79. Database initialization

An SQL database can be initialized in different ways depending on what your stack is. Or of course you can do it manually as long as the database is a separate process.

79.1 Initialize a database using JPA

JPA has features for DDL generation, and these can be set up to run on startup against the database. This is controlled through two external properties:

  • spring.jpa.generate-ddl (boolean) switches the feature on and off and is vendor independent.
  • spring.jpa.hibernate.ddl-auto (enum) is a Hibernate feature that controls the behavior in a more fine-grained way. See below for more detail.

79.2 Initialize a database using Hibernate

You can set spring.jpa.hibernate.ddl-auto explicitly and the standard Hibernate property values are none, validate, update, create, create-drop. Spring Boot chooses a default value for you based on whether it thinks your database is embedded: default to create-drop if no schema manager has been detected, none in all other cases. An embedded database is detected by looking at the Connection type: hsqldb, h2 and derby are embedded, the rest are not. Be careful when switching from in-memory to a ‘real’ database that you don’t make assumptions about the existence of the tables and data in the new platform. You either have to set ddl-auto explicitly, or use one of the other mechanisms to initialize the database.

[Note]Note

You can output the schema creation by enabling the org.hibernate.SQL logger. This is done for you automatically if you enable the debug mode.

In addition, a file named import.sql in the root of the classpath will be executed on startup if Hibernate creates the schema from scratch (that is if the ddl-auto property is set to create or create-drop). This can be useful for demos and for testing if you are careful, but probably not something you want to be on the classpath in production. It is a Hibernate feature (nothing to do with Spring).

79.3 Initialize a database using Spring JDBC

Spring JDBC has a DataSource initializer feature. Spring Boot enables it by default and loads SQL from the standard locations schema.sql and data.sql (in the root of the classpath). In addition Spring Boot will load the schema-${platform}.sql and data-${platform}.sql files (if present), where platform is the value of spring.datasource.platform, e.g. you might choose to set it to the vendor name of the database (hsqldb, h2, oracle, mysql, postgresql etc.). Spring Boot enables the fail-fast feature of the Spring JDBC initializer by default, so if the scripts cause exceptions the application will fail to start. The script locations can be changed by setting spring.datasource.schema and spring.datasource.data, and neither location will be processed if spring.datasource.initialize=false.

To disable the fail-fast you can set spring.datasource.continue-on-error=true. This can be useful once an application has matured and been deployed a few times, since the scripts can act as ‘poor man’s migrations’ — inserts that fail mean that the data is already there, so there would be no need to prevent the application from running, for instance.

If you want to use the schema.sql initialization in a JPA app (with Hibernate) then ddl-auto=create-drop will lead to errors if Hibernate tries to create the same tables. To avoid those errors set ddl-auto explicitly to "" (preferable) or "none". Whether or not you use ddl-auto=create-drop you can always use data.sql to initialize new data.

79.4 Initialize a Spring Batch database

If you are using Spring Batch then it comes pre-packaged with SQL initialization scripts for most popular database platforms. Spring Boot can detect your database type and execute those scripts on startup. If you are using an embedded database this happens by default. You can also enable it for any database type:

spring.batch.initialize-schema=always

You can also switch off the initialization explicitly using spring.batch.initialize-schema=never.

79.5 Use a higher-level database migration tool

Spring Boot supports two higher-level migration tools: Flyway and Liquibase.

79.5.1 Execute Flyway database migrations on startup

To automatically run Flyway database migrations on startup, add the org.flywaydb:flyway-core to your classpath.

The migrations are scripts in the form V<VERSION>__<NAME>.sql (with <VERSION> an underscore-separated version, e.g. ‘1’ or ‘2_1’). By default they live in a folder classpath:db/migration but you can modify that using spring.flyway.locations. You can also add a special {vendor} placeholder to use vendor-specific scripts. Assume the following:

spring.flyway.locations=db/migration/{vendor}

Rather than using db/migration, this configuration will set the folder to use according to the type of the database (i.e. db/migration/mysql for MySQL). The list of supported database are available in DatabaseDriver.

See also the Flyway class from flyway-core for details of available settings like schemas etc. In addition Spring Boot provides a small set of properties in FlywayProperties that can be used to disable the migrations, or switch off the location checking. Spring Boot will call Flyway.migrate() to perform the database migration. If you would like more control, provide a @Bean that implements FlywayMigrationStrategy.

Flyway supports SQL and Java callbacks. To use SQL-based callbacks, place the callback scripts in the classpath:db/migration folder. To use Java-based callbacks, create one or more beans that implement FlywayCallback or, preferably, extend BaseFlywayCallback. Any such beans will be automatically registered with Flyway. They can be ordered using @Order or by implementing Ordered.

By default Flyway will autowire the (@Primary) DataSource in your context and use that for migrations. If you like to use a different DataSource you can create one and mark its @Bean as @FlywayDataSource - if you do that remember to create another one and mark it as @Primary if you want two data sources. Or you can use Flyway’s native DataSource by setting spring.flyway.[url,user,password] in external properties.

There is a Flyway sample so you can see how to set things up.

You can also use Flyway to provide data for specific scenarios. For example, you can place test-specific migrations in src/test/resources and they will only be run when your application starts for testing. If you want to be more sophisticated you can use profile-specific configuration to customize spring.flyway.locations so that certain migrations will only run when a particular profile is active. For example, in application-dev.properties:

spring.flyway.locations=classpath:/db/migration,classpath:/dev/db/migration

With that setup, migrations in dev/db/migration will only run when the dev profile is active.

79.5.2 Execute Liquibase database migrations on startup

To automatically run Liquibase database migrations on startup, add the org.liquibase:liquibase-core to your classpath.

The master change log is by default read from db/changelog/db.changelog-master.yaml but can be set using spring.liquibase.change-log. In addition to YAML, Liquibase also supports JSON, XML, and SQL change log formats.

By default Liquibase will autowire the (@Primary) DataSource in your context and use that for migrations. If you like to use a different DataSource you can create one and mark its @Bean as @LiquibaseDataSource - if you do that remember to create another one and mark it as @Primary if you want two data sources. Or you can use Liquibase’s native DataSource by setting spring.liquibase.[url,user,password] in external properties.

See LiquibaseProperties for details of available settings like contexts, default schema etc.

There is a Liquibase sample so you can see how to set things up.