearch/
https://projects.spring.io/spring-data-solr/
https://projects.spring.io/spring-data-redis/
https://projects.spring.io/spring-data-gemfire/
https://projects.spring.io/spring-data-couchbase/
https://projects.spring.io/spring-data-cassandra/
https://projects.spring.io/spring-data
https://redis.io/
https://github.com/xetorthio/jedis/
https://github.com/spring-projects/spring-data-redis
https://www.mongodb.com/

Spring Boot Reference Guide

private final MngoDbFactory nopngo;

publ i ¢ MyBean(MongoDbFact ory nopngo) {
t hi s. nongo = nongo;

}

...

public void exanple() {
DB db = npbngo. get Db();
1.

You can set spring. dat a. nongodb. uri property to change the URL and configure additional
settings such as the replica set:

spring. dat a. nongodb. uri =nongodb: / / user: secr et @ongol. exanpl e. com 12345, nongo2. exanpl e. com 23456/ t est

Alternatively, as long as you're using Mongo 2.x, specify a host /por t . For example, you might declare
the following in your appl i cati on. properti es:

spring. dat a. rongodb. host =nongoser ver
spri ng. dat a. nongodb. port =27017

Note

spring. dat a. nrongodb. host and spri ng. dat a. nongodb. port are not supported if you're
using the Mongo 3.0 Java driver. In such cases, spri ng. dat a. nongodb. uri should be used
to provide all of the configuration.

Tip

If spri ng. dat a. nongodb. port is not specified the default of 27017 is used. You could simply
delete this line from the sample above.

Tip

If you aren’t using Spring Data Mongo you can inject com nongodb. Mongo beans instead of
using MongoDbFact ory.

You can also declare your own MongoDbFact or y or Mongo bean if you want to take complete control
of establishing the MongoDB connection.

MongoTemplate

Spring Data Mongo provides a MongoTenpl at e class that is very similar in its design to Spring’s
JdbcTenpl at e. As with JdbcTenpl at e Spring Boot auto-configures a bean for you to simply inject:

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. dat a. nongodb. cor e. MongoTenpl at e;
i nport org.springfranework. stereotype. Conponent ;

public class MyBean {

1.4.8.BUILD-SNAPSHOT Spring Boot 105

https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoTemplate.html

Spring Boot Reference Guide

private final MngoTenpl ate nongoTenpl at e;

publ i c MyBean(MongoTenpl ate nongoTenpl ate) {
t hi s. nongoTenpl ate = nongoTenpl at e;

}

...

}

See the MongoOper at i ons Javadoc for complete details.
Spring Data MongoDB repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data MongoDB share the same common infrastructure; so
you could take the JPA example from earlier and, assuming that G t y is now a Mongo data class rather
than a JPA @nt i ty, it will work in the same way.

package com exanpl e. myapp. domai n;

i nport org.springfranework. dat a. donai n. *;
i nport org.springfranework. data.repository.*;

public interface CityRepository extends Repository<City, Long> {
Page<Ci ty> findAl | (Pageabl e pageabl e);

Gty findByNameAndCountryAl |l gnoringCase(String name, String country);

Tip

For complete details of Spring Data MongoDB, including its rich object mapping technologies,
refer to their reference documentation.

Embedded Mongo

Spring Boot offers auto-configuration for Embedded Mongo. To use it in your Spring Boot application
add a dependency on de. f | apdoodl e. enbed: de. f| apdoodl e. enbed. nongo.

The port that Mongo will listen on can be configured using the spri ng. dat a. nongodb. port
property. To use a randomly allocated free port use a value of zero. The MongoCd i ent created by
MongoAut oConf i gur at i on will be automatically configured to use the randomly allocated port.

If you have SLF4J on the classpath, output produced by Mongo will be automatically routed to a logger
named or g. spri ngf ramewor k. boot . aut oconfi gur e. nongo. enbedded. EnrbeddedMongo.

You can declare your own | MongodConfi g and | Runt i meConf i g beans to take control of the Mongo
instance’s configuration and logging routing.

30.3 Neo4;

Neo4j is an open-source NoSQL graph database that uses a rich data model of nodes related
by first class relationships which is better suited for connected big data than traditional rdbms

1.4.8.BUILD-SNAPSHOT Spring Boot 106

https://projects.spring.io/spring-data-mongodb/
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://neo4j.com/

Spring Boot Reference Guide

approaches. Spring Boot offers several conveniences for working with Neo4j, including the spri ng-
boot - st art er - dat a- neo4j ‘Starter’.

Connecting to a Neo4j database

You can inject an auto-configured Neo4j Sessi on, Sessi on or Neo4j Oper at i ons instance as you
would any other Spring Bean. By default the instance will attempt to connect to a Neo4j server using
| ocal host: 7474:

public class MyBean {
private final Neo4jTenpl ate neo4j Tenpl at e;
publ i c MyBean(Neo4j Tenpl at e neo4j Tenpl ate) {

t hi s. neo4j Tenpl at e = neo4j Tenpl at e;
}

N/

You can take full control of the configuration by adding a or g. neo4j . ogm confi g. Confi gurati on
@ean of your own. Also, adding a @ean of type Neo4j Oper at i ons disables the auto-configuration.

You can configure the user and credentials to use via the spri ng. dat a. neo4j . * properties:

spring. data. neodj . uri=http://ny-server: 7474
spring. dat a. neo4j . user nane=neo4j
spring. dat a. neo4j . passwor d=secr et

Using the embedded mode

If you add or g. neo4j : neo4j - ogm enbedded- dri ver to the dependencies of your application,
Spring Boot will automatically configure an in-process embedded instance of Neo4j that will
not persist any data when your application shuts down. You can explicitly disable that mode
using spri ng. dat a. neo4j . enbedded. enabl ed=f al se. You can also enable persistence for the
embedded mode:

spring. data. neodj.uri=file://var/tnp/graph.db

Neo4jSession

By default, the lifetime of the session is scope to the application. If you are running a web application
you can change it to scope or request easily:

spring. dat a. neo4j . sessi on. scope=sessi on

Spring Data Neo4j repositories
Spring Data includes repository support for Neo4,.

In fact, both Spring Data JPA and Spring Data Neo4j share the same common infrastructure; so you
could take the JPA example from earlier and, assuming that Ci t y is now a Neo4j OGM @\odeEnt ity
rather than a JPA @nti ty, it will work in the same way.

1.4.8.BUILD-SNAPSHOT Spring Boot 107

Spring Boot Reference Guide

Tip
You can customize entity scanning locations using the @nt i t yScan annotation.

To enable repository support (and optionally support for @r ansact i onal), add the following two
annotations to your Spring configuration:

@nabl eTr ansact i onManagenent

Repository example

package com exanpl e. myapp. domai n;

i nport org.springframework. dat a. domai n. *;
i nport org.springfranework. data.repository.*;

public interface G tyRepository extends G aphRepository<Gty> {
Page<Ci ty> findAl | (Pageabl e pageabl e);

Gty findByNameAndCountry(String name, String country);

Tip

For complete details of Spring Data Neo4j, including its rich object mapping technologies, refer
to their reference documentation.

30.4 Gemfire

Spring Data Gemfire provides convenient Spring-friendly tools for accessing the Pivotal Gemfire data
management platform. Thereisa spri ng- boot - st art er - dat a- genf i r e ‘Starter’ for collecting the
dependencies in a convenient way. There is currently no auto-configuration support for Gemfire, but you
can enable Spring Data Repositories with a single annotation (@nabl eGenf i r eReposi t ori es).

30.5 Solr

Apache Solr is a search engine. Spring Boot offers basic auto-configuration for the Solr 5 client library
and abstractions on top of it provided by Spring Data Solr. There is a spri ng- boot - st art er - dat a-
sol r ‘Starter’ for collecting the dependencies in a convenient way.

Connecting to Solr

You caninject an auto-configured Sol r Cl i ent instance as you would any other Spring bean. By default
the instance will attempt to connect to a server using | ocal host : 8983/ sol r:

public class M/Bean {
private Solrdient solr;

public MyBean(Solrdient solr) {
this.solr = solr;

}

1.4.8.BUILD-SNAPSHOT Spring Boot 108

https://projects.spring.io/spring-data-neo4j/
https://github.com/spring-projects/spring-data-gemfire
https://pivotal.io/big-data/pivotal-gemfire#details
https://github.com/spring-projects/spring-data-gemfire/blob/master/src/main/java/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.java
https://lucene.apache.org/solr/
https://github.com/spring-projects/spring-data-solr
http://localhost:8983/solr

Spring Boot Reference Guide

If you add a @ean of your own of type Sol r Cl i ent it will replace the default.

Spring Data Solr repositories

Spring Data includes repository support for Apache Solr. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data Solr share the same common infrastructure; so you could
take the JPA example from earlier and, assuming that Ci ty is now a @bol r Docunent class rather
than a JPA @nt i ty, it will work in the same way.

Tip

For complete details of Spring Data Solr, refer to their reference documentation.

30.6 Elasticsearch

Elasticsearch is an open source, distributed, real-time search and analytics engine. Spring Boot offers
basic auto-configuration for the Elasticsearch and abstractions on top of it provided by Spring Data
Elasticsearch. Thereis aspri ng- boot - st art er - dat a- el asti csear ch ‘Starter’ for collecting the
dependencies in a convenient way. Spring Boot also supports Jest.

Connecting to Elasticsearch using Jest

If you have Jest on the classpath, you can inject an auto-configured Jest Cl i ent targeting
ocal host : 9200 by default. You can further tune how the client is configured:

spring. el asticsearch.jest.uris=https://search. exanpl e. com 9200
spring. el asticsearch.jest.read-ti meout =10000

spring. el asticsearch. jest. user nane=user

spring. el asti csearch. j est. password=secr et

To take full control over the registration, define a Jest Cl i ent bean.

Connecting to Elasticsearch using Spring Data

You can inject an auto-configured El asti csear chTenpl at e or Elasticsearch Cl i ent instance as
you would any other Spring Bean. By default the instance will embed a local in-memory server (a Node
in Elasticsearch terms) and use the current working directory as the home directory for the server. In
this setup, the first thing to do is to tell Elasticsearch where to store its files:

spring. dat a. el asti csearch. properties. pat h. hone=/f oo/ bar

Alternatively, you can switch to a remote server (i.e. a TransportCient) by setting
spring. dat a. el asti csear ch. cl ust er - nodes to a comma-separated ‘host:port’ list.

spring. dat a. el asti csearch. cl ust er - nodes=l ocal host : 9300

public class MyBean {

1.4.8.BUILD-SNAPSHOT Spring Boot 109

https://projects.spring.io/spring-data-solr/
https://www.elastic.co/
https://github.com/spring-projects/spring-data-elasticsearch
https://github.com/spring-projects/spring-data-elasticsearch
https://github.com/searchbox-io/Jest
http://localhost:9200

Spring Boot Reference Guide

private El asticsearchTenpl ate tenpl ate;

public MyBean(El asti csearchTenpl ate tenpl ate) {
this.tenplate = tenpl ate;
}

...

If you add a @ean of your own of type El asti csear chTenpl at e it will replace the default.

Spring Data Elasticsearch repositories

Spring Data includes repository support for Elasticsearch. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data Elasticsearch share the same common infrastructure;
so you could take the JPA example from earlier and, assuming that Gty is now an Elasticsearch
@ocunent class rather than a JPA @nti ty, it will work in the same way.

Tip

For complete details of Spring Data Elasticsearch, refer to their reference documentation.

30.7 Cassandra

Cassandra is an open source, distributed database management system designed to handle large
amounts of data across many commodity servers. Spring Boot offers auto-configuration for Cassandra
and abstractions on top of it provided by Spring Data Cassandra. There isa spri ng- boot -starter-
dat a- cassandr a ‘Starter’ for collecting the dependencies in a convenient way.

Connecting to Cassandra

You can inject an auto-configured CassandraTenpl ate or a Cassandra Sessi on instance as
you would with any other Spring Bean. The spri ng. dat a. cassandr a. * properties can be used
to customize the connection. Generally you will provide keyspace- name and cont act - poi nts
properties:

spring. dat a. cassandr a. keyspace- nane=nykeyspace
spring. dat a. cassandr a. cont act - poi nt s=cassandr ahost 1, cassandr ahost 2

public class MyBean {
private CassandraTenpl ate tenpl at e;
publ i c MyBean(CassandraTenpl ate tenpl ate) {

this.tenplate = tenplate;

}

...

If you add a @ean of your own of type Cassandr aTenpl at e it will replace the default.

1.4.8.BUILD-SNAPSHOT Spring Boot 110

https://docs.spring.io/spring-data/elasticsearch/docs/
https://cassandra.apache.org/
https://github.com/spring-projects/spring-data-cassandra

Spring Boot Reference Guide

Spring Data Cassandra repositories

Spring Data includes basic repository support for Cassandra. Currently this is more limited than the JPA
repositories discussed earlier, and will need to annotate finder methods with @uery.

Tip

For complete details of Spring Data Cassandra, refer to their reference documentation.

30.8 Couchbase

Couchbase is an open-source, distributed multi-model NoSQL document-oriented database that
is optimized for interactive applications. Spring Boot offers auto-configuration for Couchbase and
abstractions on top of it provided by Spring Data Couchbase. There is a spri ng- boot -starter-
dat a- couchbase ‘Starter’ for collecting the dependencies in a convenient way.

Connecting to Couchbase

You can very easily geta Bucket and C ust er by adding the Couchbase SDK and some configuration.
The spri ng. couchbase. * properties can be used to customize the connection. Generally you will
provide the bootstrap hosts, bucket name and password:

spring. couchbase. boot st rap- host s=ny- host -1, 192. 168. 1. 123
spring. couchbase. bucket . name=ny- bucket
spring. couchbase. bucket . passwor d=secr et

Tip

You need to provide at least the bootstrap host(s), in which case the bucket name
is default and the password is the empty String. Alternatively, you can define your
own org. spri ngframewor k. dat a. couchbase. confi g. CouchbaseConfi gurer @ean
to take control over the whole configuration.

It is also possible to customize some of the CouchbaseEnvi r onnent settings. For instance the
following configuration changes the timeout to use to open a new Bucket and enables SSL support:

spring. couchbase. env. ti meout s. connect =3000
spring. couchbase. env. ssl . key-store=/1ocati on/ of / keystore. jks
spring. couchbase. env. ssl . key- st or e- passwor d=secr et

Check the spri ng. couchbase. env. * properties for more details.

Spring Data Couchbase repositories

Spring Data includes repository support for Couchbase. For complete details of Spring Data Couchbase,
refer to their reference documentation.

You can inject an auto-configured CouchbaseTenpl ate instance as you would with
any other Spring Bean as long as a default CouchbaseConfigurer is available
(that happens when you enable the couchbase support as explained above). If you
want to bypass the auto-configuration for Spring Data Couchbase, provide your own
org. spri ngfranmewor k. dat a. couchbase. confi g. Abstract CouchbaseDat aConfi gurati on
implementation.

1.4.8.BUILD-SNAPSHOT Spring Boot 111

https://docs.spring.io/spring-data/cassandra/docs/
https://www.couchbase.com/
https://github.com/spring-projects/spring-data-couchbase
https://docs.spring.io/spring-data/couchbase/docs/current/reference/html/

Spring Boot Reference Guide

public class MyBean {
private final CouchbaseTenpl ate tenpl ate;
publ i c MyBean(CouchbaseTenpl ate tenpl ate) {

this.tenplate = tenplate;
}

Il

If you add a @ean of your own of type CouchbaseTenpl at e named couchbaseTenpl at e it will
replace the default.

1.4.8.BUILD-SNAPSHOT Spring Boot 112

Spring Boot Reference Guide

31. Caching

The Spring Framework provides support for transparently adding caching to an application. At its core,
the abstraction applies caching to methods, reducing thus the number of executions based on the
information available in the cache. The caching logic is applied transparently, without any interference
to the invoker. Spring Boot auto-configures the cache infrastructure as long as the caching support is
enabled via the @nabl eCachi ng annotation.

Note

Check the relevant section of the Spring Framework reference for more details.

In a nutshell, adding caching to an operation of your service is as easy as adding the relevant annotation
to its method:

i nport org.springframework. cache. annot ati on. Cacheabl e
i mport org.springframework. stereotype. Conponent ;

public class MathService {

public int conputePiDecimal (int i) {
1.
}

This example demonstrates the use of caching on a potentially costly operation. Before invoking
conput ePi Deci nal , the abstraction will look for an entry in the pi Deci nal s cache matching the i
argument. If an entry is found, the content in the cache is immediately returned to the caller and the
method is not invoked. Otherwise, the method is invoked and the cache is updated before returning
the value.

Note

You can also use the standard JSR-107 (JCache) annotations (e.g. @acheResult)
transparently. We strongly advise you however to not mix and match them.

If you do not add any specific cache library, Spring Boot will auto-configure a Simple provider that uses
concurrent maps in memory. When a cache is required (i.e. pi Deci nmal s in the example above), this
provider will create it on-the-fly for you. The simple provider is not really recommended for production
usage, but it's great for getting started and making sure that you understand the features. When you
have made up your mind about the cache provider to use, please make sure to read its documentation
to figure out how to configure the caches that your application uses. Practically all providers require you
to explicitly configure every cache that you use in the application. Some offers a way to build default
caches that you need to specify with the spri ng. cache. cache- nanes property.

Tip

It is also possible to update or evict data from the cache transparently.

1.4.8.BUILD-SNAPSHOT Spring Boot 113

https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#cache
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#cache-annotations-put
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#cache-annotations-evict

Spring Boot Reference Guide

Note

If you are using the cache infrastructure with beans that are not interface-based, make sure to
enable the pr oxyTar get C ass attribute of @nabl eCachi ng.

31.1 Supported cache providers

The cache abstraction does not provide an actual store and relies on abstraction materialized by
the or g. spri ngf ranewor k. cache. Cache and or g. spri ngf r amewor k. cache. CacheManager
interfaces.

If you haven't defined a bean of type CacheManager or a CacheResol ver named cacheResol ver
(see Cachi ngConfi gur er), Spring Boot tries to detect the following providers (in this order):

» Generic

» JCache (JSR-107) (EhCache 3, Hazelcast, Infinispan, etc)

 EhCache 2.x
» Hazelcast

* Infinispan

* Couchbase

Tip

It is also possible to force the cache provider to use via the spri ng. cache. t ype property. Use
this property if you need to disable caching altogether in certain environment (e.g. tests).

Tip

Use the spri ng- boot - st art er - cache ‘Starter’ to quickly add basic caching dependencies.
The starter bringsinspri ng- cont ext - support : if you are adding dependencies manually, you
must include spri ng- cont ext - support in order to use the JCache, EhCache 2.x or Guava
support.

If the CacheManager is auto-configured by Spring Boot, you can further tune its configuration before
it is fully initialized by exposing a bean implementing the CacheManager Cust oni zer interface. The
following sets a flag to say that null values should be passed down to the underlying map.

publ i ¢ CacheManager Cust omi zer <Concur r ent MapCacheManager > cacheManager Cust omi zer () {
return new CacheManager Cust omi zer <Concur r ent MapCacheManager >() {

1.4.8.BUILD-SNAPSHOT Spring Boot 114

Spring Boot Reference Guide

public voi d custom ze(Concurrent MapCacheManager cacheManager) {
cacheManager. set Al | owNul | Val ues(fal se);
}

Note

In the example above, an auto-configured Concur r ent MapCacheManager is expected. If that
is not the case (either you provided your own config or a different cache provider was auto-
configured), the customizer won't be invoked at all. You can have as many customizers as you
want and you can also order them as usual using @ der or Or der ed.

Generic

Generic caching is used if the context defines at least one or g. spri ngf ranewor k. cache. Cache
bean. A CacheManager wrapping all beans of that type is created.

JCache (JSR-107)

JCache is bootstrapped via the presence of a j avax. cache. spi. Cachi ngProvi der on the
classpath (i.e. a JSR-107 compliant caching library) and the JCacheCacheManager provided by the
spring-boot - st art er - cache ‘Starter’. There are various compliant libraries out there and Spring
Boot provides dependency management for Ehcache 3, Hazelcast and Infinispan. Any other compliant
library can be added as well.

It might happen that more than one provider is present, in which case the provider must be explicitly
specified. Even if the JSR-107 standard does not enforce a standardized way to define the location of
the configuration file, Spring Boot does its best to accommodate with implementation details.

Only necessary if nore than one provider is present
spring. cache.jcache. provi der=com acne. MyCachi ngPr ovi der
spring. cache. jcache. confi g=cl asspat h: acne. xm

Note

Since a cache library may offer both a native implementation and JSR-107 support Spring Boot
will prefer the JSR-107 support so that the same features are available if you switch to a different
JSR-107 implementation.

Tip

Spring Boot has a general support for Hazelcast. If a single Hazel castl nstance
is available, it is automatically reused for the CacheManager as well unless the
spring. cache. j cache. confi g property is specified.

There are several ways to customize the underlying j avax. cache. cacheManager :

» Caches can be created on startup via the spri ng. cache. cache- nanes property. If a custom
j avax. cache. confi gurati on. Confi gurati on bean is defined, it is used to customize them.

e org.springfranmework. boot . aut oconfi gure. cache. JCacheManager Cust om zer beans
are invoked with the reference of the CacheManager for full customization.

1.4.8.BUILD-SNAPSHOT Spring Boot 115

Spring Boot Reference Guide

Tip

If a standard j avax. cache. CacheManager bean is defined, it is wrapped automatically in a
or g. spri ngframewor k. cache. CacheManager implementation that the abstraction expects.
No further customization is applied on it.

EhCache 2.x

EhCache 2.x is used if a file named ehcache. xm can be found at the root of the classpath. If EhCache
2.x, the EhCacheCacheManager provided by the spri ng- boot - st art er - cache ‘Starter’ and such
file is present it is used to bootstrap the cache manager. An alternate configuration file can be provide
a well using:

spring. cache. ehcache. confi g=cl asspat h: confi g/ anot her - confi g. xm

Hazelcast

Spring Boot has a general support for Hazelcast. If a Hazel cast | nst ance has been auto-configured,
it is automatically wrapped in a CacheManager .

If for some reason you need a different Hazel cast | nst ance for caching, you can request Spring Boot
to create a separate one that will be only used by the CacheManager :

spring. cache. hazel cast. confi g=cl asspat h: confi g/ ny- cache- hazel cast. xm

Tip

If a separate Hazel cast | nst ance is created that way, it is not registered in the application
context.

Infinispan

Infinispan has no default configuration file location so it must be specified explicitly (or the default
bootstrap is used).

spring. cache. i nfinispan.config=infinispan.xm

Caches can be created on startup via the spring. cache. cache- names property. If a custom
Confi gurati onBui | der bean is defined, it is used to customize them.

Couchbase

If the Couchbase java client and the couchbase- spri ng- cache implementation are available and
Couchbase is configured, a CouchbaseCacheManager will be auto-configured. It is also possible
to create additional caches on startup using the spri ng. cache. cache- nanes property. These will
operate on the Bucket that was auto-configured. You can also create additional caches on another
Bucket using the customizer: assume you need two caches on the "main” Bucket (f oo and bar) and
one bi z cache with a custom time to live of 2sec on the anot her Bucket . First, you can create the
two first caches simply via configuration:

spring. cache. cache- nanes=f oo, bar

Then define this extra @onf i gur at i on to configure the extra Bucket and the bi z cache:

1.4.8.BUILD-SNAPSHOT Spring Boot 116

Spring Boot Reference Guide

public class CouchbaseCacheConfiguration {
private final Custer cluster;

publ i ¢ CouchbaseCacheConfi guration(C uster cluster) {
this.cluster = cluster;

}

publ i c Bucket anot herBucket () {
return this.cluster.openBucket ("another", "secret");

}

publ i ¢ CacheManager Cust omi zer <CouchbaseCacheManager > cacheManager Cust om zer () {
return c -> {
c. prepareCache("bi z", CacheBuil der. new nstance(anot her Bucket ())
.withExpirationlnMIlis());

This sample configuration reuses the Cl ust er that was created via auto-configuration.

Redis

If Redis is available and configured, the Redi sCacheManager is auto-configured. It is also possible to
create additional caches on startup using the spri ng. cache. cache- nanes property.

Note

By default, a key prefix is added to prevent that if two separate caches use the same key, Redis
would have overlapping keys and be likely to return invalid values. We strongly recommend to
keep this setting enabled if you create your own Redi sCacheManager .

Caffeine

Caffeine is a Java 8 rewrite of Guava’s cache and will supersede the Guava support in Spring Boot 2.0.
If Caffeine is present, a Caf f ei neCacheManager (provided by the spri ng- boot -starter-cache
‘Starter’) is auto-configured. Caches can be created on startup using the spri ng. cache. cache-
nanes property and customized by one of the following (in this order):

1. A cache spec defined by spri ng. cache. caf f ei ne. spec
2. Acom gi t hub. benmanes. caf f ei ne. cache. Caf f ei neSpec bean is defined
3. Acom gi t hub. benmanes. caf f ei ne. cache. Caf f ei ne bean is defined

For instance, the following configuration creates a f oo and bar caches with a maximum size of 500
and a time to live of 10 minutes

spring. cache. cache- nanes=f oo, bar
spring. cache. caf f ei ne. spec=maxi munsi ze=500, expi r eAf t er Access=600s

Besides, if a com git hub. benmanes. caf f ei ne. cache. CacheLoader bean is defined, it is
automatically associated to the Caff ei neCacheManager. Since the CachelLoader is going
to be associated to all caches managed by the cache manager, it must be defined as
CachelLoader <Ohj ect, Ohj ect >. Any other generic type will be ignored by the auto-configuration.

1.4.8.BUILD-SNAPSHOT Spring Boot 117

Spring Boot Reference Guide

Guava

If Guava is present, a GuavaCacheManager is auto-configured. Caches can be created on startup
using the spri ng. cache. cache- names property and customized by one of the following (in this
order):

1. A cache spec defined by spri ng. cache. guava. spec
2. Acom googl e. conmon. cache. CacheBui | der Spec bean is defined
3. Acom googl e. common. cache. CacheBui | der bean is defined

For instance, the following configuration creates a f oo and bar caches with a maximum size of 500
and a time to live of 10 minutes

spring. cache. cache- nanes=f oo, bar
spring. cache. guava. spec=maxi munsi ze=500, expi r eAf t er Access=600s

Besides, if a com googl e. common. cache. CacheLoader bean is defined, it is automatically
associated to the GuavaCacheManager . Since the CachelLoader is going to be associated to all
caches managed by the cache manager, it must be defined as CacheLoader <(hj ect, Obj ect >.
Any other generic type will be ignored by the auto-configuration.

Simple

If none of the other providers can be found, a simple implementation using a Concur r ent HashMap as
cache store is configured. This is the default if no caching library is present in your application. Caches
are created on-the-fly by default but you can restrict the list of available caches using the cache- nanes
property. For instance, if you you want only a f oo and bar caches:

spring. cache. cache- nanes=f oo, bar

If you do this and your application uses a cache not listed then it will fail at runtime when the cache
is needed, but not on startup. This is similar to the way the "real" cache providers behave if you use
an undeclared cache.

None

When @Enabl eCachi ng is present in your configuration, a suitable cache configuration is expected as
well. If you need to disable caching altogether in certain environments, force the cache type to none
to use a no-op implementation:

spring. cache. t ype=none

1.4.8.BUILD-SNAPSHOT Spring Boot 118

Spring Boot Reference Guide

32. Messaging

The Spring Framework provides extensive support for integrating with messaging systems: from
simplified use of the JMS API using Jnrs Tenpl at e to a complete infrastructure to receive messages
asynchronously. Spring AMQP provides a similar feature set for the ‘Advanced Message Queuing
Protocol’ and Spring Boot also provides auto-configuration options for Rabbit Tenpl ate and
RabbitMQ. There is also support for STOMP messaging natively in Spring WebSocket and Spring Boot
has support for that through starters and a small amount of auto-configuration.

32.1 IJMS

The javax.jns. ConnectionFactory interface provides a standard method of -creating
a javax.jns. Connection for interacting with a JMS broker. Although Spring needs a
Connect i onFact or y to work with JMS, you generally won’t need to use it directly yourself and you can
instead rely on higher level messaging abstractions (see the relevant section of the Spring Framework
reference documentation for details). Spring Boot also auto-configures the necessary infrastructure to
send and receive messages.

ActiveMQ support

Spring Boot can also configure a Connect i onFact or y when it detects that ActiveMQ is available on
the classpath. If the broker is present, an embedded broker is started and configured automatically (as
long as no broker URL is specified through configuration).

Note

If you are using spri ng- boot - starter-acti veng the necessary dependencies to connect
or embed an ActiveMQ instance are provided, as well as the Spring infrastructure to integrate
with JMS.

ActiveMQ configuration is controlled by external configuration properties in spri ng. acti veny. *. For
example, you might declare the following section in appl i cati on. properti es:

spring. activeng. broker-url =tcp://192. 168. 1. 210: 9876
spring. activenyg. user =adm n
spring. acti veny. passwor d=secr et

You can also pool JMS resources by adding a dependency to or g. apache. acti veny: acti veng-
pool and configure the Pool edConnect i onFact ory accordingly:

spring. activeny. pool . enabl ed=true
spring. activeny. pool . max- connect i ons=50

See Act i veMQPr operti es for more of the supported options.

By default, ActiveMQ creates a destination if it does not exist yet, so destinations are resolved against
their provided names.

Artemis support

Apache Artemis was formed in 2015 when HornetQ was donated to the Apache Foundation. Make sure
to use that rather than the deprecated HornetQ support.

1.4.8.BUILD-SNAPSHOT Spring Boot 119

https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#jms
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQProperties.java

Spring Boot Reference Guide

Note

You should not try and use Artemis and HornetQ at the same time.

Spring Boot can auto-configure a Connect i onFact ory when it detects that Artemis is available on
the classpath. If the broker is present, an embedded broker is started and configured automatically
(unless the mode property has been explicitly set). The supported modes are: enbedded (to make
explicit that an embedded broker is required and should lead to an error if the broker is not available in
the classpath), and nat i ve to connect to a broker using the net t y transport protocol. When the latter
is configured, Spring Boot configures a Connect i onFact ory connecting to a broker running on the
local machine with the default settings.

Note

If you are using spri ng- boot - start er-artem s the necessary dependencies to connect to
an existing Artemis instance are provided, as well as the Spring infrastructure to integrate with
JMS. Adding or g. apache. acti venq: artem s-j ns-server to your application allows you
to use the embedded mode.

Artemis configuration is controlled by external configuration properties in spring. artem s. *. For
example, you might declare the following section in appl i cati on. properti es:

spring.artem s. node=native
spring.artem s. host =192. 168. 1. 210
spring.artem s. port=9876
spring.artem s. user=adm n

spring. arten s. passwor d=secr et

When embedding the broker, you can choose if you want to enable persistence, and
the list of destinations that should be made available. These can be specified as a
comma-separated list to create them with the default options; or you can define bean(s)
of type or g. apache. activeng. artem s.jns. server. confi g. IMSQueueConfi gurati on or
org. apache. acti veny. artem s. j ms. server. confi g. Topi cConfi gurati on, for advanced
gueue and topic configurations respectively.

See Art emi sProperti es for more of the supported options.

No JNDI lookup is involved at all and destinations are resolved against their names, either using the
‘name’ attribute in the Artemis configuration or the names provided through configuration.

HornetQ support

Note

HornetQ is deprecated in 1.4, consider migrating to artemis

Spring Boot can auto-configure a Connect i onFact ory when it detects that HornetQ is available on
the classpath. If the broker is present, an embedded broker is started and configured automatically
(unless the mode property has been explicitly set). The supported modes are: enbedded (to make
explicit that an embedded broker is required and should lead to an error if the broker is not available in
the classpath), and nat i ve to connect to a broker using the net t y transport protocol. When the latter
is configured, Spring Boot configures a Connect i onFact ory connecting to a broker running on the
local machine with the default settings.

1.4.8.BUILD-SNAPSHOT Spring Boot 120

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/artemis/ArtemisProperties.java

Spring Boot Reference Guide

Note

If you are using spri ng- boot - st art er - hor net q the necessary dependencies to connect to
an existing HornetQ instance are provided, as well as the Spring infrastructure to integrate with
JMS. Adding or g. hor net q: hor net g-j ns- server to your application allows you to use the
embedded mode.

HornetQ configuration is controlled by external configuration properties in spri ng. hor net q. *. For
example, you might declare the following section in appl i cati on. properties:

spring. hor net g. node=nati ve
spring. hornet g. host =192. 168. 1. 210
spring. hor net g. port=9876

spring. hornet g. user =adm n

spring. hor net g. passwor d=secr et

When embedding the broker, you can choose if you want to enable persistence,
and the list of destinations that should be made available. These can be specified
as a comma-separated list to create them with the default options; or you can
define bean(s) of type org.hornetq.jns.server.config.JMSQueueConfiguration or
org. hornetq.jnms.server.config. Topi cConfiguration, for advanced queue and topic
configurations respectively.

See Hor net QPr operti es for more of the supported options.

No JNDI lookup is involved at all and destinations are resolved against their names, either using the
‘name’ attribute in the HornetQ configuration or the names provided through configuration.

Using a JNDI ConnectionFactory

If you are running your application in an Application Server Spring Boot will attempt to locate
a JMS Connecti onFact ory using JNDI. By default the locations j ava:/JnmsXA and j ava:/
XAConnect i onFact ory will be checked. You can use the spri ng. j ns. j ndi - name property if you
need to specify an alternative location:

spring.jms.jndi-nanme=j ava: / MyConnect i onFactory

Sending a message

Spring’s Jns Tenpl at e is auto-configured and you can autowire it directly into your own beans:

i nport org.springfranmework. beans. factory. annot ati on. Aut ow r ed;
i mport org.springframework.jns.core.JnsTenpl at e;
i nport org.springfranework. st ereotype. Conponent ;

public class MyBean {

private final JnmsTenpl ate jnmsTenpl ate;

public MyBean(JnsTenpl ate jnsTenpl ate) {

this.jnmsTenpl ate = jnsTenpl at e;
}

...

1.4.8.BUILD-SNAPSHOT Spring Boot 121

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/hornetq/HornetQProperties.java

Spring Boot Reference Guide

Note

JnsMessagi ngTenpl at e can be injected in a similar manner. If a Dest i nati onResol ver or
MessageConver t er beans are defined, they are associated automatically to the auto-configured
JnsTenpl at e.

Receiving a message

When the JMS infrastructure is present, any bean can be annotated with @nsLi st ener to create
a listener endpoint. If no JnsLi st ener Cont ai ner Fact ory has been defined, a default one is
configured automatically. If a Desti nati onResol ver or MessageConvert er beans are defined,
they are associated automatically to the default factory.

The default factory is transactional by default. If you are running in an infrastructure where a
Jt aTransacti onManager is present, it will be associated to the listener container by default. If not,
the sessi onTr ansact ed flag will be enabled. In that latter scenario, you can associate your local
data store transaction to the processing of an incoming message by adding @tr ansact i onal on your
listener method (or a delegate thereof). This will make sure that the incoming message is acknowledged
once the local transaction has completed. This also includes sending response messages that have
been performed on the same JMS session.

The following component creates a listener endpoint on the soneQueue destination:

public class MyBean {

public void processMessage(String content) {
...

}

Tip

Check the Javadoc of @nabl eJns for more details.

If you need to create more JnsLi st ener Cont ai ner Fact or y instances or if you want to override the
default, Spring Boot provides a Def aul t JnsLi st ener Cont ai ner Fact or yConf i gur er that you
can use to initialize a Def aul t IJnsLi st ener Cont ai ner Fact or y with the same settings as the one
that is auto-configured.

For instance, the following exposes another factory that uses a specific MessageConverter:

static class JmsConfiguration {

publ i c Defaul t JnmsLi st ener Cont ai ner Fact ory nyFact ory(
Def aul t JnsLi st ener Cont ai ner Fact or yConfi gurer configurer) {
Def aul t JnsLi st ener Cont ai ner Factory factory =
new Def aul t InsLi st ener Cont ai ner Factory();
configurer.configure(factory, connectionFactory());
factory. set MessageConvert er (nyMessageConverter());
return factory;

1.4.8.BUILD-SNAPSHOT Spring Boot 122

https://docs.spring.io/spring/docs/4.3.9.RELEASE/javadoc-api/org/springframework/jms/core/JmsMessagingTemplate.html
https://docs.spring.io/spring/docs/4.3.9.RELEASE/javadoc-api/org/springframework/jms/annotation/EnableJms.html

Spring Boot Reference Guide

Then you can use in any @nsLi st ener -annotated method as follows:

public class MyBean {

@nsLi st ener (destinati on = "soneQueue”, contai ner Factory="nyFactory")
public void processMessage(String content) {
I

}

32.2 AMQP

The Advanced Message Queuing Protocol (AMQP) is a platform-neutral, wire-level protocol for
message-oriented middleware. The Spring AMQP project applies core Spring concepts to the
development of AMQP-based messaging solutions. Spring Boot offers several conveniences for working
with AMQP via RabbitMQ, including the spri ng- boot - st art er - angp ‘Starter’.

RabbitMQ support

RabbitMQ is a lightweight, reliable, scalable and portable message broker based on the AMQP protocol.
Spring uses Rabbi t MQto communicate using the AMQP protocol.

RabbitMQ configuration is controlled by external configuration properties in spri ng. r abbi t ng. *. For
example, you might declare the following section in appl i cati on. properti es:

spring. rabbi t ng. host =l ocal host
spring. rabbi t ng. port =5672
spring. rabbi t ng. user name=adm n
spring. rabbi t ng. passwor d=secr et

See Rabbi t Pr operti es for more of the supported options.

Tip

Check Understanding AMQP, the protocol used by RabbitMQ for more details.

Sending a message

Spring’s AngpTenpl at e and AngpAdmi n are auto-configured and you can autowire them directly into
your own beans:

i nport org.springfranework. angp. cor e. AngpAdmi n;

i mport org.springfranmework. angp. core. AngpTenpl at e;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i mport org. springframework. st ereot ype. Conponent ;

public class MyBean {
private final AmgpAdm n angpAdmi n;

private final AmgpTenpl ate amgpTenpl ate;

publ i c MyBean(AngpAdnmi n angpAdmi n, AngpTenpl ate angpTenpl ate) {
t hi s. angpAdnmi n = angpAdni n;
this.amgpTenpl ate = angpTenpl at e;

1.4.8.BUILD-SNAPSHOT Spring Boot 123

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java
https://spring.io/blog/2010/06/14/understanding-amqp-the-protocol-used-by-rabbitmq/

Spring Boot Reference Guide

Note

Rabbi t Messagi ngTenpl at e can be injected in a similar manner. If a MessageConvert er
bean is defined, it is associated automatically to the auto-configured AngpTenpl at e.

Any or g. spri ngf ramewor k. angp. cor e. Queue thatis defined as a bean will be automatically used
to declare a corresponding queue on the RabbitMQ instance if necessary.

You can enable retries on the AngpTenpl at e to retry operations, for example in the event the broker
connection is lost. Retries are disabled by default.

Receiving a message

When the Rabbit infrastructure is present, any bean can be annotated with @Rabbi t Li st ener to create
a listener endpoint. If no Rabbi t Li st ener Cont ai ner Fact ory has been defined, a default one is
configured automatically. If a MessageConvert er beans is defined, it is associated automatically to
the default factory.

The following component creates a listener endpoint on the soneQueue queue:

public class MyBean {

public void processMessage(String content) {
1o

}

Tip
Check the Javadoc of @nabl eRabbi t for more details.

If you need to create more Rabbi t Li st ener Cont ai ner Fact or y instances or if you want to override
the default, Spring Boot provides a Si npl eRabbi t Li st ener Cont ai ner Fact or yConf i gur er that
you can use to initialize a Si npl eRabbi t Li st ener Cont ai ner Fact or y with the same settings as
the one that is auto-configured.

For instance, the following exposes another factory that uses a specific MessageConverter:

static class RabbitConfiguration {

publ i c Si npl eRabbi t Li st ener Cont ai ner Fact ory myFact ory(
Si npl eRabbi t Li st ener Cont ai ner Fact oryConfi gurer configurer) {
Si npl eRabbi t Li st ener Cont ai ner Factory factory =
new Si npl eRabbi t Li st ener Cont ai ner Fact ory() ;
configurer.configure(factory, connectionFactory);
factory. set MessageConvert er (nyMessageConverter());
return factory;

1.4.8.BUILD-SNAPSHOT Spring Boot 124

https://docs.spring.io/spring-amqp/docs/current/api/org/springframework/amqp/rabbit/core/RabbitMessagingTemplate.html
https://docs.spring.io/spring-amqp/docs/current/api/org/springframework/amqp/rabbit/annotation/EnableRabbit.html

Spring Boot Reference Guide

Then you can use in any @Rabbi t Li st ener -annotated method as follows:

public class MyBean {

@Rrabbi t Li st ener (queues = "sonmeQueue", contai ner Factory="nyFactory")
public void processMessage(String content) {

I
}

You can enable retries to handle situations where your listener throws an exception. When retries are
exhausted, the message will be rejected and either dropped or routed to a dead-letter exchange if the
broker is configured so. Retries are disabled by default.

Important

If retries are not enabled and the listener throws an exception, by default the
delivery will be retried indefinitely. You can modify this behavior in two ways; set the
def aul t RequeueRej ect ed property to f al se and zero re-deliveries will be attempted; or,
throw an AngpRej ect AndDont RequeueExcept i on to signal the message should be rejected.
This is the mechanism used when retries are enabled and the maximum delivery attempts are

reached.

1.4.8.BUILD-SNAPSHOT Spring Boot 125

Spring Boot Reference Guide

33. Calling REST services

If you need to call remote REST services from your application, you can use Spring Framework’s
Rest Tenpl at e class. Since Rest Tenpl at e instances often need to be customized before being
used, Spring Boot does not provide any single auto-configured Rest Tenpl at e bean. It does,
however, auto-configure a Rest Tenpl at eBui | der which can be used to create Rest Tenpl at e
instances when needed. The auto-configured Rest Tenpl at eBui | der will ensure that sensible
Ht t pMessageConvert er s are applied to Rest Tenpl at e instances.

Here’s a typical example:

public class MyBean {
private final RestTenplate restTenplate;

publ i c MyBean(Rest Tenpl at eBui | der rest Tenpl at eBui | der) {
this.restTenpl ate = rest Tenpl at eBui | der. bui I d();
}

public Details sonmeRestCall (String nane) {
return this.restTenpl ate. get For Obj ect ("/{nane}/details", Details.class, nane);

}

Tip

Rest Tenpl at eBui | der includes a number of useful methods that can be used to quickly
configure a Rest Tenpl ate. For example, to add BASIC auth support you can use
bui | der. basi cAut hori zati on("user", "password"). build().

33.1 RestTemplate customization

There are three main approaches to Rest Tenpl at e customization, depending on how broadly you
want the customizations to apply.

To make the scope of any customizations as narrow as possible, inject the auto-configured
Rest Tenpl at eBui | der and then call its methods as required. Each method call returns a new
Rest Tenpl at eBui | der instance so the customizations will only affect this use of the builder.

To make an application-wide, additive customization a Rest Tenpl at eCust oni zer bean can be used.
All such beans are automatically registered with the auto-configured Rest Tenpl at eBui | der and will
be applied to any templates that are built with it.

Here’s an example of a customizer that configures the use of a proxy for all hosts except 192. 168. 0. 5:

static class ProxyCustom zer inplenments RestTenpl ateCustom zer {

public void custom ze(Rest Tenpl ate rest Tenpl ate) {
Ht t pHost proxy = new HttpHost ("proxy. exanpl e. coni);
HtpCient httpCient = HtpCientBuilder.create()
. set Rout ePl anner (new Def aul t ProxyRout ePl anner (proxy) {

public HttpHost determ neProxy(HttpHost target,
Ht t pRequest request, HttpContext context)

1.4.8.BUILD-SNAPSHOT Spring Boot 126

Spring Boot Reference Guide

throws HtpException {
if (target.getHostName().equal s("192.168.0.5")) {
return null;
}
return super.determ neProxy(target, request, context);

}

}).build();
rest Tenpl at e. set Request Fact or y(
new Htt pConponent sCl i ent Ht t pRequest Factory(httpCient));

Lastly, the most extreme (and rarely used) option is to create your own Rest Tenpl at eBui | der
bean. This will switch off the auto-configuration of a Rest Tenpl at eBui | der and will prevent any
Rest Tenpl at eCust oni zer beans from being used.

1.4.8.BUILD-SNAPSHOT Spring Boot 127

Spring Boot Reference Guide

34. Sending email

The Spring Framework provides an easy abstraction for sending email using the JavaMai | Sender
interface and Spring Boot provides auto-configuration for it as well as a starter module.

Tip

Check the reference documentation for a detailed explanation of how you can use
JavaMai | Sender .

If spring. mail . host and the relevant libraries (as defined by spri ng- boot -starter-nmnail) are
available, a default JavaMai | Sender is created if none exists. The sender can be further customized
by configuration items from the spri ng. mai | namespace, see the Mai | Pr oper ti es for more details.

In particular, certain default timeout values are infinite and you may want to change that to avoid having
a thread blocked by an unresponsive mail server:

spring. mail.properties.mail.sntp.connectiontimeout=5000
spring. mail.properties.mil.sntp.timeout=3000
spring. mail.properties.mail.sntp.witetimeout=5000

1.4.8.BUILD-SNAPSHOT Spring Boot 128

https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#mail
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailProperties.java

Spring Boot Reference Guide

35. Distributed Transactions with JTA

Spring Boot supports distributed JTA transactions across multiple XA resources using either an
Atomikos or Bitronix embedded transaction manager. JTA transactions are also supported when
deploying to a suitable Java EE Application Server.

When a JTA environment is detected, Spring’s Jt aTr ansact i onManager will be used to manage
transactions. Auto-configured JMS, DataSource and JPA beans will be upgraded to support XA
transactions. You can use standard Spring idioms such as @vr ansacti onal to participate in a
distributed transaction. If you are within a JTA environment and still want to use local transactions you
can setthe spring. jta. enabl ed property to f al se to disable the JTA auto-configuration.

35.1 Using an Atomikos transaction manager

Atomikos is a popular open source transaction manager which can be embedded into your Spring
Boot application. You can use the spri ng-boot-starter-jta-atomn kos Starter to pull in the
appropriate Atomikos libraries. Spring Boot will auto-configure Atomikos and ensure that appropriate
depends- on settings are applied to your Spring beans for correct startup and shutdown ordering.

By default Atomikos transaction logs will be written to a transacti on-1ogs directory in your
application home directory (the directory in which your application jar file resides). You can customize
this directory by setting a spring.jta.log-dir property in your application. properties
file. Properties starting spri ng.jta. at om kos. properti es can also be used to customize the
Atomikos User Transact i onServi cel np. See the At onm kosPr operti es Javadoc for complete
details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Atomikos instance must be configured with a unique ID. By default this ID is the IP address
of the machine on which Atomikos is running. To ensure uniqueness in production, you should
configurethe spri ng. jta.transacti on- nanager - i d property with a different value for each
instance of your application.

35.2 Using a Bitronix transaction manager

Bitronix is popular open source JTA transaction manager implementation. You can use the spri ng-
boot -starter-jta-bitronix starter to add the appropriate Bitronix dependencies to your project.
As with Atomikos, Spring Boot will automatically configure Bitronix and post-process your beans to
ensure that startup and shutdown ordering is correct.

By default Bitronix transaction log files (partl.btm and part2.btm) will be written
to a transaction-logs directory in your application home directory. You can
customize this directory by using the spring.jta.log-dir property. Properties starting
spring.jta.bitronix. properti es arealsoboundtothebitroni x.tm Confi gurationbean,
allowing for complete customization. See the Bitronix documentation for details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Bitronix instance must be configured with a unique ID. By default this ID is the IP address

1.4.8.BUILD-SNAPSHOT Spring Boot 129

https://www.atomikos.com/
https://github.com/bitronix/btm
https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/jta/atomikos/AtomikosProperties.html
https://github.com/bitronix/btm/wiki/Transaction-manager-configuration

Spring Boot Reference Guide

of the machine on which Bitronix is running. To ensure uniqueness in production, you should
configurethe spri ng. j ta. transacti on- manager - i d property with a different value for each
instance of your application.

35.3 Using a Narayana transaction manager

Narayana is popular open source JTA transaction manager implementation supported by JBoss.
You can use the spri ng-boot -starter-jta-narayana starter to add the appropriate Narayana
dependencies to your project. As with Atomikos and Bitronix, Spring Boot will automatically configure
Narayana and post-process your beans to ensure that startup and shutdown ordering is correct.

By default Narayana transaction logs will be written to a transacti on-| ogs directory in your
application home directory (the directory in which your application jar file resides). You can customize
this directory by setting a spring.jta.log-dir property in your application. properties
file. Properties starting spri ng. jta. narayana. properti es can also be used to customize the
Narayana configuration. See the Nar ayanaPr opert i es Javadoc for complete details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Narayana instance must be configured with a unique ID. By default this ID is set to 1.
To ensure uniqueness in production, you should configure the spring.jta.transaction-
manager - i d property with a different value for each instance of your application.

35.4 Using a Java EE managed transaction manager

If you are packaging your Spring Boot application as a war or ear file and deploying it to a Java
EE application server, you can use your application servers built-in transaction manager. Spring
Boot will attempt to auto-configure a transaction manager by looking at common JNDI locations
(j ava: conmp/ User Tr ansacti on, j ava: conp/ Transact i onManager etc). If you are using a
transaction service provided by your application server, you will generally also want to ensure
that all resources are managed by the server and exposed over JNDI. Spring Boot will attempt
to auto-configure JMS by looking for a Connect i onFact ory at the JNDI path j ava: / Jns XA or
j ava: / XAConnect i onFact ory and you can use the spri ng. dat asour ce. j ndi - nane _property
to configure your Dat aSour ce.

35.5 Mixing XA and non-XA JMS connections

When using JTA, the primary JMS Connect i onFact ory bean will be XA aware and participate in
distributed transactions. In some situations you might want to process certain JMS messages using a
non-XA Connecti onFact ory. For example, your JMS processing logic might take longer than the
XA timeout.

If you want to use anon-XA Connect i onFact or y you can inject the nonXaJnsConnect i onFact ory
bean rather than the @rimary jnmsConnectionFactory bean. For consistency the
j msConnect i onFact ory bean is also provided using the bean alias xaJnsConnect i onFact ory.

For example:

/1 Inject the prinmary (XA aware) ConnectionFactory

private ConnectionFactory defaul t Connecti onFactory;

1.4.8.BUILD-SNAPSHOT Spring Boot 130

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/jta/narayana/NarayanaProperties.html

Spring Boot Reference Guide

/1 Inject the XA aware ConnectionFactory (uses the alias and injects the sane as above)

private ConnectionFactory xaConnecti onFactory;

/1 1 nject the non-XA aware Connecti onFactory

private Connecti onFactory nonXaConnecti onFactory;

35.6 Supporting an alternative embedded transaction manager

The XAConnecti onFact oryW apper and XADat aSour ceW apper interfaces can be used
to support alternative embedded transaction managers. The interfaces are responsible for
wrapping XAConnecti onFactory and XADat aSource beans and exposing them as regular
Connecti onFact ory and Dat aSour ce beans which will transparently enroll in the distributed
transaction. DataSource and JMS auto-configuration will use JTA variants as long as you have
a JtaTransacti onManager bean and appropriate XA wrapper beans registered within your
Appl i cati onCont ext .

The BitronixXAConnectionFactoryWrapper and BitronixXADataSourceWrapper provide good examples
of how to write XA wrappers.

1.4.8.BUILD-SNAPSHOT Spring Boot 131

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/jta/XAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/jta/XADataSourceWrapper.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/jta/bitronix/BitronixXAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/jta/bitronix/BitronixXADataSourceWrapper.java

Spring Boot Reference Guide

36. Hazelcast

If hazelcast is on the classpath, Spring Boot will auto-configure an Hazel cast | nst ance that you can
inject in your application. The Hazel cast | nst ance is only created if a configuration is found.

You can define a com hazel cast. confi g. Confi g bean and we’ll use that. If your configuration
defines an instance name, we'll try to locate an existing instance rather than creating a new one.

You could also specify the hazel cast . xm configuration file to use via configuration:

spring. hazel cast. confi g=cl asspat h: confi g/ ny- hazel cast. xm

Otherwise, Spring Boot tries to find the Hazelcast configuration from the default locations, that is
hazel cast. xm in the working directory or at the root of the classpath. We also check if the
hazel cast. confi g system property is set. Check the Hazelcast documentation for more details.

Note

Spring Boot also has an explicit caching support for Hazelcast. The Hazel cast | nst ance is
automatically wrapped in a CacheManager implementation if caching is enabled.

1.4.8.BUILD-SNAPSHOT Spring Boot 132

https://docs.hazelcast.org/docs/latest/manual/html-single/

Spring Boot Reference Guide

37. Spring Integration

Spring Boot offers several conveniences for working with Spring Integration, including the spri ng-
boot -starter-integrati on ‘Starter. Spring Integration provides abstractions over messaging and
also other transports such as HTTP, TCP etc. If Spring Integration is available on your classpath
it will be initialized through the @Enabl el nt egr ati on annotation. Message processing statistics
will be published over JMX if ' spring-integration-jnx' is also on the classpath. See the
I nt egr ati onAut oConfi gur ati on class for more details.

1.4.8.BUILD-SNAPSHOT Spring Boot 133

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.java

Spring Boot Reference Guide

38. Spring Session

Spring Boot provides Spring Session auto-configuration for a wide range of stores:
» JDBC

 MongoDB

* Redis

» Hazelcast

» HashMap

If Spring Session is available, you only need to choose the St or eType that you wish to use to store
the sessions. For instance to use JDBC as backend store, you'd configure your application as follows:

spring. session. store-type=j dbc

Note

For backward compatibility if Redis is available Spring Session will be automatically configured
to use Redis.

Tip

You can disable Spring Session by setting the st or e-t ype to none.

Each store has specific additional settings. For instance it is possible to customize the name of the table
for the jdbc store:

spring. session. j dbc. t abl e- name=SESSI ONS

1.4.8.BUILD-SNAPSHOT Spring Boot 134

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/StoreType.java

Spring Boot Reference Guide

39. Monitoring and management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default Spring Boot will create an MBeanSer ver with bean id ‘mbeanServer’ and
expose any of your beans that are annotated with Spring JMX annotations (@hnagedResour ce,
@vmanagedAt tri but e, @/anagedQper ati on).

See the JnxAut oConf i gur at i on class for more details.

1.4.8.BUILD-SNAPSHOT Spring Boot 135

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java

Spring Boot Reference Guide

40. Testing

Spring Boot provides a number of utilities and annotations to help when testing your application. Test
support is provided by two modules; spri ng- boot - t est contains core items, and spri ng- boot -
t est - aut oconf i gur e supports auto-configuration for tests.

Most developers will just use the spri ng- boot - starter-test ‘Starter’ which imports both Spring
Boot test modules as well has JUnit, Assertd, Hamcrest and a number of other useful libraries.

40.1 Test scope dependencies

If you use the spri ng- boot - start er-test ‘Starter’ (in the t est scope), you will find the following
provided libraries:

» JUnit— The de-facto standard for unit testing Java applications.

» Spring Test & Spring Boot Test — Utilities and integration test support for Spring Boot applications.
» AssertJ — A fluent assertion library.

» Hamcrest— A library of matcher objects (also known as constraints or predicates).

» Mockito — A Java mocking framework.

» JSONassert— An assertion library for JSON.

» JsonPath — XPath for JSON.

These are common libraries that we generally find useful when writing tests. You are free to add
additional test dependencies of your own if these don’t suit your needs.

40.2 Testing Spring applications

One of the major advantages of dependency injection is that it should make your code easier to unit
test. You can simply instantiate objects using the new operator without even involving Spring. You can
also use mock objects instead of real dependencies.

Often you need to move beyond ‘unit testing’ and start ‘integration testing’ (with a Spring
Appl i cati onCont ext actually involved in the process). It's useful to be able to perform integration
testing without requiring deployment of your application or needing to connect to other infrastructure.

The Spring Framework includes a dedicated test module for just such integration testing. You can
declare a dependency directly to or g. spri ngf ramewor k: spri ng-t est oruse the spri ng- boot -
starter-test ‘Starter to pull it in transitively.

If you have not used the spri ng-t est module before you should start by reading the relevant section
of the Spring Framework reference documentation.

40.3 Testing Spring Boot applications

A Spring Boot application is just a Spring Appl i cati onCont ext, so nothing very special has to be
done to test it beyond what you would normally do with a vanilla Spring context. One thing to watch out
for though is that the external properties, logging and other features of Spring Boot are only installed in
the context by default if you use Spri ngAppl i cati on to create it.

1.4.8.BUILD-SNAPSHOT Spring Boot 136

https://junit.org
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#integration-testing
https://joel-costigliola.github.io/assertj/
https://github.com/hamcrest/JavaHamcrest
https://mockito.github.io
https://github.com/skyscreamer/JSONassert
https://github.com/jayway/JsonPath
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#testing

Spring Boot Reference Guide

Spring Boot provides a @pri ngBoot Test annotation which can be used as an alternative to
the standard spri ng-test @Cont ext Configurati on annotation when you need Spring Boot
features. The annotation works by creating the Appli cati onCont ext used in your tests via
Spri ngAppl i cati on.

You can use the webEnvi r onnent attribute of @pri ngBoot Test to further refine how your tests
will run:

» MOCK— Loads a WebAppl i cat i onCont ext and provides a mock servlet environment. Embedded
servlet containers are not started when using this annotation. If servlet APIs are not on your classpath
this mode will transparently fallback to creating a regular non-web Appl i cati onCont ext . Can be
used in conjunction with @\wut oConf i gur eMbckMsc for MockMrc-based testing of your application.

* RANDOM PORT —Loads an EnbeddedWebAppl i cati onCont ext and provides a real servlet
environment. Embedded servlet containers are started and listening on a random port.

* DEFI NED_PORT —Loads an EnbeddedWebAppl i cati onCont ext and provides a real servlet
environment. Embedded servlet containers are started and listening on a defined port (i.e from your
appl i cation. properti es oron the default port 8080).

* NONE—Loads an Appl i cati onCont ext using Spri ngAppl i cati on but does not provide any
servlet environment (mock or otherwise).

Note

If your test is @ransacti onal, it will rollback the transaction at the end of each test
method by default. If you're using this arrangement in combination with either RANDOM PORT or
DEFI NED_PORT, any transaction initiated on the server won't rollback as the test is running in a
different thread than the server processing.

Note

In addition to @bpri ngBoot Test a number of other annotations are also provided for testing
more specific slices of an application. See below for details.

Tip

Don't forget to also add @unW t h(Spri ngRunner. cl ass) to your test, otherwise the
annotations will be ignored.

Detecting test configuration

If youre familiar with the Spring Test Framework, you may be wused to using
@cont ext Confi guration(cl asses=..) inorder to specify which Spring @onf i gur at i on to load.
Alternatively, you might have often used nested @onf i gur at i on classes within your test.

When testing Spring Boot applications this is often not required. Spring Boot's @ Test annotations will
search for your primary configuration automatically whenever you don't explicitly define one.

The search algorithm works up from the package that contains the test until it finds a
@Bpr i ngBoot Appl i cati on or @pr i ngBoot Confi gur ati on annotated class. As long as you've
structured your code in a sensible way your main configuration is usually found.

1.4.8.BUILD-SNAPSHOT Spring Boot 137

Spring Boot Reference Guide

If you want to customize the primary configuration, you can use a nested @est Conf i gur at i on class.
Unlike a nested @onf i gur at i on class which would be used instead of a your application’s primary
configuration, a nested @est Confi gurati on class will be used in addition to your application’s
primary configuration.

Note

Spring’s test framework will cache application contexts between tests. Therefore, as long as your
tests share the same configuration (no matter how it's discovered), the potentially time consuming
process of loading the context will only happen once.

Excluding test configuration

If your application uses component scanning, for example if you use @bpri ngBoot Appl i cati on
or @onponent Scan, you may find top-level configuration classes created only for specific tests
accidentally get picked up everywhere.

As we have seen above, @est Confi gurati on can be used on an inner class of a test to customize
the primary configuration. When placed on a top-level class, @est Confi gur ati on indicates that
classes in src/test/java should not be picked up by scanning. You can then import that class
explicitly where it is required:

public class MyTests {

public void exanpl eTest() {

}

Note

If you directly use @onponent Scan (i.e. not via @pr i ngBoot Appl i cat i on) you will need to
register the TypeExcl udeFi | t er with it. See the Javadoc for details.

Working with random ports

If you need to start a full running server for tests, we recommend that you use random ports. If you use
@Bpr i ngBoot Test (webEnvi r onnent =\ebEnvi r onnent . RANDOM _PORT) an available port will be
picked at random each time your test runs.

The @ocal Server Port annotation can be used to inject the actual port used into your test. For
convenience, tests that need to make REST calls to the started server can additionally @\ut owi r e a
Test Rest Tenpl at e which will resolve relative links to the running server.

inport org.junit. Test;
import org.junit.runner. RunWth;

i nport org.springfranmework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranmework. boot . test.context. SpringBoot Test;

i mport org.springframework. boot . test.context. SpringBoot Test.WbEnvironnent;
i mport org.springframework. boot . test.web. client. Test Rest Tenpl at e;

i nport org.springframework.test.context.junit4.SpringRunner;

1.4.8.BUILD-SNAPSHOT Spring Boot 138

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/context/TypeExcludeFilter.html

Spring Boot Reference Guide

inport static org.assertj.core.api.Assertions.assertThat;

public class RandonPort Exanpl eTests {

private TestRest Tenpl ate rest Tenpl at e;

public void exanpl eTest () {
String body = this.restTenpl ate. get Foroject("/", String.class);
assert That (body) . i sEqual To("Hel | o World");

}

Mocking and spying beans

It's sometimes necessary to mock certain components within your application context when running
tests. For example, you may have a facade over some remote service that's unavailable during
development. Mocking can also be useful when you want to simulate failures that might be hard to

trigger in a real environment.

Spring Boot includes a @/bckBean annotation that can be used to define a Mockito mock for a bean
inside your Appl i cat i onCont ext . You can use the annotation to add new beans, or replace a single
existing bean definition. The annotation can be used directly on test classes, on fields within your test,
oron @onfi gurati on classes and fields. When used on a field, the instance of the created mock will

also be injected. Mock beans are automatically reset after each test method.

Here’'s a typical example where we replace an existing Renot eServi ce bean with a mock

implementation:

inport org.junit.*;

import org.junit.runner.*;

i nport org.springfranework. beans. factory. annotati on. *;
i nport org.springframework. boot . test.context.*;

i mport org.springframework. boot . test. nock. nockito. *;

i nport org.springfranework.test.context.junit4.*;

inport static org.assertj.core.api.Assertions.*;
i nport static org.nockito. BDDVbckito. *;

public class MyTests {

private RenpteService renpteService;

private Reverser reverser;

public void exanpl eTest() {
/'l RenoteService has been injected into the reverser bean
gi ven(this.renoteService.soneCall()).w || Return("nock");
String reverse = reverser.reverseSoneCall ();
assert That (reverse).i sEqual To("kcont');

Additionally you can also use @pyBean to wrap any existing bean with a Mockito spy. See the Javadoc

for full details.

1.4.8.BUILD-SNAPSHOT Spring Boot

139

Spring Boot Reference Guide

Auto-configured tests

Spring Boot's auto-configuration system works well for applications, but can sometimes be a little too
much for tests. It's often helpful to load only the parts of the configuration that are required to test a
‘slice’ of your application. For example, you might want to test that Spring MVC controllers are mapping
URLSs correctly, and you don’t want to involve database calls in those tests; or you might be wanting to
test JPA entities, and you're not interested in web layer when those tests run.

The spri ng- boot -t est - aut oconf i gur e module includes a number of annotations that can be
used to automatically configure such ‘slices’. Each of them works in a similar way, providing a @.Test
annotation that loads the Appl i cat i onCont ext and one or more @\ut oConf i gur e...annotations
that can be used to customize auto-configuration settings.

Tip

Its also possible to use the @AutoConfigure... annotations with the standard
@Bpr i ngBoot Test annotation. You can use this combination if you're not interested in ‘slicing’
your application but you want some of the auto-configured test beans.

Auto-configured JSON tests

To test that Object JSON serialization and deserialization is working as expected you can
use the @sonTest annotation. @sonTest will auto-configure Jackson Cbj ect Mapper, any
@sonConponent beans and any Jackson Modul es. It also configures Gson if you happen to be using
that instead of, or as well as, Jackson. If you need to configure elements of the auto-configuration you
can use the @ut oConfi gur eJsonTest er s annotation.

Spring Boot includes Assert] based helpers that work with the JSONassert and JsonPath libraries to
check that JISON is as expected. The JacksonTest er , GsonTest er and Basi cJsonTest er classes
can be used for Jackson, Gson and Strings respectively. Any helper fields on the test class can be
@\ut owi r ed when using @sonTest .

inmport org.junit.*;

inport org.junit.runner.*;

i nport org.springframework. beans. factory. annotation. *;

i nport org.springfranework. boot . test. autoconfigure.json.*;
i nport org.springfranework. boot .t est. context.*;

i mport org.springfranmework. boot.test.json.*;

i mport org.springframework.test.context.junit4.*;

inport static org.assertj.core.api.Assertions.*;

public class MyJsonTests {
private JacksonTest er <Vehi cl eDet ai | s> j son;

public void testSerialize() throws Exception {
Vehicl eDetails details = new VehicleDetails("Honda", "Cvic");
/'l Assert against a “.json’ file in the sane package as the test
assertThat (this.json.wite(details)).isEqual ToJson("expected.]json");
/1l O use JSON path based assertions
assert That (this.json.wite(details)).hasJsonPathStringVal ue(" @ make");
assertThat (this.json.wite(details)).extractingJsonPathStringVal ue("@ make")
. i sEqual To(" Honda");

1.4.8.BUILD-SNAPSHOT Spring Boot 140

Spring Boot Reference Guide

public void testDeserialize() throws Exception {
String content = "{\"nake\":\"Ford\",\"nodel\":\"Focus\"}";
assert That (thi s.json. parse(content))
. i sEqual To(new Vehi cl eDet ai | s("Ford", "Focus"));
assert That (thi s.j son. parseQbj ect (content). get Make()).i sEqual To("Ford");

Note

JSON helper classes can also be used directly in standard unit tests. Simply call thei ni t Fi el ds
method of the helper in your @ef or e method if you aren’t using @sonTest .

A list of the auto-configuration that is enabled by @sonTest can be found in the appendix.

Auto-configured Spring MVC tests

To test Spring MVC controllers are working as expected you can use the @ebM/cTest
annotation. @ébMscTest will auto-configure the Spring MVC infrastructure and limit scanned beans
to @ontrol |l er, @ontroll erAdvi ce, @sonConponent, Filter, WebM/cConfi gurer and
Handl er Met hodAr gurent Resol ver . Regular @Conponent beans will not be scanned when using
this annotation.

Often @\ebM/cTest will be limited to a single controller and used in combination with @wckBean to
provide mock implementations for required collaborators.

@\ebM/cTest also auto-configures MockMsc. Mock MVC offers a powerful way to quickly test MVC
controllers without needing to start a full HTTP server.

Tip

You can also auto-configure MockMv/c in a non-@ébM/cTest (e.g. Spri ngBoot Test) by
annotating it with @\ut oConf i gur eMbckMsc.

inport org.junit.*;

import org.junit.runner.*;

i nport org.springfranework. beans. factory. annotati on. *;

i nport org.springfranmework. boot . t est. aut oconfi gure. web. servlet.*;
i mport org.springframework. boot . test. nock. nockito. *;

inport static org.assertj.core.api.Assertions.*;

i nport static org.nockito. BDDVbckito. *;

i nmport static org.springframework.test.web.servlet.request. MockM/cRequest Bui | ders. *;
import static org.springfranmework.test.web.servlet.result. MckMcResultMtchers. *;

public class MyControllerTests {
private MockMic mvc;
private UserVehicl eServi ce userVehi cl eServi ce;

public void testExanpl e() throws Exception {
gi ven(this. userVehicl eService. get Vehi cl eDetai | s("sboot"))
.wi || Return(new Vehicl eDetail s("Honda", "Cvic"));
this.nvc. perforn(get("/sboot/vehicle").accept(MdiaType. TEXT_PLAI N))

1.4.8.BUILD-SNAPSHOT Spring Boot 141

Spring Boot Reference Guide

. andExpect (status().isCk()).andExpect(content().string("Honda Cvic"));

Tip

If you need to configure elements of the auto-configuration (for example when servlet filters should
be applied) you can use attributes in the @\ut oConf i gur eMbckM/c annotation.

If you use HtmlUnit or Selenium, auto-configuration will also provide a WebCl i ent bean and/or a
WebDri ver bean. Here is an example that uses HtmlUnit:

i nport com gar goyl esoftware. ht M unit.*;

import org.junit.*;

import org.junit.runner.*;

i nport org.springframework. beans. factory. annotation. *;

i nport org.springframework. boot . test.autoconfigure.web.servlet.*;
i nport org.springfranework. boot . test. nock. nockito. *;

inport static org.assertj.core.api.Assertions.*;
inport static org.nockito. BDDVbckito. *;

public class MyH m UnitTests {

private Webd ient webCdient;

private UserVehicl eServi ce userVehi cl eServi ce;

public void testExanpl e() throws Exception {
gi ven(this. userVehicl eService. get Vehi cl eDetai | s("sboot"))
.Wi |l Return(new Vehicl eDetail s("Honda", "Civic"));
Ht M Page page = this.webd ient.getPage("/sboot/vehicle. htm");
assert That (page. get Body() . get Text Content ()).i sEqual To("Honda Civic");

Note

By default Spring Boot will put WebDr i ver beans in a special “scope” to ensure that the driver
is quit after each test, and that a new instance is injected. If you don’t want this behavor you can
add @cope("singl eton") to your WebDri ver @ean definition.

A list of the auto-configuration that is enabled by @\ébM/cTest can be found in the appendix.

Auto-configured Data JPA tests

@pat aJpaTest can be used if you want to test JPA applications. By default it will configure an in-
memory embedded database, scan for @nt ity classes and configure Spring Data JPA repositories.
Regular @onponent beans will not be loaded into the Appl i cat i onCont ext .

Data JPA tests are transactional and rollback at the end of each test by default, see
the docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmisingle#testcontext-tx-
enabling-transactions [relevant section] in the Spring Reference Documentation for more details. If that's
not what you want, you can disable transaction management for a test or for the whole class as follows:

1.4.8.BUILD-SNAPSHOT Spring Boot 142

https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle#testcontext-tx-enabling-transactions
https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle#testcontext-tx-enabling-transactions

Spring Boot Reference Guide

import org.junit. Test;

import org.junit.runner.RunWth;

i nport org.springframework. boot . test. autoconfigure.orm jpa. DataJpaTest;
i nport org.springfranework.test.context.junit4. SpringRunner;

i nport org.springframework.transaction. annot ati on. Propagati on;

i nport org.springfranmework.transaction. annotation. Transacti onal ;

public class Exanpl eNonTr ansacti onal Tests {

Data JPA tests may also inject a Test Enti t yManager bean which provides an alternative to the
standard JPAEnt i t yManager specifically designed for tests. If you wantto use Test Ent i t yManager
outside of @patalpaTests you can also use the @AutoConfi gureTest EntityManager
annotation. A JdbcTenpl at e is also available if you need that.

inport org.junit.*;
import org.junit.runner.*;
i nport org.springframework. boot . test.autoconfigure.ormjpa.*;

inport static org.assertj.core.api.Assertions.*;

public class Exanpl eRepositoryTests {

private TestEntityManager entityManager;

private UserRepository repository;

public void testExanpl e() throws Exception {
this. entityManager. persist(new User("sboot", "1234"));
User user = this.repository.findByUsername("sboot");
assert That (user. get Usernane()). i sEqual To("sbhoot");
assert That (user.getVin()).isEqual To("1234");

In-memory embedded databases generally work well for tests since they are fast and don'’t require
any developer installation. If, however, you prefer to run tests against a real database you can use the
@\ut oConfi gur eTest Dat abase annotation:

public class Exanpl eRepositoryTests {

Il

A list of the auto-configuration that is enabled by @at aJpaTest can be found in the appendix.

Auto-configured REST clients

The @Rest Cl i ent Test annotation can be used if you want to test REST clients. By default it will
auto-configure Jackson and GSON support, configure a Rest Tenpl at eBui | der and add support for

1.4.8.BUILD-SNAPSHOT Spring Boot 143

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-test-autoconfigure/src/main/java/org/springframework/boot/test/autoconfigure/orm/jpa/TestEntityManager.java

Spring Boot Reference Guide

MockRest Ser vi ceSer ver . The specific beans that you want to test should be specified using val ue
or conponent s attribute of @Rest O i ent Test :

public class Exanpl eRestC i ent Test {

private RenpteVehicl eDetail sService service;

private MckRest Servi ceServer server;

public voi d getVehicl eDet ai | sWhenResul t | sSuccessShoul dRet urnDet ai | s()
throws Exception {
this.server. expect(request To("/greet/details"))
. andRespond(wi t hSuccess("hel | 0", Medi aType. TEXT_PLAIN)) ;
String greeting = this.service.callRestService();
assert That (greeting).isEqual To("hello0");

A list of the auto-configuration that is enabled by @Rest Cl i ent Test can be found in the appendix.

Auto-configured Spring REST Docs tests

The @wut oConfi gur eRest Docs annotation can be used if you want to use Spring REST Docs in your
tests. It will automatically configure MockMvc to use Spring REST Docs and remove the need for Spring
REST Docs' JUnit rule.

inmport org.junit. Test;
import org.junit.runner.RunWth;

i nport org.springfranmework. beans. factory. annot ati on. Aut ow r ed;

i mport org.springfranmework. boot . test. autoconfi gure. web. servl et. WebM/cTest ;
i nport org.springframework. http. Medi aType;

i mport org.springframework.test.context.junit4.SpringRunner;

i nport org.springframework.test.web. servlet. MockMc;

import static org.springfranework.restdocs. nockmvc. MockM/cRest Docunent at i on. docunent ;
import static org.springframework.test.web. servlet.request. MockM/cRequest Bui | ders. get;
import static org.springframework.test.web.servlet.result.MckMcResul t Matchers. *;

public class UserDocunentationTests {

private MockMic mvc;

public void listUsers() throws Exception {
this.nvc. perforn(get("/users").accept(MediaType. TEXT_PLAIN))
. andExpect (status().isCk())
. andDo(docunent ("|ist-users"));

In addition to configuring the output directory, @\ut oConf i gur eRest Docs can also configure the host,
scheme, and port that will appear in any documented URIs. If you require more control over Spring
REST Docs' configuration a Rest DocsMockMscConf i gur ati onCust oni zer bean can be used:

1.4.8.BUILD-SNAPSHOT Spring Boot 144

Spring Boot Reference Guide

static class Custoni zationConfiguration
i npl enents Rest DocsMbckM/cConf i gur ati onCust om zer {

public void custom ze(MockM/cRest Docunent at i onConfi gurer configurer) {
configurer.snippets().w thTenpl at eFor mat (Tenpl at eFor mat s. mar kdown()) ;

}

If you want to make use of Spring REST Docs' support for a parameterized output directory, you can
create a Rest Docunent at i onResul t Handl er bean. The auto-configuration will call al ways Do with
this result handler, thereby causing each MockMrc¢ call to automatically generate the default snippets:

static class Resul t Handl er Configuration {

publ i ¢ Rest Docunent ati onResul t Handl er rest Docunmentation() {
return MockM/cRest Docunent ati on. docunent (" { net hod- nane}");

}

Using Spock to test Spring Boot applications

If you wish to use Spock to test a Spring Boot application you should add a dependency on Spock’s
spock- spri ng module to your application’s build. spock- spri ng integrates Spring’s test framework
into Spock. Exactly how you can use Spock to test a Spring Boot application depends on the version
of Spock that you are using.

Note

Spring Boot provides dependency management for Spock 1.0. If you wish to use Spock 1.1 you
should override the spock. ver si on property in your bui | d. gr adl e or pom xm file.

When using Spock 1.1, the annotations described above can only be used and you can annotate your
Speci fi cati on with @pri ngBoot Test to suit the needs of your tests.

When using Spock 1.0, @bpringBoot Test will not work for a web project. You need
to use @pri ngApplicationConfiguration and @\bl nt egrati onTest (randonPort =
true). Being unable to use @pri ngBoot Test means that you also lose the auto-configured
Test Rest Tenpl at e bean. You can create an equivalent bean yourself using the following
configuration:

static class Test Rest Tenpl at eConfi guration {

publ i c Test Rest Tenpl at e t est Rest Tenpl at e(

Obj ect Provi der <Rest Tenpl at eBui | der > bui | der Provi der,

Envi ronnent environnent) {
Rest Tenpl at eBui | der buil der = buil derProvider.getlfAvailable();
Test Rest Tenpl ate tenplate = builder == null ? new Test Rest Tenpl at e()

: new Test Rest Tenpl at e(bui | der. build());

tenpl at e. set Uri Tenpl at eHandl er (new Local Host Uri Tenpl at eHandl er (envi ronnment)) ;
return tenpl ate;

1.4.8.BUILD-SNAPSHOT Spring Boot 145

Spring Boot Reference Guide

40.4 Test utilities

A few test utility classes are packaged as part of spri ng- boot that are generally useful when testing
your application.

ConfigFileApplicationContextlinitializer

Confi gFil eApplicationContextlnitializerisanApplicationContextlnitializer that
can apply to your tests to load Spring Boot appl i cati on. properti es files. You can use this when
you don’t need the full features provided by @pr i ngBoot Test .

@Cont ext Confi guration(cl asses = Config.cl ass,
initializers = ConfigFileApplicationContextlnitializer.class)

Note

Using Confi gFil eApplicationContextlnitializer alone won't provide support for
@/al ue("${.}") injection. Its only job is to ensure that appl i cati on. properti es files are
loaded into Spring’s Envi r onnment . For @/al ue support you need to either additionally configure
a PropertySour cesPl acehol der Conf i gur er oruse @pri ngBoot Test where one will be
auto-configured for you.

EnvironmentTestUtils

Envi ronnent Test Ut i | s allows you to quickly add properties to a Conf i gur abl eEnvi r onnment or
Confi gur abl eAppl i cati onCont ext . Simply call it with key=val ue strings:

Envi ronnent Test Uti | s. addEnvi ronnent (env, "org=Spring", "name=Boot");

OutputCapture

Qut put Capt ur e is a JUnit Rul e that you can use to capture Syst em out and Syst em er r output.
Simply declare the capture as a @Rul e then uset oSt ri ng() for assertions:

import org.junit.Rule;
import org.junit. Test;
i nport org.springframework. boot. test.rul e. Qut put Capt ure;

inport static org.hancrest. Matchers. *;
inport static org.junit.Assert.*;

public class MyTest {

publ i c QutputCapture capture = new Qut put Capture();

public void testNane() throws Exception {
Systemout.printin("Hello Wrld!'");

assert That (capture.toString(), containsString("Wrld"));
}

TestRestTemplate

Test Rest Tenpl at e is a convenience alternative to Spring’s Rest Tenpl at e that is useful in
integration tests. You can get a vanilla template or one that sends Basic HTTP authentication (with a

1.4.8.BUILD-SNAPSHOT Spring Boot 146

Spring Boot Reference Guide

username and password). In either case the template will behave in a test-friendly way: not following
redirects (so you can assert the response location), ignoring cookies (so the template is stateless), and
not throwing exceptions on server-side errors. It is recommended, but not mandatory, to use Apache
HTTP Client (version 4.3.2 or better), and if you have that on your classpath the Test Rest Tenpl at e
will respond by configuring the client appropriately.

public class MyTest {

private TestRestTenplate tenplate = new Test Rest Tenpl ate();

public void testRequest() throws Exception {
Ht t pHeaders headers = tenpl ate.get ForEntity("https://nyhost.cont, String.class).getHeaders();
assert That (headers. get Location().toString(), containsString("nyotherhost"));

}

If you are using the @ppri ngBoot Test annotation with WebEnvi r onnent . RANDOM PORT or
WebEnvi r onment . DEFI NED_PORT, you can just inject a fully configured Test Rest Tenpl at e and
start using it. If necessary, additional customizations can be applied via the Rest Tenpl at eBui | der
bean:

public class MyTest {

private TestRest Tenpl ate tenpl ate;

public void testRequest() throws Exception {
Ht t pHeaders headers = tenpl ate.getForEntity("https://nyhost.cont, String.class).getHeaders();
assert That (headers. get Location().toString(), containsString("nmyotherhost"));

}

static class Config {

publ i ¢ Rest Tenpl at eBui | der rest Tenpl at eBui | der () {
return new Rest Tenpl at eBui | der ()
.addi ti onal MessageConverters(...)
.customi zers(...);

}

1.4.8.BUILD-SNAPSHOT Spring Boot 147

Spring Boot Reference Guide

41. WebSockets

Spring Boot provides WebSockets auto-configuration for embedded Tomcat (8 and 7), Jetty 9 and
Undertow. If you're deploying a war file to a standalone container, Spring Boot assumes that the
container will be responsible for the configuration of its WebSocket support.

Spring Framework provides rich WebSocket support that can be easily accessed via the spri ng-
boot - st art er - websocket module.

1.4.8.BUILD-SNAPSHOT Spring Boot 148

https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#websocket

Spring Boot Reference Guide

42. \Webh Services

Spring Boot provides Web Services auto-configuration so that all is required is defining your
Endpoi nt s.

The Spring Web Services features can be easily accessed via the spring-boot-starter-
webser vi ces module.

1.4.8.BUILD-SNAPSHOT Spring Boot 149

https://docs.spring.io/spring-ws/docs/2.3.1.RELEASE/reference/htmlsingle

Spring Boot Reference Guide

43. Creating your own auto-configuration

If you work in a company that develops shared libraries, or if you work on an open-source or commercial
library, you might want to develop your own auto-configuration. Auto-configuration classes can be
bundled in external jars and still be picked-up by Spring Boot.

Auto-configuration can be associated to a "starter" that provides the auto-configuration code as well as
the typical libraries that you would use with it. We will first cover what you need to know to build your
own auto-configuration and we will move on to the typical steps required to create a custom starter.

Tip

A demo project is available to showcase how you can create a starter step by step.

43.1 Understanding auto-configured beans

Under the hood, auto-configuration is implemented with standard @onf i gur at i on classes. Additional
@condi ti onal annotations are used to constrain when the auto-configuration should apply. Usually
auto-configuration classes use @onditional OnC ass and @Conditi onal OnM ssi ngBean
annotations. This ensures that auto-configuration only applies when relevant classes are found and
when you have not declared your own @Conf i gur ati on.

You can browse the source code of spri ng- boot - aut oconf i gur e to see the @onfi gurati on
classes that we provide (see the META- | NF/ spri ng. f act ori es file).

43.2 Locating auto-configuration candidates

Spring Boot checks for the presence of a META- | NF/ spri ng. f act ori es file within your published
jar. The file should list your configuration classes under the Enabl eAut oConf i gur at i on key.

or g. spri ngf ramewor k. boot . aut oconf i gur e. Enabl eAut oConfi gur ati on=\
com mycor p. | i bx. aut oconfi gure. Li bXAut oConfi guration,\
com mycor p. | i bx. aut oconfi gure. Li bXWebAut oConfi gurati on

You can use the @Aut oConfi gureAfter or @\utoConfi gureBefore annotations if your
configuration needs to be applied in a specific order. For example, if you provide web-specific
configuration, your class may need to be applied after WebMvcAut oConf i gur at i on.

If you want to order certain auto-configurations that shouldn’t have any direct knowledge of each other,
you can also use @\ut oconfi gur eOr der. That annotation has the same semantic as the regular
@ der annotation but provides a dedicated order for auto-configuration classes.

Note

Auto-configurations have to be loaded that way only. Make sure that they are defined in a specific
package space and that they are never the target of component scan in particular.

43.3 Condition annotations

You almost always want to include one or more @ondi t i onal annotations on your auto-configuration
class. The @ondi ti onal OnM ssi ngBean is one common example that is used to allow developers
to ‘override’ auto-configuration if they are not happy with your defaults.

1.4.8.BUILD-SNAPSHOT Spring Boot 150

https://github.com/snicoll-demos/spring-boot-master-auto-configuration
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/resources/META-INF/spring.factories
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureAfter.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureBefore.java

Spring Boot Reference Guide

Spring Boot includes a number of @ondi t i onal annotations that you can reuse in your own code by
annotating @onf i gur at i on classes or individual @ean methods.

Class conditions

The @onditional OnC ass and @onditional OnM ssi ngC ass annotations allows
configuration to be included based on the presence or absence of specific classes. Due to the fact that
annotation metadata is parsed using ASM you can actually use the val ue attribute to refer to the real
class, even though that class might not actually appear on the running application classpath. You can
also use the nane attribute if you prefer to specify the class name using a St ri ng value.

Tip

If you are using @ondi ti onal OnCl ass or @ondi ti onal OnM ssi ngd ass as a part of a
meta-annotation to compose your own composed annotations you must use nane as referring to
the class in such a case is not handled.

Bean conditions

The @ondi ti onal OnBean and @ondi ti onal OnM ssi ngBean annotations allow a bean to be
included based on the presence or absence of specific beans. You can use the val ue attribute to
specify beans by type, or nane to specify beans by name. The sear ch attribute allows you to limit the
Appl i cati onCont ext hierarchy that should be considered when searching for beans.

Tip

You need to be very careful about the order that bean definitions are added as these conditions
are evaluated based on what has been processed so far. For this reason, we recommend
only using @ondi ti onal OnBean and @ondi t i onal OnM ssi ngBean annotations on auto-
configuration classes (since these are guaranteed to load after any user-define beans definitions
have been added).

Note

@Condi ti onal OnBean and @condi ti onal OnM ssi ngBean do not prevent
@confi guration classes from being created. Using these conditions at the class level is
equivalent to marking each contained @ean method with the annotation.

Property conditions

The @ondi ti onal OnProperty annotation allows configuration to be included based on a Spring
Environment property. Use the prefi x and nane attributes to specify the property that should be
checked. By default any property that exists and is not equal to f al se will be matched. You can also
create more advanced checks using the havi ngVal ue and mat chl f M ssi ng attributes.

Resource conditions
The @ondi t i onal OnResour ce annotation allows configuration to be included only when a specific

resource is present. Resources can be specified using the usual Spring conventions, for example,
file:/home/user/test. dat.

1.4.8.BUILD-SNAPSHOT Spring Boot 151

https://asm.ow2.org/

Spring Boot Reference Guide

Web application conditions

The @ondi t i onal OnWebAppl i cati on and @ondi ti onal OnNot WVebAppl i cat i on annotations
allow configuration to be included depending on whether the application is a 'web application’. A web
application is any application that is using a Spring WebAppl i cati onCont ext , defines a sessi on
scope or has a St andar dSer vl et Envi ronnent .

SpEL expression conditions

The @ondi ti onal OnExpr essi on annotation allows configuration to be included based on the result
of a SpEL expression.

43.4 Creating your own starter

A full Spring Boot starter for a library may contain the following components:
» The aut oconf i gur e module that contains the auto-configuration code.

e The st art er module that provides a dependency to the autoconfigure module as well as the library
and any additional dependencies that are typically useful. In a nutshell, adding the starter should be
enough to start using that library.

Tip

You may combine the auto-configuration code and the dependency management in a single
module if you don’t need to separate those two concerns.

Naming

Please make sure to provide a proper namespace for your starter. Do not start your module names with
spri ng- boot, even if you are using a different Maven groupld. We may offer an official support for
the thing you're auto-configuring in the future.

Here is a rule of thumb. Let’'s assume that you are creating a starter for "acme", name the auto-configure
module acme- spri ng- boot - aut oconfi gure and the starter acne- spri ng- boot-starter. If
you only have one module combining the two, use acre- spri ng- boot -starter.

Besides, if your starter provides configuration keys, use a proper namespace for them. In particular, do
not include your keys in the namespaces that Spring Boot uses (e.g. ser ver, managemnent, spri ng,
etc). These are "ours" and we may improve/modify them in the future in such a way it could break your
things.

Make sure to trigger meta-data generation so that IDE assistance is available for your keys as
well. You may want to review the generated meta-data (META-1 NF/ spri ng-confi gurati on-
net adat a. j son) to make sure your keys are properly documented.

Autoconfigure module

The autoconfigure module contains everything that is necessary to get started with the library. It may
also contain configuration keys definition (@onf i gur at i onPr operti es) and any callback interface
that can be used to further customize how the components are initialized.

1.4.8.BUILD-SNAPSHOT Spring Boot 152

https://docs.spring.io/spring/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#expressions

Spring Boot Reference Guide

Tip

You should mark the dependencies to the library as optional so that you can include the
autoconfigure module in your projects more easily. If you do it that way, the library won't be
provided and Spring Boot will back off by default.

Starter module

The starter is an empty jar, really. Its only purpose is to provide the necessary dependencies to work
with the library; see it as an opinionated view of what is required to get started.

Do not make assumptions about the project in which your starter is added. If the library you are auto-
configuring typically requires other starters, mention them as well. Providing a proper set of default
dependencies may be hard if the number of optional dependencies is high as you should avoid bringing
unnecessary dependencies for a typical usage of the library.

1.4.8.BUILD-SNAPSHOT Spring Boot 153

Spring Boot Reference Guide

44. \What to read next

If you want to learn more about any of the classes discussed in this section you can check out the Spring
Boot API documentation or you can browse the source code directly. If you have specific questions,
take a look at the how-to section.

If you are comfortable with Spring Boot's core features, you can carry on and read about production-
ready features.

1.4.8.BUILD-SNAPSHOT Spring Boot 154

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api
https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api
https://github.com/spring-projects/spring-boot/tree/1.4.x

Part V. Spring Boot Actuator:
Production-ready features

Spring Boot includes a number of additional features to help you monitor and manage your application
when it's pushed to production. You can choose to manage and monitor your application using HTTP
endpoints, with JMX or even by remote shell (SSH or Telnet). Auditing, health and metrics gathering
can be automatically applied to your application.

Actuator HTTP endpoints are only available with a Spring MVC-based application. In particular, it will
not work with Jersey unless you enable Spring MVC as well.

Spring Boot Reference Guide

45. Enabling production-ready features

The spri ng-boot - act uat or module provides all of Spring Boot’s production-ready features. The
simplest way to enable the features is to add a dependency to the spri ng- boot - st art er - act uat or
‘Starter’.

Definition of Actuator

An actuator is a manufacturing term, referring to a mechanical device for moving or controlling
something. Actuators can generate a large amount of motion from a small change.

To add the actuator to a Maven based project, add the following ‘Starter’ dependency:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-actuator</artifactld>
</ dependency>
</ dependenci es>

For Gradle, use the declaration:

dependenci es {
conpi | e("org. springframework. boot: spring-boot-starter-actuator")

}

1.4.8.BUILD-SNAPSHOT Spring Boot 156

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator

Spring Boot Reference Guide

46. Endpoints

Actuator endpoints allow you to monitor and interact with your application. Spring Boot includes a
number of built-in endpoints and you can also add your own. For example the heal t h endpoint provides
basic application health information.

The way that endpoints are exposed will depend on the type of technology that you choose. Most
applications choose HTTP monitoring, where the ID of the endpoint is mapped to a URL. For example,
by default, the heal t h endpoint will be mapped to / heal t h.

The following technology agnostic endpoints are available:

ID Description Sensitive
Default
act uat or Provides a hypermedia-based “discovery page” for the true
other endpoints. Requires Spring HATEOAS to be on the
classpath.
aut oconfig Displays an auto-configuration report showing all auto- true
configuration candidates and the reason why they ‘were’ or
‘were not’ applied.
beans Displays a complete list of all the Spring beans in your true
application.
confi gprops Displays a collated list of all @onf i gur ati onProperties. true
dummp Performs a thread dump. true
env Exposes properties from Spring’s true
Confi gur abl eEnvi r onnent .
fl yway Shows any Flyway database migrations that have been true
applied.
heal th Shows application health information (when the application false
is secure, a simple ‘status’ when accessed over an
unauthenticated connection or full message details when
authenticated).
info Displays arbitrary application info. false
i qui base Shows any Liquibase database migrations that have been true
applied.
nmetrics Shows ‘metrics’ information for the current application. true
nmappi ngs Displays a collated list of all @Request Mappi ng paths. true
shut down Allows the application to be gracefully shutdown (not enabled true
by default).
trace Displays trace information (by default the last 100 HTTP true
requests).
1.4.8.BUILD-SNAPSHOT Spring Boot 157

Spring Boot Reference Guide

If you are using Spring MVC, the following additional endpoints can also be used:

ID Description Sensitive
Default
docs Displays documentation, including example requests and false

responses, for the Actuator’'s endpoints. Requires spri ng-
boot - act uat or - docs to be on the classpath.

heapdunp Returns a GZip compressed hpr of heap dump file. true

j ol oki a Exposes JMX beans over HTTP (when Jolokia is on the true
classpath).

logfile Returns the contents of the lodfile (if | oggi ng. fil e or true

| oggi ng. pat h properties have been set). Supports the use
of the HTTP Range header to retrieve part of the log file’s
content.

Note

Depending on how an endpoint is exposed, the sensi ti ve property may be used as a security
hint. For example, sensitive endpoints will require a username/password when they are accessed
over HTTP (or simply disabled if web security is not enabled).

46.1 Customizing endpoints

Endpoints can be customized using Spring properties. You can change if an endpoint is enabl ed, if it
is considered sensi tive and evenitsi d.

For example, here is an appl i cati on. properti es that changes the sensitivity and id of the beans
endpoint and also enables shut down.

endpoi nts. beans. i d=spri nghbeans
endpoi nts. beans. sensi tive=fal se
endpoi nt s. shut down. enabl ed=t rue

Note

The prefix #endpoi nts + . + nane” is used to uniquely identify the endpoint that is being
configured.

By default, all endpoints except for shut down are enabled. If you prefer to specifically “opt-in” endpoint
enablement you can use the endpoi nt s. enabl ed property. For example, the following will disable
all endpoints except for i nf o:

endpoi nt s. enabl ed=f al se
endpoi nts. i nfo. enabl ed=true

Likewise, you can also choose to globally set the “sensitive” flag of all endpoints. By default, the sensitive
flag depends on the type of endpoint (see the table above). For example, to mark all endpoints as
sensitive except i nf o:

endpoi nts. sensitive=true

1.4.8.BUILD-SNAPSHOT Spring Boot 158

Spring Boot Reference Guide

‘ endpoi nts.info.sensitive=false

46.2 Hypermedia for actuator MVC endpoints

If endpoi nts. hyper medi a. enabl ed is set to t r ue and Spring HATEOAS is on the classpath (e.g.
through the spri ng- boot - st art er - hat eoas or if you are using Spring Data REST) then the HTTP
endpoints from the Actuator are enhanced with hypermedia links, and a “discovery page” is added with
links to all the endpoints. The “discovery page” is available on / act uat or by default. It is implemented
as an endpoint, allowing properties to be used to configure its path (endpoi nt s. act uat or. pat h)
and whether or not it is enabled (endpoi nt s. act uat or . enabl ed).

When a custom management context path is configured, the “discovery page” will automatically move
from / act uat or to the root of the management context. For example, if the management context path
is / managenent then the discovery page will be available from / mranagenent .

If the HAL Browser is on the classpath via its webjar (or g. webj ar s: hal - br owser), or via the
spri ng-dat a-r est - hal - br owser then an HTML “discovery page”, in the form of the HAL Browser,
is also provided.

46.3 CORS support

Cross-origin resource sharing (CORS) is a W3C specification that allows you to specify in a flexible
way what kind of cross domain requests are authorized. Actuator's MVC endpoints can be configured
to support such scenarios.

CORS support is disabled by default and is only enabled once the endpoi nts. cors. al | owed-
ori gi ns property has been set. The configuration below permits GET and POST calls from the
exanpl e. comdomain:

endpoi nts. cors. al | owed- ori gi ns=https://exanpl e.com
endpoi nts. cors. al | owed- met hods=GET, POST

Tip

Check EndpointCorsProperties for a complete list of options.

46.4 Adding custom endpoints

If you add a @ean of type Endpoi nt then it will automatically be exposed over JIMX and HTTP (if
there is an server available). An HTTP endpoints can be customized further by creating a bean of type
MscEndpoi nt . Your MrcEndpoi nt is not a @ontr ol | er but it can use @equest Mappi ng (and
@managed*) to expose resources.

Tip

If you are doing this as a library feature consider adding a configuration class annotated with
@mnagenent Cont ext Confi gurati on to/ META-1 NF/ spring. factori es under the key

org. springfranmewor k. boot . act uat e. aut oconf i gur e. Managenent Cont ext Confi gurati on.
If you do that then the endpoint will move to a child context with all the other MVC endpoints if your

users ask for a separate management port or address. A configuration declared this way can be

a WebConf i gur er Adapt er if it wants to add static resources (for instance) to the management
endpoints.

1.4.8.BUILD-SNAPSHOT Spring Boot 159

https://projects.spring.io/spring-hateoas
https://projects.spring.io/spring-data-rest
https://github.com/mikekelly/hal-browser
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://www.w3.org/TR/cors/
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/EndpointCorsProperties.java

Spring Boot Reference Guide

46.5 Health information

Health information can be used to check the status of your running application. It is often used by
monitoring software to alert someone if a production system goes down. The default information exposed
by the heal t h endpoint depends on how it is accessed. For an unauthenticated connection in a secure
application a simple ‘status’ message is returned, and for an authenticated connection additional details
are also displayed (see Section 47.7, “HTTP health endpoint format and access restrictions” for HTTP
details).

Health information is collected from all Healthlndicator beans defined in your
Appl i cati onCont ext . Spring Boot includes a number of auto-configured Heal t hl ndi cat or s and
you can also write your own.

46.6 Security with HealthIndicators

Information returned by Heal t hl ndi cat or s is often somewhat sensitive in nature. For example, you
probably don’t want to publish details of your database server to the world. For this reason, by default,
only the health status is exposed over an unauthenticated HTTP connection. If you are happy for
complete health information to always be exposed you can set endpoi nts. heal t h. sensitive to
fal se.

Health responses are also cached to prevent “denial of service” attacks. Use the
endpoi nts. heal th. ti me-to-1Iive property if you want to change the default cache period of 1000
milliseconds.

Auto-configured Healthindicators

The following Heal t hl ndi cat or s are auto-configured by Spring Boot when appropriate:

Name Description

Cassandr aHeal t hChecksitiat a Cassandra database is up.
Di skSpaceHeal t hOhécksfarrlow disk space.
Dat aSour ceHeal t Bhedks #tiatia connection to Dat aSour ce can be obtained.

El ast i csear chHe@hebksthat @indElasticsearch cluster is up.

JnsHeal t hl ndi caChecks that a JMS broker is up.

Mai | Heal t hl ndi c&hecks that a mail server is up.

MongoHeal t hl ndi €hecks that a Mongo database is up.

Rabbi t Heal t hl ndiChetks that a Rabbit server is up.

Redi sHeal t hl ndi €hiecks that a Redis server is up.

Sol r Heal t hi ndi c&hecks that a Solr server is up.

Tip

Itis possible to disable them all using the managenent . heal t h. def aul t s. enabl ed property.

1.4.8.BUILD-SNAPSHOT Spring Boot 160

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/CassandraHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/DiskSpaceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/DataSourceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ElasticsearchHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/JmsHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/MailHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/MongoHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/RabbitHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/RedisHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/SolrHealthIndicator.java

Spring Boot Reference Guide

Writing custom HealthIndicators

To provide custom health information you can register Spring beans that implement the
Heal t hl ndi cat or interface. You need to provide an implementation of the heal t h() method and
return a Heal t h response. The Heal t h response should include a status and can optionally include
additional details to be displayed.

i nport org.springfranework. boot. act uat e. heal t h. Heal t h;
i nport org.springfranework. boot . act uat e. heal t h. Heal t hl ndi cat or;
i mport org.springframework. stereotype. Conponent ;

public class MyHeal t hl ndi cator inplenents Heal t hl ndicator {

public Health health() {
int errorCode = check(); // perform some specific health check
if (errorCode !=) {
return Heal th.down().withDetail ("Error Code", errorCode).build();

}
return Heal th.up().build();

Note

The identifier for a given Heal t hl ndi cator is the name of the bean without the
Heal t hl ndi cat or suffixif it exists. In the example above, the health information will be available
in an entry named rry.

In addition to Spring Boot’'s predefined St at us types, it is also possible for Heal t h to return a
custom St at us that represents a new system state. In such cases a custom implementation of the
Heal t hAggr egat or interface also needs to be provided, or the default implementation has to be
configured using the managenent . heal t h. st at us. or der configuration property.

For example, assuming a new Status with code FATAL is being used in one of your
Heal t hl ndi cat or implementations. To configure the severity order add the following to your
application properties:

managenent . heal t h. st at us. or der =DOAN, OUT_OF_SERVI CE, UNKNOWN, UP

The HTTP status code in the response reflects the overall health status (e.g. UP maps to 200,
QUT_OF_SERVI CE or DOMN to 503). You might also want to register custom status mappings with the
Heal t hM/cEndpoi nt if you access the health endpoint over HTTP. For example, the following maps
FATAL to Ht t pSt at us. SERVI CE_UNAVAI LABLE:

endpoi nt s. heal t h. mappi ngs. FATAL=503

46.7 Application information

Application information exposes various information collected from all | nf oContri but or beans
defined in your ApplicationContext. Spring Boot includes a number of auto-configured
I nf oCont ri but or s and you can also write your own.

1.4.8.BUILD-SNAPSHOT Spring Boot 161

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/Status.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthAggregator.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java

Spring Boot Reference Guide

Auto-configured InfoContributors

The following | nf oCont ri but or s are auto-configured by Spring Boot when appropriate:

Name Description

Envi ronnent | nf oExposé oy &ey from the Envi r onnent under the i nf o key.
G t 1 nfoContri buEspose git information ifa gi t. properti es file is available.

Bui | dI nf oCont r i Expose build information if a META- | NF/ bui | d-i nf o. properti es fileis
available.

Tip
It is possible to disable them all using the managenent . i nf o. def aul t s. enabl ed property.

Custom application info information

You can customize the data exposed by the i nf o endpoint by setting i nf 0. * Spring properties. All
Envi ronnent properties under the info key will be automatically exposed. For example, you could add
the following to your appl i cati on. properti es:

i nf 0. app. encodi ng=UTF- 8

i nfo. app. j ava. source=1. 8
i nfo.app.java.target=1.8

Tip

Rather than hardcoding those values you could also expand info properties at build time.

Assuming you are using Maven, you could rewrite the example above as follows:

i nfo. app. encodi ng=@r oj ect . bui | d. sour ceEncodi ng@
i nfo. app.j ava. source=@ ava. ver si on@
i nfo.app.java.target=@ava. versi on@

Git commit information

Another useful feature of the i nf o endpoint is its ability to publish information about the state of your
gi t source code repository when the project was built. If a G t Properti es bean is available, the
git.branch,git.commt.idandgit.conmt.tinme properties will be exposed.

Tip

A G tProperties bean is auto-configured ifa gi t . properti es file is available at the root of
the classpath. See Generate git information for more details.

If you want to display the full git information (i.e. the full content of git. properti es), use the
managenent . i nf 0. gi t. node property:

managenent . i nfo. gi t. mode=ful |

1.4.8.BUILD-SNAPSHOT Spring Boot 162

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/EnvironmentInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/GitInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/BuildInfoContributor.java

Spring Boot Reference Guide

Build information

The i nf 0 endpoint can also publish information about your build if a Bui | dProperti es bean is
available. This happens if a META- | NF/ bui | d-i nf 0. pr operti es file is available in the classpath.

Tip

The Maven and Gradle plugins can both generate that file, see Generate build information for
more details.

Writing custom InfoContributors

To provide custom application information you can register Spring beans that implement the
I nf oCont ri but or interface.

The example below contributes an exanpl e entry with a single value:

i nport java.util.Collections;

i mport org.springframework. boot. actuate.info.Info;
i nport org.springframework. boot. actuate.info.|nfoContri butor;
i nport org.springfranework. stereotype. Conponent ;

public class Exanpl el nfoContributor inplenents |InfoContributor {

public void contribute(lnfo.Builder builder) {
bui |l der.w thDet ai | ("exanpl e",
Col | ecti ons. si ngl et onMap("key", "value"));

If you hit the i nf o endpoint you should see a response that contains the following additional entry:

{
"exanpl e": {
"key" : "val ue"

}

1.4.8.BUILD-SNAPSHOT Spring Boot 163

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java

Spring Boot Reference Guide

47. Monitoring and management over HTTP

If you are developing a Spring MVC application, Spring Boot Actuator will auto-configure all enabled
endpoints to be exposed over HTTP. The default convention is to use the i d of the endpoint as the URL
path. For example, heal t h is exposed as / heal t h.

47.1 Securing sensitive endpoints

If you add ‘Spring Security’ to your project, all sensitive endpoints exposed over HTTP will be protected.
By default ‘basic’ authentication will be used with the username user and a generated password (which
is printed on the console when the application starts).

Tip

Generated passwords are logged as the application starts. Search for ‘Using default security
password’.

You can use Spring properties to change the username and password and to change the
security role(s) required to access the endpoints. For example, you might set the following in your
application. properties:

security. user.name=adm n
security. user. passwor d=secr et
managenent . security. r ol es=SUPERUSER

Tip
If you don't use Spring Security and your HTTP endpoints are exposed publicly, you should

carefully consider which endpoints you enable. See Section 46.1, “Customizing endpoints” for
details of how you can set endpoi nt's. enabl ed to f al se then “opt-in” only specific endpoints.

47.2 Customizing the management endpoint paths

Sometimes it is useful to group all management endpoints under a single path. For example, your
application might already use / i nf o for another purpose. You can use the managenent . cont ext -
pat h property to set a prefix for your management endpoint:

managenent . cont ext - pat h=/ manage

The appl i cati on. properti es example above will change the endpoint from / {i d} to / nanage/
{id} (e.g./ manage/i nf o).

You can also change the “id” of an endpoint (using endpoi nt s. { nane}. i d) which then changes the
default resource path for the MVC endpoint. Legal endpoint ids are composed only of alphanumeric
characters (because they can be exposed in a number of places, including JMX object names,
where special characters are forbidden). The MVC path can be changed separately by configuring
endpoi nt s. { nane}. pat h, and there is no validation on those values (so you can use anything that
is legal in a URL path). For example, to change the location of the / heal t h endpointto/ pi ng/ e you
can set endpoi nt s. heal t h. pat h=/ pi ng/ ne.

1.4.8.BUILD-SNAPSHOT Spring Boot 164

Spring Boot Reference Guide

Tip

If you provide a custom M/cEndpoi nt remember to include a settable pat h property, and default
itto/ {i d} if youwant your code to behave like the standard MVC endpoints. (Take a look at the
Heal t hM/cEndpoi nt to see how you might do that.) If your custom endpoint is an Endpoi nt
(not an MvcEndpoi nt) then Spring Boot will take care of the path for you.

47.3 Customizing the management server port

Exposing management endpoints using the default HTTP port is a sensible choice for cloud based
deployments. If, however, your application runs inside your own data center you may prefer to expose
endpoints using a different HTTP port.

The managenent . port property can be used to change the HTTP port.

managenent . port =8081

Since your management port is often protected by a firewall, and not exposed to the public you might
not need security on the management endpoints, even if your main application is secure. In that case
you will have Spring Security on the classpath, and you can disable management security like this:

managenent . security. enabl ed=f al se

(If you don’t have Spring Security on the classpath then there is no need to explicitly disable the
management security in this way, and it might even break the application.)

47.4 Configuring management-specific SSL

When configured to use a custom port, the management server can also be configured with its own SSL
using the various nanagenent . ssl . * properties. For example, this allows a management server to
be available via HTTP while the main application uses HTTPS:

server. port =8443

server. ssl . enabl ed=true

server. ssl. key-store=cl asspath: store.jks
server. ssl . key- passwor d=secr et

managenent . por t =8080

managenent . ssl . enabl ed=f al se

Alternatively, both the main server and the management server can use SSL but with different key stores:

server. port=8443

server. ssl . enabl ed=true

server. ssl . key-store=cl asspat h: mai n. j ks

server. ssl . key- passwor d=secr et

managenent . por t =8080

managenent . ssl . enabl ed=true

managenent . ssl . key- st or e=cl asspat h: managenent . j ks
managenent . ssl . key- passwor d=secr et

47.5 Customizing the management server address

You can customize the address that the management endpoints are available on by setting the
managenent . addr ess property. This can be useful if you want to listen only on an internal or ops-
facing network, or to only listen for connections from | ocal host .

1.4.8.BUILD-SNAPSHOT Spring Boot 165

Spring Boot Reference Guide

Note

You can only listen on a different address if the port is different to the main server port.

Here is an example appl i cati on. properti es that will not allow remote management connections:

managenent . por t =8081
managenent . addr ess=127.0.0. 1

47.6 Disabling HTTP endpoints

If you don’t want to expose endpoints over HTTP you can set the management port to - 1:

‘ managenent . port=-1

47.7 HTTP health endpoint format and access restrictions

The information exposed by the health endpoint varies depending on whether or not it's accessed
anonymously, and whether or not the enclosing application is secure. By default, when accessed
anonymously in a secure application, any details about the server’s health are hidden and the endpoint
will simply indicate whether or not the server is up or down. Furthermore the response is cached
for a configurable period to prevent the endpoint being used in a denial of service attack. The
endpoi nts. heal th. ti me-to-Iive property is used to configure the caching period in milliseconds.
It defaults to 1000, i.e. one second.

Sample summarized HTTP response (default for anonymous request):

$ curl -i local host:8080/health

HTTP/ 1.1 200

X-Appl i cation-Context: application

Cont ent - Type: application/vnd. spring-boot. actuator.vl+json; charset=UTF-8
Cont ent - Lengt h: 15

{"status":"UP"}

Sample summarized HTTP response for status "DOWN" (notice the 503 status code):

$ curl -i local host: 8080/ heal th

HTTP/ 1.1 503

X-Appl i cation-Context: application

Cont ent - Type: application/vnd. spring-boot. actuator.vl+json; charset=UTF-8
Cont ent - Lengt h: 17

{"status":"DOMN'}

Sample detailed HTTP response:

$ curl -i local host:8080/health

HTTP/ 1.1 200 OK

X-Appl i cation-Context: application

Cont ent - Type: application/vnd. spring-boot. actuator.vl+json; charset=UTF-8
Cont ent - Lengt h: 221

{

"status" : "UP",
"di skSpace" : {
"status" : "UP",
"total " : 63251804160,

"free" : 31316164608,
"threshol d" : 10485760
I

1.4.8.BUILD-SNAPSHOT Spring Boot 166

Spring Boot Reference Guide

"db" : {
"status" : "UP",
"dat abase" : "H2",
"hello" : 1
}
}

The above-described restrictions can be enhanced, thereby allowing only authenticated users full
access to the health endpoint in a secure application. To do so, set endpoi nt s. heal t h. sensitive
tot rue. Here’'s a summary of behavior (with default sensi t i ve flag value “false” indicated in bold):

managemnent . securi t yeedadbi eds. heal t h. sedaatthenticated Authenticated
false false Full content Full content
false true Status only Full content
true false Status only Full content
true true No content Full content

1.4.8.BUILD-SNAPSHOT Spring Boot 167

Spring Boot Reference Guide

48. Monitoring and management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default Spring Boot will expose management endpoints as JMX MBeans under the
org. spri ngfranmewor k. boot domain.

48.1 Customizing MBean names

The name of the MBean is usually generated from the i d of the endpoint. For example the heal t h
endpoint is exposed as or g. spri ngf r amewor k. boot / Endpoi nt / heal t hEndpoi nt .

If your application contains more than one Spring Appl i cat i onCont ext you may find that names
clash. To solve this problem you can set the endpoi nts. j nx. uni que- nanes property to t r ue so
that MBean names are always unique.

You can also customize the JMX domain under which endpoints are exposed. Here is an example
application. properties:

endpoi nt s. j nx. domai n=nyapp
endpoi nt's. j nx. uni que- names=t r ue

48.2 Disabling JMX endpoints

If you don’t want to expose endpoints over JMX you can set the endpoi nt s. j nx. enabl ed property
tofal se:

endpoi nts. j nx. enabl ed=f al se

48.3 Using Jolokia for JMX over HTTP

Jolokia is a JMX-HTTP bridge giving an alternative method of accessing JMX beans. To use Jolokia,
simply include a dependency to or g. j ol oki a: j ol oki a- cor e. For example, using Maven you would
add the following:

<dependency>
<groupl d>org. j ol oki a</ gr oupl d>
<artifact!|d>jol okia-core</artifactld>

</ dependency>

Jolokia can then be accessed using / j ol oki a on your management HTTP server.
Customizing Jolokia

Jolokia has a number of settings that you would traditionally configure using servlet parameters.
With Spring Boot you can use your appl i cati on. properti es, simply prefix the parameter with
j ol okia.config.:

j ol oki a. confi g. debug=t rue

Disabling Jolokia

If you are using Jolokia but you don't want Spring Boot to configure it, simply set the
endpoi nt s. j ol oki a. enabl ed property to f al se:

1.4.8.BUILD-SNAPSHOT Spring Boot 168

Spring Boot Reference Guide

endpoi nts. j ol oki a. enabl ed=f al se

1.4.8.BUILD-SNAPSHOT Spring Boot 169

Spring Boot Reference Guide

49. Monitoring and management using a remote
shell

Spring Boot supports an integrated Java shell called ‘CRaSH’. You can use CRaSH to ssh ort el net
into your running application. To enable remote shell support, add the following dependency to your
project:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-renmote-shell</artifactl|d>
</ dependency>

Tip

If you want to also enable telnet access you will additionally need a dependency on
org.crsh:crsh.shell.tel net.

Note

CRaSH requires to run with a JDK as it compiles commands on the fly. If a basic hel p command
fails, you are probably running with a JRE.

49.1 Connecting to the remote shell

By default the remote shell will listen for connections on port 2000. The default user is user and the
default password will be randomly generated and displayed in the log output. If your application is using
Spring Security, the shell will use the same configuration by default. If not, a simple authentication will
be applied and you should see a message like this:

Usi ng default password for shell access: ec03el6c-4cf4-49ee-b745-7c8255c1dd7e

Linux and OSX users can use ssh to connect to the remote shell, Windows users can download and
install PUTTY.

$ ssh -p 2000 user @ ocal host

user @ ocal host's password:

CON— "2 '
W)1 10l

NN) VL
[
[
[_|

[_I 1=l
:: Spring Boot :: (v1.4.8.BU LD SNAPSHOT) on nyhost

Type hel p for alist of commands. Spring Boot provides et ri ¢s, beans, aut oconf i g and endpoi nt
commands.

Remote shell credentials

You can use the managenent . shel | . aut h. si npl e. user. nane and
managenent . shel | . aut h. si npl e. user. passwor d properties to configure custom connection
credentials. It is also possible to use a ‘Spring Security’ Aut hent i cati onManager to handle login
duties. See the Cr shAut oConfi gur ati on and Shel | Pr operti es Javadoc for full details.

1.4.8.BUILD-SNAPSHOT Spring Boot 170

https://www.putty.org/
https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/CrshAutoConfiguration.html
https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/actuate/autoconfigure/ShellProperties.html

Spring Boot Reference Guide

49.2 Extending the remote shell

The remote shell can be extended in a number of interesting ways.
Remote shell commands

You can write additional shell commands using Groovy (see the CRaSH documentation for details).
Due to limitations in CRaSH'’s Java compiler, commands written in Java are not supported. By default
Spring Boot will search for commands in the following locations:

» cl asspat h*:/ comuands/ **

e cl asspat h*:/crash/ cormands/ **

Tip

You can change the search path by settings a shel | . command- pat h- pat t er ns property.

Note

If you are using an executable archive, any classes that a shell command depends upon must be
packaged in a nested jar rather than directly in the executable jar or war.

Here is a simple ‘hello’ command that could be loaded from src/ mai n/ r esour ces/ comrands/
hel | 0. gr oovy

package conmands

i mport org.crsh.cli.Command
inport org.crsh.cli.Usage
i nport org.crsh. conmand. | nvocat i onCont ext

class hello {

def main(lnvocationContext context) {
return "Hello"

}

}

Spring Boot adds some additional attributes to | nvocat i onCont ext that you can access from your
command:

Attribute Name Description

spring. boot. version The version of Spring Boot

spring. version The version of the core Spring Framework
spring. beanfactory Access to the Spring BeanFact ory
spring. envi ronnent Access to the Spring Envi r onnent

Remote shell plugins

In addition to new commands, it is also possible to extend other CRaSH shell features. All Spring Beans
that extend or g. cr sh. pl ugi n. CRaSHPI ugi n will be automatically registered with the shell.

1.4.8.BUILD-SNAPSHOT Spring Boot 171

Spring Boot Reference Guide

For more information please refer to the CRaSH reference documentation.

1.4.8.BUILD-SNAPSHOT Spring Boot 172

https://www.crashub.org/

Spring Boot Reference Guide

50. Metrics

Spring Boot Actuator includes a metrics service with ‘gauge’ and ‘counter’ support. A ‘gauge’ records
a single value; and a ‘counter’ records a delta (an increment or decrement). Spring Boot Actuator also
provides a Publ i cMet ri cs interface that you can implement to expose metrics that you cannot record
via one of those two mechanisms. Look at Syst enPubl i cMet ri cs for an example.

Metrics for all HTTP requests are automatically recorded, so if you hit the net r i ¢cs endpoint you should
see a response similar to this:

{
"count er.status.200.root":
"counter.status.200. nmetrics":
"counter.status. 200. star-star":
"counter.status.401.root":
"gauge. response. star-star":
"gauge. response. root":
"gauge. response. metrics":

"cl asses":

"cl asses. | oaded": ,

"cl asses. unl oaded":
"heap":

"heap. comm tted":
"heap.init":

"heap. used":

"nonheap":

"nonheap. conmi tted":
"nonheap.init":
"nonheap. used":

"ment:

"mem free":
"processors":
"threads": ,

"t hreads. daenon":

"t hreads. peak":
"threads.total Started":
"uptinme":

"instance. uptime":
"datasource. prinmary. active":
"dat asource. prinary. usage":

Here we can see basic nenory, heap, cl ass | oadi ng, pr ocessor andt hread pool information
along with some HTTP metrics. In this instance the r oot (/') and/ netri cs URLs have returned HTTP
200 responses 20 and 3 times respectively. It also appears that the r oot URL returned HTTP 401
(unauthorized) 4 times. The double asterisks (st ar - st ar) comes from a request matched by Spring
MVC as / ** (normally a static resource).

The gauge shows the last response time for a request. So the last request to r oot took 2ns to respond
and the lastto / met ri cs took 3ns.

Note

In this example we are actually accessing the endpoint over HTTP using the / met ri ¢s URL, this
explains why et r i cs appears in the response.

50.1 System metrics

The following system metrics are exposed by Spring Boot:

1.4.8.BUILD-SNAPSHOT Spring Boot 173

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/endpoint/PublicMetrics.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/endpoint/SystemPublicMetrics.java

Spring Boot Reference Guide

» The total system memory in KB (nen)

» The amount of free memory in KB (mem fr ee)

e The number of processors (pr ocessor s)

e The system uptime in milliseconds (upt i ne)

» The application context uptime in milliseconds (i nst ance. upti ne)

» The average system load (syst em oad. aver age)

» Heap information in KB (heap, heap. conmi t t ed, heap. i ni t, heap. used)
e Thread information (t hr eads, t hr ead. peak, t hr ead. daenon)

» Class load information (cl asses, cl asses. | oaded, cl asses. unl oaded)

» Garbage collection information (gc. Xxxx. count , gc. Xxx. ti ne)

50.2 DataSource metrics

The following metrics are exposed for each supported Dat aSour ce defined in your application:
» The number of active connections (dat asour ce. xxx. acti ve)
» The current usage of the connection pool (dat asour ce. xxx. usage).

All data source metrics share the dat asour ce. prefix. The prefix is further qualified for each data
source:

« If the data source is the primary data source (that is either the only available data source or the one
flagged @°r i mar y amongst the existing ones), the prefix is dat asour ce. pri mary.

« If the data source bean name ends with Dat aSour ce, the prefix is the name of the bean without
Dat aSour ce (i.e. dat asour ce. bat ch for bat chDat aSour ce).

* In all other cases, the name of the bean is used.

It is possible to override part or all of those defaults by registering a bean with a customized version
of Dat aSour cePubl i cMet ri cs. By default, Spring Boot provides metadata for all supported data
sources; you can add additional Dat aSour cePool Met adat aPr ovi der beans if your favorite data
source isn't supported out of the box. See Dat aSour cePool Met adat aPr ovi der sConfi gurati on
for examples.

50.3 Cache metrics

The following metrics are exposed for each supported cache defined in your application:
» The current size of the cache (cache. xxx. si ze)
e Hitratio (cache. xxx. hit.rati o)

e Miss ratio (cache. xxx. m ss.rati 0)

Note

Cache providers do not expose the hit/miss ratio in a consistent way. While some expose an
aggregated value (i.e. the hit ratio since the last time the stats were cleared), others expose a

1.4.8.BUILD-SNAPSHOT Spring Boot 174

Spring Boot Reference Guide

temporal value (i.e. the hit ratio of the last second). Check your caching provider documentation
for more details.

If two different cache managers happen to define the same cache, the name of the cache is prefixed
by the name of the CacheManager bean.

It is possible to override part or all of those defaults by registering a bean with a customized version
of CachePubl i cMet ri cs. By default, Spring Boot provides cache statistics for EnCache, Hazelcast,
Infinispan, JCache and Guava. You can add additional CacheSt ati sti csProvi der beans if your
favorite caching library isn’t supported out of the box. See CacheSt ati sti csAut oConfi gurati on
for examples.

50.4 Tomcat session metrics

If you are using Tomcat as your embedded servlet container, session metrics will automatically be
exposed. The htt psessi ons. acti ve and ht t psessi ons. nax keys provide the number of active
and maximum sessions.

50.5 Recording your own metrics

To record your own metrics inject a Count er Servi ce and/or GaugeServi ce into your bean.
The Count er Ser vi ce exposes i ncr enent , decr emrent and r eset methods; the GaugeSer vi ce
provides a subni t method.

Here is a simple example that counts the number of times that a method is invoked:

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. boot . actuate. netrics. Count er Ser vi ce;
i nport org.springfranework. stereotype. Servi ce;

public class MyService {

private final CounterService counterService;

publ ic MyService(CounterService counterService) {
this.counterService = counterService;

}

public void exanpl eMet hod() {
this. counterService.increnent("services.system nyservice.invoked");

}

Tip

You can use any string as a metric name but you should follow guidelines of your chosen store/
graphing technology. Some good guidelines for Graphite are available on Matt Aimonetti's Blog.

50.6 Adding your own public metrics

To add additional metrics that are computed every time the metrics endpoint is invoked, simply register
additional Publ i cMet ri cs implementation bean(s). By default, all such beans are gathered by the
endpoint. You can easily change that by defining your own Met ri csEndpoi nt .

1.4.8.BUILD-SNAPSHOT Spring Boot 175

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/CounterService.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/GaugeService.java
https://matt.aimonetti.net/posts/2013/06/26/practical-guide-to-graphite-monitoring/

Spring Boot Reference Guide

50.7 Special features with Java 8

The default implementation of GaugeServi ce and Count er Servi ce provided by Spring Boot
depends on the version of Java that you are using. With Java 8 (or better) the implementation switches
to a high-performance version optimized for fast writes, backed by atomic in-memory buffers, rather than
by the immutable but relatively expensive Met ri c<?> type (counters are approximately 5 times faster
and gauges approximately twice as fast as the repository-based implementations). The Dropwizard
metrics services (see below) are also very efficient even for Java 7 (they have backports of some of the
Java 8 concurrency libraries), but they do not record timestamps for metric values. If performance of
metric gathering is a concern then it is always advisable to use one of the high-performance options, and
also to only read metrics infrequently, so that the writes are buffered locally and only read when needed.

Note

The old Metri cRepository and its | nMenoryMet ri cReposi t ory implementation are not
used by default if you are on Java 8 or if you are using Dropwizard metrics.

50.8 Metric writers, exporters and aggregation

Spring Boot provides a couple of implementations of a marker interface called Exporter which
can be used to copy metric readings from the in-memory buffers to a place where they can
be analyzed and displayed. Indeed, if you provide a @ean that implements the MetricWiter
interface (or GaugeW i t er for simple use cases) and mark it @xport Metri cWiter, then it will
automatically be hooked up to an Export er and fed metric updates every 5 seconds (configured via
spring. nmetrics.export.delay-mllis).In addition, any Met ri cReader that you define and
mark as @xport Met ri cReader will have its values exported by the default exporter.

Note

This feature is enabling scheduling in your application (@nabl eSchedul i ng) which can be a
problem if you run an integration tests as your own scheduled tasks will start. You can disable
this behaviour by setting spri ng. netri cs. export. enabl ed to f al se.

The default exporter is a Met ri cCopyExport er which tries to optimize itself by not copying values
that haven't changed since it was last called (the optimization can be switched off using a flag
spring. metrics.export.send-| atest). Note also that the Dropwizard Met ri cRegi stry has
no support for timestamps, so the optimization is not available if you are using Dropwizard metrics (all
metrics will be copied on every tick).

The default values for the export trigger (del ay-ni | I i s,i ncl udes, excl udes and send- | at est)
can be set as spring. netrics. export. *. Individual values for specific Metri cWiters can be
setasspring. metrics.export.triggers. <nane>.* where <name> is a bean name (or pattern
for matching bean names).

Warning

The automatic export of metrics is disabled if you switch off the default Met r i cReposi t ory (e.g.
by using Dropwizard metrics). You can get back the same functionality be declaring a bean of
your own of type Met ri cReader and declaring it to be @xport Met ri cReader .

1.4.8.BUILD-SNAPSHOT Spring Boot 176

Spring Boot Reference Guide

Example: Export to Redis

If you provide a @ean of type Redi sMetri cRepository and mark it @xport MetricWiter
the metrics are exported to a Redis cache for aggregation. The Redi sMet ri cReposi t ory has two
important parameters to configure it for this purpose: prefi x and key (passed into its constructor).
It is best to use a prefix that is unique to the application instance (e.g. using a random value and
maybe the logical name of the application to make it possible to correlate with other instances of the
same application). The “key” is used to keep a global index of all metric names, so it should be unique
“globally”, whatever that means for your system (e.g. two instances of the same system could share a
Redis cache if they have distinct keys).

Example:
MetricWiter metricWiter(MetricExportProperties export) {

return new Redi sMetri cRepository(connectionFactory,
export.getRedis().getPrefix(), export.getRedis().getKey());

application.properties.

spring. netrics.export.redis.prefix: metrics.nysystem ${spring. application. narme: application}.
${random val ue: 0000}
spring. netrics. export.redis. key: keys.netrics. nysystem

The prefix is constructed with the application name and id at the end, so it can easily be used to identify
a group of processes with the same logical name later.

Note

It's important to set both the key and the pr ef i x. The key is used for all repository operations, and
can be shared by multiple repositories. If multiple repositories share a key (like in the case where
you need to aggregate across them), then you normally have a read-only “master” repository that
has a short, but identifiable, prefix (like “metrics.mysystem”), and many write-only repositories
with prefixes that start with the master prefix (like met ri cs. mysyst em * in the example above).
Itis efficient to read all the keys from a “master” repository like that, but inefficient to read a subset
with a longer prefix (e.g. using one of the writing repositories).

Tip

The example above uses Met ri cExport Properti es to inject and extract the key and prefix.
This is provided to you as a convenience by Spring Boot, configured with sensible defaults. There
is nothing to stop you using your own values as long as they follow the recommendations.

Example: Export to Open TSDB

If you provide a @ean of type OpenTsdbGaugeW it er and mark it @xport Met ri cWi t er metrics
are exported to Open TSDB for aggregation. The OpenTsdbGaugeW i t er has a ur| property that
you need to set to the Open TSDB “/put” endpoint, e.g. | ocal host : 4242/ api / put). It also has a
namni ngSt r at egy that you can customize or configure to make the metrics match the data structure
you need on the server. By default it just passes through the metric name as an Open TSDB metric
name, and adds the tags “domain” (with value “org.springframework.metrics”) and “process” (with the

1.4.8.BUILD-SNAPSHOT Spring Boot 177

https://github.com/OpenTSDB/opentsdb
http://localhost:4242/api/put

Spring Boot Reference Guide

value equal to the object hash of the naming strategy). Thus, after running the application and generating
some metrics you can inspect the metrics in the TSD Ul (localhost:4242 by default).

Example:

curl | ocal host: 4242/ api / query?st art =1h- ago&m=nax: count er. st at us. 200. r oot

[
{

"metric": "counter.status.200.root",
"tags": {
"domai n": "org.springframework. netrics",

"process": "b968a76"
b
"aggregateTags": [],

"dps": {
"1430492872": 2,
"1430492875": 6
}

}

1

Example: Export to Statsd

To export metrics to Statsd, make sure first that you have added com ti ngroup: j ava- st at sd-
cl i ent as a dependency of your project (Spring Boot provides a dependency management for it).
Then add a spring. metrics. export. statsd. host value to your appl i cati on. properties
file. Connections will be opened to port 8125 unless a spri ng. metri cs. export. statsd. port
override is provided. You can use spri ng. metri cs. export. stat sd. prefi x if you want a custom
prefix.

Alternatively, you can provide a @ean of type StatsdMetricWiter and mark it
@xportMetricWiter:

private String prefix = "nmetrics";

MetricWiter netricWiter() {
return new StatsdMetricWiter(prefix, "local host",);

}

Example: Export to JMX

If you provide a @Bean of type JnxMet ri cWiter marked @xportMetri cWiter the metrics are
exported as MBeans to the local server (the MBeanExport er is provided by Spring Boot JMX auto-
configuration as long as it is switched on). Metrics can then be inspected, graphed, alerted etc. using
any tool that understands JMX (e.g. JConsole or JVisualVM).

Example:

MetricWiter nmetricWiter(MBeanExporter exporter) {
return new JnxMetri cWiter(exporter);

}

Each metric is exported as an individual MBean. The format for the Cbj ect Nanes is given by an
hj ect Nami ngSt r at egy which can be injected into the JnkMetri cWi t er (the default breaks up
the metric name and tags the first two period-separated sections in a way that should make the metrics
group nicely in JVisualVM or JConsole).

1.4.8.BUILD-SNAPSHOT Spring Boot 178

http://localhost:4242

Spring Boot Reference Guide

50.9 Aggregating metrics from multiple sources

There is an Aggr egat eMet ri cReader that you can use to consolidate metrics from different physical
sources. Sources for the same logical metric just need to publish them with a period-separated prefix,
and the reader will aggregate (by truncating the metric names, and dropping the prefix). Counters are
summed and everything else (i.e. gauges) take their most recent value.

This is very useful if multiple application instances are feeding to a central (e.g. Redis)
repository and you want to display the results. Particularly recommended in conjunction with a
Met ri cReader Publ i cMet ri cs for hooking up to the results to the “/metrics” endpoint.

Example:

private MetricExportProperties export;

public PublicMetrics netricsAggregate() {
return new Metri cReader PublicMetrics(aggregatesMetri cReader());

}

private MetricReader gl obal MetricsForAggregation() {
return new Redi sMetri cRepository(this.connectionFactory,
this.export.getRedis().getAggregatePrefix(), this.export.getRedis().getKey());

}

private MetricReader aggregatesMetricReader() {
Aggr egat eMetri cReader repository = new Aggregat eMetri cReader (
gl obal Metri csFor Aggregation());
return repository;

}

Note

The example above uses Met ri cExport Properti es to inject and extract the key and prefix.
This is provided to you as a convenience by Spring Boot, and the defaults will be sensible. They
are set up in Met ri cExport Aut oConfi gurati on.

Note

The Met ri cReader s above are not @eans and are not marked as @xport Metri cReader
because they are just collecting and analyzing data from other repositories, and don’t want to
export their values.

50.10 Dropwizard Metrics

A default Metri cRegi stry Spring bean will be created when you declare a dependency to the
i 0.dropwi zard. netrics: metrics-cor e library; you can also register you own @ean instance
if you need customizations. Users of the Dropwizard ‘Metrics’ library will find that Spring Boot
metrics are automatically published tocom codahal e. et ri cs. Met ri cRegi st ry. Metrics from the
Met ri cRegi st ry are also automatically exposed via the / net ri ¢s endpoint

When Dropwizard metrics are in use, the default Count er Ser vi ce and GaugeSer vi ce are replaced
with a Dr opwi zar dMet ri cSer vi ces, which is a wrapper around the Met ri cRegi stry (so you can
@\ut owi r ed one of those services and use it as normal). You can also create “special” Dropwizard
metrics by prefixing your metric names with the appropriate type (i.e. ti mer.*, hi st ogram * for
gauges, and net er . * for counters).

1.4.8.BUILD-SNAPSHOT Spring Boot 179

https://dropwizard.github.io/metrics/

Spring Boot Reference Guide

50.11 Message channel integration

If a MessageChannel bean called met ri csChannel exists, then a Metri cWit er will be created
that writes metrics to that channel. The writer is automatically hooked up to an exporter (as for all
writers), so all metric values will appear on the channel, and additional analysis or actions can be taken
by subscribers (it's up to you to provide the channel and any subscribers you need).

1.4.8.BUILD-SNAPSHOT Spring Boot 180

Spring Boot Reference Guide

51. Auditing

Spring Boot Actuator has a flexible audit framework that will publish events once Spring Security
is in play (‘authentication success’, ‘failure’ and ‘access denied’ exceptions by default). This can
be very useful for reporting, and also to implement a lock-out policy based on authentication
failures. To customize published security events you can provide your own implementations of
Abst ract Aut henti cati onAudi t Li st ener and Abst r act Aut hori zat i onAudi t Li st ener.

You can also choose to use the audit services for your own business events. To do that you can either
inject the existing Audi t Event Reposi t ory into your own components and use that directly, or you
can simply publish Audi t Appl i cati onEvent viathe Spring Appl i cati onEvent Publ i sher (using
Appl i cati onEvent Publ i sher Awar e).

1.4.8.BUILD-SNAPSHOT Spring Boot 181

Spring Boot Reference Guide

52. Tracing

Tracing is automatically enabled for all HTTP requests. You can view the t r ace endpoint and obtain
basic information about the last 100 requests:

[{
"timestamp": ,
"info": {
"met hod": "CET",
"path": "/trace",
"headers": {
"request": {
"Accept": "text/htm , application/xhtm +xm , application/xm;g=0.9,*/*;g=0.8",
"Connection": "keep-alive",
"Accept - Encodi ng": "gzip, deflate",
"User-Agent": "Mozilla/5.0 Gecko/Firefox",
"Accept - Language": "en-US, en; q=0. 5",
"Cooki e": "_ga=GAl. 1.827067509. 1390890128;
"Aut hori zation": "Basic ...",
"Host": "l ocal host: 8080"
B
"response": {
"Strict-Transport-Security": "max-age=31536000 ; incl udeSubDonai ns",
"X-Application-Context": "application:8080",
"Content-Type": "application/json; charset=UTF-8",
"status": "200"
}
}
}
o
"timestamp": ,
}H

52.1 Custom tracing

If you need to trace additional events you can inject a Tr aceReposi t or y into your Spring beans. The
add method accepts a single Map structure that will be converted to JSON and logged.

By defaultan | nMenor yTr aceReposi t or y will be used that stores the last 100 events. You can define
your own instance of the | nMenor yTr aceReposi t or y bean if you need to expand the capacity. You
can also create your own alternative Tr aceReposi t or y implementation if needed.

1.4.8.BUILD-SNAPSHOT Spring Boot 182

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/trace/TraceRepository.java

Spring Boot Reference Guide

53. Process monitoring

In Spring Boot Actuator you can find a couple of classes to create files that are useful for process
monitoring:

* ApplicationPidFileWiter creates a file containing the application PID (by default in the
application directory with the file name appl i cati on. pi d).

» EnbeddedServerPortFil eWiter creates a file (or files) containing the ports of the embedded
server (by default in the application directory with the file name appl i cati on. port).

These writers are not activated by default, but you can enable them in one of the ways described below.

53.1 Extend configuration

In META- 1 NF/ spri ng. f act ori es file you can activate the listener(s) that writes a PID file. Example:

or g. spri ngf ramewor k. cont ext. Appl i cati onLi st ener =\
or g. spri ngframewor k. boot . system Appl i cati onPi dFil eWiter,\
org. spri ngfranmewor k. boot . act uat e. syst em EnbeddedSer ver Port Fi |l eWiter

53.2 Programmatically

You can also activate a listener by invoking the Spri ngAppl i cati on. addLi st ener s(..) method
and passing the appropriate Wi t er object. This method also allows you to customize the file name
and path via the Wi t er constructor.

1.4.8.BUILD-SNAPSHOT Spring Boot 183

Spring Boot Reference Guide

54. What to read next

If you want to explore some of the concepts discussed in this chapter, you can take a look at the actuator
sample applications. You also might want to read about graphing tools such as Graphite.

Otherwise, you can continue on, to read about ‘deployment options’ or jump ahead for some in-depth
information about Spring Boot's build tool plugins.

1.4.8.BUILD-SNAPSHOT Spring Boot 184

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples
https://graphite.wikidot.com/

Part VI. Deploying
Spring Boot applications

Spring Boot’s flexible packaging options provide a great deal of choice when it comes to deploying your
application. You can easily deploy Spring Boot applications to a variety of cloud platforms, to a container
images (such as Docker) or to virtual/real machines.

This section covers some of the more common deployment scenarios.

Spring Boot Reference Guide

55. Deploying to the cloud

Spring Boot’s executable jars are ready-made for most popular cloud PaaS (platform-as-a-service)
providers. These providers tend to require that you “bring your own container”; they manage application
processes (not Java applications specifically), so they need some intermediary layer that adapts your
application to the cloud’s notion of a running process.

Two popular cloud providers, Heroku and Cloud Foundry, employ a “buildpack” approach. The buildpack
wraps your deployed code in whatever is needed to start your application: it might be a JDK and a call to
j ava, it might be an embedded web server, or it might be a full-fledged application server. A buildpack
is pluggable, but ideally you should be able to get by with as few customizations to it as possible. This
reduces the footprint of functionality that is not under your control. It minimizes divergence between
development and production environments.

Ideally, your application, like a Spring Boot executable jar, has everything that it needs to run packaged
within it.

In this section we'll look at what it takes to get the simple application that we developed in the “Getting
Started” section up and running in the Cloud.

55.1 Cloud Foundry

Cloud Foundry provides default buildpacks that come into play if no other buildpack is specified. The
Cloud Foundry Java buildpack has excellent support for Spring applications, including Spring Boot. You
can deploy stand-alone executable jar applications, as well as traditional . war packaged applications.

Once you've built your application (using, for example, nvn cl ean package) and installed the cf
command line tool, simply deploy your application using the cf push command as follows, substituting
the path to your compiled . j ar . Be sure to have logged in with your cf command line client before
pushing an application.

$ cf push acl oudyspringtime -p target/denmp-0.0.1- SNAPSHOT. j ar

See the cf push documentation for more options. If there is a Cloud Foundry mani f est . yn file
present in the same directory, it will be consulted.

Note

Here we are substituting acl oudyspri ngti me for whatever value you give cf as the name of
your application.

At this point cf will start uploading your application:

Upl oadi ng acl oudyspringtine... K
Preparing to start acloudyspringtine... OK
————— > Downl oaded app package (8.9M
————— > Java Buil dpack source: system
————— > Downl oadi ng Open JDK 1.7.0_51 from.../x86_64/openjdk-1.7.0_51.tar.gz (1.8s)
Expandi ng Open JDK to .java-buil dpack/ open_j dk (1.2s)

----- > Downl oadi ng Spring Auto Reconfiguration from 0.8.7 .../auto-reconfiguration-0.8.7.jar (0.1s)
----- > Upl oadi ng dropl et (44M
Checki ng status of app 'acloudyspringtinme'...

0 of 1 instances running (1 starting)

0 of 1 instances running (1 down)

0 of 1 instances running (1 starting)

1.4.8.BUILD-SNAPSHOT Spring Boot 186

https://github.com/cloudfoundry/java-buildpack
https://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
https://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
https://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#login
https://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#push
https://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

Spring Boot Reference Guide

1 of 1 instances running (1 running)

App started

Congratulations! The application is now live!

It's easy to then verify the status of the deployed application:

$ cf apps

Getting applications in ...

oK

nanme requested state i nstances menory di sk urls

acl oudyspringti me started 1/1 512M 1G acl oudyspri ngti me. cfapps.io

Once Cloud Foundry acknowledges that your application has been deployed, you should be able to hit
the application at the URI given, in this case htt ps: // acl oudyspri ngti me. cfapps.io/.

Binding to services

By default, metadata about the running application as well as service connection information is exposed
to the application as environment variables (for example: $VCAP_SERVI CES). This architecture decision
is due to Cloud Foundry’s polyglot (any language and platform can be supported as a buildpack) nature;
process-scoped environment variables are language agnostic.

Environment variables don't always make for the easiest API so Spring Boot automatically extracts them
and flattens the data into properties that can be accessed through Spring’s Envi r onnent abstraction:

cl ass MyBean i npl ements Environnent Anare {
private String instanceld;
public voi d setEnvironnment (Environment environment) {

this.instanceld = environment. getProperty("vcap.application.instance_id");

}

N/

}

All Cloud Foundry properties are prefixed with vcap. You can use vcap properties to access application
information (such as the public URL of the application) and service information (such as database
credentials). See Cl oudFoundr yVcapEnvi r onnent Post Pr ocessor Javadoc for complete details.

Tip

The Spring Cloud Connectors project is a better fit for tasks such as configuring a DataSource.
Spring Boot includes auto-configuration support and a spri ng-boot-starter-cl oud-
connect or s starter.

55.2 Heroku

Heroku is another popular PaaS platform. To customize Heroku builds, you provide a Procfil e,
which provides the incantation required to deploy an application. Heroku assigns a port for the Java
application to use and then ensures that routing to the external URI works.

1.4.8.BUILD-SNAPSHOT Spring Boot 187

https://cloud.spring.io/spring-cloud-connectors/

Spring Boot Reference Guide

You must configure your application to listen on the correct port. Here’s the Pr ocf i | e for our starter

REST application:

web: java -Dserver.port=$PORT -jar target/denp-0.0.1- SNAPSHOT. j ar

Spring Boot makes - D arguments available as properties accessible from a Spring Envi r onnent
instance. The server. port configuration property is fed to the embedded Tomcat, Jetty or Undertow
instance which then uses it when it starts up. The $PORT environment variable is assigned to us by

the Heroku Paas.

Heroku by default will use Java 1.8. This is fine as long as your Maven or Gradle build is set to use the
same version (Maven users can use the java.version property). If you want to use JDK 1.7, create a
new file adjacent to your pom xm and Procfi |l e, called syst em properti es. In this file add the

following:

java. runtine.version=1.7

This should be everything you need. The most common workflow for Heroku deployments is to gi t

push the code to production.

$ git push heroku master

Initializing repository, done.

Counting objects: 95, done.

Del ta conpression using up to 8 threads.

Conpr essi ng obj ects: 100% (78/78), done.

Witing objects: 100% (95/95), 8.66 MB | 606.00 KiB/s, done.
Total 95 (delta 31), reused O (delta 0)

----- > Java app detected

----- > Installing OpenJDK 1.8... done

----- > Installing Maven 3.3.1... done

----- > Installing settings.xm ... done

————— > Executing: nvn -B -DskipTests=true clean install

[INFQ Scanning for projects...

Downl oadi ng: https://repo.spring.iol...

Downl oaded: https://repo.spring.io/... (818 B at 1.8 KB/ sec)

Downl oaded: https://s3pository. heroku.comjvm ... (152 KB at 595.3 KB/ sec)
[INFQ Installing /tnp/build_0c35a5d2-a067-4abc-a232-14blf b7a8229/ pom xni
[INFO BU LD SUCCESS

[INFO Total tinme: 59.358s

[INFQ Finished at: Fri Mr 07 07:28:25 UTC 2014
[INFQ Final Menory: 20M 493M

————— > Di scovering process types
Procfile declares types -> web

----- > Conpressing... done, 70.4MB
----- > Launching... done, v6
https://agil e-sierra-1405. her okuapp. conl depl oyed to Heroku

To git @eroku. com agil e-sierra-1405.git
* [new branch] master -> master

[INFO Installing /tnp/build_0c35a5d2-a067-4abc-a232-14b1f b7a8229/target/. ..
[INEG] s=oc=c=sssscccosssscccasssscccossssccoassooccoaosooccoo050000000500000a0

[INFG] ==o=occossccocasscomsccsssmcacacomsmcooos0ca0ocomaac00o5ca0a0000200055

[1NRG) s=ssessessessesscssesscssessessassassassassassassassansassansassansanaas

Your application should now be up and running on Heroku.

1.4.8.BUILD-SNAPSHOT Spring Boot

188

Spring Boot Reference Guide

55.3 OpenShift

OpenShift is the RedHat public (and enterprise) PaaS solution. Like Heroku, it works by running scripts
triggered by git commits, so you can script the launching of a Spring Boot application in pretty much any
way you like as long as the Java runtime is available (which is a standard feature you can ask for at
OpenShift). To do this you can use the DIY Cartridge and hooks in your repository under . openshi ft/
action_hooks:

The basic model is to:

1. Ensure Java and your build tool are installed remotely, e.g. using a pre_bui | d hook (Java and
Maven are installed by default, Gradle is not)

2. Use a bui | d hook to build your jar (using Maven or Gradle), e.g.

#!/ bi n/ bash
cd $OPENSHI FT_REPO DI R
mvn package -s .openshift/settings.xm -DskipTests=true

3. Add astart hookthatcallsjava -jar

#!/ bi n/ bash

cd $OPENSHI FT_REPO DI R

nohup java -jar target/*.jar --server.port=${OPENSH FT_DI Y_PORT} --server.address=${ OPENSHI FT_DI Y_I P}
&

4. Use a st op hook (since the start is supposed to return cleanly), e.g.

#! / bi n/ bash
sour ce $OPENSHI FT_CARTRI DGE_SDK_BASH
PID=%(ps -ef | grep java.*\.jar | grep -v grep | awk '{ print $2 }")

if [-z"$PID"]
t hen

client_result "Application is already stopped”
el se

kill $PID

fi

5. Embed service bindings from environment variables provided by the platform in your
application. properties,e.g.

spring. datasource. url: jdbc:nysql://${OPENSH FT_MYSQL_DB_HOST} : ${ OPENSHI FT_MySQL_DB_PORT} /
${ OPENSHI FT_APP_NANE}

spring. dat asour ce. user name: ${ OPENSHI FT_MySQL_DB_USERNAME}

spring. dat asour ce. password: ${ OPENSHI FT_MYSQL_DB_PASSWORD}

There’s a blog on running Gradle in OpenShift on their website that will get you started with a gradle
build to run the app.

55.4 Boxfuse and Amazon Web Services

Boxfuse works by turning your Spring Boot executable jar or war into a minimal VM image that can be
deployed unchanged either on VirtualBox or on AWS. Boxfuse comes with deep integration for Spring
Boot and will use the information from your Spring Boot configuration file to automatically configure ports
and health check URLs. Boxfuse leverages this information both for the images it produces as well as
for all the resources it provisions (instances, security groups, elastic load balancers, etc).

1.4.8.BUILD-SNAPSHOT Spring Boot 189

https://www.openshift.com/
https://www.openshift.com/developers/do-it-yourself
https://www.openshift.com/blogs/run-gradle-builds-on-openshift
https://boxfuse.com/

Spring Boot Reference Guide

Once you have created a Boxfuse account, connected it to your AWS account, and installed the latest
version of the Boxfuse Client, you can deploy your Spring Boot application to AWS as follows (ensure
the application has been built by Maven or Gradle first using, for example, mvn cl ean package):

$ boxfuse run nyapp-1.0.jar -env=prod

See the boxf use run documentation for more options. If there is a boxfuse.com/docs/commandline/
#configuration [boxf use. conf] file present in the current directory, it will be consulted.

Tip

By default Boxfuse will activate a Spring profile named boxfuse on startup and if your
executable jar or war contains an boxfuse.com/docs/payloads/springboot.html#configuration
[appl i cati on- boxf use. properti es] file, Boxfuse will base its configuration based on the
properties it contains.

At this point boxf use will create an image for your application, upload it, and then configure and start
the necessary resources on AWS:

Fusi ng I mage for nyapp-1.0.jar ...

I mage fused in 00:06.838s (53937 K) -> axel fontaine/nyapp:1.0

Creating axel fontaine/ nyapp ...

Pushi ng axel font ai ne/ nyapp: 1.0 ...

Verifying axel fontai ne/ nyapp:1.0 ...

Creating Elastic IP ...

Mappi ng nyapp- axel font ai ne. boxfuse.io to 52.28.233. 167 ...

Wiiting for AWs to create an AM for axel fontaine/nyapp:1.0 in eu-central-1 (this nay take up to 50
seconds) ...

AM created in 00:23.557s -> am -d23f 38cf

Creating security group boxfuse-sg_axel fontaine/ nyapp:1.0 ...

Launching t2.mcro instance of axelfontaine/nyapp:1.0 (am -d23f38cf) in eu-central-1 ...

I nstance | aunched in 00:30.306s -> i-92ef9f53

Wiiting for AWS to boot Instance i-92ef9f53 and Payload to start at https://52.28.235.61/ ...

Payl oad started in 00:29.266s -> https://52.28.235.61/

Remappi ng El astic | P 52.28.233.167 to i-92ef9f53 ...

Waiting 15s for AWS to conplete Elastic |IP Zero Downtinme transition ...

Depl oynent conpl et ed successfully. axel fontaine/nyapp:1.0 is up and running at https://nyapp-

axel f ont ai ne. boxf use. i o/

Your application should now be up and running on AWS.

There’s a blog on deploying Spring Boot apps on EC2 as well as documentation for the Boxfuse Spring
Boot integration on their website that will get you started with a Maven build to run the app.

55.5 Google App Engine

Google App Engine is tied to the Servlet 2.5 API, so you can’t deploy a Spring Application there without
some modifications. See the Servlet 2.5 section of this guide.

1.4.8.BUILD-SNAPSHOT Spring Boot 190

https://console.boxfuse.com
https://boxfuse.com/docs/commandline/run.html
https://boxfuse.com/docs/commandline/#configuration
https://boxfuse.com/docs/commandline/#configuration
https://boxfuse.com/docs/payloads/springboot.html#configuration
https://boxfuse.com/blog/spring-boot-ec2.html
https://boxfuse.com/docs/payloads/springboot.html
https://boxfuse.com/docs/payloads/springboot.html

Spring Boot Reference Guide

56. Installing Spring Boot applications

In additional to running Spring Boot applications using j ava -j ar it is also possible to make fully
executable applications for Unix systems. This makes it very easy to install and manage Spring Boot
applications in common production environments.

To create a ‘fully executable’ jar with Maven use the following plugin configuration:

<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>

<confi gurati on>
<execut abl e>t rue</ execut abl e>
</ confi guration>
</ pl ugi n>

With Gradle, the equivalent configuration would be:

springBoot {
executabl e = true

}

You can then run your application by typing . / my- appl i cati on.jar (where ny-applicationis
the name of your artifact).

Note

Fully executable jars work by embedding an extra script at the front of the file. Not all tools currently
accept this format so you may not always be able to use this technique.

Note

The default script supports most Linux distributions and is tested on CentOS and
Ubuntu. Other platforms, such as OS X and FreeBSD, will require the use of a custom
enmbeddedLaunchScri pt.

Note

When a fully executable jar is run, it uses the jar’s directory as the working directory.

56.1 Unix/Linux services

Spring Boot application can be easily started as Unix/Linux services using eitheri ni t . d or syst end.

Installation as an init.d service (System V)

If you've configured Spring Boot's Maven or Gradle plugin to generate a fully executable jar, and
you're not using a custom enbeddedLaunchScri pt, then your application can beusedasaninit. d
service. Simply symlink the jartoi ni t . d to support the standard st art , st op, rest art and st at us
commands.

The script supports the following features:
* Starts the services as the user that owns the jar file

» Tracks application’s PID using / var / r un/ <appnane>/ <appnane>. pi d

1.4.8.BUILD-SNAPSHOT Spring Boot 191

Spring Boot Reference Guide

» Writes console logs to / var / | og/ <appnanme>. | og

Assuming that you have a Spring Boot application installed in / var / myapp, to install a Spring Boot
application as an i ni t . d service simply create a symlink:

‘$ sudo I n -s /var/nyapp/ nyapp.jar /etc/init.d/ nyapp

Once installed, you can start and stop the service in the usual way. For example, on a Debian based
system:

‘SB service nyapp start
Tip
If your application fails to start, check the log file writtento / var / | og/ <appnane>. | og for errors.

You can also flag the application to start automatically using your standard operating system tools. For
example, on Debian:

$ update-rc.d nyapp defaults <priority>

Securing an init.d service

Note

The following is a set of guidelines on how to secure a Spring Boot application that's being run
as an init.d service. It is not intended to be an exhaustive list of everything that should be done
to harden an application and the environment in which it runs.

When executed as root, as is the case when root is being used to start an init.d service, the default
executable script will run the application as the user which owns the jar file. You should never run a
Spring Boot application as r oot so your application’s jar file should never be owned by root. Instead,
create a specific user to run your application and use chown to make it the owner of the jar file. For
example:

$ chown boot app: boot app your-app.j ar

In this case, the default executable script will run the application as the boot app user.

Tip

To reduce the chances of the application’s user account being compromised, you should consider
preventing it from using a login shell. Set the account’s shell to / usr/ sbi n/ nol ogi n, for
example.

You should also take steps to prevent the modification of your application’s jar file. Firstly, configure its
permissions so that it cannot be written and can only be read or executed by its owner:

$ chnod 500 your-app.jar

Secondly, you should also take steps to limit the damage if your application or the account that's running
it is compromised. If an attacker does gain access, they could make the jar file writable and change its
contents. One way to protect against this is to make it immutable using chat tr:

1.4.8.BUILD-SNAPSHOT Spring Boot 192

Spring Boot Reference Guide

$ sudo chattr +i your-app.jar

This will prevent any user, including root, from modifying the jar.

If root is used to control the application’s service and you use a . conf file to customize its startup, the
. conf file will be read and evaluated by the root user. It should be secured accordingly. Use chnod so
that the file can only be read by the owner and use chown to make root the owner:

$ chnod 400 your-app. conf
$ sudo chown root:root your-app. conf

Installation as a systemd service

Systemd is the successor of the System V init system, and is now being used by many modern Linux
distributions. Although you can continue to use i ni t. d scripts with syst end, it is also possible to
launch Spring Boot applications using syst end ‘service’ scripts.

Assuming that you have a Spring Boot application installed in / var / myapp, to install a Spring Boot
application as a syst end service create a script named nyapp. ser vi ce using the following example
and place itin / et ¢/ syst end/ syst emdirectory:

[Unit]
Descri pti on=nyapp
Af t er =sysl og. t ar get

[Service]

User =nyapp

ExecSt art =/ var/ nyapp/ nyapp. j ar
SuccessExi t St at us=143

[Install]
Want edBy=nul ti - user. t ar get

Tip
Remember to change the Descri pti on, User and ExecSt art fields for your application.
Tip

Note that ExecSt art field does not declare the script action command, which means that r un
command is used by default.

Note that unlike when running as ani ni t . d service, user that runs the application, PID file and console
log file are managed by syst end itself and therefore must be configured using appropriate fields in
‘service’ script. Consult the service unit configuration man page for more details.

To flag the application to start automatically on system boot use the following command:

$ systenct!l enabl e nyapp.service
Refer to man systenct!| for more details.

Customizing the startup script

The default embedded startup script written by the Maven or Gradle plugin can be customized in
a number of ways. For most people, using the default script along with a few customizations is

1.4.8.BUILD-SNAPSHOT Spring Boot 193

https://www.freedesktop.org/software/systemd/man/systemd.service.html

Spring Boot Reference Guide

usually enough. If you find you can’t customize something that you need to, you can always use the
enmbeddedLaunchScri pt option to write your own file entirely.

Customizing script when it’s written

It often makes sense to customize elements of the start script as it’s written into the jar file. For example,
init.d scripts can provide a “description” and, since you know this up front (and it won't change), you
may as well provide it when the jar is generated.

To customize written elements, use the enbeddedLaunchScri pt Properti es option of the Spring
Boot Maven or Gradle plugins.

The following property substitutions are supported with the default script:

Name Description

node The script mode. Defaults to aut o.

i nitlnfoPrioviaPsovi des section of “INIT INFO”. Defaults to spri ng- boot - appl i cati on for
Gradle and to ${ proj ect. arti fact | d} for Maven.

i ni t1nfoShorhd&kort pDesari pti on section of “INIT INFO”. Defaults to Spri ng Boot
Appl i cati on for Gradle and to ${ pr oj ect . nane} for Maven.

i ni t1nfoDestme pesoni pti on section of “INIT INFO”. Defaults to Spri ng Boot
Appl i cati on for Gradle and to ${ pr oj ect . descri pti on} (falling back to
${ proj ect . nanme}) for Maven.

i ni tlnfoChKblenthlgconfi g section of “INIT INFO”. Defaults to 2345 99 01.
conf Fol der| The default value for CONF_FOLDER. Defaults to the folder containing the jar.
| ogFol der | The default value for LOG_FOLDER. Only valid for ani ni t . d service.

pi dFol der | The default value for Pl D_FCOLDER. Only valid for ani ni t . d service.

useSt ar t St|dpeesbar t - st op- daenon command, when it's available, should be used to control
the process. Defaultsto t r ue.

Customizing script when it runs

For items of the script that need to be customized after the jar has been written you can use environment
variables or a config file.

The following environment properties are supported with the default script:

Variable Description

MODE The “mode” of operation. The default depends on the way the jar was built, but will
usually be aut o (meaning it tries to guess if it is an init script by checking if it is a
symlink in a directory called i ni t . d). You can explicitly set it to ser vi ce so that the
stop| start|status|restart commands work, or to r un if you just want to run
the script in the foreground.

USE_START_|ST@rR £A&MONst op- daenon command, when it’s available, should be used to control
the process. Defaultsto t r ue.

1.4.8.BUILD-SNAPSHOT Spring Boot 194

Spring Boot Reference Guide

Variable Description

Pl D_FOLDER The root name of the pid folder (/ var / r un by default).

LOG_FOLDER The name of the folder to put log files in (/ var/ | og by default).

CONF_FOLDERhe name of the folder to read .conf files from (same folder as jar-file by default).

LOG_FI LENANEhe name of the log file in the LOG_FOLDER (<appnane>. | og by default).

APP_NAME | The name of the app. If the jar is run from a symlink the script guesses the app name,
but if it is not a symlink, or you want to explicitly set the app name this can be useful.

RUN_ARGS | The arguments to pass to the program (the Spring Boot app).

JAVA HOME | The location of the j ava executable is discovered by using the PATH by default, but
you can set it explicitly if there is an executable file at $JAVA HOVE/ bi n/ j ava.

JAVA_OPTS | Options that are passed to the JVM when it is launched.

JARFI LE The explicit location of the jar file, in case the script is being used to launch a jar that
it is not actually embedded in.

DEBUG if not empty will set the - x flag on the shell process, making it easy to see the logic in
the script.

Note

The Pl D_FOLDER, LOG_FOLDER and LOG_FI LENAME variables are only valid foraninit.d

service. With

syst end the equivalent customizations are made using ‘service’ script. Check the

service unit configuration man page for more details.

With the exception of JARFI LE and APP_NAME, the above settings can be configured using a . conf
file. The file is expected next to the jar file and have the same name but suffixed with . conf rather
than . j ar. For example, a jar named / var / nyapp/ nyapp. j ar will use the configuration file named

[var/ nyapp/ myapp. conf .
myapp.conf.

JAVA_OPTS=- Xmx1024M
LOG_FOLDER=/ cust onl | og/ f ol der

Tip

You can use a CONF_FOLDER environment variable to customize the location of the config file if
you don't like it living next to the jar.

To learn about securing this file appropriately, please refer to the guidelines for securing an init.d service.

56.2 Microsoft Windows services

Spring Boot application can be started as Windows service using Wi nsw.

A sample maintained separately to the core of Spring Boot describes step-by-step how you can create
a Windows service for your Spring Boot application.

1.4.8.BUILD-SNAPSHOT Spring Boot 195

https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://github.com/kohsuke/winsw
https://github.com/snicoll-scratches/spring-boot-daemon

Spring Boot Reference Guide

57. What to read next

Check out the Cloud Foundry, Heroku, OpenShift and Boxfuse web sites for more information about the
kinds of features that a PaaS can offer. These are just four of the most popular Java PaaS providers,
since Spring Boot is so amenable to cloud-based deployment you're free to consider other providers
as well.

The next section goes on to cover the Spring Boot CLI; or you can jump ahead to read about build
tool plugins.

1.4.8.BUILD-SNAPSHOT Spring Boot 196

https://www.cloudfoundry.org
https://www.heroku.com/
https://www.openshift.com
https://boxfuse.com

Part VII. Spring Boot CLI

The Spring Boot CLI is a command line tool that can be used if you want to quickly develop with Spring.
It allows you to run Groovy scripts, which means that you have a familiar Java-like syntax, without so
much boilerplate code. You can also bootstrap a new project or write your own command for it.

Spring Boot Reference Guide

58. Installing the CLI

The Spring Boot CLI can be installed manually; using SDKMAN! (the SDK Manager) or using Homebrew
or MacPorts if you are an OSX user. See Section 10.2, “Installing the Spring Boot CLI” in the “Getting

started” section for comprehensive installation instructions.

1.4.8.BUILD-SNAPSHOT Spring Boot 198

Spring Boot Reference Guide

59. Using the CLI

Once you have installed the CLI you can run it by typing spri ng. If you run spri ng without any
arguments, a simple help screen is displayed:

$ spring
usage: spring [--help] [--version]
<commrand> [<ar gs>]

Avai | abl e commands are:

run [options] <files> [--] [args]
Run a spring groovy script

nore command hel p i s shown here

You can use hel p to get more details about any of the supported commands. For example:

$ spring help run
spring run - Run a spring groovy script

usage: spring run [options] <files> [--] [args]

Option Description

--autoconfigure [Bool ean] Add autoconfigure conpiler
transformations (default: true)

--classpath, -cp Addi tional classpath entries

-e, --edit Qpen the file with the default system
editor

--no- guess- dependenci es Do not attenpt to guess dependencies

--no-guess-inports Do not attenpt to guess inports

-g, --quiet Qui et | oggi ng

-v, --verbose Ver bose | oggi ng of dependency
resol ution

--wat ch Watch the specified file for changes

The ver si on command provides a quick way to check which version of Spring Boot you are using.

$ spring version
Spring CLI v1.4.8.BU LD SNAPSHOT

59.1 Running applications using the CLI

You can compile and run Groovy source code using the run command. The Spring Boot CLI is
completely self-contained so you don’t need any external Groovy installation.

Here is an example “hello world” web application written in Groovy:

hello.groovy.

cl ass WebApplication {

String honme() {
"Hello World!"

}

To compile and run the application type:

$ spring run hello. groovy

1.4.8.BUILD-SNAPSHOT Spring Boot 199

Spring Boot Reference Guide

To pass command line arguments to the application, you need to use a - - to separate them from the
“spring” command arguments, e.g.

‘$ spring run hello.groovy -- --server.port=9000

To set JVM command line arguments you can use the JAVA OPTS environment variable, e.g.

‘ $ JAVA_OPTS=- Xmx1024m spring run hell o. groovy

Deduced “grab” dependencies

Standard Groovy includes a @ ab annotation which allows you to declare dependencies on a third-
party libraries. This useful technique allows Groovy to download jars in the same way as Maven or
Gradle would, but without requiring you to use a build tool.

Spring Boot extends this technique further, and will attempt to deduce which libraries to “grab”
based on your code. For example, since the WebAppl i cat i on code above uses @est Control | er
annotations, “Tomcat” and “Spring MVC” will be grabbed.

The following items are used as “grab hints”;

ltems Grabs

JdbcTenpl at e, JDBC Application.
NanmedPar aret er JdbcTenpl at e,
Dat aSour ce

@nabl eJns JMS Application.

@nabl eCachi ng Caching abstraction.

@est JUnit.

@nabl eRabbi t RabbitMQ.

@nabl eReact or Project Reactor.

extends Speci fication Spock test.

@knabl eBat chProcessi ng Spring Batch.

@/kessageEndpoi nt Spring Integration.

@nabl el ntegrati onPatterns

@nabl eDevi ceResol ver Spring Mobile.

@control | er @estController Spring MVC + Embedded Tomcat.
@nabl eWebM/c

@nabl eWebSecurity Spring Security.

@knabl eTr ansact i onManagenent Spring Transaction Management.
Tip

See subclasses of Conpi | er Aut oConfi gurati on in the Spring Boot CLI source code to
understand exactly how customizations are applied.

1.4.8.BUILD-SNAPSHOT Spring Boot 200

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-cli/src/main/java/org/springframework/boot/cli/compiler/CompilerAutoConfiguration.java

Spring Boot Reference Guide

Deduced “grab” coordinates

Spring Boot extends Groovy's standard @x ab support by allowing you to specify a dependency
without a group or version, for example @x ab(' f r eemar ker ') . This will consult Spring Boot's default
dependency metadata to deduce the artifact's group and version. Note that the default metadata is tied
to the version of the CLI that you're using — it will only change when you move to a new version of the
CLlI, putting you in control of when the versions of your dependencies may change. A table showing the
dependencies and their versions that are included in the default metadata can be found in the appendix.

Default import statements

To help reduce the size of your Groovy code, several i mport statements are automatically included.
Notice how the example above refers to @onponent , @Rest Contr ol | er and @equest Mappi ng
without needing to use fully-qualified names or i nport statements.

Tip

Many Spring annotations will work without using i npor t statements. Try running your application
to see what fails before adding imports.

Automatic main method

Unlike the equivalent Java application, you do not need to include a public static void
mai n(String[] args) method with your G oovy scripts. A Spri ngAppl i cat i on is automatically
created, with your compiled code acting as the sour ce.

Custom dependency management

By default, the CLI uses the dependency management declared in spri ng- boot - dependenci es
when resolving @ ab dependencies. Additional dependency management, that will override the default
dependency management, can be configured using the @ependencyManagenent Bom annotation.
The annotation’s value should specify the coordinates (gr oupl d: arti fact | d: ver si on) of one or
more Maven BOMs.

For example, the following declaration:

@ependencyManagenent Bon(" com exanpl e. cust om bom 1. 0. 0")

Will pick up custom bom 1. 0.0. pom in a Maven repository under conf exanpl e/ cust om
versions/1.0.0/.

When multiple BOMs are specified they are applied in the order that they’re declared. For example:

@ependencyManagenent Bon([" com exanpl e. cust om bom 1. 0. 0",
"com exanpl e. anot her-bom 1. 0. 0"])

indicates that dependency management in anot her - bomwill override the dependency management
in cust om bom

You can use @ependencyManagenent Bomanywhere that you can use @x ab, however, to ensure
consistent ordering of the dependency management, you can only use @ependencyManagenent Bom
at most once in your application. A useful source of dependency management (that is

1.4.8.BUILD-SNAPSHOT Spring Boot 201

Spring Boot Reference Guide

a superset of Spring Boot's dependency management) is the Spring 10 Platform, e.g.
@ependencyManagenent Bon{' i 0. spring. platform platformbom 1. 1. 2. RELEASE').

59.2 Testing your code

The t est command allows you to compile and run tests for your application. Typical usage looks like
this:

$ spring test app.groovy tests.groovy
Total: 1, Success: 1, : Failures: 0
Passed? true

In this example, t est s. gr oovy contains JUnit @est methods or Spock Speci fi cati on classes.
All the common framework annotations and static methods should be available to you without having
toi nport them.

Here is the t est s. gr oovy file that we used above (with a JUnit test):

class ApplicationTests {

voi d homeSaysHel | o() {
assert Equal s("Hell o Worl d!", new WebApplication().hore())

}

Tip

If you have more than one test source files, you might prefer to organize them into a t est
directory.

59.3 Applications with multiple source files

You can use “shell globbing” with all commands that accept file input. This allows you to easily use
multiple files from a single directory, e.g.

‘$ spring run *.groovy

This technique can also be useful if you want to segregate your “test” or “spec” code from the main
application code:

‘$ spring test app/*.groovy test/*.groovy

59.4 Packaging your application

You can use the j ar command to package your application into a self-contained executable jar file.
For example:

$ spring jar my-app.jar *.groovy

The resulting jar will contain the classes produced by compiling the application and all of the application’s
dependencies so that it can then be run using j ava -j ar. The jar file will also contain entries from the
application’s classpath. You can add explicit paths to the jar using - - i ncl ude and - - excl ude (both
are comma-separated, and both accept prefixes to the values “+” and “-" to signify that they should be
removed from the defaults). The default includes are

1.4.8.BUILD-SNAPSHOT Spring Boot 202

https://platform.spring.io/

Spring Boot Reference Guide

‘public/**, resources/**, static/**, tenplates/**, META-INF/ **,6 *

and the default excludes are

‘.*, repository/**, build/**, target/**, **/* jar, **/* groovy
See the output of spri ng hel p j ar for more information.
59.5 Initialize a new project

The i ni t command allows you to create a new project using start.spring.io without leaving the shell.
For example:

$ spring init --dependenci es=web, data-j pa my- proj ect
Using service at https://start.spring.io
Project extracted to '/Users/devel oper/exanpl e/ ny-project’

This creates a my- pr oj ect directory with a Maven-based project using spri ng- boot -starter -
web and spri ng- boot - st art er - dat a- j pa. You can list the capabilities of the service using the - -
list flag

$ spring init --list

Capabilities of https://start.spring.io

Avai | abl e dependenci es:

actuator - Actuator: Production ready features to help you nonitor and manage your application

web - Web: Support for full-stack web devel opnent, including Tontat and spring-webmvc
websocket - Websocket: Support for WbSocket devel opnent
ws - WS Support for Spring Wb Services

Avai | abl e project types:

gradle-build - Gadle Config [format:build, build:gradle]

gradl e-project - Gadle Project [format:project, build:gradle]
maven-build - Maven POM [fornmat:build, build: maven]
maven- proj ect - Maven Project [format:project, build:maven] (default)

The i ni t command supports many options, check the hel p output for more details. For instance, the
following command creates a gradle project using Java 8 and war packaging:

$ spring init --build=gradle --java-version=1.8 --dependenci es=websocket --packagi ng=war sanpl e-app. zi p
Using service at https://start.spring.io
Content saved to 'sanpl e-app. zi p'

59.6 Using the embedded shell

Spring Boot includes command-line completion scripts for BASH and zsh shells. If you don’t use either
of these shells (perhaps you are a Windows user) then you can use the shel | command to launch
an integrated shell.

$ spring shell
Spring Boot (v1.4.8.BU LD SNAPSHOT)
Ht TAB to conplete. Type \'help' and hit RETURN for help, and \'exit' to quit.

From inside the embedded shell you can run other commands directly:

1.4.8.BUILD-SNAPSHOT Spring Boot 203

https://start.spring.io

Spring Boot Reference Guide

$ version
Spring CLI v1.4.8. BU LD- SNAPSHOT

The embedded shell supports ANSI color output as well as t ab completion. If you need to run a native
command you can use the ! prefix. Hitting ct r | - ¢ will exit the embedded shell.

59.7 Adding extensions to the CLI

You can add extensions to the CLI using the i nst al | command. The command takes one or more
sets of artifact coordinates in the format gr oup: arti f act : ver si on. For example:

$ spring install com exanpl e: spring-boot-cli-extension: 1. 0.0. RELEASE

In addition to installing the artifacts identified by the coordinates you supply, all of the artifacts'
dependencies will also be installed.

To uninstall a dependency use the uni nst al | command. As with the i nst al | command, it takes one
or more sets of artifact coordinates in the format gr oup: arti f act : ver si on. For example:

$ spring uninstall com exanpl e:spring-boot-cli-extension:1.0.0. RELEASE

It will uninstall the artifacts identified by the coordinates you supply and their dependencies.

To uninstall all additional dependencies you can use the - - al | option. For example:

$ spring uninstall --all

1.4.8.BUILD-SNAPSHOT Spring Boot 204

Spring Boot Reference Guide

60. Developing application with the Groovy beans
DSL

Spring Framework 4.0 has native support for a beans{} “DSL” (borrowed from Grails), and you can
embed bean definitions in your Groovy application scripts using the same format. This is sometimes a
good way to include external features like middleware declarations. For example:

class Application inplenments CommandLi neRunner {
Shar edSer vi ce service

void run(String... args) {
println service. message

}
}
i nport ny.conpany. SharedServi ce
beans {

servi ce(SharedService) {
nmessage = "Hello World"

}

You can mix class declarations with beans{} in the same file as long as they stay at the top level, or
you can put the beans DSL in a separate file if you prefer.

1.4.8.BUILD-SNAPSHOT Spring Boot 205

https://grails.org/

Spring Boot Reference Guide

61. Configuring the CLI with settings.xml

The Spring Boot CLI uses Aether, Maven’s dependency resolution engine, to resolve dependencies.
The CLI makes use of the Maven configuration found in ~/ . n2/ set ti ngs. xm to configure Aether.
The following configuration settings are honored by the CLI:

» Offline

» Mirrors

» Servers

» Proxies

» Profiles
 Activation

* Repositories

Active profiles

Please refer to Maven’s settings documentation for further information.

1.4.8.BUILD-SNAPSHOT Spring Boot 206

https://maven.apache.org/settings.html

Spring Boot Reference Guide

62. What to read next

There are some sample groovy scripts available from the GitHub repository that you can use to try out
the Spring Boot CLI. There is also extensive Javadoc throughout the source code.

If you find that you reach the limit of the CLI tool, you will probably want to look at converting your
application to full Gradle or Maven built “groovy project”. The next section covers Spring Boot's Build
tool plugins that you can use with Gradle or Maven.

1.4.8.BUILD-SNAPSHOT Spring Boot 207

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-cli/samples
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-cli/src/main/java/org/springframework/boot/cli

Part VIII. Build tool plugins

Spring Boot provides build tool plugins for Maven and Gradle. The plugins offer a variety of features,
including the packaging of executable jars. This section provides more details on both plugins, as well
as some help should you need to extend an unsupported build system. If you are just getting started,
you might want to read “Chapter 13, Build systems” from the Part Ill, “Using Spring Boot” section first.

Spring Boot Reference Guide

63. Spring Boot Maven plugin

The Spring Boot Maven Plugin provides Spring Boot support in Maven, allowing you to package
executable jar or war archives and run an application “in-place”. To use it you must be using Maven
3.2 (or better).

Note

Refer to the Spring Boot Maven Plugin Site for complete plugin documentation.

63.1 Including the plugin

To use the Spring Boot Maven Plugin simply include the appropriate XML in the pl ugi ns section of
your pom X

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0 https:// maven. apache. or g/ xsd/ maven-4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<l-- ... -->
<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-mven-plugin</artifactld>
<versi on>1. 4. 8. BUl LD- SNAPSHOT</ ver si on>
<executions>
<executi on>
<goal s>
<goal >r epackage</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

This configuration will repackage a jar or war that is built during the package phase of the Maven
lifecycle. The following example shows both the repackaged jar, as well as the original jar, inthe t ar get
directory:

$ nvn package
$ |s target/*.jar
target/ nmyproject-1.0.0.jar target/nyproject-1.0.0.jar.original

If you don't include the <execut i on/ > configuration as above, you can run the plugin on its own (but
only if the package goal is used as well). For example:

$ nvn package spring-boot:repackage
$ |s target/*.jar
target/nmyproject-1.0.0.jar target/nyproject-1.0.0.jar.original

If you are using a milestone or snapshot release you will also need to add appropriate
pl ugi nReposi t ory elements:

<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>spring-snapshot s</i d>
<url >https://repo.spring.io/snapshot </ url >

1.4.8.BUILD-SNAPSHOT Spring Boot 209

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/maven-plugin/
https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/maven-plugin/

Spring Boot Reference Guide

</ pl ugi nReposi t ory>
<pl ugi nReposi tory>
<i d>spring-m|estones</id>
<url >https://repo.spring.io/mlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>

63.2 Packaging executable jar and war files

Once spri ng- boot - maven- pl ugi n has been included in your pom xm it will automatically attempt
to rewrite archives to make them executable using the spri ng- boot : r epackage goal. You should
configure your project to build a jar or war (as appropriate) using the usual packagi ng element:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="htt p: // wwwv w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0 https:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >

<l-- ... -->
<packagi ng>j ar </ packagi ng>
<l-- ... -->

</ proj ect >

Your existing archive will be enhanced by Spring Boot during the package phase. The main class that
you want to launch can either be specified using a configuration option, or by adding a Mai n- Cl ass
attribute to the manifest in the usual way. If you don’t specify a main class the plugin will search for a
classwithapublic static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ nmvn package
$ java -jar target/mynodul e-0. 0. 1- SNAPSHOT. j ar

To build a war file that is both executable and deployable into an external container you need to mark
the embedded container dependencies as “provided”, e.g:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // www. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmaLocati on="http://maven. apache. org/ POM 4. 0. 0 https://maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<l-- ... -->
<packagi ng>war </ packagi ng>
<l-- ... -->
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifactld>spring-boot-starter-toncat</artifactl|d>
<scope>provi ded</ scope>
</ dependency>
<l-- ... -->
</ dependenci es>
</ proj ect >

Tip

See the “Section 82.1, “Create a deployable war file™ section for more details on how to create

a deployable war file.

Advanced configuration options and examples are available in the plugin info page.

1.4.8.BUILD-SNAPSHOT Spring Boot 210

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/maven-plugin/

Spring Boot Reference Guide

64. Spring Boot Gradle plugin

The Spring Boot Gradle Plugin provides Spring Boot support in Gradle, allowing you to package
executable jar or war archives, run Spring Boot applications and use the dependency management
provided by spri ng- boot - dependenci es.

64.1 Including the plugin

To use the Spring Boot Gradle Plugin simply include a bui | dscri pt dependency and apply the
spri ng- boot plugin:

bui l dscript {
repositories {
maven { url '"https://repo.spring.io/snapshot' }
maven { url 'https://repo.spring.io/mlestone }
}
dependenci es {
cl asspath 'org. springframework. boot: spring-boot - gradl e-pl ugi n: 1. 4. 8. BUl LD- SNAPSHOT" '
}
}

apply plugin: 'org.springfranework. boot"

64.2 Gradle dependency management

The spri ng- boot plugin automatically applies the Dependency Management Plugin and configures it
toimportthe spri ng- boot - st art er - par ent bom. This provides a similar dependency management
experience to the one that is enjoyed by Maven users. For example, it allows you to omit version numbers
when declaring dependencies that are managed in the bom. To make use of this functionality, simply
declare dependencies in the usual way, but leave the version number empty:

dependenci es {
conpi | e("org. springframewor k. boot : spri ng- boot -starter-web")
conpi |l e("org.thynel eaf: t hynel eaf - spri ng4")
conpil e("nz. net.ul trag. thynel eaf: t hynel eaf -1 ayout - di al ect")

Note

The version of the spri ng- boot gradle plugin that you declare determines the version of the
spring-boot - starter-parent bom that is imported (this ensures that builds are always
repeatable). You should always set the version of the spri ng- boot gradle plugin to the actual
Spring Boot version that you wish to use. Details of the versions that are provided can be found

in the appendix.

To learn more about the capabilities of the Dependency Management Plugin, please refer to its
documentation.

64.3 Packaging executable jar and war files

Once the spri ng- boot plugin has been applied to your project it will automatically attempt to rewrite
archives to make them executable using the boot Repackage task. You should configure your project
to build a jar or war (as appropriate) in the usual way.

1.4.8.BUILD-SNAPSHOT Spring Boot 211

https://github.com/spring-gradle-plugins/dependency-management-plugin/
https://github.com/spring-gradle-plugins/dependency-management-plugin/blob/master/README.md

Spring Boot Reference Guide

The main class that you want to launch can either be specified using a configuration option, or by adding
a Mai n- d ass attribute to the manifest. If you don't specify a main class the plugin will search for a
classwithapublic static void main(String[] args) method.

Tip

Check Section 64.6, “Repackage configuration” for a full list of configuration options.

To build and run a project artifact, you can type the following:

$ gradle build
$ java -jar build/libs/nynodul e-0.0. 1- SNAPSHOT. j ar

To build a war file that is both executable and deployable into an external container, you need to mark the
embedded container dependencies as belonging to the war plugin’s pr ovi dedRunt i me configuration,

e.g..

apply plugin: "war'

war {
baseNanme = ' nyapp'
version = '0.5.0

}

repositories {
jcenter()
maven { url "https://repo.spring.io/libs-snapshot" }

}

dependenci es {
conpi | e("org. springframework. boot : spring-boot -starter-web")
provi dedRunti me("org. springframewor k. boot : spri ng-boot-starter-toncat")

Tip

See the “Section 82.1, “Create a deployable war file™ section for more details on how to create

a deployable war file.

64.4 Running a project in-place

To run a project in place without building a jar first you can use the “bootRun” task:

‘ $ gradl e boot Run

If devt ool s has been added to your project it will automatically monitor your application for changes.
Alternatively, you can also run the application so that your static classpath resources (i.e. in sr ¢/ nai n/
r esour ces by default) are reloadable in the live application, which can be helpful at development time.

boot Run {
addResources = true

}

Making static classpath resources reloadable means that boot Run does not use the output of the
pr ocessResour ces task, i.e., when invoked using boot Run, your application will use the resources
in their unprocessed form.

1.4.8.BUILD-SNAPSHOT Spring Boot 212

Spring Boot Reference Guide

64.5 Spring Boot plugin configuration

The gradle plugin automatically extends your build script DSL with a spri ngBoot element for global
configuration of the Boot plugin. Set the appropriate properties as you would with any other Gradle
extension (see below for a list of configuration options):

springBoot {
backupSource = fal se

}

64.6 Repackage configuration

The plugin adds a boot Repackage task which you can also configure directly, e.g.:

boot Repackage {

mai nCl ass = ' deno. Appl i cati on’

}

The following configuration options are available:

Name

Description

enabl ed

mai nCl ass

classifier

Boolean flag to switch the repackager off (sometimes useful if you
want the other Boot features but not this one)

The main class that should be run. If not specified, and you have
applied the application plugin, the mai nCl assNarme project
property will be used. If the application plugin has not been
applied or no mai nCl assName has been specified, the archive
will be searched for a suitable class. "Suitable" means a unique
class with a well-formed nmai n() method (if more than one is
found the build will fail). If you have applied the application plugin,
the main class can also be specified via its "run" task (rmai n
property) and/or its "startScripts" task (mai nCl assNane property)
as an alternative to using the "springBoot" configuration.

A file name segment (before the extension) to add to the archive,
so that the original is preserved in its original location. Defaults

to nul | in which case the archive is repackaged in place. The
default is convenient for many purposes, but if you want to use
the original jar as a dependency in another project you must use a
classifier to define the executable archive.

wi t hJar Task

cust omConf i guration

execut abl e

The name or value of the Jar task (defaults to all tasks of type
Jar) which is used to locate the archive to repackage.

The name of the custom configuration which is used to populate
the nested lib directory (without specifying this you get all compile
and runtime dependencies).

Boolean flag to indicate if jar files are fully executable on Unix like
operating systems. Defaults to f al se.

1.4.8.BUILD-SNAPSHOT

Spring Boot 213

Spring Boot Reference Guide

Name Description

enbeddedLaunchScri pt The embedded launch script to prepend to the front of the jar if it
is fully executable. If not specified the 'Spring Boot' default script
will be used.

enmbeddedLaunchScri pt Pr opeAddemnal properties that to be expanded in the launch script. The
default script supports a node property which can contain the
values aut o, servi ce orrun.

excl udeDevt ool s Boolean flag to indicate if the devtools jar should be excluded
from the repackaged archives. Defaults to f al se.

64.7 Repackage with custom Gradle configuration

Sometimes it may be more appropriate to not package default dependencies resolved from conpi | e,
runti me and provi ded scopes. If the created executable jar file is intended to be run as it is, you
need to have all dependencies nested inside it; however, if the plan is to explode a jar file and run the
main class manually, you may already have some of the libraries available via CLASSPATH. This is a
situation where you can repackage your jar with a different set of dependencies.

Using a custom configuration will automatically disable dependency resolving from conpi | e, runt i ne
and provi ded scopes. Custom configuration can be either defined globally (inside the spri ngBoot
section) or per task.

task clientJar(type: Jar) {
appendi x = 'client’
from sour ceSet s. nai n. out put
excl ude(' **/*Sonet hi ng*")

}

task clientBoot(type: Boot Repackage, dependsOn: clientJar) {
wi t hJar Task = clientJar
cust onConfi guration = "nycustonconfi guration”

In above example, we created a new cl i ent Jar Jar task to package a customized file set from your
compiled sources. Then we created a new cl i ent Boot BootRepackage task and instructed it to work
with only cl i ent Jar task and nycust ontonfi gurati on.

configurations {
nmycust onctonfi guration. exclude group: 'l og4j"’

}

dependenci es {
nycustontonfiguration configurations.runtine

}

The configuration that we are referring to in Boot Repackage is a normal Gradle configuration. In
the above example we created a new configuration named mycust onconf i gur ati on instructing it
to derive from a runti me and exclude the | og4j group. If the cl i ent Boot task is executed, the
repackaged boot jar will have all dependencies from r unt i me but no | og4j jars.

Configuration options

The following configuration options are available:

1.4.8.BUILD-SNAPSHOT Spring Boot 214

https://docs.gradle.org/2.14.1/dsl/org.gradle.api.artifacts.Configuration.html

Spring Boot Reference Guide

Name
mai nC ass

provi dedConfi guration

Description
The main class that should be run by the executable archive.

The name of the provided configuration (defaults to
provi dedRunt i ne).

backupSource

cust omConf i guration

| ayout

If the original source archive should be backed-up before being
repackaged (defaults to t r ue).

The name of the custom configuration.

The type of archive, corresponding to how the dependencies are

laid out inside (defaults to a guess based on the archive type).
See available layouts for more details.

requi r esUnpack A list of dependencies (in the form “groupld:artifactld” that must
be unpacked from fat jars in order to run. Items are still packaged
into the fat jar, but they will be automatically unpacked when it

runs.

Available layouts

The | ayout attribute configures the format of the archive and whether the bootstrap loader should be
included or not. The following layouts are available:

Name Description Executable
JAR Regular executable JAR layout. Yes
WAR Executable WAR layout. pr ovi ded dependencies are Yes
placed in VEB- | NF/ | i b- pr ovi ded to avoid any clash
when the war is deployed in a servlet container.
ZI P (aliasto DI R) Similar to JAR layout, using Pr operti esLauncher . Yes

MODULE Bundle dependencies (excluding those with provi ded No
scope) and project resources.
NONE Bundle all dependencies and project resources. No

64.8 Understanding how the Gradle plugin works

When spri ng- boot is applied to your Gradle project a default task named boot Repackage is created
automatically. The boot Repackage task depends on Gradle assenbl e task, and when executed, it
tries to find all jar artifacts whose qualifier is empty (i.e. tests and sources jars are automatically skipped).

Due to the fact that boot Repackage finds "all' created jar artifacts, the order of Gradle task execution
is important. Most projects only create a single jar file, so usually this is not an issue; however, if you
are planning to create a more complex project setup, with custom Jar and Boot Repackage tasks,
there are few tweaks to consider.

If you are ‘just' creating custom jar files from your project you can simply disable default j ar and
boot Repackage tasks:

1.4.8.BUILD-SNAPSHOT Spring Boot 215

Spring Boot Reference Guide

jar.enabled = fal se
boot Repackage. enabl ed = fal se

Another option is to instruct the default boot Repackage task to only work with a default j ar task.

boot Repackage. wi t hJar Task = jar

If you have a default project setup where the main jar file is created and repackaged, 'and' you still
want to create additional custom jars, you can combine your custom repackage tasks together and use
dependsOn so that the boot Jar s task will run after the default boot Repackage task is executed:

task bootJars
boot Jars. dependsOn = [clientBoot 1, clientBoot 2, clientBoot 3]
bui | d. dependsOn(boot Jar s)

All the above tweaks are usually used to avoid situations where an already created boot jar is repackaged
again. Repackaging an existing boot jar will not break anything, but you may find that it includes
unnecessary dependencies.

64.9 Publishing artifacts to a Maven repository using Gradle

If you are declaring dependencies without versions and you want to publish artifacts to a Maven
repository you will need to configure the Maven publication with details of Spring Boot's dependency
management. This can be achieved by configuring it to publish poms that inherit from spri ng- boot -
st art er - par ent orthatimport dependency management from spri ng- boot - dependenci es. The
exact details of this configuration depend on how you're using Gradle and how you're trying to publish
the artifacts.

Configuring Gradle to produce a pom that inherits dependency
management

The following is an example of configuring Gradle to generate a pom that inherits from spr i ng- boot -
st art er - par ent . Please refer to the Gradle User Guide for further information.

upl oadAr chi ves {
repositories {
mavenDepl oyer {
pom {
project {
parent {

groupld "org. springframework. boot"
artifactld "spring-boot-starter-parent"
version "1.4.8. BU LD SNAPSHOT"

Configuring Gradle to produce a pom that imports dependency
management

The following is an example of configuring Gradle to generate a pom that imports the dependency
management provided by spri ng- boot - dependenci es. Please refer to the Gradle User Guide for
further information.

1.4.8.BUILD-SNAPSHOT Spring Boot 216

https://docs.gradle.org/2.14.1/userguide/userguide.html
https://www.gradle.org/docs/current/userguide/userguide.html

Spring Boot Reference Guide

upl oadAr chi ves {
repositories {
mavenDepl oyer {

pom {
project {
dependencyManagenent {
dependenci es {
dependency {
groupld "org. springfranmework. boot"
artifactld "spring-boot-dependenci es"
version "1.4.8. BU LD SNAPSHOT"
type "pont
scope "inport"
}
}
}
}
}

1.4.8.BUILD-SNAPSHOT Spring Boot 217

Spring Boot Reference Guide

65. Spring Boot AntLib module

The Spring Boot AntLib module provides basic Spring Boot support for Apache Ant. You can use the
module to create executable jars. To use the module you need to declare an additional spri ng- boot
namespace in your bui | d. xmi :

<project xmns:ivy="antlib:org.apache.ivy.ant"
xm ns: spring-boot="ant!i b: org. spri ngfranmework. boot. ant"
nane="nyapp" defaul t="build">

</ proj ect >

You'll need to remember to start Ant using the -1 i b option, for example:

$ ant -lib <folder containing spring-boot-antlib-1.4.8.BU LD SNAPSHOT. j ar >

Tip

The “Using Spring Boot” section includes a more complete example of using Apache Ant with
spring-boot-antlib

65.1 Spring Boot Ant tasks

Once the spri ng-boot - ant | i b namespace has been declared, the following additional tasks are
available.

spring-boot:exejar

The exej ar task can be used to creates a Spring Boot executable jar. The following attributes are
supported by the task:

Attribute Description Required

destfile The destination jar file to create Yes

cl asses The root directory of Java class files Yes

start-cl ass The main application class to run No (default is first class found

declaring a mai n method)

The following nested elements can be used with the task:

Element Description

resources One or more Resource Collections describing a set of Resources that should
be added to the content of the created jar file.

lib One or more Resource Collections that should be added to the set of jar
libraries that make up the runtime dependency classpath of the application.

Examples

Specify start-class.

1.4.8.BUILD-SNAPSHOT Spring Boot 218

https://ant.apache.org/manual/Types/resources.html#collection
https://ant.apache.org/manual/Types/resources.html
https://ant.apache.org/manual/Types/resources.html#collection

Spring Boot Reference Guide

<spring-boot:exejar destfile="target/ny-application.jar"
cl asses="target/cl asses" start-class="com foo. MyApplication">
<resour ces>
<fileset dir="src/ min/resources" />
</ resour ces>

<l'i b>
<fileset dir="lib" />
</lib>

</ spring-boot : exej ar >

Detect start-class.

<exej ar destfile="target/ ny-application.jar" classes="target/classes">
<lib>
<fileset dir="lib" />
</lib>
</ exej ar >

65.2 spring-boot:findmainclass

The fi ndmai ncl ass task is used internally by exej ar to locate a class declaring a mai n. You can
also use this task directly in your build if needed. The following attributes are supported

Attribute Description Required
cl assesr oot The root directory of Java class files Yes (unless nmai ncl ass is specified)
mai ncl ass Can be used to short-circuitthe main ~ No

class search

property The Ant property that should be set No (result will be logged if unspecified)
with the result

Examples

Find and log.

<findmai ncl ass cl assesroot="target/cl asses" />

Find and set.

<findmai ncl ass cl assesroot="target/cl asses" property="main-class" />

Override and set.

<findmai ncl ass mai ncl ass="com f 0o. Mai nCl ass" property="nmai n-cl ass" />

1.4.8.BUILD-SNAPSHOT Spring Boot 219

Spring Boot Reference Guide

66. Supporting other build systems

If you want to use a build tool other than Maven, Gradle or Ant, you will likely need to develop your
own plugin. Executable jars need to follow a specific format and certain entries need to be written in an
uncompressed form (see the executable jar format section in the appendix for details).

The Spring Boot Maven and Gradle plugins both make use of spri ng-boot -1 oader-tool s to
actually generate jars. You are also free to use this library directly yourself if you need to.

66.1 Repackaging archives

To repackage an existing archive so that it becomes a self-contained executable archive use
org. spri ngframewor k. boot . | oader . t ool s. Repackager. The Repackager class takes a
single constructor argument that refers to an existing jar or war archive. Use one of the two available
repackage() methods to either replace the original file or write to a new destination. Various settings
can also be configured on the repackager before it is run.

66.2 Nested libraries

When repackaging an archive you can include references to dependency files using the
org. springframework. boot . | oader.tool s. Li brari es interface. We don't provide any
concrete implementations of Li br ari es here as they are usually build system specific.

If your archive already includes libraries you can use Li br ari es. NONE.

66.3 Finding a main class

If you don't use Repackager . set Mai nCl ass() to specify a main class, the repackager will use ASM
to read class files and attempt to find a suitable class with a publ i ¢ static void mai n(String[]
ar gs) method. An exception is thrown if more than one candidate is found.

66.4 Example repackage implementation

Here is a typical example repackage:

Repackager repackager = new Repackager (sourcedarFile);
repackager . set BackupSour ce(f al se);
repackager . repackage(new Libraries() {

public void doWthLibraries(LibraryCal |l back cal | back) throws |CException {

/] Build system specific inplenentation, callback for each dependency
/1 call back.library(new Library(nestedFile, LibraryScope. COWILE));

1)

1.4.8.BUILD-SNAPSHOT Spring Boot 220

https://asm.ow2.org/

Spring Boot Reference Guide

67. What to read next

If you're interested in how the build tool plugins work you can look at the spr i ng- boot - t ool s module
on GitHub. More technical details of the executable jar format are covered in the appendix.

If you have specific build-related questions you can check out the “how-to” guides.

1.4.8.BUILD-SNAPSHOT Spring Boot 221

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-tools

Part IX. ‘How-to’ guides

This section provides answers to some common ‘how do | do that...” type of questions that often arise
when using Spring Boot. This is by no means an exhaustive list, but it does cover quite a lot.

If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer; this is also a great place to ask
new questions (please use the spri ng- boot tag).

We’'re also more than happy to extend this section; If you want to add a ‘how-to’ you can send us a
pull request.

https://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/tree/1.4.x

Spring Boot Reference Guide

68. Spring Boot application

68.1 Create your own FailureAnalyzer

Fai | ur eAnal yzer is agreatway to intercept an exception on startup and turn it into a human-readable
message, wrapped into a Fai | ur eAnal ysi s. Spring Boot provides such analyzer for application
context related exceptions, JSR-303 validations and more. It is actually very easy to create your own.

Abst ract Fai | ureAnal yzer is a convenient extension of Fai |l ureAnal yzer that checks the
presence of a specified exception type in the exception to handle. You can extend from that so that your
implementation gets a chance to handle the exception only when it is actually present. If for whatever
reason you can't handle the exception, return nul | to give another implementation a chance to handle
the exception.

Fai | ur eAnal yzer implementations are to be registered in a META- | NF/ spri ng. factori es: the
following registers Pr oj ect Const r ai nt Vi ol ati onFai | ureAnal yzer:

or g. spri ngf ramewor k. boot . di agnosti cs. Fai | ureAnal yzer =\
com exanpl e. Proj ect ConstraintViol ati onFai | ureAnal yzer

68.2 Troubleshoot auto-configuration

The Spring Boot auto-configuration tries its best to ‘do the right thing’, but sometimes things fail and it
can be hard to tell why.

There is a really useful ConditionEval uati onReport available in any Spring Boot
Appl i cati onCont ext . You will see it if you enable DEBUG logging output. If you use the spri ng-
boot - act uat or there is also an aut oconf i g endpoint that renders the report in JSON. Use that to
debug the application and see what features have been added (and which not) by Spring Boot at runtime.

Many more questions can be answered by looking at the source code and the Javadoc. Some rules
of thumb:

* Look for classes called *Aut oConfiguration and read their sources, in particular the
@Condi ti onal * annotations to find out what features they enable and when. Add - - debug to the
command line or a System property - Ddebug to get a log on the console of all the auto-configuration
decisions that were made in your app. In a running Actuator app look at the aut oconf i g endpoint
(‘/autoconfig’ or the JMX equivalent) for the same information.

* Look for classes that are @onfi gurati onProperties (e.g. Server Properties) and read
from there the available external configuration options. The @Confi gurati onProperti es has
a nane attribute which acts as a prefix to external properties, thus Server Properties has
prefix="server" and its configuration properties are server. port, server. address etc. Ina
running Actuator app look at the conf i gpr ops endpoint.

* Look for use of Rel axedPropertyResol ver to pull configuration values explicitly out of the
Envi ronment . It often is used with a prefix.

» Look for @/al ue annotations that bind directly to the Envi r onnent . This is less flexible than the
Rel axedPr opert yResol ver approach, but does allow some relaxed binding, specifically for OS
environment variables (so CAPI TALS AND_UNDERSCORES are synonyms for per i od. separ at ed).

1.4.8.BUILD-SNAPSHOT Spring Boot 223

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/diagnostics/FailureAnalyzer.html
https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/api/org/springframework/boot/diagnostics/FailureAnalysis.html
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

» Look for @ondi t i onal OnExpr essi on annotations that switch features on and off in response to
SpEL expressions, normally evaluated with placeholders resolved from the Envi r onnent .

68.3 Customize the Environment or ApplicationContext before
it starts

A SpringApplicationhasApplicationListenersandApplicationContextlnitializers
that are used to apply customizations to the context or environment. Spring Boot loads a nhumber of
such customizations for use internally from META- | NF/ spri ng. fact ori es. There is more than one
way to register additional ones:

» Programmatically per application by calling the addLi st eners and addl ni ti al i zer s methods
on Spri ngAppl i cati on before you run it.

» Declaratively per application by setting context.initializer.classes or
context.listener. cl asses.

» Declaratively for all applications by adding a META- | NF/ spri ng. f act ori es and packaging a jar
file that the applications all use as a library.

The Spri ngAppl i cati on sends some special Appl i cati onEvent s to the listeners (even some
before the context is created), and then registers the listeners for events published by the
Appl i cati onCont ext aswell. See Section 23.5, “Application events and listeners” in the ‘Spring Boot
features’ section for a complete list.

It is also possible to customize the Environment before the application context is refreshed
using Envi ronnent Post Processor. Each implementation should be registered in META- | NF/
spring.factories:

or g. spri ngf ramewor k. boot . env. Envi r onment Post Pr ocessor =com exanpl e. Your Envi r onment Post Pr ocessor

68.4 Build an ApplicationContext hierarchy (adding a parent or
root context)
You can use the ApplicationBuil der class to create parent/child Appli cati onCont ext

hierarchies. See Section 23.4, “Fluent builder API” in the ‘Spring Boot features’ section for more
information.

68.5 Create a non-web application

Not all Spring applications have to be web applications (or web services). If you want to execute
some code in a nai n method, but also bootstrap a Spring application to set up the infrastructure to
use, then it's easy with the Spri ngAppl i cat i on features of Spring Boot. A Spri ngAppl i cati on
changes its Appl i cat i onCont ext class depending on whether it thinks it needs a web application
or not. The first thing you can do to help it is to just leave the servlet APl dependencies off the
classpath. If you can't do that (e.g. you are running 2 applications from the same code base) then you
can explicitly call set WebEnvi r onnent (f al se) on your Spri ngAppl i cati on instance, or set the
appl i cat i onCont ext Cl ass property (through the Java API or with external properties). Application
code that you want to run as your business logic can be implemented as a ConmandLi neRunner and
dropped into the context as a @ean definition.

1.4.8.BUILD-SNAPSHOT Spring Boot 224

Spring Boot Reference Guide

69. Properties & configuration

69.1 Automatically expand properties at build time

Rather than hardcoding some properties that are also specified in your project’s build configuration, you
can automatically expand them using the existing build configuration instead. This is possible in both
Maven and Gradle.

Automatic property expansion using Maven

You can automatically expand properties from the Maven project using resource filtering. If you use
the spri ng- boot - st art er - par ent you can then refer to your Maven ‘project properties’ via @ . @
placeholders, e.g.

app. encodi ng=@r oj ect . bui | d. sour ceEncodi ng@
app. j ava. ver si on=@ ava. ver si on@

Tip
The spring-boot:run can add src/ mai n/ resources directly to the classpath (for hot
reloading purposes) if you enable the addResour ces flag. This circumvents the resource filtering

and this feature. You can use the exec: j ava goal instead or customize the plugin’s configuration,
see the plugin usage page for more details.

If you don't use the starter parent, in your pom xm you need (inside the <bui | d/ > element):

<resour ces>
<r esour ce>
<di rectory>src/ mai n/ resources</directory>
<filtering>true</filtering>
</resource>
</ resour ces>

and (inside <pl ugi ns/ >):

<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact|d>maven-resources-plugin</artifact!d>
<ver si on>2. 7</ ver si on>
<confi guration>
<delimters>
<delimter>@x/delimter>
</delimters>
<useDef aul t Del i mi t er s>f al se</ useDef aul t Del i m ters>
</ configuration>
</ pl ugi n>

Note

The useDefaul tDelimters property is important if you are using standard Spring
placeholders in your configuration (e.g. ${ f oo}). These may be expanded by the build if that
property is not setto f al se.

Automatic property expansion using Gradle

You can automatically expand properties from the Gradle project by configuring the Java plugin’s
pr ocessResour ces task to do so:

1.4.8.BUILD-SNAPSHOT Spring Boot 225

https://docs.spring.io/spring-boot/docs/1.4.8.BUILD-SNAPSHOT/maven-plugin/usage.html

Spring Boot Reference Guide

processResour ces {
expand(proj ect.properties)

}

You can then refer to your Gradle project’s properties via placeholders, e.g.

app. nane=%{ nane}
app. descri pti on=${descri ption}

Note

Gradle's expand method uses Groovy's Si npl eTenpl at eEngi ne which transforms ${. .}
tokens. The ${..} style conflicts with Spring’s own property placeholder mechanism. To use
Spring property placeholders together with automatic expansion the Spring property placeholders
need to be escaped like\ ${. . }.

69.2 Externalize the configuration of SpringApplication

A SpringApplication has bean properties (mainly setters) so you can use its Java API as you
create the application to modify its behavior. Or you can externalize the configuration using properties
inspring. nain.*. E.g.inapplication. properties you might have.

spring. mai n. web- envi ronnment =f al se
spri ng. mai n. banner - nnde=of f

and then the Spring Boot banner will not be printed on startup, and the application will not be a web
application.

Note

The example above also demonstrates how flexible binding allows the use of underscores (_) as
well as dashes (-) in property names.

Properties defined in external configuration overrides the values specified via the Java API with the
notable exception of the sources used to create the Appli cati onCont ext. Let's consider this
application

new Spri ngAppl i cati onBuil der ()
. banner Mbde(Banner . Mbde. OFF)
. sour ces(denp. MyApp. cl ass)
.run(args);

used with the following configuration:

spring. mai n. sour ces=com acne. Confi g, com acne. ExtraConfi g
spring. mai n. banner - nonde=consol e

The actual application will now show the banner (as overridden by configuration) and use
three sources for the Appli cati onContext (in that order): demo. MyApp, com acne. Confi g,
com acne. ExtraConfi g.

1.4.8.BUILD-SNAPSHOT Spring Boot 226

Spring Boot Reference Guide

69.3 Change the location of external properties of an
application

By default properties from different sources are added to the Spring Envi r onment in a defined order
(see Chapter 24, Externalized Configuration in the ‘Spring Boot features’ section for the exact order).

A nice way to augment and modify this is to add @°r opert ySour ce annotations to your application
sources. Classes passed to the Spri ngAppl i cat i on static convenience methods, and those added
using set Sour ces() are inspected to see if they have @PropertySources, and if they do,
those properties are added to the Envi ronnment early enough to be used in all phases of the
Appl i cati onCont ext lifecycle. Properties added in this way have lower priority than any added using
the default locations (e.g. appl i cati on. properti es), system properties, environment variables or
the command line.

You can also provide System properties (or environment variables) to change the behavior:

* spring. config. nane (SPRI NG_CONFI G_NAME), defaults to appl i cati on as the root of the file
name.

* spring.config.location (SPRI NG CONFI G_LOCATI ON) is the file to load (e.g. a classpath
resource or a URL). A separate Envi r onnent property source is set up for this document and it can
be overridden by system properties, environment variables or the command line.

No matter what you set in the environment, Spring Boot will always load appl i cati on. properti es
as described above. If YAML is used then files with the ‘.yml’ extension are also added to the list by
default.

Spring Boot logs the configuration files that are loaded at DEBUG level and the candidates it has not
found at TRACE level.

See Confi gFi | eAppli cati onLi st ener for more detail.

69.4 Use ‘short’ command line arguments

Some people like to use (for example) - - port =9000 instead of --server. port=9000 to set
configuration properties on the command line. You can easily enable this by using placeholders in
application. properties,e.g.

server. port=${port: 8080}

Tip

If you are inheriting from the spri ng- boot - st art er - par ent POM, the default filter token
of the maven- r esour ces- pl ugi ns has been changed from ${*} to @(i.e. @maven. t oken@
instead of ${ maven. t oken}) to prevent conflicts with Spring-style placeholders. If you have
enabled maven filtering for the appl i cati on. properti es directly, you may want to also
change the default filter token to use other delimiters.

Note

In this specific case the port binding will work in a PaaS environment like Heroku and Cloud
Foundry, since in those two platforms the PORT environment variable is set automatically and
Spring can bind to capitalized synonyms for Envi r onnent properties.

1.4.8.BUILD-SNAPSHOT Spring Boot 227

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java
https://maven.apache.org/plugins/maven-resources-plugin/resources-mojo.html#delimiters

Spring Boot Reference Guide

69.5 Use YAML for external properties

YAML is a superset of JISON and as such is a very convenient syntax for storing external properties
in a hierarchical format. E.g.

spring:
appl i cation:
nane: cruncher
dat asour ce:
driverCl assNane: com nysql . jdbc. Driver
url: jdbc:nysql://1ocal host/test
server:
port:

Create a file called application.ym and stick it in the root of your classpath, and also add
snakeyamn to your dependencies (Maven coordinates or g. yani : snakeyani , already included if
you use the spri ng- boot - st arter). A YAML file is parsed to a Java Map<St ri ng, Obj ect > (like
a JSON object), and Spring Boot flattens the map so that it is 1-level deep and has period-separated
keys, a lot like people are used to with Pr operti es files in Java.

The example YAML above corresponds to an appl i cati on. properti es file

spring. appl i cati on. nanme=cr uncher

spring. dat asour ce. dri ver Cl assNanme=com nysgql . j dbc. Dri ver
spring. datasource. url =j dbc: nysql :/ /1 ocal host/test
server. port=9000

See Section 24.6, “Using YAML instead of Properties” in the ‘Spring Boot features’ section for more
information about YAML.

69.6 Set the active Spring profiles

The Spring Envi ronnent has an API for this, but normally you would set a System property
(spring. profiles.active) or an OS environment variable (SPRI NG_PRCFI LES_ACTI VE). E.g.
launch your application with a - D argument (remember to put it before the main class or jar archive):

‘ $ java -jar -Dspring.profiles.active=production denp-0.0.1- SNAPSHOT. j ar

In Spring Boot you can also set the active profile in appl i cati on. properti es, e.g.

spring. profiles.active=production

A value set this way is replaced by the System property or environment variable setting, but not by
the Spri ngAppl i cati onBuil der. profil es() method. Thus the latter Java API can be used to
augment the profiles without changing the defaults.

See Chapter 25, Profiles in the ‘Spring Boot features’ section for more information.

69.7 Change configuration depending on the environment

A YAML file is actually a sequence of documents separated by - - - lines, and each document is parsed
separately to a flattened map.

If a YAML document contains a spri ng. pr of i | es key, then the profiles value (comma-separated list
of profiles) is fed into the Spring Envi ronnent . accept sProfi |l es() and if any of those profiles is
active that document is included in the final merge (otherwise not).

1.4.8.BUILD-SNAPSHOT Spring Boot 228

Spring Boot Reference Guide

Example:

server:
port:

spring:

profiles: devel opnent
server:

port:

spring:

profiles: production
server:

port:

In this example the default port is 9000, but if the Spring profile ‘development’ is active then the port is
9001, and if ‘production’ is active then it is 0.

The YAML documents are merged in the order they are encountered (so later values override earlier
ones).

To do the same thing with properties files you can use appl i cati on-${profil e}. propertiesto
specify profile-specific values.

69.8 Discover built-in options for external properties

Spring Boot binds external properties from appl i cati on. properti es (or. ym) (and other places)
into an application at runtime. There is not (and technically cannot be) an exhaustive list of all supported
properties in a single location because contributions can come from additional jar files on your classpath.

A running application with the Actuator features has a conf i gpr ops endpoint that shows all the bound
and bindable properties available through @onf i gur ati onProperti es.

The appendix includes an appli cation. properties example with a list of the most common
properties supported by Spring Boot. The definitive list comes from searching the source code
for @onfi gurati onProperti es and @/al ue annotations, as well as the occasional use of
Rel axedPr opert yResol ver.

1.4.8.BUILD-SNAPSHOT Spring Boot 229

Spring Boot Reference Guide

70. Embedded servlet containers

70.1 Add a Servlet, Filter or Listener to an application

There are two ways to add Ser vl et, Fi | t er, Servl et Cont ext Li st ener and the other listeners
supported by the Servlet spec to your application. You can either provide Spring beans for them, or
enable scanning for Servlet components.

Add a Servlet, Filter or Listener using a Spring bean

Toadd a Servl et, Filter, or Servlet *Li st ener provide a @ean definition for it. This can be very
useful when you want to inject configuration or dependencies. However, you must be very careful that
they don’t cause eager initialization of too many other beans because they have to be installed in the
container very early in the application lifecycle (e.g. it's not a good idea to have them depend on your
Dat aSour ce or JPA configuration). You can work around restrictions like that by initializing them lazily
when first used instead of on initialization.

In the case of Fil t ers and Ser vl et s you can also add mappings and init parameters by adding a
Filter Regi strati onBean or Ser vl et Regi strati onBean instead of or as well as the underlying
component.

Note

If no di spat cher Type is specified on a filter registration, it will match FORWARD,| NCLUDE and
REQUEST. If async has been enabled, it will match ASYNC as well.

If you are migrating a filter that has no di spat cher elementin web. xn you will need to specify
a di spat cher Type yourself:

public FilterRegistrationBean nyFilterRegistration() {
Fil ter Regi strati onBean registration = new FilterRegistrati onBean();
regi stration. set Di spat cher Types(D spat cher Type. REQUEST) ;

return registration;

Disable registration of a Servlet or Filter

As described above any Servl et or Filter beans will be registered with the servlet container
automatically. To disable registration of a particular Fi | t er or Ser vl et bean create a registration
bean for it and mark it as disabled. For example:

public FilterRegistrationBean registration(MFilter filter) {
FilterRegi strati onBean registration = new FilterRegistrati onBean(filter);
regi stration. set Enabl ed(fal se);
return registration;

Add Servlets, Filters, and Listeners using classpath scanning

@¢bServliet, @¥bFilter, and @\bLi stener annotated classes can be automatically
registered with an embedded servlet container by annotating a @Confi gurati on class with

1.4.8.BUILD-SNAPSHOT Spring Boot 230

Spring Boot Reference Guide

@ber vl et Conponent Scan and specifying the package(s) containing the components that you want
to register. By default, @er vl et Conponent Scan will scan from the package of the annotated class.

70.2 Change the HTTP port

In a standalone application the main HTTP port defaults to 8080, but can be setwith ser ver. port (e.g.
inappl i cati on. properti es oras a System property). Thanks to relaxed binding of Envi r onnment
values you can also use SERVER_PORT (e.g. as an OS environment variable).

To switch off the HTTP endpoints completely, but still create a WebAppl i cat i onCont ext, use
server. port =-1 (this is sometimes useful for testing).

For more details look at the section called “Customizing embedded servlet containers” in the ‘Spring
Boot features’ section, or the Ser ver Pr operti es source code.

70.3 Use arandom unassigned HTTP port

To scan for a free port (using OS natives to prevent clashes) use ser ver . port =0.

70.4 Discover the HTTP port at runtime

You can access the port the server is running on from log output or from
the EnbeddedWebApplicati onContext via its EnbeddedServl et Container. The best
way to get that and be sure that it has initialized is to add a @ean of
type Appl i cati onLi st ener <EnbeddedSer vl et Contai nerlnitializedEvent> and pull the
container out of the event when it is published.

Tests that use @pr i ngBoot Test (webEnvi r onnent =\WbEnvi r onnment . RANDOM PORT) can also
inject the actual port into a field using the @.ocal Ser ver Port annotation. For example:

public class M/WeblntegrationTests {

EnbeddedWebAppl i cat i onCont ext server;

int port;

...

Note

@.ocal Server Port isameta-annotation for @/al ue(" ${1 ocal . server. port}").Don'ttry
to inject the port in a regular application. As we just saw, the value is only set once the container
has initialized; contrary to a test, application code callbacks are processed early (i.e. before the
value is actually available).

70.5 Configure SSL

SSL can be configured declaratively by setting the various server. ssl . * properties, typically in
application. properties orapplication.yn.Forexample:

1.4.8.BUILD-SNAPSHOT Spring Boot 231

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

server. port=8443

server. ssl . key-store=cl asspat h: keystore. j ks
server. ssl . key- st ore- passwor d=secr et

server. ssl . key- passwor d=anot her - secr et

See Ss| for details of all of the supported properties.

Using configuration like the example above means the application will no longer support plain HTTP
connector at port 8080. Spring Boot doesn’t support the configuration of both an HTTP connector and
an HTTPS connector via appl i cati on. properti es. If you want to have both then you'll need to
configure one of them programmatically. It's recommended to use appl i cati on. properties to
configure HTTPS as the HTTP connector is the easier of the two to configure programmatically. See
the spri ng- boot - sanpl e-t ontat - mul ti - connect or s sample project for an example.

70.6 Configure Access Logging

Access logs can be configured for Tomcat and Undertow via their respective namespaces.

For instance, the following logs access on Tomcat with a custom pattern.

server.tontat. basedi r=ny-t ontat
server.toncat.accessl og. enabl ed=true
server.toncat.accessl og. pattern=04 % "% " % (%O ns)

Note

The default location for logs is a | ogs directory relative to the tomcat base dir and said directory
is a temp directory by default so you may want to fix Tomcat’'s base directory or use an absolute
path for the logs. In the example above, the logs will be available in my-t ontat /| ogs relative
to the working directory of the application.

Access logging for undertow can be configured in a similar fashion

server. undert ow. accessl og. enabl ed=t rue
server.undertow. accessl og. pattern=% % "%" % (%O ns)

Logs are stored in a | ogs directory relative to the working directory of the application. This can be
customized via ser ver . undert ow. accessl og. di rectory.

70.7 Use behind a front-end proxy server

Your application might need to send 302 redirects or render content with absolute links back to itself.
When running behind a proxy, the caller wants a link to the proxy, and not to the physical address of
the machine hosting your app. Typically such situations are handled via a contract with the proxy, which
will add headers to tell the back end how to construct links to itself.

If the proxy adds conventional X- For war ded- For and X- For war ded- Pr ot o headers (most do this
out of the box) the absolute links should be rendered correctly as long as server . use-f or war d-
header s issettotrueinyourapplication. properties.

Note

If your application is running in Cloud Foundry or Heroku the ser ver . use-f or war d- header s
property will default to t r ue if not specified. In all other instances it defaults to f al se.

1.4.8.BUILD-SNAPSHOT Spring Boot 232

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot/src/main/java/org/springframework/boot/context/embedded/Ssl.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-tomcat-multi-connectors
https://tomcat.apache.org/tomcat-8.0-doc/config/valve.html#Access_Logging

Spring Boot Reference Guide

Customize Tomcat’s proxy configuration

If you are using Tomcat you can additionally configure the names of the headers used to carry
“forwarded” information:

server.toncat.renote-ip-header =x-your-renote-ip-header
server. tontat. protocol - header =x- your - pr ot ocol - header

Tomcat is also configured with a default regular expression that matches internal proxies that are to be
trusted. By default, IP addresses in 10/ 8,192. 168/ 16, 169. 254/ 16 and 127/ 8 are trusted. You can
customize the valve’s configuration by adding an entry to appl i cati on. properti es, e.g.

server.toncat.internal -proxi es=192\\.168\\.\\d{1, 3}\\.\\d{1, 3}

Note

The double backslashes are only required when you're using a properties file for configuration.
If you are using YAML, single backslashes are sufficient and a value that’s equivalent to the one
shown above would be 192\ . 168\ .\ d{1, 3}\.\d{1, 3}.

Note

You can trust all proxies by setting the i nt er nal - pr oxi es to empty (but don't do this in
production).

You can take complete control of the configuration of Tomcat's Renot el pVal ve by switching the
automatic one off (i.e. setser ver . use- f or war d- header s=f al se) and adding a new valve instance
in a Tontat EnbeddedSer vl et Cont ai ner Fact ory bean.

70.8 Configure Tomcat

Generally you can follow the advice from Section 69.8, “Discover built-in options for external properties”
about @Confi gurati onProperties (ServerProperties is the main one here), but also look
at EnbeddedSer vl et Cont ai ner Cust omi zer and various Tomcat-specific * Cust omi zer s that
you can add in one of those. The Tomcat APIs are quite rich so once you have access to the
Tontat EnbeddedSer vl et Cont ai ner Fact or y you can modify it in a number of ways. Or the nuclear
option is to add your own Tontat EnbeddedSer vl et Cont ai ner Fact ory.

70.9 Enable Multiple Connectors with Tomcat

Add a or g. apache. cat al i na. connect or. Connect or to the
Tontat EnbeddedSer vl et Cont ai ner Fact or y which can allow multiple connectors, e.g. HTTP and
HTTPS connector:

publ i ¢ EnbeddedSer vl et Cont ai ner Factory servl et Container() {
Tontat EnbeddedSer vl et Cont ai ner Factory tontat = new Tontat EnbeddedSer vl et Cont ai ner Fact ory();
t ontat . addAddi t i onal Tontat Connect or s(cr eat eSsl Connector());
return toncat;

}

private Connector createSsl Connector() {
Connector connector = new Connector ("org.apache. coyote. httpll. Htt pl11Ni oProtocol");
Htt p11Ni oPr ot ocol protocol = (HttpllNi oProtocol) connector.getProtocol Handl er();

1.4.8.BUILD-SNAPSHOT Spring Boot 233

Spring Boot Reference Guide

try {
Fil e keystore = new C assPat hResource("keystore").getFile();
File truststore = new C assPat hResource("keystore").getFile();
connect or. set Scheme("https");
connect or. set Secure(true);
connector.setPort();
protocol . set SSLEnabl ed(true);
protocol . set Keyst or eFi | e(keyst ore. get Absol utePath());
protocol . set Keyst orePass("changeit");
protocol . set TruststoreFi |l e(truststore. get Absol utePath());
protocol . set Trust st orePass("changeit");
protocol . set KeyAl i as("apitester");
return connector;

}
catch (1 CException ex) {
throw new I || egal St at eException("can't access keystore: [" + "keystore"
+ "] or truststore: [" + "keystore" + "]", ex);
}

70.10 Use Tomcat’'s LegacyCookieProcessor

The embedded Tomcat used by Spring Boot does not support "Version 0" of the Cookie format out of
the box, and you may see the following error:

java.lang. |11 egal Argument Exception: An invalid character [32] was present in the Cookie val ue

If at all possible, you should consider updating your code to only store values compliant with later Cookie
specifications. If, however, you're unable to change the way that cookies are written, you can instead
configure Tomcat to use a LegacyCooki ePr ocessor. To switch to the LegacyCooki ePr ocessor
use an EmbeddedSer vl et Cont ai ner Cust omi zer beanthatadds a Tontat Cont ext Cust oni zer:

publ i ¢ EmbeddedSer vl et Cont ai ner Cust omi zer cooki eProcessor Custom zer () {
return new EnbeddedSer vl et Cont ai ner Cust omi zer () {

public void custom ze(Confi gurabl eEnbeddedSer vl et Cont ai ner cont ai ner) {
if (container instanceof TontatEnbeddedServl et Contai ner Factory) {
((Tontat EnbeddedSer vl et Cont ai ner Fact ory) contai ner)
. addCont ext Cust omi zer s(new Tontat Cont ext Cust om zer () {

public void custom ze(Context context) {
cont ext . set Cooki eProcessor (new LegacyCooki eProcessor());

}

1)

70.11 Use Jetty instead of Tomcat

The Spring Boot starters (spri ng- boot - st art er - web in particular) use Tomcat as an embedded
container by default. You need to exclude those dependencies and include the Jetty one instead. Spring
Boot provides Tomcat and Jetty dependencies bundled together as separate starters to help make this
process as easy as possible.

Example in Maven:

1.4.8.BUILD-SNAPSHOT Spring Boot 234

Spring Boot Reference Guide

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifactld>spring-boot-starter-toncat</artifactl|d>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifactld>spring-boot-starter-jetty</artifactld>
</ dependency>

Example in Gradle:

configurations {
conpi | e. excl ude nodul e: "spring-boot-starter-toncat"

}

dependenci es {
conpi | e("org. springframework. boot : spring-boot-starter-web: 1. 4. 8. BUl LD- SNAPSHOT")
conpi | e("org. springframework. boot: spring-boot-starter-jetty:1.4.8. BU LD SNAPSHOT")
/1

70.12 Configure Jetty

Generally you can follow the advice from Section 69.8, “Discover built-in options for external properties”
about @onfi gurati onProperties (ServerProperties is the main one here), but also look at
EnmbeddedSer vl et Cont ai ner Cust omi zer . The Jetty APIs are quite rich so once you have access
to the Jet t yEnbeddedSer vl et Cont ai ner Fact ory you can modify it in a number of ways. Or the
nuclear option is to add your own Jet t yEnbeddedSer vl et Cont ai ner Fact ory.

70.13 Use Undertow instead of Tomcat

Using Undertow instead of Tomcat is very similar to using Jetty instead of Tomcat. You need to exclude
the Tomcat dependencies and include the Undertow starter instead.

Example in Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifactld>spring-boot-starter-toncat</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-undertow</artifactl|d>
</ dependency>

Example in Gradle:

configurations {
conpi | e. excl ude nodul e: "spring-boot-starter-toncat"

}

1.4.8.BUILD-SNAPSHOT Spring Boot 235

Spring Boot Reference Guide

dependenci es {
conpi | e("org. springframewor k. boot : spring-boot-starter-web: 1. 4. 8. BUl LD- SNAPSHOT")
conpi | e("org. springframework. boot : spring-boot-starter-undertow 1. 4. 8. BUl LD- SNAPSHOT")
/1

70.14 Configure Undertow

Generally you can follow the advice from Section 69.8, “Discover built-in options for external properties”
about @onfi gurati onProperties (ServerProperties and Server Properties. Undert ow
are the main ones here), but also look at EnbeddedSer vl et Cont ai ner Cust omi zer. Once
you have access to the UndertowEnbeddedSer vl et Cont ai ner Factory you can use an
Under t owBui | der Cust omi zer to modify Undertow’s configuration to meet your needs. Or the
nuclear option is to add your own Under t owEnmbeddedSer vl et Cont ai ner Fact ory.

70.15 Enable Multiple Listeners with Undertow

Add an Under t owBui | der Cust omi zer to the Under t owEnbeddedSer vl et Cont ai ner Fact ory
and add a listener to the Bui | der :

publ i ¢ Undert owEnbeddedSer vl et Cont ai ner Fact ory enbeddedSer vl et Cont ai ner Factory() {
Under t owEnbeddedSer vl et Cont ai ner Factory factory = new Undert owEnbeddedSer vl et Cont ai ner Factory();
factory. addBui | der Cust oni zer s(new Under t owBui | der Cust om zer () {

public void custom ze(Buil der builder) {
bui | der. addHt t pLi stener(, "0.0.0.0");
}

1)

return factory;

70.16 Use Tomcat 7.x or 8.0

Tomcat 7 & 8.0 work with Spring Boot, but the default is to use Tomcat 8.5. If you cannot use Tomcat
8.5 (for example, because you are using Java 1.6) you will need to change your classpath to reference
a different version.

Use Tomcat 7.x or 8.0 with Maven

If you are using the starters and parent you can change the Tomcat version property and additionally
import t oncat - j ul i . E.g. for a simple webapp or service:

<properties>

<t ontat . versi on>7. 0. 59</ t ontat. ver si on>
</ properties>
<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
<dependency>
<groupl d>or g. apache. t ontat </ gr oupl d>
<artifactld>toncat-juli</artifactld>
<ver si on>${t ontat . versi on} </ ver si on>
</ dependency>

1.4.8.BUILD-SNAPSHOT Spring Boot 236

Spring Boot Reference Guide

‘</dependencies>

Use Tomcat 7.x or 8.0 with Gradle

With Gradle, you can change the Tomcat version by setting the t ontat . ver si on property and then
additionally include t ontat -j ul i :

ext['tontat.version'] = "'7.0.59
dependenci es {
conpil e 'org. springframework. boot: spring-boot -starter-web'
conpi l e group: ' org. apache.tonctat', name:'tonctat-juli', version:property('toncat.version')

70.17 Use Jetty 9.2

Jetty 9.2 works with Spring Boot, but the default is to use Jetty 9.3. If you cannot use Jetty 9.3 (for
example, because you are using Java 7) you will need to change your classpath to reference Jetty 9.2.

Use Jetty 9.2 with Maven

If you are using the starters and parent you can just add the Jetty starter and override the
jetty.version property:

<properties>
<jetty.version>9.2.17.v20160517</j etty. versi on>
</ properties>
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactl|d>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-jetty</artifactld>
</ dependency>
</ dependenci es>

Use Jetty 9.2 with Gradle

You can setthej etty. versi on property. For example, for a simple webapp or service:

ext['jetty.version'] ="'9.2.17.v20160517
dependenci es {
conpil e (' org.springfranmework. boot: spring-boot-starter-web') {
excl ude group: 'org.springframework. boot', nodul e: 'spring-boot-starter-toncat

}

conpi l e ('org.springframework. boot: spring-boot-starter-jetty')

70.18 Use Jetty 8

Jetty 8 works with Spring Boot, but the default is to use Jetty 9.3. If you cannot use Jetty 9.3 (for example,
because you are using Java 1.6) you will need to change your classpath to reference Jetty 8. You will
also need to exclude Jetty’s WebSocket-related dependencies.

1.4.8.BUILD-SNAPSHOT Spring Boot 237

Spring Boot Reference Guide

Use Jetty 8 with Maven

If you are using the starters and parent you can just add the Jetty starter with the required WebSocket
exclusion and change the version properties, e.g. for a simple webapp or service:

<properties>
<jetty.version>8.1.15.v20140411</jetty. versi on>
<jetty-]sp.version>2.2.0.v201112011158</jetty-]j sp. versi on>
</ properties>
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactl|d>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-jetty</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>org. ecli pse.jetty. websocket </ gr oupl d>
<artifactld>*</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

Use Jetty 8 with Gradle

You can setthe j etty. ver si on property and exclude the WebSocket dependency, e.g. for a simple
webapp or service:

ext['jetty.version'] = "'8.1.15.v20140411
dependenci es {
conpil e ('org.springframework. boot: spring-boot-starter-web') {
exclude group: 'org.springframework.boot', npdul e: 'spring-boot-starter-tontat
}
conpil e (' org.springfranmework. boot: spring-boot-starter-jetty') {
exclude group: 'org.eclipse.jetty.websocket

}

70.19 Create WebSocket endpoints using @ServerEndpoint

If you want to use @ser ver Endpoi nt in a Spring Boot application that used an embedded container,
you must declare a single Ser ver Endpoi nt Export er @ean:

public Server Endpoi nt Exporter serverEndpoi nt Exporter() {
return new Server Endpoi nt Exporter();

}

This bean will register any @er ver Endpoi nt annotated beans with the underlying WebSocket
container. When deployed to a standalone servlet container this role is performed by a servlet container
initializer and the Ser ver Endpoi nt Expor t er bean is not required.

1.4.8.BUILD-SNAPSHOT Spring Boot 238

Spring Boot Reference Guide

70.20 Enable HTTP response compression

HTTP response compression is supported by Jetty, Tomcat, and Undertow. It can be enabled via
application. properties:

server. conpr essi on. enabl ed=true

By default, responses must be at least 2048 bytes in length for compression to be performed. This can
be configured using the ser ver . conpr essi on. m n-response- si ze property.

By default, responses will only be compressed if their content type is one of the following:
e text/htnl

o text/xm

e text/plain

* text/css

This can be configured using the ser ver . conpr essi on. m me-t ypes property.

1.4.8.BUILD-SNAPSHOT Spring Boot 239

Spring Boot Reference Guide

71. Spring MVC

71.1 Write a JSON REST service

Any Spring @Rest Cont r ol | er in a Spring Boot application should render JISON response by default
as long as Jackson2 is on the classpath. For example:

public class MyController {

public MyThing thing() {
return new MyThing();
}

As long as MyThi ng can be serialized by Jackson2 (e.g. a normal POJO or Groovy object) then
| ocal host : 8080/ t hi ng will serve a JSON representation of it by default. Sometimes in a browser
you might see XML responses because browsers tend to send accept headers that prefer XML.

71.2 Write an XML REST service

If you have the Jackson XML extension (j ackson- dat af or mat - xm) on the classpath, it will be used
to render XML responses and the very same example as we used for JSON would work. To use it, add
the following dependency to your project:

<dependency>
<groupl d>com f ast erxni . j ackson. dat af or mat </ gr oupl d>
<artifactld>jackson-dataformat-xm </artifactld>

</ dependency>

You may also want to add a dependency on Woodstox. It's faster than the default StAX implementation
provided by the JDK and also adds pretty print support and improved namespace handling:

<dependency>
<groupl d>or g. codehaus. woodst ox</ gr oupl d>
<artifact!| d>woodst ox-core-asl </artifactld>

</ dependency>

If Jackson’s XML extension is not available, JAXB (provided by default in the JDK) will be used, with
the additional requirement to have MyThi ng annotated as @m Root El enent :

public class MyThing {
private String nane;
/1 .. getters and setters

To get the server to render XML instead of JSON you might have to send an Accept: text/xnl
header (or use a browser).

71.3 Customize the Jackson ObjectMapper

Spring MVC (client and server side) uses Ht t pMessageConvert er s to negotiate content conversion
in an HTTP exchange. If Jackson is on the classpath you already get the default converter(s) provided
by Jackson2(hj ect Mapper Bui | der, an instance of which is auto-configured for you.

1.4.8.BUILD-SNAPSHOT Spring Boot 240

http://localhost:8080/thing

Spring Boot Reference Guide

The oj ect Mapper (or Xm Mapper for Jackson XML converter) instance created by default has the
following customized properties:

» Mapper Feat ur e. DEFAULT_VI EW | NCLUSI ONis disabled
* DeserializationFeature. FAI L_ON_UNKNOAN_PROPERTI ES is disabled
Spring Boot has also some features to make it easier to customize this behavior.

You can configure the Cbj ect Mapper and Xm Mapper instances using the environment. Jackson
provides an extensive suite of simple on/off features that can be used to configure various aspects of
its processing. These features are described in six enums in Jackson which map onto properties in the
environment:

Jackson enum Environment property

com fast erxm . j ackson. dat abi nd. Deser i adpraatg.graededam.edeseri al i zati on. <f eat ure_nanme>=tru
fal se

com f ast erxm . j ackson. core. JsonGener atsypr.iFeatjuackson. gener at or . <f eat ur e_name>=tr ue|
fal se

com f ast erxm . j ackson. dat abi nd. Mapper Fgatiutge j ackson. napper . <f eat ure_nane>=t r ue|
fal se

com fasterxm .jackson. core. JsonPar ser .dmdtng.g ackson. par ser. <f eat ur e_nanme>=t r ue|
fal se

com fasterxm .jackson. dat abi nd. Seri al ig@atiimnHestksen. seri al i zati on. <f eat ur e_name>=t r ue|
fal se

com fasterxm .jackson. annot ati on. Jsonlsyiuttp. jlacksme seri al i zati on-
i ncl usi on=al ways| non_nul I |
non_absent | non_def aul t | non_enpty

For example, to enable pretty print, set
spring.jackson. serialization.indent_output=true.Note that, thanks to the use of relaxed
binding, the case of i ndent _out put doesn’t have to match the case of the corresponding enum
constant which is | NDENT_QUTPUT.

This environment-based configuration is applied to the auto-configured
Jackson2Cbj ect Mapper Bui | der bean, and will apply to any mappers created using the builder,
including the auto-configured Cbj ect Mapper bean.

The context's Jackson2Cbj ect MapperBuil der can be customized by one or more
Jackson2Cbj ect Mapper Bui | der Cust omi zer beans. Such customizer beans can be ordered and
Boot's own customizer has an order of 0, allowing additional customization to be applied both before
and after Boot's customization.

Any beans of type com f ast er xml . j ackson. dat abi nd. Modul e will be automatically registered
with the auto-configured Jackson2Cbj ect Mapper Bui | der and applied to any bj ect Mapper
instances that it creates. This provides a global mechanism for contributing custom modules when you
add new features to your application.

If you want to replace the default Obj ect Mapper completely, either define a @Bean of
that type and mark it as @°ri mary, or, if you prefer the builder-based approach, define a

1.4.8.BUILD-SNAPSHOT Spring Boot 241

Spring Boot Reference Guide

Jackson2Cbj ect Mapper Bui | der @Bean. Note that in either case this will disable all auto-
configuration of the “ObjectMapper.

If you provide any @eans of type Mappi nglackson2Ht t pMessageConverter then they will
replace the default value in the MVC configuration. Also, a convenience bean is provided of type
Ht t pMessageConvert ers (always available if you use the default MVC configuration) which has
some useful methods to access the default and user-enhanced message converters.

See also the Section 71.4, “Customize the @ResponseBody rendering” section and the
WebMrcAut oConf i gur at i on source code for more details.

71.4 Customize the @ResponseBody rendering

Spring uses Ht pMessageConverters to render @ResponseBody (or responses from
@Rest Cont r ol I er). You can contribute additional converters by simply adding beans of that type in a
Spring Boot context. If a bean you add is of a type that would have been included by default anyway (like
Mappi ngJackson2Ht t pMessageConvert er for JSON conversions) then it will replace the default
value. A convenience bean is provided of type Ht t pMessageConvert ers (always available if you
use the default MVC configuration) which has some useful methods to access the default and user-
enhanced message converters (useful, for example if you want to manually inject them into a custom
Rest Tenpl at e).

As in normal MVC usage, any WebM/cConfi gur er Adapt er beans that you provide can also
contribute converters by overriding the confi gur eMessageConvert ers method, but unlike with
normal MVC, you can supply only additional converters that you need (because Spring Boot
uses the same mechanism to contribute its defaults). Finally, if you opt-out of the Spring
Boot default MVC configuration by providing your own @Enabl eWebM/c configuration, then you
can take control completely and do everything manually using get MessageConverters from
WebMscConfi gurati onSupport .

See the WebMvcAut oConf i gur at i on source code for more details.

71.5 Handling Multipart File Uploads

Spring Boot embraces the Servlet 3 j avax. servl et. htt p. Part API to support uploading files. By
default Spring Boot configures Spring MVC with a maximum file of 1Mb per file and a maximum of
10Mb of file data in a single request. You may override these values, as well as the location to which
intermediate data is stored (e.g., to the / t np directory) and the threshold past which data is flushed to
disk by using the properties exposed in the Mul ti part Properti es class. If you want to specify that
files be unlimited, for example, setthe spri ng. http. mul ti part. max-fil e-si ze property to - 1.

The multipart support is helpful when you want to receive multipart encoded file data as a
@Request Par amannotated parameter of type Mul ti part Fi | e in a Spring MVC controller handler
method.

See the Mul ti part Aut oConfi gur ati on source for more details.

71.6 Switch off the Spring MVC DispatcherServlet

Spring Boot wants to serve all content from the root of your application / down. If you would rather map
your own servlet to that URL you can do it, but of course you may lose some of the other Boot MVC
features. To add your own servlet and map it to the root resource just declare a @ean of type Ser vl et

1.4.8.BUILD-SNAPSHOT Spring Boot 242

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/MultipartAutoConfiguration.java

Spring Boot Reference Guide

and give it the special bean name di spat cher Servl et (You can also create a bean of a different
type with that name if you want to switch it off and not replace it).

71.7 Switch off the Default MVC configuration

The easiest way to take complete control over MVC configuration is to provide your own
@confi gur at i on with the @nabl eWebM/c annotation. This will leave all MVC configuration in your
hands.

71.8 Customize ViewResolvers

A Vi ewResol ver is a core component of Spring MVC, translating view names in @ontrol | er
to actual Vi ew implementations. Note that Vi ewResol vers are mainly used in Ul applications,
rather than REST-style services (a Vi ew is not used to render a @ResponseBody). There are many
implementations of Vi ewResol ver to choose from, and Spring on its own is not opinionated about
which ones you should use. Spring Boot, on the other hand, installs one or two for you depending on
what it finds on the classpath and in the application context. The Di spat cher Ser vl et uses all the
resolvers it finds in the application context, trying each one in turn until it gets a result, so if you are
adding your own you have to be aware of the order and in which position your resolver is added.

WebMscAut oConf i gur at i on adds the following Vi ewResol ver s to your context:

* An | nternal ResourceVi ewResol ver with bean id ‘defaultViewResolver’. This one locates
physical resources that can be rendered using the Def aul t Ser vl et (e.g. static resources and JSP
pages if you are using those). It applies a prefix and a suffix to the view name and then looks for a
physical resource with that path in the servlet context (defaults are both empty, but accessible for
external configuration via spri ng. nvc. vi ew. prefix and spring. mvc. vi ew. suf fi x). It can
be overridden by providing a bean of the same type.

* A BeanNaneVi ewResol ver with id ‘beanNameViewResolver'. This is a useful member of the view
resolver chain and will pick up any beans with the same name as the Vi ewbeing resolved. It shouldn’t
be necessary to override or replace it.

« A Content Negoti ati ngVi ewResol ver with id ‘viewResolver’ is only added if there are
actually beans of type Vi ew present. This is a ‘master’ resolver, delegating to all the others
and attempting to find a match to the ‘Accept’ HTTP header sent by the client. There is a
useful blog about Cont ent Negoti ati ngVi ewResol ver that you might like to study to learn
more, and also look at the source code for detail. You can switch off the auto-configured
Cont ent Negoti ati ngVi ewResol ver by defining a bean named ‘viewResolver'.

 If you wuse Thymeleaf you wil also have a Thymnel eafVi ewResol ver with id
‘thymeleafViewResolver'. It looks for resources by surrounding the view name with a prefix and
suffix (externalized to spring. t hynel eaf . prefi x and spri ng. t hynel eaf . suf fi x, defaults
‘classpath:/templates/” and ‘.html’ respectively). It can be overridden by providing a bean of the same
name.

o If you use FreeMarker you wil also have a FreeMarkerVi ewResol ver with id
‘freeMarkerViewResolver’. It looks for resources in a loader path (externalized to
spring. freemarker.tenpl at eLoader Pat h, default ‘classpath:/templates/’) by surrounding
the view name with a prefix and suffix (externalized to spring. freemarker. prefix and
spring. freemar ker . suf fi x, with empty and “.ftI' defaults respectively). It can be overridden by
providing a bean of the same name.

1.4.8.BUILD-SNAPSHOT Spring Boot 243

https://spring.io/blog/2013/06/03/content-negotiation-using-views

Spring Boot Reference Guide

« If you use Groovy templates (actually if groovy-templates is on your classpath) you will
also have a G oovyMar kupVi ewResol ver with id ‘groovyMarkupViewResolver'. It looks for
resources in a loader path by surrounding the view name with a prefix and suffix (externalized
to spring.groovy.tenplate.prefix and spring.groovy.tenplate.suffix, defaults
‘classpath:/templates/’ and ‘.tpl’ respectively). It can be overridden by providing a bean of the same
name.

« If you use Velocity you will also have a Vel oci t yVi ewResol ver with id ‘velocityViewResolver'. It
looks for resources in a loader path (externalized to spri ng. vel oci ty. resour ceLoader Pat h,
default ‘classpath:/templates/’) by surrounding the view name with a prefix and suffix (externalized
to spring.velocity. prefix and spring.vel ocity. suffix, with empty and ‘.vm’ defaults
respectively). It can be overridden by providing a bean of the same name.

Check out WebMscAut oConf i gurati on, Thynel eaf Aut oConfi gurati on,
Fr eeMar ker Aut oConf i gur ati on, G oovyTenpl at eAut oConf i gur ati on and
Vel oci t yAut oConf i gurati on

71.9 Velocity

By default, Spring Boot configures a VelocityViewResolver. If you need a
Vel oci t yLayout Vi ewResol ver instead, you can easily configure your own by creating a bean with
name vel oci t yVi ewResol ver. You can also inject the Vel oci t yPr operti es instance to apply
the base defaults to your custom view resolver.

The following example replaces the auto-configured velocity view resolver with a
Vel oci t yLayout Vi ewResol ver defining a customized | ayout Ur | and all settings that would have
been applied from the auto-configuration:

public Vel oci tyLayout Vi ewResol ver vel oci tyVi enResol ver (Vel oci tyProperties properties) {
Vel oci t yLayout Vi ewResol ver resol ver = new Vel oci tyLayout Vi enResol ver ();
properties. appl yToVi ewResol ver (resol ver);
resol ver. set Layout Url ("Il ayout/defaul t.vm');
return resol ver;

71.10 Use Thymeleaf 3

By default, spri ng- boot - start er-thymnel eaf uses Thymeleaf 2.1. If you are using the spri ng-
boot - st art er- parent, you can use Thymeleaf 3 by overriding the t hynel eaf . versi on and
t hynel eaf -1 ayout - di al ect. ver si on properties, for example:

<properties>

<t hynel eaf . ver si on>3. 0. 2. RELEASE</ t hynel eaf . ver si on>

<t hynel eaf - | ayout - di al ect. versi on>2. 1. 1</t hynel eaf - | ayout - di al ect . ver si on>
</ properties>

Note

if you are managing dependencies yourself, look at spri ng- boot - dependenci es for the list
of artifacts that are related to those two versions.

To avoid a warning message about the HTML 5 template mode being deprecated and
the HTML template mode being used instead, you may also want to explicitly configure
spring. t hynel eaf . node to be HTM., for example:

1.4.8.BUILD-SNAPSHOT Spring Boot 244

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/velocity/VelocityAutoConfiguration.java

Spring Boot Reference Guide

spring. thynel eaf . rode: HTM.

Please refer to the Thymeleaf 3 sample to see this in action.

If you are using any of the other auto-configured Thymeleaf Extras (Spring Security, Data Attribute, or
Java 8 Time) you should also override each of their versions to one that is compatible with Thymeleaf
3.0.

1.4.8.BUILD-SNAPSHOT Spring Boot 245

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-web-thymeleaf3

Spring Boot Reference Guide

72. HTTP clients

72.1 Configure RestTemplate to use a proxy

As described in Section 33.1, “RestTemplate customization”, a Rest Tenpl at eCust om zer can be
used with Rest Tenpl at eBui | der to build a customized Rest Tenpl at e. This is the recommended

approach for creating a Rest Tenpl at e configured to use a proxy.

The exact details of the proxy configuration depend on the underlying client request factory that is
being used. Here's an example of configuring Ht t pConponent sCl i ent Request Fact ory with an

Ht t pCl i ent that uses a proxy for all hosts except 192. 168. 0. 5.

static class ProxyCustom zer inplenments RestTenpl at eCustom zer {

public void custom ze(Rest Tenpl ate rest Tenpl ate) {
Ht t pHost proxy = new HttpHost (" proxy. exanpl e. cont');
HtpCient httpCient = HtpCientBuilder.create()
. set Rout ePl anner (new Def aul t ProxyRout ePl anner (proxy) {

public HttpHost determ neProxy(HttpHost target,
Ht t pRequest request, HttpContext context)
throws HtpException {
if (target.getHost Nane().equal s("192.168.0.5")) {
return null;

}
}

}) . build();
rest Tenpl at e. set Request Fact or y(
new Htt pConponent sCl i ent Ht t pRequest Factory(httpCient));

return super.determ neProxy(target, request, context);

1.4.8.BUILD-SNAPSHOT Spring Boot

246

Spring Boot Reference Guide

73. Logging

Spring Boot has no mandatory logging dependency, except for the Commons Logging API, of which
there are many implementations to choose from. To use Logback you need to include itandj cl - over -
sl f 4j (which implements the Commons Logging API) on the classpath. The simplest way to do that
is through the starters which all depend on spri ng- boot - st art er -1 oggi ng. For a web application
you only need spri ng- boot - st art er - web since it depends transitively on the logging starter. For
example, using Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-starter-web</artifactld>

</ dependency>

Spring Boot has a Loggi ngSyst emabstraction that attempts to configure logging based on the content
of the classpath. If Logback is available it is the first choice.

If the only change you need to make to logging is to set the levels of various loggers then you can do
that in appl i cati on. properti es using the "logging.level" prefix, e.g.

| oggi ng. | evel . org. spri ngf ramewor k. web=DEBUG
| oggi ng. | evel . or g. hi ber nat e=ERROR

You can also set the location of a file to log to (in addition to the console) using "logging.file".

To configure the more fine-grained settings of a logging system you need to use the native configuration
format supported by the Loggi ngSyst emin question. By default Spring Boot picks up the native
configuration from its default location for the system (e.g. cl asspat h: | ogback. xm for Logback), but
you can set the location of the config file using the "logging.config" property.

73.1 Configure Logback for logging

If you put a | ogback. xm in the root of your classpath it will be picked up from there (or | ogback-
spring. xm to take advantage of the templating features provided by Boot). Spring Boot provides a
default base configuration that you can include if you just want to set levels, e.g.

<confi guration>
<include resource="org/ springframework/boot/| oggi ng/ | ogback/ base. xm "/ >
<l ogger name="org. spri ngfranmewor k. web" | evel =" DEBUG'/ >

</ configuration>

If you look at that base. xm in the spring-boot jar, you will see that it uses some useful System
properties which the Loggi ngSyst emtakes care of creating for you. These are:

${ PI D} the current process ID.

${LOG_FI LE} ifl oggi ng. fi |l e was set in Boot's external configuration.

${LOG_PATH} if | oggi ng. pat h was set (representing a directory for log files to live in).

${ LOG_EXCEPTI ON_CONVERSI ON_WORD} if | oggi ng. excepti on- conver si on-wor d was set
in Boot's external configuration.

Spring Boot also provides some nice ANSI colour terminal output on a console (but not in a log file)
using a custom Logback converter. See the default base. xm configuration for details.

1.4.8.BUILD-SNAPSHOT Spring Boot 247

https://logback.qos.ch

Spring Boot Reference Guide

If Groovy is on the classpath you should be able to configure Logback with | ogback. gr oovy as well
(it will be given preference if present).

Configure logback for file only output

If you want to disable console logging and write output only to a file you need a custom | ogback-
spring. xm thatimports fi | e- appender . xm but not consol e- appender . xm :

<confi guration>

<incl ude resource="org/springfranmework/ boot /| oggi ng/ | ogback/ defaul ts.xm " />

<property name="LOG FI LE" val ue="${LOG FI LE: - ${LOG_PATH: - ${ LOG TEMP: - ${j ava.io.tnpdir: -/
tnp}}/}spring.log}"/ >

<include resource="org/springfranework/ boot /| oggi ng/ | ogback/fil e-appender.xm" />

<root |evel ="I NFO'>
<appender-ref ref="FILE" />
</ root >

</ configuration>

You also need to add | oggi ng. fi |l e to yourappl i cati on. properti es:

‘ | oggi ng. fil e=nyapplication.| og

73.2 Configure Log4j for logging

Spring Boot supports Log4j 2 for logging configuration if it is on the classpath. If you are using the
starters for assembling dependencies that means you have to exclude Logback and then include log4j 2
instead. If you aren’t using the starters then you need to provide j cl - over - sl f 4] (atleast) in addition
to Log4j 2.

The simplest path is probably through the starters, even though it requires some jiggling with
excludes, .e.g. in Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-starter-|ogging</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-|og4j2</artifactl|d>
</ dependency>

Note

The use of the Log4j starters gathers together the dependencies for common logging requirements
(e.g. including having Tomcat use j ava. uti | . | oggi ng but configuring the output using Log4j
2). See the Actuator Log4j 2 samples for more detail and to see it in action.

1.4.8.BUILD-SNAPSHOT Spring Boot 248

https://logging.apache.org/log4j/2.x

Spring Boot Reference Guide

Use YAML or JSON to configure Log4j 2

In addition to its default XML configuration format, Log4j 2 also supports YAML and JSON configuration
files. To configure Log4j 2 to use an alternative configuration file format, add the appropriate
dependencies to the classpath and name your configuration files to match your chosen file format:

Format Dependencies File names
YAML com fasterxm .jackson. core:jackson-dat abi nd | og4j 2. yam
com fasterxm . jackson. dat af or mat : j ackson- dat af or mat - | og4j 2. ynm
yam
JSON com fasterxm .jackson. core:jackson-dat abi nd og4j 2.j son
l 0og4j 2.jsn

1.4.8.BUILD-SNAPSHOT Spring Boot 249

Spring Boot Reference Guide

74. Data Access

74.1 Configure a custom DataSource

To configure your own Dat aSour ce define a @ean of that type in your configuration. Spring Boot
will reuse your Dat aSour ce anywhere one is required, including database initialization. If you need to
externalize some settings, you can easily bind your Dat aSour ce to the environment (see the section
called “Third-party configuration”).

publ i c DataSource dataSource() {
return new FancyDat aSource();

}

app. dat asour ce. url =j dbc: h2: nem nydb
app. dat asour ce. user nane=sa
app. dat asour ce. pool - si ze=30

Assuming that your FancyDat aSour ce has regular JavaBean properties for the url, the username and
the pool size, these settings will be bound automatically before the Dat aSour ce is made available
to other components. The regular database initialization will also happen (so the relevant sub-set of
spri ng. dat asour ce. * can still be used with your custom configuration).

You can apply the same principle if you are configuring a custom JNDI Dat aSour ce:

publ i c DataSource dataSource() throws Exception {
Jndi Dat aSour ceLookup dat aSour ceLookup = new Jndi Dat aSour ceLookup();
return dataSour ceLookup. get Dat aSour ce("] ava: conp/ env/ j dbc/ Your DS") ;

Spring Boot also provides a utility builder class Dat aSour ceBui | der that can be used to create one
of the standard data sources (if it is on the classpath). The builder can detect the one to use based on
what's available on the classpath. It also auto detects the driver based on the JDBC url.

publ i ¢ Dat aSource dataSource() {
return DataSourceBuil der.create().build();

}

To run an app with that Dat aSour ce, all that is needed really is the connection information; pool-
specific settings can also be provided, check the implementation that is going to be used at runtime
for more details.

app. dat asour ce. url =j dbc: mysql : / /1 ocal host/t est
app. dat asour ce. user nane=dbuser

app. dat asour ce. passwor d=dbpass

app. dat asour ce. pool - si ze=30

There is a catch however. Because the actual type of the connection pool is not exposed, no keys are
generated in the metadata for your custom Dat aSour ce and no completion is available in your IDE
(The Dat aSour ce interface doesn’'t expose any property). Also, if you happen to only have Hikari on
the classpath, this basic setup will not work because Hikari has no ur| parameter (but a j dbcUr |
parameter). You will have to rewrite your configuration as follows:

1.4.8.BUILD-SNAPSHOT Spring Boot 250

Spring Boot Reference Guide

app. dat asour ce. j dbc-ur | =j dbc: nmysql : / /1 ocal host/t est
app. dat asour ce. user nane=dbuser

app. dat asour ce. passwor d=dbpass

app. dat asour ce. maxi mum pool - si ze=30

You can fix that by forcing the connection pool to use and return a dedicated implementation rather
than Dat aSour ce. You won't be able to change the implementation at runtime but the list of options
will be explicit.

publ i c Hi kari Dat aSour ce dat aSource() {
return (H kari DataSource) DataSourceBuil der.create()
.type(Hikari Dat aSour ce. cl ass) . buil d();

You can even go further by leveraging what Dat aSour cePr operti es does for you, that is providing
a default embedded database if no url is provided with a sensible username and password for it. You
can easily initialize a Dat aSour ceBui | der from the state of any Dat aSour cePr operti es so you
could just as well inject the one Spring Boot creates automatically. However, that would split your
configuration in two namespaces: url, username, password, type and driver on spri ng. dat asour ce
and the rest on your custom namespace (app. dat asour ce). To avoid that, you can redefine a custom
Dat aSour cePr operti es on your custom namespace:

publ i ¢ Dat aSour ceProperties dataSourceProperties() {
return new Dat aSour ceProperties();

}

public Hi kari Dat aSour ce dat aSour ce(Dat aSour ceProperties properties) {
return (Hikari DataSource) properties.initializeDataSourceBuil der()
.type(Hi kari Dat aSour ce. cl ass). bui I d();

This setup puts you in pair with what Spring Boot does for you by default, except that a dedicated
connection pool is chosen (in code) and its settings are exposed in the same namespace. Because
Dat aSour cePr operti es is taking care of the url /j dbcUr| translation for you, you can configure
it like this:

app. dat asour ce. url =j dbc: mysql : / /1 ocal host/t est
app. dat asour ce. user nane=dbuser

app. dat asour ce. passwor d=dbpass

app. dat asour ce. maxi mum pool - si ze=30

Note

Because your custom configuration chooses to go with Hikari, app. dat asour ce. t ype will have
no effect. In practice the builder will be initialized with whatever value you might set there and
then overridden by the call to . t ype() .

See Section 29.1, “Configure a DataSource” in the ‘Spring Boot features’ section and the
Dat aSour ceAut oConf i gur at i on class for more details.

1.4.8.BUILD-SNAPSHOT Spring Boot 251

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java

Spring Boot Reference Guide

74.2 Configure Two DataSources

If you need to configure multiple data sources, you can apply the same tricks that are described in
the previous section. You must, however, mark one of the Dat aSour ce @°r i mary as various auto-
configurations down the road expect to be able to get one by type.

If you create your own Dat aSour ce, the auto-configuration will back off. In the example below, we
provide the exact same features set than what the auto-configuration provides on the primary data
source:

}

}

Tip

f ooDat aSour ceProperti es has to be flagged @ri nary so that the database initializer

publ i c Dat aSour ceProperties fooDataSourceProperties() {

return new Dat aSourceProperties();

publ i c DataSource fooDataSource() {

return fooDataSourceProperties().initializeDataSourceBuilder().build();

publ i ¢ Basi cDat aSour ce bar Dat aSour ce() {

return (BasicDataSource) DataSourceBuil der.create()
. type(Basi cDat aSour ce. cl ass) . bui I d();

feature uses your copy (should you use that).

Both data sources are also bound for advanced customizations. For instance you could configure them
as follows:

Of course, you can apply the same concept to the secondary Dat aSour ce as well:

}

}

app.
app.

app.
app.
app.
app.

dat asour ce.
dat asour ce.

dat asour ce.
dat asour ce.
dat asour ce.
dat asour ce.

f oo.
f oo.

bar .
bar .
bar .
bar .

t ype=com zaxxer . hi kari . H kari Dat aSour ce
maxi mum pool - si ze=30

url =j dbc: mysql : //1 ocal host/test
user nane=dbuser

passwor d=dbpass

max-t ot al =30

publ i c Dat aSour ceProperties fooDataSourceProperties() {

return new Dat aSourceProperties();

publ i c DataSource fooDataSource() {

return fooDataSourceProperties().initializeDataSourceBuilder().build();

1.4.8.BUILD-SNAPSHOT Spring Boot

252

Spring Boot Reference Guide

publ i ¢ Dat aSour ceProperties bar Dat aSour ceProperties() {
return new Dat aSour ceProperties();

}

publ i ¢ Dat aSour ce bar Dat aSource() {
return bar Dat aSour ceProperties().initializeDataSourceBuilder().build();

}

This final example configures two data sources on custom namespaces with the same logic than what
Spring Boot would do in auto-configuration.

74.3 Use Spring Data repositories

Spring Data can create implementations for you of @Reposi t ory interfaces of various flavors. Spring
Boot will handle all of that for you as long as those @Reposi t ori es are included in the same package
(or a sub-package) of your @nabl eAut oConf i gur ati on class.

For many applications all you will need is to put the right Spring Data dependencies on your classpath
(there is a spring-boot-starter-data-jpa for JPA and a spring-boot-starter-data-
nongodb for Mongodb), create some repository interfaces to handle your @nt i t y objects. Examples
are in the JPA sample or the Mongodb sample.

Spring Boot tries to guess the location of your @Repository definitions, based on the
@nabl eAut oConfi gurati on it finds. To get more control, use the @nabl eJpaReposi tori es
annotation (from Spring Data JPA).

74.4 Separate @Entity definitions from Spring configuration

Spring Boot tries to guess the location of your @ntity definitions, based on the
@nabl eAut oConfi guration it finds. To get more control, you can use the @ntityScan
annotation, e.qg.

public class Application {

Il

74.5 Configure JPA properties

Spring Data JPA already provides some vendor-independent configuration options (e.g. for SQL
logging) and Spring Boot exposes those, and a few more for hibernate as external configuration
properties. The most common options to set are:

spring.j pa. hi bernat e. ddl - aut o=cr eat e- dr op

spring. j pa. hi ber nat e. nam ng. physi cal - strat egy=com exanpl e. M/Physi cal Nam ngSt r at egy
spring. j pa. dat abase=H2

spring.j pa. show sqgl =true

The ddl - aut o setting is a special case in that it has different defaults depending on whether
you are using an embedded database (cr eat e- dr op) or not (none). In addition all properties in

1.4.8.BUILD-SNAPSHOT Spring Boot 253

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-data-jpa
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-data-mongodb

Spring Boot Reference Guide

spring.jpa. properties.* are passed through as normal JPA properties (with the prefix stripped)
when the local Ent i t yManager Fact ory is created.

Spring Boot provides a consistent naming strategy regardless of the Hibernate generation
that you are wusing. If you are wusing Hibernate 4, you can customize it using
spring.j pa. hi bernat e. nam ng. strat egy; Hibernate 5 defines a Physi cal and Inplicit
naming strategies: Spring Boot configures Spri ngPhysi cal Nam ngStrat egy by default. This
implementation provides the same table structure as Hibernate 4. If you'd rather use Hibernate 5's
default instead, set the following property:

spring. j pa. hi ber nat e. nam ng. physi cal -
strat egy=or g. hi ber nat e. boot . nodel . nani ng. Physi cal Nam ngSt r at egy St andar dl npl

See Hi ber nat eJpaAut oConf i gur ati on and JpaBaseConf i gur at i on for more details.

74.6 Use a custom EntityManagerFactory

To take full control of the configuration of the Ent i t yManager Fact ory, you need to add a @ean
named ‘entityManagerFactory’. Spring Boot auto-configuration switches off its entity manager based on
the presence of a bean of that type.

74.7 Use Two EntityManagers

Even if the default Ent i t yManager Fact or y works fine, you will need to define a new one because
otherwise the presence of the second bean of that type will switch off the default. To make it easy to do
that you can use the convenient Ent i t yManager Bui | der provided by Spring Boot, or if you prefer
you can just use the Local Cont ai ner Enti t yManager Fact or yBean directly from Spring ORM.

Example:

/1 add two data sources configured as above

publ i c Local Cont ai ner EntityManager Fact or yBean cust oner Enti t yManager Fact ory(
Enti t yManager Fact or yBui | der buil der) {
return builder
. dat aSour ce(cust oner Dat aSour ce())
. packages(Cust oner . cl ass)
. persi stenceUnit ("custoners")
Lbuild();

publ i c Local Cont ai ner Enti t yManager Fact or yBean order Enti t yManager Fact or y(
Enti t yManager Fact or yBui | der bui |l der) {
return buil der

. dat aSour ce(or der Dat aSour ce())
. packages(Order. cl ass)
. persistenceUnit("orders")
Lbuild();

}

The configuration above almost works on its own. To complete the picture you need to configure
Transacti onManager s for the two Ent i t yManager s as well. One of them could be picked up by the
default JpaTr ansact i onManager in Spring Boot if you mark it as @r i mar y. The other would have
to be explicitly injected into a new instance. Or you might be able to use a JTA transaction manager
spanning both.

If you are using Spring Data, you need to configure @nabl eJpaReposi t ori es accordingly:

1.4.8.BUILD-SNAPSHOT Spring Boot 254

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java

Spring Boot Reference Guide

public class CustonerConfiguration {

}

public class O derConfiguration {

}

74.8 Use a traditional persistence.xml

Spring doesn’t require the use of XML to configure the JPA provider, and Spring Boot assumes you
want to take advantage of that feature. If you prefer to use per si st ence. xm then you need to define
your own @ean of type Local Ent it yManager Fact or yBean (with id ‘entityManagerFactory’, and
set the persistence unit name there.

See JpaBaseConf i gur ati on for the default settings.

74.9 Use Spring Data JPA and Mongo repositories

Spring Data JPA and Spring Data Mongo can both create Repository implementations for you
automatically. If they are both present on the classpath, you might have to do some extra configuration
to tell Spring Boot which one (or both) you want to create repositories for you. The most explicit way
to do that is to use the standard Spring Data @nabl e* Reposi t ori es and tell it the location of your
Reposi t ory interfaces (where *" is ‘Jpa’ or ‘Mongo’ or both).

There are also flags spri ng. dat a. *. reposi t ori es. enabl ed that you can use to switch the auto-
configured repositories on and off in external configuration. This is useful for instance in case you want
to switch off the Mongo repositories and still use the auto-configured MongoTenpl at e.

The same obstacle and the same features exist for other auto-configured Spring Data repository types
(Elasticsearch, Solr). Just change the names of the annotations and flags respectively.

74.10 Expose Spring Data repositories as REST endpoint

Spring Data REST can expose the Reposi t or y implementations as REST endpoints for you as long
as Spring MVC has been enabled for the application.

Spring Boot exposes as set of useful properties from the spri ng. dat a. rest namespace that
customize the Reposi t or yRest Conf i gur ati on. If you need to provide additional customization,
you should use a Reposi t or yRest Conf i gur er bean.

74.11 Configure a component that is used by JPA

If you want to configure a component that will be used by JPA then you need to ensure that the
component is initialized before JPA. Where the component is auto-configured Spring Boot will take care
of this for you. For example, when Flyway is auto-configured, Hibernate is configured to depend upon
Flyway so that the latter has a chance to initialize the database before Hibernate tries to use it.

If you are configuring a component yourself, you can use an
Entit yManager Fact or yDependsOnPost Processor subclass as a convenient way of setting up
the necessary dependencies. For example, if you are using Hibernate Search with Elasticsearch as

1.4.8.BUILD-SNAPSHOT Spring Boot 255

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
https://docs.spring.io/spring-data/rest/docs/current/api/org/springframework/data/rest/core/config/RepositoryRestConfiguration.html
https://docs.spring.io/spring-data/rest/docs/current/api/org/springframework/data/rest/webmvc/config/RepositoryRestConfigurer.html

Spring Boot Reference Guide

its index manager then any Enti t yManager Fact ory beans must be configured to depend on the
el asti csearchd i ent bean:

static class El asti csearchJpaDependencyConfi guration
extends EntityManager Fact or yDependsOnPost Processor {

El asti csear chJpaDependencyConfi guration() {
super ("el asticsearchCient");

}

1.4.8.BUILD-SNAPSHOT Spring Boot 256

Spring Boot Reference Guide

75. Database initialization

An SQL database can be initialized in different ways depending on what your stack is. Or of course you
can do it manually as long as the database is a separate process.

75.1 Initialize a database using JPA

JPA has features for DDL generation, and these can be set up to run on startup against the database.
This is controlled through two external properties:

e spring.jpa.generate-ddl (boolean) switches the feature on and off and is vendor independent.

* spring.jpa. hi bernate. ddl - aut o (enum) is a Hibernate feature that controls the behavior in a
more fine-grained way. See below for more detail.

75.2 Initialize a database using Hibernate

You can set spring.j pa. hi bernate. ddl - aut o explicitly and the standard Hibernate property
values are none, val i dat e, updat e, cr eat e, cr eat e- dr op. Spring Boot chooses a default value
for you based on whether it thinks your database is embedded (default cr eat e- dr op) or not (default
none). An embedded database is detected by looking at the Connect i on type: hsql db, h2 and der by
are embedded, the rest are not. Be careful when switching from in-memory to a ‘real’ database that you
don’t make assumptions about the existence of the tables and data in the new platform. You either have
to set ddl - aut o explicitly, or use one of the other mechanisms to initialize the database.

Note

You can output the schema creation by enabling the or g. hi ber nat e. SQL logger. This is done
for you automatically if you enable the debug mode.

In addition, a file named i nmpor t . sql inthe root of the classpath will be executed on startup if Hibernate
creates the schema from scratch (that is if the ddl - aut o property is setto cr eat e or cr eat e- dr op).
This can be useful for demos and for testing if you are careful, but probably not something you want to
be on the classpath in production. It is a Hibernate feature (nothing to do with Spring).

75.3 Initialize a database using Spring JDBC

Spring JDBC has a Dat aSour ce initializer feature. Spring Boot enables it by default and loads
SQL from the standard locations schema. sql and dat a. sql (in the root of the classpath). In
addition Spring Boot will load the schema- ${pl atforn}. sgl and dat a- ${pl atforn}. sqgl files
(if present), where pl at f or mis the value of spring. dat asource. pl atform e.g. you might
choose to set it to the vendor name of the database (hsql db, h2, oracl e, mysql , post gresql
etc.). Spring Boot enables the fail-fast feature of the Spring JDBC initializer by default, so if the
scripts cause exceptions the application will fail to start. The script locations can be changed by
setting spri ng. dat asour ce. schena and spri ng. dat asour ce. dat a, and neither location will be
processed if spri ng. dat asource. i nitialize=fal se.

To disable the fail-fast you can set spri ng. dat asour ce. conti nue-on-error=true. This can be
useful once an application has matured and been deployed a few times, since the scripts can act as
‘poor man’s migrations’ — inserts that fail mean that the data is already there, so there would be no
need to prevent the application from running, for instance.

1.4.8.BUILD-SNAPSHOT Spring Boot 257

Spring Boot Reference Guide

If you want to use the schema. sqgl initialization in a JPA app (with Hibernate) then ddl -
aut o=cr eat e- dr op will lead to errors if Hibernate tries to create the same tables. To avoid those
errors set ddl - aut o explicitly to " (preferable) or "none". Whether or not you use ddl - aut o=cr eat e-
dr op you can always use dat a. sql to initialize new data.

75.4 Initialize a Spring Batch database

If you are using Spring Batch then it comes pre-packaged with SQL initialization scripts for most popular
database platforms. Spring Boot will detect your database type, and execute those scripts by default,
and in this case will switch the fail fast setting to false (errors are logged but do not prevent the application
from starting). This is because the scripts are known to be reliable and generally do not contain bugs, so
errors are ignorable, and ignoring them makes the scripts idempotent. You can switch off the initialization
explicitly using spri ng. batch.initializer.enabl ed=fal se.

75.5 Use a higher-level database migration tool

Spring Boot supports two higher-level migration tools: Flyway and Liguibase.

Execute Flyway database migrations on startup

To automatically run Flyway database migrations on startup, add the or g. f | ywaydb: f | yway- cor e
to your classpath.

The migrations are scripts in the form V<VERSI ON>__ <NAME>. sql (with <VERSI ON> an underscore-
separated version, e.g. ‘1’ or ‘2_1"). By default they live in a folder cl asspat h: db/ mi grati on butyou
can modify that using f | yway. | ocat i ons (a list). See the Flyway class from flyway-core for details
of available settings like schemas etc. In addition Spring Boot provides a small set of properties in
FI ywayPr operti es that can be used to disable the migrations, or switch off the location checking.
Spring Boot will call Fl yway. ni gr at e() to perform the database migration. If you would like more
control, provide a @ean that implements Fl ywayM gr ati onStr at egy.

Tip

If you want to make use of Flyway callbacks, those scripts should also live in the cl asspat h: db/
nm grat i on folder.

By default Flyway will autowire the (@ri mary) Dat aSour ce in your context and use that for
migrations. If you like to use a different Dat aSour ce you can create one and mark its @ean as
@ ywayDat aSour ce - if you do that remember to create another one and mark it as @ri mary
if you want two data sources. Or you can use Flyway’s native Dat aSour ce by setting f | yway.
[url,user, password] in external properties.

There is a Flyway sample so you can see how to set things up.

You can also use Flyway to provide data for specific scenarios. For example, you can place test-
specific migrations in src/test/resour ces and they will only be run when your application starts
for testing. If you want to be more sophisticated you can use profile-specific configuration to customize
flyway. | ocati ons so that certain migrations will only run when a particular profile is active. For
example, in appl i cati on-dev. properti es you could set f| yway. | ocati ons to cl asspat h:/
db/ m gration, claspath:/dev/db/n grationandmigrationsindev/ db/ ni grati on will only
run when the dev profile is active.

1.4.8.BUILD-SNAPSHOT Spring Boot 258

https://flywaydb.org/
https://www.liquibase.org/
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayProperties.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayMigrationStrategy.java
https://flywaydb.org/documentation/callbacks.html
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-flyway

Spring Boot Reference Guide

Execute Liquibase database migrations on startup

To automatically run Liguibase database migrations on startup, add the
org. |l i qui base: | i qui base- cor e to your classpath.

The master change log is by default read from db/ changel og/ db. changel og- mast er . yam but
can be setusing | i qui base. change- | og. In addition to YAML, Liquibase also supports JSON, XML,
and SQL change log formats.

By default Liquibase will autowire the (@ri mary) Dat aSour ce in your context and use that for
migrations. If you like to use a different Dat aSour ce you can create one and mark its @ean as
@i qui baseDat aSour ce - if you do that remember to create another one and mark it as @r i mary
if you want two data sources. Or you can use Liquibase’s native Dat aSour ce by setting | i qui base.
[url,user, passwor d] in external properties.

See Li qui basePr operti es for details of available settings like contexts, default schema etc.

There is a Liguibase sample so you can see how to set things up.

1.4.8.BUILD-SNAPSHOT Spring Boot 259

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseProperties.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-liquibase

Spring Boot Reference Guide

76. Messaging

76.1 Disable transacted JMS session

If your JMS broker does not support transacted session, you will have to disable the
support of transactions altogether. If you create your own JnsLi st ener Cont ai ner Fact ory
there is nothing to do since it won't be transacted by default. If you want to use the
Def aul t JnsLi st ener Cont ai ner Fact or yConfi gurer to reuse Spring Boot's default, you can
disable transacted session as follows:

publ i c Defaul t IJnsLi st ener Cont ai ner Factory j nsLi st ener Cont ai ner Fact or y(
Connecti onFactory connecti onFactory,
Def aul t InsLi st ener Cont ai ner Fact or yConfi gurer configurer) {
Def aul t JnsLi st ener Cont ai ner Factory |istenerFactory =
new Def aul t JnsLi st ener Cont ai ner Factory();
configurer.configure(listenerFactory, connectionFactory);
li stenerFactory. set Transacti onManager (null);
l'i stener Factory. set Sessi onTr ansact ed(f al se);
return |istenerFactory;

This overrides the default factory and this should be applied to any other factory that your application
defines, if any.

1.4.8.BUILD-SNAPSHOT Spring Boot 260

Spring Boot Reference Guide

/7. Batch applications

Note

By default, batch applications require a Dat aSource to store job details. If you want
to deviate from that, you'll need to implement Bat chConfi gurer, see The Javadoc of
@nabl eBat chPr ocessi ng for more details.

77.1 Execute Spring Batch jobs on startup

Spring Batch auto-configuration is enabled by adding @nabl eBat chPr ocessi ng (from Spring Batch)
somewhere in your context.

By default it executes all Jobs in the application context on startup (see
JobLauncherCommandLineRunner for details). You can narrow down to a specific job or jobs by
specifying spri ng. bat ch. j ob. nanes (comma-separated job name patterns).

If the application context includes a JobRegi st ry then the jobs in spri ng. bat ch. j ob. nanes are
looked up in the registry instead of being autowired from the context. This is a common pattern with
more complex systems where multiple jobs are defined in child contexts and registered centrally.

See BatchAutoConfiguration and @EnableBatchProcessing for more details.

1.4.8.BUILD-SNAPSHOT Spring Boot 261

https://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.html
https://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.html
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/JobLauncherCommandLineRunner.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
https://github.com/spring-projects/spring-batch/blob/master/spring-batch-core/src/main/java/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.java

Spring Boot Reference Guide

/8. Actuator

78.1 Change the HTTP port or address of the actuator
endpoints

In a standalone application the Actuator HTTP port defaults to the same as the main HTTP port. To
make the application listen on a different port set the external property nanagenent . port. To listen
on a completely different network address (e.g. if you have an internal network for management and
an external one for user applications) you can also set managenent . addr ess to a valid IP address
that the server is able to bind to.

For more detail look at the Managenent Server Properties source code and Section 47.3
“Customizing the management server port” in the ‘Production-ready features’ section.

78.2 Customize the ‘whitelabel’ error page

Spring Boot installs a ‘whitelabel’ error page that you will see in browser client if you encounter a server
error (machine clients consuming JSON and other media types should see a sensible response with
the right error code).

Note

Set server. error. whitel abel . enabl ed=f al se to switch the default error page off which
will restore the default of the servlet container that you are using. Note that Spring Boot will still
attempt to resolve the error view so you'd probably add you own error page rather than disabling
it completely.

Overriding the error page with your own depends on the templating technology that you are using.
For example, if you are using Thymeleaf you would add an error. ht nl template and if you are
using FreeMarker you would add an error.ftl template. In general what you need is a Vi ew
that resolves with a name of error, and/or a @ont r ol | er that handles the / error path. Unless
you replaced some of the default configuration you should find a BeanNanmeVi ewResol ver in your
Appl i cati onCont ext so a @ean with id error would be a simple way of doing that. Look at
Er r or MrcAut oConf i gur at i on for more options.

See also the section on Error Handling for details of how to register handlers in the servlet container.

78.3 Actuator and Jersey

Actuator HTTP endpoints are only available for Spring MVC-based applications. If you want to use
Jersey and still use the actuator you will need to enable Spring MVC (by depending on spri ng-
boot - st art er - web, for example). By default, both Jersey and the Spring MVC dispatcher servlet
are mapped to the same path (/). You will need to change the path for one of them (by configuring
server.servl et-path for Spring MVC or spring.jersey.application-path for Jersey).
For example, if you add server. servl et - pat h=/ syst eminto appl i cati on. properti es, the
actuator HTTP endpoints will be available under / syst em

1.4.8.BUILD-SNAPSHOT Spring Boot 262

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/autoconfigure/ManagementServerProperties.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ErrorMvcAutoConfiguration.java

Spring Boot Reference Guide

79. Security

79.1 Switch off the Spring Boot security configuration

If you define a @onfi gurati on with @nabl eWebSecurity anywhere in your application it will
switch off the default webapp security settings in Spring Boot (but leave the Actuator’s security enabled).
To tweak the defaults try setting properties in security. * (see Securi tyProperti es for details of
available settings) and SECURI TY section of Common application properties.

79.2 Change the AuthenticationManager and add user
accounts

If you provide a @ean of type Aut hent i cati onManager the default one will not be created, so you
have the full feature set of Spring Security available (e.g. various authentication options).

Spring Security also provides a convenient Aut hent i cat i onManager Bui | der which can be used
to build an Aut hent i cat i onManager with common options. The recommended way to use this in a
webapp is to inject it into a void method in a WebSecur i t yConf i gur er Adapt er, e.g.

public class SecurityConfiguration extends WbSecurityConfi gurerAdapter {

public void configured obal (Aut henti cati onManager Bui | der auth) throws Exception {
aut h. i nMenor yAut henti cation()
. W thUser ("barry"). password("password").roles("USER'); // ... etc.

/1 ... other stuff for application security

You will get the best results if you put this in a nested class, or a standalone class (i.e. not mixed in
with a lot of other @eans that might be allowed to influence the order of instantiation). The secure web
sample is a useful template to follow.

If you experience instantiation issues (e.g. using JDBC or JPA for the user detail
store) it might be worth extracting the Aut henti cati onManager Buil der callback into a
G obal Aut henti cati onConfi gurer Adapter (in the i nit() method so it happens before the
authentication manager is needed elsewhere), e.g.

public class Authenticati onManager Confi gurati on extends
d obal Aut henti cati onConfi gurer Adapter {

public void init(Authenticati onManagerBuilder auth) {
aut h. i nMenoryAut hentication() // ... etc.

}

79.3 Enable HTTPS when running behind a proxy server

Ensuring that all your main endpoints are only available over HTTPS is an important chore for any
application. If you are using Tomcat as a servlet container, then Spring Boot will add Tomcat's own

1.4.8.BUILD-SNAPSHOT Spring Boot 263

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jc-authentication
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-web-secure
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-samples/spring-boot-sample-web-secure

Spring Boot Reference Guide

Renot el pVal ve automatically if it detects some environment settings, and you should be able to
rely on the Ht t pSer vl et Request to report whether it is secure or not (even downstream of a proxy
server that handles the real SSL termination). The standard behavior is determined by the presence or
absence of certain request headers (x- f or war ded- f or and x- f or war ded- pr ot 0), whose names
are conventional, so it should work with most front end proxies. You can switch on the valve by adding
some entries to appl i cati on. properti es, e.g.

server.toncat.renote_i p_header =x-f orwar ded-f or
server.tontat. protocol _header =x-f or war ded- prot o

(The presence of either of those properties will switch on the valve. Or you can add the Renot el pVal ve
yourself by adding a Tontat EnbeddedSer vl et Cont ai ner Fact ory bean.)

Spring Security can also be configured to require a secure channel for all (or some requests). To
switch that on in a Spring Boot application you just need to set security.require_ssl totruein
application. properties.

1.4.8.BUILD-SNAPSHOT Spring Boot 264

Spring Boot Reference Guide

80. Hot swapping

80.1 Reload static content

There are several options for hot reloading. The recommended approach is to use spri ng- boot -
devt ool s as it provides additional development-time features such as support for fast application
restarts and LiveReload as well as sensible development-time configuration (e.g. template caching).
Devtools works by monitoring the classpath for changes. This means that static resource changes must
be "built" for the change to take affect. By default, this happens automatically in Eclipse when you save
your changes. In IntelliJ IDEA, Make Project will trigger the necessary build. Due to the default restart
exclusions, changes to static resources will not trigger a restart of your application. They will, however,
trigger a live reload.

Alternatively, running in an IDE (especially with debugging on) is a good way to do development (all
modern IDEs allow reloading of static resources and usually also hot-swapping of Java class changes).

Finally, the Maven and Gradle plugins can be configured (see the addResour ces property) to support
running from the command line with reloading of static files directly from source. You can use that with
an external css/js compiler process if you are writing that code with higher level tools.

80.2 Reload templates without restarting the container

Most of the templating technologies supported by Spring Boot include a configuration option to disable
caching (see below for details). If you're using the spri ng- boot - devt ool s module these properties
will be automatically configured for you at development time.

Thymeleaf templates

If you are using Thymeleaf, then set spring.thyneleaf.cache to false. See
Thynel eaf Aut oConf i gur at i on for other Thymeleaf customization options.

FreeMarker templates

If you are wusing FreeMarker, then set spring.freenmarker.cache to false. See
Fr eeMar ker Aut oConf i gur at i on for other FreeMarker customization options.

Groovy templates

If you are using Groovy templates, then set spri ng. groovy. tenpl ate. cache to fal se. See
G oovyTenpl at eAut oConf i gur at i on for other Groovy customization options.

Velocity templates

If you are using Velocity, then set spring.velocity.cache to false. See
Vel oci t yAut oConfi gur at i on for other Velocity customization options.

80.3 Fast application restarts

The spri ng- boot - devt ool s module includes support for automatic application restarts. Whilst not
as fast a technologies such as JRebel or Spring Loaded it's usually significantly faster than a “cold

1.4.8.BUILD-SNAPSHOT Spring Boot 265

https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/1.4.x/spring-boot-autoconfigure/src/main/java/or